Skoltech
 Skolkowo Institute of Science and Technology

Skolkovo Institute of Science and Technology

BETHE VECTORS AND THEIR SCALAR PRODUCTSIN QUANTUM INTEGRABLE MODELS

Doctoral Thesis

by

ANDRII LIASHYK

CENTER FOR ADVANCED STUDIES

Supervisor
Professor Anton Zabrodin

Moscow - 2019
© Andrii Liashyk 2019

Abstract

Quantum integrable models are a special class of physical models. These models describe non trivial systems of interacting particles and at the same time they can be studied accuracy using mathematical tools. They offer us a unique training ground for a deep study of non-trivial physical phenomena explicitly.

A wide class of quantum integrable models is associated with higher rank algebras. Integrable models with symmetries of high rank appear in condensed matter physics, in particular in the $\mathrm{gl}(\mathrm{m} \mid \mathrm{n})$-invariant XXX Heisenberg spin chain, in multi-component Bose/Fermi gas [37], and in the study of models of cold atoms (the Hubbard model [33], the t-J model [34-36]). Also spin chains of higher rank are interesting in the context of computing correlation functions in $\mathrm{N}=4$ supersymmetric Yang-Mills theory [8, 9].

The role of the scalar product of Bethe vectors is extremely important in the study of correlation functions of local operators of the underlying quantum models [4, 13, 61]. One can reduce the problem of calculation of the form factors and the correlation functions of local operators to the calculation of the scalar products of the Bethe vectors [15, 16].

The study of integrable systems with high rank symmetry is still a challenging task. Until recently, such models have either not been studied at all, or have been studied under various simplifying hypotheses. The results presented in the thesis are the first in this direction.

List of publications

1. A. Liashyk, S. Pakuliak, E. Ragoucy, N. Slavnov, New symmetries of $g l(N)$-invariant Bethe vectors, J. Stat. Mech.: Theory Exp. 2019 (4), 044001
2. A. Hutsalyuk, A. Liashyk, S. Pakuliak, E. Ragoucy, N. Slavnov, Scalar products and norm of Bethe vectors for integrable models based on $U_{q}\left(\hat{g l}_{m}\right)$, SciPost Phys. 4, 006 (2018)
3. A. Hutsalyuk, A. Liashyk, S. Pakuliak, E. Ragoucy, N. Slavnov, Norm of Bethe vectors in $g l(m \mid n)$ based models, Nucl. Phys. B926 (2018) 256-278
4. A. Hutsalyuk, A. Liashyk, S. Pakuliak, E. Ragoucy, N. Slavnov, Scalar products of Bethe vectors in the models with $g l(m \mid n)$ symmetry, Nucl. Phys. B, 923 (2017) 277-311
5. A. Hutsalyuk, A. Liashyk, S. Pakuliak, E. Ragoucy, N. Slavnov, Current presentation for the super-Yangian double $D Y(g l(m \mid n))$ and Bethe vectors, Russian Mathematical Surveys 72 (1), 33, 2017

Contents

1 Introduction 4
1.1 Quantum R-matrix structure 5
1.2 Spin chain as basic example 6
1.3 Algebraic Bethe ansatz for $\mathfrak{g l}_{2}$ 8
1.4 Bethe vector and Gauss decomposition 10
1.5 Scalar product of Bethe vectors 14
1.6 Norm of eigenvector 16
1.7 Symmetry of Bethe vector 16
2 Current presentation for the double super-Yangian $D Y(\mathfrak{g l}(m \mid n))$ and Bethe vectors 24
2.1 Introduction 27
2.2 Universal monodromy matrix 29
2.3 Universal Bethe vectors 36
2.4 Monodromy matrix elements action formulas 43
2.5 Explicit formulas for the universal Bethe vectors 64
2.A Composed currents and Gauss coordinates 75
2.B Commutativity of the projection and screening operators 81
2.C Calculation of the projection 82
3 Scalar products of Bethe vectors in the models with $\mathfrak{g l}(m \mid n)$ symmetry 93
3.1 Introduction 96
3.2 Description of the model 97
3.3 Bethe vectors 99
3.4 Main results 104
3.5 Proof of recursion for Bethe vectors 111
3.6 Proof of the sum formula for the scalar product 115
3.7 Highest coefficient 119
3.A Coproduct formula for the Bethe vectors 122
3.B Action formulas 123
4 Norm of Bethe vectors in models with $\mathfrak{g l}(m \mid n)$ symmetry 130
4.1 Introduction 133
4.2 Basic notions 134
4.3 Bethe vectors and their scalar products 135
4.4 Gaudin matrix 139
4.5 Generalized model 141
4.6 Recursion for the scalar product 142
4.7 Norm of on-shell Bethe vector 145
4.A $Y(\mathfrak{g l}(m \mid n)$ representations induced from $\mathfrak{g l}(m \mid n)$ ones 147
4.B Recursion for the highest coefficient 149
4.C Residues in the poles of the highest coefficient 151
5 Scalar products and norm of Bethe vectors for integrable mod- els based on $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$ 155
5.1 Introduction 158
5.2 Description of the model 160
5.3 Bethe vectors 162
5.4 Main results 166
5.5 Proof of recursion for Bethe vectors 172
5.6 Proof of proposition 5.4.4 176
5.7 Symmetry of the Highest Coefficient 177
5.A The simplest $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$ Bethe vectors 179
5.B Comparison with known results of $U_{q}\left(\widehat{\mathfrak{g}}_{3}\right)$ based models 180
5.C Coproduct formula for the dual Bethe vectors 181
6 New symmetries of $\mathfrak{g l}(N)$-invariant Bethe vectors 187
6.1 Introduction 190
6.2 RTT-algebra and notation 191
6.3 Bethe vectors 194
6.4 Correspondence between two types of Bethe vectors 196
6.5 Symmetry of the highest coefficients 203
6.A Proof of lemmas 6.4.2 and 6.4.4 206
6.B Gauss coordinates and proof of theorem 6.4.2 208
Conclusions 213

Chapter 1

Introduction

My thesis presents the results of five articles in which I am one of the co-authors. The articles are devoted to the study of Bethe vectors and their scalar products in quantum integrable models with high rank symmetry. This research is the development of mathematical apparatus of the study of correlation functions of these systems. In fact, this thesis is completely devoted to the description of Bethe vectors and to the study of their properties.

In this Chapter I give an overview of the results of my thesis. To simplify explanation in this Chapter we consider Yangian $Y\left(\mathfrak{g l}_{N}\right)$ case [1-4] instead of super-Yangian $Y\left(\mathfrak{g l}_{n \mid m}\right)$ and quantum affine algebra $U_{q}\left(\hat{\mathfrak{g l}}_{N}\right)$ cases [2-5] considered in the rest Chapters.

1.1 Quantum R-matrix structure

Quantum integrability was discovered in 1931 by Hans Bethe [6] for Heisenberg spin chain (1.11). He discovered an exact solution to the spectral problem

$$
\begin{equation*}
H\left|\psi_{j}\right\rangle=E_{j}\left|\psi_{j}\right\rangle \tag{1.1}
\end{equation*}
$$

considering eigenstate $\left|\psi_{j}\right\rangle$ as a clever linear superposition of plane waves. We call a system integrable if its spectral problem can be solved exactly. This method now known as Coordinate Ansatz Bethe. It continues to be relevant to a multitude of widely differing problems.

One of the continuation of this method is the Algebraic Bethe Ansatz which is the basis of this work. The most fundamental structure of the algebraic Bethe ansatz is R-matrix. Depending on point of view one can perceive it a scattering matrix of some $2 \rightarrow 2$ scattering process [7-9] or as a set of structure functions of bilinear algebra which depends on spectral parameter [1-3]. This algebra is called $R T T$-algebra. Elements of the algebra can be encoded in $N \times N$ matrix $T(u)$ which is called monodromy matrix. Usually relations in the $R T T$-algebra (this algebra was introduced in [13]) are formulated as an equation in the tensor product of two finite-dimensional spaces $V_{1} \otimes V_{2}$:

$$
\begin{equation*}
R_{12}(u, v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R_{12}(u, v) \tag{1.2}
\end{equation*}
$$

Here subscripts mean tensor multiplier in which the operator acts. Here $T_{1}(u)=T(u) \otimes 1$ and $T_{2}(u)=1 \otimes T(u)$, their elements act in some space \mathcal{H} called physical space. The arguments u, v of the monodromy matrix are called spectral parameters. The spectral parameter is a complex number. The R-matrix acts in both spaces. In this Chapter we use R-matrix associated with $Y\left(\mathfrak{g l}_{N}\right)$ [24]

$$
\begin{equation*}
R_{12}(u)=u \mathbf{1}+c P_{12}, \tag{1.3}
\end{equation*}
$$

where $\mathbf{1}$ is the unity operator, P_{12} is permutation operator, and parameter c is a complex number. Yangian is $R T T$-algebra (1.2) with rational R-matrix (1.3) (such representation of quantum algebras was obtained in [3, 4]).

Let us multiply (1.2) by the inverse matrix to $R_{12}(u, v)$ and take the trace over space $V_{1} \otimes V_{2}$. Using the property of the trace one can obtain commutativity relation

$$
\begin{equation*}
[t(u), t(v)]=0 \tag{1.4}
\end{equation*}
$$

for the transfer matrix

$$
\begin{equation*}
t(u)=\sum_{i} T_{i i}(u) . \tag{1.5}
\end{equation*}
$$

Due to equation (1.4) the coefficients in a series expansion at some point u_{0} of the transfer matrix $t(u)=\sum_{k}\left(u-u_{0}\right)^{k} H_{k}$ commute

$$
\begin{equation*}
\left[H_{n}, H_{m}\right]=0 \tag{1.6}
\end{equation*}
$$

These coefficients are called Hamiltonians. One can say that the transfer matrix is a generating function of the commuting Hamiltonians of some integrable system.

Thus, the presence of R-matrix structure implies the presence of a large number of conservation laws in the system and indicates the integrability of this system.

To use algebraic Bethe ansatz approach, besides quantum R-matrix structure one needs an existence of a special vector $|0\rangle \in \mathcal{H}$ called vacuum. This vector must have several properties

$$
\begin{align*}
& T_{j i}(u)|0\rangle=0, \quad \text { with } i<j \\
& T_{i i}(u)|0\rangle=\lambda_{i}(u)|0\rangle, \tag{1.7}
\end{align*}
$$

where $\lambda_{i}(u)$ are some functions depending on the concrete quantum integrable model. The action of $T_{i j}(u)$ with $i<j$ onto vacuum $|0\rangle$ is nontrivial. In the quantum integrable models the multiple action of upper-triangular elements of monodromy matrix onto $|0\rangle$ generates a basis in the physical space \mathcal{H}.

Generalized model. In the framework of Chapter 1 we assume that $\lambda_{i}(u)$ are free functional parameters and we do not specify any of their concrete dependencies $[13,19,61]$. It means that one can find concrete quantum integrable model for any specific choice of $\lambda_{i}(u)$.

1.2 Spin chain as basic example

In the past, the structure of the R-matrix was discovered in a large number of quantum systems [33-37]. Usually it is a very non-trivial problem to find
R-matrix structure. One of the simplest examples is a spin chain. One can construct quantum integrable system inductively using general properties of R-matrix.

To construct a spin chain we use the rational $Y\left(\mathfrak{g l}_{N}\right) R$-matrix (1.3). In this case the monodromy matrix of the spin chain is

$$
\begin{equation*}
T_{0}(u)=R_{01}\left(u-\xi_{1}\right) R_{02}\left(u-\xi_{2}\right) \ldots R_{0 n}\left(u-\xi_{n}\right) \tag{1.8}
\end{equation*}
$$

Here $R_{0 i}$-matrix acts non-trivially in the space $V_{0} \otimes V_{i}$, and as unity in the rest spaces V_{j} (with $j \neq i$). The monodromy matrix acts in the space $V_{0} \otimes V_{1} \otimes V_{2} \otimes$ $\ldots \otimes V_{n}$. This space is divided into two parts: physical space $\mathcal{H}=V_{1} \otimes V_{2} \otimes$ $\ldots \otimes V_{n}$ and auxiliary space V_{0}. We consider the monodromy matrix as matrix acting in the N-dimensional auxiliary space with noncommutative elements acting in the physical space \mathcal{H}. The parameters ξ_{i} are called inhomogeneities. The monodromy matrix satisfies the $R T T$-relation (1.2).

The model described by monodromy matrix (1.8) is called the inhomogeneous $\mathfrak{g l}_{N}$ XXX spin chain. It is the most typical example of quantum integrable model with quantum R-matrix structure. It exists for any R matrix.

One can set all parameters $\xi_{i}=0$. Then, the model becomes homogeneous spin chain. To describe the quantum integrable system obtained from this monodromy matrix let us consider one very special Hamiltonian in the expansion of transfer matrix of homogeneous spin chain

$$
\begin{equation*}
H=(t(0))^{-1} t^{\prime}(0) \tag{1.9}
\end{equation*}
$$

From (1.9) one can obtain that Hamiltonian is a sum of permutations [26]

$$
\begin{equation*}
H=c \sum_{i} P_{i, i+1} . \tag{1.10}
\end{equation*}
$$

This Hamiltonian is the sum of operators, each of them acting in two adjacent spaces. This property is called ultra locality.

If size of the monodromy matrix is $N=2$, this Hamiltonian coincides with XXX Heisenberg spin chain [55, 56]

$$
\begin{equation*}
H^{X X X}=\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\sigma_{i}^{z} \sigma_{i+1}^{z}, \tag{1.11}
\end{equation*}
$$

where σ_{i} 's are usual Pauli matrices acting in the space V_{i}.
In the case of spin chain vacuum vector is $|0\rangle=\mathbf{e}_{1}^{(1)} \otimes \ldots \otimes \mathbf{e}_{1}^{(N)}$, where $\mathbf{e}_{1}^{(i)}$ is a vector $(1,0,0, \ldots, 0)^{T}$ from the space V_{i}. According to (1.7) the lower
triangular elements of the monodromy matrix annihilate the vacuum. The vacuum is eigenvector for the diagonal elements with eigenvalues

$$
\begin{align*}
\lambda_{1}(u) & =\prod_{k=1}^{n}\left(u-\xi_{k}+c\right) \tag{1.12}\\
\lambda_{i}(u) & =\prod_{k=1}^{n}\left(u-\xi_{k}\right), \quad i=2, \ldots, N
\end{align*}
$$

The monodromy matrix of the inhomogeneous XXX spin chain (1.8) satisfies all the necessary properties for the application of the algebraic Bethe ansatz approach.

1.3 Algebraic Bethe ansatz for $\mathfrak{g l}_{2}$

Let us consider how algebraic Bethe ansatz works in the most simple case of $N=2[3,44]$. In this case the monodromy matrix is 2×2 matrix

$$
T(u)=\left(\begin{array}{ll}
A(u) & B(u) \tag{1.13}\\
C(u) & D(u)
\end{array}\right) .
$$

To apply algebraic Bethe ansatz we need a vector $|0\rangle \in \mathcal{H}$ called vacuum. Vacuum should have the following properties:

$$
\begin{align*}
& A(u)|0\rangle=a(u)|0\rangle, \\
& D(u)|0\rangle=d(u)|0\rangle, \tag{1.14}\\
& C(u)|0\rangle=0,
\end{align*}
$$

where $a(u)$ and $d(u)$ are the eigenvalues of corresponding operators on vacuum.

To simplify all the next expressions let us introduce shorthand notation [41]. The symbol "bar" in \bar{u} means that it is a set of variables $\bar{u}=$ $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. The subscript i in \bar{u} means that one element of the set is excluded $\bar{u}_{i}=\bar{u} \backslash\left\{u_{i}\right\}$. We also use superscripts to denote the different sets \vec{t}, \vec{t}^{2} and so on. If some function depends on a set instead of a variable then one should understand that this expression is a product of this function over all elements in this set. One can use also this notation for function depending on two sets of variables. For example

$$
\begin{equation*}
a(\bar{u})=\prod_{u_{i} \in \bar{u}} a\left(u_{i}\right), \quad f\left(\bar{u}, \bar{v}_{i}\right)=\prod_{u_{k} \in \bar{u}} \prod_{v_{j} \in \bar{v}, j \neq i} f\left(u_{k}, v_{j}\right) . \tag{1.15}
\end{equation*}
$$

Using $R T T$-relation (1.2) with R-matrix (1.3) one can show that

$$
\begin{equation*}
\left[T_{i j}(u), T_{i j}(v)\right]=0 \tag{1.16}
\end{equation*}
$$

So, we can also extend the shorthand notation to the product of operators

$$
\begin{equation*}
T_{i j}(\bar{u})=T_{i j}\left(u_{1}\right) T_{i j}\left(u_{2}\right) \ldots T_{i j}\left(u_{n}\right) . \tag{1.17}
\end{equation*}
$$

In the case of $\mathfrak{g l}_{2}$ there is only one monodromy matrix elements acting nontrivial onto vacuum $|0\rangle$. It is upper triangular element $B(u)$. One can introduce a Bethe vector associated with set $\bar{u}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$

$$
\begin{equation*}
\mathbb{B}(\bar{u})=B(\bar{u})|0\rangle=B\left(u_{1}\right) B\left(u_{2}\right) \ldots B\left(u_{n}\right)|0\rangle . \tag{1.18}
\end{equation*}
$$

Due to (1.16) Bethe vector is symmetric in elements of set \bar{u}. We suppose that Bethe vector can become eigenvector of transfer matrix $t(u)=A(u)+$ $D(u)$. To find it out we need the commutation relations of the diagonal elements with $B(u)$. These commutation relations follow from the RTT relation (1.2):

$$
\begin{align*}
& A(u) B(v)=f(v, u) B(v) A(u)+g(u, v) B(u) A(v) \tag{1.19}\\
& D(u) B(v)=f(u, v) B(v) D(u)+g(v, u) B(u) D(v) .
\end{align*}
$$

where

$$
\begin{equation*}
f(v, u)=\frac{v-u+c}{v-u}, \quad g(v, u)=\frac{c}{v-u} . \tag{1.20}
\end{equation*}
$$

The action of the transfer matrix $t(u)=A(u)+D(u)$ on the Bethe vector (1.18) gives us the equation

$$
\begin{equation*}
t(z) \mathbb{B}(\bar{u})=\tau(z \mid \bar{u}) \mathbb{B}(\bar{u})+\sum_{i=1}^{n} g\left(z, u_{i}\right) \Lambda_{i} \mathbb{B}\left(\bar{u}_{i} \cup\{z\}\right), \tag{1.21}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau(z \mid \bar{u})=a(z) f(\bar{u}, z)+d(z) f(z, \bar{u}) \tag{1.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{i}=a\left(u_{i}\right) f\left(\bar{u}_{i}, u_{i}\right)-d\left(u_{i}\right) f\left(u_{i}, \bar{u}_{i}\right) \tag{1.23}
\end{equation*}
$$

If we set all $\Lambda_{i}=0$ then Bethe vector $\mathbb{B}(\bar{u})$ becomes eigenvector with eigenvalue $\tau(z \mid \bar{u})(1.22)$. The conditions $\Lambda_{i}=0$ are called the system of Bethe equations.

Unfortunately, generalization of this scheme to algebras of higher rank is not so simple.

In the first time formula for the Bethe vector in the $\mathfrak{g l}_{3}$ case was proposed by P. P. Kulish and N. Yu. Reshetikhin [9]. Later this formula was reformulated [18] in the following way

$$
\begin{equation*}
\mathbb{B}(\bar{u}, \bar{v})=\sum \frac{\mathrm{K}\left(\bar{v}_{\mathrm{I}} \mid \bar{u}_{\mathrm{I}}\right)}{\lambda_{2}\left(\bar{v}_{\mathrm{I}}\right) \lambda_{2}(\bar{u})} \frac{f\left(\bar{v}_{\mathrm{I}}, \bar{v}_{\mathrm{I}}\right) f\left(\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right)}{f(\bar{v}, \bar{u})} T_{13}\left(\bar{u}_{\mathrm{I}}\right) T_{12}\left(\bar{u}_{\mathrm{II}}\right) T_{23}\left(\bar{v}_{\mathrm{I}}\right)|0\rangle . \tag{1.24}
\end{equation*}
$$

Here sets of the Bethe parameters \bar{u} and \bar{v} are divided into two subsets $\bar{u} \Rightarrow\left\{\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right\}$ and $\bar{v} \Rightarrow\left\{\bar{v}_{\mathrm{I}}, \bar{v}_{\mathrm{I}}\right\}$, such that $\# \bar{u}_{\mathrm{I}}=\# \bar{v}_{\mathrm{I}}$. The sum is taken over all possible partitions of this type. The function K is Izergin determinant [29] (partition function of six-vertex model with domain wall boundary conditions)

$$
\begin{equation*}
\mathrm{K}(\bar{v} \mid \bar{u})=\prod_{i<j} \frac{c^{2}}{\left(u_{i}-u_{j}\right)\left(v_{j}-v_{i}\right)} \prod_{i, j} \frac{v_{i}-u_{j}+c}{c} \operatorname{det}_{i j}\left(\frac{c^{2}}{\left(v_{i}-u_{j}+c\right)\left(v_{i}-u_{j}\right)}\right) . \tag{1.25}
\end{equation*}
$$

Let us notice that this Bethe vector depends on two sets of variables \bar{u}, \bar{v}. All the upper triangular elements of the monodromy matrix are involved in a construction of Bethe vector. Now it is not a monomial in the elements of the monodromy matrix and the number of terms grows exponentially with the sizes of sets \bar{u}, \bar{v}. A the coefficients are extremely nontrivial.

Chapter 2 contains a generalization of the Bethe vector and its properties (like co-product property and recurrence equation for Bethe vectors) that help to apply Algebraic Bethe ansatz scheme to models with super-Yangian $Y\left(\mathfrak{g l}_{n \mid m}\right)$ symmetries.

1.4 Bethe vector and Gauss decomposition

One of the most important notions of Algebraic Bethe Ansatz is a Bethe vector. It depends on a set of complex variables called Bethe parameters. The distinguishing feature of these vectors is that they become eigenvectors of the transfer matrix provided the Bethe parameters satisfy a special system of equations (Bethe equations) (1.34). In this case we call it on-shell Bethe vector or eigenvector . Otherwise, if the Bethe parameters are generic complex numbers, then the corresponding vectors are called off-shell Bethe vector, or simply Bethe vector. In this section we deal with the universal monodromy matrix. This means that it depends only on the underlying algebra generators. For models related to higher rank symmetries, in addition to our construction there are also method based on the so-called Nested Bethe Ansatz, which was elaborated in the pioneering papers [10, 19, 20], and method based on the trace formula [30].

To define construction of the Bethe vector, that we use, one needs to consider Yangian double algebra $D Y\left(\mathfrak{g l}_{N}\right)$ [2]. This algebra can be constructed as two copies of $R T T$-algebra (1.2) with cross $R T T$-relation between these copies [21]. It is algebra generated by two monodromy matrices $T^{ \pm}$with relations

$$
\begin{equation*}
R_{12}(u-v) T_{1}^{\mu}(u) T_{2}^{\nu}(v)=T_{2}^{\nu}(v) T_{1}^{\mu}(u) R_{12}(u-v), \quad \mu, \nu= \pm \tag{1.26}
\end{equation*}
$$

We identify the monodromy matrix $T^{+}(u)$ with the previous monodromy matrix $T(u)$ (1.8) and look for the eigenvector only of the transfer matrix $t^{+}(z)=\operatorname{tr} T^{+}(z)$, but to express the Bethe vector we need to use both of monodromy matrices $T^{ \pm}$. At the very end the Bethe vector depends only on the entries of the monodromy matrix T^{+}and does not depend on the entries of the monodromy matrix T^{-}. Within particular integrable system (for example, the spin chain from the section 1.2) there is no second monodromy matrix T^{-}. It seems that T^{-}can not be constructed in the framework of the integrable system in a regular way, but T^{-}arises naturally when we consider quantum algebras. One can consider T^{-}as external algebra of symetries of the integrable system.

There are another ways to describe quantum algebras [1-4]. One of them is an approach based on Drinfeld currents [2]. In order to establish a relation between two representation of Yangian double algebra one has to use the following Gauss decomposition of the monodromy matrices [31]

$$
\begin{equation*}
T^{ \pm}(u)=\mathbf{F}^{ \pm}(u) \cdot \mathbf{K}^{ \pm}(u) \cdot \mathbf{E}^{ \pm}(u) \tag{1.27}
\end{equation*}
$$

In the above formula $\mathbf{F}^{ \pm}(u)$ are upper-triangular matrices with unities $\mathbf{1}$ on the diagonal, $\mathbf{K}^{ \pm}(u)=\operatorname{diag}\left(k_{1}^{ \pm}(u), k_{2}^{ \pm}(u), \ldots, k_{N}^{ \pm}(u)\right)$ are diagonal matrices, and $\mathbf{E}^{ \pm}(u)$ are lower-triangular matrices, again with unities on the diagonal.

The elements of matrices $\mathbf{F}^{ \pm}, \mathbf{K}^{ \pm}, \mathbf{E}^{ \pm}$should be considered as other basis elements of Yangian double algebra $D Y\left(\mathfrak{g l}_{N}\right)$ (1.26) instead of $T_{i j}^{ \pm}$. The commutation relations for the elements of matrices $\mathbf{F}^{ \pm}, \mathbf{K}^{ \pm}, \mathbf{E}^{ \pm}$follow from $R T T$-relations (1.26). Details of this connection can be found in [19, 31]. These commutation relations are given in the Chapter 2.

It turns out that the Bethe vector has a simpler presentation in terms of currents $\mathbf{F}^{ \pm}, \mathbf{K}^{ \pm}, \mathbf{E}^{ \pm}$, despite the fact that the integrable system is usually formulated in terms of $T_{i j}^{+}$.

We formulate a construction of the Bethe vector in terms of the full currents

$$
\begin{equation*}
\mathcal{F}_{i}(u)=F_{i, i+1}^{+}(u)-F_{i, i+1}^{-}(u) . \tag{1.28}
\end{equation*}
$$

We emphasize that the full currents depend on both parts of the Yangian double algebra. Our construction of Bethe vector depends on the elements of $F^{ \pm}$only.

Bethe vector depends on $N-1$ sets (of the size r_{i}) of parameters $\bar{t}^{i}=$ $\left\{t_{1}^{i}, t_{2}^{i}, \ldots, t_{r_{i}}^{i}\right\}$ associated with the simple roots of the algebra $\mathfrak{g l}_{N}$. The Bethe vector is symmetric with respect to permutations of Bethe parameters from the same sets. For brevity, we unite all the sets \bar{t}^{i} by one set \bar{t}.

Then, the construction of the Bethe vector associated with the set \bar{t} is given by

$$
\begin{equation*}
\mathbb{B}(\bar{t})=\mathcal{N}(\bar{t}) \mathrm{P}^{+}\left(\mathcal{F}_{1}\left(t_{1}^{1}\right) \ldots \mathcal{F}_{1}\left(t_{r_{1}}^{1}\right) \ldots \mathcal{F}_{N-1}\left(t_{1}^{N-1}\right) \ldots \mathcal{F}_{N-1}\left(t_{r_{N-1}}^{N-1}\right)\right)|0\rangle \tag{1.29}
\end{equation*}
$$

where the normalisation

$$
\begin{equation*}
\mathcal{N}(\bar{t})=\frac{\prod_{i=1}^{N-1} \lambda_{i}\left(\bar{t}^{i}\right)}{\prod_{i=1}^{N-2} f\left(\bar{t}^{i+1}, \bar{t}^{i}\right)} \prod_{i=1}^{N-1} \prod_{1 \leq k<l \leq r_{i}} f\left(t_{l}^{i}, t_{k}^{i}\right) \tag{1.30}
\end{equation*}
$$

Here the symbol P^{+}means projection, which annihilates all the terms with F_{i}^{-}on the left

$$
\begin{equation*}
\mathrm{P}^{+}\left(F_{i, j}^{-}(z) Q\left(\mathbf{F}^{ \pm}\right)\right)=0 \tag{1.31}
\end{equation*}
$$

where $\left.Q\left(\mathbf{F}^{ \pm}\right)\right)$means any polynomial in the elements of the matrices $\mathbf{F}^{ \pm}$.
Using commutation relation for the full current one can prove that the Bethe vector (1.29) is symmetric under permutations of the elements $t_{k}^{i} \leftrightarrow t_{l}^{i}$ of the same set \bar{t}^{i}. In the Chapter 2 we proof that this construction satisfy all required properties to be Bethe vector.

To get the formula in term of the monodromy matrix (1.8) entries one should substitute all full currents in (1.29) using equation (1.28) and using commutation relations for the entries of the matrices $\mathbf{F}^{ \pm}$reorder in the way to put all the entries of the matrix \mathbf{F}^{-}) on the left

$$
\begin{equation*}
\mathbb{B}(\bar{t})=\mathrm{P}^{+}\left(\sum_{i} Q_{i}^{-}\left(\mathbf{F}^{-}\right) Q_{i}^{+}\left(\mathbf{F}^{+}\right)\right)|0\rangle, \tag{1.32}
\end{equation*}
$$

where $Q_{i}^{ \pm}\left(\mathbf{F}^{ \pm}\right)$are polynomials in the elements of the matrices $\mathbf{F}^{ \pm}$respectively. Then we drop all the terms nonconstant $Q_{i}^{-}\left(\mathbf{F}^{-}\right)$and express all the rest F^{+}in term of $T_{i j}^{+}$using formulas inverse to the Guasse decomposition (1.27).

One can find some properties of the P^{+}in the Chapter 2. In [24] one can find the motivation and details of introducing this projection at the level of the Hopf algebra. Details of calculation of this projection in the simplest cases of $U_{q}\left(\hat{\mathfrak{g}}_{2}\right)$ and $U_{q}\left(\hat{\mathfrak{g}}_{3}\right)$ one can find in [25].

In the Chapter 2 we give the proof of construction (1.29) in more general case of $Y(\mathfrak{g l}(n \mid m))$. This result is based on the study of the q-deformed case [26-28].

We find the formulas for action of $T_{i j}(z)$ onto Bethe vector (1.29) as linear expansion in Bethe vectors in the Chapter 2. One can find action formulas for the $\mathfrak{g l}_{3}$ case in [31] and for the $\mathfrak{g l}_{2 \mid 1}$ case in [32]. We use action formulas of upper triangular $T_{i j}(z)$ to find the recursion equation for Bethe vector.

The diagonal elements $T_{i i}(z)$ are included in the definition of the transfer matrix (1.5) $t(z)=\sum_{i} T_{i i}(z)$. It is proven [10, 30] that Bethe vector becomes eigenvector for transfer matrix

$$
\begin{equation*}
t(z) \mathbb{B}(\bar{t})=\tau(z \mid \bar{t}) \mathbb{B}(\bar{t}), \tag{1.33}
\end{equation*}
$$

if Bethe parameters satisfy the system of equations

$$
\begin{equation*}
\frac{\lambda_{k}\left(t_{i}^{k}\right)}{\lambda_{k+1}\left(t_{i}^{k}\right)}=\frac{f\left(t_{i}^{k}, \bar{t}_{i}^{k}\right)}{f\left(\bar{t}_{i}^{k}, t_{i}^{k}\right)} \frac{f\left(\bar{t}^{k+1}, t_{i}^{k}\right)}{f\left(t_{i}^{k}, t^{k-1}\right)} . \tag{1.34}
\end{equation*}
$$

This system is called Bethe equations. In principle, a system of the equations for the Bethe parameters \bar{t} called the Bethe equations if the condition for their satisfaction implies that the Bethe vector becomes the eigenvector of the transfer matrix.

Then the eigenvalue is

$$
\begin{equation*}
\tau(z \mid \bar{t})=\sum_{i=1}^{N} \lambda_{i}(z) f\left(\bar{t}^{i}, z\right) f\left(z, \bar{t}^{i-1}\right) \tag{1.35}
\end{equation*}
$$

where sets $\overline{t^{0}}=\bar{t}^{N}=\emptyset$.
We use action formulas of lower triangular $T_{i j}(z)$ to find the recursion equation (1.43) for the highest coefficient (1.42).

An important property of the Bethe vector is the co-product property. It is also known as the composite model introduced in [33]. Assume that the monodromy matrix (1.8) can be represented as product of two other $T(u)=T^{(2)}(u) T^{(1)}(u)$ (such that $\left[T^{(2)}(u), T^{(1)}(v)\right]=0$). Then the relation which expresses the Bethe vector $\mathbb{B}(\bar{t})$ associated with $T(u)$ in term of Bethe vectors $\mathbb{B}^{(i)}(\bar{t})$ associated with $T^{(i)}(u)$ is called co-product formula:

$$
\begin{equation*}
\mathbb{B}(\bar{t})=\sum \frac{\prod_{s=1}^{N-1} f\left(\bar{t}_{\mathrm{I}}^{s}, \bar{t}_{\mathrm{I}}^{s}\right)}{\prod_{s=1}^{N-2} f\left(\bar{t}_{\mathrm{II}}^{s+1}, \bar{t}_{\mathrm{I}}^{s}\right)} \mathbb{B}^{(1)}\left(\bar{t}_{\mathrm{I}}\right) \prod_{s=1}^{N-1} \lambda_{s+1}^{(1)}\left(\bar{t}_{\mathrm{I}}^{s}\right) \otimes \mathbb{B}^{(2)}\left(\bar{t}_{\mathrm{I}}\right) \prod_{s=1}^{N-1} \lambda_{s}^{(2)}\left(\bar{t}_{\mathrm{I}}^{s}\right) . \tag{1.36}
\end{equation*}
$$

Here the sum is taken over all possible partitions of all the sets of the Bethe parameters \bar{t}^{k} into pairs of subsets $\bar{t}^{k} \Rightarrow\left\{\bar{t}_{\mathrm{I}}^{k}, t_{\mathrm{II}}^{k}\right\}$.

The composed model was introduced for the calculation of the form factors of local operators in $\mathfrak{g l}_{2}$ models [33]. The same idea was used in [34, 35]
for $\mathfrak{g l}_{3}$ case and in [36] for $\mathfrak{g l}_{2 \mid 1}$ case. We find another application of the coproduct property described in [37, 38]. Our method based on the co-product formula directly leads to the sum formula, in which the scalar product is given as a sum over partitions of Bethe parameters. The structure of the scalar product of the Bethe vectors is encoded in the co-product formula for the Bethe vector.

1.5 Scalar product of Bethe vectors

Scalar products of Bethe vectors play a very important role in the Algebraic Bethe ansatz. They are a necessary tool for calculating form factors and correlation functions within this framework.

To define a scalar product of Bethe vectors we need a dual Bethe vector. The dual Bethe vector belongs to dual physical space \mathcal{H}^{*}. We suppose that the dual physical space \mathcal{H}^{*} contains a dual vacuum $\langle 0|($ such that $\langle 0 \mid 0\rangle=1$) with properties

$$
\begin{align*}
& \langle 0| T_{i j}(u)=0, \quad \text { with } \quad i<j \\
& \langle 0| T_{i i}(u)=\lambda_{i}(u)\langle 0|, \tag{1.37}
\end{align*}
$$

where functions λ_{i} are the same as in (1.7). Then the dual Bethe vector $\mathbb{C}(\bar{t})$ can be obtained from Bethe vector $\mathbb{B}(\bar{t})$ using "transposition" antimorphism Ψ (the supersymmeric analog of this antimorphism is described in [40]) defined by

$$
\begin{align*}
\Psi(A B) & =\Psi(B) \Psi(A), \\
\Psi\left(T_{i j}(u)\right) & =T_{j i}(u), \tag{1.38}\\
\Psi(|0\rangle) & =\langle 0| .
\end{align*}
$$

The dual Bethe vector is

$$
\begin{equation*}
\mathbb{C}(\bar{t})=\Psi(\mathbb{B}(\bar{t})) \tag{1.39}
\end{equation*}
$$

Now we can define the scalar product of the Bethe vectors

$$
\begin{equation*}
S(\bar{s} \mid \bar{t})=\mathbb{C}(\bar{s}) \mathbb{B}(\bar{t}) \tag{1.40}
\end{equation*}
$$

One can prove that scalar product is symmetric $S(\bar{s} \mid \bar{t})=S(\bar{t} \mid \bar{s})$ applying antimorphism Ψ and taking into account $\Psi^{2}=1$.

The sum formula for the scalar product was obtained in the $\mathfrak{g l}_{2}$ case [13], in the $\mathfrak{g l}_{3}$ case [39] and in the $\mathfrak{g l}_{2 \mid 1}$ case [41].

In the Chapter 3 using the co-product formula (1.36) and the idea of the generalized model we prove that the scalar product (1.40) of Bethe vectors
has the following bilinear form

$$
\begin{align*}
S(\bar{s} \mid \bar{t})=\sum \prod_{k=1}^{N-1} \lambda_{k}\left(\bar{s}_{\mathrm{I}}^{k}\right) & \lambda_{k+1}\left(\bar{s}_{\mathrm{\Pi}}^{k}\right) \lambda_{k+1}\left(\bar{t}_{\mathrm{I}}^{k}\right) \lambda_{k}\left(\bar{t}_{\mathrm{\Pi}}^{k}\right) \\
& \times Z\left(\bar{s}_{\mathrm{I}} \mid \bar{t}_{\mathrm{I}}\right) Z\left(\bar{t}_{\mathrm{I}} \mid \bar{s}_{\mathrm{I}}\right) \frac{\prod_{k=1}^{N-1} f\left(\bar{s}_{\mathrm{\Pi}}^{k}, \bar{s}_{\mathrm{I}}^{k}\right) f\left(\bar{t}_{\mathrm{I}}^{k}, \bar{t}_{\mathrm{I}}^{k}\right)}{\prod_{j=1}^{N-2} f\left(\bar{s}_{\mathrm{I}}^{j+1}, \bar{s}_{\mathrm{I}}^{j}\right) f\left(\bar{t}_{\mathrm{I}}^{j+1}, \bar{t}_{\mathrm{I}}^{j}\right)} . \tag{1.41}
\end{align*}
$$

Here all the sets of the Bethe parameters \bar{t}^{k} and \bar{s}^{k} are divided into two subsets $\bar{t}^{k} \Rightarrow\left\{\bar{t}_{\mathrm{I}}^{k}, \bar{t}_{\mathrm{I}}^{k}\right\}$ and $\bar{s}^{k} \Rightarrow\left\{\bar{s}_{\mathrm{I}}^{k}, \bar{s}_{\mathrm{I}}^{k}\right\}$, such that $\# \bar{t}_{\mathrm{I}}^{k}=\# \bar{s}_{\mathrm{I}}^{k}$. The sum is taken over all possible partitions of this type.

The function $Z(\bar{s} \mid \bar{t})$ is called the highest coefficient. It appears in the scalar product (1.41) in the term associated with extreme partition $\bar{s}_{1}^{k}=\bar{s}^{k}$, $\bar{s}_{\mathrm{II}}^{k}=\emptyset$, and $\bar{t}_{\mathrm{I}}^{k}=\bar{t}^{k}, \bar{t}_{\mathrm{I}}^{k}=\emptyset$

$$
\begin{equation*}
S(\bar{s} \mid \bar{t})=Z(\bar{s} \mid \bar{t}) \prod_{k=1}^{N-1} \lambda_{k}\left(\bar{s}^{k}\right) \lambda_{k+1}\left(\bar{t}^{k}\right)+\ldots \tag{1.42}
\end{equation*}
$$

The highest coefficient were obtained in the $\mathfrak{g l}_{2}[29]$ and $\mathfrak{g l}_{2 \mid 1}$ [41] cases explicitly in the determinant form, and in the $\mathfrak{g l}_{3}$ case [40] as sum.

The highest coefficient $Z(\bar{s} \mid t)$ can be determined recursively using the action formulas and recursion for Bethe vectors, which is given in Chapter 3. The highest coefficient $Z(\bar{s} \mid \bar{t})$ possesses the following recursions:

$$
\begin{align*}
& Z(\bar{s} \mid \bar{t})=\sum_{\substack{p=2}}^{N} \sum_{\substack{\operatorname{part}\left(\bar{s}^{2}, \ldots, \bar{s}^{p-1}\right) \\
\operatorname{part}\left(\overline{(}^{1}, \ldots, \bar{t}^{p-1}\right)}} \frac{g\left(\bar{t}_{\mathrm{I}}^{1}, \bar{s}_{\mathrm{I}}^{1}\right) f\left(\bar{t}_{\mathrm{I}}^{1}, \bar{t}_{\mathrm{\Pi}}^{1}\right) f\left(\bar{t}_{\mathrm{I}}^{1}, \bar{s}_{\mathrm{I}}^{1}\right)}{f\left(\bar{s}^{p}, \bar{s}_{\mathrm{I}}^{p-1}\right)} \\
& \\
& \quad \times \prod_{\nu=2}^{p-1} \frac{g\left(\bar{s}_{\mathrm{I}}^{\nu}, \bar{s}_{\mathrm{I}}^{\nu-1}\right) g\left(\bar{t}_{\mathrm{I}}^{\nu}, \bar{t}_{\mathrm{I}}^{\nu-1}\right) f\left(\bar{s}_{\mathrm{I}}^{\nu}, \bar{s}_{\mathrm{I}}^{\nu}\right) f\left(\bar{t}_{\mathrm{I}}^{\nu}, \bar{t}_{\mathrm{I}}^{\nu}\right)}{f\left(\bar{s}^{\nu}, \bar{s}_{\mathrm{I}}^{\nu-1}\right) f\left(\bar{t}_{\mathrm{I}}^{\nu}, \bar{t}^{\nu-1}\right)} \tag{1.43}\\
& \times Z\left(\left\{\bar{s}_{\mathrm{I}}^{1}, \bar{s}_{\mathrm{I}}^{2}, \ldots, \bar{s}_{\mathrm{I}}^{p-1}\right\},\left\{\bar{s}^{p}, \ldots, \bar{s}^{N-1}\right\} \mid\left\{\bar{t}_{\mathrm{I}}^{1}, \bar{t}_{\mathrm{I}}^{2}, \ldots, \bar{t}_{\mathrm{I}}^{p-1}\right\},\left\{\bar{t}^{p}, \ldots, \bar{t}^{N-1}\right\}\right),
\end{align*}
$$

Here for every fixed $p \in\{2, \ldots, N\}$ the sums are taken over partitions $\bar{t}^{k} \Rightarrow\left\{\bar{t}_{\mathrm{I}}^{k}, \bar{t}_{\Pi}^{k}\right\}$ with $k=1, \ldots, p-1$ and $\bar{s}^{k} \Rightarrow\left\{\bar{s}_{\mathrm{I}}^{k}, \bar{s}_{\Pi}^{k}\right\}$ with $k=2, \ldots, p-1$, such that $\# \bar{t}_{\mathrm{I}}^{k}=\# \bar{s}_{\mathrm{I}}^{k}=1$ for $k=2, \ldots, p-1$. The subset \bar{s}_{I}^{1} is a fixed Bethe parameter from the set \bar{s}^{1}. There is no sum over partitions of the set \bar{s}^{1} in (1.43).

Chapter 5 contains generalization of equations (1.41) and (1.43) to the case of quantum affine algebra $U_{q}\left(\hat{\mathfrak{g}}_{N}\right)$.

1.6 Norm of eigenvector

One can prove that a norm of eigenvector of transfer matrix (1.5) has a determinant form. Chapter 4 contains proof of this statement.

Let us describe the idea of proof. There is a list of axioms that is given in the Chapter 4. This set of axioms defines a function in a unique way. We proved that the norm and some combination with determinant satisfy this list of axioms at the same time. Thus, they coincide.

Finally, the result of this statement is

$$
\begin{equation*}
S(\bar{t} \mid t)=\prod_{\nu=1}^{N-1} \prod_{\substack{p, q=1 \\ p \neq q}}^{r_{\nu}} f\left(t_{p}^{\nu}, t_{q}^{\nu}\right)\left(\prod_{\nu=1}^{N-2} f\left(\bar{t}^{\nu+1}, \bar{t}^{\nu}\right)\right)^{-1} \operatorname{det} G, \tag{1.44}
\end{equation*}
$$

where matrix G is $(N-1) \times(N-1)$ block-matrix. The size of the block $G^{(\mu, \nu)}$ is $r_{\mu} \times r_{\nu}$. To describe the elements of $G^{(\mu, \nu)}$ we introduce a function Φ

$$
\begin{equation*}
\Phi_{j}^{(\mu)}=\frac{\lambda_{\mu}\left(t_{j}^{\mu}\right)}{\lambda_{\mu+1}\left(t_{j}^{\mu}\right)} \frac{f\left(\bar{t}_{j}^{\mu}, t_{j}^{\mu}\right)}{f\left(t_{j}^{\mu}, t_{j}^{\mu}\right)} \frac{f\left(t_{j}^{\mu}, \bar{t}^{\mu-1}\right)}{f\left(\bar{t}^{\mu+1}, t_{j}^{\mu}\right)} . \tag{1.45}
\end{equation*}
$$

It is easy to see that Bethe equations (1.34) can be written as

$$
\begin{equation*}
\Phi_{j}^{(\mu)}=1, \quad \mu=1, \ldots, N-1, \quad j=1, \ldots, r_{\mu} . \tag{1.46}
\end{equation*}
$$

The entries of matrix G are defined as

$$
\begin{equation*}
G_{j k}^{(\mu, \nu)}=-c \frac{\partial \log \Phi_{j}^{(\mu)}}{\partial t_{k}^{\nu}} \tag{1.47}
\end{equation*}
$$

This statement generalizes Gaudin formula in $\mathfrak{g l}_{2}$ case [1] and Reshetikhin result in $\mathfrak{g l}_{3}$ case [39]. There are determinant formulas of norm of the Bethe vector in trigonometric $\mathfrak{g l}_{3}[9]$ and $\mathfrak{g l}_{2 \mid 1}$ [51] cases. Also norm of Bethe vectors for higher rank symmetries has been considered before, e.g. in [63]. Chapter 5 contains analogous determinant representation in quantum affine $U_{q}\left(\hat{\mathfrak{g}}_{n}\right)$ case.

1.7 Symmetry of Bethe vector

Using the $R T T$ relation one can prove that the inverse monodromy matrix \hat{T}

$$
\begin{equation*}
\hat{T}_{i j}(u)=(T(u))_{N+1-j, N+1-i}^{-1} \tag{1.48}
\end{equation*}
$$

satisfies the same $R T T$ relation

$$
\begin{equation*}
R_{12}(u-v) \hat{T}_{1}(u) \hat{T}_{2}(v)=\hat{T}_{2}(v) \hat{T}_{1}(u) R_{12}(u-v) \tag{1.49}
\end{equation*}
$$

does the monodromy matrix T.
Thus, there are two quantum R-matrix structures for each system with higher rank symmetry. They are associated with two monodromy matrices T and \hat{T}, and both have the same R-matrix.

Let us define hatted Bethe vectors $\hat{\mathbb{B}}(\bar{t})$ associated to the monodromy matrix \hat{T} in the same way as for usual Bethe vector $\mathbb{B}(\bar{t})$ with replacement $T_{i j}\left(t_{k}\right) \rightarrow \hat{T}_{i j}\left(t_{k}\right)$.

The main point of the Chapter 6 is a correspondence between $\hat{\mathbb{B}}(\hat{t})$ and $\mathbb{B}(\bar{t})$. One can formulate this result in the following theorem.

Theorem 1.7.1. The Bethe vectors \mathbb{B} and $\hat{\mathbb{B}}$ of integrable models with $\mathfrak{g l}(N)$ invariant R-matrix are related by

$$
\begin{equation*}
\hat{\mathbb{B}}(\bar{t})=(-1)^{\not \# \bar{t}}\left(\prod_{s=1}^{N-2} f\left(\bar{t}^{s+1}, \bar{t}^{s}\right)\right)^{-1} \mathbb{B}(\mu(\bar{t})) . \tag{1.50}
\end{equation*}
$$

Here $\# \bar{t}$ is total cardinality of all the sets $\bar{t}{ }^{i}$, and

$$
\begin{equation*}
\mu(\bar{t}) \equiv \mu\left(\left\{\bar{t}^{1}, \bar{t}^{2}, \ldots, \bar{t}^{N-1}\right\}\right)=\left\{\bar{t}^{N-1}-c, \bar{t}^{N-2}-2 c, \ldots, \bar{t}^{1}-(N-1) c\right\} . \tag{1.51}
\end{equation*}
$$

This theorem in the case of $G L(3)$ was proved in [27].
Applying equation (6.4.2) to scalar product of Bethe vectors (1.29) and taking into account that T and \hat{T} satisfy the same $R T T$-algebra one can get relation for the highest coefficient (1.42) in the scalar product

$$
\begin{equation*}
Z(\mu(\bar{x}) \mid \mu(\bar{t}))=Z(\bar{x} \mid \bar{t}) \prod_{k=1}^{N-2} f\left(\bar{x}^{k+1}, \bar{x}^{k}\right) f\left(\bar{t}^{k+1}, \bar{t}^{k}\right) \tag{1.52}
\end{equation*}
$$

There is a generalization of the statement of the theorem (1.7.1) and its corollary to super-Yangian and quantum affine cases. We mention it in the end of the Chapter 6. The trigonometric analogue of the equation (6.5.12) in the case of $G L(3)$ was proved in [48].

Bibliography

[1] Drinfel'd, V.G. Quantum groups, Proc. ICM Berkeley, (1986), vol. 1, 789-820.
[2] V. Drinfeld, New realizations of Yangians and quantum affine algebras, Sov. Math. Dokl. 36 (1988), 212-216.
[3] L.Faddeev, N.Reshetikhin, L.Takhtajan, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
[4] N.Reshetikhin, M.Semenov-Tian-Shansky, Central extensions of quantum current group, Lett. Math. Phys. 19 (1990), 133-142.
[5] Jimbo, M., Aq-difference analogue of $U(g)$ and the Yang-Baxter equation, Letters in Mathematical Physics, 10(1), 63-69 (1985).
[6] H. Bethe (1931). Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette, Zeitschrift für Physik, 71:205-226 (1931).
[7] F. A. Berezin, G. P. Pokhil, and V. M. Finkelberg, Schrödinger equation for a system of one-dimensional particles with point interaction, Vestnik MGU 1 (1964), 21-28.
[8] J. B. McGuire, Study of exactly soluble one-dimensional N-body problems, Journal of Mathematical Physics, 5(5) (1964), 622-636.
[9] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura (1967). Method for solving the Korteweg-deVries equation, Physical review letters, 19(19), 1095.
[10] L. A. Takhtadzhan and L. D. Faddeev, The quantum method of the inverse problem and the Heisenberg XY Z model, Russian Math. Surveys 34:5 (1979), 11-68.
[11] E. K. Sklyanin, L. A. Takhtadzhyan and L. D. Faddeev, Quantum inverse problem method. I, Theoret. and Math. Phys. 40:2 (1979), 688706.
[12] P. P. Kulish, N. Yu. Reshetikhin, GL(3)-invariant solutions of the YangBaxter equation and associated quantum systems, Zap. Nauchn. Sem. POMI. 120 (1982) 92-121; J. Sov. Math., 34:5 (1982) 1948-1971 (Engl. transl.)
[13] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, Quantum inverse problem method. I, Theoretical and Mathematical Physics volume 40, pages 688-706(1979).
[14] C. N. Yang, Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction, Phys. Rev. Lett. 19, 1312.
[15] N. Yu. Reshetikhin, Calculation of the norm of Bethe vectors in models with $S U(3)$-symmetry, Zap. Nauchn. Sem. LOMI 150 (1986) 196-213; J. Math. Sci. 46 (1989) 1694-1706 (Engl. transl.).
[16] Escobedo, J., Gromov, N., Sever, A., Vieira, P. Tailoring three-point functions and integrability, Journal of High Energy Physics, 2011(9), 28.
[17] Gromov, N., \& Vieira, P. Quantum integrability for three-point functions of maximally supersymmetric Yang-Mills theory, Physical review letters, 111(21), (2013), 211601.
[18] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, Bethe vectors of $G L(3)$-invariant integrable models, J. Stat. Mech. 1302 (2013) P02020, arXiv:1210.0768.
[19] P. P. Kulish, N. Yu. Reshetikhin, Generalized Heisenberg ferromagnet and the Gross- Neveu model, Zh. Eksp. Theor. Fiz. 80 (1981) 214-228.
[20] P. P. Kulish, N. Yu. Reshetikhin, GL(3)-invariant solutions of the YangBaxter equation and associated quantum systems, Zap. Nauchn. Sem. POMI. 120 (1982) 92-121.
[21] J.Ding, S.Khoroshkin, On the FRTS approach to quantized current algebras, Lett. Math. Phys. 45 (1998), No.4, 331-352
[22] J. Ding, I. B. Frenkel, Isomorphism of two realizations of quantum affine algebra $U_{q}(\mathfrak{g l}(N))$, Commun. Math. Phys. 156 (1993), 277-300.
[23] A. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, Current presentation for the double super-Yangian $D Y(\mathfrak{g l}(m \mid n))$ and Bethe vectors, Russ. Math. Surv. 72:1 (2017), 3399, arXiv:1611. 09020.
[24] B. Enriquez, S. Khoroshkin, S. Pakuliak, Weight Functions and Drinfeld Currents, S. Commun. Math. Phys. (2007) 276: 691
[25] Pakuliak, S.Z., Khoroshkin, S.M. Weight Function for the Quantum Affine Algebra $U_{q}\left(\hat{s}_{3}\right)$, Theor Math Phys 145, 1373-1399 (2005)
[26] S. Khoroshkin, S. Pakuliak, V. Tarasov, Off-shell Bethe vectors and Drinfeld currents, Journal of Geometry and Physics 57(8):1713-1732 (2007)
[27] S. Khoroshkin, S. Pakuliak, A computation of an universal weight function for the quantum affine algebra $U_{q}\left(\hat{\mathfrak{g}}_{N}\right)$, J. Math. Kyoto Univ. 48-2 (2008), 277-321
[28] Oskin A., Pakuliak S., Silantyev A., On the universal weight function for the quantum affine algebra $U_{q}\left(\hat{\mathfrak{g}}_{N}\right)$, arXiv:0711.2819.
[29] P. P. Kulish, N. Yu. Reshetikhin, Diagonalization of $G L(N)$ invariant transfer matrices and quantum N-wave system (Lee model), J. Phys. A: 16 (1983) L591-L596.
[30] V. Tarasov, A. Varchenko, Combinatorial formulae for nested Bethe vectors, SIGMA 9 (2013) 048, arXiv:math/0702277 [math. QA].
[31] S. Pakuliak, E. Ragoucy, N. A. Slavnov, Bethe vectors of GL(3)invariant integrable models, J. Stat. Mech. 1302 (2013)
[32] A. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, Multiple Actions of the Monodromy Matrix in $\mathfrak{g l}(2 \mid 1)$-Invariant Integrable Model, Nucl. Phys. B, 923 (2017) 277-311
[33] A. G. Izergin, V. E. Korepin, The quantum inverse scattering method approach to correlation functions, Comm. Math. Phys. 94 (1984) 67-92.
[34] S. Pakuliak, E. Ragoucy, N. A. Slavnov, GL(3)-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators, SIGMA 11 (2015) 064, 18 pp.
[35] S. Pakuliak, E. Ragoucy, N. A. Slavnov, Form factors of local operators in a one-dimensional two-component Bose gas, J. Phys. A, 48:43 (2015) 435001, 21 pp.
[36] J Fuksa and N A Slavnov, Form factors of local operators in supersymmetric quantum integrable models, J. Stat. Mech., (2017) 043106
[37] A. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, Scalar products and norm of Bethe vectors for integrable models based on $U_{q}\left(\mathfrak{g l}_{n}\right)$, Nucl. Phys. B, 923 (2017) 277-311
[38] A. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, Scalar products of Bethe vectors in the models with $\mathfrak{g l}(m \mid n)$ symmetry, SciPost Phys. 4, 006 (2018)
[39] A. G. Izergin, Partition function of the six-vertex model in a finite volume, Dokl. Akad. Nauk SSSR 297 (1987) 331-333; Sov. Phys. Dokl. 32 (1987) 878-879 (Engl. transl.).
[40] S. Pakuliak, E. Ragoucy, N. A. Slavnov, Bethe vectors for models based on the super-Yangian $Y(\mathfrak{g r}(m \mid n))$, J. Integrab. Syst. 2 (2017) 1-31
[41] A. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, Scalar products of Bethe vectors in models with gl(2-1) symmetry 1. Super-analog of Reshetikhin formula, J. Phys. A49 (2016) 454005
[42] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge: Cambridge Univ. Press, 1993.
[43] L. D. Faddeev, in: Les Houches Lectures Quantum Symmetries, eds A. Connes et al, North Holland, (1998) 149.
[44] N. A. Slavnov, Algebraic Bethe ansatz, Lecture notes, arXiv:1804.07350.
[45] V. E. Korepin, Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982) 391-418.
[46] A. G. Izergin and V. E. Korepin, The Quantum Inverse Scattering Method Approach to Correlation Functions, Commun. Math. Phys. 94 (1984) 67-92.
[47] M. Wheeler, Scalar products in generalized models with $S U(3)$-symmetry, Comm. Math. Phys. 327:3 (2014) 737-777, arXiv:1204.2089.
[48] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, Highest coefficient of scalar products in $S U(3)$-invariant integrable models, J. Stat. Mech. Theory Exp., (2012) P09003, arXiv:1206.4931.
[49] F. H. L. Essler, V. E. Korepin, Spectrum of Low-Lying Excitations in a Supersymmetric Extended Hubbard Model, Int. J. Mod. Phys. B8 (1994) 3243-3279, arXiv: cond-mat/9307019
[50] D. Förster, Staggered spin and statistics in the supersymmetric $t-J$ model, Phys. Rev. Lett. 63 (1989) 2140-2143.
[51] F. H. L. Essler and V. E. Korepin, Higher conservation laws and algebraic Bethe Ansatze for the supersymmetric $t-J$ model, Phys. Rev. B 46 (1992) 9147-9162.
[52] A. Foerster and M. Karowski, Algebraic properties of the Bethe ansatz for an $\operatorname{spl}(2,1)$-supersymmetric $t-J$ model, Nucl. Phys. B 396 (1993) 611-638.
[53] P. Schlottmann, Integrable narrow-band model with possible relevance to heavy Fermion systems, Phys. Rev. B 36 (1987) 5177-5185.
[54] B. Sutherland, Model for a multicomponent quantum system, Physical Review B, 12(9), 3795-3805.
[55] W. Heisenberg, Zur Theorie des Ferromagnetismus, Zeitschrift für Physik. Band 49, Nr. 9, 1928, S. 619-636
[56] R. J. Baxter, Exactly solved models in statistical mechanics Academic Press, London, 1982.
[57] M. Gaudin, Modèles exacts en mécanique statistique: la méthode de Bethe et ses généralisations, Preprint, Centre d'Etudes Nucléaires de Saclay, CEA-N-1559:1 (1972).
[58] A. G. Izergin, V. E. Korepin, The problem of description of all Loperators for R-matrices of the models $X X X$ and $X X Z$ (in Russian), Zap. Nauchn. Sem. LOMI, 131 (1983) 80-87.
[59] N. Kitanine, J. M. Maillet and V. Terras, Form factors of the $X X Z$ Heisenberg spin-1/2 finite chain, Nucl. Phys. B 554 (1999) 647-678, arXiv:math-ph/9807020.
[60] J. M. Maillet, V. Terras, On the quantum inverse scattering problem, Nucl. Phys. B 575 (2000) 627-644, hep-th/9911030.
[61] N. A. Slavnov, Scalar products in GL(3)-based models with trigonometric R-matrix. Determinant representation, J. Stat. Mech. Theory Exp. 1503 (2015) P03019, arXiv:1501. 06253.
[62] A. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, Scalar products of Bethe vectors in models with $\mathfrak{g l}(2 \mid 1)$ symmetry 2. Determinant representation, J. Phys. A: Math. Theor., 50:3 (2017) 34004, arXiv:1606.03573.
[63] B. Basso, F. Coronado, S. Komatsu, H.T. Lam, P. Vieira, and D.L. Zhong, Asymptotic four point functions, JHEP, 2019(7):82.
[64] A. Liashyk, N. A. Slavnov, On Bethe vectors in $\mathfrak{g l}_{3}$-invariant integrable models, JHEP, (2018) 2018:18, arXiv:1803.07628.
[65] S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, Scalar products in models with the $G L(3)$ trigonometric R-matrix: General case, Theor. Math. Phys. 180:1 (2014) 795-814, arXiv:1401.4355.

Chapter 2

Current presentation for the double super-Yangian
 $D Y(\mathfrak{g l}(m \mid n))$ and Bethe vectors

Introduction:

In this Chapter we considered how to express Bethe vectors in two different ways using two Gauss decompositions. We proved that these two representations give the same Bethe vectors considering actions of monodromy matrix entries onto them. The formula describing co-product property of Bethe vectors was obtained. Also it was proven that if parameters of Bethe vectors satisfy some system of equations (Bethe equations), then Bethe vectors become eigenvectors of the transfer matrix.

Contribution:

I calculated the action of the monodromy matrix entries onto Bethe vectors (4.66) and (4.68). Using these formulas I calculated the action of the transfer matrix onto Bethe vector (4.70) and showed that if parameters of Bethe vector satisfy Bethe equations (4.75), then Bethe vector becomes eigenvector of the transfer matrix. In addition, I used the action formulas in the next Chapters to calculate scalar products of Bethe vectors.

Current presentation for the super-Yangian double $D Y(\mathfrak{g l}(\boldsymbol{m} \mid \boldsymbol{n}))$ and Bethe vectors

A. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, and N. A. Slavnov

Abstract

Bethe vectors are found for quantum integrable models associated with the supersymmetric Yangians $Y(\mathfrak{g l}(m \mid n)$ in terms of the current generators of the Yangian double $D Y(\mathfrak{g l}(m \mid n))$. The method of projections onto intersections of different types of Borel subalgebras of this infinite-dimensional algebra is used to construct the Bethe vectors. Calculation of these projections makes it possible to express the supersymmetric Bethe vectors in terms of the matrix elements of the universal monodromy matrix. Two different presentations for the Bethe vectors are obtained by using two different but isomorphic current realizations of the Yangian double $D Y(\mathfrak{g l}(m \mid n))$. These Bethe vectors are also shown to obey certain recursion relations which prove their equivalence.

Bibliography: 30 titles.

Keywords: Bethe vector, current algebra, monodromy matrix, Gauss decomposition, projection.

Contents

1. Introduction 34
2. Universal monodromy matrix 36
2.1. \mathbb{Z}_{2}-graded linear spaces and notation 36
2.2. Commutation relations for the universal monodromy matrix 37
2.3. Morphism of $D Y(\mathfrak{g l}(m \mid n))$, singular vectors, and Gauss decomposi- tions 39
2.4. Current realizations of $D Y(\mathfrak{g l}(m \mid n))$ 40

[^0]© 2017 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.
3. Universal Bethe vectors 43
3.1. Notation and conventions 44
3.2. Deformed symmetrization 45
3.3. The Bethe vector $\mathbb{B}(\bar{t})$ and the dual Bethe vector $\mathbb{C}(\bar{t})$ 45
3.4. The Bethe vector $\widehat{\mathbb{B}}(\bar{t})$ and the dual Bethe vector $\widehat{\mathbb{C}}(\bar{t})$ 48
3.5. Main results 49
4. Formulae for the action of the monodromy matrix elements 50
4.1. Coproduct properties of the Bethe vectors 50
4.2. Ideals of the Yangian double and presentations of the projections 52
4.3. Auxiliary presentations for the projections 54
4.4. Action of the monodromy matrix element $\mathrm{T}_{i, j}^{+}(z)$ 59
4.5. Actions of the diagonal elements and the Bethe equations 69
5. Explicit formulae for the universal Bethe vectors 71
5.1. Hierarchical relations for the Bethe vectors $\mathbb{B}(\bar{t})$ 71
5.2. The Bethe vectors $\mathbb{B}(\bar{t})$ 75
5.3. The Bethe vectors $\widehat{\mathbb{B}}(\bar{t})$ 78
5.4. Dual Bethe vectors and examples for $D Y(\mathfrak{g l}(2 \mid 1))$ 81
Appendix A. Composed currents and Gauss coordinates 82
Appendix B. Commutativity of the projections and the screening operators 88
Appendix C. Calculation of the projection 89
Bibliography 97

1. Introduction

The calculation of form factors and correlation functions in quantum integrable models is one of the most important problems in the area of exactly solvable models in statistical physics and low-dimensional quantum mechanics. A lot of results were obtained in this direction starting from the earliest years in the development of the Quantum Inverse Scattering Method (QISM) [1], [2]. For models connected with various deformations of the affine algebra $\widehat{\mathfrak{g l}}(2)$ one of the most important results is a determinant presentation for the particular case of the scalar product in which one of vectors is an eigenvector of the transfer matrix [3]. This result lets us go directly to the problem of calculating the correlation functions [4] of the local operators in integrable models (see the survey [5] and the references there).

One of the most important notions of the QISM is a Bethe vector. In $\widehat{\mathfrak{g l}}(2)$-based models the Bethe vector is a monomial in the upper-right element of the monodromy matrix (the creation operator) applied to the pseudo-vacuum vector. It depends on a set of complex variables called Bethe parameters. The distinguishing feature of these vectors is that they become eigenvectors of the transfer matrix if the Bethe parameters satisfy a special system of equations (the Bethe equations). In this case we call them on-shell Bethe vectors. Otherwise, if the Bethe parameters are generic complex numbers, then the corresponding vectors are called off-shell Bethe vectors, or simply Bethe vectors. In this paper we deal with the universal monodromy matrix. This means that it depends only on the underlying algebra generators. We refer to the corresponding Bethe vectors as universal Bethe vectors.

The main purpose of this paper is to study Bethe vectors in the Yangian double $D Y(\mathfrak{g l}(m \mid n))$. Our first goal is to obtain explicit formulae for them. The second
goal is to derive formulae for the action of the monodromy matrix entries on the off-shell Bethe vectors. Achieving these two goals enables us to pose the problem of calculating the scalar products of Bethe vectors, which in turn is necessary for studying the form factors and correlation functions in integrable models with underlying $\mathfrak{g l}(m \mid n)$ supersymmetry.

For models connected with higher-rank symmetries, the QISM is based on the so-called nested Bethe ansatz, which was elaborated in the pioneering papers [6]-[8]. There a recursive procedure was developed for constructing Bethe vectors corresponding to the algebra $\widehat{\mathfrak{g l}}(N)$ from the known Bethe vectors of the algebra $\widehat{\mathfrak{g l}}(N-1)$. Formally, this method enables us to obtain explicit formulae for Bethe vectors in terms of certain polynomials in the creation operators (upper triangular entries of the monodromy matrix) acting on the pseudo-vacuum vector. However, the procedure is quite involved, and therefore no explicit representations were obtained in the early works mentioned above, with the exception of graphical representations found by Reshetikhin in [9] for models with the algebra $\widehat{\mathfrak{g l}}(3)$. The use of this diagram technique yielded a formula for the scalar products of off-shell Bethe vectors in terms of sums over partitions of the sets of Bethe parameters (a sum formula).

In [10] and [11] the Bethe vectors for the integrable models associated with deformed algebras $\widehat{\mathfrak{g l}}(N)$ were obtained as the traces of products of the monodromy matrices, R-matrices, and certain projections. These results were generalized to supersymmetric algebras in [12]. This approach makes it possible in some cases to calculate the norms of the nested Bethe vectors, but not their scalar products.

An alternative approach to the construction of Bethe vectors was proposed in [13]. This method explores the relation between two different realizations of the quantized Hopf algebra $U_{q}(\widehat{\mathfrak{g l}}(N))$ associated with the affine algebra $\widehat{\mathfrak{g l}}(N)$, the first in terms of the universal monodromy matrix $\mathrm{T}(z)$ and the RTT commutation relations, and the second in terms of the total currents, which are defined by the Gauss decomposition of the monodromy matrix $\mathrm{T}(z)$ [24]. Further, it was shown in [14] that the two different types of formulae for the universal off-shell Bethe vectors (constructed from the monodromy matrix) are related to the two different current realizations of the quantum affine algebra $U_{q}(\widehat{\mathfrak{g l}}(N))$ and their associated projections.

Moreover, the approach using the current generators of the deformed current algebras makes it possible to calculate the action of the monodromy matrix elements on the universal Bethe vectors. These action formulae turned out to be very useful for calculating form factors in the different quantum integrable models connected with rational and trigonometric deformations of the affine algebra $\widehat{\mathfrak{g l}}(3)$ [15]-[17]. Recently, similar results were obtained for the models with the superalgebras $\widehat{\mathfrak{g l}}(1 \mid 2)$ and $\widehat{\mathfrak{g l}}(2 \mid 1)$ in [18] and [19]. In these works the explicit formulae for the Bethe vectors and the action formulae in [20] and [21] were used in an essential way.

In the present paper we use the approach of [13]. In this framework the universal off-shell Bethe vector is defined as a projection of a product of total currents applied to the pseudo-vacuum vector. We defer the detailed definition to $\S 3$, because it requires the introduction of many new concepts and new notation. For the same reason, we postpone a description of our main results to $\S 3.5$. Here we would like to mention only that we construct explicit formulae for the universal Bethe vectors in
terms of the current generators of the Yangian double $D Y(\mathfrak{g l}(m \mid n))$ for two different Gauss decompositions of the universal monodromy matrix and two different current realizations of this algebra. These different Gauss decompositions correspond to the embeddings of $D Y(\mathfrak{g l}(m-1 \mid n))$ or $D Y(\mathfrak{g l}(m \mid n-1))$ in $D Y(\mathfrak{g l}(m \mid n))$. On the level of the RTT realization these embeddings are either in the lower-right corner or in the upper-left corner of the universal monodromy matrix. Using the first or the second type of these embeddings, we obtain two different representations for the Bethe vectors, which we denote by $\mathbb{B}(\bar{t})$ and $\widehat{\mathbb{B}}(\bar{t})$, respectively, where \bar{t} is a set of Bethe parameters (3.11). We prove that these two representations are equivalent, that is, $\mathbb{B}(\bar{t})=\widehat{\mathbb{B}}(\bar{t})$.

The paper is organized as follows. In $\S 2$ we introduce the necessary notation used for calculations in graded vector spaces, as well as the RTT and current realizations of the algebra $D Y(\mathfrak{g l}(m \mid n))$. In $\S 3$ we define universal Bethe vectors using the notion of projections onto intersections of different types of Borel subalgebras. As already mentioned, $\S 3.5$ contains the main results obtained in this paper. $\S 4$ contains calculations of the action of the monodromy matrix elements on Bethe vectors in the generic case of $D Y(\mathfrak{g l}(m \mid n))$. It is proved there, using these action formulae, that the vectors we have constructed become on-shell Bethe vectors if the supersymmetric Bethe equations for the Bethe parameters are satisfied. In §5 we calculate the projections of a product of currents and present explicit formulae for the off-shell Bethe vectors as sums over partitions of the Bethe parameters. In Appendix A we introduce the notion of composed currents and study the relation between them and the Gauss coordinates of the universal monodromy matrix. Appendix B describes important properties of the projections. Appendix C shows how the Izergin and Cauchy determinants arise in the course of resolving the hierarchical relations in the determination of explicit formulae for the off-shell Bethe vectors.

2. Universal monodromy matrix

In this paper we adopt the following approach. We do not consider any specific supersymmetric exactly solvable models defined by a particular monodromy matrix $\mathrm{T}(z)$ satisfying the standard RTT relation. Instead, we treat a T-operator (2.3) as the universal monodromy matrix whose matrix elements are the generating series of the full set of generators of the Yangian double $D Y(\mathfrak{g l}(m \mid n))$ acting in a generic representation space of this algebra, which is a rational deformation of the affine algebra $\widehat{\mathfrak{g l}}(m \mid n)$. These representations are not specified, except for the requirement that left and right pseudo-vacuum vectors exist, which ensures the applicability of the algebraic Bethe ansatz. To construct Bethe vectors we will use only the one T -operator $\mathrm{T}^{+}(z)$ from the dual pair $\left\{\mathrm{T}^{+}(z), \mathrm{T}^{-}(z)\right\}$ which generates the whole algebra $D Y(\mathfrak{g l}(m \mid n))$. The eigenvalues $\lambda_{i}(z)$ of the diagonal matrix elements on the pseudo-vacuum vectors (see (2.12) and (2.13)) are free functional parameters which can be set equal to zero if necessary.

We first give a definition of \mathbb{Z}_{2}-graded linear spaces and their multiplication rules, and we describe matrices acting in these spaces.
2.1. $\mathbb{Z}_{\mathbf{2}}$-graded linear spaces and notation. Let $\mathbb{C}^{m \mid n}$ be a \mathbb{Z}_{2}-graded linear space with a basis $\mathrm{e}_{i}, i=1, \ldots, m+n$, where the vectors $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{m}\right\}$ are even
and the vectors $\left\{\mathrm{e}_{m+1}, \mathrm{e}_{m+2}, \ldots, \mathrm{e}_{m+n}\right\}$ are odd. The \mathbb{Z}_{2}-grading of the indices is as follows:

$$
\begin{equation*}
[i]=0 \quad \text { for } i=1,2, \ldots, m \quad \text { and } \quad[i]=1 \quad \text { for } i=m+1, m+2, \ldots, m+n \tag{2.1}
\end{equation*}
$$

Let $\mathrm{E}_{i j} \in \operatorname{End}\left(\mathbb{C}^{m \mid n}\right)$ be the matrix with the only non-zero entry equal to 1 at the intersection of the i th row and j th column.

The basis vectors e_{i} and the matrices $\mathrm{E}_{i j}$ have the following grading:

$$
\left[\mathrm{e}_{i}\right]=[i] \quad \text { and } \quad\left[\mathrm{E}_{i j}\right]=[i]+[j] \quad \bmod 2 .
$$

The tensor product is also graded according to the rule

$$
\left(\mathrm{E}_{i j} \otimes \mathrm{E}_{k l}\right) \cdot\left(\mathrm{E}_{p q} \otimes \mathrm{E}_{r s}\right)=(-)^{([k]+[l])([p]+[q])} \mathrm{E}_{i j} \mathrm{E}_{p q} \otimes \mathrm{E}_{k l} \mathrm{E}_{r s} .
$$

Let P be the graded permutation operator acting in the tensor product $\mathbb{C}^{m \mid n} \otimes$ $\mathbb{C}^{m \mid n}$ as follows:

$$
\mathrm{P}=\sum_{a, b=1}^{m+n}(-)^{[b]} \mathrm{E}_{a b} \otimes \mathrm{E}_{b a} .
$$

Let

$$
g(u, v)=\frac{c}{u-v}
$$

be a rational function of the spectral parameters u and v and let c be a deformation parameter. By rescaling the spectral parameters it is always possible to set $c=1$, but we will keep it for later convenience.

We define $\mathrm{R}(u, v) \in \operatorname{End}\left(\mathbb{C}^{m \mid n} \otimes \mathbb{C}^{m \mid n}\right)$ as a rational supersymmetric R-matrix associated with the vector representation of $\mathfrak{g l}(m \mid n)$,

$$
\begin{equation*}
\mathrm{R}(u, v)=\mathbb{I} \otimes \mathbb{I}+g(u, v) \mathrm{P}, \tag{2.2}
\end{equation*}
$$

where we have introduced the identity matrix in $\mathbb{C}^{m \mid n}$ by

$$
\mathbb{I}=\sum_{i=1}^{m+n} \mathrm{E}_{i i} .
$$

2.2. Commutation relations for the universal monodromy matrix. The superalgebra $D Y(\mathfrak{g l}(m \mid n))$ is a graded associative algebra with unit 1 and is generated by the modes $\mathrm{T}_{i, j}^{(\ell)}, \ell \in \mathbb{Z}, 1 \leqslant i, j \leqslant N+1$, of the T -operators

$$
\begin{equation*}
\mathrm{T}^{ \pm}(u)=\mathbb{I} \otimes \mathbf{1}+\sum_{\substack{\ell \geqslant 0 \\ \ell<0}} \sum_{i, j=1}^{N+1} \mathrm{E}_{i j} \otimes \mathrm{~T}_{i, j}^{(\ell)} u^{-\ell-1} \tag{2.3}
\end{equation*}
$$

where $\ell \geqslant 0$ (respectively, $\ell<0$) refers to the + index (respectively, the - index) in $\mathrm{T}^{ \pm}(u)$ and $N=m+n-1$ is the number of simple roots of the superalgebra $\mathfrak{g l}(m \mid n)$. The monodromy matrix elements $\mathrm{T}_{i, j}^{ \pm}(u)$ are subject to the relations

$$
\begin{equation*}
\mathrm{R}(u, v) \cdot\left(\mathrm{T}^{\mu}(u) \otimes \mathbb{I}\right) \cdot\left(\mathbb{I} \otimes \mathrm{T}^{\nu}(v)\right)=\left(\mathbb{I} \otimes \mathrm{T}^{\nu}(v)\right) \cdot\left(\mathrm{T}^{\mu}(u) \otimes \mathbb{I}\right) \cdot \mathrm{R}(u, v), \tag{2.4}
\end{equation*}
$$

where $\mu, \nu= \pm$. For the monodromy matrix ${ }^{1} T(u)$ to be globally even, we fix the grading of the monodromy matrix elements as follows:

$$
\left[\mathrm{T}_{i, j}(u)\right]=[i]+[j] \quad \bmod 2
$$

The tensor product of matrices and algebra generators is also graded, that is,

$$
\left(\mathrm{E}_{i j} \otimes \mathrm{~T}_{i, j}(u)\right) \cdot\left(\mathrm{E}_{k l} \otimes \mathrm{~T}_{k, l}(v)\right)=(-)^{([i]+[j])([k]+[l])} \mathrm{E}_{i j} \mathrm{E}_{k l} \otimes \mathrm{~T}_{i, j}(u) \mathrm{T}_{k, l}(v)
$$

The subalgebras formed by the modes $\mathrm{T}_{i, j}^{(\ell)}($ for $\ell \geqslant 0$ and for $\ell<0$) of the T-operators $\mathrm{T}^{ \pm}(u)$ are the standard Borel subalgebras $U\left(\mathfrak{b}^{ \pm}\right) \subset D Y(\mathfrak{g l}(m \mid n))$. These Borel subalgebras are Hopf subalgebras of $D Y(\mathfrak{g l}(m \mid n))$. Their coalgebraic structure is given by the graded coproduct

$$
\begin{equation*}
\Delta\left(\mathrm{T}_{i, j}^{ \pm}(u)\right)=\sum_{k=1}^{n+m}(-)^{([i]+[k])([k]+[j])} \mathrm{T}_{k, j}^{ \pm}(u) \otimes \mathrm{T}_{i, k}^{ \pm}(u) \tag{2.5}
\end{equation*}
$$

By the commutation relations (2.4) the universal transfer matrix $\mathfrak{t}(u)$, defined as the supertrace

$$
\begin{equation*}
\mathfrak{t}(u)=\operatorname{str}\left(\mathrm{T}^{+}(u)\right) \equiv \sum_{i=1}^{n+m}(-)^{[i]} \mathrm{T}_{i, i}^{+}(u) \tag{2.6}
\end{equation*}
$$

of the universal monodromy matrix $\mathrm{T}^{+}(u)$, commutes for arbitrary values of the spectral parameters:

$$
[\mathfrak{t}(u), \mathfrak{t}(v)]=0
$$

Thus, it can be regarded as a generating function for the commuting integrals of motion in the corresponding supersymmetric quantum integrable model.

All the commutation relations (2.4) can be rewritten in the form

$$
\begin{align*}
& {\left[\mathrm{T}_{i, j}^{\mu}(u), \mathrm{T}_{k, l}^{\nu}(v)\right\} \equiv \mathrm{T}_{i, j}^{\mu}(u) \mathrm{T}_{k, l}^{\nu}(v)-(-)^{([i]+[j])([k]+[l])} \mathrm{T}_{k, l}^{\nu}(v) \mathrm{T}_{i, j}^{\mu}(u)} \\
& \quad=(-)^{[i]([k]+[l])+[k][l]} g(u, v)\left(\mathrm{T}_{k, j}^{\nu}(v) \mathrm{T}_{i, l}^{\mu}(u)-\mathrm{T}_{k, j}^{\mu}(u) \mathrm{T}_{i, l}^{\nu}(v)\right) \tag{2.7}
\end{align*}
$$

where $\mu, \nu= \pm$. Renaming in (2.7) the indices and the spectral parameters by $i \leftrightarrow k, j \leftrightarrow l$, and $u \leftrightarrow v$, we obtain the equivalent relation

$$
\begin{array}{r}
{\left[\mathrm{T}_{i, j}^{\mu}(u), \mathrm{T}_{k, l}^{\nu}(v)\right\}=\mathrm{T}_{i, j}^{\mu}(u) \mathrm{T}_{k, l}^{\nu}(v)-(-)^{([i]+[j])([k]+[l])} \mathrm{T}_{k, l}^{\nu}(v) \mathrm{T}_{i, j}^{\mu}(u)} \\
\quad=(-)^{[l]([i]+[j])+[i][j]} g(u, v)\left(\mathrm{T}_{i, l}^{\mu}(u) \mathrm{T}_{k, j}^{\nu}(v)-\mathrm{T}_{i, l}^{\nu}(v) \mathrm{T}_{k, j}^{\mu}(u)\right) \tag{2.8}
\end{array}
$$

Note that, according to the commutation relations (2.7) and (2.8), the odd matrix elements of the monodromy matrix do not commute, in contrast to the even ones:

$$
\begin{equation*}
\mathrm{T}_{i, j}^{\mu}(u) \mathrm{T}_{i, j}^{\nu}(v)=\frac{h_{[i]}(v, u)}{h_{[j]}(v, u)} \mathrm{T}_{i, j}^{\nu}(v) \mathrm{T}_{i, j}^{\mu}(u) . \tag{2.9}
\end{equation*}
$$

[^1]Here and below we use the graded rational functions ${ }^{2}$

$$
f_{[i]}(u, v)=1+g_{[i]}(u, v)=1+\frac{c_{[i]}}{u-v}=\frac{u-v+c_{[i]}}{u-v}, \quad h_{[i]}(u, v)=\frac{f_{[i]}(u, v)}{g_{[i]}(u, v)}
$$

and^{3}

$$
c_{[i]}=(-)^{[i]} c
$$

Below we also use the notation

$$
\epsilon_{i, j}=1-\delta_{i, j},
$$

where $\delta_{i, j}$ is the Kronecker symbol.
2.3. Morphism of $D Y(\mathfrak{g l}(m \mid n))$, singular vectors, and Gauss decompositions. Since the R-matrix (2.2) and the universal monodromy matrix (2.3) are globally even, one can easily check that the map ${ }^{4}$

$$
\begin{equation*}
\Psi: \mathrm{T}_{i j}^{ \pm}(u) \rightarrow(-)^{[i]([j]+1)} \mathrm{T}_{j i}^{\mp}(u) \tag{2.10}
\end{equation*}
$$

is an antimorphism of $D Y(\mathfrak{g l}(m \mid n))$ which is a super- (or equivalently, graded) transposition compatible with the notion of super-trace. This map satisfies

$$
\begin{equation*}
\Psi(A \cdot B)=(-)^{[A][B]} \Psi(B) \cdot \Psi(A) \tag{2.11}
\end{equation*}
$$

for arbitrary elements $A, B \in D Y(\mathfrak{g l}(m \mid n))$ and will be used to relate right and left states, or equivalently, Bethe vectors and the dual ones.

Let $|0\rangle$ and $\langle 0|$ be vectors satisfying the conditions

$$
\begin{array}{lll}
\mathrm{T}_{i, j}^{ \pm}(u)|0\rangle=0, & i>j, & \mathrm{~T}_{i, i}^{ \pm}(u)|0\rangle=\lambda_{i}^{ \pm}(u)|0\rangle, \\
\langle 0| \mathrm{T}_{i, j}^{ \pm}(u)=0, & i<j, & \langle 0| \mathrm{T}_{i, i}^{ \pm}(u)=\lambda_{i}^{ \pm}(u)\langle 0|, \tag{2.13}\\
i=1, \ldots, N+1
\end{array}
$$

where in (2.12) the monodromy matrix elements are acting to the right, while in (2.13) they are acting to the left. Such vectors, if they exist, are called singular vectors. If the pseudo-vacuum vectors $|0\rangle$ and $\langle 0|$ belong to the finite-dimensional representations of the Yangian double $D Y(\mathfrak{g l}(m \mid n))$, then the functions $\lambda_{i}^{ \pm}(u)$ are coinciding rational functions of the spectral parameter [22] expanded in the different domains: the function $\lambda_{i}^{+}(u)$ is a series with respect to u^{-1} and the same function $\lambda_{i}^{-}(u)$ is a series with respect to u. In what follows we will use the same notation $\lambda_{i}(u)$ for the functions $\lambda_{i}^{ \pm}(u)$.

For the T-operators fixed by the relations (2.4) we have two possibilities for introducing the Gauss coordinates. The first possibility is to introduce $\mathrm{F}_{j, i}^{ \pm}(u)$,

[^2]$\mathrm{E}_{i, j}^{ \pm}(u), 1 \leqslant i<j \leqslant N+1$, and $k_{\ell}^{ \pm}(u), \ell=1, \ldots, N+1$, such that
\[

$$
\begin{align*}
& \mathrm{T}_{i, j}^{ \pm}(u)=\mathrm{F}_{j, i}^{ \pm}(u) k_{i}^{ \pm}(u)+\sum_{1 \leqslant \ell<i} \mathrm{~F}_{j, \ell}^{ \pm}(u) k_{\ell}^{ \pm}(u) \mathrm{E}_{\ell, i}^{ \pm}(u), \tag{2.14}\\
& \mathrm{T}_{i, i}^{ \pm}(u)=k_{i}^{ \pm}(u)+\sum_{1 \leqslant \ell<i} \mathrm{~F}_{i, \ell}^{ \pm}(u) k_{\ell}^{ \pm}(u) \mathrm{E}_{\ell, i}^{ \pm}(u), \tag{2.15}\\
& \mathrm{T}_{j, i}^{ \pm}(u)=k_{i}^{ \pm}(u) \mathrm{E}_{i, j}^{ \pm}(u)+\sum_{1 \leqslant \ell<i} \mathrm{~F}_{i, \ell}^{ \pm}(u) k_{\ell}^{ \pm}(u) \mathrm{E}_{\ell, j}^{ \pm}(u) . \tag{2.16}
\end{align*}
$$
\]

In the second case we introduce $\widehat{\mathrm{F}}_{j, i}^{ \pm}(u), \widehat{\mathrm{E}}_{i, j}^{ \pm}(u), 1 \leqslant i<j \leqslant N+1$, and $\widehat{k}_{\ell}^{ \pm}(u)$, $\ell=1, \ldots, N+1$, such that

$$
\begin{align*}
\mathrm{T}_{i, j}^{ \pm}(u) & =\widehat{\mathrm{F}}_{j, i}^{ \pm}(u) \widehat{k}_{j}^{+}(u)+\sum_{j<\ell \leqslant N+1}(-)^{([\ell]+[i])([\ell]+[j])} \widehat{\mathrm{F}}_{\ell, i}^{ \pm}(u) \widehat{k}_{\ell}^{ \pm}(u) \widehat{\mathrm{E}}_{j, \ell}^{ \pm}(u), \tag{2.17}\\
\mathrm{T}_{j, j}^{ \pm}(u) & =\widehat{k}_{j}^{ \pm}(u)+\sum_{j<\ell \leqslant N+1}(-)^{([\ell]+[j])} \widehat{\mathrm{F}}_{\ell, j}^{ \pm}(u) \widehat{k}_{\ell}^{ \pm}(u) \widehat{\mathrm{E}}_{j, \ell}^{ \pm}(u), \tag{2.18}\\
\mathrm{T}_{j, i}^{ \pm}(u) & =\widehat{k}_{j}^{ \pm}(u) \widehat{\mathrm{E}}_{i, j}^{ \pm}(u)+\sum_{j<\ell \leqslant N+1}(-)^{([\ell]+[i])([\ell]+[j])} \widehat{\mathrm{F}}_{\ell, j}^{ \pm}(u) \widehat{k}_{\ell}^{ \pm}(u) \widehat{\mathrm{E}}_{i, \ell}^{ \pm}(u) . \tag{2.19}
\end{align*}
$$

One can verify that the antimorphism (2.10) and the Gauss decomposition (2.14)-(2.16) imply the following formulae for the Gauss coordinates:

$$
\begin{gather*}
\Psi\left(\mathrm{F}_{j, i}^{ \pm}(u)\right)=(-)^{[i]([j]+1)} \mathrm{E}_{i, j}^{\mp}(u), \quad \Psi\left(\mathrm{E}_{i, j}^{ \pm}(u)\right)=(-)^{[j]([i]+1)} \mathrm{F}_{j, i}^{\mp}(u), \tag{2.20}\\
\Psi\left(k_{\ell}^{ \pm}(u)\right)=k_{\ell}^{\mp}(u) .
\end{gather*}
$$

Similarly,

$$
\begin{gathered}
\Psi\left(\widehat{\mathrm{F}}_{j, i}^{ \pm}(u)\right)=(-)^{[i]([j]+1)} \widehat{\mathrm{E}}_{i, j}^{\mp}(u), \quad \Psi\left(\widehat{\mathrm{E}}_{i, j}^{ \pm}(u)\right)=(-)^{[j]([i]+1)} \widehat{\mathrm{F}}_{j, i}^{\mp}(u), \\
\Psi\left(\widehat{k}_{\ell}^{ \pm}(u)\right)=\widehat{k}_{\ell}^{\mp}(u) .
\end{gathered}
$$

The Gauss decomposition formulae also imply that

$$
\begin{aligned}
& \mathrm{E}_{i, j}^{ \pm}(u)|0\rangle=\widehat{\mathrm{E}}_{i, j}^{ \pm}(u)|0\rangle=0, \quad i<j, \quad k_{\ell}^{ \pm}(u)|0\rangle=\widehat{k}_{\ell}^{ \pm}(u)|0\rangle=\lambda_{\ell}^{ \pm}(u)|0\rangle ; \\
& \langle 0| \mathrm{F}_{j, i}^{\mp}(u)=\langle 0| \widehat{\mathrm{F}}_{j, i}^{\mp}(u)=0, \quad i<j, \quad\langle 0| k_{\ell}^{\mp}(u)=\langle 0| \widehat{k}_{\ell}^{\mp}(u)=\lambda_{\ell}^{\mp}(u)\langle 0| .
\end{aligned}
$$

2.4. Current realizations of $D Y(\mathfrak{g l}(m \mid n))$. Let

$$
F_{i}(u)=\mathrm{F}_{i+1, i}^{+}(u)-\mathrm{F}_{i+1, i}^{-}(u) \quad \text { and } \quad E_{i}(u)=\mathrm{E}_{i, i+1}^{+}(u)-\mathrm{E}_{i, i+1}^{-}(u)
$$

be total currents [23]. Note that according to (2.20) we have

$$
\begin{align*}
& \Psi\left(F_{i}(u)\right)=-(-)^{[i]([i+1]+1)} E_{i}(u)=-E_{i}(u), \\
& \Psi\left(E_{i}(u)\right)=-(-)^{[i+1]([i]+1)} F_{i}(u)=-(-)^{\delta_{i, m}} F_{i}(u),
\end{align*} \quad i=1, \ldots, N .
$$

This proves that the graded transposition is an idempotent of order 4 and its square counts the number of odd elements modulo 2 .

Using straightforward calculations [24], [25] and the Gauss decomposition (2.14)-(2.16), we can obtain the following non-trivial commutation relations in terms of the total currents $F_{i}(t)$ and $E_{i}(t)$ and the Cartan currents $k_{i}^{ \pm}(t)$:

$$
\begin{gather*}
k_{i}^{ \pm}(u) F_{i}(v) k_{i}^{ \pm}(u)^{-1}=f_{[i]}(v, u) F_{i}(v), \\
k_{i+1}^{ \pm}(u) F_{i}(v) k_{i+1}^{ \pm}(u)^{-1}=f_{[i+1]}(u, v) F_{i}(v), \tag{2.22}\\
k_{i}^{ \pm}(u)^{-1} E_{i}(v) k_{i}^{ \pm}(u)=f_{[i]}(v, u) E_{i}(v), \\
k_{i+1}^{ \pm}(u)^{-1} E_{i}(v) k_{i+1}^{ \pm}(u)=f_{[i+1]}(u, v) E_{i}(v), \tag{2.23}\\
\left((u-v) \epsilon_{i, m}-c_{[i]}\right) F_{i}(u) F_{i}(v)=\left((u-v) \epsilon_{i, m}+c_{[i]}\right) F_{i}(v) F_{i}(u), \tag{2.24}\\
\left((u-v) \epsilon_{i, m}+c_{[i]}\right) E_{i}(u) E_{i}(v)=\left((u-v) \epsilon_{i, m}-c_{[i]}\right) E_{i}(v) E_{i}(u), \tag{2.25}\\
(u-v) F_{i}(u) F_{i+1}(v)=\left(u-v-c_{[i+1]}\right) F_{i+1}(v) F_{i}(u), \tag{2.26}\\
\left(u-v-c_{[i+1]}\right) E_{i}(u) E_{i+1}(v)=(u-v) E_{i+1}(v) E_{i}(u), \tag{2.27}\\
{\left[E_{i}(u), F_{j}(v)\right\}=E_{i}(u) F_{j}(v)-(-)^{([i]+[i+1])([j]+[j+1])} F_{j}(v) E_{i}(u)} \\
=\delta_{i, j} c_{[i+1]} \delta(u, v)\left(k_{i+1}^{-}(u) \cdot k_{i}^{-}(u)^{-1}-k_{i+1}^{+}(v) \cdot k_{i}^{+}(v)^{-1}\right), \tag{2.28}
\end{gather*}
$$

where $\delta(u, v)$ is the rational δ-function given by (2.32). These calculations also lead to the Serre relations. For the simple root currents $F_{i}(u), i=1, \ldots, N$, they have the form

$$
\begin{align*}
& \operatorname{Sym}_{u_{1}, u_{2}}\left(((u _ { 2 } - u _ { 1 }) \delta _ { i , m } - c _ { [i + 1] }) \left(F_{i}\left(u_{1}\right) F_{i}\left(u_{2}\right) F_{i+1}(v)\right.\right. \\
& \left.\left.\quad-2 F_{i}\left(u_{1}\right) F_{i+1}(v) F_{i}\left(u_{2}\right)+F_{i+1}(v) F_{i}\left(u_{1}\right) F_{i}\left(u_{2}\right)\right)\right)=0 \tag{2.29}\\
& \operatorname{Sym}_{u_{1}, u_{2}}\left(((u _ { 1 } - u _ { 2 }) \delta _ { i , m } + c _ { [i] }) \left(F_{i}\left(u_{1}\right) F_{i}\left(u_{2}\right) F_{i-1}(v)\right.\right. \\
& \left.\left.\quad-2 F_{i}\left(u_{1}\right) F_{i-1}(v) F_{i}\left(u_{2}\right)+F_{i-1}(v) F_{i}\left(u_{1}\right) F_{i}\left(u_{2}\right)\right)\right)=0, \tag{2.30}\\
& \operatorname{Sym}_{u_{1}, u_{2}}\left((u _ { 1 } - u _ { 2 } + c) \left[F_{m}\left(u_{1}\right) F_{m}\left(u_{2}\right) F_{m-1}\left(v_{1}\right) F_{m+1}\left(v_{2}\right)\right.\right. \\
& \left.\quad-2 F_{m}\left(u_{1}\right) F_{m-1}\left(v_{1}\right) F_{m}\left(u_{2}\right) F_{m+1}\left(v_{2}\right)\right] \\
& \quad+2 c F_{m-1}\left(v_{1}\right) F_{m}\left(u_{1}\right) F_{m}\left(u_{2}\right) F_{m+1}\left(v_{2}\right) \\
& \quad+\left(u_{2}-u_{1}+c\right)\left[F_{m-1}\left(v_{1}\right) F_{m+1}\left(v_{2}\right) F_{m}\left(u_{1}\right) F_{m}\left(u_{2}\right)\right. \\
& \left.\left.\quad-2 F_{m-1}\left(v_{1}\right) F_{m}\left(u_{1}\right) F_{m+1}\left(v_{2}\right) F_{m}\left(u_{2}\right)\right]\right)=0 . \tag{2.31}
\end{align*}
$$

Analogous formulae for the currents $E_{i}(u), i=1, \ldots, N$, can be obtained by applying the antimorphism Ψ to these relations. This amounts to replacing $F_{i}(u)$ by $E_{i}(u)$ and c by $-c$ in (2.29)-(2.31).

The rational, or equivalently, additive δ-function used in (2.28) can be represented as a difference of two series:

$$
\begin{equation*}
\delta(u, v)=\delta(v, u)=\frac{1}{(u-v)_{>}}-\frac{1}{(u-v)_{<}}=\sum_{n \in \mathbb{Z}} \frac{v^{n}}{u^{n+1}} \tag{2.32}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{(u-v)_{>}}=\frac{1}{u} \sum_{k \geqslant 0}\left(\frac{v}{u}\right)^{k} \quad \text { and } \quad \frac{1}{(u-v)_{<}}=-\frac{1}{v} \sum_{k \geqslant 0}\left(\frac{u}{v}\right)^{k} . \tag{2.33}
\end{equation*}
$$

Here the symbol $>$ in the rational function $\frac{1}{(u-v)_{>}}$means that $|u|>|v|$ and this rational function should be represented as the first series in (2.33). In turn, the symbol $<$ in the rational function $\frac{1}{(u-v)_{<}}$means that $|u|<|v|$ and this rational function should be represented as the second series in (2.33). Below we will also use the notation $\frac{1}{(u-v)_{\lessgtr}}$ to stress that one can use either of the two series expansions in (2.33) for the rational function $\frac{1}{u-v}$.

It is known [14] that another current realization of the Yangian double $D Y(\mathfrak{g l}(m \mid n))$ can be obtained using a different Gauss decomposition of the monodromy matrix, as in (2.17)-(2.19). The commutation relations between the Cartan currents $\widehat{k}_{i}^{ \pm}(u)$ and the simple root total currents $\widehat{F}_{i}(u)$ and $\widehat{E}_{i}(u)$ given by

$$
\begin{equation*}
\widehat{F}_{i}(u)=\widehat{\mathrm{F}}_{i+1, i}^{+}(u)-\widehat{\mathrm{F}}_{i+1, i}^{-}(u), \quad \widehat{E}_{i}(u)=\widehat{\mathrm{E}}_{i, i+1}^{+}(u)-\widehat{\mathrm{E}}_{i, i+1}^{-}(u) \tag{2.34}
\end{equation*}
$$

are gathered below:

$$
\begin{gather*}
\widehat{k}_{i}^{ \pm}(u) \widehat{F}_{i}(v) \widehat{k}_{i}^{ \pm}(u)^{-1}=f_{[i]}(v, u) \widehat{F}_{i}(v), \\
\widehat{k}_{i+1}^{ \pm}(u) \widehat{F}_{i}(v) \widehat{k}_{i+1}^{ \pm}(u)^{-1}=f_{[i+1]}(u, v) \widehat{F}_{i}(v), \tag{2.35}\\
\widehat{k}_{i}^{ \pm}(u)^{-1} \widehat{E}_{i}(v) \widehat{k}_{i}^{ \pm}(u)=f_{[i]}(v, u) \widehat{E}_{i}(v), \\
\widehat{k}_{i+1}^{ \pm}(u)^{-1} \widehat{E}_{i}(v) \widehat{k}_{i+1}^{ \pm}(u)=f_{[i+1]}(u, v) \widehat{E}_{i}(v), \tag{2.36}\\
\left((u-v) \epsilon_{i, m}+c_{[i]}\right) \widehat{F}_{i}(u) \widehat{F}_{i}(v)=\left((u-v) \epsilon_{i, m}-c_{[i]}\right) \widehat{F}_{i}(v) \widehat{F}_{i}(u), \tag{2.37}\\
\left((u-v) \epsilon_{i, m}-c_{[i]}\right) \widehat{E}_{i}(u) \widehat{E}_{i}(v)=\left((u-v) \epsilon_{i, m}+c_{[i]}\right) \widehat{E}_{i}(v) \widehat{E}_{i}(u), \tag{2.38}\\
\left(u-v-c_{[i+1]}\right) \widehat{F}_{i}(u) \widehat{F}_{i+1}(v)=(u-v) \widehat{F}_{i+1}(v) \widehat{F}_{i}(u), \tag{2.39}\\
(u-v) \widehat{E}_{i}(u) \widehat{E}_{i+1}(v)=\left(u-v-c_{[i+1]}\right) \widehat{E}_{i+1}(v) \widehat{E}_{i}(u), \tag{2.40}\\
{\left[\widehat{E}_{i}(u), \widehat{F}_{j}(v)\right\}=\widehat{E}_{i}(u) \widehat{F}_{j}(v)-(-)^{([i]+[i+1])([j]+[j+1])} \widehat{F}_{j}(v) \widehat{E}_{i}(u)} \\
=\delta_{i, j} c_{[i+1]} \delta(u, v)\left(\widehat{k}_{i}^{+}(u) \cdot \widehat{k}_{i+1}^{+}(u)^{-1}-\widehat{k}_{i}^{-}(v) \cdot \widehat{k}_{i+1}^{-}(v)^{-1}\right) . \tag{2.41}
\end{gather*}
$$

The Serre relations for the simple root currents $\widehat{E}_{i}(u), i=1, \ldots, N$, now have the form

$$
\begin{align*}
& \operatorname{Sym}_{u_{1}, u_{2}}\left(((u _ { 2 } - u _ { 1 }) \delta _ { i , m } - c _ { [i + 1] }) \left(\widehat{E}_{i}\left(u_{1}\right) \widehat{E}_{i}\left(u_{2}\right) \widehat{E}_{i+1}(v)\right.\right. \\
& \left.\left.\quad-2 \widehat{E}_{i}\left(u_{1}\right) \widehat{E}_{i+1}(v) \widehat{E}_{i}\left(u_{2}\right)+\widehat{E}_{i+1}(v) \widehat{E}_{i}\left(u_{1}\right) \widehat{E}_{i}\left(u_{2}\right)\right)\right)=0, \tag{2.42}\\
& \operatorname{Sym}_{u_{1}, u_{2}}\left(((u _ { 1 } - u _ { 2 }) \delta _ { i , m } + c _ { [i] }) \left(\widehat{E}_{i}\left(u_{1}\right) \widehat{E}_{i}\left(u_{2}\right) \widehat{E}_{i-1}(v)\right.\right. \\
& \left.\left.\quad-2 \widehat{E}_{i}\left(u_{1}\right) \widehat{E}_{i-1}(v) \widehat{E}_{i}\left(u_{2}\right)+\widehat{E}_{i-1}(v) \widehat{E}_{i}\left(u_{1}\right) \widehat{E}_{i}\left(u_{2}\right)\right)\right)=0, \tag{2.43}
\end{align*}
$$

$$
\begin{align*}
& \operatorname{Sym}_{u_{1}, u_{2}}\left((u _ { 1 } - u _ { 2 } + c) \left[\widehat{E}_{m}\left(u_{1}\right) \widehat{E}_{m}\left(u_{2}\right) \widehat{E}_{m-1}\left(v_{1}\right) \widehat{E}_{m+1}\left(v_{2}\right)\right.\right. \\
& \left.\quad-2 \widehat{E}_{m}\left(u_{1}\right) \widehat{E}_{m-1}\left(v_{1}\right) \widehat{E}_{m}\left(u_{2}\right) \widehat{E}_{m+1}\left(v_{2}\right)\right] \\
& \quad+2 c \widehat{E}_{m-1}\left(v_{1}\right) \widehat{E}_{m}\left(u_{1}\right) \widehat{E}_{m}\left(u_{2}\right) \widehat{E}_{m+1}\left(v_{2}\right) \\
& \quad+\left(u_{2}-u_{1}+c\right)\left[\widehat{E}_{m-1}\left(v_{1}\right) \widehat{E}_{m+1}\left(v_{2}\right) \widehat{E}_{m}\left(u_{1}\right) \widehat{E}_{m}\left(u_{2}\right)\right. \\
& \left.\left.\quad-2 \widehat{E}_{m-1}\left(v_{1}\right) \widehat{E}_{m}\left(u_{1}\right) \widehat{E}_{m+1}\left(v_{2}\right) \widehat{E}_{m}\left(u_{2}\right)\right]\right)=0 . \tag{2.44}
\end{align*}
$$

Thanks to the antimorphism Ψ, there are analogous relations for the currents $\widehat{F}_{i}(u)$, $i=1, \ldots, N$, with the replacements $\widehat{E}_{i}(u) \rightarrow \widehat{F}_{i}(u)$ and $c \rightarrow-c$ in the formulae (2.42)-(2.44). The action of the antimorphism (2.10) on the currents $\widehat{F}_{i}(u), \widehat{E}_{i}(u)$, and $\widehat{k}_{\ell}(u)$ is given by the same formulae as in (2.21).

Note that in the commutation relations (2.24), (2.25), (2.37), and (2.38) one can replace $c_{[i]}$ by $c_{[i+1]}$. Indeed, $c_{[i]}=c_{[i+1]}$ when $i \neq m$, while for $i=m$ the factor $(u-v) \epsilon_{i, m}$ vanishes, and thus it does not matter whether we use $c_{[i]}$ or $c_{[i+1]}$.

3. Universal Bethe vectors

It follows from the commutation relations (2.4) that the subalgebras $U^{ \pm}$ generated by the modes of the T-operators $\mathrm{T}_{i j}^{(n)}$ form two Borel subalgebras of $D Y(\mathfrak{g l}(m \mid n))$. Moreover, by (2.5) they are Hopf subalgebras. We call $U^{ \pm}$the standard Borel subalgebras of the Yangian double $D Y(\mathfrak{g l}(m \mid n))$.

