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Abstract 
 

Human populations, despite their overwhelming similarity, contain some distinct 

phenotypic, genetic, epigenetic, and gene expression features. While genetic and gene 

expression differences among human populations are demonstrated, less is known about 

differences in the abundance of polar and non-polar low molecular weight compounds, 

lipids and metabolites. The study provides an evidence of population differences in 

metabolome and lipidome levels in the cortical region and in the brain and cerebellum. I 

utilized mass-spectrometry methods to investigate metabolic variations in modern and 

ancient populations.  

For modern populations we assessed the abundance of 1,670 lipids and 258 

metabolites in the prefrontal cortex of 146 Han Chinese, 97 Western European, and 60 

African American individuals with ages spanning most of lifespan. The statistical 

analysis and logistic regression models both demonstrate extensive lipid and metabolic 

divergence of the Han Chinese individuals from the other two populations. This 

divergence was age-dependent, peaking at approximately 20 years of age, and involved 

metabolites and lipids clustered in specific metabolic pathways.   

For ancient population analysis we first analyzed the metabolomes of humans, 

chimpanzees and macaques in muscle, kidney and three different regions of the brain. 

Whereas several compounds in amino acid metabolism occur at either higher or lower 

concentrations in humans than in the other primates, metabolites in oxidative 

phosphorylation and purine biosynthesis are consistently present in lower concentrations 

in the brains of humans. In particular, metabolites downstream of adenylosuccinate lyase, 
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which catalyzes two reactions in purine synthesis, occur at lower concentrations in 

humans. This enzyme carries an amino acid substitution unique to modern humans 

relative to Neanderthals. Secondly, by introducing the modern human substitution into 

the genomes of mice, as well as the ancestral, Neanderthal-like substitution into the 

genomes of human cells, we showed that this single amino acid substitution is 

responsible for much or all of the metabolic changes affecting purine biosynthesis in 

humans. Thus, at least one substitution that became fixed among humans since their 

divergence from Neanderthals has consequences for intermediary metabolism. 

The results of the current work provide evidence of modern human-specific 

changes in brain development and highlight the inter-population variations of the 

molecular phenotype of the brain. 

Keywords: populations, metabolome, lipidome, Neanderthal, ADSL, purine 

biosynthesis, mass spectrometry, brain. 
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Chapter 1. Introduction 

Advantages of metabolomics and lipidomics 
 

Over the last two decades, there has been an explosion in interest in “omics” research 

and corresponding development in its research techniques and methods. Genomics and 

transcriptomics were believed to answer a lot of questions regarding the aetiology of 

disease, but it became clear that, despite their usefulness, they did not provide the whole 

picture. It has become clear that we need to recruit new technologies to study those 

factors that cannot be explained by genomics and transcriptomics, such as environment or 

diet. Metabolomics and lipidomics, which remain largely unexplored in the brain, bring 

us a step closer to phenotype, and thus could support the observed connection between 

genomic and phenotypic signatures or even open up new avenues of research. For 

example, we have sequenced the Neanderthal genome and have studied the genomic 

differences of coding regions between modern humans and Neanderthals, but the 

Neanderthal extinction still remains unexplained.   

Significance of the work 
 

Lipidome and metabolome organization of the human brain remains largely 

unexplored. In this work I present a systematic analysis of the lipidome and metabolome 

organization of the prefrontal cortex gray matter of modern individuals of Han Chinese, 

Western European, and African American descent. We demonstrate that the lipid and 

metabolic brain composition differs substantially between the Han Chinese and the other 

two populations. Furthermore, this difference is age-dependent, peaking in young adults, 
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and involves metabolites and lipids clustering in specific metabolic pathways. The results 

represent the first large-scale study reporting the presence of substantial lipid and 

metabolic brain composition differences among contemporary human populations. While 

the study design does not allow us to decouple genetic and environmental effects, the 

reported differences exist in the populations and may be essential in facilitating further 

studies of differential cognitive disease susceptibility and the optimal treatment strategies 

in individuals of different descent.  

In addition to investigating the metabolic traits of modern individuals, I also study 

the potential importance of the metabolic traits in the evolution of modern humans. To 

find metabolic differences that set modern humans apart from their closest evolutionary 

relatives I investigate the metabolomes of the brain, muscle and kidney in humans, apes 

and monkeys. I find that steady-state concentrations of many compounds involved in 

amino acid metabolism are present in higher or lower levels in humans than in other 

primates. In the future, it may be of interest to investigate the consequences of these 

human-specific metabolic features for the synthesis and catabolism of amino acids. I also 

show that purine biosynthesis is decreased in all tissues analyzed, although most 

drastically in the brain. We hypothesized that the a single amino acid substitution in the 

purine biosynthesis enzyme has contributed to the reduction seen in modern human 

tissues and the pronounced down-regulation in the brain. Given that the mutations in 

humans that affect enzymes involved in purine metabolism have grater pathological 

consequences in the nervous system than in other organs, the substitution might induce 

human-specific changes in brain development and function. Future work will have to 
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address this and other possibilities. Moreover, our results provide the first evidence of the 

effect of modern human-specific amino acid substitutions.   

Implications of this work 
 

The study shows evidence of brain metabolome and lipidome differences between 

human populations. For modern humans, it could help to consider population specificity 

when searching for appropriate medical treatment or diet. In evolutionary terms, our 

observations support the concept of a biochemical level of human brain development. 

It has been previously found that there are more than 90 amino acid substitutions between 

modern humans and Neanderthals. Their combinations remain unstudied but have great 

potential for the future study of human evolution. We have opened a new field in the 

study of Neanderthal evolution: construct transgenic mice models or edited cell lines and 

study the metabolic changes. Our results provide the first evidence of the effect of 

modern-human-specific amino acid substitutions, demonstrating the effectiveness of this 

approach for the future investigation of amino acid substitutions. 

Personal contribution 
 

The author conducted most of the bioinformatics analysis presented in the thesis. In 

the study of modern human population differences the author performed statistical 

analysis and annotation of molecular compounds. The author designed and executed 

whole bioinformatics analysis of the evolutionary metabolic alterations. 

The results and methods of the thesis mention the kinetic, biochemical and genetic 

experiments were carried out by colleagues.  
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Chapter 2. Review of the Literature 

Human metabolomics and lipidomics 
 

Metabolites, commonly defined as polar compounds with molecular weight below 

1500Da, form the molecular phenotype of an organism and include substrates, 

intermediates or products of biochemical reactions. Together, these metabolites comprise 

the metabolome of an organism.Human metabolites, predominantly present in blood, 

have been diagnostic markers for decades (Grant et al., 1970; Psychogios et al., 2011). 

Routine clinical diagnostic tests measure the concentrations of more than twenty 

metabolites, including glucose, creatine, urea, and bilirubin. In order to fully catalogue all 

metabolites in the human body, the Human Metabolome Project (HMP) was initiated in 

2004. As a result thousands of metabolites have been identified and quantified in various 

human tissues and the data has been published in the Human Metabolome Database 

(HMDB) (Wishart et al., 2018). Currently, the database contains information about 114 

100 metabolites and continues to expand actively. Each entry contains the metabolite 

chemical, clinical, functional, and biochemical data of the metabolite, as well as 

information about the metabolite performance in different tissues, cell compartments and 

environmental factors.  

Metabolites represent different chemical classes of organic molecules and play a 

vast variety of functional roles, representing building blocks for larger biological 

molecules, as well as co-factors, energy molecules, signaling factors, and so on (James, 

2016). Furthermore, metabolite functions, as well as concentration levels, vary among the 
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tissues. For example, adipose tissue releases lactate, whereas liver and kidney utilize it 

for glucose production (Adeva-Andany et al., 2014).  

Lipids, a non-polar fraction of metabolites, also comprise a diverse class of 

molecules with characteristic chemical and structural properties that distinguish this 

group from the others. Most commonly, lipids are defined as compounds insoluble in 

water, but soluble in non-polar organic solvents (“Oxford Dictionary of Biochemistry and 

Molecular Biology,” 2007). Chemically, the term “lipids” could be classified as fatty-

acids derivatives and sterol-containing molecules (Fahy et al., 2005). Lipids are 

integrated into almost all processes of the human body: they provide substrates for the 

energy exchange and energy storage, form cellular and organellar membranes, provide 

the microenvironment for membrane proteins, perform the transport function for 

hydrophobic and amphiphilic compounds (Green et al., 1966; Vance et al., 2008; 

Zabrecky et al., 1985). Additionally, some lipids act as hormones and secondary 

messengers (Dennis et al., 1991).  

Lipidome is the term given to describe the entirety of the lipids that exist in a 

biological sample. In this work, we examine the lipidome of the brain. The lipidome is a 

constituent of the metabolome, but in this work we consider the two separately. This is 

because the techniques used to detect non-polar lipids and other metabolites are different, 

and the distinction between metabolome and lipidome aids clarity. 

Alterations in lipid abundance have been associated with a large number of disorders, 

including cancer (Görke et al., 2010; Min et al., 2011), diabetes (Han et al., 2018), 

atherosclerosis (Ekroos et al., 2010), hypertension (Graessler et al., 2009) and obesity 
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(Pietiläinen et al., 2007). The effect of these diseases on lipid abundance means that 

techniques to detect lipids have the potential to become a diagnostic tool in the future.  

Metabolites and lipids of the human brain 
 

The components of amino acid and lipid metabolic pathways account for the largest 

proportion of the brain metabolome (Bogner et al., 2012; Xiaojiao Zheng et al., 2016). 

Amino acids play diverse functional roles in the brain. They comprise proteins and 

perform signaling functions. Nonessential amino acids, such as glutamine and aspartate, 

act as neurotransmitters in the brain. They mediate excitatory synaptic transmission in 

neurons (Abarca et al., 1999). Glutamatergic transmission is implicated in 

neuroplasticity, including memory formation (Abarca et al., 1999).  

The brain accounts for approximately 20% of the body’s total energy use, and, uses 

glucose as a sole energy source (Mergenthaler et al., 2013). Glucose is utilized as a fuel 

for cellular energy through the generation of ATP (Erbslöh et al., 1958). Purines also 

make a significant contribution to brain metabolome composition (Xiaojiao Zheng et al., 

2016). In addition to being a crucial building component of nucleic acid molecules and 

the energy source, they are also involved in extracellular communication (Lombard, 

2006). 

Lipids are the most abundant organic molecules of the brain, crucial for membrane 

architecture and geometry, cell signaling, and protein anchoring (Brady et al., 2012). 

Lipidome organization of the human brain was shown to be significant for neural 

development and function (Davletov et al., 2010; Hunter et al., 2018), and to be altered in 

CNS disorder progression (Abbott et al., 2015; Lukiw, 2005), and in response to medical 
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treatment (Yu et al., 2014). In addition to non-polar lipids, differences in abundance of 

metabolites in the prefrontal cortex were linked to neuropsychiatric disorders, including 

schizophrenia and psychosis, as well as the extent of cognitive abilities, such as memory 

and orientation (Chen et al., 2014; Crabtree et al., 2018, 2016; Dwyer et al., 2001; Fanfan 

Zheng et al., 2018). Moreover, the lipid and metabolite composition of the human brain 

was demonstrated to undergo large age-dependent changes, especially during early 

postnatal development (Fu et al., 2011; Li et al., 2017; Rouser et al., 1968).  

