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Abstract

The promise of improved signal-to-noise ratio (SNR), higher spatial/spectral resolution, and
shorter imaging time continues to motivate the pursuit of high and ultra-high field magnetic
resonance imaging. However, as field strength increases, the associated radiofrequency (RF)
magnetic fields become inhomogeneous resulting in regions with SNR drops and loss of im-
age quality, while local hot-spots, due to specific absorption rate (SAR) peaks, may occur.
These challenges present the opportunity to design the next-generation, sophisticated RF
coils which will yield higher SNR and faster image acquisition without compromising pa-
tient safety and image quality. Such design, however, requires long computational cycles, in
order to explore the high-order parametric space and monitor the trade-offs between array
degrees of freedom and various metrics, such as SNR, SAR, and transmit efficiency (TXE).
During this process, electromagnetic (EM) modeling constitutes an essential tool.

This thesis employs analytical methods and develops novel numerical methods for modeling
the interactions between EM waves and biological tissue and for computing theoretical RF
coils performance bounds consistent with electrodynamic principles along with their corre-
sponding optimal RF excitation patterns, which we term ideal current patterns (ICP). We
employ analytical methods and introduce a new performance metric, the ultimate intrinsic
TXE (UITXE), which is the theoretically largest TXE that can be achieved by any RF coil
in uniform spherical objects and calculate its associated ICP on spherical surfaces. We fur-
ther develop a novel volume integral equation solver for the accurate computation of EM
fields distributions within highly inhomogeneous realistic human body models (RHBM).
Our solver presents remarkably stable convergence properties and yields reliable EM fields
for challenging modeling scenarios and coarse resolutions without necessarily refining the
computational grid. Finally, we describe robust algorithms for generating a consistent nu-
merical EM fields basis able to represent all EM fields distributions inside inhomogeneous,
arbitrary objects and demonstrate how such basis can be used to derive UITXE inside RHBM
and ICP on arbitrary excitation surfaces that yield optimal SNR within RHBM. UITXE can
provide an absolute reference for coil benchmarking while ICP can inform the non-convex
RF coil optimization problem by providing an intuitive initial guess. We believe that these
tools can offer the framework for a truly robust optimization of next-generation RF coils.
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1 Introduction

1.1 Problem Statement and Literature Review

The design of next-generation magnetic resonance (MR) scanners is inextricably linked to
the design of sophisticated radiofrequency (RF) coil arrays. Unfortunately, a direct appli-
cation of existing full-wave electromagnetic (EM) tools cannot fully explore the high-order
parametric space and monitor the trade-offs between the array design degrees of freedom
and the various metrics such as intrinsic signal-to-noise ratio (SNR), specific absorption rate
(SAR), and transmit efficiency (TXE). Such metrics can characterize the RF array of an MR
scanner and are shortly explained here. Specifically, the basic determinants of SNR in mag-
netic resonance imaging (MRI) are the signal voltage amplitude and the root mean square
(RMS) noise voltage at the output of the detector, and it is mainly used for image evaluation
and measurement of contrast enhancement. SNR is also used for quality assurance, pulse
sequence comparison, and RF coil comparison. Additionally, SAR is a measure of the rate
at which energy is absorbed by the human body when exposed to an RF EM field and it is
defined as the power absorbed per mass of tissue measured in watts per kilogram. Finally,
an approach for evaluating the efficiency of a conventional transmit coil is to measure the
amplitude of the created B+

1 field, or spin flip angle, given a certain input power, which can
be compactly represented by TXE.

Recent technological advances and trends increasingly lead to high and ultra-high field
(UHF) strength MRI promising improved SNR and higher spatial/spectral resolution. How-
ever, as we move to higher static magnetic field strengths, the operating Larmor frequency of
the RF coils increases, too. Higher frequencies entail smaller wavelengths that become com-
parable to the effective dimension of the human body and interact more strongly with the
biological tissue. Consequently, SAR, which depends on the conductivity and the density of
the human tissue, and more importantly on the electric field spatial distribution, can become
large posing the risk of damaging the human tissue due to excessive heat deposition over it.
Furthermore, the magnetic field becomes inhomogeneous, which translates to regions with
SNR drops and loss of image quality. Taking into account all these factors, one naturally
realizes the need for highly sophisticated, tunable RF coil arrays which, however, require

1
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long design cycles. The general objective of the thesis is to address these challenges, by re-
liably and accurately modeling the interactions between EM waves and biological tissue and
by deriving performance bounds for RF transmit coils for the above-mentioned TXE metric
along with surface current distributions that yield the optimal EM fields that maximize SNR.
These tools aim to give physical insight into the development of task-optimal RF coil arrays
that could possibly approach the ultimate performance.

Over the last years, the scientific community has been making use of both analytical and
numerical techniques for computing the EM fields distributions and the associated perfor-
mance metrics. Each approach has its own distinct advantages and usability. Analytical
electrodynamic simulations are valuable since they provide rapid and rigorous results that
yield insight into fundamental dependencies for different metrics using comparatively sim-
ple geometrical models. Furthermore, in contrast with numerical methods, they are not
time-consuming, and their computational complexity does not grow as the number of mod-
eled coils increases, facilitating the simulation of different coil-sample configurations and
the exploration of various parameters, adding generality to the results and observed trends.
However, for heterogeneous body models, full-wave numerical computation is currently the
only practical way to obtain realistic spatial distributions of the EM fields and the associated
absorbed/deposited power, described by SAR. Below, we review part of the wide variety
of analytical and numerical methods used to calculate RF EM fields in MRI, as well as,
theoretical bounds of performance for SNR and SAR metrics.

Analytical solutions to Maxwell equations can only be derived for simplified sample ge-
ometries [6–9] including spheres, multi-layered spheroids, infinitely long cylinders, cones,
and slabs. Theoretical limits of performance for the MR-related metrics of SNR and SAR
in such samples have also been introduced and extensively studied in the literature [10–19]
yielding great insight into expected and observed trends in MRI signal, noise, and safety.
Among these different approaches, limits on performance were calculated by utilizing com-
plete analytical EM fields bases of vector spherical or cylindrical harmonic wave functions,
where the surface currents modes were constrained onto spherical or cylindrical shells, re-
spectively [15]. This generalized framework has allowed for the calculation of the associ-
ated current distributions that yield the best possible values of SNR or SAR consistent with
electrodynamic principles. Over the last years, these so-called ideal current patterns (ICP)
have provided new physical insight into the design of optimal coil arrays that approach the
ultimate performance [20–29].

However, to analyze more realistic and complex scenarios, numerical methods have to be
employed in order to solve Maxwell equations, in particular, if highly inhomogeneous ob-
jects are to be modeled, e.g., anatomical realistic body models. The most broadly used
numerical methods to calculate EM fields distributions in MRI are the Finite Difference
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Time Domain (FDTD) Method [30] and the Finite Element Method (FEM) [31, 32]. How-
ever, with regard to the numerical techniques for computing the EM fields in inhomoge-
neous dielectrics, such as the human body, there is also a vast amount of literature and
a rich investigative activity that focuses on integral equation (IE) methods [33–57]. Over
the last years, the MRI community has utilized a standard volume integral equation (VIE)
solver based on electric flux densities to calculate the EM scattering from realistic human
body models, which, however has recently proven to have unstable convergence proper-
ties [58, 59]. This finding motivated researchers to develop a new stable current-based VIE
solver with piece-wise constant (PWC) approximations [60] for MR modeling which can
be combined in a straightforward manner with surface integral equation (SIE) methods to
model the homogeneous conductors of the RF coil arrays [61–63]. This generalized frame-
work [60,64–66] has offered great flexibility in exploiting certain problem properties by cus-
tomization of the method and has further allowed for the calculation of performance bounds
for SNR [67–70] and SAR amplification factor for RF hyperthermia [71] in heterogeneous
head models within reasonable time and manageable computational resources. More re-
cently, the ICP that yield optimal SNR have also been described for the case of cylindrical
and open spherical surfaces [68, 72], by cleverly combining the vector wave eigenfunction
expansion of the spherical and cylindrical Helmholtz operator with the above-mentioned
ultra-fast VIE solver [64] and, lately, another promising approach which allows to predict,
rapidly and intuitively, the form of ICP on any arbitrary surface surrounding any arbitrary
body has been introduced [73].

1.2 Thesis Structure and Contributions

The focal point of this dissertation revolves around modeling the interactions between EM
waves and biological tissue, employing analytical and developing numerical methods for
the calculation of theoretical performance bounds consistent with electrodynamics and in-
dependent of any particular coil design, as well as, the computation of ideal RF excitation
patterns. The structure and the contributions of the thesis are explained in detail below.

The first chapter is an introductory chapter and starts with the problem that the thesis aims
to tackle along with the literature review that summarizes the investigative activity that has
been ongoing in the direction of analytical and numerical EM fields computation methods
for MR modeling, both for the case of the RF coils and the human body. Furthermore, it
reviews the scientific contributions with respect to the calculation of ultimate SNR, SAR,
and their associated current distributions and points to important studies that demonstrate
how they are a great source of physical insight into the design of optimal RF coil arrays.
Then, the thesis structure and contributions are described.

The second chapter starts with the description of the physical principles that govern the
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nuclear magnetic resonance (NMR) phenomenon and the MRI system components that are
required to appropriately manipulate the magnetic fields in order to generate the MR image.
The associated metrics of SNR and SAR are introduced along with the safety regulations
and image quality considerations that have to be taken into account when operating and
designing an MRI system. It continues with a comprehensive report of the opportunities and
challenges that arise at UHF MRI along with the description of Maxwell and constitutive
equations. Such challenges necessitate the fast and accurate EM modeling of the associated
RF coils but at the same time they present an opportunity to design the next-generation
tunable coils that can yield higher SNR and faster image acquisition without compromising
patient safety and image quality. Finally, a detailed review of the existing analytical and
numerical methods for EM fields computations is presented including FDTD, FEM, and IE
methods. Their distinct characteristics and applicability within the MR modeling field are
described, and their advantages and disadvantages are compared with each other.

The third chapter is devoted to the description and formulation of analytical electrodynamic
techniques for EM fields and performance bounds calculations, specifically for the case of
RF transmit coils. It starts by reviewing existing metrics that measure the efficiency of
RF shimming methods and transmit coils and then it describes the TXE metric of choice
and how its largest possible value can be computed in uniform head-mimicking spherical
samples by expanding the dyadic Green’s function in a basis of vector spherical harmonic
(VSH) functions. It also explains how the corresponding ICP that yield the ultimate intrinsic
transmit efficiency (UITXE) can be calculated followed by a detailed investigation of the
ICP and UITXE behavior for different B0 field strengths, spherical sample sizes, and target
excitation regions of interest. Finally, finite RF coil arrays are assessed with respect to the
ultimate performance.

The contributions of this chapter are briefly summarized as follows. First, we introduce a
novel performance metric, namely, the UITXE [74, 75] which is the theoretically largest
TXE that can be achieved by any coil using RF shimming for a given imaging sample and
target excitation region. Second, we employ a complete basis of surface current modes,
constrained on a spherical shell, as transmit elements of a hypothetical infinite array and
compute UITXE for head-mimicking uniform spherical samples by maximizing the square
of the net B+

1 per unit RF power deposition. Then, the corresponding RF shimming weights
are used to appropriately combine the current modes into ICP. Finally, we investigate the
behavior of UITXE and ICP for different magnetic field strengths, excitation regions, and
sample sizes and evaluate the performance of finite arrays with respect to the UITXE. Ana-
lytical EM simulation techniques are rapid, rigorous, and provide great physical insight into
observed patterns and trends of MR-related metrics and EM fields distributions behavior.
However, in order to more closely account for what happens in reality, numerical methods
have to be employed, which should take into account the high inhomogeneity and geomet-
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rical complexity of the human body.

The fourth chapter deals exactly with that problem and it is devoted to the development of
a novel numerical solver [76, 77] that accurately models the EM scattering from extremely
inhomogeneous objects and/or objects with high contrast, which is the case of the human
body. This numerical solver can be employed for the precise computation of the EM fields
distributions over the body and their associated figure of merits, such as B1 fields, local
SAR, SNR, and TXE. First, SIE methods, that can be used for the RF coil modeling, are
described and then the focus shifts on VIE methods and their different formulations for EM
scattering computation from inhomogeneous media. Specifically, we introduce and develop
a fast and accurate, current-based VIE solver with piece-wise linear (PWL) basis functions
that yields reliable EM fields, without the need of refining the computational grid.

The novel contribution of this chapter is the development of a stable volume integral equa-
tion solver based on polarization/magnetization currents, for the accurate and efficient com-
putation of the EM scattering from highly inhomogeneous and high contrast objects [76,77].
For this purpose, we employ the Galerkin Method of Moments to discretize the formulation
with discontinuous PWL basis functions on uniform voxelized grids, allowing for the ac-
celeration of the associated matrix-vector products in an iterative solver, with the help of
fast Fourier transform (FFT). Through numerical experiments, we illustrate that the result-
ing discretized formulation is well-conditioned and has superior convergence properties than
the discretized version with PWC approximations and than a more standard VIE formulation
based on electric flux densities [57]. Specifically, the number of iterations of the iterative
solver remains practically the same as with the case of PWC basis functions and is much
smaller than that of the flux-based solver, for highly inhomogeneous scatterers. Another
favorable feature of the proposed scheme is its superior accuracy. To demonstrate that, we
present a comparative analysis between the PWC and the PWL basis solver for a homoge-
neous sphere, comparing both solvers with analytical results obtained with Mie series [78],
and for realistic head models. We further show that even when numerically treating the
case of dielectric shimming [79], where high-permittivity dielectric pads are placed in the
vicinity of a realistic head model, the suggested solver performs effectively.

Having developed a numerical solver that generates reliable EM fields, the next focal point
is the description of robust algorithms to generate a numerical EM fields basis inside an in-
homogeneous, arbitrary scatterer that is consistent with electrodynamics [80], to which task
is devoted the fifth chapter of this dissertation. In particular, this chapter starts with the de-
scription of the steps that are required for the EM fields basis generation in realistic human
body models. This step can be considered as an extension of the Mie theory [78] to arbitrar-
ily complex geometries. In order to generate the basis, first, we excite the scatterer with a
large number of electric and/or magnetic dipoles, placed over a closed surface that surrounds
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the scatterer at a predefined distance. Then, we calculate the incident electric and magnetic
fields within the scatterer and apply randomized singular value decomposition (RSVD) [81]
to the matrix that maps the dipole currents to the incident fields. By using random, dis-
tributed in voxels electric and/or magnetic dipoles, RSVD computation can be accelerated
via the FFT-based matrix-vector product. However, to model arbitrary surfaces sometimes
it is more suitable to place the equivalent currents sources on a triangulated grid [75] or even
use ideal Hertzian dipoles tangential to the surface of interest [82]. This may hinder the
fast application of RSVD, since the grid is no longer uniform, but still the subspace of the
sources-to-object coupling matrix can be calculated fast by adaptive cross approximation of
the matrix [83–86] or even by directly applying singular value decomposition (SVD) when
memory and computation time restrictions permit. Throughout this chapter, we make use
of all three approaches depending on the application at hand. Having constructed a basis of
incident EM fields, we then proceed to the evaluation of the total fields with our in-house
VIE solvers [60,77]. In this chapter, we present the key points for the basis generation, study
the impact that electrical distance has on the singular value (SV) drop, demonstrate its abil-
ity to reconstruct different EM fields, and compare its numerical accuracy and convergence
properties [80] against a complete analytical basis derived in a spherical coordinate system
for the TXE and SNR metrics. Then, we compute the UITXE [75] for realistic head models,
similarly to the ultimate intrinsic SNR (UISNR) [67] case, against which ultimate metrics
we compare existing coil designs and thus assess the room for improvement of specific
arrays. Together with these performance bounds, we also compute the associated current
distributions on a given arbitrary surface that yield the corresponding optimal SNR distribu-
tion [82]. These numerical ICP can inform the non-convex coil optimization problem with
an intuitive initial guess and could lead to truly task-optimal coil designs.

The novel contributions of this chapter can be summarized as follows. First, we introduce
a general numerical framework for the generation of a basis for the EM fields that any coil
design can induce in inhomogeneous human body models with realistic tissue characteristics
[80]. The generation of such basis involves the combination of the IE formulation of the
Maxwell equations and the development of a fast VIE solver. It borrows the concept of
the Huygens’s surface equivalence principle and makes use of fast approaches to rapidly
explore the full space of incident fields that can be induced in the human body model. In
addition to the generation of the EM fields basis, we study its convergence properties for
different incident and total EM fields reconstruction and its numerical accuracy for different
MR metrics. We further show how to use such basis to obtain useful information, such
as the UITXE [75], that serves as a performance upper-bound for assessing RF transmit
arrays and, finally, how to obtain RF current excitation patterns in arbitrary surfaces outside
the body [82] that generate an optimal field distribution in terms of SNR. We believe that
these newly developed tools can offer the framework for truly robust optimization of next-
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generation RF coils.

In the final sixth chapter of the thesis, conclusions are presented along with a summary of
the contributions of the thesis. Potential future work is suggested and research extensions
and perspectives are described. Finally, three appendices are presented for the in-depth
understanding of critical aspects and mathematical derivations that have been omitted from
the main matter of the thesis for clarity and brevity.



2 Electromagnetic Fields Considerations in MRI

MRI is a non-invasive and powerful imaging technique that has played and continues to play
a significant role in the medical community. MRI generates three-dimensional (3D), cross-
sectional tomographic images similar to those of x-ray computed tomography (CT) [3]. Re-
cently, an impressive 100 micron resolution 7T MRI scan of an ex vivo human brain has been
presented highlighting the immense imaging capability of MRI [87]. In clinical application,
it enhances the diagnostic accuracy of medical doctors and assists them in the planning of a
surgical operation, thus limiting the risk for a patient during an operative and invasive pro-
cedure, since it allows the visualization of the structure and pathologies of the human body.
It also helps laboratory researchers, e.g., neurologists and biologists, to drive the discov-
ery of novel anatomical structures and develop an intuitive understanding of physiological
working principles. Its main advantage is that, contrary to other imaging techniques, such
as x-ray CT, MRI does not expose the patient to harmful ionizing radiation thus, it can be
considered safer. Also, thanks to the dependence of the MR signal to various tissue param-
eters, MRI can provide more information than other imaging alternatives. MRI is based on
the interactions between EM RF fields and certain atomic nuclei in the body, in the presence
of a strong static magnetic field, making it a system whose design strongly depends on a
fundamental understanding of the underlying EM principles and working mechanisms. Un-
derstanding such interactions between biological tissues and EM fields, especially at high
and ultra-high field strengths, becomes crucial for the safe and effective RF coil design as
well as for gaining useful insight into limits of performance [12, 15, 67].

In this chapter, we describe the basic principles and give an overview of the components of
an MRI system, namely, the main magnet, the RF transmit and receive coils, and the gradient
coils. Then, we describe the opportunities and challenges that are associated with UHF MRI
and finally we review the analytical and numerical methods and tools for the calculation of
EM RF fields in MRI.

8
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2.1 Principles and Components of an MRI System

MRI belongs to a larger group of techniques that are based on the NMR phenomenon which
describes the interactions of nuclei and magnetic fields and its basic principles were first
discovered in bulk materials independently by Bloch [88] and Purcell [89] in 1946. How-
ever, for many years NMR was primarily applied in spectroscopy until 1973 when Lauterbur
proposed using it for imaging purposes [90]. In principle, NMR occurs for various atoms
(1H, 31P, 23Na, etc.), however, the human body is abundant with hydrogen in the form of
water, so 1H-based imaging is most broadly used. From now on, the nuclei type is assumed
to be hydrogen unless mentioned otherwise.

Magnetic Fields in MRI

MRI relies on the manipulation of bulk nuclear magnetic moments (magnetization), inside
the biological tissue, by three kinds of carefully engineered magnetic fields. The first is a
static magnetic field B0 = B0ẑ (main magnetic field, typically along z-direction), parallel
to which the nuclear magnetic moments tend to align and at the same time precess around.
The angular frequency of the precession (Larmor frequency) varies linearly with B0 field
strength:

ω0 = γB0, (2.1)

where γ is the gyromagnetic ratio and depends on the nuclear species. For protons it is
given as γ/2π = 42.58MHz/T. For typical MRI purposes, ω0 is the angular frequency of
the EM RF fields (on the order of 10-500MHz). The magnetization vectorM , is defined as
the elementary nuclear magnetic moment per unit volume,

M =
dm

dV
, (2.2)

where such volume should be sufficiently small and localized considering that in the imaging
of the human body there are countless (∼ 1019) hydrogen nuclei in any cubic millimeter of
tissue [1], and at thermal equilibrium takes the form:

M0 =
ρ0γ

2~2

4κT
B0, (2.3)

where ρ0 is the number of nuclei per unit volume, ~ is the reduced Planck constant, κ is
the Boltzmann constant, and T is the temperature in Kelvin. At equilibrium, without the
presence of an external RFB1 field,M is aligned withB0 and there are no transverse (x or
y) components or net precession, and subsequently, no RF signal to be detected [91] (Figure
2.1).

The second kind of magnetic fields, namely, the RF magnetic field B1 is responsible for
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𝐁𝟎

𝐌

𝐱 𝒚

𝒛

Figure 2.1: An ensemble of 1H nuclei precessing at equilibrium around a static magnetic
field B0 oriented in the longitudinal direction (z-axis) producing a static net magnetization
M oriented in the longitudinal direction, too, but no net magnetization in the transverse
(x–y) plane, thus no detectable RF signal [1].

𝐁𝟎

𝐌

𝐁𝟏

𝐱 𝒚

𝒛

Figure 2.2: B1 RF field tuned to the Larmor frequency and applied in the transverse plane
induces nutation of the magnetization vector as it tips it away from z-axis (laboratory frame
of reference) [2].

the generation of detectable MR signals. To achieve that, B1 is applied perpendicular to
B0 and tuned to the Larmor frequency and typically has the form of a circularly polarized
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field,B1 = B1(t)(cos(ω0t)x̂− sin(ω0t)ŷ). Such field tips the magnetizationM away from
its alignment withB0, and subsequently the magnetization vector precesses aroundB0 and
relaxes to its equilibrium according to Bloch equation [2]:

dM(t)

dt
= γM (t)×B(t)− Mx(t)x̂+My(t)ŷ

T2

− (Mz(t)−M0)ẑ

T1

, (2.4)

whereB(t) = B0ẑ+B1(t)(cos(ω0t)x̂− sin(ω0t)ŷ), T1 is the tissue-dependent spin-lattice
relaxation time constant and describes the mechanism by which the longitudinal-z magneti-
zation component reaches its equilibrium and T2 is the tissue-dependent spin-spin relaxation
time constant and describes the mechanism by which the transverse-xy magnetization ex-
ponentially decades to its equilibrium. Specifically, right after a 90◦ RF excitation pulse the
behavior of the transverse component is described as [2]:

Mxy(t) = M0e
−t/T2 , (2.5)

and the behavior of the longitudinal component as:

Mz(t) = M0(1− e−t/T1), (2.6)

since instantly after the 90◦ RF pulse Mz(0) = 0 and Mxy(0) = M0. A schematic represen-
tation of this phenomenon is displayed in Figure 2.2.

Since the net magnetic field has now a transverse component, such precession produces a
time-varying magnetic flux which induces a voltage or an or electromotive force (EMF) in
the signal detector (receive RF coil). The induced voltage or EMF is given, according to
Faraday’s law of induction, as [91–94]:

EMF = − d

dt

ˆ

V

M(r, t) ·Br(r)dV, (2.7)

where the integral is calculated over the whole imaging volume, and Br(r) measures the
sensitivity defined by a hypothetical magnetic field that is generated by the unit current
carrying receive coil, according to the principle of reciprocity [92]. It should be noted that
the EMF computed by the above equation is proportional to the strength of the MR signal.

The third set of magnetic fields that are required in order for an MR image to be generated
are the gradient fields, and they are responsible for the main spatial encoding mechanism.
The three gradient fields are applied along the same direction with B0 and their amplitude
varies linearly with position (Figure 2.3). For example, if we apply a gradient field Gx in
x-direction, then the magnetic field will take the form B0 +Gxx and the Larmor frequency
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will become a function of the spins locations as follows:

ω(x) = γ(B0 +Gxx) = ω0 + γGxx. (2.8)

By applying specifically designed gradient encoding fields in all three directions, both before
and during signal acquisition, a multidimensional signal is produced that includes the phase
and frequency encoding information in each spatial location. The MR image, in the form of
a spatial signal amplitude map, can then be retrieved by multidimensional Fourier transform.

𝐁𝟎
𝐱

𝒚

𝒛

no gradient applied

x gradient applied y gradient applied z gradient applied

Figure 2.3: Gradient fields along x, y, and z direction aligned with B0. The z gradient is
commonly used for slice selection.

SNR is a representative metric for overall image quality, where for the single receive coil
case the induced signal is given by the EMF, as in Eq. 2.7, and the corresponding noise is
given by:

noise =
√

4κT (Rc +Rs)∆f. (2.9)

Here, κ is Boltzmann constant, T is temperature in Kelvin, ∆f is the bandwidth of the
receive filters, Rc is the resistance of the receive coil and Rs the resistance of the imaging
sample. Rc is determined by the conductors configuration/design, the electronics, and the
material of the receive coil and Rs is determined by the deposited/absorbed RF power in the
imaging sample. In many practical applications, MR scanners use arrays of receive coils
where the noise correlation or covariance between the distinct elements/coils must also be
taken into account.

The magnetic fields of an MRI system must follow specific regulations and guidelines. Usu-
ally, the maximally allowed inhomogeneity of B0 is 5 parts per million (ppm) within the
imaging domain. Furthermore, B0 is required to have high temporal stability, typically
�0.1 ppm/hr [91]. Similarly, gradient fields have to be sufficiently linear within the imag-
ing domain in order for the spatial encoding to properly map each corresponding position.
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A final requirement, which is many times mentioned and considered throughout this the-
sis, is the homogeneity of the RF B1 field over the imaging subject, which becomes quite
challenging in UHF but at the same time presents an opportunity for developing a new form
of electrical properties-based quantitative imaging by exploiting the MR signal, as recent
studies have shown [95–99].

Such magnetic fields interact in a complex way with biological tissue and might affect image
quality and patient safety unless carefully designed. Specifically, the susceptibility contrast
between different tissues or between tissue and air can perturb the B0 field (on the order
of ppm), leading to strong artifacts for certain imaging applications [100]. Furthermore, the
fast on and off switching of gradient fields can induce electric fields that might cause periph-
eral nerve stimulation which should be restricted to a stimulation that is barely perceived by
a patient [101]. Finally, RF fields interact strongly with the highly inhomogeneous biolog-
ical tissue, especially when their effective wavelength is comparable with the human body
dimension. B1 field can become inhomogeneous resulting in images with regions with SNR
drops and theE field can generate local SAR hot-spots with corresponding excessive tissue
heating.

MRI System Components

As it is discussed above, modern MRI systems consist of the main magnet, the RF coils
that could be either a single transceiver or two separate transmit and receive coils, the gra-
dient coils, typically one for each direction, and a computer system to coordinate the above
components [3, 102] (Figure 2.4). The main magnet’s purpose is the generation of a ho-
mogeneous static magnetic field B0 over the imaging domain. For clinical MRI, 1.5T and
3T are most common, while more recently U.S. Food and Drug Administration (FDA) has
cleared the first 7T MRI device [103]. Typically, super-conductive magnets are used to pro-
duce the required high-strength solenoid static field. As mentioned before, B0 is required
to be uniform within the imaging subject, thus shim coils are usually employed to smooth
possible inhomogeneities [104, 105]. The RF coil’s role is to generate a homogeneous B1

field to tip the magnetic moments and receive the spatially encoded EMF. An MRI system
can either have a single transceiver coil or two separate coils since they have distinct roles.
Specifically, the RF transmit coil is designed to generate a uniform RF field throughout the
imaging region of interest (ROI) whereas the receive coil has to have higher sensitivity to
obtain a high-quality MR image, while uniformity is not strictly imposed. Furthermore, the
received signal passes through filters and amplifiers before the final image reconstruction.
The gradient coils are designed to produce uniform gradient fields, along x, y, and z di-
rections and are required to quickly switch on and off to reduce image distortion. Finally,
a computer system is responsible for setting the desired pulse sequences, coordinating the
coils’ excitations, and reconstructing the MR image.
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Figure 2.4: MRI system’s components [3].

The aim of this dissertation revolves around theoretical performance bounds of the RF coils
of a modern MR scanner, so it is worth mentioning a more detailed description of those.
As we have briefly mentioned before, the role of the RF coils is twofold: first, in the trans-
mit case, they generate the RF B1 field that tips the magnetization vector away from B0

alignment and second, in the receive case, they pick up on the voltage that is induced on
their conductors according to the EMF as the magnetization vector precesses and relaxes up
until it reaches its equilibrium. Although, the receive and transmit coils can be incorporated
in a single transceiver coil, it is more common for a clinical MR scanner to be composed
by a large built-in volume transmit coil and several receive coils with various designs to
fit the shape and properties of each anatomical part of the body [91]. The homogeneity
of the B1 transmit field is important in order for the magnetization vector to be uniformly
tipped at each spatial location, however, the inhomogeneous biological tissue perturbs the
B1 field distribution, especially for higher field strengths where the effective wavelength of
the corresponding operating frequency becomes short and comparable with the human body
dimension. Furthermore, optimizing the design of RF coils poses a challenging task, which,
despite decades of collective experience, has remained a largely empirical process [73]. The
main constraints that have to be respected when designing an RF coil are the associated
safety considerations, where the RF deposited power has to be monitored and controlled to
avoid potential tissue heating, and image quality concerns, where the aim is to generate a
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homogeneous field despite the body geometrical complexity and tissue inhomogeneity. To
address such challenges, EM modeling is a necessary tool either through analytical or nu-
merical approaches, depending on the application at hand. Specifically, analytical compu-
tations are useful for designing the main magnet and the gradient coils, however, numerical
tools are more commonly used for RF coil modeling and for EM field distributions computa-
tions within inhomogeneous human body models, where the full-wave solution of Maxwell
equations is required.

2.2 Opportunities and Challenges in Ultra-High Field MRI

The above-mentioned safety considerations and design requirements for an MRI system,
make EM modeling an essential tool for optimizing most aspects of MRI design and clinical
application, especially at UHF strengths. An opportunity that emerges at UHF is that SNR
increases super-linearly with the main magnet’s strength B0 [20, 106] which fact strongly
motivates the pursuit of MRI at higher magnetic fields. However, at high frequencies the
interactions of the EM fields with biological tissue result in perturbations of EM field distri-
butions that depend on the particular tissue requiring accurate modeling of EM effects and
novel coil designs to enhance image quality and to prevent adverse effects in patients. In de-
tail, at UHF the following challenges have to be confronted [107]: i) high B0 field strength
entails an increase in the operating RF frequency and in the absorbed power as described
by SAR, ii) the effective wavelength becomes comparable to the human body dimension
and the B1 field is no longer uniform, iii) the electrical permittivity and conductivity of
biological tissue are inhomogeneous and depend on the operating frequency, i.e., they are
dispersive, and iv) local hot-spots due to SAR peaks may occur. In the next paragraphs, we
will describe these challenges in detail.

Maxwell and Constitutive Equations

The spatial and temporal distribution of RF EM fields required for the tipping of the mag-
netization vector and for receiving the EMF follow Maxwell equations. Maxwell equations
give the relationship between EM fields, electric/magnetic currents, and electric/magnetic
charges for a given medium and source distribution as well as for given boundary conditions.
Below, we present the macroscopic Maxwell equations that can provide useful physical in-
tuition on how the relevant RF fields in MR behave. In differential time domain form and
by introducing for symmetry the magnetic current density and the magnetic charge density,
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they can be written as [108, 109]:

∇× E = −Mi −Mc −
∂B
∂t
, (2.10a)

∇×H = J i + J c +
∂D
∂t

, (2.10b)

∇ ·D = ρe, (2.10c)

∇ ·B = ρm, (2.10d)

where

J ic = J i + J c, (2.11a)

J d =
∂D
∂t

, (2.11b)

Mic = Mi + Mc, (2.11c)

Md =
∂B
∂t
. (2.11d)

All these field quantities (E ,H,D,B, ...) are assumed time-varying and they are functions
of the position vector r and time t as E = E(r, t) and their definitions and units are given
below:

• E: electric field intensity (V/m),

• H: magnetic field intensity (A/m),

• D: electric flux density (Cb/m2),

• B: magnetic flux density (T, Wb/m2),

• J i: impressed (sources/excitations) electric current density (A/m2),

• J c: conduction electric current density (A/m2),

• J d: displacement electric current density (A/m2),

• Mi: impressed (sources/excitations) magnetic current density (V/m2),

• Mc: conduction magnetic current density (V/m2),

• Md: displacement magnetic current density (V/m2),

• ρe: electric charge density (Cb/m3),

• ρm: magnetic charge density (Wb/m3).

It should be highlighted that the magnetic current densities (Mi and Mc) and the magnetic
charge density (ρm) are fictitious/logistic quantities that have been introduced for symmetry
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and can be employed in computational electromagnetism algorithms (equivalent fictitious
sources) [109], as we show in Chapter 4. However, to the date, there is no evidence that
they correspond to a physical quantity or phenomenon. Also, it should be noted that, both
here and in Eq. 2.4, the fields are time-varying although in the previous section the notation
is different in order to follow the one commonly used in MR-related literature. Finally,
the fictitious magnetic currents mentioned above should not be confused with the nuclear
magnetization (magnetic polarization) vector that is defined as M in the previous section
and corresponds to existing bound current densities [110] due to the net magnetic moments
contributions per unit volume, as we will shortly describe in the next paragraphs. Finally,
from Eq. 2.10, the continuity equations can be derived as:

∇ ·J ic +
∂ρe
∂t

= 0, (2.12a)

∇ ·Mic +
∂ρm
∂t

= 0. (2.12b)

In order for a unique solution to exist, macroscopic Maxwell equations should be accom-
panied by the constitutive equations which describe the interactions of EM fields with the
medium (dielectric, magnetic, and/or conductive) and are given as [108]:

D = εE = ε0εrE , (2.13a)

B = µH = µ0µrH, (2.13b)

J c = σE , (2.13c)

Mc = σmH, (2.13d)

where the constant terms that characterize the medium can be summarized as follows:

• ε0: free-space permittivity (8.854 · 10−12F/m),

• µ0: free-space permeability (4π · 10−7H/m),

• εr: relative permittivity constant of the medium,

• µr: relative permeability constant of the medium,

• σ: electric current conductivity (S/m),

• σm: magnetic current conductivity (Ω/m).

In their general form, the electrical properties, also referred as constitutive parameters, can
be: i) independent of the field intensities and then the medium is characterized as linear, ii)
uniform without spatial dependence and then the medium is characterized as homogeneous,
iii) dependent of the operating frequency and then the medium is characterized as dispersive,
and iv) independent of the field polarity and then the medium is characterized as isotropic.
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Studies [5, 111–113] on the electrical properties of the human body have shown that it is
inhomogeneous, dispersive, and anisotropic and we will discuss such properties in detail in
the next paragraphs of this section.

Furthermore, when a dielectric/magnetic material is subject to an external electric/magnetic
field, the randomly oriented electric/magnetic dipoles align with that field, or in other words
they become polarized, and bound, real-world volumetric currents and charges arise [108,
110, 114] which take the form:

J b =
∂P
∂t

+∇×M, (2.14a)

ρb = −∇ ·P , (2.14b)

where the contributions of the auxiliary electric polarization density (P) with units Cb/m2

and magnetic polarization (nuclear magnetization) density (M) with units A/m are added
to the electric/magnetic flux densities as [110, 114]:

D , ε0E + P , (2.15a)

B , µ0(H + M). (2.15b)

The bound currents (J b) have units of A/m2 and the bound charges (ρb) Cb/m3 and their
contributions are incorporated into Maxwell equations in Eq. 2.10 through the electric and
magnetic flux density vectors. By substituting the definitions in Eq. 2.15 into the macro-
scopic Maxwell equations 2.10 it is instructive to rewrite 2.10b and 2.10c into their micro-
scopic equivalent form as:

∇×
(
B
µ0

)
= J i + J c +∇×M +

∂P
∂t︸ ︷︷ ︸

J b

+
∂(ε0E)

∂t
, (2.16a)

∇ · (ε0E) = ρe−∇ · (P)︸ ︷︷ ︸
ρb

. (2.16b)

Then, the total electric current density due to the medium properties is J t = J c + J b and
the total electric charge density is ρt = ρe + ρb, taking into account the free (conductive)
and the bound currents/charges. Similar definitions for the fictitious magnetic charges and
magnetic currents can be found in the literature [110, 115], where an interested reader can
refer to, however, they are outside the scope of this dissertation and we omit them for brevity
and clarity. Finally, it is useful to rewrite Eq. 2.15 as follows:

P = ε0(εr − 1)E , (2.17a)

M = (µr − 1)H, (2.17b)
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since, a similar definition is exploited by the volume equivalence principle [109], where
equivalent volumetric magnetization and polarization currents are introduced for EM scat-
tering computations from inhomogeneous media and we use such principle in Chapter 4 to
derive our current-based VIE solver. Finally, we mention once again that the magnetic po-
larization in Eq. 2.15 is the same with the nuclear magnetizationM in the previous section,
despite the slight inconsistency in the notation, and such definition of the magnetization
allows for an elegant derivation of the SNR in NMR [94].

For the case of time-harmonic sources, represented as ejωt, Maxwell equations can be rewrit-
ten in terms of complex spatial vectors, E(r), with E(r, t) = Re{E(r)ejωt}. With this
transformation, their macroscopic form along with the continuity equations are given as:

∇×E = −Mi −Mc − jωB, (2.18a)

∇×H = Ji + Jc + jωD, (2.18b)

∇ ·D = ρe, (2.18c)

∇ ·B = ρm, (2.18d)

∇ · Jic + jωρe = 0, (2.18e)

∇ ·Mic + jωρm = 0. (2.18f)

Similarly, in their phasor form, the constitutive equations are written a:

D = εE, (2.19a)

B = µH , (2.19b)

Jc = σE, (2.19c)

Mc = σmH . (2.19d)

Such form allows writing Maxwell equations in a more compact way:

∇×E = −Mi − jωµ̇H , (2.20a)

∇×H = Ji + jωε̇E, (2.20b)

∇ · (ε̇E) = − (∇ · Ji) /jω, (2.20c)

∇ · (µ̇H) = − (∇ ·Mi) /jω, (2.20d)

where ε̇ = ε0ε̇r, µ̇ = µ0µ̇r, and we have introduced the relative complex permittivity ε̇r and
the relative complex permeability µ̇r to include all material losses as:
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ε̇r = εr − j
σ

ωε0
= ε′r − jε′′r , (2.21a)

µ̇r = µr − j
σm
ωµ0

= µ′r − jµ′′r . (2.21b)

Eqs. 2.18 and 2.19 along with Sommerfeld-Müller radiation condition can uniquely describe
EM fields problems with uniform and bounded currents/charges sources distributions. How-
ever, when the electrical properties of the medium exhibit discontinuities or when across
such boundaries there exist currents/charges sources distributions, then the EM fields vec-
tors also exhibit discontinuity and their behavior across such boundaries is described by the
following boundary conditions [108, 109]:

n̂× (E2 −E1) = −Ms, (2.22a)

n̂× (H2 −H1) = Js, (2.22b)

n̂ · (D2 −D1) = ρe,s, (2.22c)

n̂ · (B2 −B1) = ρm,s, (2.22d)

Figure 2.5: Interface between two media with different electrical properties and relevant
magnetic and electric surface current and surface charge densities [4].

where subscript s indicates currents/charges tangential to the surface/interface between the
two media and n̂ is the unit normal vector of the interface pointing from medium 1 to
medium 2 (Figure 2.5). Ms and Js are the magnetic and electric surface current densities
with units V/m and A/m, respectively, and ρm,s and ρe,s are the magnetic and electric sur-
face charge densities with units Wb/m2 and Cb/m2, respectively. These current densities
are particularly useful for the derivation of the surface (or Huygens’s) equivalence princi-
ple [109] which provides the theoretical background for the formulation of SIE methods.
Such SIE methods can be readily used for modeling the RF coils of an MR scanner and
will be further discussed both in the next section and in Chapter 4. Finally, the surface
equivalence principle can be applied by constraining all possible currents sources onto a hy-
pothetical surface and computing their corresponding EM fields inside the devoid-of-sources
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volume that this surface encapsulates [108, 109, 116]. In this way, a basis set of EM fields
can be generated within the source-free volume and such EM fields basis generation along
with its application within the MR field will be discussed in Chapter 5.

Electrical Properties of Biological Tissue

Having described Maxwell and constitutive equations, we now continue with a detailed
report of the electrical properties behavior of biological tissue. As we briefly mentioned be-
fore, the biological tissue electrical properties are dispersive due to relaxation mechanisms.
Specifically, up to 100MHz their frequency response is mainly characterized by passive cell
membrane capacitance, Maxwell-Wagner polarization, intracellular organelle membranes,
and protein molecule response [107]. For frequencies higher than 100MHz dipolar mecha-
nisms in polar media (water, salts, proteins) dictate the tissue frequency response when an
external field is applied [111, 112]. Furthermore, during the relaxation process, EM energy
is dissipated and converted into heat and such phenomenon is represented by the tissue elec-
trical conductivity. Throughout this dissertation we have used a parametric model of the
biological tissue dispersive (Figure 2.6) and inhomogeneous (Figure 2.7) behavior [113].
Furthermore, all numerical experiments for EM scattering and performances bounds com-
putations have been conducted for realistic, voxelized human body models from Virtual
Family Population [5] with inhomogeneous frequency-dependent electrical properties.
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Figure 2.6: Frequency response of relative permittivity (εr) and electrical conductivity (σ)
for MR-related frequencies from 20MHz up to 1000MHz corresponding to 0.47T up to
23.48T B0 field strengths, for different tissues according to data from Virtual Family Pop-
ulation [5]. At low frequencies, tissues present high relative permittivity due to relaxation
mechanisms. The relative permittivity shows a decreasing trend with increasing frequency
while the electrical conductivity increases.
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Figure 2.7: Real and imaginary part of relative complex permittivity (ε̇r) distribution for
“Billie” realistic head model at 7T according to data from Virtual Family Population [5].
The tissue presents high heterogeneity and contrast.