As we already mentioned, the universal Bethe vectors are constructed from the matrix elements of one universal monodromy matrix $\mathrm{T}_{i j}^{+}$. These operators belong to the standard 'positive' Borel subalgebra U^{+}. The goal of this section is to express the universal Bethe vectors in terms of the current generators of the Yangian double $D Y(\mathfrak{g l}(m \mid n))$, using the approach developed in [13], [14], and [26].

In this paper we consider formulae for the Bethe vectors compatible with two different ways of embedding an algebra of smaller rank in an algebra of larger rank. Namely, from the explicit formulae for the right Bethe vectors $\mathbb{B}(\bar{t})$ (see (5.17)) one can conclude that the Bethe vector $\mathbb{B}(\bar{t})$ is obtained by resolving the hierarchical relations based on the embedding of the Yangian double $D Y(\mathfrak{g l}(m-1 \mid n))$ in the larger algebra $D Y(\mathfrak{g l}(m \mid n))$. Similarly, it follows from (5.25) that the Bethe vector $\widehat{\mathbb{B}}(\bar{t})$ is obtained by resolving the hierarchical relations based on the embedding of the Yangian double $D Y(\mathfrak{g l}(m \mid n-1))$ in the larger algebra $D Y(\mathfrak{g l}(m \mid n))$. To express the Bethe vectors $\mathbb{B}(\bar{t})$ and $\widehat{\mathbb{B}}(\bar{t})$ in terms of the current generators we will use two different types of Gauss decompositions of the monodromy matrix elements and the corresponding current generators [14].

The general theory of the relation between Bethe vectors and currents was developed in the paper [26] and then applied in [13] and [14] to the construction of the hierarchical Bethe vectors for quantum integrable models associated with the quantum affine algebra $U_{q}(\widehat{\mathfrak{g l}}(N))$. The main tool used in those papers was the language of projections onto intersections of Borel subalgebras of different type.

To describe the Bethe vectors $\mathbb{B}(\bar{t})$ and $\mathbb{C}(\bar{t})$ we will use the current Borel subalgebras associated with the Gauss decomposition (2.14)-(2.16) and the antimorphism (2.10). For the Bethe vectors $\widehat{\mathbb{B}}(\bar{t})$ and $\widehat{\mathbb{C}}(\bar{t})$ we will use the same antimorphism and the current Borel subalgebras associated with the second Gauss decomposition (2.17)-(2.19).
3.1. Notation and conventions. We will denote sets of variables by bars over letters: \bar{u}, \bar{v}, and so on. To simplify formulae below, we use a shortened notation for products of functions depending on one or two variables. Namely, whenever we indicate that a function λ_{j} depends on a set of variables, the notation $\lambda_{j}(\bar{u})$ stands for the product of the functions $\lambda_{j}\left(u_{\ell}\right)$ over the set \bar{u}. Similarly, the notation $f_{[i]}(\bar{u}, \bar{v})$ (or $g_{[i]}(\bar{u}, \bar{v})$, or $h_{[i]}(\bar{u}, \bar{v})$) denotes the double product of these functions over the corresponding sets. For example,

$$
\lambda_{j}(\bar{u})=\prod_{u_{\ell} \in \bar{u}} \lambda_{j}\left(u_{\ell}\right) \quad \text { and } \quad f_{[i]}(\bar{u}, \bar{v})=\prod_{u_{\ell} \in \bar{u}, v_{\ell^{\prime}} \in \bar{v}} f_{[i]}\left(u_{\ell}, v_{\ell^{\prime}}\right) .
$$

Moreover, we use the same convention when considering products of commuting operators. For example,

$$
\mathrm{T}_{i, j}(\bar{u})=\prod_{\ell} \mathrm{T}_{i, j}\left(u_{\ell}\right) \quad \text { for }[i]+[j]=0 \bmod 2
$$

We also introduce several rational functions which will appear in the text below. First, for any function $x\left(u_{1}, u_{2}\right)$ we set

$$
\Delta_{x}(\bar{u})=\prod_{1 \leqslant \ell<\ell^{\prime} \leqslant a} x\left(u_{\ell^{\prime}}, u_{\ell}\right) \quad \text { and } \quad \Delta_{x}^{\prime}(\bar{u})=\prod_{1 \leqslant \ell<\ell^{\prime} \leqslant a} x\left(u_{\ell}, u_{\ell^{\prime}}\right)
$$

where $a=\# \bar{u}$.
Second, for arbitrary sets of parameters \bar{u} and \bar{v} we define

$$
\begin{equation*}
\gamma_{i}(\bar{u})=\frac{\Delta_{f_{[i]}}(\bar{u})}{\Delta_{h}(\bar{u})^{\delta_{i, m}}} \quad \text { and } \quad \gamma_{i}(\bar{u}, \bar{v})=\frac{f_{[i]}(\bar{u}, \bar{v})}{h(\bar{u}, \bar{v})^{\delta_{i, m}}} \tag{3.1}
\end{equation*}
$$

The first function coincides with $\Delta_{f_{[i]}}(\bar{u})$ for $i \neq m$ and with $\Delta_{g}(\bar{u})$ for $i=m$. The second function coincides with $f_{[i]}(\bar{u}, \bar{v})$ for $i \neq m$ and with $g(\bar{u}, \bar{v})$ for $i=m$. Similarly, we define

$$
\widehat{\gamma}_{i}(\bar{u})=\frac{\Delta_{f_{[i+1]}}(\bar{u})}{\Delta_{h}^{\prime}(\bar{u})^{\delta_{i, m}}} \quad \text { and } \quad \widehat{\gamma}_{i}(\bar{u}, \bar{v})=\frac{f_{[i+1]}(\bar{u}, \bar{v})}{h(\bar{v}, \bar{u})^{\delta_{i, m}}} .
$$

For $i \neq m$,

$$
\widehat{\gamma}_{i}(\bar{u})=\Delta_{f_{[i+1]}}(\bar{u}) \quad \text { and } \quad \widehat{\gamma}_{i}(\bar{u}, \bar{v})=f_{[i+1]}(\bar{u}, \bar{v}),
$$

while for $i=m$,

$$
\widehat{\gamma}_{m}(\bar{u})=\Delta_{g}^{\prime}(\bar{u}) \quad \text { and } \quad \widehat{\gamma}_{m}(\bar{u}, \bar{v})=g(\bar{v}, \bar{u})
$$

Note that the function $\gamma_{m}(\bar{u})$ differs from $\widehat{\gamma}_{m}(\bar{u})$ by the factor $(-)^{\# \bar{u}(\# \bar{u}-1) / 2}$. Similarly,

$$
\begin{equation*}
\gamma_{m}(\bar{u}, \bar{v})=(-)^{\# \bar{u} \# \bar{v}} \widehat{\gamma}_{m}(\bar{u}, \bar{v}) \tag{3.2}
\end{equation*}
$$

Also, note that $\gamma_{i}(\bar{u})=\widehat{\gamma}_{i}(\bar{u})$ and $\gamma_{i}(\bar{u}, \bar{v})=\widehat{\gamma}_{i}(\bar{u}, \bar{v})$ for $i \neq m$.
3.2. Deformed symmetrization. For any formal series $G(\bar{t})$ depending on the set of variables \bar{t} (see (3.11) below) we define the deformed symmetrization (or c-symmetrization) to be the sum ${ }^{5}$

$$
\begin{equation*}
\overline{\operatorname{Sym}}_{\bar{t}} G(\bar{t})=\sum_{\sigma \in S_{\bar{r}}} \prod_{s=1}^{N} \prod_{\substack{\ell<\ell^{\prime} \\ \sigma^{s}(\ell)>\sigma^{s}\left(\ell^{\prime}\right)}} \frac{\left(t_{\sigma^{s}\left(\ell^{\prime}\right)}^{s}-t_{\sigma^{s}(\ell)}^{s}\right) \epsilon_{s, m}+c_{[s]}^{s}}{\left(t_{\sigma^{s}\left(\ell^{\prime}\right)}^{s}-t_{\sigma^{s}(\ell)}^{s}\right) \epsilon_{s, m}-c_{[s]}} G\left({ }^{\sigma} \bar{t}\right), \tag{3.3}
\end{equation*}
$$

where $S_{\bar{r}}=S_{r_{1}} \times \cdots \times S_{r_{N}}$ is the direct product of the groups $S_{r_{s}}$ of permutations of the integers $1, \ldots, r_{s}, s=1, \ldots, N$, and ${ }^{\sigma} \bar{t}$ is the corresponding permuted set of Bethe parameters (3.11). By the arguments at the end of $\S 2.4$, the formula for the deformed symmetrization can easily be written as

$$
\begin{equation*}
\overline{\operatorname{Sym}}_{\bar{t}} G(\bar{t})=\sum_{\sigma \in S_{\bar{r}}} \prod_{s=1}^{N} \prod_{\substack{\ell<\ell^{\prime} \\ \sigma^{s}(\ell)>\sigma^{s}\left(\ell^{\prime}\right)}} \frac{\left(t_{\sigma^{s}\left(\ell^{\prime}\right)}^{s}-t_{\sigma^{s}(\ell)}^{s}\right) \epsilon_{s, m}+c_{[s+1]}}{\left(t_{\sigma^{s}\left(\ell^{\prime}\right)}^{s}-t_{\sigma^{s}(\ell)}^{s}\right) \epsilon_{s, m}-c_{[s+1]}} G\left({ }^{\sigma} \bar{t}\right) . \tag{3.4}
\end{equation*}
$$

In what follows we will use either (3.3) or (3.4), depending on the situation.
We say that a series $Q(\bar{t})$ is c-symmetric if

$$
\overline{\operatorname{Sym}}_{\bar{t}} Q(\bar{t})=\left(\prod_{s=1}^{N} r_{s}!\right) Q(\bar{t})
$$

Note that for $s=m$ the product over ℓ and ℓ^{\prime} is equal to $(-)^{P\left(\sigma^{m}\right)}$, where $P\left(\sigma^{m}\right)$ is the parity of the permutation σ^{m}, and the sum over all permutations σ^{m} is nothing else but the antisymmetrization over the set \bar{t}^{m}.
3.3. The Bethe vector $\mathbb{B}(\bar{t})$ and the dual Bethe vector $\mathbb{C}(\bar{t})$. We first explain the relation between the Bethe vector $\mathbb{B}(\bar{t})$ and the current presentation (2.22)-(2.28).

Let $U_{F} \subset D Y(\mathfrak{g l}(m \mid n))$ be the $D Y(\mathfrak{g l}(m \mid n))$ subalgebra generated by the modes of the simple root currents $F_{i}^{(\ell)}, i=1, \ldots, N, \ell \in \mathbb{Z}$, and by the modes of the 'positive' Cartan currents $k_{j}^{\left(\ell^{\prime}\right)}, j=1, \ldots, N+1, \ell^{\prime} \geqslant 0$. In the framework of the quantum double construction, the subalgebra $U_{E} \subset D Y(\mathfrak{g l}(m \mid n))$ dual to U_{F} is generated by the modes of the simple root currents $E_{i}^{(\ell)}, i=1, \ldots, N, \ell \in \mathbb{Z}$, and by the modes of the 'negative' Cartan currents $k_{j}^{\left(\ell^{\prime}\right)}, j=1, \ldots, N+1, \ell^{\prime}<0$.

We call the subalgebras U_{F} and U_{E} current Borel subalgebras. They are Hopf subalgebras of $D Y(\mathfrak{g l}(m \mid n))$ with respect to the so-called Drinfeld coproduct

$$
\begin{align*}
\Delta^{(D)}\left(F_{i}(z)\right) & =F_{i}(z) \otimes \mathbf{1}+k_{i+1}^{+}(z)\left(k_{i}^{+}(z)\right)^{-1} \otimes F_{i}(z) \\
\Delta^{(D)}\left(k_{j}^{ \pm}(z)\right) & =k_{j}^{ \pm}(z) \otimes k_{j}^{ \pm}(z) \tag{3.5}\\
\Delta^{(D)}\left(E_{i}(z)\right) & =\mathbf{1} \otimes E_{i}(z)+E_{i}(z) \otimes k_{i+1}^{-}(z)\left(k_{i}^{-}(z)\right)^{-1}
\end{align*}
$$

which obviously differs from the coproduct given by (2.5).

[^3]In order to express the Bethe vectors $\mathbb{B}(\bar{t})$ in terms of the current generators, we need only the one current Borel subalgebra U_{F} and its coalgebraic properties given by the first two equalities in (3.5). Consider the following intersections of this current Borel subalgebra with the standard Borel subalgebras $U^{ \pm}$:

$$
\begin{equation*}
U_{F}^{-}=U_{F} \cap U^{-} \quad \text { and } \quad U_{F}^{+}=U_{F} \cap U^{+} \tag{3.6}
\end{equation*}
$$

Each of these intersections is a subalgebra of $D Y(\mathfrak{g l}(m \mid n))$ [26], and they are coideals with respect to the coproduct (3.5):

$$
\begin{equation*}
\Delta^{(D)}\left(U_{F}^{+}\right)=U_{F}^{+} \otimes U_{F} \quad \text { and } \quad \Delta^{(D)}\left(U_{F}^{-}\right)=U_{F} \otimes U_{F}^{-} \tag{3.7}
\end{equation*}
$$

To see this we introduce the expansion of the following combination of Cartan currents:

$$
k_{i+1}^{+}(z)\left(k_{i}^{+}(z)\right)^{-1}=1+\sum_{\ell \geqslant 0} \kappa_{i}^{(\ell)} z^{-\ell-1}
$$

Then the coproduct (3.5) maps the modes $F_{i}^{(\ell)}$ of the currents $F_{i}(z)$ to

$$
\begin{equation*}
\Delta^{(D)}\left(F_{i}^{(\ell)}\right)=F_{i}^{(\ell)} \otimes \mathbf{1}+\mathbf{1} \otimes F_{i}^{(\ell)}+\sum_{\ell^{\prime} \geqslant 0} \kappa_{i}^{\left(\ell^{\prime}\right)} \otimes F_{i}^{\left(\ell-\ell^{\prime}-1\right)} \tag{3.8}
\end{equation*}
$$

The properties (3.7) become obvious in view of (3.8).
According to the Cartan-Weyl construction of the Yangian double we have to find a global ordering on the generators of this algebra. There are two different choices for this ordering. We choose the ordering such that elements in the subalgebra U_{F}^{-}precede elements of the subalgebra $U_{F}^{+}[26],[27]$. We say that an arbitrary element $\mathscr{F} \in U_{F}$ is ordered if it is represented in the form

$$
\mathscr{F}=\mathscr{F}_{-} \cdot \mathscr{F}_{+},
$$

where $\mathscr{F}_{ \pm} \in U_{F}^{ \pm}$.
According to the general theory [26] one can define the projections of any ordered elements of the subalgebra U_{F} on the subalgebras (3.6) using the formulae

$$
\begin{equation*}
P_{f}^{+}\left(\mathscr{F}_{-} \cdot \mathscr{F}_{+}\right)=\varepsilon\left(\mathscr{F}_{-}\right) \mathscr{F}_{+}, \quad P_{f}^{-}\left(\mathscr{F}_{-} \cdot \mathscr{F}_{+}\right)=\mathscr{F}_{-} \varepsilon\left(\mathscr{F}_{+}\right), \quad \mathscr{F}_{ \pm} \in U_{F}^{ \pm}, \tag{3.9}
\end{equation*}
$$

where the counit map $\varepsilon: U_{F} \rightarrow \mathbb{C}$ is defined by the rules

$$
\varepsilon\left(F_{i}^{(\ell)}\right)=0, \quad \varepsilon(\mathbf{1})=1, \quad \varepsilon\left(k_{j}^{(\ell)}\right)=0 .
$$

Let \bar{U}_{F} be the completion of U_{F}, which is formed by infinite sums of monomials that are ordered products of the form

$$
\mathscr{A}_{i_{1}}^{\left(\ell_{1}\right)} \cdots \mathscr{A}_{i_{a}}^{\left(\ell_{a}\right)}, \quad \ell_{1} \leqslant \cdots \leqslant \ell_{a}
$$

where $\mathscr{A}_{i_{l}}^{\left(\ell_{l}\right)}$ is either $F_{i_{l}}^{\left(\ell_{l}\right)}$ or $k_{i_{l}}^{\left(\ell_{l}\right)}$. It can be proved [26] that

1) the action of the projections (3.9) extends to the algebra \bar{U}_{F};
2) for any $\mathscr{F} \in \bar{U}_{F}$ with $\Delta^{(D)}(\mathscr{F})=\mathscr{F}^{\prime} \otimes \mathscr{F}^{\prime \prime}$ we have

$$
\begin{equation*}
\mathscr{F}=P_{f}^{-}\left(\mathscr{F}^{\prime}\right) \cdot P_{f}^{+}\left(\mathscr{F}^{\prime \prime}\right) . \tag{3.10}
\end{equation*}
$$

The formula (3.10) is an important tool for calculating the universal Bethe vectors. It allows us to present an arbitrary product of currents in the ordered form using simple formulae for the Drinfeld current coproducts.

Now we can define the universal Bethe vector. Let

$$
\begin{equation*}
\bar{t}=\left\{t_{1}^{1}, \ldots, t_{r_{1}}^{1} ; t_{1}^{2}, \ldots, t_{r_{2}}^{2} ; \ldots ; t_{1}^{N}, \ldots, t_{r_{N}}^{N}\right\} \tag{3.11}
\end{equation*}
$$

be a set of parameters. The superscript labels the different types of Bethe parameters and refers to the simple root numbering, and the subscript counts the number of parameters of a given type. There are r_{ℓ} Bethe parameters of type $\ell=1, \ldots, N$.

Let $\overleftarrow{\prod_{a}} A_{a}$ (respectively, $\overrightarrow{\prod_{a}} A_{a}$) denote the ordered product of non-commuting operators A_{a} such that A_{ℓ} is on the right (respectively, on the left) of $A_{\ell^{\prime}}$ for $\ell^{\prime} \geqslant \ell$:

$$
\prod_{j \geqslant a \geqslant i} A_{a}=A_{j} A_{j-1} \cdots A_{i+1} A_{i} \text { and } \prod_{i \leqslant a \leqslant j} A_{a}=A_{i} A_{i+1} \cdots A_{j-1} A_{j}
$$

We define an ordered product of total currents,

$$
\begin{equation*}
\mathscr{F}(\bar{t})=\prod_{1 \leqslant a \leqslant N}\left(\prod_{1 \leqslant \ell \leqslant r_{a}} F_{a}\left(t_{\ell}^{a}\right)\right) \tag{3.12}
\end{equation*}
$$

which is a formal series with respect to the ratios $t_{k}^{b} / t_{l}^{c}(b>c)$ and $t_{i}^{a} / t_{j}^{a}(i>j)$ and takes values in the completion \bar{U}_{F} (see [26]). The product (3.12) has poles for some values of the ratios t_{k}^{b} / t_{l}^{c} and t_{i}^{a} / t_{j}^{a}. The operator-valued coefficients at these poles take values in the completion \bar{U}_{F} and can be identified with composed root currents (see Appendix A). Note also that in view of the commutation relations between currents, the product (3.12) as well as its projections are c-symmetric.

Let us introduce the normalized product of currents

$$
\begin{equation*}
\mathrm{F}(\bar{t})=\frac{\prod_{\ell=1}^{N} \gamma_{\ell}\left(\bar{t}^{\ell}\right)}{\prod_{\ell=1}^{N-1} f_{[\ell+1]}\left(\bar{t}^{\ell+1}, \bar{t}^{\ell}\right)} \mathscr{F}(\bar{t}) \tag{3.13}
\end{equation*}
$$

where γ_{ℓ} is given by (3.1). Then the universal off-shell Bethe vector $\mathbb{B}(\bar{t})$ is defined as the action of the projection on this normalized product, applied to the singular vector $|0\rangle$:

$$
\begin{equation*}
\mathbb{B}(\bar{t})=P_{f}^{+}(\mathrm{F}(\bar{t})) \prod_{s=1}^{N} \lambda_{s}\left(\bar{t}^{s}\right)|0\rangle \tag{3.14}
\end{equation*}
$$

Note that in view of the commutation relations (2.24) and (2.26) between currents the normalized product of currents (3.13) is symmetric with respect to permutations of Bethe parameters of the same type.

The normalization of the universal off-shell Bethe vector is chosen so that it removes all zeros and poles originating from products of currents. For example, according to the commutation relations (2.24), the products of currents $\mathscr{F}_{\ell}\left(\bar{t}^{\ell}\right)$ have poles when $t_{j}^{\ell}-t_{i}^{\ell}+c_{[\ell]}=0$ for $j>i$ and $\ell \neq m$, and zeros for all ℓ when $t_{j}^{\ell}-t_{i}^{\ell}=0$. The potential singularities are compensated by the rational
functions in the numerator of the prefactor in (3.13). On the other hand, the products of currents $\mathscr{F}_{\ell}\left(\bar{t}^{\ell}\right) \mathscr{F}_{\ell+1}\left(\bar{t}^{\ell+1}\right)$ have poles when $t_{j}^{\ell+1}-t_{i}^{\ell}=0$ and zeros when $t_{j}^{\ell+1}-t_{i}^{\ell}+c_{[\ell+1]}=0$ for all i, j. These possible singularities are compensated by the product of the rational functions $f_{[\ell+1]}\left(\bar{t}^{\ell+1}, \bar{t}^{\ell}\right)^{-1}$ in the denominator of the prefactor in (3.13).

Our strategy is to calculate first the projection in (3.14) and then to rewrite the result of this calculation as some polynomial in the monodromy matrix elements. This will be done in $\S 5$. Then we define the dual Bethe vector $\mathbb{C}(\bar{t})$ by the formula

$$
\begin{equation*}
\mathbb{C}(\bar{t})=\Psi(\mathbb{B}(\bar{t})), \tag{3.15}
\end{equation*}
$$

where the antimorphism (2.10) is extended from the algebra to vectors of the representation of this algebra using the relations $\Psi(|0\rangle)=\langle 0|$ and $\Psi(\langle 0|)=|0\rangle$.

Alternatively, the formula for the dual Bethe vector can be found via the projection method and another choice of the current Borel subalgebra, the Drinfeld coproduct, and the associated projections from the ordered product of currents

$$
\mathscr{E}(\bar{t})=\prod_{N \geqslant a \geqslant 1}\left(\prod_{r_{a} \geqslant \ell \geqslant 1} E_{a}\left(t_{\ell}^{a}\right)\right)
$$

We do not perform these calculations in this paper.
3.4. The Bethe vector $\widehat{\mathbb{B}}(\bar{t})$ and the dual Bethe vector $\widehat{\mathbb{C}}(\bar{t})$. For the Bethe vector $\widehat{\mathbb{B}}(\bar{t})$ and the dual Bethe vector $\widehat{\mathbb{C}}(\bar{t})$ one has to explore the second current realization (2.35)-(2.41) of the Yangian double $D Y(\mathfrak{g l}(m \mid n))$ given by the currents $\widehat{F}_{i}(z), \widehat{E}_{i}(z)$, and $\widehat{k}_{j}^{ \pm}(z)$, which are related to the monodromy matrix elements through the Gauss decomposition (2.17)-(2.19) and the Frenkel-Ding formulae (2.34).

As in the previous subsections, to describe the Bethe vector $\widehat{\mathbb{B}}(\bar{t})$ we define a Borel subalgebra \widehat{U}_{F} such that the 'positive' Cartan currents $\widehat{k}_{j}^{+}(z)$ are in \widehat{U}_{F} and have the coalgebraic properties

$$
\begin{align*}
\widehat{\Delta}^{(D)}\left(\widehat{F}_{i}(z)\right) & =\mathbf{1} \otimes \widehat{F}_{i}(z)+\widehat{F}_{i}(z) \otimes \widehat{k}_{i}^{+}(z)\left(\widehat{k}_{i+1}^{+}(z)\right)^{-1} \\
\widehat{\Delta}^{(D)}\left(\widehat{k}_{j}^{+}(z)\right) & =\widehat{k}_{j}^{+}(z) \otimes \widehat{k}_{j}^{+}(z) \tag{3.16}
\end{align*}
$$

We again consider the intersections of this current Borel subalgebra with the standard Borel subalgebras $\widehat{U}^{ \pm}$,

$$
\begin{equation*}
\widehat{U}_{F}^{-}=\widehat{U}_{F} \cap \widehat{U}^{-} \quad \text { and } \quad \widehat{U}_{F}^{+}=\widehat{U}_{F} \cap \widehat{U}^{+} \tag{3.17}
\end{equation*}
$$

and check the coideal properties of these intersections,

$$
\widehat{\Delta}^{(D)}\left(\widehat{U}_{F}^{+}\right)=\widehat{U}_{F} \otimes \widehat{U}_{F}^{+} \quad \text { and } \quad \widehat{\Delta}^{(D)}\left(\widehat{U}_{F}^{-}\right)=\widehat{U}_{F}^{-} \otimes \widehat{U}_{F}
$$

with respect to the coproduct (3.16).
Using the same cycling ordering for the Cartan-Weyl generators of \widehat{U}_{F} as we used for ordering elements in U_{F}, we say that an arbitrary element $\widehat{\mathscr{F}} \in \widehat{U}_{F}$ is ordered if

$$
\widehat{\mathscr{F}}=\widehat{\mathscr{F}}_{-} \cdot \widehat{\mathscr{F}}_{+},
$$

where $\widehat{\mathscr{F}}_{ \pm} \in \widehat{U}_{F}^{ \pm}$.

Again, according to the general theory formulated in [26] one can define the projections of any ordered elements of the subalgebras \widehat{U}_{F} and \widehat{U}_{E} on the subalgebras (3.17) by using the formulae

$$
\begin{equation*}
\widehat{P}_{f}^{+}\left(\widehat{\mathscr{F}}_{-} \cdot \widehat{\mathscr{F}}_{+}\right)=\widehat{\varepsilon}\left(\widehat{\mathscr{F}}_{-}\right) \widehat{\mathscr{F}}_{+}, \quad \widehat{P}_{f}^{-}\left(\widehat{\mathscr{F}}_{-} \cdot \widehat{\mathscr{F}}_{+}\right)=\widehat{\mathscr{F}}-\widehat{\varepsilon}\left(\widehat{\mathscr{F}}_{+}\right), \quad \widehat{\mathscr{F}}_{ \pm} \in \widehat{U}_{F}^{ \pm} \tag{3.18}
\end{equation*}
$$

where the counit map $\widehat{\varepsilon}: D Y(\mathfrak{g l}(m \mid n)) \rightarrow \mathbb{C}$ is defined by the rules

$$
\widehat{\varepsilon}\left(\widehat{F}_{i}^{(\ell)}\right)=0 \quad \text { and } \quad \widehat{\varepsilon}\left(\widehat{k}_{j}^{(\ell)}\right)=0
$$

and $\widehat{F}_{i}^{(\ell)}$ and $\widehat{k}_{j}^{(\ell)}$ are modes of the currents $\widehat{F}_{i}(z)$ and $\widehat{k}_{i}^{+}(z)$ in the second current realization of the Yangian double $D Y(\mathfrak{g l}(m \mid n))$.

Defining the completion $\widehat{\bar{U}}_{F}$, we can verify [26] that:

1) the action of the projections (3.18) extends to the algebras $\widehat{\bar{U}}_{F}$;
2) for any $\widehat{\mathscr{F}} \in \widehat{U}_{F}$ with $\widehat{\Delta}^{(D)}(\widehat{\mathscr{F}})=\widehat{\mathscr{F}}^{\prime} \otimes \widehat{\mathscr{F}}^{\prime \prime}$ we have

$$
\begin{equation*}
\widehat{\mathscr{F}}=\widehat{P}_{f}^{-}\left(\widehat{\mathscr{F}}^{\prime \prime}\right) \cdot \widehat{P}_{f}^{+}\left(\widehat{\mathscr{F}}^{\prime}\right) . \tag{3.19}
\end{equation*}
$$

For the set (3.11) of Bethe parameters we consider the normalized ordered product of currents

$$
\begin{equation*}
\widehat{\mathbf{F}}(\bar{t})=\frac{\prod_{\ell=1}^{N} \hat{\gamma}_{\ell}\left(\bar{t}^{\ell}\right)}{\prod_{\ell=1}^{N-1} f_{[\ell+1]}\left(\bar{t}^{\ell+1}, \bar{t}^{\ell}\right)} \widehat{\mathscr{F}}(\bar{t}) \tag{3.20}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{\mathscr{F}}(\bar{t})=\prod_{N \geqslant a \geqslant 1}\left(\prod_{r_{a} \geqslant \ell \geqslant 1} \widehat{F}_{a}\left(t_{\ell}^{a}\right)\right) \tag{3.21}
\end{equation*}
$$

The universal off-shell Bethe vectors associated with the second current realization of the Yangian double $D Y(\mathfrak{g l}(m \mid n))$ are defined in terms of the action of the above projections on the singular vector $|0\rangle$ as follows:

$$
\begin{equation*}
\widehat{\mathbb{B}}(\bar{t})=\widehat{P}_{f}^{+}(\widehat{\mathrm{F}}(\bar{t})) \prod_{s=1}^{N} \lambda_{s+1}\left(\bar{t}^{s}\right)|0\rangle . \tag{3.22}
\end{equation*}
$$

The normalization of this universal off-shell Bethe vector is again chosen in such a way as to remove all zeros and poles arising from products of currents.

The dual Bethe vector $\widehat{\mathbb{C}}(\bar{t})$ is defined using the antimorphism (2.10):

$$
\begin{equation*}
\widehat{\mathbb{C}}(\bar{t})=\Psi(\widehat{\mathbb{B}}(\bar{t})) . \tag{3.23}
\end{equation*}
$$

3.5. Main results. In this paper we verify the following.

- The two different ways of constructing the Bethe vectors lead in the end to the same result, that is,

$$
\begin{equation*}
\mathbb{B}(\bar{t})=\widehat{\mathbb{B}}(\bar{t}) \quad \text { and } \quad \mathbb{C}(\bar{t})=\widehat{\mathbb{C}}(\bar{t}) \tag{3.24}
\end{equation*}
$$

In $\S 4$ we will prove this statement for the Bethe vectors $\mathbb{B}(\bar{t})$ and $\widehat{\mathbb{B}}(\bar{t})$ only. The proof for the dual vectors $\mathbb{C}(\bar{t})$ and $\widehat{\mathbb{C}}(\bar{t})$ follows from application of the antimorphism Ψ to the first equality in (3.24).

- Bethe vectors become on-shell, or equivalently, become eigenvectors of the supersymmetric transfer matrix $\mathfrak{t}(z)$ (2.6) with the eigenvalue (4.78), if the Bethe equations (4.75) for the parameters (3.11) are satisfied.
- Explicit formulae for the Bethe vectors in terms of the monodromy matrix elements are given by (5.17) and (5.25). Explicit formulae for the dual vectors can be obtained using the antimorphism (2.10).
- The coproduct properties for the Bethe vectors are given in the relations (4.8) and (4.9). They express the coproduct of a Bethe vector in term of Bethe vectors belonging to the two copies of $D Y(\mathfrak{g l}(m \mid n))$ arising under application of the coproduct.

4. Formulae for the action of the monodromy matrix elements

The goal of the present section is to prove that the Bethe vectors $\mathbb{B}(\bar{t})$ and $\widehat{\mathbb{B}}(\bar{t})$ coincide. After obtaining formulae for the universal off-shell Bethe vectors in terms of elements of the monodromy matrix (see $\S 5$), we will see that a direct proof of the equality (3.24) is a rather complicated combinatorial problem. Instead, we will prove it by checking that both of these vectors satisfy the same recurrence relations with respect to the action of the upper triangular and diagonal monodromy matrix elements on these vectors. To check this statement it is not necessary to get explicit formulae for the universal off-shell Bethe vectors in terms of the monodromy matrix elements. Before starting this analysis, we show that the Bethe vectors $\mathbb{B}(\bar{t})$ and $\widehat{\mathbb{B}}(\bar{t})$ have the same coproduct properties that follow from the coproduct (2.5) for the monodromy matrix.
4.1. Coproduct properties of the Bethe vectors. Calculating the coproduct of the product of the currents $F_{i}(t)$ using the first formula in (3.5), we get that the Drinfeld coproduct of the ordered product of simple root currents $\mathscr{F}(\bar{t})$ is

$$
\begin{align*}
& \Delta^{(D)}(\mathscr{F}(\bar{t}))=\sum_{0 \leqslant s_{1} \leqslant r_{1}} \ldots \sum_{0 \leqslant s_{N} \leqslant r_{N}} \prod_{\ell=1}^{N} \frac{1}{s_{\ell}!\left(r_{\ell}-s_{\ell}\right)!} \\
& \quad \times \overline{\operatorname{Sym}}_{\bar{t}}\left(Z_{\bar{s}}(\bar{t}) \mathscr{F}\left(\bar{t}^{\prime}\right) \prod_{s=1}^{N} \prod_{\ell=s_{\ell}+1}^{r_{\ell}} k_{s+1}^{+}\left(t_{\ell}^{s}\right) k_{s}^{+}\left(t_{\ell}^{s}\right)^{-1} \otimes \mathscr{F}\left(\bar{t}^{\prime \prime}\right)\right), \tag{4.1}
\end{align*}
$$

where the sets \bar{t}^{\prime} and $\bar{t}^{\prime \prime}$ are

$$
\begin{aligned}
\bar{t}^{\prime} & =\left\{t_{1}^{1}, \ldots, t_{s_{1}}^{1} ; t_{1}^{2}, \ldots, t_{s_{2}}^{2} ; \ldots ; t_{1}^{N}, \ldots, t_{s_{N}}^{N}\right\}, \\
\bar{t}^{\prime \prime} & =\left\{t_{s_{1}+1}^{1}, \ldots, t_{r_{1}}^{1} ; t_{s_{2}+1}^{2}, \ldots, t_{r_{2}}^{2} ; \ldots ; t_{s_{N}+1}^{N}, \ldots, t_{r_{N}}^{N}\right\},
\end{aligned}
$$

and $Z_{\bar{s}}(\bar{t})$ is the rational function

$$
Z_{\bar{s}}(\bar{t})=\prod_{a=1}^{N-1} \prod_{\substack{s_{a}<\ell \leqslant r_{a} \\ 0<\ell^{\prime} \leqslant s_{a+1}}} \frac{t_{\ell}^{a}-t_{\ell^{\prime}}^{a+1}-c_{[a+1]}}{t_{\ell}^{a}-t_{\ell^{\prime}}^{a+1}}=\prod_{a=1}^{N-1} \prod_{\substack{s_{a}<\ell \leqslant r_{a} \\ 0<\ell^{\prime} \leqslant s_{a+1}}} f_{[a+1]}\left(t_{\ell^{\prime}}^{a+1}, t_{\ell}^{a}\right) .
$$

The formula (4.1) enables us to obtain the coalgebraic properties of the normalized product of currents (3.13) with respect to the Drinfeld coproduct. Indeed,
the c-symmetrization can be transformed into the usual symmetrization over the set $\left\{\bar{t}^{s}\right\}$ due to the property

$$
\begin{equation*}
\gamma_{s}\left(\bar{t}^{s}\right) \overline{\operatorname{Sym}}_{\bar{t}^{s}}\left(G\left(\bar{t}^{s}\right)\right)=\operatorname{Sym}_{\bar{t}^{s}}\left(\gamma_{s}\left(\bar{t}^{s}\right) G\left(\bar{t}^{s}\right)\right) \tag{4.2}
\end{equation*}
$$

Then the symmetrization can be replaced by the sum over partitions and subsequent symmetrization over each subset:

$$
\begin{equation*}
\operatorname{Sym}_{\bar{t}^{s}}(\cdot)=\sum_{\bar{t}^{s} \Rightarrow\left\{\bar{t}_{\mathrm{I}}, \bar{t}_{\mathrm{II}}^{s}\right\}} \operatorname{Sym}_{\bar{t}_{\mathrm{I}}^{s}} \operatorname{Sym}_{\bar{t}_{\mathrm{II}}^{s}}(\cdot) \tag{4.3}
\end{equation*}
$$

Here the summation is over the partitions of the set $\left\{\bar{t}^{s}\right\}$ into two disjoint subsets $\left\{\bar{t}_{\mathrm{I}}^{s}\right\}$ and $\left\{\bar{t}_{\mathrm{II}}^{s}\right\}$ with cardinalities $\# \overline{\mathrm{I}}_{\mathrm{I}}^{s}+\# \bar{t}_{\mathrm{II}}^{s}=\# \bar{t}^{s}$, where

$$
\begin{equation*}
\bar{t}=\left\{\bar{t}^{1}, \ldots, \bar{t}^{N}\right\} \Rightarrow \bar{t}_{\mathrm{I}} \cup \bar{t}_{\mathrm{II}} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{t}_{\mathrm{I}}=\left\{\overline{\mathrm{t}}_{\mathrm{I}}^{1}, \ldots, \bar{t}_{\mathrm{I}}^{N}\right\}, \quad \bar{t}_{\mathrm{II}}=\left\{\bar{t}_{\mathrm{II}}^{1}, \ldots, \bar{t}_{\mathrm{II}}^{N}\right\} \tag{4.5}
\end{equation*}
$$

Using (4.2) and (4.3) and the fact that the normalized product of currents $\mathrm{F}(\bar{t})$ is symmetric with respect to permutations in each set of Bethe parameters \bar{t}^{ℓ}, $\ell=1, \ldots, N$, we can transform (4.1) into a sum over the partitions given by (4.4) and (4.5):

$$
\begin{equation*}
\Delta^{(D)}(\mathrm{F}(\bar{t}))=\sum_{\text {part }} \frac{\prod_{s=1}^{N} \gamma_{s}\left(\bar{t}_{\mathrm{II}}^{s}, \bar{t}_{\mathrm{I}}^{s}\right)}{\prod_{s=1}^{N-1} f_{[s+1]}\left(\bar{t}_{\mathrm{II}}^{s+1}, \bar{t}_{\mathrm{I}}^{s}\right)} \mathrm{F}\left(\bar{t}_{\mathrm{I}}\right) \prod_{s=1}^{N} k_{s+1}^{+}\left(\bar{t}_{\mathrm{II}}^{s}\right) k_{s}^{+}\left(\bar{t}_{\mathrm{II}}^{s}\right)^{-1} \otimes \mathrm{~F}\left(\bar{t}_{\mathrm{II}}\right) \tag{4.6}
\end{equation*}
$$

With the help of the Drinfeld coproduct (3.16) for the second current realization of $D Y(\mathfrak{g l}(m \mid n))$ we can show that the coproduct of the normalized product of currents (3.20) is given by

$$
\begin{equation*}
\widehat{\Delta}^{(D)}(\widehat{\mathrm{F}}(\bar{t}))=\sum_{\text {part }} \frac{(-)^{\# \bar{t}_{\mathrm{I}}^{m} \cdot \# \bar{t}_{\mathrm{II}}^{m}} \prod_{s=1}^{N} \widehat{\gamma}_{s}\left(\bar{t}_{\mathrm{II}}^{s}, \bar{t}_{\mathrm{I}}^{s}\right)}{\prod_{s=1}^{N-1} f_{[s+1]}\left(\bar{t}_{\mathrm{II}}^{s+1}, \bar{t}_{\mathrm{I}}^{s}\right)} \widehat{\mathrm{F}}\left(\bar{t}_{\mathrm{I}}\right) \otimes \widehat{\mathrm{F}}\left(\bar{t}_{\mathrm{II}}\right) \prod_{s=1}^{N} \widehat{k}_{s}^{+}\left(\bar{t}_{\mathrm{I}}^{s}\right) \widehat{k}_{s+1}^{+}\left(\bar{t}_{\mathrm{I}}^{s}\right)^{-1} \tag{4.7}
\end{equation*}
$$

where the summation is over the disjoint subsets defined by (4.4) and (4.5).
We can use the formulae (4.6) and (4.7) to establish the coproduct properties of the universal Bethe vectors (3.14) and (3.22). It was proved in [26] that for any elements $\mathscr{F} \in \bar{U}_{F}$ and $\widehat{\mathscr{F}} \in \widehat{\bar{U}}_{F}$ the following equations hold:

$$
\begin{array}{ll}
\Delta\left(P_{f}^{+}(\mathscr{F})\right) \equiv\left(P_{f}^{+} \otimes P_{f}^{+}\right)\left(\Delta^{(D)}(\mathscr{F})\right) & \bmod U_{F}^{+} \otimes J \\
\Delta\left(\widehat{P}_{f}^{+}(\widehat{F})\right) \equiv\left(\widehat{P}_{f}^{+} \otimes \widehat{P}_{f}^{+}\right)\left(\widehat{\Delta}^{(D)}(\widehat{\mathscr{F})})\right. & \bmod \widehat{U}_{F}^{+} \otimes \widehat{J}
\end{array}
$$

where J and \widehat{J} are ideals in the corresponding subalgebras which annihilate the singular vector $|0\rangle$. A proper definition of these ideals is given in the beginning of the next subsection. Using these equalities and the formulae (4.6) and (4.7), we get that

$$
\begin{equation*}
\mathbb{B}(\bar{t})=\sum_{\mathrm{part}} \frac{\prod_{s=1}^{N} \gamma_{s}\left(\bar{t}_{\mathrm{II}}^{s}, \bar{t}_{\mathrm{I}}^{s}\right)}{\prod_{s=1}^{N-1} f_{[s+1]}\left(\bar{t}_{\mathrm{II}}^{s+1}, \bar{t}_{\mathrm{I}}^{s}\right)} \mathbb{B}^{(1)}\left(\bar{t}_{\mathrm{I}}\right) \prod_{s=1}^{N} \lambda_{s+1}^{(1)}\left(\bar{t}_{\mathrm{II}}^{s}\right) \otimes \mathbb{B}^{(2)}\left(\bar{t}_{\mathrm{II}}\right) \prod_{s=1}^{N} \lambda_{s}^{(2)}\left(\bar{t}_{\mathrm{I}}^{s}\right) \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{\mathbb{B}}(\bar{t})=\sum_{\text {part }} \frac{(-)^{\# t_{\mathrm{I}}^{m} \cdot \# \overline{t I}_{\mathrm{II}}^{m}} \prod_{s=1}^{N} \widehat{\gamma}_{s}\left(\bar{t}_{\mathrm{II}}^{s}, \bar{t}_{\mathrm{I}}^{s}\right)}{\prod_{s=1}^{N-1} f_{[s+1]}\left(\bar{t}_{\mathrm{II}}^{s+1}, \bar{t}_{\mathrm{I}}^{s}\right)} \widehat{\mathbb{B}}^{(1)}\left(\bar{t}_{\mathrm{I}}\right) \prod_{s=1}^{N} \lambda_{s+1}^{(1)}\left(\bar{t}_{\mathrm{II}}^{s}\right) \otimes \widehat{\mathbb{B}}^{(2)}\left(\bar{t}_{\mathrm{II}}\right) \prod_{s=1}^{N} \lambda_{s}^{(2)}\left(\bar{t}_{\mathrm{I}}^{s}\right) . \tag{4.9}
\end{equation*}
$$

Taking (3.2) into account, we conclude that the universal Bethe vectors $\mathbb{B}(\bar{t})$ and $\widehat{\mathbb{B}}(\bar{t})$ have the same coproduct properties, which indicates that they may coincide. Below we will show that they satisfy the same recurrence relations, thereby proving that they do coincide.

The coproduct formulae (4.1) and (4.6) are very powerful tools for calculating the projection of a product of currents. Indeed, using the fundamental property in (3.10) of the projections $P_{f}^{ \pm}$, we get from (4.1) that

$$
\begin{equation*}
\mathscr{F}(\bar{t})=\sum_{0 \leqslant s_{1} \leqslant r_{1}} \ldots \sum_{0 \leqslant s_{N} \leqslant r_{N}} \prod_{\ell=1}^{N} \frac{1}{s_{\ell}!\left(r_{\ell}-s_{\ell}\right)!} \overline{\operatorname{Sym}}_{\bar{t}}\left(Z_{\bar{s}}(\bar{t}) P_{f}^{-}\left(\mathscr{F}\left(\bar{t}^{\prime}\right)\right) P_{f}^{+}\left(\mathscr{F}\left(\bar{t}^{\prime \prime}\right)\right)\right), \tag{4.10}
\end{equation*}
$$

and from (4.6) that

$$
\begin{equation*}
\mathrm{F}(\bar{t})=\sum_{\bar{t}^{s} \Rightarrow\left\{\bar{t}_{\mathrm{I}}^{s}, \bar{t}_{\mathrm{II}}^{s}\right\}} \frac{\prod_{s=1}^{N} \gamma_{s}\left(\bar{t}_{\mathrm{II}}^{s}, \bar{t}_{\mathrm{I}}^{s}\right)}{\prod_{s=1}^{N-1} f_{[s+1]}\left(\bar{t}_{\mathrm{II}}^{s+1}, \bar{t}_{\mathrm{I}}^{s}\right)} P_{f}^{-}\left(\mathrm{F}\left(\bar{t}_{\mathrm{I}}\right)\right) \cdot P_{f}^{+}\left(\mathrm{F}\left(\bar{t}_{\mathrm{II}}\right)\right) . \tag{4.11}
\end{equation*}
$$

This equality and the analogous equality for the product of currents $\widehat{F}_{i}(t)$ will be used in the $\S 5$ to solve the hierarchical relations for the nested Bethe vectors and to obtain explicit formulae for them in terms of the monodromy matrix elements. This will be achieved by an explicit calculation of the projection of the corresponding products of currents, which reduces to a calculation presented in Appendix C.

4.2. Ideals of the Yangian double and presentations of the projections.

To calculate the action of monodromy matrix elements on Bethe vectors, we have to formulate an important auxiliary statement about the action of monodromy matrix elements $\mathrm{T}_{i, j}^{+}(z)$ on 'negative' projections of composed currents $P_{f}^{-}\left(F_{k, l}(w)\right)$ and $\widehat{P}_{f}^{-}\left(\widehat{F}_{k, l}(w)\right)$ modulo certain ideals. This can be proved in the same way as used in [27] for the quantum affine algebra $U_{q}(\widehat{\mathfrak{g l}}(N))$, and therefore we just sketch it below.

Let $U_{F}^{ \pm}$and $U_{E}^{ \pm}$be the intersections of the standard Borel subalgebras $U^{ \pm}$and the current Borel subalgebras U_{F} and U_{E} used in $\S 3.3$. Let $I \subset D Y(\mathfrak{g l}(m \mid n))$ be the ideal constructed from the elements of the form $\mathscr{F}_{-} \cdot \mathscr{F}$ such that $\mathscr{F}_{-} \in U_{F}^{-}$, $\mathscr{F} \in U_{F}$, and $\varepsilon\left(\mathscr{F}_{-}\right)=0$. Here and below, ε is the counit in the Hopf algebra $D Y(\mathfrak{g l}(m \mid n))$. It is clear from the definition (3.9) of the projection P_{f}^{+}that the whole ideal I is annihilated by it: $P_{f}^{+}(I)=0$. Let $K \subset D Y(\mathfrak{g l}(m \mid n))$ be the ideal generated by the elements which contain any combination of the 'negative' Cartan currents $k_{j}^{-}(u)$. By the commutation relations in $D Y(\mathfrak{g l}(m \mid n)), K$ is indeed an ideal because the 'negative' Cartan currents cannot be annihilated by any of the commutation relations in $D Y(\mathfrak{g l}(m \mid n))$. Let $J \subset D Y(\mathfrak{g l}(m \mid n))$ be the ideal generated by the elements of the form $\mathscr{F} \cdot \mathscr{E}_{+}$such that $\mathscr{E}_{+} \in U_{E}^{+}, \mathscr{F} \in U_{F}^{+}$, and $\varepsilon\left(\mathscr{E}_{+}\right)=0$. By
the definition of this ideal, any element in J annihilates the right vacuum vector: $J|0\rangle=0$. Below we will use the symbols \sim_{I}, \sim_{K}, and \sim_{J} to denote equalities in the Yangian double $D Y(\mathfrak{g l}(m \mid n))$ modulo terms from the corresponding ideals I, K, and J. Similarly, starting from the current Borel subalgebras \widehat{U}_{F} and \widehat{U}_{E}, we define the ideals \widehat{I}, \widehat{K}, and \widehat{J} and the equivalence relations $\sim_{\widehat{I}}, \sim_{\widehat{K}}$, and $\sim_{\widehat{J}}$.

Since the off-shell Bethe vectors defined in (3.14) and (3.22) obviously do not belong to the ideals I and K nor the ideals \widehat{I} and \widehat{K}, we can compute the action of the monodromy matrix elements on the Bethe vectors modulo these ideals. Moreover, since the ideals J and \widehat{J} annihilate the vacuum vector $|0\rangle$, we can also skip the terms from these ideals when calculating the action of the monodromy matrix on the projections of currents.

Using the commutation relations (2.7) and (2.8) between the Gauss coordinates of the 'positive' and 'negative' monodromy matrices, as well as the relations (A.32) and (A.36) between the 'negative' projections of composed currents and the Gauss coordinates, we can prove the following.

Proposition 4.1 (see [27]).

$$
\begin{align*}
& \mathrm{T}_{i, j}^{+}(z) \cdot P_{f}^{-}\left(F_{k, l}(w)\right) \sim_{I, K}-\phi_{k} c_{[l, k]} \delta_{j, l} g(z, w) \mathrm{T}_{i, k}^{+}(z), \tag{4.12}\\
& \mathrm{T}_{i, j}^{+}(z) \cdot \widehat{P}_{f}^{-}\left(\widehat{F}_{k, l}(w)\right) \sim_{\widehat{I}, \widehat{K}}-\widehat{\phi}_{l} c_{[l, k]} \delta_{i, k} g(z, w) \mathrm{T}_{l, j}^{+}(z), \tag{4.13}
\end{align*}
$$

where $c_{[l, k]}$ is given by (A.30), and ${ }^{6}$

$$
\begin{align*}
\phi_{k} & =(-)^{([i]+[j])[k]+[i][j]} & & \text { for } k>j \tag{4.14}\\
\widehat{\phi}_{l} & =(-)^{1+[i]} & & \text { for } l<i .
\end{align*}
$$

Remark 4.1. One can extend the values of the indices k and l in (4.14) to the values $k=j$ and $l=i$:

$$
\phi_{k}=1 \text { for } k=j \quad \text { and } \quad \widehat{\phi}_{l}=1 \text { for } l=i
$$

(this extension will be justified later; see Proposition 4.6).
Sketch of the proof of Proposition 4.1. The appearance of the Kronecker symbols $\delta_{j, l}$ and $\delta_{i, k}$ in (4.12) and (4.13), respectively, was proved in [27]. Let us give arguments which fix the rest of the terms on the right-hand side of (4.12) and (4.13), including the phases (4.14). To do this we consider the equations (4.12) and (4.13) applied to a right singular vector.

It is clear from the Gauss decompositions (2.14) that

$$
\mathrm{F}_{k, l}^{-}(w)|0\rangle=\mathrm{T}_{l, k}^{-}(w) \mathrm{T}_{l, l}^{-}(w)^{-1}|0\rangle .
$$

Then the equation (2.8) can be interpreted as

$$
\begin{equation*}
\mathrm{T}_{i, j}^{+}(z) \mathrm{T}_{l, k}^{-}(w) \mathrm{T}_{l, l}^{-}(w)^{-1} \sim_{I, K}(-)^{[k]([i]+[j])+[i][j]} g(z, w) \mathrm{T}_{i, k}^{+}(z) \mathrm{T}_{l, j}^{-}(w) \mathrm{T}_{l, l}^{-}(w)^{-1} \tag{4.15}
\end{equation*}
$$

[^4]and due to the Kronecker symbol $\delta_{j, l}$ on the right-hand side of (4.12) the 'negative' monodromy matrix elements on the right-hand side of (4.15) cancel each other Taking (A.32) into account, we get that $\phi_{k}=(-)^{[k][[i]+[j])+[i][j]}$.

Similarly, it follows from the Gauss decomposition (2.17) that

$$
\widehat{\mathrm{F}}_{k, l}^{-}(w)|0\rangle=\mathrm{T}_{l, k}^{-}(w) \mathrm{T}_{k, k}^{-}(w)^{-1}|0\rangle .
$$

Then the equation (2.7) can be interpreted as

$$
\begin{equation*}
\mathrm{T}_{i, j}^{+}(z) \mathrm{T}_{l, k}^{-}(w) \mathrm{T}_{k, k}^{-}(w)^{-1} \sim_{\widehat{I}, \widehat{K}}(-)^{1+[i]([k]+[l])+[k][l]} g(z, w) \mathrm{T}_{l, j}^{+}(z) \mathrm{T}_{i, k}^{-}(w) \mathrm{T}_{k, k}^{-}(w)^{-1}, \tag{4.16}
\end{equation*}
$$

and due to the Kronecker symbol $\delta_{i, k}$ on the right-hand side of (4.13) the 'negative' monodromy matrix elements on the right-hand side of (4.16) disappear, leading to $\widehat{\phi}_{l}=(-)^{1+[i]}$.

We conclude this subsection by formulating the following proposition.
Proposition 4.2. The off-shell Bethe vectors given by (3.14) and (3.22) satisfy the same recurrence relations following from the action by the upper triangular monodromy matrix elements $\mathrm{T}_{i, j}(z), i \leqslant j$, on these vectors. This implies that the Bethe vectors coincide:

$$
\mathbb{B}(\bar{t})=\widehat{\mathbb{B}}(\bar{t}) .
$$

The proof of this proposition will be given in the next two subsections, $\S \S 4.3$ and 4.4.
4.3. Auxiliary presentations for the projections. To calculate the action of the upper triangular and diagonal monodromy matrix elements on the Bethe vectors (3.14) and (3.22), we have to obtain a special presentation for the projections of the products of simple root total currents. A systematic way to get such a presentation is based on techniques elaborated in [28]. Below we use the results contained in that paper, adapting them to the case under consideration.

Proposition 4.3. The following identities hold for $i<j$:

$$
\begin{align*}
P_{f}^{-}\left(F_{i}\left(t^{i}\right) \cdots F_{j}\left(t^{j}\right)\right) & =\sum_{\ell=0}^{j-i} c_{[i, i+\ell+1]}^{-1} \prod_{s=i}^{i+\ell-1} g_{[s+1]}\left(t^{s+1}, t^{s}\right) P_{f}^{-}\left(F_{i+\ell+1, i}\left(t^{i+\ell}\right)\right) \\
& \times P_{f}^{-}\left(F_{i+\ell+1}\left(t^{i+\ell+1}\right) \cdots F_{j}\left(t^{j}\right)\right), \tag{4.17}\\
\widehat{P}_{f}^{-}\left(\widehat{F}_{j}\left(t^{j}\right) \cdots \widehat{F}_{i}\left(t^{i}\right)\right) & =\sum_{\ell=0}^{j-i} c_{[j-\ell, j+1]}^{-1} \prod_{s=j-\ell}^{j+1} g_{[s+1]}\left(t^{s+1}, t^{s}\right) \widehat{P}_{f}^{-}\left(\widehat{F}_{j+1, j-\ell}\left(t^{j-\ell}\right)\right) \\
& \times \widehat{P}_{f}^{-}\left(\widehat{F}_{j-\ell-1}\left(t^{j-\ell-1}\right) \cdots \widehat{F}_{i}\left(t^{i}\right)\right) . \tag{4.18}
\end{align*}
$$

Proof. The two equalities can be proved similarly, using the definitions of the projections. Therefore, we give a detailed proof only for (4.17). We start from the definition

$$
\begin{align*}
P_{f}^{-}\left(F_{i}\left(t^{i}\right) \cdots F_{j}\left(t^{j}\right)\right)= & P_{f}^{-}\left(F_{i}\left(t^{i}\right)\right) \cdot P_{f}^{-}\left(F_{i+1}\left(t^{i+1}\right) \cdots F_{j}\left(t^{j}\right)\right) \\
& +P_{f}^{-}\left(F_{i}^{(+)}\left(t^{i}\right) F_{i+1}\left(t^{i+1}\right) F_{i+2}\left(t^{i+2}\right) \cdots F_{j}\left(t^{j}\right)\right) . \tag{4.19}
\end{align*}
$$

Using the definition

$$
F_{i}^{(+)}\left(t^{i}\right)=\int d w \frac{F_{i}(w)}{t^{i}-w}
$$

and the commutation relation

$$
\begin{equation*}
F_{i}(u) F_{i+1}(v)=\frac{u-v-c_{[i+1]}}{(u-v)_{<}} F_{i+1}(v) F_{i}(u)-\delta(u, v) F_{i+2, i}(v) \tag{4.20}
\end{equation*}
$$

which is a particular case of the definition of the composed current (A.1) or (A.9), we get that

$$
\begin{align*}
& F_{i}^{(+)}\left(t^{i}\right) F_{i+1}\left(t^{i+1}\right)= f_{[i+1]}\left(t^{i+1}, t^{i}\right) F_{i+1}\left(t^{i+1}\right) F_{i}^{(+)}\left(t^{i} ; t^{i+1}\right) \\
&+c_{[i+1]}^{-1} g_{[i+1]}\left(t^{i+1}, t^{i}\right) F_{i+2, i}\left(t^{i+1}\right) \tag{4.21}
\end{align*}
$$

where $F_{i}^{(+)}\left(t^{i} ; t^{i+1}\right)=F_{i}^{(+)}\left(t^{i}\right)-\frac{c_{[i+1]}}{t^{i+1}-t^{i}+c_{[i+1]}} F_{i}^{(+)}\left(t^{i+1}\right)$. Because of the commutativity of the current $F_{i}(t)$ with $F_{i+2}\left(t^{i+2}\right) \cdots F_{j}\left(t^{j}\right)$, the first term in (4.21) vanishes under the 'negative' projection in the second term of (4.19). On the other hand, by the second relation in (A.13),

$$
\begin{equation*}
F_{i+2, i}\left(t^{i+1}\right)=-\mathscr{S}_{F_{i}^{(0)}}\left(F_{i+1}\left(t^{i+1}\right)\right)+c_{[i+1]} F_{i+1}\left(t^{i+1}\right) F_{i}^{(+)}\left(t^{i+1}\right) \tag{4.22}
\end{equation*}
$$

where the operators $\mathscr{S}_{F_{i}^{(0)}}(\cdot)$ are called screening operators and are defined by (B.1). The second term on the right-hand side of (4.22) also vanishes under the 'negative' projection in the second line of (4.19). Thus, (4.19) turns into

$$
\begin{align*}
P_{f}^{-}\left(F_{i}\left(t^{i}\right)\right. & \left.\cdots F_{j}\left(t^{j}\right)\right)=P_{f}^{-}\left(F_{i}\left(t^{i}\right)\right) \cdot P_{f}^{-}\left(F_{i+1}\left(t^{i+1}\right) \cdots F_{j}\left(t^{j}\right)\right) \\
& -c_{[i+1]}^{-1} g_{[i+1]}\left(t^{i+1}, t^{i}\right) \mathscr{S}_{F_{i}^{(0)}}\left(P_{f}^{-}\left(F_{i+1}\left(t^{i+1}\right) \cdots F_{j}\left(t^{j}\right)\right)\right) \tag{4.23}
\end{align*}
$$

In the second line of (4.23) we obtain the 'negative' projection of the product of currents $F_{i+1}\left(t^{i+1}\right) \cdots F_{j}\left(t^{j}\right)$. Therefore, we can use this equality recursively to get in the first step that

$$
\begin{aligned}
& P_{f}^{-}\left(F_{i}\left(t^{i}\right) \cdots F_{j}\left(t^{j}\right)\right)=P_{f}^{-}\left(F_{i}\left(t^{i}\right)\right) \cdot P_{f}^{-}\left(F_{i+1}\left(t^{i+1}\right) \cdots F_{j}\left(t^{j}\right)\right) \\
& +c_{[i, i+2]}^{-1} g_{[i+1]}\left(t^{i+1}, t^{i}\right) P_{f}^{-}\left(F_{i+2, i}\left(t^{i+1}\right)\right) P_{f}^{-}\left(F_{i+2}\left(t^{2+1}\right) \cdots F_{j}\left(t^{j}\right)\right) \\
& +c_{[i, i+3]}^{-1} g_{[i+1]}\left(t^{i+1}, t^{i}\right) g_{[i+2]}\left(t^{i+2}, t^{i+1}\right) \\
& \quad \times \mathscr{S}_{F_{i}^{(0)}}\left(\mathscr{S}_{F_{i+1}^{(0)}}\left(P_{f}^{-}\left(F_{i+2}\left(t^{i+2}\right) \cdots F_{j}\left(t^{j}\right)\right)\right)\right)
\end{aligned}
$$

where we have again used (4.22) and the commutativity of the screening operators and the projections (see Appendix B). Continuing this recursion process, we prove (4.17). The equality (4.18) can be proved similarly starting from the commutation relations

$$
\widehat{F}_{i+1}(u) \widehat{F}_{i}(v)=\frac{u-v+c_{[i+1]}}{(u-v)_{<}} \widehat{F}_{i}(v) \widehat{F}_{i+1}(u)+\delta(u, v) \widehat{F}_{i+2, i}(v)
$$

and using the first equality in (A.17).

For each simple root index $i=1, \ldots, N$ we introduce the following notation for ordered products of currents:

$$
\mathscr{F}_{i}\left(\bar{t}^{i}\right)=F_{i}\left(t_{1}^{i}\right) \cdots F_{i}\left(t_{r_{i}}^{i}\right) \quad \text { and } \quad \widehat{\mathscr{F}}_{i}\left(\bar{t}^{i}\right)=\widehat{F}_{i}\left(t_{r_{i}}^{i}\right) \cdots \widehat{F}_{i}\left(t_{1}^{i}\right) .
$$

Using the normal ordering relation (3.10) (in the form (4.10)) and (4.17), we can prove the following statement.

Proposition 4.4. The equality

$$
\begin{align*}
& P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{N}\left(\bar{t}^{N}\right)\right)=P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{N-1}\left(\bar{t}^{N-1}\right)\right) \cdot \mathscr{F}_{N}\left(\bar{t}^{N}\right) \\
& \quad-\sum_{\ell=1}^{N} \mathbb{C}_{\ell}{\overline{\operatorname{Sym}_{\bar{t}^{\ell}}, \ldots, \bar{t}^{N}}\left[\mathbb{G}_{\ell}\left(\bar{t}^{\ell-1}, \ldots, \bar{t}^{N}\right) c_{[\ell, N+1]}^{-1} P_{f}^{-}\left(F_{N+1, \ell}\left(t_{1}^{N}\right)\right)\right.}^{\left.\quad \times P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \ldots \mathscr{F}_{\ell-1}\left(\bar{t}^{\ell-1}\right) \mathscr{F}_{\ell}\left(\bar{t}_{1}^{\ell}\right) \cdots \mathscr{F}_{N-1}\left(\bar{t}_{1}^{N-1}\right)\right) \cdot \mathscr{F}_{N}\left(\bar{t}_{1}^{N}\right)\right]+\mathbb{W}}
\end{align*}
$$

holds, where for $1 \leqslant \ell \leqslant N$ the rational functions

$$
\begin{equation*}
\mathbb{G}_{\ell}\left(\bar{t}^{\ell-1}, \ldots, \bar{t}^{N}\right)=f_{[\ell]}\left(t_{1}^{\ell}, \bar{t}^{\ell-1}\right) \prod_{s=\ell}^{N-1} g_{[s+1]}\left(t_{1}^{s+1}, t_{1}^{s}\right) f_{[s+1]}\left(t_{1}^{s+1}, \bar{t}_{1}^{s}\right) \tag{4.25}
\end{equation*}
$$

appear along with the combinatorial factors

$$
\begin{equation*}
\mathbb{C}_{\ell}=\prod_{s=\ell}^{N} \frac{1}{\left(r_{s}-1\right)!} \tag{4.26}
\end{equation*}
$$

In $(4.24), \mathbb{W}$ denotes terms having the structure $P_{f}^{-}\left(F_{j_{1}, i_{1}}\left(w_{1}\right)\right) P_{f}^{-}\left(F_{j_{2}, i_{2}}\left(w_{2}\right)\right) \mathscr{F}$ with $j_{1} \geqslant j_{2}$ for some element $\mathscr{F} \in \bar{U}_{F}$.

In (4.24) we used the shortened notation

$$
\bar{t}_{i}^{\ell}=\left\{t_{1}^{\ell}, \ldots, t_{i-1}^{\ell}, t_{i+1}^{\ell}, \ldots, t_{r_{\ell}}^{\ell}\right\}, \quad i=1, \ldots, r_{\ell}
$$

where the Bethe parameter t_{i}^{ℓ} is omitted from the set $\bar{t}^{\ell}, \ell=1, \ldots, N$.
By (4.12), the action of any monodromy matrix element $T_{i, j}^{+}(z)$ on the terms \mathbb{W} belongs to the ideal I, except for the terms proportional to $\delta_{j, i_{1}} \delta_{j_{1}, i_{2}}$. These terms are irrelevant in view of the condition $j_{1} \geqslant j_{2}>i_{2}$.

Proof. It was proved in [28] that the projection

$$
P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{N}\left(\bar{t}^{N}\right)\right)
$$

can be represented in the form ${ }^{7}$

$$
\begin{equation*}
P_{f}^{+}\left(\mathscr{F}_{1} \ldots \mathscr{F}_{N}\right)=\sum \mathscr{P}\left(P_{f}^{-}\left(F_{N+1, \ell}\right)\right) \cdot P_{f}^{+}\left(\mathscr{F}_{1} \ldots \mathscr{F}_{N-1}\right) \cdot \mathscr{F}_{N} \tag{4.27}
\end{equation*}
$$

where $\mathscr{P}\left(P_{f}^{-}\left(F_{N+1, \ell}\right)\right)$ is a certain polynomial with rational coefficients in the 'negative' projections of the composed currents $F_{N+1, \ell}, \ell=1, \ldots, N$, and the \mathscr{F}_{ℓ}

[^5]are the products of currents corresponding to the simple roots ℓ. For brevity we did not write the arguments of the currents in (4.27).

It was shown in [28] that only 'negative' projections of currents $P_{f}^{-}\left(F_{N+1, \ell}(t)\right)$ appear on the right-hand side of (4.27). The other 'negative' projections of currents $P_{f}^{-}\left(F_{\ell^{\prime}, \ell}(t)\right)$ with $N \geqslant \ell^{\prime}>\ell$ do not appear. The main reason for such a phenomenon is the factorization of projections of products of currents. We will demonstrate this phenomenon below in the simplest non-trivial case of $N=2$, using the normal ordering relation (4.10).

Moreover, by (4.12) it is enough to keep in (4.27) only the first-order polynomials in the 'negative' projections of composed currents. Indeed, after the action of the monodromy matrix element $\mathrm{T}_{i, j}^{+}(z)$ on a product of two 'negative' projections of composed currents $P_{f}^{-}\left(F_{N+1, \ell_{1}}(t)\right) \cdot P_{f}^{-}\left(F_{N+1, \ell_{2}}(t)\right)$, the terms which are not in the ideals I and K are proportional to $\delta_{j, \ell_{1}} \delta_{N+1, \ell_{2}}$, and they vanish because $\ell_{2}<N+1$.

Let us show how relations of the type (4.27) arise in the simple case of $m=$ 2 and $n=1$. We rename the sets of parameters as $\bar{t}^{1} \equiv \bar{u}$ and $\bar{t}^{2} \equiv \bar{v}$ with cardinalities $\# \bar{u}=a$ and $\# \bar{v}=b$ to simplify the formulae below. In this case the formula (4.10) can be rewritten as

$$
\begin{gather*}
P_{f}^{+}\left(F_{1}\left(u_{1}\right) \cdots F_{1}\left(u_{a}\right) \cdot F_{2}\left(v_{1}\right) \cdots F_{2}\left(v_{b}\right)\right)=F_{1}\left(u_{1}\right) \cdots F_{1}\left(u_{a}\right) \cdot F_{2}\left(v_{1}\right) \cdots F_{2}\left(v_{b}\right) \\
-\overline{\operatorname{Sym}}_{\bar{u}} \frac{1}{(a-1)!} P_{f}^{-}\left(F_{1}\left(u_{1}\right)\right) P_{f}^{+}\left(F_{1}\left(u_{2}\right) \cdots F_{1}\left(u_{a}\right) \cdot F_{2}\left(v_{1}\right) \cdots F_{2}\left(v_{b}\right)\right) \\
-\overline{\operatorname{Sym}}_{\bar{v}} \frac{f\left(v_{1}, \bar{u}\right)}{(b-1)!} P_{f}^{-}\left(F_{2}\left(v_{1}\right)\right) P_{f}^{+}\left(F_{1}\left(u_{1}\right) \cdots F_{1}\left(u_{a}\right) \cdot F_{2}\left(v_{2}\right) \cdots F_{2}\left(v_{b}\right)\right) \\
-\overline{\operatorname{Sym}}_{\bar{u}, \bar{v}} \frac{f\left(v_{1}, \bar{u}_{1}\right)}{(a-1)!(b-1)!} P_{f}^{-}\left(F_{1}\left(u_{1}\right) F_{2}\left(v_{1}\right)\right) \\
\quad \times P_{f}^{+}\left(F_{1}\left(u_{2}\right) \cdots F_{1}\left(u_{a}\right) \cdot F_{2}\left(v_{2}\right) \cdots F_{2}\left(v_{b}\right)\right)+\mathbb{W} \tag{4.28}
\end{gather*}
$$

We keep the double symmetrized term in (4.28) because it is the source of the 'negative' projection of composed currents $P_{f}^{-}\left(F_{3,1}(v)\right)$ (see (4.29) below), while the quadratic terms from $P_{f}^{-}\left(F_{1}\left(u_{1}\right) F_{2}\left(v_{1}\right)\right)$ disappear in the next step of the recursion.

Applying (4.28) recursively, we can replace the 'positive' projections by the corresponding products of total currents. Using the equality

$$
\begin{equation*}
P_{f}^{-}\left(F_{1}(u) F_{2}(v)\right)=P_{f}^{-}\left(F_{1}(u)\right) P_{f}^{-}\left(F_{2}(v)\right)+c^{-1} g(v, u) P_{f}^{-}\left(F_{3,1}(v)\right) \tag{4.29}
\end{equation*}
$$

which is a direct consequence of (4.20), we obtain instead of (4.28) the equality of formal series (recall that $F_{i+1, i}(t) \equiv F_{i}(t)$)

$$
\begin{aligned}
& P_{f}^{+}\left(F_{1}\left(u_{1}\right) \cdots F_{1}\left(u_{a}\right) \cdot F_{2}\left(v_{1}\right) \cdots F_{2}\left(v_{b}\right)\right)=F_{1}\left(u_{1}\right) \cdots F_{1}\left(u_{a}\right) \cdot F_{2}\left(v_{1}\right) \cdots F_{2}\left(v_{b}\right) \\
& -\quad \overline{\operatorname{Sym}}_{\bar{u}} \frac{1}{(a-1)!} P_{f}^{-}\left(F_{2,1}\left(u_{1}\right)\right) F_{1}\left(u_{2}\right) \cdots F_{1}\left(u_{a}\right) \cdot F_{2}\left(v_{1}\right) \cdots F_{2}\left(v_{b}\right) \\
& -\overline{\operatorname{Sym}}_{\bar{v}} \frac{f\left(v_{1}, \bar{u}\right)}{(b-1)!} P_{f}^{-}\left(F_{3,2}\left(v_{1}\right)\right) F_{1}\left(u_{1}\right) \cdots F_{1}\left(u_{a}\right) \cdot F_{2}\left(v_{2}\right) \cdots F_{2}\left(v_{b}\right) \\
& -\overline{\operatorname{Sym}}_{\bar{u}, \bar{v}} \frac{c^{-1} g\left(v_{1}, u_{1}\right) f\left(v_{1}, \bar{u}_{1}\right)}{(a-1)!(b-1)!} \\
& \quad \times P_{f}^{-}\left(F_{3,1}\left(v_{1}\right)\right) F_{1}\left(u_{2}\right) \cdots F_{1}\left(u_{a}\right) \cdot F_{2}\left(v_{2}\right) \cdots F_{2}\left(v_{b}\right)+\mathbb{W}
\end{aligned}
$$

where the terms denoted by \mathbb{W} again belong to the ideal I after the action of any monodromy matrix element. Finally, using the normal ordering rule (4.10) for the product of currents \mathscr{F}_{1}, we can replace these products by their 'positive' projections to obtain

$$
\begin{align*}
& P_{f}^{+}\left(F_{1}\left(u_{1}\right) \cdots F_{1}\left(u_{a}\right) \cdot F_{2}\left(v_{1}\right) \cdots F_{2}\left(v_{b}\right)\right) \\
& =P_{f}^{+}\left(F_{1}\left(u_{1}\right) \cdots F_{1}\left(u_{a}\right)\right) \cdot F_{2}\left(v_{1}\right) \cdots F_{2}\left(v_{b}\right) \\
& \quad-\overline{\operatorname{Sym}}_{\bar{v}} \frac{f\left(v_{1}, \bar{u}\right)}{(b-1)!} P_{f}^{-}\left(F_{3,2}\left(v_{1}\right)\right) P_{f}^{+}\left(F_{1}\left(u_{1}\right) \cdots F_{1}\left(u_{a}\right)\right) \cdot F_{2}\left(v_{2}\right) \cdots F_{2}\left(v_{b}\right) \\
& \quad-\overline{\operatorname{Sym}}_{\bar{u}, \bar{v}} \frac{c^{-1} g\left(v_{1}, u_{1}\right) f\left(v_{1}, \bar{u}_{1}\right)}{(a-1)!(b-1)!} P_{f}^{-}\left(F_{3,1}\left(v_{1}\right)\right) \\
& \tag{4.30}\\
& \quad \times P_{f}^{+}\left(F_{1}\left(u_{2}\right) \cdots F_{1}\left(u_{a}\right)\right) \cdot F_{2}\left(v_{2}\right) \cdots F_{2}\left(v_{b}\right)+\mathbb{W}
\end{align*}
$$

We see that the terms containing the 'negative' projection of a current $P_{f}^{-}\left(F_{2,1}\left(u_{1}\right)\right)$ disappear from the final formula (4.30).

Now we prove the statement of Proposition 4.4 in the general case, using the normal ordering relation (4.10). Taking into account the arguments above, we write

$$
\begin{align*}
& P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{N-1}\left(\bar{t}^{N-1}\right) \mathscr{F}_{N}\left(\bar{t}^{N}\right)\right)=\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{N-1}\left(\bar{t}^{N-1}\right) \mathscr{F}_{N}\left(\bar{t}^{N}\right) \\
&-\sum_{\ell=1}^{N} \mathbb{C}_{\ell} \overline{\operatorname{Sym}}_{\bar{t}^{\ell}, \ldots, \bar{t}^{N}}\left[f_{\ell \ell]}\left(t_{1}^{\ell}, \bar{t}^{\ell-1}\right) \prod_{s=\ell}^{N-1} f_{[s+1]}\left(t_{1}^{s+1}, \bar{t}_{1}^{s}\right) P_{f}^{-}\left(F_{\ell}\left(t_{1}^{\ell}\right) \cdots F_{N}\left(t_{1}^{N}\right)\right)\right. \\
&\left.\times P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{\ell-1}\left(\bar{t}^{\ell-1}\right) \cdot \mathscr{F}_{\ell}\left(\bar{t}_{1}^{\ell}\right) \cdots \mathscr{F}_{N}\left(\bar{t}_{1}^{N}\right)\right)\right]+\mathbb{W}, \tag{4.31}
\end{align*}
$$

where we keep only the terms containing $P_{f}^{-}\left(F_{\ell}\left(t_{1}^{\ell}\right) \cdots F_{N}\left(t_{1}^{N}\right)\right)$ as the source of the 'negative' projection of a composed current $P_{f}^{-}\left(F_{N+1, \ell}\left(t_{1}^{N}\right)\right)$, and \mathbb{W} denotes terms which give elements of the ideal I after the action of any monodromy matrix element $\mathrm{T}_{i, j}^{+}(z)$. Using (4.17), we can replace (4.31) by

$$
\begin{align*}
& P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{N-1}\left(\bar{t}^{N-1}\right) \mathscr{F}_{N}\left(\bar{t}^{N}\right)\right)=\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{N-1}\left(\bar{t}^{N-1}\right) \mathscr{F}_{N}\left(\bar{t}^{N}\right) \\
& -\sum_{\ell=1}^{N} \mathbb{C}_{\ell} \overline{\operatorname{Sym}}_{\bar{t}^{\ell}, \ldots, \bar{t}^{N}}\left[\mathbb{G}_{\ell}\left(\bar{t}^{\ell-1}, \ldots, \bar{t}^{N}\right) c_{[\ell, N+1]}^{-1} P_{f}^{-}\left(F_{N+1, \ell}\left(t_{1}^{N}\right)\right)\right. \\
& \left.\quad \times P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{\ell-1}\left(\bar{t}^{\ell-1}\right) \cdot \mathscr{F}_{\ell}\left(\bar{t}_{1}^{\ell}\right) \cdots \mathscr{F}_{N}\left(\bar{t}_{1}^{N}\right)\right)\right]+\mathbb{W} . \tag{4.32}
\end{align*}
$$

Now we can use a result from [28] asserting that only 'negative' projections of composed currents $P_{f}^{-}\left(F_{N+1, \ell}\left(t_{1}^{N}\right)\right), \ell=1, \ldots, N$, appear on the right-hand side of (4.27). This allows us to replace the first term $\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{N-1}\left(\bar{t}^{N-1}\right) \mathscr{F}_{N}\left(\bar{t}^{N}\right)$ on the right-hand side of (4.32) by

$$
P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{N-1}\left(\bar{t}^{N-1}\right)\right) \mathscr{F}_{N}\left(\bar{t}^{N}\right) .
$$

Similarly, the 'positive' projections of products of composed currents

$$
P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{\ell-1}\left(\bar{t}^{\ell-1}\right) \cdot \mathscr{F}_{\ell}\left(\bar{t}_{1}^{\ell}\right) \cdots \mathscr{F}_{N}\left(\bar{t}_{1}^{N}\right)\right)
$$

under the sum sign in (4.32) can be replaced by

$$
P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{\ell-1}\left(\bar{t}^{\ell-1}\right) \cdot \mathscr{F}_{\ell}\left(\bar{t}_{1}^{\ell}\right) \cdots \mathscr{F}_{N-1}\left(\bar{t}_{1}^{N-1}\right)\right) \cdot \mathscr{F}_{N}\left(\bar{t}_{1}^{N}\right),
$$

and this replacement changes only the structure of the elements in \mathbb{W}. This finishes the proof of Proposition 4.4.

Similarly, using (3.19) and (4.18), we can prove the following statement.

Proposition 4.5. The equality

$$
\begin{align*}
\widehat{P}_{f}^{+}(& \left.\widehat{\mathscr{F}}_{N}\left(\bar{t}^{N}\right) \cdots \widehat{\mathscr{F}}_{1}\left(\bar{t}^{1}\right)\right)=P_{f}^{+}\left(\widehat{\mathscr{F}}_{N}\left(\bar{t}^{N}\right) \ldots \widehat{\mathscr{F}}_{2}\left(\bar{t}^{2}\right)\right) \cdot \widehat{\mathscr{F}}_{1}\left(\bar{t}^{1}\right) \\
& \quad-\sum_{\ell=1}^{N} \overline{\operatorname{Sym}}_{\bar{t}^{1}, \ldots, \bar{t}^{\ell}}\left[\widehat{\mathbb{C}}_{\ell} \widehat{\mathbb{G}}_{\ell}\left(\bar{t}^{1}, \ldots, \bar{t}^{\ell+1}\right) c_{[1, \ell+1]}^{-1} \widehat{P}_{f}^{-}\left(\widehat{F}_{\ell+1,1}\left(t_{r_{1}}^{1}\right)\right)\right. \\
& \left.\times \widehat{P}_{f}^{+}\left(\widehat{\mathscr{F}}_{N}\left(\bar{t}^{N}\right) \ldots \widehat{\mathscr{F}}_{\ell+1}\left(\bar{t}^{\ell+1}\right) \widehat{\mathscr{F}}_{\ell}\left(\bar{t}_{r_{\ell}}^{\ell}\right) \cdots \widehat{\mathscr{F}}_{2}\left(\bar{t}_{r_{2}}^{2}\right)\right) \cdot \widehat{\mathscr{F}}_{1}\left(\bar{t}_{r_{1}}^{1}\right)\right]+\widehat{\mathbb{W}} \tag{4.33}
\end{align*}
$$

holds, where for $1 \leqslant \ell \leqslant N$ the rational functions

$$
\begin{equation*}
\widehat{\mathbb{G}}_{\ell}\left(\bar{t}^{1}, \ldots, \bar{t}^{\ell+1}\right)=f_{[\ell+1]}\left(\bar{t}^{\ell+1}, t_{r_{\ell}}^{\ell}\right) \prod_{s=1}^{\ell-1} g_{[s+1]}\left(t_{r_{s+1}}^{s+1}, t_{r_{s}}^{s}\right) f_{[s+1]}\left(\bar{t}_{r_{s+1}}^{s+1}, t_{r_{s}}^{s}\right) \tag{4.34}
\end{equation*}
$$

appear along with the combinatorial factors

$$
\begin{equation*}
\widehat{\mathbb{C}}_{\ell}=\prod_{s=1}^{\ell} \frac{1}{\left(r_{s}-1\right)!} \tag{4.35}
\end{equation*}
$$

The symbol $\widehat{\mathbb{W}}$ denotes terms with the structure $P_{f}^{-}\left(\widehat{F}_{j_{1}, 1}\left(w_{1}\right)\right) P_{f}^{-}\left(\widehat{F}_{j_{2}, 1}\left(w_{2}\right)\right)$.
Again, the action of any monodromy matrix element $\mathrm{T}_{i, j}^{+}(z)$ on $\widehat{\mathbb{W}}$ belongs to the ideal \widehat{I} in view of (4.13). The terms not belonging to this ideal are proportional to $\delta_{i, j_{1}} \delta_{1, j_{2}}$, and they vanish due to the condition $1<j_{2}$.
4.4. Action of the monodromy matrix element $\mathbf{T}_{\boldsymbol{i}, \boldsymbol{j}}^{+}(\boldsymbol{z})$. Let us apply the monodromy matrix element $\mathrm{T}_{i, j}^{+}(z)$ from the left to (4.24) and (4.33). As one can easily verify, the structure of the action formulae differs significantly in the cases $i \leqslant j$ and $i>j$.

The action of the monodromy matrix elements $\mathrm{T}_{i, j}(z)$ for $i<j$ leads to recursion relations which relate Bethe vectors depending on fewer Bethe parameters to Bethe vectors depending on more of these parameters. If we prove that the action formulae for $i<j$ are the same for $\mathbb{B}(\bar{t})$ and $\widehat{\mathbb{B}}(\bar{t})$, then this will mean that these vectors satisfy the same recurrence relations, and thus $\mathbb{B}(\bar{t})$ and $\widehat{\mathbb{B}}(\bar{t})$ coincide.

The action formulae for the diagonal monodromy matrix elements $\mathrm{T}_{i, i}(z)$ lead to the Bethe equations. They prove that the Bethe vectors become eigenvectors of the transfer matrix if the Bethe equations are satisfied.

Finally, the action formulae for the monodromy matrix elements $\mathrm{T}_{i, j}(z)$ with $i>j$ are necessary for calculating the scalar products of Bethe vectors. This last problem is beyond the scope of the present paper, and we will consider the general action
formulae in this case in a separate publication. From now on, we restrict ourselves to the action of the monodromy matrix elements $\mathrm{T}_{i, j}(z)$ with $i \leqslant j$.

We introduce the shortened notation

$$
\mathscr{F}_{\ell} \equiv \mathscr{F}\left(\bar{t}^{\ell}\right), \quad \mathscr{F}_{\ell}^{\prime} \equiv \mathscr{F}\left(\bar{t}_{1}^{\ell}\right), \quad \text { and } \quad \mathscr{F}_{\ell}^{\prime \prime} \equiv \mathscr{F}\left(\bar{t}_{r_{\ell}}^{\ell}\right)
$$

and the analogous notation

$$
\widehat{\mathscr{F}} \equiv \widehat{\mathscr{F}}\left(\bar{t}^{\ell}\right), \quad \widehat{\mathscr{F}_{\ell}^{\prime}} \equiv \widehat{\mathscr{F}}\left(\bar{t}_{1}^{\ell}\right) \quad \text { and } \quad \widehat{\mathscr{F}}_{\ell}^{\prime \prime} \equiv \widehat{\mathscr{F}}\left(\bar{t}_{r_{\ell}}^{\ell}\right),
$$

where $\bar{t}_{1}^{\ell}=\left\{\bar{t}^{\ell}\right\} \backslash\left\{t_{1}^{\ell}\right\}$ and $\bar{t}_{r_{\ell}}^{\ell}=\left\{\bar{t}^{\ell}\right\} \backslash\left\{t_{r_{\ell}}^{\ell}\right\}$ are the sets of Bethe parameters of the same type with either the first or the last element omitted.

For $1 \leqslant \ell \leqslant N$ we introduce the two sets of rational functions

$$
\begin{align*}
\mathbb{G}_{\ell}^{q}\left(\bar{t}^{\ell-1}, \ldots, \bar{t}^{q}\right)= & f_{[\ell]}\left(t_{1}^{\ell}, \bar{t}^{\ell-1}\right) \\
& \quad \times \prod_{s=\ell}^{q-1} g_{[s+1]}\left(t_{1}^{s+1}, t_{1}^{s}\right) f_{[s+1]}\left(t_{1}^{s+1}, \bar{t}_{1}^{s}\right), \quad \ell \leqslant q \leqslant N \\
\widehat{\mathbb{G}}_{\ell}^{p}\left(\bar{t}^{p}, \ldots, \bar{t}^{\ell+1}\right)= & f_{[\ell+1]}\left(\bar{t}^{\ell+1}, t_{r_{\ell}}^{\ell}\right) \tag{4.36}\\
& \times \prod_{s=p}^{\ell-1} g_{[s+1]}\left(t_{r_{s+1}}^{s+1}, t_{r_{s}}^{s}\right) f_{[s+1]}\left(\bar{t}_{r_{s+1}}^{s+1}, t_{r_{s}}^{s}\right), \quad 1 \leqslant p \leqslant \ell
\end{align*}
$$

The rational functions in (4.25) and (4.34) are particular cases of the functions in (4.36):

$$
\mathbb{G}_{\ell}(\bar{t}) \equiv \mathbb{G}_{\ell}^{N}(\bar{t}) \quad \text { and } \quad \widehat{\mathbb{G}}(\bar{t}) \equiv \widehat{\mathbb{G}}_{\ell}^{1}(\bar{t}) .
$$

For $q=j+1, \ldots, N+1$ and $p=1, \ldots, i-1$ we also define the rational functions

$$
\begin{equation*}
\mathbb{Z}_{j}^{q}(z ; \bar{t})=g\left(z, t_{1}^{q-1}\right) \mathbb{G}_{j}^{q-1}(\bar{t}) \quad \text { and } \quad \widehat{\mathbb{Z}}_{i}^{p}(z ; \bar{t})=g\left(z, t_{r_{p}}^{p}\right) \widehat{\mathbb{G}}_{i-1}^{p}(\bar{t}) . \tag{4.37}
\end{equation*}
$$

We extend these definitions to $q=j$ and $p=i$ by setting $\mathbb{Z}_{j}^{j}(z ; \bar{t})=\widehat{\mathbb{Z}}_{i}^{i}(z ; \bar{t}) \equiv 1$. Finally, let

$$
\mathbb{C}_{\ell}^{\ell^{\prime}}=\prod_{s=\ell}^{\ell^{\prime}} \frac{1}{\left(r_{s}-1\right)!}
$$

Then the combinatorial factors given by (4.26) and (4.35) are

$$
\mathbb{C}_{\ell} \equiv \mathbb{C}_{\ell}^{N} \quad \text { and } \quad \widehat{\mathbb{C}}_{\ell} \equiv \mathbb{C}_{1}^{\ell}
$$

Proposition 4.6. The following equivalence relations hold:

$$
\begin{align*}
& \mathrm{T}_{i, j}^{+}(z) \cdot P_{f}^{+}\left(\mathscr{F}_{1} \ldots \mathscr{F}_{N}\right) \sim_{I, K} \sum_{q=j}^{N+1} \overline{\operatorname{Sym}}_{\bar{t}^{j}, \ldots, \bar{t}^{q-1}}\left[\phi_{q} \mathbb{C}_{j}^{q-1} \mathbb{Z}_{j}^{q}(z ; \bar{t})\right. \\
& \left.\times \mathrm{T}_{i, q}^{+}(z) \cdot \mathscr{F}_{1} \ldots \mathscr{F}_{j-1} \mathscr{F}_{j}^{\prime} \cdots \mathscr{F}_{q-1}^{\prime}\right] \cdot \mathscr{F}_{q} \cdots \mathscr{F}_{N}, \tag{4.38}\\
& \mathrm{~T}_{i, j}^{+}(z) \cdot \widehat{P}_{f}^{+}\left(\widehat{\mathscr{F}}_{N} \ldots \widehat{\mathscr{F}}_{1}\right) \sim_{\widehat{I}, \widehat{K}} \sum_{p=1}^{i} \overline{\operatorname{Sym}}_{\bar{t}^{p}, \ldots, \bar{t}^{i-1}}\left[\widehat{\phi}_{p} \mathbb{C}_{i-1}^{p} \widehat{\mathbb{Z}}_{i}^{p}(z ; \bar{t})\right. \\
& \left.\times \mathrm{T}_{p, j}^{+}(z) \cdot \widehat{\mathscr{F}}_{N} \cdots \widehat{\mathscr{F}}_{i} \widehat{\mathscr{F}}_{i-1}^{\prime \prime} \ldots \widehat{\mathscr{F}}_{p}^{\prime \prime}\right] \cdot \widehat{\mathscr{F}}_{p-1} \ldots \widehat{\mathscr{F}}_{1}, \tag{4.39}
\end{align*}
$$

where the sign factors ϕ_{q} for $q=j+1, \ldots, N+1$ and $\widehat{\phi}_{p}$ for $p=1, \ldots, i-1$ are given by (4.14), and $\phi_{j}=\widehat{\phi}_{i} \equiv 1$.

Proof. We begin the proof with the relation (4.38). Assume that $j=N+1$. Then by (4.12), under the action of $\mathrm{T}_{i, N+1}^{+}(z)$ the sum over ℓ on the right-hand side of (4.24) and also the terms \mathbb{W} give elements of the ideal I. As a result,

$$
\begin{align*}
& \mathrm{T}_{i, N+1}^{+}(z) \cdot P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{N}\left(\bar{t}^{N}\right)\right) \\
& \quad \sim_{I, K} \mathrm{~T}_{i, N+1}^{+}(z) \cdot P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{N-1}\left(\bar{t}^{N-1}\right)\right) \cdot \mathscr{F}_{N}\left(\bar{t}^{N}\right) . \tag{4.40}
\end{align*}
$$

Again using (4.24) for the projection $P_{f}^{+}\left(\mathscr{F}_{1}\left(\vec{t}^{1}\right) \cdots \mathscr{F}_{N-1}\left(\bar{t}^{N-1}\right)\right)$, we can continue this process and get that

$$
\begin{equation*}
\mathrm{T}_{i, N+1}^{+}(z) \cdot P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{N}\left(\bar{t}^{N}\right)\right) \sim_{I, K} \mathrm{~T}_{i, N+1}^{+}(z) \cdot \mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdots \mathscr{F}_{N}\left(\bar{t}^{N}\right) \tag{4.41}
\end{equation*}
$$

Assume now that $j \leqslant N$. Then by (4.12), besides the first term as in (4.40) there will be a contribution of the term corresponding to $\ell=j$ in the sum on the right-hand side of (4.24), so that

$$
\begin{align*}
& \mathrm{T}_{i, j}^{+}(z) \cdot P_{f}^{+}\left(\mathscr{F}_{1} \ldots \mathscr{F}_{N}\right) \sim_{I, K} \mathrm{~T}_{i, j}^{+}(z) \cdot P_{f}^{+}\left(\mathscr{F}_{1} \cdots \mathscr{F}_{N-1}\right) \cdot \mathscr{F}_{N} \\
&+\overline{\operatorname{Sym}}_{\bar{t}^{j}, \ldots, \bar{t}^{N}} {\left[\phi_{N+1} g\left(z, t_{1}^{N}\right) \mathbb{C}_{j}^{N} \mathbb{G}_{j}^{N}(\bar{t})\right.} \\
&\left.\times \mathrm{T}_{i, N+1}^{+}(z) \cdot \mathscr{F}_{1} \cdots \mathscr{F}_{j-1} \mathscr{F}_{j}^{\prime} \ldots \mathscr{F}_{N-1}^{\prime} \cdot \mathscr{F}_{N}^{\prime}\right] . \tag{4.42}
\end{align*}
$$

In view of (4.41) and (4.12) we can omit the projection operator P_{f}^{+}applied to the product of currents $\mathscr{F}_{1} \cdots \mathscr{F}_{j-1} \mathscr{F}_{j}^{\prime} \cdots \mathscr{F}_{N-1}^{\prime}$.

We leave the second term on the right-hand side of (4.42) as it is and consider the first term. In this term we have the projection $P_{f}^{+}\left(\mathscr{F}_{1} \ldots \mathscr{F}_{N-1}\right)$ and we can again use the presentation (4.24) for a product of currents in the smaller-rank algebra $\mathfrak{g l}(m \mid n-1)$. As before, the only contribution comes from the regular term and the one term with $\ell=j$ in the sum over ℓ. We obtain

$$
\begin{aligned}
& \mathrm{T}_{i, j}^{+}(z) \cdot P_{f}^{+}\left(\mathscr{F}_{1} \ldots \mathscr{F}_{N}\right) \sim_{I, K} \mathrm{~T}_{i, j}^{+}(z) \cdot P_{f}^{+}\left(\mathscr{F}_{1} \ldots \mathscr{F}_{N-2}\right) \cdot \mathscr{F}_{N-1} \mathscr{F}_{N} \\
& \quad+\overline{\operatorname{Sym}}_{\bar{t}^{j}, \ldots, \bar{t}^{N-1}}\left[\phi_{N} g\left(z, t_{1}^{N-1}\right) \mathbb{C}_{j}^{N-1} \mathbb{G}_{j}^{N-1}(\bar{t})\right. \\
& \left.\quad \times \mathrm{T}_{i, N}^{+}(z) \cdot \mathscr{F}_{1} \ldots \mathscr{F}_{j-1} \mathscr{F}_{j}^{\prime} \ldots \mathscr{F}_{N-1}^{\prime}\right] \cdot \mathscr{F}_{N} \\
& \quad+\overline{\operatorname{Sym}}_{\bar{t}{ }^{j}, \ldots, \bar{t}^{N}}\left[\phi_{N+1} g\left(z, t_{1}^{N}\right) \mathbb{C}_{j}^{N} \mathbb{G}_{j}^{N}(\bar{t}) \mathrm{T}_{i, N+1}^{+}(z) \cdot \mathscr{F}_{1} \ldots \mathscr{F}_{j-1} \mathscr{F}_{j}^{\prime} \ldots \mathscr{F}_{N}^{\prime}\right] .
\end{aligned}
$$

Continuing this process, we conclude that the action of the monodromy matrix element $\mathrm{T}_{i, j}^{+}(z)$ on the projection $P_{f}^{+}\left(\mathscr{F}_{1} \ldots \mathscr{F}_{N}\right)$ modulo elements in the ideals I and K is given by

$$
\begin{align*}
& \mathrm{T}_{i, j}^{+}(z) \cdot P_{f}^{+}\left(\mathscr{F}_{1} \ldots \mathscr{F}_{N}\right) \sim_{I, K} \mathrm{~T}_{i, j}^{+}(z) \cdot \mathscr{F}_{1} \ldots \mathscr{F}_{N} \\
& +\sum_{q=j+1}^{N+1} \overline{\operatorname{Sym}}_{\bar{t}^{j}, \ldots, \bar{t}^{q-1}}\left[\phi_{q} g\left(z, t_{1}^{q-1}\right) \mathbb{C}_{j}^{q-1} \mathbb{G}_{j}^{q-1}(\bar{t})\right. \\
& \tag{4.43}\\
& \left.\quad \times \mathrm{T}_{i, q}^{+}(z) \cdot \mathscr{F}_{1} \ldots \mathscr{F}_{j-1} \mathscr{F}_{j}^{\prime} \ldots \mathscr{F}_{q-1}^{\prime}\right] \cdot \mathscr{F}_{q} \ldots \mathscr{F}_{N} .
\end{align*}
$$

Using the relation (4.33) and arguments similar to those above, we get that

$$
\begin{align*}
& \mathrm{T}_{i, j}^{+}(z) \cdot \widehat{P}_{f}^{+}\left(\widehat{\mathscr{F}}_{N} \ldots \widehat{\mathscr{F}}_{1}\right) \sim_{\widehat{I}, \widehat{K}} \mathrm{~T}_{i, j}^{+}(z) \cdot \widehat{\mathscr{F}}_{N} \ldots \widehat{\mathscr{F}}_{1} \\
& +\sum_{p=1}^{i-1}{\overline{\operatorname{Sym}_{t^{p}}, \ldots, \bar{t}^{i-1}}}\left[\widehat{\phi}_{p} g\left(z, t_{r_{p}}^{p}\right) \widehat{\mathbb{C}}_{i-1}^{p} \widehat{\mathbb{G}}_{i-1}^{p}(\bar{t})\right. \\
& \left.\quad \times \mathrm{T}_{p, j}^{+}(z) \cdot \widehat{\mathscr{F}}_{N} \ldots \widehat{\mathscr{F}}_{i} \widehat{\mathscr{F}}_{i-1}^{\prime \prime} \ldots \widehat{\mathscr{F}}_{p}^{\prime \prime}\right] \cdot \widehat{\mathscr{F}}_{p-1} \ldots \widehat{\mathscr{F}}_{1} . \tag{4.44}
\end{align*}
$$

With the notation (4.37) the formulae (4.43) and (4.44) are equivalent to the assertion of Proposition 4.6.

The next step is to use the explicit representations for the monodromy matrix element $\mathrm{T}_{i, j}^{+}(z)$ in terms of the Gauss coordinates (2.14),

$$
\begin{equation*}
\mathrm{T}_{i, q}^{+}(z)=\sum_{1 \leqslant p \leqslant i} \mathrm{~F}_{q, p}^{+}(z) k_{p}^{+}(z) \mathrm{E}_{p, i}^{+}(z), \tag{4.45}
\end{equation*}
$$

and in terms of the 'hatted' Gauss coordinates (2.17),

$$
\begin{equation*}
\mathrm{T}_{p, j}^{+}(z)=\sum_{j \leqslant q \leqslant N+1}(-)^{([q]+[p])([q]+[j])} \widehat{\mathrm{F}}_{q, p}^{+}(z) \widehat{k}_{q}^{+}(z) \widehat{\mathrm{E}}_{j, q}^{+}(z), \tag{4.46}
\end{equation*}
$$

where we have formally set $\mathrm{F}_{i, i}^{+}(z)=\widehat{\mathrm{F}}_{j, j}^{+}(z)=\mathrm{E}_{i, i}^{+}(z)=\widehat{\mathrm{E}}_{j, j}^{+}(z) \equiv 1$. These representations allow us to move the Gauss coordinates $\mathrm{E}_{p, i}^{+}(z)$ and $\widehat{\mathrm{E}}_{j, q}^{+}(z)$ through the corresponding products of currents.

As we will demonstrate below, for $i \leqslant j$ these permutations transform the product of currents in (4.38) into the product

$$
\begin{equation*}
\mathscr{F}_{1} \ldots \mathscr{F}_{p-1} \cdot \mathscr{F}_{p}^{\prime \prime} \cdots \mathscr{F}_{i-1}^{\prime \prime} \cdot \mathscr{F}_{i} \cdots \mathscr{F}_{j-1} \cdot \mathscr{F}_{j}^{\prime} \cdots \mathscr{F}_{q-1}^{\prime} \cdot \mathscr{F}_{q} \cdots \mathscr{F}_{N}, \tag{4.47}
\end{equation*}
$$

and the product of currents in (4.39) into the product

$$
\begin{equation*}
\widehat{\mathscr{F}}_{N} \cdots \widehat{\mathscr{F}}_{q} \cdot \widehat{\mathscr{F}}_{q-1}^{\prime} \cdots \widehat{\mathscr{F}}_{j}^{\prime} \cdot \widehat{\mathscr{F}}_{j-1} \ldots \widehat{\mathscr{F}}_{i} \cdot \widehat{\mathscr{F}}_{i-1}^{\prime \prime} \ldots \widehat{\mathscr{F}}_{p}^{\prime \prime} \cdot \widehat{\mathscr{F}}_{p-1} \ldots \widehat{\mathscr{F}}_{1} \tag{4.48}
\end{equation*}
$$

for $p=1, \ldots, i$ and $q=j, \ldots, N+1$.
According to (A.29) and (A.35), the Gauss coordinates $\mathrm{F}_{q, p}^{+}(z)$ and $\widehat{\mathrm{F}}_{q, p}^{+}(z)$ can be replaced by the total composed currents $F_{q, p}(z)$ and $\widehat{F}_{q, p}(z)$ modulo terms in the ideal I. Then by (A.5) and (A.7) the products of currents

$$
\mathscr{F}_{p}^{\prime \prime} \cdots \mathscr{F}_{i-1}^{\prime \prime} \cdot \mathscr{F}_{i} \cdots \mathscr{F}_{j-1} \cdot \mathscr{F}_{j}^{\prime} \cdots \mathscr{F}_{q-1}^{\prime}
$$

and

$$
\begin{equation*}
\widehat{\mathscr{F}}_{q-1}^{\prime} \ldots \widehat{\mathscr{F}}_{j}^{\prime} \cdot \widehat{\mathscr{F}}_{j-1} \ldots \widehat{\mathscr{F}}_{i} \cdot \widehat{\mathscr{F}}_{i-1}^{\prime \prime} \ldots \widehat{\mathscr{F}}_{p}^{\prime \prime} \tag{4.49}
\end{equation*}
$$

in (4.47) and (4.48) will be extended by the corresponding simple root currents depending on the auxiliary parameter z.

This observation shows that the action of the monodromy matrix element $\mathrm{T}_{i, j}^{+}(z)$ on the projections of currents $P_{f}^{+}\left(\mathscr{F}_{1} \ldots \mathscr{F}_{N}\right)$ and $\widehat{P}_{f}^{+}\left(\widehat{\mathscr{F}}_{N} \ldots \widehat{\mathscr{F}}_{1}\right)$ have a similar
structure. This is the first sign that the recursion relations for the Bethe vectors (3.14) and (3.22) coincide.

Let us be more precise. In view of (A.37) the Gauss coordinate $\mathrm{E}_{p, i}^{+}(z)$ commutes with all the products of currents $\mathscr{F}_{q} \cdots \mathscr{F}_{j-1}$ except $\mathscr{F}_{p} \cdots \mathscr{F}_{i-1}$. This is because by (A.37) the Gauss coordinate $\mathrm{E}_{p, i}^{+}(z)$ is constructed from modes of the currents $E_{p}(z), E_{p+1}(z), \ldots, E_{i-1}(z)$. From the commutation relations (2.28) for the simple root total currents we obtain the commutation relations of the simple root Gauss coordinates,

$$
\begin{aligned}
{\left[\mathrm{E}_{i, i+1}^{+}(v), \mathrm{F}_{i+1, i}^{+}(u)\right\} } & =\frac{c_{[i+1]}}{(v-u)_{\lessgtr}}\left(k_{i+1}^{+}(v) k_{i}^{+}(v)^{-1}-k_{i+1}^{+}(u) k_{i}^{+}(u)^{-1}\right) \\
{\left[\mathrm{E}_{i, i+1}^{+}(v), \mathrm{F}_{i+1, i}^{-}(u)\right\} } & =\frac{c_{[i+1]}}{(v-u)_{>}}\left(k_{i+1}^{+}(v) k_{i}^{+}(v)^{-1}-k_{i+1}^{-}(u) k_{i}^{-}(u)^{-1}\right)
\end{aligned}
$$

which also follow from (2.8). From this we conclude that

$$
\left[\mathrm{E}_{p, p+1}^{+}(z), F_{p}(t)\right\} \sim_{K} g_{[p+1]}(t, z) \psi_{p}^{+}(t)
$$

where

$$
\psi_{p}^{+}(t)=k_{p+1}^{+}(t) k_{p}^{+}(t)^{-1}
$$

We recall that $[\cdot, \cdot\}$ is the graded commutator defined in (2.28). Using this commutation relation, the commutation relations of the Cartan currents with the total currents $F_{p}(t)$, and the definition of deformed symmetrization (3.3), we have

$$
\begin{equation*}
\left[\mathrm{E}_{p, p+1}^{+}(z), \mathscr{F}_{p}\left(\bar{t}^{p}\right)\right\} \sim_{K} \frac{(-)^{\left(r_{p}-1\right) \delta_{p, m}}}{\left(r_{p}-1\right)!} \overline{\operatorname{Sym}}_{\bar{t}^{p}}\left[g_{[p+1]}\left(t_{r_{p}}^{p}, z\right) \mathscr{F}_{p}\left(\bar{t}_{r_{p}}^{p}\right) \psi_{p}^{+}\left(t_{r_{p}}^{p}\right)\right] \tag{4.50}
\end{equation*}
$$

Let us explain the appearance of the phase factor $(-)^{\left(r_{m}-1\right)}$ in this formula for $p=m$. Using the definition of the graded commutator in (2.28), the commutativity $\psi_{m}^{+}(t) F_{m}\left(t^{\prime}\right)=F_{m}\left(t^{\prime}\right) \psi_{m}^{+}(t)$, and the anticommutativity of the currents $F_{m}(t)$, we conclude that

$$
\begin{aligned}
& {\left[\mathrm{E}_{m, m+1}^{+}(z), \mathscr{F}_{m}\left(\bar{t}^{m}\right)\right\}} \\
& \quad \sim_{K} \sum_{\ell=1}^{r_{m}}(-)^{\ell-1} g\left(z, t_{\ell}^{m}\right) F_{m}\left(t_{1}^{m}\right) \cdots F_{m}\left(t_{\ell-1}^{m}\right) \psi_{m}^{+}\left(t_{\ell}^{m}\right) F_{m}\left(t_{\ell+1}^{m}\right) \cdots F_{m}\left(t_{r_{m}}^{m}\right) \\
& \quad \sim_{K} \frac{(-)^{\left(r_{m}-1\right)}}{\left(r_{m}-1\right)!} \operatorname{ASym}_{\bar{t}^{m}}\left(g\left(z, t_{r_{m}}^{m}\right) F_{m}\left(t_{1}^{m}\right) \cdots F_{m}\left(t_{r_{m}-1}^{m}\right) \psi_{m}^{+}\left(t_{r_{m}}^{m}\right)\right),
\end{aligned}
$$

where the symbol $\operatorname{ASym}_{\bar{t}^{m}}(\cdot)$ stands for antisymmetrization over the set of variables \bar{t}^{m}. It coincides with the deformed symmetrization $\overline{\operatorname{Sym}}_{\bar{t}^{m}}(\cdot)$ (see (3.3)) over the same set.