Metabolite and lipid measurements 
 

Metabolomics and lipidomics are relatively new directions in the “omics” field. 

Metabolic processes are believed to be strongly dependent on the environmental factors, 

which results in technical difficulties or at least the need to choose between several 

options of metabolic measurement designs. By contrast, lipids are more stable in terms of 

environmental and technical variability. Furthermore, the recent technological progress in 

mass spectrometry analysis has allowed the rapid evolution of metabolite and lipid 

biomedical studies (Yang et al., 2016).   

The most commonly used methods for metabolite and lipid detection are liquid and 

gas chromatography (LC and GC) coupled with mass spectrometry (MS). Generally, the 

chromatographic separation of non-polar compounds is commonly conducted using LC to 

ensure greater coverage, whereas compact polar compounds are separated using GC 

technique. Before a GC run, polar groups in the compounds can be chemically 

derivatized to convert them into non-polar ones in order to make the molecules more 
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volatile (Dasgupta et al., 2014). This changes the molecule’s mass and structure, thus 

influencing further data analysis.  

Due to chemical differences, the molecules of the sample are differentially retained 

in the chromatographic column and eluted at the different times, resulting in retention 

time differences, which allows separate downstream molecule capture and detection. 

After being eluted from the column, the molecule is ionized and the charged form or the 

ion fragments are detected in the mass spectrometer as mass-to-charge ratio (m/z). Mass-

to-charge ratio, taken together with retention time, could be used for the compound 

differentiation in the data analysis steps (Gohlke, 1959; Yang et al., 2016).  

Depending on the experimental aim, one of two approaches in terms of analytical 

coverage can be chosen: targeted or global/untargeted analysis. Targeted analysis is 

powerful for studying defined sets of chemical compounds and specific metabolites. 

Untargeted analysis increases the coverage of detected molecules and allows the mapping 

of observed abundance differences to metabolic pathways (Hyötyläinen et al., 2014; 

Yang et al., 2009). Since the untargeted approach could be used to reconstruct the entire 

molecular phenotype, it is the preferred method for metabolome and lipidome analysis.  

Modern human population diversity 
 

Population variation is driven by natural selection under the influence of 

environmental factors. It provides population adaptation and underlies phenotypically 

beneficial traits. The Human Genome Project demonstrated that human individuals can 

be clustered into populations based on genetic data (Rosenberg, 2002; Turakulov et al., 

2003). One of the methodological approaches is to evaluate single nucleotide 
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polymorphisms (SNPs) of the whole or part of the genome and determine the loci that 

differentiate inter-population differences. It was confirmed that only 10-15% of genetic 

differences explain between-population variation and 85–90% of differences occur within 

a population (Romualdi et al., 2002; Rosenberg, 2002). The overall genetic divergence, 

both at the SNP and copy number variation (CNV) levels, exposes the greatest variation 

within Sub-Saharan Africa with the rest of the human populations showing gradual out-

of-Africa divergence (White et al., 2003). Among this neutral variation, which reflects 

the migration history of the contemporary human populations (Nielsen et al., 2017), there 

are several well-known examples of adaptive genetic differences, specific to particular 

populations or population groups. A typical example of positive selection in a population 

is a FY*O allele at the Duffy locus ensuring a resistance to malaria (Livingstone, 1984), 

which is fixed in sub-Saharan Africa but rare elsewhere in the world.  

A similar example is the rs3827760 SNP: East Asians and native Americans unlike 

Europeans and Africans, carry a non-synonymous SNP in the coding region of the EDAR 

gene (Sabeti et al., 2007), which is involved in hair, teeth and exocrine gland 

development (Botchkarev et al., 2005). Experiments on mice models showed that Asian 

amino acid substitution resulted in thicker hair and larger salivary glands (Shie Hong 

Chang et al., 2009). 

In addition to genetic variation, differences among human populations have been 

shown at the levels of DNA methylation (Fraser et al., 2012), in the expression of 

protein-coding genes (Hughes et al., 2015), and expression of small non-coding RNA 

(microRNA) (Xiangyun Chang et al., 2014; Rawlings-Goss et al., 2014). Most of the 
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differences in gene expression were investigated in lymphoblastoid cell lines 

(Lappalainen et al., 2013; Stranger et al., 2012), but also in the placenta (Hughes et al., 

2015) and whole blood (Saw et al., 2017). One study assessed inter-populational gene 

expression differences in the brain in the prefrontal cortex of five East Asians, five 

Western Europeans, and four African Americans (Khrameeva et al., 2014). Despite a 

limited sample size, the study indicated the presence of population differences at both 

mRNA and lipid abundance levels.  

This observation is intriguing, given the population differences were previously 

reported in neuroanatomical brain composition in cortical thickness, volume, and surface 

area in the multiple regions (Bai et al., 2012; Tang et al., 2018). Moreover, the population 

differences were reported for episodic and semantic memory and executive functioning 

(Early et al., 2013; Masel et al., 2009), as well as the probability of neurological 

disorders. Specifically, African Americans were reported to have a lower risk of 

Parkinson’s disease (Hemming et al., 2011; Wright Willis et al., 2010) and amyotrophic 

lateral sclerosis (Gundogdu et al., 2014), but might be more at risk for Alzheimer’s 

disease (Chin et al., 2011). 

As previously discussed, differences in the abundance of polar metabolites in the 

prefrontal cortex have been linked to neuropsychiatric disorders – including 

schizophrenia and psychosis – and have also been associated with cognitive abilities, 

such as memory and orientation (Crabtree et al., 2018, 2016; Goldberg et al., 2001). 

Moreover, the lipid and metabolite composition of the human brain was demonstrated to 

undergo substantial age-dependent rearrangements, especially during early postnatal 
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development (Fu et al., 2011; Li et al., 2017; Rouser et al., 1968). These observations 

suggest that lipidome and metabolome composition of the human brain is an important 

component of the brain functionality, as well as a potentially important element 

determining brain disorder susceptibility and treatment efficiency.  

Introgression of ancient human population 
 

Recent studies demonstrated that the origin and ancient admixture of Homo sapiens 

influences the genetic similarity and differences of modern populations. Fossil and 

archaeological discoveries coupled with genetic variation analysis have shown that the 

modern Homo sapiens species emerged in Africa around 120 000 years ago, left Africa 

about 70 000 years ago and cohabitated with contemporaneous hominin species, such as 

Homo erectus and Homo neanderthalensis. Anatomically modern humans spread across 

the entire globe, reaching Australia approximately 40 000 years ago and the Americas 

approximately 16 000 years ago.  

Modern humans differ dramatically from their closest evolutionary relatives in a 

number of ways. Most strikingly, they have developed rapidly changing and complex 

cultures that have allowed them to become much more numerous than any other primates 

and hominins and to spread to almost all parts of the planet. This unique historical 

development has at least to some extent biological roots. Although the expansion covered 

a variety of environments, the genetic variation is higher in African populations 

compared to the variation in non-Africans (Tishkoff et al., 2002). This might be due to a 

small number of individuals leaving Africa to populate the rest of the globe, carrying only 
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a fraction of the genetic variation present in African individuals (Lohmueller et al., 

2008).  

However, although large numbers of traits have been identified as being unique to 

humans or been suggested to be so (Tomasello, 2019; Varki, 2005), it has proven difficult 

to identify the genetic and biological underpinnings of such traits. Recent studies 

demonstrated the presence of Neanderthal genetic material in the genomes of all modern 

humans living outside of sub-Saharan Africa. Neanderthal introgression within the 

modern non-African human genomes varies from 1.5 to 4 percent in each individual 

(Sankararaman et al., 2014). The admixture with Neanderthals was shown to bring a 

higher risk of type–II diabetes in South Asians and native Americans (Williams et al., 

2014). Moreover, the population origin of an individual was shown to be related to the 

incidence of gestational diabetes (Makgoba et al., 2012).  

The number of DNA mutations that distinguish modern humans from Neanderthals 

is relatively small: only 96 amino acid substitutions in 87 proteins (Prüfer et al., 2014). 

Functional annotation of these 87 genes is incomplete and does not reveal the specific 

enrichment. To date, none of these amino acid substitutions have been linked to a 

function.  

Thus, detailed study of each protein carrying human-specific substitutions may 

shed the light on the evolution of modern humans. For example, if we consider that brain 

development played a crucial role in the evolution of modern humans, the VCAM1 gene 

is involved in the maintenance of neural stem cells in the adult subventricular zone 

(Kokovay et al., 2012) and five genes are expressed in the ventricular zone (CASC5, 
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KIF18A, TKTL1, SPAG5, VCAM1) and are associated with the mitotic spindle and the 

kinetochore (Prüfer et al., 2014), which might have a functional role in neurogenesis 

(Fietz et al., 2011).   

One of the amino acid substitutions separating modern humans from Neanderthals 

occurred in the adenylosuccinate lyase (ADSL) protein. ADSL is a homotetrameric 

complex where three monomers contribute to each active site. The gene encoding ADSL 

in humans is located on chromosome 22q13.1–13.2 (Fon et al., 1993). ADSL cleaves 

adenylosuccinate (S-AMP) into adenosine monophosphate (AMP) and fumarate. It 

further cleaves succinylaminoimidazole carboxamide ribotide (SAICAR) into 

aminoimidazole carboxamide ribotide (AICAR) and fumarate (Marie et al., 2002). The 

compounds AMP, IMP, and GMP that occur at lower levels in the prefrontal cortex of 

humans than in chimpanzees and macaques are situated downstream of ADSL in the 

purine biosynthesis pathway, suggesting that a change in ADSL sequence could be the 

cause of reduced tissue concentrations of these compounds. 

The amino acid substitution in ADSL results in an alanine to valine substitution at 

position 429 in the protein (A429V) and is present in almost all present-day humans 

whereas Neanderthals, Denisovans and all other primates, as well as most mammals, 

carry an alanine residue at position 429. The substitution is located in a protein domain 

that forms part of the substrate channel over the active site of the enzyme (Ray et al., 

2012) (Figure 1). Amino acid substitutions close to these positions causes lowered 

enzymatic activity and/or lower enzyme stability resulting in adenylosuccinate lyase 

deficiency in humans (Marie et al., 2002). This condition is characterized by symptoms 
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that include psychomotor retardation, autism, epilepsy (Jurecka et al., 2015; Nassogne et 

al., 2000) and alterations in brain structures as observed with magnetic resonance 

imaging (Jurecka et al., 2012; Zulfiqar et al., 2013).  The A429V substitution is therefore 

an attractive candidate for having functional consequences for metabolic variations in 

modern humans. 

 

Figure 1. Molecular structure of human tetramer colored by chain. The position of the Val429 

residue which distinguishes human ADSL from Neanderthal-like ADSL is indicated in one 

subunit by a dark circle. 