Except for the inhomogeneity and dispersion that the biological tissue possesses, specific
body tissues, such as fibers and nerve bundles, are anisotropic with respect to their elec-
trical conductivity [107]. However, such tissue characteristic is not usually taken into ac-
count, considering instead an isotropic model, due to lack of consistent knowledge of how
such nerve bundles and fibers are oriented in 3D space [112]. Finally, body tissues present
magnetic properties, where the magnetic susceptibility (χm = µr − 1) magnitude and its
variations are in the order of magnitude of 10−6 [117]. Even such small variations of the
magnetic susceptibility can distort the MR signal due to the highB0 field strength. However,
the magnetic susceptibility effect to the RF EM fields, usually, is not considered since its
contribution is order of magnitudes less significant than the one from the dielectric prop-
erties [107]. So, in practice and in our RF EM fields numerical computations we have
considered purely dielectric biological tissue and assumed vacuum permeability (µ = µ0).

RF Safety and Image Quality Considerations in MRI

The electric field that is induced inside the lossy (electrically conductive) human body tissue
deposits RF energy which is converted into heat. Such absorbed/deposited RF EM power
may have detrimental effects to a patient due to excessive tissue heating. Therefore, there
exist standards that regulate the exposure to RF EM fields [118,119] and more specific ones
associated with MR equipment safety [120]. In particular, the latter introduce SAR which
measures the RF-induced tissue-deposited heat which can be coupled with bio-heat transfer
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equations [107]. Local SAR is determined by the dissipated or absorbed RF power divided
by the mass of an arbitrarily small volume (∆V ) with tissue as:

SAR(r) =
σ(r)|E(r)|2

2ρ(r)∆V
, (2.23)

where σ(r) is the inhomogeneous electrical conductivity, |E(r)| is the magnitude of the
electric field, and ρ(r) is the density of the specific tissue and it is measured in watts per
kilogram (W/kg). From the above equation, it is straightforward to derive the global SAR
as the average value of the local SAR over the volume of interest, e.g., the human head or
the corresponding body region, as:

SAR =
1

V

ˆ

V

σ(r)|E(r)|2

2ρ(r)
dV. (2.24)

The absorbed RF energy due to magnetic losses can be neglected compared against the one
due to dielectric losses.

According to Eq. 2.23, SAR depends on the electric field, electrical conductivity, and tissue
density spatial distributions, whose characteristics are highly inhomogeneous, resulting in a
non-uniform SAR, too. Furthermore, SAR can be averaged over smaller or larger volumes
(e.g., 10g or whole-body averaged SAR) depending on the heating sensitivity of each body
region according to specific safety regulations [120]. Global SAR is typically averaged over
larger volumes such as the human head or the whole body while local SAR is averaged
over 10g or even 1g tissue mass [107]. Naturally, that leads to local SAR aspects being
stricter regulations to satisfy but when satisfied they are considered a much safer path to
avoid excessive localized heat deposition that can potentially burn the human tissue.

SAR aspects introduce heating-related threshold values that are independent of the RF op-
erating frequency, however, SAR distribution itself strongly depends on the RF frequency
since the electrical conductivity is dispersive and the electric field distribution changes, de-
pending on the effective wavelength. The effective wavelength is given as λ = λ0√

εr
and for

higher field strengths it becomes comparable with the geometrical size of the human body
(Figure 2.8) giving rise to local SAR hot-spots and B+

1 inhomogeneities, demanding the
full-wave Maxwell equations solution for problems with large electrical size. Over the past
years, there have been investigations on the frequency dependence of the power deposition
in uniform spherical samples [121,122] for which there exists an analytical solution and for
more realistic scenarios with anatomical head models [107], which can be investigated by
the use of full-wave RF simulations, both demonstrating the SAR dependence on frequency.
As a further demonstration of such effect, we present in Figure 2.9 the dissipated/absorbed
power density [108] with units of W/m3 (which is analogous to local SAR without being
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Figure 2.8: Effective wavelength, λ = λ0√
εr

, for MR-related frequencies from 20MHz up
to 1000MHz corresponding to 0.47T up to 23.48T B0 field strengths and different relative
permittivity values. At 7T cerebrospinal fluid (CSF), in Figure 2.6, has relative permittivity
εr = 72 corresponding to an effective wavelength of 12cm.

scaled with the tissue mass since pabs(r) = 1
2
σ(r)|E(r)|2), the magnitude, and the phase of

B+
1 = µ0(Hx + jHy)/2 [93, 123] for “Duke” realistic head model at 1.5T, 7T, and 10.5T,

excited by an 8-rung birdcage coil where each rung is driven with a unit-magnitude sinu-
soidal current and the neighboring elements have a 360◦/8 = 45◦ phase shift. Here, we can
indeed notice the challenges that arise at UHF, as described at the beginning of this section.
Specifically, the absorbed power density (local SAR) increases significantly and so does
the corresponding dissipated power (global SAR over the volume of the head) with units
of W, Pabs =

´
V
pabs(r)dV , which at 1.5T, 7T, and 10.5T is 3.5W, 93.7W, and 146.5W,

respectively. Furthermore, local SAR peaks can be observed, especially at 10.5T. Finally,
except for safety concerns, transition to UHF might also entail image quality implications
since both the magnitude and the phase ofB+

1 becomes increasingly inhomogeneous as field
strength grows. The EM fields computations were performed with our current-based VIE
solver [77] that will be extensively described in Chapter 4.

Our results above are in agreement with studies in the literature where it has been shown that
greater RF power is required to generate the same flip angle as field strength increases [124].
Furthermore, another study demonstrated that both local and global absorbed/deposited
power within a realistic head model excited by an 8-channel array with RF shimming
[122, 125] targeting B+

1 field homogeneity increased less than quadratically with increas-
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Figure 2.9: Absorbed power density pabs in W/m3 in logarithmic scale, B+
1 magnitude

in T, and B+
1 phase in rad within “Duke” realistic head model with 5mm resolution and

heterogeneous and dispersive electrical properties at 1.5T, 7T, and 10.5T. The challenges
regarding an increased SAR and an inhomogeneous B+

1 associated with UHF strength are
observed.

ing B0 field strength [106] .

As we mentioned above, with respect to RF safety in MRI, there exist local and global SAR
aspects that have to be monitored and not exceeded during an MR scan. Peaks in local
SAR, especially at UHF strength, lead to the conclusion that local SAR aspects provide a
stricter and more crucial assessment criterion than global SAR aspects, e.g., whole body or
head averaged. However, their real-time monitoring is more challenging especially for time-
varying RF pulses and parallel transmission [107] and in many cases global SAR aspect is
assumed as the most critical which can reduce significantly the validity of safety assessment
during an MR scan. In particular, there exist several studies that have demonstrated that local
SAR thresholds can be exceeded, earlier than global SAR ones, even at conventional field
strengths [126–128]. Finally, for clinical MR scanners with volume transit coils, only global
SAR is monitored, however, for head coils above 7T, local SAR aspects are also taken into
account. With these in mind, we can conclude that local effects are typically underestimated
by global SAR aspects making local SAR a stricter metric to satisfy, especially at high-field
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strengths.

Until today, the absence of an integrated body coil/resonator hinders the application of
UHF MRI systems since transmit coils that are typically placed in the vicinity of the pa-
tient/sample [107] result in increases of local SAR at superficial tissues, while receive coils
in the vicinity of the patient/sample could improve image quality and SNR. In particular,
close-to-subject transmit coils generate electric fields with high and localized dissipated
power, even when global SAR has reasonable values. Specifically, local SAR increases
exponentially in head-mimicking uniform phantoms as transmit coils approach the sub-
ject [27], however, as their distance to the subject increases, local SAR decreases but global
SAR gets higher in order to generate the same homogeneous B+

1 profile.

Finally, with regard to the magnetic fields, their adverse effects are primarily associated
with the static and the gradient magnetic fields which take values of T and mT, respectively,
while RF fields take values of µT. Specifically, the spatial gradient of the static field can
exert a force on an object [129] and the fast on and off switching of the gradient coils can
induce electric fields that might cause peripheral nerve stimulation [101]. Regarding the RF
fields, the peak magnitude of the RF electric field depends on both the peak magnitude of
RF magnetic field and the operating frequency, and electric currents are generated due to
magnetic induction. Due to these currents, the problem of heating can be acute particularly
when metallic implants are present [129]. However, it is important to note that such heating
problem does not directly originate from the RF magnetic field rather from its associated
electric field, as we have described above. Finally, an interesting study demonstrates that
man-made polarized EM fields are more biologically active leading to increased interference
effects than natural EM fields that are typically not polarized [130] and such study could
possibly be taken into account when formulating MR safety guidelines.

2.3 Electromagnetic Fields Computations in MRI

From the above, it should be clear that the design of highly sophisticated, tunable RF coils is
critical for the development and deployment of an MRI system, both for the case of transmit
coils that should not exceed SAR limits and should generate a homogeneous B1 field and
for receive coils in order to optimize their design with respect to SNR, especially for high-
field systems (≥3T). Hence, sophisticated RF simulations tools have to be employed for
safety/performance assessment and design optimization of both receive and transmit coils,
especially when the full-wave EM solution is required. Then, by computing the 3D EM
fields distribution and post-processing such fields, various metrics can be computed that
are either impractical or inaccurate to calculate with in vivo measurements or in phantoms.
In particular, numerical computations in realistic inhomogeneous head/body models are,
to date, the only practical way to compute the 3D local SAR distribution which should
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respect local SAR aspects to avoid excessive and localized heating [107]. However, the
computational time and complexity of numerical methods grows rapidly, when there is a
necessity to model a great number of RF coils restricting the number of configurations of
different RF coils-samples that can be explored within reasonable time and computational
resources and limiting the generality of the observed trends. Therefore, electrodynamic
simulations have a valuable role since they provide rapid and rigorous results for different
metrics and parameters (such as shape and dimensions of the object and the conductors,
electrical properties of the tissues, or field strength) yielding useful insight into underlying
working mechanisms and physical principles by using relatively simple geometrical models
such as uniform spheres and cylinders [14]. Below, we review part of the broad variety
of analytical and numerical methods used to compute RF EM fields in MRI as well as
theoretical bounds of performance for the SNR and SAR metrics.

2.3.1 Analytical Methods

Analytical solutions to Maxwell equations can only be derived for simplified sample geome-
tries [7–9] including spheres, multi-layered spheroids, infinitely long cylinders, cones, and
slabs. Theoretical limits of performance for the MR-related metrics of SNR and SAR in such
samples have been introduced and extensively studied in the literature [10–19] yielding great
insight into expected and observed trends in MRI signal, noise, and safety. Among these dif-
ferent approaches, limits on performance are calculated by utilizing complete analytical EM
fields bases of vector spherical or cylindrical harmonic wave functions, where the surface
currents distributions are constrained onto spherical or cylindrical shells, respectively [15].
This generalized framework, based on dyadic Green’s functions (DGF) expansion, enables
to characterize the EM fields in tissue-mimicking dielectric spheres and cylinders and allows
for the calculation of the associated current distributions that yield the best possible values
of SNR or SAR consistent with electrodynamic principles. Over the last years, these ICP
distributions have provided new physical insight into the design of optimal coil arrays that
approach the ultimate performance [20–29]. In Chapter 3, we use this generalized frame-
work and introduce the UITXE in head-mimicking uniform spherical samples as the largest
possible TXE that can be achieved according to electrodynamics. Finally, we study the
behavior of ICP for various parameters and assess how different arrays can approach the
optimal performance [74, 75].

2.3.2 Numerical Methods

Analytical techniques yield great insight into expected and observed trends in MR signal,
noise, and safety. However, in order to analyze more realistic and complex scenarios, nu-
merical methods have to be employed in order to solve Maxwell equations, in particular,
if highly inhomogeneous materials are to be modeled, e.g., anatomical realistic body mod-
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els. Numerical simulations within the MR field typically share the following characteris-
tics [107]: first, they involve large computational domains or volumes that should cover the
cross-section of the human body/head and, depending on the application, a significant z-
directed part along the MR bore, second, the RF coils should be sufficiently fine to consider
complex geometries and designs, and third, anatomical realistic body models with inhomo-
geneous and dispersive electrical properties and resolution in the range of mm should be
utilized. Furthermore, at UHF MRI, multiple channel RF arrays are employed and usually
the EM fields distribution for each element of the array is required. Taken into consideration
all these factors, one can realize the large computational cost and complexity for the im-
plementation of accurate numerical methods and the need for their acceleration. The most
broadly used numerical method to calculate EM fields distributions in MRI is the FDTD and
the FEM. However, there have also been recent contributions for EM fields computations in
MRI based on the combination of VIE and SIE methods [60, 64–66] which offer great flex-
ibility in exploiting certain problem properties by customization of the method and have
allowed for the calculation of performance bounds for SNR [67, 68] and SAR amplification
factor for RF hyperthermia [71] in heterogeneous head models within reasonable time and
manageable computational resources.

Finite Difference Time Domain

The numerical solution of Maxwell equations for an arbitrary 3D geometry requires an ap-
propriate discretization of the solution domain. Within the MR field, FDTD [30] is one of
the most commonly used methods, where the domain is typically discretized with rectangu-
lar hexahedral elements that divide the medium electrical properties in volumetric elements
(voxels). For the case of a simple implementation, a single medium property is assigned
at each voxel and the medium is considered as piece-wise homogeneous. For volumes that
have boundaries with high curvature, such approximation leads to the so-called staircase
approximation error and the numerical solution of the EM fields presents numerical error
which, however, can be significantly reduced by refining the computational domain or by
subpixel smoothing [131]. Naturally, by increasing the spatial resolution, the number of
the unknowns or the degrees of freedom, the memory, and the computational time require-
ments increase. To mitigate such memory requirements, there exist FDTD implementations
that utilize non-uniform grids or conformal meshes [132,133] that locally refine the domain
where structures with fine details are present and preserve the shape of the object’s bound-
ary, thus improving the accuracy of the numerical solution and, at the same time, reducing
the number of voxels required to properly represent the geometry, in a discrete way.

The resolution is typically chosen based on the fine or coarse geometrical details of the struc-
ture to be modeled in order to achieve sufficient numerical accuracy. Furthermore, it also
correlates with the operating frequency and usually it is recommended the maximum voxel
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edge length to be at least smaller than the smallest wavelength divided by twenty. FDTD
uses the well-known discretization scheme called Yee cell [134], where the electric field
components are discretized across the edges of the voxel and the magnetic field components
normal to the voxel faces. This scheme ensures the continuity of the EM fields components
across physical boundaries between materials and it is an elegant arrangement to approxi-
mate curl equations. Yee cell further allows for using central differences in both space and
time to approximate the partial differential form of Maxwell equations and, usually, the time
step follows the leap-frog algorithm where the EM fields are computed at time instants with
half time step difference between the electric and magnetic field. Such time step is inversely
related to the diagonal of smallest discretization element in order for the computations to
be stable and converge leading to an increased computational time when fine discretization
schemes are employed.

Since FDTD is a time domain method, it allows to obtain a broadband frequency response
by using a single time-domain excitation with the required bandwidth and central frequency
(e.g., a Gaussian pulse) and then by applying discrete Fourier transform to the time-domain
solution. This is can be useful for computing the scattering parameters and for the tuning
and matching of the RF coils. Finally, by combining EM and circuit network simulations,
the tuning, matching, and decoupling of multiple channel RF coils can be optimized [135].
A further advantage of FDTD is that its memory complexity scales linearly with the number
of discretization elements and, thus, it is feasible to solve problems of large scale with
reasonable memory demands. However, when a fine discretization is required (for modeling
geometrical details) or when resonant structures are modeled, long computation times are
required. Finally, for the case of multiple channel RF arrays, a distinct FDTD simulation is
required for each excitation port multiplying the needed computation time. However, such
time demands can be accelerated by the use of the highly parallel structure of graphical
processing units (GPUs) since FDTD is parallelizable in a straightforward manner [136–
138].

FDTD requires the truncation of the computational grid, where special conditions for the
EM fields have to be enforced in order to model free-space and/or absorb the traveling EM
waves, otherwise spurious reflections arise. Such grid truncation techniques include the Mur
absorbing boundary condition (ABC) [139], the Liao ABC [140], and the perfectly matched
layer (PML) [141]. Necessarily, there has to exist a minimum distance between the modeled
structure and the ABC, in order for the ABC to be placed farther than the reactive near-field
zone, otherwise numerical instabilities are very probable to arise. Both the enforced ABCs
and their distance to the geometry, depend on the specific problem and have to be chosen in
a way that the EM fields distribution within the geometry are not distorted or altered by the
possibly insufficiently absorbed EM fields and remain the same with EM fields if a larger
computational domain was considered [142].
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To sum up, FDTD provides intuitive and broadband 3D EM field distributions, is a general
and versatile tool, and is directly compatible with human anatomical voxelized models [5].
However, FDTD typically requires very large computational domains, small time steps, fine
spatial discretization, and the introduction of ABCs that sometimes lead to prohibitively long
simulation times which can be accelerated, up to a certain extent, with the use of GPUs.

Finite Element Method

Similarly to FDTD, FEM is a partial differential equations method but, in contrast with
FDTD, it is applied in the frequency domain [31, 32]. FEM typically employs an unstruc-
tured tetrahedral discretization scheme which is helpful for modeling geometries with curva-
ture and gives flexibility to model both small and large geometrical scales, however, it is not
so straightforward for modeling the human anatomy since surface body models are hard to
generate [143] and typically contain fewer number of tissues and anatomical details [107].
The entire space along with the appropriate ABCs should still be discretized, but usually
FEM entails a smaller number of tetrahedra than FDTD leading to not such excessively long
computational times [144]. Since FEM is a frequency domain method, it is useful for mod-
eling resonant structures and RF systems which makes it suitable for the MR modeling case,
which is a single frequency analysis, where the RF coils are tuned to the Larmor frequency
and multiple channel arrays can be modeled simultaneously. However, FEM has higher
memory demands than FDTD and results to a large but sparse linear system of equations,
which, depending on the memory requirements of the application, can be solved with either
direct or iterative methods.

Integral Equation Methods

Both FDTD and FEM are partial differential equations methods which are relatively straight-
forward to implement, are general and versatile tools, and give rise to sparse matrices. How-
ever, they typically entail a large number of unknowns and long computational times and
demand the application of ABCs that further expand the domain. To the remedy of the
above-mentioned limitations, come IE methods that automatically satisfy radiation condi-
tions, thus there is no need for ABCs, are a highly customizable tool, allow for higher-order
approximations and dimensionality reduction of the problem, and they are frequency domain
methods, similarly to FEM, with its associated narrow-band characteristics and benefits.

Specifically, SIE methods are typically used to compute the surface current distributions on
the conductors of the RF coil or its shield as well as its scattering parameters and are usually
discretized on a triangular grid where there is no need to discretize the surrounding air, since
the EM fields can be computed by applying the free-space DGF on the conductors’ currents.
VIE methods are used to model the human body model and compute the EM fields distri-
butions within it and the associated metrics of interest such SNR, SAR, and TXE among
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others, and similarly to FDTD, they are discretized with voxels ensuring their compatibil-
ity with the voxelized, anatomical models [5]. Furthermore, VIE and SIE methods can be
combined in a straightforward, analytical way, by applying the free-space DGF, which elim-
inates the need to discretize the space between the body model and the RF coil, leading to a
great reduction of the required voxels/triangles and computational time.

SIE and VIE methods are usually discretized with the Method of Moments (MoM) [61]
approach in order to form a linear system of equations. In contrast to partial differen-
tial equation methods, IE methods give rise to dense matrices. Such matrices, however,
have special properties, e.g., when discretized on a uniform grid they are Toeplitz, for the
one-dimensional (1D) case, or multilevel block Toeplitz with multilevel Toeplitz blocks
for higher dimensions due to the translation invariance of the Green’s function kernels.
Furthermore, independently of the discretization scheme, they are block low-rank due to
the smoothing property of the Green’s function kernels for remote elements interactions
[66,145]. Both these properties, the Toeplitz structure and the block low-rank nature, are ex-
ploited in Chapter 4 and 5, respectively, and will be further discussed there. Finally, VIE and
SIE give rise to complicated singular integrals that should be computed as accurately as pos-
sible, to which direction there is a big body of literature and investigative activity [146–158]
and readily available sophisticated packages that can handle the singularities [159, 160].

Over the last years, the MRI community has utilized a standard VIE solver based on elec-
tric flux densities [43] to calculate the EM scattering from inhomogeneous anatomical body
models, which, however has recently proven to have unstable convergence properties [58,
59]. This finding motivated researchers to develop a new stable current-based VIE solver
with PWC approximations [60] for MR modeling which can be combined in a straightfor-
ward manner with SIE methods to model the conductors of the coil arrays [61–63]. This
generalized framework [60, 64, 66] has yielded results comparable with FDTD, despite the
intrinsically different modeling of the setup, and offered great flexibility in exploiting certain
problem properties by customization of the method. Specifically, among others, it allowed
for the calculation of performance bounds for SNR [67–70] and SAR amplification factor
for RF hyperthermia [71] in heterogeneous head models within reasonable time and man-
ageable computational resources, providing an absolute reference against which RF coil
performance can be assessed [25] and introduced the notion of MR-specific Green’s func-
tion [161] for the ultra-fast RF coil design [65].

Summary

Choosing the appropriate numerical method, depends on the electrical properties and shape
of the geometry, the bandwidth over which the solution is required, and the available com-
putational resources that will yield reasonable solution times and sufficient accuracy. De-
spite their inherent differences in discretizing Maxwell equations, FDTD, FEM, and IE are
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expected to give comparable results, as we illustrate in Chapter 4, for the same scatterer-
excitation setup. Except for the numerical solvers themselves, simulation suites should also
come with a user-friendly graphical users interface and visualization tools, computer-aided
design (CAD) models for the RF coils and human body models, co-simulation tools for
optimizing the RF networks, hardware-based acceleration on GPUs or heterogeneous com-
puting platforms, and a post-processing capability for running user-defined scripts to extract
useful pieces of information and relevant metrics within the MR field (e.g., SAR, SNR,
TXE). A Matlab-based suite that integrates part of the above characteristics is the Magnetic
Resonance Integral Equation (MARIE) [64] suite, an updated version of which, MARIE
2.0, is soon to be released which will introduce the following additional characteristics:
lumped elements in the RF coil model through the delta-gap method [162], superior nu-
merical accuracy of the computed EM fields through a higher-order VIE solver with PWL
basis functions [77], GPU-based acceleration and memory footprint reduction with Tucker
decomposition [163], a fast coupled surface-volume IE solver by applying precorrected FFT
on the triangular grid of the RF coil [164], simple optimization of lumped elements (tuning
and matching), and optimized code in C++ for the most time consuming parts of the solvers.
Furthermore, thermal solvers could provide the RF-induced temperature distribution and
monitor its potential increase and Bloch simulation suites [165, 166] can provide numerical
results that consider the contributions of all static, RF, and gradient magnetic fields. Finally,
several commercial software exist such as Sim4Life (ZMT, Zurich, Switzerland) and XFdtd
(REMCOM, State College, PA, USA) which are based on the FDTD method, CST Studio
Suite (CST AG, Darmstadt, Germany) that employs the finite integration technique, and
HFSS (ANSYS Inc., Canonsburg, PA, USA), COMSOL Multiphysics R© (COMSOL AB,
Stockholm, Sweden), and FEKO (Altair HyperWorks, Troy, MI, USA) that are based on the
FEM [107].



3 Analytical Electrodynamic Techniques and Per-

formance Bounds of MR Transmit Coils

Analytical solutions to Maxwell equations can only be derived for simplified sample ge-
ometries [7–9] including spheres, multi-layered spheroids, infinitely long cylinders, cones,
and slabs. Theoretical limits of performance for the MR-related metrics of SNR and SAR
in such samples have been introduced and extensively studied in the literature [10–19, 167]
yielding great insight into expected and observed trends in MRI signal, noise, and safety.
Additionally, it has been shown that such theoretical performance limits can be used as
absolute references against which to evaluate RF coil performance and to derive guide-
lines for optimal coil design [20–29]. For example, the UISNR can be used to assess re-
ceive arrays [21, 25, 26, 168], while the associated ICP could be employed to guide coil
design [15, 22, 23, 169]. Ultimate performance bounds were also used to investigate trans-
mit array performance, in terms of SAR and excitation homogeneity, as a function of the
number of coil elements in RF shimming and parallel transmission [14,170]. However, they
have not been used yet to obtain physical insight on optimal transmit array design. The
aim of this chapter is to introduce a novel performance metric, the UITXE [74, 75] which is
the largest possible TXE over a target excitation region that can be achieved for a specific
sample and field strength, consistent with electrodynamic constraints. UITXE provides the
largest theoretical TXE independent of any particular coil design since it is computed by a
complete basis of EM fields where orthogonal EM basis fields are added and every EM basis
field can be associated with a hypothetical coil which guarantees that UITXE is an upper-
bound of transmit performance. Additionally, UITXE considers only sample losses, while
in an experimental setup there are power losses due to radiation, losses in dielectric materi-
als other than the sample, losses in lumped elements and losses due to reflected power [171]
which all ensure that the TXE of an array in an experimental setup will be smaller than that
in a simulation setup and further guarantee that the measured TXE will be smaller than the
UITXE. Therefore, the goal of UITXE is to provide an absolute reference to assess coil per-
formance, independent of any particular design, and derive new physical insights into the
design of optimal transmit coils.

33
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3.1 Transmit Efficiency Assessment and Radiofrequency
Shimming Approaches

In order to assess the efficiency of an RF transmit coil, a common approach is to measure the
amplitude of the RF transmit magnetic field (B+

1 ) over a specific ROI, with respect to the RF
power deposited in the body. Such assessment, can be captured by TXE metric, which be-
comes even more relevant at high and UHF MRI (≥7T), where the arising inhomogeneities
of the B+

1 field can deteriorate image quality and electric field interference effects might
violate the constraints for SAR [14]. For the case of multiple channel transmission, TXE
can be evaluated experimentally by combining a rapid calibration scheme for measuring the
power correlation matrix [172–174] and a B+

1 mapping technique [175]. However, as the
sheer number of possible weighting configurations, for driving distinct transmit channels or
ports for RF shimming [122,125] or parallel excitation [176,177] increases, there arises the
question of how to calculate the shim or parallel excitation weights that can optimally lead
to reductions in B+

1 field inhomogeneities and efficient SAR management.

Towards that direction, different RF shimming methods have been proposed in the litera-
ture [178], including local phase RF shimming [179] that aims at B+

1 phase coherence at
small ROIs. Additionally, depending on the nature of the application at hand, other meth-
ods focus on B+

1 magnitude and phase homogeneity [122], B+
1 magnitude homogeneity

excluding the homogeneity of its phase [180], balancing B+
1 homogeneity and SAR min-

imization [14, 181, 182], B+
1 homogeneity by applying sequentially two distinct RF shim

weights [183], and accommodating the adiabatic condition of RF pulses [184, 185]. In
this chapter, we use a unifying TXE metric introduced by Zhu et al. [186] which is de-
fined as B+

1 magnitude squared per unit dissipated power. The feasibility of this RF shim-
ming method has been further demonstrated in a practical application reported by Deniz
et al. [171] concerning the imaging study of hip articular cartilage. This particular defini-
tion for RF shimming provides a valid solution when compared against other conventional
approaches. Specifically, some RF shimming methods [179, 185] are only based on B+

1

constructive interference neglecting the power deposition effects of the electric field, while
others do not account for field interactions between individual transmit elements [187,188],
which have proven to be not a good approach for parallel transmission systems [174, 182].
On the contrary, the utilized RF shimming method is regularized by the power correlation
matrix and enables the calculation of a global optimum for the shim weights without the
need of computationally expensive nonlinear search algorithms [184, 189].

As it has been demonstrated in [171], the maximum TXE and its corresponding RF shim-
ming coefficients can be readily calculated for a multiple channel array. However, there is an
intrinsic limitation in that approach, namely, the maximum TXE metric is a relative perfor-
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mance metric that characterizes a coil but cannot describe how much room for improvement
there is. Furthermore, the TXE metric does not provide any insight into the optimal coil
design for a given imaging task and solely describes the performance a particular RF array
can achieve.

Lately, several theoretical performance bounds have been proposed to evaluate and opti-
mize RF coils and MR techniques associated with the highest possible SNR, the lowest
possible RF power deposition or the ultimate SAR amplification factor both for simplified
sample geometries (head-mimicking uniform spheres or cylinders) and for heterogeneous
head models [5, 10–12, 14, 67, 71, 167]. In this chapter, we introduce a novel performance
metric, the UITXE [74,75], which is the largest possible TXE that can be achieved for a spe-
cific object and field strength consistent with electrodynamic constraints. UITXE represents
a theoretical performance upper-bound and provides an absolute performance reference in-
dependent of any particular coil design. In this way, it can be used to assess the absolute
performance of actual finite transmit arrays and evaluate RF shimming algorithms, both in
simulations and experiments. Our technique also allows calculating the associated ideal cur-
rent distributions that yields UITXE, as it has been demonstrated for SNR and SAR [15,68],
which could provide new physical insight into the design of optimal coils that approach the
ultimate performance [20–29].

RF shimming [122, 125] was initially proposed to mitigate B+
1 inhomogeneities by ade-

quately adjusting the relative amplitudes and phases of multiple transmit elements driven
with the same RF waveform. By controlling the relative amplitude and phase of the individ-
ual transmit elements of a multiple channel array, TXE can be maximized as demonstrated
by Deniz et al. [171]. Here, we use a TXE metric defined as B+

1 magnitude squared in the
excitation ROI per unit dissipated power over the entire volume of the sample [171, 186]:

η =
average|B+

1 (r)|2
1
2

´
V ′
σ(r′)|E(r′)|2dV ′

. (3.1)

The rationale of this definition lies within a linear system’s superposition principle which
implies that the net B+

1 and electric field at each spatial location r of a multiple channel
transmit array can be expressed as:

B+
1 (r) =

N∑
n=1

wnb
+
n (r),

E(r) =
N∑
n=1

wnen(r),

(3.2)

where N is the number of the transmit elements, wn are the complex-valued RF shimming
coefficients that correspond to the driving amplitude and phase modulation of the nth chan-
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nel of a transmit array and b+
n (r) and en(r) represent, respectively, the B+

1 and electric
fields corresponding to unit weighting on the nth channel and zero weights on the others.
This definition further allows for TXE metric to be expressed as a ratio of quadratic forms.
Specifically, by choosing a target excitation ROI with Q spatial locations or voxels, the
net B+

1 can be combined in matrix form as b+
1 = Cw where C is a Q × N matrix with

Cqn = b+
n (rq). Consequently, the average transmit field squared in the ROI reads:

average|B+
1 (r)|2 = wHΓw, (3.3)

where Γ = CHC/Q is an N × N positive-definite complex Hermitian matrix and it repre-
sents the B+

1 correlation matrix with H superscript denoting the conjugate transpose opera-
tion. Similarly, by exploiting the linear superposition of the net electric field, the deposited
or absorbed RF power from a multiple channel array into the object is expressed as:

Pabs =
1

2

ˆ

V

σ(r)|E(r)|2dV = wHΦw, (3.4)

where σ(r) represents the electrical conductivity and Φ is an N ×N positive-definite com-
plex Hermitian power correlation matrix whose elements are given as:

Φij =
1

2

ˆ

V

σ(r)e∗i (r) · ej(r)dV, (3.5)

with i, j ∈ {1, .., N} and ∗ superscript denoting the complex conjugation. Substituting the
above expressions for the RF transmit field squared and deposited power, Eq. 3.1 can be
rewritten in a more treatable form, as a ratio of quadratic forms:

η =
wHΓw

wHΦw
, (3.6)

where a suitable unit for TXE metric is (µT)2/W and w are the complex-valued RF shim-
ming weights. The problem of finding the maximum TXE can be treated as a generalized
eigenvalue problem (Γw = λΦw) which has a closed solution and guarantees the calcula-
tion of the global optimum [171,186,190]. Specifically, the largest eigenvalue, which can be
computed numerically (e.g., with the Matlab function eigs(Γ,Φ, 1)), corresponds to the
maximum TXE (ηmax) and the associated eigenvector gives the corresponding RF shimming
weights (wmax) that yield maximum TXE, when used as driving amplitudes and phases in a
given RF array.
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3.2 Basis of Electromagnetic Fields and Bounds of Trans-
mit Performance

In order to find the theoretical largest TXE, which we call UITXE, and use it as an absolute
performance reference for the evaluation of RF transmit arrays, it is necessary that UITXE
is independent of any particular array design. Therefore, instead of EM fields from actual,
physically realizable coils, we use a complete basis of orthogonal EM modes [10–12,14,15,
67,71,74], that are consistent with electrodynamic principles, and treat them as the elements
of a hypothetical infinite array. In direct analogy to the case of finite transmit arrays, the net
electric and B+

1 fields are expressed as a linear combination of the contributions of the
complete set of basis fields:

B+
1 (r) =

∞∑
n=1

wn,bb
+
n,b(r),

E(r) =
∞∑
n=1

wn,ben,b(r),

(3.7)

where b+
n,b(r) and en,b(r) are the B+

1 and electric field modes of the complete basis.

To generate a complete EM basis, the object should be fully encapsulated by a closed sur-
face and according to the surface equivalence or Huygens’s principle, any EM field distribu-
tion, inside the devoid-of-sources volume surrounded by the surface, can be generated by a
current distribution flowing on the surface [108,109,116]. Thus, all possible EM fields gen-
erated inside the object by any external RF array can be reproduced by some current density
flowing on the surrounding Huygens’s surface. Since the operator that maps electric cur-
rents on the surface to incident EM fields over the object is compact [66], UITXE converges
to its optimal value as the number of basis elements increases. This property allows to use
a finite number of basis functions (let N now be the number of modes where convergence
to a maximum is observed) enabling the computation of UITXE, since in practice it is not
feasible to use infinite number of modes. Therefore, the converged maximum eigenvalue of
the generalized eigenvalue problem Γbwb = λΦbwb for N number of modes is the ultimate:
η̃ = λmax,N .

Apart from the performance bounds themselves, ICP were also proposed as the surface cur-
rent distributions that result in the highest possible SNR or the lowest possible RF power
deposition consistent with electrodynamic principles [15, 68]. ICP can be a source of phys-
ical intuition about the determinants of coil performance and could lead to task-optimal
RF arrays designs. Specifically, there are several studies with the aim to approach the per-
formance bounds with novel coil designs inspired by ICP and assess their overall perfor-
mance [20–29]. Additionally, ICP can provide a framework to separate the curl-free and
divergence-free current components and study their contributions to the ultimate perfor-
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mance at different magnetic field strengths [19, 68, 73]. ICP can be derived for the case of
UITXE, too, since the eigenvector (w̃b) associated with the largest eigenvalue (η̃) provides
the shimming weights, which can be used to optimally combine the current basis modes
jn,b(r). Following the same notation as before, ICP are given as the linear combination of
the N current modes that are sufficient for UITXE to converge:

J̃(r) =
N∑
n=1

w̃n,bjn,b(r). (3.8)

3.2.1 Ultimate Intrinsic Transmit Efficiency in Spherical Samples

UITXE is the largest possible TXE, for a specific object and magnetic field strength, allowed
by electrodynamics and does not depend on a particular coil geometry. In order to calculate
the UITXE we use a framework [15] based on the eigenfunction expansion of the DGF [191],
which enables the rapid calculation of TXE in a homogeneous spherical sample for finite
arrays of loop coils and for the ultimate case. It further allows to calculate the surface current
distribution that yields UITXE as a weighted combination of surface current modes.

Specifically, we consider a uniform, head-mimicking spherical sample with radius a sur-
rounded by a concentric spherical surface with radius b, onto which we constrain the current
to flow [15, 191]:

J(r, θ, φ) = K(θ, φ)
δ(r − b)
b2 sin θ

, (3.9)

where r (radial), θ (polar), and φ (azimuthal) are spherical coordinates andK is the surface
current density, which can be expressed as a weighted sum of basis current modes [15,192]:

K(θ, φ) =
∞∑
l=0

l∑
m=−l

−j
√
l(l + 1)

[
WM
l,mXl,m(θ, φ) +WE

l,mr̂ ×Xl,m(θ, φ)
]
. (3.10)

Here, l andm are mode indices, j =
√
−1 is the imaginary unit,WM

l,m andWE
l,m are the series

expansion coefficients representing magnetic-type (divergence-free) and electric-type (curl-
free) surface current contributions, respectively, r̂ is the unit vector in the radial direction,
and Xl,m is a VSH (see Appendix A). According to the surface equivalence principle [108,
109, 116], the basis in Eq. 3.10 can represent all possible EM fields distributions within the
sample, even when it consists only of one kind of current sources [193] (in this chapter we
consider only electric current sources). The net EM fields generated by the current modes
inside the sphere can be calculated using the appropriate DGF branch (see Appendix A) and
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they read:

E(r) = −ωµ0k0

∞∑
l=0

l∑
m=−l

[
V M
l,mMl,m(kin, r) + V N

l,mNl,m(kin, r)
]
,

B(r) = −jµ0k0kin

∞∑
l=0

l∑
m=−l

[
V M
l,mNl,m(kin, r) + V N

l,mMl,m(kin, r)
]
.

(3.11)

Here, ω is the angular frequency, µ0 is the free-space permeability, k0 = ω
√
µ0ε0 is the

free-space wavenumber and ε0 is the free-space permittivity. Also, kin = k0

√
εr − j σ

ωε0
is

the complex wavenumber inside the lossy, dielectric sphere with relative permittivity εr and
electric conductivity σ. Ml,m andNl,m are spherical vector wave functions used to construct
the DGF since they are solutions of the vector wave equation, whereas V M

l,m and V N
l,m are

weighting coefficients derived by multiplying the current series expansion coefficients by a
transformation matrix T, which accounts for boundary conditions at the surface of both the
spherical sample and the current-bearing spherical surface. All the relevant functions are
defined in the Appendix A. Also, it should be noted that we use ejωt harmonic time variation
for all fields and currents, which is omitted for brevity.

If we use the current modes as hypothetical elements of an infinite coil array, we can con-
struct the transmit sensitivity matrix Cmode, containing the associated B+

1 transmit fields for
each mode at the target excitation ROI with Q voxels, and accordingly calculate the B+

1 cor-
relation matrix Γmode.We also construct the power correlation matrix Φmode accounting for
the interactions between the electric field modes (see Appendix A). It should be noted that
we use a finite lmax resulting in N = (lmax + 1)2 number of modes, where we consider each
mode as the sum of the electric-type and magnetic-type contributions. Finally, we solve the
generalized eigenvalue problem Γmodew = λΦmodew, as it is demonstrated in the litera-
ture [171, 186, 190], and derive the UITXE for a spherical sample and the corresponding
weighting coefficients that yield UITXE which can be substituted in Eq. 3.10 to calculate
the ICP in the surrounding spherical surface.

Table 3.1: Electrical Properties of Average Brain Tissue.

Field strength B0 (T) 0.5 1.5 3 7 10.5 14 21

Larmor frequency f0 (MHz) 21.3 63.9 127.7 298.0 447.0 596.1 894.1

Relative permittivity εr 157.5 82.7 63.1 51.9 49.1 47.6 45.9

Electric conductivity σ (S/m) 0.30 0.40 0.46 0.55 0.61 0.66 0.76

UITXE calculations are performed for a head-mimicking spherical sample with uniform,
frequency-dependent electrical properties, chosen as the average of brain grey and white
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Figure 3.1: Schematic representations of the spherical geometry and relevant simulation
settings. (a) Schematic representation of the homogeneous spherical sample with frequency
dependent electrical properties εr, σ and radius a surrounded by a current-bearing 2D spher-
ical surface with radius b. Circular loop coils (orange) with radius R are arranged on the
spherical surface and can be appropriately rotated by azimuthal (α) and polar (β) angles to
compose different finite arrays designs. (b) Schematic representation of the ROIs. TXE cal-
culations, for both the ultimate and the case of finite arrays, are performed for single voxels
across the diameter of the sample, 2D circular disk ROIs on a transverse plane through the
center of the object, and 3D spherical ROIs concentric with the spherical sample.

matter [5] for various magnetic field strengths (B0 = 0.5, 1.5, 3, 7, 10.5, 14, 21T) as shown
in Table 3.1. We consider spherical samples with different radii a = 7.5, 10, 15cm and
the radius of the two-dimensional (2D) spherical surface with the current basis modes is
b = D + a, placed at distance D = 1.5cm from the sample (Figure 3.1a). We calculate
UITXE for single voxels, 2D and 3D ROIs (Figure 3.1b). Specifically, we compute UITXE
across the diameter of each spherical sample, in 2D ROIs that have the shape of a circular
disk located around the center of the spherical sample in the axial plane for increasing size
of the inner disk radius (r2D) and in 3D spherical ROIs concentric with the spherical sample
for increasing size of the inner sphere radius (r3D) (Figures 3.2, 3.4, and 3.6). We use
expansion order lmax = 45 for which all calculations converge and the convergence results
are summarized in Figures B.1, B.2, and B.3 for single voxels at rvox = 0, 0.5a, 0.95a,
2D ROIs with size r2D = 0.3a, 0.6a, 0.9a, and 3D ROIs with size r3D = 0.3a, 0.6a, 0.9a,
respectively. For the spherical sample with a = 10cm and selected single voxels (rvox =

0, 0.4a, 0.7a), 2D ROIs (r2D = 0.3a, 0.6a, 0.9a), and 3D ROIs (r3D = 0.3a, 0.6a, 0.9a), we
compute the associated ICP for magnetic field strengths B0 = 1.5, 7, 10.5, 21T at t = 0

(Figures 3.3, 3.5, and 3.7).
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The TXE of particular, finite RF arrays can be calculated within the same DGF framework by
applying appropriate weighting coefficients to the B+

1 and electric field modes. Specifically,
if the net current is constrained to flow on the conductors of circular loop coils, then, only
the magnetic-type contributions survive and the weights can be derived analytically [15]:

W loop,M
lm = − 2πR

l + 1

√
4π

2l + 1
Y ∗l,m(β, α)

[
cot θYl,0(θ, φ)−

√
2l + 1

2l − 1
csc θYl−1,0(θ, φ)

]∣∣∣∣∣
θ=arccos d√

d2+R2
,

W loop,E
l,m = 0,

(3.12)

where α and β define the angular position of the center of the loop coil on the sphere, d
is the distance from the center of the spherical sample to the center of the loop coil and R
is the radius of the loop coil (Figure 3.1a). Then, it is straightforward to calculate the coil
transmit sensitivity and power correlation matrix by substituting Eq. 3.12 into Eqs. [A.10]
and [A.12], respectively.

different object size and magnetic field strength.