Within the product of screening operators $\mathscr{S}_{E_{i-1}^{(0)}} \cdots \mathscr{S}_{E_{p+1}^{(0)}}$ in the formula (A.37) for the Gauss coordinate $\mathrm{E}_{p, i}^{+}(z)$, only the screening operator $\mathscr{S}_{E_{p+1}^{(0)}}$ does not commute with the Cartan current $k_{p+1}^{+}\left(t_{r_{p}}^{p}\right)$:

$$
\mathscr{S}_{E_{p+1}^{(0)}}\left(k_{p+1}^{+}\left(t_{r_{p}}^{p}\right)\right)=-c_{[p+1]} k_{p+1}^{+}\left(t_{r_{p}}^{p}\right) \mathrm{E}_{p+1, p+2}^{+}\left(t_{r_{p}}^{p}\right)
$$

which can be obtained from the commutation relation (2.23). Again using (A.37), we find that

$$
\begin{equation*}
\left[\mathrm{E}_{p, i}^{+}(z), \mathscr{F}_{p}\left(\bar{t}^{p}\right)\right\} \sim_{K} \frac{(-)^{\left(r_{p}-1\right) \delta_{p, m}}}{\left(r_{p}-1\right)!} \overline{\operatorname{Sym}}_{\bar{t}^{p}}\left[g_{[p+1]}\left(t_{r_{p}}^{p}, z\right) \mathscr{F}_{p}\left(\bar{t}_{r_{p}}^{p}\right) \psi_{p}^{+}\left(t_{r_{p}}^{p}\right) \mathrm{E}_{p+1, i}^{+}\left(t_{r_{p}}^{p}\right)\right] . \tag{4.51}
\end{equation*}
$$

In view of the result

$$
\mathrm{E}_{p, i}^{+}(z) \cdot \mathscr{F}_{p+1} \cdots \mathscr{F}_{i-1} \sim_{J} 0
$$

we can represent (4.51) as an action of the Gauss coordinate $\mathrm{E}_{p, i}^{+}(z)$ on the product of currents $\mathscr{F}_{p} \cdots \mathscr{F}_{i-1}$ modulo elements in the ideals K and J

$$
\begin{gather*}
\mathrm{E}_{p, i}^{+}(z) \cdot \mathscr{F}_{p}\left(\bar{t}^{p}\right) \cdots \mathscr{F}_{i}\left(\bar{t}^{i}\right) \sim_{K, J} \frac{(-)^{\left(r_{p}-1\right) \delta_{p, m}}}{\left(r_{p}-1\right)!} \overline{\operatorname{Sym}}_{\bar{t}^{p}}\left[g_{[p+1]}\left(t_{r_{p}}^{p}, z\right) \mathscr{F}_{p}\left(\bar{t}_{r_{p}}^{p}\right) \psi_{p}^{+}\left(t_{r_{p}}^{p}\right)\right. \\
\left.\times \mathrm{E}_{p+1, i}^{+}\left(t_{r_{p}}^{p}\right) \cdot \mathscr{F}_{p+1}\left(\bar{t}^{p+1}\right) \cdots \mathscr{F}_{i}\left(\bar{t}^{i}\right)\right] . \tag{4.52}
\end{gather*}
$$

In the last line of (4.52) we can use (4.51) again, and by repeating the calculations finally get that

$$
\begin{align*}
& \mathrm{E}_{p, i}^{+}(z) \cdot \mathscr{F}_{p}\left(\bar{t}^{p}\right) \ldots \mathscr{F}_{i-1}\left(\bar{t}^{i-1}\right) \mathscr{F}_{i}\left(\bar{t}^{i}\right) \sim_{K, J} \epsilon_{p} \prod_{s=p}^{i-1}(-)^{\left(r_{s}-1\right) \delta_{s, m}} \\
& \times \overline{\operatorname{Sym}}_{\bar{t}^{p}, \ldots, \bar{t}^{i-1}}\left[\mathbb{C}_{p}^{i-1} \widehat{\mathbb{Z}}_{i}^{p}(z ; \bar{t}) \mathscr{F}_{p}\left(\bar{t}_{r_{p}}^{p}\right) \ldots \mathscr{F}_{i-1}\left(\bar{t}_{r_{i-1}}^{i-1}\right) \mathscr{F}_{i}\left(\bar{t}^{i}\right)\right. \\
&\left.\times \prod_{s=p}^{i-1} k_{s+1}^{+}\left(t_{r_{s}}^{s}\right) k_{s}^{+}\left(t_{r_{s}}^{s}\right)^{-1}\right] \tag{4.53}
\end{align*}
$$

where ϵ_{p} is the sign factor

$$
\begin{equation*}
\epsilon_{i}=1 \quad \text { and } \quad \epsilon_{p}=(-)^{1+[i]} \quad \text { for } p=1,2, \ldots, i-1 \tag{4.54}
\end{equation*}
$$

We recall that the rational function $\widehat{\mathbb{Z}}_{i}^{p}(z ; \bar{t})$ is defined by (4.36) and (4.37).
Similarly, taking into account that the Gauss coordinate $\widehat{\mathrm{E}}_{j, q}^{+}(z)$ does not commute only with the product of currents $\widehat{\mathscr{F}}_{q-1}\left(\bar{t}^{q-1}\right) \ldots \widehat{\mathscr{F}}_{j}\left(\bar{t}^{j}\right)$ in the product (4.49), we find that

$$
\begin{align*}
(-)^{([q]+[p])([q]+[j])} \widehat{\mathrm{E}}_{j, q}^{+}(z) & \cdot \widehat{\mathscr{F}}_{q-1}\left(\bar{t}^{q-1}\right) \cdots \widehat{\mathscr{F}}_{j}\left(\bar{t}^{j}\right) \widehat{\mathscr{F}}_{j-1}\left(\bar{t}^{j-1}\right) \\
\sim_{\widehat{K}, \widehat{J}} \widehat{\epsilon}_{q} \prod_{s=j}^{q-1}(-)^{\left(r_{s}-1\right) \delta_{s, m}} & \overline{\operatorname{Sym}}_{\bar{t}^{j}, \ldots, \bar{t}^{q-1}}\left[\mathbb{C}_{j}^{q-1} \mathbb{Z}_{j}^{q}(z ; \bar{t}) \widehat{\mathscr{F}}_{q-1}\left(\bar{t}_{1}^{q-1}\right) \times \cdots\right. \\
& \left.\times \widehat{\mathscr{F}}_{j}\left(\bar{t}_{1}^{j}\right) \widehat{\mathscr{F}}_{j-1}\left(\bar{t}^{j-1}\right) \prod_{s=j}^{q-1} \widehat{k}_{s}^{+}\left(t_{1}^{s}\right) \widehat{k}_{s+1}^{+}\left(t_{1}^{s}\right)^{-1}\right] \tag{4.55}
\end{align*}
$$

where $\widehat{\epsilon}_{q}$ is the sign factor

$$
\begin{equation*}
\widehat{\epsilon}_{j}=1 \quad \text { and } \quad \widehat{\epsilon}_{q}=(-)^{([j]+[p])[q]+[j][p]} \quad \text { for } q=j+1, j+2, \ldots, N, \tag{4.56}
\end{equation*}
$$

and the rational function $\mathbb{Z}_{j}^{q}(z ; \bar{t})$ is defined by (4.36) and (4.37).

The Gauss coordinates $\mathrm{F}_{q, p}^{+}(z)$ and $\widehat{\mathrm{F}}_{q, p}^{+}(z)$ in (4.45) and (4.46) can be replaced by the products of the corresponding currents (see the formulae (A.5), (A.29) and (A.7), (A.34), respectively):

$$
\begin{align*}
& \left.\mathrm{F}_{q, p}^{+}(z) \sim_{I} \prod_{s=p}^{q-2} f_{[s+1]}\left(z_{s+1}, z_{s}\right)^{-1} F_{p}\left(z_{p}\right) \cdots F_{q-1}\left(z_{q-1}\right)\right|_{z_{p}=\cdots=z_{q-1}=z} \tag{4.57}\\
& \left.\widehat{\mathrm{~F}}_{q, p}^{+}(z) \sim_{\widehat{I}} \prod_{s=p}^{q-2} f_{[s+1]}\left(z_{s+1}, z_{s}\right)^{-1} \widehat{F}_{q-1}\left(z_{q-1}\right) \cdots \widehat{F}_{p}\left(z_{p}\right)\right|_{z_{p}=\cdots=z_{q-1}=z} \tag{4.58}
\end{align*}
$$

where we have changed the order in the products of currents and have introduced an auxiliary set of variables $\bar{z}=\left\{z_{p}, \ldots, z_{q-1}\right\}$, which in the end should all be set equal to the parameter z.

Combining (4.38), the Gauss decomposition (4.45), the action (4.53) of the Gauss coordinates $\mathrm{E}_{p, i}^{+}(z)$, and the formula (4.57), we can obtain the action formulae of the monodromy matrix elements $\mathrm{T}_{i, j}^{+}(z)$ on the unnormalized Bethe vector

$$
\mathscr{B}(\bar{t})=P_{f}^{+}(\mathscr{F}(\bar{t})) \prod_{\ell=1}^{N} \lambda_{\ell}\left(\bar{t}^{\ell}\right)|0\rangle
$$

where the ordered product of simple root currents $\mathscr{F}(\bar{t})$ is given by (3.12). We have

$$
\begin{align*}
& \mathrm{T}_{i, j}^{+}(z) \cdot \mathscr{B}(\bar{t})= \sum_{p=1}^{i} \sum_{q=j}^{N+1} \phi_{q} \epsilon_{p} \mathbb{C}_{p}^{i-1} \mathbb{C}_{j}^{q-1} \prod_{s=p}^{i-1}(-)^{\left(r_{s}-1\right) \delta_{s, m}} \\
& \times \overline{\operatorname{Sym}}_{\bar{t}^{p}, \ldots, \bar{t}^{i-1}, \bar{t}^{j}, \ldots, \bar{t}^{q-1}}\left[\frac{\widehat{\mathbb{Z}}_{i}^{p}\left(z ; \bar{t}^{p}, \ldots, \bar{t}^{i}\right) \mathbb{Z}_{j}^{q}\left(z ; \bar{t}^{j-1}, \ldots, \bar{t}^{q-1}\right)}{\mathbb{X}\left(\bar{z} ; \bar{t}^{p}, \ldots, \bar{t}^{q-1}\right)}\right. \\
& \times \mathscr{B}\left(\bar{t}^{1}, \ldots, \bar{t}^{p-1},\left\{z_{p}, \bar{t}_{r_{p}}^{p}\right\}, \ldots,\left\{z_{i-1}, \bar{t}_{r_{i-1}}^{i-1}\right\},\left\{z_{i}, \bar{t}^{i}\right\}, \ldots,\left\{z_{j-1}, \bar{t}^{j-1}\right\},\right. \\
&\left.\left\{z_{j}, \bar{t}_{1}^{j}\right\}, \ldots,\left\{z_{q-1}, \bar{t}_{1}^{q-1}\right\}, \bar{t}^{q}, \ldots, \bar{t}^{N}\right) \\
& \times\left.\frac{\lambda_{p+1}\left(t_{r_{p}}^{p}\right) \cdots \lambda_{i}\left(t_{r_{i-1}}^{i-1}\right) \lambda_{j}\left(t_{1}^{j}\right) \cdots \lambda_{q-1}\left(t_{1}^{q-1}\right)}{\lambda_{p}\left(z_{p}\right) \cdots \lambda_{q-1}\left(z_{q-1}\right)} \lambda_{p}(z)\right]\left.\right|_{z_{p}=\cdots=z_{q-1}=z} \tag{4.59}
\end{align*}
$$

where we have introduced yet another rational function $\mathbb{X}\left(\bar{z}, \bar{t}^{p}, \ldots, \bar{t}^{q-1}\right)$ depending on the auxiliary set \bar{z} and the Bethe parameters:

$$
\begin{align*}
& \mathbb{X}\left(\bar{z} ; \bar{t}^{p}, \ldots, \bar{t}^{q-1}\right)=\prod_{s=p}^{i-1} f_{[s+1]}\left(z_{s+1},\left\{z_{s}, \bar{t}_{r_{s}}^{s}\right\}\right) \\
& \quad \times \prod_{s=i}^{j-1} f_{[s+1]}\left(z_{s+1},\left\{z_{s}, \bar{t}^{s}\right\}\right) \prod_{s=j}^{q-2} f_{[s+1]}\left(z_{s+1},\left\{z_{s}, \bar{t}_{1}^{s}\right\}\right) f_{[p]}\left(\bar{t}_{r_{p}}^{p}, z_{p}\right)^{-1} \tag{4.60}
\end{align*}
$$

Similarly, using (4.39), the Gauss decomposition (4.46), the action (4.55) of the Gauss coordinate $\widehat{\mathrm{E}}_{j, q}^{+}(z)$, and the formula (4.58), we can calculate the action
formula of the monodromy matrix element $\mathrm{T}_{i, j}^{+}(z)$ on the unnormalized Bethe vector

$$
\widehat{\mathscr{B}}(\bar{t})=\widehat{P}_{f}^{+}(\widehat{\mathscr{F}}(\bar{t})) \prod_{\ell=1}^{N} \widehat{k}_{\ell+1}^{+}\left(\bar{t}^{\ell}\right)|0\rangle,
$$

where the ordered product of currents $\widehat{\mathscr{F}}(\bar{t})$ is given by (3.21). We have

$$
\begin{align*}
& \mathrm{T}_{i, j}^{+}(z) \cdot \widehat{\mathscr{B}}(\bar{t})=\sum_{p=1}^{i} \sum_{q=j}^{N+1} \widehat{\phi}_{p} \widehat{\epsilon}_{q} \mathbb{C}_{p}^{i-1} \mathbb{C}_{j}^{q-1} \prod_{s=j}^{q-1}(-)^{\left(r_{s}-1\right) \delta_{s, m}} \\
& \times \overline{\operatorname{Sym}}_{\bar{t}^{p}, \ldots, \bar{t}^{i-1}, \bar{t}^{j}, \ldots, \bar{t}^{q-1}}\left[\frac{\widehat{\mathbb{Z}}_{i}^{p}\left(z ; \bar{t}^{p}, \ldots, \bar{t}^{i}\right) \mathbb{Z}_{j}^{q}\left(z ; \bar{t}^{j-1}, \ldots, \bar{t}^{q-1}\right)}{\widehat{\mathbb{X}}\left(\bar{z} ; \bar{t}^{p}, \ldots, \bar{t}^{q-1}\right)}\right. \\
& \times \widehat{\mathscr{B}}\left(\bar{t}^{1}, \ldots, \bar{t}^{p-1},\left\{z_{p}, \bar{t}_{r_{p}}^{p}\right\}, \ldots,\left\{z_{i-1}, \bar{t}_{r_{i-1}}^{i-1}\right\},\left\{z_{i}, \bar{t}^{i}\right\}, \ldots,\left\{z_{j-1}, \bar{t}^{j-1}\right\},\right. \\
& \left.\quad\left\{z_{j}, \bar{t}_{1}^{j}\right\}, \ldots,\left\{z_{q-1}, \bar{t}_{1}^{q-1}\right\}, \bar{t}^{q}, \ldots, \bar{t}^{N}\right) \\
& \left.\times \frac{\lambda_{p+1}\left(t_{r_{p}}^{p}\right) \cdots \lambda_{i}\left(t_{r_{i-1}}^{i-1}\right) \lambda_{j}\left(t_{1}^{j}\right) \cdots \lambda_{q-1}\left(t_{1}^{q-1}\right)}{\lambda_{p+1}\left(z_{p}\right) \cdots \lambda_{q}\left(z_{q-1}\right)} \lambda_{q}(z)\right]\left.\right|_{z_{p}=\cdots=z_{q-1}=z}, \tag{4.61}
\end{align*}
$$

where we have introduced another rational function $\widehat{\mathbb{X}}\left(\bar{z}, \bar{t}^{p}, \ldots, \bar{t}^{q-1}\right)$ depending on the auxiliary set \bar{z} and the Bethe parameters:

$$
\begin{align*}
\widehat{\mathbb{X}}\left(\bar{z}, \bar{t}^{p}, \ldots, \bar{t}^{q-1}\right)= & \prod_{s=p}^{i-2} f_{[s+1]}\left(\left\{z_{s+1}, \bar{t}_{r_{s+1}}^{s+1}\right\}, z_{s}\right) \prod_{s=i-1}^{j-2} f_{[s+1]}\left(\left\{z_{s+1}, \bar{t}^{s+1}\right\}, z_{s}\right) \\
& \times \prod_{s=j-1}^{q-2} f_{[s+1]}\left(\left\{z_{s+1}, \bar{t}_{1}^{s+1}\right\}, z_{s}\right) f_{[q]}\left(z_{q-1}, \bar{t}_{1}^{q-1}\right)^{-1} \tag{4.62}
\end{align*}
$$

Let us compare the phase factors in the first rows of (4.59) and (4.61). Using the definitions of these factors in (4.14), (4.54), and (4.56), we observe that $\widehat{\phi}_{p}=\epsilon_{p}$ for $p=1, \ldots, i$. On the other hand, at first glance

$$
\begin{equation*}
\phi_{q}=(-)^{[q][j]+([q]+[j])[i]} \tag{4.63}
\end{equation*}
$$

seems to differ from

$$
\begin{equation*}
\widehat{\epsilon}_{q}=(-)^{[q][j]+([q]+[j])[p]} . \tag{4.64}
\end{equation*}
$$

However, this is not true, because of the restrictions on p, i, j, and q. If the parities of the indices $[p]$ and $[i]$ coincide, then the factors (4.63) and (4.64) also coincide. Now consider the case where the parities of $[p]$ and $[i]$ are different. Recall that $p \leqslant i$. By the definition of the grading (see (2.1)), this means that $[p]=0$ and $[i]=1$. But in this subsection we consider the action of diagonal and upper triangular monodromy matrix elements $\mathrm{T}_{i, j}^{+}(z)$ on Bethe vectors. This means that there is the restriction $p \leqslant i \leqslant j \leqslant q$, so that if $[p] \neq[i]$, then $[j]=[q]=1$ and both factors in (4.63) and (4.64) are equal to -1 . Below we will denote these phase factors as

$$
\begin{equation*}
\phi_{q} \epsilon_{p}=\widehat{\phi}_{p} \widehat{\epsilon}_{q}=\varphi_{p, q} . \tag{4.65}
\end{equation*}
$$

We can now restore the normalizations of the Bethe vectors (3.14) and (3.22) and observe that the actions of the diagonal and upper triangular monodromy matrix elements on these Bethe vectors lead to the same recurrence relations. This means that the Bethe vectors given by (3.14) and (3.22) coincide.

We start our restoration of the normalization with the Bethe vectors (3.14) using (4.59). Note that the deformed symmetrization in the action formula (4.61) turns into the usual symmetrization in (4.66) in view of the property (4.2). Using the explicit expressions for the rational functions (4.25), (4.34), and (4.60), we get that

$$
\begin{align*}
\mathrm{T}_{i, j}^{+}(z) \cdot \mathbb{B}(\bar{t})=\sum_{p=1}^{i} & \sum_{q=j}^{N+1} \varphi_{p, q} \mathbb{C}_{p}^{i-1} \mathbb{C}_{j}^{q-1} \\
& \times \operatorname{Sym}_{\bar{t}^{p}, \ldots, \bar{t}^{i-1}, \bar{t}^{j}, \ldots, \bar{t}^{q-1}}\left[\mathbb{D}(\bar{t}) \mathbb{Y}(z, \bar{t}) \Lambda(z ; \bar{t}) \mathbb{B}\left(\{z, \bar{t}\}^{\prime}\right)\right] \tag{4.66}
\end{align*}
$$

where the sign factor $\varphi_{p, q}$ is given by (4.65), and the Bethe vector $\mathbb{B}\left(\left\{z, \overline{\}^{\prime}}\right)\right.$ on the right-hand side of this equality depends on the following set of parameters:

$$
\begin{aligned}
\{z, \bar{t}\}^{\prime}= & \left\{\bar{t}^{1}, \ldots, \bar{t}^{p-1},\left\{z, \bar{t}_{r_{p}}^{p}\right\}, \ldots,\left\{z, \bar{t}_{r_{i-1}}^{i-1}\right\},\left\{z, \bar{t}^{i}\right\}, \ldots,\left\{z, \bar{t}^{j-1}\right\}\right. \\
& \left.\left\{z, \bar{t}_{1}^{j}\right\}, \ldots,\left\{z, \bar{t}_{1}^{q-1}\right\}, \bar{t}^{q}, \ldots, \bar{t}^{N}\right\}
\end{aligned}
$$

The rational function $\mathbb{D}(\bar{t})$ is given by the product

$$
\begin{equation*}
\mathbb{D}(\bar{t})=\prod_{s=p}^{i-1} \frac{f_{[s]}\left(t_{r_{s}}^{s}, \bar{t}_{r_{s}}^{s}\right)}{\left[(-)^{r_{s}-1} h\left(t_{r_{s}}^{s}, \bar{t}_{r_{s}}^{s}\right)\right]^{\delta_{s, m}}} \prod_{s=j}^{q-1} \frac{f_{[s]}\left(\bar{t}_{1}^{s}, t_{1}^{s}\right)}{h\left(\bar{t}_{1}^{s}, t_{1}^{s}\right)^{\delta_{s, m}}} \tag{4.67}
\end{equation*}
$$

The form of the other two rational functions $\mathbb{Y}(z, \bar{t})$ and $\Lambda(z ; \bar{t})$ strongly depends on the values of p and q. For $p<i$ and $q>j$

$$
\begin{aligned}
& \mathbb{Y}(z, \bar{t})=f_{[p]}\left(z, \bar{t}^{p-1}\right) f_{[q]}\left(\bar{t}^{q}, z\right) \prod_{s=p}^{i-1} h\left(\bar{t}_{r_{s}}^{s}, z\right)^{\delta_{s, m}} \prod_{s=i}^{j-1} h\left(\bar{t}^{s}, z\right)^{\delta_{s, m}} \prod_{s=j}^{q-1} h\left(\bar{t}_{1}^{s}, z\right)^{\delta_{s, m}} \\
& \\
& \quad \times \frac{g\left(z, t_{r_{p}}^{p}\right) \prod_{s=p}^{i-2} g_{[s+1]}\left(t_{r_{s+1}}^{s+1}, t_{r_{s}}^{s}\right)}{\prod_{s=p-1}^{i-2} f_{[s+1]}\left(t_{r_{s+1}}^{s+1}, \bar{t}^{s}\right)} \frac{g\left(z, t_{1}^{q-1}\right) \prod_{s=j}^{q-2} g_{[s+1]}\left(t_{1}^{s+1}, t_{1}^{s}\right)}{\prod_{s=j}^{q-1} f_{[s+1]}\left(\bar{t}^{s+1}, t_{1}^{s}\right)}, \\
& \Lambda(z ; \bar{t})=
\end{aligned}
$$

for $p=i$ and $q>j$

$$
\begin{aligned}
\mathbb{Y}(z, \bar{t})= & f_{[i]}\left(z, \bar{t}^{i-1}\right) f_{[q]}\left(\bar{t}^{q}, z\right) \prod_{s=i}^{j-1} h\left(\bar{t}^{s}, z\right)^{\delta_{s, m}} \\
& \times \prod_{s=j}^{q-1} h\left(\bar{t}_{1}^{s}, z\right)^{\delta_{s, m}} \frac{g\left(z, t_{1}^{q-1}\right) \prod_{s=j}^{q-2} g_{[s+1]}\left(t_{1}^{s+1}, t_{1}^{s}\right)}{\prod_{s=j}^{q-1} f_{[s+1]}\left(\bar{t}^{s+1}, t_{1}^{s}\right)}, \\
\Lambda(z ; \bar{t})= & \frac{\lambda_{j}\left(t_{1}^{j}\right) \cdots \lambda_{q-1}\left(t_{1}^{q-1}\right)}{\left(\lambda_{i+1}(z) \cdots \lambda_{q-1}(z)\right)^{\theta_{i+1, q-1}}}
\end{aligned}
$$

for $p<i$ and $q=j$

$$
\begin{aligned}
\mathbb{Y}(z, \bar{t})= & f_{[p]}\left(z, \bar{t}^{p-1}\right) f_{[j]}\left(\bar{t}^{j}, z\right) \prod_{s=p}^{i-1} h\left(\bar{t}_{r_{s}}^{s}, z\right)^{\delta_{s, m}} \\
& \times \prod_{s=i}^{j-1} h\left(\bar{t}^{s}, z\right)^{\delta_{s, m}} \frac{g\left(z, t_{r_{p}}^{p}\right) \prod_{s=p}^{i-2} g_{[s+1]}\left(t_{r_{s+1}}^{s+1}, t_{r_{s}}^{s}\right)}{\prod_{s=p-1}^{i-2} f_{[s+1]}\left(t_{\left.r_{s+1}, \bar{t}^{s}\right)}^{s+1}\right.}, \\
\Lambda(z ; \bar{t})= & \frac{\lambda_{p+1}\left(t_{r_{p}}^{p}\right) \cdots \lambda_{i}\left(t_{r_{i-1}}^{i-1}\right)}{\left(\lambda_{p+1}(z) \cdots \lambda_{j-1}(z)\right)^{\theta_{p+1, j-1}}},
\end{aligned}
$$

and finally, for $p=i$ and $q=j$

$$
\begin{aligned}
& \mathbb{Y}(z, \bar{t})=f_{[i]}\left(z, \bar{t}^{i-1}\right) f_{[j]}\left(\bar{t}^{j}, z\right) \prod_{s=i}^{j-1} h\left(\bar{t}^{s}, z\right)^{\delta_{s, m}} \\
& \Lambda(z ; \bar{t})=\frac{\lambda_{i}(z)^{\delta_{i j}}}{\left(\lambda_{i+1}(z) \cdots \lambda_{j-1}(z)\right)^{\theta_{i+1, j-1}}}
\end{aligned}
$$

where $\theta_{i, j}$ is the Heaviside step function

$$
\theta_{i, j}= \begin{cases}1, & i \leqslant j \\ 0, & i>j\end{cases}
$$

Now we restore the normalization of the Bethe vectors (3.22) using (4.61). Again using the explicit expressions for the rational functions (4.25), (4.34), and (4.62), we obtain the action formula

$$
\begin{align*}
\mathrm{T}_{i, j}^{+}(z) \cdot \widehat{\mathbb{B}}(\bar{t})=\sum_{p=1}^{i} & \sum_{q=j}^{N+1} \varphi_{p, q} \mathbb{C}_{p}^{i-1} \mathbb{C}_{j}^{q-1} \\
& \times \operatorname{Sym}_{\bar{t}^{p}, \ldots, \bar{t}^{i}-1, \bar{t}^{j}, \ldots, \bar{t}^{q-1}}\left[\widehat{\mathbb{D}}(\bar{t}) \mathbb{Y}(z, \bar{t}) \Lambda(z ; \bar{t}) \widehat{\mathbb{B}}\left(\{z, \bar{t}\}^{\prime}\right)\right] \tag{4.68}
\end{align*}
$$

where the only difference from the action formula (4.66) is that the function $\mathbb{D}(t)$ is replaced by

$$
\begin{equation*}
\widehat{\mathbb{D}}(\bar{t})=\prod_{s=p}^{i-1} \frac{f_{[s+1]}\left(t_{r_{s}}^{s}, \bar{t}_{r_{s}}^{s}\right)}{h\left(\bar{t}_{r_{s}}^{s}, t_{r_{s}}^{s}\right)^{\delta_{s, m}}} \prod_{s=j}^{q-1} \frac{f_{[s+1]}\left(\bar{t}_{1}^{s}, t_{1}^{s}\right)}{\left[(-)^{r_{s}-1} h\left(t_{1}^{s}, \bar{t}_{1}^{s}\right)\right]^{\delta_{s, m}}} . \tag{4.69}
\end{equation*}
$$

Comparing the action formulae (4.66) and (4.68), we can prove Proposition 4.2 if we prove that the functions $\mathbb{D}(\bar{t})$ and $\widehat{\mathbb{D}}(\bar{t})$ actually coincide. First of all, we recall that for $s \neq m$ the rational functions $f_{[s]}(u, v)$ and $f_{[s+1]}(u, v)$ in the definitions of the functions (4.67) and (4.69) coincide. A difference is possible only in the case when $s=m$, since by definition

$$
f_{[m]}(u, v)=\frac{u-v+c}{u-v} \quad \text { and } \quad f_{[m+1]}(u, v)=\frac{u-v-c}{u-v} .
$$

Assume first that $m \notin\{p, \ldots, i-1\}$ and $m \notin\{j, \ldots, q-1\}$. Then the functions (4.67) and (4.69) coincide. If $m \in\{p, \ldots, i-1\}$, then both the factors
in the functions $\mathbb{D}(\bar{t})$ and $\widehat{\mathbb{D}}(\bar{t})$ that depend on the Bethe parameters \bar{t}^{m} are equal to $g\left(t_{r_{m}}^{m}, \bar{t}_{r_{m}}^{m}\right)$. Similarly, if $m \in\{j, \ldots, q-1\}$, then these factors are equal to $g\left(\bar{t}_{1}^{m}, t_{1}^{m}\right)$. This means that in the Yangian double $D Y(\mathfrak{g l}(m \mid n))$ the Bethe vectors constructed using the first current realization (3.14) coincide with the Bethe vectors constructed using the second current realization (3.22).

This concludes the proof of the main statement formulated in Proposition 4.2.
4.5. Actions of the diagonal elements and the Bethe equations. In this subsection we consider the action of the universal transfer matrix $\mathfrak{t}(z)$ in (2.6) on Bethe vectors. For this we must find the action of the diagonal monodromy matrix elements. Hence we should set $i=j$ on the right-hand side of the action formula (4.66). Since the action formulae (4.66) and (4.68) are equivalent, we use the first of them. We have

$$
\begin{align*}
\mathfrak{t}(z) \cdot \mathbb{B}(\bar{t})= & \sum_{i=1}^{N+1}(-)^{[i]} \sum_{p=1}^{i} \sum_{q=i}^{N+1} \varphi_{p, q} \mathbb{C}_{p}^{i-1} \mathbb{C}_{i}^{q-1} \\
& \times \operatorname{Sym}_{\bar{t}^{p}, \ldots, \overline{t^{q}}}\left[\mathbb{D}(\bar{t}) \mathbb{Y}(z, \bar{t}) \Lambda(z ; \bar{t}) \mathbb{B}\left(\{z, \bar{t}\}^{\prime}\right)\right] \tag{4.70}
\end{align*}
$$

where

$$
\{z, \bar{t}\}^{\prime}=\left\{\bar{t}^{1}, \ldots, \bar{t}^{p-1},\left\{z, \bar{t}_{r_{p}}^{p}\right\}, \ldots,\left\{z, \bar{t}_{r_{i-1}}^{i-1}\right\},\left\{z, \bar{t}_{1}^{i}\right\}, \ldots,\left\{z, \bar{t}_{1}^{q-1}\right\}, \bar{t}^{q}, \ldots, \bar{t}^{N}\right\}
$$

and, we recall, $N=m+n-1$.
Among all the terms on the right-hand side of (4.70) there are the so-called 'wanted' terms corresponding to $p=q=i$. One can easily see that their sum is equal to

$$
\sum_{i=1}^{N+1}(-)^{[i]} \lambda_{i}(z) f_{[i]}\left(z, \bar{t}^{i-1}\right) f_{[i]}\left(\bar{t}^{i}, z\right) \mathbb{B}(\bar{t})
$$

Let us compare the terms in (4.70) coming from the actions of the monodromy matrix elements $\mathrm{T}_{i, i}(z)$ and $\mathrm{T}_{i+1, i+1}(z)$. In both cases they correspond to the terms in the sums over p and q on the right-hand side of (4.66) for $p=i$ and $q=i+1$. For the action of the matrix element $(-)^{[i]} \mathrm{T}_{i, i}(z)$ these terms are

$$
\begin{align*}
& \frac{1}{\left(r_{i}-1\right)!} \operatorname{Sym}_{\bar{t}^{i}}\left[\frac{\lambda_{i}\left(t_{1}^{i}\right)}{f_{[i+1]}\left(\bar{t}^{i+1}, t_{1}^{i}\right)} \frac{f_{[i]}\left(\bar{t}_{1}^{i}, t_{1}^{i}\right)}{h\left(\bar{t}_{1}^{i}, t_{1}^{i}\right)^{\delta_{i, m}}} \mathbb{B}\left(\bar{t}^{1}, \ldots, \bar{t}^{i-1},\left\{z, \bar{t}_{1}^{i}\right\}, \bar{t}^{i+1}, \ldots, \bar{t}^{N}\right)\right. \\
& \left.\quad \times g\left(z, t_{1}^{i}\right) f_{[i]}\left(z, \bar{t}^{i-1}\right) f_{[i+1]}\left(\bar{t}^{i+1}, z\right) h\left(\bar{t}_{1}^{i}, z\right)^{\delta_{i, m}}\right] . \tag{4.71}
\end{align*}
$$

For the action of the matrix element $(-)^{[i+1]} \mathrm{T}_{i+1, i+1}(z)$ the analogous terms are

$$
\begin{align*}
\frac{(-)^{1+\left(r_{i}-1\right) \delta_{i, m}}}{\left(r_{i}-1\right)!} \operatorname{Sym}_{\bar{t}^{i}}[& \frac{\lambda_{i+1}\left(t_{r_{i}}^{i}\right)}{f_{[i]}\left(t_{r_{i}}^{i}, \bar{t}^{i-1}\right)} \frac{f_{[i]}\left(t_{r_{i}}^{i}, \bar{t}_{r_{i}}^{i}\right)}{h\left(t_{r_{i}}^{i}, \bar{t}_{r_{i}}^{i}\right) \delta_{i, m}} \\
& \times \mathbb{B}\left(\bar{t}^{1}, \ldots, \bar{t}^{i-1},\left\{z, \bar{t}_{r_{i}}^{i}\right\}, \bar{t}^{i+1}, \ldots, \bar{t}^{N}\right) \\
& \left.\times g\left(z, t_{r_{i}}^{i}\right) f_{[i]}\left(z, \bar{t}^{i-1}\right) f_{[i+1]}\left(\bar{t}^{i+1}, z\right) h\left(\bar{t}_{r_{i}}^{i}, z\right)^{\delta_{i, m}}\right] \tag{4.72}
\end{align*}
$$

The symmetrizations in (4.71) and (4.72) can be replaced by summations over $\ell=$ $1, \ldots, r_{i}$:

$$
\left.\left.\begin{array}{rl}
\sum_{\ell=1}^{r_{i}} & {\left[\frac{\lambda_{i}\left(t_{\ell}^{i}\right)}{f_{[i+1]}\left(\bar{t}^{i+1}, t_{\ell}^{i}\right)} \frac{f_{[i]}\left(\bar{t}_{\ell}^{i}\right.}{}, t_{\ell}^{i}\right)} \\
h\left(\bar{t}_{\ell}^{i}, t_{\ell}^{i}\right)^{\delta_{i, m}} \tag{4.73}\\
\mathbb{B} \\
t^{1}
\end{array}, \ldots, \bar{t}^{i-1},\left\{z, \bar{t}_{\ell}^{i}\right\}, \bar{t}^{i+1}, \ldots, \bar{t}^{N}\right)\right)
$$

and

$$
\begin{align*}
-(-)^{\left(r_{i}-1\right) \delta_{i, m}} \sum_{\ell=1}^{r_{i}} & {\left[\frac{\lambda_{i+1}\left(t_{\ell}^{i}\right)}{f_{[i]}\left(t_{\ell}^{i}, \bar{t}^{i-1}\right)} \frac{f_{[i]}\left(t_{\ell}^{i}, \bar{t}_{\ell}^{i}\right)}{h\left(t_{\ell}^{i}, \bar{t}_{\ell}^{i} \delta_{i, m}\right.} \mathbb{B}\left(\bar{t}^{1}, \ldots, \bar{t}^{i-1},\left\{z, \bar{t}_{\ell}^{i}\right\}, \bar{t}^{i+1}, \ldots, \bar{t}^{N}\right)\right.} \\
& \left.\times g\left(z, t_{\ell}^{i}\right) f_{[i]}\left(z, \bar{t}^{i-1}\right) f_{[i+1]}\left(\bar{t}^{i+1}, z\right) h\left(\bar{t}_{\ell}^{i}, z\right)^{\delta_{i, m}}\right] . \tag{4.74}
\end{align*}
$$

If the set of Bethe parameters \bar{t} satisfies the system of equations

$$
\begin{equation*}
\left.\frac{\lambda_{i+1}\left(t_{\ell}^{i}\right)}{\lambda_{i}\left(t_{\ell}^{i}\right)}=(-)^{\left(r_{i}-1\right) \delta_{i, m}} \frac{f_{[i]}\left(\bar{t}_{\ell}^{i}, t_{\ell}^{i}\right)}{h\left(\bar{t}_{\ell}^{i}, t_{\ell}^{i}\right)^{\delta_{i, m}}} \frac{h\left(t_{\ell}^{i}, \bar{t}_{\ell}^{i}\right)^{\delta_{i, m}}}{f_{[i]}\left(t_{\ell}^{i}, \bar{t}_{\ell}^{i}\right)} \frac{f_{[i]}\left(t_{\ell}^{i}, \bar{t}^{i}-1\right.}{}\right), \tag{4.75}
\end{equation*}
$$

then the terms in (4.73) and (4.74) cancel each other. If $i \neq m$, then the equations (4.75) become the standard Bethe equations analogous to those arising in the algebra $\mathfrak{g l}(N+1)$:

$$
\begin{equation*}
\frac{\lambda_{i+1}\left(t_{\ell}^{i}\right)}{\lambda_{i}\left(t_{\ell}^{i}\right)}=\frac{f_{[i]}\left(\bar{t}_{\ell}^{i}, t_{\ell}^{i}\right)}{f_{[i]}\left(t_{\ell}^{i}, \bar{t}_{\ell}^{i}\right)} \frac{f_{[i]}\left(t_{\ell}^{i}, \bar{t}^{i-1}\right)}{f_{[i+1]}\left(\bar{t}^{i+1}, t_{\ell}^{i}\right)} . \tag{4.76}
\end{equation*}
$$

For $i=m$ the Bethe equations (4.75) simplify to

$$
\begin{equation*}
\frac{\lambda_{m+1}\left(t_{\ell}^{m}\right)}{\lambda_{m}\left(t_{\ell}^{m}\right)}=\frac{f\left(t_{\ell}^{m}, \bar{t}^{m-1}\right)}{f\left(t_{\ell}^{m}, \bar{t}^{m+1}\right)} . \tag{4.77}
\end{equation*}
$$

This simplified form of the Bethe equations is typical for the models of free fermions, but one should remember that in the case under consideration the parameters t_{ℓ}^{m} are coupled through the equations (4.76) with $i=m \pm 1$.

If the Bethe equations are satisfied, then the Bethe vector becomes an eigenvector of the transfer matrix (2.6):

$$
\mathfrak{t}(z) \cdot \mathbb{B}(\bar{t})=\tau(z ; \bar{t}) \mathbb{B}(\bar{t}),
$$

with the eigenvalue

$$
\begin{equation*}
\tau(z ; \bar{t})=\sum_{i=1}^{N+1}(-)^{[i]} \lambda_{i}(z) f_{[i]}\left(z, \bar{t}^{i-1}\right) f_{[i]}\left(\bar{t}^{i}, z\right) \tag{4.78}
\end{equation*}
$$

In this case we call $\mathbb{B}(\bar{t})$ an on-shell Bethe vector. Note that the Bethe equations (4.76) and (4.77) can be regarded as the condition of absence of poles of the eigenvalue (4.78) at the points $z=t_{\ell}^{i}$.

Let us verify that all the remaining 'unwanted' terms in the action of the transfer matrix (2.6) on the on-shell Bethe vector vanish. To do this we calculate the general coefficient of the Bethe vector

$$
\begin{equation*}
\mathbb{B}\left(\bar{t}^{1}, \ldots, \bar{t}^{i-1},\left\{z, \bar{t}_{\ell_{i}}^{i}\right\}, \ldots,\left\{z, \bar{t}_{\ell_{i+a}}^{i+a}\right\}, \bar{t}^{i+a+1}, \ldots, \bar{t}^{N}\right) \tag{4.79}
\end{equation*}
$$

for fixed i and $^{8} a>0$ in the sum over the index ℓ_{b} of the Bethe parameters $t_{\ell_{b}}^{b}$ for $b=i, \ldots, i+a$. These sums arise from the symmetrizations in (4.70). One can see that a vector with Bethe parameters as in (4.79) can arise only from the actions of the diagonal monodromy matrix elements $\mathrm{T}_{b, b}^{+}(z)$ with $b=i, \ldots, i+a+1$. To get such a vector one must take the term with $p=i$ and $q=i+a+1$ in the sums over p and q in (4.66). Recalling the definition of the phase factor $\varphi_{i, i+a+1}$ in (4.65) for each $b=i, \ldots, i+a+1$ and denoting it by $\varphi_{i, i+a+1}(b)$, we find that

$$
(-)^{[b]} \varphi_{i, i+a+1}(b)= \begin{cases}1 & \text { for } b=i \\ (-)^{1+[b]} & \text { for } b=i+1, \ldots, i+a \\ -1 & \text { for } b=i+a+1\end{cases}
$$

Substituting the explicit Bethe equation in the function $\Lambda(z ; \bar{t})$, we get that the coefficient of the Bethe vector (4.79) on the right-hand side of the action formula (4.70) is proportional to the expression

$$
g\left(z, t_{\ell_{i}}^{i}\right)^{-1}-\sum_{b=i+1}^{i+a} g\left(t_{\ell_{b}}^{b}, t_{\ell_{b-1}}^{b-1}\right)^{-1}-g\left(z, t_{\ell_{i+a}}^{i+a}\right)^{-1}
$$

which obviously vanishes. We note that the same trivial identity was used in [27] (see the unnumbered formula on p. 29 of that paper) to prove that a universal off-shell Bethe vector becomes on-shell if the Bethe equations are satisfied.

5. Explicit formulae for the universal Bethe vectors

5.1. Hierarchical relations for the Bethe vectors $\mathbb{B}(\bar{t})$. By calculating the 'positive' projection in the formula (3.14) for the Bethe vector $\mathbb{B}(\bar{t})$, we can obtain a hierarchical recurrence relation which connects the Bethe vectors constructed for the Yangian double $D Y(\mathfrak{g l}(m \mid n))$ with the Bethe vectors for $D Y(\mathfrak{g l}(m-1 \mid n))$. Let us separate the product of currents $\mathscr{F}_{1}\left(\vec{t}^{1}\right)=F_{1}\left(t_{1}^{1}\right) \cdots F_{1}\left(t_{r_{1}}^{1}\right)$ from the product of the other currents $\mathscr{F}_{\ell}\left(\bar{t}^{\ell}\right), \ell=2, \ldots, N$, and apply the normal ordering rule (4.11) to the latter product. It is obvious from this rule that in order to obtain the desired hierarchical relations for the Bethe vectors (see (5.3) below) it is sufficient to calculate the projection

$$
\begin{equation*}
P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdot P_{f}^{-}\left(\mathscr{F}_{2}\left(\vec{t}_{\mathrm{I}}^{2}\right) \mathscr{F}_{3}\left(\vec{t}_{\mathrm{I}}^{3}\right) \cdots \mathscr{F}_{N}\left(\bar{t}_{\mathrm{I}}^{N}\right)\right)\right) . \tag{5.1}
\end{equation*}
$$

Using the property $P_{f}^{-}\left(\mathscr{F} \cdot P_{f}^{+}\left(\mathscr{F}^{\prime}\right)\right)=0$ for arbitrary elements $\mathscr{F}, \mathscr{F}^{\prime} \in \bar{U}_{F}$ such that $\varepsilon\left(\mathscr{F}^{\prime}\right)=0$, we reduce the problem to the calculation of the projections

$$
\begin{equation*}
P_{f}^{+}\left(\mathscr{F}_{1}\left(\bar{t}^{1}\right) \cdot P_{f}^{-}\left(\mathscr{F}_{2}\left(\vec{t}_{\mathrm{I}}\right) \cdot P_{f}^{-}\left(\mathscr{F}_{3}\left(\overline{\mathrm{t}}_{\mathrm{I}}^{3}\right) \cdots P_{f}^{-}\left(\mathscr{F}_{N}\left(\bar{t}_{\mathrm{I}}^{N}\right)\right) \cdots\right)\right)\right) . \tag{5.2}
\end{equation*}
$$

[^6]This calculation is given in Appendix C, where it is shown to provide an answer in the form of a sum over partitions of the sets \bar{t}^{1} and $\bar{t}_{\mathrm{I}}^{\ell}, \ell=2, \ldots, N$, of the Bethe parameters in the expression (5.2).

To obtain the hierarchical relations for the Bethe vectors in the framework of this approach, we use the formula (4.11) to rewrite the Bethe vector (3.14) as a sum over partitions of the sets of Bethe parameters

$$
\bar{t}^{\prime}=\left\{\bar{t}^{2}, \ldots, \bar{t}^{N}\right\} \Rightarrow \bar{t}_{\mathrm{I}}^{\prime} \cup \bar{t}_{\mathrm{II}}^{\prime},
$$

where

$$
\bar{t}_{\mathrm{I}}^{\prime}=\left\{\bar{t}_{\mathrm{I}}^{2}, \ldots, \bar{t}_{\mathrm{I}}^{N}\right\} \quad \text { and } \quad \bar{t}_{\mathrm{II}}^{\prime}=\left\{\bar{t}_{\mathrm{II}}^{2}, \ldots, \bar{t}_{\mathrm{II}}^{N}\right\} .
$$

The primed set of Bethe parameters \bar{t}^{\prime} differs from the full set \bar{t} of these parameters (3.11) by excluding the Bethe parameters of the first type \bar{t}. It follows from (4.11) and the properties of the projections that

$$
\begin{align*}
\mathbb{B}^{(m \mid n)}(\bar{t})= & \sum_{\bar{t}^{\prime} \Rightarrow \bar{t}_{\mathrm{I}}^{\prime} \cup \bar{t}_{\mathrm{II}}^{\prime}} \frac{\gamma_{1}\left(\bar{t}^{1}\right)}{f_{[2]}\left(\bar{t}_{\mathrm{I}}^{2}, \bar{t}^{1}\right)} P_{f}^{+}\left(F_{2,1}\left(t_{1}^{1}\right) \cdots F_{2,1}\left(t_{r_{1}}^{1}\right) P_{f}^{-}\left(\mathrm{F}\left(\bar{t}_{\mathrm{I}}^{\prime}\right)\right)\right) k_{1}^{+}\left(\bar{t}^{1}\right) \\
& \times \frac{1}{f_{[2]}\left(\bar{t}_{\mathrm{II}}^{2}, \bar{t}^{1}\right)} \frac{\prod_{s=2}^{N} \gamma_{s}\left(\bar{t}_{\mathrm{II}}^{s} \bar{t}_{\mathrm{I}}^{s}\right)}{\prod_{s=2}^{N-1} f_{[s+1]}\left(\bar{t}_{\mathrm{II}}^{s+1}, \bar{t}_{\mathrm{I}}^{s}\right)} \mathbb{B}^{(m-1 \mid n)}\left(\bar{t}_{\mathrm{II}}^{\prime}\right) \prod_{s=2}^{N} \lambda_{s}\left(\bar{t}_{\mathrm{I}}^{s}\right) \tag{5.3}
\end{align*}
$$

where we have identified \bar{t}_{I}^{1} with \bar{t}^{1} and used the fact that the Cartan currents $k_{1}^{+}(z)$ commute with all the currents $F_{s}\left(t^{\prime}\right), s=2, \ldots, N$. Let

$$
\begin{equation*}
\mathscr{X}(\bar{t})=\frac{\gamma_{1}\left(\bar{t}^{1}\right)}{f_{[2]}\left(\bar{t}^{2}, \bar{t}^{1}\right)} P_{f}^{+}\left(F_{2,1}\left(t_{1}^{1}\right) \cdots F_{2,1}\left(t_{r_{1}}^{1}\right) P_{f}^{-}\left(\mathrm{F}\left(\bar{t}^{\prime}\right)\right)\right) k_{1}^{+}\left(\bar{t}^{1}\right), \tag{5.4}
\end{equation*}
$$

where $\bar{t}^{\prime}=\left\{\bar{t}^{2}, \ldots, \bar{t}^{N}\right\}$. Then the expression on the first line of the right-hand side of (5.3) is equal to

$$
\begin{equation*}
\mathscr{X}\left(\bar{t}^{1}, \bar{t}_{\mathrm{I}}^{\prime}\right) . \tag{5.5}
\end{equation*}
$$

To calculate the 'positive' projection of the product of currents

$$
F_{2,1}\left(t_{1}^{1}\right) \cdots F_{2,1}\left(t_{r_{1}}^{1}\right)
$$

and the 'negative' projection $P_{f}^{-}\left(\mathrm{F}\left(\bar{t}^{\prime}\right)\right)$ in (5.4), we use the formulae (C.23) and (C.25) for different i, starting from larger i to smaller i. We use the first formula (C.23) for $i=m+1, \ldots, N$, going from $i=N$ to $i=m+1$, and the second formula (C.25) for $i=2, \ldots, m$, going from $i=m$ to $i=2$.

The results in Appendix C show that the sets \bar{t}^{ℓ} will always be further divided into subsets. To describe this, for each subset $\bar{t}^{\ell}, \ell=1, \ldots, N$, we introduce the subdivision

$$
\begin{equation*}
\bar{t}^{\ell} \Rightarrow\left\{\bar{t}_{\ell}^{\ell}, \bar{t}_{\ell+1}^{\ell}, \ldots, \bar{t}_{N}^{\ell}\right\} \tag{5.6}
\end{equation*}
$$

such that the following constraints hold for the cardinalities of the subsets:

$$
\begin{equation*}
\# \bar{t}_{q}^{\ell}=\# \bar{t}_{q}^{\ell^{\prime}} \quad \text { for all } \ell \neq \ell^{\prime} \quad \text { and } \quad q=\max \left(\ell, \ell^{\prime}\right), \ldots, N . \tag{5.7}
\end{equation*}
$$

In (5.6) and (5.7) the superscripts of the subsets, as usual, describe the type of the Bethe parameters, while the subscripts count the subsets in the subdivision (5.6).

One should not confuse this notation with the notation $\bar{t}_{i}^{\ell}=\bar{t}^{\ell} \backslash\left\{t_{i}^{\ell}\right\}$ used in the previous section §4.

Moreover, to get a non-trivial result in the calculation of the 'positive' projection in (5.4), we have to impose the following restrictions on the cardinalities of the subsets \bar{t}^{s} :

$$
\# \bar{t}^{1} \geqslant \# \bar{t}^{2} \geqslant \cdots \geqslant \# \bar{t}^{N} \geqslant 0
$$

Appendix C shows how the Izergin determinant $K_{[i]}(\bar{y} \mid \bar{x})$ [29] (see (C.22)) arises in the calculation of the projections. It also shows how the result of these calculations can be rewritten in the form of sums over partitions of the sets of Bethe parameters into subsets. Let

$$
\begin{array}{ll}
K_{0}(\bar{y} \mid \bar{x})=K_{[i]}(\bar{y} \mid \bar{x}) & \text { for } i=1, \ldots, m, \\
K_{1}(\bar{y} \mid \bar{x})=K_{[i]}(\bar{y} \mid \bar{x})=K_{0}(\bar{x} \mid \bar{y}) & \text { for } i=m+1, \ldots, N .
\end{array}
$$

It is also convenient to introduce, for any sets \bar{y} and \bar{x} of the same cardinality, the following product of rational functions:

$$
\begin{equation*}
C(\bar{y} \mid \bar{x})=g(\bar{y}, \bar{x}) h(\bar{x}, \bar{x}) . \tag{5.8}
\end{equation*}
$$

We consider in greater detail the calculation of the projections, using the results obtained in Appendix C. The subdivision (5.6) can be represented using the table

$$
\begin{align*}
& \bar{t}_{1}^{1} \cup \bar{t}_{2}^{1} \cup \cdots \cup \bar{t}_{m-1}^{1} \cup \bar{t}_{m}^{1} \cup \bar{t}_{m+1} \cup \cdots \cup \bar{t}_{N-1}^{1} \cup \bar{t}_{N}^{1} \\
& \bar{t}_{2}^{2} \cup \cdots \cup \bar{t}_{m-1}^{2} \cup \bar{t}_{m}^{2} \cup \bar{t}_{m+1}^{2} \cup \cdots \cup \bar{t}_{N-1}^{2} \cup \bar{t}_{N}^{2} \\
& \ddots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\
& \bar{t}_{m-1}^{m-1} \cup \bar{t}_{m}^{m-1} \cup \bar{t}_{m+1}^{m-1} \cup \cdots \cup \bar{t}_{N-1}^{m-1} \cup \bar{t}_{N}^{m-1} \\
& \bar{t}_{m}^{m} \cup \bar{t}_{m+1}^{m} \cup \cdots \cup \bar{t}_{N-1}^{m} \cup \bar{t}_{N}^{m} \tag{5.9}\\
& \bar{t}_{m+1}^{m+1} \cup \cdots \cup \bar{t}_{N-1}^{m+1} \cup \bar{t}_{N}^{m+1} \\
& \bar{t}_{N-1}^{N-1} \cup \bar{t}_{N}^{N-1} \\
& \bar{t}_{N}^{N}
\end{align*}
$$

where the cardinalities of all the subsets in the same column are equal.
For any set \bar{w} of cardinality $\# \bar{w}=d$ we introduce the following ordered product of composed (or simple, when $j=i+1$) currents:

$$
\begin{equation*}
\mathscr{F}_{j, i}(\bar{w})=F_{j, i}\left(w_{1}\right) \cdot F_{j, i}\left(w_{2}\right) \cdots F_{j, i}\left(w_{d}\right) . \tag{5.10}
\end{equation*}
$$

Then the 'negative' projection $P_{f}^{-}\left(\mathrm{F}\left(\bar{t}^{\prime}\right)\right)$ in the definition of the element (5.4) can be written in the form

$$
\begin{aligned}
& \frac{\prod_{s=2}^{N} \gamma_{s}\left(\bar{t}^{s}\right)}{\prod_{s=2}^{N-1} f_{[s+1]}\left(\bar{t}^{s+1}, \bar{t}^{s}\right)} P_{f}^{-}\left(\mathscr { F } _ { 3 , 2 } (\overline { t } ^ { 2 }) P _ { f } ^ { - } \left(\ldots P _ { f } ^ { - } \left(\mathscr{F}_{N, N-1}\left(\bar{t}^{N-1}\right)\right.\right.\right. \\
& \left.\left.\left.\quad \times P_{f}^{-}\left(\mathscr{F}_{N+1, N}\left(\bar{t}^{N}\right)\right)\right) \ldots\right)\right)
\end{aligned}
$$

and in the first step we have to calculate

$$
\begin{equation*}
\frac{\gamma_{N-1}\left(\bar{t}^{N-1}\right) \gamma_{N}\left(\bar{t}^{N}\right)}{f_{[N]}\left(\bar{t}^{N}, \bar{t}^{N-1}\right)} P_{f}^{-}\left(\mathscr{F}_{N, N-1}\left(\bar{t}^{N-1}\right) \cdot P_{f}^{-}\left(\mathscr{F}_{N+1, N}\left(\bar{t}^{N}\right)\right)\right), \tag{5.11}
\end{equation*}
$$

using either (C.23) or (C.25), depending on the relation between m and N.
If $m<N$, and hence $[N]=1$, then we have to use (C.23) in order to obtain for the element (5.11) a sum over the partitions $\bar{t}^{N-1} \Rightarrow\left\{\bar{t}_{N-1}^{N-1} \cup \bar{t}_{N}^{N-1}\right\}$ such that $\# \bar{t}_{N}^{N-1}=\# \bar{t}_{N}^{N}$ (see the next-to-last line in the table above), where we identify the sets $\bar{t}_{N}^{N} \equiv \bar{t}^{N}$:

$$
\begin{aligned}
& (-c)^{-\# \bar{t}_{N}^{N}} \gamma_{N-1}\left(\bar{t}^{N-1}\right) \sum_{\bar{t}^{N-1} \Rightarrow\left\{t_{N-1}^{N-1} \cup \bar{t}_{N}^{N-1}\right\}} \frac{f_{1}\left(\bar{t}_{N}^{N-1}, \bar{t}_{N-1}^{N-1}\right) K_{1}\left(\bar{t}_{N}^{N} \mid \bar{t}_{N}^{N-1}\right)}{f_{1}\left(\bar{t}_{N}^{N}, \bar{t}_{N-1}^{N-1}\right) f_{1}\left(\bar{t}_{N}^{N}, \bar{t}_{N}^{N-1}\right)} \\
& \times P_{f}^{-}\left(\mathscr{F}_{N+1, N-1}\left(\bar{t}_{N}^{N-1}\right) \cdot \mathscr{F}_{N, N-1}\left(\bar{t}_{N-1}^{N-1}\right)\right) .
\end{aligned}
$$

On the other hand, if $m=N$, and hence $[N]=0$ (this case corresponds to the algebra $\mathfrak{g l}(m \mid 1)$), then we have to use (C.25) in order to obtain the element (5.11) again as a sum over the same partitions of \bar{t}^{N-1} :

$$
\begin{aligned}
& c^{-\# \bar{t}_{N}^{N}} \gamma_{N-1}\left(\bar{t}^{N-1}\right) \sum_{\bar{t}^{N-1} \Rightarrow\left\{\bar{t}_{N-1}^{N-1} \cup \bar{t}_{N}^{N-1}\right\}} \frac{f_{0}\left(\bar{t}_{N}^{N-1}, \bar{t}_{N-1}^{N-1}\right) C\left(\bar{t}_{N}^{N} \mid \bar{t}_{N}^{N-1}\right)}{f_{0}\left(\bar{t}_{N}^{N}, \bar{t}_{N-1}^{N-1}\right) f_{0}\left(\bar{t}_{N}^{N}, \bar{t}_{N}^{N-1}\right)} \\
& \times \Delta_{h}\left(\bar{t}_{N}^{N-1}\right)^{-1} P_{f}^{-}\left(\mathscr{F}_{N+1, N-1}\left(\bar{t}_{N}^{N-1}\right) \cdot \mathscr{F}_{N, N-1}\left(\bar{t}_{N-1}^{N-1}\right)\right) .
\end{aligned}
$$

The next step is to calculate the projections

$$
\begin{aligned}
& \frac{\gamma_{N-2}\left(\bar{t}^{N-2}\right) \gamma_{N-1}\left(\bar{t}^{N-1}\right)}{f_{[N-1]}\left(\bar{t}^{N-1}, \bar{t}^{N-2}\right)} P_{f}^{-}\left(\mathscr{F}_{N-1, N-2}\left(\bar{t}^{N-2}\right)\right. \\
& \left.\quad \times P_{f}^{-}\left(\mathscr{F}_{N+1, N-1}\left(\bar{t}_{N}^{N-1}\right) \cdot \mathscr{F}_{N, N-1}\left(\bar{t}_{N-1}^{N-1}\right)\right)\right)
\end{aligned}
$$

using (C.23) for $m<N-1$ and (C.25) for $m=N-1$. Continuing the calculation of the element (5.4) using first (C.23) and then (C.25), we eventually get that

$$
\begin{align*}
\mathscr{X}(\bar{t}) & =\sum_{\substack{\bar{t}^{\ell} \Rightarrow\left\{\bar{t}_{\ell}^{\ell}, \bar{t}_{\ell+1}^{\ell}, \ldots, \bar{t}_{N}^{\ell}\right\} \\
\ell=1, \ldots, N}} \prod_{\ell=1}^{N-1} \prod_{\ell \leqslant q \leqslant q^{\prime} \leqslant N}^{N} f_{[\ell+1]}\left(\bar{t}_{q^{\prime}}^{\ell+1}, \bar{t}_{q}^{\ell}\right)^{-1} \\
& \times \prod_{\ell=1}^{N} \prod_{\ell \leqslant q<q^{\prime} \leqslant N} \frac{f_{[\ell]}\left(\bar{t}_{q^{\prime}}^{\ell}, \bar{t}_{q}^{\ell}\right)}{\left.h_{[\ell]} \bar{t}_{q^{\prime}}^{\ell}, \bar{t}_{q}^{\ell}\right)^{\delta_{\ell, m}}} \prod_{q=2}^{m-1} \prod_{\ell=2}^{q} K_{[\ell]}\left(\bar{t}_{q}^{\ell} \mid \bar{t}_{q}^{\ell-1}\right) \\
& \times \prod_{q=m+1}^{N} \prod_{\ell=m+1}^{q} K_{[\ell]}\left(\bar{t}_{q}^{\ell} \mid \bar{t}_{q}^{\ell-1}\right) \prod_{q=m}^{N} \prod_{\ell=2}^{m} C\left(\bar{t}_{q}^{\ell} \mid \bar{t}_{q}^{\ell-1}\right) \prod_{q=m}^{N} \Delta_{h}\left(\bar{t}_{q}^{1}\right)^{-1} \\
& \times \gamma_{1}\left(\bar{t}^{1}\right) P_{f}^{+}\left(\mathscr{F}_{N+1,1}\left(\bar{t}_{N}^{1}\right) \cdots \mathscr{F}_{m+1,1}\left(\bar{t}_{m}^{1}\right) \cdot \mathscr{F}_{m, 1}\left(\bar{t}_{m-1}^{1}\right) \cdots \mathscr{F}_{2,1}^{1}\left(\bar{t}_{1}^{1}\right)\right) k_{1}^{+}\left(\bar{t}^{1}\right) . \tag{5.12}
\end{align*}
$$

The projection in the last line in (5.12) can be calculated by the method in [13]. Being multiplied from the right by the product of the Cartan currents $k_{1}^{+}\left(\vec{t}^{1}\right)$,
it can be expressed in terms of an ordered product of monodromy matrix elements $\mathrm{T}_{1, \ell}(t), \ell=2, \ldots, N+1$. This shows that the hierarchical relations which we have resolved by calculating the projections in (5.3) are compatible with the embedding of $D Y(\mathfrak{g l}(m-1 \mid n))$ in $D Y(\mathfrak{g l}(m \mid n))$.

Finally, the element (5.4) is given as a multiple sum over partitions:

$$
\begin{align*}
\mathscr{X}(\bar{t})= & \sum_{\substack{\bar{t}^{\ell} \Rightarrow\left\{\bar{t}_{\ell}^{\ell}, \bar{t}_{\ell+1}^{\ell}, \ldots, \bar{t}_{N}^{\ell}\right\} \\
\ell=1, \ldots, N}} \prod_{\ell=1}^{N-1} \prod_{\ell \leqslant q \leqslant q^{\prime} \leqslant N}^{N} f_{[\ell+1]}\left(\bar{t}_{q^{\prime}}^{\ell+1}, \bar{t}_{q}^{\ell}\right)^{-1} \\
& \times \prod_{\ell=1}^{N} \prod_{\ell \leqslant q<q^{\prime} \leqslant N} \frac{f_{[\ell]}\left(\bar{t}_{q^{\prime}}^{\ell}, \bar{t}_{q}^{\ell}\right)}{h_{[\ell]}\left(\bar{t}_{q^{\prime}}^{\ell}, \bar{t}_{q}^{\ell}\right)^{\delta_{\ell, m}}} \prod_{q=2}^{m-1} \prod_{\ell=2}^{q} K_{[\ell]}\left(\bar{t}_{q}^{\ell} \mid \bar{t}_{q}^{\ell-1}\right) \\
& \times \prod_{q=m+1}^{N} \prod_{\ell=m+1}^{q} K_{[\ell]}\left(\bar{t}_{q}^{\ell} \mid \bar{t}_{q}^{\ell-1}\right) \prod_{q=m}^{N} \prod_{\ell=2}^{m} C\left(\bar{t}_{q}^{\ell} \mid \bar{t}_{q}^{\ell-1}\right) \\
& \times \mathbb{T}_{1, N+1}\left(\bar{t}_{N}^{1}\right) \mathbb{T}_{1, N}\left(\bar{t}_{N-1}^{1}\right) \cdots \mathbb{T}_{1, m+1}\left(\bar{t}_{m}^{1}\right) \cdot \mathrm{T}_{1, m}\left(\bar{t}_{m-1}^{1}\right) \cdots \mathrm{T}_{1,2}\left(\bar{t}_{1}^{1}\right) . \tag{5.13}
\end{align*}
$$

Here we have used the notation

$$
\begin{equation*}
\mathbb{T}_{i, j}(\bar{w})=\Delta_{h}(\bar{w})^{-1} \mathrm{~T}_{i, j}\left(w_{1}\right) \mathrm{T}_{i, j}\left(w_{2}\right) \cdots \mathrm{T}_{i, j}\left(w_{d-1}\right) \mathrm{T}_{i, j}\left(w_{d}\right) \tag{5.14}
\end{equation*}
$$

for any set \bar{w} of cardinality $\# \bar{w}=d$ and for $[i]+[j]=1$. It is obvious that by the commutation relation (2.9) this product of odd matrix elements is symmetric with respect to permutations of the parameters w_{i}.
5.2. The Bethe vectors $\mathbb{B}(\bar{t})$. We substitute the expression (5.13) with the subsets in (5.5) into the hierarchical relation (5.3), and then we repeat the same procedure for the Bethe vector $\mathbb{B}^{(m-1 \mid n)}\left(\bar{t}_{\mathrm{II}}^{\prime}\right)$ in the second line of (5.3). In the end we will obtain an explicit expression for the Bethe vector $\mathbb{B}^{(m \mid n)}(\bar{t})$ as a sum over multiple partitions of the set of Bethe parameters. Each term of this sum is a rational coefficient multiplied by symmetric products of monodromy matrix elements. To describe this expression it is necessary to introduce a more convenient indexing of the multiple partitions.

For all $\ell=1, \ldots, N$ we introduce the partition of the sets of Bethe parameters

$$
\begin{equation*}
\bar{t}^{\ell}=\bigcup_{q=1}^{\ell} \bigcup_{q^{\prime}=\ell}^{N} \bar{t}_{q, q^{\prime}}^{\ell}, \tag{5.15}
\end{equation*}
$$

indexed by pairs of positive integers q, q^{\prime} such that

$$
1 \leqslant q \leqslant \ell \leqslant q^{\prime} \leqslant N
$$

We also introduce ordering rules \prec and \preccurlyeq for these pairs according to the following convention:

$$
\begin{equation*}
q, q^{\prime} \prec p, p^{\prime} \quad \text { if } \quad q<p, \forall q^{\prime}, p^{\prime} \quad \text { or } \quad q=p, q^{\prime}<p^{\prime} \tag{5.16}
\end{equation*}
$$

and

$$
q, q^{\prime} \preccurlyeq p, p^{\prime} \quad \text { if } \quad q<p, \forall q^{\prime}, p^{\prime}, \quad \text { or } \quad q=p, q^{\prime}<p^{\prime}, \quad \text { or } \quad q=p, q^{\prime}=p^{\prime}
$$

Using this notation and combining (5.3) with (5.13), we obtain for the Bethe vector the expression

$$
\mathbb{B}(\bar{t})=\mathrm{B}(\bar{t})|0\rangle
$$

where the pre-Bethe vector $\mathrm{B}(\bar{t})$ is given by a sum over the partitions (5.15):

$$
\begin{align*}
\mathrm{B}(\bar{t})= & \sum_{\text {part }} \prod_{q, q^{\prime}} \prod_{p, p^{\prime}} \prod_{\ell=1}^{N-1} f_{[\ell+1]}\left(\bar{t}_{p, p^{\prime}}^{\ell+1}, \bar{t}_{q, q^{\prime}}^{\ell}\right)^{-1} \prod_{q, q^{\prime} \prec p, p^{\prime}} g\left(\bar{t}_{p, p^{\prime}}^{m}, \bar{t}_{q, q^{\prime}}^{m}\right) \prod_{\substack{\ell=1 \\
\ell \neq m}}^{N} f_{[\ell]}\left(\bar{t}_{p, p^{\prime}}^{\ell}, \bar{t}_{q, q^{\prime}}^{\ell}\right) \\
& \times \prod_{q=1}^{m-2} \prod_{q^{\prime}=q+1}^{m-1} \prod_{\ell=q+1}^{m-1} K_{[\ell]}\left(\bar{t}_{q, q^{\prime}}^{\ell} \mid \bar{t}_{q, q^{\prime}}^{\ell-1}\right) \prod_{q=1}^{m-1} \prod_{q^{\prime}=m}^{N} \prod_{\ell=q+1}^{m} C\left(\bar{t}_{q, q^{\prime}}^{\ell} \mid \bar{t}_{q, q^{\prime}}^{\ell-1}\right) \\
& \times \prod_{q=1}^{m-1} \prod_{q^{\prime}=m+1}^{N} \prod_{\ell=m+1}^{q^{\prime}} K_{[\ell]}\left(\bar{t}_{q, q^{\prime}}^{\ell}, \bar{t}_{q, q^{\prime}}^{\ell-1}\right) \prod_{q=m}^{N-1} \prod_{q^{\prime}=q+1}^{N} \prod_{\ell=q+1}^{q^{\prime}} K_{[\ell]}\left(\bar{t}_{q, q^{\prime}}^{\ell} \mid \bar{t}_{q, q^{\prime}}^{\ell-1}\right) \\
& \times \prod_{1 \leqslant q \leqslant m}^{\rightleftarrows}\left(\prod_{N+1 \geqslant q^{\prime} \geqslant m+1} \mathbb{T}_{q, q^{\prime}}\left(\bar{t}_{q, q^{\prime}-1}^{q}\right) \prod_{m \geqslant q^{\prime} \geqslant q+1} \mathrm{~T}_{q, q^{\prime}}\left(\bar{t}_{q, q^{\prime}-1}^{q}\right)\right) \\
& \times \prod_{m+1 \leqslant q \leqslant N}\left(\prod_{N+1 \geqslant q^{\prime} \geqslant q+1} \mathrm{~T}_{q, q^{\prime}}\left(\bar{t}_{q, q^{\prime}-1}^{q}\right)\right) \prod_{\ell=2}^{N} \prod_{q=1}^{\ell-1} \prod_{q^{\prime}=\ell}^{N} \mathrm{~T}_{\ell, \ell}\left(\bar{t}_{q, q^{\prime}}^{\ell}\right) . \tag{5.17}
\end{align*}
$$

The partitions of the Bethe parameters can be pictured as an ordered table which is the following union of diagrams analogous to (5.9):

$$
\begin{align*}
& \bar{t}_{\ell, \ell}^{\ell} \cup \bar{t}_{\ell, \ell+1}^{\ell} \cup \cdots \cup \bar{t}_{\ell, N-1}^{\ell} \cup \bar{t}_{\ell, N}^{\ell} \\
& \bar{t}_{\ell, \ell+1}^{\ell+1} \cup \cdots \cup \bar{t}_{\ell, N-1}^{\ell+1} \cup \bar{t}_{\ell, N}^{\ell+1} \\
& \bigcup_{\ell=1, \ldots, N} \tag{5.18}\\
& \ddots \quad \vdots \quad \vdots \\
& \bar{t}_{\ell, N-1}^{N-1} \cup \bar{t}_{\ell, N}^{N-1} \\
& \bar{t}_{\ell, N}^{N}
\end{align*}
$$

The ordering means that if $\ell^{\prime}<\ell$, then the diagram corresponding to ℓ^{\prime} in (5.18) is on the left of the diagram corresponding to ℓ. The ordering rules (5.16) mean literally that if $q, q^{\prime} \prec p, p^{\prime}$, then the subset $\bar{t}_{q, q^{\prime}}^{\ell^{\prime}}$ in the ℓ^{\prime} th row is located to the left of the subset $\bar{t}_{p, p^{\prime}}^{\ell}$ in the ℓ th row of the diagram. All the subsets in the same column have the same cardinality. The subsets which describe a partition of Bethe parameters of the same type are in the same row of the diagram (see examples of such tables in (5.19), (5.21), and (5.23)).

Example 5.1. Let us look at the formula (5.17) in some particular cases of small m and n.

The case $m=2$ and $n=1$. In this case $N=m+n-1=2$ and the partitions of the sets \vec{t}^{1} and \vec{t}^{2} can be pictured by the following union of two diagrams:

$$
\begin{array}{lllll}
\bar{t}^{1}: & \bar{t}_{1,1} & \cup & \bar{t}_{1,2}^{1} & \tag{5.19}\\
\bar{t}^{2}: & & & \bar{t}_{1,2}^{2} \cup \bar{t}_{2,2}^{2}
\end{array}
$$

In this case the formula (5.17) simplifies:

$$
\begin{align*}
\mathrm{B}^{(2 \mid 1)}\left(\bar{t}^{1}, \bar{t}^{2}\right)= & \sum_{\text {part }} f\left(\bar{t}^{2}, \bar{t}^{1}\right)^{-1} f\left(\bar{t}_{1,2}^{1}, \bar{t}_{1,1}^{1}\right) g\left(\bar{t}_{2,2}^{2}, \bar{t}_{1,2}^{2}\right) C\left(\bar{t}_{1,2}^{2} \mid \bar{t}_{1,2}^{1}\right) \\
& \times \mathbb{T}_{1,3}\left(\bar{t}_{1,2}^{1}\right) \mathrm{T}_{1,2}\left(\bar{t}_{1,1}^{1}\right) \mathbb{T}_{2,3}\left(\bar{t}_{2,2}^{2}\right) \mathrm{T}_{2,2}\left(\bar{t}_{1,2}^{2}\right) \tag{5.20}
\end{align*}
$$

After the identifications $\bar{t}_{1,1} \equiv \bar{u}_{\mathrm{II}}, \bar{t}_{1,2}^{1} \equiv \bar{u}_{\mathrm{I}}, \bar{t}_{2,2}^{2} \equiv \bar{v}_{\mathrm{II}}$, and $\bar{t}_{1,2}^{2} \equiv \bar{v}_{\mathrm{I}}$, we recover from (5.20) the expression (5.32) for the Bethe vector.
The case $m=2$ and $n=2$. The partitions (5.15) can be described by the following table:

$$
\begin{array}{lllllllllll}
\bar{t}^{1}: & \bar{t}_{1,1}^{1} & \cup & \bar{t}_{1,2}^{1} & \cup & \bar{t}_{1,3}^{1} & & & & & \\
\bar{t}^{2}: & & & \bar{t}_{1,2}^{2} & \cup & \bar{t}_{1,3}^{2} & \cup & \bar{t}_{2,2}^{2} & \cup & \bar{t}_{2,3}^{2} & \tag{5.21}\\
\bar{t}^{3}: & & & & \bar{t}_{1,3}^{3} & & \cup & & \\
\bar{t}_{2,3}^{3} & \cup & \bar{t}_{3,3}^{3}
\end{array}
$$

It corresponds to the union of three diagrams of the form (5.9). With this notation, (5.17) takes the form

$$
\begin{align*}
& \mathrm{B}^{(2 \mid 2)}\left(\bar{t}^{1}, \vec{t}^{2}, \bar{t}^{3}\right)=\sum_{\text {part }} f_{0}\left(\vec{t}_{1,2}^{2},\left\{\bar{t}_{1,1}^{1} \cup \bar{t}_{1,2}^{1}\right\}\right)^{-1} f_{0}\left(\left\{\vec{t}_{1,3}^{2} \cup \vec{t}_{2,2}^{2} \cup \bar{t}_{2,3}^{2}\right\}, \bar{t}^{1}\right)^{-1} \\
& \times f_{1}\left(\vec{t}_{1,3}^{3},\left\{\vec{t}_{1,2}^{2} \cup \vec{t}_{1,3}^{2}\right\}\right)^{-1} f_{1}\left(\left\{\vec{t}_{2,3}^{3} \cup \vec{t}_{3,3}^{3}\right\}, \vec{t}^{2}\right)^{-1} \\
& \times f_{0}\left(\bar{t}_{1,3}^{1},\left\{\bar{t}_{1,2}^{1} \cup \bar{t}_{1,1}^{1}\right\}\right) f_{0}\left(\bar{t}_{1,2}^{1}, \bar{t}_{1,1}^{1}\right) \\
& \times g\left(\vec{t}_{2,3}^{2},\left\{\vec{t}_{2,2}^{2} \cup \vec{t}_{1,3}^{2} \cup \vec{t}_{1,2}^{2}\right\}\right) g\left(\vec{t}_{2,2}^{2},\left\{\vec{t}_{1,3}^{2} \cup \vec{t}_{1,2}^{2}\right\}\right) g\left(\vec{t}_{1,3}^{2}, \vec{t}_{1,2}^{2}\right) \\
& \times f_{1}\left(\vec{t}_{3,3}^{3},\left\{\vec{t}_{1,3}^{3} \cup \vec{t}_{2,3}^{3}\right\}\right) f_{1}\left(\vec{t}_{2,3}^{3}, \vec{t}_{1,3}^{3}\right) \\
& \times C\left(\vec{t}_{1,2}^{2} \mid \vec{t}_{1,2}\right) C\left(\vec{t}_{1,3}^{2} \mid \vec{t}_{1,3}^{1}\right) K_{1}\left(\vec{t}_{1,3}^{3} \mid \vec{t}_{1,3}^{2}\right) K_{1}\left(\vec{t}_{2,3}^{3} \mid \vec{t}_{2,3}^{2}\right) \\
& \times \mathbb{T}_{1,4}\left(\bar{t}_{1,3}^{1}\right) \mathbb{T}_{1,3}\left(\bar{t}_{1,2}^{1}\right) \mathrm{T}_{1,2}\left(\bar{t}_{1,1}^{1}\right) \mathbb{T}_{2,4}\left(\bar{t}_{2,3}^{2}\right) \mathbb{T}_{2,3}\left(\bar{t}_{2,2}^{2}\right) \mathrm{T}_{3,4}\left(\vec{t}_{3,3}^{3}\right) \\
& \times \mathrm{T}_{2,2}\left(\vec{t}_{1,2}^{2}\right) \mathrm{T}_{2,2}\left(\vec{t}_{1,3}^{2}\right) \mathrm{T}_{3,3}\left(\vec{t}_{1,3}^{3}\right) \mathrm{T}_{3,3}\left(\vec{t}_{2,3}^{3}\right) \text {. } \tag{5.22}
\end{align*}
$$

There is a rule for constructing a pre-Bethe vector from any given table of partitions (5.15). We demonstrate this rule for the diagram (5.21), considering each line in (5.22) and explaining all the factors in this formula with the help of (5.21).

- For a given subset $\bar{t}_{i, j}^{\ell}$ in the ℓ th row of the diagram (5.21) the first and second lines in (5.22) (which correspond to the values $\ell=2,3$) are products of the reciprocal functions $f_{[\ell]}\left(\bar{t}_{i, j}^{\ell}, \bar{t}_{k, l}^{\ell-1}\right)^{-1}$, where the subset $\bar{t}_{k, l}^{\ell-1}$ is either above or on the left of the starting subset $\bar{t}_{i, j}^{\ell}$.
- The third, fourth, and fifth lines in (5.22) correspond to certain products formed for each row of the diagram in accordance with the following rule. For the rows corresponding to \bar{t}^{ℓ} with $\ell<m$ (respectively, with $\ell=m$ or with $\ell>m$) we form products of the functions $f_{0}(\bar{x}, \bar{y})$ (respectively, $g(\bar{x}, \bar{y})$, or $f_{1}(\bar{x}, \bar{y})$). In these
products the subset \bar{x} is to the right of the subset \bar{y} in each row of the diagram (5.21).
- The sixth line in (5.22) is a product of Cauchy determinants or Izergin determinants for neighbouring pairs of subsets $\left(\bar{t}_{i, j}^{k}, \bar{t}_{i, j}^{k-1}\right)$ belonging to the same column of the diagram corresponding to some ℓ.

For $\ell=1, \ldots, m-1$ and any pair $\left(\bar{t}_{i, j}^{k}, \bar{t}_{i, j}^{k-1}\right) \equiv(\bar{x}, \bar{y})$, we use:
the Izergin determinant $K_{0}(\bar{x} \mid \bar{y})$ if $\ell+1 \leqslant k \leqslant j \leqslant m-1$;
the normalized Cauchy determinant $C(\bar{x} \mid \bar{y})(5.8)$ if $\ell+1 \leqslant k \leqslant m \leqslant j \leqslant N$; the Izergin determinant $K_{1}(\bar{x} \mid \bar{y})$ if $m+1 \leqslant k \leqslant j \leqslant N$.
For $\ell=m, \ldots, N-1$ and any pair $\left(\bar{t}_{i, j}^{k}, \bar{t}_{i, j}^{k-1}\right) \equiv(\bar{x}, \bar{y})$, we use the Izergin determinant $K_{1}(\bar{x} \mid \bar{y})$ if $\ell+1 \leqslant k \leqslant j \leqslant N$.

Note that the asymmetry between the cases $\ell<m$ and $\ell \geqslant m$ is due to the hierarchical relation (5.3), which is based on the series of inclusions $\mathfrak{g l}(m \mid n) \supset$ $\mathfrak{g l}(m-1 \mid n) \supset \cdots \supset \mathfrak{g l}(1 \mid n) \supset \mathfrak{g l}(n)$.

In our example of the diagram (5.21) there are four such pairs

$$
\left(\bar{t}_{1,2}^{2}, \bar{t}_{1,2}^{1}\right), \quad\left(\bar{t}_{1,3}^{2}, \bar{t}_{1,3}^{1}\right), \quad\left(\bar{t}_{1,3}^{3}, \bar{t}_{1,3}^{2}\right), \quad \text { and } \quad\left(\bar{t}_{2,3}^{3}, \bar{t}_{2,3}^{2}\right) .
$$

There are no $K_{0}(\bar{x} \mid \bar{y})$ determinants in this example, but they can appear for higher m. For instance, they appear in the Bethe vector for the algebra $\mathfrak{g l}(3 \mid 2)$ and are constructed for the pair of subsets $\left(\bar{t}_{1,2}^{2}, \bar{t}_{1,2}\right)$ using the diagram in (5.23).

- The seventh line is an ordered product of monodromy matrix elements $\mathrm{T}_{i, j}$ with $i<j$ and depends on the subsets $\bar{t}_{i, j-1}^{i}$. It is the usual product for even matrix elements (that is, when $[i]+[j]=0 \bmod 2$) and the normalized product (5.14) otherwise. The order of the factors in the product is from top to bottom for the lines and from right to left within a line, as becomes clear upon comparing the seventh line in (5.22) and the diagram (5.21).
- The last line in (5.22) is the product of the diagonal matrix elements depending on the remaining subsets of Bethe parameters which were not used in the previous line. The index of a diagonal matrix element $\mathrm{T}_{i, i}$ coincides with the number of the line in the diagram. The order in this product is irrelevant, because the diagonal elements commute when the pre-Bethe vector (5.22) acts on the pseudo-vacuum vector $|0\rangle$.
The case $m=3$ and $n=2$. The Bethe vectors in this case can be constructed by the rules described above on the basis of the following table of partitions of the Bethe parameters $\bar{t}, \bar{t}^{2}, \bar{t}^{3}$, and \bar{t}^{4} :

$$
\begin{array}{llllllll}
\bar{t}^{1}: & \bar{t}_{1,1}^{1} \cup \bar{t}_{1,2}^{1} \cup \bar{t}_{1,3}^{1} \cup \bar{t}_{1,4}^{1} & & & \\
\bar{t}^{2}: & \bar{t}_{1,2}^{2} \cup \bar{t}_{1,3}^{2} \cup \bar{t}_{1,4}^{2} \cup \bar{t}_{2,2}^{2} \cup \bar{t}_{2,3}^{2} \cup \bar{t}_{2,4}^{2} \\
\bar{t}^{3}: & & \bar{t}_{1,3}^{3} \cup \bar{t}_{1,4}^{3} & \cup & \bar{t}_{2,3}^{3} \cup \bar{t}_{2,4}^{3} \cup \bar{t}_{2,2}^{3} \cup \bar{t}_{3,4}^{3} \tag{5.23}\\
\bar{t}^{4}: & & \bar{t}_{1,4}^{4} & & \cup & \bar{t}_{2,4}^{4} & \cup & \bar{t}_{3,4}^{4} \cup \bar{t}_{4,4}^{4}
\end{array}
$$

5.3. The Bethe vectors $\widehat{\mathbb{B}}(\bar{t})$. In a completely analogous way one can obtain for the Bethe vectors (3.22) defined by means of the second current realization of the Yangian double $D Y(\mathfrak{g l}(m \mid n))$ hierarchical relations which are compatible with the embedding of $D Y(\mathfrak{g l}(m \mid n-1))$ in $D Y(\mathfrak{g l}(m \mid n))$. Another possibility for obtaining these hierarchial relations is to apply a special map to (5.3) and (5.13). This
morphism was discussed in [30]. It maps the Bethe vectors $\mathbb{B}(\bar{t})$ of $D Y(\mathfrak{g l}(m \mid n))$ to the Bethe vectors $\widehat{\mathbb{B}}(\bar{t})$ of $D Y(\mathfrak{g l}(n \mid m))$ (see (5.26) and the discussion that follows). Thus, using this map and the exchange $m \leftrightarrow n$, we can obtain an explicit hierarchical relation for the Bethe vector $\widehat{\mathbb{B}}(\bar{t})$. We do not give it here, but we give an analogue of (5.17) for $\widehat{\mathbb{B}}(\bar{t})$.

Again, for all $\ell=1, \ldots, N$ we introduce a partition of the sets of Bethe parameters analogous to (5.15):

$$
\begin{equation*}
\bar{t}^{\ell}=\bigcup_{q=1}^{\ell} \bigcup_{q^{\prime}=\ell}^{N} \bar{t}_{q^{\prime}, q}^{\ell} \tag{5.24}
\end{equation*}
$$

indexed by pairs of positive integers q, q^{\prime} with

$$
1 \leqslant q \leqslant \ell \leqslant q^{\prime} \leqslant N
$$

We also introduce the ordering rules \succ and \succcurlyeq for these pairs according to the following conventions:

$$
p^{\prime}, p \succ q^{\prime}, q \quad \text { if } \quad p^{\prime}>q^{\prime}, \forall p, q \quad \text { or } \quad p^{\prime}=q^{\prime}, p>q
$$

and

$$
p, p^{\prime} \succcurlyeq q, q^{\prime} \quad \text { if } \quad p^{\prime}>q^{\prime}, \forall p, q, \quad \text { or } \quad p^{\prime}=q^{\prime}, p>q, \quad \text { or } \quad p^{\prime}=q^{\prime}, p=q
$$

In this notation we have for the Bethe vector the expression

$$
\widehat{\mathbb{B}}(\bar{t})=\widehat{\mathrm{B}}(\bar{t})|0\rangle
$$

where the pre-Bethe vector $\widehat{\mathrm{B}}(\bar{t})$ is given by the sum over the partitions (5.24),

$$
\begin{align*}
& \widehat{\mathrm{B}}(\bar{t})=\sum_{\text {part }} \prod_{p^{\prime}, p \succcurlyeq q^{\prime}, q} \prod_{\ell=1}^{N-1} f_{[\ell+1]}\left(\bar{t}_{p^{\prime}, p}^{\ell+1}, \bar{t}_{q^{\prime}, q}^{\ell}\right)^{-1} \\
& \times \prod_{p^{\prime}, p \succ q^{\prime}, q} g\left(\bar{t}_{q^{\prime}, q}^{m}, \bar{t}_{p^{\prime}, p}^{m}\right) \prod_{\substack{\ell=1 \\
\ell \neq m}}^{N} f_{[\ell+1]}\left(\bar{t}_{p^{\prime}, p}^{\ell}, \bar{t}_{q^{\prime}, q}^{\ell}\right) \\
& \times \prod_{q^{\prime}=m+2}^{N} \prod_{q=m+1}^{q^{\prime}-1} \prod_{\ell=m+1}^{q^{\prime}-1} K_{[\ell]}\left(\bar{t}_{q^{\prime}, q}^{\ell+1} \mid \bar{t}_{q^{\prime}, q}^{\ell}\right) \prod_{q^{\prime}=m+1}^{N} \prod_{q=1}^{m} \prod_{\ell=m}^{q^{\prime}-1} \widehat{C}\left(\bar{t}_{q^{\prime}, q}^{\ell+1} \mid \bar{t}_{q^{\prime}, q}^{\ell}\right) \\
& \times \prod_{q^{\prime}=m+1}^{N} \prod_{q=1}^{m-1} \prod_{\ell=q}^{m-1} K_{[\ell]}\left(\bar{t}_{q^{\prime}, q}^{\ell+1} \mid \bar{t}_{q^{\prime}, q}^{\ell}\right) \prod_{q^{\prime}=2}^{m} \prod_{q=1}^{q^{\prime}-1} \prod_{\ell=q}^{q^{\prime}-1} K_{[\ell]}\left(\bar{t}_{q^{\prime}, q}^{\ell+1} \mid \bar{t}_{q^{\prime}, q}^{\ell}\right) \\
& \times \prod_{N \geqslant q^{\prime} \geqslant m}\left(\prod_{1 \leqslant q \leqslant m} \mathbb{T}_{q, q^{\prime}+1}\left(\bar{t}_{q^{\prime}, q}^{q^{\prime}}\right) \prod_{m<q \leqslant q^{\prime}} \mathrm{T}_{q, q^{\prime}+1}\left(\bar{t}_{q^{\prime}, q}^{q^{\prime}}\right)\right) \\
& \times \prod_{m>q^{\prime} \geqslant 1}\left(\prod_{1 \leqslant q \leqslant q^{\prime}} \mathrm{T}_{q, q^{\prime}+1}\left(\bar{t}_{q^{\prime}, q}^{q^{\prime}}\right)\right) \prod_{\ell=1}^{N-1} \prod_{q^{\prime}=\ell+1}^{N} \prod_{q=1}^{\ell} \mathrm{T}_{\ell+1, \ell+1}\left(\bar{t}_{q^{\prime}, q}^{\ell}\right), \tag{5.25}
\end{align*}
$$

and where in contrast to (5.8) we normalize the Cauchy determinant $\widehat{C}(\bar{y} \mid \bar{x})$ as follows:

$$
\widehat{C}(\bar{y} \mid \bar{x})=g(\bar{x}, \bar{y}) h(\bar{y}, \bar{y})=C(\bar{x} \mid \bar{y}) .
$$

The partitions of the Bethe parameters used in (5.25) also can be pictured using an ordered union of diagrams analogous to (5.9):

The ordering here is opposite to the one used in the table (5.18). This means that a triangle for a smaller ℓ in (5.18) is to the right of a triangle for a larger ℓ. All the subsets in a given column again have the same cardinality. The subsets which describe partitions of the Bethe parameters of the same type are in the same row of the table (see examples of such tables in (5.27) and (5.29)).

We note that the two realizations (5.17) and (5.25) are related by the morphism φ defined in [30] by

$$
\varphi:\left\{\begin{array}{l}
D Y(\mathfrak{g l}(m \mid n)) \rightarrow D Y(\mathfrak{g l}(n \mid m)), \tag{5.26}\\
\mathrm{T}_{i, j}(x) \mapsto(-1)^{[i][j]+[j]+1} \widetilde{\mathrm{~T}}_{j^{\prime}, i^{\prime}}(x), \quad k^{\prime}=m+n+1-k .
\end{array}\right.
$$

Indeed, starting from the pre-Bethe vector $\mathrm{B}(\bar{t}) \in D Y(\mathfrak{g l}(m \mid n))$ and applying φ to it, we get the pre-Bethe vector $(-1)^{\# \bar{t}-\# t^{m}} \widehat{\mathrm{~B}}(\bar{s}) \in D Y(\mathfrak{g l}(n \mid m))$, where the set \bar{t} is divided into subsets $\bar{t}_{i, j}^{\ell}$ satisfying (5.15), while the set \bar{s} is divided into subsets $\bar{s}_{i, j}^{\ell}$ satisfying (5.24). The relation between these partitions is given by $\bar{t}_{i, j}^{\ell}=\bar{s}_{i^{\prime}-1, j^{\prime}-1}^{\ell^{\prime}-1}$, where $k^{\prime}=m+n+1-k$ for any k. In particular, $\varphi(\mathrm{B}(\bar{t}))=(-1)^{\# \bar{t}-\# \bar{t}^{m}} \widehat{\mathrm{~B}}(\bar{s})$ when $m=n$, as can be checked in the example $m=n=2$ described by (5.22) and (5.30).

Example 5.2. For $m=2$ and $n=1$ the partition (5.24) can be pictured using the table

$$
\begin{array}{llllll}
\bar{t}^{2}: & \bar{t}_{2,2}^{2} & \cup & \bar{t}_{2,1}^{2} & & \\
\bar{t}^{1}: & & & \bar{t}_{2,1}^{1} \cup \bar{t}_{1,1}^{1} \tag{5.27}
\end{array}
$$

and the formula (5.25) reduces to

$$
\begin{align*}
\widehat{\mathbf{B}}^{(2 \mid 1)}\left(\bar{t}^{1}, \bar{t}^{2}\right)=\sum_{\text {part }} & f\left(\bar{t}^{2}, \bar{t}^{1}\right)^{-1} f\left(\bar{t}_{2,1}^{1}, \bar{t}_{1,1}^{1}\right) g\left(\bar{t}_{2,2}^{2}, \bar{t}_{2,1}^{2}\right) K_{0}\left(\bar{t}_{2,1}^{2} \mid \bar{t}_{2,1}^{1}\right) \\
& \times \mathbb{T}_{1,3}\left(\bar{t}_{2,1}^{2}\right) \mathbb{T}_{2,3}\left(\bar{t}_{2,2}^{2}\right) \mathrm{T}_{1,2}\left(\bar{t}_{1,1}^{1}\right) \mathrm{T}_{2,2}\left(\bar{t}_{2,1}^{1}\right) \tag{5.28}
\end{align*}
$$

which implies (5.33) (see below) after the identifications $\bar{t}_{1,1} \equiv \bar{u}_{\mathrm{II}}, \bar{t}_{2,1} \equiv \bar{u}_{\mathrm{I}}$, $\bar{t}_{2,2}^{2} \equiv \bar{v}_{\mathrm{II}}$, and $\bar{t}_{2,1}^{2} \equiv \bar{v}_{\mathrm{I}}$.

In the case $m=2$ and $n=2$ the partitions (5.24) can be described using the following union of diagrams:

$$
\begin{array}{llllllllllll}
\bar{t}^{3}: & \bar{t}_{3,3}^{3} & \cup & \bar{t}_{3,2}^{3} & \cup & \bar{t}_{3,1}^{3} & & & & & & \\
\bar{t}^{2}: & & & \bar{t}_{3,2}^{2} & \cup & \bar{t}_{3,1}^{2} & \cup & \bar{t}_{2,2}^{2} & \cup & \bar{t}_{2,1}^{2} & & \tag{5.29}\\
\bar{t}^{1}: & & & & \bar{t}_{3,1}^{1} & & & & & \bar{t}_{2,1}^{1} & \cup & \bar{t}_{1,1}
\end{array}
$$

According to this table, the formula (5.25) takes the form

$$
\begin{align*}
& \widehat{\mathrm{B}}^{(2 \mid 2)}\left(\bar{t}^{1}, \vec{t}^{2}, \bar{t}^{3}\right)=\sum_{\text {part }} f_{0}\left(\vec{t}^{2},\left\{\bar{t}_{2,1}^{1} \cup \bar{t}_{1,1}^{1}\right\}\right)^{-1} f_{0}\left(\left\{\bar{t}_{3,2}^{2} \cup \bar{t}_{3,1}^{2}\right\}, \bar{t}_{3,1}^{1}\right)^{-1} \\
& \times f_{1}\left(\vec{t}_{3,1}^{3},\left\{\vec{t}_{3,1}^{2} \cup \vec{t}_{2,2}^{2} \cup \vec{t}_{2,1}^{2}\right\}\right)^{-1} f_{1}\left(\left\{\vec{t}_{3,3}^{3} \cup \vec{t}_{3,2}^{3}\right\}, \vec{t}^{2}\right)^{-1} \\
& \times f_{0}\left(\bar{t}_{3,1}^{1},\left\{\bar{t}_{2,1}^{1} \cup \bar{t}_{1,1}^{1}\right\}\right) f_{0}\left(\bar{t}_{2,1}^{1}, \bar{t}_{1,1}^{1}\right) \\
& \times g\left(\left\{\vec{t}_{3,1}^{2} \cup \vec{t}_{2,2}^{2} \cup \vec{t}_{2,1}^{2}\right\}, \vec{t}_{3,2}^{2}\right) g\left(\left\{\vec{t}_{2,2}^{2} \cup \vec{t}_{2,1}^{2}\right\}, \vec{t}_{3,1}^{2}\right) g\left(\vec{t}_{2,1}^{2}, \vec{t}_{2,2}^{2}\right) \\
& \times f_{1}\left(\left\{\vec{t}_{3,3}^{3} \cup \vec{t}_{3,2}^{3}\right\}, \vec{t}_{3,1}^{3}\right) f_{1}\left(\vec{t}_{3,2}^{3}, \vec{t}_{3,3}^{3}\right) \\
& \times K_{0}\left(\vec{t}_{2,1}^{2} \mid \bar{t}_{2,1}^{1}\right) K_{0}\left(\vec{t}_{3,1}^{2} \mid \bar{t}_{3,1}^{1}\right) \widehat{C}\left(\vec{t}_{3,1}^{3} \mid \vec{t}_{3,1}^{2}\right) \widehat{C}\left(\vec{t}_{3,2}^{3} \mid \vec{t}_{3,2}^{2}\right) \\
& \times \mathbb{T}_{1,4}\left(\vec{t}_{3,1}^{3}\right) \mathbb{T}_{2,4}\left(\vec{t}_{3,2}^{3}\right) \mathrm{T}_{3,4}\left(\vec{t}_{3,3}^{3}\right) \mathbb{T}_{1,3}\left(\vec{t}_{2,1}^{2}\right) \mathbb{T}_{2,3}\left(\vec{t}_{2,2}^{2}\right) \mathrm{T}_{1,2}\left(\vec{t}_{1,1}^{1}\right) \\
& \times \mathrm{T}_{2,2}\left(\bar{t}_{3,1}^{1}\right) \mathrm{T}_{2,2}\left(\bar{t}_{2,1}^{1}\right) \mathrm{T}_{3,3}\left(\bar{t}_{3,2}^{2}\right) \mathrm{T}_{3,3}\left(\bar{t}_{3,1}^{2}\right) . \tag{5.30}
\end{align*}
$$

Comparing (5.30) and the diagram (5.29), we can formulate the rules for associating with a partition diagram an explicit formula for the Bethe vector in a way similar to that in the previous subsection. We leave this as an exercise for the interested reader.
5.4. Dual Bethe vectors and examples for $\boldsymbol{D Y}(\mathfrak{g l}(2 \mid 1))$. In order to obtain explicit expressions for the dual Bethe vectors $\mathbb{C}(\bar{t})$ and $\widehat{\mathbb{C}}(\bar{t})$ we have to exploit the definition and the properties of the antimorphism (2.10), (2.11). It is clear that for even operators $\Psi\left(\mathrm{T}_{i, j}(\bar{u})\right)=\mathrm{T}_{j, i}(\bar{u})$. Consider an odd monodromy matrix element $\mathrm{T}_{i, j}(u)$ for $i<j$. This means that $[i]=0$ and $[j]=1$, and it follows from the commutation relations (2.9) that for any set \bar{u} with cardinality $\# \bar{u}=a$ the product $\mathbb{T}_{i, j}(\bar{u})$ given by (5.14) is symmetric with respect to permutations of the parameters u_{i}.

For an odd monodromy matrix element $\mathrm{T}_{i, j}(u)$ with $i>j$ and the set \bar{u} we define the product

$$
\mathbb{T}_{i, j}(\bar{u})=\Delta_{h}^{\prime}(\bar{u})^{-1} \mathrm{~T}_{i, j}\left(u_{1}\right) \mathrm{T}_{i, j}\left(u_{2}\right) \cdots \mathrm{T}_{i, j}\left(u_{a-1}\right) \mathrm{T}_{i, j}\left(u_{a}\right)
$$

which is also symmetric with respect to permutations in the set \bar{u} due to the commutation relations (2.9).

Let us apply the antimorphism (2.10) to the product $\mathbb{T}_{i, j}(\bar{u})$ with $i<j$. Using the property (2.11), we get for $i<j$ that

$$
\begin{aligned}
& \Psi\left(\mathbb{T}_{i, j}(\bar{u})\right)=\Delta_{h}(\bar{u}) \Psi\left(\mathrm{T}_{i, j}\left(u_{1}\right) \mathrm{T}_{i, j}\left(u_{2}\right) \cdots \mathrm{T}_{i, j}\left(u_{a-1}\right) \mathrm{T}_{i, j}\left(u_{a}\right)\right) \\
& \quad=(-)^{a(a-1) / 2} \Delta_{h}(\bar{u}) \Psi\left(\mathrm{T}_{i, j}\left(u_{a}\right)\right) \Psi\left(\mathrm{T}_{i, j}\left(u_{a-1}\right)\right) \cdots \Psi\left(\mathrm{T}_{i, j}\left(u_{2}\right)\right) \Psi\left(\mathrm{T}_{i, j}\left(u_{1}\right)\right) \\
& \quad=(-)^{a(a-1) / 2} \Delta_{h}^{\prime}(\bar{u}) \Psi\left(\mathrm{T}_{i, j}\left(u_{1}\right)\right) \Psi\left(\mathrm{T}_{i, j}\left(u_{2}\right)\right) \cdots \Psi\left(\mathrm{T}_{i, j}\left(u_{a-1}\right)\right) \Psi\left(\mathrm{T}_{i, j}\left(u_{a}\right)\right) \\
& \quad=(-)^{a(a-1) / 2} \mathbb{T}_{j, i}(\bar{u}) .
\end{aligned}
$$

Similarly, for $i<j$ we can calculate that

$$
\begin{equation*}
\Psi\left(\mathbb{T}_{j, i}(\bar{u})\right)=(-)^{a(a+1) / 2} \mathbb{T}_{i, j}(\bar{u}) \tag{5.31}
\end{equation*}
$$

by taking into account that in this case

$$
\Psi\left(\mathrm{T}_{j, i}(u)\right)=(-)^{[j]([i]+1)} \mathrm{T}_{i, j}(u)=-\mathrm{T}_{i, j}(u)
$$

The relation (5.31) shows that for any i and j such that $[i]+[j]=1$

$$
\Psi\left(\Psi\left(\mathbb{T}_{i, j}(\bar{u})\right)\right)=(-)^{a} \mathbb{T}_{i, j}(\bar{u}),
$$

and the antimorphism Ψ is an idempotent of fourth order.
Thus, we have described the action of Ψ on symmetric products of even and odd operators. Applying this action to the pre-Bethe vectors $\mathrm{B}(\bar{t})$ in (5.17) and $\widehat{\mathrm{B}}(\bar{t})$ in (5.25), we obtain explicit expressions for the dual pre-Bethe vectors $\mathrm{C}(\bar{t})$ and $\widehat{\mathrm{C}}(\bar{t})$, respectively. Up to a common sign factor they are still given by (5.17) and (5.25) with the opposite order of operator products and the replacement $\mathrm{T}_{i, j} \rightarrow \mathrm{~T}_{j, i}$. Let us give explicit formulae for the particular case of the (dual) Bethe vectors $\mathbb{B}(\bar{t})$, $\widehat{\mathbb{B}}(\bar{t}), \mathbb{C}(\bar{t})$, and $\widehat{\mathbb{C}}(\bar{t})$ defined by (5.20) and (5.28) and connected with the Yangian double $D Y(\mathfrak{g l}(2 \mid 1))$. In this case we have two sets of Bethe parameters \bar{t}^{ℓ} with cardinalities $\# \bar{t}^{\ell}=r_{\ell}, \ell=1,2$, which we rename as $\bar{t}^{1} \equiv \bar{u}$ and $\bar{t}^{2} \equiv \bar{v}$ with cardinalities $r_{1}=a$ and $r_{2}=b$. The formulae (3.14), (3.15), (3.22), and (3.23) for these Bethe vectors take the form

$$
\begin{array}{rl}
\mathbb{B}_{a, b}(\bar{u}, \bar{v})=f & f(\bar{v}, \bar{u})^{-1} \sum g\left(\bar{v}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right) f\left(\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{II}}\right) g\left(\bar{v}_{\mathrm{II}}, \bar{v}_{\mathrm{I}}\right) h\left(\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right) \\
& \times \mathbb{T}_{1,3}\left(\bar{u}_{\mathrm{I}}\right) \mathrm{T}_{1,2}\left(\bar{u}_{\mathrm{II}}\right) \mathbb{T}_{2,3}\left(\bar{v}_{\mathrm{II}}\right) \lambda_{2}\left(\bar{v}_{\mathrm{I}}\right)|0\rangle, \\
\widehat{\mathbb{B}}_{a, b}(\bar{u}, \bar{v})=f & f(\bar{v}, \bar{u})^{-1} \sum K_{p}\left(\bar{v}_{\mathrm{I}} \mid \bar{u}_{\mathrm{I}}\right) f\left(\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{II}}\right) g\left(\bar{v}_{\mathrm{II}}, \bar{v}_{\mathrm{I}}\right) \\
& \times \mathbb{T}_{1,3}\left(\bar{v}_{\mathrm{I}}\right) \mathbb{T}_{2,3}\left(\bar{v}_{\mathrm{II}}\right) \mathrm{T}_{1,2}\left(\bar{u}_{\mathrm{II}}\right) \lambda_{2}\left(\bar{u}_{\mathrm{I}}\right)|0\rangle, \\
\mathbb{C}_{a, b}(\bar{u}, \bar{v})=(-)^{b(b-1) / 2} f(\bar{v}, \bar{u})^{-1} \sum g\left(\bar{v}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right) f\left(\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{II}}\right) g\left(\bar{v}_{\mathrm{II}}, \bar{v}_{\mathrm{I}}\right) h\left(\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right) \\
& \times\langle 0| \lambda_{2}\left(\bar{v}_{\mathrm{I}}\right) \mathbb{T}_{3,2}\left(\bar{v}_{\mathrm{II}}\right) \cdot \mathrm{T}_{2,1}\left(\bar{u}_{\mathrm{II}}\right) \cdot \mathbb{T}_{3,1}\left(\bar{u}_{\mathrm{I}}\right), \\
\widehat{\mathbb{C}}_{a, b}(\bar{u}, \bar{v})=(-)^{b(b-1) / 2} f(\bar{v}, \bar{u})^{-1} \sum K_{p}\left(\bar{v}_{\mathrm{I}} \mid \bar{u}_{\mathrm{I}}\right) f\left(\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{II}}\right) g\left(\bar{v}_{\mathrm{II}}, \bar{v}_{\mathrm{I}}\right) \\
& \times\langle 0| \lambda_{2}\left(\bar{u}_{\mathrm{I}}\right) \mathrm{T}_{2,1}\left(\bar{u}_{\mathrm{II}}\right) \mathbb{T}_{3,2}\left(\bar{v}_{\mathrm{II}}\right) \mathbb{T}_{3,1}\left(\bar{v}_{\mathrm{I}}\right), \tag{5.35}
\end{array}
$$

where the sums run over partitions of the sets $\bar{u} \Rightarrow\left\{\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{II}}\right\}$ and $\bar{v} \Rightarrow\left\{\bar{v}_{\mathrm{I}}, \bar{v}_{\mathrm{II}}\right\}$ such that $\# \bar{u}_{\mathrm{I}}=\# \bar{v}_{\mathrm{I}}=p \leqslant \min (a, b)$.