Given the ability to detect such amino acid substitutions and other genetic 

differences between humans described above, we aim to investigate the differences 

between three contemporary human populations and Neanderthals. Using mass-

Active site 

Val429
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spectrometry approach, we can determine what, if any, variations exist in the brain 

metabolomes and lipidomes of these populations. 
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Chapter 3. Results 

Differences in metabolome organization in modern populations  

Lipidome and metabolome variation analysis  
 

We assessed the abundance of lipids and polar metabolites in the prefrontal cortex 

samples of 146 Han Chinese (HC), 97 Western European (WE), and 60 African 

American (AA) individuals. For each population, the ages of individuals covered most of 

the lifespan: from birth to 71 years of age (Figure 2A). For each individual, the lipids and 

metabolites were extracted from the same cortical gray matter sample dissected from the 

dorsolateral region of the prefrontal cortex. Tissue preservation of the samples was 

assessed using postmortem interval duration (PMI) and RNA integrity number (RIN) 

measured for a subset of individuals. 

The lipid abundance measurements were conducted using liquid chromatography 

coupled with untargeted mass spectrometry (LC-MS) in positive and negative ionization 

modes. The LC-MS measurements yielded a total of 1,670 distinct lipid peaks not 

affected by the confounding factors, such as extraction batch, mass spectrometry loading 

order, and PMI. Among them, 900 peaks were computationally annotated based on mass-

to-charge ratio values using LIPID MAPS Structure Database (LMSD) (Sud et al., 2007). 

All analyses of the lipidome population differences were based on the intensities of 1,670 

detected lipids unless indicated otherwise. 

The metabolite abundance measurements were conducted using gas 

chromatography coupled with mass spectrometry (GC–MS). The GC-MS measurements 
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yielded 258 confounder-free compounds identified and annotated using previously 

analyzed metabolite standards. All analyses of the metabolome population differences 

were based on the intensities of these 258 metabolites unless indicated otherwise. 

The overall lipidome variation analysis conducted using t-distributed stochastic 

neighbor embedding (t-SNE) based on the abundance of 1,670 detected or 900 

computationally annotated lipids showed strong separation of the youngest individuals 

from the rest. The same result was observed based on the abundance of 258 detected 

polar metabolites (Figure 2C). Nonetheless, the trend distinguishing samples of different 

populations was also apparent in both the lipid and metabolite data. Correspondingly, the 

variation analysis of the lipid abundance levels indicated that age explained 28% of the 

total variation and population identity 3%. Other factors, such as sex, RIN, and PMI each 

explained less than 1% of the total lipidome variation. Similarly, for the polar 

compounds, population identity explained 6% of the total variation, and the other factors 

less than 2.5% each. 
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Figure 2. Assessment of the lipid and metabolite abundance variation.  

(A) Age distribution of samples. Each circle represents an individual. The circle colors 

correspond to populations: red – Han Chinese (HC), green – Western Europeans (WE), blue – 

African Americans (AA). The background color delineates two datasets: the darker shade – 

samples with ages less than 5 years (DS:0-4) and the lighter shade – samples with ages greater 

than 5 years (DS:5-71). Lipid (B) and metabolite (C) abundance variation among individuals 

visualized using t-distributed stochastic neighbor embedding (t-SNE). Each circle represents an 

individual. The sizes of the circles are related to the individuals’ age – larger circles represent 

older individuals. Colors represent populations, as described above. 
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Statistical analysis of lipid and metabolite differences among 
populations 
 

Consistent with previous reports (Li et al., 2017), variation analysis indicated the 

presence of strong age-dependent lipidome and metabolome differences between samples 

of younger ages and the remaining individuals (Figures 2B, 2C). To reduce the influence 

of age on the inter-population variation, we separated the samples into two datasets: 

DS:0-4 (n = 74, ages less than five years), and DS:5-71 (n = 229, ages from five to 71 

years) (Figure 2A). We then searched for lipid abundance differences characteristic of 

each population by comparing it to the other two populations. To equalize the statistical 

power, we subsampled the same number of individuals per population in every 

comparison 100 times (n = 13 for DS:0-4 and n = 25 for DS:5-71) and identified lipids 

showing population-specific abundance levels in each subsampling. In DS:0-4, this 

analysis revealed no lipid abundance differences specific to any particular population, 

with a marginally higher number of differences specific to WE (median = 1 for WE, 

median = 0 for HC and AA, t-test, Benjamini-Hochberg corrected p < 0.05; Figure 3A). 

By contrast, in DS:5-71, HC population differed from the other two by the median of 90 

lipids, while no lipids showed abundance levels specific to WE and AA in the average of 

100 sample subsets (t-test, Benjamini-Hochberg corrected p < 0.05; Figure 3A). The 

specific lipidome behavior of HC population in DS:5-71 was not due to the difference in 

statistical power between DS:5-71 and DS:0-4, as shown by subsampling the same 

number of individuals in both datasets (Figure 3A). Restricting the analysis to well-

preserved DS:5-71 samples defined based on RNA conservation and an empirically 
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determined RNA quality threshold (Gallego Romero et al., 2014) (RIN > 7, n = 82) 

retained an evident excess of the HC-specific lipid abundance differences, compared to 

AA and WE population-specific differences. Similarly, exclusion of lipids showing even 

weak correlation between the abundance and PMI duration (definition of PMI effect 

threshold relaxed to: absolute value of correlation coefficient r = 0.137, p = 0.1) did not 

alter the results.  

Analysis based on all DS:5-71 samples (without subsampling) yielded 395 lipids 

showing abundance levels specific to HC population (t-test, Benjamini-Hochberg 

corrected p < 0.05). Notably, the comparison to an independently generated published 

adult cortical lipidome dataset consisting of five HC, five WE, and four AA individuals 

(Khrameeva et al., 2014) confirmed the identified lipid concentration differences specific 

to HC population (Spearman correlation test, p = 0.003). 

The same statistical analysis applied to the polar metabolite dataset produced 

similar results. While there were no metabolite concentration differences specific to 

either of the three populations in DS:0-4 the median of 93 metabolites showed abundance 

levels particular to HC, 23 – to WE, and 14 – to AA in DS:5-71 (t-test, Benjamini-

Hochberg corrected p < 0.05; Figure 3B). Similar to the lipid data, the excess of 

metabolic differences particular to HC population in DS:5-71 remained robust after 

subsampling the same number of individuals in both DS:5-71 and DS:0-4 (Figure 3B). 

Restriction of analysis to well preserved DS:5-71 samples (RIN > 7, n = 80) or exclusion 

of polar metabolites showing even weak correlation between the abundance and PMI 

duration (definition of PMI effect threshold: absolute value of correlation coefficient r = 
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0.170, p = 0.1) retained an evident excess of the HC-specific metabolite abundance 

differences.  

Analysis based on all DS:5-71 samples (without subsampling) yielded 166 HC-

specific metabolite differences (t-test, Benjamini-Hochberg corrected p < 0.05) 

 

Figure 3. Lipidome and metabolome population-specific differences in the DS:0-4 and DS:5-

71 datasets. 

Number of lipids (A) and metabolites (B) with significant abundance differences between one 

population and the other two combined, estimated by subsampling n individuals from each of the 

three populations 100 times. The numbers of subsampled individuals n used in analysis are 

marked on top of the panels. The results are shown for DS:5-71 (left, n = 25), DS:5-71 with same 

number n as DS:0-4 (middle, n = 13), and DS:0-4 (right, n = 13). The colors represent 

populations: red – Han Chinese (HC), green – Western Europeans (WE), blue – African 

Americans (AA).  
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The mean Area Under the ROC Curve (AUC) estimates for the lasso logistic regression models 

separating samples from one population and samples from the other two combined calculated 

using different values of hyperparameter C (inverse of regularization strength). The models were 

based on the lipid (C) and metabolite (D) abundance in DS:5-71 samples. Lines correspond to the 

means of AUC values estimated on different test sets. The shaded areas indicate the standard 

deviations of AUC values estimated on different test sets. The colors correspond to populations, 

as described above.  

Population classification using machine learning 
 

To test whether the populations could be distinguished reliably based on lipid or 

polar metabolite abundance values, we classified samples using lasso logistic regression 

model. Because of the strong effect of age on compound abundances resulting in the 

separation of samples from very young individuals (Figures 2B, 2C), the classification 

procedure was applied to DS:5-71 only and not to the complete set of samples. The 

classification procedure was not applied to the DS:0-4 separately because of insufficient 

sample size. 

For the lipid data, the resulting model accurately separated the HC population 

from the other two (area under the curve AUC = 0.97) (Figure 3C). The separation of AA 

population, as well as WE population, was notably less accurate (AUC = 0.8 and 0.76, 

respectively), although still significantly better than expected by chance (Figure 3C). We 

used stability selection procedure (Meinshausen et al., 2008) to define lipid predictors of 

HC population. These predictors (n = 200) overlapped well with statistically defined lipid 

abundance differences (hypergeometric test, p =3.5×10-54). Notably, the abundance 
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differences of lipid predictors between HC and the other two populations correlated with 

the differences determined using an independent published dataset (Khrameeva et al., 

2014) (Spearman correlation test, p = 0.005). Furthermore, validation of the model on 

this independently generated published dataset resulted in good classification of HC 

individuals (AUC = 0.89). It has to be noted that model accuracy estimates were limited 

in this case by the size of the published dataset. 

Application of the logistic regression model to metabolite DS:5-71 dataset similarly 

resulted in significantly higher classification accuracy for HC individuals: AUC = 0.94 

compared to AUC = 0.72 for WE, and AUC = 0.74 for AA (Figure 3D). Stability 

selection procedure yielded 50 metabolite predictors of HC population, which overlapped 

well with the statistically defined differences (hypergeometric test, p = 0.002). 

Age dynamics of population difference 
 

The statistical analysis of lipid and metabolite abundance yielded detectable HC-

specific differences only in DS:5-71 samples. Similarly, the accuracy of the logistic 

regression model trained on DS:5-71 data remained mostly unchanged when applied to 

classification of AA and WE samples with ages from 0 to 4 years, but dropped drastically 

when applied to classification of HC samples from 0-4 years age interval. Notably, this 

drop in accuracy was detected at approximately two years of age, even though all samples 

with age < 5 years were excluded from the training set of the logistic regression model. 