𝑎 = 7.5cm 𝑎 = 10cm 𝑎 = 15cm

Figure 3.2: Ultimate intrinsic transmit efficiency as a function of voxel position across
the diameter of the sphere, for different object size and magnetic field strengths. UITXE
is presented in logarithmic scale for spherical samples with radii a = 7.5, 10, 15cm and
brain-mimicking electrical properties at the corresponding magnetic field strengths B0 =
0.5, 1.5, 3, 7, 10.5, 14, 21T across the diameter of the sample. It is observed that UITXE de-
creases as the size of the object increases and as the magnetic field strength increases up to
7T. However, for ultra-high field strengths and voxels closer to the center, it increases again.
Closer to the edge of the spherical sample, UITXE is order of magnitudes higher than in the
center, for all object sizes and field strengths.

In this chapter, we consider different arrays designs composed of loop coils. First, we
simulate fully encircling arrays with 8, 16, 24 and 32 number of channels/loops and calculate
their TXE at each voxel at the central axial plane of the spherical sample with a = 10cm and
for magnetic field strengths B0 = 3, 7, 10.5T. Then, we compare their TXE with respect
to the UITXE, by introducing a coil performance metric defined as the percentage of the
ultimate that the arrays reach: 100%TXEarray/UITXE (Figure 3.8). Next, we simulate
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belt-shaped arrays placed around the central axial plane of the spherical sample with 8, 16,
24 and 32 number of channels/loops, calculate their TXE at 2D circular disk ROIs at the
central axial plane with increasing disk radius for magnetic field strengths B0 = 3, 7, 10.5T

and assess their performance (Figure 3.9).

3.2.2 Behavior of Ultimate Intrinsic Transmit Efficiency

In this section, we investigate the behavior of UITXE by studying different target excitation
ROIs, namely, single voxels, 2D, and 3D, and by calculating convergence with increasing
number of basis modes along with the associated ICP that yield the UITXE.

Figure 3.3: Snapshots at time zero of ideal current patterns yielding the ultimate transmit
efficiency as a function of voxel position, for various main magnetic field strengths. The
magnitude of ideal current patterns at ωt = 0 is shown for a spherical sample with radius
a = 10cm, for voxels at the center (rvox = 0), at an intermediate position (rvox = 0.4a),
and near the surface (rvox = 0.7a). The corresponding voxel positions can be seen at a
schematic at the first column. The other columns show ideal current patterns for increasing
field strength B0 = 1.5, 7, 10.5, 21T. The shape and magnitude of the ideal current patterns
vary significantly within different voxel positions. Specifically, at the center, they resemble
two large distributed loops on opposite sides of the sphere precessing at Larmor frequency
for all field strengths. At the intermediate and near-the-surface position, they become in-
creasingly localized around the target voxel. As the magnetic field increases, their shape
also changes and becomes more complex, especially for the case of the intermediate voxel
position.

UITXE in Single Voxels

For the case of single voxels, UITXE presents a similar trend with that of UISNR [12, 67],
where it increases as the target voxel approaches the surface of the sphere (Figure 3.2).
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However, unlike the case of UISNR, UITXE decreases as the main magnetic field increases,
up to 7T, and then gradually increases again. This holds particularly for spherical samples
with smaller sizes and for interior regions of the sample. Specifically, at the center of the
spherical sample with a = 7.5, 10cm, at 7T UITXE is 4.9(µT)2/W and 2.57(µT)2/W, re-
spectively, while at 21T it is 9.55(µT)2/W and 3.39(µT)2/W corresponding to a 94.9% and
31.91% increase. Figure B.1 summarizes how rapidly UITXE approaches a limiting value as
the order of the multipole expansion lmax, and, therefore, the number of spherical harmonics
in the basis set, increases for all studied fields and object sizes, especially for the center and
intermediate voxel locations. It is interesting to note that for large object sizes (a = 15cm)
and for intermediate voxel optimization, UITXE converges more slowly for increasing field
strength. Specifically, at 0.5T, 7T, 21T the required number of basis modes for convergence
is 49, 96, 155, respectively. This effect can be observed for smaller object sizes, however, it
is less dominant and the difference between the demanded modes for convergence for dis-
tinct field strengths is not so great. Figure 3.3 shows the magnitude of the associated ICP
that yield UITXE in the corresponding single voxels and different field strengths at ωt = 0

and as they evolve in time, respectively. The shape of ICP, associated with UITXE in single
voxels, bares close resemblance to the corresponding shape of ICP yielding UISNR [15]. In
detail, they both take the form of large distributed loops precessing at Larmor frequency for
central voxels and at every field strength and alternate between distributed single-loop and
distributed figure-eight for intermediate voxels, becoming increasingly complex for higher
fields.

interest, for different object size and magnetic field strength.

𝑎 = 7.5cm 𝑎 = 10cm 𝑎 = 15cm

Figure 3.4: Ultimate intrinsic transmit efficiency as a function of the size of the two-
dimensional excitation region of interest, for different object size and magnetic field
strengths. UITXE is presented in logarithmic scale for spherical samples with radii a =
7.5, 10, 15cm and brain-mimicking electrical properties at the corresponding magnetic field
strengths B0 = 0.5, 1.5, 3, 7, 10.5, 14, 21T for increasing radius of the 2D circular disk ROI.
It can be seen that UITXE is higher for smaller object sizes and lower field strengths, except
for the case of small ROI and object size, where it is higher for ultra-high field strengths.
UITXE in 2D ROIs remains constant until the ROI size is almost as large as the sphere sec-
tion, where it increases sharply since the contributions of the edge voxels dictate the value
of UITXE in the whole ROI when averaged.
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Figure 3.5: Snapshots of ideal current patterns yielding the ultimate transmit efficiency,
for various sizes of the two-dimensional excitation ROI and different main magnetic field
strengths. The magnitude of ideal current patterns at ωt = 0 is shown for a spherical sample
with radius a = 10cm, for circular disk ROIs with increasing size (r2D = 0.3a, 0.6a, 0.9a).
The corresponding 2D ROIs can be seen at a schematic at the first column. The other
columns show ideal current patterns for increasing field strength B0 = 1.5, 7, 10.5, 21T.
The shape and magnitude of the ideal current patterns differ significantly as the 2D ROI size
changes. Specifically, at r2D = 0.3a, they resemble two compressed distributed loops of
elliptical shape on opposite sides of the sphere precessing at Larmor frequency. As the size
of the 2D ROI increases, the eccentricity of the elliptical shape increases, too, and the ideal
current patterns become strongly localized around the excitation plane. As the magnetic
field strength increases, their shape also changes and becomes more complex, where wave
and propagation delay effects are observed.

UITXE in 2D ROIs

Similar observations and patterns arise when we compute UITXE in 2D ROIs. Figure 3.4
illustrates UITXE as a function of the size of the 2D ROI, where the trend that UITXE de-
creases with increasing field strength is validated here again, except for small object and ROI
sizes. It is worth noting that UITXE remains stable for lower field strengths (0.5T, 1.5T, 3T),
until the size of the ROI is between 0.6a and 0.7a, but then increases double-exponentially
since the contributions of the superficial voxels in the averaged UITXE are order of magni-
tudes greater than the central or intermediate, as seen in Figure 3.2. This pattern holds for
higher field strengths, too, however, in such strengths, UITXE presents global minima for
intermediate ROI sizes. Specifically, the global minima of UITXE for a = 10cm and a =

15cm occur at r2D = 0.7a, 0.675a, 0.625a, 0.5a and at r2D = 0.525a, 0.45a, 0.4a, 0.375a at
7, 10.5, 14, 21T, respectively. This observation suggests that for higher operating frequen-
cies and object sizes there is a shift towards smaller 2D ROI sizes where the global minimum
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arises. Figure B.2 shows the convergence of UITXE for different ROI sizes, object sizes and
field strengths and is in exact agreement with the single voxel case (Figure B.1). Particularly,
the required basis modes for convergence increase for larger ROI size and for higher field
strengths for intermediate ROI sizes (for object size a = 15cm and ROI size r2D = 0.6a

the number of modes for convergence is 30, 44, 166 for 0.5T, 7T, 21T, respectively). In
Figure 3.5, the ICP yielding UITXE in 2D ROIs for various field strengths are depicted. For
a small ROI, they resemble large distributed loops precessing at the Larmor frequency and
for larger ROIs the patterns become more and more localized around the excitation plane
taking the shape of ellipses. As the field strength and the corresponding operating frequency
increases, propagation delay and wave phenomena arise altering and perplexing the ICP
shape. A last interesting remark is that as the magnetic field strength increases, the elliptical
shape of the ICP arises at larger ROIs, which can be seen by comparing ICP at 1.5T, 7T and
r2D = 0.3a, 0.6a.

of interest, for different object size and magnetic field strength. 

𝑎 = 7.5cm 𝑎 = 10cm 𝑎 = 15cm

Figure 3.6: Ultimate intrinsic transmit efficiency as a function of the size of the three-
dimensional excitation region of interest, for different object size and magnetic field
strengths. UITXE is presented in logarithmic scale for spherical samples with radii a =
7.5, 10, 15cm and brain-mimicking electrical properties at the corresponding magnetic field
strengthsB0 = 0.5, 1.5, 3, 7, 10.5, 14, 21T for increasing radius of the 3D spherical ROI that
is concentric to the sample. It can be seen that UITXE is higher for smaller object sizes and
lower field strengths, except for the case of small ROI and object size, where it is higher for
ultra-high field strengths. UITXE in 3D ROIs remains constant until the ROI size is almost
as large as the sphere section where it increases sharply since the contributions of the edge
voxels dictate the value of UITXE in the whole ROI when averaged. The overall behavior
of UITXE in 3D ROIs is similar to that of 2D ROIs.

UITXE in 3D ROIs

When optimizing TXE in 3D ROIs with increasing size, the behavior of UITXE is expected
to share many common characteristics with the UITXE in 2D ROIs. Figure 3.6 confirms
this hypothesis, where we see the lower UITXE for higher field strengths pattern and notice
the region where UITXE remains stable for up to 3T field strengths. A subtle difference
is that for the 3D ROI case, this region is slightly larger and extends up to 0.7a and 0.8a
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Figure 3.7: Snapshots of ideal current patterns yielding the ultimate transmit efficiency,
for various sizes of the three-dimensional excitation ROI and different main magnetic field
strengths. The magnitude of ideal current patterns at ωt = 0 is shown for a spherical sample
with radius a = 10cm, for spherical 3D ROIs concentric to the object with increasing size
(r3D = 0.3a, 0.6a, 0.9a). The corresponding 3D ROIs can be seen at a schematic at the
first column. The other columns show ideal current patterns for increasing field strength
B0 = 1.5, 7, 10.5, 21T. The shape and magnitude of the ideal current patterns differ as the
3D ROI size changes, but not so significantly as in the case of voxel or 2D ROI optimization,
especially for lower field strengths. Specifically, at r3D = 0.3a up to 10.5T and r3D = 0.6a
up to 7T, they resemble two large distributed loops on opposite sides of the sphere precessing
at Larmor frequency. As the size of the 3D ROI or the magnetic field strength increases,
the ideal current patterns become strongly localized around the poles of the sphere. This
observation hints to a correlation between the size of the 3D ROI and the operating frequency
for the determination of the shape of the ideal current patterns.

ROI sizes, followed by the double-exponential increase associated with the edge voxels
contributions. Furthermore, the global minima and their shift with increasing operating
frequency are still observed but only for the sample with a = 15cm. Specifically, they arise
at r3D = 0.625a, 0.575a, 0.55a, 0.475a at 7T, 10.5T, 14T, 21T, respectively. Interestingly,
UITXE for 3D ROIs with intermediate size, as seen in Figure B.3, converges much faster
than for the corresponding 2D ROIs, even at UHF. Specifically, for object size a = 15cm

and ROI size r3D = 0.6a the number of modes for convergence is only 1, 5, 30 for 0.5T,
7T, 21T, respectively, requiring 3.33%, 11.36%, 18.07% of the corresponding modes for
UITXE convergence in 2D ROIs with the same size. The effect of requiring less modes for
convergence appears in the shape of the ICP yielding UITXE in 3D ROIs as demonstrated in
Figure 3.7. There, we note that at 7T and r3D = 0.3a they take the form of large distributed
loops similar to the ICP shape for a center single voxel optimization, as in Figure 3.3, where
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only 1 mode is required for convergence. It is also interesting to emphasize the similarity of
the ICP shape for r3D = 0.3a at 21T and r3D = 0.6a at 10.5T where the required modes for
convergence are 11 and 19, respectively. This similarity suggests that the ICP localization
around the poles arises at smaller 3D ROIs as the field strength increases.

sample, at different main magnetic field strengths. 

%
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Figure 3.8: Absolute transmit performance of finite arrays with an increasing number of
elements encircling the sample, at different main magnetic field strengths. Finite arrays
performance maps at each single voxel of the central axial plane of the spherical sample
with a = 10cm and for magnetic field strengths 3T, 7T, 10.5T are presented. The fully
encircling arrays consist of rotated loops with 8, 16, 24, and 32 number of channels/loops,
schematics of which can be seen at the first row of the figure. Absolute transmit performance
increases and covers a broader field of view for an increasing number of loops in the array,
but becomes more localized and decreases for higher main magnetic field strengths.

Approaching UITXE with Finite Coil Arrays

UITXE can also be used as an absolute performance metric to assess transmit arrays and
evaluate RF shimming algorithms and such assessment of various arrays composed of loops
with different configurations is presented in Figure 3.8 and Figure 3.9. Figure 3.8 presents
how fully encircling arrays, with increasing number of loops, approach UITXE at single
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Figure 3.9: Absolute transmit performance of finite arrays with an increasing number of
elements arranged like a belt around the central plane, as a function of the size of the 2D
excitation ROI. Finite arrays performance for increasing size of the 2D circular disk ROI
on the central axial plane of the spherical sample with a = 10cm and for magnetic field
strengths 1.5T, 7T, 10.5T, 21T are presented. The belt-shaped arrays consist of rotated loops
with 8, 16, 24, and 32 number of channels/loops, schematics of which can be seen at the first
column of the figure. Absolute transmit performance is higher when the coil configuration
is consistent with the shape of the ideal current patterns (Figure 3.5). Similarly to the case of
fully encircling arrays for single voxel optimization (Figure 3.8), belt-shaped arrays for 2D
ROI optimization, reach a higher performance for lower fields and the performance increases
as the number of elements increases.

voxels in the central axial plane of the sample. First, we note the qualitative pattern that as
magnetic field strength decreases and number of element increases, the voxel performance
gets closer to UITXE and in broader regions, too. Quantitatively, at the center voxel, at 3T, 8
and 32 loops yield 94.53% and 99.43% performance, respectively, while at 10.5T, the same
number of loops reaches 49.89% and 95.81%. The performance drops significantly at an
intermediate voxel with rvox = 0.5a, where at 3T, 8 and 32 loops yield 30.82% and 80.11%

performance, respectively, while at 10.5T, the same number of loops reaches only 15.58%

and 56.17%. It is also interesting to note that performance is larger than 70% in voxels inside
circular disk regions with radii 0.25a and 0.625a at 3T for 8 and 32 loops arrays, while at
10.5T, 8 loops nowhere reach such performance and 32 loops only up to a 0.25a radius.

Figure 3.9 explores the performance of belt-shaped arrays with increasing number of ele-
ments for 2D ROI optimization with increasing size. Here, the inverse relationship between
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field strength and performance remains, as well as, the direct one between number of ele-
ments and performance. Specifically, at ROIs with size r2D = 0.75a, at 1.5T, 8 and 32 loops
yield 82.67% and 99.8% performance, respectively, while at 21T, the same number of loops
reaches 43.67% and 45.54%. We also notice that for a certain size of the 2D excitation ROI
the array performance is higher. This can be explained from the ICP (Figure 3.5), where
we see that for small ROIs they look like large distributed loops that are not captured by the
array design, while at larger ROIs they are very similar to a belt shape, since they become
increasingly localized around the excitation central plane. In fact, at 7T, the array with 32
loops reaches at maximum 33.91% of the UITXE at ROIs with size less than r2D = 0.4a.
However, the same array at ROIs with size between 0.6a and 0.9a reach a performance up to
93.12%, where the global maximum is at r2D = 0.825a. Also, a shift in the global maxima
location can be seen with increasing field strength, which can also be explained from the
ICP in Figure 3.5, where the localization of the ICP around the excitation plane happens at
larger ROIs as the field strength increases. Specifically, for a finite array with 32 elements,
at 1.5T, 7T, 10.5T, 21T, the global maximum occurs at r2D = 0.75a, 0.825a, 0.875a, 0.925,
respectively, and the corresponding performance is 99.8%, 93.12%, 85.76%, 66.6%.

Discussion

In this chapter, we introduced a new theoretical performance upper-bound, namely, the
UITXE which is the best achievable TXE from all possible excitations that can provide
insight into the design of transmit arrays via ICP and be used to evaluate existing coil de-
signs and RF shimming algorithms. We investigated its behavior in spherical objects with
uniform frequency-dependent electrical properties for different sphere radii, magnetic field
strengths, and target excitation profiles (single voxels, 2D, and 3D ROIs). A key observation
was that the behavior of UITXE for single voxels across the radius of the spherical sample
is analogous to that of UISNR [12, 67]. In particular, the minimum of both UITXE and
UISNR is always located in the center of the sphere, UITXE presents rotational symme-
try and increases exponentially as the voxel position approaches the surface of the sphere.
However, there is a significant difference between transmit and receive case which is related
to the dependence of the ultimate metrics on the magnetic field strength. UISNR was found
to be approximately linear in B0, for low B0, while changing to higher power growth for
higher B0 [12]. However, UITXE decreases, as B0 increases, for most voxel positions and
sample sizes, except for the case of smaller sample size and center voxel locations, where
it gradually increases again at UHF strengths. Furthermore, UISNR can be solely evaluated
in single voxels, whereas UITXE provides the additional degree of freedom of being com-
puted in different target excitations, namely, in 2D and 3D ROIs offering the possibility of
a more compact and general evaluation of transmit arrays. It was found that the behavior
of UITXE is similar for both 2D and 3D ROIs maintaining a stable value for ROI sizes al-
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most as large as the radius of the sample and then increasing sharply since the superficial
voxel contributions dictate the ultimate value in the whole ROI making the center and inter-
mediate contributions negligible. Another interesting observation was that UITXE in ROIs
has a non-monotonic behavior at high field strengths and large sample sizes. UITXE in all
excitation profiles, with its distinct characteristics, provides an absolute performance bound
independent of any particular array design that can be readily used for the assessment of coil
designs and RF shimming techniques.

Except for offering an absolute performance reference, UITXE also provides insight into
the design of RF transmit coils through its associated ICP, which can be used as guidelines
to design the position and shape of the conductors. First, we investigated the ICP yielding
UITXE in single voxels, where again, there arise similar patterns with the ICP associated
with UISNR [15]. In agreement with the UISNR case, at low field strengths, ICP (Fig-
ure 3.3) consist of distributed current loops which precess around the direction of the main
magnetic field at Larmor frequency. Thus, in the transmit case, too, the field should track
as closely as possible the precession of central spins. In practice, in deep-tissue positions,
this can be achieved by quadrature birdcage coils [194]. However, in locations closer to the
surface of the object, ICP take the form of single loops alternating with figure-eight shapes,
resembling the UISNR case and suggesting that surface quadrature coils [195] could be a
better fit. However, this is only true for lower field strengths, since ICP become increas-
ingly complex at higher field strengths suggesting that asymmetric quadrature coils might
perform better than traditional closed loops. Indeed, there are studies [196–198] suggesting
that transmit/receive coils that take into account the asymmetry of the EM fields in higher
frequencies achieve higher performance when compared against traditional designs used in
lower field. Similarly, ICP associated with UITXE in 2D and 3D ROIs, follow this pat-
tern, where asymmetries and wave phenomena occur with increasing field strength and their
magnitude gets localized around the excitation plane.

Furthermore, similarly to previous studies [26–28], we investigated the performance of fi-
nite loop coils configurations, inspired by the shape of the ICP, with respect to the theoretical
performance limits of TXE for different ROIs and field strengths. As seen in Figure 3.8, in-
creasing the elements of a fully encircling loop-composed array, both in lower and higher
field strengths, leads to an increase in the performance mainly in center and close-to-the-
center voxels. There, the corresponding ICP take the form of large distributed loops (Figure
3.3), and as the number of loops increases, the coil current patterns resemble more and more
the ICP shape. However, performance saturates for voxels close to the surface, especially
for higher field strengths, and there is no or negligible improvement in increasing the coil
elements. This can be attributed to the fact that the rate and extent at which UITXE is ap-
proached depends less on the number of the elements than on the similarity of the array
itself to the ICP shape and how closely it can mimic them, for a specific sample and exci-
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tation surface combination, similarly to the UISNR case [15, 21, 26]. In Figure 3.8, it was
also observed that at higher field strengths, even at the center or close-to-the-center vox-
els, there are required more coil elements for converging closer to the ultimate values and
the farther the voxel from the center the smaller the performance is. This is associated to
the fact that electric-dipole components emerge in ICP when optimizing TXE at high field
strengths. Thus, it is not expected that an array of loops will approach the UITXE closely
in regions where the ICP have significant electric-dipole components, no matter how much
the number of loops increases. This effect has been investigated in previous comprehensive
studies whose aim was to approach UISNR in spherical [26] and cylindrical [28] samples,
where it has been suggested that the combination of loops and electric dipoles could be more
effective at UHF. The effect that the performance of an array mostly depends on its simi-
larity with the corresponding ICP yielding UITXE rather than the number of the elements,
is further validated in Figure 3.9. There, it is observed that even at UHF strengths (7T and
10.5T) the array performance approaches the ultimate for 2D ROI sizes at which the ICP
shape is captured (Figure 3.5) by the belt-shaped design of the array.

In this chapter, we introduced UITXE for RF shimming, but our approach could be gener-
alized to parallel transmission, too. This would require adding the time dependence to the
transmit and electric field equations, in order for the phase and amplitude of the different
channels to be able to change at each time instant. It would also require using a local SAR
matrix [186] instead of the covariance matrix that we used in this chapter. However, the
focal point of this study was revolving around TXE for RF shimming rather than parallel
transmission because in the former, the power correlation matrix can be measured experi-
mentally [172–174] more easily than the local SAR one. Furthermore, in RF shimming the
weights are fixed, so there is a single ultimate value and a single set of ICP associated with
each excitation task, leading to more comprehensible and applicable results.

Another limitation of this study, is the use of a uniform sphere as an approximated model
of the human head. However, this choice allows to calculate the corresponding full-wave
EM fields analytically with a simulation framework based on DGF which enables to rapidly
execute simulations and explore dependencies on various parameters. Moreover, it allows to
easily and intuitively plot ICP on the surrounding spherical surface from the weighted sum
of the current basis modes. Finally, previous work on realistic head models [67] demon-
strated that the sphere is a good approximation and even if there would be small differences,
the general trends, regarding how UITXE behaves with respect to field strength, target ex-
citation profiles, and number of coil elements, presented in this chapter would not change
significantly, as we further illustrate in Chapter 5. Thus, the main mechanisms and princi-
ples governing UITXE in spherical samples can provide useful physical insight for the case
of realistic head models, too.
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An additional advantage that TXE metric offers is that it can be measured experimentally.
In particular, we can measure TXE for a transmit array using a spherical phantom of known
electrical properties and compare it with the UITXE calculated for an object with the same
geometry and properties, to assess the transmit performance of actual coils. Compared to
coil performance maps for SNR [199], this approach would not require to scale UITXE by
sequence related parameters. However, it would require the proper hardware to measure the
power correlation matrix [171–174] and accurate B+

1 maps [175].

3.2.3 Conclusions

In conclusion, in this chapter we introduced a novel performance metric, namely the UITXE,
which is the largest possible TXE that can be achieved for a specific object and field strength
consistent with electrodynamic principles. We investigated its behavior for different mag-
netic field strengths, target excitation ROIs, and spherical sample sizes and computed its
associated ICP on spherical surfaces surrounding the samples. Its main mechanisms and
behavior for single voxels resemble that of UISNR [12]. We also evaluated the performance
of transmit arrays with increasing number of loops and different designs, for various field
strengths and ROIs, illustrating how UITXE can be used to assess coil designs and RF shim-
ming algorithms. Our results demonstrated how ICP can provide useful insight into the de-
sign of RF transmit arrays and validated previous observations [15, 27, 28] that the ultimate
performance is approached more closely when the shape of the array resembles that of ICP
rather than when the number of the elements increases. At UHF, transmit performance can
be approached only at the center of the sample suggesting that more elements or the com-
bination of loops and electric dipoles could be more effective. In Chapter 5, we study the
behavior of UITXE in realistic head models and future work could include the experimental
coil performance evaluation with suitable hardware/software for RF power measurements
with respect to the UITXE in spherical phantoms, the study of the contributions of dipole
arrays and dielectric pads to UITXE, the investigation of the correlation between B+

1 homo-
geneity and UITXE, and whether the electric field distribution that corresponds to UITXE
respects local SAR aspects.



4 Integral Equations Methods for Electromagnetic

Fields Computations in MRI

As we showed in the previous chapter, analytical techniques yield great insight into ex-
pected and observed trends in MR signal, noise, and safety. However, to analyze more
realistic and complex scenarios, numerical methods have to be employed in order to solve
Maxwell equations, compute the 3D local SAR distribution and monitor whether or not it
violates local SAR aspects, in particular, in the presence of extremely inhomogeneous ob-
jects and objects with high contrast, e.g., anatomical realistic body models. Over the last
decades, a plethora of numerical algorithms and computational methods has been developed
for applications, not only in the MR field, but also for wireless communications, microwave
instrumentation, and remote sensing. The MR modeling case is a particularly challenging
problem and modeling the interactions between EM waves and biological tissue is of great
relevance for the determination of the deposited RF power inside the human body and the
associated safety considerations at UHF MRI. Specifically, at high and UHF strengths, the
operating frequency of the associated RF coils increases linearly. Hence, the wavelength
becomes comparable to or even smaller than the effective dimension of the human body,
potentially increasing the SAR and deteriorating the magnetic field homogeneity and thus
the image quality. Therefore, the accurate estimation of the local distribution of the EM
fields, generated by an external RF source, as well as the absorbed power, described by
SAR, calls for the implementation of novel and efficient electrodynamic solvers, to achieve
a reliable numerical solution. Developing such precise simulation tools poses a great chal-
lenge since from a computational EM perspective the human body is highly inhomogeneous
and presents great geometrical complexity.

Regarding the numerical techniques for computing EM fields in inhomogeneous dielectrics,
such as the human body, there is a vast amount of literature and a rich investigative activity.
On one hand, there are methods based on the partial differential form of Maxwell equations,
such as FDTD and FEM, which are known for their generality and versatility in many ap-
plication areas. On the other hand, there are methods that start from Maxwell equations
in their integro-differential form, such as the IE methods, which offer great flexibility in
exploiting certain problem properties by customization of the method. IE methods, despite
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being complicated and computationally expensive, have proven to be the method of choice
for modeling inhomogeneous objects by dividing the arbitrary scatterer into simple volumet-
ric tessellations, with piecewise homogeneous properties. Furthermore, a VIE-based solver
can be effortlessly embedded into a SIE solver to calculate the EM field distributions and RF
transmit and receive coils interactions in the presence of realistic human body models [65].
SIE methods [61–63] can be applied to model the homogeneous conductors (e.g., the RF
coils) whose radiated EM fields can be computed by applying the appropriate free-space
DGF and they are typically combined with the discretization of the surface of homogeneous
body models where there is no need to discretize the surrounding air which characteristic
reduces the dimensionality of the problem, compared against FDTD or FEM. However, SIE
methods can only be applied to piece-wise homogeneous media leading to a not accurate
representation of the EM field and SAR distribution for the case of the highly inhomoge-
neous biological tissue. In order to handle such inhomogeneous scatterers, VIE methods
have to be applied where the inhomogeneous medium is discretized with volumetric ele-
ments (voxels) with PWC approximations of the electrical properties. The dense matrices
that IE methods involve, have hindered their application in large and complex structures,
however, the regular discretization of human body models in MRI applications, where tis-
sue parameters (i.e, electrical properties, T1, T2) are usually provided in a voxelized form,
along with the translation invariance property of the Green’s function kernels has allowed
for the application of FFT for the matrix-vector product implementation in combination with
iterative solvers [60]. Finally, in contrast with partial differential methods, IE methods do
not require the introduction of ABCs or PMLs to bound the domain, since the fundamen-
tal solution is applied to each discretized element. All these considerations have recently
advanced research and development of VIE methods [60, 64, 65] which can also be directly
combined with SIE methods for RF coil modeling.

In this chapter, we first describe the vector EM wave equation and the associated Green’s
functions for a homogeneous medium, then briefly mention important characteristics of SIE
methods and how the electric and magnetic field integral equations are formulated and dis-
cretized with the Rao-Wilton-Glisson (RWG) basis functions, and finally the focus shifts on
VIE methods for EM scattering from inhomogeneous media, where we introduce our novel
higher-order current-based VIE solver [76,77] and show its application within the MR field.

4.1 Dyadic Green’s Functions for Homogeneous Media

4.1.1 Electromagnetic Wave Equations

Maxwell equations in 2.20 are a coupled pair of equations and in many applications their de-
coupling is advantageous. By dividing Eq. 2.20a with µ̇r, taking its curl and using Eq. 2.20b
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we end up with the most general form of the electric field wave equation for an isotropic
medium [109]:

∇×
(

1

µ̇r
∇×E

)
− k2

0 ε̇rE = −jωµ0Ji −∇×
(
Mi

µ̇r

)
, (4.1)

where k0 = ω
√
µ0ε0. Similarly, the corresponding magnetic field wave equation takes the

form:

∇×
(

1

ε̇r
∇×H

)
− k2

0µ̇rH = −jωε0Mi +∇×
(
Ji
ε̇r

)
. (4.2)

The EM wave equations, for the case of a homogeneous medium, can be simplified, since
the spatial derivatives of the relative permittivity and permeability are zero, as follows:

∇×∇×E − k2E = −jωµ̇Ji −∇×Mi, (4.3a)

∇×∇×H − k2H = ∇× Ji − jωε̇Mi, (4.3b)

where k = ω
√
µ̇ε̇. Then, by making use of Eqs. 2.20c, 2.20d, and the vector calculus

identity ∇×∇×A = ∇(∇ ·A)−∇2A we can rewrite the above equations as:

∇2E + k2E = jωµ̇Ji −
∇(∇ · Ji)

jωε̇
+∇×Mi, (4.4a)

∇2H + k2H = −∇× Ji + jωε̇Mi −
∇(∇ ·Mi)

jωµ̇
, (4.4b)

which, by making use of the continuity equations in 2.18, can be rewritten as:

∇2E + k2E = jωµ̇Ji +
1

ε̇
∇ρe,i +∇×Mi, (4.5a)

∇2H + k2H = −∇× Ji + jωε̇Mi +
1

µ̇
∇ρm,i. (4.5b)

In all the above equations we have used the subscript i to indicate impressed sources and
formulated the EM wave equations for incident fields, produced by the impressed sources,
that propagate in a homogeneous medium taking into account all losses (dielectric, mag-
netic, conductive), hence the dotted permittivity and permeability. Furthermore, from now
on we drop the subscript i and the dots from the permittivity and the permeability for gener-
ality, since, the same equations can be applied either for impressed sources yielding incident
fields or for equivalent sources yielding scattered fields. Finally, it should be noted that the
electric current/charge densities can represent either real (impressed) or fictitious (equiva-
lent) sources, but the magnetic current/charge densities always represent fictitious sources
(either impressed or equivalent).
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4.1.2 Dyadic Green’s Functions

The EM wave equations can be solved with the help of Green’s functions [191, 200–202].
The Green’s function method is a generalization of a technique presented by George Green
[203] for the solution of the electrostatic scalar potential Poisson equation. Green’s func-
tions represent the impulse response of a linear differential equation operator where for the
vector wave case impulse responses are the fundamental electric and magnetic dipole current
sources. Green’s functions are exact propagators of the EM field from a source point r′ to an
observation point r, hence, grid dispersion error that arises on partial differential equation
methods does not exist for IE methods [16, 30]. Hence, EM fields at an observation point
can be expressed as superposition integrals of the electric/magnetic current sources multi-
plied by the corresponding Green’s function, where the integration is carried out over the
domain that the sources are immersed, as a direct consequence of the linearity of Maxwell
equations.

In particular, Eq. 4.3 can be solved if we consider the dyadic equation:

∇×∇× Ḡ(r, r′)− k2Ḡ(r, r′) = Īδ(r − r′), (4.6)

where Ī is the unit dyadic and Ḡ is the DGF for a homogeneous medium that satisfies the
radiation condition to infinity:

lim
r→∞

r
[
jkḠ+ r̂ × (∇× Ḡ)

]
= 0. (4.7)

Then, the DGF takes the form [109]:

Ḡ(r, r′) =

(
Ī +
∇∇
k2

)
g(r, r′), (4.8)

where

g(r, r′) =
e−jk|r−r

′|

4π|r − r′|
, (4.9)

is the scalar wave Green’s function in a homogeneous medium that is the fundamental solu-
tion of the scalar wave equation:

∇2g(r, r′) + k2g(r, r′) = −δ(r − r′), (4.10)

which also satisfies the radiation condition:

lim
r→∞

r

[
jkg +

∂g

∂r

]
= 0. (4.11)

Subsequently, the EM fields can be expressed as superposition integrals of the DGF multi-
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plied by the corresponding terms in Eq. 4.3 as:

E(r) = −jωµ
ˆ

V ′

Ḡ(r, r′) · J(r′)dV ′ −
ˆ

V ′
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ˆ
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V ′

Ḡ(r, r′) ·M (r′)dV ′, (4.12b)

and of the scalar Green’s function multiplied by the corresponding terms in Eq. 4.5, as:

E(r) = −jωµ
ˆ

V ′

g(r, r′)J(r′)dV ′ − 1

ε
∇
ˆ

V ′

g(r, r′)ρe(r
′)dV ′ −∇×

ˆ

V ′

g(r, r′)M(r′)dV ′,

(4.13a)

H(r) = ∇×
ˆ

V ′

g(r, r′)J(r′)dV ′ − jωε
ˆ

V ′

g(r, r′)M(r′)dV ′ − 1

µ
∇
ˆ

V ′

g(r, r′)ρm(r′)dV ′.

(4.13b)

Here, by using the continuity equations in 2.18, the electric/magnetic charges can be elimi-
nated and we end up having only electric/magnetic currents as follows:

E(r) = −jωµ
ˆ

V ′

g(r, r′)J(r′)dV ′ +
1

jωε
∇
ˆ

V ′

g(r, r′)∇′ · J(r′)dV ′ −∇×
ˆ

V ′

g(r, r′)M(r′)dV ′,

(4.14a)

H(r) = ∇×
ˆ

V ′

g(r, r′)J(r′)dV ′ − jωε
ˆ

V ′

g(r, r′)M(r′)dV ′ − 1

jωµ
∇
ˆ

V ′

g(r, r′)∇′ ·M (r′)dV ′.

(4.14b)

Furthermore, the individual matrix components of the DGF are defined as [109]:

Ḡ(r, r′) =
1

k2

 k2 + ∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂z
k2 + ∂2

∂y2
∂2

∂y∂z
∂2

∂z∂x
∂2

∂z∂y
k2 + ∂2

∂z2

 g(r, r′), (4.15a)

∇× Ḡ(r, r′) =

 0 − ∂
∂z

∂
∂y

∂
∂z

0 − ∂
∂x

− ∂
∂y

∂
∂x

0

 g(r, r′), (4.15b)

where the first partial derivative of the scalar Green’s function is given as:

∂g

∂a
= −(a− a′)

(
1

|r − r′|2
+

jk

|r − r′|

)
g(r, r′), (4.16)
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the second as:

∂2g

∂a2
=

[
3

(a− a′)2

|r − r′|4
+ 3jk

(a− a′)2

|r − r′|3
− 1 + k2(a− a′)2

|r − r′|2
− jk

|r − r′|

]
g(r, r′), (4.17)

where a ∈ {x, y, z}, and the mixed derivative as:

∂2g

∂a∂b
=

[
3

(a− a′)(b− b′)
|r − r′|4

+ 3jk
(a− a′)(b− b′)
|r − r′|3

− k2 (a− a′)(b− b′)
|r − r′|2

]
g(r, r′), (4.18)

where {a, b} ∈ {x, y, z} and a 6= b. Many times, however, the DGF are written in a more
compact form as [109]:

Ḡ(r, r′) = Ī

(
− 1

k2|r − r′|2
− j

k|r − r′|
+ 1

)
g(r, r′)

+ (r − r′)(r − r′)
(

3

k2|r − r′|4
+

3j

k|r − r′|3
− 1

|r − r′|2

)
g(r, r′), (4.19)

∇× Ḡ(r, r′) = ∇g(r, r′)× Ī = −(r − r′)× Ī
(

1

|r − r′|2
+

jk

|r − r′|

)
g(r, r′). (4.20)

From the above equations, it can be clearly seen that DGF are singular when the source and
observation points coincide. Specifically, Ḡ has a 1/|r − r′|3 singularity, while ∇ × Ḡ is
smoother with 1/|r − r′|2 singularity. In the next sections, we will discuss in detail how
to treat the Green’s functions kernels singularity and compute the associated strongly and
weakly singular integrals in a Galerkin MoM and in Chapter 5, we will exploit the smoothing
property of the Green’s function for remote source and observation points interactions [66,
145], use this property for generating a numerical EM fields basis and present how such basis
can be used to extract performance bounds for MR RF coils inside realistic head models and
ICP for arbitrary coil substrates. Finally, simply by substituting k = k0 the free-space
Green’s functions are derived and by setting µ = µ0 and ε = ε0 the corresponding EM fields
that propagate in free-space can be computed from Eq. 4.12, 4.13, or 4.14.

4.2 Surface Integral Equations

4.2.1 Electric and Magnetic Field Integral Equations

SIE methods can be primarily used for modeling impenetrable scatterers, i.e., perfect electric
conductors (PEC) or perfect magnetic conductors (PMC), which are structures into which
no EM energy penetrates when irradiated by a source placed in the exterior space [204]. SIE
methods can also be applied for penetrable objects [205–208], however, such methods are
outside the scope of this thesis, since the RF coils of an MR scanner are metallic scatterers
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and are considered PEC.

Solving a scattering problem with the help of IE methods, starts with the separation of the
total EM fields into incident and scattered fields, where the incident fields are EM fields due
to the impressed sources/excitations in the absence of the scatterer and the scattered fields
are fields due to the equivalent current sources. The incident fields can be computed by
applying Eq. 4.12 and the scattered EM fields again by the same equation where instead
of impressed current sources one has to use equivalent current sources. For the case of
EM scattering from an infinitesimal conducting surface S, the equivalent current sources
are defined onto a “mathematical” surface S+ that surrounds the conducting surface S. In
the limiting case, as the surface S+ surrounds more tightly the conducting surface S and
eventually coincides with it and by applying the appropriate boundary conditions and the
extinction theorem [109, 116, 204], the equivalent current sources on surface S+ take the
form [204]:

Jeq = n̂×H , (4.21a)

Meq = −n̂×E, (4.21b)

and these currents produce scattered fields such as the total fields are E and H outside S+

and zero inside S− [109]. On the surface of a PEC n̂ ×E = 0, so no equivalent magnetic
currents exist and only the equivalent electric currents are sufficient to represent the electric
field as:

r ∈ V1, E(r)

r ∈ V2, 0

}
= Einc(r)− jωµ

ˆ

S+

Ḡ(r, r′) · Jeq(r′)dS ′, (4.22)

where V1 is the volume outside surface S and V2 is the volume that the surface S encloses,
as seen in Figure 4.1. The corresponding equation for the magnetic filed is given by taking
the curl of the above equation as:

r ∈ V1, H(r)

r ∈ V2, 0

}
= Hinc(r) +

ˆ

S+

∇× Ḡ(r, r′) · Jeq(r′)dS ′, (4.23)

Then it is straightforward to derive the SIE for scattering by applying the extinction theorem
for the electric and magnetic field respectively as [204]:

Einc(r) = jωµ

ˆ

S+

Ḡ(r, r′) · Jeq(r′)dS, (4.24a)

Hinc(r) = −
ˆ

S+

∇× Ḡ(r, r′) · Jeq(r′)dS ′, (4.24b)
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Figure 4.1: Scattering by a perfect electric conductor immersed in a homogeneous medium.

where r ∈ S. Since the tangential component of the electric field is zero for a PEC it is suf-
ficient to include only the tangential components of the above equations and by substituting
the equivalent EM fields as in Eq. 4.14 we derive [209]:

n̂×Einc(r) = n̂×

jωµ
ˆ

S′

g(r, r′)Jeq(r′)dS ′ − 1

jωε
∇
ˆ

S′

g(r, r′)∇′ · Jeq(r′)dS ′

 ,

(4.25a)

n̂×Hinc(r) = −n̂×
ˆ

S′

∇g(r, r′)× Jeq(r′)dS ′. (4.25b)

These equations are the so-called electric field integral equation (EFIE) and magnetic field
integral equation (MFIE) for a PEC. It should be noted that EFIE is valid for both open
and closed surfaces while MFIE can only be written for closed surfaces [204] hence when
modeling flat surfaces, such as for the case of the RF coils, EFIE is the only suitable choice
and then the total surface current is the sum of the surface currents on both sides of the open
surface. Another differentiating factor that is connected with the previous is that the currents
on the PEC produce a discontinuous magnetic field across the surface whereas the electric
field is continuous. Additionally, MFIE has a 1/|r − r′|2 singularity according to Eq. 4.25,
and usually the principal value of the integral is used [204, 210, 211] and MFIE is rewritten
as:

n̂×Hinc(r) =

(
1− Ω0(r)

4π

)
Jeq(r)− n̂× P.V.

ˆ

S′

∇g(r, r′)× Jeq(r′)dS ′, (4.26)

where Ω0 is the solid angle [210, 211] which for the case of a smooth surface is 2π and
the coefficient in front of the current is 1/2. According to the above equation, MFIE is
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characterized as a second-kind integral equation, since the unknown current appears both
inside and outside of the integral, whereas EFIE is characterized as a first-kind integral
equation since the current only appears inside the integral. Finally, both EFIE and MFIE
break down when the operating frequency is close to the internal resonance frequencies of
the PEC cavity.