The formulae (5.32)-(5.35) were already used in the series of papers [18]-[20] to calculate the form factors of the monodromy matrix elements in the supersymmetric quantum integrable models associated with the super-Yangian $Y(\mathfrak{g l}(2 \mid 1))$.

Appendix A. Composed currents and Gauss coordinates

In the completed algebras $\bar{U}_{F}, \bar{U}_{E}, \widehat{\bar{U}}_{F}$, and $\widehat{\bar{U}}_{E}$ a product of total currents has some specific analytical properties. This means that if one performs the normal ordering of the current generators in these products, then one can see the
pole structure of this product, which is encoded in the commutation relations of the total currents. This normal ordering procedure demonstrates that the products $F_{i}(u) F_{i+1}(v), E_{i+1}(v) E_{i}(u), \widehat{F}_{i+1}(v) \widehat{F}_{i}(u)$, and $\widehat{E}_{i}(u) \widehat{E}_{i+1}(v)$ have simple poles at $u=v$. We define the composed currents $F_{j, i}(u), E_{i, j}(u), \widehat{F}_{j, i}(u)$, and $\widehat{E}_{i, j}(u)$ for $1 \leqslant i<j \leqslant m+n$ inductively as residues:

$$
\begin{align*}
F_{j, i}(v) & =\operatorname{res}_{u=v} F_{a, i}(v) F_{j, a}(u)=-\underset{u=v}{\operatorname{res}} F_{a, i}(u) F_{j, a}(v) \tag{A.1}\\
E_{i, j}(v) & =\operatorname{res}_{u=v} E_{a, j}(u) E_{i, a}(v)=-\operatorname{res}_{u=v}^{\operatorname{res}} E_{a, j}(v) E_{i, a}(u) \tag{A.2}\\
\widehat{F}_{j, i}(v) & =\operatorname{res}_{u=v} \widehat{F}_{j, a}(u) \widehat{F}_{a, i}(v)=-\underset{u=v}{\operatorname{res}} \widehat{F}_{j, a}(v) \widehat{F}_{a, i}(u) \tag{A.3}\\
\widehat{E}_{i, j}(v) & =\operatorname{res}_{u=v} \widehat{E}_{i, a}(v) \widehat{E}_{a, j}(u)=-\operatorname{res}_{u=v}^{\operatorname{res}} \widehat{E}_{i, a}(u) \widehat{E}_{a, j}(v), \tag{A.4}
\end{align*}
$$

where $i<a<j$ and we have denoted the simple root currents as follows: $F_{i}(u) \equiv$ $F_{i+1, i}(u), E_{i}(u) \equiv E_{i, i+1}(u), \widehat{F}_{i}(u) \equiv \widehat{F}_{i+1, i}(u)$, and $\widehat{E}_{i}(u) \equiv \widehat{E}_{i, i+1}(u)$.

Calculating the residues in (A.1)-(A.4) with the help of the commutation relations (2.26), (2.27), (2.39), and (2.40), respectively, we obtain

$$
\begin{align*}
F_{j, i}(v) & =c_{[i+1]} \cdots c_{[j-1]} F_{j, j-1}(v) F_{j-1, j-2}(v) \cdots F_{i+1, i}(v), \tag{A.5}\\
E_{i, j}(v) & =c_{[i+1]} \cdots c_{[j-1]} E_{i, i+1}(v) E_{i+1, i+2}(v) \cdots E_{j-1, j}(v), \tag{A.6}\\
\widehat{F}_{j, i}(v) & =c_{[i+1]} \cdots c_{[j-1]} \widehat{F}_{i+1, i}(v) \widehat{F}_{i+2, i+1}(v) \cdots \widehat{F}_{j, j-1}(v), \tag{A.7}\\
\widehat{E}_{i, j}(v) & =c_{[i+1]} \cdots c_{[j-1]} \widehat{E}_{j-1, j}(v) \widehat{E}_{j-2, j-1}(v) \cdots \widehat{E}_{i, i+1}(v) . \tag{A.8}
\end{align*}
$$

Let us prove one of these formulae, namely, (A.5). Consider (A.1) for $j=i+2$ and $a=i+1$. Since we know that the product $F_{i+1, i}(v) F_{i+2, i+1}(u)$ has a simple pole at $u=v$, we can calculate the residue in (A.1) as follows:

$$
\begin{aligned}
F_{i+2, i}(v) & =\operatorname{res}_{u=v} F_{i+1, i}(v) F_{i+2, i+1}(u)=\left.(u-v) F_{i+1, i}(v) F_{i+2, i+1}(u)\right|_{u=v} \\
& =\left.\left(u-v+c_{[i+1]}\right) F_{i+2, i+1}(u) F_{i+1, i}(v)\right|_{u=v}=c_{[i+1]} F_{i+2, i+1}(v) F_{i+1, i}(v)
\end{aligned}
$$

Here we have used the commutation relation (2.26) in passing from the first line to the second line. Now we perform the analogous calculation in the case of the current $F_{i+3, i}(v)$, using the simple root current $F_{i+3, i+2}(u)$ and the composed current $F_{i+2, i}(v)$ that we just calculated. By the commutativity of $F_{i+3, i+2}(u)$ and $F_{i+1, i}(v)$ we get that

$$
F_{i+3, i}(v)=c_{[i+1]} c_{[i+2]} F_{i+3, i+2}(v) F_{i+2, i+1}(v) F_{i+1, i}(v)
$$

Iterating the calculation, we get the formula (A.5). The proof of the formulae (A.6)-(A.8) is completely analogous.

The composed currents are important in calculating the universal Bethe vectors using the formulae (3.14) and (3.22). In this section we show that the projections of composed currents discussed in $\S 4$ coincide with the Gauss coordinates of the universal monodromy matrix (2.14)-(2.16) and (2.17)-(2.19) up to some unessential prefactors. To do this we rewrite the defining formulae for the composed currents in integral form.

Both equations in (A.1) can be expressed in terms of contour integrals:

$$
\begin{align*}
F_{j, i}(v) & =-\oint_{C_{0}} d u F_{a, i}(v) F_{j, a}(u)+\oint_{C_{\infty}} d u \frac{u-v+c_{[a]}}{(u-v)_{>}} F_{j, a}(u) F_{a, i}(v) \\
& =-\oint_{C_{\infty}} d u F_{a, i}(u) F_{j, a}(v)+\oint_{C_{0}} d u \frac{u-v-c_{[a]}}{(u-v)_{<}} F_{j, a}(v) F_{a, i}(u), \tag{A.9}
\end{align*}
$$

where C_{0} and C_{∞} are small closed contours around the points 0 and ∞ on the complex u-plane. The rational functions $1 /(u-v)_{\lessgtr}$ are defined by the series in (2.33).

For any formal series $G(u)=\sum_{\ell \in \mathbb{Z}} G^{(\ell)} u^{-\ell-1}$ we define $G^{(\pm)}(u)$ by

$$
\begin{equation*}
G^{(\pm)}(u)= \pm \sum_{\substack{\ell \geqslant 0 \\ \ell<0}} G^{(\ell)} u^{-\ell-1} \tag{A.10}
\end{equation*}
$$

It is obvious that the half-currents $F^{(\pm)}$and $E^{(\pm)}$coincide with the corresponding projections of currents only for the simple root currents $F_{i}(u)$ and $E_{i}(u)$. For the composed currents this is not the case, but nevertheless one can prove that

$$
\begin{align*}
P_{f}^{+}\left(F_{j, i}^{(-)}(u) \cdot \mathscr{F}\right) & =0, & P_{f}^{-}\left(\mathscr{F} \cdot F_{j, i}^{(+)}(u)\right) & =0, \tag{A.11}\\
P_{e}^{+}\left(\mathscr{E} \cdot E_{i, j}^{(-)}(u)\right) & =0, & P_{e}^{-}\left(E_{j, i}^{(+)}(u) \cdot \mathscr{E}\right) & =0
\end{align*}
$$

for any elements $\mathscr{F} \in \bar{U}_{F}$ and $\mathscr{E} \in \bar{U}_{E}$. Similar properties can be formulated for the projections $\widehat{P}_{f}^{ \pm}$and $\widehat{P}_{e}^{ \pm}$.

Using the notation (A.10) and calculating the formal contour integrals in (A.9) as

$$
\begin{equation*}
\oint_{C_{0}} d u G(u)=\oint_{C_{\infty}} d u G(u)=G^{(0)} \tag{A.12}
\end{equation*}
$$

we obtain the following expressions for the composed currents $F_{j, i}(v)$:

$$
\begin{align*}
F_{j, i}(v) & =\left[F_{j, a}^{(0)}, F_{a, i}(v)\right]-c_{[a]} F_{j, a}^{(-)}(v) F_{a, i}(v) \tag{A.13}\\
& =\left[F_{j, a}(v), F_{a, i}^{(0)}\right]+c_{[a]} F_{j, a}(v) F_{a, i}^{(+)}(v)
\end{align*}
$$

For the composed currents $E_{i, j}(v)$ defined by (A.2) we have

$$
\begin{align*}
E_{i, j}(v) & =-\oint_{C_{0}} d u E_{a, j}(u) E_{i, a}(v)+\oint_{C_{\infty}} d u \frac{u-v+c_{[a]}}{(u-v)_{>}} E_{i, a}(v) E_{a, j}(u) \\
& =-\oint_{C_{\infty}} d u E_{a, j}(v) E_{i, a}(u)+\oint_{C_{0}} d u \frac{u-v-c_{[a]}}{(u-v)_{<}} E_{i, a}(u) E_{a, j}(v), \tag{A.14}
\end{align*}
$$

or by using (A.12) we get for these composed currents that

$$
\begin{align*}
E_{i, j}(v) & =\left[E_{i, a}(v), E_{a, j}^{(0)}\right]-c_{[a]} E_{i, a}(v) E_{a, j}^{(-)}(v) \\
& =\left[E_{i, a}^{(0)}, E_{a, j}(v)\right]+c_{[a]} E_{i, a}^{(+)}(v) E_{a, j}(v) . \tag{A.15}
\end{align*}
$$

Similarly, for the currents $\widehat{F}_{j, i}(v)$ defined by (A.3) we have

$$
\begin{align*}
\widehat{F}_{j, i}(v) & =\oint_{C_{\infty}} d u \widehat{F}_{j, a}(u) \widehat{F}_{a, i}(v)-\oint_{C_{0}} d u \frac{u-v+c_{[a]}}{(u-v)_{<}} \widehat{F}_{a, i}(v) \widehat{F}_{j, a}(u) \\
& =\oint_{C_{0}} d u \widehat{F}_{j, a}(v) \widehat{F}_{a, i}(u)-\oint_{C_{\infty}} d u \frac{u-v-c_{[a]}}{(u-v)_{>}} \widehat{F}_{a, i}(u) \widehat{F}_{j, a}(v) \tag{A.16}
\end{align*}
$$

or after calculating these formal contour integrals we get that

$$
\begin{align*}
\widehat{F}_{j, i}(v) & =\left[\widehat{F}_{j, a}^{(0)}, \widehat{F}_{a, i}(v)\right]+c_{[a]} \widehat{F}_{a, i}(v) \widehat{F}_{j, a}^{(+)}(v) \\
& =\left[\widehat{F}_{j, a}(v), \widehat{F}_{a, i}^{(0)}\right]-c_{[a]} \widehat{F}_{a, i}^{(-)}(v) \widehat{F}_{j, a}(v) . \tag{A.17}
\end{align*}
$$

Finally, for the composed currents $\widehat{E}_{j, i}(v)$ defined by (A.4) we can calculate

$$
\begin{align*}
\widehat{E}_{i, j}(v) & =\oint_{C_{\infty}} d u \widehat{E}_{i, a}(v) E_{a, j}(u)-\oint_{C_{0}} d u \frac{u-v+c_{[a]}}{(u-v)_{<}} \widehat{E}_{a, j}(u) \widehat{E}_{i, a}(v) \\
& =\oint_{C_{0}} d u \widehat{E}_{i, a}(u) \widehat{E}_{a, j}(v)-\oint_{C_{\infty}} d u \frac{u-v-c_{[a]}}{(u-v)_{>}} \widehat{E}_{a, j}(v) \widehat{E}_{i, a}(u) \tag{A.18}
\end{align*}
$$

or, equivalently,

$$
\begin{align*}
\widehat{E}_{i, j}(v) & =\left[\widehat{E}_{i, a}(v), \widehat{E}_{a, j}^{(0)}\right]+c_{[a]} \widehat{E}_{a, j}^{(+)}(v) \widehat{E}_{i, a}(v) \\
& =\left[\widehat{E}_{i, a}^{(0)}, \widehat{E}_{a, j}(v)\right]-c_{[a]} \widehat{E}_{a, j}(v) \widehat{E}_{i, a}^{(-)}(v) . \tag{A.19}
\end{align*}
$$

Projections of composed currents. The formulae (A.13), (A.15), (A.17), and (A.19) are very useful for calculating the projections of composed currents. Indeed, let us take $a=j-1$ in the first line of (A.13) and apply the 'positive' projection P_{f}^{+} defined by (3.9) to both sides of this equality. Similarly, we can consider the second line in (A.13) for $a=i+1$ and apply the 'negative' projection P_{f}^{-}to this equality. Using the properties of the projections (A.11), we have

$$
\begin{align*}
& P_{f}^{+}\left(F_{j, i}(v)\right)=\left[F_{j, j-1}^{(0)}, P_{f}^{+}\left(F_{j-1, i}(v)\right)\right], \tag{A.20}\\
& P_{f}^{-}\left(F_{j, i}(v)\right)=\left[P_{f}^{-}\left(F_{j, i+1}(v)\right), F_{i+1, i}^{(0)}\right],
\end{align*}
$$

where we have used the commutativity of the projections with the adjoint action of the zero modes of the simple root currents, which will be proved in Appendix B. Then the equations (A.20) can easily be iterated to obtain

$$
\begin{align*}
& P_{f}^{+}\left(F_{j, i}(v)\right)=\mathscr{S}_{F_{j-1}^{(0)}} \mathscr{S}_{F_{j-2}^{(0)}} \cdots \mathscr{S}_{F_{i+1}^{(0)}}\left(\mathrm{F}_{i+1, i}^{+}(v)\right), \tag{A.21}\\
& P_{f}^{-}\left(F_{j, i}(v)\right)=(-)^{j-i} \mathscr{S}_{F_{i}^{(0)}} \mathscr{S}_{F_{i+1}^{(0)}} \cdots \mathscr{S}_{F_{j-2}^{(0)}}\left(\mathrm{F}_{j, j-1}^{-}(v)\right),
\end{align*}
$$

where we have used the relation between the projections of the simple root currents and the Gauss coordinates: $P_{f}^{ \pm}\left(F_{i+1, i}(v)\right)= \pm \mathrm{F}_{i+1, i}^{ \pm}(v)$.

In a quite similar way we can get from (A.15), (A.17), and (A.19) that

$$
\begin{align*}
& P_{e}^{+}\left(E_{i, j}(v)\right)=(-)^{j-i-1} \mathscr{S}_{E_{j-1}^{(0)}} \mathscr{S}_{E_{j-2}^{(0)}} \cdots \mathscr{S}_{E_{i+1}^{(0)}}\left(\mathrm{E}_{i, i+1}^{+}(v)\right) \\
& P_{e}^{-}\left(E_{i, j}(v)\right)=-\mathscr{S}_{E_{i}^{(0)}} \mathscr{S}_{E_{i+1}^{(0)}} \cdots \mathscr{S}_{E_{j-2}^{(0)}}\left(\mathrm{E}_{j-1, j}^{-}(v)\right), \tag{A.22}
\end{align*}
$$

$$
\begin{align*}
& \widehat{P}_{f}^{-}\left(\widehat{F}_{j, i}(v)\right)=-\mathscr{S}_{\widehat{F}_{j-1}^{(0)}} \mathscr{S}_{\widehat{F}_{j-2}^{(0)}} \cdots \mathscr{S}_{\widehat{F}_{i+1}^{(0)}}\left(\widehat{\mathrm{F}}_{i+1, i}^{-}(v)\right), \\
& \widehat{P}_{f}^{+}\left(\widehat{F}_{j, i}(v)\right)=(-)^{j-i-1} \mathscr{S}_{\widehat{F}_{i}^{(0)}} \mathscr{S}_{\widehat{F}_{i+1}^{(0)}} \cdots \mathscr{S}_{\widehat{F}_{j-2}^{(0)}}\left(\widehat{\mathrm{F}}_{j, j-1}^{+}(v)\right), \tag{A.23}\\
& \widehat{P}_{e}^{-}\left(\widehat{E}_{i, j}(v)\right)=(-)^{j-i} \mathscr{S}_{\widehat{E}_{j-1}^{(0)}} \mathscr{S}_{\widehat{E}_{j-2}^{(0)}} \cdots \mathscr{S}_{\widehat{E}_{i+1}^{(0)}}\left(\widehat{\mathrm{E}}_{i, i+1}^{-}(v)\right), \tag{A.24}\\
& \widehat{P}_{e}^{+}\left(\widehat{E}_{i, j}(v)\right)=\mathscr{S}_{\widehat{E}_{i}^{(0)}} \mathscr{S}_{\widehat{E}_{i+1}^{(0)}} \cdots \mathscr{S}_{\widehat{E}_{j-2}^{(0)}}\left(\widehat{\mathrm{E}}_{j-1, j}^{+}(v)\right) .
\end{align*}
$$

In the rest of this section we are going to show that the 'positive' projections of composed currents given by the first lines in (A.21) and (A.22) and the second lines in (A.23) and (A.24) coincide with the Gauss coordinates of the universal monodromy operator $\mathrm{T}_{i, j}^{+}(v)$. To do this we consider the relation (2.8) for $i \rightarrow i$, $j \rightarrow j-1, k \rightarrow j-1, l \rightarrow j$, and $i<j-1$:

$$
\begin{equation*}
\left[\mathrm{T}_{i, j-1}^{ \pm}(u), \mathrm{T}_{j-1, j}^{+}(v)\right]=\frac{c_{[j-1]}}{u-v}\left(\mathrm{~T}_{i, j}^{ \pm}(u) \mathrm{T}_{j-1, j-1}^{+}(v)-\mathrm{T}_{i, j}^{+}(v) \mathrm{T}_{j-1, j-1}^{ \pm}(u)\right) \tag{A.25}
\end{equation*}
$$

To obtain (A.25) from (2.7), we take into account that

$$
(-)^{([i]+[j-1])([j-1]+[j])}=1
$$

for any i and j satisfying $i<j-1$, and the sign factor $(-)^{[j]([i]+[j-1])+[i][j-1]}$ is equal to $(-)^{[j-1]}$.

One can easily see from the Gauss decomposition and the mode expansions of the Gauss coordinates (2.3) that the zero modes of the monodromy matrix elements coincide with the zero modes of the corresponding currents:

$$
\begin{align*}
& \operatorname{res}_{v \rightarrow \infty} v \mathrm{~T}_{i, i+1}^{+}(v)=\left(\mathrm{T}_{i, i+1}^{+}\right)^{(0)}=\left(\mathrm{F}_{i+1, i}^{+}\right)^{(0)}=\left(\widehat{\mathrm{F}}_{i+1, i}^{+}\right)^{(0)}=F_{i}^{(0)}=\widehat{F}_{i}^{(0)}, \tag{A.26}\\
& \operatorname{res}_{v \rightarrow \infty} v \mathrm{~T}_{i+1, i}^{+}(v)=\left(\mathrm{T}_{i+1, i}^{+}\right)^{(0)}=\left(\mathrm{E}_{i, i+1}^{+}\right)^{(0)}=\left(\widehat{\mathrm{E}}_{i, i+1}^{+}\right)^{(0)}=E_{i}^{(0)}=\widehat{E}_{i}^{(0)} .
\end{align*}
$$

We multiply (A.25) by v and let $v \rightarrow \infty$. By (A.26), this relation becomes

$$
\begin{equation*}
c_{[j-1]} \mathrm{T}_{i, j}^{ \pm}(u)=\mathscr{S}_{F_{j-1}^{(0)}}\left(\mathrm{T}_{i, j-1}^{ \pm}(u)\right) \tag{А.27}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
c_{[j-1]}\left(\mathrm{F}_{j, i}^{ \pm}(u) k_{i}^{ \pm}(u)+\cdots\right)=\mathscr{S}_{F_{j-1}^{(0)}}\left(\mathrm{F}_{j-1, i}^{ \pm}(u) k_{i}^{ \pm}(u)+\cdots\right), \tag{A.28}
\end{equation*}
$$

where the dots denote the terms given by the Gauss decomposition (2.14). One can use weight arguments to prove that the contribution of these terms vanishes, and by the commutativity of the Cartan current $k_{i}^{ \pm}(u)$ with the zero mode $F_{j-1}^{(0)}$ for $i<j-1$, we get from (A.28) that

$$
c_{[j-1]} \mathrm{F}_{j, i}^{ \pm}(u)=\mathscr{S}_{F_{j-1}^{(0)}}\left(\mathrm{F}_{j-1, i}^{ \pm}(u)\right) .
$$

Iterating this relation for 'positive' Gauss coordinates, we obtain

$$
\begin{equation*}
c_{[i, j]} \mathrm{F}_{j, i}^{+}(u)=\mathscr{S}_{F_{j-1}^{(0)}} \cdots \mathscr{S}_{F_{i+1}^{(0)}}\left(\mathrm{F}_{i+1, i}^{+}(u)\right)=P_{f}^{+}\left(F_{j, i}(u)\right) \tag{A.29}
\end{equation*}
$$

in accordance with the first line in (A.21), where we use the notation

$$
\begin{equation*}
c_{[i, j]}=c_{[i+1]} c_{[i+2]} \cdots c_{[j-2]} c_{[j-1]} \tag{A.30}
\end{equation*}
$$

In particular, we set $c_{[i, i+1]}=1$.
The formula (A.29) describes the connection between the 'positive' projection of composed currents and the 'positive' Gauss coordinates. The connection between the 'negative' projection of composed currents and the 'negative' Gauss coordinates is more complicated. To find it we apply the 'negative' projection to the first equality in (A.13) for $a=j-1$ to obtain

$$
\begin{equation*}
P_{f}^{-}\left(F_{j, i}(u)\right)=\left(\mathscr{S}_{F_{j-1}^{(0)}}-c_{[j-1]} \mathrm{F}_{j, j-1}^{-}(u)\right) P_{f}^{-}\left(F_{j-1, i}(u)\right) \tag{A.31}
\end{equation*}
$$

where we have used the equality $F_{j, j-1}^{(-)}(u)=\mathrm{F}_{j, j-1}^{-}(u)$ between 'negative' halfcurrents and 'negative' Gauss coordinates. Iterating (A.31), we obtain for the 'negative' projection an expression which uses only the zero-mode screening operators and the 'negative' Gauss coordinates:

$$
\begin{aligned}
P_{f}^{-}\left(F_{j, i}(u)\right)=- & \left(\mathscr{S}_{F_{j-1}^{(0)}}-c_{[j-1]} \mathrm{F}_{j, j-1}^{-}(u)\right)\left(\mathscr{S}_{F_{j-2}^{(0)}}-c_{[j-2]} \mathrm{F}_{j-1, j-2}^{-}(u)\right) \times \cdots \\
& \times\left(\mathscr{S}_{F_{i+1}^{(0)}}-c_{[i+1]} \mathrm{F}_{i+2, i+1}^{-}(u)\right) \mathrm{F}_{i+1, i}^{-}(u),
\end{aligned}
$$

where in the last step we have used the relation

$$
P_{f}^{-}\left(F_{i+1, i}(u)\right)=-\mathrm{F}_{i+1, i}^{-}(u)
$$

Multiplying out the parentheses in the equality above, we finally get that

$$
\begin{equation*}
P_{f}^{-}\left(F_{j, i}(u)\right)=-c_{[i, j]}\left(\mathrm{F}_{j, i}^{-}(u)+\sum_{\ell=1}^{j-i-1}(-)^{\ell} \sum_{j>i_{\ell}>\cdots>i_{1}>i} \mathrm{~F}_{j, i_{\ell}}^{-}(u) \cdots \mathrm{F}_{i_{2}, i_{1}}^{-}(u) \mathrm{F}_{i_{1}, i}^{-}(u)\right) \tag{A.32}
\end{equation*}
$$

This expression is very useful for calculating the action of the monodromy matrix elements on Bethe vectors.

On the other hand, we can establish a connection between the projection of the composed current given by the second line in (A.23), and the Gauss coordinate defined by the relation (2.17). To do this we consider (2.7) for $i \rightarrow i, j=k \rightarrow i+1$, $l \rightarrow j$, and $i<j-1$, which reduces to

$$
\begin{equation*}
\left[\mathrm{T}_{i, i+1}^{+}(u), \mathrm{T}_{i+1, j}^{+}(v)\right]=\frac{c_{[i+1]}}{u-v}\left(\mathrm{~T}_{i+1, i+1}^{+}(v) \mathrm{T}_{i, j}^{+}(u)-\mathrm{T}_{i+1, i+1}^{+}(u) \mathrm{T}_{i, j}^{+}(v)\right) \tag{A.33}
\end{equation*}
$$

As before, the factor $(-)^{([i]+[i+1])([i+1]+[j])}$ is equal to 1 for any i and j satisfying $i<j-1$, and the sign factor $(-)^{[i]([i+1]+[j])+[i+1][j]}$ is equal to $(-)^{[i+1]}$. Multiplying the equality (A.33) by u and letting $u \rightarrow \infty$, we obtain from (2.17) a relation between the Gauss coordinates:

$$
\begin{equation*}
c_{[i+1]} \widehat{\mathrm{F}}_{j, i}^{+}(v)=-\mathscr{S}_{\widehat{F}_{i}^{(0)}}\left(\widehat{\mathrm{F}}_{j, i+1}^{+}(v)\right) \tag{A.34}
\end{equation*}
$$

Iterating this equality, we find that

$$
\begin{equation*}
c_{[i, j]} \widehat{\mathrm{F}}_{j, i}^{+}(u)=(-)^{j-i-1} \mathscr{S}_{\widehat{F}_{i}^{(0)}} \cdots \mathscr{S}_{\widehat{F}_{j-2}^{(0)}}\left(\widehat{\mathrm{F}}_{j, j-1}^{+}(u)\right)=\widehat{P}_{f}^{+}\left(\widehat{F}_{j, i}(v)\right) \tag{A.35}
\end{equation*}
$$

For the relation between the 'negative' projection of composed currents and the 'negative' Gauss coordinates we have

$$
\begin{equation*}
\widehat{P}_{f}^{-}\left(\widehat{F}_{j, i}(u)\right)=-c_{[i, j]}\left(\widehat{\mathrm{F}}_{j, i}^{-}(u)+\sum_{\ell=1}^{j-i-1}(-)^{\ell} \sum_{j>i_{\ell}>\cdots>i_{1}>i} \widehat{\mathrm{~F}}_{i_{1}, i}^{-}(u) \widehat{\mathrm{F}}_{i_{2}, i_{1}}^{-}(u) \cdots \widehat{\mathrm{F}}_{j, i_{\ell}}^{-}(u)\right) . \tag{A.36}
\end{equation*}
$$

Again starting from (2.8) for $i \rightarrow i+1, j \rightarrow i, k \rightarrow j, l \rightarrow i+1$, and $i<j-1$, we obtain a connection between the Gauss coordinate $\widehat{\mathrm{E}}_{i, j}^{+}(v)$ and the projection of the composed current $\widehat{P}_{e}^{+}\left(\widehat{E}_{i, j}(v)\right)$ by using analogous arguments and the Gauss decomposition (2.19):

$$
c_{[i, j]} \widehat{\mathrm{E}}_{i, j}^{+}(v)=\mathscr{S}_{\widehat{E}_{i}^{(0)}} \cdots \mathscr{S}_{\widehat{E}_{j-2}^{(0)}}\left(\widehat{\mathrm{E}}_{j-1, j}^{+}(v)\right)=\widehat{P}_{e}^{+}\left(\widehat{E}_{i, j}(v)\right) .
$$

Finally, from the relation (2.7) for $i \rightarrow j-1, j \rightarrow i, k \rightarrow j, l \rightarrow j-1, i<j-1$ and (2.16) we get that

$$
\begin{equation*}
c_{[i, j]} \mathrm{E}_{i, j}^{+}(u)=(-)^{j-i-1} \mathscr{S}_{E_{j-1}^{(0)}} \cdots \mathscr{S}_{E_{i+1}^{(0)}}\left(\mathrm{E}_{i, i+1}^{+}(u)\right)=P_{e}^{+}\left(E_{i, j}(v)\right) . \tag{А.37}
\end{equation*}
$$

Summarizing the above considerations, we conclude that the 'positive' projections of composed currents coincide with the corresponding Gauss coordinates of the universal monodromy operator. The formulae for the connection for the 'negative' projections of composed currents are a bit more complicated, and one can also obtain formulae similar to (A.32) and (A.36) for the other two types of composed currents $E_{i, j}(u)$ and $\widehat{E}_{i, j}(u)$.

Appendix B. Commutativity of the projections and the screening operators

The adjoint actions by the zero modes of simple root currents $F_{i}^{(0)}, E_{i}^{(0)}$ and $\widehat{F}_{i}^{(0)}, \widehat{E}_{i}^{(0)}$ play an important role. For any elements $\mathscr{F} \in U_{F}, \mathscr{E} \in U_{E}, \widehat{\mathscr{F}} \in \widehat{U}_{F}$, and $\widehat{\mathscr{E}} \in \widehat{U}_{E}$ we introduce the screening operators

$$
\begin{align*}
& \mathscr{S}_{F_{i}^{(0)}}(\mathscr{F}) \equiv\left[F_{i}^{(0)}, \mathscr{F}\right], \mathscr{S}_{E_{i}^{(0)}}(\mathscr{E}) \equiv\left[E_{i}^{(0)}, \mathscr{E}\right], \\
& \mathscr{S}_{\widehat{F}_{i}^{(0)}}\left(\widehat { \mathscr { F }) } \equiv \left[\widehat{F}_{i}^{(0)}, \widehat{\mathscr{F}],} \quad \mathscr{S}_{\widehat{E}_{i}^{(0)}}(\widehat{\mathscr{E}}) \equiv\left[\widehat{E}_{i}^{(0)}, \widehat{\mathscr{E}}\right] .\right.\right. \tag{B.1}
\end{align*}
$$

One can check that the intersections of standard and current Borel subalgebras are all stable under the corresponding action of the screening operators.

Let us check, for example, that the subalgebras $U_{F}^{ \pm}$defined by (3.6) are invariant under the adjoint action of the screening operators $\mathscr{S}_{F_{i}^{(0)}}$ for $i=1, \ldots, N$. It follows from (3.10) that any element $\mathscr{F} \in U_{F}$ can be represented in the normal ordered form $\mathscr{F}=\sum_{\ell} \mathscr{F}_{\ell}^{(-)} \otimes \mathscr{F}_{\ell}^{(+)}$, where $\mathscr{F}_{\ell}^{(\pm)} \in U_{F}^{ \pm}$by definition. Then

$$
\mathscr{S}_{F_{i}^{(0)}}(\mathscr{F})=\sum_{\ell} \mathscr{S}_{F_{i}^{(0)}}\left(\mathscr{F}_{\ell}^{(-)}\right) \cdot \mathscr{F}_{\ell}^{(+)}+\sum_{\ell} \mathscr{F}_{\ell}^{(-)} \cdot \mathscr{S}_{F_{i}^{(0)}}\left(\mathscr{F}_{\ell}^{(+)}\right),
$$

and by the definition (3.9) of the projection P_{f}^{+}we have

$$
\begin{equation*}
P_{f}^{+}\left(\mathscr{S}_{F_{i}^{(0)}}(\mathscr{F})\right)=\sum_{\ell} \varepsilon\left(\mathscr{S}_{F_{i}^{(0)}}\left(\mathscr{F}_{\ell}^{(-)}\right)\right) \cdot \mathscr{F}_{\ell}^{(+)}+\sum_{\ell} \varepsilon\left(\mathscr{F}_{\ell}^{(-)}\right) \cdot \mathscr{S}_{F_{i}^{(0)}}\left(\mathscr{F}_{\ell}^{(+)}\right) . \tag{B.2}
\end{equation*}
$$

The first sum on the right-hand side of (B.2) vanishes because $\mathscr{S}_{F_{i}^{(0)}}\left(\mathscr{F}_{\ell}^{(-)}\right) \in U_{F}^{-}$ if $\varepsilon\left(\mathscr{F}_{\ell}^{(-)}\right)=0$. It also vanishes if $\varepsilon\left(\mathscr{F}_{\ell}^{(-)}\right)=1$ in view of the definition of the screening operators and the commutation relations

$$
\mathscr{S}_{F_{i}^{(0)}}\left(k_{i}^{-}(u)\right)=c_{[i]} F_{i}^{(-)}(u) k_{i}^{-}(u) \quad \text { and } \quad \mathscr{S}_{F_{i}^{(0)}}\left(k_{i+1}^{-}(u)\right)=-c_{[i+1]} F_{i}^{(-)}(u) k_{i+1}^{-}(u),
$$

which easily follow from (2.22). Since $\varepsilon\left(\mathscr{F}_{\ell}^{(-)}\right) \in \mathbb{C}$, the equality (B.2) can be rewritten in the form

$$
P_{f}^{+}\left(\mathscr{S}_{F_{i}^{(0)}}(\mathscr{F})\right)=\mathscr{S}_{F_{i}^{(0)}}\left(\sum_{\ell} \varepsilon\left(\mathscr{F}_{\ell}^{(-)}\right) \cdot\left(\mathscr{F}_{\ell}^{(+)}\right)\right)=\mathscr{S}_{F_{i}^{(0)}}\left(P_{f}^{+}(\mathscr{F})\right),
$$

which proves the assertion. The commutativity of the projections and the other relevant screening operators can be proved similarly.

Appendix C. Calculation of the projection

Let \bar{v} be a set of variables with cardinality $\# \bar{v}=b$. Consider a product of composed currents (A.5)

$$
\begin{equation*}
F_{j_{1}, i}\left(v_{1}\right) \cdot F_{j_{2}, i}\left(v_{2}\right) \cdots F_{j_{b-1}, i}\left(v_{b-1}\right) \cdot F_{j_{b}, i}\left(v_{b}\right) \tag{C.1}
\end{equation*}
$$

with the following restrictions on the indices of the composed currents:

$$
\begin{equation*}
j_{1} \geqslant j_{2} \geqslant \cdots \geqslant j_{b-1} \geqslant j_{b} \geqslant i+1 \tag{C.2}
\end{equation*}
$$

In previous papers on the method of projections these products were called strings.
For any $\ell, \ell^{\prime}=1, \ldots, N$ with $\ell \leqslant \ell^{\prime}$ denote by $U_{\ell, \ell^{\prime}}$ the subalgebra of \bar{U}_{F} generated by the modes of the currents $F_{\ell}(t), F_{\ell+1}(t), \ldots, F_{\ell^{\prime}}(t)$. Then $U_{\ell, \ell^{\prime}}^{\ell}=$ $U_{\ell, \ell^{\prime}} \cap \operatorname{Ker} \varepsilon$ is the corresponding augmentation ideal.

Proposition C.1. The commutation relations between composed currents imply the equality

$$
\begin{align*}
& F_{i, i-1}\left(u_{1}\right) \cdots F_{i, i-1}\left(u_{a}\right) \cdot P_{f}^{-}\left(F_{j_{1}, i}\left(v_{1}\right) \cdot F_{j_{2}, i}\left(v_{2}\right) \cdots F_{j_{b-1}, i}\left(v_{b-1}\right) \cdot F_{j_{b}, i}\left(v_{b}\right)\right) \\
& =\frac{c_{[i]}^{-b}}{(a-b)!} \overline{\operatorname{Sym}}_{\bar{u}}\left[\prod_{\ell=1}^{b} g_{[i]}\left(v_{\ell}, u_{\ell}\right) \prod_{1 \leqslant \ell<\ell^{\prime} \leqslant b} f_{[i]}\left(u_{\ell}, u_{\ell^{\prime}}\right) \frac{f_{[i]}\left(v_{\ell^{\prime}}, u_{\ell}\right)}{f_{[i]}\left(v_{\ell^{\prime}}, v_{\ell}\right)} \prod_{\ell=1}^{b} \prod_{\ell^{\prime}=b+1}^{a} f\left(u_{\ell}, u_{\ell^{\prime}}\right)\right. \\
& \left.\quad \times F_{j_{1}, i-1}\left(u_{1}\right) \cdot F_{j_{2}, i-1}\left(u_{2}\right) \cdots F_{j_{b}, i-1}\left(u_{b}\right) \cdot F_{i, i-1}\left(u_{b+1}\right) \cdots F_{i, i-1}\left(u_{a}\right)\right] \\
& \quad \bmod P_{f}^{-}\left(U_{i, j_{1}-1}^{\varepsilon}\right) \cdot U_{i-1, j_{1}-1} . \tag{C.3}
\end{align*}
$$

Proof. In what follows, equality of elements \mathscr{A}_{1} and \mathscr{A}_{2} in the subalgebra \bar{U}_{F} modulo elements of the form $P_{f}^{-}\left(U_{i, j-1}^{\varepsilon}\right) \cdot U_{i-1, j-1}$ will be denoted by $\mathscr{A}_{1} \sim_{i, j} \mathscr{A}_{2}$.

Let us prove (C.3) step by step. First of all, we observe that the 'negative' projection of the product of composed currents (C.1) with the restrictions (C.2) can be factorized [13], [14]:

$$
\begin{aligned}
& P_{f}^{-}\left(F_{j_{1}, i}\left(v_{1}\right) \cdot F_{j_{2}, i}\left(v_{2}\right) \cdots F_{j_{b-1}, i}\left(v_{b-1}\right) \cdot F_{j_{b}, i}\left(v_{b}\right)\right) \\
& \quad=P_{f}^{-}\left(F_{j_{1}, i}\left(v_{1} ; v_{2}, \ldots, v_{b}\right)\right) \cdot P_{f}^{-}\left(F_{j_{2}, i}\left(v_{2} ; v_{3}, \ldots, v_{b}\right)\right) \cdots P_{f}^{-}\left(F_{j_{b}, i}\left(v_{b}\right)\right),
\end{aligned}
$$

where $F_{j, i}\left(v_{1} ; v_{2}, \ldots, v_{b}\right)$ is the linear combination

$$
\begin{equation*}
F_{j, i}\left(v_{1} ; v_{2}, \ldots, v_{b}\right)=F_{j, i}\left(v_{1}\right)-\sum_{\ell=2}^{b} h_{[i]}\left(v_{\ell}, v_{1}\right)^{-1} \prod_{\substack{\ell^{\prime}=2 \\ \ell^{\prime} \neq \ell}}^{b} \frac{f_{[i]}\left(v_{\ell^{\prime}}, v_{\ell}\right)}{f_{[i]}\left(v_{\ell^{\prime}}, v_{1}\right)} F_{j, i}\left(v_{\ell}\right) \tag{C.4}
\end{equation*}
$$

of composed currents of the same type. Next, we observe that due to the first relation for the composed currents in (A.13) we have

$$
P_{f}^{-}\left(F_{j, i}(v)\right)+F_{j, i}^{(-)}(v) \sim_{i, j} \mathscr{S}_{F_{j-1}^{(0)}}\left(P_{f}^{-}\left(F_{j-1, i}(v)\right)+F_{j-1, i}^{(-)}(v)\right) .
$$

Iterating this relation, we find that

$$
P_{f}^{-}\left(F_{j, i}(v)\right)+F_{j, i}^{(-)}(v) \sim_{i, j} \mathscr{S}_{F_{j-1}^{(0)}} \cdots \mathscr{S}_{F_{i+1}^{(0)}}\left(P_{f}^{-}\left(F_{i+1, i}(v)\right)+F_{i+1, i}^{(-)}(v)\right)
$$

and since $P_{f}^{-}\left(F_{i+1, i}(v)\right)+F_{i+1, i}^{(-)}(v)=0$, we arrive at the relation

$$
P_{f}^{-}\left(F_{j, i}(v)\right) \sim_{i, j}-F_{j, i}^{(-)}(v)
$$

This means that

$$
\begin{align*}
& P_{f}^{-}\left(F_{j_{1}, i}\left(v_{1}\right) \cdot F_{j_{2}, i}\left(v_{2}\right) \cdots F_{j_{b-1}, i}\left(v_{b-1}\right) \cdot F_{j_{b}, i}\left(v_{b}\right)\right) \\
& \quad \sim_{i, j}(-)^{b} F_{j_{1}, i}^{(-)}\left(v_{1} ; v_{2}, \ldots, v_{b}\right) \cdot F_{j_{2}, i}^{(-)}\left(v_{2} ; v_{3}, \ldots, v_{b}\right) \cdots F_{j_{b}, i}^{(-)}\left(v_{b}\right) . \tag{C.5}
\end{align*}
$$

Hence, by calculating the projection (5.2) one can move the terms of the form $P_{f}^{-}\left(U_{i+1, j-1}^{\varepsilon}\right)$ to the left through the product of currents $F_{1}(u) \cdots F_{i-1}(u)$, where they disappear under the action of the 'positive' projection P_{f}^{+}. This fact allows us to replace the product of currents and the 'negative' projection on the left-hand side of (C.3) by the product

$$
(-)^{b} F_{i, i-1}\left(u_{1}\right) \cdots F_{i, i-1}\left(u_{a}\right) \cdot F_{j_{1}, i}^{(-)}\left(v_{1} ; v_{2}, \ldots, v_{b}\right) \cdot F_{j_{2}, i}^{(-)}\left(v_{2} ; v_{3}, \ldots, v_{b}\right) \cdots F_{j_{b}, i}^{(-)}\left(v_{b}\right) .
$$

The commutation relations between the product of the currents $F_{i, i-1}(u)$ and the 'negative' half-currents $F_{j, i}^{(-)}(v)$ can be calculated with the help of the relation

$$
\begin{gather*}
F_{i, i-1}(u) F_{j, i}^{(-)}(v)=f_{[i]}(v, u)\left(F_{j, i}^{(-)}(v)-h_{[i]}(v, u)^{-1} F_{j, i}^{(-)}(u)\right) F_{i, i-1}(u) \\
+c_{[i]}^{-1} g_{[i]}(u, v) F_{j, i-1}(u) . \tag{C.6}
\end{gather*}
$$

The latter equality is a consequence of the commutation relations

$$
F_{i, i-1}(u) F_{j, i}(v)=f_{[i]}(v, u) F_{j, i}(v) F_{i, i-1}(u)-\delta(u, v) F_{j, i-1}(u)
$$

between simple root currents and composed currents and the definition of the 'negative' half-current

$$
F_{j, i}^{(-)}(v)=-\sum_{p<0} F_{j, i}^{(p)} u^{-p-1}
$$

Using the commutation relations (C.6), we get that

$$
\begin{align*}
& F_{i, i-1}\left(u_{1}\right) \cdots F_{i, i-1}\left(u_{a}\right) \cdot F_{j, i}^{(-)}(v) \\
& \quad=f_{[i]}(v, \bar{u}) \widetilde{F}_{j, i}^{(-)}\left(v ; u_{1}, \ldots, u_{a}\right) \cdot F_{i, i-1}\left(u_{1}\right) \cdots F_{i, i-1}\left(u_{a}\right) \\
& \quad+\sum_{q=1}^{a} c_{[i]}^{-1} g_{[i]}\left(u_{q}, v\right) \prod_{q^{\prime}=q+1}^{a} \frac{\left(u_{q}-u_{q^{\prime}}\right) \epsilon_{i, m+1}+c_{[i]}}{\left(u_{q}-u_{q^{\prime}}\right) \epsilon_{i, m+1}-c_{[i]}} \\
& \quad \times F_{i, i-1}\left(u_{1}\right) \cdots F_{i, i-1}\left(u_{q-1}\right) \cdot F_{i, i-1}\left(u_{q+1}\right) \cdots F_{i, i-1}\left(u_{a}\right) \cdot F_{j, i-1}\left(u_{q}\right), \tag{C.7}
\end{align*}
$$

where

$$
\begin{equation*}
\widetilde{F}_{j, i}^{(-)}\left(v ; u_{1}, \ldots, u_{a}\right)=F_{j, i}^{(-)}(v)-\sum_{\ell=1}^{a} h_{[i]}\left(v, u_{\ell}\right)^{-1} \prod_{\substack{q=1 \\ q \neq \ell}}^{a} \frac{f_{[i]}\left(u_{\ell}, u_{q}\right)}{f_{[i]}\left(v, u_{q}\right)} F_{j, i}^{(-)}\left(u_{\ell}\right) \tag{C.8}
\end{equation*}
$$

The linear combination of 'negative' half-currents (C.8) in the first term on the right-hand side of (C.7) commutes with all the products of currents

$$
F_{i-2}(u), \ldots, F_{1}(u)
$$

Therefore, this term eventually disappears under the action of the 'positive' projection in (5.2). To transform the sum over q on the right-hand side of (C.7), we move the composed current to the right using for $i \neq m+1$ the commutation relation

$$
\begin{equation*}
F_{j, i-1}\left(u_{2}\right) F_{i, i-1}\left(u_{1}\right)=f_{[i]}\left(u_{1}, u_{2}\right)^{-1} F_{i, i-1}\left(u_{1}\right) F_{j, i-1}\left(u_{2}\right) \tag{C.9}
\end{equation*}
$$

and for $i=m+1$ the commutation relation

$$
F_{j, m}\left(u_{2}\right) F_{m+1, m}\left(u_{1}\right)=-f_{[m+1]}\left(u_{2}, u_{1}\right)^{-1} F_{m+1, m}\left(u_{1}\right) F_{j, m}\left(u_{2}\right)
$$

or, what is the same,

$$
\begin{equation*}
F_{j, m}\left(u_{2}\right) F_{m+1, m}\left(u_{1}\right)=-f\left(u_{1}, u_{2}\right)^{-1} F_{m+1, m}\left(u_{1}\right) F_{j, m}\left(u_{2}\right) . \tag{C.10}
\end{equation*}
$$

Here we have used the fact that $[m+1]=1$ and $f_{1}\left(u_{2}, u_{1}\right)=f\left(u_{1}, u_{2}\right)$. The two cases $i \neq m+1$ and $i=m+1$ can be combined into one formula, and by the definition (3.3) of the deformed symmetrization the sum in (C.7) can be written as

$$
\begin{align*}
& F_{i, i-1}\left(u_{1}\right) \cdots F_{i, i-1}\left(u_{a}\right) \cdot F_{j, i}^{(-)}(v) \\
& \quad \sim_{i, j} \frac{c_{[i]}^{-1}}{(a-1)!} \overline{\operatorname{Sym}}_{\bar{u}}\left(g_{[i]}\left(u_{a}, v\right) F_{i, i-1}\left(u_{1}\right) \cdots F_{i, i-1}\left(u_{a-1}\right) \cdot F_{j, i-1}\left(u_{a}\right)\right), \tag{C.11}
\end{align*}
$$

or, equivalently,

$$
\begin{align*}
& F_{i, i-1}\left(u_{1}\right) \cdots F_{i, i-1}\left(u_{a}\right) \cdot F_{j, i}^{(-)}(v) \\
& \quad \sim_{i, j} \frac{c_{[i]}^{-1}}{(a-1)!} \overline{\operatorname{Sym}}_{\bar{u}}\left(g_{[i]}\left(u_{1}, v\right) f_{[i]}\left(u_{1}, \bar{u}_{1}\right) F_{j, i-1}\left(u_{1}\right) \cdot F_{i, i-1}\left(u_{2}\right) \cdots F_{i, i-1}\left(u_{a}\right)\right) . \tag{C.12}
\end{align*}
$$

Here we have to use the commutation relations (C.9) and (C.10) in order to obtain (C.12) from (C.11).

By using the definition of the linear combination of half-currents (C.4) and the summation formula

$$
g_{[i]}\left(u, v_{1}\right) f_{[i]}\left(\bar{v}_{1}, u\right)=g_{[i]}\left(u, v_{1}\right) f_{[i]}\left(\bar{v}_{1}, v_{1}\right)+\sum_{\ell=2}^{b} g_{[i]}\left(u, v_{\ell}\right) g_{[i]}\left(v_{1}, v_{\ell}\right) \prod_{\substack{\ell^{\prime}=2 \\ \ell^{\prime} \neq \ell}}^{b} f_{[i]}\left(v_{\ell^{\prime}}, v_{\ell}\right)
$$

we can now rewrite the equality (C.12) as

$$
\begin{aligned}
& F_{i, i-1}\left(u_{1}\right) \cdots F_{i, i-1}\left(u_{a}\right) \cdot F_{j, i}^{(-)}\left(v_{1}, v_{2}, \ldots, v_{b}\right) \sim_{i, j} \frac{c_{[i]}^{-1}}{(a-1)!} \\
& \quad \times \overline{\operatorname{Sym}}_{\bar{u}}\left(g_{[i]}\left(u_{1}, v_{1}\right) f_{[i]}\left(u_{1}, \bar{u}_{1}\right) \frac{f_{[i]}\left(\bar{v}_{1}, u_{1}\right)}{f_{[i]}\left(\bar{v}_{1}, v_{1}\right)} F_{j, i-1}\left(u_{1}\right) \cdot F_{i, i-1}\left(u_{2}\right) \cdots F_{i, i-1}\left(u_{a}\right)\right) .
\end{aligned}
$$

We can use this result for calculating the commutation of the product of currents $F_{i, i-1}\left(u_{1}\right) \cdots F_{i, i-1}\left(u_{a}\right)$ with the 'negative' projection (C.5) modulo terms which vanish under the action of the 'positive' projection in (5.1). The result gives us the proof of the relation (C.3). Note that the deformed symmetrization $\overline{\operatorname{Sym}}_{\bar{u}}$ over the set \bar{u} becomes the usual antisymmetrization over this set for $i=m+1$.

We stress the meaning of (C.3). Moving the 'negative' projection of the string (C.1) through the product of currents $F_{i, i-1}\left(u_{1}\right) \cdots F_{i, i-1}\left(u_{a}\right)$, we obtain linear combinations of analogous strings

$$
\begin{equation*}
F_{j_{1}, i-1}\left(u_{1}\right) \cdot F_{j_{2}, i-1}\left(u_{2}\right) \cdots F_{j_{a}, i-1}\left(u_{a}\right) \tag{C.13}
\end{equation*}
$$

modulo terms which are irrelevant for calculation of the 'positive' projection in the definition of the Bethe vector (3.14), and with the restrictions

$$
\begin{equation*}
j_{1} \geqslant j_{2} \geqslant \cdots \geqslant j_{a-1} \geqslant j_{a} \geqslant i \tag{C.14}
\end{equation*}
$$

so that the first b indices $j_{\ell}, \ell=1, \ldots, b$, in the string (C.13) coincide with the corresponding indices in the string (C.1), and the remaining indices are equal to i : $j_{b+1}=\cdots=j_{a}=i$.

This linear combination is given by the deformed symmetrization over the set \bar{u}, which can be reduced to a sum over partitions of this set. We describe these partitions.

Let p_{1} be the number of equal indices j_{ℓ} starting from j_{1}. Then let p_{2} be the number of equal indices j_{ℓ} starting from $j_{p_{1}+1}$, and so on. Assume that the whole
set of indices j_{ℓ} is divided into s subsets of identical indices with cardinalities p_{l}, $l=1, \ldots, s$, and all $p_{l}>0$. The integer s counts the number of groups of composed currents of the same type in the string (C.1). It is clear that $1 \leqslant s \leqslant b$, including the cases when all the currents are the same $(s=1)$ or all currents are different $(s=b)$. The restriction on the indices in the product of composed currents (C.1) induces a natural decomposition

$$
\begin{equation*}
\bar{v}=\left\{v_{1}, v_{2}, \ldots, v_{b-1}, v_{b}\right\} \Rightarrow\left\{\bar{v}^{1}, \ldots, \bar{v}^{s}\right\} \tag{C.15}
\end{equation*}
$$

of the set \bar{v} into s disjoint subsets with cardinalities $\# \bar{v}^{q}=p_{q}, q=1, \ldots, s$. Here we had to use a superscript to count these subsets, and this superscript should not be confused with the index which characterizes the type of Bethe parameters.

Assume that $a \geqslant b$. Let us decompose the set \bar{u} into $s+1$ disjoint subsets

$$
\begin{equation*}
\bar{u}=\left\{u_{1}, u_{2}, \ldots, u_{a-1}, u_{a}\right\} \Rightarrow\left\{\bar{u}^{1}, \ldots, \bar{u}^{s}, \bar{u}^{s+1}\right\} \tag{C.16}
\end{equation*}
$$

such that

$$
\# \bar{u}^{q}=p_{q}>0 \quad \text { and } \quad \# \bar{u}^{s+1}=a-b
$$

The last subset \bar{u}^{s+1} can be empty for the terms with $a=b$ in (C.3). According to the definition of the sizes of the subsets $\bar{u}^{q}, q=1, \ldots, s$, we have

$$
j_{1}=\cdots=j_{p_{1}}>j_{p_{1}+1}=\cdots=j_{p_{2}}>\cdots>j_{p_{s-1}+1}=\cdots=j_{p_{s}}>i
$$

Let

$$
j_{p_{\ell-1}+1}=\cdots=j_{p_{\ell}}=j_{\ell}^{\prime}
$$

for $\ell=1, \ldots, s$. Using the definition of the ordered product of composed or simple currents of the same type given by (5.10) and dividing the initial set of variables \bar{v} in (C.15) into the subsets $\bar{v}^{q}, q=1, \ldots, s$, we can transform the string (C.1) as follows:

$$
\begin{align*}
& F_{j_{1}, i}\left(v_{1}\right) \cdot F_{j_{2}, i}\left(v_{2}\right) \cdots F_{j_{b-1}, i}\left(v_{b-1}\right) \cdot F_{j_{b}, i}\left(v_{b}\right) \\
& \quad \rightarrow \mathscr{F}_{j_{1}^{\prime}, i}\left(\bar{v}^{1}\right) \cdot \mathscr{F}_{j_{2}^{\prime}, i}\left(\bar{v}^{2}\right) \cdots \mathscr{F}_{j_{s-1}^{\prime}, i}\left(\bar{v}^{s-1}\right) \cdot \mathscr{F}_{j_{s}^{\prime}, i}\left(\bar{v}^{s}\right) . \tag{C.17}
\end{align*}
$$

Denote the ordered product of currents on the right-hand side of (C.17) by

$$
\mathscr{F}_{\bar{j}^{\prime}, i}(\bar{v})=\mathscr{F}_{j_{1}^{\prime}, i}\left(\bar{v}^{1}\right) \cdot \mathscr{F}_{j_{2}^{\prime}, i}\left(\bar{v}^{2}\right) \cdots \mathscr{F}_{j_{s-1}^{\prime}, i}\left(\bar{v}^{s-1}\right) \cdot \mathscr{F}_{j_{s}^{\prime}, i}\left(\bar{v}^{s}\right),
$$

where $\bar{\jmath}^{\prime}=\left\{j_{1}^{\prime}, \cdots, j_{s}^{\prime}\right\}$ and $j_{1}^{\prime}>j_{2}^{\prime}>\cdots>j_{s}^{\prime}>i$.
Similarly, after dividing the set \bar{u} into the subsets (C.16), we transform the string (C.13) into

$$
\begin{equation*}
\mathscr{F}_{\bar{j}, i-1}(\bar{u})=\mathscr{F}_{j_{1}^{\prime}, i-1}\left(\bar{u}^{1}\right) \cdot \mathscr{F}_{j_{2}^{\prime}, i-1}\left(\bar{u}^{2}\right) \cdots \mathscr{F}_{j_{s}^{\prime}, i-1}\left(\bar{u}^{s}\right) \cdot \mathscr{F}_{i, i-1}\left(\bar{u}^{s+1}\right), \tag{C.18}
\end{equation*}
$$

where $\bar{\jmath}=\left\{j_{1}^{\prime}, \ldots, j_{s}^{\prime}, i\right\}$.
In order to rewrite the sum over permutations of the elements of the set \bar{u} on the right-hand side of (C.3), we multiply both sides of (C.18) by the rational function $\Delta_{f_{[i]}}(\bar{u}) \Delta_{h_{[i]}}(\bar{u})^{-\delta_{i, m+1}}$. Then using the fact that for any formal series $G(\bar{u})$ the
deformed symmetrization (or antisymmetrization in the case when $i=m+1$) can be transformed into the usual symmetrization over \bar{u}, that is, using

$$
\frac{\Delta_{f_{[i]}}(\bar{u})}{\Delta_{h_{[i]}}(\bar{u})^{\delta_{i, m+1}}} \overline{\operatorname{Sym}}_{\bar{u}}(G(\bar{u}))=\operatorname{Sym}_{\bar{u}}\left(\frac{\Delta_{f_{[i]}}(\bar{u})}{\Delta_{h_{[i]}}(\bar{u})^{\delta_{i, m+1}}} G(\bar{u})\right),
$$

we can replace it by the sum over partitions (C.16) and by symmetrizations over the subsets in the partition:

$$
\operatorname{Sym}_{\bar{u}}(\cdot)=\sum_{\bar{u} \Rightarrow\left\{\bar{u}^{1}, \ldots, \bar{u}^{s}, \bar{u}^{s+1}\right\}} \operatorname{Sym}_{\bar{u}^{1}} \operatorname{Sym}_{\bar{u}^{2}} \cdots \operatorname{Sym}_{\bar{u}^{s}} \operatorname{Sym}_{\bar{u}^{s+1}}(\cdot)
$$

Below we use the fact that after multiplication of both sides of (C.3) by the rational function $\Delta_{f_{[i]}}(\bar{u}) \Delta_{h_{[i]}}(\bar{u})^{-\delta_{i, m+1}}$, we can sum over the symmetrizations in all the disjoint subsets $\bar{u}^{q}, q=1, \ldots, s+1$, on the right-hand side of (C.3).

For any composed current $F_{j, i}(u), j>i$, we introduce its parity $\mu_{i, j}$ defined by

$$
\mu_{i, j}=[i]+[j]= \begin{cases}1, & i \leqslant m \leqslant j-1 \\ 0, & i>m \text { or } m>j-1\end{cases}
$$

We refer to composed currents with parity 1 as odd and to those with parity 0 as even. Using the commutation relations for simple root currents, one can check that the commutation relations between even composed currents are the same as for even simple root currents, while odd composed currents anticommute:

$$
\begin{align*}
\left(u-v-c_{[i]}\right) F_{j, i}(u) F_{j, i}(v) & =\left(u-v+c_{[i]}\right) F_{j, i}(v) F_{j, i}(u) & & \text { for } \mu_{i, j}=0, \tag{C.19}\\
F_{j, i}(u) F_{j, i}(v) & =-F_{j, i}(v) F_{j, i}(u) & & \text { for } \mu_{i, j}=1 .
\end{align*}
$$

If $m+1<i \leqslant N$, then it is clear from the restrictions (C.2) and (C.14) that only even currents (simple and composed alike) appear in both sides of (C.3). Otherwise, for $i=m+1$ all the currents (again, simple and composed alike) on the right-hand side of (C.3) are odd. But if $1<i \leqslant m$, then there are both odd and even currents on the right-hand side of (C.3), and according to the structure of the initial string (C.1) all the odd currents are to the left of all the even currents. In this case there are $s^{\prime}\left(1 \leqslant s^{\prime}<s\right)$ factors in the string which are products of the same odd currents. In view of the commutation relations (C.19) for composed currents, the symmetrizations over the subsets \bar{u}^{q} with $q=1, \ldots, s^{\prime}$ and over those with $q=s^{\prime}+1, \ldots, s+1$ will be implemented differently. For $m+1 \leqslant i \leqslant N$ the symmetrizations over all the subsets \bar{u}^{q} for $q=1, \ldots, s+1$ are the same. The number s^{\prime} can be calculated as follows:

$$
\begin{equation*}
s^{\prime}=\sum_{\ell=1}^{s} \mu_{i, j_{\ell}^{\prime}} \tag{C.20}
\end{equation*}
$$

We first consider the case $m+1 \leqslant i \leqslant N$. Multiplying both sides of (C.3) by the function $\gamma_{i-1}(\bar{u})$, we get that

$$
\begin{align*}
& \gamma_{i-1}(\bar{u}) \mathscr{F}_{i, i-1}(\bar{u}) \cdot P_{f}^{-}\left(\mathscr{F}_{\bar{\jmath}^{\prime}, i}(\bar{v})\right) \sim_{i, j_{1}} \frac{c_{[i]}^{-b}}{\Delta_{f_{[i]}}(\bar{v})} \sum_{\bar{u} \Rightarrow\left\{\bar{u}^{1}, \ldots, \bar{u}^{s}, \bar{u}^{s+1}\right\}} \prod_{q<q^{\prime}}^{s+1} f_{[i]}\left(\bar{u}^{q}, \bar{u}^{q^{\prime}}\right) \\
& \quad \times \prod_{q<q^{\prime}}^{s} f_{[i]}\left(\bar{v}^{q^{\prime}}, \bar{u}^{q}\right) \gamma_{i-1}(\bar{u}) \mathscr{F}_{\bar{j}, i-1}(\bar{u}) \\
& \quad \times \prod_{q=1}^{s} \operatorname{Sym}_{\bar{u}^{q}}\left[\Delta_{f_{[i]}^{\prime}}\left(\bar{u}^{q}\right) \prod_{\ell} g_{[i]}\left(v_{\ell}, u_{\ell}\right) \prod_{\ell<\ell^{\prime}} f_{[i]}\left(v_{\ell^{\prime}}, u_{\ell}\right)\right]_{\substack{v_{\ell}, v_{\ell^{\prime}} \in \bar{v}^{q} \\
u_{\ell}, u_{\ell^{\prime}} \in \bar{u}^{q}}}, \tag{C.21}
\end{align*}
$$

where we have used the fact that the product of the function $\gamma_{i-1}(\bar{u})$ and the string (C.18) is symmetric with respect to permutations within each subset \bar{u}^{q}. In particular, this symmetry allows us to get rid of symmetrization over the subset \bar{u}^{s+1} and cancel the combinatorial factor $((a-b)!)^{-1}$ in (C.3). Note that if $i=$ $m+1$, then all the currents in the product $\mathscr{F}_{\bar{\jmath}, m}(\bar{u})$ become odd, and the symmetry with respect to permutations of the variables in each subset \bar{u}^{q} is ensured by the function $\gamma_{m}(\bar{u})=\Delta_{g_{[m]}}(\bar{u})$.

The remaining symmetrization over each subset $\bar{u}^{q}, q=1, \ldots, s$, is the well-known Izergin determinant [29] defined for two sets \bar{y} and \bar{x} with the same cardinality $\# \bar{y}=\# \bar{x}=p$ as follows:

$$
\begin{align*}
K_{[i]}(\bar{y} \mid \bar{x}) & =\operatorname{Sym}_{\bar{x}}\left[\Delta_{f_{[i]}}^{\prime}(\bar{x}) \prod_{\ell=1}^{p} g_{[i]}\left(y_{\ell}, x_{\ell}\right) \prod_{\ell<\ell^{\prime}}^{p} f_{[i]}\left(y_{\ell^{\prime}}, x_{\ell}\right)\right] \\
& =\Delta_{g_{[i]}}(\bar{y}) \Delta_{g_{[i]}}^{\prime}(\bar{x}) h_{[i]}(\bar{y}, \bar{x}) \operatorname{det}\left[\frac{g_{[i]}\left(y_{\ell}, x_{\ell^{\prime}}\right)}{h_{[i]}\left(y_{\ell}, x_{\ell^{\prime}}\right)}\right]_{\ell, \ell^{\prime}=1, \ldots, p} \tag{C.22}
\end{align*}
$$

Thus, we conclude that if the index i belongs to the interval $m+1 \leqslant i \leqslant N$, then (C.3) can be rewritten as a sum over partitions of \bar{u} which is determined by the string $\mathscr{F}_{\bar{j}, i}(\bar{v})$:

$$
\begin{align*}
& \gamma_{i-1}(\bar{u}) \mathscr{F}_{i, i-1}(\bar{u}) \cdot P_{f}^{-}\left(\mathscr{F}_{\bar{\jmath}^{\prime}, i}(\bar{v})\right) \\
& \sim_{i, j_{1}} \frac{c_{[i]}^{-b}}{\Delta_{f_{[i]}(\bar{v})}} \sum_{\bar{u} \Rightarrow\left\{\bar{u}^{1}, \ldots, \bar{u}^{s}, \bar{u}^{s+1}\right\}} \prod_{q<q^{\prime}}^{s+1} f_{[i]}\left(\bar{u}^{q}, \bar{u}^{q^{\prime}}\right) \prod_{q<q^{\prime}}^{s} f_{[i]}\left(\bar{v}^{q^{\prime}}, \bar{u}^{q}\right) \\
& \quad \times \prod_{q=1}^{s} K_{[i]}\left(\bar{v}^{q} \mid \bar{u}^{q}\right) \gamma_{i-1}(\bar{u}) \mathscr{F}_{\bar{\jmath}, i-1}(\bar{u}) \tag{C.23}
\end{align*}
$$

Consider now the case when $1<i \leqslant m$. As mentioned above, in this case the product of currents $\mathscr{F}_{\bar{j}, i-1}(\bar{u})$ contains both odd and even composed currents. Therefore, to perform symmetrization over the subsets \bar{u}^{q} we have to use different approaches for odd and even currents.

Let $s^{\prime}, 1 \leqslant s^{\prime} \leqslant s$, be the number of products of the same odd currents on the right-hand side of (C.3), which is given by (C.20). Then the symmetrization over the subsets \bar{u}^{q} for $s^{\prime}<q \leqslant s+1$ in (C.21) is exactly the same as described above.

It leads to the appearance of Izergin determinants depending on the corresponding sets of variables. Since variables in the subsets \bar{u}^{q} for $1 \leqslant q \leqslant s^{\prime}$ become arguments of odd anticommuting currents, the relation (C.3) takes the following form after multiplication by the function in (3.1):

$$
\begin{align*}
& \gamma_{i-1}(\bar{u}) \mathscr{F}_{i, i-1}(\bar{u}) \cdot P_{f}^{-}\left(\mathscr{F}_{\bar{j}^{\prime}, i}(\bar{v})\right) \\
& \sim_{i, j_{1}} \frac{c_{[i]}^{-b}}{\Delta_{f_{[i]}}(\bar{v})} \sum_{\bar{u} \Rightarrow\left\{\bar{u}^{1}, \ldots, \bar{u}^{s}, \bar{u}^{s+1}\right\}} \prod_{q<q^{\prime}}^{s+1} f_{[i]}\left(\bar{u}^{q}, \bar{u}^{q^{\prime}}\right) \prod_{q<q^{\prime}}^{s} f_{[i]}\left(\bar{v}^{q^{\prime}}, \bar{u}^{q}\right) \prod_{q=s^{\prime}+1}^{s} K_{[i]}\left(\bar{v}^{q} \mid \bar{u}^{q}\right) \\
& \quad \times \prod_{q=1}^{s^{\prime}} \operatorname{Sym}_{\bar{u}^{q}}\left[\Delta_{g_{[i]}}^{\prime}\left(\bar{u}^{q}\right) \prod_{\ell} g_{[i]}\left(v_{\ell}, u_{\ell}\right) \prod_{\ell<\ell^{\prime}} f_{[i]}\left(v_{\ell^{\prime}}, u_{\ell}\right)\right]_{\substack{v_{\ell}, v_{\ell^{\prime}} \in \bar{v}^{q} \\
u_{\ell}, u_{\ell^{\prime}} \in \bar{u}^{q}}} \\
& \quad \times \gamma_{i-1}(\bar{u}) \prod_{q=1}^{s^{\prime}} \Delta_{h_{[i]}}^{\prime}\left(\bar{u}^{q}\right) \mathscr{F}_{\bar{J}, i-1}(\bar{u}), \tag{C.24}
\end{align*}
$$

where we have used the factorization $\Delta_{f_{[i]}}^{\prime}\left(\bar{u}^{q}\right)=\Delta_{g_{[i]}}^{\prime}\left(\bar{u}^{q}\right) \Delta_{h_{[i]}}^{\prime}\left(\bar{u}^{q}\right)$.
The fact that the products of odd currents on the right-hand side of (C.24) can be taken out from under the sign for symmetrization over the subsets $\bar{u}^{q}, q=1, \ldots, s^{\prime}$, follows from the observation that for $1<i \leqslant m$ the function $\gamma_{i-1}(\bar{u})=\Delta_{f_{[i-1]}}(\bar{u})$ contains the factors $\Delta_{h_{[i-1]}}\left(\bar{u}^{q}\right)$ and $\Delta_{g_{[i-1]}}\left(\bar{u}^{q}\right)$. The first factor together with the function $\Delta_{h_{[i]}}^{\prime}\left(\bar{u}^{q}\right)$ gives a function that is symmetric with respect to the variables in the subset \bar{u}^{q} :

$$
\Delta_{h_{[i-1]}}\left(\bar{u}^{q}\right) \Delta_{h_{[i]}}^{\prime}\left(\bar{u}^{q}\right)=\Delta_{h_{[i]}}\left(\bar{u}^{q}\right) \Delta_{h_{[i]}}^{\prime}\left(\bar{u}^{q}\right)=h_{[i]}\left(\bar{u}^{q}, \bar{u}^{q}\right) \quad \text { for } \quad 1<i \leqslant m
$$

while the second factor $\Delta_{g_{[i-1]}}\left(\bar{u}^{q}\right)$ makes symmetric the product of the odd currents depending on the variables in \bar{u}^{q}.

We denote the normalized symmetrization in the third line of (C.24) by $\mathscr{C}_{[i]}(\bar{v} \mid \bar{u})$:

$$
\mathscr{C}_{[i]}(\bar{v} \mid \bar{u})=\Delta_{h_{[i]}}^{\prime}(\bar{u}) \operatorname{Sym}_{\bar{u}}\left[\Delta_{g_{[i]}^{\prime}}^{\prime}\left(\bar{u}^{q}\right) \prod_{\ell} g_{[i]}\left(v_{\ell}, u_{\ell}\right) \prod_{\ell<\ell^{\prime}} f_{[i]}\left(v_{\ell^{\prime}}, u_{\ell}\right)\right]_{\substack{v_{\ell}, v_{\ell^{\prime}} \in \bar{v} \\ u_{\ell}, u_{\ell^{\prime}} \in \bar{u}}}
$$

This function is proportional to the Cauchy determinant, as follows from the chain of equalities

$$
\begin{aligned}
\mathscr{C}_{[i]}(\bar{v} \mid \bar{u}) & =\Delta_{h_{[i]}}^{\prime}(\bar{u}) \Delta_{h_{[g]}}^{\prime}(\bar{u}) \operatorname{ASym}_{\bar{u}}\left[\prod_{\ell} g_{[i]}\left(v_{\ell}, u_{\ell}\right) \prod_{\ell<\ell^{\prime}} f_{[i]}\left(v_{\ell^{\prime}}, u_{\ell}\right)\right]_{v_{\ell}, v_{\ell^{\prime}} \in \bar{v} ; u_{\ell} \in \bar{u}} \\
& =\Delta_{f_{[i]}}^{\prime}(\bar{u}) \Delta_{f_{[i]}}(\bar{v}) \operatorname{ASym}_{\bar{u}}\left[\prod_{\ell} g_{[i]}\left(v_{\ell}, u_{\ell}\right)\right]_{v_{\ell} \in \bar{v} ; u_{\ell} \in \bar{u}} \\
& =\frac{\Delta_{f_{[i]}^{\prime}}^{\prime}(\bar{u}) \Delta_{f_{[i]}}(\bar{v})}{\Delta_{h_{[g]}^{\prime}}^{\prime}(\bar{u}) \Delta_{g_{[i]}}(\bar{v})} g_{[i]}(\bar{v}, \bar{u})=\Delta_{h_{[i]}}^{\prime}(\bar{u}) \Delta_{h_{[i]}}(\bar{v}) g_{[i]}(\bar{v}, \bar{u}),
\end{aligned}
$$

where the symbol $\mathrm{ASym}_{\bar{u}}$ means antisymmetrization with respect to the set \bar{u}.

Thus, for $1<i \leqslant m$ the relation (C.3) can be represented as the following sum over partitions:

$$
\begin{align*}
& \gamma_{i-1}(\bar{u}) \mathscr{F}_{i, i-1}(\bar{u}) \cdot P_{f}^{-}\left(\mathscr{F}_{\bar{J}^{\prime}, i}(\bar{v})\right) \\
& \quad \sim_{i, j_{1}} \frac{c_{[i]}^{-b}}{\Delta_{f_{[i]}}(\bar{v})} \sum_{\bar{u} \Rightarrow\left\{\bar{u}^{1}, \ldots, \bar{u}^{s}, \bar{u}^{s+1}\right\}} \prod_{q<q^{\prime}}^{s+1} f_{[i]}\left(\bar{u}^{q}, \bar{u}^{q^{\prime}}\right) \prod_{q<q^{\prime}}^{s} f_{[i]}\left(\bar{v}^{q^{\prime}}, \bar{u}^{q}\right) \\
& \quad \times \prod_{q=1}^{s^{\prime}} \mathscr{C}_{[i]}\left(\bar{v}^{q} \mid \bar{u}^{q}\right) \prod_{q=s^{\prime}+1}^{s} K_{[i]}\left(\bar{v}^{q} \mid \bar{u}^{q}\right) \gamma_{i-1}(\bar{u}) \mathscr{F}_{\bar{j}, i-1}(\bar{u}) \tag{C.25}
\end{align*}
$$

where s^{\prime} is given by (C.20).
Now we apply (C.23) and (C.25) to the calculation of the projection (5.2) and thereby obtain the recursion relation for the Bethe vectors (3.14).

We should add to (C.23) and (C.25) the rule for ordering the subsets \bar{u}^{q}. As we indicated in the definition of the string (C.18), the subsets with smaller indices occur in more complicated composed currents to the left in (C.18).

Bibliography

[1] Л. А. Тахтаджян, Л. Д. Фаддеев, "Квантовый метод обратной задачи и $X Y Z$ модель Гейзенберга", УМН 34:5(209) (1979), 13-63; English transl., L. A. Takhtadzhan and L. D. Faddeev, "The quantum method of the inverse problem and the Heisenberg XYZ model", Russian Math. Surveys 34:5 (1979), 11-68.
[2] Е. К. Склянин, Л.А. Тахтаджян, Л. Д. Фаддеев, "Квантовый метод обратной задачи. I", ТМФ 40:2 (1980), 194-220; English transl., E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, "Quantum inverse problem method. I", Theoret. and Math. Phys. 40:2 (1979), 688-706.
[3] Н. А. Славнов, "Вычисление скалярных произведений волновых функций и формфакторов в рамках алгебраического анзаца Бете", ТМФ 79:2 (1989), 232-240; English transl., N. A. Slavnov, "Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz", Theoret. and Math. Phys. 79:2 (1989), 502-508.
[4] V.E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge 1993, xx +555 pp.
[5] Н. А. Славнов, "Алгебраический анзац Бете и квантовые интегрируемые системы", УМН 62:4(376) (2007), 91-132; English transl., N. A. Slavnov, "The algebraic Bethe ansatz and quantum integrable systems", Russian Math. Surveys 62:4 (2007), 727-766.
[6] P.P. Kulish and N. Yu. Reshetikhin, "Diagonalisation of GL(N) invariant transfer matrices and quantum N-wave system (Lee model)", J. Phys. A 16 (1983), L591-L596.
[7] П. П. Кулиш, Н. Ю. Решетихин, "Обобщенный ферромагнетик Гейзенберга и модель Гросса-Неве", ЖЭТФ 80:1 (1981), 214-228; English transl., P. P. Kulish and N. Yu. Reshetikhin, "Generalized Heisenberg ferromagnet and the Gross-Neveu model", Soviet Phys. JETP 53:1 (1981), 108-114.
[8] П. П. Кулиш, Н. Ю. Решетихин, "О $G L_{3}$-инвариантных решениях уравнения Янга-Бакстера и ассоциированных квантовых системах", Вопросы квантовой теории поля и статистической физики. З, Зап. науч. сем. ЛОМИ, 120, Изд-во "Наука", Ленинград. отд., Л. 1982, с. 92-121; English transl., P. P. Kulish and N. Yu. Reshetikhin, " $G L_{3}$ invariant solutions of the Yang-Baxter equation and associated quantum systems", J. Soviet Math. 34:5 (1986), 1948-1971.
[9] Н. Ю. Решетихин, "Вычисление нормы бетевских векторов в моделях с $S U(3)$ симметрией", Вопросъ квантовой теории поля и статистической физики. 6 , Зап. науч. сем. ЛОМИ, 150, Изд-во "Наука", Ленинград. отд., Л. 1986, c. 196-213; English transl., N. Yu. Reshetikhin, "Calculation of the norm of Bethe vectors in models with $S U(3)$-symmetry", J. Soviet Math. 46:1 (1989), 1694-1706.
[10] А. Н. Варченко, В. О. Тарасов, "Джексоновские интегральные представления для решений квантового уравнения Книжника-Замолодчикова", Алгебра и анализ 6:2 (1994), 90-137; English transl., A. Varchenko and V. Tarasov, "Jackson integral representations for solutions to the quantized Knizhnik-Zamolodchikov equation", St. Petersburg Math. J. 6:2 (1995), 275-313; 1994 (v1-1993), 50 pp., arXiv: hep-th/9311040.
[11] V. Tarasov and A. Varchenko, "Combinatorial formulae for nested Bethe vectors", SIGMA 9 (2013), 048, 28 pp.; 2013 (v1 - 2007), 28 pp., arXiv: math/0702277.
[12] S. Belliard and E. Ragoucy, "The nested Bethe ansatz for 'all' closed spin chains", J. Phys. A 41:29 (2008), 295202, 33 pp.; 2008, 37 pp., arXiv: 0804.2822.
[13] S. Khoroshkin and S. Pakuliak, "A computation of an universal weight function for quantum affine algebra $U_{q}\left(\widehat{\mathfrak{g l}}_{N}\right) "$, J. Math. Kyoto Univ. 48:2 (2008), 277-321; 2007, 40 pp., arXiv: 0711.2819 .
[14] А. Ф. Оськин, С. З. Пакуляк, А. В. Силантьев, "Об универсальной весовой функции для квантовой аффинной алгебры $U_{q}\left(\widehat{\mathfrak{g l}}_{N}\right) "$, Алгебра и анализ 21:4 (2009), 196-240; English transl., A. Os'kin, S. Pakuliak, and A. Silant'ev, "On the universal weight function for the quantum affine algebra $U_{q}\left(\widehat{\mathfrak{g l}}_{N}\right)$ ", St. Petersburg Math. J. 21:4 (2010), 651-680; 2007, 35 pp., arXiv: 0711.2821.
[15] S. Belliard, S. Pakuliak, E. Ragoucy, and N. A. Slavnov, "Bethe vectors of $G L(3)$-invariant integrable models", J. Stat. Mech. Theory Exp., 2013, no. 2, P02020, 24 pp.; 2013 (v1 - 2012), 22 pp., arXiv: 1210.0768.
[16] S. Belliard, S. Pakuliak, E. Ragoucy, and N. A. Slavnov, "Form factors in SU(3)-invariant integrable models", J. Stat. Mech. Theory Exp., 2013, no. 4, P04033, 16 pp.; 2013 (v1 - 2012), 15 pp., arXiv: 1211.3968.
[17] S. Belliard, S. Pakuliak, E. Ragoucy, and N. A. Slavnov, "Bethe vectors of quantum integrable models with GL(3) trigonometric R-matrix", SIGMA 9 (2013), 058, 23 pp.; 2013, 23 pp., arXiv: 1304.7602.
[18] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, and N. A. Slavnov, "Form factors of the monodromy matrix entries in $\mathfrak{g l}(2 \mid 1)$-invariant integrable models", Nuclear Phys. B 911 (2016), 902-927; 2016, 26 pp., arXiv: 1607.04978.
[19] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, and N. A. Slavnov, "Scalar products of Bethe vectors in models with $\mathfrak{g l}(2 \mid 1)$ symmetry 2 . Determinant representation", J. Phys. A 50:3 (2017), 034004; 2016, 22 pp., arXiv: 1606.03573.
[20] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, and N. A. Slavnov, "Multiple actions of the monodromy matrix in $\mathfrak{g l}(2 \mid 1)$-invariant integrable models", SIGMA 12 (2016), 099, 22 pp.; 2016, 22 pp., arXiv: 1605.06419.
[21] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, and N. A. Slavnov, "Scalar products of Bethe vectors in models with $\mathfrak{g l}(2 \mid 1)$ symmetry 1 . Super-analog of Reshetikhin formula", J. Phys. A 49:45 (2016), 454005, 27 pp.; 2016, 27 pp., arXiv: 1605.09189.
[22] V. Chari and A. Pressley, A guide to quantum groups, Cambridge Univ. Press, Cambridge 1994, xvi+651 pp.
[23] В. Г. Дринфельд, "Новая реализация янгианов и квантовых аффинных алгебр", Докл. АН СССР 296:1 (1987), 13-17; English transl., V. G. Drinfel'd, "A new realization of Yangians and quantized affine algebras", Soviet Math. Dokl. 36:2 (1988), 212-216.
[24] J. Ding and I. B. Frenkel, "Isomorphism of two realizations of quantum affine algebra $U_{q}(\widehat{\mathfrak{g l}}(N))^{\prime}$, Comm. Math. Phys. 156:2 (1993), 277-300.
[25] Y.-Z. Zhang, "Super-Yangian double and its central extension", Phys. Lett. A 234:1 (1997), 20-26; 1997, 8 pp., arXiv: q-alg/9703027.
[26] B. Enriquez, S. Khoroshkin, and S. Pakuliak, "Weight functions and Drinfeld currents", Comm. Math. Phys. 276:3 (2007), 691-725; 2006, 36 pp., arXiv: math/0610398.
[27] L. Frappat, S. Khoroshkin, S. Pakuliak, and E. Ragoucy, "Bethe ansatz for the universal weight function", Ann. Henri Poincaré 10:3 (2009), 513-548; 2009 (v1 - 2008), 31 pp., arXiv: 0810.3135.
[28] S. Khoroshkin and S. Pakuliak, "Generating series for nested Bethe vectors", SIGMA 4 (2008), 081, 23 pp.; 2008, 23 pp., arXiv: 0810.3131.
[29] А. Г. Изергин, "Статистическая сумма шестивершинной модели в конечном объеме", Докл. АН СССР 297:2 (1987), 331-333; English transl., A. G. Izergin, "Partition function of a six-vertex model in a finite volume", Soviet Phys. Dokl. 32:11 (1987), 878-879.
[30] S. Pakuliak, E. Ragoucy, and N. A. Slavnov, Bethe vectors for models based on the super- Yangian $Y(\mathfrak{g l}(m \mid n))$, 2016, 30 pp ., arXiv: 1604.02311 .

Arthur A. Hutsalyuk

Moscow Institute of Physics and Technology
E-mail: hutsalyuk@gmail.com

Andrii Liashyk

Bogoliubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine; National Research University
"Higher School of Economics";
Skolkovo Institute of Science and Technology
E-mail: a.liashyk@gmail.com

Stanislav Z. Pakuliak

Moscow Institute of Physics and Technology; Joint Institute for Nuclear Research;
A. I. Alikhanov Institute for Theoretical
and Experimental Physics
E-mail: stanislav.pakuliak@jinr.ru
Eric Ragoucy
Laboratoire d'Annecy-le-Vieux de Physique
Théorique (LAPTH), Annecy-le-Vieux, France
E-mail: eric.ragoucy@lapth.cnrs.fr
Nikita A. Slavnov
Steklov Mathematical Institute of Russian Academy of Sciences
E-mail: nslavnov@mi.ras.ru

Chapter 3

Scalar products of Bethe vectors in the models with $\mathfrak{g l}(m \mid n)$ symmetry

Introduction:

In this Chapter, using co-product properties of Bethe vectors we proved that the scalar product has bilinear structure with the rational coefficients. All the coefficients can be expressed in terms of the highest one. Using recurrence relations for Bethe vectors it was proven that the highest coefficient satisfies recurrence equations.

Contribution:

I proved that the scalar product has bilinear structure in λ_{i} 's (Section 6.1). Using automorphism Ψ (3.20)-(3.23) I proved recurrence formulas (4.5) and co-product formula (A.4) for dual Bethe vectors. All these results are necessary for calculation of the scalar products.

ELSEVIER

Tdbrhs qspevdut pgCfuif wf dupst jo uifn pefrn x ju $\mathfrak{g l}(m \mid n)$ tzn n fusz

 O/B/ Trbwopw ${ }^{\mathrm{i}, \otimes}$
${ }^{\mathrm{b}}$ Nptdpx Jotyiwuf pgRi fitjdt boe Ufdi opphfi-Eprhpqsveofi-Nptdpx sfh/-Svttjb
${ }^{\text {c }}$ Gbdi cfsfjdi D Ri fitjl-Cfshjtdif Vojufstju ua vqqfslbm531: 9 a vqqfsıbmHfsn bofi
${ }^{\text {d }}$ CphprivicpwJot yivuf gs Uifpsf ydbmRi fitjdt- PBT pgVl sbjof-Ljfw Vl sbjof
${ }^{\text {e }}$ PbujpobmSftfbsdi Vojuf stjufi I jhifs Tdi ppmpgFdpopn jdt-Gbdvnfi pgN biu fn bujdt-Nptdpx-Svttjb
${ }^{\mathrm{f}}$ Dfoufs grs Benbodfe Twejft-Tl prhpup Jot yiwuf pgTdjfodf boe Ufdi opphft-Nptdpx-Svttjb

${ }^{\mathrm{h}}$ Moppsbupjsf ef Rifitjrvf Ui psjrvf MBRUi-DPST boe VTNC-CR 221-95: 52 Boof dfi. nf. Wff vy Df efy-Gsbodf
${ }^{1}$ TuflupwN bui fn büdbmJotuiwıf pgSvttjbo Bdbefn fi pgTdjfodft $-N p t d p x-S v t t j b$

Sfdfjufe $26 \mathrm{Nbz} 3128 @ f d f j u f e$ jo sfuytfe gpsn 37 Krn 3128 @bddf qufe 38 Kın 3128
Bubjrinerfi poyjof 4 Bvhvtu3128
Fejus; I vcfsuTbrfivs

Bctusbdu

 boe eftdsjefe cz $\mathfrak{g l}(m \mid n)$ tvqfsbrhfcsb/ Vtjoh dpqspevduqspqfsufft pguif Cfuif wfdepst x feubjo b $t v n$ ggsn vrb gpsufjstdbrhs qspevdut/ Ui jt gpsn vrbeftdsjeft uftdbrhs qspevdujo ufsnt pgbtvn pufs qbsujupot pgCfuif qbsbn fufst/Xf brtp pcubjo sfdvstjpot gpsuif Cfuif ufdupst/Uijt bmpt vt poo sfdvstjpot gps u f i jhi ftudpf g-djfoupguif tdbrhs qspevdu

3128 Ui f Bvui pst/ Qverjiti fe cz Frmf wifs C/W Ui jt jt bo pqfo bddftt bsujdri voefs uif DD CZ gidf otf)i uq; Odsf buyuf dpn n pot/pshOjdf otft@zO「/1汭 Gvoefe cz TDPBQ ${ }^{4} /$

[^7]
21 Iouspe vduppo

Uif qsperfin pg dbrdvibujoh dpssfribujpo gvodypot pgrvbounn fybdun tpmaberif n pefin jt pg hsfbujn qpsbodf/ Uif dsfbujpo pguif Rvbown Jowfstf Tdbuf sjoh Nfü pe)RJTN * jo uif fbss
 x pslt jo xijdi RJTN x bt bqqujfe p uif qsperfin pg dpssfrmupo gvodupot $16-7^{\circ} \mathrm{x}$ fsf efupufe
 qbqfst-uf 1 fz sprifipgCfuif ufdupst tdbrhs qspevdut x bt ft bcigtife/Jo qbsudvrbs-b $t v n$ gosn vrb gpsuftdbrhs qspevdupgCfuif ufdupst x bt pcibjofe jo 16% Ui jt gpsn vrbhjuft uiftdbrhs qspevdu bt btvn pufs qbsyujpot pgCfuif qbsbn fufst/

 ef uf pqfe p dpotusvduCfuif wfdupst dpssftqpoejoh puif $\mathfrak{g l}(N)$ brhfcsb gspn if lopx o Cfuif wfdpst pguif $\mathfrak{g l}(N \cdot 2)$ brhfcsb/ Ui f qspcrin pguiftdbrhs qspevdut jo $S U(4)$.jowbsjboun pefm
 boe uif opsn pgif usbot ofs n busjy fjhfotubut x bt dpn qvufe/ Sfdfoun jo btfsjft pg qbqfst] $22^{\wedge} 27^{\prime}$ uif Cfuif wfdupst tdbrbs qspevdit jouif n pefmx ju $\mathfrak{g l}(4)$ boe $\mathfrak{g l}(3 \mid 2)$ tzn n fusjft x fsf
 pcubjofe ribejoh fuf ourbmu φ uif efusn jobougpsn vibt gps gpsn gbdusst pgmdbmpqfsbupst jo uif
 x jui usjhpopn fusjd R.n busjy x bt hjufo jo]32-33\%

Dpodf sojoh uftdbrhs qspevdit jo uif n pefmx ju i jhi fs sbol)tvqfs*tzn nfusjft-porn of x sft vnt bsf 1 opx o gps pebz/ Gjstur jujt x psui n foypojoh uif qbqfst $334-35^{6}$ - jo x i jdi uif bvi pst efuf pqfe b of x bqqspbdi puif qsperfin cbtfe po uif rvbouffife Lojfii ojl ${ }^{\wedge}$ [bn ppedi jl pw fr vbuipo/ Ui fsf uif opsn t pguif ubot ofs n busjy fjhfotubuft jo $\mathfrak{g l}(N)$.cbtfe n pefmx fsf dbrdv. rufe/ Tpn f qbsujbmsft vnt x fsf binp pcubjofe x i fo tqfdjbijifioh φ g goebn fobmsfqsftfoubujpot ps up qbsuidvribs dbtft pgCfuif wf dupst $] 36^{\circ} 39^{\prime} \%$

Jo ui jt qbqfs xftuvez uif Cfuif wf dupst tdbrbs qspevdut jo if n pefmeftdsjefe cz $\mathfrak{g l}(m \mid n)$ tvqfsbrhf csbt/I fodf jufodpn qbttft uif dbtf $\operatorname{pg} \mathfrak{g l}(m)$ brhfcsbt/Jo tqjuf $\mathrm{pg} \times \mathrm{f} \times \mathrm{psl} \times \mathrm{ju}$ jo uif gsbn fx psl pguif usbejuppobnbqqspbdi cbtfe pouif oftufe brhfcsbjd Cfuif botbufi-xffttfoubmn vtf sfdfousftvit pcubjofe jo]3: ‘ wjbuifn fü pe pgqsplf dupot gps dpotusvduypo pgCfuif wf dupst/
 ypot pguif rvboúfife I pqgbrhfcsb $U_{q} \widehat{\mathfrak{g l}}(N)$) bttpdjbufe xjuíif bg-of brhfcsb $\widehat{\mathfrak{g l}}(N)$ - pof jo uf sn t pguif vojuf stbm popespn z n busjy $T(z)$ boe $R T T$.dpn n vbbupo sf rimpot boe tfdpoe jo ufsntpguf ubmdvssfout-xijdi bsf ef-ofe czuif Hbvtt efdpn qptjupo pg if n popespn z n busjy $T(z)] 42$ '/ Jo]3: ' x f hfofsbrifife uijt bqqspbdi ب uif dbtf pguif Zbohjbot pg $\mathfrak{g l}(m \mid n)$ tvqfsbrhf csbt/Bn poh uf sftvnt pg]3: 'u bubsf vtfe jouif qsftfouqbqfs-xfopuf if gpsn vibt gps úf bdujpo pguif n popespn z n busjy fousjft poup uif Cfuif wf dupst-boe bith uif dpqspevdu gpsn vibgs uif Cfuif ufdpst/

Uifn bjo sftvmpgui jt qbqfsjt uiftvn gpsn vrb gpsuiftdbrhs qspevdupgCfuif ufdupst/Jo pvs qsfujpvt qve jedbujpot)tff f/h/ $226-32^{*}$ x f ef sjufe juvtjoh fyqigdjugpsn vrht pguif n popespn z n busjy frin fout n vigquri bdujpot pou uif Cfuif ufdupst/ Ui jt n fuipe jt tusbjhi ugsx bse- cvu jucfdpn ft sbuifs dvn cfstpn f brsf bez gps $\mathfrak{g l (4)}$ boe $\mathfrak{g l (3 | 2)}$ cbtfe n pefrit Gvsuifsn psf-uif
 jo uif qsftfouqbqfs xf vtf bnfüpe cbtfe po uf dpqspevdugpsn vib gs uif Cfuif wfdust/ Bduwbm- uif tusvdıssf pguiftdbrhs qspevdujt fodpefe jo uif dpqspevdugssn vrh/ Ui fsf gpsf-ujt
n fupe ejsfdun ribet φ uiftvn gpsn vib- jo xijdi uif tdbrbs qspevdujt hjufo bt btvn pufs qbsuyjpot pgCfuif qbsbn fufst/

Uiftvn gpsn vib dpobjot bo jn qpsboupclfdudbmie if ijhiftudpfg-djfou)I D*]6‘/Jo uif $\mathfrak{g l}(3)$ cbtfe n pefm boe úfjs q.efgpsn bujpo uif I D dpjodjeft x ju b qbsujupo gvodujpo pg uif tjy.uf sffy n pefmx jui epn bjo x bmcpvoebsz dpoejupo/ Bo fyqigdju sfqsftfobujpo gps jux bt gpvoe jo 143 〔/ Jo uif n pefmx ju $\mathfrak{g l (4)}$ tzn n fusz uif I D brtp dbo cf bttpdjbufe x ju btqfdjbm qbsuiypo gvodujpo-i px fufs- jut fyqu̇djugpsn jt n vdi n psf tpqi jtudbufe)tff f/h/]22-24‘*/P of dbo fyqfduu bujo uif dbtf pgijhifs sbol brhfesbt bo bobphpvt fyquidju gpsn vib gps uf I D cfdpn ft بpp dpn qrify/ Ui fsf gpsf-jo uijt qbqfs xfep opuefsjuf tvdi gpsn vrbt-cvujotufbe-xf
 mxfs sbol tzn n fusjft/ Ui ftf sfdvstjpot dbo cf efsjufe gspn sfdvstjpot po uif Cfuif wfdpst u bux f bmp pcrbjo jo u jt qbqfs s

Bt xf ibuf braf bez n foupofe-uif Cfuif wfdupst tdbrhs qspevdut bsf pghsfbujn qpsubodf jo uif qsperfin pgdpssfribupo gvodyjpot pgrvbouwn joufhsberfin pefritl Dfsbjorn- uiftvn gpsn vib jt opudpowfojfougps jut ejsfdubqqajdbujpot-bt judpobjot b cjh ovn cfs pgufs t-xijdi hspx t
 pg tdbrhs qspevdut- jo xijdi if tvn pufs qbsuyjpot dbo cf sfevdfe pb tjohrf efufsn joboư Uijt uqf pg gpsn vrht dbo cf vtfe gps dbrdvihujoh gpsn gbdust pg wbsjpvt joufhsberfin pefm pg qi ztjdbmjoufsfturylf-gps jotubodf-uif I vccbse n pefm] $44^{〔}$ - uif uKn pefm] $45^{\circ} 47^{\circ}$ ps n vmj. dpn qpofouCptfoffsn j hbt 148^{6} - opup n foupo tqjo di bjo n pefmbt ifz bsf opx bebzt uftufe jo dpoefotfe n bufs fyqfsjn fout 149 / Xf brnp i pqf ui bu pvs sftvnt xjmcf pg tpn f joufsftu
 Joeffe-jo uiftfuifpsjft-uif hfofsbmbqqspbdi sf gift po btqjo di bjo cbtfe po uif $\mathfrak{p s u}(3,3 \mid 5)$
 u fpsz/

Ui f bsujdrfijt pshbojffife bt gprpx t/ Jo tfdujpo 3 x f jouspevdf íf n pefmvoefs dpotjefsbujpo/ Uifsf x f binp tqfdjg pvs dpowf oujpot boe opubypo/ Jo tfdujpo 4 x f eftdsjcf Cfuif wfdupst pg
 n vib gps uffdbrhs qspevdupghf of sjd Cfuif wfdpst boe sfdvstjpo sf rhujpot gpsuif Cfuif wfdupst boe uf i jhi ftudpfg-djfou Uif sftupguif qbqfs dpobjot if qsppg pguif sftvit boopvodfe jo tfdujpo 5/ Jo tfdujpo 6 xf qspuf sfdvstjpo gpsn vrbt gps uif Cfuif wfdupst/ Tfdupo 7 dpobjot b qsppgpgúftvn gpsn vibgpsuftdbrhs qspevduł Jo tfdujpo 8 xf tuvez ijhi ftudpfg-djfouboe -oe b sfdvstjpo gps jư Qsppgt pgtpn f bvyjigbsz tbuf n fout bsf hbuifsfe jo bqqfoejdft/

31 Hftdslr upo pgi f n pefm

$3 / 2 / \mathfrak{g l}(m \mid n)$.cbtfe n pefrn

Uif R.n busjy $\operatorname{pggl}(m \mid n)$.cbtfe n pefrn bdut jo u f ufotps qspevdu $\mathbf{D}^{m \mid n} \circ \mathbf{D}^{m \mid n}$ - x ifsf $\mathbf{D}^{m \mid n}$ jt uf \mathbb{Z}_{3}.hsbefe ufdups tqbdf x jui uif hsbejoh $[i]=1 \mathrm{gps} 2 \geq i \geq m-[i]=2$ gps $m<i \geq m+n /$ I fsf-xf bttvnf í bu $m \sim 2$ boe $n \sim 2$ - cvux f x boup tufftt i bupvs dpotjefsbypot bsf bq.
 jo uijt tqbdf bsf binp hsbefe/ Xf ef-of uijt hsbejoh po uif cbtjt pg frfin foobsz vojut $E_{i j}$ bt $\left.\left[E_{i j}\right]=[i]+[j] \in \mathbb{Z}_{3}\right)$ sfdbmi bu $\left(E_{i j}\right)_{a b}=\eta_{i a} \eta_{j b}{ }^{*}$ Uif fotps qspevdut $\mathrm{pg} \mathbf{D}^{m \mid n}$ tqbdft bsf hsbefe bt gpmpx ;

$$
\left(\mathbf{2} \circ E_{i j}\right) \times\left(E_{k l} \circ 2\right)=\left(\cdot 2^{([i]+[j])([k]+[l])} E_{k l} \circ E_{i j} .\right.
$$

)3/2*

Uif R.n busjy $\operatorname{pggl}(m \mid n)$.joubsjboun pefmi bt if gpsn

$$
R(u, v)=\mathbb{I}+g(u, v) P, \quad g(u, v)=\frac{c}{u \cdot v} .
$$

I fsf c jt b dpotubout \mathbb{I} boe P sftqfduyufa bsf íf jefouju n busjy boe uif hsbefe qfsn vubupo pqfsbups]4: ';

$$
\mathbb{I}=\mathbf{2} \circ \mathbf{2}=\sum_{i, j=2}^{n+m} E_{i i} \circ E_{j j}, \quad P=\sum_{i, j=2}^{n+m}(\cdot 2)^{[j]} E_{i j} \circ E_{j i} .
$$

Uif 1 fz pelfdupg RJTN jt b r vbounn n popespn z n busjy $T(u) /$ Jt n busjy frin fout $T_{i, j}(u)$ bsf hsbefe jo uftbn f xbz bt uf n busjdft $\left[E_{i j}\right] ;\left[T_{i, j}(u)\right]=[i]+[j] /$ Uif hsbejoh jt bn ps. qi jtn $-\mathrm{j} / \mathrm{f} /\left[T_{i, j}(u) \times T_{k, l}(v)\right]=\left[T_{i, j}(u)\right]+\left[T_{k, l}(v)\right] /$ Ui fjs dpn n vbujpo sfroupot bsf hjufo cz u f RTT.sf rhypo

$$
R(u, v)) T(u) \circ 2[) \mathbf{2} \circ T(v)[=) \mathbf{2} \circ T(v)[) T(u) \circ 2[R(u, v) .
$$

Fr vbuypo)3/5*i prat jo uif ufotps qspevdu $\mathbf{D}^{m \mid n} \circ \mathbf{D}^{m \mid n} \circ \mathcal{H}$-x ifsf \mathcal{H} jt bI jrof sutqbdf pguif I bn jqpojbo voefs dpotjef sbyjpo/ I fsf bmif fot ps qspevdut bsf hsbefe/

Uif RTT.sfrbupo)3/5* zjfrat btfupg dpn n vubujpo sfrhupot gps uif n popespn z n busjy frin fout

$$
\begin{aligned}
& {\left[T_{i, j}(u), T_{k, l}(v)\right\} }\left.=(\cdot 2)^{[i]([k]+[l])+[k][l]} g(u, v)\right) T_{k, j}(v) T_{i, l}(u) \cdot \\
&=\left(\cdot 2 T_{k, j}(u) T_{i, l}(v)\right. \\
&
\end{aligned}
$$

x ifsf x f jouspevdfe $\mathbf{u} \mathrm{f}$ hsbefe dpn n vbups

$$
\left[T_{i, j}(u), T_{k, l}(v)\right\}=T_{i, j}(u) T_{k, l}(v) \cdot(\cdot 2)^{([i]+[j])([k]+[l])} T_{k, l}(v) T_{i, j}(u)
$$

Uif hsbefe usbotgfs n busjy jt ef-ofe bt uftvqfsusbdf pguifn popespn z n busjy

$$
\mathcal{T}(u)=\operatorname{tus} T(u)=\sum_{j=2}^{m+n}(\cdot 2)^{[j]} T_{j, j}(u)
$$

Pof dbo fbtjn difdl $] 4$: ‘ \mathbf{u} bu $[\mathcal{T}(u), \mathcal{T}(v)]=1 /$ Ui vt uif usbotgfs n busjy dbo cf vtfe bt b hf of sbyioh gvoduypo pgjoufhsbin pgn pujpo pgbo joufhsberfitztufn /

3/3/ Ppıbupo

 $\mathrm{x} f$ jouspevdf ux p sbuypobngvodypot

$$
\begin{aligned}
& f(u, v)=2+g(u, v)=\frac{u \cdot v+c}{u \cdot v} \\
& h(u, v)=\frac{f(u, v)}{g(u, v)}=\frac{u \cdot v+c}{c} .
\end{aligned}
$$

Jo psefs pn blf gpsn vrht vojggsn xf brip vtf ahsbefe (gvodypot

$$
\begin{align*}
& g_{[i]}(u, v)=(\cdot 2)^{[i]} g(u, v)=\frac{(\cdot 2)^{[i]} c}{u \cdot v}, \\
& f_{[i]}(u, v)=2+g_{[i]}(u, v)=\frac{u \cdot v+(\cdot 2)^{[i]} c}{u \cdot v}, \\
& h_{[i]}(u, v)=\frac{f_{[i]}(u, v)}{g_{[i]}(u, v)}=\frac{(u \cdot v)+(\cdot 2)^{[i]} c}{(\cdot 2)^{[i]} c},
\end{align*}
$$

boe

$$
\delta_{i}(u, v)=\frac{f_{[i]}(u, v)}{h(u, v)^{n_{i, m}}}, \quad \delta_{i}(u, v)=\frac{f_{[i+2]}(u, v)}{h(v, u)^{\eta_{i, m}}}
$$