These results suggest that the detected HC-specific differences cannot be generalized to 

HC individuals younger than two years of age.  
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To assess the relationship between the population differences and individuals’ 

age, we divided all individuals into six age groups A1-A6, separated at 1, 5, 15, 25, 45 

years of age and containing 24-75 individuals each (Figure 4A). We then subsampled the 

same number of individuals of each population within each age group (n = 4) 1,000 times 

and identified top 50 lipids or top 20 metabolites showing the most consistent abundance 

differences between each population pair in each age group (t-test, nominal p < 0.1). We 

used the union of these lipids or metabolites to construct a set of age-unbiased 

population-distinguishing compounds. The distances calculated from correlations of 

population-mean abundances of these compounds showed strong age-dependent behavior 

of HC-related differences for both lipids and metabolites (Figures 4B, 4C). Specifically, 

the distances between HC and the other two populations increased substantially after the 

first year of life and then decreased after 20-30 years of age (Figures 4B, 4C). Thus, age 

groups contributed unevenly to the separation of HC samples from the other two 

populations in the DS:5-71 sample set, with the strongest contribution provided by the 

young adult groups. This pattern was even more pronounced for HC-specific compound 

abundances. By contrast, AA-WE distance did not show any substantial increase along 

the lifespan (Figures 4B, 4C). Additionally, among all six age groups, the HC-AA and 

HC-WE distances were the smallest in A1 age group. This result is consistent with 

inaccurate logistic regression model performance for classification of HC individuals 

younger than two years of age. 
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			Figure 4.  The age-dependent dynamics of lipidome and metabolome differences between 

populations. 

(A) Sample distribution across six age groups. Each circle represents an individual. The colors 

represent populations: red – Han Chinese (HC), green – Western Europeans (WE), blue – African 

Americans (AA). The x-axis labels indicate the age groups’ boundaries in years. 

Pairwise population differences estimation based on the abundance of age-unbiased population-

distinguishing lipids (B) and metabolites (C). Differences were calculated in each age group A1-

A6 using correlations of population-mean abundances based on four samples subsampled from 

each population. Y-axis represents distance values calculated as one minus these correlation 

values. Circles represent the median distance values estimated by subsampling within each age 

group 10,000 times. Vertical lines extend to the upper and lower quartile values in each age 

group. The dotted blue line represents a smooth spline curve fitted to the average of the HC-WE 

and HC-AA distances. The dashed orange line represents a smooth spline curve fitted to the WE-
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AA distance. (D) Pathway enrichment analysis. Shown are the top 19 pathways (Benjamini-

Hochberg corrected hypergeometric test p < 0.001) that show enrichment of genes linked to HC-

specific lipids and metabolites. HC-specific lipids and metabolites defined from stability selection 

were used in this analysis. Circle sizes represent the number of genes linked to HC-specific lipid 

and metabolite compounds. Circle colors correspond to Benjamini-Hochberg corrected 

hypergeometric test p-values. Pathways associated with lipid metabolism are shaded in light blue.  

Functional characterization of HC-specific lipid and metabolite 
differences 
 

We assessed potential functions of lipids and polar metabolites distinguishing adult 

HC individuals by testing their enrichment in functional pathways defined by KEGG 

(Kyoto Encyclopedia of Genes and Genomes) (Kanehisa et al., 2017). The enrichment 

analysis involved 900 computationally annotated lipids and 258 polar annotated 

metabolites and was based on the comparison between genes linked to HC-specific 

compounds and genes linked to the other detected compounds according to KEGG 

database. The analysis yielded a total of 35 significantly enriched pathways, including ten 

pathways associated with amino acid metabolism and seven pathways associated with 

lipid metabolism (hypergeometric test, Benjamini-Hochberg corrected p < 0.05). 

Notably, all seven pathways associated with lipid metabolism were present in the top 19 

enriched terms (hypergeometric test, Benjamini-Hochberg corrected p < 0.001; Figure 

4D).  
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Differences in metabolome organization in ancient populations  

Metabolic changes unique to humans 
 

Due to absence of samples for metabolic experiments, the task to evaluate lipids 

and metabolites of ancient humans is challenging. We firstly decided to understand the 

ancient metabolome fingerprint and identified metabolites that have changed their 

concentration in humans relative to monkeys and apes. We measured compound 

concentrations in prefrontal cortex, primary visual cortex, cerebellum, skeletal muscle 

and kidney in four humans, four chimpanzees, and four macaques using mass 

spectrometry coupled with capillary electrophoresis (CE-MS), a technique suitable for 

detection of small hydrophilic compounds. The number of metabolites annotated in the 

five tissues varied between 166 and 197, 160 and 209, and 145 and 192 in the three 

species, respectively (Figure 5A,B).  

In each tissue, we identified metabolites that did not differ significantly in 

concentrations between the macaques and the chimpanzees, but differed significantly, 

and in the same direction, between humans and macaques as well as between humans and 

chimpanzees. In skeletal muscle and kidney we find no such metabolites. In contrast, in 

two of the three parts of the brain analyzed we find metabolites that differ in their 

concentration in humans relative to the other two primates.  

In cerebellum, 22 metabolites have higher concentrations in humans whereas no 

metabolites have lower concentrations. Eighteen of the 22 metabolites are amino acids. In 

prefrontal cortex we detected five metabolites with lower concentrations in humans and 

none with higher concentrations (BH-corrected, p < 0.05). Three of the five metabolites 
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are purines (inosine monophosphate (IMP), guanosine monophosphate (GMP), adenosine 

monophosphate (AMP)) and the other two are NAD+ and UDP-N-acetylglucosamine. 

 

 

Figure 5. CE/MS metabolomic data of three primate species.  

(A) Data overview. Metabolite concentrations were measured in the prefrontal cortex (PFC), 

primary visual cortex (PVC), cerebellum (CB), kidney and muscle in three primate species, 4 

individuals of each: rhesus macaque, chimpanzee and human.  

(B) The relationship among all tissue samples and among the brain tissue samples plotted in two 

dimensions using a multidimensional scaling algorithm (MDS). MDS plots show Euclidean 
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distances based on concentrations of detected metabolites. Symbols represent species, colors 

represent tissues, and points represent individual samples.  

(C) Enrichment of pathways associated with metabolites downregulated and upregulated in 

human. Plots show the cumulative effect calculated as -log10 Fisher’s test p-value for pathways 

across tissues (y-axis) and the number of detected metabolites in each pathway (x-axis). Size of 

the circle is proportional to -log10 p-value.  

(D) The simplified schematic representation of de-novo purine biosynthesis pathway showing 

human-specific changes in three brain regions.  

Metabolic pathways unique to humans 
 

To identify metabolic pathways that may be more or less active in humans than in 

other primates, we linked metabolites with higher or lower concentrations in humans 

compared to both chimpanzee and macaque to genes and metabolic pathways using the 

KEGG database.  

Between 8 and 12 pathways are associated with higher metabolite concentrations in 

the five human tissues. Out of eight pathways identified in the prefrontal cortex, seven 

involve amino acid metabolism, and seven and eight out of nine pathways involve amino 

acids in the visual cortex and the cerebellum, respectively. In muscle and kidneys, seven 

and five of the eleven and 12 pathways identified, respectively, also involve amino acid 

metabolism. Thus, several aspects of amino acid metabolism seem to be increased in 

humans relative to other primates.  

Between four and six pathways are associated with lower metabolite concentrations 

in the five tissues. Amino acid and peptide metabolism make up one to three of these 
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pathways in the different tissues, suggesting that amino acid metabolism has changed in 

several ways in humans relative to the other primates, resulting in that metabolites are 

present in increased as well as decreased concentrations. 

In contrast, metabolites in two pathways are consistently present at lower rather 

than higher concentrations in humans. One of these pathways is oxidative 

phosphorylation, which is between the two top pathways that show decreased metabolite 

concentrations in all three brain regions analyzed. Because oxidative phosphorylation is 

not affected in muscle and kidneys it seems that the human brain differs from ape brains 

in that oxidative phosphorylation in mitochondria is less active.  

The second pathway that stands out in all five tissues is purine biosynthesis where a 

number of metabolites are present at lower levels (Figure 5C). Thus, purine biosynthesis 

is decreased in humans relative to apes in the brain as well as in other organs. If we focus 

on a more narrow definition of the purine biosynthesis pathways (Marie et al., 2004) 

(Figure 5D), a significant decrease in purine biosynthesis is seen in the three brain 

regions and not in muscle and kidney. Furthermore, three of the five metabolites, which 

individually show significant human-specific concentration decreases in prefrontal 

cortex, IMP, GMP and AMP, are end products of purine de novo biosynthesis (Figure 

5D). Thus, purine biosynthesis stands out as down-regulated in humans, particularly in 

the brain. 

The metabolome of the humanized Adsl mice  
 

To investigate if the A429V in ADSL substitution may be involved in the reduced 

purine biosynthesis seen in humans we introduced a nucleotide substitution resulting in 
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this amino acid substitution into the Adsl gene of a mouse. Adjacent to the amino acid of 

interest, at position 428, rodents carry an arginine residue, whereas other mammals 

including primates carry glutamine. To avoid possible effects of the rodent-specific 

arginine residue on the function of the neighboring amino acid at position 429 we in 

addition introduced a nucleotide substitution resulting in an R428Q substitution in the 

Adsl gene of a C57BL/6 mouse by homologous recombination. The two mutations 

segregate in Mendelian ratios in the mice. Animals heterozygous and homozygous for the 

two substitutions show no overt phenotypic difference to their wild type littermates.  

We analyzed the metabolome of the nine tissues (prefrontal cortex, cerebellum, 

lung, liver, heart, kidney, muscle, spleen, testis) from 9-12 adult homozygous humanized 

and their wild-type littermates by GC-MS (Figure 6A). We similarly analyzed the eight 

tissues from 10-12 one-week-old pups. The number of metabolites detected varied 

between 176 and 273 in the adult mice and 310 and 347 in the young mice. Among those, 

an average of 176 (median = 273) were detected in at least 50% of the individuals in each 

of the nine tissues. A principle components analysis using the concentrations of all 

metabolites detected revealed one to two outlier samples per tissue. These were excluded 

from further analyses. Including these samples in the analyses did not qualitatively affect 

results. 

Among the organs analyzed, only the brain showed significant differences in 

metabolite concentrations between the wild type and humanized mice. Specifically, 36 

metabolites showed significant concentration differences in cerebellum of 12-weeks-old 

mice (permutations, p < 0.05) and 45 metabolites showed significant differences in the 
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cerebral cortex of one-week-old mice (permutations, p < 0.05). Thus, the metabolic 

effects of the two mutations introduced in ADSL are particularly pronounced in the 

central nervous system.  

The concentration differences detected in cerebellum of the 12-weeks-old mice 

correlated with differences observed in cerebral cortex, even though differences in cortex 

did not pass the significance cut-off in our permutation test (Pearson correlation, r = 

0.84, p < 0.0001, n = 29). Similarly, concentration differences detected in cerebral cortex 

in one-week-old mice correlated with differences observed in cerebellum in the same 

mice (Pearson correlation, r = 0.77, p < 0.0001, n = 45). By contrast, the correlation 

between metabolic differences detected in the brain and the other tissues was weaker 

(Figure 6B). The concentration differences between wild type and humanized mice 

furthermore correlated between the one-week-old and 12-week-old mice both in cortex 

and in cerebellum (Pearson correlation, r = 0.49 and r = 0.52, p < 0.005, n = 28 and n = 

31, respectively). Thus, in the humanized mouse, the effects of the substitutions in ADSL 

are seen in the cerebral cortex and cerebellum in both young and adult animals. 
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Figure 6. GC/MS metabolomic data of humanized and wild-type mice. 