4.2.2 Discretization Considerations

Rao-Wilton-Glisson Basis Functions

In order to numerically solve an IE the most commonly used method is the MoM [61],
where the continuous integral equation is transformed into a discrete system of equations.
The first step of the MoM is to expand the unknown function, which for the case of both
EFIE and MFIE are the equivalent electric currents, into a finite set of vector basis/expansion
functions:

Jeq(r) ≈
N∑
n=1

jnfn(r), (4.27)

where jn are the unknown coefficients that are sought after, fn(r) are the known vector
basis/expansion functions, that ideally have to be orthonormal to each other, and N is the
dimension of the basis that corresponds to the number of degrees of freedom for a discretized
IE. The most commonly known basis functions that are broadly used in the numerical solu-
tion of EFIE and MFIE over triangular grids are the RWG [62] basis functions. Each RWG
basis function is defined for a pair of adjacent triangular elements of the grid and corre-
sponds to this pair’s internal, common edge n. In this way, it is identically zero outside of
triangles that share a common edge and it yields an accurate representation of the equivalent
current, free of line or point charges. In particular, RWG are defined as [62]:

fn(r) =


ln

2A+
n
ρ+
n , r ∈ T+

n

ln
2A−n
ρ−n , r ∈ T−n

0, otherwise

, (4.28)

where ln is the length of the common edge, A±n is the area of the triangular element T±n , and
ρ±n is the position vector defined with respect to the free vertex of T±n (Figure 4.2).

RWG basis functions approximate the continuous electric and magnetic surface current den-
sities and have the following characteristics [62]: The current does not have a normal com-
ponent to the boundary of the surface formed by the pair of triangles, except their common
edge, and hence no line charges arise. The normal to the common edge current component is
continuous across the edge since the normal component of ρ±n is equal to the height of each
triangle, as seen in Figure 4.2. That is the reason why in Eq. 4.28 the normalization factor
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Figure 4.2: Rao-Wilton-Glisson basis function on a pair of adjacent triangular elements [4].

ln/2A
±
n is introduced in order for the normal current component to be equal to 1. Finally, the

surface divergence of RWG, which is proportional to the surface charge density according
to the continuity equations 2.18, is given as:

∇s · fn(r) =


+ ln
A+

n
, r ∈ T+

n

− ln
A−n
, r ∈ T−n

0, otherwise

. (4.29)

In this way, the surface charge density is constant in each triangular element and the total
surface charge density in a pair of elements is zero. All these properties have made RWG
basis functions a very popular choice for discretizing EFIE, where the equivalent current
density can be expressed with the aid of Eq. 4.27, where N now is the number of internal
edges of the surface and the unknown coefficients jn represent the normal current component
that flows through this particular edge, which for the boundary edges of open surfaces is
zero.

Method of Moments Matrix

Having defined the basis/expansion functions, the next step for the MoM is to find an appro-
priate set of testing/weight functions wm. Depending on the choice of the basis/expansion
and testing/weight functions, MoM can be formulated with the following variations. Point
matching method, where the testing functions of choice are Dirac delta functions and in this
way the residual between the exact and approximate solution is enforced to be zero at a
specific discrete set of arbitrary points. Collocation method, where the unknown function is
approximated by N piece-wise basis functions, usually PWC, that are nonzero only inside
a specific subdomain. Galerkin method, where the basis and testing functions are the same
and the residual between the exact and approximate solution is enforced to be zero in an
average/weighted sense, over the subdomain that the testing functions are defined. Subse-
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quently, in order to formulate a Galerkin MoM for SIE methods, the following symmetric
inner product has to be defined:

〈f , g〉S =

ˆ

S

f ∗(r) · g(r)dS. (4.30)

Then, the Galerkin MoM with RWG basis functions of the EFIE in Eq. 4.24 will take the
following form:

〈fm(r), n̂×Einc(r)〉S = jωµ
N∑
n=1

jn〈fm(r),

ˆ

S′

n̂× Ḡ(r, r′) · fn(r′)dS ′〉S, (4.31)

where m = {1, ..., N}, fm = fn are the RWG basis functions and in this way a linear
system of equations is formulated with jn as the unknowns. It should be noted that the
above equation is mentioned for illustrating how the Galerkin MoM is derived and usually
the EFIE impedance matrix tested and expanded with RWG functions for a PEC is given in
a more computationally convenient form by using Eq. 4.25, the div-conforming property of
RWG basis function, and vector calculus identities [4, 62, 109]:

ZE
mn = jωµ

ˆ

S

fm(r) ·
ˆ

S′

fn(r′)g(r, r′)dS ′dS +
1

jωε

ˆ

S

∇s · fm(r)

ˆ

S′

∇′s · fn(r′)g(r, r′)dS ′dS,

(4.32a)

bm =

ˆ

S

fm(r) ·Einc(r)dS, (4.32b)

where bm is the right-hand side and now the ∇∇ dyadic operator does not act on the scalar
Green’s function but on the RWG functions. Hence, we obtain a linear system of equations,
ZEj = b, which presents weak singularity (1/|r − r′|), governed by g, for triangular ele-
ments that coincide or are adjacent. However, MFIE presents strong singularity (1/|r−r′|2),
governed by ∇g, and its impedance matrix is given as:

ZM
mn =

1

2

ˆ

S

fm(r) · fn(r)dS −
ˆ

S

n̂× fm(r) ·
ˆ

S′

∇g(r, r′)× fn(r′)dS ′dS. (4.33)

Singular Integrals

Thankfully, in the literature there has been a rich investigative activity that has led to the
development of well-established sophisticated cubatures [146–150, 153–160] that compute
accurately both weakly and strongly singular and near-singular integrals over triangular pla-
nar or curvilinear patches that arise in SIE methods. The surface-surface integrals for non-
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coinciding and non-adjacent triangular elements can be computed by means of standard
Gauss quadrature rules. Additionally, discretizing MFIE with RWG basis functions does
not necessarily yield an accurate approximation, as in the EFIE case, thus, there have been
suggested alternative schemes in the literature [212–218], including its testing with n̂×fm.

Internal Resonance Problem

Except for the singular integrals that arise in SIE methods, EFIE also suffers from an inter-
nal resonance problem. In particular, since it is imposed on the surface of the scatterer, it
cannot differentiate whether the scatterer is a solid or a shell PEC object, and the latter is
a resonance cavity whose resonance modes can be excited. In fact, this happens due to the
approximation of the continuous shell with a triangular grid, hence, EM energy leaks into
the shell that gives rise to resonance phenomena, when the operating frequency is close to
the object’s resonance frequency, which is purely real for a lossless medium. Such internal
resonance, generates a spurious equivalent current and leaks energy into the exterior space
that further generates erroneous scattered fields in the exterior space [204]. Additionally,
since the arising spurious current, due to the internal resonance, belongs to the null space
of EFIE, the MoM matrix becomes ill-conditioned, hindering the convergence of an itera-
tive solver. A solution to this problem is to formulate EFIE in way that the EM fields in
the exterior space remain the same but the interior EM fields correspond to a lossy medium
resonance with a complex resonance frequency [219,220] which does not coincide with the
real operating frequency and in this way the internal resonances naturally attenuate. Another
alternative is to formulate the problem in terms of a combined field integral equation (CFIE),

CFIE = aEFIE +
√
µ/ε(1− a)MFIE, (4.34)

in a way that an effective lossy boundary condition is applied [220, 221] and subsequently
the null space of CFIE occurs at a complex frequency. Special care should be taken when
formulating CFIE in order to entail a lossy and non reactive boundary condition, otherwise
real resonance frequencies arise with their associated ill-conditioning.

Low Frequency Breakdown

Finally, EFIE suffers from the so-called low frequency breakdown problem that also oc-
curs when the maximum dimension of the scatterer is much smaller than the operating
wavelength and is a broader problem that arises not only to IE methods but also to par-
tial differential equation methods that it is associated with the behavior of EM fields when
ω → 0 [204,209]. As it can be immediately seen from Eqs. 4.13, 4.14, and 4.25, the electric
field due to the electric current J is directly proportional to the frequency whereas the elec-
tric field due to the electric charge, or equivalently due to∇ · J , is inversely proportional to
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the frequency, according to the continuity equation. Consequently, as ω → 0, the scattered
electric field mainly originates from electric charges and the contribution of the electric cur-
rent goes to zero, due to the limited machine precision of a computer. As a result, the MoM
matrix becomes ill-conditioned [209], and in the limiting case, when ω = 0, singular, lead-
ing to a slow or non at all convergence of an iterative solver. The same phenomenon happens
when EFIE is h-refined and the size of the elements of the computational grid becomes in-
creasingly smaller than the operating wavelength, leading to an increase in the condition
number and a slower convergence of an iterative solver. However, MFIE does not suffer
from such ill-conditioning, since it is a second-kind integral equation and the identity oper-
ator added in front of the strongly singular integral operator prevents the eigenvalues of the
impedance matrix to go zero, as the grid is refined.

According to Maxwell equations, as ω → 0, the electric and the magnetic fields become
decoupled and this is reflected to the currents behavior, as well. In particular, the current
that produces the magnetic field becomes divergence-free or solenoid (Jsol), whereas the
current that produces the charges, and, hence, the corresponding electric field, becomes
curl-free or irrrotational (Jirr) and its divergence should tend linearly to zero, in order for the
charge to be bounded, according to the continuity equation [222]. This procedure is called
Helmholtz decomposition [223] and such decoupling can be used to tackle the low frequency
breakdown problem. RWG basis functions do not account for such behavior and EFIE
breaks down at low frequencies, however, in the literature there have been suggested plenty
of solutions for this problem including the loop-star basis functions [224, 225], the loop-
patch basis functions [226], basis functions with separated Fourier spectra where diagonal
precondinioters significantly reduce the condition number [227], and a natural multiplicative
Calderón precondinioter [228].

Summary

At this point, it may seem that we have somehow deviated from the main goal this thesis aims
to tackle, i.e., modeling the RF coils and biological tissue interactions and computing RF
coils performance bounds, but SIE methods and in particular EFIE is an excellent choice for
modeling the flat coil conductors [65] with its associated natural coupling with VIE methods,
as we have described at the beginning of this chapter and in Chapter 2 and as it have been
incorporated in MARIE [64]. Furthermore, RWG basis functions can be used in order to
discretize a fully enclosed spherical shell and generate a complete numerical EM fields basis,
as we will show in Chapter 5. Finally, the main physical principles and numerical problems
that arise in SIE methods e.g., complicated singular integrals, low frequency breakdown,
correct choice of the function space that the basis and testing functions should span, slower
convergence with h-refinement, internal resonances at the eigenfrequencies of the scatterer,
among others, are relevant at VIE methods, too, and they are carefully taken into account



4.3. Volume Integral Equations 66

and discussed in the next section as we describe the development of our novel current-based
PWL solver [76, 77] for computing EM scattering from highly inhomogeneous media such
as the biological tissue.

4.3 Volume Integral Equations

Unlike SIE methods, that can be applied to compute EM scattering from homogeneous
media or when the inhomogeneity is PWC, VIE methods are usually used for computing EM
scattering from highly inhomogeneous media, such as the human body. The development,
however, of an efficient and stable numerical EM simulation solver based on VIE methods is
far from being a trivial task. Towards that direction, there has been a recent contribution [60],
where a stable current-based VIE solver with PWC basis functions has been developed and
incorporated into MARIE [229] for the fast EM analysis of MR coils. However, in the
MR modeling case, there is an internal limitation with respect to the spatial resolution and
thus the grid refinements in a numerical solver. This naturally leads to the exploitation of
p-refinement techniques for achieving more reliable solutions in a VIE-based solver, too.

In this section, we modify the aforementioned current-based VIE solver [60] and equip it
with higher-order basis functions, that yield more accurate results for modeling highly in-
homogeneous and high contrast objects, without the need of refining the mesh. Namely,
discontinuous PWL [230,231] basis and testing functions are utilized and defined with sup-
port a single voxel of a uniform grid that allows for the fast calculation of the associated
matrix-vector products with the help of FFT, exploiting the block Toeplitz structure of the
system’s matrix, since the arising integral kernels are translationally invariant. Plenty of
research studies exist in the literature regarding this problem [33–57,232]. Furthermore, the
aforementioned equivalent volumetric currents must not necessarily satisfy any continuity
conditions between neighboring elements, voxels in our case, allowing for the use of basis
and testing functions that span L2, when employing the Galerkin MoM. This way, the finite-
energy conditions are respected and the spectral properties of the operators are preserved, as
it has been shown in recent studies [58,59]. Moreover, the resulting formulation calls for the
numerical integration of singular volume-volume Galerkin inner products, but as it has been
shown in previous work [76,233–236], there exist readily available formulas that reduce both
the dimensionality and singularity order of the kernels, allowing for the fast and precise nu-
merical evaluation of the singular integrals by means of well-established sophisticated cuba-
tures [146–150, 153–160], originally developed for SIE formulations. Recent contributions
have also expanded the analysis for arbitrary quadrilateral patches [151, 152, 158].

Through numerical experiments, we illustrate that the resulting discretized formulation is
well-conditioned and has superior convergence properties than the discretized version with
PWC approximations and than a more standard VIE formulation based on electric flux den-
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sities [57]. Specifically, the number of iterations of the iterative solver remains practically
the same as with the case of PWC basis functions and is much smaller than that of the
flux-based solver, for highly inhomogeneous scatterers. Another favorable feature of the
proposed scheme is its superior accuracy. To demonstrate that, we present a comparative
analysis between the PWC and the PWL basis solver for a homogeneous sphere, compar-
ing both solvers with analytical results obtained with Mie series [78], and for realistic head
models from the Virtual Family Population [5]. Even when numerically treating the case of
dielectric shimming [79], where high-permittivity dielectric pads are placed in the vicinity
of a realistic head model, the suggested solver performs effectively. However, naturally,
this comes with an increase in the computational cost and in the required memory footprint.
Thankfully, the arising Green’s function tensors in FFT-based VIEs preserve low multilin-
ear rank properties [237, 238], thus, we can overcome this limiting factor and accelerate the
solution of the linear system of equations by combining tensor decompositions and parallel
programming techniques of GPUs [163].

The remainder of this section is organized as follows. First, we set up the current-based VIE
formulation and describe its superior properties in comparison with other VIE formulations.
Then, we introduce the novel discretization scheme with PWL basis functions, formulate
the linear system by means of MoM, and represent the system in a tensor format for a bet-
ter comprehension. Right after, we describe the procedure to accelerate the matrix-vector
product and develop a fast FFT-based solver. Finally, we validate the proposed solver by
comparison with the analytical solution for spheres and demonstrate its accuracy and con-
vergence properties when modeling the EM scattering from realistic head models.

4.3.1 Volume Integral Equation Formulations for Inhomogeneous Me-
dia

We consider the scattering of time-harmonic EM waves by a penetrable, inhomogeneous
object, occupying the bounded domain Ω in 3D Euclidean space, R3. The working angular
frequency is ω ∈ R+ and the electrical properties are defined as:

ε̇ = ε0, µ̇ = µ0 in R3\Ω,
ε̇ = ε0ε̇r(r), µ̇ = µ0µ̇r(r) in Ω,

(4.35)

as seen in Figure 4.3.

Similarly to SIE methods, the total time harmonic fields (E,H) in the presence of an
isotropic and inhomogeneous object can be decomposed into incident (Einc,Hinc) and scat-
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Figure 4.3: Scattering by an inhomogeneous object immersed in free-space.

tered (Esca,Hsca) fields, (
E

H

)
=

(
Einc

Hinc

)
+

(
Esca

Hsca

)
, (4.36)

where the incident fields are the fields generated by the impressed currents or the sources in
the absence of the scatterer and the scattered fields are given by the induced or equivalent
currents due to the presence of the scatterer. Such equivalent volumetric polarization and
magnetization currents, according to the volume equivalence principle [109], are defined as:

Jeq(r) , ceχ̇e(r)E(r),

Meq(r) , cmχ̇m(r)H(r),
(4.37)

with {ce, cm} = {jωε0, jωµ0} and the electric and magnetic susceptibilities are respectively
given by

χ̇e(r) , ε̇r(r)− 1,

χ̇m(r) , µ̇r(r)− 1.
(4.38)

Then according to Eqs. 4.12 and 4.36 and we can derive:

E(r) = Einc(r)− cm
ˆ

V ′

Ḡ(r, r′) · Jeq(r′)dV ′ −
ˆ

V ′

∇× Ḡ(r, r′) ·Meq(r′)dV ′, (4.39a)

H(r) = Hinc(r) +

ˆ

V ′

∇× Ḡ(r, r′) · Jeq(r′)dV ′ − ce
ˆ

V ′

Ḡ(r, r′) ·Meq(r′)dV ′,

(4.39b)
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which is rewritten in a more compact notation commonly used in IE methods [49, 60] as:(
E

H

)
=

(
Einc

Hinc

)
+

(
1
ce
L −K
K 1

cm
L

)(
Jeq

Meq

)
, (4.40)

where the associated continuous integro-differential operators are:

Lu , (k2
0 +∇∇·)

ˆ

Ω

g(r, r′)u(r′)dr′ = k2
0

ˆ

Ω

Ḡ(r, r′) · u(r′)dr′, (4.41a)

Ku , ∇×
ˆ

Ω

g(r, r′)u(r′)dr′ =

ˆ

Ω

∇× Ḡ(r, r′) · u(r′)dr′. (4.41b)

In the literature [40], except for these operators, there has been introduced an additional
operator that contains curls instead of divergences:

Nu , ∇×∇×
ˆ

Ω

g(r, r′)u(r′)dr′ =

ˆ

Ω

∇×∇× Ḡ(r, r′) · u(r′)dr′, (4.42)

and its dyadic tensor is given as:

∇×∇× Ḡ(r, r′) =

 −
∂2

∂y2
− ∂2

∂z2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂x
− ∂2

∂x2
− ∂2

∂z2
∂2

∂y∂z
∂2

∂z∂x
∂2

∂z∂y
− ∂2

∂x2
− ∂2

∂y2

 g(r, r′), (4.43)

where the partial derivatives are given at Eqs. 4.17 and 4.18. N operator is also connected
with L operator according to the following identity [40]:

Lu = Nu− u, (4.44)

which is proven to be useful for both expanding the unknowns in curl-conforming basis
functions for the electric field-based VIE [49] and for leaving the identity operator in front
of the integral operator in the current-based VIE that allows for the use of a natural precon-
ditioner, as we will describe in the next subsection.

For the case of EM scattering from inhomogeneous media, there exist 3 different formula-
tions [49,51] that we describe below and are derived by combining the constitutive equations
2.13, Eq. 4.37, and Eq. 4.40. First, we define I as the identity operator and Mφ as a multi-
plication operator that multiplies with the function φ as:
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MεrE = ε̇r(r)E(r), (4.45a)

MχeE = χ̇e(r)E(r), (4.45b)

M1/εrE =
1

ε̇r(r)
E(r), (4.45c)

where the multiplication operators for the case of the permeability are equivalently defined
as Mµr , Mχm , and M1/µr , thus our notation can be simplified.

The most broadly used formulation is the electric/magnetic flux-based VIE (DB-VIE) for-
mulation [56, 57] having as unknowns the flux densitiesD andB and takes the form:(

I− LMχe ceKMχm

−cmKMχe I− LMχm

)(
M1/εrD

M1/µrB

)
=

(
ε0Einc

µ0Hinc

)
. (4.46)

The electric/magnetic field-based VIE (EH-VIE) formulation [40,41] has unknowns the field
intensities E andH and takes the form:(

Mεr −NMχe cmKMχm

−ceKMχe Mµr −NMχm

)(
E

H

)
=

(
Einc

Hinc

)
. (4.47)

Finally, the polarization and magnetization current-based VIE (JM-VIE) formulation [42,
60] has as unknowns the equivalent currents Jeq andMeq and is written as:(

Mεr −MχeN ceMχeK

−cmMχmK Mµr −MχmN

)(
Jeq

Meq

)
=

(
ceMχeEinc

cmMχmHinc

)
. (4.48)

All the above formulations are equivalent to each other with respect to the uniqueness
and existence of the solution provided that the permittivity and permeability functions are
bounded and coercive [58], however, the convergence of their numerical solution in an itera-
tive solver differs from one another, especially for media with high contrast/inhomogeneity
and when one performs h-refinement, as it has been demonstrated in [51] and we fur-
ther demonstrate in the next subsection. Furthermore, each formulation requires a specific
choice of basis and testing functions. Basis functions should respect the continuity condi-
tions of the unknowns across material interfaces and not enforce any additional continuities.
Specifically, basis functions for DB-VIE should be div-conforming [53], for EH-VIE curl-
conforming [40,239], and for JM-VIE no continuity should be imposed, since the equivalent
currents are naturally discontinuous [49]. Testing functions should span the L2 dual of the
range space of the associated operator [49,58,59,240], in order to guarantee convergence in
the norm of the solution, hence, it is instructive to examine the mapping properties of each
formulation. In particular, the domain and range vector spaces for the 3 formulations read



4.3. Volume Integral Equations 71

as:

DB-VIE: H(div,R3)→ H(curl,R3), (4.49a)

EH-VIE: H(curl,R3)→ H(div,R3), (4.49b)

JM-VIE:
[
L2(R3)

]3 → [
L2(R3)

]3
, (4.49c)

where [L2(R3)]
3 is the space of square-integrable functions and

H(div,R3) =
{
f |f ∈

[
L2(R3)

]3 ∧∇ · f ∈ [L2(R3)
]3}

, (4.50a)

H(curl,R3) =
{
f |f ∈

[
L2(R3)

]3 ∧∇× f ∈ [L2(R3)
]3}

. (4.50b)

H(div) and H(curl) are L2 dual to each other and L2 is dual to itself. Therefore, by
applying a Galerkin MoM to the corresponding basis functions, described in the previous
paragraph, then the testing functions span the dual of the range space of each formulation.

The focal point of this dissertation revolves around the interactions between EM waves
and biological tissue, which can be considered purely dielectric. Therefore, the equivalent
magnetization currents are identically zero and the 3 formulations reduce to the following:

DVIE: (I− LMχe)M1/εrD = ε0Einc, (4.51a)

EVIE: (Mεr −NMχe)E = Einc, (4.51b)

JVIE: (Mεr −MχeN)Jeq = ceMχeEinc. (4.51c)

For the case of JVIE the associated EM fields can be computed according to Eq. 4.40,
therefore, K operator should be discretized, as we describe below. Additionally, at JVIE
one can notice that the susceptibility multiplication operator Mχe has moved in front of the
integro-differential operator, therefore, its numerical differentiation is avoided.

Finally, since biological tissue presents not only high inhomogeneity but high contrast, as
well, it is of interest to examine how these 3 VIE formulations behave when ε̇r → ∞.
Specifically, in the limiting case we get:

lim
ε̇r→∞

DVIE:− LD = ε0Einc, (4.52a)

lim
ε̇r→∞

EVIE: (I−N)E = 0, (4.52b)

lim
ε̇r→∞

JVIE: (I−N)Jeq = ceEinc. (4.52c)
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From the above we can notice the following. DVIE becomes a first-kind integral equation
with its associated convergence problems with grid refinement. At EVIE the contribution of
the incident field vanishes and we end up solving a system of the form Ax = 0 which is
physically correct since the electric field should be zero but nontrivial solutions arise due to
the existence of null-space. Only JVIE remains a second-kind integral equation therefore it
can be considered a well-conditioned formulation as shown in recent studies [49, 51]. It is
interesting to note that for the case of free-space, where we set ε̇r = 1, the right-hand side
in JVIE becomes zero but the system matrix is diagonal and the problem well-posed [49].

4.3.2 Discretization Scheme

Piece-wise Linear Basis Functions on Voxels

As demonstrated in recent studies and discussed in the previous subsection, the current-
based formulation has well-conditioned spectral properties when compared with the other
alternatives, i.e., flux- and field-based formulations [49, 58–60]. In order to achieve this su-
perior performance and guarantee convergence in the norm of the solution, when employing
a Galerkin projection method, the function space of the basis and testing functions should
be carefully chosen [240, 241]. Specifically, the testing functions should span the L2 dual
of the range space of the associated operator and the basis functions should not enforce any
continuity condition across the material interfaces or the discretization elements (since the
scatterer is inhomogeneous). Therefore, the natural function space of choice both for the
basis and testing functions is that of square integrable functions [L2(R3)]

3. All these pre-
requisites are in accordance with previous work for a current-based VIE with PWC basis
functions [60]. However, the nature of the application at hand within the MR field, often
requires higher accuracy, especially by means of p-refinement, i.e., using a higher-order
approximation of the VIE’s unknown which is expected to yield reliable results even for
coarser grid resolutions.

single-voxel

support

.

voxels

Figure 4.4: Computational domain and volumetric element over which each basis function
is defined.
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We begin the development of our solver by defining the computational domain and the
associated discretization grid. We use a rectangular parallelepiped that encloses the inho-
mogeneous scatterer but does not have to extend any farther than that, since the radiation
conditions at infinity are satisfied by the Green’s function. By denoting the dimensions of
this rectangular box as Lx, Ly and Lz, we can now discretize it with NV = Nx × Ny × Nz

number of voxels (Figure 4.4), which in the general case may be non-uniform and have side
length ∆x = Lx/Nx, ∆y = Ly/Ny, and ∆z = Lz/Nz. Having defined the grid, we expand
the unknown equivalent polarization and magnetization currents in terms of suitable vector
basis functions. The equivalent currents are unlikely to satisfy any continuity conditions be-
cause of the material discontinuities and as a result the function space of choice in a Galerkin
discretization scheme should be the [L2(R3)]

3. Without loss of generality, we proceed in the
following with the expansion only for the polarization currents, since for the magnetization
currents the basis functions would be identical,

Jeq(r) = Jx(r)x̂+ Jy(r)ŷ + Jz(r)ẑ, (4.53)

where each component of the current can be expanded in some discrete set of appropriate
basis functions. In this work, we utilize the PWL basis functions, hence the current approx-
imation reads:

Jq(r) ≈
(Nx,Ny ,Nz)∑
n=(1,1,1)

4∑
l=1

N l
n(r)aqln , (4.54)

where q ∈ {x, y, z} indicates the components of the current, n = nxx̂ + nyŷ + nzẑ is
a compound index denoting the centers of the voxels in the grid, N l

n(r) are the 4 basis
functions per current component per voxel, and aqln are the unknown coefficients. In detail,
the scalar basis functions are defined as:

N1
n(r) = Pn(r), (4.55a)

N2
n(r) =

x− xn
∆x

Pn(r), (4.55b)

N3
n(r) =

y − yn
∆y

Pn(r), (4.55c)

N4
n(r) =

z − zn
∆z

Pn(r), (4.55d)

where rn = (xn, yn, zn) is the center of each voxel, Pn(r) is a volumetric pulse which is
equal to 1 inside voxel n and 0 otherwise. From the above, it follows that the PWL basis
functions have support a single element (voxel in our case) of the grid (Figure 4.4) allowing
for discontinuities between neighboring voxels. The vector-valued basis function at voxel n
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is:

fn(r) =
∑

q∈{x,y,z}

4∑
l=1

f qln (r), (4.56a)

f qln (r) = N l
n(r)q̂, (4.56b)

resulting in 12 unknowns per voxel. Finally, the electrical properties of the scatterer are
modeled by means of PWC approximations:

ε̇r(r) ≈
(Nx,Ny ,Nz)∑
n=(1,1,1)

ε̇r(rn)Pn(r). (4.57)

Utilizing PWL approximations of the electrical properties and studying their potential ben-
efits for highly inhomogeneous scatterers or for the case of absorbers with higher-order
polynomial conductivity profiles in photonics simulation with VIE methods [242] could be
a subject of future work. However, it is not a part of this work since the linear terms of their
approximation would not be able to move outside the testing volume integral, significantly
complicating the reduction procedure of the volume-volume integrals to surface-surface in-
tegrals [76], that it is described in Appendix C and is a critical and necessary step to compute
the singular integrals of the kernels, and they would also interfere with the Toeplitz structure
of the operators.

Galerkin Inner Products and Linear System Formalism

In what follows, we describe the required steps to numerically solve the current-based for-
mulation of Eq. 4.51c by means of Galerkin MoM, where the equivalent volumetric cur-
rents are expanded in the vector-valued square-integrable basis function of Eq. 4.56 and
tested with the same function. At this point, we can form the linear system Ax = b with
x,b ∈ CN and A ∈ CN×N with N = 12NV . More specifically, the matrix and the right-
hand side are given by:

A = MεrG−MχeN, (4.58a)

b = ceMχeeinc, (4.58b)

with

Npl,ql′

m,n = 〈f plm(r),Nf ql
′

n (r)〉V , (4.59a)

Kpl,ql′

m,n = 〈f plm(r),Kf ql
′

n (r)〉V , (4.59b)
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where p, q ∈ {x, y, z}, l,l′ ∈ {1, 2, 3, 4}, m = mxx̂ + myŷ + mzẑ denotes the observa-
tion voxel and n the source voxel. Each voxel interacts with each other so nx,mx = 1 :

Nx, ny,my = 1 : Ny and nz,mz = 1 : Nz resulting in the dense matrices N,K ∈ CN×N ,
where K operator is discretized for the computation of the magnetic field, too. Furthermore,
G ∈ RN×N is the associated Gram matrix, which is diagonal, since non-overlapping basis
functions are used:

Gpl,ql′

m,n = 〈f plm(r),f ql
′

n (r)〉V . (4.60)

Also, Mεr , Mχe ∈ CN×N are diagonal matrices for isotropic materials with the nonzero val-
ues being equal to the material properties at the corresponding voxels. Finally, the “tested”
incident electric field that arises in the right-hand side is given as:

eplinc,m = 〈f plm(r),Einc(r)〉V . (4.61)

In the above equations, we use the following definition for the inner products:

〈f , g〉V =

ˆ

V

f ∗(r) · g(r)dV. (4.62)

Tensor Representation of the Linear System

The various components of the VIE linear system admit a convenient and intuitive rep-
resentation in tensor format (multidimensional arrays) when we employ a uniform dis-
cretization grid. First, we construct the tensors of the dielectric properties of the scatterer,
Mεr ,Mχe

∈ CNx×Ny×Nz , as follows:

Mεr(m) = ε̇r(rm), (4.63a)

Mχe
(m) = ε̇r(rm)− 1. (4.63b)

Next, we form the tensor of the unknowns, xpl ∈ CNx×Ny×Nz , where p ∈ {x, y, z} and
l ∈ {1, 2, 3, 4}. Similarly, we construct the tensor of the incident fields. More specifically,
the associated tensor of the component p and the scalar basis function l reads:

eplinc(m) =

ˆ

V

f plm(r) ·Einc(r)dV =

ˆ

V

N l
m(r)Ep

inc(r)dV, (4.64)

resulting in eplinc ∈ CNx×Ny×Nz . Naturally, the tensor of the right-hand side is given by

bpl(m) = ceMχe
� eplinc, (4.65)



4.3. Volume Integral Equations 76

where � denotes the element-wise multiplication. Additionally, in order to calculate the
interactions between the testing and basis functions, we have to calculate the integrals:

Gpl,ql′

m,n =

ˆ

V

f plm(r) · f ql′n (r)dV = p̂ · q̂
ˆ

V

N l
m(r)Pm(r)N l′

n(r)Pn(r)dV (4.66)

for nx,mx = 1 : Nx, ny,my = 1 : Ny and nz,mz = 1 : Nz, p,q ∈ {x, y, z} and l,l′ ∈
{1, 2, 3, 4}which can be uniquely expressed by an RNx×Ny×Nz tensor, since non-overlapping
basis functions are used, as:

Gpl(m) =

ˆ

V

(
Pm(r)N l

m(r)
)2
dV =

Pm(r)∆V l = 1

Pm(r)∆V
12

l = 2, 3, 4
, (4.67)

where ∆V = ∆x∆y∆z is the volume of the voxel. It is interesting to note that if the basis
function at Eq. 4.55a, corresponding to the constant term, is multiplied by 1/

√
∆V and the

basis functions at 4.55b - 4.55d, corresponding to the slopes, are multiplied by
√

12/
√

∆V ,
Gram matrix reduces to the identity matrix facilitating the implementation of the solver.

Volume-Volume Integrals

Finally, the most challenging part in the assembly of the tensors is the calculation of the
six-dimensional (6D) volume-volume integrals that arise from the associated, discretized
integro-differential N and K operators with kernels that exhibit strongly singular (1/|r −
r′|3) and weakly singular (1/|r − r′|2) behavior, respectively, when the observation voxels
coincide or are adjacent with the source voxels. Note that, here the singularity order is dif-
ferent from SIE methods since the integration is performed over volumetric and not surface
elements. More specifically, these integrals, according to Eq. 4.59 can be written as:

Npl,ql′

m,n =

ˆ

V

ˆ

V ′

f plm(r) · ∇ ×∇× (g(r, r′)f ql
′

n (r′))dV ′dV, (4.68a)

Kpl,ql′

m,n =

ˆ

V

ˆ

V ′

f plm(r) · ∇ × (g(r, r′)f ql
′

n (r′))dV ′dV. (4.68b)

The far interactions are calculated by means of a standard 6D quadrature rule, where the
components of the DGF kernels are symmetric and anti-symmetric for N and K operator,
respectively, resulting in 6 and 3 unique dyadic components, as can be seen from Eqs. 4.15
and 4.43. Also, the unique interactions of the scalar part of the basis and testing functions
with a kernel of the form K(r, r′) = K(r − r′) are 10 instead of 16, when discretized on a
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uniform grid. These internal symmetries significantly reduce the overall memory footprint
required for storing the tensors of both operators to 90 unique entries. However, simple
quadrature rules cannot be applied when calculating the nearby interactions, since for coin-
ciding or adjacent voxels the 6D integrals are singular. The main idea for tackling these cases
is to reduce the dimensionality of the 6D volume-volume integrals to four-dimensional (4D)
surface-surface integrals step-by-step, as it has been shown in [76, 233, 236] (see Appendix
C). As a result, the initial volume-volume integral boils down to a sum of 4 closed surface-
surface integrals over the faces of the interacting voxels (Figure 4.5), which have smoother
kernels and can be calculated by modern algorithms, originally developed for Galerkin SIE
methods over quadrilateral patches [152, 158, 160].

volume-volume integral 36 surface-surface integrals

Figure 4.5: Decomposition of a volume-volume integral into a sum of 36 surface-surface
integrals over the face-face interactions of the observation and source voxels.

However, we should note that the formulas presented in Appendix C and in [76, 233] suffer
from the low-frequency breakdown problem that was mentioned in the previous section
and the sum of the 36 face-face integrals is prone to numerical cancellation errors for fine
resolutions and/or low frequencies, in general, when k0dx → 0. In order for this problem
to be resolved, the singularity subtraction method [243, 244] should be employed where the
odd, singular terms are added and subtracted from the Taylor expansion series of the scalar
Green’s function,

g = g − 1

4π|r − r′|
+
k2

0

8π
|r − r′|︸ ︷︷ ︸

smooth

+
1

4π|r − r′|
− k2

0

8π
|r − r′|︸ ︷︷ ︸

non-smooth

, (4.69)

where the smooth part has 2 continuous derivatives and can be computed with standard
6D quadrature rules and for the non-smooth part new reduced surface-surface static ker-
nels should be derived for which the corresponding singular integrals can be computed with
readily available packages for SIE methods. Such procedure has been implemented for the
scalar Green’s function and incorporated into the assembly of VoxHenry, an inductance ex-
traction tool for voxelized structures accelerated with the help of FFT [245, 246]. However,
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the current-based VIE is associated with the curls of g, as seen in Eq. 4.68, and to our
knowledge such formulas do not exist in the literature and their derivation, implementation,
and convergence analysis could be the subject of future work.

In order to exploit the operators internal symmetries that are mentioned before, as well as,
the translation invariance property of the convolutional discrete kernels,

Npl,ql′

m,n = Npl,ql′

m−n, (4.70)

we choose to use a uniform, voxelized grid, where we can fix the basis function at a specific
voxel, say the first with n = (1, 1, 1), and sweep the testing function over the voxels of
the computational domain in order to calculate only the unique volume-volume integrals.
Therefore, the above integrals, when expressed in matrix ∈ CNV ×NV format, will be three-
level block-Toeplitz Toeplitz-block matrices, since we are dealing with the 3D case. As a
result, it suffices to calculate their Toeplitz defining tensors ∈ CNx×Ny×Nz as

Npl,ql′(m) = Npl,ql′

m−1, (4.71)

where mx = 1 : Nx, my = 1 : Ny, mz = 1 : Nz, p,q ∈ {x, y, z} and l,l′ ∈ {1, 2, 3, 4}. The
same logic applies to the tensors for K operator.

Memory Footprint Reduction

The Green’s function has smoothing properties for remote elements interactions, therefore,
the off-diagonal blocks of the MoM matrix will be low-rank [66, 145]. In a similar man-
ner, the 3D Toeplitz defining tensors at Eq. 4.71 are expected to present low multilinear
ranks [237] and an impressive memory compression factor can be achieved by applying
tensor decompositions on the 3D Toeplitz tensors, as demonstrated in [163, 237, 238]. In
particular, Tucker decomposition is expected to provide an optimal and a stable approxima-
tion for a 3D tensor [247] and can be implemented either with higher-order SVD [248] or
with techniques based on cross approximation [249,250], as it is explained and investigated
at [163, 238]. In this way, the overall memory footprint is drastically reduced and the com-
pressed Tucker factors can fit inside a GPU, accelerating the matrix-vector product in an
iterative solver and allowing for the solution of linear systems with millions of unknowns
(e.g., fine realistic head models with 1mm resolution or whole body EM scattering com-
putation) within the reasonable computational time of around 14-16 minutes, whereas the
uncompressed approach requires around 2.7 hours, presenting a tenfold acceleration. More
details can be found at [163].

Additionally, if we reform the 3D tensors in Eq. 4.71 into a 4D tensor ∈ CNx×Ny×Nz×60,
where the fourth dimension corresponds to the unique interactions of the basis and testing
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Figure 4.6: Behavior of the ranks along the fourth dimension of N and K operator tensors
that corresponds to the unique basis and testing functions interactions with the DGF kernels
and PWL basis functions.

functions with the DGF components of N operator (this will be 30 for K operator), then
the tensor appears to be low-rank, for the case of PWL basis functions, even along this
fourth dimension (see Figure 4.6). Of course, this low-rank property is of different nature
than the previously mentioned for the 3D case and originates from the fact that not all linear
terms (x, y, z) are physically required to generate a basis with linear functions which implies
that a reduced basis representation of the equivalent currents, possibly similar with that of
VoxHenry [245, 246], could be employed. However, this is a speculation and whether it
holds true or not, along with the ranks behavior with respect to different choices of basis
functions, is open to investigation.

Modern Numerical Techniques and Single Source Representation Formulation

Similarly, by exploiting the Green’s functions smoothing property, hierarchical matrices
(H-matrices) with many right-hand sides and other modern numerical techniques includ-
ing tensor decompositions have been proposed in the literature for accelerating the numer-
ical solution of SIEs and VIEs. In particular, H-matrices have been utilized for the fast
EM analysis of 3D composite dielectric objects [251] and for the fast direct solution of the
surface-volume-surface EFIE for scattering problems on general composite metal-dielectric
objects [252], where more details on the H-matrix-based acceleration of the MoM can be
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found at [253, 254]. Additionally, the surface-volume-surface IE formulation relies on the
novel concept of the single source representation [255] by featuring a single unknown sur-
face current density, utilizing only the electric field Green’s function, and allowing for the
IE to be described in terms of the mixed potential formulation with a 1/R singularity, ren-
dering it a powerful technique for simulating many different setups. In fact, such represen-
tation with appropriate adaptations has allowed to solve a variety of EM scattering prob-
lems including general homogeneous dielectric 3D objects placed inside multilayered me-
dia [256] or homogeneous media [257] as well as scattering from 2D geometries [258, 259]
and transmission lines [260–262] and cables [263] characterization. Finally, the solution
of the VIE for structured and unstructured meshes [264] and for 2D scattering problems
for multi-conductor transmission lines [264] has been recently accelerated by the use of
tensor train decomposition [265]. However, as we have described in the previous section,
Tucker decomposition of the 3D Toeplitz defining tensors is more suitable for inhomoge-
neous dielectrics since it is expected to provide an optimal and a stable approximation for
a 3D tensor [247] and the electrical properties of an inhomogeneous head model cannot be
compressed. Finally, the above-mentioned H-matrices-based direct solution of VIEs could
possibly be adapted to inhomogeneous scatterers presenting a promising research direction,
especially when one has to deal with the solution of multiple right-hand sides, which could
prove useful for the total EM fields basis generation as it will be described in the next chapter.
However, since the MRI data come in a voxelized form it is more natural and straightfor-
ward to use an FFT-based acceleration in our current-based solver, as we will describe in the
next subsection.

FFT-based Acceleration of the Matrix-Vector Product

In order to numerically solve a discretized VIE, the inversion of a very large and dense ma-
trix is required. Hence, the scientific community has naturally been using iterative solvers.
Even with an iterative solver, for which the most time consuming part is the matrix-vector
product with O(N2) complexity, solving a realistic problem becomes extremely difficult
and in many cases prohibitive. However, if uniform, voxelized grids are used, the MoM
matrix becomes structured (block Toeplitz with Toeplitz blocks) and the associated matrix-
vector product is amenable to acceleration with the help of FFT resulting in O(N log(N))

complexity for each matrix-vector product.

The first step to that direction is the embedding of the Toeplitz defining tensors for N and
K operator into their corresponding circulant defining tensors Npl,ql′

circ ∈ C2Nx×2Ny×2Nz , with
special care to take into account the associated projection signs for the DGF, the basis, and
testing functions, as described in a detailed algorithmic analysis, that can be found at the
Appendix of [60] and shown here in Table 4.1 for the derivatives of g and for the PWL
basis functions. Finally, the circulant matrix-vector product can be computed with the FFT,
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reducing the computational cost to approximately O(N log(N)), for number of unknowns
that can be expressed as N = 2p3q5r [266, 267].

Table 4.1: Projection Signs for the Derivatives of g and for the PWL Basis Functions.

XXXXXXXXXXXXFunctions
Flags

Nx Ny Nz NxNy NxNz NyNz NxNyNz

∂2g/∂x2 + + + + + + +

∂2g/∂y2 + + + + + + +

∂2g/∂z2 + + + + + + +

∂2g/∂x∂y - - + + - - +

∂2g/∂x∂z - + - - + - +

∂2g/∂y∂z + - - - - + +

∂g/∂x - + + - - + -

∂g/∂y + - + - + - -

∂g/∂z + + - + - - -

N1 + + + + + + +

N2 - + + - - + -

N3 + - + - + - -

N4 + + - + - - -

On Preconditioning

Another advantage of using the current-based formulation is that the multiplicative operator
with the dielectric susceptibilities is on the left of N operator, as it can be seen in Eq. 4.51c.
Therefore, by multiplying through with the inverse of Mεr , this equation can be rewritten as

(I−MχeM1/εrN)Jeq = ceMχeM1/εrEinc, (4.72)

where the identity operator is now left alone. In this way, the integral equation is regularized
and this regularization can be thought as a natural preconditioning for solving the linear sys-
tem of the discretized current-based VIE, as it has been suggested in [268, 269]. Motivated
from these observations, we use a preconditioner of the form P = MεrG. From a numerical
perspective, when using this preconditioner, the iterative solver converges much faster es-
pecially in the case of highly inhomogeneous scatterers. Numerical experiments, presented
below, indicate the superior convergence properties of the iterative solver when using this
preconditioned solver for the case of a realistic head model.
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Computation of Electromagnetic Fields and Power

The linear system solution provides us with the equivalent electric and magnetic currents
at the center of the voxels and 3 coefficients representing the slopes of the linear terms.
However, the equivalent currents are mathematical inventions and do not represent a physical
phenomenon or quantity. In what follows, we describe the required steps for the computation
of the EM fields and the associated absorbed power.