Pctfsuf ubuxf vtfuif tvetdsjqu i gps uif gvodupot δ boe δ jotufbe pg if tvetdsjqu [i]/ Uijt jt cfdbvtf uiftf gvodujpot bduvbm bl f uisff ubnaft/ Gps fybn qrif $\delta_{i}(u, v)=f(u, v)$ gps $i<m-\delta_{i}(u, v)=g(u, v)$ gns $i=m$ - boe $\delta_{i}(u, v)=f(v, u)$ gps $i>m /$ Jujt brtp fbtz p tff ui bu $\delta_{i}(u, v)=(\cdot 2)^{n_{i, m}} \delta_{i}(u, v) /$

Muvt gpsn vrbuf opx bdpouf oupo po uif opbujpo/ Xf efopuf tfut pg wbsjberfit cz cbs- gps fy.
 tvqfst dsjqu $\bar{s}^{i}-\bar{t}^{\sigma}$ - fud/ Joejwje vbnf rin fout pguiftfut pstvctfut bsf efopufe cz Mujo tvetdsjqutgps jot ubodf- u_{j} jt bo frfin foupg $\bar{u}-t_{k}^{i}$ jt bo frin foupg \bar{t}^{i} fud/ Bt bsvifi-u fovn cfs pgfrin fout

 jo tvdi bx bz ui buif ffr vfodf pguifjstvctdsjqut jt tusjdun jodsf btjoh; $\bar{t}^{i}=\left\{t_{2}^{i}, t_{3}^{i}, \ldots, t_{r_{i}}^{i}\right\} / \mathrm{Xf}$ dbmi jt psef sjoh uif obuwsbmpsefs/

Xf vtf bti psu boe opubypo gps qspevdut pg uif sbuypobmgvodupot) 3/9**) 3/21* Obn frw-jg

 fybn qrif-

$$
\begin{aligned}
g(\bar{u}, v) & =\prod_{u_{j} \in \bar{u}} g\left(u_{j}, v\right), \\
f_{[i]}\left(t_{k}^{i \cdot 2}, \bar{t}^{i}\right) & =\prod_{t_{\ell}^{i} \in \bar{t}^{i}} f_{[i]}\left(t_{k}^{i \cdot 2}, t_{\ell}^{i}\right), \\
\delta_{\ell}\left(\bar{s}^{i}, \bar{t}^{\ell}\right) & =\prod_{s_{j}^{i} \in \bar{s}^{i} t_{k}^{\ell} \in \bar{t}^{\ell}} \prod_{\ell}\left(s_{j}^{i}, t_{k}^{\ell}\right) .
\end{aligned}
$$

)3/22*

Cz ef-ojujpo- boz qspevdupufs uif fn que tfujt frvbmp 2/B epverfi qspevdujt fr vbmp 2 jgbu ribt upof pguiftfut jt fn qu/
 fjhf oubruft)tff) $4 / 4 *$ boe $) 4 / 5^{*}$ *

41 Cfuif ufdupst

 tqfdjg ujt tqbdf-ipx fufs-x f bttvn f u bujudpobjot bqtfvepubdvvn ufdps |1>-tvdi ui bu

$$
\begin{array}{ll}
T_{i, i}(u)|1\rangle=v_{i}(u)|1\rangle, & i=2, \ldots, m+n, \\
T_{i, j}(u)|1\rangle=1, & i>j,
\end{array}
$$

 sbujpt pguiftf gvodupot

$$
\gamma_{i}(u)=\frac{v_{i}(u)}{v_{i+2}(u)}, \quad i=2, \ldots, m+n \cdot 2 .
$$

 jouspe vdfe bcpuf-gps fybn qrif-

$$
v_{k}(\bar{u})=\prod_{u_{j} \in \bar{u}} v_{k}\left(u_{j}\right), \quad \gamma_{i}\left(\bar{t}^{i}\right)=\prod_{t_{\ell}^{i} \in \bar{t}^{i}} \gamma_{i}\left(t_{\ell}^{i}\right) .
$$

Xf vtfüftbn f dpouf oujpo gpsuif qspevdut pg dpn n vüoh pqfsbupst

$$
T_{i, j}(\bar{u})=\prod_{u_{j} \in \bar{u}} T_{i, j}\left(u_{j}\right), \quad \text { gps } \quad[i]+[j]=1, \quad \text { n pe } 3 .
$$

)4/5*

Gjobmb- gps uif qspevdupg pee pqfsbupst $T_{i, j} \times \mathrm{jui}[i]+[j]=2 \mathrm{xf}$ jouspevdf $\mathrm{b} t \mathrm{qf}$ djbmopubupo

$$
\begin{aligned}
\mathbb{T}_{i, j}(\bar{u})=\frac{T_{i, j}\left(u_{2}\right) \ldots T_{i, j}\left(u_{p}\right)}{\prod_{2 \geq k<\ell \geq p} h\left(u_{\ell}, u_{k}\right)}, & {[i]+[j]=2, } \\
\mathbb{T}_{i, j}(\bar{u})=\frac{T_{i, j}\left(u_{2}\right) \ldots T_{i, j}\left(u_{p}\right)}{\prod_{2 \geq k<\ell \geq p} h\left(u_{k}, u_{\ell}\right)}, & {[i]+[j]=2, }
\end{aligned} \quad i>j,
$$

 upot pguif qbsbn fufst $\bar{u} /$

4/2/ Dpppsjoh

Jo qi ztjdbmn pefm- wf dupst pg if tqbdf \mathcal{H} eftdsjcf tubuft x ju r vbtjqbsudrfit pg ejgef sfou uqft)dppst*/Jo $\mathfrak{g l}(m \mid n)$.cbtfe n pefin r vbtjqbsuddfit n bz i buf $N=m+n \cdot 2$ dppst/ Mu $\left\{r_{2}, \ldots, r_{N}\right\}$ cf b tfupgopo.ofhbuyf joufhfst/Xfthe ui bub tubuf ibt dppsjoh $\left\{r_{2}, \ldots, r_{N}\right\}$ - jg judpobjot r_{i} rvbtjqbsideffit pg if dpps i/ B tubuf x ju b -yfe dppsjoh dbo cf pcobjofe cz tvddfttjuf bqqujdbujpo pguif dsfbujpo pqfsbupst $T_{i, j} \mathrm{x}$ jui $i<j$ puif ufdups |1 \rangle - x i jdi ibt fffsp dppsjoh/Bdujoh po íjt tubuf-bo pqfsbups $T_{i, j}$ beet r vbtjqbsiddrfit x ju uif dppst i, \ldots, j. 2-pof qbsuidrfi pgf bdi dpps/ Jo qbsujdvrbs-uif pqfsbups $T_{i, i+2}$ dsf buft pof rvbtjqbsudrifipguif dppsi-uif pqfsbups $T_{2, n+m}$ dsfbuft N rvbtjqbsydrfit pg N ejgef sfoudppst/ Uif ejbhpobmpqfsbupst $T_{i, i}$ bsf of vusbmuif n busjy frfin fout $T_{i, j}$ x jui $i>j$ qraz uif sprif pgbooji jrhuypo pqfsbupst/ Bdyioh po uif t tbuf pgb-yfe dppsjoh-uf booji jimypo pqfsbups $T_{i, j}$ sf n puft gspn uijt tubuf uif rvbtjqbsudrfit x jui uif dppst j, \ldots, i. 2- pof qbsuidrfi pg fbdi dpms/ Jo qbsudvribs- jg j. $2<k<i$ - boe uif booji jinupo pqfsbups $T_{i, j}$ bdut po btubf jo xijdi uifsf jt op qbsuidrfit pguif dpps k - uifo ijt bdujpo wbojtift/

Uijt ef-ojupo dbo cf gpsn brjifife buif riuf mpguif Zbohjbo ui spvhi uif Dbsubo hfofsbupst pg uif Mf tvqfsbrhfcsb $\mathfrak{g l}(m \mid n) /$ Joeffe-uif fif sp n peft

$$
\left.T_{i j}[1]=\min _{u \rightarrow \infty} \frac{u}{c}\right) T_{i j}(u) \cdot \eta_{i j}[
$$

gpsn $\mathrm{b} \mathfrak{g l}(m \mid n)$ tvqfsbrhfcsb-x ju dpn n vubupo sf rbujpot

$$
\left.\left[T_{i j}[1], T_{k l}[1]\right\}=(\cdot 2)^{[i]([k]+[l])+[k][l]}\right) \eta_{i l} T_{k j}[1] \cdot \eta_{j k} T_{i l}[1][, \quad i, j, k, l=2, \ldots, m+n .
$$

 n busjy- $\left[T_{i j}[1], \mathcal{T}(z)\right]=1-i, j=2, \ldots, m+n /$ Jo gbduí n popespn z n busjy fousjft gpsn b sfqsftfoubupo pguijt tvqfsbrhfcsb;

$$
\left.\left[T_{i j}[1], T_{k l}(z)\right\}=(\cdot 2)^{[i]([k]+[l])+[k][l]}\right) \eta_{i l} T_{k j}(z) \cdot \eta_{j k} T_{i l}(z)[, \quad i, j, k, l=2, \ldots, m+n .
$$

Jo qbsuydvrbs- gps uf Dbsubo hfof sbupst $T_{j j}[1]$ x f pcibjo

$$
\left.\left[T_{j j}[1], T_{k l}(z)\right]=(\cdot 2)^{[j]}\right) \eta_{j l} \cdot \quad \eta_{j k}\left[T_{k l}(z), \quad j, k, l=2, \ldots, m+n . \quad 4 / 9^{*}\right.
$$

Uifo-uif dpmst dpssftqpoe u uiffjhfoubngft voefsuif Dbsubo hfofsbupt ${ }^{2}$

$$
h_{j}=\sum_{k=2}^{j}(\cdot 2)^{[k]} T_{k k}[1], \quad j=2, \ldots, m+n \cdot 2
$$

Joeffe-pof dbo difdl u bu

$$
\left[h_{j}, T_{k l}(z)\right]=\varepsilon_{j}(k, l) T_{k l}(z) \quad \text { x ju } \quad\left\{\begin{array}{ll}
\varepsilon_{j}(k, l)=\cdot 2 & \text { jg } k \geq j<l \\
\varepsilon_{j}(k, l)=+2 & \text { jg } l \geq j<k \\
\varepsilon_{j}(k, l)=1 & \text { puifsx jtf }
\end{array} \quad\right) 4 / 21^{*}
$$

Ui ftf fjhf oubrwft kvtudpssftqpoe up dsf buypo(booji jrhypo pqfsbupst bt eft dsjcfe bcpuf/
Cfuif ufdupst bsf df sbbjo qproopn jbrn jo uif dsf bujpo pqfsbupst $T_{i, j}$ bqqujfe up uif ufdups $|1\rangle /$ Tjodf Cfuif ufdupst bsf fjhfoufdupst voefs uif Dbsubo hfofsbupst $T_{k k}[1]$-u fz bsf brip fjhfoufd. pst pguif dpps hfofsbupst h_{j}-boe if fodf dpobjo porn ufsn t ju uif tbn f dppsjoh/

Sfnbsl Jo wbsjpvt n pefmpgqiztjdbmjoufsftuif dppsjoh pguif Cfuif wfdupst pcfzt df sbbjo dpot usbjot- gps jot ubodf - $r_{2} \sim r_{3} \sim \mathcal{X} \times \sim r_{N}$ / Jo qbsudvibs- uijt dbtf pddvst jg uif n popespn z n busjy pguif n pefmit hjufo czuif qspevdupguif R.n busjdft) $3 / 3 *$ jo uif gvoebn fobnsfqsftfo. ubupo/ Xf ep opusftusjdupvstfmaft x ju u ju qbsuddvrbs dbtf boe ep opujn qptf boz sftusjdujpo gps uif dppssoh pguif Cfuif wf dupst/ Ui vt-jo xi bugpmx t r_{i} bsf bscjıbbsz opo.ofhbuyf joufhfst/

Jo iujt qbqfs xfep opuvtf bo fyqigdjugpsn pguif Cfuif ufdupst-ipx fufs-uf sfbefs dbo -oe jujo]3: ‘/ B hfofsjd Cfuif wfdps $\mathrm{pg} \mathfrak{g l}(m \mid n)$.cbtfe n pefmef qfoet po $N=m+n \cdot 2$ tfut pg ubsjberfit $\bar{t}^{2}, \bar{t}^{3}, \ldots, \bar{t}^{N}$ dbmfie Cfuif qbsbn fufst/Xf efopuf Cfuif ufdupst $\mathrm{cz} \mathbb{B}(\bar{t})$ - x ifsf

$$
\bar{t}=\left\{t_{2}^{2}, \ldots, t_{r_{2}}^{2} ; t_{2}^{3}, \ldots, t_{r_{3}}^{3} ; \ldots ; t_{2}^{N}, \ldots, t_{r_{N}}^{N}\right\}
$$

)4/22*
 dbo cf bttpdjbufe x ju brvbtjqbsydrifi pguif dpps $i /$

Cfuif wfdupst bsf tzn n fusjd pufs qfsn vubupot pguif qbsbn fufst $t_{k}^{i} \mathrm{x}$ ju jouiftfu $\bar{t}^{i}-\mathrm{i} p \mathrm{px}$ fufsuifz bsf oputzn nfusjd pufs qfsn vbuypot pufs qbsbn fufst cf mohjoh w ejgef sfoutfut \bar{t}^{i} boe $\bar{t}^{j} /$ Gps hfofsjd Cfuif ufdust uif Cfuif qbsbn fufst t_{k}^{i} bsf hfofsjd dpn qrify ovn cfst/ Jg u ftf qb. sbn fufst tbutg btqfdjbitztufn pgfr vbujpot)Cfuif frvbujpot* \mathbf{u} fo uif dpssftqpoejoh uf dups
${ }^{2}$ Ui f ibtuhf of sbups h_{m+n} jt df ousbratff) 4/21*
cfdpn ft bo fjhfoufdups pgif usbotgfs n busjy) $3 / 8 *$ Jo í jt dbtf jujt dbmie po.tifmCfuif ufd. $p s /$ Jo uijt qbqfs x f dpotjefs hfofsjd Cfuif ufdupst-ipx fufs-tpnf gpsn vibt)gps jotubodf-uif tvn gpsn vibgps if tdbrbs qspevdu) 5/22*) 5/26* dbo cf tqfdj-fe puif dbtf pg po.tifmCfuif uf dupst bt x fmh

 $i<j$ bqqugfe puif qtfvepubdvvn $|1\rangle /$ Bn poh bmif ufs t pguit qpruopn jbmifsf jt pof n popn jbmi budpobjot íf pqfsbupst $T_{i, j} \times$ jui $j \cdot i=2$ porn/ Muvt dbmi jt ufn uif n bjo ifsn boe efopuf jucz $\widetilde{\mathbb{B}}(\bar{t}) /$ Ui fo

$$
\mathbb{B}(\bar{t})=\widetilde{\mathbb{B}}(\bar{t})+\ldots
$$

)4/23*
 -y úf opsn bẏifibupo pguif Cfuif wf dupst cz-yjoh b ovn fsjd dpfg-djfoupguifn bjo uf sn

$$
\widetilde{\mathbb{B}}(\bar{t})=\frac{\mathbb{T}_{2,3}\left(\bar{t}^{2}\right) \ldots \mathbb{T}_{N, N+2}\left(\bar{t}^{N}\right)|1\rangle}{\prod_{i=2}^{N} v_{i+2}\left(\overline{t^{i}}\right) \prod_{i=2}^{N \cdot 2} f_{[i+2]}\left(\bar{t}^{i+2}, \bar{t}^{i}\right)},
$$

x ifsf

$$
\mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right)=\frac{T_{i, i+2}\left(t_{2}^{i}\right) \ldots T_{i, i+2}\left(t_{r_{i}}^{i}\right)}{) \prod_{2 \geq j<k \geq r_{i}} h\left(t_{k}^{i}, t_{j}^{i}\right)\left[^{n_{i, m}}\right.}
$$

)4/25*

Sfdbmi bux f vtfifsf iftipsi boe opubipo gpsuif qspevdut pgif gvodupot v_{j+2} boe $f_{[j+2]} /$ Ui f opsn bẏ̇ibuypo jo) $4 / 24^{*}$ jt ejgef sfougspn uif pof vtfe jo $] 3$: ‘cz uf qspevdu $\prod_{j=2}^{N} v_{j+2}\left(\bar{t}^{j}\right) /$ Ui jt beejuppobmopsn bríibuipo gbdups jt dpowf ojf out cfdbvtf jo uijt dbtf if tdbrbs qspevdut pguif Cfuif wf dupst efqfoe pouif sbuypt $\left.\gamma_{i}\right) 4 / 3^{*}$ porw/

Tjodf uf pqfsbupst $T_{i, i+2}$ boe $T_{j, j+2}$ ep opudpn n vuf $\mathrm{gps} i \neq j$-uifn bjoufn dbo cf x sjufo jo tfuf sbmepsn t dpssftqpoejoh φ ejgof sfoupsefsjoh pguif n popespn z n busjy fousjft/ Uif ps.
 ب $\mathfrak{g l}(m \mid n) /$

4/3/ Npsqi jtn pgCfuif ufdupst

Zbohjbot $Y(\mathfrak{g l}(m \mid n))$ boe $Y(\mathfrak{g l}(n \mid m))$ bsf sfrhufe cz bn psqi jtn $\varphi] 51^{\text {‘ }}$

$$
\varphi:\left\{\begin{aligned}
& Y(\mathfrak{g l}(m \mid n)) \rightarrow \quad Y(\mathfrak{g l}(n \mid m)), \\
& T_{i, j}^{m \mid n}(u) \rightarrow \\
&(\cdot 2)^{[i][j]+[j]+2} T_{N+3 \cdot j, N+3 \cdot i}^{n \mid m}(u), \quad i, j=2, \ldots, N+2,
\end{aligned}\right.
$$

)4/26*
boe xf sfdbmi bu $N=m+n \cdot 2 /$ Ifsf x f brtp i buf frvjqqfe if pqfsbupst $T_{i j} \mathrm{x}$ ju beej. yppobnt vqfstdsjqut tipx joh uif dpssftqpoejoh Zbohjbot/ Ui jt n bqqjoh brtp bdut po uif ubdvvn fjhf oubnoft $\left.\nu_{i}(u)\right) 4 / 2^{*}$ boe u fjs sbujpt $\left.\gamma_{i}(u)\right) 4 / 3^{*}$

$$
\varphi:\left\{\begin{array}{l}
v_{i}(u) \rightarrow \cdot v_{N+3 \cdot i}(u), \quad i=2, \ldots, N+2 \\
\gamma_{i}(u) \rightarrow \frac{2}{\gamma_{N+2 \cdot i}(u)}, \quad i=2, \ldots, N
\end{array}\right.
$$

)4/27*

Npsqijtn φ joevdft bn bqqjoh pgCfuif wfdust $\mathbb{B}^{m \mid n} \operatorname{pg} Y(\mathfrak{g l}(m \mid n))$ up Cfuif ufdupst $\mathbb{B}^{n \mid m}$ pg $Y(\mathfrak{g l}(n \mid m)) /$ Up eftdsjcf uijt n bqqjoh xf jouspevdf tqfdjbmpsefsjoht pg uif tfut pg Cfuif qbsbn fuf st/ Obn frn- rfu

$$
\vec{t}=\left\{\bar{t}^{2}, \bar{t}^{3}, \ldots, \bar{t}^{N}\right\} \quad \text { boe } \quad t=\left\{\bar{t}^{N}, \ldots, \bar{t}^{3}, \bar{t}^{2}\right\}
$$

Uif psefsjoh pguif Cfuif qbsbn fufst x ju jo fuf $\mathrm{sz} \mathrm{tfu} \bar{t}^{k}$ jt opufttfoubhbi fo

$$
\varphi) \mathbb{B}^{m \mid n} \overrightarrow{(t)}\left[=\frac{(\cdot 2)^{r_{m}} \mathbb{B}^{n \mid m}(t)}{\prod_{k=2}^{N} \gamma_{N+2 \cdot k}\left(\bar{t}^{k}\right)}\right.
$$

 eft dsjquipo pguif Cfuif wfdupst dpssftqpoejoh puif fncfeejoh pggl($m \mid n \cdot 2$) $\operatorname{pgl} \mathfrak{g l}(m \mid n) /$ Uif $\operatorname{vtf} \operatorname{pg} \varphi) 4 / 29^{*}$ brpx t pof φ ftubcriti jn qpsubouqspqfsufft pguif Cfuif wf dupst tdbrhs qspevdut)tff tfdujpo 8/3*

4/4/ EvbmCfuif uf dupst

EvbnCfuif wfdupst cf poh puif evbntqbdf \mathcal{H}^{\otimes} - boe uifz bsf qproopn jbrn jo $T_{i, j} \mathrm{x}$ jui $i>j$ bqqugfe gspn uf sjhi up uif evbmqtfvepubdvvn wfdups $\langle 1| / U_{i}$ jt wfdps qpttfttft qspqfsuft tjn jibs p)4/2*

$$
\begin{array}{ll}
\langle 1| T_{i, i}(u)=v_{i}(u)\langle 1|, & i=2, \ldots, m+n, \\
\langle 1| T_{i, j}(u)=1, & i<j,
\end{array}
$$

xifsf uif gvodupot $\nu_{i}(u)$ bsf uftbn f bt jo $4 / 2^{*} *$
Xf efopuf evbnCfuif wf dupst cz $\mathbb{C}(\bar{t})$-x ifsf iftfupgCfuif qbsbn fufst \bar{t} dpotjtu pgtfufsbm
 pguif evbmCfuif wfdpst/ Buift thf inf uif sprfi pg dsf buypo boe booji jibypo pqfsbupst bsf sfufstfe/

$$
\left.\Psi: T_{i, j}(u) \rightarrow(\cdot 2)^{[i]([j]+2)} T_{j, i}(u) . \quad\right) 4 / 31^{*}
$$

 u f opupo pgtvqf susbdf/ Jutbuyt-ft b qspqf sue

$$
\Psi(A \times B)=(\cdot 2)^{[A][B]} \Psi(B) \times \Psi(A)
$$

x ifsf A boe B bsf bscjubsz frin fout pgif n popespn znbsjy/ Jgx f fyufoe uif bdupo pgijt bougn psqijtn puif qtfvepubdvvn ufdupst cz

$$
\begin{array}{ll}
\Psi)|1\rangle[=\langle 1|, & \Psi) A|1\rangle[=\langle 1| \Psi) A[, \\
\Psi)\langle 1|[=|1\rangle, & \Psi)\langle 1| A[=\Psi) A[|1\rangle,
\end{array}
$$

u fo juwsot pvui bu]3: ‘

$$
\Psi) \mathbb{B}(\bar{t})[=\mathbb{C}(\bar{t}), \quad \Psi) \mathbb{C}(\bar{t})\left[=(\cdot 2)^{r_{m}} \mathbb{B}(\bar{t}),\right.
$$

)4/34*
xifsf $r_{m}={ }^{\prime} \bar{t}^{m} /$
Sfn bsl Juti pvre opucf tvsqsitjoh ui bu $\left.\Psi^{3}\right) \mathbb{B}(\bar{t})[\neq \mathbb{B}(\bar{t}) /$ Uif qpjoujt ui buu f boun psqi jtn Ψ jt jefn qpufou pg psefs 5 boe jut tr vbsf jt uf qbsjuw pqfsbups)dpvouioh uif ovn cfs pg pee n popespn z n busjy frfin fout n pevp 3*

Ui vt-evbmCfuif wf dupst bsf qprnopn jbm jo $T_{i, j} \mathrm{x}$ ju $i>j$ bdujoh gspn uif sjhi upoup $\langle 1| /$ Uifz brnp dpobjo uifn bjo ufs $\mathbb{C}(\bar{t})$-x i jdi opx dpotjtut pguif pqfsbupst $T_{i, j} \times \mathrm{ju} i \cdot j=2 /$ Uifn bjo ufsn pguif evbnCfuif wfdups dbo cf pcubjofe gsp)4/24* wib uifn bqqjoh Ψ;

$$
\widetilde{\mathbb{C}}(\bar{t})=\frac{(\cdot 2)^{r_{m}\left(r_{m} \cdot 2\right) / 3}\langle 1| \mathbb{T}_{N+2, N}\left(\bar{t}^{N}\right) \ldots \mathbb{T}_{3,2}\left(\bar{t}^{2}\right)}{\prod_{i=2}^{N} v_{i+2}\left(\bar{t}^{i}\right) \prod_{i=2}^{N \cdot 2} f_{[i+2]}\left(\bar{t}^{i+2}, \bar{t}^{i}\right)}
$$

x ifsf

$$
\mathbb{T}_{i+2, i}\left(\bar{t} \bar{t}^{i}\right)=\frac{T_{i+2, i}\left(t_{2}^{i}\right) \ldots T_{i+2, i}\left(t_{r_{i}}^{i}\right)}{\left.\prod_{2 \geq j<k \geq r_{i}} h\left(t_{j}^{i}, t_{k}^{i}\right)\right]^{\eta_{i, m}}}
$$

Gjobma- vtjoh uf n psqi jtn φ xf pcubjo bsfrbujpo cfuxfo evbnCfuif wfdupst dpssftqpoejoh upuf Zbohjbot $Y(\mathfrak{g l}(m \mid n))$ boe $Y(\mathfrak{g l}(n \mid m))$

$$
\varphi) \mathbb{C}^{m \mid n}(\vec{t})\left[=\frac{\mathbb{C}^{n \mid m}(t)}{\prod_{k=2}^{N} \gamma_{N+2 \cdot k}\left(\bar{t}^{k}\right)}\right.
$$

)4/37*

51 P blo sftvnt

Jo uijt tfdupo xf qsftfouifn bjo sftvnt pguif qbqfs/ Uifz bsf pg uisf uqft; sfdvstjpo gpsn viht gps Cfuif ufdupst @vn gpsn vrbgpsif Cfuif ufdupst tdbrhs qspevdu@f dvstjpo gpsn vribt

 u bujt- $n=1$ / Uif dbtf $m=1$ dbo cf pcubjofe gspn uif rbufs wibsfrbdf n fou $c \rightarrow \cdot c$ jo uif R.n busjy)3/3*

5/2/ Sfdvstjpo gys Cfuif ufdupst

I fsf x f hjuf sfdvstjpot gps)evbrïCfuif wfdust/ Uiftf sfdvstjpot bmpx vt up dpotusvduCfuif wfdpst-1 opx joh if poft efqfoejoh po btn brifis ovn cfs pg qbsbn fufst/ Uif dpssftqpoejoh qsppg bsf hjufo jo tfdujpo 6/

Rspr ptkupo 521Cfuif ufdupst pggl(m|n). cbtfe n pefn tbùtgit bsfvstjpo

$$
\begin{aligned}
\left.\left.\mathbb{B}(\} z, \bar{t}^{2 \mid} ;\right\} \bar{t}^{k \mid}{ }_{3}^{N}\right)= & \left.\left.\left.\sum_{j=3}^{N+2} \frac{T_{2, j}(z)}{v_{3}(z)} \sum_{\left.\mathrm{qbsu}^{3}, \ldots, \bar{t}^{j} \cdot 2\right)} \mathbb{B}(\} \bar{t}^{2 \mid} ;\right\} \bar{t}_{\mathrm{J}}^{k \mid}{ }_{3}^{j \cdot 2} ;\right\} \bar{t}^{k \mid}{ }_{j}^{N}\right) \\
& * \frac{\prod_{\sigma=3}^{j \cdot 2} \gamma_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}\right) g_{[\sigma]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma \cdot 2}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{h\left(\bar{t}^{2}, z\right)^{\eta_{m, 2}} \prod_{\sigma=2}^{j \cdot 2} f_{[\sigma+2]}\left(\bar{t}^{\sigma+2}, \bar{t}_{\mathrm{J}}^{\sigma}\right)} .
\end{aligned}
$$

 $\left.\bar{t}_{\mathrm{J}}^{\sigma}\right) \sigma=3, \ldots, j \cdot 2$, tvdi ubuuif tvctfu $\bar{t}_{\mathrm{J}}^{\sigma}$ dpotjt tt pgpof fufinfouporfiA' $\bar{t}_{\mathrm{J}}^{\sigma}=2 /$ Uif tvn $j t$ iblfo pufs bmqusuiupot pgi jt ufiqf/ a f tfucfi ef-ojupo $\bar{t}_{J}^{2} \leq z$ boe $\bar{t}^{N+2}=\emptyset /$

Xf vtfe uif gpmpx joh opubupo jo Qspqptjuipo 5/2

$$
\begin{aligned}
& \left.\left.\left.\mathbb{B}(\} z, \bar{t}^{2 \mid} ;\right\} \bar{t}^{k \mid}{ }_{3}^{N}\right)=\mathbb{B}(\} z, \bar{t}^{2 \mid} ; \bar{t}^{3} ; \ldots ; \bar{t}^{N}\right), \\
& \left.\left.\left.\mathbb{B}(\} \bar{t}^{2 \mid} ;\right\} \bar{t}_{J}^{k \mid}{ }_{3}^{j \cdot 2} ;\right\} \bar{t}^{k \mid} \begin{array}{c}
N \\
j
\end{array}\right)=\mathbb{B}\left(\bar{t}^{2} ; \bar{t}_{\mathbb{I}}^{3} ; \ldots ; \bar{t}_{\mathrm{J}}^{j \cdot 2} ; \bar{t}^{j} ; \ldots ; \bar{t}^{N}\right) .
\end{aligned}
$$

Ui jt boe tjn jrbs opubjpo x jmcf vtfe uispvhi pvupgu f qbqfs ${ }^{\prime}$

Sfnbsl Xftusftt u bufbdi pguiftvctfut $\bar{t}_{\mathrm{J}}^{3}, \ldots, \bar{t}_{\mathrm{J}}^{N}$ jo $) 5 / 2^{*} \mathrm{n}$ vtudpotjtupg fybdun pof frif. n fou I px fufs-i jt dpoejupo jt opugftjcrfi-jguif psjhjobnCfuif wf dus $\mathbb{B}(t)$ dpobjot bo fn qu $\mathrm{tfu} \bar{t}^{k}=\emptyset \mathrm{gps} \operatorname{tpn} \mathrm{f} k \in[3, \ldots, N] /$ Jo uijt dbtf-uiftvn pufs j jo $) 5 / 2^{*}$ csfblt pge bu $j=k /$ Joeffe-uif bdujpo pg if pqfsbupst $T_{2, j}(z) \times$ jui $j>k$ po b Cfuif wfdups ofdfttbsjin dsfbuft b r vbtjqbssidrfi pguif dpps $k /$ Tjodf ij jt r vbtjqbsujdrfijt betfoujo uif mit pg$) 5 / 2^{*}$ x f dboopui buf úf pqfsbupst $T_{2, j}(z) \mathrm{x}$ ju $j>k$ jo uif sit/ Tjn jrbs dpotjef sbupo tipx $\mathrm{t} \mathbf{u}$ bujg $\mathbb{B}(t)$ dpoobjot tfufsbnfn que tfut $\bar{t}^{k_{2}}, \ldots, \bar{t}^{k_{\ell}}$ - u fouif tvn foet bu $j=\mathrm{n}$ jo $\left(k_{2}, \ldots, k_{\ell}\right) /$

Sfn bsl Pof dbo opyidf ui bugps $m=2$ bo beejugpobngbdups $h\left(\bar{t}^{2}, z\right)^{\cdot 2}$ bqqfbst jo uif sfdvstjpo/ Uif qpjoujt u bux jui ujt sfdvstjpo xf bee brvbtjqbsudrfi pguif dpps 2 p uif psjhjobmtfupg r vbtjqbsudrfit wib uif bdujpot pguif pqfsbupst $T_{2, j} / \mathrm{Gps} m=2$ bmi ftf pqfsbupst bsf pee-x i jdi
 fybn quri pgsfdvstjpo gpsuifn bjo ufsn)4/24*

$$
\left.\left.\widetilde{\mathbb{B}}(\} z, \bar{t}^{2 \mid} ;\right\} \bar{t}^{k \mid}{ }_{3}^{N}\right)=\frac{T_{2,3}(z) \widetilde{\mathbb{B}}(\bar{t})}{h\left(\bar{t}^{2}, z\right)^{\eta_{m, 2}} v_{3}(z) f_{[3]}\left(\bar{t}^{3}, z\right)} .
$$

Vtjoh uifn bqqjoht) $4 / 26^{*}$ boe) $4 / 31$ * pof dbo pcubjo pof n psf sfdvstjpo gpsuif Cfuif ufdupst boe uxp sfdvstjpot gps uif evbmpoft/

Rspr ptklpo 5B1Cfuif ufdupst pggl(m|n).cbtfe n pefm tbuit git bsfdvstjpo

$$
\begin{align*}
& \mathbb{B}(\} \bar{t}_{2}^{k \mid}{\left.\underset{2}{N \cdot 2} ;\} z, \bar{t}^{N \mid}\right)=}^{\left.\left.\sum_{j=2}^{N} \frac{T_{j, N+2}(z)}{v_{N+2}(z)} \sum_{\mathrm{qbsu}\left(\bar{t} j, \ldots, \bar{t}^{N \cdot 2}\right)} \mathbb{B}(\} \bar{t}^{k \mid} 2_{2}^{j \cdot 2} ;\right\} \bar{t}_{\mathrm{J} \mid}^{k \mid}{ }_{j}^{N \cdot 2} ; \bar{t}^{N}\right)} \\
& * \frac{\prod_{\sigma=j}^{N \cdot 2} g_{[\sigma+2]}\left(\bar{t}_{\mathrm{J}}^{\sigma+2}, \bar{t}_{\mathrm{J}}^{\sigma}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{h\left(\bar{t}^{N}, z\right)^{\eta_{m, N}} \prod_{\sigma=j}^{N} f_{[\sigma]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}^{\sigma \cdot 2}\right)}
\end{align*}
$$

Ifsf gss $j<N$ if tfut pgCfuif qbsbnfyfst $\bar{t}^{j}, \ldots, \bar{t}^{N \cdot}{ }^{2}$ bsf ejujefe joup ejtkpjoutvctfut $\bar{t}_{\mathrm{J}}^{\sigma}$ boe $\left.\bar{t}_{\mathrm{J}}^{\sigma}\right) \sigma=j, \ldots, N \cdot 2$, tvdi ui buuif tvctfu $\bar{t}_{\mathrm{J}}^{\sigma}$ dpotjtut pgpof fufin fouA ${ }^{\prime} \bar{t}_{\mathrm{J}}^{\sigma}=2$ Uif tvn jt ublfo pufs brmqbsijupot pgii jt ufiqf/af tfucfi ef-ojupo $\bar{t}_{\mathrm{J}}^{N} \leq z$ boe $\bar{t}^{1}=\emptyset /$

Sfnbsl Jguif Cfuifufdus $\mathbb{B}(t)$ dpoobjot t fuf sbmfnqutfut $\bar{t}^{k_{2}}, \ldots, \bar{t}^{k_{\ell}}$ - u fouiftvn pufs j jo $) 5 / 5^{*}$ cfhjot x ju $j=\mathrm{n}$ by $\left(k_{2}, \ldots, k_{\ell}\right)+2 /$
 sfdvstjpot gps uif evbnCfuif ufdupst/

Dpspmhsfi 521EvbmCfuif uf dpst pggl(m|n). cbtfe n pefnt tbütgi sfdvstjpot

$$
\begin{align*}
\left.\left.\mathbb{C}(\} z, \bar{s}^{2 \mid} ;\right\} \bar{s}^{k \mid}{ }_{3}^{N}\right)= & \left.\left.\left.\sum_{j=3}^{N+2} \sum_{\mathrm{qbsL}\left(\bar{s}^{3}, \ldots, \bar{s}^{j \cdot 2}\right)} \mathbb{C}(\} \bar{s}^{2 \mid} ;\right\} \bar{s}_{\mathrm{J} \mid}^{k} 3_{3}^{j \cdot 2} ;\right\} \bar{s}^{k \mid}{ }_{j}^{N}\right) \frac{T_{j, 2}(z)}{v_{3}(z)}(\cdot 2)^{r_{2} \eta_{m, 2}} \\
& * \frac{\prod_{\sigma=3}^{j \cdot 2} \gamma_{\sigma}\left(\bar{s}_{\mathrm{J}}^{\sigma}\right) g_{[\sigma]}\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma \cdot 2}\right) \delta_{\sigma}\left(\bar{s}_{\mathrm{JI}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right)}{h\left(\bar{s}^{2}, z\right)^{\eta_{m, 2}} \prod_{\sigma=2}^{j \cdot 2} f_{[\sigma+2]}\left(\overline{s^{\sigma+2}}, \bar{s}_{\mathrm{J}}^{\sigma}\right)}
\end{align*}
$$

boe

$$
\begin{aligned}
\left.\left.\mathbb{C}(\} \bar{s}^{k \mid} \mid{ }_{2}^{N \cdot 2} ;\right\} z, \bar{s}^{N \mid}\right)= & \left.\left.\sum_{j=2}^{N} \sum_{\text {qbsu } \left.\bar{s} j, \ldots, \bar{s}^{N \cdot 2}\right)} \mathbb{C}(\} \bar{s}^{k \mid j \cdot 2} ;\right\} \bar{s}_{\mathrm{J}}^{k \mid}{ }_{j}^{N \cdot 2} ; \bar{s}^{N}\right) \frac{T_{N+2, j}(z)}{v_{N+2}(z)}(\cdot 2)^{r_{N} \eta_{m, N}} \\
& * \frac{\prod_{\sigma=j}^{N \cdot 2} g_{[\sigma]}\left(\bar{s}_{\mathrm{J}}^{\sigma+2}, \bar{s}_{\mathrm{J}}^{\sigma}\right) \delta_{\sigma}\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right)}{h\left(\bar{s}^{N}, z\right)^{\eta_{m, N}} \prod_{\sigma=j}^{N} f_{[\sigma]}\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}^{\sigma \cdot 2}\right)}
\end{aligned}
$$

I fsf uf tvn n buppo pufs uif qbsuypot pddvst bt jo uif gosn vobt)5/2* boe)5/5* Uif ovn cfst r_{2})sftq/ r_{N}, bsf uif dbsejobringt pgif tfut $\left.\bar{s}^{2}\right) s f t q / \bar{s}^{N}$,/Uif tvctfit $\bar{s}_{\mathrm{J}}^{\sigma}$ dpotjtupgpof funinfouA , $\bar{s}_{\mathrm{J}}^{\sigma}=2 / J g \mathbb{C}(\bar{s})$ dpobjjot fn qufitfut pguif Cfuif qbsbnfufst-uifo uif tvnt dvutjn jobshfi p uif dbtf pgiif Cfuif ufdipst $\mathbb{B}(\bar{t}) /$ Cfi ef-ojupo $\bar{s}_{\mathrm{J}}^{2} \leq z$ jo $) 5 / 6^{*} \bar{s}_{\mathrm{J}}^{N} \leq z$ jo $) 5 / 7^{*}$ - boe $\bar{s}^{1}=\bar{s}^{N+2}=\emptyset /$

Uif qsppgpg Dpspriszz $5 / 2$ jt hjufo jo t d dujpo 6/3/

Vt joh sfdvstjpo)5/2* pof dbo fyqsftt b Cfuif ufdups x jui' $\bar{t}^{2}=r_{2}$ jo ufsn t pgCfuif wfdupst

 Zbohjbo $Y(\mathfrak{g l}(m \cdot 2 \mid n)))$ tff $] 3$: ‘*,

$$
\mathbb{B}^{m \mid n}\left(\emptyset ;\left\{\bar{t}^{k}\right\}_{3}^{N}\right)=\mathbb{B}^{m \cdot 2 \mid n}(\bar{t})\left(\tilde{t}^{k} \rightarrow \bar{t}^{k+2}\right.
$$

 $Y(\mathfrak{g l}(2 \mid n)) /$

Tjn jrbsru- vtjoh sfdvstjpo)5/5* boe

$$
\mathbb{B}^{m \mid n}\left(\left\{\left\{^{-k}\right\}_{2}^{N \cdot 2} ; \emptyset\right)=\mathbb{B}^{m \mid n \cdot 2}(\bar{t})\right.
$$

$\mathrm{x} f$ fufounbm sfevdf Cfuif wfdust $\operatorname{pg} Y(\mathfrak{g l}(m \mid n))$ p uif poft $\mathrm{pg} Y(\mathfrak{g l}(m \mid 2)) /$ Uif dpn cjobujpo pgcpui sfdvstjpot uivt ef-oft bvojr vf qspdfevsf gps dpotusvdyoh Cfuif wfdupst x ju sftqfduy u f lopx o Cfuif uf dupst $\operatorname{pg} Y(\mathfrak{g l}(2 \mid 2)) ; \mathbb{B}^{2 \mid 2}(\bar{t})=\mathbb{T}_{2,3}(\bar{t})|1\rangle / \nu_{3}(\bar{t}) /$ Tjn jrmsmb- pof dbo cvjmevbm Cfuif ufdupst wib)5/6*) 5/7* Ui ftf qspdfevsft-pgdpvstf-bsf pgyiuri vtf gps qsbduidbnqusqptfti px fufs-uifz dbo cf vtfe uq qspuf wbsjpvt bttfsupot cz joevdujpo/

5/3/ Tvn gpsn vro gps if tdbrbs qspevdu

MuB (\bar{t}) cf b hfofsjd Cfuif wf dups boe $\mathbb{C}(\bar{s})$ cf b hfofsjd evbmCfuif wf dups tvdi u bu' $\bar{t}^{k}=$ ${ }^{\prime} \bar{s}^{k}=r_{k}-k=2, \ldots, N /$ Ui fou ifjs tdbrbs qspevdujt ef - ofe cz

$$
S(\bar{s} \mid \bar{t})=\mathbb{C}(\bar{s}) \mathbb{B}(\bar{t})
$$

Opuf ui bujg' $\bar{t}^{k} \neq{ }^{\prime} \bar{s}^{k}$ gpstpn $\mathrm{f} k \in\{2, \ldots, N\}$ - uifo u f tdbrhs qspevdunbojti ft/Joeffe-jo uijt dbtf uif ovn cfst pgdsfbuypo boe booji jibuypo pqfsbupst pguif dpps k ep opudpjodjef/

Bqqrajoh $) 4 / 33^{*}$ p u if tdbrbs qspe vduboe vt joh $] \mathbb{B}(\bar{t})\{=] \mathbb{C}(\bar{t})\left\{=r_{m}\right] 3$: ' $\mathrm{x} \mathrm{f}-\mathrm{oe} \mathbf{u}$ bu

$$
S(\bar{s} \mid \bar{t})=\mathbb{C}(\bar{t}) \mathbb{B}(\bar{s})=S(\bar{t} \mid \bar{s})
$$

Dpn qvioh uiftdbrbs qspe vdupof ti pvre vtf dpn n vbbupo sf rbuypot) $3 / 6^{*}$ boe n puf bmpqfs. bupst $T_{i, j} \mathrm{x}$ ju $i>j$ gspn úf evbmufdups $\mathbb{C}(\bar{s})$ p uif sjhi ui spvhi uif pqfsbupst $T_{i, j} \times \mathrm{jui} i<j$ x ijdi bsf jo uif wf dups $\mathbb{B}(\bar{t}) /$ Jo uif qspdftt pg dpn n vbuypo- of x pqfsbupst x jmbqqfbs- x i jdi
 bo pqfsbups $T_{i, j} \mathrm{x}$ jui $i \sim j$ sfbdift uif wfdup $|1\rangle$ - jufjuifs booji jimuft jugps $i>j$ - ps hjuft b
gvoduypo v_{i} gns $i=j /$ Uif bshvn foupg uif gvodypo v_{i} dbo b qsjpsj cf boz Cfuif qbsbn fufs t_{ℓ}^{k} ps $s_{\ell}^{k} /$ Tjn jrbsm- jg bo pqfsbups $T_{i, j} \times$ jui $i \geq j$ sf bdi ft uif ufdups $\langle 1|-$ jufju fs booji jrhuft jugps $i<j$-ps hjuft b gvodypo v_{i} gps $i=j$-xijdi efqfoet po pof pguif Cfuif qbsbn fufst/
 Ui vt-uif tdbrhs qspevdufufourbn efqfoet po uif gvodypot γ_{i} boe tpn f sbypobmgvodypot x i jdi bqqfbs jo uif qspdftt pgdpn n vubujoh uif n popespn z n busjy fousjft/

Uif gpmx joh qspqptjupo tqfdj-ft ipx uiftdbrhs qspevduefqfoet po uif gvodypot $\gamma_{i} /$
Rspr ptkdpo 541Mf $u \mathbb{B}(\bar{t})$ cf b hfofsjd Cfuif uf dups boe $\mathbb{C}(\bar{s})$ cf b hfofsjd evbmCfuif ufdups tvdi u bu' $\bar{t}^{k}={ }^{\prime} \bar{s}^{k}=r_{k}-k=2, \ldots, N /$ Uifo uifjs tdbrbs qspevdujt hjufo cfi

$$
S(\bar{s} \mid \bar{t})=\sum W_{\mathrm{qbsu}}^{m \mid n}\left(\bar{s}_{\mathrm{J}}, \bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}, \bar{t}_{\mathrm{J}}\right) \prod_{k=2}^{N} \gamma_{k}\left(\bar{s}_{\mathrm{J}}^{k}\right) \gamma_{k}\left(\bar{t}_{\mathrm{J}}^{k}\right) .
$$

Ifsf bmif tfut pguif Cfuif qbsbnfufst \bar{t}^{k} boe \bar{s}^{k} bsf ejwiefe joup uxp tvctfut $\bar{t}^{k} \Rightarrow\left\{\bar{t}_{J}^{k}, \bar{t}_{J}^{k}\right\}$ boe $\bar{s}^{k} \Rightarrow\left\{\bar{s}_{\mathrm{J}}^{k}, \bar{s}_{\mathrm{J}}^{k}\right\}$-tvdi ui bu' $\bar{t}_{\mathrm{J}}^{k}={ }^{\prime} \bar{s}_{\mathrm{J}}^{k} /$ Uif tvn jt lblfo pufs bmapttjcrıi qbsuiupot pgii jt ufiqf/
 R.n busjy pguif n pefmboe ep opuefqfoe po if sbujpt pgif ubdvvn fjhfonbmft $\gamma_{k} /$

Qspqptjupo $5 / 4$ tubuft u bubgifs dbrdvibuioh uif tdbrbs qspevduu f Cfuif qbsbn fufst pguif uqf $k) t_{j}^{k} \mathrm{ps} s_{j}^{k} *$ dbo cf bshvn fout pggvoduypot $v_{k+2} \mathrm{ps} v_{k}$ porv/Evf puif opsn bigibibupo pguif Cfuif wf dupst uift gvodupot sftqfduyfu dbodfmjo uif -studbtf ps qspevdf uif gvodupot γ_{k} jo uif tf dpoe dbtf/Xf qspuf Qspqptjuppo 5/4 jo tf dujpo 7/2/
 uf RJTN gsbnfxpsl uf I bn jmpojbo pgbrvbounn n pefmit fodpefe jo uiftvqfsubbdf pg if n popespn z n busjy $T(u) /$ Ui vt-pof dbo tbz ui bui f r vbown n pefnit ef-ofe cz $T(u) / \mathrm{Mppl}$ joh buqsft foubjpo $) 5 / 22^{*}$ pof dbo opydf u buíf n pef nefqfoefouqbsupguiftdbrhs qspevdufoujsf n ẏft jo uif γ_{k} gvodupot-cfdbvtf pon uftf gvodypobmqbsb fufst efqfoe po uif n popespn z
 ui bujt- ufz efqfoe porn po uif voefsmjoh brhfcsb/ Ui vt-jg ux p ejggf sfour vbown joufhsbcrif
 bsf hjufo ocz)5/22*x ju uiftbn f dpfg-djfout $W_{\mathrm{qbsu}}^{m \mid n} /$

Uif I jhiftuDpfg-djfou)I D*pguiftdbrhs qspevdujt ef-ofe bt b sbujpobmdpfg-djfoudpssf. t qpoejoh p uif qbsujupo $\bar{s}_{\mathrm{J}}=\bar{s}-\bar{t}_{\mathrm{J}}=\bar{t}$ - boe $\bar{s}_{\mathrm{J}}=\bar{t}_{\mathrm{JI}}=\emptyset / \mathrm{Xf}$ efopuf uf I D cz $Z^{m \mid n}(\bar{s} \mid \bar{t}) /$ Ui fouf I Djt b qbsuddvrbs dbtf pguif sbypobndpf g-djfou ${ }^{3} W_{\text {qbsu }}^{m \mid n}$;

$$
W_{\mathrm{qbsu}}^{m \mid n}(\bar{s}, \emptyset \mid \bar{t}, \emptyset)=Z^{m \mid n}(\bar{s} \mid \bar{t}) .
$$

Tjn jibssm pof dbo ef-of bdpokvhbufe I D $\bar{Z}^{m \mid n}(\bar{s} \mid \bar{t})$ bt b dpf g -djfoudpssftqpoejoh p uif qbsuiupo $\bar{s}_{\mathrm{IJ}}=\bar{s}-\bar{t}_{\mathrm{JI}}=\bar{t}$-boe $\bar{s}_{\mathrm{J}}=\bar{t}_{\mathrm{J}}=\emptyset /$

$$
W_{\mathrm{qbsu}}^{m \mid n}(\emptyset, \bar{s} \mid \emptyset, \bar{t})=\overline{\mathrm{Z}}^{m \mid n}(\bar{s} \mid \bar{t}) .
$$

Evf φ) $5 / 21^{*}$ pof dbo fbtjru ti px ui bu

[^8]$$
\bar{Z}^{m \mid n}(\bar{s} \mid \bar{t})=Z^{m \mid n}(\bar{t} \mid \bar{s})
$$

Rsprpthlpo 561Gps b-yfe qbsuiypo $\bar{t}^{k} \Rightarrow\left\{\bar{t}_{\mathrm{J}}^{k}, \bar{t}_{\mathrm{II}}^{k}\right\}$ boe $\bar{s}^{k} \Rightarrow\left\{\bar{s}_{\mathrm{J}}^{k}, \bar{s}_{\mathrm{J}}^{k}\right\}$ jo $) 5 / 22 *$ if sbiypobmdpf g -dif ou $W_{\mathrm{qbsu}}^{m \mid n}$ ibt if gompx joh qsftfolbipo jo ufsn t pgif I DA
$$
W_{\mathrm{qbsu}}^{m \mid n}\left(\bar{s}_{\mathrm{J}}, \bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}, \bar{t}_{\mathrm{IJ}}\right)=Z^{m \mid n}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right) Z^{m \mid n}\left(\bar{t}_{\mathrm{IJ}} \mid \bar{s}_{\mathrm{J}}\right) \frac{\prod_{k=2}^{N} \delta_{k}\left(\bar{s}_{\mathrm{J}}^{k}, \bar{s}_{\mathrm{J}}^{k}\right) \delta_{k}\left(\bar{t}_{\mathrm{J}}^{k}, \bar{t}_{\mathrm{J}}^{k}\right)}{\prod_{j=2}^{N \cdot 2} f_{[j+2]}\left(\bar{s}_{\mathrm{J}}^{j+2}, \bar{s}_{\mathrm{J}}^{j}\right) f_{[j+2]}\left(\bar{t}_{\mathrm{J}}^{j+2}, \bar{t}_{\mathrm{J}}^{j}\right)} .
$$
)5/26*
Ui f qsppg pg Qspqptjujpo $5 / 5$ jt hjufo jo tfdujpo 7/3/
Fyqu̇djufyqsfttjpot gps if I D bsf lopx o gpstn bmm boe $n] 26^{\circ} /$ Jo qbsudvibs-
$$
Z^{2 \mid 2}(\bar{s} \mid \bar{t})=g(\bar{s}, \bar{t})
$$

 hfofsbmgl $(m \mid n)$ dbtf bsf wf $s z$ dvn cfstpn $f /$ Jotufbe- pof dbo vtf sf rhuivfin tjn qrif sf dvstjpot ft ubcẏtife cz uif gpmx joh qspqptjupot/

Rspr ptkupo 5161Uif I D $Z^{m \mid n}(\bar{s} \mid \bar{t})$ qpttfttft if gnmex joh sfdvstjpo pufs if tfu $\bar{s}^{2} A$

$$
\begin{aligned}
Z^{m \mid n}(\bar{s} \mid \bar{t})= & \sum_{p=3}^{N+2} \sum_{\substack{\mathrm{qbsu}\left(\bar{s}^{3}, \ldots, \bar{s}^{p \cdot 2}\right) \\
\mathrm{qbss}\left(\bar{t}^{2}, \ldots, \bar{t}^{p} \cdot 2\right.}} \frac{g_{[3]}\left(\bar{t}_{\mathrm{J}}^{2}, \bar{s}_{\mathrm{J}}^{2}\right) \delta_{2}\left(\bar{t}_{\mathrm{J}}^{2}, \bar{t}_{\mathrm{I}}^{2}\right) f\left(\bar{t}_{\mathrm{J}}^{2}, \bar{s}_{\mathrm{J}}^{2}\right)}{f_{[p]}\left(\bar{s}^{p}, \bar{s}_{\mathrm{J}}^{p \cdot 2}\right) h\left(\bar{s}^{2}, \bar{s}_{\mathrm{J}}^{2}\right)^{\eta_{m, 2}}} \\
& * \prod_{\sigma=3}^{p \cdot 2} \frac{g_{[\sigma]}\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma \cdot 2}\right) g_{[\sigma+2]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma \cdot 2}\right) \delta_{\sigma}\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{f_{[\sigma]}\left(\bar{s}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma \cdot 2}\right) f_{[\sigma]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}^{\sigma \cdot 2}\right)} \\
& \left.\left.\left.\left.* Z^{m \mid n}(\} \bar{s}_{\mathrm{J}}^{k \mid}{ }_{2}^{p \cdot 2},\right\} \bar{s}^{k \mid}{ }_{p}^{N} \mid\right\} \bar{t}_{\mathrm{J}}^{k \mid} \mid{ }_{2}^{p \cdot 2} ;\right\} \bar{t}^{k \mid}{ }_{p}^{N}\right) .
\end{aligned}
$$

Ifsf gosfufsfi-yfe $p \in\{3, \ldots, m+n\}$ uif tvnt bsf iblfo pufs qbsuiujot $\bar{t}^{k} \Rightarrow\left\{\bar{t}_{\mathrm{J}}^{k}, \bar{t}_{J}^{k}\right\} \times j u$ $k=2, \ldots, p \cdot 2$ boe $\bar{s}^{k} \Rightarrow\left\{\bar{s}_{J}^{k}, \bar{s}_{\mathrm{J}}^{k}\right\}$ xjui $k=3, \ldots, p$ 2- tvdi ui bu' $\bar{t}_{J}^{k}={ }^{\prime} \bar{s}_{J}^{k}=2$ ggs $k=$ 3, ..., p. 2/Uif tvctfu \bar{s}_{J}^{2} jt b-yfe Cfuif qbsbnfyfs gspn if tfus $\bar{s}^{2} /$ Uifsf $j t$ op tvn pufs qbsiujpot pguif tfu \bar{s}^{2} jo $5 / 28$ *

Ui f qsppgpgui jt qspqptjuypo jt hjufo jo tfdujpo 8/2/
Dpspnhsfi 5B1Uif I D $Z^{m \mid n}(\bar{s} \mid \bar{t})$ tbuit-ft uif grmx joh sfdvstjpo pufs if tfut $\bar{t}^{N} A$

$$
\begin{aligned}
Z^{m \mid n}(\bar{s} \mid \bar{t})= & \sum_{p=2}^{N} \sum_{\substack{\left.\mathrm{qbsu} \bar{s}^{p}, \ldots, \bar{s}^{N}\right) \\
\mathrm{qbsu}\left(\bar{t} p, \ldots, \bar{t}^{N \cdot 2}\right)}} \frac{g\left(\bar{s}_{\mathrm{J}}^{N}, \overline{\mathrm{I}}_{\mathrm{J}}^{N}\right) \delta_{N}\left(\bar{s}_{\mathrm{J}}^{N}, \bar{s}_{\mathrm{J}}^{N}\right) f\left(\bar{s}_{\mathrm{J}}^{N}, \bar{t}_{\mathrm{J}}^{N}\right)}{f_{[p]}\left(\bar{t}_{\mathrm{J}}^{p}, \bar{t}^{p \cdot 2}\right) h\left(\bar{t}^{N}, \bar{t}_{\mathrm{J}}^{N}\right)^{\eta_{m, N}}} \\
& * \prod_{\sigma=p}^{N \cdot 2} \frac{g_{[\sigma+2]}\left(\bar{s}_{\mathrm{J}}^{\sigma+2}, \bar{s}_{\mathrm{J}}^{\sigma}\right) g_{[\sigma+2]}\left(\bar{t}_{\mathrm{J}}^{\sigma+2}, \bar{t}_{\mathrm{J}}^{\sigma}\right) \delta_{\sigma}\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{f_{[\sigma+2]}\left(\bar{s}^{\sigma+2}, \bar{s}_{\mathrm{J}}^{\sigma}\right) f_{[\sigma+2]}\left(\bar{t}_{\mathrm{J}}^{\sigma+2}, \bar{t}^{\sigma}\right)} \\
& \left.\left.\left.\left.* Z^{m \mid n}(\} \bar{s}^{k \mid}{ }_{2}^{p \cdot 2},\right\} \bar{s}_{\mathrm{J}}^{k \mid}{ }_{p}^{N} \mid\right\} \bar{t}^{k \mid} \mid{ }_{2}^{p \cdot 2} ;\right\} \bar{t}_{\mathrm{J}}^{k \mid}{ }_{p}^{N}\right) .
\end{aligned}
$$

Ifsf ggs fufsfi -yfe $p \in\{2, \ldots, m+n \cdot 2\}$ uif tvnt bsf iblfo pufs qbsiyigpot $\bar{t}^{k} \Rightarrow\left\{\bar{t}_{\mathrm{J}}^{k}, \bar{t}_{\mathrm{I}}^{k}\right\}$ x jui $k=p, \ldots, N \cdot 2$ boe $\bar{s}^{k} \Rightarrow\left\{\bar{s}_{\mathrm{J}}^{k}, \bar{s}_{\mathrm{J}}^{k}\right\}$ x jui $k=p, \ldots, N$ - tvdi u $\mathrm{bu}{ }^{\prime} \bar{t}_{\mathrm{J}}^{k}=, \bar{s}_{\mathrm{J}}^{k}=2$ ggs $k=$ $p, \ldots, N \cdot 2 / U i f$ tvctfu \bar{t}_{J}^{N} jt $b-y f e$ Cfuif qbsbnfufs gspn uf tfu $\bar{t}^{N} /$ Uifsf jt op tvn pufs qbsyujpot pguif tfut \bar{T}^{N} jo)5/29*
 ypo 8/3/
 pgosgI D $Z^{m \mid n}(\bar{s} \mid \bar{t})$ dpobjot fnque tfut pguif Cfúf qbsbn fufst/Jguif dppst pguif fnque ffu bsf $\left\{k_{2}, \ldots, k_{\ell}\right\}$ - u fouif tvn pufs p foet bu $p=\mathrm{n}$ jo $\left(k_{2}, \ldots, k_{\ell}\right)$ jo uf sfdvstjpo $) 5 / 28^{*}$ x x jrf
 dpssftqpoejoh sftusjdujpot jo uif sfdvstjpot gps uf Cfuif ufdupst/

Vtjoh Qspqptjupo $5 / 6$ pof dbo cvjmuif I D x ju ${ }^{\prime} \bar{s}^{2}={ }^{\prime} \bar{t}^{2}=r_{2}$ joufsnt pg uif I D x jui ${ }^{\prime} \bar{s}^{2}={ }^{\prime} \bar{t}^{2}=r_{2}$ 。2/ Jo qbsudvibs- $Z^{m \mid n} \times$ ju ${ }^{\prime} \bar{s}^{2}={ }^{\prime} \bar{t}^{2}=2$ dbo cf fyqsfttfe jo uf sn $\mathrm{tgg} Z^{m \mid n}$ x jui ${ }^{\prime} \bar{s}^{2}={ }^{\prime} \bar{t}^{2}=1 /$ Jujt pcwjpvt-i px fuf $\mathrm{s}-\mathrm{u}$ bu

$$
Z^{m \mid n}\left(\emptyset,\left\{\bar{s}^{k}\right\}_{3}^{N} \mid \emptyset,\left\{\bar{t}^{k}\right\}_{3}^{N}\right)=Z^{m \cdot 2 \mid n}\left(\left\{\bar{s}^{k}\right\}_{3}^{N} \mid\left\{\bar{t}^{k}\right\}_{3}^{N}\right)
$$

 x ju ${ }^{\prime} \overline{\bar{s}}^{N}={ }^{\prime} \bar{t}^{N}=r_{N} \cdot 2$ boe ч qf sgpsn sfdvstjpo pufs $n /$

Ui vt-vtjoh sfdvstjpot) $5 / 28^{*}$ boe) $5 / 29^{*}$ pof dbo fufourbm fyqsftt $Z^{m \mid n}(\bar{s} \mid \bar{t})$ jo ufsn t pg lopx o I D- tbz- gps $m+n=3$ / I px fufs- uif dpssftqpoejoh fyquidjufyqsfttjpot i bsern dbo cf
 vtfgvmgs qsppg pgtpn fin qpsubouqspqfsuft pgI D/

5/4/ Tjn qün-fe fyqsfttjpot gps n pefrn x jui $\mathfrak{g l}(m)$ tfin $n f u s f i$

 $\mathfrak{g l}(m) /$

$$
\begin{align*}
\left.\left.\mathbb{B}(\} z, \bar{t}^{2 \mid} ;\right\}\left.\bar{t}_{3}^{k \mid}\right|_{3 \cdot 2} ^{m \cdot 2}\right)= & \left.\left.\sum_{j=3}^{m} \frac{T_{2, j}(z)}{v_{3}(z)} \sum_{\mathrm{qbs}\left(\bar{t}^{3}, \ldots, \bar{t}^{j} \cdot 2\right.} \mathbb{B}(\} \bar{t}^{2 \mid} ; \mid \bar{t}_{\mathrm{J}}^{k \mid} 3_{3}^{j \cdot 2} ;\right\}\left.\bar{t}_{j}^{k \mid}\right|_{j} ^{m \cdot 2}\right) \\
& * \frac{\prod_{\sigma=3}^{j \cdot 2} \gamma_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}\right) g\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma \cdot 2}\right) f\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{\prod_{\sigma=2}^{j \cdot 2} f\left(\bar{t}^{\sigma+2}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}
\end{align*}
$$

xifsf uf dpoejupot po tfut pgCfuif qbsbn fufst bsf uiftbn ft jo Qspqptjuppo 5/2-

$$
\begin{aligned}
\left.\left.\left.\mathbb{B}(\} \bar{t}_{2}^{k \mid}\right|_{2} ^{m \cdot 3} ;\right\} z, \bar{t}^{m \cdot 2 \mid}\right)= & \left.\left.\sum_{j=2}^{m \cdot 2} \frac{T_{j, m}(z)}{v_{m}(z)} \sum_{\mathrm{qbsu}\left(\bar{t}_{j}, \ldots, \bar{t}^{m \cdot 3}\right)} \mathbb{B}\left(\mid \bar{t}^{k \mid}{ }_{2}^{j \cdot 2} ;\right\} \bar{t}_{\mathrm{J}}^{k}\right|_{j} ^{m \cdot 3} ; \bar{t}^{m \cdot 2}\right) \\
& * \frac{\prod_{\sigma=j}^{m \cdot 3} g\left(\bar{t}_{\mathrm{J}}^{\sigma+2}, \bar{t}_{\mathrm{J}}^{\sigma}\right) f\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{\prod_{\sigma=j}^{m \cdot 2} f\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}^{\sigma \cdot 2}\right)}
\end{aligned}
$$

xifsf uf dpoejupot po tfut pg Cfuif qbsbn fufst bsf uftbnf bt jo Qspqptjupo 5/3/ Uif
t ubsuioh qpjougps uiftf sfdvstjpot jt uif $\mathfrak{g l}(3)$ Cfuif wf dups $\mathbb{B}(\bar{t})=T_{23}(\bar{t})|1\rangle / \nu_{3}(\bar{t}) /$
\equiv EvbnCfuif ufdust $\operatorname{pg} \mathfrak{g l}(m)$.cbtfe n pefintbutg $\mathbf{u} \mathrm{f}$ sfdvstjpot

$$
\begin{aligned}
\left.\left.\mathbb{C}(\} z, \bar{s}^{2 \mid} ;\right\}\left.\bar{s}^{k \mid}\right|_{3} ^{m \cdot 2}\right)= & \left.\left.\left.\sum_{j=3}^{m} \sum_{\mathrm{qbs}\left(\bar{s}^{3}, \ldots, \bar{s}^{j \cdot 2}\right)} \mathbb{C}(\} \bar{s}^{2 \mid} ;\right\} \bar{s}_{\mathrm{J}}^{k \mid} 3_{3}^{j \cdot 2} ;\right\}\left.\bar{s}_{j}^{k \mid}\right|_{j} ^{m \cdot 2}\right) \frac{T_{j, 2}(z)}{\nu_{3}(z)} \\
& * \frac{\prod_{\sigma=3}^{j \cdot 2} \gamma_{\sigma}\left(\bar{s}_{\mathrm{J}}^{\sigma}\right) g\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma \cdot 2}\right) f\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right)}{\prod_{\sigma=2}^{j \cdot 2} f\left(\bar{s}^{\sigma+2}, \bar{s}_{\mathrm{J}}^{\sigma}\right)}
\end{aligned}
$$

boe

$$
\begin{align*}
\left.\left.\left.\mathbb{C}(\} \bar{s}^{k \mid}\right|_{2} ^{m \cdot 3} ;\right\} z, \bar{s}^{m \cdot 2 \mid}\right)= & \left.\left.\sum_{j=2}^{m \cdot 2} \sum_{\mathrm{qbs}\left(\bar{s}^{j}, \ldots, \bar{s}^{m \cdot 3}\right)} \mathbb{C}(\} \bar{s}^{k \mid}{ }_{2}^{j \cdot 2} ;\right\} \bar{s}_{\mathrm{J}}^{k}{ }_{j}^{m \cdot 3} ; \bar{s}^{m \cdot 2}\right) \frac{T_{m, j}(z)}{v_{m}(z)} \\
& * \frac{\prod_{\sigma=j}^{m \cdot 3} g\left(\bar{s}_{\mathrm{J}}^{\sigma+2}, \bar{s}_{\mathrm{J}}^{\sigma}\right) f\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right)}{\prod_{\sigma=j}^{m \cdot 2} f\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}^{\sigma \cdot 2}\right)} .
\end{align*}
$$

Uif dpoejupot po uif tfut pgqbsbn fufst boe qbsuigupot bsf hjufo jo Dpspribsz 5/2/ Ui f tubsu joh qpjougps u ftf sfdvstjpot jt uif $\mathfrak{g l}(3)$ evbnCfuif wf dups $\mathbb{C}(\bar{t})=\langle 1| T_{32}(\bar{t}) / v_{3}(\bar{t}) /$
\equiv Gps b-yfe qbsuiuppo $\bar{t}^{k} \Rightarrow\left\{\bar{t}_{\mathrm{J}}^{k}, \bar{t}_{\mathrm{IJ}}^{k}\right\}$ boe $\bar{s}^{k} \Rightarrow\left\{\bar{s}_{\mathrm{J}}^{k}, \bar{s}_{\mathrm{IJ}}^{k}\right\}$ jo $) 5 / 22^{*} \mathbf{u}$ f sbypobmdpf g-djfou $W_{\text {qbsu }}^{m}$ i bt uif gpmx joh qsftfoubjpo jo uf sn t pguif I D;

$$
\left.W_{\mathrm{qbsu}}^{m}\left(\bar{s}_{\mathrm{J}}, \bar{s}_{\mathrm{J} \mid} \mid \bar{t}_{\mathrm{J}}, \bar{t}_{\mathrm{J}}\right)=Z^{m}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right) Z^{m}\left(\bar{t}_{\mathrm{J}} \mid \bar{s}_{\mathrm{JI}}\right) \frac{\prod_{k=2}^{m \cdot 2} f\left(\bar{s}_{\mathrm{J}}^{k}, \bar{s}_{\mathrm{J}}^{k}\right) f\left(\bar{t}_{\mathrm{J}}^{k}, \bar{t}_{\mathrm{J}}^{k}\right)}{\prod_{j=2}^{m \cdot 3} f\left(\bar{s}_{\mathrm{JI}}^{j+2}, \bar{s}_{\mathrm{J}}^{j}\right) f\left(\bar{t}_{\mathrm{J}}^{j+2}, \bar{t}_{\mathrm{J}}^{j}\right)} \quad\right) 5 / 35^{*}
$$

Jo uif $\mathfrak{g l (3)}$ boe $\mathfrak{g l (4) d b t f t} \mathbf{u} j t$ fyqsfttjpo sfevdft φ uif gpsn vrbt sftqfdujuf mpebjofe jo]6‘ boe 121"
$\equiv \operatorname{Uif}$ I D $Z^{m}(\bar{s} \mid \bar{t})$ qpttfttft uif gpmx joh sfdvstjpot;

$$
\begin{aligned}
Z^{m}(\bar{s} \mid \bar{t})= & \sum_{p=3}^{m} \sum_{\substack{\mathrm{qbsu}\left(\bar{s}^{3}, \ldots, \bar{s}^{p \cdot 2} \\
\mathrm{qbsu}\left(\bar{t}^{2}, \ldots, \bar{t}^{p \cdot 2}\right)\right.}} \frac{g\left(\bar{t}_{\mathrm{J}}^{2}, \bar{s}_{\mathrm{J}}^{2}\right) f\left(\bar{t}_{\mathrm{J}}^{2}, \bar{t}_{\mathrm{J}}^{2}\right) f\left(\bar{t}_{\mathrm{J}}^{2}, \bar{s}_{\mathrm{J}}^{2}\right)}{f\left(\bar{s}^{p}, \bar{s}_{\mathrm{J}}^{p \cdot 2}\right)} \\
& * \prod_{\sigma=3}^{p \cdot 2} \frac{g\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma \cdot 2}\right) g\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma \cdot 2}\right) f\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right) f\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{f\left(\bar{s}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma \cdot 2}\right) f\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}^{\sigma \cdot 2}\right)} \\
& \left.\left.\left.\left.* Z^{m}(\} \bar{s}_{\mathrm{JI}}^{k \mid} \mid{ }_{2}^{p \cdot 2},\right\} \bar{s}^{k \mid}{ }_{p}^{m \cdot 2} \mid\right\} \bar{t}_{\mathrm{JJ}}^{k \mid} \mid{ }_{2}^{p \cdot 2} ;\right\}\left.\bar{t}_{p}^{k \mid}\right|_{p} ^{m \cdot 2}\right),
\end{aligned}
$$

boe

$$
\begin{aligned}
& Z^{m}(\bar{s} \mid \bar{t})=\sum_{p=2}^{m \cdot 2} \sum_{\substack{\text { qbs(} \left.\bar{s}^{p}, \ldots, \bar{s}^{m \cdot 2}\right) \\
\mathrm{qbss}\left(\bar{t}^{p}, \ldots, \bar{t}^{m \cdot 3}\right)}} \frac{g\left(\bar{t}_{\mathrm{J}}^{m \cdot 2}, \bar{s}_{\mathrm{J}}^{m \cdot 2}\right) f\left(\bar{s}_{\mathrm{J}}^{m \cdot 2}, \bar{s}_{\mathrm{J}}^{m \cdot 2}\right) f\left(\bar{t}_{\mathrm{J}}^{m \cdot 2}, \bar{s}_{\mathrm{I}}^{m \cdot 2}\right)}{f\left(\bar{t}_{\mathrm{J}}^{p}, \bar{t}^{p \cdot 2}\right)} \\
& * \prod_{\sigma=p}^{m \cdot 3} \frac{g\left(\bar{s}_{\mathrm{J}}^{\sigma+2}, \bar{s}_{\mathrm{J}}^{\sigma}\right) g\left(\bar{t}_{\mathrm{J}}^{\sigma+2}, \bar{t}_{\mathrm{J}}^{\sigma}\right) f\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right) f\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{f\left(\bar{s}^{\sigma+2}, \bar{s}_{\mathrm{J}}^{\sigma}\right) f\left(\bar{t}_{\mathrm{J}}^{\sigma+2}, \bar{t}^{\sigma}\right)} \\
& \text { * } \left.\left.\left.\left.Z^{m}(\} \bar{s}^{k} \mid{ }_{2}^{p \cdot 2},\right\} \bar{s}_{\text {II }}^{k \mid}{ }_{p}^{m \cdot 2} \mid\right\} \bar{t}^{k} \mid{ }_{2}^{p \cdot 2} ;\right\} \bar{I}_{I}^{k} \mid{ }_{p}^{m \cdot 2}\right) \text {. }
\end{aligned}
$$

Uif dpoejupot po iftfut pg qbsbn fufst boe qbsuigipot bsf hjufo jo Qspqptjupo 5/6 boe Dpspmbsz 5/3/ I fsf-u f tubsuioh qpjou dpssftqpoet u uf $\mathfrak{g l}(3)$ dbtf- jo x i jdi $Z^{3}(\bar{s} \mid \bar{t})$ jt fr vbmp uif qbsujupo gvoduypo pguif tjy.uf sufy n pefmx ju epn bjo x bmepvoebsz dpoejupot]6-43\%

61 Rsppg pgsf dvstlpo gss Cfuif ufdupst

Pof dbo qspuf Qspqptjupo $5 / 2$ wib uif qpsn vibt pguif pqfsbupst $T_{2, j}(z)$ bdujpo poupuif Cfuif wfdups Ui ftf gpsn vrht x fsf efsjufe jo $] 3$: ‘

$$
\begin{aligned}
T_{2, j}(z) \mathbb{B}(\bar{t})= & \lambda_{j} \mathbb{B}\left(\left\{z, \bar{t}^{k}\right\}_{2}^{j \cdot 2} ;\left\{\bar{t}^{k}\right\}_{j}^{N}\right) \\
& \left.+\sum_{q=j+2}^{N+2} \sum_{\mathrm{qbsu}(\bar{t} j, \ldots, \bar{\tau} q \cdot 2} H_{q, j}(\mathrm{qbsu}) \mathbb{B}\left(\left\{z, \bar{t}^{k}\right\}_{2}^{j \cdot 2} ;\left\{z, \bar{t}_{\| J}^{k}\right\}_{j}^{q \cdot 2} ;\left\{\bar{t}^{k}\right\}_{q}^{N}\right) . \quad\right) 6 / 2^{*}
\end{aligned}
$$

Ifsf jouiftfdpoe yof gps fufsz q xf i buf btvn pufs qbsyigpot pguiftfut $\bar{t}^{j}, \ldots, \bar{t}^{q \cdot 2} /$ Uif dpf $g-\mathrm{djfou} \lambda_{j}$ jo) $6 / 2 *$ jt

$$
\lambda_{j}=v_{j}(z) f_{[j]}\left(\bar{t}^{j}, z\right) h\left(\bar{t}^{m}, z\right)^{[j]} .
$$

Uif dpfodjfou $H_{q, j}$ efqfoet pouif qbsuyipot boe ibt if gpsn

$$
\begin{aligned}
H_{q, j}(\mathrm{qbsu})= & f_{[q]}\left(\bar{t}^{q}, z\right) h\left(\bar{t}^{m}, z\right)^{[j]} h\left(\bar{t}_{\mathrm{J}}^{m}, z\right)^{[q] \cdot[j]} v_{q}(z) g_{[j]}\left(z, \bar{t}_{\mathrm{J}}^{q \cdot 2}\right) \\
& * \prod_{\sigma=j+2}^{q \cdot 2} g_{[\sigma]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma \cdot 2}\right) \prod_{\sigma=j}^{q \cdot 2} \sigma,
\end{aligned}
$$

x ifsf

$$
\sigma=\frac{\gamma_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{f_{[\sigma+2]}\left(\bar{t}^{\sigma+2}, \bar{t}_{\mathrm{J}}^{\sigma}\right)} .
$$

Opuf ì bujo $) 6 / 2 *$ íf pqfsbupst $T_{2, j}(z)$ bdupoup $\mathbb{B}(\bar{t})$ - x i jrfi jo $) 5 / 2 *$ i ftf pqfsbupst bdupoup

 cf gpsf tvctuiwuioh) $6 / 2 *$ joup sf dvstjpo $) 5 / 2 *$
 $\left\{\bar{t}^{3}, \ldots, \bar{t}^{j \cdot 2}\right\} \rightarrow\left\{\bar{t}_{\mathrm{IJ}}^{3}, \ldots, \bar{t}_{\mathrm{J}}^{j \cdot 2}\right\} /$ Ui f tfut $\left\{\bar{t}^{3}, \ldots, \bar{t}^{j \cdot 2}\right\}$ bqqfbs ponn jo uif gddupst $h\left(\bar{t}^{m}, z\right)^{[j]}$ boe $h\left(\bar{t}_{\mathrm{I}}^{m}, z\right)^{[q] \cdot[j]}$ - boe qspujefe ui bum $\in\{3, \ldots, j \cdot 2\} /$ Uijt jn qugft u bugps $m=2 \mathbf{u}$ fsf jt op sfqibdfn foup ep/ Gps $m>2-\mathrm{xf}$ i buf $[j]=2-\operatorname{cfdbvtf} j>m$ - boe $[q]=[j]-\operatorname{cfdbvtf} q>j /$ Ui fo-u f gbdups $h\left(\bar{t}_{\mathrm{J}}^{m}, z\right)^{[q] \cdot[j]}$ espqt pvut boe x ft i pvra porn sfqibdf $h\left(\bar{t}^{m}, z\right)^{[j]} \rightarrow h\left(\bar{t}_{\mathrm{J}}^{m}, z\right)^{[j]} /$ Ui vt-x f bssjuf buif gpmpx joh bduypo gpsn vrb;

$$
\begin{aligned}
& \left.\left.\left.T_{2, j}(z) \mathbb{B}(\} \bar{t}^{-2 \mid} ;\right\} \bar{t}_{\| J}^{k} \mid{ }_{3}^{j \cdot 2} ;\right\} \bar{t}^{-k \mid}{ }_{j}^{N}\right) \\
& \left.\left.\left.=\tilde{\lambda}_{j} \mathbb{B}(\} z, \bar{t}^{2 \mid} ;\right\} z, \bar{t}_{J}^{k \mid} \frac{j \cdot 2}{3 \cdot 2} ;\right\} \bar{t}^{k \mid}{ }_{j}^{N}\right) \\
& +\sum_{q=j+2}^{N+2} \sum_{\mathrm{qbs}\left(\bar{t} \bar{j}, \ldots, \bar{\tau}^{q} \cdot 2\right)} \tilde{H}_{q, j}(\mathrm{qbsu}) \mathbb{B}(\} z, \bar{t}^{2} \mid\left\{\left\{z, \bar{t}_{\mathrm{J}}^{k}\right\}_{3}^{q \cdot 2} ;\left\{\bar{t}^{k}\right\}_{q}^{N}\right),
\end{aligned}
$$

xifsf

$$
\tilde{\lambda}_{j}=v_{j}(z) f_{[j]}\left(\bar{t}^{j}, z\right) h\left(\bar{t}_{\mathrm{J}}^{m}, z\right)^{[j]} h\left(\bar{t}_{\mathrm{J}}^{m}, z\right)^{\eta_{m, 2}}
$$

boe

$$
\begin{aligned}
\tilde{H}_{q, j}(\mathrm{qbsu})= & f_{[q]}\left(\bar{t}^{q}, z\right) h\left(\bar{t}_{\mathrm{JJ}}^{m}, z\right)^{[q]} h\left(\bar{t}_{\mathrm{J}}^{m}, z\right)^{\eta_{m, 2}} v_{q}(z) g_{[j]}\left(z, \bar{t}_{\mathrm{J}}^{q \cdot 2}\right) \\
& * \prod_{\sigma=j+2}^{q \cdot 2} g_{[\sigma]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma \cdot 2}\right) \prod_{\sigma=j}^{q \cdot 2} \sigma .
\end{aligned}
$$

)6/8*

$$
\left.\left.\left.\mathbb{X}=\sum_{j=3}^{N+2} T_{2, j}(z) \sum_{\mathrm{qbs}\left(\bar{t}^{3}, \ldots, \bar{t}^{j} \cdot 2\right.} \frac{\prod_{\sigma=3}^{j \cdot 2} g_{[\sigma]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma \cdot 2}\right)}{} \frac{\sigma}{v_{3}(z) h\left(\bar{t}^{2}, z\right)^{\eta_{m, 2}} f_{[3]}\left(\bar{t}^{3}, z\right)} \mathbb{B}(\} \bar{t}^{2 \mid} ;\right\} \bar{t}_{\mathrm{J}}^{k \mid}{ }_{3}^{j \cdot 2} ;\right\} \bar{t}^{k \mid}{ }_{j}^{N}\right) . \quad \text {)6/9* }
$$

Jujt fbtz p tff iu bu \mathbb{X} jt opui joh frnf cvuif si/t/ pg sfdvstjpo)5/2* Ui vt-pvs hpbmit pptipx

Jujt dpowfojfoup ejwjef \mathbb{X} joup í sff dpowsjcvipot

$$
\mathbb{X}=\mathbb{X}^{(2)}+\mathbb{X}^{(3)}+\mathbb{X}^{(4)}
$$

$$
\mathbb{X}^{(2)}=\frac{\left.\left.\tilde{\lambda}_{3} \mathbb{B}(\} z, \bar{t}^{2 \mid} ;\right\} \bar{t}^{k \mid} \begin{array}{c}
N \\
3
\end{array}\right)}{v_{3}(z) h\left(\bar{t}^{2}, z\right)^{\eta_{m, 2}} f_{[3]}\left(\bar{t}^{3}, z\right)}
$$

Tvetúwyoh ifsf $\tilde{\lambda}_{3} \times \mathrm{ftff} \mathbf{u}$ bu

$$
\left.\left.\mathbb{X}^{(2)}=\mathbb{B}(\} z, \bar{t}^{2 \mid} ;\right\} \bar{t}^{k \mid}{ }_{3}^{N}\right)
$$

 ypo $\mathbb{X}^{(4)}$ dpn ft gspn uiftfdpoe yof pg)6/: */Dpotjefs $\mathbb{X}^{(4)}$ di bohjoh uif psefs pgtvn n buypo boe tvetuiwuioh u fsf)6/8* Xf i buf

$$
\begin{align*}
\mathbb{X}^{(4)}= & \sum_{q=4}^{N+2} \sum_{j=3}^{q \cdot 2} \sum_{\mathrm{qbsu}\left(\bar{t}^{3}, \ldots, \bar{t}^{q} \cdot 2\right.} \frac{v_{q}(z) f_{[q]}\left(\bar{t}^{q}, z\right) h\left(\bar{t}_{\mathrm{J}}^{m}, z\right)^{[q]} h\left(\bar{t}_{\mathrm{J}}^{m}, z\right)^{\eta_{m, 2}}}{\nu_{3}(z) h\left(\bar{t}^{2}, z\right)^{\eta_{m, 2}} f_{[3]}\left(\bar{t}^{3}, z\right)} \\
& * \frac{g\left(z, \bar{t}_{\mathrm{J}}^{q \cdot 2}\right)}{g\left(\bar{t}_{\mathrm{J}}^{j}, \bar{t}_{\mathrm{J}}^{j \cdot 2}\right)}\left(\prod_{\sigma=3}^{q \cdot 2} g_{[\sigma]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma \cdot 2}\right) \quad \sigma\right) \mathbb{B}(\} z, \bar{t}^{2 \mid} ;\left\{z, \bar{t}_{\mathrm{J}}^{k}\right\}_{3}^{q \cdot 2} ;\left\{\left\{^{-k}\right\}_{q}^{N}\right)
\end{align*}
$$

Uiftvn pufs j dbocf fbtjun dpn quve

$$
\begin{align*}
& \left.+\sum_{j=3}^{N+2} \sum_{q=j+2}^{N+2} \sum_{\mathrm{qbsu}(\bar{t} 3}, \ldots, \bar{t} q \cdot 2\right), ~ \frac{\tilde{H}_{q, j}(\mathrm{qbsu}) \prod_{\sigma=3}^{j \cdot 2} g_{[\sigma]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma \cdot 2}\right) \sigma}{v_{3}(z) h\left(\bar{t}^{2}, z\right)^{\eta_{m, 2}} f_{[3]}\left(\bar{t}^{3}, z\right)} \\
& \left.* \mathbb{B}(\} z, \bar{t}^{2} \mid ;\left\{z, \bar{t}_{J}^{k}\right\}_{3}^{q \cdot 2} ;\left\{\bar{t}^{k}\right\}_{q}^{N}\right) .
\end{align*}
$$

$$
\sum_{j=3}^{q \cdot 2} \frac{2}{g\left(\bar{t}_{\mathrm{J}}^{j}, \bar{t}_{\mathrm{J}}^{j \cdot 2}\right)}=\frac{2}{c} \sum_{j=3}^{q \cdot 2}\left(\bar{t}_{\mathrm{J}}^{j} \cdot \bar{t}_{\mathrm{J}}^{j \cdot 2}\right)=\frac{2}{c}\left(\bar{t}_{\mathrm{J}}^{q \cdot 2} \cdot \bar{t}_{\mathrm{J}}^{2}\right)=\cdot 2 / g\left(z, \bar{t}_{\mathrm{J}}^{q \cdot 2}\right),
$$

boe x f sfdbmi bucz ef-ojupo $\bar{t}_{\mathrm{J}}^{2}=z /$ Ui vt-

$$
\begin{align*}
\mathbb{X}^{(4)}= & \cdot \sum_{q=4}^{N+2} \sum_{\mathrm{qbsu}\left(\bar{t}^{3}, \ldots, \bar{t} \cdot \cdot 2\right)} \frac{v_{q}(z) f_{[q]}\left(\bar{t}^{q}, z\right) h\left(\bar{t}_{\mathrm{J}}^{m}, z\right)^{[q]}}{v_{3}(z) h\left(\bar{t}_{\mathrm{I}}^{2}, z\right)^{\eta_{m, 2}} f_{[3]}\left(\bar{t}^{3}, z\right)} \prod_{\sigma=3}^{q \cdot 2} g_{[\sigma]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma \cdot 2}\right)_{\sigma} \\
& \left.* \mathbb{B}(\} z, \bar{t}^{2} \mid ;\left\{z, \bar{t}_{\mathrm{J}}^{k}\right\}_{3}^{q \cdot 2} ;\left\{\bar{t}^{k}\right\}_{q}^{N}\right) .
\end{align*}
$$

Pouif puifsiboe-uf dpousjcvupo $\mathbb{X}^{(3)}$ jt

$$
\begin{align*}
\mathbb{X}^{(3)}= & \sum_{j=4}^{N+2} \sum_{\operatorname{qbsu}\left(\bar{t}^{3}, \ldots, \bar{t} \cdot 2\right.} \frac{v_{j}(z) f_{[j]}\left(\bar{t}^{j}, z\right) h\left(\bar{t}_{\mathrm{J}}^{m}, z\right)^{[j]}}{v_{3}(z) h\left(\bar{t}_{\mathrm{J}}^{2}, z\right)^{\eta_{m, 2}} f_{[3]}\left(\bar{t}^{3}, z\right)} \prod_{\sigma=3}^{j \cdot 2} g_{[\sigma]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma \cdot 2}\right) \quad \sigma \\
& \left.* \mathbb{B}(\} z, \bar{t}^{2 \mid} ;\left\{z, \bar{t}_{\mathrm{JJ}}^{k}\right\}_{3}^{j \cdot 2} ;\left\{\bar{t}^{k}\right\}_{j}^{N}\right)
\end{align*}
$$

Dpn qbsjoh)6/27*boe)6/26*x ftff u buu fz dbodf nf bdi puifsivivt-X $\left.\left.=\mathbb{B}(\} z, \bar{t}^{2 \mid} ;\right\} \bar{t}^{k \mid}{ }_{3}^{N}\right) /$

6/2/ Rsppg pgRspqptjupo 5/3

Muvt efsjuf opx sfdvstjpo)5/5* tubsuioh x ju) $5 / 2^{*}$ boe vtjoh n psqi jtn)4/26* Tjodf uif n bqqjoh $) 4 / 26^{*}$ sf rhuft ux p ejgof sfouZbohjbot $Y(\mathfrak{g l}(m \mid n)$) boe $Y(\mathfrak{g l}(n \mid m))$ - x f vtf ifsf beej. ypobnt vqfst dsjqut gps i f gvodypot $g(u, v)-f(u, v)-\delta(u, v)$-boe $\delta(u, v) /$ Gps fybn qrif- opubjpo $f_{[\sigma]}^{m \mid n}(u, v) \mathrm{n}$ fbot ù bui f gvodupo $f_{[\sigma]}(u, v)$ jt ef-ofe x jui sftqfduup $Y(\mathfrak{g l}(m \mid n))$;

$$
f_{[\sigma]}^{m \mid n}(u, v)=\left(\begin{array}{ll}
f(u, v), & \sigma \geq m \\
f(v, u), & \sigma>m
\end{array}\right.
$$

 ч $Y(\mathfrak{g l}(n \mid m))$;

$$
f_{[\sigma]}^{n \mid m}(u, v)=\left(\begin{array}{ll}
f(u, v), & \sigma \geq n, \\
f(v, u), & \sigma>n
\end{array}\right.
$$

Uif puifs sbujpobngvodupot ti pvra cf voef stuppe tjn jrbsrra/ Jujt fbtz p tff ui bu

$$
\begin{align*}
& g_{[\sigma]}^{m \mid n}(u, v)=g_{[N+3 \cdot \sigma]}^{n \mid m}(v, u), \\
& f_{[\sigma]}^{m \mid n}(u, v)=f_{[N+3 \cdot \sigma]}^{n \mid m}(v, u), \\
& \delta_{\sigma}^{m \mid n}(u, v)=\delta_{N+2 \cdot \sigma}^{n \mid m}(v, u)
\end{align*}
$$

Muvt bdux ju φ poup)5/2* Evf φ) 4/26* $) 4 / 29^{*}$ x f i buf

$$
\begin{aligned}
& \left.\varphi \frac{T_{2, j}^{m \mid n}(z)}{v_{3}(z)}\right)=(\cdot 2)^{[j]} \frac{T_{N+3 \cdot j, N+2}^{n \mid m}(z)}{v_{N}(z)} \\
& \left.\left.\varphi) \mathbb{B}^{m \mid n}(\} z, \bar{t}^{2 \mid} ;\right\} \bar{t}^{-k \mid}{ }_{3}^{N}\right)\left[=(\cdot 2)^{r_{m}+\eta_{m, 2}} \frac{\left.\left.\mathbb{B}^{n \mid m}(\} \bar{t}^{k \mid}{ }_{N}^{3} ;\right\} z, \bar{t}^{2 \mid}\right)}{\gamma_{N}(z) \prod_{k=2}^{N} \gamma_{N+2 \cdot k}\left(\bar{t}^{k}\right)}\right.
\end{aligned}
$$

boe

$$
\left.\left.\left.\varphi\left(\mathbb{B}^{m \mid n}(\} \bar{t}^{2 \mid} ;\right\} \bar{t}_{J}^{k \mid} \frac{j \cdot 2}{j \cdot 2} ;\right\} \bar{t}^{k \mid}{ }_{j}^{N}\right) \prod_{\sigma=3}^{j \cdot 2} \gamma_{\sigma}\left(\bar{t}_{J}^{\sigma}\right)\right)=(\cdot 2)^{r_{m}+\eta_{m, 2}+[j]} \frac{\left.\mathbb{B}^{n \mid m}(\} \bar{t}_{N}^{k \mid}{ }_{N}^{j} ; \mid \bar{t}_{J . j}^{k \mid}{ }_{j \cdot 2}^{3} ; \bar{t}^{2}\right)}{\prod_{k=2}^{N} \gamma_{N+2 \cdot k}\left(\bar{t}^{k}\right)}
$$

Ui vt-uif bdụpo pguifn psqijtn φ poup $5 / 2 *$ hjuft

$$
\left.\begin{array}{rl}
\left.\left.\mathbb{B}^{n \mid m}(\} \bar{t}^{k \mid}{ }_{N}^{3} ;\right\} z, \bar{t}^{2 \mid}\right)= & \left.\left.\sum_{j=3}^{N+2} \frac{T_{N+3 \cdot}, j, N+2(z)}{v_{N+2}(z)} \sum_{\mathrm{qbs}\left(\bar{t}^{3}, \ldots, \bar{t}_{j} \cdot 2\right.} \mathbb{B}^{n \mid m}(\} \bar{t}^{k \mid}{ }_{N}^{j} ;\right\} \bar{t}_{J}^{k \mid}{ }_{j \cdot 2}^{3} ; \bar{t}^{2}\right) \\
& * \frac{\prod_{\sigma=3}^{j \cdot 2} g_{[\sigma]}^{m \mid n}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{J}^{\sigma \cdot 2}\right) \delta_{\sigma}^{m \mid n}\left(\bar{t}_{J J}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{j \cdot 2} \\
h\left(\bar{t}^{2}, z\right)^{\eta_{m, 2}} \prod_{\sigma=2}^{j \cdot 2} f_{[\sigma+2]}^{m \mid n}\left(\bar{t}^{\sigma+2}, \bar{t}_{J}^{\sigma}\right)
\end{array}\right) 6 / 34^{*} .
$$

Vtjoh uif sfribupot)6/2: *boe uif usjujbmijefoyice $\eta_{m, 2}=\eta_{n, N}$ xf sfdbtu) $6 / 34 * \mathrm{bt}$

$$
\begin{aligned}
\left.\left.\mathbb{B}^{n \mid m}(\} \bar{t}^{k \mid}{ }_{N}^{3} ;\right\} z, \bar{t}^{2} \mid\right)= & \left.\left.\left.\sum_{j=3}^{N+2} \frac{T_{N+3 \cdot j, N+2}(z)}{v_{N+2}(z)} \sum_{\mathrm{qbs}\left(\bar{t}^{3}, \ldots, \bar{t} j \cdot 2\right.} \mathbb{B}^{n \mid m}(\} \bar{t}^{k \mid} \right\rvert\,{ }_{N}^{j} ;\right\}\left.\bar{t}_{\mathrm{J}}^{k \mid}\right|_{j \cdot 2} ^{3}, \bar{t}^{2}\right) \\
& * \frac{\prod_{\sigma=3}^{j \cdot 2} g_{[N+3 \cdot \sigma]}^{n \mid m}\left(\bar{t}_{\mathrm{J}}^{\sigma \cdot 2}, \bar{t}_{\mathrm{J}}^{\sigma}\right) \delta_{N+2 \cdot \sigma}^{n \mid m}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{h\left(\bar{t}^{2}, z\right)^{\eta_{n, N}} \prod_{\sigma=2}^{j \cdot 2} f_{[N+2 \cdot \sigma]}^{n \mid m}\left(\bar{t}_{J}^{\sigma}, \bar{t}^{\sigma+2}\right)}
\end{aligned}
$$

)6/35*

Gjobm- sfrhcf gioh uiftfut pguif Cfuif qbsbn fufst $\bar{t}^{k} \rightarrow \bar{t}^{N+2 \cdot k}$ boe di bohjoh $\sigma \rightarrow N+2 \cdot \sigma$ x f pcbjo

$$
\begin{align*}
\left.\mathbb{B}^{n \mid m}(\} \bar{t}_{2}^{k \mid}{ }_{2}^{N \cdot 2} ;\left\{z, \bar{t}^{N}\right\}\right)= & \left.\sum_{j=2}^{N} \frac{T_{j, N+2}(z)}{v_{N+2}(z)} \sum_{\mathrm{qbs}\left(\bar{t}^{j}, \ldots, \bar{t}^{N} \cdot 2\right.} \mathbb{B}^{n \mid m}\left(\mid \bar{t}^{k \mid}{ }_{2}^{j \cdot 2} ;\right\} \bar{t}_{J}^{k \mid}{ }_{j}^{N \cdot 2} ; \bar{t}^{N}\right) \\
& * \frac{\prod_{\sigma=j}^{N \cdot 2} g_{[\sigma+2]}^{n \mid m}\left(\bar{t}_{J}^{\sigma+2}, \bar{t}_{J}^{\sigma}\right) \hat{\delta}_{\sigma}^{n \mid m}\left(\bar{t}_{J}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{h\left(\overline{t^{N}}, z\right)^{\eta_{n, N}} \prod_{\sigma=j}^{N} f_{[\sigma]}^{n \mid m}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}^{\sigma \cdot 2}\right)}
\end{align*}
$$

Jusf n bjot p sfqibdf $m \leftrightarrow n$-boe x f bssjuf bu) $5 / 5^{*} /$

6/3/ Rsppgpgsfdvstjpo gps evbmCfiif ufdupst

Up pcubjo sfdvstjpo gps evbnCfuif wf dupst jujt fopvhi بp bdux ju bougn psqi jtn) $4 / 31$ *poup sf dvstjpot $) 5 / 2^{*}$ boe) $5 / 5 *$ Dpotjefs jo ef bjim u f bduypo pg Ψ poup $) 5 / 2^{*}$
 uf sitxfibuf

$$
\Psi\left(T_{2, j} \mathbb{B}\right)=(\cdot 2)^{[j][\mathbb{B}]} \mathbb{C} T_{j, 2}
$$

Uif qbsjuw pguif Cfuif ufdups dbo cf efuf sn jofe wibuif dppsjoh bshvn fou/ Sfdbmi buCfuif uf dupst bsf qprnopn jbrn jo uif pqfsbupst $T_{i, j}$ bdujoh po uif wfdups $|1\rangle$ - boe brmif ifsnt pguftf qproopn jbrni buf uftbn dppsjoh/Evf φ u f hf of sbnsvrfi-br vbtjqbsudrfi pguif dpps m dbo cf dsf bufe czuif pqfsbupst $T_{i, j} \times \mathrm{ju} i \geq m$ boe $j>m /$ I fodf-bmi ftf pqfsbupst bsf pee-cfdbvtf $[i]=1 \mathrm{gps} i \geq m$ boe $[j]=2 \mathrm{gps} j>m /$ Pouif pu fs i boe- if bduypo pg bo fufo pqfsbups $T_{i, j}$ dboopudsf buf brvbtjqbsudrf pg if dpps m evf φ tjn jrbs bshvn fout/ Ui vt-jgb Cfuif wf dups
 pqfsbupst-x ifsf $r_{m}={ }^{\prime} \bar{t}^{m} /$ Ui vt- $] \mathbb{B}(\bar{t})\left\{=r_{m}, \quad\right.$ n pe $3 /$

Jo uif dbtf voefs dpotjefsbuypo xftipvre-oe uif ovncfs r_{m}^{\prime} pg if pee pqfsbupst jo uif Cfuif ufdups $\left.\left.\left.\mathbb{B}(\} \bar{t}^{2 \mid} ;\right\} \bar{t}_{J J}^{k \mid}{ }_{3}^{j \cdot 2} ;\right\} \bar{t}^{k \mid}{ }_{j}^{N}\right) /$ Mur $r_{m}={ }^{\prime} \bar{t}^{m}$ jo uif psjhjobmufdups $\mathbb{B}(\bar{t}) / \operatorname{Jg} m=2$ - uifo $r_{m}^{\prime}=r_{m} / \mathrm{Jg} 2<m<j$ - i fo $r_{m}^{\prime}=r_{m} \cdot 2 /$ Gjobm- $\mathrm{jg} m \sim j$ - í fo $r_{m}^{\prime}=r_{m} /$ Bmiftf dbtft dbo cf eft dsjcfeczuif gpsn vrb $r_{m}^{\prime}=r_{m}$. [j] $+\eta_{m, 2} /$ Ui vt-x f pcbbjo

$$
\begin{align*}
\left.\left.\mathbb{C}(\} z, \bar{t}^{2} \mid ;\right\} \bar{t}_{3}^{k \mid}{ }_{3}^{N}\right)= & \left.\left.\left.\sum_{j=3}^{N+2} \sum_{\mathrm{qbsu}\left(\bar{t}^{3}, \ldots, \bar{t} \cdot \bar{t}^{j} \cdot 2\right)} \mathbb{C}(\} \bar{t}^{2 \mid} ;\right\} \bar{t}_{J}^{k \mid} 3_{3}^{j \cdot 2} ;\right\}\left.\bar{t}^{k \mid}\right|_{j} ^{N}\right) \frac{T_{j, 2}(z)}{\nu_{3}(z)}(\cdot 2)^{[j] r_{m}^{\prime}} \\
& * \frac{\prod_{\sigma=3}^{j \cdot 2} \gamma_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}\right) g_{[\sigma]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma \cdot 2}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{h\left(\bar{t}^{2}, z\right)^{\eta_{m, 2}} \prod_{\sigma=2}^{j \cdot 2} f_{[\sigma+2]}\left(\bar{t} \bar{t}^{\sigma+2}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}
\end{align*}
$$

xifsf $r_{m}^{\prime}=r_{m} \cdot[j]+\eta_{m, 2} /$
 di bohjoh $\delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right) \rightarrow \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)$ jo $) 6 / 38 * \mathrm{xf}$ pcubjo

$$
\prod_{\sigma=3}^{j \cdot 2} \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)=(\cdot 2)^{([j] \cdot[3]) r_{m}^{r}} \prod_{\sigma=3}^{j \cdot 2} \delta_{\sigma}\left(\bar{t}_{\mathrm{I}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)
$$

 $\bar{t}^{k} \mathrm{x}$ ju $\bar{s}^{k} \mathrm{x}$ f bssjuf bu) $5 / 6 * /$ Sfdvstjpo) $5 / 7 *$ dbo cf pcubjofe fybdun jo uif tbn f xz/

71 Rsppgpgif tvn gss vibgss if tdbrhs r spevdu

7/2/ I px uif tdbrbs qspevduefqfoet po if nbdvvn fjhfonbmaft $v_{i}(z)$

 ypot $\gamma_{i} /$ Qspqptjupo $5 / 4$ tubuft ubuif Cfuif qbsbn fufst gspn uif tfu \bar{s}^{i} boe \bar{t}^{i} dbo cf uf bshvn fout pguif gvodupot γ_{i} porn/ Jo puifs x pset-uiftdbrhs qspevduepft opuefqfoe po $\gamma_{i}\left(s_{k}^{\ell}\right)$ ps $\gamma_{i}\left(t_{k}^{\ell}\right) \times$ jui $\ell \neq i /$

Xf qspuf u jt tubufn founjb joevdypo pufs $N=m+n \cdot 2 / \operatorname{Gps} N=2$ jucfdpn ft pcujpvt/ Bttvn f u bujujt ubẏe gpstpn $\mathrm{f} N$. 2 boe dpotjefsuiftdbrhs qspevdupguif uf dupst $\mathbb{C}^{m \mid n}(\bar{s})$ boe $\mathbb{B}^{m \mid n}(\bar{t}) \times$ jui $m+n \cdot 2=N /$ Pctfswf ui bux f beefe tvqfstdsjqut u if Cfuif wf dupst jo psefs φ ejtüohvjti uifn gspn íf wfdpst dpssftqpoejoh $\varphi \mathfrak{g l}(m \cdot 2 \mid n)$ brhfcsb/Xf -stuqspuf ui buif tdbrhs qspevduepft opuefqfoe po uif gvoduppot $\gamma_{i}\left(s_{k}^{\ell}\right) \times$ jui $\ell \neq i \operatorname{gps} i=3, \ldots, N /$

Tvddfttjuf bqqu̇dbuypo pguif sfdvstjpo) $5 / 6 *$ brpx t pof \mathbf{p} fyqsftt bevbnCfuif ufdus $\mathbb{C}^{m \mid n}(\bar{s})$ jo ufsn t pgevbmCfuif wfdupst $\mathbb{C}^{m \cdot 2 \mid n}(\bar{\tau}) /$ Tdi fn budbmn $\mathbf{u} j t$ fyqsfttjpo dbo cf x sjufo jo uif gpmpx joh gpsn

$$
\left.\mathbb{C}^{m \mid n}(\bar{s})=\left.\sum_{j_{2}, \ldots, j_{r_{2}}=3}^{m+n} \sum_{\left\{\bar{\tau}^{3}, \ldots, \bar{\tau}^{N}\right\}} \Theta_{j_{2}, \ldots, j_{r_{2}}}^{(\bar{s})}(\bar{\tau}) \mathbb{C}^{m \cdot 2 \mid n}(\} \bar{\tau}\right|_{3} ^{N}\right) \frac{T_{j_{2}, 2}\left(s_{2}^{2}\right) \ldots T_{j_{r_{2}}, 2}\left(s_{r_{2}}^{2}\right)}{\nu_{3}\left(\bar{s}^{2}\right)} . \quad 7 / 2^{*}
$$

I fsf $r_{2}={ }^{\prime} \bar{s}^{2}$ boe $\bar{\tau}^{i} \leftarrow \bar{s}^{i}$ gps $i=3, \ldots, N /$ Uiftvn jt bl fo pufs n vmj.joefy $\left\{j_{2}, \ldots, j_{r_{2}}\right\} /$ Fufsz ufsn pgijt tvn dpobjot brnp btvn pufs qbsuyjpot pgif tfut $\bar{s}^{3}, \ldots, \bar{s}^{N}$ joup tvetfu
$\bar{\tau}^{3}, \ldots, \bar{\tau}^{N}$ boe u fjs dpn quifin forbsz tvctfut Uif gbdupst $\Theta_{j_{2}, \ldots, j_{r_{2}}}^{(\bar{s})}(\bar{\tau})$ bsf tpn f ovn fsjdbmdp.
 efqfoe po $\gamma_{i}\left(s_{k}^{i}\right) \times$ jui $i=3, \ldots, N$ boe ep opuef qfoe po if gvodupot $\gamma_{i} \times$ ju puifs bshvn fout/