(A) Data overview. Metabolite concentrations were measured in the cortex (CR), cerebellum 

(CB), heart (HR), kidney (KD), lung (LN), liver (LV), muscle (MS), spline (SP) and testis (TS) in 

humanized and wild-type mice. Barplots show -log10 p-values of metabolite concentration 

differences between humanized and wild-type samples (Student’s test, 1000 permutations) for 1 

week- and 12 week-old mice.  

(B) Correlations between cerebral cortex and other tissues in 1 week- and 12 week-old mice. 

Colors show Spearman correlation p-values for a subset of metabolites with significant metabolite 

concentration differences between humanized and wild-type samples at the Student’s test 

corrected p-value cutoff equal to 0.05. 

(C) The simplified schematic representation of de-novo purine biosynthesis pathway showing 

metabolite concentration changes specific for humanized mice, in two brain regions. 
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Purine biosynthesis in the humanized mice 
 

In the 12-weeks-old mice, we detected six metabolites within the purine 

biosynthesis pathway. In the humanized mice, four of these metabolites had lower 

concentrations than in the wild-type mice in the cerebral cortex and all of them had lower 

concentrations in the cerebellum (binomial test for cortex and cerebellum, p = 0.04). In 

the one-week-old mice, we detected 14 metabolites in the purine biosynthesis pathway. In 

the humanized mice, 8 of these had lower concentration in the cerebral cortex and in the 

cerebellum when compared to their wild-type littermates. 

The six metabolites detected in 12-week-old mice were also detected in the primate 

brains. Four of these had lower concentrations in the human brain, including AMP and 

GMP in prefrontal cortex, the visual cortex, and in cerebellum (binomial test, p = 0.04). 

Furthermore, four of the six metabolites with lower concentrations in cerebellum in the 

humanized mice had lower concentrations in human cerebellum compared to other 

primates: AMP, GMP, inosine, and adenine (Figure 6C). Thus, several changes in 

concentrations of compounds in purine biosynthesis seen in the humanized mice 

recapitulate differences seen when the metabolomes of the human brains are compared to 

the brains of chimpanzees and macaques. 

Activity and stability of modern humanized mouse ADSL 
 

To investigate how the humanized form of the mouse ADSL enzyme may influence 

purine biosynthesis, we synthesized mouse wild-type (wt) ADSL and mouse A429V 

ADSL and inserted them in expression vectors that include N-terminal polyhistidine tags 
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(Lee et al., 2007). To analyze the enzymatic activities of the two forms of the enzyme we 

tested each of the two activities of ADSL: the conversion of SAICAR to AICAR, and the 

conversion of SAMP to AMP, in the presence of excess substrate by measuring the rate 

of production of AICAR and AMP. We found no differences in the kinetics of either 

reaction between wt and A429V ADSL (t-test, p > 0.05).  

 We next tested if the A429V substitution influences the stability of the secondary 

structure of the enzyme by measuring the circular dichroism spectra of the purified 

proteins at 222 nm while heating them from 55°C to 80°C at a rate of one degree per 

minute. We next investigated if the R428Q substitution that was introduced into the 

humanized mice together with the A429V substitution affects the conformational stability 

of the protein. To do this, we generated expression vectors that carry wild-type murine 

ADSL, ADSL with the A429V substitution, ADSL with only the R428Q substitution, and 

ADSL with the A429V substitution and the adjacent R428Q substitution. We then 

compared the secondary structure stability of all four protein variants. Mouse ADSL 

protein with alanine at position 429 was more stable than mouse ADSL protein with 

valine at position 429. The effect of the A429V substitution was not influenced by the 

presence or absence of the adjacent R428Q substitution at position 428. 

 Thus, the A429V substitution does not affect the kinetics of the murine ADSL 

enzyme. However, it destabilizes the secondary structure of the protein as it was shown 

previously in vitro (Van Laer et al., 2018). 

Validation of metabolic changes using cell lines 
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To investigate how the A429V substitution affects the metabolome of living human 

cells, we used CRISPR-Cas9 to introduce the nucleotide substitution in the ADSL gene in 

human pluripotent 409B2 cells that results in the reversion of the valine residue to the 

ancestral, Neanderthal-like alanine residue. We isolated three independent cell lines 

where we verified that the intended nucleotide substitution had occurred by sequencing a 

segment of the ADSL gene. We also isolated six independent lines that had been 

subjected to the editing procedure but did not exhibit any mutation in the sequenced DNA 

segment. We expanded 10 separate cultures of the three edited cell lines and 19 cultures 

of the control lines where position 429 in the inferred protein sequence had not been 

changed. Cell cultures metabolites were then analyzed by LC-MS in both positive and 

negative modes.  

A total of 10,673 metabolites were detected. Among these were twelve 

metabolites from purine biosynthesis and three out of these (aminoimidazole 

ribonucleotide (AIR), hypoxanthine, guanine) were present in significantly lower 

amounts in the wild type than the ancestralized cells (t-test, p < 0.01). Strikingly, out of 

nine detected metabolites downstream of ADSL, all have lower concentrations in the wild 

type cells (binom. test, p < 0.01). Thus, in human cells, the ancestral version of ADSL 

supports a higher level of purine biosynthesis than the present-day, modern human 

version. 

Comparison to chimpanzee cells 
 

To compare these results to purine biosynthesis in chimpanzees, we similarly 

analyzed nine cell cultures from three different chimpanzee pluripotent cell lines. Out of 
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1,286 metabolites that differ significantly (t-test, p < 0.01) between the human and 

chimpanzee wild type cells, three (AIR, guanosine, guanine) are in purine biosynthesis. 

The same nine metabolites as in the comparison to the ancestralized cells were detected 

in the chimpanzee cells. Similar to the situation in the ancestralized human cells, they are 

present in lower concentrations in the human than in the chimpanzee cells (binom. test, p 

< 0.01).  Thus, the reversal of the A429V substitution in ADSL in human cells results in 

an increase of purine biosynthesis similar to what is observed when chimpanzee cells are 

compared to human cells. 

Purine biosynthesis in autistic metabolome 
 

Since alteration in ADSL gene disrupts the function of the enzyme characterized by 

severe psychomotor delay and autistic features, we examined the purine biosynthesis 

pathway in ASD individuals. We compared metabolome of prefrontal cortex grey matter 

of 32 ASD patients (2-60 years old) and 40 control individuals (0-62 years old) and 

detected 1,366 metabolites not affected by experimental batch effects and post-mortem 

delay. Out of 1,366 metabolites 202 yielded significant concentration differences between 

ASD and control samples (ANCOVA, BH-corrected p < 0.05).  

Hierarchical clustering of 202 ASD-related metabolites revealed specific age-

dependent patterns clustered in the four modules. Genes linked to ASD-related 

metabolites using KEGG annotation were significantly overrepresented in a total of 16 

pathways (hypergeometric test, BH-corrected p < 0.05). Remarkably, the two pathways 

containing enzymes showing the greatest autism associated differences in substrate 

binding energy, glutathione metabolism and purine metabolism, also showed the 
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strongest enrichment of metabolites showing concentration differences in autism, as well 

as genes linked to these metabolites. Metabolites involved in glutathione metabolism, 

including glutathione itself, were predominantly located in the module 3 and showed 

lower concentrations in autism compared to controls. Metabolites involved in purine 

metabolism were predominantly located in the module 2 characterized by lower 

concentrations in autism samples peaking in young adults. Moreover, module 4, which 

contained 52 metabolites, was enriched in four of the 16 pathways, including strong 

enrichment in purine and pyrimidine metabolism pathways. 

In particular, we identified 14 metabolites from purine biosynthesis, seven of them 

show the decrease of concentrations in control unaffected by age, including AMP and 

GMP, that demonstrate consistent drop in human wild type cell lines and humanized mice 

(Figure 7). Additionally, two metabolites, adenine and guanine are decreased in controls 

of age range 10-25 years.   
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Figure 7. The simplified schematic representation of de-novo purine biosynthesis pathway 

showing metabolite concentration changes in control individuals compared to ASD individuals. 

Evolution of purine biosynthesis metabolites and ASD 
 

Similar to ancient population metabolome analysis we assessed the ASD 

metabolome placement on the evolutionary lineages. We measured metabolic abundances 

in prefrontal cortex of 40 chimpanzees (0-42 years old) together with human control and 

ASD samples in a random order. Experimental and computational procedures were the 

same as for the human samples, and resulted in 1,366 highly confident metabolites. MDS 
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analysis based on these metabolites revealed that the samples segregated predominantly 

according to age and species (Figure 8). 

  

Figure 8. Metabolic similarity of ASD, unaffected controls, chimpanzees, and macaques. 

Each circle represents an individual (grey: ASD; red: controls; blue: chimpanzees; green: 

macaques). The size of the circles is proportional to the individual’s age (smaller circles 

correspond to younger individuals) (Kurochkin et al., 2019). 

The identification of human-specific changes found 170 metabolites and human-

specific concentration differences agreed well with the differences calculated using the 

published metabolome dataset (Khrameeva et al., 2014) (Pearson correlation, r = 0.71, p 

< 0.01).  Genes linked to the metabolites were significantly overrepresented in 27 KEGG 

pathways (hypergeometric test, BH-corrected p < 0.05). In accordance with the results 
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demonstrated above, these pathways include purine metabolism and overlap significantly 

with pathways enriched in ASD-related metabolic differences (Fisher test, p < 0.01). 

Herewith, the human-specific metabolites distribution between the four ASD modules 

was not uniform. Module 1 contained fewer human-specific metabolite intensity 

differences compared with the average, while module 4 contained approximately five 

times more (Wilcoxon test, p < 0.01), additionally enriched in purine and pyrimidine 

metabolism. Moreover, the abundances of adenylosuccinate, AMP, GMP and adenosine 

share the same pattern, having concentrations in ASD samples as an intermediate 

between unaffected controls and chimpanzee samples. 
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Chapter 4. Discussion 
 

While lipids constitute the majority of the human brain’s organic material and are 

essential for brain functionality, only a handful of studies to date examined human brain 

lipidome composition (Hunter et al., 2018; Khrameeva et al., 2014; Li et al., 2017; 

Rouser et al., 1968). Among them, one study assessed lipid composition of the prefrontal 

cortex in 14 individuals representing three populations, Han Chinese (HC), Western 

European (WE), and African American (AA), suggesting possible lipid abundance 

differences among populations (Khrameeva et al., 2014). Our study expanded this work 

by including 303 individuals of different ages representing the same three populations. 

Our analysis indicates the robust presence of lipid and polar metabolite abundance 

differences distinguishing the prefrontal cortex composition of Han Chinese (HC) 

individuals from that of Western Europeans (WE) and African Americans (AA). The 

observed difference between HC individuals and the other two populations is age-

dependent: it peaks at approximately 20 years of age and is absent during the first year of 

life. The difference was robust to the sample quality variation estimated using RIN and 

PMI values, as well as to within-population variability estimated by subsampling 

individuals within populations. Furthermore, reanalysis of the lipidome data from the 

previous study based on 14 individuals (Khrameeva et al., 2014) revealed HC-specific 

differences coinciding with the lipid abundance differences detected in our study. 