A fast and efficient way to compute the EM fields is to employ the fast matrix-vector prod-
ucts and calculate the “tested” total fields according to the discrete analogue of Eq. 4.40.
Then, in order to calculate the EM fields in a discrete sense, we have to divide the “tested”
total fields by the Gram matrix. An advantage of this approach is that no extra memory is
required for computing the EM fields, and the complexity is once again governed by the
FFT-based matrix-vector product.

Finally, the RF absorbed power can be accurately computed based on [270], where stable
and compact vector-matrix-vector formulas are suggested. The only difference here is that
we have to replace the Gram matrix, as in Eq. 4.67, to include the contributions of the linear
terms of the solution vector and compute the absorbed power, which corresponds also to the
global SAR, as:

Pabs =
1

2
Re
{
xH(ceMχe)

−1Gx
}
. (4.73)

4.3.3 Electromagnetic Scattering from Inhomogeneous Head Models

Convergence Study for a Uniform Sphere and Solver Validation

To quantitatively validate the proposed framework, we conduct the numerical computation
for the scattering of a plane wave from homogeneous dielectric spheres and calculate the
absorbed power, as in Eq. 4.73. The results are compared with the Mie series analytical
solution [78]. In detail, we model frequency-dependent electrical properties, matched to the
average of the gray and white matter according to [67, 271], as they can be seen in Table
4.2, for various B0 static magnetic field strengths of an MR scanner, where we use the
gyromagnetic ratio as γ

2π
= 42.58 MHz/T and set the operating frequency as f = γ

2π
B0.

Furthermore, the sphere has radius a = 7.5cm and the excitation is an x-polarized and
z-directed plane wave Einc = x̂e−jk0z.

Moreover, we calculate the absorbed power, both with the PWC current-based VIE [60]
and the proposed solver with PWL basis functions, and compute the relative error for the
power obtained from Mie series, as error = |PVIE − PMie|/|PMie|. The iterative solver of
choice is the generalized minimum residual (GMRES) with inner iterations 50 and outer
200, and with tolerance 10−5. Finally, we vary the resolution of the discretization, using
h = 5, 2.5, 1.5, 1, 0.75mm, and present the results for the relative error of the PWC and
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Table 4.2: Electrical Properties of Homogeneous Sphere.

B0(T) 0.5 1.5 3 7

f(MHz) 21.29 63.87 127.74 298.06

ε
′
r 227 141 68 64

σ(S/m) 0.25 0.35 0.5 0.51

Table 4.3: Degrees of Freedom.

h(mm) 5 2.5 1.5 1 0.75

Nx = Ny = Nz 31 61 101 151 201

DoFs PWC (million) 0.09 0.68 3.09 10.33 24.36

DoFs PWL (million) 0.36 2.72 12.36 41.32 97.45

Figure 4.7: Relative error of RF absorbed power with respect to resolution for the PWC and
PWL current-based VIE compared with the Mie series solution for homogeneous spheres
with a = 7.5cm and frequency-dependent electrical properties, as seen in Table 4.2, for
different B0 field strengths when irradiated by a plane wave.

PWL solvers, with respect to the resolution in Figure 4.7, along with the Degrees of Free-
dom (DoFs) for each solver, shown in Table 4.3. Clearly, the discretization with PWL
basis functions gives much better accuracy for the same resolution, compared with the PWC
discretization. Specifically, it is observed that there is a constant improvement factor of ap-
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proximately 12 times in the relative error between the PWC and PWL solvers. However, the
convergence rate appears to be O(h), instead of O(h2), due to numerical inaccuracies origi-
nating from the staircase approximation of a sphere, when discretized with voxels [131].

Convergence Study for the “Billie” Head Model and Comparison with the Flux-Based
Formulation

In order to demonstrate the superior convergence properties of the proposed high-order
current-based solver, in comparison with the flux-based formulation [56, 57], often used
in MRI studies [43, 272], we conduct the computations for the EM scattering of a plane
wave for the “Billie” realistic head model from Virtual Family Population [5]. In detail, we
operate atB0 = 7T, hence the corresponding frequency is f = 298.06MHz and we irradiate
the head model with an x-polarized and negative y-directed plane wave Einc = x̂ejk0y, so
that the plane wavefront is parallel to the coronal plane of the head.

Figure 4.8: Axial views of the RMS value of the electric field in V/m inside the “Billie”
head model, when excited by a plane wave at 7T MRI. From left to right, the electric field
values are obtained with the flux-based solver (DVIE), the PWC current-based solver, and
the PWL current-based solver for resolutions h = 5, 2, 1mm, as viewed from top to bottom.
Fields outside the body are masked to improve the visibility.

Subsequently, we compute the EM fields and the absorbed power with the current-based
formulation with PWC and PWL basis functions and the flux-based (DVIE) formulation
with rooftop basis functions [56,57], as we refine the grid, using resolutions h = 5, 2, 1mm.
Furthermore, GMRES is utilized with the same tolerance, inner and outer iterations as in the
previous example. In Figures 4.8, 4.10, and 4.11 we present the RMS electric field for all 3
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Figure 4.9: Convergence of GMRES iterative solver for the PWC current-based solver,
the PWL current-based solver with and without preconditioner, and the flux-based solver
(DVIE) for different resolutions h = 5, 2, 1mm, for the calculation of EM scattering of a
plane wave from the “Billie” head model at 7T MRI.

resolutions and 3 solvers, where the fields outside the body are masked for enhanced visual-
ization. It is observed that, for coarser resolutions, the PWL solver provides more accurate
results, when compared with the lower-order PWC solver. Additionally, both for the case of
DVIE and PWC solvers there exist numerical artifacts at regions with high contrast, i.e., at
the air-skull and skull-brain interfaces at coarser resolutions (2mm), which is not the case
for the proposed higher-order solver. Moreover, we execute the same numerical experiment,
utilizing the preconditioner mentioned before, and present the convergence of the iterative
solver for all formulations and refinements.

As it can be clearly seen in Figure 4.9, the current-based formulation is well-conditioned,
allowing for p-refinement, while the iteration count remains practically the same, when the
suggested preconditioner is used. It also allows for h-refinement, since, as we move to finer
resolutions, the number of iterations does not change, which is not the case for the flux-based
formulation, where the iteration count diverges, as we refine the grid. This can be attributed
to the fact that the flux-based VIE in [57] averages the normalized contrast function with the
material properties (since it appears behind L operator, as seen in Eq. 4.46) and due to the
fact that this formulation is inherently ill-conditioned and the number of iterations increases
with h-refinement, as it is demonstrated at [49, 51]. On the contrary, when discretizing
the current-based VIE, the spectral properties of the operators are preserved. Finally, the
effectiveness of the proposed preconditioner for highly inhomogeneous scatterers can be
verified since the iteration count is dramatically reduced when it is utilized, especially for
the case of the PWL solver, where the iteration count drops from 800 to 150.
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Figure 4.10: Sagittal views of the RMS value of the electric field for the same simulation
setup as in Figure 4.8.

Figure 4.11: Coronal views of the RMS value of the electric field for the same simulation
setup as in Figure 4.8.
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Convergence Study for the “Duke” Head Model with an Attached High-Dielectric Pad
and Comparison with FDTD

As it is proposed at [170, 273–281], the use of high-permittivity dielectric materials can
effectively address B+

1 inhomogeneities that arise in high-field MRI, where the effective
wavelength is comparable to the dimensions of the subject. By introducing specifically de-
signed dielectric pads between the RF coil and the subject (see geometry in Figure 4.15),
B+

1 becomes more homogeneous, SAR is reduced and SNR increases, a technique called
dielectric shimming. An example can be seen in Figure 4.12, where |B+

1 | field becomes
localized in the vicinity of the dielectric pad illuminating previously dark regions with |B+

1 |
field nulls and improving the SNR at this region. However, from an EM scattering per-
spective, simulating such setups is very challenging even for the state-of-the-art VIE-based
solvers, due to the extremely high contrast and high inhomogeneity of the scatterer.

Figure 4.12: |B+
1 | field in T inside “Duke” head model with and without a high-dielectric

pad attached to its left-hand side. The localization and shifting of the |B+
1 | field can be seen

which can be exploited for dielectric shimming applications.

To demonstrate the superior accuracy of the proposed current-based VIE solver with PWL
basis functions, we perform the numerical computation for the EM scattering for the “Duke”
head model, where a high-dielectric pad is attached to the left side of the head model and has
electrical properties ε′r = 300 and σ = 0.25S/m, as seen in Figure 4.13. The geometry and
properties of the suspensions, as well as the incident field, which originates from a 16-rung
high-pass birdcage coil with sinusoidal excitation tuned and matched at f = 300MHz, are
thoroughly explained in [278].

Subsequently, we calculate the EM field distributions over the head and the pad with the
current-based VIE formulation with PWC and PWL basis functions, as we refine the reso-
lution of the computational grid, using h = 5, 2, 1mm. Also, GMRES is utilized with the
same tolerance, inner and outer iterations as before. The results are qualitatively compared
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Figure 4.13: Real and imaginary part of relative complex permittivity (ε̇r) of “Duke” realistic
head model at 7T with a high-dielectric pad attached to its left-hand side with ε′r = 300 and
σ = 0.25S/m.

Figure 4.14: Axial views of |B+
1 | in T inside the “Duke” head model with an attached high-

dielectric pad, when excited by a tuned birdcage coil at 7T MRI. From left to right, the
magnetic field values are obtained with a commercial FDTD package, the PWC current-
based solver, and the PWL current-based solver for resolutions h = 5, 2, 1mm, as viewed
from top to bottom. Fields outside the body and at the pad are masked to enhance the
visibility.
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to the EM fields obtained from a commercial software package which employs the FDTD
method (xFDTD 7.2, Remcom Inc., State College, Pennsylvania, USA), as it is mentioned
at [278], and the |B+

1 | for all 3 resolutions and 3 solvers is presented in Figures 4.14, 4.16,
and 4.17 masking the fields outside the body for improved visibility. From these figures, it is
clear that, even for this very demanding simulation, the PWL solver yields reliable and ac-
curate EM fields for coarse resolutions, which are in good agreement with the FDTD-based
solution, despite the inherent differences in the numerical modeling of the setting. On the
contrary, it is necessary to refine the resolution up to 1mm for the PWC solver to converge
to an accurate solution.

Figure 4.15: Convergence of GMRES iterative solver for the PWC current-based solver
and the PWL current-based solver with and without preconditioner for different resolutions
h = 5, 2, 1mm, for the calculation of EM scattering from the “Duke” head model with an
attached high-dielectric pad irradiated by a tuned birdcage coil at 7T MRI. The simulated
geometry with the birdcage coil, the head model, and the attached pad are presented.

Additionally, we execute the same numerical experiment for the PWC and PWL solvers uti-
lizing the preconditioner mentioned in the previous experiment and present the convergence
study of the iterative solver in Figure 4.15. Here, the well-conditioned properties of the
current-based VIE can be observed, even for this extremely challenging scenario, allowing
both for the utilization of higher-order approximations and grid refinements. Furthermore,
the remarkable effectiveness of the proposed preconditioner is clearly demonstrated, since
when it is utilized the number of iterations significantly drops from 3900 to 700, a value
comparable to the iteration count of the PWC solver, allowing for this solver to be used in
practical and demanding applications with manageable computational cost, while simulta-
neously providing accurate and reliable results. It is worth noting that without the proposed
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Figure 4.16: Sagittal views of |B+
1 | in T inside the “Duke” head model with an attached

high-dielectric pad for the same simulation setup as in Figure 4.14.

Figure 4.17: Coronal views of |B+
1 | in T inside the “Duke” head model with an attached

high-dielectric pad for the same simulation setup as in Figure 4.14.

preconditioner the iteration count of the PWL solver diverges at the finest resolution of 1mm
which does not occur when the preconditioner is employed. Finally, for completeness, we
show the absorbed power density pabs for all 3 resolutions and 3 solvers in Figures 4.18,
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4.19, and 4.20, where similar patterns regarding solver accuracy with respect to the resolu-
tion can be observed.

Figure 4.18: Axial views of pabs in W/m3 inside the “Duke” head model with an attached
high-dielectric pad for the same simulation setup as in Figure 4.14.

Figure 4.19: Sagittal views of pabs in W/m3 inside the “Duke” head model with an attached
high-dielectric pad for the same simulation setup as in Figure 4.14.
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Figure 4.20: Coronal views of pabs in W/m3 inside the “Duke” head model with an attached
high-dielectric pad for the same simulation setup as in Figure 4.14.

Computational Times of VIE and FDTD

In this subsection the computational time requirements and their comparison with FDTD
are described. For all numerical experiments presented in this chapter, the computations
were performed with Matlab (version 9.2) at a CentOS 6.9 operating system equipped with
an Intel(R) Xeon(R) central processing unit (CPU) E5-2699 v3 @ 2.30 GHz with 36 cores
and 2 threads per core and an NVIDIA Tesla K40M GPU. For the numerical experiment
with the “Duke” head model with the attached high-dielectric pad we report the following
times. The PWC solver required 1.2 minutes, 9.3 minutes, and 5 hours to solve the full-wave
EM scattering problem and compute the EM fields distributions at resolutions 5mm, 2mm,
and 1mm, respectively, while the PWL solver required 14.9 minutes, 14.1 hours, and 134.3
hours at the same resolutions. For these results it is important to mention that the PWC
5mm, the PWC 2mm, and PWL 5mm computations were performed in the GPU while the
rest in the CPU, hence their significant difference, and for both cases we have used the
proposed preconditioner. Such results further illustrate the usefulness of the PWL solver
since for the challenging simulation setup that includes high-permittivity materials (such as
the dielectric pad) the PWC solver has to be refined up to 1mm to yield accurate results and
such simulation requires around 5 hours whereas the PWL solver provides reliable EM fields
for the coarse resolution of 5mm requiring a computational time of under 15 minutes and
providing a 20-times relative speedup for generating accurate EM fields maps. However,
the FDTD data originated from a commercial package (xFDTD 7.2, Remcom Inc., State
College, Pennsylvania, USA), as it is mentioned at [278], where the computational times
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are not reported.

For the numerical experiment with the “Billie” head model, where the iteration count in the
iterative solver is significantly smaller, since the scatterer does not have such high contrast,
we report the following times, where the computations were performed with Matlab at the
same server with before and by employing the proposed preconditioner. The PWC solver
required 0.5 minutes, 2 minutes, and 52.7 minutes to solve the full-wave EM scattering
problem and compute the EM fields distributions at resolutions 5mm, 2mm, and 1mm, re-
spectively, while the PWL solver required 1.9 minutes, 1.5 hours, and 22.6 hours at the same
resolutions. For these results it is important to mention that the PWC 5mm, the PWC 2mm,
and PWL 5mm computations were performed in the GPU while the rest in the CPU, hence
their significant difference. In an attempt to compare such computational times with the
FDTD method, we refer to results from the literature, where the performance of an FDTD
solver is evaluated [282]. In particular, at Figure 6 of this study, the computational times
from different heterogeneous computing techniques are presented for the EM fields com-
putations within a realistic inhomogeneous head model with the FDTD method. While the
exact resolution of the head model is not reported, by taking into account the total FDTD
cells including the additional cells that it requires for placing the ABCs, we can conclude
that the head model could possibly be discretized with a 2mm resolution. The numerical ex-
periment with the “Billie” head model can be considered a similar simulation setup, hence,
here we have a qualitative comparison of the computational times. Specifically, at 2mm
resolution, the PWC solver computes the EM fields within 2 minutes, the PWL in 1.5 hours
and when the 3D tensors are compressed and the matrix-vector product is accelerated on
GPUs [163] this drops to under 10 minutes. On the other hand, the FDTD computations
require around 1.5 hours with OpenCL (4x GPU), 1.6 hours with OpenCL (3x GPU), 11.6
hours with OpenMP (2x CPU), and 14.4 hours with OpenCL (2x CPU) [282]. Therefore,
by comparing the FDTD and VIE computational times we can conclude that indeed VIE
provide much faster results than FDTD, especially for the PWC solver or the PWL solver
combined with the 3D tensor Tucker-compression and its associated GPU-acceleration of
the matrix-vector product. Specifically, PWC VIE solver (2 minutes) is 45 times faster
than the fastest FDTD approach with OpenCL (4x GPU) (1.5 hours), PWL VIE solver with
Tucker (10 minutes) is 9 times faster than the fastest FDTD approach and the CPU-based
PWL VIE solver (1.5 hour) takes as much time as the fastest FDTD approach. However, it
is important to emphasize that this is a qualitative comparison and in order to be fair, the
numerical experiments have to be executed for exactly the same simulation setup and with
the same hardware. Finally, the reader should keep in mind that the reported computational
times for FDTD are from an optimized commercial software developed in C++, whereas
the VIE times provided above are from a Matlab-based research code which has been de-
veloped for computational prototyping. However, the soon to be released MARIE 2.0 will
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include the C++ implementation of the most time consuming parts of the solver (assembly
and matrix-vector product), therefore an additional speedup is to be expected.

4.3.4 Conclusions

In conclusion, in this chapter, a fast VIE solver based on the equivalent polarization currents
with PWL basis functions is derived for the accurate computation of the EM scattering from
highly inhomogeneous and/or high contrast objects. The proposed solver has remarkably
stable convergence properties and yields reliable EM fields for extremely challenging mod-
eling scenarios and for coarse resolutions without necessarily refining the computational
grid. Such stable convergence is not so common for IEs for which the iteration count typ-
ically diverges with h-refinement (see the iteration count of the flux-based solver at Figure
4.9). Additionally, the iteration count for the current-based solver with PWL basis functions
remains the same as the grid is refined, while for the lower-order PWC scheme it slightly in-
creases which leads to the conclusion that p-refinement stabilizes the iteration count and that
the spectral properties of the operators are better preserved. Furthermore, by discretizing the
VIE on uniform grids, the matrix-vector product can be performed fast with the help of FFT
and when combined with iterative solvers large and complex problems can be solved accu-
rately within reasonable time and computational resources. The proposed framework can
be utilized in challenging applications such as the modeling of the interactions between EM
fields and biological tissue, including the presence of shimming pads of very high electrical
permittivity. In problems with such high contrast, as demonstrated at the numerical exper-
iment with the high-dielectric (εr = 300) pad attached to the head model, the solver with
PWL basis functions provides reliable results comparable to those of a commercial FDTD
package. However, the iteration count significantly increases and around 700 iterations are
required (Figure 4.15) whereas 160 suffice when the high dielectric pad is not attached (Fig-
ure 4.9) to achieve a solution with the same GMRES tolerance. Therefore, it is expected that
the higher the contrast the more iterations are required for convergence in an iterative solver
similarly to the case of high-frequency problems. Furthermore, the newly developed solver
with PWL basis functions has been incorporated into Global Maxwell Tomography [95] for
the noninvasive estimation of the electrical properties of the human body based on the MR
signal, where it helped by providing to the optimizer solves consistent with each other and
thus regularizing the problem and reducing the error of the electrical properties reconstruc-
tion [283]. Finally, our higher-order solver will be part of the soon to be released MARIE
2.0 suite. As we mentioned before, future work could include the PWL approximation of the
electrical properties for cases where the material profile varies with higher-order polynomial
functions, the derivation, implementation, and convergence study of the subtraction method
for the singular kernels of N and K operator, and the feasibility, accuracy and convergence
properties study of reduced-order linear basis functions.



5 Numerical Basis of Electromagnetic Fields and

MRI Applications

After developing a numerical solver that generates reliable EM fields, the next focal point
of this thesis is the description of robust and accurate algorithms for the generation of a nu-
merical EM fields basis, that is consistent with electrodynamics, inside an inhomogeneous,
arbitrary scatterer [80]. This step can be considered as generalization of the expansion of
EM fields within spherical objects with spherical waves [284] and shares similarities with the
characteristic modes theory for arbitrary scatterers [285,286]. A basis of EM fields can help
to understand the currents and EM fields distributions that maximize SNR [67], TXE [75],
or SAR amplification factor for RF hyperthermia [71] within the inhomogeneous biolog-
ical tissue or by calculating the current distributions that yield optimal SNR for arbitrary
current-bearing substrates [82]. These currents distributions can inform the non-convex RF
coil optimization problem by providing an intuitive initial guess, thus, offering a framework
for a truly robust optimization of their design that is a critical step into the design and de-
ployment of next generation high and UHF MRI systems. Additionally, such performance
bounds can be used to evaluate and optimize RF coils and MR techniques by assessing ex-
isting coil designs and calculating the percentage of the ultimate values they can reach, thus
indicating the room for improvement of specific arrays.

In particular, the ultimate SNR, TXE, and SAR are the best possible values that optimization
procedures can achieve for any possible coil design. The computation of these ultimate
values requires a complete basis of the EM fields in the sample under study, i.e., the human
body. Ultimate SNR, TXE, and SAR have been generated and extensively studied based
on analytical solutions (such as Mie series and spherical/cylindrical harmonic expansions)
for homogeneous spherical and cylindrical geometries [10–19, 74] yielding great insight
into expected and observed trends in MRI signal, noise, and safety. Also, important work
has been devoted to extract the current excitation patterns and best coil configurations for
these relatively simple geometries [15, 20–29]. Despite the useful insight gained from these
metrics, MR RF coils are designed for realistic body models. Therefore, results for highly
complex inhomogeneous realistic body models can provide useful information for coil array
designers, providing an ultimate figure of merit against which they can benchmark their

95
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designs and obtain useful insight and intuition of the best RF excitation patterns.

In this chapter, we investigate how to efficiently generate a low-order subspace basis able
to reconstruct all EM fields distributions within a realistic human body model. We present
the key points for the basis generation, study the impact that electrical distance has on its
generation, demonstrate its ability to reconstruct different EM fields, and compare its nu-
merical accuracy and convergence properties against a complete analytical basis derived in
a spherical coordinate system for the TXE and SNR metrics and for different objects. The
vectors of the basis can be linearly combined and applied in optimization procedures, as
it has been demonstrated for UISNR [67], ultimate SAR amplification factor [71] and we
further illustrate for the case of UITXE [75] and such performance bounds can be used to
evaluate the performance of existing receive and transmit array designs. Together with these
performance bounds, we also compute the associated current distributions on a given arbi-
trary surface that yield the corresponding EM fields within the inhomogeneous head model
that result in the optimal SNR distribution [82]. These numerical ICP can inform the non-
convex RF coil optimization problem with an intuitive initial guess and could lead to truly
task-optimal coil designs.

5.1 Generation of a Consistent Numerical Basis of Electro-
magnetic Fields

MRI technology relies on inducing an EM field within the realistic human body model due
to impressed/external excitations in the RF coils, which can be calculated according to Eqs.
4.40 and 4.44, where instead of having equivalent sources yielding scattered fields we have
impressed sources yielding incident fields within the body, as:(

Einc

Hinc

)
=

(
1
ce

(N − I) −K
K 1

cm
(N − I)

)(
Ji

Mi

)
. (5.1)

Therefore, for an MRI system, we can hold to the realistic assumption that the excitations
are restricted in an arbitrary region (sources region) outside the body (observation region),
hence, there are no electric or magnetic sources within the body and the above equation
reduces to: (

Einc
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)
. (5.2)

5.1.1 Surface Equivalence Principle

The first step in order to generate a numerical basis of incident EM fields inside the human
body is to find a way to account for all the possible current excitations outside the human
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body, a step that can be computationally demanding unless treated properly. As we men-
tioned in Chapter 3, we can address this issue by making use of the surface equivalence
or Huygens’s principle [108, 109, 116] according to which, we can generate an imaginary
closed surface around the source-free body, so that any external excitation in the exterior of
this surface (Ji and Mi) can be reproduced as a combination of sources lying on this sur-
face (Jeq andMeq). Therefore, any EM field distribution inside the devoid-of-sources body
can be generated by the tangential equivalent currents flowing on Huygens’s surface (Figure
5.1). In this way, Huygens’s surface separates the coil domain from the human body domain
and allows for the representation of any EM field that originates from coils in the exterior
of this surface. It should be noted that there necessarily has to exist a distance between
the Huygens’s surface and the body in order for the produced EM fields to be smooth and,
intuitively, the smaller the distance the less smooth these fields become. In addition, due
to computational considerations, a set of discrete points on this surface must be selected to
place the equivalent sources. The number of sources required for a sufficiently accurate ap-
proximation is problem dependent and depends on the distance between the surface and the
observation points. Naturally, the closer two nearby sources are to an observation point, the
larger the impact of the distance between them in terms of incident EM fields they generate
on the given observation point.

original problem equivalent problem

Figure 5.1: Illustration of surface equivalence principle. The arbitrary scatterer within vol-
ume V is enclosed with Huygens’s surface S where all external current sources Ji and Mi

can be represented by the equivalent currents Jeq andMeq that yield the same EM field.

This coil domain and body domain separation is particularly useful when the RF coils lo-
cation is not predefined and they can be placed in any position outside the human body.
Note, however, that if the RF coils are confined within a volume, we can generate a surface
around this RF coil domain, so that any RF coil excitation can be reproduced as a linear
combination of the effects of sources lying on this surface, as it has been described at [66]
and further demonstrated for the antenna characterization problem [287].
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5.1.2 Discretization Schemes and Model-Order Reduction

Discretization Schemes

The second step in order to generate the numerical basis is to chose an appropriate dis-
cretization scheme for the equivalent sources lying on the continuous surface that encloses
the human body and generate a reduced-order model. Specifically, we use three different
discretization schemes. The first involves the representation of the Huygens’s surface with
a voxelized dipole cloud that entails the discretization of volumetric currents either with
PWC [60] or PWL basis functions, as we have introduced them in the previous chapter, over
a uniform voxelized grid in a similar manner with [65–67, 71]. Using a uniform voxelized
grid leads to approximating the shape of the surface with a staircase or PWC-shaped surface
which has nonzero thickness, however, this approach allows for the FFT-based implementa-
tion of the matrix-vector product and does not require forming the coupling matrix that maps
currents on the surface to fields in the human body. The second employs RWG [62] basis
functions on a triangular grid, where the currents are constrained onto a 2D surface [75],
respecting the infinitesimal thickness of the Huygens’s surface and providing flexibility for
coil and surface currents distributions modeling. The third directly applies ideal Hertzian
dipoles (the basis functions are Dirac delta functions) which are imposed to be tangential
to the 2D surface of interest and has allowed for intuitively visualizing ICP at arbitrary
current-bearing surfaces yielding optimal SNR in realistic heterogeneous head models [82]
as a linear combination of elementary dipole sources. Additionally, we test the incident EM
fields either with PWC or PWL basis functions. Therefore, the discrete form of N operator
in Eq. 5.2 (same considerations hold for K) is calculated for the following five distinct ap-
proaches which can be used for different applications within the MR field and are associated
with their own numerical and practical considerations that we will describe below.

1. Expansion of volumetric currents with PWC basis functions and testing of the produced
EM fields with PWC testing functions over a uniform voxelized grid as in [60]:

Np,q
m,n =

ˆ

V

(Pm(r)p̂) ·
ˆ

V ′

∇×∇× Ḡ(r, r′) · (Pn(r)q̂)dV ′dV. (5.3)

2. Expansion of volumetric currents with PWL basis functions (as in Eq. 4.56) and testing
of the produced EM fields with PWL testing functions over a uniform voxelized grid as
described in the previous chapter:

Npl,ql′

m,n =

ˆ

V

f plm(r) ·
ˆ

V ′

∇×∇× Ḡ(r, r′) · f ql′n (r′)dV ′dV. (5.4)

3. Expansion of surface currents with RWG basis functions over a triangular grid (as in Eq.
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4.28) and testing of the produced EM fields with PWC basis functions [75]:

Np
m,n =

ˆ

V

(Pm(r)p̂) ·
ˆ

S′

∇×∇× Ḡ(r, r′) · fn(r′)dS ′dV. (5.5)

4. Expansion of surface currents with RWG basis functions over a triangular grid and testing
of the produced EM fields with PWL basis functions [75]:

Npl
m,n =

ˆ

V

f plm(r) ·
ˆ

S′

∇×∇× Ḡ(r, r′) · fn(r′)dS ′dV. (5.6)

5. Expansion of dipole currents with Dirac delta basis functions tangential to an arbitrary
surface and testing of the produced EM fields with PWC basis functions [82]:

Np,q
m,n =

ˆ

V

(Pm(r)p̂) ·
ˆ

V ′

∇×∇× Ḡ(r, r′) · f qn(r′)dV ′dV, (5.7)

where the basis function that imposes the ideal Hertzian dipole to be tangential to the surface
of interest is defined as

f qn(r) = [q̂ − (q̂ · n̂)n̂] δ(r − rn), (5.8)

where q ∈ {x, y, z}, n̂ denotes the normal vector to the surface, and rn the source point
where the dipole is immersed. The surface can be meshed with a triangular grid and in the
limiting case, as the surface is refined or by assigning a greater number of point dipoles on
each triangle, the dipole point cloud becomes denser and the elementary sources approach a
continuous surface current distribution.

It should be noted that, here, the basis and testing functions do not necessarily have to be
chosen according to a Galerkin scheme, as it can be seen at approaches 3 to 5, since it is not
required to solve a linear system in an iterative or direct solver rather we aim at exploring
the subspace of the induced EM fields inside the human body model that originate from
impressed current sources at the exterior space. The discrete equivalent of Eq. 5.2 for
the equivalent sources lying on Huygens’s surface can now be expressed for all the above
distinct discretization schemes in a unified way as(

einc

hinc

)
=

(
1
ce

N −K

K 1
cm

N

)(
jeq

meq

)
, (5.9)

where jeq and meq can represent discretized impressed dipole currents on the voxelized
version of Huygens’s surface for approach 1 and 2, normal current components that flow
through each RWG triangle edge for the 2D surface of approach 3 and 4, and tangential-to-
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surface current components of each elementary dipole for approach 5. Similarly, matrices
N and K for approaches 1 to 5 should correspond to Eqs. 5.4 - 5.8.

Low-Rank Property

Independently of the discretization scheme, all the above sources-to-observation points or
currents-to-fields coupling matrices are expected to be low-rank due to the smoothing prop-
erty of Green’s functions for remote (well-separated) elements interactions [66, 145]. This
holds true for the MRI setup, since the excitations (sources points) are restricted in an ar-
bitrary region outside the body (observation points) and these regions do not intersect with
each other, hence, the operator in Eq. 5.9 is compact. In practice, the low-rank property of
the coupling matrices means that neighboring current sources yield highly linearly depen-
dent EM fields, or in other words, that there exist several sets of current sources that yield
the same EM field at the observation points. Therefore, all possible incident fields that can
be excited in the body can be represented by a basis since they are highly restricted and
smooth, due to the separating distance. In fact, we can generate a basis for the incident
electric (Ue) and magnetic (Um) field that spans the left subspace of the discretized N and
K matrices, through a principle component analysis of the coupling matrices, as(

einc

hinc

)
=

(
Ue

Um

)
w. (5.10)

Here, w represents the column vector with the corresponding coefficients that linearly com-
bine the basis fields and the relationship between the incident electric (Ue) and magnetic
field basis (Um) will be discussed in detail in the next subsection. In addition, if a principle
component analysis based on the SVD factorization of the coupling matrices is applied, then
the generated basis can be complete up to a prescribed tolerance so that any incident field in
the human body generated by any external source in the exterior of Huygens’s surface can
be reconstructed with accuracy up to this predefined tolerance. The accuracy monitoring
and truncation order of the approximation is determined by keeping the left leading singular
vectors that correspond to the Q largest singular values of the SVD factorization and by
dropping those below this predefined error tolerance. The SVD truncation enables to gener-
ate a reduced-order model providing a stable yet compressed representation of the incident
EM fields inside the human body model by any possible excitation with the additional ben-
efit of controlling the error of the approximation, governed by the discarded singular values.

In what follows, we mention some numerical and practical considerations regarding how to
chose the appropriate discretization scheme between the above, how to obtain in practice a
compressed factorization, and how such reduced-order models can find useful application
within the MR field.
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Randomized Singular Value Decomposition

As we briefly mentioned before, approach 1 and 2 employs volumetric currents discretized
on a uniform voxelized grid (Figure 5.2) that allows to exploit the shift invariance prop-
erty of the Green’s functions kernels and the associated block-Toeplitz with Toeplitz-blocks
structure of the matrix, permitting the acceleration of the matrix-vector product with the
help of FFT. In this way, there is no need to explicitly form the coupling matrix and, in fact,
the knowledge of this fast matrix-vector product suffices to explore the subspace of the cou-
pling matrix by applying RSVD with O(MNlog(Q)) complexity [66, 67,71, 81] and obtain
an approximate rank-Q SVD [288]. This can be particularly useful in cases where the size
of the matrices is large (which usually holds for electrically large structures) and thus the
application of the SVD factorization becomes computationally expensive and in some cases
prohibitive.

RSVD exploits the fact that random vectors can rapidly explore the range of an operator or
the principal components of a linear system. In fact, random vectors (in our case random
current distributions) produce quite linearly independent EM fields which after being ap-
plied many times they become less linearly independent and RSVD converges to SVD [81],
hence, the application of random vectors can reveal the structure of the coupling matrices.
Specifically, if No is the number of the observation voxels and Ni the number of the sources
voxels, thenM = 3No,N = 3Ni for the PWC case andM = 12No,N = 12Ni for the PWL
case, and Q is expected to be much smaller than Ni. Finally, when applying RSVD, special
care should be taken with regard to the application of the random excitation matrix. In par-
ticular, if Q singular values are required, then, the number of the random excitations should
be at least twice (Nr = 2Q), in order for the first half to be sufficiently accurate [66, 81].

Figure 5.2: Dipole cloud (red) with volumetric currents discretized on a uniform voxelized
grid surrounding “Duke” (blue) voxelized and inhomogeneous head model.
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Distributed Dipoles in Voxels

Since, we usually have to deal with elementary excitations, such as electric and/or magnetic
Hertzian oscillating dipoles, and since our discrete element, in approach 1 and 2, is a single
voxel we should find a suitable way to express an elementary dipole within a voxel. The
mathematical expression for an electric Hertzian (infinitesimal) dipole (current source) im-
mersed at point rn, oriented along p̂n, and carrying a dipole moment with strength equal to
pn (therefore, its electric dipole moment is pnp̂n) is given by [289]:

Jn,d(r) = jωpnδ(r − rn)p̂n, (5.11)

where we can introduce vector dn = jωpn for compactness. The above equation can prove
to be problematic since in a discretized VIE the dipole current can at minimum be confined
within a single volumetric element, where it has a uniform current distribution. Similarly,
from a numerical perspective, the Dirac delta function can at minimum have support a single
volumetric element of the discretized grid with volume ∆V and is given as [270]:

δ∆V (r − rn) =

1/∆V, if r − rn ∈ supp(f)

0, otherwise
, (5.12)

where f is the basis function. Motivated by these observations and by the limit δ(r) =

lim∆V→0 = δ∆V (r), we follow the approach of distributed dipole sources, as it has been
introduced in [270], where in practice the dipole moment is divided by the volume of the
voxel and its action is distributed over the voxel. In particular, the discretized impressed
dipole current reads:

jd = G−1de, (5.13)

which is the discretized version of Eq. 5.11 and the nonzero entries of de are determined by
the position rn where the dipole is immersed and its vector value dn. Similarly, magnetic
dipole currents are given as md = G−1dm. Therefore, the incident EM fields from dipole
excitations for a discretized VIE, according to Eqs. 5.1 and 5.13, are given as [270]:(

einc

hinc

)
=

(
1
ce

(N−G) −K

K 1
cm

(N−G)

)(
G−1de

G−1dm

)
. (5.14)

An advantage of the above discretization scheme is that the dipoles can be immersed within
the scatterer. However, this is not required in the MRI setup, where the currents sources
from RF coils are at some distance from the human body and the impressed sources are
propagated through the free-space DGF. A final remark is that the dipoles necessarily have
to be immersed within the discretized computational domain, contrary to approach 5, where
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they can be placed at any arbitrary point rn, where of course the field at this point is singular,
but the dimensions of the computational domain decrease.

In summary, approaches 1 and 2 with the assistance of RSVD can rapidly explore the sub-
space of a discretized operator and they constitute an ideal choice when the currents and
the scatterer are discretized on a uniform voxelized grid, where the FFT-based matrix-vector
product can be performed and the full dense matrix does not have to be formed. However,
RSVD is an approximate rank-Q SVD which in some demanding cases does not yield suffi-
ciently accurate results, as we will demonstrate in the next section, and it is associated with
voxelized dipole sources which cannot offer great flexibility for RF coil and surface currents
modeling. Its usefulness within the MR field has been demonstrated in seemingly different
applications such as: the computation of performance bounds for SNR [67] and SAR am-
plification factor [71] from a complete basis by fully encapsulating the head model (Figure
5.2), the ultra-fast RF coil design [65] with the MR specific Green’s function [66,161] where
the currents are constrained onto a cylindrical domain around the head model where the ar-
bitrary RF coil must be located, and the regularization of Global Maxwell Tomography [95]
by providing orthogonal EM fields excitations. From now on, for simplicity, we will refer
to approach 1 as RSVD PWC and to approach 2 as RSVD PWL.

Surface Singular Value Decomposition

Unlike RSVD PWC and RSVD PWL, where the volumetric currents are discretized on a
uniform voxelized grid, at approach 3 and 4, the currents are discretized with RWG basis
functions on a triangular grid (Figure 5.3). This naturally entails that the currents-to-fields
coupling matrix loses its block-Toeplitz with Toeplitz-blocks structure and we can no longer
perform the FFT-based matrix-vector product. However, the subspace of the sources-to-
observation points coupling matrix can still be calculated fast by adaptive cross approxi-
mation of the matrix [83–86] with O(Q2(M + N)) complexity and we still deal with the
storage of compressed matrices. Specifically, similarly to before, for PWC testing we have
M = 3No and for PWL M = 12No, but, N = Ne and corresponds to the number of internal
edges of the RWG basis functions. Finally, SVD can be directly applied to the coupling
matrix when restrictions on memory and computation time permit.

The reasoning behind choosing RWG basis functions for discretizing the currents sources is
that they provide a more exact approximation of the Huygens’s surface along with a flexi-
bility for RF coil modeling and surface currents distributions representation. Furthermore,
since RWG basis functions require fewer DoFs for discretizing the currents sources than
the voxelized volumetric currents, it is feasible to directly apply SVD to the coupling ma-
trix and avoid the approximate low-rank representation that RSVD provides which in some
cases can be sensitive to numerical inaccuracies, as we will demonstrate in the next section.
Similarly to RSVD, as demonstrated at [67,71], a complete basis (up to a specific tolerance)
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Figure 5.3: 2D shell (black) with surface currents discretized with RWG basis functions on
a triangular grid surrounding “Duke” (blue) voxelized and inhomogeneous head model.

can be generated by surrounding the head model with a closed 2D shell (Figure 5.3), hence,
performance bounds for MR-related metrics can be computed, as we show for the case of
TXE metric [75]. Finally, a recent contribution has demonstrated a way to overcome the
loss of the block-Toeplitz with Toeplitz-blocks structure of the coil-to-body coupling matrix
by first representing the triangular grid with nearby voxels and then using the FFT to com-
pute the translation invariant interactions between voxels [164]. Hereinafter, we will refer
to approach 3 as surface SVD (SSVD) PWC and to approach 4 as SSVD PWL.

Dipole Singular Value Decomposition

An alternative to the distributed dipoles representation for modeling elementary excitations
is to treat them directly as point sources and expand them in terms of Dirac delta basis
functions, as in approach 5, which idea shares some similarities with the discrete dipole
approximation method [290]. Here, special care should be taken in order to impose the
dipole vector to be tangential to each element of the discretized arbitrary excitation surface
(Figure 5.4), according to Eq. 5.8, hence, Eq. 5.11 takes the form

Jn,t(r) = [dn − (dn · n̂) n̂] δ(r − rn). (5.15)

In this way, a continuous surface current distribution can be approximated, as the size of
the surface element is refined, and the mesh should be sufficiently fine, otherwise the cur-
rents might appear to flow outside of the surface if it has high curvature. This approach
has the advantage that the representation of the currents sources is imposed to be exact at
a specific set of points on an arbitrary surface and no interpolation or projection is required
when visualizing SNR-optimizing [12] current distributions, which otherwise is necessary
when employing RWG basis functions or with a volumetric representation of the currents.
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In fact, approach 5 has allowed for the first time to extract and visualize ICP associated with
optimal SNR in heterogeneous head models for arbitrary current-bearing substrates as a lin-
ear combination of elementary dipole sources [82]. Here, the surface that encloses the head
model is not closed (Figure 5.4) and not all possible EM fields can be represented. There-
fore, even if we use all basis vectors in an SNR-optimizing procedure [12], the resulting
SNR distribution does not correspond to the UISNR, hence, we refer to such distribution
as optimal SNR. Furthermore, the space where the dipoles are immersed does not have to
be discretized and the size of the computational domain decreases. Similarly to SSVD, the
currents-to-fields coupling matrix is not structured and we cannot perform the FFT-based
matrix-vector product but the same considerations hold regarding alternative algorithms for
its low-rank representation with the only difference that now N = 3Nd, with Nd denoting
the number of dipoles. Finally, we note that we test the incident fields with PWC functions
and call approach 5 dipole SVD (DSVD) PWC.

Figure 5.4: Arbitrary current-bearing surface (red) with ideal Hertzian dipoles whose x, y, z
components are imposed to be tangential to the 2D surface of interest surrounding “Duke”
(blue) voxelized and inhomogeneous head model.

5.1.3 Consistency with Electrodynamic Principles

The third step in order to generate the numerical basis is to impose a relationship between the
electric and magnetic field basis in 5.10 which ensures that the electric and magnetic field
basis vectors respect electrodynamic principles and are orthogonal to each other. In par-
ticular, both the electric and magnetic fields are related by the curl operator, which means
that if we want to reconstruct a valid EM field, we must ensure that the reconstructed elec-
tric and magnetic fields are related by the same curl operator. This fact also implies that
operators N and K are orthogonal, in the sense that they generate orthogonal vectors from
the same excitation. However, independent bases from each operator, hence, from different
kind of currents, do not need to be orthogonal to each other, and, in fact, incident elec-
tric fields from electric and magnetic currents are expected to be linearly dependent since
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their radiation contributions, particularly for the case of orthogonal complex source point
excitations [193, 291], are practically indistinguishable.