Muvt n vigqra $) 7 / 2^{*}$ gspn uif sjhi ucz b Cfuif ufdups $\mathbb{B}^{m \mid n}(\bar{t})$ boe bdux ju uif pqfsbupst
 Cfuif ufdups $\mathbb{B}^{m \mid n}(\bar{t})$ hjuft b ẏofbs dpn cjobuypo pg of x Cfuif ufdupst $\mathbb{B}^{m \mid n}(\Omega)$ - tvdi ui bu $\Omega=$ $\left\{\Omega^{2}, \ldots, \Omega^{N}\right\}$ boe $\Omega \leftarrow \leftarrow\left\{\bar{t}^{i} \cup z\right\} /$ Jo uif dbtf voefs dpotjef sbuypo fbdi pguif pqfsbupst $T_{j_{p}, 2}\left(s_{p}^{2}\right)$ booji jrhuft b qbsujdrfi pg dpps $2 / \mathrm{I}$ fodf- u f pubnbdujpo $\mathrm{pg} T_{j_{2}, 2}\left(s_{2}^{2}\right) \ldots T_{j_{r_{2}}, 2}\left(s_{r_{2}}^{2}\right)$ booji jibuft brm uif qbsudrfit pg dpps 2 jo uif ufdups $\mathbb{B}^{m \mid n}(\bar{t}) /$ Ui vt-bgff \mathbf{u} jt bdujpo uif Cfuif uf dups $\mathbb{B}^{m \mid n}(\bar{t})$ ussot joup $\mathbb{B}^{m \cdot 2 \mid n}(\Omega)$ - x i fsf $\Omega=\left\{\Omega^{3}, \ldots, \Omega^{V}\right\}$ boe $\Omega \leftarrow\left\{\bar{t}^{i} \cup \bar{s}^{2}\right\}$

$$
\left.\frac{T_{j_{2}, 2}\left(s_{2}^{2}\right) \ldots T_{j_{r_{2}}, 2}\left(s_{r_{2}}^{2}\right)}{\nu_{3}\left(\bar{s}^{2}\right)} \mathbb{B}^{m \mid n}(\bar{t})=\left.\sum_{\left\{\Omega^{3}, \ldots, \Omega^{\mathrm{N}}\right\}} \Theta^{(\bar{t})}(\Omega) \mathbb{B}^{m \cdot 2 \mid n}(\} \delta^{k \mid}\right|_{3} ^{N}\right) .
$$

I fsf uf dpfg-djfout $\Theta^{(\bar{t})}(\Omega)$ pguif jof bs dpn cjobyipo efqfoe po uif psjhjobntfut \bar{t}^{k} boe tvc. tfut $S^{k} /$ Ui fz jouphaf uif gvodupot γ_{i} xiptf bshvn fout cf moh puif $\mathrm{tfu}\left\{\bar{s}^{2} \cup \bar{t}\right\} /$ Ui fsf gpsf-uif gbdupst $\Theta^{(\overline{(t)}}(\Omega)$ ep opuefqfoe po $\gamma_{j}\left(s_{k}^{i}\right)$ x jui $i, j=3, \ldots, N /$

Ui vt-x f pcubjo b sfdvstjpo gps uif tdbrhs qspevdu

$$
\left.\left.\left.\mathbb{C}^{m \mid n}(\bar{s}) \mathbb{B}^{m \mid n}(\bar{t})=\sum_{\substack{\left\{\bar{\tau}^{3}, \ldots, \bar{\tau}^{N}\right\} \\\left\{\Omega^{i}, \ldots, \Omega^{N}\right\}}} \Theta_{j_{2}, \ldots, j_{r_{2}}}^{(\bar{s})}(\bar{\tau}) \Theta^{(\bar{t})}(\Omega) \mathbb{C}^{m \cdot 2 \mid n}(\} \bar{\tau}^{k \mid}{ }_{3}^{N}\right) \mathbb{B}^{m \cdot 2 \mid n}(\} S^{k}| |_{3}^{N}\right), \quad\right) 7 / 4^{*}
$$

xifsf $\bar{\tau}^{k} \leftarrow \bar{s}^{k}$ boe $S^{k} \leftarrow\left\{\bar{s}^{2} \cup \bar{t}^{k}\right\} /$ Ui ftyn jt bl fo pufs tvctfut $\bar{\tau}^{k}$ boe $S^{k} /$
 po uf gvodujpot $\gamma_{i} \mathrm{x}$ ju bshvn fout τ_{k}^{i} boe $\varsigma_{k}^{i} /$ Tjodf $\tau_{k}^{i} \in \bar{s}^{i}$ - xf dpodncef ubuif Cfuif qb. sbn fu st s_{k}^{i} gps $i=3, \ldots, N$ dbo cfdpn f u f bshvn fout pguif gvoduppot γ_{i} porn/ Uif ovn f sjbm dpf g-djfout $\Theta_{j_{2}, \ldots, j_{r_{2}}}^{(\bar{s})}(\bar{\tau})$ boe $\Theta^{(\bar{t})}(\Omega)$ ep opucsf bl uijt wqf pgefqfoefodf/ Ui vt-x f qspuf ui bu jo uiftdbrhs qspevdu $\mathbb{C}^{m \mid n}(\bar{s}) \mathbb{B}^{m \mid n}(\bar{t})$ uf Cfuif qbsbn fufst $s_{k}^{i} \mathrm{x}$ jui $i=3, \ldots, N$ dbo cfdpn f uf bshvn fout pguif gvodujpot γ_{i} porv/
 $i=3, \ldots, N /$ Obn fru-u ftf qbsbn fufst dbo cf uif bshvn fout pguif gvoduypot γ_{i} porv/

Jusfn bjot p qspuf ui buif Cfuif qbsbn fufst gspn uiftfut \bar{s}^{2} boe \bar{t}^{2} dbo cf uif bshvn fout pg uf gvodupo $\gamma_{2} /$ Gpsuijt xf vtf uftfdpoe sfdvstjpo gps uif evbnCfuif ufdups)5/7* boe sfqfbu bmif dpotjefsbuypot bcpuf/ Ui fo xf -oe ubuif Cfuif qbsbn fufst $s_{k}^{i} \mathrm{x}$ jui $i=2, \ldots, N \cdot 2$ dbo cfdpn f uif bshvn fout pguif gvodypot γ_{i} porv/ Uifo-uif vtf pg$) 5 / 21^{*}$ dpn qufift uif qsppg pg Qspqptjupo 5/4/

7/3/ Rsppgpgif tvn ggsn vob

Dpotjefs b dpn qptjuf n pefmjo x ijdi $\mathbf{u} \mathrm{f} \mathrm{n}$ popespn z n busjy $T(u)$ jt qsftfoufe bt b qspevdu pgux p qbsuibm popespn $z n$ busjdft 17-31-3: -52‘;

$$
T(u)=T^{(3)}(u) T^{(2)}(u) .
$$

 $\left.T^{(l)}(u)\right) l=2,3^{*}$ bdujo tpn f I jrof sutqbdf $\mathcal{H}^{(l)}$ - tvdi ui bu $\mathcal{H}=\mathcal{H}^{(2)} \circ \mathcal{H}^{(3)} /$ Fbdi pg $T^{(l)}(u)$
tbuyt-ft uf RTT.sfrmypo)3/5* boe ibt jut px o qtfvepubdven wf dups $|1\rangle^{(l)}$ boe evbmufdups $\left\langle\left. 1\right|^{(l)}\right.$ - tvdi ui bu $\left.\mid 1\right\rangle=|1\rangle^{(2)} \circ|1\rangle^{(3)}$ boe $\langle 1|=\left\langle\left. 1\right|^{(2)} \circ\left\langle\left. 1\right|^{(3)} /\right.\right.$ Tjodf uf pqfsbupst $T_{i, j}^{(3)}(u)$ boe $T_{k, l}^{(2)}(v)$ bdujo ejgef sfoutqbdft-u fz tvqfsdpn n vuf x ju fbdi puifs Xf bttvn f u bu

$$
\begin{align*}
& T_{i, i}^{(l)}(u)|1\rangle^{(l)}=v_{i}^{(l)}(u)|1\rangle^{(l)}, \\
& \left\langle\left. 1\right|^{(l)} T_{i, i}^{(l)}(u)=v_{i}^{(l)}(u)\left\langle\left. 1\right|^{(l)},\right.\right.
\end{align*} \quad i=2, \ldots, m+n, \quad l=2,3,
$$

x ifsf $v_{i}^{(l)}(u)$ bsf of x grff gvoduypobnqbsbn fufst/Xf brtp jouspevdf

$$
\gamma_{k}^{(l)}(u)=\frac{v_{k}^{(l)}(u)}{v_{k+2}^{(l)}(u)}, \quad l=2,3, \quad k=2, \ldots, N
$$

Pcujpvtrn

$$
v_{i}(u)=v_{i}^{(2)}(u) v_{i}^{(3)}(u), \quad \gamma_{k}(u)=\gamma_{k}^{(2)}(u) \gamma_{k}^{(3)}(u) .
$$

Uif qbsujbmn popespn z n busjdft $T^{(l)}(u)$ i buf uif dpssftqpoejoh Cfuif wf dupst $\mathbb{B}^{(l)}(\bar{t})$ boe evbnCfuif uf dupst $\mathbb{C}^{(l)}(\bar{s}) /$ B Cfuif ufdups pgui f pubm popespn z n busjy $T(u)$ dbo cf fyqsfttfe jo ufsn t qbsujbnCf i f wfdupst $\mathbb{B}^{(l)}(\bar{t})$ wib dpqspevdugssn $\left.v n b^{4}\right] 3$: $-52^{\text {‘ }}$

$$
\mathbb{B}(\bar{t})=\sum \frac{\prod_{\sigma=2}^{N} \gamma_{\sigma}^{(3)}\left(\bar{t}_{\mathrm{j}}^{\sigma}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{jj}}^{\sigma}, \bar{t}_{\mathrm{j}}^{\sigma}\right)}{\prod_{\sigma=2}^{N-2} f_{[\sigma+2]}\left(\bar{t}_{\mathrm{jj}}^{\sigma+2}, \bar{t}_{\mathrm{j}}^{\sigma}\right)} \mathbb{B}^{(2)}\left(\bar{t}_{\mathrm{j}}\right) \circ \mathbb{B}^{(3)}\left(\bar{t}_{\mathrm{jj}}\right)
$$

Ifsf bmiftfut pguif Cfuif qbsbn fufst \bar{t}^{σ} bsf ejwjefe joup ux $\mathrm{ptvctfut} \bar{t}^{\sigma} \Rightarrow\left\{\bar{t}_{\mathrm{j}}^{\sigma}, \bar{t}_{\mathrm{jj}}^{\sigma}\right\}$ - boe $\mathbf{u} \mathrm{f}$ tvn jt bl fo pufs bmqpttjerfi qbsuiypot/

Tjn jibs gpsn vrbfyjttt gps if evbnCfuif ufdupst $\mathbb{C}(\bar{s})$)tff Bqqfoejy B*

$$
\mathbb{C}(\bar{s})=\sum \frac{\prod_{\sigma=2}^{N} \gamma_{\sigma}^{(2)}\left(\bar{s}_{\mathrm{jj}}^{\sigma}\right) \delta_{\sigma}\left(\bar{s}_{\mathrm{j}}^{\sigma}, \bar{s}_{\mathrm{jj}}^{\sigma}\right)}{\prod_{\sigma=2}^{N \cdot 2} f_{[\sigma+2]}\left(\bar{s}_{\mathrm{j}}^{\sigma+2}, \bar{s}_{\mathrm{jj}}^{\sigma}\right)} \mathbb{C}^{(3)}\left(\bar{s}_{\mathrm{jj}}\right) \circ \mathbb{C}^{(2)}\left(\bar{s}_{\mathrm{j}}\right),
$$

xifsf uftvn jt pshbojfife jo uif tbn $f x$ bz bt jo) $7 / 9^{*}{ }^{*}$
Ui fo uif tdbrhs qspevdupgif pubnCfuif ufdupst $\mathbb{C}(\bar{s})$ boe $\mathbb{B}(\bar{t})$ bl ft uif gpsn

$$
S(\bar{s} \mid \bar{t})=\sum \frac{\prod_{\sigma=2}^{N} \gamma_{\sigma}^{(2)}\left(\bar{s}_{\mathrm{jj}}^{\sigma}\right) \gamma_{\sigma}^{(3)}\left(\bar{t}_{\mathrm{j}}^{\sigma}\right) \delta_{\sigma}\left(\bar{s}_{\mathrm{j}}^{\sigma}, \bar{s}_{\mathrm{jj}}^{\sigma}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{t}}^{\sigma}, \bar{t}_{\mathrm{j}}^{\sigma}\right)}{\prod_{\sigma=2}^{N \cdot 2} f_{[\sigma+2]}\left(\bar{s}_{\mathrm{j}}^{\sigma+2}, \bar{s}_{\mathrm{jj}}^{\sigma}\right) f_{[\sigma+2]}\left(\bar{t}_{\mathrm{jj}}^{\sigma+2}, \bar{t}_{\mathrm{j}}^{\sigma}\right)} S^{(2)}\left(\bar{s}_{\mathrm{j}} \mid \bar{t}_{\mathrm{j}}\right) S^{(3)}\left(\bar{s}_{\mathrm{jj}} \mid \bar{t}_{\mathrm{jj}}\right), \quad \quad 7 / 21^{*}
$$

x ifsf

$$
S^{(2)}\left(\bar{s}_{\mathrm{j}} \mid \bar{t}_{\mathrm{j}}\right)=\mathbb{C}^{(2)}\left(\bar{s}_{\mathrm{j}}\right) \mathbb{B}^{(2)}\left(\bar{t}_{\mathrm{j}}\right), \quad S^{(3)}\left(\bar{s}_{\mathrm{jj}} \mid \overline{\mathrm{j} j}\right)=\mathbb{C}^{(3)}\left(\bar{s}_{\mathrm{jj}}\right) \mathbb{B}^{(3)}\left(\bar{t}_{\mathrm{jj}}\right)
$$

Opuf ui bujo ui jt gpsn vrb ${ }^{\prime} \bar{s}_{\mathrm{j}}^{\sigma}={ }^{\prime} \bar{t}_{\mathrm{j}}^{\sigma}$ -)boe i fodf- ${ }^{\prime} \bar{s}_{\mathrm{ij}}^{\sigma}={ }^{\prime} \overline{\mathrm{t}}_{\mathrm{ij}}^{\sigma} *$ puifsx jtf uiftdbrbs qspevdut $S^{(2)}$ boe $S^{(3)}$ wbojti / Mu u' $\bar{s}_{\mathrm{j}}^{\sigma}={ }^{\prime} \bar{t}_{\mathrm{j}}^{\sigma}=k_{\sigma}^{\prime}$ - x ifsf $k_{\sigma}^{\prime}=1,2, \ldots, r_{\sigma} / \mathrm{Uifo}{ }^{\prime} \bar{s}_{\mathrm{jj}}^{\sigma}={ }^{\prime} \bar{t}_{\mathrm{jj}}^{\sigma}=r_{\sigma} \cdot k_{\sigma}^{\prime} /$
 ufsnt pguif $\operatorname{D} /$ Gps uijt xf vtf uif gbdui bu $W_{\text {qbsu }}^{m \mid n}$ bsf n pef mioefqfoefou Uifsfgpsf-xf dbo -oe uifn jo tpn f tqfdjbm pefmx iptf n popespn z n busjy tbut-ft if $R T T$.sfrbupo/

[^9]Muvt -ytpn f qbsuigipot pguif Cfuif qbsbn fufst jo $) 5 / 22^{*}, \bar{s}^{\sigma} \Rightarrow\left\{\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right\}$ boe $\bar{t}^{\sigma} \Rightarrow\left\{\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{I}}^{\sigma}\right\}$ tvdi u bu' $\bar{s}_{\mathrm{J}}^{\sigma}={ }^{\prime} \bar{t}_{\mathrm{J}}^{\sigma}=k_{\sigma}$ - x ifsf $k_{\sigma}=1,2, \ldots, r_{\sigma} / \mathrm{I}$ fodf ${ }^{\prime} \bar{s}_{\mathrm{J}}^{\sigma}={ }^{\prime} \bar{t}_{\mathrm{J}}^{\sigma}=r_{\sigma} \cdot k_{\sigma} /$ Dpotjefs bdpo. dsfuf n pefmajo $x i j d i{ }^{5}$

$$
\begin{array}{lll}
\gamma_{\sigma}^{(2)}(z)=1, & \text { jg } & z \in \bar{s}_{J}^{\sigma} \\
\gamma_{\sigma}^{(3)}(z)=1, & \text { jg } & z \in \bar{t}_{\mathrm{J}}^{\sigma}
\end{array}
$$

Evf بp $) 7 / 8 * \mathbf{u}$ ftf dpoejupot jn qra

$$
\gamma_{\sigma}(z)=1, \quad \text { jg } \quad z \in \bar{s}_{\mathrm{J}}^{\sigma} \cup \bar{t}_{\mathrm{J}}^{\sigma}
$$

)7/24*
Uifo uif tdbrbs qspevdujt qspqpsypobmp if dpfg-djfou $W_{\text {qbsu }}^{m \mid n}\left(\bar{s}_{\mathrm{J}}, \bar{s}_{\mathrm{JI}} \mid \bar{t}_{\mathrm{J}}, \bar{t}_{\mathrm{J}}\right)$ - cfdbvtf brmpu fs

$$
S(\bar{s} \mid \bar{t})=W_{\mathrm{qbsu}}^{m \mid n}\left(\bar{s}_{\mathrm{J}}, \bar{s}_{\mathrm{J} \mid} \mid \bar{t}_{\mathrm{J}}, \bar{t}_{\mathrm{J}}\right) \prod_{k=2}^{N} \gamma_{k}\left(\bar{s}_{\mathrm{J}}^{k}\right) \gamma_{k}\left(\bar{t}_{\mathrm{JJ}}^{k}\right) .
$$

Po úf puifs i boe-)7/23* jn qüft ui bub opo.fifsp dpousjcvípo jo)7/21* pddvst jg boe pom jg $\bar{s}_{\mathrm{jj}}^{\sigma} \leftarrow \bar{s}_{\mathrm{J}}^{\sigma}$ boe $\bar{t}_{\mathrm{j}}^{\sigma} \leftarrow \bar{t}_{\mathrm{J}}^{\sigma} /$ I fodf- $r_{\sigma} \cdot k_{\sigma}^{\prime} \geq k_{\sigma}$ boe $k_{\sigma}^{\prime} \geq r_{\sigma} \cdot k_{\sigma} /$ Cvuiu jt jt qpttjerfi jg boe pon jg $k_{\sigma}^{\prime}+k_{\sigma}=r_{\sigma} /$ Ui vt $-\bar{s}_{\mathrm{jj}}^{\sigma}=\bar{s}_{\mathrm{J}}^{\sigma}$ boe $\bar{t}_{\mathrm{j}}^{\sigma}=\bar{t}_{\mathrm{J}}^{\sigma} /$ Ui fo- gps u f dpn qrin foubsz tvetfut x f pcrbjo $\bar{s}_{\mathrm{j}}^{\sigma}=\bar{s}_{\mathrm{J}}^{\sigma}$ boe $\bar{t}_{\mathrm{jj}}^{\sigma}=\bar{t}_{\mathrm{J}}^{\sigma} /$ Ui vt-x f bssjuf bu

$$
S(\bar{s} \mid \bar{t})=\frac{\prod_{\sigma=2}^{N} \gamma_{\sigma}^{(2)}\left(\bar{s}_{\mathrm{J}}^{\sigma}\right) \gamma_{\sigma}^{(3)}\left(\bar{t}_{\mathrm{J}}^{\sigma}\right) \delta_{\sigma}\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{\prod_{\sigma=2}^{N \cdot 2} f_{[\sigma+2]}\left(\bar{s}_{\mathrm{J}}^{\sigma+2}, \bar{s}_{\mathrm{J}}^{\sigma}\right) f_{[\sigma+2]}\left(\bar{t}_{\mathrm{J}}^{\sigma+2}, \bar{t}_{\mathrm{J}}^{\sigma}\right)} S^{(2)}\left(\bar{s}_{\mathrm{JI}} \mid \bar{t}_{\mathrm{J}}\right) S^{(3)}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right)
$$

)7/26*
 dpssftqpoejoh p uif dpokvhbufe I D/ Joeffe- bmpuifs ufst bsf qspqpsypobmp $\gamma_{\sigma}^{(2)}(z) \mathrm{x}$ ju $z \in \bar{s}_{\mathrm{JI}}^{\sigma}-\mathbf{u} \mathrm{fsf}$ gpsf- $\mathbf{u} \mathrm{fz}$ wbojti/I fodf

$$
S^{(2)}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right)=\prod_{\sigma=2}^{N} \gamma_{\sigma}^{(2)}\left(\bar{t}_{\mathrm{I}}^{\sigma}\right) \times \bar{Z}^{m \mid n}\left(\bar{s}_{\mathrm{J}} \mid{\left.\overline{t_{\mathrm{J}}}\right)}\right)
$$

)7/27*
 puif I D;

$$
S^{(3)}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right)=\prod_{\sigma=2}^{N} \gamma_{\sigma}^{(3)}\left(\bar{s}_{\mathrm{J}}^{\sigma}\right) \times Z^{m \mid n}\left(\bar{s}_{\mathrm{J}} \mid \overline{\bar{J}}_{\mathrm{J}}\right)
$$

Tvetúw ioh i jt joup)7/26* boe vtjoh)7/8*) 7/25*x f bssjuf bu

$$
W_{\mathrm{qbsu}}^{m \mid n}\left(\bar{s}_{\mathrm{J}}, \bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}, \bar{t}_{\mathrm{IJ}}\right)=Z^{m \mid n}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right) \bar{Z}^{m \mid n}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right) \frac{\prod_{k=2}^{N} \delta_{k}\left(\bar{s}_{\mathrm{J}}^{k}, \bar{s}_{\mathrm{J}}^{k}\right) \delta_{k}\left(\bar{t}_{\mathrm{J}}^{k}, \bar{t}_{\mathrm{J}}^{k}\right)}{\prod_{j=2}^{N \cdot 2} f_{[j+2]}\left(\bar{s}_{\mathrm{J}}^{j+2}, \bar{s}_{\mathrm{J}}^{j}\right) f_{[j+2]}\left(\bar{t}_{\mathrm{J}}^{j+2}, \bar{t}_{\mathrm{J}}^{j}\right)} .
$$

Ui jt fyqsfttjpo pcujpvtrn dpjodjeft x jui)5/26*evf $\mathbf{\varphi}$) $5 / 25^{*}$

[^10]
81 I hi ftudpfg difou

9/2/ Rsppgpgiuf sfdvstjpo gss uif I jhiftuDpf $\underline{-}$-djfou

 yjpobmp b qspevdupguif gvodupot γ_{k} / Mfuvt dbmb uf sn vox bovfe-jguif dpssftqpoejoh qspevdu pguif gvodupot γ_{k} dpobjot burfibtupof $\gamma_{k}\left(t_{j}^{k}\right)$-x ifsf $t_{j}^{k} \in \bar{t} / \mathrm{Sftqfduxfm-bufsnjtxboyfe-jg}$ bmgvoduypot γ_{k} efqfoe pouif Cfuif qbsbn fufst s_{j}^{k} gspn uiftfu $\bar{s} /$
 Ui vt-bo fr vbupo pguif uqq $l h s \subseteq r h s$ n fbot ui buif $l h s$ jt fr vbmp uif $r h s$ n pevnst vox boufe ufn $t /$

Vtjoh u f opypo pgvox boufe ufsn thof dbo sfef-of uf I D)5/23*bt gprpx t;

$$
S(\bar{s} \mid \bar{t}) \subseteq \prod_{k=2}^{N} \gamma_{k}\left(\bar{s}^{k}\right) \times Z^{m \mid n}(\bar{s} \mid \bar{t}) .
$$

$$
\mathbb{B}(\bar{t}) \subseteq \widetilde{\mathbb{B}}(\bar{t})=\frac{\mathbb{T}_{2,3}\left(\bar{t}^{2}\right) \ldots \mathbb{T}_{N, N+2}\left(\bar{t}^{N}\right)|1\rangle}{\prod_{j=2}^{N} v_{j+2}\left(\bar{t}^{j}\right) \prod_{j=2}^{N-2} f_{[j+2]}\left(\bar{t}^{j+2}, \bar{t}^{j}\right)},
$$

cfdbvtf bmpuifs ufsnt jo uif Cfuif wf dups dpobjo gbdupst $\gamma_{k}\left(t_{j}^{k}\right)$ - boe uivt-uifz bsf vox boffe/ I fodf-jo psefs بp-oe u f I D jujt fopvhi بp dpotjefsbsfevdfe tdbrhs qspevdu $\tilde{S}(\bar{s} \mid \bar{t})$

$$
S(\bar{s} \mid \bar{t}) \subseteq \tilde{S}(\bar{s} \mid \bar{t})=\mathbb{C}(\bar{s}) \widetilde{\mathbb{B}}(\bar{t})
$$

Jo psefs φ dbndvinuf uif sfevdfe tdbrhs qspevdu)8/4*x f dbo vtf uf sfdvstjpo)5/6* gps uif evbnCfuif wf dups $\mathbb{C}(\bar{s}) / \mathrm{Xf} \mathrm{x}$ sjuf jujo uif gpsn

$$
\begin{align*}
\mathbb{C}(\bar{s})= & \left.\left.\left.\sum_{p=3}^{N+2} \sum_{\mathrm{qbs}\left(\bar{s}^{3}, \ldots, \bar{s}^{p \cdot 2}\right)} \mathbb{C}(\}\right\}_{\mathrm{s}}^{\mathrm{J} \mid}{ }_{2}^{p \cdot 2} ;\right\} \bar{s}^{k \mid}{ }_{p}^{N}\right) \frac{T_{p, 2}\left(\bar{s}_{\mathrm{J}}^{2}\right)}{\nu_{3}\left(\bar{s}_{\mathrm{J}}^{2}\right)}(\cdot 2)^{\left(r_{2} \cdot 2\right) \eta_{m, 2}} \\
& * \frac{\prod_{\sigma=3}^{p \cdot 2} \gamma_{\sigma}\left(\bar{s}_{\mathrm{J}}^{\sigma}\right) g_{[\sigma]}\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma \cdot 2}\right) \delta_{\sigma}\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right)}{h\left(\bar{s}^{2}, \bar{s}_{\mathrm{J}}^{2}\right)^{\eta_{m, 2}} \prod_{\sigma=2}^{p \cdot 2} f_{[\sigma+2]}\left(\bar{s}^{\sigma+2}, \bar{s}_{\mathrm{J}}^{\sigma}\right)} .
\end{align*}
$$

Ifsf uiftvn jt bl fo pufsqbsuyjpot pguiftfut $\bar{s}^{k} \Rightarrow\left\{\bar{s}_{\mathrm{J}}^{k}, \bar{s}_{\mathrm{J}}^{k}\right\}$ gps $k=3, \ldots, p$-tvdi ui bu' $\bar{s}_{\mathrm{J}}^{k}=2 /$ Uif Cfúf qbsbn fuf \bar{s}_{J}^{2} jt -yfe- boe ifodf-uftvctfu $\bar{s}_{J J}^{2}$ brtp jt-yfe/ Uifsf jt op uftvn pufs qbsujupot pguiftfus ${ }^{2}$ jo) $8 / 5 *$

Ui vt-xf pcrbjo

$$
\begin{aligned}
\tilde{S}(\bar{s} \mid \bar{t})= & \sum_{p=3}^{N+2} \sum_{\mathrm{qbs}\left(\bar{s}^{3}, \ldots, \bar{s}^{p \cdot 2}\right)}(\cdot 2)^{\left.\left.\left(r_{2} \cdot 2\right) \eta_{m, 2} \mathbb{C}(\} \bar{s}_{\mathrm{J}}^{k} \mid{ }_{2}^{p \cdot 2},\right\} \bar{s}^{k \mid}{ }_{p}^{N}\right) T_{p, 2}\left(\bar{s}_{\mathrm{J}}\right) \widetilde{\mathbb{B}}(\bar{t})} \\
& * \frac{\prod_{\sigma=3}^{p \cdot 2} \gamma_{\sigma}\left(\bar{s}_{\mathrm{J}}^{\sigma}\right) g_{[\sigma]}\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma \cdot 2}\right) \delta_{\sigma}\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right)}{\nu_{3}\left(\bar{s}_{\mathrm{J}}^{2}\right) h\left(\bar{s}^{2}, \bar{s}_{\mathrm{J}}^{2}\right)^{\eta_{m, 2}} \prod_{\sigma=2}^{p \cdot 2} f_{[\sigma+2]}\left(\bar{s}^{\sigma+2}, \bar{s}_{\mathrm{J}}^{\sigma}\right)} .
\end{aligned}
$$

)8/6*

Ui f bdujpo $\mathrm{pg} T_{p, 2}\left(\bar{s}_{\mathrm{J}}^{2}\right)$ poup uif wf dups $\widetilde{\mathbb{B}}(\bar{t}) \mathrm{n}$ pevnst vox boufe \mathbf{u} sn t jt hjufo cz Qspqptjuppo C/2/ Ui vt-x f pcrbjo

$$
\begin{align*}
\tilde{S}(\bar{s} \mid \bar{t}) \subseteq & \gamma_{2}\left(\bar{s}_{\mathrm{J}}^{2}\right)
\end{align*} \sum_{p=3}^{N+2} \sum_{\substack{\mathrm{qbs}\left(\bar{s}^{3}, \ldots, \bar{s}^{p \cdot 2}\right) \\
\mathrm{qbs}\left(\bar{t}^{2}, \ldots, \bar{t}^{p} \cdot 2\right)}}(\cdot 2)^{\left(r_{2} \cdot 2\right) \eta_{m, 2}} \frac{g_{[3]}\left(\bar{t}_{\mathrm{J}}^{2}, \bar{s}_{\mathrm{J}}^{2}\right) \delta_{2}\left(\bar{t}_{\mathrm{J}}^{2}, \bar{t}_{\mathrm{I}}^{2}\right) f_{[2]}\left(\bar{t}_{\mathrm{J}}^{2}, \bar{s}_{\mathrm{J}}^{2}\right)}{f_{[p]}\left(\bar{s}^{p}, \bar{s}_{\mathrm{J}}^{p \cdot 2}\right) h\left(\bar{s}^{2}, \bar{s}_{\mathrm{J}}^{2}\right)^{\eta_{m, 2}}}
$$

I fsf $\bar{t}^{m+n}=\bar{s}^{m+n}=\emptyset /$ Dbrdvrbigoh uif sfevdfe tdbrhs qspevdtut jo $) 8 / 7 * \mathrm{n}$ pevnnt vox boufe \mathbf{u} sn t

$$
\begin{aligned}
& \text { * } \left.\left.\left.\left.\left.Z^{m \mid n}(\} \bar{s}_{\text {II }}^{k \mid} 2_{2}^{p \cdot 2},\right\} \bar{s}^{k \mid}{ }_{p}^{N} \mid\right\} \bar{t}_{\text {IJ }}^{k \mid} 2_{2}^{p \cdot 2} ;\right\} \bar{t}^{k \mid}{ }_{p}^{N}\right),\right) 8 / 8^{*}
\end{aligned}
$$

Xf i buf brnp vtfe

$$
(\cdot 2)^{\left(r_{2} \cdot 2\right) \eta_{m, 2}} \delta_{2}\left(\bar{t}_{\mathrm{J}}^{2}, \bar{t}_{\mathrm{J}}^{2}\right)=\delta_{2}\left(\bar{t}_{\mathrm{J}}^{2}, \bar{t}_{\mathrm{J}}^{2}\right), \quad \delta_{\sigma}\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)=\delta_{\sigma}\left(\bar{s}_{\mathrm{J}}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{JJ}}^{\sigma}\right) .
$$

9/3/ Tfin n fusfi pgif I jhiftuDpf g-djfou

Evf $\mathbf{~ p ~ j t p n ~ p s q i ~ j t n ~}) 4 / 26^{*}$ cfuxffo Zbohjbot $Y(\mathfrak{g l}(m \mid n))$ boe $Y(\mathfrak{g l}(n \mid m))$ pof dbo -oe b
 sf rbujpo/

Dpotjefsuiftvngpsn vrb) $5 / 22^{*}$ gps if f dbrhs qspevdupg $\mathfrak{g l}(m \mid n)$ Cfuif wfdupst

$$
S^{m \mid n}(\vec{s} \mid \vec{t})=\sum W_{\mathrm{qbsu}}^{m \mid n}\left(\overrightarrow{\vec{J}}_{\mathrm{J}}, \vec{s}_{\mathrm{J}} \mid \vec{t}_{\mathrm{J}}, \vec{t}_{\mathrm{J}}\right) \prod_{k=2}^{N} \gamma_{k}\left(\overline{\mathrm{~J}}_{\mathrm{J}}^{k}\right) \gamma_{k}\left(\bar{t}_{\mathrm{JJ}}^{k}\right),
$$

 $\varphi) 4 / 26^{*}$ po uif tdbrhs qspevdu $S^{m \mid n}(\vec{s} \mid \vec{t}) /$ Ui jt dbo cf epof jo ux p x bzt/ Gistur vtjoh)4/29* boe)4/37*x f pcujo

$$
\begin{align*}
\left.\varphi) S^{m \mid n}(\vec{s} \mid \vec{t})[=\varphi) \mathbb{C}^{m \mid n}(\vec{s}) \mathbb{B}^{m \mid n} \overrightarrow{(t)}\right)[& =\frac{(\cdot 2)^{r_{m}} \mathbb{C}^{n \mid m}(s) \mathbb{B}^{n \mid m}(t)}{\prod_{k=2}^{N} \gamma_{N+2 \cdot k}\left(\bar{s}^{k}\right) \gamma_{N+2 \cdot k}\left(\bar{t}^{k}\right)} \\
& =\frac{(\cdot 2)^{r_{m}} S^{n \mid m}(\vec{s} \mid t)}{\prod_{k=2}^{N} \gamma_{N+2 \cdot k}\left(\bar{s}^{k}\right) \gamma_{N+2 \cdot k}\left(\bar{t}^{k}\right)}
\end{align*}
$$

$$
\varphi) S^{m \mid n}(\overrightarrow{\vec{s}} \mid \vec{t})\left[=\sum_{\mathrm{qbsu}} \frac{(\cdot 2)^{r_{m}} W_{\mathrm{qbsu}}^{n \mid m}\left(s_{\mathrm{J}}, s_{\mathrm{J}} \mid t_{\mathrm{J}}, t_{\mathrm{J}}\right)}{\prod_{k=2}^{N} \gamma_{N+2 \cdot k}\left(\bar{s}^{k}\right) \gamma_{N+2 \cdot k}\left(\bar{t}^{k}\right)} \prod_{k=2}^{N} \gamma_{k}\left(\bar{s}_{\mathrm{J}}^{N \cdot k+2}\right) \gamma_{k}\left(\bar{t}_{\mathrm{J}}^{N \cdot k+2}\right) . \quad\right) 8 / 21^{*}
$$

$$
\varphi) S^{m \mid n}(\vec{s} \mid \vec{t})\left[=\sum_{\mathrm{qbsu}} W_{\mathrm{qbsu}}^{m \mid n}\left(\overrightarrow{\vec{s}}_{\mathrm{J}}, \vec{s}_{\mathrm{J}} \mid \vec{t}_{\mathrm{J}}, \vec{t}_{\mathrm{J}}\right) \prod_{k=2}^{N}\right) \gamma_{N+2 \cdot k}\left(\bar{s}_{\mathrm{J}}^{k}\right) \gamma_{N+2 \cdot k}\left(\bar{t}_{\mathrm{J}}^{k}\right)\left[^{\cdot 2}\right.
$$

Dpn qbsjoh) $8 / 21^{*}$ boe) $8 / 22^{*} \mathrm{x}$ f bssjuf bu

$$
\begin{aligned}
& (\cdot 2)^{r_{m}} \sum_{\mathrm{qbsu}} W_{\mathrm{qbsu}}^{n \mid m}\left(s_{\mathrm{J}},,_{\mathrm{s}}| |_{\mathrm{J}}, t_{\mathrm{J}}\right) \prod_{k=2}^{N} \gamma_{N+2 \cdot k}\left(\bar{s}_{\mathrm{J}}^{k}\right) \gamma_{N+2 \cdot k}\left(\bar{t}_{\mathrm{J}}^{k}\right) \\
& \quad=\sum_{\mathrm{qbsu}} W_{\mathrm{qbsu}}^{m \mid n}\left(\overrightarrow{\mathrm{~s}}_{\mathrm{J}}, \vec{s}_{\mathrm{J}} \mid \vec{t}_{\mathrm{J}}, \vec{t}_{\mathrm{I}}\right) \prod_{k=2}^{N} \gamma_{N+2 \cdot k}\left(\bar{s}_{\mathrm{J}}^{k}\right) \gamma_{N+2 \cdot k}\left(\bar{t}_{\mathrm{J}}^{k}\right)
\end{aligned}
$$

 I fodf-

$$
W_{\mathrm{qbsu}}^{m \mid n}\left(\vec{s}_{\mathrm{J}}, \vec{s}_{\mathrm{J} \mid} \mid \vec{t}_{\mathrm{J}}, \vec{t}_{\mathrm{J}}\right)=(\cdot 2)^{r_{m}} W_{\mathrm{qbsu}}^{n \mid m}\left(s_{\mathrm{J}}, s_{\mathrm{J}} \mid t_{\mathrm{J}}, t_{\mathrm{J}}\right)
$$

$$
Z^{m \mid n}(\vec{s} \mid \vec{t})=(\cdot 2)^{r_{m}} \bar{Z}^{n \mid m}(s \mid t)=(\cdot 2)^{r_{m}} Z^{n \mid m}(t \mid \dot{s})
$$

Vtjoh uijt qspqfsw pof dbo pcujo sfdvstjpo)5/29*gps uif ijhiftudpfg-djfou Joeffe-pof dbo

A1 Dpodntlpo

Jo uif qsftfouqbqfs xf i buf dpotjefsfe if Cfuif wf dupst tdbrhs qspevdut jo uif jouf hsberf n pefin t prabcrif cz uf oftufe brhfcsbjd Cfuif bot bufi boe qpttfttjoh $\mathfrak{g l}(m \mid n)$ tvqfstzn n fuz/ Uifn bjo sftvmpguif qbqfsjt uftvn gpsn vrbhjufoczfr vbujpot)5/22*boe)5/26* Xf pcbjofe juvtjoh uif dpqspevdugpsn vrbgssuif Cfuif wf dupst/Ui jt x bz df sbjom jt n psf ejsf duboe tjn qrif

Uiftrn gpsn vib jt pcubjofe gps uif Cfuif wfdupst x jui bscjubbsz dpmsjoh/I px fufs-bt xf i buf n fouppofe jo tfdujpo 4/2- jo ubsjpvt n pefmpg qi ztjdbmjoufsftuif dppsjoh pguif Cfuif wfdupst jt sftusjdufe cz uf dpoejupo $r_{2} \sim r_{3} \sim X X X \sim r_{N} /$ B qfdvigbsjux pguiftf n pefmjt uibu ponn if f sbyp $\gamma_{2}(u)$ jt b opo. «sjyjbmgvodupo $\mathrm{pg} u$-x i jrfi bmpuifs $\gamma(\mathrm{t}$ bsf jefoujdbmn dpot ubout; $\gamma_{k}(u)=\gamma_{k}-k>2$)bdusbma- vtjoh bux jtuusbot gpsn bujpo- pof dbo brs bzt n blf iftf dpot doot

 ejsfdujpo pgqpttjcrfi efuf pqn foujt uf sz busbdyuf-boe xf bsf qriboojoh p tuwez uijt qspcrin /

Uiftrn gpsn vib joupnaft uif I D pguiftdbrhs qspevdu' Xf eje opu-oe bdrtfe fyqsfttjpo gps uf I D-i px fufs-xfibuf gpvoe sfdvstjpot gps ju' Qfsi bqt-uijt x bz pgeftdsjcjoh uf I D jt

 gpsn vrbgps jujo uif hfof sbmgl($m \mid n$) dbtf/Pouif pu fsi boe-uif sfdvstjpot pcobjofe jo ui jt qbqfs bmx pof φ tuwez bobrnúdbmqspqfsyft pguif I D-jo qbsudvrhs φ-oe uif sftjevft jo uif qprfit pgui jt sbuypobngvodypo/ Vtjoh uiftf sftvnt jujt qpttjerfi upefsjuf bo bobmh pgHbvejo gpsn vrb gps po.tifmCfuif ufdupst jo uif $\mathfrak{g l}(m \mid n)$ cbtfe n pefmfybdun jo uiftbn fx bz bt jux bt epof jo]6-21'/ Xf x jmdpotjefs i jt r vftụpo jo pvs gpsui dpn joh qveçjdbupo/

Bt xf i buf braf bez n foupofe jo Jouspevdyipo- uftvn gpsn vrb juf fagt opuwf sz dpowfojfou gps vtf/ Pof tipvre sfnfncfs-ipx fufs-u buiftvn gpsn vib eftdsjcft uif tdbrhs qspevdupg hfofsjd Cfuif ufdupst-xifsf xfibuf op sftusjdupo gpsuif Cfuif qbsbn fufst/Buiftbnf in fjo n ptudbtft pg qi ztjdbmjoffftu pof efbrn xju Cfuif wfdest-jo xijdinptupguif Cfuif qbsbn fufst tbùtg Cfuiffr vbujpot/Jo qbsujdvrhs- i jt tjuwbupo pddvst jo dbrdvrbuioh gpsn gbdupst/

Ui fo pof dbo i pqf p pcubjo btjhoj-dboutjn qற゙̣-dbujpo pguiftvn gpsn vib-bt jux bt tipx o gps úf n pefmx jui gl(4) boe $\mathfrak{g l}(3 \mid 2)$ tzn n fusjft/ Xf bsf qrooojoh p tuwez uijt qspcrin jo pvs gvsú fs qve $\dot{\text { gidbujpot/ }}$

 hsbejoh $[i]=1$ gps $2 \geq i \geq m-[i]=2$ gps $m<i \geq m+n /$ I px fufs- uijt jt opuí f pom qpttjerf di pjdf pg hsbejoh/ Puifs hsbejoht joevdf ejgof sfoujofr vjubriouqsftfobypot pg if tvqfsbrhf.

 brhfcsb/ P cwjpvtru-tjodf uif ejgof sf ouqsftfoubipot efbnx ju uf tbn f tvqfsbrhfcsb- ufz bsf jtpn psqijd/ I px fufs-uif n bqqjoh cfuxfou ux qsftfoubipot jt cbtfe po bhfofsbigife Xfzm usbot gpsn bujpo bdujoh po úfjs Ezol jo ejbhsbn t - றgge buif rfiuf mpg uif tvqfsbrhfcsb/ Uiftf hf of sbrifife Xfzmsbot gpsn bujpot-jo qbsudvrbs- bgof duuif cpt pojdOfsn jpojd obussf pguif hfofs. bupst-boe uivt dbo di bohf dpn n vbbupst φ p boù. dpn n vubpst)boe widf. wf stb* Ui fo- uif qsfditf fyqsfttjpo pgif n bqqjoh jt ifbwz p gasn vibuf gps bmif hfofsbupst pguif Zbohjbo/ Uijt jt brnp uvvf gps Cfuif wfdupst boe Cfuif qbsbn fufst-b qsfdjtf dpssft qpoef odf dbo cf rvjuf jousjdbuf ب gpsn vrbuf/ I px fufs-gsn uif Mf tvqfsbrhfcsb u fpsz pof lopxt ui butvdi bdpssftqpoefodf n vtufyjtư Ui ftf dpotjef sbypot i buf cffo ef vf pqfe jo $156^{‘}$ gps uif dpotusvdupo pguifn bqqjoh po uif qbsudvrbs dbtf pguif $\mathfrak{g l}(2 \mid 3)$ brhfcsb/ Uif hfof sbmblbt $\operatorname{pghfof} \operatorname{sjd} \mathfrak{g l}(m \mid n)$ tvqfsbrhfcsb jt qsftfoufe jo 157^{\prime} gps uif gpsn pguif Cfuif frvbupot-cvupqfo tqjo di bjot)tff brtp $] 58^{\prime} \mathrm{x}$ ifsf
 p uiftvqfsbrhfcsbt x ju ejggf sfouhsbejoht jt sbuifs tusbjhi ugss bse-b qsfdjtf dpssft qpoefodf sfn bjot pqfo/

Bdl opx ifiehf n fout

Uif x psl pgB/Mi bt cffo gvoefe cz Svttjbo Bdbefn jd Fydfrnfodf Qsplfdu6.211-cz Zpvoh Svttjbo N bui fn bujdt bx bse boe cz lpjouOBTV.DOST qsplfduG25.3128/ Ui f x psl pg T/Q x bt tvqqpsufe jo qbsucz u f S GCS hsbou27.12.11673.b/

Brrfoely B1 Dprspevdugssn vibgs uif Cfuif ufdupst

Uif qsft foubypo)7/9*gssuif Cfuif wf dups pguif dpn qptjuf n pefndbo cf uffbufe bt bdpqspe. vdugpsn vrb gps uif Cfuif wfdps/ Joeffe-fr vbujpo $7 / 5^{*}$ gpsn bmu efuf n joft b dpqspevdu Δ pg uf n popespn z n busjy fousjft

$$
\Delta\left(T_{i, j}(u)\right)=\sum_{k=2}^{m+n}(\cdot 2)^{([j]+[k])([i]+[k])} T_{k, j}(u) \circ T_{i, k}(u) .
$$

)B/2*

Uif bduypo pgif dpqspevdupou uif evbmCfuif ufdupst dbo cf pcubjofe wib bougn psqijtn

$$
\Delta \bullet \Psi=(\Psi \circ \Psi) \bullet \Delta^{\prime}
$$

x ifsf

$$
\Delta^{\prime}\left(T_{i, j}(u)\right)=\sum T_{i, k}(u) \circ T_{k, j}(u)
$$

)B/4*

Uifo

$$
\begin{aligned}
\Delta(\mathbb{C}(\bar{t})) & =\Delta(\Psi(\mathbb{B}(\bar{t})))=(\Psi \circ \Psi) \bullet \Delta^{\prime}(\mathbb{B}(\bar{t})) \\
& \left.=(\Psi \circ \Psi) \quad \sum \frac{\prod_{\sigma=2}^{N} \gamma_{\sigma}^{(2)}\left(\bar{t}_{\mathrm{J}}^{\sigma}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{\prod_{\sigma=2}^{N \cdot 2} f_{[\sigma+2]}\left(\bar{t}_{\mathrm{J}}^{\sigma+2}, \bar{t}_{\mathrm{J}}^{\sigma}\right)} \mathbb{B}^{(3)}\left(\bar{t}_{\mathrm{J}}\right) \circ \mathbb{B}^{(2)}\left(\bar{t}_{\mathrm{J}}\right)\right) \\
& =\sum \frac{\prod_{\sigma=2}^{N} \gamma_{\sigma}^{(2)}\left(\bar{t}_{\mathrm{J}}^{\sigma}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{\prod_{\sigma=2}^{N \cdot 2} f_{[\sigma+2]}\left(\bar{t}_{\mathrm{J}}^{\sigma+2}, \bar{t}_{\mathrm{J}}^{\sigma}\right)} \mathbb{C}^{(3)}\left(\bar{t}_{\mathrm{J}}\right) \circ \mathbb{C}^{(2)}\left(\bar{t}_{\mathrm{J}}\right) .
\end{aligned}
$$

)B/5*

Brrfoeky C1 Bddupo gasn vibt

 -studpotjefstpn f n vujqqif dpn n vubupo sf rbuypot jo uif $R T T$.brhfcsb) $3 / 5^{*}$

C/2/ Nvaiqui dpn n vibijpo sf ribipot

 $\mathbb{T}_{i, i+2}(\bar{v})$)4/25**

Jugprpx t gspn)3/6*id bu

$$
\begin{aligned}
& T_{i, i}(u) T_{i, i+2}(v)=f_{[i]}(v, u) T_{i, i+2}(v) T_{i, i}(u)+g_{[i]}(u, v) T_{i, i+2}(u) T_{i, i}(v), \\
& T_{i, i}(u) T_{i \cdot 2, i}(v)=f_{[i]}(u, v) T_{i \cdot 2, i}(v) T_{i, i}(u)+g_{[i]}(v, u) T_{i \cdot 2, i}(u) T_{i, i}(v) .
\end{aligned}
$$

)C/2*
 Ui f pon ejgof sfodf jt ui bui f gvodypot f boe g bdr vjsf bo beejupobnt vctdsjqujoejdbujoh qbs. juz/ Ui fsf gpsf-gps dpn n vbuypo sf rbuypot-x f dbo bqqin uif tuboebse bshvn fout pguif brhfcsbjd Cfuif bot bufi $] 2-4-5 \%$ Jo qbsuidviss- rfiuvt dpotjefs dpn n vubupo pguif pqfsbups $T_{i, i}\left(t_{\gamma}^{i .2}\right)$ x juiuif
 judpobjot uf pqfsbups $T_{i, i}\left(t_{\gamma}^{i \cdot}{ }^{2}\right)$ jo u f fyusfn f sjhi uqptjuppo/ Ui fo n pujoh $T_{i, i}\left(t_{\gamma}^{i \cdot}{ }^{2}\right)$ u spvhi u f qspevdu $\mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right)$ x f ti pvralffquif psjhjobnbshvn foupg $T_{i, i}$ ribejoh φ

$$
T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right) \mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right) \subseteq f_{[i]}\left(\bar{t}^{i}, t_{\gamma}^{i \cdot 2}\right) \mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right) T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right)
$$

Dpotjefs opx dpn n vubupo pguif pqfsbups $T_{i+2, i}\left(t_{\gamma}^{i .2}\right)$ x jui uif qspevdu $\mathbb{T}_{i, i+2}\left(\bar{t} \bar{t}^{2}\right)$ vtjoh

$$
\begin{align*}
& T_{i+2, i}(u) T_{i, i+2}(v) \cdot(\cdot 2)^{\eta_{i, m}} T_{i, i+2}(v) T_{i+2, i}(u) \\
& \left.\quad=g_{[i+2]}(u, v)\right) T_{i+2, i+2}(u) T_{i, i}(v) \cdot T_{i+2, i+2}(v) T_{i, i}(u)[.
\end{align*}
$$

Mutbt cfgesf-bufsn cf x boufe-jgjudpoobjot uf pqfsbups $T_{i, i}\left(t_{\gamma}^{i .}{ }^{2}\right)$ jo uif fyusfn f shi uqptjupo/ Npwioh $T_{i+2, i}\left(t_{\gamma}^{i \cdot 2}\right)$ uispvhi uif qspevdu $\mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right) \mathrm{xf}$ dbo pcbjo uif ufnt pg uf gprpx joh uqf;
(j) $T_{i+2, i}\left(t_{\gamma}^{i \cdot}{ }^{2}\right)$;
(jj) $\quad T_{i+2, i+2}\left(t_{j}^{i}\right) T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right), \quad j=2, \ldots, r_{i}$;
(jjj) $\quad T_{i+2, i+2}\left(t_{\gamma}^{i \cdot 2}\right) T_{i, i}\left(t_{j}^{i}\right), \quad j=2, \ldots, r_{i}$;
(jw) $T_{i+2, i+2}\left(t_{j_{2}}^{i}\right) T_{i, i}\left(t_{j_{3}}^{i}\right), \quad j_{2}, j_{3}=2, \ldots, r_{i}$.

Bn poh brmiftf dpousjcvupot porn if f sn t$) \mathrm{jj}$ * bsf x boufe/ Ui vt-x f i buf

$$
T_{i+2, i}\left(t_{\gamma}^{i \cdot 2}\right) \mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right) \subseteq \sum_{j=2}^{r_{i}} \Lambda_{j} \mathbb{T}_{i, i+2}\left(\overline{t^{i}} \backslash t_{j}^{i}\right) T_{i+2, i+2}\left(t_{j}^{i}\right) T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right)
$$

 jujt tvg-djfoum -oe Λ_{2} porw/ Ui fo bx boufe \mathbf{u} sn n vtudpobjo $T_{i+2, i+2}\left(t_{2}^{i}\right) T_{i, i}\left(t_{\gamma}^{i \cdot}{ }^{2}\right)$ jo uf fyusfn f sjhi uqptjupo/ Xf i buf

$$
\begin{aligned}
& T_{i+2, i}\left(t_{\gamma}^{i \cdot 2}\right) \mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right) \\
& \quad=T_{i+2, i}\left(t_{\gamma}^{i \cdot 2}\right) \frac{T_{i, i+2}\left(t_{2}^{i}\right) \mathbb{T}_{i, i+2}\left(\bar{t}^{i} \backslash t_{2}^{i}\right)}{h\left(\bar{t}^{i}, t_{2}^{i}\right)^{\eta_{m, i}}} \\
& \left.\quad \subseteq g_{[i+2]}\left(t_{\gamma}^{i \cdot 2}, t_{2}^{i}\right)\right) T_{i+2, i+2}\left(t_{\gamma}^{i \cdot 2}\right) T_{i, i}\left(t_{2}^{i}\right) \cdot T_{i+2, i+2}\left(t_{2}^{i}\right) T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right)\left[\frac{\mathbb{T}_{i, i+2}\left(\bar{t}^{i} \backslash t_{2}^{i}\right)}{\left.h\left(\bar{t}^{i}, t_{2}^{i}\right)\right)^{\eta_{m, i}}} .\right) \mathrm{C} / 7 *
\end{aligned}
$$

Uif ufsn $T_{i+2, i+2}\left(t_{\gamma}^{i .}{ }^{2}\right) T_{i, i}\left(t_{2}^{i}\right)$ pcujpvtrn hjuft vox boufe dpousjcvujpo/ Uif sfn bjojoh pqfsbupst $T_{i+2, i+2}\left(t_{2}^{i}\right) T_{i, i}\left(t_{\gamma}^{i .}{ }^{2}\right)$ ti pure n puf \mathbf{u} spvhi uf qspevdu $\mathbb{T}_{i, i+2}\left(\bar{t}^{i} \backslash t_{2}^{i}\right)$ wib) C/2* 1 ffqjoh úfjs bshvn fou/ Ui jt ribet φ

$$
\begin{aligned}
T_{i+2, i}\left(t_{\gamma}^{i \cdot 2}\right) \mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right) \subseteq & g_{[i+2]}\left(t_{2}^{i}, t_{\gamma}^{i \cdot 2}\right) \prod_{k=3}^{r_{i}} f_{[i]}\left(t_{k}^{i}, t_{\gamma}^{i \cdot 2}\right) f_{[i+2]}\left(t_{2}^{i}, t_{k}^{i}\right) \\
& * \frac{\mathbb{T}_{i, i+2}\left(\overline{t^{i}} \backslash t_{2}^{i}\right)}{h\left(\bar{t}^{i}, t_{2}^{i}\right)^{\eta_{m, i}}} T_{i+2, i+2}\left(t_{2}^{i}\right) T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right)
\end{aligned}
$$

Ui vt-vtjoh)3/21*x f bssjuf bu

$$
\Lambda_{2}=g_{[i+2]}\left(t_{2}^{i}, t_{\gamma}^{i \cdot 2}\right) \prod_{k=3}^{r_{i}} f_{[i]}\left(t_{k}^{i}, t_{\gamma}^{i \cdot 2}\right) \delta_{i}\left(t_{2}^{i}, t_{k}^{i}\right)
$$

Uif -obmsftvmdbo cf x sjufo bt btvn pufs qbsyigipot pguiftfu \bar{t}^{i};

$$
\begin{align*}
T_{i+2, i}\left(t_{\gamma}^{i \cdot 2}\right) \mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right) \subseteq & \sum g_{[i+2]}\left(\bar{t}_{\mathrm{J}}^{i}, t_{\gamma}^{i \cdot 2}\right) f_{[i]}\left(\bar{t}_{\mathrm{J}}^{i}, t_{\gamma}^{i \cdot 2}\right) \delta_{i}\left(\bar{t}_{\mathrm{J}}^{i}, \bar{t}_{\mathrm{J}}^{i}\right) \\
& * \mathbb{T}_{i, i+2}\left(\bar{t}_{\mathrm{J}}^{i}\right) T_{i+2, i+2}\left(\bar{t}_{\mathrm{J}}^{i}\right) T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right)
\end{align*}
$$

I fsf uiftfu \bar{t}^{i} jt ejwjefe joup tvctfut \bar{t}_{J}^{i} boe \bar{t}_{J}^{i} tvdi u bu' $\bar{t}_{\mathrm{J}}^{i}=2 /$

C/3/ Bduypo gpsn vubt

 cf x boufe- jg jujt qspqpsupobmp $\nu_{2}(s)$ boe epft opudpowjo boz $\gamma_{i}\left(t_{\ell}^{k}\right) / \mathrm{Pu} \mathbf{f s x} \mathrm{jtf} \mathrm{b}$ fsn jt vox boufe/

Rsprptkdpo CD1Mfu $\widetilde{\mathbb{B}}(\bar{t})$ cf uif n bjo ifsn pgb Cfuif ufdips $) 4 / 24 *$ Uifo if x bovfe if sn pgif bdijpo pg $T_{p, 2}$ poup $\widetilde{\mathbb{B}}(\bar{t})$ sf bet

$$
\begin{aligned}
& T_{p, 2}(s) \widetilde{\mathbb{B}}(\bar{t}) \subseteq \nu_{2}(s) \sum_{\text {qbsu }(\bar{t})} \prod_{\ell=3}^{p \cdot 2} \frac{g_{[\ell+2]}\left(\bar{t}_{\mathrm{J}}^{\ell}, \bar{t}_{\mathrm{J}}^{\ell \cdot 2}\right) \delta_{\ell}\left(\bar{t}_{\mathrm{J}}^{\ell}, \bar{t}_{\mathrm{J}}^{\ell}\right)}{} \\
& f_{[\ell]}\left(\bar{t}_{\mathrm{J}}^{\ell}, \bar{t}^{\ell \cdot} \cdot 2\right) \\
&\left.\left.* g_{[3]}\left(\bar{t}_{\mathrm{J}}^{2}, s\right) \hat{\delta}_{2}\left(\bar{t}_{\mathrm{J}}^{2}, \bar{t}_{\mathrm{J}}^{2}\right) f_{[2]}\left(\bar{t}_{\mathrm{J}}^{2}, s\right) \widetilde{\mathbb{B}}(\} \bar{t}_{\mathrm{J}}^{-k_{\mathrm{J}} \mid}{ }_{2}^{p \cdot 2} ;\right\} \bar{t}^{k \mid}{ }_{p}^{N}\right) .
\end{aligned}
$$

)C/21*
Ifsf uf tvn jt ublfo pufs qbsuigipot pguif tfut $\bar{t}^{k} x$ jui $k=2, \ldots, p .2$ joup tvctfit \bar{t}_{J}^{k} boe \bar{t}_{J}^{k} tvdi $u \dot{u} b u^{\prime} \bar{t}_{J}^{k}=2 /$

Up qspuf Qspqptjuppo C/2 xf jouspevdf gps $2 \geq i<k \geq m+n$

$$
\widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right)=\frac{\mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right) \ldots \mathbb{T}_{k \cdot 2, k}\left(\bar{t}^{k \cdot 2}\right)|1\rangle}{\prod_{j=i}^{k \cdot 2} v_{j+2}\left(\bar{t}^{j}\right) \prod_{j=i}^{k \cdot 3} f_{[j+2]}\left(\bar{t}^{j+2}, \bar{t}^{j}\right)},
$$

xifsf $\mathbb{T}_{j, j+2}$ jt ef-ofe cz $) 4 / 25$ 生 Pcwipvtm- $\widetilde{\mathbb{B}}_{2, n+m}\left(\left\{\bar{t}^{\sigma}\right\}_{2}^{N}\right)=\widetilde{\mathbb{B}}(\bar{t}) / \mathrm{Xf}$-stuqspuf tfufsbm bvyjigbsz rfin n bt/

MnnbCR1Mfuj< \quad boe $j<i / U i f o$

$$
T_{\ell, j}(s) \widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right)=1
$$

)C/23*
Rsppgi Uif qsppgjt cbtfe po uif bshvn fout pguif dppsjoh/ Uif pqfsbups $T_{\ell, j}$ booji jrbuft uf qbsudrfit pguif dppst $j, \ldots, \ell \cdot 2 /$ Pouif puifsi boe-gps $i>j$ uif tubf $\widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right)$ epft opu dpoobjo uif qbsudrfit pguif dpps $j /$ I fodf-uif bdupo $\operatorname{pg} T_{\ell, j}$ poup $\widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right)$ wbojti $\mathrm{ft} /$

MnnbCB1Mfuj<i/Uifo

$$
T_{j, j}(s) \widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right)=v_{j}(s) \widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right) .
$$

Rsppg P с wjpvtrn-

$$
\widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right)=\frac{\mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right)}{v_{i+2}\left(\bar{t}^{i}\right) f_{[i+2]}\left(\bar{t}^{i+2}, \bar{t}^{i}\right)} \widetilde{\mathbb{B}}_{i+2, k}\left(\left\{\bar{t}^{\sigma}\right\}_{i+2}^{k \cdot 2}\right) .
$$

)C/25*

 cfdbvtf $i>j /$ Ui vt-

$$
T_{j, j}(s) \widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right)=\frac{\mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right)}{v_{i+2}\left(\bar{t}^{i}\right) f_{[i+2]}\left(\bar{t}^{i+2}, \bar{t}^{i}\right)} T_{j, j}(s) \widetilde{\mathbb{B}}_{i+2, k}\left(\left\{\bar{t}^{\sigma}\right\}_{i+2}^{k \cdot 2}\right)
$$

 b -yfe qbsbn fufs pg ifftu $\bar{t}^{i \cdot 2}$ / Xf tbz ububusn jt x boffe-jgb Cfuif qbsbn fus t_{ℓ}^{j} gss $j=i, \ldots, k \cdot 2 \mathrm{cfdpn} \mathrm{ft}$ bo bshvn foupg $v_{j+2} / \mathrm{Pu} \mathrm{fsx} \mathrm{jtf}-\mathrm{b}$ fsn jt vox boufel

Mnn b CH1Uif x bovfe ifsn pgif bdijpo pg $T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right)$ poup $\widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{\tau}^{\sigma}\right\}_{i}^{k \cdot 2}\right)$ jt hjufo cfi

$$
T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right) \widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right) \subseteq v_{i}\left(t_{\gamma}^{i \cdot 2}\right) f_{[i]}\left(\bar{t}^{i}, t_{\gamma}^{i \cdot 2}\right) \widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right)
$$

)C/27*

 x f pcbjo

$$
T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right) \widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right) \subseteq \frac{f_{[i]}\left(\bar{t}^{i}, t_{\gamma}^{i \cdot 2}\right) \mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right)}{v_{i+2}\left(\bar{t}^{i}\right) f_{[i+2]}\left(\bar{t}^{i+2}, \bar{t}^{i}\right)} T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right) \widetilde{\mathbb{B}}_{i+2, k}\left(\left\{\bar{t}^{\sigma}\right\}_{i+2}^{k \cdot 2}\right)
$$

)C/28*
Ui fo bqqȧdbuypo pgMfn n bC/3 dpn qrifift uif qsppg
Minnb CB1Uif x boufe ifsn pgif bdijpo pg $T_{i+2, i}\left(t_{\gamma}^{i \cdot}{ }^{2}\right)$ poup $\widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right)$ jt hjufo cfi

$$
\begin{align*}
& T_{i+2, i}\left(t_{\gamma}^{i \cdot 2}\right) \widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right) \\
& \quad \subseteq \sum v_{i}\left(t_{\gamma}^{i \cdot 2}\right) g_{[i+2]}\left(\bar{t}_{\mathrm{J}}^{i}, t_{\gamma}^{i \cdot 2}\right) f_{[i]}\left(\bar{t}_{\mathrm{J}}^{i}, t_{\gamma}^{i \cdot 2}\right) \delta_{i}\left(\bar{t}_{\mathrm{J}}^{i}, \bar{t}_{\mathrm{J}}^{i}\right) \widetilde{\mathbb{B}}_{i k}\left(\bar{t}_{\mathrm{J}} ;\left\{\left\{\bar{t}^{\sigma}\right\}_{i+2}^{k \cdot 2}\right)\right.
\end{align*}
$$

Ifsf uf tvn jt ıblfo pufs qbsuijpot $\bar{t}^{i} \Rightarrow\left\{\bar{t}_{\mathrm{J}}^{i}, \bar{t}_{\mathrm{J}}^{i}\right\}$ tvdi $u \boldsymbol{i} b u^{\prime} \bar{t}_{\mathrm{J}}^{i}=2 /$
Rsppg Xf bhbjo qsft fou $\widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right)$ jo u f gpsn $) \mathrm{C} / 25^{*}$ Ui fo-n pwioh $T_{i+2, i}\left(t_{\gamma}^{i \cdot 2}\right)$ uispvi u f

$$
\begin{aligned}
T_{i+2, i}\left(t_{\gamma}^{i \cdot 2}\right) \widetilde{\mathbb{B}}_{i+2, k}(\bar{t}) \subseteq & \sum g_{[i+2]}\left(\bar{t}_{\mathrm{J}}^{i}, t_{\gamma}^{i \cdot 2}\right) f_{[i]}\left(\bar{t}_{\mathrm{J}}^{i}, t_{\gamma}^{i \cdot}{ }^{2}\right) \delta_{i}\left(\bar{t}_{\mathrm{J}}^{i}, \bar{t}_{\mathrm{J}}^{i}\right) \\
& \left.* \frac{\mathbb{T}_{i, i+2}\left(\bar{t}_{\mathrm{J}}^{i}\right) T_{i+2, i+2}\left(\bar{t}_{\mathrm{J}}^{i}\right) T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right)}{v_{i+2}\left(\bar{t}^{i}\right) f_{[i+2]}\left(\bar{t}^{i}+2, \bar{t}^{i}\right)} \widetilde{\mathbb{B}}_{i+2, k}\left(\left\{\bar{t}^{\sigma}\right\}_{i+2}^{k \cdot 2}\right) . \quad\right) \mathrm{C} / 2: *
\end{aligned}
$$

Ui fo bqqịdbujpo pgMfn n bt $\mathrm{C} / 3$ boe $\mathrm{C} / 4$ dpn qufift uif qsppg
MnnbC61Mui $<p<k$ /Uifo

$$
\begin{aligned}
& T_{p, i}\left(t_{\gamma}^{i \cdot 2}\right) \widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right) \\
& \quad \subseteq v_{i}\left(t_{\gamma}^{i \cdot 2}\right) \sum_{\mathrm{qbsu}(\bar{t})} \widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}_{\mathrm{J}}^{\sigma}\right\}_{i}^{p \cdot 2} ;\left\{\bar{t}^{\sigma}\right\}_{p}^{k \cdot 2}\right) \\
& \left.\quad * g_{[i+2]}\left(\bar{t}_{\mathrm{J}}^{i}, t_{\gamma}^{i \cdot 2}\right) \delta_{i}\left(\bar{t}_{\mathrm{J}}^{i}, \bar{t}_{\mathrm{I}}^{i}\right) f_{[i]}\left(\bar{t}_{\mathrm{J}}^{i}, t_{\gamma}^{i \cdot 2}\right) \prod_{\sigma=i+2}^{p \cdot 2} \frac{g_{[\sigma+2]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma \cdot 2}\right) \delta_{\sigma}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right)}{f_{[\sigma]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}^{\sigma \cdot 2}\right)} . \quad\right) \mathrm{C} / 31^{*}
\end{aligned}
$$

I fsf iif tvn jt iblfo pufs qbsuigipot pguif tfut $\bar{t}^{\sigma} \Rightarrow\left\{\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}_{\mathrm{J}}^{\sigma}\right\}$ gss $\sigma=i, \ldots, p$. 2- tvdi uibu , $\bar{t}_{J}^{\sigma}=2 /$

Rsppgi Uif qsppg vtft joevdujpo pufs $p \cdot i / \operatorname{Jg} p \cdot i=2-\mathbf{u}$ fo uif tubufn foudpjodjeft x jui
 qsft foubypo)C/25*

$$
T_{p, i}\left(t_{\gamma}^{i \cdot 2}\right) \widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right)=\frac{T_{p, i}\left(t_{\gamma}^{i \cdot 2}\right) \mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right)}{v_{i+2}\left(\bar{t}^{i}\right) f_{[i+2]}\left(\bar{t}^{i+2}, \bar{t}^{i}\right)} \widetilde{\mathbb{B}}_{i+2, k}\left(\left\{\bar{t}^{\sigma}\right\}_{i+2}^{k \cdot 2}\right) .
$$

(j) $T_{p, i}\left(t_{\gamma}^{i \cdot}{ }^{2}\right)$;
(jj) $T_{p, i+2}\left(t_{j}^{i}\right) T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right)$;
(jjj) $T_{p, i+2}\left(t_{\gamma}^{i \cdot 2}\right) T_{i, i}\left(t_{j}^{i}\right)$;
(jw) $T_{p, i+2}\left(t_{j_{2}}^{i}\right) T_{i, i}\left(t_{j_{3}}^{i}\right)$.

 vtfe gps pcobjojoh fr vbujpo ）C／：＊x f bssjuf bu

$$
\begin{aligned}
T_{p, i}\left(t_{\gamma}^{i \cdot 2}\right) \widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right) \subseteq & \sum g_{[i+2]}\left(\bar{t}_{\mathrm{J}}^{i}, t_{\gamma}^{i \cdot 2}\right) f_{[i]}\left(\bar{t}_{\mathrm{J}}^{i}, t_{\gamma}^{i \cdot 2}\right) \hat{\delta}_{i}\left(\bar{t}_{\mathrm{J}}^{i}, \bar{t}_{\mathrm{J}}^{i}\right) \\
& * \frac{\mathbb{T}_{i, i+2}\left(\bar{t}_{\mathrm{J}}^{i}\right) T_{p, i+2}\left(\bar{t}_{\mathrm{J}}^{i}\right) T_{i, i}\left(t_{\gamma}^{i \cdot 2}\right)}{\nu_{i+2}\left(\bar{t}^{i}\right) f_{[i+2]}\left(\bar{t}^{i+2}, \bar{t}^{i}\right)} \widetilde{\mathbb{B}}_{i+2, k}\left(\left\{\bar{t}^{\sigma}\right\}_{i+2}^{k \cdot 2}\right) .
\end{aligned}
$$

）C／34＊
 －oe

$$
\begin{aligned}
T_{p, i}\left(t_{\gamma}^{i \cdot 2}\right) \widetilde{\mathbb{B}}_{i k}\left(\left\{\bar{t}^{\sigma}\right\}_{i}^{k \cdot 2}\right) \subseteq & \sum v_{i}\left(t_{\gamma}^{i \cdot 2}\right) g_{[i+2]}\left(\bar{t}_{\mathrm{J}}^{i}, t_{\gamma}^{i \cdot 2}\right) f_{[i]}\left(\bar{t}_{\mathrm{J}}^{i}, t_{\gamma}^{i \cdot 2}\right) \delta_{i}\left(\bar{t}_{\mathrm{J}}^{i}, \bar{t}_{\mathrm{J}}^{i}\right) \\
& * \frac{\mathbb{T}_{i, i+2}\left(\bar{t}_{\mathrm{J}}^{i}\right) T_{p, i+2}\left(\bar{t}_{\mathrm{J}}^{i}\right)}{v_{i+2}\left(\bar{t}^{i}\right) f_{[i+2]}\left(\bar{t}^{i+2}, \bar{t}^{i}\right)} \widetilde{\mathbb{B}}_{i+2, k}\left(\left\{\bar{t}^{\sigma}\right\}_{i+2}^{k \cdot 2}\right) .
\end{aligned}
$$

 unu̇oh uijt lopx o bduypo joup ）C／34＊x f qspuf Mfn n b C／6／

Jo gbdu Mfn n b C／6 hjuft uif qsppg pg Qspqptjupo C／2／Joeffe－jujt fopvhi ptfui＝2 boe $k=m+n$ jo ）C／31 \boldsymbol{V}^{*} Xf bitp tfucz ef－ojupo $t_{\gamma}^{1}=s$ boe jouspevdf bo bvyjigbsz fn quz tfu $\bar{t}^{m+n} \leq \emptyset /$ Ui fo Mn n b C／6 eft dsjcft uif bdupo $\mathrm{pg} T_{p, 2}(s)$ poup uifn bjo ufsn $\mathbb{B}(\bar{t}) /$

a fofsfodft

12‘ ME／Gbeeffw F／L／Tl mbojo－MB／Ubl i ubbo－Rvbounn jowfstf qspcrfin／J－Ui fps／Nbui／Qi zt／51 ）2：8：＊799²817／
13‘ ME／Gbeeffw MB／Ubl i ublbo－Ui f r vbounn n fui pe pguif joufstf qspcrinn boe uif I fjtfocfsh $X Y Z \mathrm{n}$ pefmVtq／ N bư Obvl 45 ）2：8：＊24－ S vtt／ N bui／Tvsw 45 ）2：8：＊22 ）Fohmusbot m $\mathrm{H}^{*} /$
14‘ WF／Lpsfqjo－O／N／Cphpøjмсрw B／H／Jfif shjo－Rvbounn Jowfstf Tdbufsjoh N fui pe boe Dpssf rhuppo Gvoduppot－ Dbn csjehf Vojw Qsftt－Dbn csjehf－2：：4／
15‘ ME／Gbeeffw jo；B／Dpooft－fubnh）Fet／＊Mft I pvdift Mfdunsft Rvbounn Tzn n fujjft－Opsui I pnooe－2：：9－ q／25：／
16‘ WF／Lpsfqjo－Dbndvrbujpo pg opsn t pgCfuif x buf gvodujpot－Dpn n vo／N bui／Qi zt／97 ）2：93＊4：2＊529／
17‘ B／H／Jfif shjo－WF／Lpsfqjo－Ui f r vbounn jowf stf tdbuf sjoh n fui pe bqqspbdi up dpssfrhujpo gvodujpot－Dpn n vo／ N bui／Qi zt／： 5 ）2： $95^{*} 78^{2}$ ：3／
18‘ QQ Lvjiti－O／Zv／Sfti fujl i jo－Ejbhpobrjifibujpo $\operatorname{pg} G L(N)$ joubsjbouusbot of s n busjdft boe r vbounn N ．x buf tzt ufn ）Mf n pefn⿱⺌兀口 K Qi zt／B 27 ）2： $94^{*} \mathrm{M}$ ： $2^{\wedge} \mathrm{M}$ ：7／
 Gifi／ 91 ）2： $92 * 325^{\wedge} 339-\mathrm{Tpw}$ Qi zt／KFUQ64 ）2＊）2：92＊219²25 ）Fohnhusboth（＊／

121‘O／Zv／Sftifuli jo－Dbndvrhupo pguif opsn pg Cfuif wf dupst jo n pefmx jui $S U(4)$ ．tzn n fusz－［ bq／Obvd／Tfn jo／ QP N J 261 ）2：97＊2：7³24＠
K N bui／Tdj／ 57 ）2：9：＊27： $5^{2} 2817$ ）Fohmusbot m H^{*}
］22‘N／X i ffrfis－Tdbrbs qspevdut jo hfofsbrjifife n pefmx jui $\left.S U(4) . t z n n f u s z-D p n ~ n ~ v o / N b u i / ~ Q i z t / 438) 4^{*}\right) 3125^{*}$ 848～888－bsYjw，2315／319：／
］23＇N／X iffris－Nvigiqif joufhsbmgpsn vriff gps uif tdbrhs qspevdu pg po．tifmboe pggtifmCfuif ufdupst jo $S U(4) . j o w b s j b o u n$ pefm－OvdmQi zt／C 986 ）2＊） $3124^{*} 297^{\wedge} 323$－bsYjw，2417／1663／
124، T／Cfmibse－T／Qbl vijbl－F／Sbhpvdz－O／B／Trbwopw I jhi ftudpfg－djfoupgtdbrbs qspevdut jo $S U(4)$ ．jowbsjboujouf． hsberfi n pefrth－K Tubu N fdi／Ui fpsz Fyq／231：）3123＊Q1：114－bsYjw，2317／5：42／
125، T／Cfmibse－T／Qbl vijbl－F／Sbhpvdz－O／B／Trhwopw Uif brhfcsbjd Cfuif botbufi gps tdbrbs qspevdut jo $S U(4) . j o w b s j b o u j o u f h s b c n i n$ pefm－K Tubu N fdi／Ui fpsz Fyq／ 2312 ）3123＊Q21128－bsYjw，2318／1：67／
]26‘B/I vutbmvl-B/ Mbti zl-T/ Qbl vribl - F/ S bhpvdz- O/B/ Trhwopw Tdbrhs qspevdut pg Cfuif uf dupst jo n pefmx jui
 bsYjw,2716/1: 29: /
]27‘ B/B/I vutbravl-B/ Mbtizl-T/[/ Qbl vigbl - F/ Sbhpvdz- O/B/ Trbwopw Tdbrhs qspevdut pg Cfuif ufdupst jo n pe.
 bsYjw,2717/14684/
]28، T/ Qbl vigbl - F/ Sbhpvdz- O/B/ Trhwopw [fsp n peft n fui pe boe gpsn gbdupst jo r vbounn joufhsberfin pefm- Ovdm Qi zt/ C 9: 4)3126*56: ${ }^{\text {² 592- bsYjw,2523/7148/ }}$
]29‘ T/ Qbl vigbl - F/ Sbhpvdz- O/B/ Trhwopw GL(4).cbtfe r vbouvn joufhsberfi dpn qptjuf n pefra/ JJ/ Gpsn gbdupst pg pdbmpqf sbupst-TJHN B 22)3126* 175- bsYjw,2613/12: 77/
]2: ‘ B/B/I vtbrnvl-B/ Mbtizl-T/[/ Qbl vyjbl-F/Sbhpvdz- O/B/ Trbwopw Gpsn gbdupst pg uif n popespn z n busjy fousjft jo $\mathfrak{g l}(3 \mid 2)$.jowbsjboujoufhsberfin pefrt-Ovdn@í zt/ C : 22) $3127^{*}: 13^{\wedge}: 38$-bsYjw,2718/15: 89/
131‘K Gvltb- O/B/Trhwopw Gpsn gbdupst pgmdbmpqfsbupst jo tvqfstzn n fujdr vbouvn jouf hsberfin pefm-K Tibu'Nfdi / Ui fpsz Fyq/ 3128) 5*)3128* 154217- bsYjw,2812/16977/
]32، T/[/ Qbl vigbl - F/ Sbhpvdz- O/B/ Trbwopw Tdbrhs qspevdut jo n pefmx jui uif $G L(4)$ usjhpopn fusjd R.n busjy; hfo. f sbmdbtf-Ui fps/N bui / Qi zt/ 291)2*)3125*8: 6² 925-bsYjw,2512/5466/
]33' O/B/ Trbwopw Tdbrhs qspevdut jo $G L(4)$.cbtfe n pefm x ju usjhpopn fusjd R. n busjy/ Efufsn jobou sf qsftfobuypoK Tubu N f di / 3126)4*)3126* Q1412: - bsYjw,2612/17364/

 u 0 422151/
]35‘ W Ubsbtpw B/ Wbsdi fol p- Btzn qupuid tpnuypot p uif rvbouffife Lojfii ojl ${ }^{〔}$ [bn ppedi jl pwfr vbujpo boe Cfuif uf dupst- Usbot/ Bn / N bui / Tpd/- Tfs/ 3285)2: : 7* 346² 384- bsYjw,i fq.ui 0 517171/
]36* F/ Nvlijo- B/ Wbsdi fol p- Opsn pg b Cfuif ufdups boe uif I fttjbo pg uif n btufs gvodujpo- Dpn qpt/ Nbui / 252)3116* 2123^{2} 2139- bsYjw,n bui 0151345 : /
[37‘ P / Gpeb- N / X i ffrfis- Dppvs.joefqfoefouqbsúypo gvodujpot jo dppvsfe wf sufy n pefm- Ovdm@ízt/ C 982)3124* 441^472-bsYjw,2412/6269/
]38‘K Ftdpcfep- O/ Hspn pw B/ Tf uf s- Q Wjfjsb- Ubjpsjoh ui sff.qpjougvodypot boe joufhsbcjறjv- K I jhi Fof shz Qi zt/ 221:)3122* 139-bsYjw,2123/3586/
]39* O/ Hspn pw G Mf wl pwidi .N btmvl - H/ Tjfipw Of x dpot usvdypo pgfjhfot ubft boe tfqbsbypo pgubsjberfit gps TV)O* r vbounn tqjo di bjot- bsYjw,2721/19143/
]3: ‘ B/B/I vttbravl-B/ Mbti zl-T/[/ Qbl vgjbl-F/S bhpvdz- O/B/ Trbwopw Dvssfouqsftfoubjpo gps uif epverfit tvqfs. Zbohjbo $D Y(\mathfrak{g l}(m \mid n))$ boe Cfuif wfdupst-Svtt/N bui / Tvsw 83)2*)3128*44 : : - bsYjw,2722/1: 131/
141‘ T/ Lipsptiljo- T/ Qbl vigbl - B dpn qvıbujpo pg bo vojufstbmx fjhi u gvodujpo gps uif rvbourn bg-of brhfcsb $U_{q}(\mathfrak{g l}(N))-\mathrm{K} N$ bui / Lzpup Vojw 59) $\left.3^{*}\right) 3119^{*} 388^{〔} 432-$ bsYjw, 1822/392: /
142‘KEjoh- J/C/ Gof ol fmJtpn psqi jtn pgux p sf brjifibujpot pgr vbouwn bg-of brhfcsb $U_{q}(\mathfrak{g l}(N))$ - Dpn n vo/ Nbii / Qii zt/ 267)2: : 4*388~411/

J43' B/H/ Jfif shjo- Qbsuiupo gvodujpo pguif tjy. wf sufy n pefmjo b-ojuf upnan f-Epl mB1 be/ Obvl TTTS 3: 8)2: 98* 442~ 444-Tpw Qi zt/Epl n43)2: 98*989` 98:)Fohmusbot nd"/ 144* GI /M Fttrifs- WF/ Lpsfqjo- Tqfdusvn pg mx .mjoh fydjubipot jo btvqfstzn n fusjd fyufoefe I vccbse n pefmJou' K N pe/ Qi zt/ C 9)2: : 5* 4354²38: - bsYjw,dpoe.n bu0 41812: / 146‘ GI /MFttris- WF/ Lpsfqjo-I jhi fs dpotf subujpo rhx \(t\) boe brhfcsbjd Cfuif bot buff gpsuiftvqfstzn \(n\) fusjdu Kn pefm Qi zt/S fw C 57)2: : \(3^{*}: 258^{2}: 273 /\) Qi zt/C 4: 7)2: : 4* \(722^{\text { }} 749 /\) 148‘ Q Tdi mun boo- Jouf hsberfi obsspx .cboe n pef mx jui qpttjerfi sf rfiwbodf pifbwz Gfsn jpo tztufn t- Qi zt/ Sfwh 47)2: \(98 * 6288^{`} 6296 /\)
149‘ N/U/ Cbudi fpps-B/ Gpfstufs- ZbohCbyufs jouf hsberfin pefm jo fyqfsjn fout; gspn dpoefotfe n bufs up vmsbdpra bupn t-K Qi zt/ B-N bui / Ui fps/ 5:)3127*284112-bsYjw,2621/16921/
]4: ‘QQ Lvigiti-F/L/ Tl mbojo- Po uif tpmụpo pg uif Zboh² Cbyufs frvbujpo- [bq/ Obvd/ Tfn jo/ QPNJ : 6)2: 91*

151‘ T/ Qbl vgibl - F/ Sbhpvdz- O/B/ Trbwopw Cfuif wf dupst gps n pefm cbtfe po uif tvqfs.Zbohjbo $Y(\mathfrak{g l}(m \mid n))$ - K Jouf. hsbcrf Tztư 3)3128*2²42- bsYjw,2715/13422/
152، K Gvl tb- Cfuif ufdupst gps dpn qptjuf hfofsbijtfe n pefmx jui $\mathfrak{g l}(3 \mid 2)$ boe $\mathfrak{g l}(2 \mid 3)$ tvqfstzn n fuzz- TJHN B 24)3128* 126-28 qq/- bsYjw,2722/11: 54/

153، T/ Qbl vigbl - F/ Sbhpvdz- O/B/ Trhwopw GL(4).cbtfe r vbouvn joufhsberfi dpn qptjuf n pefrid/ J/ Cfuif ufdupstTJHN B 22)3126* 174- bsYjw,2612/18677/
]54‘ B/N prfiw Zbohjbot boe Drht tjdbmMf Brhfcsbt-N bui / Tvsufzt boe N pophsbqi t- uprh254- Bn / N bui / Tpd/- 3118/
155، O/B/ Trbwopw N vigiqifi dpn n vubujpo sf mujpot jo uif n pefrn x jui gl(3|2) tzn n fusz- Uifps/Nbui / Qi zt/ 29:) 3*)3127*2735²755-bsYjw,2715/16454/
 48)3115*3954- bsYjw,dpoe.n bu0141: 246/
157‘E/B sobvepo-K Bubo- O/ Dsbn q - B/Epjl pv- M Gsbqqbut / S bhpvdz- Hfof sbmcpvoebsz dpoejujpot gps uif $\operatorname{sl}(N)$ boe tvqfs $s l(M \mid N)$ pqfo tqjo di bjot-K Tubu'N fdi / 1519)3115* Q1 16- bsYjw,n bui .qi $01517132 /$
158‘ F/ Sbhpvdz- H/ Tbub- BobruúdbnCfu f bot bufi gps dmptfe boe pqfo $g l(M \mid N)$ tvqfs.tqjo di bjot jo bscjusbsz sfqsftfo. ubupot boe gps boz Ezol jo ejbhsbn t- K I jhi Fof shz Qi zt/ 181:)3118* 112- bsYjw,1817/4438/

Chapter 4

Norm of Bethe vectors in models with $\mathfrak{g l}(m \mid n)$ symmetry

Introduction:

In this Chapter we formulated list of axioms which exactly fixed function as determinant of matrix constructed from derivatives of Bethe equations. Using results of previous chapters we proved that the norm of Bethe eigenvector satisfies these axioms. In the $\mathfrak{g l}_{2}$ case this statement was first proposed by Gaudin. The determinant formula for the norm is necessary for calculation of correlation functions.

Contribution:

I proved that the residue of the scalar product can be expressed as scalar product too (6.11). It is a key part of proving that the norm of eigenvector satisfies Korepin criteria (see Section 4.1).

Opsn pgCfuif wfdust jo n pefmx ju $\mathfrak{g l}(m \mid n)$ tzn n fusz

 O/B/ Trbwopw ${ }^{i, \pm}$
${ }^{\mathrm{b}}$ Nptdpx Jotıkwyf pgRiztkdt boe Ufdi opphhz-Eprhpqsveoz-Nptdpx sfh/-Svttkb
${ }^{\text {c }}$ Gbdi cfsfkdi D Rizth - Cfshltdif Voknfstku ua vqqfssbm531: 8 a vqqfslbmHfsn boz
${ }^{\text {d }}$ Cphprlw cpwJot lkwif ggs UifpsfikdbmRiztkdt-PBTpgVl sbkof-Llf w Vl sblof
${ }^{\text {e }}$ PbikpobmSftfbsdi Voknfstke. I khifs Tdi ppmpgFdpopn kdt-Gbdvnz pgNbiu fn bikdt-Nptdpx-Svttk
f Tl prhpup Jot lkwif pgTdlfodf boe Ufdi opphe- Nptdpx-Svttk
$\mathrm{g}_{\text {Mocpsbupsz pgUifpsf lkdbmRi ztkdt-KIPS-Evcob-Nptdpx sfh/-Svttkb }}$
${ }^{\mathrm{h}}$ Mbcpsbupksf ef Riztlvvf Ui pskrvf MBRUi-DPST boe VTN C-CR 221-85: 52 Boofdz. hf. Wf vy Df efy-Gsbodf
${ }^{\text {i }}$ TiflnpwN buifn budblbmotlkwlf pgSvttlbo Bdbefn z pgTdlfodft - Nptdpx-Svttlb

Sfdfjufe 38 Tfqufn cfs 3128@bddfqufe: Opufn cfs 3128
Bubjiherfi poyiof 25 Opufn cfs 3128
Fejups; I vcfsuTbrfivs

Bctusbdu

Xf turez rvbounn joufhsberifin pefm tpmaberficz uif oftufe brhfcsbjd Cfuif botbuf boe qpttftjoh $\mathfrak{g l}(m \mid n)$.jowbsjbou R.n busjy/ Xf dpn qvuf uif opsn pg uif I bn jmpojbo fjhfotubuft/Vtjoh uif opypo pg
 Xf binp ti px u bub Kbdpcjbo pguiftztufn pgCfuif frvbujpot pcfzt uiftbnfqspqfsuft/ Jo uijt x bz xf qspuf bhfof sbyjiffe Hbvejo i zqpu ftjt gps uif opsn pguif i bn jupojbo fjhfotubft/

3128 Ui f Bví pst/ Qverıti fe cz Frnf wifs C/W Ui jt jt bo pqfo bddftt bsujdrf voefs uif DD CZ jidf otf)i uq;Odsf buyufdpn n pot/pshQjidf otft@z(5/10*/Gvoefe cz TDPBQ ${ }^{4} /$

[^11]
21 Iouspe vdulpo

Jo 2: $83 \mathrm{~N} /$ Hbvejo gpsn vrbufe bi zqpuiftjt bcpvuif opsn pguif I bn jmpojbo fjhfogvodujpo
 uif trvbsf pguif fjhfogvodujpo opsn jt qspqpsujpobmp b Kdpcjbo drptfm sf rhufe puif Cfuif fr vbuypot/ Jo 2: 93 W Lpsfqjo qspufe uif Hbvejo i zqpuiftjt gps $b x$ jef drbtt pg rvbounn jo.

 fouqi ztjdbmpsjhjo jo bdpn n po gsbn fxpsl/ Uif x psl $14^{〔}$ efbmx jui uif n pefmeftdsjcfe cz $\mathfrak{g l}(3)$.joubsjbou R.n busjy boe jut q.efgesn buypo/ Vtjoh uif tbn f bqqspbdi $\mathrm{O} / \mathrm{Sfti}$ fullijo hfo.
 I bn jupojbo fjhfogvodypot jo uif n pefmx ju $\mathfrak{g l}(4)$ usjhpopn f usjd R.n busjy x f sf dbrdvrhufe jo]: ‘/

B of x bqqspbdi p u f qspcrfin cbtfe po uif rvboúfife Lojfii ojl [bn ppedi jl pwfr vbuypo x bt efuf pqfe jo btfsjft pgqbqfst 12123% Uifsf uf opsnt pguff fhfotubuft jo $\mathfrak{g l}(N)$ cbtfe n pefmx fsf dbrdvrhufe/ Jux bt ti px o u bui ftf sftvnt bsf fr vjubrifoup uif Hbvejo i zqpuiftjt/ Dpodf sojoh n pefmeftdsjcfe cz tvqfsbrhfcsbt jujt x psui n foupojoh uif xpsl $] 24^{〔}$ - x ifsf bo bobph pgif Hbvejo gpsn vrb x bt dpolfdussfe gps I vccbse n pefmSfdfoun- uf Hbvejo opsn pguif gvmpsu(3, 3|5) tqjo di bjo x bt tuwejfe jo $] 25$ \%

Jo bmif dbtft gitue bcpuf uif psjhjobmi zqpuiftjt x bt dpoflsn fe/ Tdi fn buddbm judbo cf gpsn vrhufe bt gpmx t/Mfu| >cf bI bn jmpojbo fjhfotubuf/ Gps r vbown joufhsberfin pefrijudbo cf qbsbn fufsjffe cz b tfupg qbsbn fufst $\left.\rangle=|\left(t_{2}, \ldots, t_{L}\right)\right\rangle$ tbuit gjoh b tztufn pg fr vbupot)Cfuif fr vbupot*

$$
\left.F_{i}\left(t_{2}, \ldots, t_{L}\right)=2, \quad i=2, \ldots, L, \quad\right) 2 / 2^{*}
$$

 qspqpsujpobmp uif gpmx joh Kdpcjbo

$$
\langle\mid\rangle \operatorname{efu} \frac{\partial \mathrm{ph} F_{i}}{\partial t_{j}}
$$

Jo if f qsftfouqbqfs x f qspuf íf Hbvejo i zqpuiftjt gps joufhsberfin pefmx ju $\mathfrak{g l}(m \mid n) \mathrm{tzn}$. n fusz eftdsjcfe czuiftvqf. Zbohjbo $Y) \mathfrak{g l}(m \mid n)\{/$ P vs bqqspbdi jt ufsz dmtfe puif pof pguif x psl 14 '/ Jujt cbtfe pouif oftufe brhf csbjd Cfúf botbui] 26 28‘ boe uf opypo pgb hfof sbrigife n pefm]4-29-2: ‘)tff bitp $] 7 \times *$ Xf cfhjo x ju b $t v n$ gosn vno gps uif tdbrhs qspevdupg hfofsjd Cfuif wfdupst pcubjofe jo 331 / Vtjoh i jt gpsn vibxf floe bsfdvstjpo gps uiftdbrhs qspevduboe
 ufs joboutbutg uif tbn f sfdvstjpo/ Ubl joh joup bddpvouuif dpjodjefodf pguif jojubmebbb-x f úfsfcz qspuf uf Hbvejo i zqpuiftjt gpsuifn pefmeftdsjcfeczuiftvqfs.Zbohjbo Y) $\mathfrak{g l}(m \mid n)\{/$

Uif qbqfs jt pshbojfife bt gpmpx t/ Jo tfdujpo $3 \mathrm{xf} \mathrm{csjf}-\mathrm{z}$ sfdbmebtjd opypot pgRJTN tqfd.
 Cfuif wfdupst pguif n pefmx jui $\mathfrak{g l}(m \mid n)$.jowbsjbou R.n busjy boe dpotjefs u fjstdbrhs qspe vdut/ Tfdujpo 5 jt ef wpufe p uif qspqfsuft pguif Hbvejo n busjy/I fsf xf gpsn vrbuf if n bjo sftvm
 uppmpg pvs bqqspbdi / Jo tfdujpo 7 x f floe b sfdvstjpo gps uif tdbrhs qspevdupg Cfuif ufdupst/ Xf tqfdjg uijt sfdvstjpo upuif dbtf pguf opsn jo tfdujpo 8 boe ti px ui bujudpjodjeft x ju uif sfdvstjpo gps uif Hbvejo efufn jobou Jo uijt x bz xf qspuf uf hfofsbyjife Hbvejo i zqpuiftjt
gps úf n pefmx jui $\mathfrak{g l}(m \mid n)$.joubsjbou R.n busjy/ Tf wf sbnbvyjigbsz tubuf n fout bsf hbuifsfe jo bq. qfoejdft/Jo Bqqfoejy B xf fyqribo i px w dpotusvdutpn f sfqsftfoubuivft pg if hfofsbigifie n pefmjo uif gsbn fx psl pg fubrmbupo sfqsftfoubuipo/ Bqqfoejy C dpoubjot sfdvstjpot gps uf i jhiftudpfofldjfout pguif tdbrhs qspevdut/ Gjobm- jo Bqqfoejy D xf floe sftjevft jo uif qprfit pguifijhi ftudpfgldjfou/

31 Cbtld opupot

Jo u jt tfdujpo xfesjf-z sfdbmcbtjd opypot pgr vbown joufhsberfi hsbefe n pefrn/ B n psf ef bjirfie qsftfoubypo dbo cf gpvoe jo $] 32 \%$

Uif \mathbb{Z}_{3}.hsbefe wfdps tqbdf $\mathbf{E}^{m \mid n} \mathrm{x}$ ju uif hsbejoh $[i]=1$ gps $2 \sim i \sim m-[i]=2$ gps $m<$ $i \sim m+n$ jt bejsfdutvn pgtqbdft $; \mathbf{E}^{m \mid n}=\mathbf{E}^{m} \otimes \mathbf{E}^{n} /$ Wfdupst cf pohjoh $\varphi \mathbf{E}^{m}$ bsf dbrrie fufouf dupst cf pohjoh $\varphi \mathbf{E}^{n}$ bsf dbrifie pee/ N busjdft bdujoh jo $\mathbf{E}^{m \mid n}$ bsf hsbefe bt $\left[E_{i j}\right]=[i]+[j] \in$ \mathbb{Z}_{3} - xifsf $E_{i j}$ bsf frin foubsz vojut; $\left(E_{i j}\right)_{a b}=\lambda_{i a} \lambda_{j b} /$

Uif R.n busjy $\operatorname{pggl}(m \mid n)$.joubsjboun pefmibt if gpsn

$$
R(u, v)=\mathbb{I}+g(u, v) P, \quad g(u, v)=\frac{c}{u \cdot v} .
$$

I fsf c jt b dpotubout \mathbb{I} boe P sftqfdujufn bsf íf jefouju n busjy boe uif hsbefe qfsn vubyipo pqfsbups $32^{\text { }}$;

$$
\mathbb{I}=\mathbf{2} \leq \mathbf{2}=\sum_{i, j=2}^{n+m} E_{i i} \leq E_{j j}, \quad P=\sum_{i, j=2}^{n+m}(\cdot 2)^{[j]} E_{i j} \leq E_{j i}
$$

Jo) $3 / 3^{*}$ x f efbmx ju uif n busjdft bdujoh jo uif ufotps qspevdu $\mathbf{E}^{m \mid n} \leq \mathbf{E}^{m \mid n} /$ Jo jut wsso-u if ufotps qspevdupg $\mathbf{E}^{m \mid n}$ tqbdft jt hsbefe bt gpmpx t;

$$
\left(\mathbf{2} \leq E_{i j}\right) \times\left(E_{k l} \leq \mathbf{2}\right)=(\cdot 2)^{([i]+[j])([k]+[l])} E_{k l} \leq E_{i j}
$$

)3/4*
B cbtjd sf rbujpo pguif RJTN jt bo $R T T$.sfrbypo ${ }^{2}$

$$
R(u, v)) T(u) \leq \mathbf{2}\{) \mathbf{2} \leq T(v)\{=) \mathbf{2} \leq T(v)\{) T(u) \leq \mathbf{2}\{R(u, v) .
$$

I fsf $T(u)$ jt bn popespn z n busjy- x i ptf n busjy frin fout bsf r vbounn pqfsbupst bdujoh jo b I jrof sutqbdf \mathcal{H} / U_{i} jt I jrof sutqbdf dpjodjeft x jui uif tqbdf pgtubt pguif i bn jrpojbo voefs dpotjef sbuypo/ Uif n busjy frin fout $T_{i, j}(u)$ bsf hsbefe jo uf tbn f x bz bt uifn busjdft $\left[E_{i j}\right]$; $\left[T_{i, j}(u)\right]=[i]+[j] \in \mathbb{Z}_{3} /$ Fr vbuypo $) 3 / 5^{*}$ i prat jo ui f uotps qspevdu $\mathbf{E}^{m \mid n} \leq \mathbf{E}^{m \mid n} \leq \mathcal{H} /$ B mi f ufotps qspevdut bsf hsbefe/
 gps uif n popespn $z n$ busjy fousjft

$$
\left.\begin{array}{rl}
{\left[T_{i, j}(u), T_{k, l}(v)\right\}} & \left.=(\cdot 2)^{[i]([k]+[l])+[k][l]} g(u, v)\right) T_{k, j}(v) T_{i, l}(u) \cdot \\
& T_{k, j}(u) T_{i, l}(v)[\\
& \left.=(\cdot 2)^{[l]([i]+[j])+[i][j]} g(u, v)\right) T_{i, l}(u) T_{k, j}(v) \cdot \\
T_{i, l}(v) T_{k, j}(u)
\end{array}\right], \quad 3 / 6^{*}
$$

x ifsf xf jouspevdfe $\mathbf{u} f$ hsbefe dpn n vubs

[^12]$$
\left[T_{i, j}(u), T_{k, l}(v)\right\}=T_{i, j}(u) T_{k, l}(v) \cdot(\cdot 2)^{([i]+[j])([k]+[l])} T_{k, l}(v) T_{i, j}(u) . \quad 3 / 7^{*}
$$

Uif I bn jmpojbo boe puifs joufhsbin pgn pypo pgbrvbown joufhsberfitztufn dbo cf pcubjofe

$$
\mathcal{T}(u)=\operatorname{tus} T(u)=\sum_{j=2}^{m+n}(\cdot 2)^{[j]} T_{j, j}(u) .
$$

Pof dbo fbtjrn di fdl $] 32^{`}$ u bu $[\mathcal{T}(u), \mathcal{T}(v)]=1 /$ Fjhfotubft pg uif hsbefe usbot gfs n busjy bsf fjhfotubuft pg if r vbown I bn jnpojbo/ Bt vtvbmuifz bsf efflofe vq p bopsn by̆́fibyipo
 dpssft qpoejoh fjhfotubuft bsf fr vbmp 2/

41 Cfui f ufdupst boe ui fls tdbrhs r spe vdit

 bttvn f u bujudpobjot $\mathrm{b} q t f v e p u b d v v n$ uf $d p s s|1\rangle$-tvdi \mathbf{u} bu

$$
\begin{array}{ll}
T_{i, i}(u)|1\rangle=\mu_{i}(u)|1\rangle, & \\
T_{i, j}(u)|1\rangle=2, \ldots, m+n, & \\
i>j,
\end{array}
$$

 gvodupot

$$
\gamma_{i}(u)=\frac{\mu_{i}(u)}{\mu_{i+2}(u)}, \quad i=2, \ldots, m+n \cdot 2 .
$$

 qbsbn fufst Xf ejtdvtt tpn f qspqfsuft pguif hf of sbjgifie n pef mio tfduypo 6/

Xf binp bttvn f u buíf n popespn $z n$ busjy fousjft bdujo bevbntqbdf $\mathcal{H}^{ \pm} x$ ju bevbmqtfv. epubdvvn $\langle 1|$ tvdi u bu

$$
\begin{array}{ll}
\langle 1| T_{i, i}(u)=\mu_{i}(u)\langle 1|, & i=2, \ldots, m+n, \\
\langle 1| T_{i, j}(u)=1, & i<j .
\end{array}
$$

)4/4*
I fsf uif gvodupot $\mu_{i}(u)$ bsf uif tbn ft jo)4/2*
Jo uf gsbn fxpl pguf brhfcsbjd Cfuif botbui- jujt bttvnfe ubuiftqbdf pgtbuft \mathcal{H} jt hfofsbufe cz uf bdupo pg uif vqqfs usjbohvrbs frin fout pg if n popespn z n busjy $T_{i, j}(u)$
 r vbtjqbsujdrfit pgejgef sfouuqft)dppst*/ Jo $\mathfrak{g l}(m \mid n)$.jowbsjboun pef m r vbtjqbsudrfit n bz i buf $N=m+n \cdot 2$ dppst/ Mu $\left\{r_{2}, \ldots, r_{N}\right\}$ cf btfupgopo.ofhbuyf joufhfst/Xftbz i bub tubf i bt dppsjoh $\left\{r_{2}, \ldots, r_{N}\right\}$ - jgjudpoobjot r_{i} r vbtjqbsydrfit pguif dpps i - x ifsf $i=2, \ldots, N /$ Uif bd. ypo $\operatorname{pg} T_{i, j}(u)$ poup b tubuf pgbflyfe dppsjoh dsf buft j. i r vbtjqbsudrfit pguif dppst i, \ldots, j. 2/ N psf ef ubjin po dppssoh dbo cf gpvoe jo] $31^{〔} /$

B Cfuif wfdups jt b qprnopn jbmjo uif dsf bujpo pqfsbupst $T_{i, j} \times$ ju $i<j$ bqqgife φ uif wf dups
 fyqu̇djugpsn pguif Cfuif ufdupst-ipx fufs-uif sf befs dbo floe jujo] 33% B hfofsjd Cfuif uf dups $\operatorname{pg} \mathfrak{g l}(m \mid n)$.joubsjboun pefmefqfoet po $N=m+n$. 2 tfut pg wbsjbcrfit $\bar{t}^{2}, \bar{t}^{3}, \ldots, \bar{t}^{N}$ dbmfie Cfuif qbsbn fufst Xf efopuf Cfuif wfdpst cz $\mathbb{B}(\bar{t})$ - x ifsf

$$
\bar{t}=\left\{t_{2}^{2}, \ldots, t_{r_{2}}^{2} ; t_{2}^{3}, \ldots, t_{r_{3}}^{3} ; \ldots ; t_{2}^{N}, \ldots, t_{r_{N}}^{N}\right\},
$$

)4/5*
 qbsbn fufs t_{k}^{i} dbo cf bttpdjbufe x ju brvbtjqbsuidrfipguif dppsi/ Xf brnp jouspevdf uif prbm ovn cfspguif Cfuif qbsbn fufst

$$
\mathbf{s}=' \bar{t}=\sum_{i=2}^{N} r_{i}
$$

)4/6*
 u fz bsf oputzn n fusjd pufs qfsn vibuipot pufs qbsbn fufst cf pohjoh w ejgef sfoutfut \bar{t}^{i} boe $\bar{t}^{j} /$ Gps hfofsjd Cfuif ufdupst uif Cfuif qbsbn fufst t_{k}^{i} bsf hfofsjd dpn qrify ovn cfst/ Jg u ftf qbsbn fufst tbuitg btqfdjbntztufn pgfr vbupot)Cfuif fr vbujpot*-u fouif dpssftqpoejoh wf dups

 opbuypo/

EvbnCfuif ufdupst cf poh p uif evbntqbdf $\mathcal{H}^{ \pm} /$Ui fz dbo cf pcubjofe bt b hsbefe ubbot qptj. upo pguif Cfuif wfdpst)tff $\mathrm{f} / \mathrm{h} / \mathrm{]} 31-33-34^{*}$ * Xf efopuf evbnCfuif wfdupst $\mathrm{cz} \mathbb{C}(\bar{t})$-x ifsf \bar{t} bsf
) 4/22 ${ }^{*}$