 The separation of adult HC individuals from WE and AA individuals with respect 

to lipid and polar metabolite abundance composition of the prefrontal cortex is a novel 
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observation, which contrasts with genetic and gene expression distances reported among 

populations. Specifically, the three populations used in the analysis are approximately 

equidistant from one another at the genome level, given the admixed genetic background 

of AA individuals (Parra, 2007; Tishkoff et al., 2009). Similarly, no excess of HC- or east 

Asian-specific differences were reported by studies examining population-specific gene 

expression variation (Hughes et al., 2015; Rawlings-Goss et al., 2014). Nonetheless, 

some epigenetic effects, such as hypomethylation at BRSK2, were shown to be 

characteristic of East Asian individuals (Giuliani et al., 2016). Furthermore, a 

concentration pattern specific to HC was shown at the lipidome level in a study analyzing 

whole blood composition in Chinese, Malay, and Indian individuals, although most lipid 

abundance differences were reported between individuals of Indian and non-Indian 

descent (Saw et al., 2017).  

 The absence of pronounced lipid and metabolic differences distinguishing HC 

individuals during the first year of life, the period characterized by more uniform feeding 

and living routines, suggests that observed HC-specific differences might be 

environmental. On the other hand, studies examining dietary effects on different tissues, 

conducted in mice at the gene expression level (Bozek et al., 2015) and in macaques at 

the lipid abundance level (Somel et al., 2008), reported little or no detectable dietary 

effects in the brain, in contrast to non-neural tissues. Furthermore, the clustering of HC-

specific lipid and metabolite concentration differences in particular functional pathways, 

detected in our study, might imply a possible link between these differences and variation 

in brain organization, functionality, and disease susceptibility among human populations 
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(Bai et al., 2012; Hemming et al., 2011; Tang et al., 2018; Wright Willis et al., 2010). 

The exact connection between differences in lipid and polar metabolite abundance 

observed in our study and brain function or dysfunction needs further investigation, 

including evaluation of differences in lipid and polar metabolite composition between 

various cell types of the brain, as well as research on the link between functional 

properties of cellular membranes and the abundance of specific lipid compounds.  

Due to the nature of the samples used in our study, we were unable to distinguish 

between the effect of environmental and genetic factors on the inter-populational 

lipidome variation. However, decoupling the genetic and environmental effects for 

human populations, especially in studies involving postmortem tissue samples, represents 

a challenge. The WE cohort examined in our study did include samples from two 

locations, North America and Western Europe, but the environments at these locations 

are hardly distinct. Nonetheless, regardless of the cause, our study shows that the lipid 

and polar metabolite composition of the prefrontal cortex differs among populations, 

particularly in adult HC individuals.  

The presence of population-specific features of the brain molecular organization 

has implications for further investigations, including a detailed analysis of the molecular 

brain composition across multiple human individuals. Additionally, our results provide a 

basis for the design of precision medicine studies, including clinical trial customization 

and treatment selection. Such studies are essential, given the multiple indications of 

population differences in brain morphology (Tang et al., 2018), protein sequence 
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variation associated with lipid abundance (Lu et al., 2017), and differential disease 

susceptibility (Xie et al., 2017).  

While the measurement of modern population metabolic differences is a 

straightforward task, the research on ancient population metabolome is challenging. 

Genomic changes in ancient humans could point the potential source of metabolic 

differences, however, as shown for modern populations, the metabolic alterations may 

not mirror genetic variations. Analysis of metabolic differences associated with evolution 

of human lineage might also shed the light, when the whole reconstruction of extinct 

populations metabolome is hardly achievable.  

To find metabolic differences that set humans apart from their closest evolutionary 

relatives we investigated the metabolomes of the brain, muscle and kidney in humans, 

apes and monkeys. We find that steady state concentrations of many compounds involved 

in amino acid metabolism are present in higher or lower levels in humans than in other 

primates. In the future, it may be of interest to investigate the consequences of these 

human-specific metabolic features for the synthesis and catabolism of amino acids. 

Oxidative phosphorylation and purine biosynthesis are presented in lower 

concentrations in humans than in the other primates analyzed. Whereas oxidative 

phosphorylation is lower in the three brain regions analyzed but not in muscle and 

kidneys, purine biosynthesis is decreased in all tissues analyzed, although most 

drastically in brain. 

Humans and apes diverged so long ago that almost every gene carries changes that 

potentially alter its function by affecting its regulation or the structure of the encoded 
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gene product. In contrast, modern humans and Neanderthals and Denisovans diverged so 

recently that for about 90% of the genome, the two archaic human groups fall within the 

variation of present-day humans (Green et al., 2010). Furthermore, when modern and 

archaic humans met about 50 000 years ago, they interbred, resulting in that in about half 

the genome, some present-day humans carry DNA from Neanderthals (Sankararaman et 

al., 2014). The number of proteins that carry amino acid substitutions in all or almost all 

humans that differ from Neanderthals and apes is therefore only about one hundred 

(Pääbo, 2014). It is unclear if any of these substitutions have any functional 

consequences. 

The alanine to valine substitution at position 429 in ADSL is one of this small 

number of substitutions. It affects a position that is conserved as alanine in most tetrapods 

suggesting that it may be of importance. Position 429 is also located only three positions 

away from position 426, where an arginine to histidine substitution causes the most 

common form of adenylosuccinase deficiency in present-day humans (Edery et al., 2003; 

Kmoch, 2000; Maaswinkel-Mooij et al., 1997; Marie et al., 1999; Race, 2000). Further 

evidence suggesting that a change in ADSL may have been of importance in the evolution 

of modern humans comes from a screen for genomic regions that have experienced 

selective sweeps in humans after their split from Neanderthals but before the separation 

of Africans and Eurasians (Racimo, 2016). In this work, a genomic region centered 

around ADSL is among the top 20 candidate regions, although it contains also other 

genes. Furthermore, previous work has shown that the A429V substitution reduces the 

thermal stability of the ADSL protein in vitro (Van Laer et al., 2018). The A429V 
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substitution is therefore an attractive candidate for having functional consequences in 

modern humans and we decided to analyze if it might be involved in the reduced purine 

biosynthesis seen in present-day humans by investigating the function of the ancestral, 

Neanderthal-like and the derived, modern human-like forms of ADSL in vitro and in 

vivo. 

We confirm the previous finding (Van Laer et al., 2018) that the A429V 

substitution does not affect the kinetic properties of the ADSL enzyme but decreases its 

thermal stability. We show that the substitution also decreases the stability of the 

tetrameric complex of the enzyme when exposed to a denaturing agent. When introduced 

in the mouse ADSL protein, this substitution similarly reduces the stability of the 

enzyme, either alone or in conjunction with a primate-specific substitution at the adjacent 

position 428. When the latter two substitutions are introduced into a mouse, it reduces the 

enzymatic activity detected in nine tissues analyzed, most drastically in the brain, and 

results in a reduction in purine biosynthesis, thus recapitulating differences seen between 

humans and chimpanzees and macaques.  

To investigate how the A429V substitution may affect the metabolism of human 

cells, we used CRISPR-Cas9 to introduce the ancestral, Neanderthal-like substitution into 

human cells. The concentrations of all nine metabolites detected downstream of ADSL in 

purine biosynthesis are increased in human cells carrying the ancestral substitution. In 

chimpanzee cells, the same nine metabolites occur in concentrations higher than in wild-

type human cells. Notably, the expression of ADSL messenger RNA does not differ 

between human and chimpanzee cells, nor between wild type and ancestralized cells (not 
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shown). Thus, the A429V substitution is responsible for much or all of the difference in 

purine biosynthesis observed when human tissues are compared to ape and monkey 

tissues, indicating that this change in metabolism occurred in humans after their 

separation from the ancestor shared with Neanderthals and Denisovans.  

An interesting question is what down-stream effects a reduced purine biosynthesis 

in modern humans might have. In this regard, it is intriguing that the A429V substitution 

results in a reduction in phosphorylation of AMPK, a major regulator of cellular energy 

homeostasis. Reduced AMPK activity may have numerous consequences. One of these 

may be to reduce oxidative phosphorylation, raising the possibility that the A429V 

substitution in ADSL may cause not only the reduction in purine biosynthesis seen in 

modern human tissues but also the reduction in oxidative phosphorylation through the 

effect of AMPK directly on this pathway (Lantier et al., 2014; Nam et al., 2016) and/or 

through its effects on the generation of mitochondria in cells (Bergeron et al., 2001; Jager 

et al., 2007; Marin et al., 2017; Reznick et al., 2007). However, we find no evidence that 

oxidative phosphorylation is affected in the ancestralized human cells nor in the mice 

carrying the human substitution. Thus, if the A429V substitution contributes also to a 

reduction in oxidative phosphorylation in humans, it must do so in conjunction with other 

genetic changes.  

Indeed, although ADSL is expressed and functions in all tissues, it is interesting 

that the down-regulation of purine biosynthesis in humans relative to apes, and in 

humanized mice relative to wild-type mice, is most pronounced in the brain. It is also 

interesting that mutations in humans that affect enzymes involved in purine metabolism 
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have pathological consequences in the nervous system more than in other organs 

(Fumagalli et al., 2017; Micheli et al., 2011). It is thus possible that the A429V 

substitution in ADSL has contributed to human-specific changes in brain development 

and function. Future work will have to address this and other possibilities.  

Along with other specific clinical disorders and neurological problems, disruption 

of purine biosynthesis was also associated with autistic features (Jinnah et al., 2013). 

However, the exact cause of ASD remains unknown. Some researchers speculated that 

Neanderthal introgression into modern human genome could impact the ASD status 

(Mozzi et al., 2017).  

Our study also demonstrated the excess of metabolic differences clustering in 

purine metabolism in ASD. Moreover, the differences were identified to be human-

specific; the observation aligns well with the hypothesis postulating disruption of recently 

evolved cognitive mechanisms in ASD (Liu et al., 2016). Interestingly, ASD metabolite 

levels are intermediated between unaffected individuals and chimpanzees. The pattern 

mirrors the Neanderthal-like metabolite abundances being lower chimpanzees, but higher 

present-day humans abundances. Thus, ASD metabolome may inherit Neanderthal 

metabolome.  