Electric Current Excitations

If we assume only electric current excitations outside the body, then each basis can be rep-
resented in terms of the left column subspace of the corresponding operator,

Ue ⊆ colspan(N), Um ⊆ colspan(K), (5.16)

and in order to guarantee that Ue and Um form a pair of bases that complies with Maxwell
equations, the following algorithmic steps should be followed.

First, the incident electric fields due to electric currents, according to Eq. 5.9, are expressed
as

einc =
1

ce
Njeq, (5.17)

where distinct sources and observation regions are modeled, hence, the operator is compact
and we can compute its SVD as

1

ce
N = Ue,NΣe,NVH

e,N . (5.18)

Then, SVD can be truncated while controlling the error of the approximation as

1

ce
N ≈ Ûe,NΣ̂e,NV̂H

e,N , (5.19)

where we keep the Q largest singular values, σqe,N , and the corresponding singular vectors
are the Q first columns of Ue,N and Ve,N , denoted Ûe,N and V̂e,N , respectively. These ma-
trices form an orthonormal basis of incident electric fields within the human body model and
equivalent electric currents at Huygens’s surface, respectively. Therefore, all incident elec-
tric fields can be expressed as a weighted combination of the orthonormal incident electric
fields basis vectors as

einc ≈ Ûe,Na, (5.20)

where a is a column vector with complex coefficients (a ∈ CQ) which can be approximated
in the least square sense as

a = ÛH
e,Neinc. (5.21)

Similarly, all possible equivalent electric current sources can be expressed in terms of the
same complex coefficients as

jeq ≈ V̂e,NΣ̂−1
e,Na. (5.22)

Finally, in order for the generated magnetic field to comply with Maxwell equations and be
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orthogonal to the electric field, it should originate from the same current distribution that
induces the corresponding electric field in the human body model, therefore, it takes the
form

hinc = Kjeq ≈ KV̂e,NΣ̂−1
e,Na. (5.23)

In summary, if we consider only electric current excitations, Eq. 5.10 boils down to(
einc

hinc

)
=

(
Ue

Um

)
a ≈

(
Ûe,N

KV̂e,NΣ̂−1
e,N

)
a, (5.24)

where Ue is an orthonormal basis of incident electric fields, each vector of Ue is orthogonal
to the corresponding vector of Um in order to be consistent with electrodynamic principles,
and Um spans a basis of incident magnetic fields which does not necessarily have to be
orthogonal.

Magnetic Current Excitations

If we assume only magnetic current excitations outside the body, then

Ue ⊆ colspan(K), Um ⊆ colspan(N). (5.25)

The derivation of such a basis is exactly analogous to the case of electric currents and we
follow the same steps which we summarize in brief for completeness.

First, the incident electric fields due to magnetic currents are expressed as

einc = −Kmeq, (5.26)

and by performing a truncated SVD and keeping the Q largest singular values we derive

−K ≈ Ûe,KΣ̂e,KV̂H
e,K . (5.27)

Ûe,K and V̂e,K matrices form an orthonormal basis of incident electric fields within the
human body model and of equivalent magnetic currents at Huygens’s surface, respectively.
Therefore, all incident electric fields can be expressed as a weighted combination of the
orthonormal incident electric fields basis vectors as

einc ≈ Ûe,Kb, (5.28)

and the weighting coefficients are approximated by least squares as

b = ÛH
e,Keinc. (5.29)
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Now, all possible equivalent magnetic sources can be expressed in terms of these different
coefficients as

meq ≈ V̂e,KΣ̂−1
e,Kb, (5.30)

and the consistent (orthogonal to electric) magnetic fields should be given as

hinc =
1

cm
Nmeq ≈

1

cm
NV̂e,KΣ̂−1

e,Kb. (5.31)

In summary, if we consider only magnetic current excitations, Eq. 5.10 boils down to(
einc

hinc

)
=

(
Ue

Um

)
b ≈

(
Ûe,K

1
cm

NV̂e,KΣ̂−1
e,K

)
b, (5.32)

where the same considerations hold as before. Specifically, Ue is an orthonormal basis of
incident electric fields, each vector of Ue is orthogonal to the corresponding vector of Um in
order to have a Maxwell-complying basis with electric fields orthogonal to magnetic fields,
and Um spans a basis of incident magnetic fields which does not necessarily have to be
orthogonal.

Electric and Magnetic Current Excitations

If we assume both electric and magnetic current excitations, then

Ue,Um ⊆ [colspan(N) ∪ colspan(K)], (5.33)

and due to linearity we can combine Eqs. 5.24 and 5.32 and derive(
einc

hinc

)
=

(
Ue

Um

)
c ≈

(
Ûe,N Ûe,K

KV̂e,NΣ̂−1
e,N

1
cm

NV̂e,KΣ̂−1
e,K

)(
a

b

)
. (5.34)

Such basis is expected to be ill-conditioned, since the vectors of the electric-field-from-
electric-currents basis (Ûe,N) and electric-field-from-magnetic-currents basis (Ûe,K) are
linearly dependent [193, 291] and computing the pseudo-inverse to derive the weighting
coefficients c can lead to numerical inaccuracies.

Thankfully, the surface equivalence principle can be formulated based on the use of only
electric (or only magnetic) equivalent currents [193, 291] which has as a twofold advan-
tage. First, it alleviates the basis ill-conditioning that is present if we consider both kinds of
currents and, second, it halves the number of the incident fields basis vectors and thus the
number of solves for total EM fields that are required in optimization procedures and we
will describe their derivation in the next subsection.

Another alternative is to seek a compressed representation of the electric-field-from-electric-
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currents basis (Ue,N) and electric-field-from-magnetic-currents basis (Ue,K). In particular,
we can form the following electric fields matrix by concatenating the two distinct bases and
by scaling their singular vectors with their normalized singular values as

EN,K =
(

Ue,NΣe,N/σ
1
e,N Ue,KΣe,K/σ

1
e,K

)
, (5.35)

with the corresponding magnetic fields matrix similarly taking the form

HN,K =
(

KVe,N/σ
1
e,N

1
cm

NVe,K/σ
1
e,K

)
. (5.36)

Then, in a direct analogy with before we can compute a truncated SVD of the concatenated
and scaled basis electric fields in Eq. 5.35 and derive

EN,K ≈ Ûe,N,KΣ̂e,N,KV̂H
e,N,K . (5.37)

Therefore, the incident electric field basis that incorporates the contributions of both elec-
tric and magnetic currents is now orthonormal and the corresponding consistent incident
magnetic field basis can be similarly derived, hence, we end up having(

einc

hinc

)
=

(
Ue

Um

)
d ≈

(
Ûe,N,K

HN,KV̂e,N,KΣ̂−1
e,N,K

)
d. (5.38)

In this way, we resolve the ill-conditioning problem of the basis in Eq. 5.34, however, a
close inspection on the SV drops (Figure 5.5) reveals that the contributions of the magnetic
currents through K operator are suppressed by the contributions of the electric currents
through N operator, since N operator generates less smooth EM fields than K and dictates
the SV drop. This is particularly important, since the rate of the SV drop determines the
convergence properties of the basis as we will demonstrate in the next section. Additionally,
since the surface equivalence principle can be formulated with either only electric or only
magnetic currents with its associated speedup in terms of halving the EM scattering problem
computations, we suggest that using only one kind of currents should be the method of
choice for generating the numerical EM fields basis.

Basis Generation with Respect to Electric or Magnetic Incident Fields

Finally, it is important to note that the generation of the basis requires to obtain a basis for ei-
ther the incident electric (as we have demonstrated until here) or the incident magnetic field,
and the corresponding consistent incident magnetic or incident electric field, respectively, in
order to maintain the EM field relation imposed by Maxwell equations.

For completeness, if we chose to derive the basis with respect to incident magnetic fields
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Figure 5.5: Drop of the singular values of N, K, and EN,K matrices corresponding re-
spectively to Eqs. 5.19, 5.27, and 5.37. The Huygens’s surface is discretized with RWG
basis functions with 1830 DoFs and it is placed 3cm away from a 10cm-radius sphere. The
operating frequency is 298MHz and the spherical scatterer is discretized with PWC basis
functions and 5mm resolution resulting in 33401 observation voxels.

from electric currents we get(
einc

hinc

)
=

(
Ue

Um

)
u ≈

(
1
ce

NV̂h,KΣ̂−1
h,K

Ûh,K

)
u, (5.39)

where we compute the truncated SVD of K as

K ≈ Ûh,KΣ̂h,KV̂H
h,K . (5.40)

and now all incident magnetic fields can expressed as a weighted combination of the or-
thonormal magnetic field basis as

hinc ≈ Ûh,Ku, (5.41)

and the corresponding electric fields have to me consistent to the magnetic fields basis. Of
course, Σh,K and Σe,K should be equal for the same setup since the singular values are
always non-negative real numbers.
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Furthermore, if we chose to derive the basis with respect to incident magnetic fields from
magnetic currents we get(

einc

hinc

)
=

(
Ue

Um

)
v ≈

(
−KV̂h,NΣ̂−1

h,N

Ûh,N

)
v, (5.42)

where we compute the truncated SVD of 1
cm

N as

1

cm
N ≈ Ûh,NΣ̂h,NV̂H

h,N . (5.43)

and now all incident magnetic fields can expressed as a weighted combination of the or-
thonormal magnetic field basis as

hinc ≈ Ûh,Nv, (5.44)

and the corresponding electric fields have to me consistent to the magnetic fields basis.
Naturally, Σh,N and Σe,N should be equal up to scaling factor ce/cm.

From the above, it becomes clear that the numerical basis generation and behavior does not
directly depend on the kind of the currents (electric or magnetic), rather on the operator (N
or K) through which the EM fields are induced and whose subspace we want to explore
and compress. In other words, if we chose to generate the numerical basis with respect
to incident electric fields from electric currents it should be analogous to generating the
basis with respect to incident magnetic fields from magnetic currents, since the underlying
operator that relates such currents and fields in both cases is N. Similarly, if we chose to
generate the numerical basis with respect to incident electric fields from magnetic currents,
this is analogous to generating the basis with respect to incident magnetic fields from electric
currents, since the underlying operator is K. This is directly associated with the duality
theorem [109] and the interchangeability of the electric and magnetic fields and the electric
and magnetic currents.

Moreover, since operator K is smoother and, hence, its singular values drop faster (Figure
5.5), the basis from operator K is expected to require less singular vectors in order to recon-
struct any EM field with the same accuracy than the basis from operator N. In this way, less
storage and less EM scattering solves are required and this basis converges faster to UISNR
and UITXE, as we will demonstrate in the next section, therefore, using operator K for the
basis generation is suggested. Finally, both SNR and TXE are metrics that are sensitive to
the magnetic field, while the electric field contributions are averaged over the volume of the
sample, hence, it might be beneficial to form the basis with respect to incident magnetic
fields (therefore, from electric currents if operator K is used) in order to have orthonormal
incident magnetic fields. However, the study of the convergence properties of the basis with
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respect to magnetic fields and its comparison with the one with respect to electric fields is
open to investigation. In this thesis, we generate the basis with respect to electric fields for
both operators when validating our approach and computing performance bounds. Only for
the case of DSVD we build the basis with respect to incident magnetic fields from electric
currents (through K), in order for the ICP to correspond to weighted linear combinations
of electric dipole currents, since the magnetic dipole moments are associated with small
current loops which might prove not so straightforward to model, especially on an arbitrary
surface.

5.1.4 Total Electromagnetic Fields Basis

Computation of Total Electromagnetic Fields

The fourth step in order to generate the numerical basis is to compute the total EM fields that
correspond to each vector of the Maxwell-consistent pair of electric and magnetic incident
fields (Ue,Um) and derive a total EM fields basis. This step can be achieved by exploiting
the linearity of Maxwell equations and the fact that the system operator to solve is close
to full rank [66], thus the rank of the basis with the total fields is going to be close to the
original rank of the basis with the incident fields.

Theoretically, any EM solver can be used to compute the EM scattering problem for each
basis incident field pair but we chose to use our in-house current based VIE solver either with
PWC [60] or PWL basis functions [77], which is tailor-suited for highly inhomogeneous
scatterers such as the human body with fast and stable convergence properties. In the general
case, by considering a material with both dielectric and magnetic properties we have to solve
the following system:(

Mεr −MχeN ceMχeK

−cmMχmK Mµr −MχmN

)(
xe

xm

)
=

(
ceMχeeinc

cmMχmhinc

)
. (5.45)

Here, however, instead of using incident fields due to external excitations (i.e., from partic-
ular RF coils), we can use the reconstructed EM fields provided by the basis as given by Eq.
5.10, so that the right-hand side to the system can be represented as a weighted combination
of the basis incident fields. In this way, we can use the basis of the incident fields as multiple
right-hand sides to the system in Eq. 5.45 and then, the set of the polarization/magnetization
currents solutions, generated by solving the system for each of the columns of the incident
field basis, spans a basis itself able to represent the solution of the scattering problem due to
any external excitation,(

Mεr −MχeN ceMχeK

−cmMχmK Mµr −MχmN

)(
Xe

Xm

)
w =

(
ceMχeUe

cmMχmUm

)
w. (5.46)
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The columns of Xe and Xm form a valid pair of polarization and magnetization currents
solutions of the scattering problem that comply with Maxwell equations. These column
vectors form a basis able to represent any scattered EM field inside an inhomogeneous and
arbitrary object that can be excited by any external excitation. Then, the “tested” total EM
fields can be computed as the sum of incident and scattered fields according to the discrete
analogue of Eq. 4.40, again by exploiting linear electromagnetism, as(

Etot

Htot

)
w =

(
Ue

Um

)
︸ ︷︷ ︸

incident

w +

(
1
ce

(N−G) −K

K 1
cm

(N−G)

)(
Xe

Xm

)
︸ ︷︷ ︸

scattered

w. (5.47)

It is important to note that the column vectors of Etot and Htot contain “tested” or aver-
aged total EM fields within each voxel and each column vector should be divided by the
corresponding Gram matrix for the PWC or PWL case in order to get the actual EM fields
basis vectors that can be used as basis fields of a hypothetical infinite array in SNR [12],
TXE [171], or SAR [292] optimization algorithms:(

Etot,p

Htot,p

)
w =

(
G−1Etot

G−1Htot

)
w. (5.48)

In this way, through Eq. 5.47, we achieve to model an arbitrary, inhomogeneous scatterer
by precomputing its response to a set of basis excitations, hence, the response to an arbi-
trary excitation (originating from the exterior of Huygens’s surface) can be represented as
a weighted, linear combination of the precomputed responses. This last step of solving for
multiple incident EM fields in Eq. 5.47 constitutes the computational bottleneck of the basis
generation, which, however, can be expedited by using parallel programming techniques on
GPUs or by reducing the number of observation points within the scatterer by applying the
discrete empirical interpolation method, as it has been introduced and applied at [293, 294]
and [65, 66], respectively.

In summary, the generation of the total EM fields basis in realistic human body models
requires two major steps. First, to generate a basis of consistent incident EM fields that can
be induced in the body model by any external source and, second, to solve the EM scattering
problem for each of the columns of the basis of the incident fields, in order to obtain the
equivalent currents solution vectors and then the corresponding total EM fields. The main
reasoning for applying these two steps is that generating the incident fields is usually less
computational expensive than solving the system, as it only involves evaluating the free-
space operator, thus, minimizing the number of solves helps to reduce the computational
cost. Also, the system operator to solve is close to full rank [66], and thus the rank of the
basis of the solution is going to be close to the original rank of the basis of the incident
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fields. Therefore there should be little advantage in trying to directly compute the basis for
the solution fields.

MRI Metrics and Optimization Problems

The total basis EM fields at Eq. 5.48 can then be used to compute performance bounds in
inhomogeneous head models for SNR [67], SAR amplification factor [71], and TXE [75],
among a variety of metrics introduced in the literature, where we only have to solve for the
electric polarization currents since the human body is considered non-magnetic. The focal
point of this thesis revolves around performance bounds for TXE and SNR, therefore, it is
instructive to present formally the metrics of interest and the corresponding optimization
problems that have to be solved.

In particular, SNR according to Eqs. 2.7 and 2.9, if we only include imaging sample noise
and a circularly polarized RF excitation, takes the form

SNR(r) =
ωM0B

−
1 (r)√

4κT
´ ′
V
σ(r′)|E(r′)|2dV ′

, (5.49)

where, V ′ is the volume of the sample, κ = 1.3807 · 10−23J/K is the Boltzmann constant,
T = 310K is the temperature in Kelvin, and M0 = 3.1218 · 10−3B0 A/m and these are the
exact values we use in the next section for UISNR computations that allow the reproducibil-
ity of our numerical experiments. Also, B−1 = µ0(Hx − jHy)/2 is the RF receive magnetic
field, rotating against nuclear precession [93, 123].

Similarly to Chapter 3, we exploit the linear superposition principle and SNR can be rewrit-
ten in terms of the complex weighting coefficients w ∈ CQ×1 that linearly combine the
vectors of the numerical EM fields basis, hence, Eq. 5.49 boils down to [12, 15, 67]:

SNR(r) =
ωM0√
4κT

B1−(r)w√
wHΨw

, (5.50)

where,
B1−(r) = µ0

(
Hx

tot,p(r)− jHy
tot,p(r)

)
/2, (5.51)

is the receive sensitivity matrix ∈ CM×Q, M = No is the number of the observation voxels
and the superscripts in the right-hand side denote the corresponding field component.

Ψ =

ˆ

V

σ(r)
(
Ex,H

tot,p(r)Ex
tot,p(r) + Ey,H

tot,p(r)Ey
tot,p(r) + Ez,H

tot,p(r)Ez
tot,p(r)

)
dV, (5.52)

is the sample noise covariance matrix ∈ CQ×Q for the basis vectors, where the integral is
computed numerically considering PWC or PWL representations of the electric field.
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The problem of maximizing Eq. 5.50 is equivalent to minimizing the cost functional wHΨw

by variation of the weighting vector w subject to constant B1−(r)w, which imposes a lin-
ear constraint. In practice, the objective of the optimization is to minimize the global SAR
within the sample while the receive signal sensitivity should remain equal to one at each
position of interest. This problem can be viewed as a convex quadratic programming opti-
mization problem and, according to Appendix A of [12], the optimal weighting coefficients
and the corresponding UISNR take the form:

w̃(r0) = Ψ−1BH
1−(r0)

(
B1−(r0)Ψ−1BH

1−(r0)
)−1

, (5.53a)

UISNR(r0) =
ωM0√

4κT
(
B1−(r0)Ψ−1BH

1−(r0)
)−1

, (5.53b)

where r0 is the voxel position where signal reception is maximized, while at the same time
global sample losses are considered [14].

Finally, for completeness, we rewrite here the UITXE, while the full derivation can be found
in Chapter 3. In particular transmit efficiency is defined (Eq. 3.1) as

TXE =
average|B+

1 (r)|2
1
2

´
V ′
σ(r′)|E(r′)|2dV ′

, (5.54)

which is rewritten compactly as

η =
wHΓw

wHΦw
, (5.55)

where Γ = BH
1+B1+/MROI, with MROI denoting the number of voxels inside the ROI over

which B1+ is averaged, and Φ = Ψ/2. As we mentioned in Chapter 3 and is further
explained in [171, 186], the problem of finding the maximum TXE can be treated as a gen-
eralized eigenvalue problem [171, 186, 190] which has a closed solution where the largest
eigenvalue corresponds to the UITXE and the associated eigenvector gives the correspond-
ing optimal weighting coefficients (w̃). In practice, the objective of the TXE optimization
is to maximize the ratio of the B+

1 field over an ROI divided by the global SAR within
the whole sample without any assumptions or constraints on the behavior of the transmit
magnetic field, unlike the SNR case.

Similarly to the analytical case, we increase the number of total basis vectors until UITXE
[75] and UISNR [67] converge and such ultimate values can be used as an absolute reference
to evaluate existing transmit and receive coil array designs. Finally, the optimal weighting
coefficients can be plugged in at Eqs. 5.22 or 5.30 and generate the optimal current pat-
terns that yield UISNR [82], as we will demonstrate in the next section. Such results for
highly complex and inhomogeneous realistic body models and arbitrary excitation surfaces
can provide useful information for coil array designers, offering an ultimate figure of merit
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against which they can benchmark their designs and giving useful insight and intuition for
the optimal conductors arrangement through the ideal RF excitation patterns.

Orthonormal Total Electromagnetic Fields Basis

However, in some cases when we use the total basis EM fields from Eq. 5.47 in sensitive
optimization procedures whose solution is computed numerically, such as the UITXE case
where we have to compute the maximum eigenvalue of a generalized eigenvalue problem,
the accuracy of these fields becomes particularly significant. In fact, when solving for the
incident basis EM fields and computing the total basis EM fields, especially for higher-order
basis vectors where the right-hand side is less uniform, numerical error can accumulate and
cause catastrophic results in accuracy, as we will demonstrate in the next section. Driven
from such observation, we seek the generation of an orthonormal basis of total EM fields
with the hope that it can regularize the problem and smooth the numerically inaccurate total
fields. In particular, we compute the SVD factorization of the total electric fields basis
matrix in Eq. 5.47 as

Etot = Ue,tΣe,tV
H
e,t, (5.56)

where now Ue,t is an orthonormal basis of total electric fields and we can express all possible
total electric fields as etot = Ue,tq. Then, the corresponding basis of total magnetic fields is
given as

Uh,t = HtotVe,tΣ
−1
e,t , (5.57)

and we can use this new pair of total basis EM fields (Ue,t,Uh,t) divided by Gram as input to
the optimization algorithm with the aim to improve the numerical accuracy and convergence
properties of the basis for sensitive metrics such as the TXE. In fact, such approach yields
great results, as we will demonstrate in the next section.

Having computed the above SVD factorization for the total EM fields basis matrix, it is
interesting to take a look at the drop of its singular values and verify the expectation that
they should drop slow. In fact, Figure 5.6 demonstrates such effect, where we observe that
the minimum normalized singular value is around 0.05 and even this relatively small value
can be attributed to the fact that we approximate the continuous current-bearing 2D shell
with a triangular grid with a finite number of DoFs. Another interesting observation is that,
here as well, the drop of the singular values of the total fields matrices follows the previously
mentioned pattern of the drop of the singular values of incident fields coupling matrices that
is associated with the smoothness of the N, K, and EN,K matrices, as illustrated in Figure
5.5.
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Figure 5.6: Drop of the singular values of the total EM fields matrices Etot where the total
fields for σe,t,N , σe,t,K , and σe,t,N,K drop originate from the incident fields at Eqs. 5.24, 5.32,
and 5.38, respectively. The Huygens’s surface is discretized with RWG basis functions with
1830 DoFs and it is placed 3cm away from a 10cm-radius sphere. The operating frequency
is 298MHz, the spherical scatterer has (εr, σ) = (20, 0.2S/m) and is discretized with PWC
basis functions and 5mm resolution resulting in 33401 observation voxels.

Summary

Similar concepts have been exploited and reduced-order models [66] have been generated
for the ultra-fast design of RF coils [65] through the MR specific Green’s function [161],
for UISNR [67] and ultimate SAR amplification factor [71] computations within inhomoge-
neous head models, and for fast antenna characterization problems [287]. All these research
studies depend on the generation of a numerical basis of EM fields, however, in this section,
we have presented an exhaustive study of the best methodologies along with theoretical and
numerical considerations when generating such basis. Additionally, in the next section, we
study the impact that electrical distance has on the basis generation, the ability of the differ-
ent numerical basis approaches to reconstruct EM fields and the accuracy and convergence
properties of the numerical basis against a complete analytical basis derived in a spherical
coordinate system for the TXE and SNR metrics [80]. We further calculate bounds for the
case of TXE [75] metric, and demonstrate how they can be used to evaluate the performance
of existing transmit array designs. Together with these performance bounds, we also com-
pute the associated ICP on a given arbitrary surface that yield the corresponding EM fields
within the inhomogeneous head model that result in the optimal SNR distribution [82].
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5.2 Numerical Results and MRI Applications

5.2.1 Impact of Distance and Frequency

In this first subsection, we present the impact of the operating frequency and the distance
between the Huygens’s surface and the scatterer on the basis generation and, in particular,
on the drop of singular values of N and K operators. We consider a uniform spherical object
with diameter 20cm which is discretized with PWC basis functions resulting in 33401 voxels
thus 100203 DoFs in the observation region. In addition, we discretize the Huygens’s surface
with a voxelized dipole cloud with 15mm thickness resulting in 28440 voxels thus 85320
DoFs in the sources region. We place the voxelized dipole cloud at D = 1, 2, 3cm distance
from the spherical object and energize the dipoles in the cloud with operating frequencies
f = 63.9, 298, 447MHz, corresponding to B0 = 1.5, 7, 10.5T , respectively. Since we have
a uniform, voxelized domain, we generate the incident EM fields basis by employing RSVD
PWC approach with 4000 random excitations, hence, 2000 singular values can be considered
sufficiently accurate [66] and, in Figure 5.7, we present the results, where the first thing
we notice is the relatively fast decay of the singular values where 2000 column vectors are
enough to approximate the matrix (with a 10−4 to 10−5 truncation error at the fastest singular
value decay) instead of 85320.

A closer look reveals the following trends. First, the distance between the dipole sources
and the scatterer highly defines the number of singular vectors required for an accurate
approximation, and, second, the singular values of K operator drop faster than the singular
values of N operator. Such behavior can be explained by the underlying K and N operators
dependence on the first-order and second-order spatial derivatives of g, hence, the near-field
power-law drop-off depends on 1/|r − r′|2 and 1/|r − r′|3, respectively. In this way, K

operator yields smoother fields and, therefore, it has a faster SV drop than N, and the greater
the separating distance D, the faster the SV drop. Additionally, the larger the separating
distanceD, the less the difference of the SV drop between K and N operators. Furthermore,
it is observed that the operating frequency has a small impact on the SV drop, which is even
smaller for the less smooth N operator and for smaller separating distancesD which implies
that the actual governing factor of the SV drop is the electrical distance between the sources
and the observation region.

Detailed theoretical results on the ranks behavior with respect to the electrical distance of
the separated geometry blocks [145], as well as, numerical results on the ranks behavior
for the Hermitian part of the self-interactions blocks and for the off-diagonal blocks of the
Green’s function dedicated to the study of thermal radiation, heat transfer, and fluorescence
[295] can be found in the literature, where an interested reader can refer to. Here, we
only present in short, in Figure 5.8a, the SV drop of the real and imaginary parts of the
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D 20cm

Figure 5.7: Drop of the singular values of N and K operators, at operating frequencies
f = 63.9, 298, 447MHz, and distancesD = 1, 2, 3cm between the voxelized dipoles sources
(red) and the spherical object (blue) with diameter 20cm. The sphere is discretized with
33401 voxels resulting in 100203 DoFs and the dipole cloud with 28440 voxels resulting in
85320 DoFs.

coupling matrices N and K at frequency f = 298MHz and distance D = 3cm, where,
in a similar manner, we observe the extremely fast SV drop of the imaginary part of the
coupling matrices which is associated with the fact that the imaginary part of g, Im{g} =

− sin(k0|r−r′|)
4π|r−r′| , is smooth. However, since we are interested in the near-field radiations of

the impressed currents, such results are not to be applied in the MRI setup and they are
presented here parenthetically. Finally, in Figure 5.8 we focus on the first 80 singular values
of N operator at frequencies f = 63.9, 298, 447MHz and distance D = 3cm, where we
notice that their power is clustered at intervals with odd length mimicking the clustering of
the VSH basis currents and EM fields at Eqs. 3.10 and 3.11, respectively, with degree l. This
implies that the numerical basis currents and EM fields are expected to be similar to those
of VSH, since our setup is equivalent (spherical shell and spherical object). Furthermore,
this Figure illustrates the faster drop of the singular values of coupling matrices that relate
separated blocks with larger electrical distance.
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a b

Figure 5.8: (a) Drop of the singular values of the real and imaginary part of N and K
coupling matrices at operating frequency f = 298MHz and distance D = 3cm for the same
setup as in Figure 5.7. (b) Drop of the singular values of N coupling matrix at operating
frequencies f = 63.9, 298, 447MHz and distance D = 3cm for the same setup as in Figure
5.7.

5.2.2 Electromagnetic Fields Reconstruction

In this subsection, our attention shifts on investigating the ability of the numerical basis to
reconstruct EM fields. In particular, we conduct 3 numerical experiments where we gen-
erate the incident EM fields basis with respect to electric fields with all 4 basis generation
approaches that were presented in the previous section, i.e., from electric currents (Eq. 5.24
referred as Ue,N ), from magnetic currents (Eq. 5.32 referred as Ue,K), from the linear
combination of electric and magnetic currents contributions (Eq. 5.34 referred as Ue,NK),
and from the orthonormalization of the electric and magnetic currents contributions (Eq.
5.38 referred as Ue,N,K). The EM fields that we aim to reconstruct originate from an x-
polarized, z-directed plane wave, Einc = x̂e−jk0z, from an ideal Hertzian dipole immersed
at rd = (0.15, 0, 0)m with dipole moment pd = (0, 0, 1)C ·m, and from a 4cm-radius ver-
tical loop with its center located at rl = (0.13, 0, 0)m with constant current equal to 1A
and for all the cases the operating frequency is f = 298MHz. The scatterer is a 20cm-
diameter spherical object with 5mm resolution, (εr, σ) = (20, 0.2S/m) electrical properties,
is discretized with PWC basis functions resulting in 100203 DoFs, and its distance from the
Huygens’s surface is 3cm (Figure 5.9).

At the first two experiments, we present the convergence of the root mean square error
(RMSE) of the reconstructed by the basis incident EM field (êinc ≈ Uew) and the actual
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Figure 5.9: Spherical object with diameter 20cm (blue) surrounded by Huygens’s surface
(black) at 3cm distance, irradiated by a dipole at rd = (0.15, 0, 0)m with dipole moment
pd = (0, 0, 1)C ·m, by a 4cm-radius loop with its center at rl = (0.13, 0, 0)m with constant
current equal to 1A, and by an an x-polarized, z-directed plane wave, Einc = x̂e−jk0z.

incident EM field (einc), while at the third, we show the RMSE convergence for both the
reconstructed incident and total EM fields (êtot ≈ Etotw), where the reference total EM
fields are computed with the PWC [60] current-based VIE (etot). When computing the
RMSE convergence for Ue,K , Ue,N , and Ue,N,K bases, we add a single basis vector each
time when we project the incident field onto each orthonormal basis in a least square sense,
while at Ue,NK we use the first basis fields vectors of both Ue,K and Ue,N and project the
incident field by computing the pseudo-inverse. For all the cases, we use the following
RMSE metric:

RMSE(v) =

∑No

i=1

√∑
q |v̂q,i − vq,i|2∑No

i=1

√∑
q |vq,i|2

, (5.58)

where No is the number of voxels within the spherical object and q ∈ {x, y, z}.

At the first numerical experiment, we generate all incident EM fields bases with the SSVD
PWC approach, where the Huygens’s surface is discretized with a 2D shell with varying
number of DoFs, namely, 657, 1830, and 7218. In Figure 5.10, we present the convergence
of the RMSE for the incident EM fields (from the plane wave, the dipole, and the loop)
reconstruction by all 4 basis generation approaches for varying DoFs in the 2D shell.

At the second numerical experiment, we generate all incident EM fields bases both with the
SSVD PWC and RSVD PWC approach, where the Huygens’s surface is discretized with a
2D shell with 1830 DoFs and with a voxelized dipole cloud with 85320 DoFs, that results
in 3613 basis vectors after RSVD application with 10−6 tolerance, respectively. In Figure
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5.11, we present the convergence of the RMSE for the incident EM fields (from the plane
wave, the dipole, and the loop) reconstruction by all 4 basis generation approaches for the
SSVD and RSVD approach.

At the third numerical experiment, we generate all incident EM fields bases with the SSVD
PWC approach, where the Huygens’s surface is discretized with a 2D shell with 1830 DoFs,
and this time we also compute the total EM fields basis. The total EM fields are computed
with the PWC current-based VIE [60], the scatterer has (εr, σ) = (20, 0.2S/m) electrical
properties, and is discretized with 5mm resolution. In Figure 5.12, we present the conver-
gence of the RMSE for the incident and total EM fields (from the plane wave, the dipole,
and the loop) reconstruction by all 4 basis generation approaches.

In Figure 5.10, we observe that the fastest reconstruction of all the incident EM fields is
achieved by the basis that originates from the linear combination of electric and magnetic
currents contributions (Ue,NK). However, the RMSE convergence from this basis is not
stable and diverges at the finest 2D shell case since the higher-order basis fields are close
to being linearly dependent, and when computing the pseudo-inverse numerical error arises.
The second fastest reconstruction of all incident EM fields is achieved by the basis that
originates from the contributions of magnetic currents (Ue,K), validating the expectation
that the faster rate of the SV drop of K operator affects the convergence rate of the EM fields
reconstruction. Additionally, such basis is orthonormal, hence, its convergence is stable,
even for the finest 2D shell. Furthermore, the RMSE convergence achieved by the basis that
originates from the orthonormalization of the electric and magnetic currents contributions
(Ue,N,K) is similar to that from the contributions of electric currents (Ue,N), validating the
expectation that contributions of K operator are suppressed when orthonormalizing and the
convergence rate is very closely dictated by the SV drop of the less smooth N operator
(Figure 5.5). Therefore, since the basis from magnetic currents (Ue,K) provides the second
fastest, yet stable, RMSE convergence for all incident EM fields and the surface equivalence
principle can be formulated from only one kind of currents [193,291], we suggest following
this approach for generating the numerical basis.

The trends we described in the previous paragraph hold exactly true for the case of the
smooth plane wave, however, some interesting local characteristics can be observed for the
dipole and loop excitation. Specifically, the loop EM field can be reconstructed equally
fast by Ue,K and Ue,NK basis when we focus on the contributions of the first 400 basis
fields. On the contrary, the reconstruction by Ue,N basis is much slower than that of Ue,N,K .
Such behavior can be explained by the fact that, in the limiting case, loop EM fields are
associated with magnetic currents, therefore, with the subspace of operator K. Similarly,
the dipole EM field can be reconstructed faster by Ue,N and Ue,N,K basis when we focus on
the contributions of the few first basis fields (it is clearer for the magnetic field case) and the
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Figure 5.10: RMSE convergence of incident EM fields (plane wave, dipole, loop) recon-
struction by all 4 basis generation approaches and for a 2D shell Huygens’s surface with
657, 1830, and 7218 number of DoFs.
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Figure 5.11: RMSE convergence of incident EM fields (plane wave, dipole, loop) recon-
struction by all 4 basis generation approaches and for a 2D shell Huygens’s surface with
1830 DoFs and for RSVD with 3613 singular vectors.
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Figure 5.12: RMSE convergence of incident and total EM fields (plane wave, dipole, loop)
reconstruction by all 4 basis generation approaches and for a 2D shell Huygens’s surface
with 1830 number of DoFs.
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reconstruction by Ue,K basis is slower than that by Ue,NK . Similarly, such behavior can be
explained by the fact that, in the limiting case, dipole EM fields are associated with electric
currents, therefore, with the subspace of operator N.

The impact of the distance on the EM fields reconstruction is evident, since the EM field
from a loop (which is placed the closest to Huygens’s surface) has the slowest RMSE con-
vergence and requires the most basis fields for an accurate representation. Furthermore,
refinement does not affect significantly the RMSE convergence at the first basis vectors, but,
naturally, for a smaller RMSE and a better accuracy more DoFs in the 2D shell are required.
In addition, by comparing the RMSE convergence from the 1830-DoFs and the 7218-DoFs
shell, we notice that the curves coincide for roughly half the singular vectors (900) of the
coarser 2D shell. Therefore, similarly to RSVD, it is suggested that half of singular values
in the SSVD approach should be exactly trusted, due to discretization concerns. Finally,
for the case of the plane wave and dipole magnetic field reconstruction by Ue,N basis, the
RMSE slightly diverges when the last basis fields contributions are included. This can pos-
sibly be explained by the fact that the last basis fields, particularly from N operator, are not
accurate and when imposing the orthogonality relationship for the magnetic field, numerical
error arises.

In Figure 5.11, similar trends and considerations with respect to the basis generation ap-
proaches and the excitation type are observed for the RSVD PWC basis, as well. A dif-
ferentiating factor is that the RMSE from RSVD PWC converges faster than from SSVD,
except for the case of the loop EM field reconstruction. The difference in convergence rate
can be explained by the fact that RSVD is generated with tolerance 10−6, hence, all 3613
basis fields can be trusted, whereas the 2D shell has only 1830 DoFs. A more fair numer-
ical experiment would involve the careful choice of tolerance in RSVD that would yield
comparable number of basis fields with the DoFs of the 2D shell.

Finally, in Figure 5.12, we present the RMSE convergence for both incident and total EM
fields for the basis from the 2D shell with 1830 DoFs. Regarding the RMSE convergence for
total EM fields, the trends and considerations with respect to the basis generation approaches
and the excitation type remain practically the same with the incident EM fields, as we have
discussed them in detail when commenting Figure 5.10. Finally, there is no consistent trend
regarding whether total or incident EM fields convergence rate is faster.

5.2.3 Numerical Accuracy and Convergence Properties

In this subsection, we study the convergence properties and accuracy of the numerical basis
for UISNR (Eq. 5.53) and UITXE (generalized eigenvalue problem of Eq. 5.54) metrics
against an analytical, complete basis from VSH, as it has been defined at Eq. 3.11. Such
analytical EM fields basis has been employed for UISNR [12,15] and UITXE [74,75] semi-
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analytical computations in uniform spherical objects and we compare our numerical results
against these calculations, where we use lmax = 45 yielding N = (lmax +1)2 = 2116 modes
to ensure convergence of the VSH basis.

Simulation Setup and Drop of Singular Values

Specifically, we generate the numerical EM fields basis with 4 approaches, at all of which the
operating frequency is f = 298MHz and the Huygens’s surface is placed at 3cm distance
from a uniform spherical object with a = 10cm radius, (εr, σ) = (20, 0.2S/m) electrical
properties, and dx = 5mm resolution. Furthermore, the numerical basis is generated both
from K and N operator. At the first approach, Huygens’s surface is discretized with a 2D
shell with 1830 DoFs and the spherical object with 33401 voxels and PWC basis functions
resulting in 100203 DoFs (SSVD PWC). At the second, again Huygens’s surface is dis-
cretized with a 2D shell with 1830 DoFs and the spherical object with 33401 voxels but
PWL basis functions are now used resulting in 400812 DoFs (SSVD PWL). At the third
approach, Huygens’s surface is discretized with a voxelized dipole cloud with 28440 voxels
and RSVD is employed with 10−6 tolerance resulting in 3347 and 3611 number of basis
fields for K and N, respectively, and the spherical object has 33401 voxels with PWC basis
functions resulting in 100203 DoFs (RSVD PWC). Finally, at the fourth approach, we use
again a voxelized dipole cloud with 28440 voxels and RSVD with 10−4 tolerance resulting
in 1513 and 1789 number of basis fields for K and N, respectively, and the spherical object
has 33401 voxels with PWL basis functions resulting in 400812 DoFs (RSVD PWL). When
the scatterer is discretized with PWC or PWL basis functions, we compute the total EM
fields with [60] or [77] current-based VIE solvers, respectively, and GMRES iterative solver
is employed with inner iterations 50, outer 200, and tolerance 10−5.

First, we present the drop of singular values of both operators for all 4 discretization schemes
(Figure 5.13) to develop intuition for the expected convergence rate of UISNR and UITXE.
We notice, once again, the faster drop of singular values of K operator, hence, we expect
UISNR and UITXE to converge faster from this basis. In addition, we see that RSVD and
SSVD SV drops coincide for the case of the smoother K operator but they are different for
N operator, even at the first singular values, since the less smooth EM fields possibly affect
the approximate RSVD approach. Furthermore, discretizing the scatterer with PWL basis
functions does not affect the SV drop, particularly, for SSVD since no additional DoFs are
added in the sources regions. However, there exists a difference between PWC and PWL
RSVD, since additional DoFs are added in the sources region and this also affects their SV
drop, where we can see that PWL RSVD drops somewhat slower than PWC RSVD and
more closely to the SV drop of SSVD.
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Figure 5.13: Drop of the singular values of K and N operator, for SSVD PWC and PWL,
and for RSVD PWC and PWL. The Huygens’s surface is placed 3cm away from a 10cm-
radius sphere, the operating frequency is 298MHz, and the spherical object is discretized
with 5mm resolution.

UISNR Convergence in Spherical Objects

Next, we present the convergence of UISNR for different voxel positions for all 4 discretiza-
tion schemes and both operators (Figure 5.14) against the VSH basis. We can see that all
numerical approaches converge to a similar value of UISNR after increasing sufficiently
the number of basis vectors, and, naturally, UISNR computed with PWL basis functions is
closer to that of VSH. For all voxel positions, VSH basis converges faster than the SVD-
based numerical basis from N operator, since VSH is a basis specifically developed for
spherical geometries. However, this difference in convergence rate is significantly mitigated
in UISNR convergence computation by the smoother K operator, where we can observe
that, as we move farther away from the center of the sphere and optimize voxels closer to
the surface, VSH and SVD basis from K operator requires almost the same number of basis
vectors for convergence. Finally, there is practically no difference in convergence rate be-
tween the RSVD and SSVD approach or between the PWC and PWL discretization scheme,
particularly for the basis from K operator, while from N small differences can be seen.

At this point, we consider it instructive to present the RMS value of the first basis vectors of
the incident electric field basis from VSH and SVD over the mask of the spherical object.
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Figure 5.14: Convergence of UISNR for different voxel positions for the numerical bases
from K and N operator, SSVD PWC and PWL, and RSVD PWC and PWL discretization
schemes.
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Figure 5.15: RMS value of the 8 first incident electric field basis vectors of the VSH and
SVD basis across the central axial plane of the spherical object.
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Specifically, in Figure 5.15, we show the 8 first basis vectors over the central axial plane of
the spherical object and notice that they are practically the same, up to scaling factor and
reordering of the basis fields that correspond to singular vectors with the same power as
determined by the clustering of the singular values in Figure 5.8b.
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Figure 5.16: Relative error of UISNR across the diameter of the uniform sphere computed
with the different numerical basis approaches against analytical calculations from a VSH
basis.