4/2/ Ppibilpo

 $x f$ vtf pof n psf sbụpobngvodụpo

$$
f(u, v)=2+g(u, v)=\frac{u \cdot v+c}{u \cdot v} .
$$

Jo psefs up n blf gpsn vibt vojgpsn xf brtp jouspevdf bahsbefe (dpot bou $c_{[i]}=(\cdot 2)^{[i]} c / \mathrm{Sf}$. tqfdujufn-x f vtf ahsbefe(sbuypobngvoduypot $g_{[i]}(u, v)$ boe $f_{[i]}(u, v)$;

$$
\begin{aligned}
g_{[i]}(u, v) & =\frac{c_{[i]}}{u \cdot v} \\
f_{[i]}(u, v) & =2+g_{[i]}(u, v)=\frac{u \cdot v+c_{[i]}}{u \cdot v}
\end{aligned}
$$

)4/8*

Gjobma- x f efflof $\delta_{i}(u, v)$ bt

$$
\delta_{i}(u, v)=\left(\begin{array}{ll}
f_{[i]}(u, v), & i \neq m \\
g_{[i]}(u, v), & i=m
\end{array}\right.
$$

)4/9*
 $g(u, v)$ gps $i=m$-boe $\delta_{i}(u, v)=f(v, u) \operatorname{gps} i>m /$

Muvt gpsn vibuf opx bdpowfoupo po uif opubipo/ Xf vtf bcbs pefopuf tfut pg ubsjbcrit/
 vtfe gps uf Cfuif qbsbn fufst pgevbnCfuif ufdupst/ Gspn opx po joejujevbnCfuif qbsbn fufst bsf rhcfrfie x ju b Hsffl tvqfst dsjquboe b Mbio tvetdsjqur $j / f / t_{j}^{v}-t_{k}^{\xi}$ - boe tp po/ Uiftvqfstdsjqu
 dpps/ Ui vt- $\bar{t}=\left\{\bar{t}^{2}, \ldots, \bar{t}^{N}\right\}-\mathrm{x}$ ifsf $\bar{t}^{\nu}=\left\{t_{2}^{\nu}, \ldots, t_{r_{v}}^{\nu}\right\} /$ Ui f joufhfst r_{ν} efopuf uif dbsejobறjugft

Cfmx xf dpotjefs qbsuyipot pguif Cfuif qbsbn fufst joup ejt lpjoutvctfu/ Uiftvctfutbsf efopufe cz Spn bo ovn cfst-j/f/ $/ \bar{t}_{\mathrm{J}}^{\nu}-\bar{s}_{\mathrm{JJ}}^{\xi}$ - boe tp po/B tqfdjbmopubipo $\left.\bar{t}_{j}^{\nu}\right) \mathrm{sftq} / \bar{s}_{j}^{\nu} * \mathrm{jt}$ vtfe gpsuif
 $\bar{s}_{j}^{\nu}=\bar{s}^{\nu} \backslash\left\{s_{j}^{\nu}\right\}^{*}$

Xf vtf b tipsu boe opubypo gps qspevdut pg uif gvodupot) 4/3*) 4/8* boe) 4/9* Obn frn-jg
 pof tipvre blf uf qspevdupufs uf dpssftqpoejoh tfu)ps epverif qspevdupufs ux ptfu* Gps fybn qrif-

$$
\begin{align*}
& \gamma_{\xi}\left(\bar{t}^{\xi}\right)=\prod_{t_{j}^{\xi} \in \bar{t}^{\xi}} \gamma_{\xi}\left(t_{j}^{\xi}\right), \quad f_{[\nu]}\left(t_{k}^{v}, \bar{t}_{k}^{v}\right)=\prod_{\substack{t_{\ell}^{v} \in \bar{t}^{v} \\
\ell \neq k}} f_{[\nu]}\left(t_{k}^{v}, t_{\ell}^{\nu}\right), \\
& \delta_{\xi}\left(\bar{s}_{\mathrm{J}}^{\xi}, \bar{s}_{\mathrm{JJ}}^{\xi}\right)=\prod_{s_{j}^{\xi_{j}} \in \bar{s}_{\mathrm{J}}^{\xi}} \prod_{s_{k}^{\xi} \in \in_{\bar{J}}^{\bar{J}}} \delta_{\xi}\left(s_{j}^{\xi}, s_{k}^{\xi}\right) .
\end{align*}
$$

Cz ef flojupo- boz qspevdupufs uif fn que tfujt frvbmp 2/B epverfíqspevdujt frvbmp 2 jg burfibt upof pguiftfut jt fn qua/

Up jmatusbuf uf vtf pguiftipsu boe opubipo)4/: *x f hjuf ifsf btztufn pgCfuif fr vbjpot/ Sfdbmi bujguif Cfuif qbsbn fufst \bar{t} tbutg uiftztuf ngCfu f frvbypot-u fouif dpssftqpoejoh)e vbrircfuif uf dups jt po.tifmCfjoh x sjufo jo b tuboebse opbupo uijt tztufn ibt uf gpmp joh gpsn ;

$$
\left.\gamma_{\xi}\left(t_{j}^{\xi}\right)=(\cdot 2)^{\lambda_{\xi}, m}\left(r_{m} \cdot 2\right) \quad \prod_{\substack{k=2 \\
k \neq j}}^{r_{\xi}} \frac{\delta_{\xi}\left(t_{j}^{\xi}, t_{k}^{\xi}\right)}{\delta_{\xi}\left(t_{k}^{\xi}, t_{j}^{\xi}\right)}\right) \frac{\prod_{k=2}^{r_{\xi}+2} f_{[\xi+2]}\left(t_{k}^{\xi+2}, t_{j}^{\xi}\right)}{\prod_{k=2}^{r_{\xi} \cdot 2} f_{[\xi]}\left(t_{j}^{\xi}, t_{k}^{\xi \cdot 2}\right)}, \quad \begin{aligned}
& \xi=2, \ldots, N, \\
& j=2, \ldots, r_{\xi} .
\end{aligned}
$$

)4/21*

$$
\gamma_{\xi}\left(t_{j}^{\xi}\right)=(\cdot 2)^{\lambda_{\xi, m}\left(r_{m} \cdot 2\right)} \frac{\delta_{\xi}\left(t_{j}^{\xi}, t_{j}^{\xi}\right) f_{[\xi+2]}\left(\bar{t}^{\xi+2}, t_{j}^{\xi}\right)}{\delta_{\xi}\left(\bar{t}_{j}^{\xi}, t_{j}^{\xi}\right) f_{[\xi]}\left(t_{j}^{\xi}, t^{\xi} \cdot 2\right)}, \quad \begin{array}{ll}
\xi=2, \ldots, N, \\
& j=2, \ldots, r_{\xi} .
\end{array}
$$

)4/22*

4/3/ Joklbmopsn brhfibulpo pgCfuif uf dupst

 opsn bẏ̇fibuypo/ Xf vtfuiftbn fopsn brjifibuypo bt jo $] 31$ //
 x jui $i<j$ bqquife puif qtf vepubdvvn $|1\rangle /$ Bn poh bmif f sn t pgi jt qproopn jbmifsf jt pof n popn jbmi budpobjot uif pqfsbupst $T_{i, j} \times \mathrm{ju} j \cdot i=2$ porn/ Xf dbmi jt n popn jbmif n blo uf sn boe fly uif opsn bríibupo pguif Cfuf wfdust cz flyjoh bovn fsjd dpf gfldjfoupguifn bjo uf sn

$$
\mathbb{B}(\bar{t})=\frac{\mathbb{T}_{2,3}\left(\bar{t}^{2}\right) \ldots \mathbb{T}_{N, N+2}\left(\bar{t}^{N}\right)|1\rangle}{\prod_{i=2}^{N} \mu_{i+2}\left(\bar{t}^{i}\right) \prod_{i=2}^{N}{ }^{2} f_{[i+2]}\left(\bar{t}^{i+2}, \bar{t}^{i}\right)}+\ldots
$$

x ifsf frúqtit n fbot bmif f sn t dpoobjojoh burfibt upof pqfsbps $T_{i, j} \mathrm{x}$ ju $j \cdot i>2 / \mathrm{Xf}$ bmp jouspevdfe tzn n fusjd pqfsbups qspevdut jo)4/23*,

$$
\mathbb{T}_{i, i+2}\left(\bar{t}^{i}\right)=\frac{T_{i, i+2}\left(t_{2}^{i}\right) \ldots T_{i, i+2}\left(t_{r_{i}}^{i}\right)}{\left.\prod_{2 \sim j<k \sim r_{i}} h\left(t_{k}^{i}, t_{j}^{i}\right)\right]^{\lambda_{i, m}}}
$$

 ep bsf tzn n fusjd pufs $\bar{t}^{i} \operatorname{gps}$ bmi $=2, \ldots, m+n \cdot 2 /$

Sfdbmi buxf vtf ifsf uf tipsi boe opubypo gps uf qspevdut pgif gvodypot μ_{j+2} boe

 qspevdut pguif Cfuif ufdupst efqfoe po uif sbujpt $\left.\gamma_{i}\right) 4 / 3^{*}$ porv/

Tjodf úf pqfsbupst $T_{i, i+2}$ boe $T_{j, j+2}$ ep opudpn n vuf $\operatorname{gps} i \neq j$-uifn bjo ufsn dbo cf x sjufo jo $t f$ ff sbngpsn t dpssftqpoejoh φ ejgef sf oupsef sjoh pguif n popespn $z n$ busjy fousjft/Uif psefs. joh jo)4/23* obussbm bsjtft jgx f dpotusvduCfuif wfdupst ujb uif fn cfeejoh pg Y) $\mathfrak{g l}(m \cdot 2 \mid n)\{$ joup $Y) \mathfrak{g l}(m \mid n)\{/$

4/4/ Tdbrbs qspevdupgCfuif ufdpst

Uiftdbrhs qspevdupgCfuif wf dupst jt ef flofe bt

$$
S(\bar{s} \mid \bar{t})=\mathbb{C}(\bar{s}) \mathbb{B}(\bar{t})
$$

)4/25*
I fsf \bar{s} boe \bar{t} bsf tfut pghfof sjd dpn qrify ovn cfst pguif tbn f dbsejobyjuz ${ }^{\prime} \bar{s}={ }^{\prime} \bar{t} / \mathrm{P}$ of dbo ti px
 dpotjefs porn if dbtf $\left.{ }^{\prime} \bar{s}^{\xi}={ }^{\prime} \bar{t}^{\xi}=r_{\xi}-\xi=2, \ldots, N\right)$ sfdbmi bu $N=m+n \cdot 2 *$

Jo]31' x f gpvoe btvn gpsn vrb gps uijt tdbrhs qspevdu

$$
S(\bar{s} \mid \bar{t})=\sum \frac{\prod_{\xi=2}^{N} \gamma_{\xi}\left(\bar{s}_{\mathrm{J}}^{\xi}\right) \gamma_{\xi}\left(\bar{t}_{\mathrm{\xi}}\right) \delta_{\xi}\left(\bar{s}_{\mathrm{J}}^{\xi}, \bar{s}_{\mathrm{J}}^{\xi}\right) \delta_{\xi}\left(\bar{t}_{\mathrm{J}}^{\xi}, \bar{t}_{\mathrm{JJ}}\right)}{\prod_{\xi=2}^{N \cdot 2} f_{[\xi+2]}\left(\bar{s}_{\mathrm{JJ}}^{\xi+2}, \bar{s}_{\mathrm{J}}\right) f_{[\xi+2]}\left(\bar{t}_{\mathrm{J}}^{\xi}+2, \bar{t}_{\mathrm{JJ}}^{\xi}\right)} Z^{m \mid n}\left(\overline{\mathrm{~J}}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right) \quad Z^{m \mid n}\left(\bar{t}_{\mathrm{JJ}} \mid \bar{s}_{\mathrm{JJ}}\right) . \quad \quad 4 / 26^{*}
$$

I fsf bmiftfut pguif Cfuif qbsbn fufst \bar{t}^{ξ} boe \bar{s}^{ξ} bsf ejwjefe joup ux ptvctfut $\bar{t}^{\xi} \Rightarrow\left\{\bar{t} \bar{t}_{\mathrm{J}}{ }^{\xi}, \bar{t}_{\mathrm{JJ}}\right\}$ boe

Uif gvoduypo $Z^{m \mid n}(\bar{s} \mid \bar{t})$ jt uif ijhiftudpf gfldjfou)I D* Ui jt jt bsbujpobngvodujpo pguif Cfuif qbsbn fufst/ Judbo cf dpotusvdufe sfdvstjuf m tubsuioh x jui I D jo $\mathfrak{g l}(2 \mid 2)$ t vqf sbrhf csb)tff brinp]36‘ gps bo fyqற்djuef uf sn jobousf qsft foubupo pgI D jo gl(3|2) tvqf sbrhf csb*

$$
Z^{2 \mid 2}(\bar{s} \mid \bar{t})=g(\bar{s}, \bar{t})
$$

Uif sfdvstjpot gps I D bsf hjufo jo Bqqfoejy C/
 $2, \ldots, N-j=2, \ldots, r_{\nu} /$

Rsprptkdpo 421 Uif sftkevft pgI D ko uif qprit bus ${ }_{j}^{v}=t_{j}^{v}-v=2, \ldots, N-j=2, \ldots, r_{v}$ bsf qspqpsilpobmp $Z^{m \mid n}\left(\bar{s} \backslash\left\{s_{j}^{v}\right\} \mid \bar{t} \backslash\left\{t_{j}^{v}\right\}\right) A$

$$
Z^{m \mid n}(\bar{s} \mid \bar{t})\left(s_{j}^{v} \rightarrow t_{j}^{v}=g_{[\nu+2]}\left(t_{j}^{v}, s_{j}^{v}\right) \frac{\delta_{v}\left(\bar{t}_{j}^{v}, t_{j}^{v}\right) \delta_{v}\left(s_{j}^{v}, \bar{s}_{j}^{v}\right) Z^{m \mid n}\left(\bar{s} \backslash\left\{s_{j}^{v}\right\} \mid \bar{t} \backslash\left\{t_{j}^{v}\right\}\right)}{f_{[\nu+2]}\left(\bar{t} v+2, t_{j}^{v}\right) f_{[\nu]}\left(s_{j}^{v}, \bar{s}^{v \cdot 2}\right)}+r e g,\right.
$$

xifsf reg nfbot sfhvors ifsn t/
Xf qspuf iujt qspqptjupo jo Bqqfoejy D/
Uif trvbsf pguif opsn pguif Cfuif uf dups usbejupobmn jt ef flofe bt

$$
S(\bar{t} \mid \bar{t})=\mathbb{C}(\bar{t}) \mathbb{B}(\bar{t})
$$

)4/29*
 ufsnt pguiftvn pufs qbsuigpot n bz i buf tjohvrbsjuft evf puif qurfit pgI D/ Ui vt-jo psefs φ
 ui bus ${ }_{j}^{v} \rightarrow t_{j}^{v} \operatorname{gns}$ bm $\nu=2, \ldots, N$ boe $j=2, \ldots, r_{\nu} /$

Gjobmn- \mathbf{y} pcobjo uif opsn pg po.tifmCfuif wfdups- pof tipvre jn qptf Cfuif frvbujpot
 wfdups jo $\mathfrak{g l}(m \mid n)$.jowbsjboun pefm jt qspqpsujpobmp b tqfdjbmஙbdpcjbo/ Xf eftdsjcf i jt Kbdp. cjbo jo uif of yutfdypo/

51 I bveko n busk

 capdl $G^{(\nu, \xi)}$ jt $r_{\nu} * r_{\xi} /$ Up eftdsjcf uif fousjft $G_{j k}^{(\nu, \xi)} \mathrm{xf}$ jouspevdf b gvodupo

$$
\Phi_{j}^{(\nu)}=(\cdot 2)^{\lambda_{\nu, m}\left(r_{m} \cdot 2\right)} \gamma_{v}\left(t_{j}^{\nu}\right) \frac{\delta_{\nu}\left(\bar{t}_{j}^{\nu}, t_{j}^{v}\right)}{\delta_{v}\left(t_{j}^{v}, \bar{t}_{j}^{v}\right)} \frac{f_{[\nu]}\left(t_{j}^{\nu}, \bar{t}^{\nu} \cdot 2\right.}{f_{[v+2]}\left(\bar{t}^{\nu+2}, t_{j}^{v}\right)} .
$$

$$
\Phi_{j}^{(v)}=2, \quad v=2, \ldots, N, \quad j=2, \ldots, r_{v}
$$

Uif fousjft pguif Hbvejo n busjy bsf ef flofe bt

$$
G_{j k}^{(\nu, \xi)}=\cdot c_{[\nu+2]} \frac{\partial \operatorname{ph} \Phi_{j}^{(\nu)}}{\partial t_{k}^{\xi}}
$$

Xf bsf opx jo qptjupo بp tubuf uif n bjo sftvmpgi jt qbqfs;
Zi fpsfn 521Uif trvbsf pgiif opsn pguif po.tifmCfuif ufdpst sfbet

$$
\left.\mathbb{C}(\bar{t}) \mathbb{B}(\bar{t})=\prod_{\xi=2}^{N} \prod_{\substack{p, q=2 \\ p \neq q}}^{r_{\xi}} \delta_{\xi}\left(t_{p}^{\xi}, t_{q}^{\xi}\right) \prod_{\xi=2}^{N \cdot 2} f_{[\xi+2]}\left(\bar{t}^{\xi+2}, \bar{t}^{\xi}\right)\right)^{\cdot 2} \mathrm{efu} G
$$

xifsf uf n busky G \& hkufo cz)5/4*
Xf qspuf uijt gpsn vib jo uif sftupguif qbqfs

5/2/ Rspqf sulft pgif Hbveko n busky

Gistupgbmerfiuvt hjuf fyqijdjufyqsfttjpot gas if n busjy frin fout pguif Hbvejo n busjy)5/4* Xf i buf gps if frin fout jo uif ejbhpobncepdl t $G^{(\nu, \nu)}$;

$$
\begin{align*}
& G_{j k}^{(\nu, v)}=\lambda_{j k}\left[X_{j}^{\nu} \cdot \sum_{\ell=2}^{r_{v}} \mathcal{K}_{v}\left(t_{j}^{\nu}, t_{\ell}^{\nu}\right)+(\cdot 2)^{\lambda_{\nu, m}} \sum_{q=2}^{r_{\nu} \cdot 2} \mathcal{J}_{[\nu]}\left(t_{j}^{\nu}, t_{q}^{\nu \cdot 2}\right)\right. \\
& \left.\quad+\sum_{p=2}^{r_{v+2}} \mathcal{J}_{[v+2]}\left(t_{p}^{\nu+2}, t_{j}^{\nu}\right)\right]+\mathcal{K}_{\nu}\left(t_{j}^{\nu}, t_{k}^{\nu}\right) .
\end{align*}
$$

I fsf

$$
X_{j}^{v}=\cdot c_{[v+2]} \frac{d}{d z} \operatorname{ph} \gamma_{v}(z)\left(_{z=t_{j}^{v}}\right.
$$

boe

$$
\mathcal{K}_{v}(x, y)=\frac{3 c^{3}\left(2 \cdot \lambda_{v, m}\right)}{(x \cdot y)^{3} \cdot c^{3}}, \quad \mathcal{J}_{[\nu]}(x, y)=\frac{c^{3}}{(x \cdot y)\left(x \cdot y+c_{[\nu]}\right)}
$$

Ui f of bs.ejbhpobmeqdl t bsf

$$
\left.G_{j k}^{(\nu, \nu \cdot 2)}=(\cdot 2)^{\lambda_{\nu, m}+2} \mathcal{J}_{[\nu]}\left(t_{j}^{\nu}, t_{k}^{\nu \cdot 2}\right), \quad G_{j k}^{(\nu, \nu+2)}=\cdot \mathcal{J}_{[\nu+2]}\left(t_{k}^{\nu+2}, t_{j}^{\nu}\right) . \quad\right) 5 / 9^{*}
$$

$\mathrm{Jg}|\nu \cdot \xi|>2$ - ui fo $G_{j k}^{(\nu, \xi)}=1 /$
Dpotjefs opx tpn f qspqfsuff pguif Hbvejo n busjy efufsn joboư Mu

$$
\mathbf{G}^{(\mathbf{s})}(\bar{X} ; \bar{t})=\mathrm{efu} G
$$

 tfut dpotjtut pguif Cfuif qbsbn fufst $\bar{t}) 4 / 5 *$ Bopu fs tfujt

$$
\bar{X}=\left\{X_{2}^{2}, \ldots, X_{r_{2}}^{2} ; X_{2}^{3}, \ldots, X_{r_{3}}^{3} ; \ldots ; X_{2}^{N}, \ldots, X_{r_{N}}^{N}\right\}
$$

Uiftvqfstdsjqus tipxt uif pubmovncfs pg Cfuif qbsbn fufst ps-xibujt uftbnf-uif pubm ovn cfspgqbsbn fufst $X_{j}^{v} ; \mathbf{s}={ }^{\prime} \bar{t}={ }^{\prime} \bar{X} /$
 dpotjefsbn psf hfofsbmbtf-x ifsf uiftfut \bar{X} boe \bar{t} bsf joefqfoefou Jo puifs xpset-x ftumez

Lpsf qko dskfskb Ui f gvodupo $\mathbf{G}^{(\mathbf{s})}(\bar{X} ; \bar{t})$ pcfzt tpn f di bsbduf sjtud qspqfsuft/ Ui ftf qspqfsujft g̀tufe cf px bsf rvjuf bobphpvt p uif qspqfsuft pguif Hbvejo efuf sn joboujo uif $\mathfrak{g l}(3)$ dbtf/ Evf p uif qbsbrrimp if psjhjobmqbqfs $] 4^{\text {‘ } x} \mathrm{f}$ dbmi fn Lpsf qko dskf skb/
) j* Uif gvodupo $\mathbf{G}^{(\mathbf{s})}(\bar{X} ; \bar{t})$ jt tzn n fusjd pufs uif sfqridfn fou pg uif qbjst $\left(X_{j}^{\nu}, t_{j}^{\nu}\right) \leftrightarrow$ $\left(X_{k}^{v}, t_{k}^{v}\right) /$
) jj^{*} Jujt b y̆of bs gvodujpo pgfbdi $X_{j}^{\nu} /$
$) \mathrm{jjj} \mathbf{G}^{(2)}\left(X_{2}^{2} ; t_{2}^{2}\right)=X_{2}^{2} \mathrm{gps}{ }^{\prime} \bar{t}=\mathbf{s}=2 /$
)jw* Ui f dpf gfldjfoupg X_{j}^{v} jt hjufo cz b gvodyjpo $\mathbf{G}^{(s \cdot 2)}$ x ju n pejfffe qbsbn fufst X_{k}^{ξ}

$$
\frac{\partial \mathbf{G}^{(\mathbf{s})}(\bar{X} ; \bar{t})}{\partial X_{j}^{v}}=\mathbf{G}^{(\mathbf{s} \cdot 2)}\left(\left\{\bar{X}^{\mathrm{n} p e} \backslash X_{j}^{\mathrm{n} \mathrm{pe} ; v}\right\} ;\left\{\bar{t} \backslash t_{j}^{v}\right\}\right)
$$

xifsf uif psihjobmubsjberfit X_{k}^{ξ} ti pvre cf sf qribdfe cz $X_{k}^{\text {n pe; } \xi}$;

$$
\begin{gathered}
X_{k}^{\mathrm{n} \mathrm{pe} ; v}=X_{k}^{v} \cdot \mathcal{K}_{v}\left(t_{j}^{v}, t_{k}^{v}\right), \\
X_{k}^{\mathrm{n} \mathrm{pe} ; v+2}=X_{k}^{\nu+2}+(\cdot 2)^{\lambda_{m, v+2}} \mathcal{J}_{[\nu+2]}\left(t_{k}^{\nu+2}, t_{j}^{\nu}\right), \\
X_{k}^{\mathrm{n} \text { pe} ; \nu \cdot 2}=X_{k}^{v \cdot 2}+\mathcal{J}_{[\nu]}\left(t_{j}^{v}, t_{k}^{\nu \cdot 2}\right), \\
X_{k}^{\mathrm{n} \text { pe; } ;}=X_{k}^{\xi}, \quad|\xi \cdot v|>2 . \\
) \mathrm{w}^{*} \mathbf{G}^{(\mathbf{s})}(\bar{X} ; \bar{t})=1-\mathrm{jgbm} X_{j}^{\xi}=1 /
\end{gathered}
$$

 uftvn pgbmdpran ot)ps spxt*pguifn busjy G

$$
\sum_{\xi=2}^{N} \sum_{k=2}^{r_{\xi}} G_{j k}^{(v, \xi)}=X_{j}^{v}
$$

Rspr ptkdpo 521Uif Lpsfqko dskfskb-yft iuf gvodikpo $\mathbf{G}^{(\mathbf{s})}(\bar{X} ; \bar{t})$ vokrvfnk/

Mugvodupot $\mathbf{G}_{2}^{(\mathbf{s})}(\bar{X} ; \bar{t})$ boe $\mathbf{G}_{3}^{(\mathbf{s})}(\bar{X} ; \bar{t})$ tbuitg Lpsfqjo dsjufsjb/ Ui fo gps $\mathbf{s}={ }^{\prime} \bar{t}=2 \mathrm{xf}$ i buf $\mathbf{G}_{2}^{(2)}\left(X_{2}^{2} ; t_{2}^{2}\right)=\mathbf{G}_{3}^{(2)}\left(X_{2}^{2} ; t_{2}^{2}\right) /$ Bttvn $\mathrm{f} \mathbf{u} \mathrm{bu}_{2}^{(\mathbf{s} \cdot 2)}(\bar{X} ; \bar{t})=\mathbf{G}_{3}^{(\mathbf{s} \cdot 2)}(\bar{X} ; \bar{t}) /$ Ui fogps ${ }^{\prime} \bar{t}=\mathbf{s} \mathrm{x} \mathrm{f} \mathbf{i}$ buf

$$
\left.\left.\frac{\partial}{\partial X_{j}^{v}}\right) \mathbf{G}_{2}^{(\mathbf{s})}(\bar{X} ; \bar{t}) \cdot \mathbf{G}_{3}^{(\mathbf{s})}(\bar{X} ; \bar{t})\right)=1,
$$

)5/25*
evf φ uif qspqfsuz)jw* boe uif joevdyipo bttvn quppo- boe

$$
\left(\mathbf{G}_{2}^{(\mathbf{s})}(\bar{X} ; \bar{t}) \cdot \mathbf{G}_{3}^{(\mathbf{s})}(\bar{X} ; \bar{t})\right)\left(_{(\bar{X}=1}=1\right.
$$

 (ypot) $5 / 25^{*}$ boe $) 5 / 26^{*} \mathbf{z j f r a} \mathbf{G}_{2}^{(\mathbf{s})}(\bar{X} ; \bar{t}) \cdot \mathbf{G}_{3}^{(\mathbf{s})}(\bar{X} ; \bar{t})=1$ gps ${ }^{\prime} \bar{t}=\mathbf{s} /$
 pgpo.tifmCfui f wfdupst $\mathbb{C}(\bar{t}) \mathbb{B}(\bar{t})$ pcfzt Lpsfqjo dsjuf sjb/

61 I fofsbrifife n pefm

 17-9-29-2: '*/ Ui jt n pefmbinp dbo cf dpotjefsfe jo uif dbtf pg uif tvqfs. Zbohjbo Y) $\mathfrak{g l}(m \mid n)\{/$
 n popespn z n busjy thutgejoh uif $R T T$. sf rhuypo)3/5* x ju uif R.n busjy) 3/2* boe qpttfttft
 dbo cf di bsbduf sjffife cz b tfupguif gvodupobmbsbn fufst $\left.\gamma_{v}(u)\right) 4 / 3 *$ Ejgof sfousf qsftfoubujuft bsf ejtujohvjtife cz ejgef sfoutfut pguif sbujpt $\gamma_{v}(u) /$

Uiftvn gpsn vrb) 4/26* gps if tdbrhs qspevdujt wbrie gps boz sfqsftfoubujuf pgif hfofsbm jfife n pefmUi fo x f dbo dpotjefs uif tdbrhs qspevdubt b gvodypo efqfoejoh po ux p uqft pg wbsjbcrfit; if Cfuif qbsbn fufst \bar{s} boe \bar{t} po uif pof i boe-boe uif gvodupobnqbsbn fufst γ_{v} po uif puifsiboe/ Joeffe-fufo jgtpn f t_{j}^{ν})sftq/ $s_{j}^{\nu} *$ jt flyfe-u fouif gvodupo $\gamma_{v}\left(t_{j}^{\nu}\right)$) sftq/ $\gamma_{v}\left(s_{j}^{\nu}\right)^{*}$ di bohft geffux ifo svoojoh u spvhi uif drbtt pguif hf of sbigifie n pef mJo qbsidvims- vt joh porn joi pn phfof pvt n pefmx ju tqjot jo i jhi fsejn fotjpobnsfqsftfoubupot pof dbo fbtjm dpotusvdu sfqsftfoubuivft pguif hfof sbyjifie n pefm)tff Bqqfoejy B*-gps x i jdi

$$
\gamma_{v}(u)=\prod_{j=2}^{L^{(\nu)}} f_{[\nu]}\left(u, \pi_{j}^{(\nu)}\right) .
$$

I fsf joi pn phfofjuft $\pi_{j}^{(\nu)}$ bsf bscjusbsz dpn qrify ovn cfst-boe $L^{(\nu)}$ bsf bscjusbsz qptjuiuf jo. ufhfst/ Jujt dribs u bufufo cfjoh sftusjdufe upijt drbtt pg gvodijpot $\gamma_{\nu} \mathrm{x} f$ dbo bqqspbdi boz qsfefflofe ubnuf $\operatorname{pg} \gamma_{v}(u)$ bu u flyfe/

Uif n fbojoh pg Cfuif fr vbupot) $4 / 22^{*}$ brth di bohft jo uif hfofsbigife n pefmGps bjufo sfqsftfoubuivf uijt jt btfupgfrvbupot gps uif Cfuif qbsbn fufst/ Jo uif hfofsbyjife n pefmi jt jt btfupg dpotusbjout cfux foux p hspvqt pgjoefqfoefounbsjbcrfit t_{j}^{ν} boe $\gamma_{v}\left(t_{j}^{\nu}\right) /$ Joeffe-pof dbo fly bo bscjubbsz tfupg if Cfuif qbsbn fufst \bar{t} boe uifo floe b tfupg gvodypot γ_{v} tvdi \mathbf{u} bu uiftztufn $4 / 22^{*}$ jt gvrflmie/ Gps fybn qri- pof dbo mpl gps uif gvodujpot γ_{v} jo uif gpsn)6/2* Ui fo Cfuiffr vbupot cfdpn f btfupgdpotusbjout gps joi pn phfofjuft $\pi_{j}^{(\nu)} /$ Tjodf uf ovn cfs pg joi pn phfofjuft jt opusftusjdufe- pof dbo bna bzt qspwjef tpmabjjiguz pguiftztufn 4/22*

Xf x jmtff jo tfdujpo 7 ui bujg $t_{j}^{v}=s_{j}^{v}$ gpstpn $\mathrm{f} v$ boe j-u fo uiftdbrhs qspevduefqfoet brnp pouif efsjubuyft $\gamma_{v}^{\prime}\left(t_{j}^{v}\right)$ pguif gvodupobnqbsbn fufst $\gamma_{v} /$ Ui fz bsitf evf $^{\text {p }}$ uif qsft fodf pgqprfit jouf I D $Z^{m \mid n}\left(\bar{s}_{J} \mid \bar{\tau}_{J}\right)$ boe $Z^{m \mid n}\left(\bar{t}_{J J} \mid \bar{s}_{J J}\right) /$ Uif ef sjubujuft $\gamma_{v}^{\prime}\left(t_{j}^{v}\right)$ binp dbo cf usf bufe bt joefqfoefou gvodypobmqbsbn fufst-cfdbvtf hfof sjdbm uif ubraft pgb gvodypo boe jut efsjubujuf jo b flyfe qpjoubsf opusf rhufe pfbdi puifs/ Jo qbsudvins-uiftrvbsf pguif opsn pgb Cfuif ufdeps efqfoet po uisf uqf pg wbsjberfit; uif Cfuif qbsbn fuft-uif wbraft pg if gvodupot γ_{ν} jo uif qpjout
 xf dbo fyqsftt $\gamma_{\nu}\left(t_{j}^{\nu}\right)$ jo ufsnt pguif Cfuif qbsbn fufst evf φ) 4/22米I px fufs-uf ef sjubujuft $\gamma_{v}^{\prime}\left(t_{j}^{\nu}\right)$ tümsfn bjo gsff/ Jo qbsudviss- u f wbsjberfit $\left.X_{j}^{v}\right) 5 / 7 *$ boe uif Cfuif qbsbn fufst \bar{t} dbo cf dpotjef sfe bt joefqfoefounbsjberfit jo uif gsbn fx psl pguif hfof sbyjifife n pefoh

Up jmat usbuf bo be uboubhf pguif hfof sbẏifife n pefmx f qspuf ifsf bo jefouiz ui bux jmcf vtfe cf $\mathrm{px} /$

Rspr ptklpo 621Gps bscksbsz dpn qriy \bar{t} boe $\bar{s} t v d i$ ui bu' $\bar{s}=' \bar{t}>1$

$$
\sum \frac{\prod_{\xi=2}^{N} \delta_{\xi}\left(\bar{s}_{\mathrm{J}}^{\xi}, \bar{s}_{\mathrm{J}}^{\xi}\right) \delta_{\xi}\left(\bar{t}_{\mathrm{\xi}}^{\xi}, \bar{t}_{\mathrm{JJ}}^{\xi}\right)}{\prod_{\xi=2}^{N \cdot 2} f_{[\xi+2]}\left(\bar{s}_{\mathrm{JJ}}^{\xi+2}, \bar{s}_{\mathrm{J}} \xi^{\prime}\right) f_{[\xi+2]}\left(\bar{t}_{\mathrm{J}}{ }^{\xi+2}, \bar{t}_{\mathrm{JJ}}\right)} Z^{m \mid n}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right) \quad Z^{m \mid n}\left(\bar{t}_{\mathrm{JJ}} \mid \bar{s}_{\mathrm{JJ}}\right)=1
$$

Rsppg1 Pctfsuf u buíf mit pg)6/3*jt b qbsudvibs dbtf pgif tdbrbs qspevdugpsn vrb)4/26* bu $\gamma_{\xi}(u)=2 \operatorname{gps} \xi=2, \ldots, N /$

Sfdbmi buif tvn gpsn vrb)4/26*i prat gps bo bscjusbsz sfqsftfoubujuf pg if hfof sbygifife

 frifin fout $T_{i, j}(u)$ bdujo tpn f I jrof sutqbdf \mathcal{H}-gps fybn qrif- $\mathcal{H}=\mathbf{E} \times \mathrm{ju}$ bqtf vepubdvvn $|1\rangle=2 /$ Uif evbntqbdf $\mathcal{H}^{ \pm} \mathbf{u}$ fo dpjodjeft x ju \mathcal{H}-boe $\langle 1|=2 /$ Ui f dpoejuppot $\left.) 4 / 2^{*}\right) 4 / 4^{*}$ pcujpvtm bsf gvrflimie- boe $\gamma \xi(u)=2$ gps $\xi=2, \ldots, N /$ Ui vt-u f mit pg $) 6 / 3 *$ jt frvbmp uf tdbrbs qspevdupg Cfuif ufdupst jo uif n pefmx jui $T(u)=\mathbf{2} /$ Cvui f rhufs ubojtift-cfdbvtf $T_{i, j}=1 \mathrm{gps} i \neq j$ boe i fodf $-\mathbb{B}(\bar{t})=1-\mathbb{C}(\bar{s})=1 \mathrm{gps}{ }^{\prime} \bar{t}={ }^{\prime} \bar{s}>1 /$

71 Tfdvstlpo gss uif tdbrhs rspe vdu

 boe $\nu /$ Ui f pubnt dbrhs qspevdujt oputjohvibs- cfdbvtf uif RTT. dpn n vbujpo sf ruypot bsf opu tjohvibs/ I px fufs- uf i jhi ftudpf gfldjfot jo)4/26* n jhi ui buf qprfit/ Ui f qprfit pddvs jgfju fs $s_{j}^{v} \in \bar{s}_{\mathrm{J}}$ boe $t_{j}^{v} \in \bar{t}_{\mathrm{J}} \mathrm{ps} s_{j}^{\nu} \in \bar{s}_{\mathrm{JJ}}$ boe $t_{j}^{v} \in \bar{t}_{\mathrm{JJ}} /$ Sftprajoh u ftf tjohvinsjuft bu $s_{j}^{v}=t_{j}^{v} \times \mathrm{f}$ pcrbjo
efsjubuyft pguif gvodupot $\gamma_{v}(z) /$ Pvs hpbrigt φ floe-ipx uftdbrhs qspevduefqfoet pouftf efsjubuyuft/

Gps i jt jujt dpowf ojfoup jouspevdf

$$
\begin{aligned}
& \hat{\gamma}_{\xi}\left(t_{j}^{\xi}\right)=(\cdot 2)^{\lambda_{\xi, m}\left(r_{m} \cdot 2\right)} \gamma_{\xi}\left(t_{j}^{\xi}\right) \frac{\delta_{\xi}\left(\bar{t}_{j}^{\xi}, t_{j}^{\xi}\right) f_{[\xi]}\left(t_{j}^{\xi}, \bar{t}^{\xi} \cdot 2\right)}{\delta_{\xi}\left(t_{j}^{\xi}, \bar{t}_{j}^{\xi}\right) f_{[\xi+2]}\left(\bar{t} \xi+2, t_{j}^{\xi}\right)} \\
& \hat{\gamma}_{\xi}\left(s_{j}^{\xi}\right)=(\cdot 2)^{\lambda_{\xi, m}\left(r_{m} \cdot 2\right)} \gamma_{\xi}\left(s_{j}^{\xi}\right) \frac{\delta_{\xi}\left(\bar{s}_{j}^{\xi}, s_{j}^{\xi}\right) f_{[\xi]}\left(s_{j}^{\xi}, \bar{s}^{\xi \cdot 2}\right)}{\delta_{\xi}\left(s_{j}^{\xi}, \bar{s}_{j}^{\xi}\right) f_{[\xi+2]}\left(\bar{s}^{\xi+2}, s_{j}^{\xi}\right)}
\end{aligned}
$$

$$
\xi=2, \ldots, N
$$

$$
7 / 2^{*}
$$

x ifsf)ifsf boe cf px $* \bar{t}^{1}=\bar{s}^{1}=\bar{t}^{m+n}=\bar{s}^{m+n}=\emptyset /$ Ui jt jn qüft jo qbssidvrbs ui bui f qspevdut joupnajoh frifin fout gspn uftffnquetfut frvbmp 2/

Ui fo-sf qridjoh γ_{ξ} x jui $\hat{\gamma} \xi$ jo uif tdbrbs qspevdu)4/26*x f bssjuf bu

$$
S(\bar{s} \mid \bar{t})=\sum \frac{\prod_{\xi=2}^{N} \hat{\gamma}_{\xi}\left(\bar{s}_{\mathrm{J}}\right) \hat{\gamma}_{\xi}\left(\bar{t}_{\mathrm{JJ}}\right) \delta_{\xi}\left(\bar{s}_{\mathrm{J}}^{\xi}, \bar{s}_{\mathrm{JJ}}\right) \delta_{\xi}\left(\bar{t}_{\mathrm{tJ}}^{\xi_{\mathrm{J}}}, \bar{t}_{\mathrm{\xi}}^{\xi}\right)}{\prod_{\xi=2}^{N \cdot 2} f_{[\xi+2]}\left(\bar{s}_{\mathrm{J}}^{\xi+2}, \bar{s}_{\mathrm{JJ}}^{\xi}\right) f_{[\xi+2]}\left(\bar{t}_{\mathrm{JJ}}^{\bar{\xi}+2}, \bar{t}_{\mathrm{J}}^{\xi}\right)} Z^{m \mid n}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right) Z^{m \mid n}\left(\bar{t}_{\mathrm{JJ}} \mid \bar{s}_{\mathrm{JJ}}\right)
$$

Mus $s_{j}^{\nu} \in \bar{s}_{\mathrm{J}}$ boe $t_{j}^{\nu} \in \bar{t}_{\mathrm{J}} /$ Xf efopuf uif dpssftqpoejoh dpousjcvuppo u u f tdbrhs qspevducz $S^{(2)}(\bar{s} \mid \bar{t}) / \operatorname{Jg} s_{j}^{\nu} \rightarrow t_{j}^{\nu}$ - u fo evf p)4/28* u f I D $Z^{m \mid n}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right)$ i bt b qpifi/ Mu $\bar{s}_{\mathrm{J}}^{\nu}=\left\{s_{j}^{\nu}, \bar{s}_{\mathrm{J}^{\prime}}^{\nu}\right\}-\bar{t}_{\mathrm{J}}^{\nu}=$ $\left\{t_{j}^{\nu}, \bar{t}_{J^{\prime}}^{\nu}\right\}$-boe $\bar{s}_{\mathrm{J}}^{\xi}=\bar{s}_{J^{\prime}}^{\xi}-\bar{t}_{\mathrm{J}}^{\xi}=\bar{t}_{J^{\prime}}^{\xi} \mathrm{gns} \xi \neq v /$ Ui fo vtjoh $) 4 / 28^{*} \mathrm{x}$ f pcbbjo

$$
Z^{m \mid n}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right)\left(\left\{_{s_{j}^{v} \rightarrow t_{j}^{v}}=g_{[v+2]}\left(t_{j}^{v}, s_{j}^{v}\right) \frac{\delta_{v}\left(\bar{t}_{\mathrm{J}^{\prime}}^{v}, t_{j}^{v}\right) \delta_{v}\left(s_{j}^{v}, \bar{s}_{\mathrm{J}^{\prime}}^{v}\right)}{f_{[v+2]}\left(\bar{t}_{\mathrm{J}}^{v+2}, t_{j}^{v}\right) f_{[\nu]}\left(s_{j}^{v}, \bar{s}_{\mathrm{J}}^{v \cdot 2}\right)} Z^{m \mid n}\left(\bar{s}_{\mathrm{J}^{\prime}} \mid \bar{t}_{\mathrm{J}^{\prime}}\right)+r e g,\right.\right.
$$

xifsf reg n fbot sfhvibs qbsu'
Ui f qspevdupguif f.gvodujpot boe δ.gvodujpot jo $7 / 3^{*}$ usbot gpsn t bt gpmp t ;

$$
\begin{aligned}
& \frac{\prod_{\xi=2}^{N} \delta_{\xi}\left(\bar{s}_{\mathrm{J}}^{\xi}, \bar{s}_{\mathrm{JJ}}^{\xi}\right) \delta_{\xi}\left(\bar{t}_{\mathrm{JJ}}^{\xi}, \bar{t}_{\mathrm{J}}^{\xi}\right)}{\prod_{\xi=2}^{N \cdot 2} f_{[\xi+2]}\left(\bar{s}_{\mathrm{J}}^{\xi+2}, \bar{s}_{\mathrm{JJ}}^{\xi}\right) f_{[\xi+2]}\left(\bar{t}_{\mathrm{JJ}}^{\xi+2}, \bar{t}_{\mathrm{J}}^{\xi}\right)}=\frac{\delta_{v}\left(s_{j}^{v}, \bar{s}_{\mathrm{JJ}}^{v}\right) \delta_{v}\left(\bar{t}_{\mathrm{JJ}}^{v}, t_{j}^{v}\right)}{f_{[v]}\left(s_{j}^{v}, \bar{s}_{\mathrm{JJ}}^{v .2}\right) f_{[v+2]}\left(\bar{t}_{\mathrm{JJ}}^{v+2}, t_{j}^{v}\right)} \\
& \quad * \frac{\prod_{\xi=2}^{N} \delta_{\xi}\left(\bar{s}_{\vec{J}}^{\xi}, \bar{s}_{\mathrm{JJ}}^{\xi}\right) \delta_{\xi}\left(\bar{t}_{\mathrm{JJ}}^{\xi}, \bar{t}_{\mathrm{J}}^{\xi}\right)}{\prod_{\xi=2}^{N \cdot 2} f_{[\xi+2]}\left(\bar{s}_{\mathrm{J}}^{\xi}+2, \bar{s}_{\mathrm{JJ}}^{\xi}\right) f_{[\xi+2]}\left(\bar{t}_{\mathrm{JJ}}^{\xi}+2, \bar{t}_{J^{\prime}}^{\xi}\right)}
\end{aligned}
$$

Dpn cjojoh)7/4* boe)7/5*x f pcubjo gps u f dpousjcvujpo $S^{(2)}(\bar{s} \mid \bar{t})$
 $\operatorname{tvctfut}\left\{\bar{s}_{J^{\prime}}, \bar{s}_{\mathrm{JJ}}\right\}$ boe $\left\{\bar{t}_{J^{\prime}}, \bar{t}_{\mathrm{JJ}}\right\} /$ S fdbmbinp ui bus $\bar{s}_{j}^{v}=\bar{s}^{v} \backslash\left\{s_{j}^{v}\right\}$ boe $\bar{t}_{j}^{v}=\bar{t}^{v} \backslash\left\{t_{j}^{\nu}\right\} /$

Tjn jibsm pof dbo dpotjefs uif dbtf $s_{j}^{\nu} \in \bar{s}_{\mathrm{JJ}}$ boe $t_{j}^{\nu} \in \bar{t}_{\mathrm{JJ}} /$ Efopuioh uif dpssftqpoejoh dpousj. cvụpo cz $S^{(3)}(\bar{s} \mid \bar{t}) \times \mathrm{f}$ floe

$$
\begin{aligned}
& S^{(3)}(\bar{s} \mid \bar{t})\left(\left\{_{s_{j}^{v} \rightarrow t_{j}^{v}}=\hat{\gamma}_{v}\left(t_{j}^{v}\right) g_{[\nu+2]}\left(s_{j}^{v}, t_{j}^{v}\right) \frac{\delta_{\nu}\left(\bar{s}_{j}^{v}, s_{j}^{v}\right) \delta_{v}\left(t_{j}^{v}, \bar{t}_{j}^{v}\right)}{f_{[v]}\left(t_{j}^{v}, \bar{t}^{\nu} \cdot 2\right) f_{[\nu+2]}\left(\bar{s}^{v+2}, s_{j}^{v}\right)}\right.\right.
\end{aligned}
$$

 $\left\{\overline{\mathrm{J}}_{\mathrm{J}}, \bar{s}_{\mathrm{JJ}}\right\}$ boe $\left\{\bar{t}_{\mathrm{J}}, \bar{t}_{\mathrm{JJ}}\right\} /$
 tvetüuwioh $\hat{\gamma}\left(s_{j}^{\nu}\right)$ boe $\hat{\gamma}\left(t_{j}^{\nu}\right)$ sftqfduinfon jo uf $\operatorname{snt} \operatorname{pg} \gamma\left(s_{j}^{\nu}\right)$ boe $\gamma\left(t_{j}^{\nu}\right)$ xf bssjuf bu

$$
\begin{align*}
& S(\bar{s} \mid \bar{t})\left\{_{s_{j}^{v} \rightarrow t_{j}^{v}}=g_{[v+2]}\left(t_{j}^{v}, s_{j}^{v}\right)\right) \gamma_{v}\left(s_{j}^{v}\right) \cdot \gamma_{v}\left(t_{j}^{v}\right)\left[\frac{(\cdot 2)^{\lambda_{v, m}\left(r_{m} \cdot 2\right)} \delta_{v}\left(\bar{s}_{j}^{v}, s_{j}^{v}\right) \delta_{v}\left(\bar{t}_{j}^{v}, t_{j}^{v}\right)}{f_{[\nu+2]}\left(\bar{s}^{\nu+2}, s_{j}^{v}\right) f_{[v+2]}\left(\bar{t}^{\nu+2}, t_{j}^{v}\right)}\right. \\
& * \sum \frac{\prod_{\xi=2}^{N} \hat{\gamma}_{\xi}\left(\bar{s}_{\mathrm{J}}^{\xi}\right) \hat{\gamma}_{\xi}\left(\bar{t}_{\mathrm{\xi}}\right) \delta_{\xi}\left(\bar{s}_{\mathrm{J}}^{\xi}, \bar{s}_{\mathrm{JJ}}^{\xi}\right) \delta_{\xi}\left(\bar{t}_{\mathrm{J}} \bar{t}_{\mathrm{J}}, \bar{\xi}^{\xi}\right)}{\prod_{\xi=2}^{N \cdot 2} f_{[\xi+2]}\left(\bar{s}_{\mathrm{J}}^{\xi+2}, \bar{s}_{\mathrm{JJ}}^{\xi}\right) f_{[\xi+2]}\left(\bar{t}_{\mathrm{JJ}}^{\bar{\xi}+2}, \bar{t}_{\mathrm{J}}\right)} Z^{m \mid n}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right) Z^{m \mid n}\left(\bar{t}_{\mathrm{JJ}} \mid \bar{s}_{\mathrm{JJ}}\right)+\tilde{S} .
\end{align*}
$$

 bl fo pufs qbsuyjpot pguiftfut $\bar{t} \backslash\left\{t_{j}^{\nu}\right\}$ boe $\bar{s} \backslash\left\{s_{j}^{v}\right\}$ sftqfduinfon joup tvetfut $\left\{\bar{s}_{\mathrm{J}}, \bar{s}_{\mathrm{JJ}}\right\}$ boe $\left\{\bar{t}_{\mathrm{J}}, \bar{t}_{\mathrm{JJ}}\right\} /$

Ui fo qfsgosn joh uf $\dot{\text { gin }} \mathrm{ju} s_{j}^{\nu} \rightarrow t_{j}^{\nu}$ jo $) 7 / 8^{*} \mathrm{x}$ f pcobjo

$$
\begin{align*}
& S(\bar{s} \mid \bar{t})\left(s_{j}^{v}=t_{j}^{v}=(\cdot 2)^{\lambda_{v, m}\left(r_{m} \cdot 2\right)} \frac{X_{j}^{v} \gamma_{v}\left(t_{j}^{v}\right) \delta_{v}\left(\bar{s}_{j}^{v}, t_{j}^{v}\right) \delta_{v}\left(\bar{t}_{j}^{v}, t_{j}^{v}\right)}{f_{[v+2]}\left(\bar{s}^{v+2}, t_{j}^{v}\right) f_{[v+2]}\left(\bar{t}^{v+2}, t_{j}^{v}\right)}\right. \\
& \quad * \sum \frac{\prod_{\xi=2}^{N} \hat{\gamma}_{\xi}\left(\bar{s}_{\mathrm{J}}\right) \hat{\gamma}_{\xi}\left(\bar{t}_{\mathrm{\xi}}\right) \delta_{\xi}\left(\bar{s}_{\mathrm{J}}^{\xi}, \bar{s}_{\mathrm{JJ}}^{\xi}\right) \delta_{\xi}\left(\bar{t}_{\mathrm{J}}^{\xi}, \bar{t}_{\mathrm{J}}^{\xi}\right)}{\prod_{\xi=2}^{N \cdot 2} f_{[\xi+2]}\left(\bar{s}_{\mathrm{J}}^{\xi+2}, \bar{s}_{\mathrm{JJ}}^{\xi}\right) f_{[\xi+2]}\left(\bar{t}_{\mathrm{JJ}}^{\xi+2}, \bar{t}_{\mathrm{J}}^{\xi}\right)} Z^{m \mid n}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right) Z^{m \mid n}\left(\bar{t}_{\mathrm{JJ}} \mid \bar{s}_{\mathrm{JJ}}\right)+\tilde{S}
\end{align*}
$$

x ifsf X_{j}^{v} jt efflofecz)5/7* boe \tilde{S} epft opuefqfoe po $X_{j}^{\nu} /$
 tdbrhs qspevdu $S\left(\bar{s} \backslash\left\{s_{j}^{\nu}\right\} \mid \bar{t} \backslash\left\{t_{j}^{\nu}\right\}\right) /$ Ui jt jt opufybdun tp-cfdbvtf uif gvodupot $\hat{\gamma}_{v}$ boe $\hat{\gamma}_{\nu \oplus 2}$ tüm efqfoe po t_{j}^{v})tff) $7 / 2^{*}{ }^{*} /$ I px fufs- xf dbo hfusje pgije efqfoefodf jgx f jouspevdf n pejfffe gvodyjpobnqbsbn fufst $\gamma_{\xi}^{(\mathrm{n} \mathrm{pe})} /$ Obn fru- gps v flyfe $\mathrm{xftfu} \gamma_{\xi}^{(\mathrm{n} \mathrm{pe})}(z)=\gamma_{\xi}(z)-\mathrm{jg}|\xi \cdot v|>2$ - boe

$$
\begin{aligned}
& \gamma_{v}^{(\text {n pe })}(z)=(\cdot 2)^{\lambda_{\nu, m}} \gamma_{v}(z) \frac{\delta_{v}\left(t_{j}^{v}, z\right)}{\delta_{v}\left(z, t_{j}^{v}\right)}, \\
& \gamma_{v+2}^{(\text {n pe })}(z)=\gamma_{v+2}(z) f_{[v+2]}\left(z, t_{j}^{v}\right), \\
& \gamma_{v \cdot 2}^{(\text {n pe })}(z)=\frac{\gamma_{v} \cdot 2(z)}{f_{[v]}\left(t_{j}^{v}, z\right)} .
\end{aligned}
$$

$$
\begin{aligned}
& S(\bar{s} \mid \bar{t})\left(_{v_{j}^{v}=t_{j}^{v}}=(\cdot 2)^{\lambda_{v, m}\left(r_{m} \cdot 2\right)} \frac{X_{j}^{v} \gamma_{v}\left(t_{j}^{v}\right) \delta_{v}\left(\bar{s}_{j}^{\nu}, t_{j}^{v}\right) \delta_{v}\left(\bar{t}_{j}^{v}, t_{j}^{\nu}\right)}{f_{[\nu+2]}\left(\bar{s}^{v+2}, t_{j}^{v}\right) f_{[\nu+2]}\left(\bar{t}^{\nu+2}, t_{j}^{v}\right)}\right. \\
& * \sum \frac{\prod_{\xi=2}^{N} \gamma_{\xi}^{(\mathrm{n} \mathrm{pe})}\left(\bar{s}_{\mathrm{J}}^{\xi}\right) \gamma_{\xi}^{(\mathrm{n} \mathrm{pe})}\left(\bar{t}_{\mathrm{JJ}}^{\xi}\right) \delta \delta_{\xi}\left(\bar{s}_{\mathrm{J} \mathrm{~J}}^{\xi}, \bar{s}_{\mathrm{J}}^{\xi}\right) \delta_{\xi}\left(\bar{t}_{\xi}^{\xi}, \bar{t}_{\mathrm{JJ}}\right)}{\prod_{j=2}^{N \cdot 2} f_{[j+2]}\left(\bar{s}_{\mathrm{JJ}}^{j+2}, \bar{s}_{\mathrm{J}}^{j}\right) f_{[j+2]}\left(\bar{t}_{\mathrm{J}}^{j+2}, \bar{t}_{\mathrm{JJ}}^{j}\right)} Z^{m \mid n}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right) Z^{m \mid n}\left(\bar{t}_{\mathrm{J} J} \mid \bar{s}_{\mathrm{JJ}}\right)+\tilde{S} .
\end{aligned}
$$

 sftfoubuy pguif hfof sbyjife n pefmjo xijdi uif γ.gvodujpot bsf n pejflfe bddpsejoh φ) 7/: */ Ui vt-x f bssjuf bu

$$
\begin{aligned}
& S(\bar{s} \mid \bar{t})\left({ }_{\left(s_{j}^{v}=t_{j}^{v}\right.}=(\cdot 2)^{\lambda_{\nu, m}\left(r_{m} \cdot 2\right)} \frac{X_{j}^{v} \gamma_{\nu}\left(t_{j}^{\nu}\right) \delta_{\nu}\left(\bar{s}_{j}^{v}, t_{j}^{\nu}\right) \delta_{\nu}\left(\bar{t}_{j}^{v}, t_{j}^{\nu}\right)}{f_{[\nu+2]}\left(\bar{s}^{\nu+2}, t_{j}^{v}\right) f_{[\nu+2]}\left(\overline{t^{\nu}+2}, t_{j}^{v}\right)} S^{(\mathrm{n} \mathrm{pe)})}\left(\bar{s} \backslash\left\{s_{j}^{\nu}\right\} \mid \bar{t} \backslash\left\{t_{j}^{\nu}\right\}\right)\right. \\
& +\tilde{S}, \\
& \text {)7/22* }
\end{aligned}
$$

xifsf uf n pejfldbupo pg uif tdbrhs qspevdunf bot ubu opx x f tipvre vtf uif n pejfffe γ.gvodupot)7/: *
 sjuin jd efsjubuinf $X_{j}^{v} /$ Uif dpfofldjfou pg X_{j}^{v} jt qspqpsupobmup if n pejfffe tdbrbs qspevdu $\mathbb{C}\left(\bar{s} \backslash\left\{s_{j}^{\nu}\right\}\right) \mathbb{B}\left(\bar{t} \backslash\left\{t_{j}^{\nu}\right\}\right)$ jo b of x sf qsftfoubuju pguif hfof sbijiffe n pef m

81 Ppsn pgpo.tifmCfuif ufdups

Jux bt brsfbez ejtdvttfe iu bugs $\bar{t}=\bar{s}$ if tdbrhs qspevduefqfoet po i f Cfuif qbsbn fufst t_{j}^{ξ} - uf gvodupobmqbsbn fufst $\gamma_{\xi}\left(t_{j}^{\xi}\right)$ - boe uif phbsju n jd ef sjubuivft $\left.X_{j}^{\xi}\right) 5 / 7 *$ Jo uif dbtf pg
 fr vbupot $4 / 22^{*}$ Uifsfgpsf-uif opsn pg bo po.tiffmCfuif wfdus jt b gvodupo pg uif Cfuif qbsbn fufst t_{j}^{ξ} boe uf qbsbn fufst $X_{j}^{\xi} /$

Mu

$$
\begin{equation*}
\left.\mathbf{P}^{(\mathbf{s})}(\bar{X} ; \bar{t})=\prod_{\xi=2}^{N} \prod_{\substack{p, q=2 \\ p \neq q}}^{r_{\xi}} \delta_{\xi}\left(t_{p}^{\xi}, t_{q}^{\xi}\right)\right)^{\cdot 2} \prod_{\xi=2}^{N \cdot 2} f_{[\xi+2]}\left(\bar{t}^{\xi+2}, \bar{t}^{\xi}\right) \dot{\mathfrak{y}}_{\bar{s} \rightarrow \bar{t}} \mathbb{C}(\bar{s}) \mathbb{B}(\bar{t}) \tag{*}
\end{equation*}
$$

x ifsf $\mathbb{B}(\bar{t})$ jt po.tifmh
Nfn n b 821Uif gvoduko $\mathbf{P}^{(\mathbf{s})}(\bar{X} ; \bar{t})$ gvanm iif Lpsfqko dskfskb/
 pon pof Cfuif qbsbn fufs pgif dpps 2 jt joupnafe-ufouf Cfuif wf dups boe uf evbmCfuif uf dups i buf sftqfduyufu if gapx joh gpsn)tff $] 33^{*}$ *

$$
\begin{equation*}
\mathbb{B}\left(t_{2}^{2}\right)=\frac{T_{2,3}\left(t_{2}^{2}\right)}{\mu_{3}\left(t_{2}^{2}\right)}|1\rangle ; \quad \mathbb{C}\left(t_{2}^{2}\right)=\langle 1| \frac{T_{3,2}\left(t_{2}^{2}\right)}{\mu_{3}\left(t_{2}^{2}\right)} . \tag{*}
\end{equation*}
$$

Vtjoh dpn n vubupo sfrmupot)3/6*x f jn n fejbufn perbjo

$$
\left.\mathbb{C}(s) \mathbb{B}(t)=\frac{\langle 1| T_{3,2}(s) T_{2,3}(t)|1\rangle}{\mu_{3}(s) \mu_{3}(t)}=(\cdot 2)^{[3]} g(s, t)\right) \gamma_{2}(t) \cdot \gamma_{2}(s)\{.
$$

)8/4*
Tfujoh ifsf $s=t=t_{2}^{2} \times$ f floe

$$
\left.\mathbb{C}\left(t_{2}^{2}\right) \mathbb{B}\left(t_{2}^{2}\right)=\gamma_{2}\left(t_{2}^{2}\right) X_{2}^{2}, \quad\right) 8 / 5^{*}
$$

boe flobnn- vtjoh if Cfuif fr vbujpo $\gamma_{2}\left(t_{2}^{2}\right)=2 \mathrm{xf}$ bssjuf buqspqfsuc $) \mathrm{jjj} *$
Uif sfdvstjpo)5/22* boe uif n pejfldbuypo $) 5 / 23^{*}$ gpmx gspn uif dpotjef sbupot pguif qsf w. pvt tfduypo/ Joeffe-bl joh uif $\dot{\mathrm{min}} \mathrm{ju} \bar{s} \rightarrow \bar{t}$ jo) $7 / 22^{*} \mathrm{x}$ f floe

$$
\left.\frac{\partial}{\partial X_{j}^{v}} \min _{\bar{s} \rightarrow \bar{t}} S(\bar{s} \mid \bar{t})=(\cdot 2)^{\lambda_{\nu, m}\left(r_{m} \cdot 2\right)} \gamma_{v}\left(t_{j}^{v}\right) \frac{\delta_{v}\left(\bar{t}_{j}^{v}, t_{j}^{v}\right)}{f_{[v+2]}\left(\bar{t} v+2, t_{j}^{v}\right)}\right)^{3} \dot{\operatorname{m}}_{\bar{s} \rightarrow \bar{t}} S^{(\mathrm{n} \mathrm{pe})}\left(\bar{s} \backslash\left\{s_{j}^{\nu}\right\} \mid \bar{t} \backslash\left\{t_{j}^{v}\right\}\right)
$$

$$
\left.\frac{\partial}{\partial X_{j}^{v}} \min _{\bar{s} \rightarrow \bar{t}} S(\bar{s} \mid \bar{t})=\frac{\delta_{v}\left(\bar{t}_{j}^{\nu}, t_{j}^{\nu}\right) \delta_{\nu}\left(t_{j}^{\nu}, \bar{t}_{j}^{\nu}\right)}{f_{[\nu+2]}\left(\bar{t}^{\nu+2}, t_{j}^{\nu}\right) f_{[\nu]}\left(t_{j}^{\nu}, \bar{t}^{\nu} \cdot 2\right.} \dot{\operatorname{gm}}_{\bar{s} \rightarrow \bar{t}} S^{(\mathrm{n} \mathrm{pe})}\left(\bar{s} \backslash\left\{s_{j}^{\nu}\right\} \mid \bar{t} \backslash\left\{t_{j}^{\nu}\right\}\right) . \quad\right) 8 / 7^{*}
$$

 tfoubuvf pguif hf of sbrjifife n pefmJo uijt sfqsftfoubuivf uif gvodujpobnqbsbn fufst $\gamma \xi$ ti pvra cf
 qbsbn fufst $X_{k}^{v} /$

Sfn bsl bern- if ofx wfdups jt tumpo.tifmhoeffe-jujt fbtz ptff uibuif gvodupobmb. sbn fufst $\gamma_{\xi}^{(\text {n pe })}$ dbo cf fyqsfttfe jo ufsnt pguif Cfu f qbsbn fufst $\bar{t} \backslash\left\{t_{j}^{\nu}\right\}$ wib Cfuif fr vbupot/ Jo qbsujdvibs-

$$
\gamma_{v}^{(\mathrm{n} \mathrm{pe})}\left(t_{k}^{\nu}\right)=(\cdot 2)^{\lambda_{v, m}\left(r_{m} \cdot 3\right)} \frac{\delta_{v}\left(t_{k}^{v}, \bar{t}_{k, j}^{v}\right) f_{[\nu+2]}\left(\bar{t}^{\nu+2}, t_{k}^{v}\right)}{\delta_{v}\left(\bar{t}_{k, j}^{v}, t_{k}^{v}\right) f_{[v]}\left(t_{k}^{v}, \bar{t}^{\nu} \cdot 2\right)}
$$

xifsf xf jouspevdfe $\bar{t}_{k, j}^{\nu}=\bar{t}^{\nu} \backslash\left\{t_{j}^{\nu}, t_{k}^{\nu}\right\} / \operatorname{Pctfsuf} \mathbf{u}$ bujg $v=m$ - uifo ${ }^{\prime} \bar{t}_{j}^{\nu}={ }^{\prime} \bar{s}_{j}^{\nu}=r_{m} \cdot 2$ u fsf gpsf uif tjho gbdups jo) $8 / 8^{*}$ di bohft/ Xf brnp i buf

$$
\begin{align*}
& \gamma_{\nu+2}^{(\mathrm{n} \mathrm{pe})}\left(t_{k}^{\nu+2}\right)=(\cdot 2)^{\lambda_{v+2, m}\left(r_{m} \cdot 2\right)} \frac{\delta_{v+2}\left(t_{k}^{\nu+2}, \bar{t}_{k}^{\nu+2}\right) f_{[v+3]}\left(\bar{t}^{\nu+3}, t_{k}^{\nu+2}\right)}{\delta_{v+2}\left(\bar{t}_{k}^{\nu+2}, t_{k}^{\nu+2}\right) f_{[v+2]}\left(t_{k}^{\nu+2}, \bar{t}_{j}^{\nu}\right)}, \\
& \gamma_{\nu \cdot 2}^{(\mathrm{n} \mathrm{pe})}\left(t_{k}^{\nu \cdot 2}\right)=(\cdot 2)^{\lambda_{\nu} \cdot 2, m}\left(r_{m} \cdot 2\right) \frac{\delta_{\nu \cdot 2}\left(t_{k}^{\nu \cdot 2}, \bar{t}_{k}^{\nu \cdot 2}\right) f_{[v]}\left(\bar{t}_{j}^{\nu}, t_{k}^{\nu \cdot 2}\right)}{\delta_{v \cdot 2}\left(\bar{t}_{k}^{\nu \cdot 2}, t_{k}^{\nu \cdot 2}\right) f_{[\nu \cdot 2]}\left(t_{k}^{\nu \cdot 2}, \bar{t}^{\nu \cdot 3}\right)}
\end{align*}
$$

Uif puifs Cfuif fr vbyipot ges $\gamma \gamma_{\xi}^{(\mathrm{n} p e)} \mathrm{x}$ jui $|\xi \cdot v|>2$ ep opudi bohf/ Uivt-xf bssjuf buif qspqfsuz)jw* gps u f gvodupo $\mathbf{P}^{(\mathbf{s})}(\bar{X} ; \bar{t}) /$

Gjobm- qspqfsuz) w* dbo cf efevdfe bt gprpx t/ Tjodf brmif qprfit pg if I D jo)4/26* bsf
 gas ul joh u f $\mathfrak{~ g ̣ n} \mathrm{ju} \bar{s} \rightarrow \bar{t}$;

$$
\gamma_{\xi}\left(s_{j}^{\xi}\right)=\gamma_{\xi}\left(t_{j}^{\xi}\right)+\left(s_{j}^{\xi} \cdot t_{j}^{\xi}\right) \frac{d \gamma_{\xi}(z)}{d z}\left(z_{==t_{j}^{\xi}}+O\right)\left(s_{j}^{\xi} \cdot t_{j}^{\xi}\right)^{3}[
$$

 jo uif $\mathfrak{~ g n ~ j u s ~} \rightarrow \bar{t} /$ Ui jt ribet vt φ

$$
\begin{aligned}
\dot{g}_{\bar{s} \rightarrow \bar{t}} S(\bar{s} \mid \bar{t})= & \prod_{\xi=2}^{N} \gamma_{\xi}\left(\bar{t}^{\xi}\right) \dot{\operatorname{man}}_{\bar{s} \rightarrow \bar{t}} \sum \frac{\prod_{\xi=2}^{N} \delta_{\xi}\left(\bar{s}_{\mathrm{J}}, \bar{s}_{\mathrm{J}}\right) \delta_{\xi}\left(\bar{t}_{\mathrm{J}}^{\xi}, \bar{t}_{\mathrm{JJ}}\right)}{\prod_{\xi=2}^{N \cdot 2} f_{[\xi+2]}\left(\bar{s}_{\mathrm{JJ}}^{\xi+2}, \bar{s}_{\mathrm{J}}^{\xi}\right) f_{[\xi+2]}\left(\bar{t}_{\mathrm{J}}^{\xi}+2, \bar{t}_{\mathrm{JJ}}^{\xi}\right)} \\
& * Z^{m \mid n}\left(\bar{s}_{\mathrm{J}} \mid \bar{t}_{\mathrm{J}}\right) Z^{m \mid n}\left(\bar{t}_{\mathrm{JJ}} \mid \bar{s}_{\mathrm{JJ}}\right) .
\end{aligned}
$$

 uijt x bz x f bssjuf bui f qspqfsuz)w*

Evf pospqptjupo $5 / 2 \times \mathrm{f}$ dpodncef u bu

$$
\mathbf{P}^{(\mathbf{s})}(\bar{X} ; \bar{t})=\mathrm{efu} G,
$$

ribejoh up)5/5*

Al Epodnutlpo

Xf dpotjefsfe bhfof sbyjififer vbouwn joufhsberfin pefmx ju $\mathfrak{g l}(m \mid n)$.jowbsjbou R.n busjy/ Xf tipxfe ui buuif trvbsf pguf opsn pgpo.tifmCfuif ufdust pgujt n pefmit qspqpsupobmp b Kbdpcjbo pguiftztưn pgCfuif frvbupot/ Uijt sftvmdpn qrfiufnn budift if psjhjobmHbvejo i zqpuiftjt po uif opsn pg uif I bn jnpojbo fjhfoufdeps/ Pof dbo fyqfduiu buijt izqpuiftjt dbo cf gvsui fs hf of sbnịife/ Jo qbsydvibs- jujt rvjuf obussbmup i buf btjn jhs gpsn vrb gps uif n pefm cbtfe po $U_{q}(\widehat{\mathfrak{g l}}(m))$ boe $U_{q}(\widehat{\mathfrak{g l}}(m \mid n))$ brhfcsbt/ Ui jt x jimcf uif tvelfdupg pvs gvsuifs qverjdbupot/

Uif qsperfin pguif opsn pg po.tifmCfuif wfdust jt ufsz jn qpstbougps uif dbrdvihupo pg gpsn gbdupst boe dpssf rbuipo gvodujpot jo uif n pefmpgqi ztjdbnjouf sftư Gvsui fs ef uf pqn foujo ui jt ejsfdujpo sfrvjsft n psf ef bbjrfie bobmtjt pguif Cfuif wfdpst tdbrhs qspevdut Gpsn bmu-uif tvn gpsn vrbhjuft bo fyqウidjusft vmgps iftdbrhs qspevdupghfof sjd Cfuif wfdupst-ipx fufs-uijt sfqsftfoubupo jt opudpowfojfougps bqqigdbuypot jo n boz dbtft/Buuiftbnf in f-pof dbo i pqf ب floe n psf dpn qbdusfqsftfoubujpot gps qbsidvids dbtft pguiftdbrhs qspevdur bt jux bt epof jo

Bdl opx fiehfn fout

Uif x psl pgB/Mi bt cffo gvoefe cz Svttjbo Bdbefn jd Fydfrniodf Qsplf du6.211-cz Zpvoh S vttjbo N bui fn bujdt bx bse boe cz kjouOBTV.DOST qsplf duC25.3128/ Ui f x psl pg T/Q x bt t vqqpsufe jo qbsucz u f S GCS hsbou27.12.11673.b/

Brrfoek B1 $Y(\mathfrak{g l}(m \mid n))$ sfrsftfoubupot kevdfe gspn $\mathfrak{g l}(m \mid n)$ poft

B x jef drhtt pgsfqsftfoubjpot gpsuif Zbohjbo $Y) \mathfrak{g l}(m \mid n)\{$ dbo cf dpotuvdufe gspn sfqsftfo.

 ypot $\operatorname{pg} \mathfrak{g l}(m \mid n) /$

B/2/ I Khiftuxfki usf qsftfolbulpot pgif Mf tvqfsbrhfcsb $\mathfrak{g l}(m \mid n)$

Gps tjn qu̇djız- x f qsftfoui jhi ftux fjhi usfqsftfoubujpot gps if Mf tvqfsbrhfesb $\mathfrak{g l}(m \mid n)$ x jui $m \neq n$-cvun ptupguif ejtdvttjpo bqqugft brnp puif dbtf $m=n /$ I jhiftuxfjhiusfqsf. tfoubupot x fsf tuvejfe jo]3: -41^{\prime} - tff brtp 142^{\prime} gps b sf wifx po tvqfsbrhfcsbt/Xf jouspevdf uf $\mathfrak{g l}(m \mid n)$ hfofsbupst $\mathrm{e}_{i j}$ pcfzjoh

$$
\left[\mathrm{e}_{i j}, \mathrm{e}_{k l}\right\}=\lambda_{k j} \mathrm{e}_{i l} \cdot(\cdot 2)^{([i]+[j])([k]+[l])} \lambda_{i l} \mathrm{e}_{k j}
$$

I jhi ftux fjhi usf qsftfoubujpot pguif Mf tvqfsbrhfcsb $\mathfrak{g l}(m \mid n)$ bsf di bsbdufsjffe cz b x fjhi u $=\left(\mu_{2}, \ldots, \mu_{m+n}\right) \in \mathbf{E}^{m+n}$ boe bi jhi ftux fjhi uwf dups $|1\rangle$ tvdi ù bu

$$
e_{i i}|1\rangle=\mu_{i}|1\rangle \quad \text { boe } \quad e_{i j}|1\rangle=1, \quad i<j,
$$

xifsf $e_{i j}$ bsf uif sfqsftfoubuyft pgif $\mathfrak{g l}(m \mid n)$ hfofsbupst/ Uifijhiftux fjhiuufdups $|1\rangle \mathrm{x} j \mathrm{~m}$ qspevdf uf qtfvepubdvvn $) 4 / 2^{*}$ u spvhi uif fubnwbupo n psqijtn-tff tfdujpo B/3 cfqx/ Jo
 úfo $e_{i j}=\rho\left(\mathrm{e}_{i j}\right)$ jt b n busjy) ps bo pqfsbups gss joflojuf ejn fotjpobmsfqsftfoubujpot* ${ }^{\text {bdujoh po }}$
 sfqsftfoubujuft $e_{i j}-i>j$-po |1>/

Bn poh i jhi ftux fjhi usfqsftfobujpot-u f flojuf ejn fotjpobmpoft bsf di bsbduf sjfife ${ }^{3} \mathrm{cz}$ ko. yfhsbcui epn koboux fkhi \boldsymbol{t} - - vdi u bu

$$
\mu_{i} \cdot \mu_{i+2} \in \mathbf{a}_{+}, i \neq m, \quad 2 \sim i \sim m+n \cdot 2 \quad \text { boe } \quad \mu_{m} \in \mathbf{T} .
$$

$$
{ }^{(i)}=(\underbrace{2, \ldots, 2}_{i}, \underbrace{1, \ldots, 1}_{m+n \cdot i}), \quad i=2, \ldots, m+n .
$$

 $\mathfrak{s l}(m \mid n) /$ Judbo cf sf rhufe u uif x fjhi u ${ }^{(m+n)} /$

Uif sfqsftfoubujpot bttpdjbufe u gvoebn foobmx fjhi ut bsf dbrnie gvoebn foubmsfqsftfoub.
 uif gvoebn fobmsfqsftfoubujpo/ Jujt ($m+n$). ejn fotjpobmboe jo u budbtf $\rho_{(2)}\left(\mathrm{e}_{i j}\right)=E_{i j} / \mathrm{Jt}$ dpousbhsf ejf ousf qsftfoubujpo) x i jdi jt brnp $(m+n)$.ejn fotjpobníd dpssftqpoet $\boldsymbol{\varphi}^{(m+n \cdot 2) /}$

B/3/ Fubmbilpo n bq

Uif fubmblko npsqikn ev(π)- gps $\pi \in \mathbf{E}$ - jt bo brhfcsb n psqijtn gpn $Y) \mathfrak{g l}(m \mid n)\{$ р $U(\mathfrak{g l}(m \mid n))$-u f fouf pqjoh brhfcsb pg gl($m \mid n) /$ Jujt efflofe cz

$$
e v(\pi): \quad T(u) \rightarrow \mathbf{L}+\frac{c}{u \cdot \pi} \mathbf{F} \quad \mathrm{x} j \mathbf{j u} \quad \mathbf{F}=\sum_{i, j=2}^{m+n}(\cdot 2)^{[i]} E_{i j} \leq \mathrm{e}_{j i}
$$

x jui $\mathbf{L}=\mathbf{2} \leq 1-\mathrm{x}$ ifsf x f jouspevdfe 1 uif $\operatorname{vojupg} U(\mathfrak{g l}(m \mid n))$ boe x f vtfe uiftbn f opubjpo bt jo tfduypo 3/ Jo dpn qpof ou uif fubnsbujpo n bq sf bet

$$
e v(\pi)) T_{i j}(u)\left\{=\lambda_{i j} 1+\frac{c_{[i]}}{u \cdot \pi} \mathbf{e}_{j i} .\right.
$$

Joeffe-tjodf uif Mf tvqfsbrhfcsb sf rbuypot)B/2* bsf frvjubriouup

$$
\left[\mathbf{F}_{2}, \mathbf{F}_{3}\right]=P\left(\mathbf{F}_{2} \cdot \mathbf{F}_{3}\right)
$$

jujt fbtz p tipx ui buL $+\frac{c}{u \cdot \pi} \mathbf{F}$ pcfzt uif Zbohjbo $R T T$.sfrhujpot $) 3 / 5 *$ Sfn bsl u buif hfofs. bupst $\operatorname{pg} \mathfrak{g l}(m \mid n)$ bsf sfrufe φ uiffifsp n peft eftdsjcfe jo $] 31^{〔} ; \mathrm{e}_{i j}=(\cdot 2)^{[j]} T_{j i}[1] /$

[^13] bsfqsftfoubipo gps uif Zbohjbo $Y) \mathfrak{g l}(m \mid n)\{/$ Ui f fubmbikpo sf qsftforbulpo ev $(\pi)=\rho \operatorname{oev}(\pi)$ jt efflofe bt;
$$
e v(\pi)) T_{i j}(u)\left[=\lambda_{i j} 1+\frac{c_{[i]}}{u \cdot \pi} e_{j i}\right.
$$
 jefouju n busjy jo ui jt tqbdf/ Ui f x fjhi ut pguif Zbohjbo sf qsftfoubujpo ev (π) sf be
$$
T_{i i}(u)|1\rangle=\mu_{i}(u)|1\rangle \quad \mathrm{x} \mathrm{ju} \quad \mu_{i}(u)=2+\frac{c_{[i]}}{u \cdot \pi} \mu_{i}
$$
boe x f i buf
$$
T_{i j}(u)|1\rangle=\frac{c_{[i]}}{u \cdot \pi} e_{j i}|1\rangle=1, \quad j<i
$$
bddpsejoh puif sf ribypot $) B / 3^{*}$ Ui fo jujt dribsui bui f i jhi ftux fjhi uwf dups $\operatorname{pgl}(m \mid n) \mathrm{cfdpn} \mathrm{ft}$ uf qtfvepubdvon wf dups) $4 / 2 *$

Muvt fn qi btjffif uif ejgof sfodf cfuxfo μ_{i} - uibubsf uif xfjhit gps uif Mf tvqfsbrhfesb $\mathfrak{g l}(m \mid n)$ - boe $\mu_{i}(u)$-u bubsf uif x fjhi ut gps uif Zbohjbo $\left.Y\right) \mathfrak{g l}(m \mid n)\{/$

B/4/ Sfqsftforbulpot bttpdlbufe up $f_{[i]}(u, v)$
Gps boz $j=2,3, \ldots, m+n$ boe boz dpn qrify π - x f jouspevdf uf fubnmbupo sfqsft foubujpo

$$
\mu_{v}(u)= \begin{cases}f_{[\nu]}(u, \pi) & \mathrm{jg} v \sim j \\ 2 & \mathrm{jg} v>j\end{cases}
$$

Xf dpotjefsuif gpmx joh sf qsftfoubupo; $\leq_{j=2}^{N} \leq_{k=2}^{L^{(j)}} E v_{j}\left(\pi_{k}^{(j)}\right) /$ Tjodf x fibuf bufotps qspevdu
 uf joejwievbmx fjhi ut gps fbdi sfqsftfoubujpot-u bujt

$$
\mu_{v}(u)=\prod_{j=v}^{N} \prod_{k=2}^{L^{(j)}} f_{[\nu]}\left(u, \pi_{k}^{(j)}\right), \quad v=2,3, \ldots, m+n .
$$

Ui jt ribet $\mathbf{\varphi}$) $6 / 2 *$

Brrfoek C1 Tfdvstlpo gss if i hi ftudpf g dlfou

P of dbo cvjra uf I D $Z^{m \mid n}$ tubsujoh gspn uiflopx o sftvit bum $+n=3$ wib sfdvstjpot ef sjufe
 gvodujpo pguiftjy.ufsufy n pefmx jui epn bjo xbmevoebsz dpoejupo]4-35\% Uif dbtf $m=1$ $n=3 \mathrm{cfdpn} \mathrm{ft}$ frvjubrioup uif qsfujpvt pof bgfs $\mathbf{u} f$ sfqibdf n fouif dpotubou $c \rightarrow \cdot c$ jo uif R.n busjy) $3 / 2 *$ 米 Gjobmn- gps $m=n=2$ uif I Dibt if gpsn $] 36^{\circ}$

$$
Z^{2 \mid 2}(\bar{s} \mid \bar{t})=g(\bar{s}, \bar{t})
$$

Jo sfdvstjuf dpotusvduypo pguif I D-ux p dbtft ti pvra cf ejtúghvjtife;) $2 * n>1$ boe $m>1 @$ $) 3^{*} n=1 \mathrm{ps} m=1 /$ Xf flstudpotjefs uif dbtf $n>1$ boe $m>1 /$ Uifo-u f sfdvstjuf qspdfevsf jt cbtfe po u f gpmex joh sfevduypot $] 31^{\text {'; }}$

$$
\begin{align*}
& Z^{m \mid n}\left(\emptyset, \bar{s}^{3}, \ldots, \bar{s}^{N} \mid \emptyset, \bar{t}^{3}, \ldots, \bar{t}^{N}\right)=Z^{m \cdot 2 \mid n}\left(\bar{s}^{3}, \ldots, \bar{s}^{N} \mid \bar{t}^{3}, \ldots, \bar{t}^{N}\right), \\
& Z^{m \mid n}\left(\bar{s}^{2}, \ldots, \bar{s}^{N \cdot 2}, \emptyset \mid \bar{t}^{2}, \ldots, \bar{t}^{N \cdot 2}, \emptyset\right)=Z^{m \mid n \cdot 2}\left(\bar{s}^{2}, \ldots, \bar{s}^{N \cdot 2} \mid \bar{t}^{2}, \ldots, \bar{t}^{N \cdot 2}\right), \tag{*}
\end{align*}
$$

boe x f sfdbmi bu $N=m+n$. $2 /$ Uivt-jo qbsudvins- 1 opx joh $Z^{m \cdot 2 \mid n}$ gps tpn $\mathrm{f} m$ boe $n \mathrm{xf}$
 vtf bsfdvstjpo] $31^{\text {‘ }}$

$$
\left.\begin{array}{l}
Z^{m \mid n}(\bar{s} \mid \bar{t})=\sum_{\sigma=3}^{N+2} \sum_{\begin{array}{c}
\text { qbsu } \\
\text { qbsu }\left(\bar{t}^{2}, \ldots, \bar{s}^{\sigma}, \bar{t}^{\sigma \cdot 2}\right)
\end{array}} Z^{m \mid n}\left(\left\{\bar{s}_{\mathrm{JJ}}^{\phi}\right\}_{2}^{\sigma \cdot 2},\left\{\bar{s}^{\phi}\right\}_{\sigma}^{N}\left\{\left\{\bar{t}_{\mathrm{IJ}}^{\phi}\right\}_{2}^{\sigma \cdot 2},\left\{\bar{t}^{\phi}\right\}_{\sigma}^{N}\right)\right.
\end{array} \frac{g\left(\bar{s}_{\mathrm{JJ}}^{2}, \bar{s}_{\mathrm{J}}^{2}\right)}{f\left(\bar{s}_{\mathrm{JJ}}^{2}, \bar{s}_{\mathrm{J}}^{2}\right)}\right)^{\lambda_{n, 2}} .
$$

)C/4*
I fsf

$$
\begin{aligned}
& Z^{m \mid n}\left(\left\{\bar{s}_{\mathrm{JJ}}^{\phi}\right\}_{2}^{\sigma \cdot 2},\left\{\bar{s}^{\phi}\right\}_{\sigma}^{N} \mid\left\{\bar{t}_{\mathrm{JJ}}^{\phi}\right\}_{2}^{\sigma \cdot 2},\left\{\bar{t}^{\phi}\right\}_{\sigma}^{N}\right) \\
& \quad=Z^{m \mid n}\left(\bar{s}_{\mathrm{JJ}}^{2}, \ldots, \bar{s}_{\mathrm{JJ}}^{\sigma \cdot 2}, \bar{s}^{\sigma}, \ldots, \bar{s}^{N} \mid \bar{t}_{\mathrm{JJ}}^{2}, \ldots, \bar{t}_{\mathrm{JJ}}^{\sigma \cdot 2}, \bar{t}^{\sigma}, \ldots, \bar{t}^{N}\right) .
\end{aligned}
$$

)C/5*
Gpsfufsz flyfe $\sigma \in\{3, \ldots, N+2\}$ jo $) \mathrm{C} / 4 * \mathbf{u}$ ftvnt bsf bl fo puf qubsujpot $\bar{t}^{\phi} \Rightarrow\left\{\bar{t}_{J}^{\phi}, \bar{t}_{\mathrm{JJ}}{ }^{\phi}\right\} \times \mathrm{ju}$ $\phi=2, \ldots, \sigma \cdot 2$ boe $\bar{s}^{\phi} \Rightarrow\left\{\bar{s}_{\mathrm{J}}^{\phi}, \bar{s}_{\mathrm{JJ}}^{\phi}\right\} \times$ jui $\phi=3, \ldots, \sigma \cdot 2$-tvdi u bu' $\bar{\tau}_{\mathrm{J}}^{\phi}={ }^{\prime} \bar{s}_{\mathrm{J}}^{\phi}=2 /$ Uiftvctfu \bar{s}_{J}^{2} jt b flyfe Cfuf qbsbn fufs gspn uf $\mathrm{tfu} \bar{s}^{2} / \mathrm{Ui} f s f$ jt op tvn pufs qbsuigpot pguftfu \bar{s}^{2} jo)C/4*/

Tjn jibstra- 1 opx joh $Z^{m \mid n \cdot 2}$ gps tpn $\mathrm{f} m$ boe $n \mathrm{xf}$ bvpn bydbmn 1 opx $Z^{m \mid n} \mathrm{x}$ jui ${ }^{\prime} \bar{s}^{N}=$ ${ }^{,} \bar{t}^{N}=1 /$ Ui fo- ч pcbjo $Z^{m \mid n} \times$ ju ${ }^{\prime} \bar{S}^{N}={ }^{\prime} \bar{t}^{N}>1 \times \mathrm{xf}$ dbo vtf uiftfdpoe sfdvstjpo

$$
\begin{aligned}
& \left.\left.\left.\left.\left.Z^{m \mid n}(\bar{s} \mid \bar{t})=\sum_{\sigma=2}^{N} \sum_{\substack{\operatorname{qbss}\left(\bar{s}^{\sigma}, \ldots, \bar{s}^{N}\right) \\
\mathrm{qbsu}\left(\bar{t}^{\sigma}, \ldots, \bar{t}^{N}\right)}} Z^{m \mid n}(\} \overline{s^{\phi} \mid}{ }_{2}^{\sigma \cdot 2},\right\} \bar{s}_{\mathrm{JJ}}^{\phi \mid}{ }_{\sigma}^{N} \mid\right\}\left.\bar{t}^{\phi}\right|_{2} ^{\sigma \cdot 2} ;\right\} \bar{t}_{\mathrm{JJ}}^{\phi \mid}{ }_{\sigma}^{N}{ }_{\sigma}\right) \frac{g\left(\bar{t}_{\mathrm{JJ}}^{N}, \bar{t}_{\mathrm{J}}^{N}\right)}{f\left(\bar{t}_{\mathrm{JJ}}^{N}, \bar{t}_{\mathrm{J}}^{N}\right)}\right)^{\lambda_{m, N}} \\
& * \frac{g\left(\bar{s}_{\mathrm{J}}^{N}, \bar{t}_{\mathrm{J}}^{N}\right) \delta_{N}\left(\overline{\mathrm{~s}}_{\mathrm{J}}^{N}, \overline{\mathrm{~s}}_{\mathrm{J}}^{N}\right) f\left(\bar{s}_{\mathrm{JJ}}^{N}, \bar{t}_{\mathrm{J}}^{N}\right)}{f_{[\sigma]}\left(\bar{t}_{\mathrm{J}}^{\sigma}, \bar{t}^{\sigma \cdot 2}\right)} \prod_{\xi=\sigma}^{N \cdot 2} \frac{g_{[\xi]}\left(\bar{s}_{\mathrm{J}}^{\xi+2}, \bar{s}_{\mathrm{J}}^{\xi}\right) g_{[\xi]}\left(\bar{t}_{\mathrm{J}}^{+2}, \bar{t}_{\mathrm{J}}\right) \delta_{\xi}\left(\bar{s}_{\mathrm{J}}, \bar{s}_{\mathrm{J}}\right) \delta_{\xi}\left(\bar{t}_{\mathrm{J}}, \bar{t}_{\mathrm{J} \mathrm{\xi}}\right)}{f_{[\xi+2]}\left(\bar{s}^{\xi+2}, \bar{s}_{\mathrm{J}}^{\xi}\right) f_{[\xi+2]}\left(\bar{t}_{\mathrm{J}}{ }^{(+2}, \bar{t}^{\xi}\right)} .
\end{aligned}
$$

I fsf

$$
\begin{aligned}
& \left.\left.\left.Z^{m \mid n}(\} \bar{s}^{\phi \mid}{ }_{2}^{\sigma \cdot 2},\right\}\left.\bar{s}_{\mathrm{JJ}}^{\phi}\left|{ }_{\sigma}^{N}\right| \bar{t}^{\phi}\right|_{2} ^{\sigma \cdot 2} ;\right\} \mid \bar{t}_{\mathrm{JJ}}^{\phi}{ }_{\sigma}^{N}{ }_{\sigma}^{N}\right) \\
& \quad=Z^{m \mid n}\left(\bar{s}^{2}, \ldots, \bar{s}^{\sigma \cdot 2}, \bar{s}_{\mathrm{JJ}}^{\sigma}, \ldots, \bar{s}_{\mathrm{JJ}}^{N} \mid \bar{t}^{2}, \ldots, \bar{t}^{\sigma \cdot 2}, \bar{t}_{\mathrm{JJ}}^{\sigma}, \ldots, \bar{t}_{\mathrm{JJ}}^{N}\right) .
\end{aligned}
$$

) C/7*
 $\phi=\sigma, \ldots, N \cdot 2$ boe $\bar{s}^{\phi} \Rightarrow\left\{\bar{s}_{\mathrm{J}}^{\phi}, \bar{s}_{\mathrm{JJ}}^{\phi}\right\}$ x jui $\phi=\sigma, \ldots, N$-tvdi u bu' $\bar{t}_{\mathrm{J}}^{\phi}={ }^{\prime} \bar{s}_{\mathrm{J}}^{\phi}=2 /$ Uif tvctfu \bar{t}_{J}^{N} jt b flyfe Cfuif qbsbn fufs gspn uif $\mathrm{tfu} \bar{t}^{N} /$ Uifsf jt op tvn pufs qbsúypot pguif tfu \bar{t}^{N} jo)C/6*

 Ui jt ribet up if ejtbqqf bsbodf pg uif gbdust jo uif flstu gioft pg) C/4*) C/6* Tf dpoe- brmif
δ.gvodujpot tipvre cf sfqudfe czuif f.gvodujpot/Gjobma-brmiftvetdsjqut pguifg.gvodujpot boe f.gvodujpot ejtbqqfbs; $g_{[\xi]}(x, y) \rightarrow g(x, y)-f_{[\xi]}(x, y) \rightarrow f(x, y) /$

I px fufs-uif n bjo qfdvigbsjux pgui jt dbtf jt u buíf sfevdujpot) C/3* bl f uif gpsn

$$
\begin{aligned}
& Z^{m \mid 1}\left(\emptyset, \bar{s}^{3}, \ldots, \bar{s}^{m \cdot 2} \mid \emptyset, \bar{t}^{3}, \ldots, \bar{t}^{m \cdot 2}\right)=Z^{m \cdot 2 \mid 1}\left(\bar{s}^{3}, \ldots, \bar{s}^{m \cdot 2} \mid \bar{t}^{3}, \ldots, \bar{t}^{m \cdot 2}\right), \\
& Z^{m \mid 1}\left(\bar{s}^{2}, \ldots, \bar{s}^{m \cdot 3}, \emptyset \mid \bar{t}^{2}, \ldots, \bar{t}^{m \cdot 3}, \emptyset\right)=Z^{m \cdot 2 \mid 1}\left(\bar{s}^{2}, \ldots, \bar{s}^{m \cdot 3} \mid \bar{t}^{2}, \ldots, \bar{t}^{m \cdot 3}\right) .
\end{aligned}
$$

)C/8*
Ui vt-jgfju fs $\bar{s}^{2}=\bar{t}^{2}=\emptyset \mathrm{ps} \bar{s}^{m \cdot 2}=\bar{t}^{m \cdot 2}=\emptyset$ - u i fo jo cpuidbtft $Z^{m \mid 1}$ sfevdft $\mathbf{\varphi} Z^{m \cdot 2 \mid 1} /$
Gjobma-u f dbtf $\operatorname{pggl}(1 \mid n)$ brhfcsbt sfevdft φ uif dbtf dpotjefsfe bcpuf bgifsuif sfqibdfn fou if dpotubouc \rightarrow • c jo uif R.n busjy) $3 / 2 *$ Ui fsf gpsf-x fep opudpotjefs i jt dbtf cf $\mathrm{px} /$

Brrfoek E1 Tftlevft ko if rpfit pguif i hi ftudpfg difou

Xf hjuf befujrrie qsppgpg Qspqptjuppo $4 / 2$ gps uif dbtf $m>1$ boe $n>1 /$ Uif dbtf $m=1 \mathrm{ps}$ $n=1$ dbo cf dpotjefsfe fybdun jo if f thn f n boof $\mathrm{s} /$
)C/2* $\operatorname{gps} Z^{2 \mid 2}(\bar{s} \mid \bar{t}) /$ Gistur pof dbo fbtju tff ui buevf φ) C/2*

$$
Z^{2 \mid 2}(\bar{s} \mid \bar{t})\left(s_{j \rightarrow t_{j}}=g\left(s_{j}, t_{j}\right) g\left(\bar{s}_{j}, s_{j}\right) g\left(t_{j}, \bar{t}_{j}\right) Z^{2 \mid 2}\left(\bar{s}_{j} \mid \bar{t}_{j}\right)+r e g . \quad\right) \mathrm{D} / 2^{*}
$$

Uijt fyqsfttjpo pcujpvtn dpjodjeft x jui)4/28*gss $m=n=2 /$ Frvbujpo)D/2*tfsuft bt if cbtjt pg joevdujpo/ ${ }^{5}$
 sftjevf gpsn vrb $) 4 / 28^{*}$ i prat gps $Z^{m \mid n} \mathrm{x}$ ju $m=m^{\prime}+2-n^{\prime}=n$ bur $r_{2}=1$) i bujt- $\bar{s}^{2}=\bar{t}^{2}=\emptyset^{*}$ boe gps $Z^{m \mid n} \mathrm{x}$ ju $m=m^{\prime}-n=n^{\prime}+2$ bur $r_{N}=1$)u bujt $-\bar{s}^{N}=\bar{t}^{N}=\emptyset * /$ Ui fo vtjoh sfdvstjpot)C/4* boe)C/6*x f ti pvre qspuf ui bu $4 / 28^{*}$ sfn bjot usvf gps $r_{2}>1$ boe $r_{N}>1 /$ Jutp i bqqfot u busfdvstjpo)C/4* bmpx thof q qspuf) 4/28*gps \bar{s}^{ν} boe $\bar{t}^{\nu} \mathrm{x}$ jui $v=3, \ldots, N /$ Buif f bn f un f sfdvstjpo) C/6* qspwieft uif qsppg gps \bar{s}^{ν} boe $\bar{t}^{\nu} \mathrm{x}$ jui $v=2, \ldots, N \cdot 2 /$ Dpn cjojoh cpui sfdvstjpot x f qspuf uif sftjevf gpsn vrb) $4 / 28^{*} \operatorname{gps}$ bms \bar{s}^{ν} boe $\bar{t}^{\nu} /$

Muvt tipx ipx ujt n fuipe xpslt/ Dpotjefs- gps fybn qufi- uif sfdvstjpo)C/4* Jujt dpouf. ojfoup x sjuf jujo u f gprpx joh gpsn ;

$$
Z^{m \mid n}(\bar{s} \mid \bar{t})=\sum_{\sigma=3}^{N+2} \mathcal{Z}_{\sigma}^{m \mid n}(\bar{s} \mid \bar{t})
$$

)D/3*
x ifsf

$$
\begin{align*}
& \mathcal{Z}_{\sigma}^{m \mid n}(\bar{s} \mid \bar{t})=\sum_{\substack{\mathrm{qbsu}\left(\bar{s}^{3}, \ldots, \bar{s}^{\sigma \cdot 2}\right) \\
\mathrm{qbsu}\left(\bar{t}^{2}, \ldots, \bar{t}^{\sigma \cdot 2}\right)}} Z^{m \mid n}\left(\left\{\left\{_{\mathrm{s}}^{\phi}\right\}_{2}^{\sigma \cdot 2},\left\{\bar{s}^{\phi}\right\}_{\sigma}^{N} \mid\left\{\bar{t}_{\mathrm{JJ}}^{\phi}\right\}_{2}^{\sigma \cdot 2},\left\{\bar{t}^{\phi}\right\}_{\sigma}^{N}\right) \frac{g\left(\bar{s}_{\mathrm{JJ}}^{2}, \bar{s}_{\mathrm{J}}^{2}\right)}{f\left(\bar{s}_{\mathrm{JJ}}^{2}, \bar{s}_{\mathrm{J}}^{2}\right)}\right)^{\lambda_{m, 2}} \\
& * \frac{g_{[3]}\left(\bar{t}_{\mathrm{J}}^{2}, \bar{s}_{\mathrm{J}}^{2}\right) \delta_{2}\left(\bar{t}_{\mathrm{J}}^{2}, \bar{t}_{\mathrm{J}}^{2}\right) f\left(\bar{t}_{\mathrm{J}}^{2}, \bar{s}_{\mathrm{J}}^{2}\right)}{f_{[\sigma]}\left(\bar{s}^{\sigma}, \bar{s}_{\mathrm{J}}^{\sigma \cdot 2}\right)} \prod_{\xi=3}^{\sigma \cdot 2} \frac{g_{[\xi+2]}\left(\bar{t}_{\mathrm{J}}^{\xi}, \bar{t}_{\mathrm{J}}^{\xi \cdot 2}\right) g_{[\xi]}\left(\bar{s}_{\mathrm{J}}^{\xi}, \bar{s}_{\mathrm{J}}^{\xi \cdot 2}\right) \delta_{\xi}\left(\bar{t}_{\mathrm{J}}^{\xi}, \bar{t}_{\mathrm{J}}{ }^{\xi}\right) \delta_{\xi}\left(\bar{s}_{\mathrm{J}}^{\xi}, \bar{s}_{\mathrm{J}}\right)}{f_{[\xi]}\left(\bar{s}^{\xi}, \bar{s}_{\mathrm{J}}^{\xi \cdot 2}\right) f_{[\xi]}\left(\bar{t}_{\mathrm{J}}^{\xi}, \bar{t}^{\xi} \cdot 2\right)} .
\end{align*}
$$

[^14]Xf flstudpotjefs uif dbtf $r_{2}={ }^{\prime} \bar{s}^{2}={ }^{\prime} \bar{t}^{2}=2 /$ Ui fo ${ }^{\prime} \bar{s}_{\mathrm{JJ}}^{2}={ }^{\prime} \bar{t}_{\mathrm{JJ}}^{2}=1$ - i fodf-x f bdunbma i buf $Z^{m \cdot 2 \mid n}$ jo uif sit pg)D/4*/Bddpsejoh up úf joevduypo bttvn qụpo uif sftjevf gpsn vrb) $4 / 28^{*} \mathrm{jt}$ ubịe gps uiftf I D/

 $\sigma>v+2 @=v+2 @=v /$

Mu $\sigma<\nu /$ Uif qprfi bus $s_{j}^{v}=t_{j}^{v}$ jo uif sit pg)D/4* pddvst jo uif I D pora/ Ui fo evf up uif joevdujpo bttvn quipo uif sftjevf pguif I D jo úf sit pg)D/4*hjuft uf gbdus

$$
\mathcal{A}_{\nu}=\frac{g_{[\nu+2]}\left(t_{j}^{\nu}, s_{j}^{v}\right) \delta_{v}\left(\bar{t}_{j}^{\nu}, t_{j}^{\nu}\right) \delta_{\nu}\left(s_{j}^{v}, \bar{s}_{j}^{v}\right)}{f_{[\nu+2]}\left(\bar{t}^{\nu+2}, t_{j}^{v}\right) f_{[\nu]}\left(s_{j}^{v}, \bar{s}^{\nu \cdot 2}\right)}
$$

Uijt dpf gfldjfouepft opuefqfoe po if qbsuyjpot/ Uif sfn bjojoh tvn pufs qbsyijpot pcujpvtn sfevdft $\mathrm{p} \mathcal{Z}_{\sigma}^{m \mid n}\left(\bar{s} \backslash\left\{s_{j}^{\nu}\right\} \mid \bar{t} \backslash\left\{t_{j}^{\nu}\right\}\right) /$ Ui vt-gps $\sigma<v \times \mathrm{xf}$ bssjuf bu

$$
\mathcal{Z}_{\sigma}^{m \mid n}(\bar{s} \mid \bar{t})(\underbrace{v}_{j}=t_{j}^{v}=\mathcal{A}_{\nu} \mathcal{Z}_{\sigma}^{m \mid n}\left(\bar{s} \backslash\left\{s_{j}^{v}\right\} \mid \bar{t} \backslash\left\{t_{j}^{v}\right\}\right)+\text { reg. }
$$

 dpf gfldjf ouhjuft uif gbdups

$$
\left.\frac{g_{[v+2]}\left(t_{j}^{v}, s_{j}^{v}\right) \delta_{v}\left(\bar{t}_{\mathrm{JJ}}^{v}, t_{j}^{v}\right) \delta_{v}\left(s_{j}^{v}, \bar{s}_{\mathrm{JJ}}^{v}\right)}{f_{[v+2]}\left(\bar{t}_{\mathrm{JJ}}^{v+2}, t_{j}^{v}\right) f_{[v]]}\left(s_{j}^{v}, \bar{s}_{\mathrm{JJ}}^{v} \cdot 2\right.}\right)
$$

Uiftfdpoe ẏof pg$) \mathrm{D} / 4 *$ hjuft beejupobngbdupst ef qfoejoh po s_{j}^{ν} boe t_{j}^{ν};

$$
\frac{\delta_{v}\left(\bar{t}_{\mathbf{J}}^{v}, t_{j}^{v}\right) \delta_{v}\left(s_{j}^{v}, \bar{s}_{\mathrm{J}}^{v}\right)}{f_{[\nu+2]}\left(\bar{t}_{\mathrm{J}}^{\nu+2}, t_{j}^{v}\right) f_{[\nu]}\left(s_{j}^{v}, \bar{s}_{\mathrm{J}}^{v \cdot 2}\right)} .
$$

)D/8*

Uphfuifs x jui)D/7*ifz hjuf $\left.\mathcal{A}_{v}\right) \mathrm{D} / 5^{*}$ Uif sftupg)D/4*epft opuefqfoe po s_{j}^{v} boe t_{j}^{v}-ifodfx f bhbjo pcubjo)D/6*-cvuopx gps $\sigma>v+2 /$

Uif uijse dbtf jt $\sigma=v+2 /$ Bhbjo- uif qpari pddvst jo uif I D- boe xftfu $\bar{s}_{\mathrm{JJ}}^{\nu}=\left\{s_{j}^{v}, \bar{s}_{\mathrm{JJ}}^{v}\right\}-$ $\bar{t}_{\mathrm{JJ}}^{\nu}=\left\{t_{j}^{\nu}, \bar{t}_{\mathrm{JJ}}^{v}\right\} /$ Opx u if gbdups dpn joh gspn uif I D jt

$$
\frac{g_{[v+2]}\left(t_{j}^{v}, s_{j}^{v}\right) \delta_{v}\left(\bar{t}_{\mathrm{JJ}}^{v}, t_{j}^{v}\right) \delta_{v}\left(s_{j}^{v}, \bar{s}_{\mathrm{JJ}}{ }^{v}\right)}{f_{[v+2]}\left(\bar{t}^{v+2}, t_{j}^{v}\right) f_{[v]}\left(s_{j}^{v}, \bar{s}_{\mathrm{JJ}}^{v}{ }^{2}\right)}
$$

Xf brtp i buf gsp uif tfdpoe ỳof pg)D/4*

$$
\frac{\delta_{v}\left(\bar{t}_{\mathrm{J}}^{v}, t_{j}^{v}\right) \delta_{v}\left(s_{j}^{v}, \bar{s}_{\mathrm{J}}^{v}\right)}{f_{[v]}\left(s_{j}^{v}, \bar{s}_{\mathrm{J}}^{v} \cdot 2^{2}\right)}
$$

)D/: *
boe bruphfu fs xf bhbjo pcubjo)D/5* Ui vt-fr vbujpo)D/6*i prat gps $\sigma=v+2 /$
Gjobm- rfiu $\sigma=v /$ Ui foxf ibuf gpsn uif I D

$$
\frac{g_{[v+2]}\left(t_{j}^{v}, s_{j}^{v}\right) \delta_{v}\left(\bar{t}_{j}^{v}, t_{j}^{v}\right) \delta_{v}\left(s_{j}^{v}, \bar{s}_{j}^{v}\right)}{f_{[v+2]}\left(\overline{t^{v}+2}, t_{j}^{v}\right) f_{[v]}\left(s_{j}^{v}, \bar{s}_{\mathrm{JJ}}^{v-2}\right)}
$$

 uf \mathcal{A}_{ν} dpfofldjfou)D/5* Uif sfn bjojoh tvn pufs qbsuyipot tujmhjuft $\mathcal{Z}_{\sigma}^{m \mid n}\left(\bar{s} \backslash\left\{s_{j}^{\nu}\right\} \mid \bar{t} \backslash\left\{t_{j}^{\nu}\right\}\right) /$ Ui vt-fr vbupo)D/6* jt qspufe gps bmo/ Evf بp)D/3* í jt jn n fejbufn zjfrat uif sftjevf gpsn vrb $) 4 / 28^{*}$ gps $\mathcal{Z}^{m \mid n} /$

Bt tppo bt)4/28*jt qspufe gps $r_{2}=2 \mathrm{xf}$ dbo vtf jubt bofx cbtjt pgjoevdujpo/ Xf bttvn f i bu) $4 / 28^{*}$ jt wbẏe gpstpn $\mathrm{f} r_{2}>1$ boe u fo qspuf u bujusf n bjot usvf gps $r_{2}+2 /$ B mdpotjef sbuypot bsf fybdun uif tbn f bt jouif dbtf $r_{2}=2$ - ufsf gpsf xf pn juuifn /

Jo uijt x bz x f qspuf uif sftjevf gpsn vib gps bmsin boe \bar{t}^{ν} fydfqu \bar{s}^{2} boe $\bar{t}^{2} /$ Up qspuf) $4 / 28^{*}$ gps uf sftjevf bus ${ }_{j}^{2}=t_{j}^{2} \times \mathrm{fti}$ pvra vtf uftfdpoe sfdvstjpo)C/6* boe qfsgosn tjn jibs dbrdvibipot/

Tfgfsfodft

 e(Fuweft Ovdmbjsft ef Tbdrhz- DFB.O.266: ;2-2: 83/
13‘ N/ Hbvejo- Mb Gpoduypo e(P oef ef Cfuif-Nbttpo- Qbsjt- 2: 94/
14‘ WF/Lpsfqjo- Dbrdvrhujpo pgopsn t pgCfuif x buf gvodujpot-Dpn n / N bui / Qi zt/ 97)2: 93*4: 2 529/
15‘ ME/ Gbeeffw F/L/ Tl mbojo- MB/ Ubl i blbo-Rvbounn jouf stf qspcrfin / J- Ui fps/ Nbui / Qii zt/ 51)2: 8: *799 817/

17‘ WF/ Lpsfqjo- O/N / Cphprivcpw B/H/ Jfif shjo- Rvbown Jouf stf Tdbuf sjoh Nfui pe boe Dpssfrmypo GvodujpotDbn csjehf Vojw Qsftt-Dbn csjehf-2: : 4/
18‘ ME/ Gbeeffw jo; B/ Dpooft- fubmh)Fet/* Mft I pvdift Mfdusft Rvbouvn Tzn n fusjft- Opsui I prooe- 2: : 9q/ 25: /
19‘ O/Zv/Sftifuılijo-Dbrdvrhujpo pguif opsn pg Cfuif wfdupst jo n pefmx jui SU(4).tzn nfusz-[bq/ Obvdi o/ Tfn / MPNJ 261)2: 97*2: 7324 @ N bui / Tdj/ 57)2: 9: *27: 52817)Fohnhusbot n ${ }^{(}{ }^{\prime} /$
]: ‘ O/B/ Trbwopw Tdbrhs qspevdut jo HM4*.cbtfe n pefm x jui usjhpopn fusjd R.n busjy/ Efufsn jobousfqsftfoubypoK Tubu' N fdi / Ui fpsz Fyq/ 2614)3126* Q1412: - bsYjw,2612/17364/
]21‘ W Ubsbtpw B/ Wbsdi fol p- Kbdl tpo jouf hsbmsfqsftfoubypot pgtpnuypot pguif r vboujfife Lojfii ojl [bn ppedi jl pw
 bsYjw,i fq.ui 0 422151/
]22، W Ubsbtpw B/ Wbsdi fol p- Btzn qupyd tpnuypot puif rvboujfife Lojfii ojl [bn ppedi jl pwfrvbujpo boe Cfuif uf dupst-Bn fs/ N bui / Tpdjfue Usbothł Tfs 3)285*)2: : 7*346 384-bsYjw,i fq.ui 0 517171/
123، F/ N vlijo- B/ Wbsdi fol p- Opsn pgb Cfuif wfdups boe uif I fttjbo pguifn btufs gvodupo- Dpn qptjuip Nbui / 252)3116*2123 2139-bsYjw,n bui 0151345 : /
124‘ G H in boo- WF/ Lpsfqjo-Uif I vccbse di bjo; Mfc Xvfrvbupot boe opsn pguiffjhfogvoduppot- Qizt/ Mful B 374)2: : : *3: 4 3: 9-bsYjw,dpoe.n bu0: 19225/
 15573/
)Mff n pefnelk Qizt B 27)2: 94*M6: 2 M6: 7/
 64)2*)2: $92 * 219225$)Fohnhusbotn ${ }^{*}$ */
128، QQ Lvgiti- O/Zv/ Sftifull ijo- HM4**.jowbsjboutpmujpot pg uif Zboh. Cbyufs fr vbujpo boe bttpdjbufe rvbounn

129، WF/ Lpsf qjo- Bobrntjt pg b cjnjof bs sfrhujpo gps uif tjy. wf sufy n pefmTpw Qi zt/ Epl m38)2: 93* 723724)Fohm usbot m ${ }^{*}$ "
12: ‘ B/H/ Jfif shjo- WF/ Lpsfqjo- Ui f qsperfin pgeftdsjqujpo pg brmL.pqfsbupst gns R.n busjdft pguifn pefm $X X X$ boe XXZ)jo S vttjbo*- [bq/ Obvdi o/ Tfn / MPN J 242)2: 94*91 98/
]31‘ B/B/ I vtubruvl-B/ Mbtizl-T/[/ Qbl vigbl-F/ Sbhpvdz- O/B/ Trbwopw Tdbrhs qspevdit pg Cfuif ufdupst jo uif n pefın x ju $\mathfrak{g l}(m \mid n)$ tzn n fısz- OvdmQQi zt/C : 34)3128*388 422- bsYjw,2815/19284/
]32‘ QQ Lvigti-F/L/ Tl mbojo- Po uif tpnuypo pg uif Zboh Cbyuf s fr vbujpo- [bq/ Obvdi o/ Tfn jo/ MPNJ : 6) 2: 91* 23: 271 (ax Tpw N bu / 2:)2: 93*26: 72731)Fohmusbot nd*/

]34` T/ Qbl vigbl - F/ Sbhpvdz- O/B/ Trbwopw Cfuif wf dpst gps n pefrncbtfe po uif tvqfs.Zbohjbo $Y(\mathfrak{g l}(m \mid n))$ - K Jouf. hsberfi Tztufn t 3)3128*2 42-bsYjw,2715/13422/
]35‘B/H/ Jfif shjo- Qbsuyupo gvodujpo pg uif tjy. uf sufy n pefmjo b flojuf upnwn f- Tpw Qizt/Epl n43)2: 98* 989 98:)Fohrhusbotnd"
J36‘B/I vatbravl-B/ Mbtizl-T/ Qbl vyjbl-F/ Sbhpvdz- O/B/ Trhwopw Tdbrhs qspevdit pg Cfuif uf dupst jo n pefm
 bsYjw,2716/1: 29: /
]37‘ B/B/I vutbravl-B/ Mbtizl-T/[/ Qbl vijbl - F/ Sbhpvdz- O/B/ Trhwopw Tdbrhs qspevdut pg Cfuif wfdupst jo n pe.
 2717/14684/
]38‘W Di bsj- B/O/ Qsfttrfiz- Ofx vojubsz sfqsftfoubjpot pgmpq hspvqt-N bui/Boo/ 386)2: 97*98 215/
139‘ N/M Obfibspw Rvbouwn Cf sffijojbo boe uif drbttjdbnDbqf mijjefoujk-Mfur Nbui/ Qi zt/ 32)2: : 2*234 242/
13: ‘ WH/ Lbd- S fqsftfoubujpot pg drbttjdbnMf tvqfsbrhf csbt-Mfdussf Opuft jo N bui / 787)2: 89*6: 8 737/
141، KQ I vsoj- C/ N psfmJssfevdjerfi sf qsftfobujpot pg $S U(m \mid n)-$ K N bui / Qi zt/ 35)2: 94*268 274/
142‘ M Gsbqqbut B/ Tdjbsjop- Q Tpscb-Ejdujpobsz po Mf Brhfcsbt boe Tvqf sbrhf csbt-Bdbefn jd Qsftt-Tbo Ejfhp- 3111/

Chapter 5

Scalar products and norm of Bethe vectors for integrable models based on $U_{q}\left(\hat{\mathfrak{g}} l_{m}\right)$

Introduction:

This Chapter generalizes results of two previous Chapters to the case of quantum affine algebra $U_{q}\left(\hat{\mathfrak{g}} r_{m}\right)$.