The presence of population-specific features of the molecular brain organization 

has implications for further investigations, including detailed analysis of the molecular 

brain composition across multiple human individuals. Additionally, our results provide a 

base for design of precision medicine studies, including clinical trials customization and 

treatment selection. Such studies are important, given multiple indications of population 
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differences in brain morphology (Tang et al., 2018), protein sequence variation 

associated with lipid abundance (Lu et al., 2017), as well as differential disease 

susceptibility, including the risk of hemorrhagic stroke (Xie et al., 2017).  
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Chapter 5. Methods 

Mass spectrometry methods 

GC-MS measurements 
 

Metabolites were extracted from the frozen tissue powder by a 

methanol:water:chloroform (2.5:1:1 (v/v/v)) extraction. In brief 100 mg of frozen 

powdered tissue material was resuspended 1 mL extraction solution containing 0.1 µg 

mL-1 of U-13C6-sorbitol. The samples were incubated for 10 min at 4°C on an orbital 

shaker. This step was followed by ultrasonication in a bath-type sonicator for 10 min at 

room temperature. Finally the unsoluble tissue material was pelleted by a centrifugation 

step (5 min; 14,000 g) and the supernatant transferred to a fresh 2 mL Eppendorf tube. To 

separate the organic from the aqueous phase 300 µL H2O and 300 µL chloroform were 

added to the supernatant, vortexed and centrifuged (2 min; 14,000 g). Subsequently, 200 

µL of the upper, aqueous phase were collected and concentrated to complete dryness in a 

speed vacuum at room temperature. Extract derivatization and GC-MS measurements 

was performed according to (Lisec et al., 2006). 

The obtained metabolite concentration values (apex height of the quantitative 

compound identifier mass) were normalized within each sample to the abundance of an 

internal standard (13C sorbitol) and log10 transformed. To avoid negative values, 

metabolite/standard ratios were scaled up by factor 3,000 prior to log10 transformation. 

CE-MS measurements 
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CE-MS measurements were conducted in PFC samples of 4 humans, 4 chimpanzees 

and 4 rhesus macaques. For each sample, metabolites were extracted from the frozen 

tissue powder by 1ml methanol containing 20µM each of L-Methionine sulfone, 2-

Morpholinoethanesulfonic acid, monohydrate and sodium d-camphor-10-sulfonic acid. 

Then, 500µl of lysate was transferred to an Eppendorf tube containing 500µl chloroform 

and 200µl of Milli-Q water. 300µl of the aqueous phase, after 30 seconds of vortexing 

and 15 min of centrifugation at 4°C, was transferred to an ultrafiltration tube (Milipore). 

Concentrating the filtered liquid to complete dryness was then performed in a speed 

vacuum for 3 hours at 35°C. Just before the CE-MS analyses, the dried samples were 

mixed with 100µl of Milli-Q water containing 100µM each of 3-aminopyrrolidine and 

trimesate, and filtered with an ultrafiltration tube (Milipore) at 9,100×g for 2h at 4°C. 7µl 

of filtrate was used for the CE-MS analyses. CE-TOF-MS (Agilent Technologies) was 

then used to detect both cationic metabolites and anionic metabolites. The 

instrumentation and measurement conditions used for CE-TOF-MS were according to 

(Sugimoto et al., 2012). 

The in-house software MasterHands was used to perform peak detection, time 

alignment, and peak area integration. Concentrations of each metabolite in the samples 

were calculated based on the comparison of peak area normalized by internal standards’ 

in the sample and external standard mixture. Metabolites with concentrations detected in 

more than half of the samples were included in the following analysis. 

LC-MS measurements 
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In the LC-MS datasets, in addition to the individual cells samples, we measured 

mixtures of samples (pooled samples, EQC) after every 10th sample, providing us 

information on system performance (sensitivity and retention time consistency), sample 

reproducibility, and compound stability over the time of the MS-based analysis. 

The dried extracts were resuspended in 100 µl of ice-cold 20% aqueous solution of 

acetonitrile prior to mass spectrometry analysis. After brief rigorous vortexing the 

samples were incubated for 30 min at 4 °C on an orbital shaker followed by a 10 min 

ultra-sonication in an ice-cooled sonication bath and centrifugation for 10 min at 15.000 x 

g at 4 °C. For mass spectrometry analysis, 40 µl of supernatant was transferred to a 350 

µl auto sampler glass vials (Glastechnik Grafenroda, Germany). Chromatography 

separation of metabolites prior to mass spectrometry was performed using Acquity I-

Class UPLC system (Waters, UK). Metabolites were separated on a normal phase 

unbounded silica column RX-SIL (100 mm x 2.1 mm, 1.8 µm, Agilent, US) coupled to a 

guard precolumn with the same phase parameters. The mobile phases used for the 

chromatographic separation were water containing 10 mM ammonium acetate, 0.2 mM 

ammonium hydroxide in water:acetonitrile (95: 5(v:v)) mixture (buffer A) (pH value 8.0) 

and 100% acetonitrile (buffer B). The gradient separation was: 0 min 0% buffer A, 0.01-

15 min linear gradient from 0% to 100% buffer A, 15-18 min 100% buffer A, 18-19 min 

linear gradient from 100% buffer A to 0% buffer A, and 19-32 min 0% buffer A. After 1 

min washing with 100% buffer A the column was re-equilibrated with 100% buffer B. 

The flow rate was set to 500 µl/min. The column temperature was maintained at 32 °C. 

The mass spectra were acquired in positive and negative mode using a heated 
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electrospray ionization source in combination with Q Exactive Hybrid Quadrupole-

Orbitrap mass spectrometer (Thermo Scientific, Germany). Negative ion mode samples 

were run after the positive ion mode cohort with 6 µl injection of non-diluted samples. 

MS settings in positive acquisition mode: spray voltage was set to 4.5 kV in positive 

mode and to 3 kV in negative acquisition mode, S-lens RF level at 70, and heated 

capillary at 250 °C; aux gas heater temperature was set at 350 °C; sheath gas flow rate 

was set to 45 arbitrary units; aux gas flow rate was set to 10 arbitrary units; sweep gas 

flow rate was set to 4 arbitrary units. Full scan resolutions were set to 70 000 at m/z 200. 

Full scan target was 10e6 with a maximum fill time of 50 ms. The spectra were recorded 

using full scan mode, covering a mass range from 100– 1500 m/z. 

For quality control (TQC), a pooled sample of all metabolic extracts was prepared 

and injected 4 times before initiating the runs in order to condition the column, at least 4 

times after each sub-cohort, and after the completion of the runs. In addition, the TQC 

sample was injected every 48 sample injections to assess instrument stability and 

reproducibility.  

Computational methods 

Lipid compounds preprocessing  
 

Data alignment and pre-processing of the lipid dataset were performed using the QI 

software (Version 2.2, www.nonlinear.com). Lipid peaks with liquid chromatography 

retention times shorter than 1.5 minutes or longer than 18 minutes were excluded from 

the analysis. The upper mass-to-charge ratio cutoff was set to 1400 Da. This cutoff 

includes the vast majority of lipid classes contained in tissues, with exception of low 
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abundance lipid classes containing four fatty acid residues, such as cardiolipins (Southam 

et al., 2017). Only lipid peaks present with intensity greater than 200 in 75% of samples 

were kept in the analysis. For the remaining peaks, the intensity values smaller than 200 

were replaced by the constant value equal to 200. Lipid peaks with the same mass-to-

charge ratio observed at numerous different retention times were excluded from the 

analysis as potential contaminants. 

We further excluded lipid peaks potentially confounded by their processing order 

during mass spectrometry measurements (run order). For each lipid peak, we fitted a 

support vector regression (svr) model with Gaussian kernel (sklearn.svm.SVR PYTHON 

module, parameters: C=100,000, epsilon 0.1, gamma 0.0001) to predict the peak intensity 

based on the run order, excluding three samples with the highest intensities for a more 

robust estimation. We then calculated the coefficient of determination (R2) of this 

prediction. The top 300 lipid peaks detected in the positive ionization mode and 250 

peaks detected the negative mode with strongest run order dependency were excluded 

from the downstream analysis (R2 > 0.41 and > 0.47 for positive and negative modes 

respectively).  

The intensities of lipid compounds retained after the above-mentioned filtration 

procedures were upper-quartile normalized and log2 transformed. 

Polar compounds preprocessing 
 

Polar metabolite data analysis was performed using the TargetSearch package 

according to (Cuadros-Inostroza et al., 2009). Briefly, we describe the performed steps 

below. Settings for the peak-peaking and retention time alignment were as follows: m/z 
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range from 85 up to 750 units, intensity threshold 50 units, “smoothing” peak picking 

method, time window 10 sec. The compound annotation was performed using the Golm 

metabolome database (Hummel et al., 2007), followed by the exclusion of un-annotated 

metabolites. Common contaminant masses 147-149 m/z were excluded, top 15 intensities 

from each library spectrum were selected, retention index windows were set to 2000, 

1000, 200. Spearman correlation threshold = 0.95 was used for detection of correlating 

selective masses. The average retention time index of correlating selective masses was 

used for the calculation of compounds’ elution times. Multiple peaks corresponding to the 

same compound were collapsed based on the Spearman correlation threshold = 0.95 and 

elution time difference within 500 retention index units. For more details on the 

procedure, see (Cuadros-Inostroza et al., 2009) and TargetSearch documentation. 

The polar metabolites detected in less than 50% of the samples were excluded from 

the subsequent analyses. The remaining missing values were filled with the minimal 

intensity of the matrix. The log2 transformation of the polar metabolite intensities, linear 

regression for the experimental batch correction, and quantile normalization were applied 

subsequently to generate the table of polar metabolite intensities.  

Data filtration 
 

Both polar metabolites and lipids with intensities potentially affected by 

postmortem interval duration (PMI) were removed. The PMI effect was determined based 

on the Spearman correlation between the compound intensity values across samples and 

samples’ PMI (nominal p-value threshold <0.01). Because we expected strong effect of 

age factor on lipid and metabolite abundance, only samples of individuals with ages 
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greater than 5 years were used to estimate these correlations. The intensities of 1,670 

lipids and 258 metabolites retained after above-mentioned procedure were used for all of 

the subsequent analysis, unless indicated otherwise. Additionally, part of the analysis was 

repeated using a more stringent exclusion criterion for potential PMI effects, where 

compounds were omitted from the analysis using a more relaxed p-value threshold of 

Spearman correlation between their intensities and PMI (nominal p-value threshold < 

0.1). 

To assess the effect of sample preservation quality on the results, an additional 

analysis of the population differences was conducted using a subset of 82 samples with 

high RNA preservation (RNA integrity number (RIN) > 7). 

Sample sets definitions 
 

We defined datasets DS:0-4 and DS:5-71 as follows: samples with ages less than 5 

years were assigned to DS:0-4 (n = 74), samples with ages greater than 5 years were 

assigned to DS:5-71 (n = 229). We defined six age groups A1-A6 as follows: A1 

included samples from less than one-year-old individuals (n = 24), A2 included samples 

from 1-4 years-old individuals (n = 50), A3 included samples from 5-14 years-old 

individuals (n = 41), A4 included samples from 15-24 years-old individuals (n = 56), A5 

included samples from 25-44 years-old individuals (n = 56), and A6 included samples 

from individuals with ages greater than full 44 years of age (n = 76) (Figure 4A).  

T-distributed Stochastic Neighbor Embedding (t-SNE) analysis 
 

The t-SNE analysis was conducted using “sklearn.manifold” PYTHON module 
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with the following parameters for lipid dataset: n_components=2, perplexity=30, learning 

rate=100, metric=’correlation’, early exaggeration=100, random_state=5, and following 

parameters for metabolite dataset: n_components=2, perplexity=30, learning rate=100, 

metric=’correlation’, early exaggeration=12, random_state=0. In addition to t-SNE 

analysis based on all detected lipids, the same analysis was also performed based on 

intensities of 900 annotated lipids. 