Next, we present the relative error of UISNR across the diameter of the uniform sphere
from all the above-mentioned numerical approaches, where we include all the available
basis fields from each basis, with respect to analytical VSH calculations (Figure 5.16) for a
quantitative validation of the proposed algorithms. From this figure, we can notice that the
main governing factor that determines accuracy is the choice of the solver for computing the
total EM fields. Specifically, at the center of the sphere, the relative error of UISNR, when
PWL basis functions are employed, is around 1.5%, while for PWC it is 6%, independently
of the choice of the sources discretization scheme (shell or voxelized dipole cloud) or of the
compressed operator (N or K). However, closer to the surface of the spherical object, the
error grows fast due to the staircase approximation of the shape of the sphere and such error
is usually mitigated with h-refinement of the spherical object, as we will demonstrate in the
next subsection [75] and it has been studied at [67] for the RSVD PWC case. Additionally,
there is a subtle trend that the relative error from the basis from N operator tends to be
smaller closer to the surface but, in general, such trend is not consistent.
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UITXE Convergence in Spherical Objects
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Figure 5.17: Convergence of UITXE for different voxel positions for the numerical bases
from K and N operator, SSVD PWC and PWL, and RSVD PWC and PWL discretization
schemes.

In what follows, our attention shifts on studying the convergence properties and numeri-
cal accuracy of UITXE. Similarly to the UISNR case, we first present the convergence of
UITXE for different voxel positions for all 4 discretization schemes and for both operators
(Figure 5.17) against the VSH basis, however, here, the situation changes dramatically. Al-
though, still UITXE converges to some values, such values differ very significantly from the
analytical computations and are not to be trusted. In particular, UITXE computations from
N operator are even less accurate than those from K for both of the sources discretization
schemes (shell or voxelized dipole cloud) and UITXE computations from RSVD are sig-
nificantly less accurate than SSVD approach for both operators. In fact, the only approach
that can be considered marginally admissible (with an 18.5% relative error in the center
of the sphere) is the SSVD from K operator with PWL basis functions which still provide
more accurate results than PWC, but not as good as one would expect (see Figure 5.18 for
quantitative results).

Such results are somewhat surprising, given the fact that the only factor that has changed
between UISNR and UITXE computations is the optimization strategy, and the reason we
chose to include them in this thesis is to make the reader aware of the fact that the conver-
gence properties and accuracy of the numerical EM fields basis are problem dependent and
should be treated with care. In fact, in this particular example, there are 3 possible underly-
ing factors that could account for such a behavior. The first is associated with the sensitive



5.2. Numerical Results and MRI Applications 132

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

x (m)

10-5

10-4

10-3

10-2

10-1

100

101

102

|U
IT

X
E

S
V

D
-U

IT
X

E
V

S
H

|/
|U

IT
X

E
V

S
H

|

K, SSVD PWC

N, SSVD PWC

K, SSVD PWL

N, SSVD PWL

K, RSVD PWC

N, RSVD PWC

K, RSVD PWL

N, RSVD PWL

Figure 5.18: Relative error of UITXE across the diameter of the uniform sphere computed
with the different numerical basis approaches against analytical calculations from a VSH
basis.

optimization procedure of solving the generalized eigenvalue problem, where the largest
eigenvalue (UITXE) has to be computed numerically, in contrast with UISNR, where there
exists a closed-form expression. In such cases, the accuracy of the total EM fields becomes
crucial, especially for higher-order basis incident fields where the right-hand side becomes
less smooth, and unless they are particularly accurate, catastrophic results may arise, as in
the UITXE case. The second is further connected with the smoothness of the EM fields and
this can be seen by the fact that the basis from N operator provides by far with the least ac-
curate results, accompanied by steep jumps in the convergence curve (Figure 5.17), possibly
associated with spurious basis fields contributions. The last is related to the fact that RSVD
is an approximate SVD factorization and such hypothesis can be confirmed by comparing
the relative error of the basis from K operator generated from SSVD and RSVD approach
(see Figure 5.18), where SSVD gives clearly more accurate results. However, it has been
suggested in the literature that the accuracy of RSVD can be improved by power iterations
application [81] and it could be worth investigating towards this direction.

In this thesis, however, we follow an alternative approach, namely, that of generating an
orthonormal basis of total EM fields (Eq. 5.56), as described in the previous section and,
in fact, such approach yields great results and remedies the problem. A second alternative
could be to generate directly a total EM fields basis by applying the free-space operator,
solving the scattering problem for each random EM field for RSVD or for each column vec-
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Figure 5.19: Convergence of UITXE for different voxel positions for the numerical bases
from K operator, SSVD PWC and PWL, RSVD PWC and PWL, and for the orthonormal
total EM fields basis for PWL SSVD and RSVD.

tor of the coupling matrix for SSVD and DSVD, and then orthonormalizing. This approach
is more computationally expensive but might be worth investigating as a future step. Here,
we generate an orthonormal basis of total EM fields by computing the SVD factorization of
the computed total EM basis fields from the incident basis fields and, indeed, such approach
regularizes the problem and smooths the numerically inaccurate total EM fields. Specif-
ically, it has a twofold advantage: first it accelerates and stabilizes the convergence rate
of UITXE for all different voxel positions and discretization schemes (RSVD and SSVD)
which, in practice, now coincides with the convergence rate of the VSH basis and, second,
it significantly increases the numerical accuracy of the converged UITXE value. The first
effect can be seen in Figure 5.19, where we include the results only from K operator, since
it provides with the only admissible results without orthonormalizing, hence, from now on,
we only compute the basis from this operator for UITXE calculations. In this figure, we can
see the stabler and faster convergence rate of the orthonormal total EM fields basis both for
RSVD and SSVD, with RSVD being improved significantly more than SSVD.

Quantitative results, demonstrating the accuracy increase (second effect), are presented at
Figure 5.20, where we show the relative error of UITXE from the orthonormal total EM
fields basis with respect to VSH analytical calculations. Specifically, when optimizing TXE
at a single voxel at the center of the sphere without orthonormalizing the total EM fields, the
minimum relative error (from SSVD PWL) is 18.5%, whereas, with the suggested approach,
it drops to 3.5%, both for SSVD and RSVD PWL, between which there is practically no dif-
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single voxel 2D ROI 3D ROI

Figure 5.20: Relative error of UITXE for single voxels across the diameter of the uniform
sphere, 2D, and 3D ROIs computed with the orthonormal total EM fields basis for PWL
SSVD and RSVD against analytical calculations from a VSH basis.

ference. Furthermore, when RF power correlation matrix Φ is computed with a numerical
integration quadrature scheme that includes the contributions of the PWL terms of the elec-
tric field, there is a small improvement in the relative error which drops to 2.5%. This value
is similar to the relative error of UISNR (1.5%) for the same voxel position, where no to-
tal EM fields orthonormalization is imposed and no PWL terms are included in Φ integral.
Hence, it is strongly suggested that the orthonormal total EM fields basis from K opera-
tor should be used and, when memory and computation time concerns permit, PWL basis
functions should be employed for UITXE computations. In the next subsection, we use this
approach (i.e., the orthonormal total EM fields basis with SSVD PWL and covariance ma-
trix including the linear terms) when computing the UITXE in realistic head models [75].
Finally, the relative error of UITXE with respect to VSH for 2D and 3D ROIs presents the
same trends with the single voxel case. For ROI sizes with radii up to 70% of the sphere’s
radius, the best approach yields a 2.5% relative error, while for larger ROI sizes the error
grows fast, since the superficial voxel positions with their associated staircase approxima-
tion error determine the value of UITXE in the whole ROI, but such error can be mitigated
with h-refinement, as we show in the next subsection.

UISNR Convergence in Arbitrary Objects

In terms of convergence, we conduct an additional numerical experiment where we compute
UISNR in objects with arbitrary shape, namely, a homogeneous cube and an inhomogeneous
head model [80]. Specifically, we compare the convergence rate of the SVD numerical basis
and the VSH basis. We generate the numerical basis with respect to electric fields from the
linear combination of the electric and magnetic currents contributions (Eq. 5.34) to ensure
the fastest convergence and we truncate on-the-fly to ensure stability. The Huygens’s sur-
face is discretized with the SSVD approach where the 2D shell completely encapsulates the
arbitrary object and we compute UISNR as it has been described in the previous sections.
For the VSH basis, we use its free-space incident EM fields (from Eq. 3.11) over the mask
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of the cube or the head model and we use lmax = 55 yielding N = (lmax + 1)2 = 3136

modes. We also account for boundary conditions only at the surface of the surrounding
current-bearing spherical surface (by setting Cl = Dl = 1 at Eq. A.11) in order to have a
setup equivalent to that of the numerical basis. Then, we use these EM fields as right-hand
side excitations at our in-house current-based VIE solvers [60, 77] and compute the total
EM fields that can be used as basis fields for the computation of UISNR. A similar approach
based on the combination of the vector wave eigenfunction expansion of the spherical and
cylindrical Helmholtz operator with the above-mentioned ultra-fast VIE solver [60] has re-
cently allowed to obtain ICP in cylindrical and open spherical surfaces that yield optimal
SNR in realistic head models [68, 72].

𝐿 = 15cm

𝐷 = 3cm

Figure 5.21: Simulation setups for homogeneous cube and “Duke” head model and drop of
singular values of the coupling matrices.

The homogeneous cubic object has edge length L = 15cm, (εr, σ) = (20, 0.2S/m) electri-
cal properties, and it is discretized with dx = 5mm resolution resulting in 29791 voxels and
89373 or 357492 DoFs for the solver with PWC or PWL basis functions, respectively. Ad-
ditionally, the 2D shell has 2556 DoFs and its distance from a vertex of the cube isD = 3cm

(Figure 5.21). Finally, the operating frequency is f = 298MHz and we compute the total
EM fields with both PWC and PWL solvers where GMRES iterative solver is employed
with inner iterations 50, outer 200, and tolerance 10−5. Similarly, we crop “Duke” realistic
human body model with dx = 5mm resolution and keep the inhomogeneous head resulting
in 38770 voxels and 116310 DoFs for the PWC solver and, in this case, the 2D shell has
3090 DoFs (Figure 5.21). The operating frequency is again f = 298MHz and the total EM
fields are computed with the PWC solver and GMRES with the same properties as before.
We note that the total EM fields from the incident VSH basis EM fields are calculated with
the same EM solvers.
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Figure 5.22: RMS value of the 10 first incident electric field basis vectors of the VSH and
SVD basis across the central axial plane of the cubic object.

Figure 5.23: Convergence of UISNR for different voxel positions within a uniform cube for
VSH and SVD basis where the total EM fields are computed both with PWC and PWL basis
functions.
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Figure 5.24: RMS value of the 10 first incident electric field basis vectors of the VSH and
SVD basis across a sagittal plane at the center of the “Duke” realistic head model.

Figure 5.25: Convergence of UISNR for different voxel positions within the “Duke” hetero-
geneous head model for VSH and SVD basis where the total EM fields are computed with
PWC basis functions.
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In Figure 5.21, we present the simulation setups along with the SV drops of the associated
coupling matrices N and K for the PWC case. In addition, in Figures 5.22 and 5.24, we
show the RMS value of the first basis vectors of the incident electric fields from VSH and
SVD basis at the mask of the cube (at the central axial plane) and the head model (at the
central sagittal plane), respectively. Here, we notice their similarities and the fact that the
first basis fields are smooth and higher-order basis fields become less uniform, especially
for the case of the SVD basis, which can represent more efficiently EM field distributions at
corners or volumes with non-smooth boundaries and great geometrical complexity.

Such characteristic, naturally, affects the convergence rate of UISNR in different voxel po-
sitions for the SVD and the VSH basis, which we illustrate in Figures 5.23 and 5.25. In
particular, when optimizing SNR at interior voxel positions, interestingly, VSH basis con-
verges faster than the SVD basis. However, as the voxel position at which we want to
compute UISNR moves closer to the non-smooth boundary of the cube or the head model,
the SVD basis converges faster and exactly at the boundary VSH diverges. This is directly
associated with the fact that higher-order singular vectors correspond to EM field distribu-
tions with higher spatial frequency and such EM fields can be described more efficiently
by the SVD basis for arbitrary objects or volumes with non-smooth boundaries. In other
words, the representation of the EM fields with the SVD basis can be thought as a numerical
eigenfunction expansion which particularly respects the boundary conditions that are im-
posed by the shape of the arbitrary object, whereas, the analytical eigenfunction expansion
with the VSH basis does not conform with such boundary conditions (since it is analytically
derived for spherical geometries) and the EM basis fields fail to illuminate regions close to
the boundary of the object. Such observations lead to the inviting direction of generating
the free-space incident EM fields from the VSH basis over the mask of an arbitrary object
and then orthonormalize with SVD, where costly RSVD or SSVD could be avoided, in this
way. However, the study of the convergence properties and accuracy of such basis is open
to investigation and it also involves the downside that the currents sources necessarily have
to be constrained onto a spherical shell preventing the generation of ICP for arbitrary exci-
tation surface that we will show in the last subsection of this chapter. A final remark is that
the choice of EM solver does not affect the convergence rate of both VSH and SVD basis
and it only changes the converged or diverged UISNR value.

5.2.4 Approaching Performance Bounds with Finite Coil Arrays

In this subsection, we compute the UITXE for different B0 field strengths in the “Duke”
realistic head model and compare these results with the maximum TXE that can be achieved
with finite coil arrays [75], illustrating the usefulness of the numerical EM fields basis for
coil benchmarking and for assessing the room for improvement of particular arrays. Specif-
ically, we present the TXE of various loop arrays as a percentage of the UITXE for different
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Figure 5.26: (a)-(c) Relative error of UITXE for single voxels across the diameter of the
uniform sphere, 2D, and 3D ROIs computed with the orthonormal total EM fields basis
for SSVD PWL from K operator against analytical calculations from the VSH basis. (d)
Relative error of UITXE for single voxel ROI showing the accuracy increase with grid re-
finement.

field strengths B0 = 1.5, 7, 10.5T, for increasing number of elements (8, 16, 24, 32), and
for various arrays designs (fully encircling, helmet-shaped, cylindrical design).

We generate an orthonormal total EM fields basis from SSVD with PWL basis functions and
the calculation of the covariance matrix integral includes the linear terms, since according to
the laborious analysis of the previous subsection this approach is the one that yields the most
accurate results. In Figure 5.26, we summarize the most accurate results from Figure 5.20
for (a) single voxel, (b) 2D, and (c) 3D ROIs from the previous subsection for a reader that
is more interested in MRI applications rather than the underlying numerical considerations.
At (d) of the same figure, we show the accuracy increase that can be achieved with grid
refinement, where, close to the edge of the sphere, the error drops from over 100% to 22.5%,
when the grid is refined by 2. Note that we decrease the radius of the spherical object
limited by the memory size of our GPU. We generate the basis for operating frequencies
f = 63.9, 298, 447MHz (corresponding to B0 = 1.5, 7, 10.5T) from a 2D shell with 1830
DoFs and use a truncated SVD with 10−6 that yields around 1400 basis fields (Figure 5.27).
We also present the RMS value of the 8 first incident electric field basis vectors of the
numerical basis across a sagittal plane at the center of the head model and note that their
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Figure 5.27: Simulation setup for UITXE computations in the “Duke” head model and drop
of the singular values of the coupling matrices for different field strengths.

distribution does not change significantly for increasing field strength. Finally, we adjust the
electrical properties of the numerical head model, that is discretized with 5mm resolution
resulting in 38770 voxels hence 465240 DoFs, to each Larmor frequency and compute the
total EM fields with our VIE solver with PWL basis functions and GMRES iterative solver
is employed with inner iterations 50, outer 200, and tolerance 10−5.
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Figure 5.28: RMS value of the 8 first incident electric field basis vectors of the SVD basis
across a sagittal plane at the center of the “Duke” head model for B0 = 1.5, 7, 10.5T.
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In Figure 5.29, we compare the spatial distributions of the UITXE in the heterogeneous
head model and the uniform sphere at different field strengths. The uniform sphere has ra-
dius 10cm to match the dimension of the head model along y-axis and uniform electrical
properties of average brain tissue, as in Chapter 3. We notice that at the center of the head,
UITXE decreases from 19.5(µT)2/W to 2.95(µT)2/W and 2.69(µT)2/W when the field
strength increases from 1.5T to 7T and 10.5T, respectively, corresponding to an 85% and
86% drop. The corresponding UITXE values at the center of the sphere at 1.5T, 7T, and
10.5T are 9.12(µT)2/W, 2.57(µT)2/W, and 2.82(µT)2/W, respectively, showing a similar
trend. Additionally, the central UITXE profiles along the 3 Cartesian axes further demon-
strate the similar behavior between the head-mimicking sphere and the realistic head model.
In particular, along the dimension of the head that matches the diameter of the sphere (i.e.,
the y-profile), the values of the UITXE in the sphere and head almost overlap (see Figure
5.29). Such observations are in agreement with previous work on UISNR using realistic
head models [67] which has demonstrated that the sphere with average brain electrical prop-
erties is a good approximation for the head and these results confirms such behavior for the
case of the UITXE.

The fact that the sphere is expected to be an accurate approximation, even at the surface
voxels, when the diameter of the sphere is equal to the dimension of the head could possibly
be explained by the similarities of the incident EM basis fields between the analytical and
numerical (via SVD) eigenfunction expansions, particularly for volumes with coinciding
boundaries. This is associated with what we have mentioned in the previous subsection,
namely, the fact the incident EM fields by the SVD basis conform with the shape of the
boundary of the object. Then, in the limiting case, as more total basis EM fields are added
while calculating the UITXE, the resulting TXE distributions would become smoother and
more similar for the two models, despite the higher inhomogeneity of the realistic head
model. This, however, entails that the calculation of the UITXE in the realistic head model
would require more basis vectors for convergence, since EM fields with higher degrees of
freedom, or higher spatial frequency, would be required for generating the same smooth
UITXE distribution, within the inhomogeneous object. A numerical experiment that could
prove or disprove this hypothesis could be the computation of the UITXE or UISNR in
a homogeneous and a highly inhomogeneous object with exactly the same shape and the
comparison of their distributions and convergence rates.

Finally, the incident EM fields of finite coil arrays are modeled with a simplified wire in-
tegral equation framework, where each coil segment is assumed to have a constant current,
proportional to its length, radiating in free-space and the corresponding total EM fields are
computed with the same VIE solver and with the same parameters as for the basis fields. The
maximum TXE for each array is computed as for the ultimate case by solving the general-
ized eigenvalue problem where special care should be taken in order for the array elements
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Figure 5.29: Comparison of the UITXE in the heterogeneous head model and the head-
mimicking uniform sphere, as a function of voxel position and for different magnetic field
strengths. UITXE is plotted in logarithmic scale for the central sagittal plane of the “Duke”
head model and the spherical sample with radius a = 10cm, for B0 = 1.5, 7, 10.5T. UITXE
profiles along the x, y, and z axes are in agreement between the two objects, especially
for the case of the y-profile, for which the dimension of the head matches the radius of the
sphere. UITXE decreased with increasing field strength for both the heterogeneous head
model and the uniform sphere.

to be placed in the exterior of Huygens’s surface, otherwise their EM fields might not be
able to be represented by the basis and the array’s performance might be overestimated or
even greater than the ultimate.

In Figure 5.30, we present the performance maps of fully encircling loop-arrays, arranged
on Huygens’s surface, with increasing number of transmit coils (16, 24, 32) and for increas-
ing field strength, where we notice that the general trends of array performance with respect
to field strength and number of coil elements are similar to those of the uniform sphere case
(Figure 3.8), further supporting the validity of the uniform sphere as an approximation of
the head. However, performance maps in the realistic head model are less uniform, when
compared against the case of the homogeneous sphere, especially at higher field strengths,
reflecting the geometrical complexity and non-uniform tissue electrical properties, which
affect the generated EM field distribution by each element of the array and thus its maxi-
mum TXE. At UHF, finite arrays with as many as 32 transmit loops can approach UITXE
only in the central region of the head, suggesting that more transmit channels or different
type of coils may be needed to optimize performance, since it has been suggested that the
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Figure 5.30: Performance maps of fully-encircling arrays displaying their maximum TXE
as a percentage of the UITXE at each voxel of the central sagittal plane of “Duke” for
increasing number of elements and magnetic field strengths. As for the case of the uniform
sphere, absolute transmit performance becomes higher over a broader central region when
the number of transmit loops increases.

combination of loops and electric dipoles could be more effective to approach UISNR at
UHF [28].

Additionally, in Figure 5.31 we present the maximum SNR as a percentage of UINSR that
these same fully-encircling arrays can approach, where we notice similar trends with respect
to field strength and number of elements, as with the UITXE case. However, interestingly,
the same arrays approach a larger percentage of UISNR, in a broader region, and their
performance maps are more uniform. Such difference could possibly be associated with
the formulation of each optimization problem, because in practice SNR and TXE differ only
in the direction of the B1 field polarization and SNR is additionally scaled by the square of
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Figure 5.31: Performance maps of fully-encircling arrays displaying their maximum SNR
as a percentage of the UISNR at each voxel of the central sagittal plane of “Duke” for
increasing number of elements and magnetic field strengths. As for the case of UITXE
absolute receive performance becomes higher over a broader central region when the number
of receive loops increases.

the B0 field strength.

Finally, in Figure 5.32, we present the performance maps of realistic loop-arrays with in-
creasing number of transmit coils (8, 16, 24, 32) and for increasing field strength showing
similar trends with respect to field strength and number of elements. Specifically, 8 loops
can reach a performance of only 45% for a voxel at the center of the brain at 7T, while 32
loops achieve approximately 70% of the UITXE, illustrating the usefulness of the numerical
EM fields basis in computing performance bounds that can serve as absolute references to
evaluate coil designs and RF shimming algorithms.
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Figure 5.32: Performance maps of realistic cylindrical and helmet-shaped loop arrays dis-
playing their maximum TXE as a percentage of the UITXE at each voxel of the central
sagittal plane of “Duke” for increasing number of elements and magnetic field strengths.

5.2.5 Ideal Current Patterns on Arbitrary Excitation Surfaces

In this last subsection, we present the surface current distributions that generate EM fields
that result in optimal SNR, commonly known as ICP, within heterogeneous head models for
arbitrarily shaped current-bearing surfaces [82]. In particular, we investigate their behavior
with respect to field strength (B0 = 1.5, 7, 10.5T), shape of the realistic head coil substrate
(cylinder, helmet, and head-and-neck), and target voxel position (center of brain, cortex
of brain, and neck) within “Duke” inhomogeneous head model. In addition, according to
the surface equivalence principle, all possible EM fields and, therefore, the corresponding
UISNR can be computed only by a closed surface that fully encapsulates the head, which is
not a realistic scenario. For this reason, we refer to the best possible SNR from open surfaces
as optimal SNR and we calculate the percentage of UISNR that it can be captured by them.
ICP can inform non-convex RF coil optimization problems by providing an intuitive initial
guess and by translating the optimization problem onto the currents domain, where the full-
wave solution and SNR calculation for each new coil shape can be avoided, and could lead
to task-optimal RF arrays designs. Their derivation, however, relies on the generation of
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a numerical EM fields basis, further emphasizing the numerical EM fields basis usefulness
within the MR field.

To compute ICP, we employ DSVD approach and generate the numerical EM fields basis
from K operator with respect to incident magnetic fields, hence, from electric currents, ac-
cording to the algorithmic steps described in the previous section. The reasoning behind
this choice (orthonormal basis of incident magnetic fields from electric currents) has also
been mentioned in the previous section, but we consider it instructive to briefly summa-
rize its advantages here again. First, this approach involves K operator with its associated
smoother EM fields, second, the EM fields basis is orthonormal for magnetic fields that
SNR is sensitive to while the electric field contributions are averaged over the volume of
the sample, and, third, it computes ICP as weighted linear combinations of electric dipole
currents which are more straightforward to model on an arbitrary surface than magnetic
dipole currents that are associated with small current loops. In fact, DSVD models surface
currents with ideal Hertzian dipoles that are imposed to be tangential to each element of
the discretized arbitrary excitation surface and, in the limiting case, as the surface is refined
or by assigning a greater number of point dipoles on each element, the dipole point cloud
becomes denser and the elementary sources approach a continuous surface current distri-
bution. In this way, no interpolation or projection is required when visualizing ICP, since
the currents are imposed to be exact at a specific set of points. Therefore, we calculate the
optimal SNR, within this framework, by treating each basis EM field from Eq. 5.39 as if
generated by a coil of a hypothetical array and we increase the number of basis elements
until SNR converges to its optimal value. The corresponding weighting coefficients (ũ),
computed by Eq. 5.53, allow to appropriately combine the tangential Hertzian dipoles and
obtain ICP, jideal = V̂h,KΣ̂−1

h,Kũ, that result in optimal SNR.

D=3cm 20cm

a b

Figure 5.33: (a) Simulation setup and drop of the singular values of K coupling matrix for
DSVD approach. (b) Relative error of UISNR across the diameter of the uniform sphere
computed with DSVD approach against analytical calculations from VSH.
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To validate our numerical approach, we calculate ICP yielding UISNR at the center and half-
radius voxel of a homogeneous sphere from DSVD approach and compare the results with
those obtained from analytical calculations from VSH [28]. Specifically, we place the Huy-
gens’s spherical surface at distanceD = 3cm from the uniform sphere with radius a = 10cm

and electrical properties (εr, σ) = (20, 0.2S/m). Huygens’s surface is discretized with 3600
ideal Hertzian dipoles resulting in 10800 DoFs which are tangential to the spherical surface
and they are placed on a spherical coordinate system by linearly varying the polar and az-
imuthal angles (see Figure 5.33a). An alternative could be to place the dipoles on coordinate
points associated with Lebedev quadrature scheme [296] for a uniform representation of the
currents on a spherical surface. However, here, we use the spherical coordinates to compare
numerical ICP at the exact same points obtained from VSH. The sphere is discretized with
PWC basis functions and 5mm resolution resulting in 33371 voxels and 100113 DoFs. The
operating frequency is 298MHz and we solve for the total EM fields with our VIE solver
with PWC basis functions [60], where GMRES iterative solver is employed with inner iter-
ations 50, outer 200, and tolerance 10−5. For the analytical calculations from VSH, we use
expansion order lmax = 45 yielding N = (lmax + 1)2 = 2116 modes.
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Figure 5.34: Real part of ICP yielding UISNR at the center and half radius voxel of a
uniform sphere at ωt = 0, π/2.

In Figure 5.33a, we present the simulation setup and the drop of the singular values of the
coupling matrix K, where we truncate SVD with 10−5 tolerance resulting in 2500 basis
incident EM fields and basis dipole currents. Then, after solving the EM scattering problem
for the basis fields and computing the UISNR, in Figure 5.33b, we show the relative error
of UISNR across the diameter of the uniform sphere from DSVD approach with respect to
UISNR analytical calculations from the VSH basis. We notice that the relative error remains
practically the same with the corresponding UISNR computations from RSVD and SSVD
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approaches (with the same setup). Namely, it is around 6% at the center of the sphere for all
approaches, and the mean relative error is 28.3%, 45.9%, and 31.5% from DSVD, RSVD,
and SSVD, respectively, since DSVD behaves better closer to the surface of the sphere.
Finally, for a qualitative visual validation, in Figure 5.34, we present the real part of ICP
that yield UISNR at the center and half-radius voxel of the uniform sphere at ωt = 0, π/2

and see that the numerical (SVD) and analytical (VSH) calculations are in agreement.

center surface
neck

cylinder helmet head-and-neck
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b

Figure 5.35: (a) Cylinder, helmet and head-and-neck coil substrates where the current distri-
butions are constrained loaded with the “Duke” heterogeneous head model. (b) Axial planes
across the “Duke” model along with the positions of the voxels of interest near the center,
the cortex of the brain and in the neck region.

In what follows, we calculate and present ICP for voxels at the center of the brain, near the
brain cortex (surface) and in the neck region, using three realistic coil substrates, loaded
with “Duke” head model at 1.5T, 7T, and 10.5T (see simulation setup in Figure 5.35). In
detail, we adjust the electrical properties of “Duke” head model at each corresponding Lar-
mor frequency (f = 63.9, 298, 447MHz) and discretize it with 5mm resolution that results
in 38770 voxels and 116310 DoFs for PWC basis functions. The discretized version of
the substrates with the tangential electric dipoles can be seen in Figure 5.36. In particu-
lar, the cylinder substrate is discretized with 4500 dipoles (13500 DoFs), the helmet with
8451 dipoles (13500 DoFs), and the head-and-neck with 3621 dipoles (10863 DoFs) and all
coupling matrices preserve their low rank nature. Specifically, we truncate SVD with 10−5

tolerance (Figure 5.36) and the coupling matrix, e.g., for the cylinder substrate, can be ap-
proximated with 1200, 1175, and 1110 singular vectors at 1.5T, 7T, and 10.5T, respectively,
where we note the faster drop of the singular values for larger electrical distances. The hel-
met and head-and-neck substrates behave similarly to the cylinder substrate with respect to



5.2. Numerical Results and MRI Applications 149

cylinder helmet head-and-neck

Figure 5.36: Discretized version of realistic coil substrates with tangential electric dipoles
and drop of the singular values of coupling matrix K for the coil substrates and for field
strengths 1.5T, 7T, and 10.5T.

increasing frequency, however, their singular values drop slower since these substrates cover
the top of the head, hence, more EM fields or surface currents sets can be represented due
to the larger constraining topology of the surface. On the contrary, the difference of the SV
drops between the helmet and the head-and-neck substrates is negligible, since the elongated
section of the surface behind the neck can barely represent additional EM fields or surface
currents. Such trends are also reflected on the behavior of the ICP for each substrate and for
different field strengths, as well as, on the percentage of UISNR each substrate can capture,
as we will illustrate in the next figures.

For completeness and to develop useful intuition, we also present the first and tenth vector of
the incident and total EM fields basis, as well as, of the electric dipole currents basis (Figure
5.37) for the helmet substrate loaded with “Duke” at 7T. The total EM fields are computed
with the PWC current-based VIE solver where GMRES iterative solver is employed with
inner iterations 50, outer 200, and tolerance 10−5. In this figure, it is interesting to note that
the higher-order (tenth) basis vectors are associated with less uniform EM fields and more
localized surface current distributions. Finally, we use these basis elements and calculate
optimal SNR along with its corresponding optimal weights, until convergence is observed,
and plug in the optimal weights to appropriately combine the Hertzian dipoles and obtain
ICP.

First, we show ICP yielding optimal SNR at the surface voxel (Figure 5.38), where we
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Figure 5.37: Incident EM fields, total EM fields, and electric dipole currents basis vectors
for helmet substrate and “Duke” head model at 7T.

observe that the ICP strongly depend on the topology of the current-baring arbitrary sur-
face [73], even though the optimal SNR distribution is similar for different substrates and
same field strengths (Figure 5.41). Furthermore, for the substrate with spherical symmetry,
ICP tend to concentrate around the target voxel. Then, in Figure 5.39, we show ICP yielding
optimal SNR at the center voxel, where we notice that as field strength increases, the ICP
change, especially for the cylindrical substrate, where we might be looking at the relative
contributions of loops and dipoles. However, for substrates with spherical symmetry loops
are more dominant, especially at low field strengths. Similarly to surface voxel SNR opti-
mization, there is a clear dependence of the ICP on the substrate topology, even though the
optimal SNR almost overlaps for different substrates and same field strengths at the center
voxel (Figure 5.41). Finally, in Figure 5.40, we show ICP yielding optimal SNR at the neck
voxel, where for both the head-and-neck and helmet substrate, ICP form small loops at the
region of the surface behind the neck showing no particular differences for the same B0.

Finally, in Figure 5.41, we show the percentage of UISNR that can be captured by the
realistic coil substrates at the brain axial plane at 1.5T, 7T, and 10.5T field strengths. We
notice that at the center voxel and all field strengths, all substrates can capture UISNR (more
than 90%). However, at the brain cortex, the cylinder substrate can only capture on average
55% of UISNR, even with infinite number of coils. Therefore, if the elements of an RF
receive array are arranged on a cylinder substrate, as for a birdcage coil, UISNR cannot be
reached. This fact is associated with the faster SV drop of the cylinder-to-head coupling
matrix, since the top of the head is not covered and less EM fields can be represented by
this substrate within the head model. For similar reasons, UISNR is approached less closely
at superficial than central voxels. Additionally, at center voxel, UISNR is approached more
closely at 10.5T than at 7T for all substrates, but the opposite happens at the surface voxel.
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Figure 5.38: ICP yielding optimal SNR near the surface of the brain for the cylindrical and
helmet substrates, at 1.5T, 7T, and 10.5T.
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Figure 5.39: ICP yielding optimal SNR near the center of the brain for the cylindrical and
helmet substrates, at 1.5T, 7T, and 10.5T.
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Figure 5.40: ICP yielding optimal SNR at a voxel in the neck for the head-and-neck and
helmet substrates at 1.5T, 7T, and 10.5T.
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Figure 5.41: Percentage of UISNR captured by the realistic coil substrates at the brain axial
plane at 1.5T, 7T, and 10.5T. The center and surface voxel for which we present ICP are
highlighted with a red and a black dot, respectively.
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Similarly, at neck voxel, as it can be seen in Figure 5.42, UISNR is approached more closely
by the head-and-neck substrate since the neck is not covered by the other substrates. Finally,
UISNR cannot really be reached expect for a region in the back of the head but, interestingly,
it is approached more closely as field strength increases for all substrates.

%

1.5 T 7 T 10.5 T

Figure 5.42: Percentage of UISNR captured by the realistic coil substrates at the neck axial
plane at 1.5T, 7T, and 10.5T. The neck voxel for which we present ICP is highlighted with
white dot.

The exact percentages of the optimal SNR by UISNR ratio are presented in Table 5.1, where
UISNR for all field strengths is computed with the same DSVD framework and solver pa-
rameters by completely encapsulating the head model. Special care should taken in order
for the substrates to be placed in the exterior of Huygens’s surface.

Table 5.1: OSNR/UISNR · 100% for Different Voxels, Field Strengths, and Substrates.

center surface neck
PPPPPPPPPsubstrate

B0 1.5T 7T 10.5T 1.5T 7T 10.5T 1.5T 7T 10.5T

cylinder 94.1 90.6 96.7 45.5 68.3 45.6 39.7 43.5 48.6
helmet 99.6 92.5 99.4 89.6 94.7 86.5 36.9 42.5 47.8

head-and-neck 99.4 92.5 99.4 89.3 94.4 85.5 41.7 46.8 52.5
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5.3 Conclusions

In conclusion, in this chapter we described detailed algorithmic steps for the generation
of an accurate and stable numerical EM fields basis that is consistent with electrodynamic
principles inside an inhomogeneous arbitrary scatterer and demonstrated its application and
usefulness within the MR field, where the coil domain and body domain are separated,
hence, the operators that relate electric/magnetic currents to EM fields are compact and
the corresponding coupling matrices admissible to a low-rank representation based on a
truncated SVD.

First, we studied the impact that the separating electrical distance has on the basis generation
and demonstrated that the larger the electrical distance the less basis vectors are required for
generating the basis with the same prescribed tolerance and that K operator has a faster SV
drop than N operator which fact affects the convergence rate of EM fields reconstruction er-
ror and ultimate metrics computations. Then, we investigated how accurately the numerical
basis can represent different EM fields and how fast the reconstruction error from each basis
converges. We showed that the fastest convergence rate for all EM fields reconstruction is
achieved by the basis from the linear combination of the bases from the subspaces of N

and K operators, however, such basis is ill-conditioned and unstable, especially when its
higher-order basis vectors are involved. The second fastest convergence rate is achieved by
the basis from the subspace of K operator which is well-conditioned and stable, whereas,
the basis from the orthonormalized bases from the subspaces of N and K operators is prac-
tically the same with that from the subspace of N operator. Therefore, we can conclude that
the basis from K operator combines convergence speed and stability and we suggest that
it should be the method of choice, taking into account the fact that the surface equivalence
theorem can be formulated with only one kind of currents, which also allows to halve the
number of solves for total EM fields. In addition, we compared the numerical accuracy
and convergence properties of the numerical basis against a complete analytical basis from
VSH. We showed that the faster SV drop of K operator leads to a faster convergence of
UISNR and that different discretization schemes of the Huygens’s surface and the scatterer
do not affect significantly the convergence rate, however, when computing the total basis
EM fields with PWL basis functions, the converged UISNR values are significantly more
accurate. We further demonstrated, that in more sensitive optimization problems, e.g., gen-
eralized eigenvalue problem for UITXE computation, the incident EM fields basis from the
approximate RSVD or from the less smooth N operator does not provide accurate results,
hence, we suggest generating an orthonormal total EM fields basis from K operator that
provides faster convergence, similar to that of VSH, and reliable converged ultimate val-
ues. Finally, we showed that the SVD-based numerical EM fields basis can describe more
efficiently EM fields within arbitrary objects or volumes with non-smooth boundaries and
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UISNR converges even at voxels at the boundary of the arbitrary object, whereas, UISNR
computations from VSH basis diverge at such superficial voxels.

With regard to MRI applications, we demonstrated how the vectors of the total EM fields
basis can be applied in optimization procedures and used to calculate performance bounds,
such as the UITXE, which constitutes a valuable metric for transmit arrays benchmarking
and RF shimming algorithms evaluation. Additionally, we showed that the overall behavior
of the UITXE within an inhomogeneous head model and a uniform sphere are similar when
their dimensions are comparable and that the general trends of transmit array performance
with respect to field strength and number of coil elements remain valid between the two
models. In fact, more coils can approach UITXE in the head model and the same arrays can
achieve a larger performance at lower field strengths, however, at UHF, finite arrays with as
many as 32 transmit loops can approach UITXE only in the central region of the head model,
suggesting that more transmit channels or different type of coils may be needed to optimize
performance. We also computed ICP on a given arbitrary surface yielding optimal SNR
within an inhomogeneous head model and found that they depend mostly on the topology
of the surface onto which they are constrained, even though optimal SNR is similar for
different substrates and that loops are more dominant at lower field strengths for substrates
with spherical symmetry. We computed the percentage of UISNR that realistic head coil
substrates can capture and showed that UISNR is approached better by the helmet and head-
and-neck substrates than by the cylinder substrate, especially at the periphery where cylinder
reaches only 55%, leading to the conclusion that helmet coils are better-suited for head
imaging. Similarly, UISNR is usually approached better at the central than the superficial
voxel positions and for all substrates, at center voxels, is better captured at 10.5T than 7T.
In addition to helping to visually understand the origin of optimal RF coil performance, ICP
could also help designing the next-generation MR coils, by providing an intuitive initial
guess for non-convex coil optimization algorithms and translating the optimization problem
onto the currents domain, where the full-wave solution and SNR calculation for each new
coil shape can be avoided, and could lead to a truly task-optimal design of RF coils.

Future steps could include the investigation of the convergence properties and numerical ac-
curacy of UISNR and UITXE computed by an orthonormal basis of incident magnetic fields
and verify or not the hypothesis that the sensitivity of SNR and TXE to magnetic fields af-
fects such properties. In addition, a direction worth pursuing could be the direct generation
of an orthonormal total EM fields basis by applying the free-space operator, solving the scat-
tering problem for each random incident EM field for RSVD or for each column vector of
the currents-to-incident-fields coupling matrix for SSVD and DSVD, and then orthonormal-
izing. This approach is more computationally expensive but might be worth investigating
since we showed that an incident EM fields basis does not provide accurate results when
generated by the less smooth N operator or by the approximate RSVD for UITXE com-
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putations. Furthermore, it is suggested in the literature that the accuracy of RSVD can be
improved by power iterations application [81], therefore, studying such potential improve-
ment on the accuracy of UISNR and UITXE could be an additional future step. Finally,
generating a basis by applying SVD factorization to the VSH basis modes over the mask
of an arbitrary object could also be an inviting research direction, motivated by the well-
behaved UISNR convergence properties of the VSH basis in central voxel positions and the
fact that the incident EM fields by the SVD basis conform with the shape of the boundary
of the arbitrary object and illuminate regions close to it.

Within the MR field, future work could involve the computation of UITXE in specific ROIs
of the realistic head model (e.g., cerebellum) and the investigation of the correlation between
B+

1 homogeneity and UITXE and whether the electric field distribution that corresponds to
UITXE respects local SAR aspects in realistic head models. Furthermore, with the aid of
ICP, a new research project could involve the implementation of RF coil shape optimization
and/or SIE node optimization algorithms, where ICP could serve as an initial guess to the
optimizer. Additionally, curvilinear basis functions for the discretization of Huygens’s sur-
face could be employed for more accurate coil modeling and ICP representation. Finally, a
new promising principle, the optimality principle [73], which allows one to predict rapidly
and intuitively ICP for arbitrary dielectric objects and current-bearing surfaces, could be
further explored in future work.



6 Conclusions

6.1 Conclusions and Thesis Contributions

The focal point of this dissertation revolved around modeling the interactions between EM
waves and biological tissue. We employed analytical methods and introduced a novel per-
formance metric, the UITXE, which is the theoretically largest TXE that can be achieved by
any RF coil or RF shimming algorithm in head-mimicking spherical samples, and calculated
its associated ideal RF excitation patterns on spherical surfaces. In addition, we developed
novel numerical methods based on integral equations for the computation of EM fields dis-
tributions and the derivation of performance bounds of modern MR coils within inhomoge-
neous realistic body models, as well as, ideal RF excitation patterns on arbitrary surfaces.
Such reliable EM fields distributions can be used to obtain relevant figures of merit such
as B+

1 , B−1 , and local SAR maps inside the inhomogeneous body, whereas, performance
bounds (within either the uniform sphere or the body model) can provide an absolute refer-
ence for benchmarking different RF arrays designs. Ideal RF excitation patterns on arbitrary
surfaces can further inform the non-convex RF coil optimization problem by providing an
intuitive initial guess, thus, offering a framework that could lead to a truly task-optimal de-
sign of RF coils. A summary of the contributions and conclusions of each chapter of the
thesis is presented below.

In Chapter 2, we described the physical principles that govern the NMR phenomenon and
gave an overview of the components of an MRI system, namely, the main magnet, the RF
transmit and receive coils, and the gradient coils that are required to appropriately manipu-
late the magnetic fields in order to generate the MR image. We described the opportunities
and challenges that are associated with UHF MRI. Such challenges necessitate the fast and
accurate EM modeling of the associated RF coils and EM fields distributions within the body
but, simultaneously, they present an opportunity to design the next-generation tunable RF
coils that can yield higher SNR and faster image acquisition without compromising patient
safety and image quality. We reviewed analytical and numerical methods and tools for the
calculation of EM RF fields in MRI, including FDTD, FEM, and IE methods whose distinct
characteristics and applicability within the MR field were comparatively analyzed, as well
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as, scientific contributions with respect to the calculation of ultimate SNR, SAR, and their
associated current distributions which constitute a great source of physical insight into the
design of optimal RF coil arrays.