Population specificity analysis 
 

For both polar metabolites and lipids, to identify the significant intensity 

differences between three populations within DS:0-4 and DS:5-71 datasets, we 

subsampled equal number of individuals from each of the three populations within these 

datasets: 13 samples of each population in DS:0-4 and 25 samples of each population in 

DS:5-71. We then used t-test to compare the intensities in one population to the 

intensities in the other two populations combined. In each subsampling, compounds with 

t-test p < 0.05 after Benjamini-Hochberg correction were classified as population-

specific. The subsampling procedure was performed 100 times to calculate the average 

number of population-specific differences for each of the three populations. To define 

HC-specific lipids and polar metabolites that were used in subsequent analysis, we 

performed the same procedure described above using the entire DS:5-71 dataset without 

subsampling. 

We implemented a logistic regression model with lasso regularization to predict the 

population identity using DS:5-71 samples. Specifically, we randomly selected 31 
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samples from each population in the DS:5-71. The 93 samples selected from three 

populations were then randomly split into two parts. Two-thirds of the randomly selected 

samples (n = 62) were assigned as the training set, and the remaining one-third (n = 31) 

was assigned as the test set. Centering parameters (mean value of each compound) and 

scaling parameters (standard deviation of each compound) were estimated from the 

training set. Both training and test data were normalized according to these centering and 

scaling parameters. The logistic regression model was trained on the training set to 

separate one population from the other two combined using different hyperparameter C 

values (0.01, 0.1, 1, 10, 100, 500, 1000, 2500, 5000, 10000). Each time, the area under 

the receiver operating characteristic curve (ROC AUC) performance measure was 

calculated for the predictions of the test set. This procedure was repeated 100 times to 

estimate the average performance of the classifier on different test sets. Because the 

performance of the classifier did not depend strongly on the hyperparameter C (Figures 

3C, 3D), we report performances for the arbitrarily chosen C = 1000 without the risk of 

overfitting the model to the data used for performance validation.  

We defined HC-specific compounds, both polar metabolites and lipids, using 

stability selection procedure, as described in (Meinshausen et al., 2008). Specifically, we 

randomly subsampled DS:5-71 individuals and split them into test and train sets, as 

described in the previous paragraph, followed by the construction of a HC-separating 

logistic regression model on the training set with lasso regularization and hyperparameter 

C = 1000.  Next, we identified compounds selected by the model. We performed 10,000 

iterations of this procedure to rank the compounds based on the number of iterations in 
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which they got selected by the predictive model. An arbitrary cutoff of 200 compounds 

for lipids and 50 compounds for polar metabolites was chosen to identify HC-specific 

compounds. 

Population analysis within specified age groups 
 

To analyze population divergence within specified age groups, we implemented 

classification-based and correlation-based approaches for both polar metabolite dataset 

and lipid dataset. Additionally, we selected age-unbiased population-distinguishing 

compounds that were not affected by the number of samples in the population and age 

groups. These compounds were used in the correlation-based analysis. 

For the classification-based approach, we excluded the DS:0-4 samples (age groups 

A1 and A2) at each iteration and one sample from each of the A3-A6 age groups. Using 

the remaining samples, we performed stability selection and built a logistic regression 

using the 100 top compounds to predict the population identity of the samples excluded 

during the first step. We repeated this procedure until the population identity was 

predicted for each sample at least once and calculated the mean classification accuracy 

for each sample. We then used the median accuracy within a ten-sample-wide sliding 

window, with samples sorted according to age, to estimate the performance of the logistic 

regression model depending on the samples’ age. 

Age-unbiased population-distinguishing compounds were defined as follows. For 

each population pair and each age group, four samples per population were randomly 

chosen 1,000 times. For each subsampling iteration, we performed t-test for each 

population pair and age group, and selected the compounds showing positive or negative 
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differences with p-value < 0.1. The identified positive and negative differences were 

separately ranked based on the number of occurrences across the 1,000 subsampling 

iterations. We then selected the top-ranked 25 lipids and 10 polar metabolites showing 

positive differences for the corresponding population pair and age group, and same 

number of compounds showing negative differences. A union of these lipids and 

metabolites among all population comparisons and age groups was used to define the 

age-unbiased population-distinguishing lipid and metabolite sets. 

To calculate the divergence of the three populations using correlation 

measurements, we randomly subsampled four samples in each A1-A6 age group 10,000 

times and measured the Spearman correlation between the means of the selected samples. 

The analysis was conducted using age-unbiased population-distinguishing compounds 

and HC-specific compounds (defined using stability selection procedure).  

Consistency analysis 
 

To match the lipids from the current and the published datasets (Khrameeva et al., 

2014), the retention times were aligned using a select set of retention times anchor points 

and linear interpolation between them. Lipids were matched using 5 ppm threshold and 6 

seconds retention time window. Only unique matches were retained. In this section, we 

refer to these lipids as “matched lipid compounds”. 

To assess consistency of HC differences between current DS:5-71 and published 

dataset, for each dataset we calculated mean lipid intensity values of AA and WE 

populations samples combined and the mean lipid intensity values of HC population 

samples. Next, we calculated, for current and published datasets, the fold-changes of lipid 
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intensities between HC-population and the other two by calculating differences of above-

mentioned mean values. We used Spearman correlation and HC-specific lipids contained 

in the set of matched lipid compounds to calculate correlation of these fold-changes 

between current and published datasets. 

To assess the performance of the predictive model on an external dataset, we 

trained a predictive model using current dataset and predicted population identity of 

published dataset (Khrameeva et al., 2014) samples, as follows. First, lipid intensities 

were normalized between experiments. To this purpose, 31 samples were selected from 

each population from DS:5-71. Mean and standard deviations were calculated for each 

lipid. Repeating this procedure 1,000 times, we calculated, for each lipid, an average 

centering (average of the mean values) and scaling (average of the standard deviation) 

value for the current dataset. Data were normalized according to these centering and 

scaling values. For published dataset, data were normalized using mean and standard 

deviation across samples. Because not all lipid predictors were present in published 

dataset and predictive power of a given lipid compound depends on the presence of other 

lipids in the model, we performed stability selection (Meinshausen et al., 2008) as 

described in the Methods section, but restricting the procedure to matched lipid 

compounds. This produced a ranking for the matched lipids. Next, we built logistic 

regression model with C = 1000 and lasso normalization to train a predictive model on 

DS:5-71 samples and top-ranked lipids, and predicted population identity of published 

dataset samples. Using a varying amount of top-ranked lipids, we observed that the 

performance of the model peaked at 22 predictors. 
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Lipid annotation and enrichment analysis 
 

Lipid annotation was performed using mass search with a tolerance of 5 ppm 

against the LIPID MAPS database (Sud et al., 2007). The possible adducts were set to 

[M+H]+, [M+Na]+, [M+NH4]+ in positive ionization mode, and [M-H]-, [M-H+HCOOH]-

[M-H+CH3COOH]- in negative ionization mode. For functional enrichment analysis, 

Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa et al., 2017) 

was used to link lipids and polar metabolites to genes. We used hypergeometric test to 

assess, for each metabolic pathway, the enrichment of genes linked to HC-specific lipids 

and metabolites, compared to genes linked to all annotated lipids and metabolites.   

Principal component analysis  
 

We performed principal component analysis (PCA) and multidimensional scaling 

(MDS) for each mice and primates tissue separately in order to identify and to remove 

outlier samples.  

Differential concentration test 
 

We implemented t-test to determine metabolites with concentrations significantly 

different in mice and cell lines. A permutation procedure was used to assess the false 

positive rate. Briefly, we shuffled sample labels, applied t-test to two random groups of 

samples, and repeated this procedure 1000 times. Then, a permutation p-value was used 

to estimate the ratio of permutations resulting in equal or greater number of metabolites 

with significant concentration changes at a chosen nominal significance cutoff (0.05). To 

estimate the probability of increase and decrease of metabolite concentrations, we 
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performed binomial test. Human-specific metabolites were detected by both t-test and 

ANOVA analysis. 

Total variation analysis 
 

Percent of total variation explained by factors was estimated using analysis of 

variance (ANOVA) for lipid and metabolite datasets. 

ANCOVA analysis 
 

To identify metabolites with concentration differences between ASD samples and 

unaffected controls, we used an analysis of covariance (ANCOVA) as described in 

(Hyötyläinen et al., 2014). Briefly, for each metabolite we chose the best polynomial 

regression model with age as a predictor and concentration values as a response based on 

adjusted R2 criterion. Next, we used the F-test to evaluate whether the addition of 

disease/control status parameter significantly improved this model. The test was 

performed twice, using ASD samples as a reference for choosing the best polynomial 

regression model in one run, and control samples in the other. The resulting p-values 

were adjusted by the Benjamini-Hochberg (BH) approach. If the metabolite passed the 

BH corrected p-value threshold of 0.05 in both cases, the compound was classified as an 

ASD-related metabolite.  
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Chapter 6. Conclusions 
 

Metabolomic and lipidomic studies complement genomics observations of human 

inter-population variability. However the postgenomic level signatures of variations are 

poorly explored. The results of this work reveal the presence of the metabolic and 

lipidomic differences among modern populations as well as differences between present-

day and extinct populations in the brain. The study demonstrated that metabolic 

differences might not mirror genetic and epigenetic variation among individuals, but 

display additional differences. Although the existence of population differences in brain 

lipidome composition was suggested previously its sample size prevented detailed 

analysis of these differences. Here, we conducted a more extended survey of brain 

composition variation among human populations. In addition to covering more 

individuals, the study explored the dependence of the population-specific differences on 

individuals’ age and included polar metabolites, thus assessing a level of molecular brain 

organization not explored in previous studies.      

Furthermore, in my thesis I focus on metabolic differences that influence the biology 

of modern humans. By analyzing the metabolomes of muscle, kidney and three different 

regions of the brain from humans, chimpanzees and macaques, we find that many aspects 

of amino acid metabolism differ between humans and the other two primates in all tissues 

analyzed. Among metabolic pathways, oxidative phosphorylation is less active in the 

brains of humans than the other primates and purine biosynthesis is less active in the 

human brain as well as in other tissues. In purine biosynthesis, we find that metabolites 

downstream of the enzyme adenylosuccinate lyase occur at lower concentrations in 
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humans than in the other primates. ADSL carries an amino acid substitution that is unique 

to modern humans relative to apes and Neanderthals and Densiovans and has been shown 

to affect the stability of the enzyme. By introducing the modern human-like substitution 

in the genome of mice, and the ancestral, Neanderthal-like substitution in the genomes of 

human cells, we show that this substitution is responsible for much or all of this 

metabolic change in present-day humans. We show the potential power of model 

systems, such as transgenic mice and modified human cell lines to study the metabolic 

effects of the modern human-specific alterations. Being the first metabolic reconstruction 

of modern humans molecular phenotype features, the results provide ideas for the future 

work of the human brain development and function.  
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