The novel contributions of this thesis started in Chapter 3, where we introduced the UITXE
metric [74, 75] which is the theoretically largest TXE that can be achieved by any RF coil
or RF shimming algorithm for a given imaging sample, field strength, and target excitation
ROI. We investigated its behavior for different magnetic field strengths, target excitation
ROIs, and uniform spherical sample sizes and computed its associated ICP on spherical
surfaces surrounding the samples, illustrating the power of analytical methods for rapid yet
rigorous computations for multiple parameters and configurations. We found that the main
mechanisms and behavior of UITXE for single voxels resemble those of UISNR and we
further evaluated the performance of transmit arrays with increasing number of loops and
different designs, for various field strengths and ROIs, illustrating how UITXE can be used
to assess coil designs and RF shimming algorithms. Our results demonstrated how ICP can
provide useful insight into the design of RF transmit arrays and were in agreement with
other studies showing that the ultimate performance is approached more closely when the
shape of the array resembles that of ICP and not necessarily when the number of its elements
increases. Finally, we showed that at UHF, transmit performance can be approached only
at the center of the sample suggesting that more elements or the combination of loops and
electric dipoles could be more effective.

Despite the great insight that analytical methods yield into expected and observed trends
in MR signal, noise, and safety, RF coils are designed for realistic body models, therefore,
a natural next step into computing performance bounds within such body models was the
development of a numerical solver that generates reliable EM fields. In fact, Chapter 4
dealt exactly with this task, where we introduced a fast VIE solver [76, 77] based on equiv-
alent polarization/magnetization currents with discontinuous PWL basis functions for the
accurate computation of EM fields distributions within highly inhomogeneous and/or high
contrast arbitrary objects, such as the human body. We showed that the matrix of the linear
system that arises from the current-based formulation is well-conditioned and the proposed
solver has remarkably stable convergence properties in terms of iteration count in an itera-
tive solver, which remains practically the same with the current-based VIE solver with PWC
basis functions and is much smaller than that of the flux-based solver, for highly inhomo-
geneous scatterers. Additionally, we demonstrated that our novel solver yields reliable EM
fields which are in good agreement with results from an FDTD-based software package for
extremely challenging modeling scenarios and for coarse resolutions without necessarily
refining the computational grid. As shown in the literature, by discretizing the VIE on a
uniform grid, the matrix-vector product can be performed fast with the help of FFT and,
when combined with iterative solvers, our solver can be used to accurately solve large and
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complex problems within reasonable time and computational resources. Hence, the pro-
posed framework can be utilized in challenging applications within the MR field such as
modeling the interactions between EM fields and biological tissue, including the presence
of RF shimming pads of very high electrical permittivity. However, despite the use of PWL
basis and testing functions, the convergence rate of our solver at the uniform sphere nu-
merical experiment appears to be O(h) instead of O(h2) which can probably be explained
by numerical inaccuracies originating from the staircase approximation of a sphere when
discretized with voxels. Our solver was integrated into Global Maxwell Tomography for
the MR-signal-based noninvasive estimation of the human body electrical properties, where
it provided to the optimizer solves consistent with each other, thus regularized the inverse
problem and reduced the error of the electrical properties reconstruction [283]. The imple-
mentation of the VIE solver with PWL basis functions [77] as well as the reduction of the
volume-volume integrals to surface-surface [76], where the latter are computed with novel
sophisticated cubatures [151], will further be part of the soon to be released MARIE 2.0
open source suite.

After developing a numerical solver that generates reliable EM fields, our focus, in Chap-
ter 5, shifted on the description of robust and accurate algorithms for the generation of a
consistent numerical EM fields basis able to reconstruct all EM fields distributions within
inhomogeneous, arbitrary objects [80] and an electric/magnetic currents basis in arbitrary
excitation surfaces. We demonstrated how such bases can be employed to transition from
computing performance bounds in uniform spherical or cylindrical objects to inhomoge-
neous body models [75] and from computing ICP in comparatively simple surfaces (i.e.,
spherical or cylindrical shells) to arbitrary excitation surfaces [82]. Such bases can help to
understand the currents and EM fields distributions that maximize SNR or TXE and provide
ultimate figures of merit against which coil array designers can benchmark their designs and
obtain useful insight and intuition of the best RF excitation patterns, offering the framework
for a truly robust optimization of next-generation RF coils. We described the necessary al-
gorithmic steps for the basis generation which rely on the surface equivalence principle and
the fact that, in the MRI setup, the coil domain and body domain are separated, hence, the
operators that relate electric/magnetic currents sources to EM fields in the body are compact
and the corresponding coupling matrices admissible to a low-rank representation based on
a truncated SVD. The basis generation can be viewed as an extension of the expansion of
EM fields within spherical objects with spherical waves to an EM fields expansion within
arbitrarily complex objects with the help of the leading singular basis vectors.

With regard to numerical considerations, we showed that for larger separating electrical
distances, less basis vectors are required for approximating the EM fields subspace with
the same prescribed tolerance and that K operator has a faster singular value drop than N

operator which significantly affects the convergence rate of EM fields reconstruction error
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and ultimate metrics computations. In fact, we demonstrated that the basis from the subspace
of K operator combines convergence speed and stability in terms of EM fields reconstruction
error and UISNR convergence and we suggest that it should be the method of choice, taking
into account the fact that the surface equivalence theorem can be formulated with only one
kind of currents. By comparing the numerical accuracy of the converged UISNR values
with analytical calculations from a VSH basis, we showed that computing the total basis
EM fields with PWL basis functions yields much more accurate results without significantly
affecting the convergence rate, which is also not affected by the different discretization
schemes of the Huygens’s surface. We further demonstrated, that for UITXE computations,
the incident EM fields basis from the approximate RSVD or from the less smooth N operator
does not provide accurate results, hence, we suggest generating an orthonormal total EM
fields basis from K operator that provides faster convergence, similar to that of VSH, and
reliable converged values. Finally, we showed that the SVD-based numerical EM fields basis
can describe more efficiently EM fields within arbitrary objects or volumes with non-smooth
boundaries than a basis from VSH functions [80].

With regard to MRI applications, we demonstrated how the vectors of the total EM fields
basis can be applied in optimization procedures and used to calculate performance bounds,
such as the UITXE [75], which constitutes a valuable metric for transmit arrays benchmark-
ing and RF shimming algorithms evaluation. We showed that the overall behavior of the
UITXE within an inhomogeneous head model and a uniform sphere are similar when their
dimensions are comparable and that the general trends of transmit array performance with
respect to field strength and number of coil elements remain valid between the two models.
We computed ICP on a given arbitrary surface yielding optimal SNR within an inhomoge-
neous head model [82] and found that they depend mostly on the topology of the surface onto
which they are constrained, even though optimal SNR is similar for different substrates. We
further computed the percentage of UISNR that realistic head coil substrates can capture and
showed that UISNR is approached better by the helmet and head-and-neck substrates than
by the cylinder substrate, especially at the periphery, leading to the conclusion that helmet
coils are better-suited for head imaging. In addition to helping to visually understand the ori-
gin of optimal RF coil performance, ICP could also help designing the next-generation MR
coils, by providing an intuitive initial guess for non-convex coil optimization algorithms,
setting the scene for a truly task-optimal design of RF coils.

From an imaging perspective and in an attempt to answer to the question of whether the sci-
entific community and potentially the industry should continue pursuing UHF MRI we could
say the following, motivated by the findings of this thesis and from state-of-the-art studies
reviewed at Chapter 2. Increasing the B0 field strength above 7T could result in consider-
able B+

1 inhomogeneities, particularly if the MR scanner is not operated properly, and one
could end up having worse image quality than from a 3T or lower field strength scanner that
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yields smootherB+
1 fields. Additionally, a UHF MR scanner may be operated sub-optimally

with the fear of excessive heat deposition to the patient. However, a substantial body of re-
search, including both simulation [12, 67, 106, 166] and experimental [87, 124, 171] studies,
demonstrates that pushing the limits to UHF strengths can indeed make the difference. Two
characteristic examples that further support this claim is the world’s first MRI of the human
body at 10.5T [297], where the greater detail of the MR image is clear, and the recent FDA
approval of the first 7T MR scanner for clinical application [103]. Therefore, we believe that
it is indeed worth pursuing UHF MRI, which effort should be accompanied by substantial
research and development that takes into account the UHF challenges and should aim to
develop novel, task-optimal RF arrays that respect the underlying EM fields considerations,
hence, such arrays could yield higher SNR and faster image acquisition without compromis-
ing patient safety and image quality. Finally, there is a recent review article that discusses
the question of the evolution of the UHF body MRI, its technology, its applications, and its
future directions [298], where an interested reader can refer to for more details.

6.2 Future Work and Research Extensions

In this thesis, among other contributions, a current-based VIE solver with PWL basis func-
tions was developed. Future work that could possibly enhance its overall performance could
involve the PWL approximation of the electrical properties for cases where the material
profile varies with higher-order polynomial functions, as well as, the derivation, implemen-
tation, and convergence study of the subtraction method for the singular kernels of N and K

operators, and the implementation and convergence properties study of a diagonal precon-
ditioner. Another interesting research direction could be the comparison of the convergence
properties of an iterative solver between the current-based formulation with either PWC or
PWL basis functions and the discrete dipole approximation formulation for a broad range of
permittivities and electrical sizes. Finally, the feasibility, accuracy and convergence proper-
ties study of reduced-order linear basis functions could be investigated.

Additionally, we described robust algorithms for the generation of a consistent numerical
EM fields basis within an arbitrary, inhomogeneous object and showed how such basis can
be used to compute performance bounds for MR-related metrics within realistic body mod-
els. From a numerical point of view, future steps could include the investigation of the
convergence properties and numerical accuracy of UISNR and UITXE computed by an or-
thonormal basis of incident magnetic fields and the study of whether the sensitivity of SNR
and TXE to magnetic fields affects such properties. Another direction worth pursuing could
be the direct generation of an orthonormal total EM fields basis by applying the free-space
operator, solving the scattering problem for each random incident EM field for RSVD or
for each column vector of the currents-to-incident-fields coupling matrix for SSVD and
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DSVD, and then orthonormalizing. This approach may be more computationally expensive
but might be worth investigating since we showed that an incident EM fields basis does not
provide accurate results when generated by the less smooth N operator or by the approxi-
mate RSVD for UITXE computations. Generating a basis by applying SVD factorization to
the VSH basis modes over the mask of an arbitrary object could also be an inviting research
direction, motivated by the well-behaved UISNR convergence properties of the VSH basis
in central voxel positions and the fact that the incident EM fields by the SVD basis con-
form with the shape of the boundary of the arbitrary object and illuminate regions close to
it. Similar convergence properties comparisons studies for various geometries against other
analytical (complete) bases derived in cylindrical or Cartesian coordinate systems could also
be performed, during which studies, it should prove useful to view the numerical basis as an
extension of spectral methods to arbitrarily shaped domains.

More broadly speaking, we would like to place the numerical basis tool into a greater per-
spective and highlight that it is a general tool that can be used for seemingly different ap-
plications within various fields. In fact, we showed that, within the MR field, the numerical
basis can be utilized to compute ideal RF excitation patterns for arbitrary surfaces yielding
optimal SNR in inhomogeneous head models [82] or to calculate theoretical transmit per-
formance bounds within these head models [75]. Additionally, it has been applied for the
ultra-fast RF coil design [65] through the MR-specific Green’s function [161] and, recently,
for generating orthogonal excitations in Global Maxwell Tomography [95], for the design
of optimal shim bases towards ultimate B0 shim [299], and for peripheral nerve stimulation
constrained gradient coil design [300]. In a slightly different setup, it has been employed for
the design of high-permittivity pads for dielectric shimming [301] and it could possibly be
used for generating the optimal RF excitation patterns that generate reduced or close-to-null
electric field zones inducing minimal electric currents in biodegradable implants [302] that
could lead to implant friendly RF coil designs. Furthermore, within the field of optics, sim-
ilar concepts have been exploited for the design of non-intuitive illumination patterns that
maximize optical force or torque [303] and within the antennas and propagation field, since
many years, there already exists the characteristic modes theory [285,286] for the expansion
of radiated and scattered fields into modes characteristic of the obstacle shape and indepen-
dent of any specific excitation. Optimal currents on arbitrarily shaped surfaces that extrem-
ize various antenna parameters have also been presented [304] and reduced-order models
for fast antenna characterization have been generated [287], where all these approaches rely
on the idea of expanding EM fields and currents onto an appropriate basis set. Finally, due
to similarities between the acoustic and the electrodynamic Green’s function, there should
be crossover scope for applying analogous ideas within the acoustic field with the goal of
designing arrays for high-intensity focused ultrasound.

Future work associated with applications within the MR field could include the experimen-
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tal coil performance evaluation with suitable hardware/software for RF power measurements
with respect to the UITXE in spherical phantoms. In addition, it could include the compu-
tation of UITXE in specific ROIs of the realistic head model (e.g., cerebellum), the study
of the contributions of dipole arrays and dielectric pads to UITXE, as well as, whether the
electric field distribution that corresponds to UITXE respects local SAR aspects and whether
B+

1 remains homogeneous in realistic head models. It would also be of interest to compute
eigenvalues other than the largest and investigate how they compare to it, how their cor-
responding ICP change, whether B+

1 homogeneity improves and if local SAR decreases.
Furthermore, with the aid of ICP, a new research project could involve the implementation
of RF coil shape optimization and/or SIE node optimization algorithms, where ICP could
serve as an initial guess to the optimizer. Additionally, curvilinear basis functions for the
discretization of Huygens’s surface could be employed for more accurate coil modeling and
ICP representation. A new promising principle, the optimality principle [73], which allows
for the rapid and intuitive prediction of ICP for arbitrary dielectric objects and current-
bearing surfaces, could be further explored for the UITXE case. Finally, a comparative
study between MR images acquired with arrays driven with the optimal RF shimming coef-
ficients that approach UISNR or UITXE and images acquired with traditional birdcage coils
could be of great relevance and interest.

In a broader perspective and in an attempt to describe possible directions that could set the
scene for the future of MR research and practice, the following challenges with speculations
on how they could be addressed are worth to be mentioned. With regard to MR engineering
at UHF, different solutions for the transmit field inhomogeneity due to wavelength/dielectric
effects along with the development of standardized methods for SAR monitoring and control
are among the most significant challenges. To address these needs, novel and task-optimal
RF array designs could be of great relevance and part of the work presented in this thesis
could provide a robust framework for optimizing their design. In addition, digital artifact
removal pipelines could be employed for smoothening the constructive interference effects
associated with the UHF strength, while dielectric shimming approaches already provide a
fast and efficient way to tackle the corresponding destructive interferences [273], however,
only at superficial regions. Furthermore, image-to-image translation approaches [305] could
be of great practical value for generating higher-resolution 7T images at the cost of a 3T MRI
and similar approaches based on neural networks could be employed for the regularization
of a relevant study that aims at the reconstruction of the tissue electrical properties from MR
measurements [95]. Combined Bloch/Maxwell simulations with SNR-optimizing RF exci-
tation sequences could further provide useful insight into the SNR improvement level of the
MR images with respect to images acquired with traditional RF excitation sequences, while
experimental studies focusing on the MR image acquisition from RF arrays that approach
the shape of the ICP, thus the UISNR, and that are driven with the optimal RF shimming
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weights could give an answer to the question of how the RF detectors would behave given
a complex excitation sequence and how the resulting MR image would compare to images
acquired with traditional birdcage coils. Finally, the experimental study of the existence of
second-order relaxation effects in biological tissues with increasing B0 field strength could
also be of great relevance towards the development and deployment of the future MR scan-
ners.

Finally, in the last paragraph of this thesis we provide conclusive remarks on the connec-
tion of the introduced optimality measures of UITXE within realistic head models and ICP
on arbitrary excitation surfaces to MR scanners and their clinical application. Despite the
useful insight that ICP provide into the design of novel RF arrays, building such arrays is
challenging both from a fabrication point of view but mostly due to the inductive coupling
that such hypothetical RF array would have, since the currents basis modes are not orthogo-
nal to each other. From an imaging perspective, the behavior of the detectors when excited
with such complex RF patterns is open to investigation. However, it is expected that the
numerical artifacts introduced in the calculation of the UITXE or UISNR will not introduce
any additional imaging artifacts. This is explained by the fact that even if the numerical
ICP might not correspond exactly to the actual RF currents that would yield the ultimate
measures, the only problem this would entail might be a relative difference from the ac-
tual ultimate measure in the form of a smaller/higher B1 value. However, the uniformity of
the magnetic field is not expected to be significantly affected, especially at central regions,
therefore, imaging artifact are expected not to be associated with numerical artifacts from
computing UISNR and UITXE. However, the relaxation time behavior of T1 and T2 given
such complex RF excitation sequences and at higher field strengths should be the subject of
future work in order to get a definitive and not speculative answer.



A Expansion of Dyadic Green’s Function In Vec-

tor Spherical Harmonics

We construct the DGF for a dielectric sphere with its center located at the origin of the
coordinates system using the method of superposition [15, 191]:

Ḡsph(r, r′) =

{
Ḡ(r, r′) + Ḡs,1(r, r′) r ≥ a

Ḡs,2(r, r′) r ≤ a
, (A.1)

where r′ is the position of the current sources, r is the position at which the EM field is
observed and a is the radius of the sphere. The free-space DGF is defined as:
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(A.2)
the scattering component of the DGF outside the sphere as:
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(A.3)
and inside the sphere as:

Ḡs,2(r, r′) = −jk0
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(A.4)
where k0 and kin are the wavenumbers in free-space and inside the sphere, respectively, Al,
Bl, Cl and Dl are calculated by applying the Dirichlet boundary conditions [15], and the
spherical vector wave functions are defined as:
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(A.5)
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with k being the appropriate wavenumber at the position of interest and ψl,m(k, r) is the
eigenfunction of the scalar wave function ψl,m(k, r) = jl(kr)Yl,m(θ, φ) with

Yl,m(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)ejmφ, (A.6)

where Pm
l (cos θ) is the associated Legendre function of order (l,m) and jl(kr) is the spheri-

cal Bessel function of order l. The + superscript in Eqs. A.2 - A.4 indicates that the spherical
Hankel function of the first kind and order l is used in place of the Bessel of the same order.

The electric field inside the sphere, which is also considered to have the permeability of
free-space, can be calculated using Eqs. 3.9, 3.10, A.1, and A.4 (since we are interested in
calculating the EM field inside the sphere, we select the second branch) as:
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from which we can define the coefficients in 3.11:
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where the VSH is defined as [192]:

Xl,m(θ, φ) =
1

j
√
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(r̂ ×∇)Yl,m(θ, φ), (A.10)

in which r̂ is the unit vector in the radial direction. Then, by applying the orthogonality
relations of the VSH [192], the integrals can be solved and the coefficients are calculated as
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Finally, from Maxwell equationB(r) = j/ω∇×E(r) and the symmetrical relations of the
vector wave functions [191], we form the magnetic field as in Eq. 3.11.

Then, the last step is to calculate the transmit sensitivities and electric fields covariance
matrices. In order to construct the B+

1 transmit sensitivity matrix we expand the transmit
field at Q spatial locations or voxels with a finite expansion order lmax yielding N = (lmax +

1)2 number of modes which are sufficient to ensure convergence. So, for each mode, we can
construct the transmit sensitivity matrix as:

B+
1 (rq) = Bx + jBy =

lmax∑
l=0

l∑
m=−l

Cl,m(rq)w. (A.12)

Cl,m(rq) is a Q × 2 that includes both the divergence-free and curl-free contributions and
accounts for the boundary conditions:

Cl,m(rq) = −jµ0k0kin

[
Nx
l,m(kin, rq) + jNy

l,m(kin, rq) Mx
l,m(kin, rq) + jMy

l,m(kin, rq)
]
.

(A.13)
The electric fields covariance matrix for the modes can be calculated as:

Pabs =
1

2

ˆ
V

σ(r)E∗(r) ·E(r)dV =
lmax∑
l=0

l∑
m=−l

wHΦl,mw, (A.14)

where Φl,m = THRLT is a 2× 2 diagonal matrix and RL is given by [15]:

RL =
σ(ωµ0k0)2

2


ˆ a

0

|jl(kinr)|r2dr 0

0
1

|kin|2

ˆ a

0

[∣∣∣∣∂[rjl(kinr)]

∂r

∣∣∣∣2 + l(l + 1)|jl(kinr)|2
]
dr

 ,
(A.15)

and the electric fields covariance matrix with dimensions 2N × 2N for all the modes is:

Φmode =


Φ0,0 0 0

0
. . . 0

0 0 Φlmax,lmax

 . (A.16)



B Convergence of Ultimate Intrinsic Transmit Ef-

ficiency

𝑟vox = 0 𝑟vox = 0.5𝑎 𝑟vox = 0.95𝑎

𝑎 = 7.5cm

𝑎 = 10cm

𝑎 = 15cm

Figure B.1: Convergence of the UITXE as a function of voxel location, for different main
magnetic field strengths and object sizes. UITXE convergence is plotted in logarithmic scale
for expansion order lmax ranging from 0 to 45, yielding N = (lmax + 1)2 = 2116 modes.
Note that each mode includes both the curl-free and divergence-free components in Eq. [10].
Results are shown for sphere radii a = 7.5, 10, 15cm and uniform brain-mimicking electrical
properties adjusted for the corresponding frequency at B0 = 0.5, 1.5, 3, 7, 10.5, 14, 21T.
The convergence was assessed for three voxel locations at rvox = 0, 0.5a, 0.95a. The closer a
voxel is to the surface of the sphere the larger the number of modes required for convergence.
The convergence is also slower at higher field strengths, which is more evident for larger
object sizes and the intermediate voxel location.
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𝑟2D = 0.3𝑎 𝑟2D = 0.6𝑎 𝑟2D = 0.9𝑎

𝑎 = 7.5cm

𝑎 = 10cm

𝑎 = 15cm

Figure B.2: Convergence of the UITXE as a function of the size of the two-dimensional
region of interest, for different main magnetic field strengths and object sizes. UITXE con-
vergence is plotted for the same number of modes, sphere radii and B0 shown in Figure B.1,
for different sizes (r2D = 0.3a, 0.6a, 0.9a) of a 2D circular disk ROI. More modes are re-
quired for convergence with larger excitation regions and at higher field strengths. This can
be seen more clearly for larger object sizes and especially for the 2D ROI with r2D = 0.6a.
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𝑟3D = 0.3𝑎 𝑟3D = 0.6𝑎 𝑟3D = 0.9𝑎

𝑎 = 7.5cm

𝑎 = 10cm

𝑎 = 15cm

Figure B.3: Convergence of the UITXE calculations as a function of the size of the three-
dimensional region of interest, for different main magnetic field strengths and object sizes.
UITXE convergence is plotted for different sizes (r3D = 0.3a, 0.6a, 0.9a) of a spherical 3D
ROI concentric with the sample. Results are shown for the same range of expansion order,
magnetic field strength and object size used in Figure B.1.



C Reduction Procedure of Volume-Volume to Surface-

Surface Integrals

C.1 Operator N

We start by Eq. 4.68a which can be rewritten as:

Npl,ql′

m,n =

ˆ

V

ˆ

V ′

∇× f plm · ∇ × (gf ql
′

n )dV ′dV

−
ˆ

V

ˆ

V ′

∇ · (f plm ×∇× (gf ql
′

n ))dV ′dV,

(C.1)

and then apply the divergence theorem to it:

Npl,ql′

m,n =−
ˆ

V ′

˛

S

(n̂×∇× f plm) · gf ql′n dSdV ′

−
ˆ

V ′

˛

S

(n̂× f plm) · ∇ × (gf ql
′

n )dSdV ′.

(C.2)

Since the curl of a linear function is a constant vector, we can move it outside the inner
integral:

Npl,ql′

m,n =−
˛

S

(n̂×∇× f plm) ·
ˆ

V ′

gf ql
′

n dV ′

︸ ︷︷ ︸
I′1

dS

−
˛

S

(n̂× f plm) ·
ˆ

V ′

∇× (gf ql
′

n )dV ′

︸ ︷︷ ︸
I′2

dS.

(C.3)
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We can further simplify I ′2 by using the fact that ∇g = −∇′g and subsequently ∇ ×
(gf ql

′
n ) = g∇′ × f ql′n −∇′ × (gf ql

′
n ) and write it down as:

I ′2 = ∇′ × f ql′n

ˆ

V ′

gdV ′ −
ˆ

V ′

∇′ × (gf ql
′

n )dV ′. (C.4)

The first integral in the right-hand side above requires special treatment. As shown in [233],
with the help of powerful techniques presented in [235], we can get the following expression:

g = ∇ · F = −∇′ · F , (C.5)

where
F =

1

(jk0)2
∇(g − g0) = − 1

(jk0)2
∇′(g − g0), (C.6)

with g0 = g|k0=0 denoting the static Green’s function and by calculating the gradients, F
can be rewritten as:

F = −(r − r′)
(jk0)2

(
jk0

g

|r − r′|
+

g − g0

|r − r′|2

)
. (C.7)

Then, by combining the above we get:

I ′2 = −∇′ × f ql′n

˛

S′

n̂′ · F dS ′ −
˛

S′

(n̂′ × f ql′n )gdS ′. (C.8)

Similarly, for I ′1 we have:

I ′1 =

ˆ

V ′

gf ql
′

n dV ′ = −
∑

q∈{x,y,z}

ˆ

V ′

∇′ · F f ql′n q̂dV
′

=
∑

q∈{x,y,z}

−ˆ
V ′

∇′ · (F f ql′n )q̂dV ′ + q̂∇′f ql′n ·
ˆ

V ′

F dV ′

 .

(C.9)

Next, by substituting Eq. C.6 and applying again the divergence theorem, we get:

I ′1 =−
∑

q∈{x,y,z}

˛

S′

n̂′ · F f ql′n q̂dS
′

−
∑

q∈{x,y,z}

q̂∇′f ql′n ·
˛

S′

n̂′
g − g0

(jk0)2
dS ′.

(C.10)
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Finally, the original 6D integral Eq. C.1 is reduced to the sum of four closed 4D integrals
over the faces of the volumetric elements:

Npl,ql′

m,n = N1 +N2 +N3 +N4, (C.11)

where
N1 =

˛

S

(n̂× f plm) ·
˛

S′

(n̂′ × f ql′n )gdS ′dS, (C.12a)

N2 = −
˛

S

(n̂×∇′ × f ql′n ) · f plm
˛

S′

n̂′ · F dS ′dS, (C.12b)

N3 =

˛

S

(n̂×∇× f plm) ·
˛

S′

f ql
′

n n̂
′ · F dS ′dS, (C.12c)

N4 =
∑

q∈{x,y,z}

˛

S

(n̂×∇× f plm) · q̂∇′f ql′n ·
˛

S′

n̂′
g − g0

(jk0)2
dS ′dS. (C.12d)

It is clear from the final expressions that the resulting 4D integrals have kernels that are
smoother than the original 6D integral. In particular, only N1 has a 1/|r − r′| weak singu-
larity and the rest are non-singular with singular derivatives. Therefore, they are amenable
to well-established integration techniques in the most challenging case where the elements
have common points [148–150, 159, 160]. It is also worth noting that the final expression
reduces to the single term N1 for PWC functions, since the rest are identically zero.

C.2 Operator K

Next, we proceed with the integral Eq. 4.68b, which assumes the following form:

Kpl,ql′

m,n =

ˆ

V

ˆ

V ′

f plm(r) · ∇ × (gf ql
′

n (r′))dV ′dV

=

ˆ

V

f plm ·
ˆ

V ′

∇× (gf ql
′

n )dV ′

︸ ︷︷ ︸
I′2

dV. (C.13)

By substituting again Eq. C.8 into the above equation and by reordering the integrals we
derive:
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Kpl,ql′

m,n = −
˛

S′

n̂′ ·
ˆ

V

Ff plm · ∇′ × f ql
′

n dV

︸ ︷︷ ︸
I3

dS ′

−
˛

S′

(n̂′ × f ql′n ) ·
ˆ

V

gf plmdV︸ ︷︷ ︸
I1

dS ′.

(C.14)

One can notice that I1 is similar to I ′1, hence it is straightforward to obtain:

I1 =
∑

p∈{x,y,z}

˛

Sm

n̂ · F fplmp̂dS

−
∑

p∈{x,y,z}

p̂∇fplm · n̂
˛

Sm

g − g0

(jk0)2
dS.

(C.15)

While handling I3, for simplicity we denote the linear scalar function h = f plm · ∇′ × f ql
′

n ,
and we write:

I3 =

ˆ

V

1

(jk0)2
∇(g − g0)hdV

=
1

(jk0)2

ˆ

V

∇ [(g − g0)h] dV − ∇h
(jk0)2

ˆ

V

(g − g0)dV.

(C.16)

Next, taking into account that∇· (r−r′)g0
2

= g0 and applying the divergence theorem, we get

I3 =
1

(jk0)2

˛

S

n̂(g − g0)hdS

− ∇h
(jk0)2

˛

S

n̂ ·
(
F − (r − r′)g0

2

)
dS.

(C.17)

Finally, putting all the above together we can write the original 6D integral in terms of 4D
integrals, as follows:

Kpl,ql′

m,n = K1 +K2 +K3 +K4, (C.18)

where
K1 = −

˛

S′

(n̂′ × f ql′n ) ·
˛

Sm

f plmn̂ · F dSdS ′, (C.19a)
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K2 =
∑

p∈{x,y,z}

˛

S′

(n̂′ × f ql′n ) · p̂∇fplm ·
˛

Sm

n̂
g − g0

(jk0)2
dSdS ′, (C.19b)

K3 = −
˛

S′

n̂′ ·
˛

S

n̂f plm · ∇′ × f ql
′

n

g − g0

(jk0)2
dSdS ′, (C.19c)

K4 =
1

(jk0)2

˛

S′

n̂′ · ∇(f plm · ∇′ × f ql
′

n )

˛

S

n̂ ·
(
F − (r − r′)g0

2

)
dSdS ′. (C.19d)

Again, in the case of PWC functions the only nonzero term in the final expression is K1.
Finally, it is interesting to note that the kernels of the final expressions for K operator are
non-singular that however have singular derivatives, similarly to the three kernels for N

operator.



Bibliography

[1] C. M. Collins, Electromagnetics in magnetic resonance imaging: physical principles,
related applications, and ongoing developments. Morgan & Claypool Publishers,
2016.

[2] D. G. Nishimura, Principles of magnetic resonance imaging. Stanford University,
1996.

[3] J.-M. Jin, “Electromagnetics in magnetic resonance imaging,” IEEE Antennas and
Propagation Magazine, vol. 40, no. 6, pp. 7–22, 1998.

[4] A. G. Polimeridis, “Resolution of scattering and radiation problems in planar strati-
fied media via the method of integral equations,” 2008.

[5] A. Christ, W. Kainz, E. G. Hahn, K. Honegger, M. Zefferer, E. Neufeld, W. Rascher,
R. Janka, W. Bautz, J. Chen et al., “The Virtual Family-development of surface-
based anatomical models of two adults and two children for dosimetric simulations,”
Physics in medicine and biology, vol. 55, no. 2, p. N23, 2009.

[6] C. M. Collins and Z. Wang, “Calculation of radiofrequency electromagnetic fields
and their effects in MRI of human subjects,” Magnetic resonance in medicine, vol. 65,
no. 5, pp. 1470–1482, 2011.

[7] P. A. Bottomley, R. W. Redington, W. A. Edelstein, and J. F. Schenck, “Estimating
radiofrequency power deposition in body NMR imaging,” Magnetic resonance in
medicine, vol. 2, no. 4, pp. 336–349, 1985.

[8] J. Keltner, J. Carlson, M. Roos, S. Wong, T. Wong, and T. Budinger, “Electromag-
netic fields of surface coil in vivo NMR at high frequencies,” Magnetic resonance in
medicine, vol. 22, no. 2, pp. 467–480, 1991.

[9] F. Liu and S. Crozier, “Electromagnetic fields inside a lossy, multilayered spherical
head phantom excited by MRI coils: models and methods,” Physics in Medicine &
Biology, vol. 49, no. 10, p. 1835, 2004.

176



Bibliography 177

[10] W. Schnell, W. Renz, M. Vester, and H. Ermert, “Ultimate signal-to-noise-ratio of
surface and body antennas for magnetic resonance imaging,” IEEE Transactions on
Antennas and Propagation, vol. 48, no. 3, pp. 418–428, 2000.

[11] M. A. Ohliger, A. K. Grant, and D. K. Sodickson, “Ultimate intrinsic signal-to-noise
ratio for parallel MRI: electromagnetic field considerations,” Magnetic Resonance in
Medicine: An Official Journal of the International Society for Magnetic Resonance
in Medicine, vol. 50, no. 5, pp. 1018–1030, 2003.

[12] F. Wiesinger, P. Boesiger, and K. P. Pruessmann, “Electrodynamics and ultimate SNR
in parallel MR imaging,” Magnetic Resonance in Medicine: An Official Journal of the
International Society for Magnetic Resonance in Medicine, vol. 52, no. 2, pp. 376–
390, 2004.

[13] R. Lattanzi, “Coil performance evaluation based on electrodynamics: tools for hard-
ware design and validation in magnetic resonance imaging,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2008.

[14] R. Lattanzi, D. K. Sodickson, A. K. Grant, and Y. Zhu, “Electrodynamic constraints
on homogeneity and radiofrequency power deposition in multiple coil excitations,”
Magnetic Resonance in Medicine: An Official Journal of the International Society
for Magnetic Resonance in Medicine, vol. 61, no. 2, pp. 315–334, 2009.

[15] R. Lattanzi and D. K. Sodickson, “Ideal current patterns yielding optimal signal-to-
noise ratio and specific absorption rate in magnetic resonance imaging: computational
methods and physical insights,” Magnetic resonance in medicine, vol. 68, no. 1, pp.
286–304, 2012.

[16] H.-H. Lee, D. K. Sodickson, and R. Lattanzi, “An analytic expression for the ultimate
intrinsic SNR in a uniform sphere,” Magnetic resonance in medicine, vol. 80, no. 5,
pp. 2256–2266, 2018.

[17] N. Avdievich, A. Pfrommer, I. Giapitzakis, and A. Henning, “Analytical modeling
provides new insight into complex mutual coupling between surface loops at ultrahigh
fields,” NMR in Biomedicine, vol. 30, no. 10, p. e3759, 2017.

[18] A. Pfrommer and A. Henning, “On the superlinear increase of the ultimate intrin-
sic signal-to-noise ratio with regard to main magnetic field strength in a spherical
sample,” in 2017 International Conference on Electromagnetics in Advanced Appli-
cations (ICEAA). IEEE, 2017, pp. 684–687.

[19] ——, “On the contribution of curl-free current patterns to the ultimate intrinsic signal-
to-noise ratio at ultra-high field strength,” NMR in Biomedicine, vol. 30, no. 5, p.
e3691, 2017.



Bibliography 178

[20] F. Wiesinger, N. De Zanche, and K. Pruessmann, “Approaching ultimate SNR with
finite coil arrays,” in Proceedings of the 13th Annual Meeting of ISMRM, 2005, p.
672.

[21] R. Lattanzi, A. Grant, and D. Sodickson, “Approaching ultimate SNR and ideal cur-
rent patterns with finite surface coil arrays on a dielectric cylinder,” in Proceedings of
the 16th Annual Meeting of ISMRM, Toronto, Ontario, Canada, 2008, p. 1074.

[22] G. C. Wiggins, B. Zhang, R. Lattanzi, G. Chen, and D. Sodickson, “The electric
dipole array: an attempt to match the ideal current pattern for central SNR at 7 Tesla,”
in Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, vol.
541, 2012.

[23] G. Chen, M. Cloos, R. Lattanzi, D. Sodickson, and G. Wiggins, “Bent electric dipoles:
a novel coil design inspired by the ideal current pattern for central SNR at 7 Tesla,”
Proc. Int. Soc. Magh. Reson. Med, vol. 22, p. 402, 2014.

[24] G. Chen, R. Lattanzi, D. Sodickson, and G. Wiggins, “Approaching the ultimate in-
trinsic SNR with dense arrays of electric dipole antennas,” in Proc. ISMRM, 2016, p.
168.

[25] R. Lattanzi, A. K. Grant, J. R. Polimeni, M. A. Ohliger, G. C. Wiggins, L. L. Wald,
and D. K. Sodickson, “Performance evaluation of a 32-element head array with re-
spect to the ultimate intrinsic SNR,” NMR in Biomedicine: An International Journal
Devoted to the Development and Application of Magnetic Resonance In vivo, vol. 23,
no. 2, pp. 142–151, 2010.

[26] M. V. Vaidya, D. K. Sodickson, and R. Lattanzi, “Approaching ultimate intrinsic SNR
in a uniform spherical sample with finite arrays of loop coils,” Concepts in Magnetic
Resonance Part B: Magnetic Resonance Engineering, vol. 44, no. 3, pp. 53–65, 2014.

[27] C. M. Deniz, M. V. Vaidya, D. K. Sodickson, and R. Lattanzi, “Radiofrequency en-
ergy deposition and radiofrequency power requirements in parallel transmission with
increasing distance from the coil to the sample,” Magnetic resonance in medicine,
vol. 75, no. 1, pp. 423–432, 2016.

[28] R. Lattanzi, G. C. Wiggins, B. Zhang, Q. Duan, R. Brown, and D. K. Sodickson,
“Approaching ultimate intrinsic signal-to-noise ratio with loop and dipole antennas,”
Magnetic resonance in medicine, vol. 79, no. 3, pp. 1789–1803, 2018.

[29] L. Alon, R. Lattanzi, K. Lakshmanan, R. Brown, C. M. Deniz, D. K. Sodickson, and
C. M. Collins, “Transverse slot antennas for high field MRI,” Magnetic resonance in
medicine, vol. 80, no. 3, pp. 1233–1242, 2018.



Bibliography 179

[30] A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference
time-domain method. Artech house, 2005.

[31] J.-M. Jin, The finite element method in electromagnetics. John Wiley & Sons, 2015.

[32] P. P. Silvester and R. L. Ferrari, Finite elements for electrical engineers. Cambridge
university press, 1996.

[33] F. Wei and A. E. Yılmaz, “A 2-D decomposition based parallelization of AIM for
3-D BIOEM problems,” in Antennas and Propagation (APSURSI), 2011 IEEE Inter-
national Symposium on. IEEE, 2011, pp. 3158–3161.

[34] G. Rubinacci and A. Tamburrino, “A broadband volume integral formulation based
on edge-elements for full-wave analysis of lossy interconnects,” IEEE transactions
on antennas and propagation, vol. 54, no. 10, pp. 2977–2989, 2006.

[35] C.-C. Lu, “A fast algorithm based on volume integral equation for analysis of arbi-
trarily shaped dielectric radomes,” IEEE transactions on antennas and propagation,
vol. 51, no. 3, pp. 606–612, 2003.

[36] N. A. Ozdemir and J.-F. Lee, “A nonconformal volume integral equation for electro-
magnetic scattering from anisotropic materials,” in Antennas and Propagation Society
International Symposium 2006, IEEE. IEEE, 2006, pp. 2889–2892.

[37] ——, “A nonconformal volume integral equation for electromagnetic scattering from
penetrable objects,” IEEE Transactions on Magnetics, vol. 43, no. 4, pp. 1369–1372,
2007.

[38] M. F. Catedra, E. Gago, and L. Nuno, “A numerical scheme to obtain the RCS of
three-dimensional bodies of resonant size using the conjugate gradient method and
the fast Fourier transform,” IEEE transactions on antennas and propagation, vol. 37,
no. 5, pp. 528–537, 1989.

[39] H. Gan and W. C. Chew, “A discrete BCG-FFT algorithm for solving 3D inhomo-
geneous scatterer problems,” Journal of Electromagnetic Waves and Applications,
vol. 9, no. 10, pp. 1339–1357, 1995.

[40] L. Sun and W. Chew, “A novel formulation of the volume integral equation for elec-
tromagnetic scattering,” Waves in Random and Complex Media, vol. 19, no. 1, pp.
162–180, 2009.

[41] M. Li and W. C. Chew, “Applying divergence-free condition in solving the volume in-
tegral equation,” Progress In Electromagnetics Research, vol. 57, pp. 311–333, 2006.

[42] W. C. Chew, E. Michielssen, J. Song, and J.-M. Jin, Fast and efficient algorithms in
computational electromagnetics. Artech House, Inc., 2001.



Bibliography 180

[43] J. Jin, J. Chen, W. Chew, H. Gan, R. Magin, and P. Dimbylow, “Computation of
electromagnetic fields for high-frequency magnetic resonance imaging applications,”
Physics in Medicine & Biology, vol. 41, no. 12, p. 2719, 1996.

[44] M. Costabel, E. Darrigrand, and E. Koné, “Volume and surface integral equations
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[71] B. Guérin, J. F. Villena, A. G. Polimeridis, E. Adalsteinsson, L. Daniel, J. K. White,
B. R. Rosen, and L. L. Wald, “Computation of ultimate SAR amplification factors for
radiofrequency hyperthermia in non-uniform body models: impact of frequency and
tumour location,” International Journal of Hyperthermia, vol. 34, no. 1, pp. 87–100,
2018.

[72] A. Pfrommer and A. Henning, “About the ideal receive array for human head MRI,”
in Joint Annual Meeting ISMRM-ESMRMB 2018, 2018.

[73] D. K. Sodickson, R. Lattanzi, M. Vaidya, G. Chen, D. S. Novikov, C. M. Collins,
and G. C. Wiggins, “The optimality principle for MR signal excitation and recep-
tion: New physical insights into ideal radiofrequency coil design,” arXiv preprint
arXiv:1808.02087, 2018.

[74] I. P. Georgakis, A. G. Polimeridis, and R. Lattanzi, “Ultimate intrinsic transmit effi-
ciency for RF shimming,” in Proceedings of Joint Annual Meeting ISMRM-ESMRMB,
Paris, France, 2018, p. 0139.

[75] ——, “Ultimate intrinsic transmit efficiency for radiofrequency shimming,” (submit-
ted).



Bibliography 183

[76] I. P. Georgakis and A. G. Polimeridis, “Reduction of volume-volume integrals aris-
ing in Galerkin JM-VIE formulations to surface-surface integrals,” in 11th European
Conference on Antennas and Propagation (EuCAP). IEEE, 2017, pp. 324–326.

[77] I. P. Georgakis, I. I. Giannakopoulos, M. S. Litsarev, and A. G. Polimeridis, “A fast
volume integral equation solver with linear basis functions for the accurate computa-
tion of electromagnetic fields in MRI,” (submitted), arXiv preprint arXiv:1902.02196.
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