Contribution:

Using antimorphism Ψ (3.14) I proved recurrent relations for dual Bethe vectors. We used these formulas to calculate scalar product of Bethe vectors. Using the scalar scalar product of Bethe vectors I proved generalization of Gaudin theorem for norm of Bethe vectors to case of quantum affine algebra $U_{q}\left(\hat{\mathfrak{g}}_{m}\right)$. As in super-Yangian case $Y\left(\mathfrak{g l}_{\mathfrak{n} \mid \mathfrak{m}}\right)$, it is a key object for calculation of correlation functions.

Scalar products and norm of Bethe vectors

for integrable models based on $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$

Arthur Hutsalyuk ${ }^{1,2 \star}$, Andrii Liashyk ${ }^{3,4,5 \star}$, Stanislav Z. Pakuliak ${ }^{1,6 \dagger}$, Eric Ragoucy ${ }^{7 \ddagger}$ and Nikita A. Slavnov ${ }^{80}$
1 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow reg., Russia 2 Fachbereich C Physik, Bergische Universität Wuppertal, 42097 Wuppertal, Germany
3 Bogoliubov Institute for Theoretical Physics, NAS of Ukraine, Kiev, Ukraine 4 National Research University Higher School of Economics, Faculty of Mathematics, Moscow, Russia
5 Skolkovo Institute of Science and Technology, Moscow, Russia
6 Laboratory of Theoretical Physics, JINR, Dubna, Moscow reg., Russi
7 Laboratoire de Physique Théorique LAPTh, CNRS and USMB, BP 110, 74941 Annecy-le-Vieux Cedex, France
8 Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
\star hutsalyuk@gmail.com, \& a.liashyk@gmail.com, † stanislav.pakuliak@jinr.ru, \#eric.ragoucy@lapth.cnrs.fr, \quad nslavnov@mi.ras.ru

Abstract

We obtain recursion formulas for the Bethe vectors of models with periodic boundary conditions solvable by the nested algebraic Bethe ansatz and based on the quantum affine algebra $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$. We also present a sum formula for their scalar products. This formula describes the scalar product in terms of a sum over partitions of the Bethe parameters, whose factors are characterized by two highest coefficients. We provide different recursions for these highest coefficients.

In addition, we show that when the Bethe vectors are on-shell, their norm takes the form of a Gaudin determinant.

Copyright A. Hutsalyuk et al.
This work is licensed under the Creative Commons Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 27-11-2017
Accepted 18-01-2018
Published 30-01-2018
doi:10.21468/SciPostPhys.4.1.006

Contents

1 Introduction 2
2 Description of the model 4
2.1 The $U_{q}\left(\widehat{\mathfrak{g r l}}_{m}\right)$ based quantum integrable model 4
2.2 Notation 5
3 Bethe vectors 6
3.1 Morphism of Bethe vectors 7
3.2 Dual Bethe vectors 8
3.3 On-shell Bethe vectors 9
3.4 Coproduct property and composite models 9
4 Main results 10
4.1 Recursion for Bethe vectors 10
4.2 Sum formula for the scalar product 12
4.3 Properties of the highest coefficient 13
4.4 Norm of on-shell Bethe vectors and Gaudin matrix 15
5 Proof of recursion for Bethe vectors 16
5.1 Proofs of proposition 4.1 16
5.2 Proofs of proposition 4.2 19
5.3 Proofs of corollary 4.3 20
6 Proof of proposition 4.5 20
7 Symmetry of the highest coefficient 21
A The simplest $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ Bethe vectors 23
B Comparison with known results of $U_{q}\left(\widehat{\mathfrak{g l}}_{3}\right)$ based models 24
C Coproduct formula for the dual Bethe vectors 25
References 26

1 Introduction

Integrable models have the striking property that their physical data are exactly computable, without the use of any perturbative expansion or asymptotic behavior. For this reason, they have always attracted the attention of researchers. In the twentieth century, quantum integrable models have been the source of many developments originating in the so-called Bethe ansatz, introduced by H. Bethe [1]. In a few words, the Bethe ansatz is an expansion of Hamiltonian eigenvectors over some clever basis (similar to planar waves) using some parameters (the Bethe parameters, which play the role of momenta). Demanding the vectors to be eigenvectors of the Hamiltonian leads to a quantization of the Bethe parameters which takes the form of a system of coupled algebraic equations called the Bethe equations. Knowing the form of the Bethe ansatz and the Bethe equations is in general enough to get a large number of information on the physical data of the system.

In continuity to the Bethe ansatz technics, the Quantum Inverse Scattering Method (QISM), mainly elaborated by the Leningrad/St-Petersburg School [2-5], has been the core of a wide range of progress. These developments were performed in continuity with (or parallel to) the works of C. N. Yang, R. Baxter, M. Gaudin, and many others, see e.g. [6-12].

The Bethe ansatz and QISM have provided a lot of interesting results for the models based on $\mathfrak{g l}_{2}$ symmetry and its quantum deformations. Among them, we can mention the determinant representations for the norm and the scalar products of Bethe vectors [13, 14]. Focusing on spin chains with periodic boundary conditions, it is worth mentioning the explicit solution of the quantum inverse scattering problem [15-17]. These results were used to study correla-
tion functions of quantum integrable models in the thermodynamic limit via multiple integral representations [18-20] or form factor expansion [21-23].

For higher rank algebras, that is to say for multicomponent systems, $\mathfrak{g l}_{m}$ spin chains and their quantum deformation, or their \mathbb{Z}_{2}-graded versions, results are scarcer, although the general ground has been settled many years ago [24-29]. Nevertheless, some steps have been done, in particular for models with periodic boundary conditions: an explicit expression for Bethe vectors of models based on $Y(\mathfrak{g l}(m \mid n))$ and on $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$ can be found in [30-32] and [33-37]. The calculation of scalar product and form factors have been addressed for some specific algebras. The case of the $Y\left(\mathfrak{g l}_{3}\right)$ algebra has been studied in a series of works presenting some explicit forms of Bethe vectors [38], the calculation of their scalar product [39-43] and the expression of the form factors as determinants [44, 45]. Results for models based on the deformed version $U_{q}\left(\widehat{\mathfrak{g}}_{3}\right)$ have been also obtained: explicit forms of Bethe vectors can be found in [46], their scalar products in [47-49] and a determinant expression for scalar products and form factors of diagonal elements was presented in [50]. The supersymmetric counterpart of $Y\left(\mathfrak{g l}_{3}\right)$, the superalgebra $Y(\mathfrak{g l}(2 \mid 1))$ has been dealt in [51-54]. Some partial results were also obtained for superalgebras in connection with the Super-Yang-Mills theories [55-57]. However a full understanding of the general approach to compute correlation functions is still lacking. Recently, some general results on the scalar product and the norm of Bethe vectors for $Y(\mathfrak{g l}(m \mid n))$ models have been obtained in [58, 59], in parallel to the original results described in $[13,39]$. The present paper contains similar results for models based on the quantum affine algebra $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$.

It is known (see e.g. [13, 14, 60]) that most of the results concerning the scalar products of Bethe vectors in the models described by the $Y\left(\mathfrak{g l}_{2}\right)$ and $U_{q}\left(\widehat{\mathfrak{g}}_{2}\right)$ algebras can be formulated in a sole universal form. This is because the R-matrices in both cases correspond to the six-vertex model. An analogous similarity takes place in the general $Y\left(\mathfrak{g l}_{m}\right)$ and $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ cases. In spite of some differences between the R-matrices of $Y\left(\mathfrak{g l}_{m}\right)$ and $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$ based models the general structure for the recursions on Bethe vectors, their scalar products, and the properties of the scalar product highest coefficients, is almost identical. Moreover, most proofs literally mimic each other for both cases. Thus, we do not reproduce the proofs entirely, referring the reader to the works $[58,59]$ for the details. Instead, we mostly focus on the differences between these two cases.

The plan of the article is as follows. We describe our general framework in the two first sections: section 2 contains the algebraic framework used to handle integrable models, and section 3 gathers some properties of the Bethe vectors of $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$ based models. Section 4 presents our results, which are of two types. Firstly, we show results obtained for generic Bethe vectors: several recursion formulas for the Bethe vectors (section 4.1); a sum formula for their scalar products (section 4.2); and properties of the scalar product highest coefficients (section 4.3). Secondly, considering on-shell Bethe vectors, we give a determinant form à la Gaudin for their norm (section 4.4). The following sections are devoted to the proofs of our results. Section 5 deals with the Bethe vectors constructed within the algebraic Bethe ansatz and presents the proofs for the results given in section 4.1. Section 6 contains the proof of the sum formula, and in section 7 we consider the symmetry properties of the highest coefficients. Appendix A presents the explicit construction of Bethe vectors in a particular simple case. Some of the results obtained in the present paper were already presented in the case of $U_{q}\left(\widehat{\mathfrak{g}}_{3}\right)$ in different articles: we make the connection with them in appendix B. A coproduct property for dual Bethe vectors is proven in appendix C.

2 Description of the model

2.1 The $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ based quantum integrable model

Let $R(u, v)$ be a matrix associated with the vector representation of the quantum affine algebra $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$:

$$
\begin{gather*}
R(u, v)=f(u, v) \sum_{1 \leq i \leq m} E_{i i} \otimes E_{i i}+\sum_{1 \leq i<j \leq m}\left(E_{i i} \otimes E_{j j}+E_{j j} \otimes E_{i i}\right) \\
+\sum_{1 \leq i<j \leq m} g(u, v)\left(u E_{i j} \otimes E_{j i}+v E_{j i} \otimes E_{i j}\right) \tag{2.1}
\end{gather*}
$$

where $\left(E_{i j}\right)_{l k}=\delta_{i l} \delta_{j k}, i, j, l, k=1, \ldots, m$ are elementary unit matrices and the rational functions $f(u, v)$ and $g(u, v)$ are

$$
\begin{equation*}
f(u, v)=\frac{q u-q^{-1} v}{u-v}, \quad g(u, v)=\frac{q-q^{-1}}{u-v} \tag{2.2}
\end{equation*}
$$

with q a complex parameter not equal to zero. This matrix acts in the tensor product $\mathbf{C}^{m} \otimes \mathbf{C}^{m}$ and defines commutation relations

$$
\begin{equation*}
R(u, v)(T(u) \otimes 1)(1 \otimes T(v))=(1 \otimes T(v))(T(u) \otimes 1) R(u, v) \tag{2.3}
\end{equation*}
$$

for the quantum monodromy matrix $T(u)$ of some quantum integrable model.
Equation (2.3) holds in the tensor product $\mathbf{C}^{m} \otimes \mathbf{C}^{m} \otimes \mathscr{H}$, where \mathscr{H} is a Hilbert space of the model. Being projected onto specific matrix element the commutation relation (2.3) can be written as the relation for the monodromy matrix elements acting in the Hilbert space \mathscr{H}

$$
\begin{align*}
& {\left[T_{i, j}(u), T_{k, l}(v)\right]=(f(u, v)-1)\left\{\delta_{l j} T_{k, j}(v) T_{i, l}(u)-\delta_{i k} T_{k, j}(u) T_{i, l}(v)\right\}} \\
& \quad+g(u, v)\left\{\left(u \delta_{l<j}+v \delta_{j<l}\right) T_{k, j}(v) T_{i, l}(u)-\left(u \delta_{i<k}+v \delta_{k<i}\right) T_{k, j}(u) T_{i, l}(v)\right\} \tag{2.4}
\end{align*}
$$

where $\delta_{i<j}=1$ if $i<j$ and 0 otherwise.
The transfer matrix is defined as the trace of the monodromy matrix

$$
\begin{equation*}
\mathscr{T}(u)=\operatorname{tr} T(u)=\sum_{j=1}^{m} T_{j, j}(u) \tag{2.5}
\end{equation*}
$$

It follows from the $R T T$-relation (2.3) that $[\mathscr{T}(u), \mathscr{T}(v)]=0$. Thus the transfer matrix can be used as a generating function of integrals of motion of an integrable system.

We call such a model $U_{q}\left(\widehat{\mathfrak{g r}}_{m}\right)$ based quantum integrable model because of the R-matrix used in definition of the commutation relations (2.3) and also because the centerless quantum affine algebra $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ itself can be defined using the commutation relations (2.3) by identification of the quantum monodromy matrix $T(u)$ with the generating series of the Borel subalgebra elements in $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$.

Assume that the operator

$$
\mathscr{L}=\lim _{u \rightarrow \infty} T(u) \quad \text { with } \quad \mathscr{L}=\sum_{i, j=1}^{m} E_{i j} \otimes \mathscr{L}_{i, j}
$$

is well defined. We call such operators $\mathscr{L}_{i, j}$ zero modes operators ${ }^{1}$ and it follows from the commutation relations (2.4) that ${ }^{2}$

$$
\begin{equation*}
\mathscr{L}_{i, i} T_{k, l}(u)=q^{\delta_{i l}-\delta_{i k}} T_{k, l}(u) \mathscr{L}_{i, i} \tag{2.6}
\end{equation*}
$$

[^15]Matrix elements $T_{i, j}(u)$ of the monodromy matrix $T(u)$ form the algebra with the commutation relations (2.4) which we denote as \mathscr{A}_{m}^{q}. Further on we will consider certain morphisms which relate algebras \mathscr{A}_{m}^{q} and $\mathscr{A}_{m}^{q^{-1}}$ (see section 3) as well as embeddings of the smaller rank algebra \mathscr{A}_{m-1}^{q} into the bigger rank algebra \mathscr{A}_{m}^{q}.

We wish here to make some comments on the distinction between \mathscr{A}_{m}^{q} and $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ algebras. The R-matrix we use is definitely the one associated to the $U_{q}\left(\widehat{\mathfrak{g r}}_{m}\right)$ algebra. However, in order to define this algebra, more elements are needed, such as the Lax operator(s) and their expansion with respect to the spectral parameter. On the other hand, the definition of an integrable model 'only' needs a monodromy matrix obeying an $R T T$-relation. Hence, we refer to the \mathscr{A}_{m}^{q} algebra when dealing with this monodromy matrix, while the denomination $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ will be used when mentioning the underlying models.

Most of the time, one may identify the \mathscr{A}_{m}^{q} algebra with a Borel subalgebra in the quantum affine algebra $U_{q}\left(\widehat{\mathfrak{g r}}_{m}\right)$. This allows to define the model and its Bethe vectors. However, when considering dual Bethe vectors and the morphism Ψ (see section 3.2) the situation is more delicate. This is particularly acute when the central charge is not zero, and we use the \mathscr{A}_{m}^{q} algebra to bypass these subtleties. In particular, the morphism Ψ maps \mathscr{A}_{m}^{q} to $\mathscr{A}_{m}^{q^{-1}}$, while it maps U_{q}^{+}to $U_{q^{-1}}^{-}$, where U_{q}^{+}and U_{q}^{-}are dual Borel subalgebras in $U_{q}\left(\widehat{\mathfrak{g r}}_{m}\right)$.

A similar discussion can be found in [32] on the Yangian case.

2.2 Notation

In this paper we use notation and conventions of the work [58]. Besides the functions $g(u, v)$ and $f(u, v)$ (2.2), we introduce the rational functions

$$
\begin{equation*}
g^{(r)}(u, v)=v g(u, v), \quad g^{(l)}(u, v)=u g(u, v) \tag{2.7}
\end{equation*}
$$

Let us formulate now a convention on the notation. We denote sets of variables by bar, for example, \bar{u}. When dealing with several of them, we may equip these sets or subsets with additional superscript: \bar{s}^{i}, \bar{t}^{v}, etc. Individual elements of the sets or subsets are denoted by Latin subscripts, for instance, u_{j} is an element of \bar{u}, t_{k}^{i} is an element of \bar{t}^{i} etc. Subsets complementary to the elements u_{j} (resp. t_{k}^{i}) are denoted by bar, i.e. \bar{u}_{j} (resp. \bar{t}_{k}^{i}). Thus, $\bar{u}_{j}=\bar{u} \backslash\left\{u_{j}\right\}$ and $\bar{t}_{k}^{i}=\bar{t}^{i} \backslash\left\{t_{k}^{i}\right\}$. For any set \bar{u}, we will note $\# \bar{u}$ the cardinality of the set \bar{u}. As a rule, the number of elements in the sets is not shown explicitly in the equations, however we give these cardinalities in special comments to the formulas.

We use a shorthand notation for products of functions f, g or $g^{(l, r)}$: if some function depends on a set of variables (or two sets of variables), this means that one should take the product over the corresponding set (or double product over the two sets). For example,

$$
\begin{equation*}
g^{(l)}(\bar{u}, v)=\prod_{u_{j} \in \bar{u}} g^{(l)}\left(u_{j}, v\right), \quad f\left(\bar{t}_{j}^{\mu}, t_{j}^{\mu}\right)=\prod_{\substack{t_{\ell}^{\mu} \in \bar{t}^{\mu} \\ \ell \neq j}} f\left(t_{\ell}^{\mu}, t_{j}^{\mu}\right), \quad f\left(\bar{s}^{j}, \bar{t}^{i}\right)=\prod_{s_{k}^{j} \in \bar{s}_{j}^{j}} \prod_{t_{\ell}^{i} \in \bar{t}^{i}} f\left(s_{k}^{j}, t_{\ell}^{i}\right) . \tag{2.8}
\end{equation*}
$$

The same convention is applied to the products of commuting operators. Note that (2.4) implies in particular that

$$
\begin{equation*}
\left[T_{i, j}(u), T_{i, j}(v)\right]=0, \quad \forall i, j=1, \ldots, m \tag{2.9}
\end{equation*}
$$

Thus, the notation

$$
\begin{equation*}
T_{i, j}(\bar{u})=\prod_{u_{k} \in \bar{u}} T_{i, j}\left(u_{k}\right) \tag{2.10}
\end{equation*}
$$

is well defined.
By definition, any product over the empty set is equal to 1 . A double product is equal to 1 if at least one of the sets is empty. Below we will extend this convention to the products of eigenvalues of the diagonal monodromy matrix entries and their ratios (see (3.3)).

3 Bethe vectors

Pseudovacuum vector. The entries $T_{i, j}(u)$ of the monodromy matrix $T(u)$ act in a Hilbert space \mathscr{H}. We do not specify \mathscr{H}, but we assume that it contains a pseudovacuum vector $|0\rangle$, such that

$$
\begin{align*}
T_{i, i}(u)|0\rangle & =\lambda_{i}(u)|0\rangle, & & i=1, \ldots, m, \tag{3.1}\\
T_{i, j}(u)|0\rangle & =0, & & i>j,
\end{align*}
$$

where $\lambda_{i}(u)$ are some scalar functions. In the framework of the generalized model [13] considered in this paper, the scalar functions $\lambda_{i}(u)$ remain free functional parameters. Let us briefly recall that the generalized model is a class of models possessing the same R-matrix (2.1) and having a pseudovacuum vector with the properties (3.1) (see [13,58] for more details). Any representative of this class can be characterized by a set of functional parameters that are the ratios of the vacuum eigenvalues λ_{i} :

$$
\begin{equation*}
\alpha_{i}(u)=\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}, \quad i=1, \ldots, m-1 . \tag{3.2}
\end{equation*}
$$

We extend to these functions the convention on the shorthand notation (2.8), for instance:

$$
\begin{equation*}
\lambda_{k}(\bar{u})=\prod_{u_{j} \in \bar{u}} \lambda_{k}\left(u_{j}\right), \quad \alpha_{i}\left(\bar{t}^{i}\right)=\prod_{t_{\ell}^{i} \in \in t^{i}} \alpha_{i}\left(t_{\ell}^{i}\right) . \tag{3.3}
\end{equation*}
$$

Coloring. In physical models, the space \mathscr{H} is generated by states with quasiparticles of different types (colors). In $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$ based models quasiparticles may have $N=m-1$ colors. For any set $\left\{r_{1}, \ldots, r_{N}\right\}$ of non-negative integers, we say that a state has coloring $\left\{r_{1}, \ldots, r_{N}\right\}$, if it contains r_{i} quasiparticles of the color i. This definition can be formalized at the level of the quantum algebra $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$ through the diagonal zero modes operators $\mathscr{L}_{k, k}$ (2.6). The colors correspond to the eigenvalues under the commuting generators ${ }^{3}$

$$
\begin{equation*}
\mathfrak{h}_{j}=\prod_{k=1}^{j} \mathscr{L}_{k, k}, \quad j=1, \ldots, m-1 . \tag{3.4}
\end{equation*}
$$

Indeed, one can check from (2.6) that

$$
\mathfrak{h}_{j} T_{k, l}(z)=q^{\varepsilon_{j}(k, l)} T_{k, l}(z) \mathfrak{h}_{j} \text { with }\left\{\begin{array}{l}
\varepsilon_{j}(k, l)=-1, \quad \text { if } \quad k \leq j<l, \tag{3.5}\\
\varepsilon_{j}(k, l)=+1, \quad \text { if } \quad l \leq j<k, \\
\varepsilon_{j}(k, l)=0 \quad \text { otherwise } .
\end{array}\right.
$$

The eigenvalues $\varepsilon_{j}(k, l)$ just correspond to the coloring mentioned above.
To get a zero coloring of the vector $|0\rangle$, one needs to shift \mathfrak{h}_{j} to $h_{j}=\mathfrak{h}_{j} \prod_{k=1}^{j} \lambda_{k}[0]^{-1}$, where $\lambda_{k}[0]$ is the eigenvalue of $|0\rangle$ under $\mathscr{L}_{k, k}$. Then, all states in \mathscr{H} have positive (or null) colors. A state with a given coloring can be obtained by successive application of the creation operators $T_{i, j}$ with $i<j$ to the vector $|0\rangle$. Acting on a state, an operator $T_{i, j}$ with $i<j$ adds one quasiparticle of each colors $i, \ldots, j-1$. In particular, the operator $T_{i, i+1}$ creates one quasiparticle of the color i, the operator $T_{1, m}$ creates N quasiparticles of N different colors. The diagonal operators $T_{i, i}$ are neutral, the matrix elements $T_{i, j}$ with $i>j$ play the role of annihilation operators. They remove from any state the quasiparticles with the colors $j, \ldots, i-1$, one particle of each color. In particular, if $j-1<k<i$, and the annihilation operator $T_{i, j}$ acts on a state in which there are no particles of the color k, then its action yields zero.

[^16]Bethe vectors. Bethe vectors belong to the space \mathscr{H}. Their distinctive feature is that when Bethe equations are fulfilled (see section 3.3) they become eigenvectors of the transfer matrix (2.5). Several explicit forms for Bethe vectors can be found in [37]. We do not use them in the present paper, however, in section 4.1 we give a recursion that formally allows the Bethe vectors to be explicitly constructed. In the present section, we only fix their normalization.

Generically, Bethe vectors are certain polynomials in the creation operators $T_{i, j}$ applied to the vector $|0\rangle$. These polynomials are eigenvectors under the Cartan generators $\mathscr{L}_{k, k}$, and hence they are also eigenvectors of the color generators h_{j}. Thus, Bethe vectors have a definite coloring and contain only terms with the same coloring.

A generic Bethe vector of $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$ based model depends on $N=m-1$ sets of variables $\bar{t}^{1}, \bar{t}^{2}, \ldots, \bar{t}^{N}$ called Bethe parameters. We denote Bethe vectors by $\mathbb{B}(\bar{t})$, where

$$
\begin{equation*}
\bar{t}=\left\{t_{1}^{1}, \ldots, t_{r_{1}}^{1} ; t_{1}^{2}, \ldots, t_{r_{2}}^{2} ; \ldots ; t_{1}^{N}, \ldots, t_{r_{N}}^{N}\right\}, \tag{3.6}
\end{equation*}
$$

and the cardinalities r_{i} of the sets \bar{t}^{i} coincide with the coloring. Thus, each Bethe parameter t_{k}^{i} can be associated with a quasiparticle of the color i.

Bethe vectors are symmetric over permutations of the parameters t_{k}^{i} within the set \bar{t}^{i} (see e.g. [37]). However, they are not symmetric over permutations over parameters belonging to different sets \bar{t}^{i} and \bar{t}^{j}.

We have already mentioned that a generic Bethe vector has the form of a polynomial in $T_{i, j}$ with $i<j$ applied to the pseudovacuum $|0\rangle$. Among all the terms of this polynomial, there is one monomial that contains the operators $T_{i, j}$ with $j-i=1$ only. Let us call this term the main term and denote it by $\widetilde{\mathbb{B}}(\bar{t})$. Then

$$
\begin{equation*}
\mathbb{B}(\bar{t})=\widetilde{\mathbb{B}}(\bar{t})+\ldots, \tag{3.7}
\end{equation*}
$$

where the ellipsis stands for all the terms with the same coloring that contain at least one operator $T_{i, j}$ with $j-i>1$. We fix the normalization of the Bethe vectors by requiring the following form of the main term

$$
\begin{equation*}
\widetilde{\mathbb{B}}(\bar{t})=\frac{T_{1,2}\left(\bar{t}^{1}\right) \ldots T_{N, N+1}\left(\bar{t}^{N}\right)|0\rangle}{\prod_{i=1}^{N} \lambda_{i+1}\left(\bar{t}^{i}\right) \prod_{i=1}^{N-1} f\left(\bar{t}^{i+1}, \bar{t}^{i}\right)} . \tag{3.8}
\end{equation*}
$$

Recall that we use here the shorthand notation for the products of the functions λ_{j+1} and f, as well as for a set of commuting operators $T_{i, i+1}$. Let us stress that this normalization is different from the one used in [37] where the coefficient of the operator product in the definition of $\widetilde{\mathbb{B}}(\bar{t})$ was just 1 . This additional normalization factor is convenient, in particular because the scalar products of the Bethe vectors depend on the ratios α_{i} (3.2) only.

Since the operators $T_{i, i+1}$ and $T_{j, j+1}$ do not commute for $i \neq j$, the main term can be written in several forms corresponding to different ordering of the monodromy matrix entries. The ordering in (3.8) naturally arises if we construct Bethe vectors via the nesting procedure corresponding to the embedding of \mathscr{A}_{m-1}^{q} in \mathscr{A}_{m}^{q} to the lower-right corner of the monodromy matrix $T(u)$.

3.1 Morphism of Bethe vectors

The quantum algebras \mathscr{A}_{m}^{q} and $\mathscr{A}_{m}^{q^{-1}}$ are related by a morphism φ [37]:

$$
\begin{equation*}
\varphi(T(u))=U \widetilde{T}^{t}(u) U^{-1}, \quad \text { i.e. } \quad \varphi\left(T_{a, b}(u)\right)=\widetilde{T}_{m+1-b, m+1-a}(u), \tag{3.9}
\end{equation*}
$$

where $U=\sum_{i=1}^{m} E_{i, m+1-i}$ and we put a tilde on the generators of $\mathscr{A}_{m}^{q^{-1}}$ to distinguish them from those of $\mathscr{A}_{m}^{q} \cdot \varphi$ defines an idempotent isomorphism from \mathscr{A}_{m}^{q} to $\mathscr{A}_{m}^{q^{-1}}$. This mapping
also acts on the vacuum eigenvalues $\lambda_{i}(u)$ (3.1) and their ratios $\alpha_{i}(u)$ (3.2)

$$
\varphi: \begin{cases}\lambda_{i}(u) & \rightarrow \tilde{\lambda}_{m+1-i}(u), \quad i=1, \ldots, m \tag{3.10}\\ \alpha_{i}(u) \rightarrow \overline{\tilde{\alpha}_{m-i}(u)}, \quad i=1, \ldots, m-1 .\end{cases}
$$

We can extend this morphism to representations, defining $\varphi(|0\rangle)=\widetilde{0}\rangle$, where $|0\rangle$ and $\widetilde{0}\rangle$ are the pseudovacua in \mathscr{H} and $\widetilde{\mathscr{H}}$ respectively. It has been shown in [37] that this morphism induces the following correspondence between Bethe vectors

Lemma 3.1. The morphism φ induces a mapping of Bethe vectors $\mathbb{B}_{q}(\bar{t}) \in \mathscr{H}$ to Bethe vectors $\mathbb{B}_{q^{-1}}(\bar{t}) \in \widetilde{\mathscr{H}}:$

$$
\begin{equation*}
\varphi\left(\mathbb{B}_{q}(\vec{t})\right)=\frac{\mathbb{B}_{q^{-1}}((\bar{t})}{\prod_{k=1}^{N} \widetilde{\alpha}_{N+1-k}\left(\bar{\tau}^{k}\right)}, \tag{3.11}
\end{equation*}
$$

where we have introduced the special orderings of the sets of Bethe parameters ${ }^{4}$

$$
\begin{equation*}
\vec{t}=\left\{\bar{t}^{1}, \bar{t}^{2}, \ldots, \bar{t}^{N}\right\} \quad \text { and } \quad \bar{t}=\left\{\bar{t}^{N}, \ldots, \bar{t}^{2}, \bar{t}^{1}\right\} . \tag{3.12}
\end{equation*}
$$

3.2 Dual Bethe vectors

Dual Bethe vectors belong to the dual Hilbert space \mathscr{H}^{*}, and they are polynomials in $T_{i, j}$ with $i>j$ applied from the right to the dual pseudovacuum vector $\langle 0|$. This vector possesses the properties similar to (3.1)

$$
\begin{array}{ll}
\langle 0| T_{i, i}(u)=\lambda_{i}(u)\langle 0|, & i=1, \ldots, m, \\
\langle 0| T_{i, j}(u)=0, & i<j, \tag{3.13}
\end{array}
$$

where the functions $\lambda_{i}(u)$ are the same as in (3.1).
We denote dual Bethe vectors by $\mathbb{C}(\bar{t})$, where the set of Bethe parameters \bar{t} consists of several sets \bar{t}^{i} as in (3.6). As it was done for Bethe vectors, we can introduce the coloring of the dual Bethe vectors, with now the role of creation and annihilation operators reversed.

One can obtain dual Bethe vectors via the special antimorphism Ψ given by

$$
\begin{equation*}
\Psi(T(u))=\widetilde{T}^{t}\left(u^{-1}\right), \quad \text { i.e. } \quad \Psi\left(T_{a, b}(u)\right)=\widetilde{T}_{b, a}\left(u^{-1}\right) . \tag{3.14}
\end{equation*}
$$

Ψ defines an idempotent antimorphism from \mathscr{A}_{m}^{q} to $\mathscr{A}_{m}^{q^{-1}}$. Let us extend the action of this antimorphism to the pseudovacuum vectors by

$$
\begin{array}{ll}
\Psi(|0\rangle)=\widetilde{\langle 0|}, & \Psi(A|0\rangle)=\widetilde{\langle 0|} \Psi(A), \\
\Psi(\langle 0|)=\widetilde{|0\rangle}, & \Psi(\langle 0| A)=\Psi(A) \widetilde{|0\rangle}, \tag{3.15}
\end{array}
$$

where A is any product of $T_{i, j}$. Then it turns out that [37]

$$
\begin{equation*}
\Psi\left(\mathbb{B}_{q}(\bar{t})\right)=\mathbb{C}_{q^{-1}}\left(\bar{t}^{-1}\right), \quad \Psi\left(\mathbb{C}_{q}(\bar{t})\right)=\mathbb{B}_{q^{-1}}\left(\bar{t}^{-1}\right), \tag{3.16}
\end{equation*}
$$

where, again, we put a subscript on (dual) Bethe vectors to distinguish the ones of \mathscr{A}_{m}^{q} from those of $\mathscr{A}_{m}^{q^{-1}}$. We used the notation

$$
\bar{t}^{-1} \equiv \frac{1}{\bar{t}} \equiv\left\{\frac{1}{t_{1}^{1}}, \frac{1}{t_{2}^{1}}, \ldots, \frac{1}{t_{r_{1}}^{1}}, \frac{1}{t_{1}^{2}}, \ldots, \frac{1}{t_{r_{N}}^{N}}\right\} .
$$

[^17]The main term of the dual Bethe vector can be obtained from (3.8) via the mapping ${ }^{5} \Psi$:

$$
\begin{equation*}
\widetilde{\mathbb{C}}(\bar{t})=\frac{\langle 0| T_{N+1, N}\left(\bar{t}^{N}\right) \ldots T_{2,1}\left(\bar{t}^{1}\right)}{\prod_{i=1}^{N} \lambda_{i+1}\left(\bar{t}^{i}\right) \prod_{i=1}^{N-1} f\left(\bar{t}^{i+1}, \bar{t}^{i}\right)} . \tag{3.17}
\end{equation*}
$$

Finally, using the morphism φ we obtain a relation between dual Bethe vectors corresponding to the quantum algebras \mathscr{A}_{m}^{q} and $\mathscr{A}_{m}^{q^{-1}}$

$$
\begin{equation*}
\varphi\left(\mathbb{C}_{q}(\vec{t})\right)=\frac{\mathbb{C}_{q^{-1}}(\overleftarrow{t})}{\prod_{k=1}^{N} \widetilde{\alpha}_{N+1-k}\left(\bar{t}^{k}\right)} \tag{3.18}
\end{equation*}
$$

3.3 On-shell Bethe vectors

For generic Bethe vectors, the Bethe parameters t_{k}^{i} are generic complex numbers. If these parameters satisfy a special system of equations (the Bethe equations, see (3.19)), then the corresponding vector becomes an eigenvector of the transfer matrix (2.5). In this case it is called on-shell Bethe vector. In most of the paper we consider generic Bethe vectors. However, for the calculation of the norm of Bethe vectors we will consider on-shell Bethe vectors. In that case, the parameters \bar{t} and α_{μ} will be related by the following system of Bethe equations

$$
\begin{equation*}
\alpha_{\nu}\left(t_{j}^{v}\right)=\frac{f\left(t_{j}^{v}, \bar{t}_{j}^{v}\right) f\left(\bar{t}^{v+1}, t_{j}^{v}\right)}{f\left(\bar{t}_{j}^{v}, t_{j}^{v}\right) f\left(t_{j}^{v}, \bar{t}^{v-1}\right)}, \quad v=1, \ldots, N, \quad j=1, \ldots, r_{v} \tag{3.19}
\end{equation*}
$$

and we recall that $\bar{t}_{j}^{v}=\bar{t}^{v} \backslash\left\{t_{j}^{v}\right\}$. Usually, when the functions α_{μ} are given (and define a physical model), one considers these equations as a way to determine the allowed values for the Bethe parameters \bar{t}. For the generalized models, where the functions α_{μ} are not fixed, the Bethe equations form a set of relations between the functional parameters $\alpha_{\mu}\left(t_{j}^{\mu}\right)$ and the Bethe parameters t_{k}^{v}.

3.4 Coproduct property and composite models

The proofs for the results shown in the present paper rely on a coproduct property for Bethe vectors, which connects the Bethe vectors belonging to the spaces $\mathscr{H}^{(1)}$ and $\mathscr{H}^{(2)}$ to the Bethe vectors in the space $\mathscr{H}^{(1)} \otimes \mathscr{H}^{(2)}$. This property is intimately related to the notion of composite model, that we introduce now. It is important to point out that in this section we consider Bethe vectors corresponding to different monodromy matrices. We stress it by adding the monodromy matrix to the list of the Bethe vectors arguments. Namely, the notation $\mathbb{B}(\bar{t} \mid T)$ means that the Bethe vector $\mathbb{B}(\bar{t})$ corresponds to the monodromy matrix T.

In a composite model, the monodromy matrix $T(u)$ is presented as a product of two partial monodromy matrices [32, 62-64]:

$$
\begin{equation*}
T(u)=T^{(2)}(u) T^{(1)}(u) \tag{3.20}
\end{equation*}
$$

Here every $T^{(l)}(u)$ satisfies the $R T T$-relation (2.3) and has its own pseudovacuum vector $|0\rangle^{(l)}$ and dual vector $\left\langle\left. 0\right|^{(l)}\right.$, such that $\left.\mid 0\right\rangle=|0\rangle^{(1)} \otimes|0\rangle^{(2)}$ and $\langle 0|=\langle 0|{ }^{(1)} \otimes\left\langle\left. 0\right|^{(2)}\right.$. The operators $T_{i, j}^{(2)}(u)$ and $T_{k, l}^{(1)}(v)$ act in different spaces, and hence, they commute with each other. We assume that

$$
\begin{align*}
& T_{i, i}^{(l)}(u)|0\rangle^{(l)}=\lambda_{i}^{(l)}(u)|0\rangle^{(l)}, \quad i=1, \ldots, m, \quad l=1,2, \\
& \left\langle\left. 0\right|^{(l)} T_{i, i}^{(l)}(u)=\lambda_{i}^{(l)}(u)\left\langle\left. 0\right|^{(l)},\right.\right. \tag{3.21}
\end{align*}
$$

[^18]where $\lambda_{i}^{(l)}(u)$ are new free functional parameters. We also introduce
\[

$$
\begin{equation*}
\alpha_{k}^{(l)}(u)=\frac{\lambda_{k}^{(l)}(u)}{\lambda_{k+1}^{(l)}(u)}, \quad l=1,2, \quad k=1, \ldots, N \tag{3.22}
\end{equation*}
$$

\]

Obviously

$$
\begin{equation*}
\lambda_{i}(u)=\lambda_{i}^{(1)}(u) \lambda_{i}^{(2)}(u), \quad \alpha_{k}(u)=\alpha_{k}^{(1)}(u) \alpha_{k}^{(2)}(u) \tag{3.23}
\end{equation*}
$$

The partial monodromy matrices $T^{(l)}(u)$ have the corresponding Bethe vectors $\mathbb{B}\left(\bar{t} \mid T^{(l)}\right)$ and dual Bethe vectors $\mathbb{C}\left(\bar{s} \mid T^{(l)}\right)$. A Bethe vector $\mathbb{B}(\bar{t} \mid T)$ of the total monodromy matrix $T(u)$ can be expressed in terms partial Bethe vectors $\mathbb{B}\left(\bar{t} \mid T^{(l)}\right)$ via coproduct formula $[34,35]$

$$
\begin{equation*}
\mathbb{B}(\bar{t} \mid T)=\sum \frac{\prod_{v=1}^{N} \alpha_{v}^{(2)}\left(\bar{t}_{\mathrm{i}}^{v}\right) f\left(\bar{t}_{\mathrm{ii}}^{v}, \bar{t}_{\mathrm{i}}^{v}\right)}{\prod_{v=1}^{N-1} f\left(\bar{t}_{\mathrm{ii}}^{v+1}, \bar{t}_{\mathrm{i}}^{v}\right)} \mathbb{B}\left(\bar{t}_{\mathrm{i}} \mid T^{(1)}\right) \otimes \mathbb{B}\left(\bar{t}_{\mathrm{ii}} \mid T^{(2)}\right) . \tag{3.24}
\end{equation*}
$$

Here all the sets of the Bethe parameters \bar{t}^{v} are divided into two subsets $\bar{t}^{v} \Rightarrow\left\{\bar{t}_{\mathrm{i}}^{v}, \bar{t}_{\mathrm{ii}}^{v}\right\}$, and the sum is taken over all possible partitions.

A similar formula exists for the dual Bethe vectors $\mathbb{C}(\bar{s} \mid T)$ (see appendix C)

$$
\begin{equation*}
\mathbb{C}(\bar{s} \mid T)=\sum \frac{\prod_{v=1}^{N} \alpha_{v}^{(1)}\left(\bar{s}_{\mathrm{ii}}^{v}\right) f\left(\bar{s}_{\mathrm{i}}^{v}, \bar{s}_{\mathrm{ii}}^{v}\right)}{\prod_{v=1}^{N-1} f\left(\bar{s}_{\mathrm{i}}^{\nu+1}, \bar{s}_{\mathrm{ii}}^{v}\right)} \mathbb{C}\left(\bar{s}_{\mathrm{ii}} \mid T^{(2)}\right) \otimes \mathbb{C}\left(\bar{s}_{\mathrm{i}} \mid T^{(1)}\right), \tag{3.25}
\end{equation*}
$$

where the sum is organised in the same way as in (3.24).

4 Main results

In this section we present the main results of the paper. For generic Bethe vectors, we provide recursion formulas (section 4.1), sum formulas for their scalar products (section 4.2), and recursions for the highest coefficients (section 4.3). For on-shell Bethe vectors, we exhibit a Gaudin determinant form for their norm (section 4.4).

We would like to stress that all the results are given in terms of rational functions $f(u, v)$ (2.2), $g^{(l, r)}(u, v)$ (2.7), and ratios of the eigenvalues $\alpha_{i}(u)$ (3.2). Therefore, they can easily be compared with the results obtained in [58, 59] for the models with the Yangian R-matrix. This comparison shows that in both cases the results have completely the same structure. The only slight difference consists in the fact that in the case of the Yangian the functions $g^{(l)}(u, v)$ and $g^{(r)}(u, v)$ degenerate into one function $g(u, v)$. As we have already mentioned in Introduction, this similarity of the results is not accidental. It is explained by the similarity of the corresponding R-matrices. Due to this reason the proofs of most of the results listed above for the $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ based models are identical to the corresponding proofs in the Yangian case. To show this we give a detailed proof of the sum formula (4.11). However, for the proofs of other statements we refer the reader to the works [58, 59].

The essential difference between models that are described by $Y\left(\mathfrak{g l}_{m}\right)$ and $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ algebras is the action of morphisms φ (3.9) and Ψ (3.14). In particular, in the case of the Yangian, the antimorphism (3.14) turns into an endomorphism, while in the $U_{q}\left(\widehat{\mathfrak{g r}}_{m}\right)$ case this mapping connects two different algebras. Therefore, all the proofs based on the application of the mappings φ and Ψ, are given in details.

4.1 Recursion for Bethe vectors

Here we give recursions for (dual) Bethe vectors. The corresponding proofs are given in section 5.

Proposition 4.1. Bethe vectors of $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$ based models satisfy a recursion

$$
\begin{align*}
& \mathbb{B}\left(\left\{z, \bar{t}^{1}\right\} ;\left\{\bar{t}^{k}\right\}_{2}^{N}\right)=\sum_{j=2}^{N+1} \frac{T_{1, j}(z)}{\lambda_{2}(z)} \sum_{\operatorname{part}\left(\bar{t}^{2}, \ldots, \bar{t}-1\right)} \mathbb{B}\left(\left\{\bar{t}^{1}\right\} ;\left\{\bar{t}_{\mathrm{I}}^{k}\right\}_{2}^{j-1} ;\left\{\bar{t}^{k}\right\}_{j}^{N}\right) \\
& \times \frac{\prod_{v=2}^{j-1} \alpha_{v}\left(\bar{t}_{\mathrm{I}}^{v}\right) g^{(l)}\left(\bar{t}_{\mathrm{I}}^{v}, \bar{t}_{\mathrm{I}}^{v-1}\right) f\left(\bar{t}_{\mathrm{I}}^{v}, \bar{t}_{\mathrm{I}}^{v}\right)}{\prod_{v=1}^{j-1} f\left(\bar{t}^{v+1}, \bar{t}_{\mathrm{I}}^{v}\right)} \tag{4.1}
\end{align*}
$$

Here for $j>2$ the sets of Bethe parameters $\bar{t}^{2}, \ldots, \bar{t}^{j-1}$ are divided into disjoint subsets \bar{t}_{I}^{v} and $\bar{t}_{\mathrm{II}}^{v}$ $(\nu=2, \ldots, j-1)$ such that the subset \bar{t}_{1}^{v} consists of one element only: $\# \bar{t}_{1}^{v}=1$. The sum is taken over all partitions of this type. We set $\bar{t}_{1}^{1} \equiv z$ and $\bar{t}^{N+1}=\emptyset$. Recall also that $N=m-1$.

We used the following notation in proposition 4.1

$$
\begin{align*}
& \mathbb{B}\left(\left\{z, \bar{t}^{1}\right\} ;\left\{\bar{t}^{k}\right\}_{2}^{N}\right)=\mathbb{B}\left(\left\{z, \bar{t}^{1}\right\} ; \bar{t}^{2} ; \ldots ; \bar{t}^{N}\right) \\
& \mathbb{B}\left(\left\{\bar{t}^{1}\right\} ;\left\{\bar{t}_{\mathbb{I}}^{k}\right\}_{2}^{j-1} ;\left\{\bar{t}^{k}\right\}_{j}^{N}\right)=\mathbb{B}\left(\bar{t}^{1} ; \bar{t}_{\mathbb{I}}^{2} ; \ldots ; \bar{t}_{\mathbb{I}}^{j-1} ; \bar{t}^{j} ; \ldots ; \bar{t}^{N}\right) . \tag{4.2}
\end{align*}
$$

Similar notation will be used throughout the paper.
Remark. We stress that each of the subsets $\bar{t}_{\mathrm{I}}^{2}, \ldots, \bar{t}_{\mathrm{I}}^{N}$ in (4.1) must consist of exactly one element. However, this condition cannot be achieved if the original Bethe vector $\mathbb{B}(t)$ contains an empty set $\bar{t}^{k}=\emptyset$ for some $k \in[2, \ldots, N]$. In this case, the sum over j in (4.1) ends at $j=k$. If $\mathbb{B}(t)$ contains several empty sets $\bar{t}^{k_{1}}, \ldots, \bar{t}_{\ell}$, then the sum finishes at $j=\min \left(k_{1}, \ldots, k_{\ell}\right)$.

Using the mapping (3.9) one can obtain a second recursion for the Bethe vectors:
Proposition 4.2. Bethe vectors of $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ based models satisfy a recursion

$$
\begin{align*}
& \mathbb{B}\left(\left\{\bar{t}^{k}\right\}_{1}^{N-1} ;\left\{z, \bar{t}^{N}\right\}\right)=\sum_{j=1}^{N} \frac{T_{j, N+1}(z)}{\lambda_{N+1}(z)} \sum_{\text {part }\left(t^{j}, \ldots, \bar{t}^{N-1}\right)} \mathbb{B}\left(\left\{\bar{t}^{k}\right\}_{1}^{j-1} ;\left\{\bar{t}_{\mathbb{1}}^{k}\right\}_{j}^{N-1} ; \bar{t}^{N}\right) \\
& \times \frac{\prod_{\nu=j}^{N-1} g^{(r)}\left(\bar{t}_{1}^{\nu+1}, \bar{t}_{1}^{v}\right) f\left(\bar{t}_{1}^{v}, \bar{t}_{\mathbb{1}}^{v}\right)}{\prod_{\nu=j}^{N} f\left(\bar{t}_{1}^{v}, \bar{t}^{\nu-1}\right)} . \tag{4.3}
\end{align*}
$$

Here for $j<N$ the sets of Bethe parameters $\bar{t}^{j}, \ldots, \bar{t}^{N-1}$ are divided into disjoint subsets \bar{t}_{I}^{v} and $\bar{t}_{\text {II }}^{v}(v=j, \ldots, N-1)$ such that the subset \bar{t}_{I}^{v} consists of one element: $\# \bar{t}_{\mathrm{I}}^{v}=1$. The sum is taken over all partitions of this type. We set by definition $\bar{t}_{\mathrm{I}}^{N} \equiv z$ and $\bar{t}^{0}=\emptyset$.

Remark. If the Bethe vector $\mathbb{B}(t)$ contains several empty sets $\bar{t}^{k_{1}}, \ldots, \bar{t}^{k_{\ell}}$, then the sum over j in (4.3) begins with $j=\max \left(k_{1}, \ldots, k_{\ell}\right)+1$.

Acting with the antimorphism (3.14) onto equations (4.1) and (4.3) we arrive at
Corollary 4.3. Dual Bethe vectors of $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ based models satisfy recursions

$$
\begin{align*}
& \mathbb{C}\left(\left\{z, \bar{s}^{-1}\right\} ;\left\{\bar{s}^{k}\right\}_{2}^{N}\right)=\sum_{j=2}^{N+1} \sum_{\operatorname{part}\left(\bar{s}^{2}, \ldots, s^{j-1}\right)} \mathbb{C}\left(\left\{\bar{s}^{-1}\right\} ;\left\{\bar{s}_{\mathrm{II}}^{k}\right\}_{2}^{j-1} ;\left\{\bar{s}^{k}\right\}_{j}^{N}\right) \frac{T_{j, 1}(z)}{\lambda_{2}(z)} \\
& \times \frac{\prod_{v=2}^{j-1} \alpha_{\nu}\left(\bar{s}_{\mathrm{I}}^{v}\right) g^{(r)}\left(\bar{s}_{\mathrm{I}}^{v}, \bar{s}_{\mathrm{I}}^{v-1}\right) f\left(\bar{s}_{\mathrm{I}}^{v}, \bar{s}_{\mathrm{I}}^{v}\right)}{\prod_{v=1}^{j-1} f\left(\bar{s}^{v+1}, \bar{s}_{\mathrm{I}}^{v}\right)} \tag{4.4}
\end{align*}
$$

and

$$
\begin{align*}
& \mathbb{C}\left(\left\{\bar{s}^{k}\right\}_{1}^{N-1} ;\left\{z, \bar{s}^{N}\right\}\right)=\sum_{j=1}^{N} \sum_{\operatorname{part}\left(\bar{s}^{j}, \ldots, \bar{s}^{N-1}\right)} \mathbb{C}\left(\left\{\bar{s}^{k}\right\}_{1}^{j-1} ;\left\{\bar{s}_{\mathbb{I}}^{k}\right\}_{j}^{N-1} ; \bar{s}^{N}\right) \frac{T_{N+1, j}(z)}{\lambda_{N+1}(z)} \\
& \times \frac{\prod_{v=j}^{N-1} g^{(l)}\left(\bar{s}_{1}^{v+1}, \bar{s}_{\mathrm{I}}^{v}\right) f\left(\bar{s}_{\mathrm{I}}^{v}, \bar{s}_{\mathbb{I}}^{v}\right)}{\prod_{\nu=j}^{N} f\left(\bar{s}_{\mathrm{I}}^{v}, \bar{s}^{v-1}\right)} . \tag{4.5}
\end{align*}
$$

Here the summation over the partitions occurs as in the formulas (4.1) and (4.3). The subsets \bar{s}_{I}^{v} consist of one element: $\# \bar{s}_{\mathrm{I}}^{v}=1$. If $\mathbb{C}(\bar{s})$ contains empty sets of Bethe parameters, then the sum cuts similarly to the case of the Bethe vectors $\mathbb{B}(\bar{t})$. By definition $\bar{s}_{1}^{1} \equiv z$ in (4.4), $\bar{s}_{1}^{N} \equiv z$ in (4.5), and $\bar{s}^{0}=\bar{s}^{N+1}=\emptyset$.

Applying successively the recursion (4.1), we eventually express a Bethe vector with $\# \bar{t}^{1}=r_{1}$ as a linear combination of Bethe vectors with $\# \bar{t}^{1}=0$. The latter effectively correspond to the quantum algebra \mathscr{A}_{m-1}^{q} :

$$
\begin{equation*}
\mathbb{B}^{(m)}\left(\emptyset ;\left\{\bar{t}^{k}\right\}_{2}^{N}\right)=\left.\mathbb{B}^{(m-1)}(\bar{t})\right|_{\bar{t}^{k} \rightarrow \bar{t}^{k+1}} \tag{4.6}
\end{equation*}
$$

where we put a superscript to distinguish the Bethe vectors in \mathscr{A}_{m}^{q} from those of \mathscr{A}_{m-1}^{q}. Thus, continuing this process we formally can reduce Bethe vectors of \mathscr{A}_{m}^{q} to the known ones of \mathscr{A}_{2}^{q}. Similarly, one can build dual Bethe vectors via (4.4), (4.5). Unfortunately, these procedures are too cumbersome for explicit calculations. However, they can be used to prove various assertions by induction.

4.2 Sum formula for the scalar product

In this section we collect some results concerning scalar products of generic Bethe vectors. The proofs of propositions 4.4 and 4.5 literally coincide with the ones given in [58] for the Yangian case. Nevertheless, to illustrate this similarity we present one of these proofs (proposition 4.5) in section 6.

Let $\mathbb{B}(\bar{t})$ be a generic Bethe vector and $\mathbb{C}(\bar{s})$ be a generic dual Bethe vector. Then their scalar product is defined by

$$
\begin{equation*}
S(\bar{s} \mid \bar{t})=\mathbb{C}(\bar{s}) \mathbb{B}(\bar{t}) \tag{4.7}
\end{equation*}
$$

Note that if $\# \bar{t}^{k} \neq \# \bar{s}^{k}$ for some $k \in\{1, \ldots, N\}$, then the scalar product vanishes. Indeed, in this case the numbers of creation and annihilation operators of the color k in $\mathbb{B}(\bar{t})$ and $\mathbb{C}(\bar{s})$ respectively do not coincide. Thus, in the following we will assume that $\# \bar{t}^{k}=\# \bar{s}^{k}=r_{k}$, $k=1, \ldots, N$.

Due to the normalizations (3.8) and (3.17), the scalar product of Bethe vectors depends on the functions λ_{i} only through the ratios α_{i}. The following proposition specifies this dependence.

Proposition 4.4. Let $\mathbb{B}(\bar{t})$ be a generic Bethe vector and $\mathbb{C}(\bar{s})$ be a generic dual Bethe vector such that $\# \bar{t}^{k}=\# \bar{s}^{k}=r_{k}, k=1, \ldots, N$. Then their scalar product is given by

$$
\begin{equation*}
S(\bar{s} \mid \bar{t})=\sum W_{\text {part }}\left(\bar{s}_{\mathrm{I}}, \bar{s}_{\mathrm{I}} \mid \bar{t}_{\mathrm{I}}, \bar{t}_{\mathbb{\Pi}}\right) \prod_{k=1}^{N} \alpha_{k}\left(\bar{s}_{\mathrm{I}}^{k}\right) \alpha_{k}\left(\bar{t}_{\mathrm{I}}^{k}\right) . \tag{4.8}
\end{equation*}
$$

Here all the sets of the Bethe parameters \bar{t}^{k} and \bar{s}^{k} are divided into two subsets $\bar{t}^{k} \Rightarrow\left\{\bar{t}_{1}^{k}, \bar{t}_{\mathrm{I}}^{k}\right\}$ and $\bar{s}^{k} \Rightarrow\left\{\bar{s}_{\mathrm{I}}^{k}, \bar{s}_{\mathrm{I}}^{k}\right\}$, such that $\# \bar{t}_{\mathrm{I}}^{k}=\# \bar{s}_{\mathrm{I}}^{k}$. The sum is taken over all possible partitions of this type. The rational coefficients $W_{\text {part }}$ depend on the partition of \bar{t} and \bar{s}, but not on the vacuum eigenvalues λ_{k}. They are completely determined by the R-matrix of the model.

Proposition 4.4 states that in the scalar product (4.7), the Bethe parameters of the type $k\left(t_{j}^{k}\right.$ or $\left.s_{j}^{k}\right)$ are arguments of the functions α_{k} only. This property has been proven for the case of Bethe vectors associated to the Yangian $Y(\mathfrak{g l}(m \mid n))$ in [58], and the proof for \mathscr{A}_{m}^{q} follows exactly the same lines. The only difference lies in the relation (7.7) which now relates scalar products in different quantum algebras. However, this does not affect the functional
dependence stated in proposition 4.4. Simply, one has to work the proof simultaneously in \mathscr{A}_{m}^{q} and in $\mathscr{A}_{m}^{q^{-1}}$. We refer the interested reader to [58] for more details.

We would like to stress that the rational functions $W_{\text {part }}$ are model independent. Thus, if two different models share the same R-matrix (2.1), then the scalar products of Bethe vectors in these models are given by (4.8) with the same coefficients $W_{\text {part. }}$. In other words, the model dependent part of the scalar product entirely lies in the α_{k} functions.

The Highest Coefficient (HC) of the scalar product is defined as the rational coefficient corresponding to the partition $\bar{s}_{\mathrm{I}}=\bar{s}, \bar{t}_{\mathrm{I}}=\bar{t}$, and $\bar{s}_{\mathrm{I}}=\bar{t}_{\mathrm{I}}=\emptyset$. We denote the HC by $Z(\bar{s} \mid \bar{t})$:

$$
\begin{equation*}
W_{\mathrm{part}}(\bar{s}, \emptyset \mid \bar{t}, \emptyset)=Z(\bar{s} \mid \bar{t}) . \tag{4.9}
\end{equation*}
$$

It corresponds to the coefficient of $\prod_{k=1}^{N} \alpha_{k}\left(\bar{s}^{k}\right)$ in the formula (4.8).
Similarly one can define a conjugated $\mathrm{HC} \bar{Z}(\bar{s} \mid \bar{t})$ as the coefficient corresponding to the partition $\bar{s}_{\mathrm{I}}=\bar{s}, \overline{\mathrm{t}}_{\mathrm{I}}=\bar{t}$, and $\bar{s}_{\mathrm{I}}=\bar{t}_{\mathrm{I}}=\emptyset$.

$$
\begin{equation*}
W_{\text {part }}(\emptyset, \bar{s} \mid \emptyset, \bar{t})=\bar{Z}(\bar{s} \mid \bar{t}) . \tag{4.10}
\end{equation*}
$$

In the following, when speaking of both HC and conjugated HC, we will loosely call them the HCs.

The following proposition determines the general coefficient $W_{\text {part }}$ in terms of the HCs.
Proposition 4.5. For a fixed partition $\bar{t}^{k} \Rightarrow\left\{\bar{t}_{\mathrm{I}}^{k}, \bar{t}_{\mathbb{I}}^{k}\right\}$ and $\bar{s}^{k} \Rightarrow\left\{\overline{\bar{I}}_{\mathrm{I}}^{k}, \overline{5}_{\mathbb{I}}^{k}\right\}$ in (4.8) the rational coefficient $W_{\text {part }}$ has the following presentation in terms of the HCs:

$$
\begin{equation*}
W_{\text {part }}\left(\bar{s}_{\mathrm{I}}, \bar{s}_{\mathrm{\Pi}} \mid \overline{\mathrm{t}}_{\mathrm{I}}, \bar{t}_{\mathrm{I}}\right)=Z\left(\bar{s}_{\mathrm{I}} \mid \bar{t}_{\mathrm{I}}\right) \bar{Z}\left(\bar{s}_{\mathrm{I}} \mid \overline{\mathrm{I}}_{\mathrm{I}}\right) \frac{\prod_{k=1}^{N} f\left(\bar{s}_{\mathrm{I}}^{k}, \bar{s}_{\mathrm{I}}^{k}\right) f\left(\bar{t}_{\mathrm{I}}^{k}, \bar{t}_{\mathrm{I}}^{k}\right)}{\prod_{j=1}^{N-1} f\left(\bar{s}_{\mathrm{I}}^{j+1}, \bar{s}_{\mathrm{I}}^{j}\right) f\left(\bar{t}_{\mathrm{I}}^{j+1}, \bar{t}_{\mathrm{I}}^{j}\right)} . \tag{4.11}
\end{equation*}
$$

Note that this proposition was already proven in the case of \mathscr{A}_{2}^{q} in [13] and \mathscr{A}_{3}^{q} in [48]. A comparison with the previous results obtained for $m=3$ is given in appendix B. The proof for \mathscr{A}_{m}^{q} is given in section 6 .

4.3 Properties of the highest coefficient

In this section we list several useful properties of the HCs. Most of them are quite analogous to the properties of the HC in the Yangian case (see [58,59]). The exception is the symmetry properties given in the following proposition.
Proposition 4.6. The HC and conjugated HC in the quantum algebras $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$ and $U_{q^{-1}}\left(\widehat{\mathfrak{g}}_{m}\right)$ are connected through the relations:

$$
\begin{align*}
& Z_{q}(\vec{s} \mid \vec{t})=\bar{Z}_{q^{-1}}(\overleftarrow{s}| | \bar{t}), \tag{4.12}\\
& \bar{Z}_{q}(\bar{s} \mid \bar{t})=Z_{q^{-1}(}\left(\bar{t}^{-1} \mid \bar{s}^{-1}\right), \tag{4.13}
\end{align*}
$$

where again we put a subscript to indicate to which algebra the HC corresponds to.
The HC possesses also the symmetry

$$
\begin{equation*}
Z_{q}(\vec{s} \mid \vec{t})=Z_{q}\left(\overleftarrow{t}^{-1} \mid \overleftarrow{s}^{-1}\right) . \tag{4.14}
\end{equation*}
$$

The proof of this proposition is given in section 7 .
Explicit expressions for the HC are known for $m=2,3$ [49, 60], but they become very ponderous when m is generic. Fortunately, one can use relatively simple recursions described in the subsequent propositions.

Proposition 4.7. The $H C Z(\bar{s} \mid \bar{t})$ possesses the following recursion over the set \bar{s}^{1} :

$$
\begin{align*}
& Z(\bar{s} \mid \bar{t})=\sum_{p=2}^{N+1} \sum_{\substack{\text { part }\left(\bar{s}^{2}, \ldots, \bar{s}^{p-1}\right) \\
\operatorname{part}\left(\bar{t}^{1}, \ldots, \bar{t}^{p-1}\right)}} \frac{g^{(l)}\left(\bar{t}_{\mathrm{I}}^{1}, \bar{s}_{\mathrm{I}}^{1}\right) f\left(\bar{t}_{\mathrm{I}}^{1}, \bar{t}_{\mathrm{I}}^{1}\right) f\left(\bar{t}_{\mathrm{I}}^{1}, \bar{s}_{\mathrm{I}}^{1}\right)}{f\left(\bar{s}^{p}, \bar{s}_{\mathrm{I}}^{p-1}\right)} \\
& \times \prod_{v=2}^{p-1} \frac{g^{(r)}\left(\bar{s}_{\mathrm{I}}^{v}, \bar{s}_{\mathrm{I}}^{v-1}\right) g^{(l)}\left(\bar{t}_{\mathrm{I}}^{v}, \bar{t}_{\mathrm{I}}^{v-1}\right) f\left(\bar{s}_{\mathrm{I}}^{v}, \bar{s}_{\mathrm{I}}^{v}\right) f\left(\bar{t}_{\mathrm{I}}^{v}, \bar{t}_{\mathrm{I}}^{v}\right)}{f\left(\bar{s}^{v}, \bar{s}_{\mathrm{I}}^{v-1}\right) f\left(\bar{t}_{\mathrm{I}}^{v}, \bar{t}^{v-1}\right)} \\
& \times Z\left(\left\{\bar{s}_{\mathrm{I}}^{k}\right\}_{1}^{p-1},\left\{\bar{s}^{k}\right\}_{p}^{N} \mid\left\{\bar{t}_{\mathrm{I}}^{k}\right\}_{1}^{p-1} ;\left\{\bar{t}^{k}\right\}_{p}^{N}\right) . \tag{4.15}
\end{align*}
$$

In (4.15), for every fixed $p \in\{2, \ldots, N+1\}$ the sums are taken over partitions $\bar{t}^{k} \Rightarrow\left\{\bar{t}_{\mathrm{I}}^{k}, \bar{t}_{\Pi}^{k}\right\}$ with $k=1, \ldots, p-1$ and $\bar{s}^{k} \Rightarrow\left\{\bar{s}_{\mathrm{I}}^{k}, \bar{s}_{\mathrm{I}}^{k}\right\}$ with $k=2, \ldots, p-1$, such that $\# \bar{t}_{\mathrm{I}}^{k}=\# \bar{s}_{\mathrm{I}}^{k}=1$ for $k=2, \ldots, p-1$. The subset \bar{s}_{1}^{1} is a fixed Bethe parameter from the set \bar{s}^{1}. There is no sum over partitions of the set \bar{s}^{1} in (4.15).

The proof of this proposition coincides with the corresponding proof in [58].
Corollary 4.8. The $H C Z(\bar{s} \mid \bar{t})$ satisfies the following recursion over the set \bar{t}^{N} :

$$
\begin{align*}
& Z(\bar{s} \mid \bar{t})=\sum_{p=1}^{N} \sum_{\substack{\operatorname{part}\left(\bar{s}^{p}, \ldots, \bar{s}^{N}\right) \\
\operatorname{part}\left(\bar{t}^{p}, \ldots, \bar{t}^{N-1}\right)}} \frac{g^{(l)}\left(\bar{t}_{1}^{N}, \bar{s}_{1}^{N}\right) f\left(\bar{s}_{\Pi}^{N}, \bar{s}_{1}^{N}\right) f\left(\bar{t}_{1}^{N}, \bar{s}_{\mathrm{I}}^{N}\right)}{f\left(\bar{t}_{1}^{p}, \bar{t}^{p-1}\right)} \\
& \times \prod_{\nu=p}^{N-1} \frac{g^{(l)}\left(\bar{s}_{1}^{v+1}, \bar{s}_{1}^{\nu}\right) g^{(r)}\left(\bar{t}_{1}^{\nu+1}, \bar{t}_{1}^{v}\right) f\left(\bar{s}_{\mathrm{I}}^{\nu}, \bar{s}_{1}^{v}\right) f\left(\bar{t}_{1}^{v}, \bar{t}_{\mathrm{I}}^{\nu}\right)}{f\left(\bar{s}^{\nu+1}, \bar{s}_{1}^{v}\right) f\left(\bar{t}_{\mathrm{I}}^{\nu+1}, \bar{t}^{\nu}\right)} \\
& \times Z\left(\left\{\bar{s}^{k}\right\}_{1}^{p-1},\left\{\bar{s}_{\text {II }}^{k}\right\}_{p}^{N} \mid\left\{\bar{t}^{k}\right\}_{1}^{p-1} ;\left\{\bar{t}_{\mathbb{I}}^{k}\right\}_{p}^{N}\right) . \tag{4.16}
\end{align*}
$$

In (4.16), for every fixed $p \in\{1, \ldots, N\}$ the sums are taken over partitions $\bar{t}^{k} \Rightarrow\left\{\bar{t}_{I}^{k}, \bar{t}_{I}^{k}\right\}$ with $k=p, \ldots, N$ and $\bar{s}^{k} \Rightarrow\left\{\bar{s}_{1}^{k}, \bar{s}_{\mathrm{II}}^{k}\right\}$ with $k=p, \ldots, N-1$, such that $\# \bar{t}_{1}^{k}=\# \bar{s}_{1}^{k}=1$ for $k=p, \ldots, N-1$. The subset \bar{t}_{1}^{N} is a fixed Bethe parameter from the set \bar{t}^{N}. There is no sum over partitions for the set \bar{t}^{N} in (4.16).

This recursion follows from (4.15) and equation (4.14).
Remark. Similarly to the recursions for the Bethe vectors the sums over p in (4.15), (4.16) break off, if HC $Z(\bar{s} \mid \bar{t})$ contains empty sets of the Bethe parameters with the colors $\left\{k_{1}, \ldots, k_{\ell}\right\}$, such that $k_{1}<\cdots<k_{\ell}$. Namely, the sum over p in (4.15) ends at $p=k_{1}$, while in (4.16) it begins at $p=k_{\ell}+1$. These restrictions follow from the corresponding restrictions in the recursions for the Bethe vectors.

Using proposition 4.7 one can built the HC with $\# \bar{s}^{1}=\# \bar{t}^{1}=r_{1}$ in terms of the HC with $\# \bar{s}^{1}=\# \bar{t}^{1}=r_{1}-1$. Iterating the process, $Z(\bar{s} \mid \bar{t})$ with $\# \bar{s}^{1}=\# \bar{t}^{1}=r_{1}$ can be expressed in terms of $Z(\bar{s} \mid \bar{t})$ with $\# \bar{s}^{1}=\# \bar{t}^{1}=0$. Moreover it is obvious, due to (4.6), that

$$
\begin{equation*}
Z^{(m)}\left(\emptyset,\left\{\bar{s}^{k}\right\}_{2}^{N} \mid \emptyset,\left\{\bar{t}^{k}\right\}_{2}^{N}\right)=Z^{(m-1)}\left(\left\{\bar{s}^{k}\right\}_{2}^{N} \mid\left\{\bar{t}^{k}\right\}_{2}^{N}\right) \tag{4.17}
\end{equation*}
$$

where the superscript indicates for which algebra, \mathscr{A}_{m}^{q} or \mathscr{A}_{m-1}^{q}, the HC is computed. Thus, equation (4.15) allows one to perform recursion over m as well.

Similarly, corollary 4.8 allows one to find the HC with $\# \bar{s}^{N}=\# \bar{t}^{N}=r_{N}$ in terms of the HC with $\# \bar{s}^{N}=\# \bar{t}^{N}=r_{N}-1$ and to perform another recursion over m. In both cases, the initial condition corresponds to the \mathscr{A}_{2}^{q} case, where the HC is nothing but the Izergin-Korepin determinant [13, 60].

To conclude this section we describe the properties of HC in the poles.

Proposition 4.9. The HC has poles at $s_{j}^{\mu}=t_{j}^{\mu}, \mu=1, \ldots, N, j=1, \ldots, r_{\mu}$. The residues in these poles are proportional to $Z\left(\bar{s} \backslash\left\{s_{j}^{\mu}\right\} \mid \bar{t} \backslash\left\{t_{j}^{\mu}\right\}\right)$:

$$
\begin{equation*}
\left.Z(\bar{s} \mid \bar{t})\right|_{s_{j}^{\mu} \rightarrow t_{j}^{\mu}}=g^{(l)}\left(t_{j}^{\mu}, s_{j}^{\mu}\right) \frac{f\left(\bar{t}_{j}^{\mu}, t_{j}^{\mu}\right) f\left(s_{j}^{\mu}, \bar{s}_{j}^{\mu}\right) Z\left(\bar{s} \backslash\left\{s_{j}^{\mu}\right\} \mid \bar{t} \backslash\left\{t_{j}^{\mu}\right\}\right)}{f\left(\bar{t}^{\mu+1}, t_{j}^{\mu}\right) f\left(s_{j}^{\mu}, \bar{s}^{\mu-1}\right)}+r e g, \tag{4.18}
\end{equation*}
$$

where reg means regular terms.
This property is in complete analogy with the Yangian case [59] and can be proved via induction and recursions (4.15), (4.16). In its turn, the residues of the HC play a crucial role in the proof of the Gaudin formula for the norm of on-shell Bethe vectors.

4.4 Norm of on-shell Bethe vectors and Gaudin matrix

The Gaudin matrix G for $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ based models is an $N \times N$ block-matrix. The sizes of the blocks $G^{(\mu, v)}$ are $r_{\mu} \times r_{\nu}$, where $r_{\mu}=\# \bar{t}^{\mu}$. To describe the entries $G_{j k}^{(\mu, v)}$ we introduce a function

$$
\begin{equation*}
\Phi_{j}^{(\mu)}=\alpha_{\mu}\left(t_{j}^{\mu}\right) \frac{f\left(\bar{t}_{j}^{\mu}, t_{j}^{\mu}\right)}{f\left(t_{j}^{\mu}, \bar{t}_{j}^{\mu}\right)} \frac{f\left(t_{j}^{\mu}, \bar{t}^{\mu-1}\right)}{f\left(\bar{t}^{\mu+1}, t_{j}^{\mu}\right)} \tag{4.19}
\end{equation*}
$$

It is easy to see that Bethe equations (3.19) can be written in terms of $\Phi_{j}^{(\mu)}$ as

$$
\begin{equation*}
\Phi_{j}^{(v)}=1, \quad j=1, \ldots, r_{v}, \quad v=1, \ldots, N \tag{4.20}
\end{equation*}
$$

The entries of the Gaudin matrix are defined as

$$
\begin{equation*}
G_{j k}^{(\mu, v)}=-\left(q-q^{-1}\right) t_{k}^{v} \frac{\partial \log \Phi_{j}^{(\mu)}}{\partial t_{k}^{v}} \tag{4.21}
\end{equation*}
$$

Explicitly, the diagonal blocks $G^{(\mu, \mu)} \mathrm{read}$

$$
\begin{equation*}
G_{j k}^{(\mu, \mu)}=\delta_{j k}\left[X_{j}^{\mu}-\sum_{p=1}^{r_{\mu}} \mathscr{K}\left(t_{j}^{\mu}, t_{p}^{\mu}\right)+\sum_{q=1}^{r_{\mu-1}} \mathscr{J}\left(t_{j}^{\mu}, t_{q}^{\mu-1}\right)+\sum_{r=1}^{r_{\mu+1}} \mathscr{J}\left(t_{r}^{\mu+1}, t_{j}^{\mu}\right)\right]+\mathscr{K}\left(t_{j}^{\mu}, t_{k}^{\mu}\right) \tag{4.22}
\end{equation*}
$$

while the off-diagonal blocks are given by

$$
\begin{align*}
& G_{j k}^{(\mu, \mu-1)}=-\mathscr{J}\left(t_{j}^{\mu}, t_{k}^{\mu-1}\right), \quad G_{j k}^{(\mu, \mu+1)}=-\mathscr{J}\left(t_{k}^{\mu+1}, t_{j}^{\mu}\right), \tag{4.23}\\
& G_{j k}^{(\mu, v)}=0 \quad \text { if } \quad|\mu-v|>1 .
\end{align*}
$$

In (4.22) and (4.23), we have introduced the functions

$$
\begin{gather*}
X_{j}^{\mu}=-\left.\left(q-q^{-1}\right) z \frac{d}{d z} \log \alpha_{\mu}(z)\right|_{z=t_{j}^{\mu}} \tag{4.24}\\
\mathscr{K}(x, y)=\frac{\left(q+q^{-1}\right)\left(q-q^{-1}\right)^{2} x y}{\left(q x-q^{-1} y\right)\left(q^{-1} x-q y\right)}, \quad \text { and } \quad \mathscr{J}(x, y)=\frac{\left(q-q^{-1}\right)^{2} x y}{\left(q x-q^{-1} y\right)(x-y)} . \tag{4.25}
\end{gather*}
$$

Theorem 4.10. The square of the norm of the on-shell Bethe vector reads

$$
\begin{equation*}
\mathbb{C}(\bar{t}) \mathbb{B}(\bar{t})=\prod_{k=1}^{N}\left(f\left(\bar{t}^{k+1}, \bar{t}^{k}\right)^{-1} \prod_{\substack{, q=1 \\ p \neq q}}^{r_{k}} f\left(t_{p}^{k}, t_{q}^{k}\right)\right) \operatorname{det} G, \tag{4.26}
\end{equation*}
$$

where the matrix G is given by (4.21), or explicitly in (4.22) and (4.23).

The proof of the similar theorem for the models described by the $Y\left(\mathfrak{g l}_{m}\right)$ and $Y(\mathfrak{g l}(m \mid n))$ R-matrices can be found in [59]. Despite the fact that in the case of $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ algebra the proof is completely identical, we will briefly outline the main steps.

The main idea is to prove that the norm of on-shell Bethe vector satisfies several properties called Korepin criteria. Namely, let $\mathbf{F}^{(\mathbf{r})}(\bar{X} ; \bar{t})$ be a function depending on \mathbf{r} variables X_{j}^{μ} and \mathbf{r} variables t_{j}^{μ}. It is assumed that this function satisfies Korepin criteria, if it possesses the following properties.
(i) The function $\mathbf{F}^{(\mathbf{r})}(\bar{X} ; \bar{t})$ is symmetric over the replacement of the pairs $\left(X_{j}^{\mu}, t_{j}^{\mu}\right) \leftrightarrow\left(X_{k}^{\mu}, t_{k}^{\mu}\right)$.
(ii) It is a linear function of each X_{j}^{μ}.
(iii) $\mathbf{F}^{(1)}\left(X_{1}^{1} ; t_{1}^{1}\right)=X_{1}^{1}$ for $\mathbf{r}=1$.
(iv) The coefficient of X_{j}^{μ} is given by a function $\mathbf{F}^{(\mathbf{r}-1)}$ with modified parameters X_{k}^{v}

$$
\begin{equation*}
\frac{\partial \mathbf{F}^{(\mathbf{r})}(\bar{X} ; \bar{t})}{\partial X_{j}^{\mu}}=\mathbf{F}^{(\mathbf{r}-1)}\left(\left\{\bar{X}^{\mathrm{mod}} \backslash X_{j}^{\bmod ; \mu}\right\} ;\left\{\bar{t} \backslash t_{j}^{\mu}\right\}\right) \tag{4.27}
\end{equation*}
$$

where the original variables X_{k}^{v} should be replaced by $X_{k}^{\bmod ; v}$:

$$
\begin{align*}
& X_{k}^{\bmod ; \mu}=X_{k}^{\mu}-\mathscr{K}\left(t_{j}^{\mu}, t_{k}^{\mu}\right) \\
& X_{k}^{\bmod ; \mu+1}=X_{k}^{\mu+1}+\mathscr{J}\left(t_{k}^{\mu+1}, t_{j}^{\mu}\right) \tag{4.28}\\
& X_{k}^{\bmod ; \mu-1}=X_{k}^{\mu-1}+\mathscr{J}\left(t_{j}^{\mu}, t_{k}^{\mu-1}\right) \\
& X_{k}^{\bmod ; v}=X_{k}^{v}, \quad|v-\mu|>1
\end{align*}
$$

Here $\mathscr{K}(x, y)$ and $\mathscr{J}(x, y)$ are some two-variables functions. Their explicit forms are not essential.
(v) $\mathbf{F}^{(\mathbf{r})}(\bar{X} ; \bar{t})=0$, if all $X_{j}^{v}=0$.

The properties (i)-(v) fix function $\mathbf{F}^{(\mathbf{r})}(\bar{X} ; \bar{t})$ uniquely (see [13, 59]). On the other hand, one can easily show that these properties are enjoyed by the determinant of the matrix G given by equations (4.22), (4.23). Thus, $\mathbf{F}^{(\mathbf{r})}(\bar{X} ; \bar{t})=\operatorname{det} G$.

The proof that the norm of the on-shell vector satisfies Korepin criteria is realized within the framework of the generalized model. In this model, Bethe parameters and logarithmic derivatives X_{j}^{μ} (4.24) are independent variables. Then properties (i)-(iii) are fairly obvious. Property (v) follows from the analysis of a special scalar product in which all $X_{j}^{\mu}=0$. Finally, property (iv) is a consequence of the recursions of the highest coefficients with coinciding arguments (4.18). These recursions allow us to establish a recursion for the scalar product, which in turn implies property (iv) for the norm.

5 Proof of recursion for Bethe vectors

5.1 Proofs of proposition 4.1

One can prove proposition 4.1 via direct application of the nested algebraic Bethe ansatz. Let us briefly recall the basic notions of this method and introduce the necessary notation.

The nested algebraic Bethe ansatz relates Bethe vectors of \mathscr{A}_{m}^{q} and \mathscr{A}_{m-1}^{q} invariant systems. To distinguish objects associated to the \mathscr{A}_{m-1}^{q} algebra from those from the \mathscr{A}_{m}^{q} one, we use a special font for the former, keeping the usual style for the later. For example, we denote the basis vectors in \mathbf{C}^{m} by e_{k}, where $\left(e_{k}\right)_{j}=\delta_{j k}$, and $j, k=1, \ldots, m$, while the basis vectors in \mathbf{C}^{m-1} are denoted by e_{k}, where $\left(e_{k}\right)_{j}=\delta_{j k}$, and $j, k=2, \ldots, m$. Note that the enumeration of the basis vectors e_{k} starts at 2 , not 1 . We will use the same prescription for the other objects related to the \mathscr{A}_{m-1}^{q} algebra and the \mathbf{C}^{m-1} space.

We present the original monodromy matrix in the block form

$$
T(u)=\left(\begin{array}{ll}
A(u) & B(u) \tag{5.1}\\
C(u) & D(u)
\end{array}\right)
$$

where $D(u)$ is a $(m-1) \times(m-1)$ matrix with elements $D_{i, j}(u), i, j=2, \ldots, m$.
Obviously, the elements $D_{i, j}(u)$ enjoy the commutation relations (2.4). Hence, the matrix $D(u)$ satisfies the RTT-relation

$$
\begin{equation*}
r(u, v) \cdot(D(u) \otimes 1) \cdot(1 \otimes D(v))=(1 \otimes D(v)) \cdot(D(u) \otimes 1) \cdot r(u, v) \tag{5.2}
\end{equation*}
$$

where $r(u, v)$ is the R-matrix corresponding to the vector representation of the algebra $U_{q}\left(\widehat{\mathfrak{g}}_{m-1}\right)$

$$
\begin{gather*}
\mathrm{r}(u, v)=f(u, v) \sum_{2 \leq i \leq m} \mathrm{E}_{i i} \otimes \mathrm{E}_{i i}+\sum_{2 \leq i<j \leq m}\left(\mathrm{E}_{i i} \otimes \mathrm{E}_{j j}+\mathrm{E}_{j j} \otimes \mathrm{E}_{i i}\right) \\
+\sum_{2 \leq i<j \leq m} g(u, v)\left(u \mathrm{E}_{i j} \otimes \mathrm{E}_{j i}+v \mathrm{E}_{j i} \otimes \mathrm{E}_{i j}\right) \tag{5.3}
\end{gather*}
$$

In (5.3), $\mathrm{E}_{i j}, i, j=2, \ldots, m$, are elementary units acting in \mathbf{C}^{m-1}, in accordance with the style convention described above.

Now we are in position to describe the main procedure of the nested algebraic Bethe ansatz. Let $\mathbb{B}(\bar{t} \mid T)=\mathbb{B}\left(\bar{t}^{1}, \ldots, \bar{t}^{m-1} \mid T\right)$ be a Bethe vector of the $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ based monodromy matrix $T(u)$ such that $\# \bar{t}^{\nu}=r_{v}$. Let us introduce a Hilbert space

$$
\begin{equation*}
\mathscr{H}^{\left(r_{1}\right)}=\underbrace{\mathbf{C}^{m-1} \otimes \cdots \otimes \mathbf{C}^{m-1}}_{r_{1}} \tag{5.4}
\end{equation*}
$$

and an inhomogeneous monodromy matrix

$$
\begin{equation*}
T_{\left[r_{1}\right]}\left(u, \bar{t}^{1}\right)=r_{0, r_{1}}\left(u, t_{r_{1}}^{1}\right) \ldots r_{0,1}\left(u, t_{1}^{1}\right) \tag{5.5}
\end{equation*}
$$

Remark that $T_{\left[r_{1}\right]}\left(u, \bar{t}^{1}\right)$ corresponds to a $U_{q}\left(\widehat{\mathfrak{g l}}_{m-1}\right)$ model. Indeed, in (5.5), $r_{0, k}\left(u, t_{k}^{1}\right)$ are the R-matrices (5.3) and they act in $\mathbf{C}^{m-1} \otimes \mathscr{H}^{\left(r_{1}\right)}$. The first subscript refers to an auxiliary space \mathbf{C}^{m-1}, while the second subscript refers to the k-th copy of \mathbf{C}^{m-1} in the definition (5.4) of $\mathscr{H}^{\left(r_{1}\right)}$. It is clear that $T_{\left[r_{1}\right]}\left(u, \bar{t}^{1}\right)$ satisfies the $R T T$-relation (5.2).

Consider a monodromy matrix

$$
\begin{equation*}
\widetilde{T}_{\left[r_{1}\right]}\left(u, \bar{t}^{1}\right)=D(u) T_{\left[r_{1}\right]}\left(u, \bar{t}^{1}\right) . \tag{5.6}
\end{equation*}
$$

The entries of this matrix act in the space $\mathscr{H} \otimes \mathscr{H}^{\left(r_{1}\right)}$, where \mathscr{H} is the space where the elements of the original monodromy matrix (5.1) act. It is clear that $\widetilde{T}_{\left[r_{1}\right]}\left(u, \bar{t}^{1}\right)$ satisfies the RTT relation, because both $D(u)$ and $T_{\left[r_{1}\right]}\left(u, \bar{t}^{1}\right)$ satisfy this relation and their matrix elements act in the different quantum spaces (respectively in \mathscr{H} and $\mathscr{H}^{\left(r_{1}\right)}$). The space of states of $\widetilde{T}_{\left[r_{1}\right]}$ has a pseudovacuum vector $|0\rangle \otimes \Omega_{r_{1}}$, where

$$
\begin{equation*}
\Omega_{r_{1}}=\underbrace{\mathrm{e}_{2} \otimes \cdots \otimes \mathrm{e}_{2}}_{r_{1}} \in\left(\mathbf{C}^{m-1}\right)^{\otimes r_{1}} \tag{5.7}
\end{equation*}
$$

The subscript r_{1} on $\Omega_{r_{1}}$ shows the number of copies of \mathbf{C}^{m-1} in the space $\mathscr{H}^{\left(r_{1}\right)}$.
Let $\mathbb{B}\left(\bar{t} \mid \widetilde{T}_{\left[r_{1}\right]}\right)=\mathbb{B}\left(\bar{t}^{2}, \ldots, \bar{t}^{m-1} \mid \widetilde{T}_{\left[r_{1}\right]}\right)$ be Bethe vectors of the monodromy matrix (5.6), and let $\widetilde{\alpha}_{v}^{\left(r_{1}-1\right)}(u)$ be the ratios of the vacuum eigenvalues of $\tilde{\mathrm{T}}_{\left[r_{1}-1\right]}(u)$. Then the Bethe vector $\mathbb{B}(\bar{t} \mid T)$ has the following presentation $[29,65]$

$$
\begin{equation*}
\mathbb{B}(\bar{t} \mid T)=\sum_{k_{1}, \ldots, k_{r_{1}}=2}^{m} \frac{T_{1, k_{1}}\left(t_{1}^{1}\right) \ldots T_{1, k_{r_{1}}}\left(t_{r_{1}}^{1}\right)}{\lambda_{2}\left(\bar{t}^{1}\right) f\left(\bar{t}^{2}, \bar{t}^{1}\right)}\left[\mathbb{B}\left(\bar{t} \mid \widetilde{T}_{\left[r_{1}\right]}\right)\right]_{k_{1}, \ldots, k_{r_{1}}}, \tag{5.8}
\end{equation*}
$$

where $\left[\mathbb{B}\left(\bar{t} \mid \widetilde{T}_{\left[r_{1}\right]}\right)\right]_{k_{1}, \ldots, k_{r_{1}}}$ are components of the vector $\mathbb{B}\left(\bar{t} \mid \widetilde{T}_{\left[r_{1}\right]}\right)$ in the space $\mathscr{H}\left(r_{1}\right)$.
Representation (5.8) allows us to obtain a recursion for the Bethe vector. This can be done in the framework of a composite model. Indeed, we have

$$
\begin{equation*}
\widetilde{T}_{\left[r_{1}\right]}(u)=\widetilde{T}_{\left[r_{1}-1\right]}(u) r_{0,1}\left(u, t_{1}^{1}\right), \tag{5.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{T}_{\left[r_{1}-1\right]}(u)=D(u) T_{\left[r_{1}-1\right]}(u)=D(u) r_{0, r_{1}}\left(u, t_{r_{1}}^{1}\right) \ldots r_{0,2}\left(u, t_{2}^{1}\right) . \tag{5.10}
\end{equation*}
$$

We can associate the monodromy matrices $\widetilde{T}_{\left[r_{1}-1\right]}(u)$ and $r_{0,1}\left(u, t_{1}^{1}\right)$ respectively with $T^{(2)}(u)$ and $T^{(1)}(u)$ in (3.20). Then the partial Bethe vectors respectively are $\mathbb{B}\left(\bar{t} \mid \widetilde{T}_{\left[r_{1}-1\right]}\right)$ and $\mathbb{B}\left(\bar{t} \mid r_{0,1}\right)$. Using the coproduct formula (3.24) we obtain

$$
\begin{align*}
\mathbb{B}(\bar{t} \mid T) & =\sum_{k_{1}, \ldots, k_{r_{1}}=2}^{m} \frac{T_{1, k_{1}}\left(t_{1}^{1}\right) \ldots T_{1, k_{1}}\left(t_{r_{1}}^{1}\right)}{\lambda_{2}\left(\bar{t}^{1}\right) f\left(\bar{t}^{2}, \bar{t}^{1}\right)} \\
& \times \sum_{\operatorname{part}\left(\bar{t}^{2}, \ldots, \bar{t}^{m-1}\right)} \frac{\prod_{v=2}^{m-2} \tilde{\alpha}_{v}^{\left(r_{1}-1\right)}\left(\bar{t}_{1}^{v}\right) f\left(\bar{t}_{\mathrm{I}}^{v}, \bar{t}_{\mathrm{I}}^{v}\right)}{\prod_{v=2}^{m-2} f\left(\bar{t}_{\mathbb{I}}^{v+1}, \bar{t}_{\mathrm{I}}^{v}\right)}\left[\mathbb{B}\left(\bar{t}_{\mathbb{I}} \mid \widetilde{T}_{\left[r_{1}-1\right]}\right)\right]_{k_{2}, \ldots, k_{r_{1}}}\left[\mathbb{B}\left(\bar{t}_{\mathrm{I}} \mid r_{0,1}\right)\right]_{k_{1}} . \tag{5.11}
\end{align*}
$$

The sum is taken over partitions of the sets $\left\{\bar{t}^{2}, \ldots, \bar{t}^{m-1}\right\}$ as it is described in (3.24). The functions $\widetilde{\alpha}_{v}^{\left(r_{1}-1\right)}(u)$ are the ratios of the vacuum eigenvalues of $\widetilde{\mathrm{T}}_{\left[r_{1}-1\right]}(u)$

$$
\begin{equation*}
\tilde{\alpha}_{v}^{\left(r_{1}-1\right)}(u)=\frac{\tilde{\lambda}_{v}^{\left(r_{1}-1\right)}(u)}{\tilde{\lambda}_{v+1}^{\left(r_{1}-1\right)}(u)}, \tag{5.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\widetilde{T}_{\left[r_{1}-1\right]}(u)\right)_{v, \nu}|0\rangle \otimes \Omega_{r_{1}-1}=\tilde{\lambda}_{v}^{\left(r_{1}-1\right)}(u)|0\rangle \otimes \Omega_{r_{1}-1}, \tag{5.13}
\end{equation*}
$$

and $\Omega_{r_{1}-1}$ is defined similarly to (5.7). It is convenient to divide the set \bar{t}^{1} into two subsets $\bar{t}^{1}=\bar{t}_{1}^{1} \cup \bar{t}_{\mathrm{I}}^{1}$, where \bar{t}_{1}^{1} consists of one element t_{1}^{1}, and $\bar{\pi}_{\mathrm{I}}^{1}=\left\{t_{2}^{1}, \ldots, t_{r_{1}}^{1}\right\}$ is the complementary subset. Then it is easy to see from the definition (5.6) that

$$
\begin{array}{ll}
\tilde{\lambda}_{2}^{\left(r_{1}-1\right)}(u)=\lambda_{2}(u) f\left(u, \bar{t}_{I I}^{1}\right), & \tag{5.14}\\
\tilde{\lambda}_{v}^{\left(r_{1}-1\right)}(u)=\lambda_{v}(u), \quad v>2,
\end{array}
$$

and hence,

$$
\begin{array}{ll}
\widetilde{\alpha}_{2}^{\left(r_{1}-1\right)}(u)=\alpha_{2}(u) f\left(u, \bar{t}_{\Pi}^{1}\right), & \tag{5.15}\\
\widetilde{\alpha}_{v}^{\left(r_{1}-1\right)}(u)=\alpha_{v}(u), & v>2 .
\end{array}
$$

Due to (5.8) we see that

$$
\begin{equation*}
\sum_{k_{2}, \ldots, k_{r_{1}}=2}^{m} \frac{T_{1, k_{2}}\left(t_{2}^{1}\right) \ldots T_{1, k_{r_{1}}}\left(t_{r_{1}}^{1}\right)}{\lambda_{2}\left(\bar{t}_{\mathbb{1}}^{1}\right) f\left(\bar{t}_{\mathbb{1}}^{2}, \bar{t}_{\mathbb{1}}^{1}\right)}\left[\mathbb{B}\left(\bar{t}_{\|} \mid \widetilde{T}_{\left[r_{1}-1\right]}\right)\right]_{k_{2}, \ldots, k_{r_{1}}}=\mathbb{B}\left(\bar{t}_{\mathbb{I}} \mid T\right) . \tag{5.16}
\end{equation*}
$$

Substituting this into (5.11) we find

$$
\begin{equation*}
\mathbb{B}(\bar{t} \mid T)=\sum_{\operatorname{part}\left(\bar{t}^{2}, \ldots, \bar{t}^{m-1}\right)} \sum_{k=2}^{m} \frac{T_{1, k}\left(t_{\mathrm{I}}^{1}\right)}{\lambda_{2}\left(t_{\mathrm{I}}^{1}\right)} \mathbb{B}\left(\bar{t}_{\mathbb{I}} \mid T\right) \frac{\prod_{v=2}^{m-1} \alpha_{v}\left(\bar{t}_{\mathrm{I}}^{v}\right) f\left(\bar{t}_{\mathrm{I}}^{v}, \bar{t}_{\mathrm{I}}^{v}\right)}{\prod_{v=2}^{m-2} f\left(\bar{t}_{\mathrm{I}}^{v+1}, \bar{t}_{\mathrm{I}}^{v}\right)} \frac{\left[\mathbb{B}\left(\bar{t}_{\mathrm{I}} \mid r_{0,1}\right)\right]_{k}}{f\left(\bar{t}^{2}, \bar{t}_{\mathrm{I}}^{1}\right)} . \tag{5.17}
\end{equation*}
$$

The components of the vector $\mathbb{B}\left(\bar{t}_{\mathrm{I}} \mid \mathrm{r}_{0,1}\right)$ are computed in appendix A (see (A.4)). It follows from these formulas that the k-th component of this vector corresponds to the partitions for which the subsets $\bar{t}_{\mathrm{I}}^{k}, \ldots, \bar{t}_{\mathrm{I}}^{m-1}$ are empty, while the subsets \bar{t}_{I}^{v} with $2 \leq v<k$ consist of one element. This gives us

$$
\begin{equation*}
\mathbb{B}(\bar{t} \mid T)=\sum_{\operatorname{part}\left(\bar{t}^{2}, \ldots, \bar{t}^{m-1}\right)} \sum_{k=2}^{m} \frac{T_{1, k}\left(t_{\mathrm{I}}^{1}\right)}{\lambda_{2}\left(t_{\mathrm{I}}^{1}\right)} \mathbb{B}\left(\left\{\bar{t}_{\mathrm{I}}^{v}\right\}_{1}^{k-1} ;\left\{\bar{t}^{v}\right\}_{k}^{m-1} \mid T\right) \frac{\prod_{v=2}^{k-1} \alpha_{\nu}\left(\bar{t}_{\mathrm{I}}^{v}\right) g^{(l)}\left(\bar{t}_{\mathrm{I}}^{v}, \bar{t}_{\mathrm{I}}^{v-1}\right) f\left(\bar{t}_{\mathrm{I}}^{v}, \bar{t}_{\mathrm{I}}^{v}\right)}{\prod_{v=1}^{k-1} f\left(\bar{t}^{v+1}, \bar{t}_{\mathrm{I}}^{v}\right)} . \tag{5.18}
\end{equation*}
$$

Recall that here by definition the subsets \bar{t}_{I}^{1} and $\bar{t}_{\mathrm{II}}^{1}$ are fixed: $\bar{t}_{\mathrm{I}}^{1} \equiv t_{1}^{1}$ and $\bar{t}_{\mathrm{II}}^{1} \equiv \bar{t}_{1}^{1}=\bar{t}^{1} \backslash t_{1}^{1}$. Then, replacing $\bar{t}^{1} \rightarrow\left\{z, \bar{t}^{1}\right\}$ and setting $\bar{t}_{1}^{1}=z$ we arrive at (4.1).

5.2 Proofs of proposition 4.2

Let us derive now the recursion (4.3) starting with (4.1) and using the morphism (3.9). The proof mimics the one done in [58], and we just point out the differences. Since the mapping (3.9) relates two different quantum algebras \mathscr{A}_{m}^{q} and $\mathscr{A}_{m}^{q^{-1}}$, we use here an additional subscript for the different rational functions, to denote the value of the deformation parameter. For instance

$$
\begin{equation*}
f_{q}(u, v)=\frac{q u-q^{-1} v}{u-v}, \quad \text { and } \quad g_{q}(u, v)=\frac{q-q^{-1}}{u-v} \tag{5.19}
\end{equation*}
$$

while

$$
\begin{equation*}
f_{q^{-1}}(u, v)=\frac{q^{-1} u-q v}{u-v}, \quad \text { and } \quad g_{q^{-1}}(u, v)=\frac{q^{-1}-q}{u-v} . \tag{5.20}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
g_{q^{-1}}^{(r)}(u, v)=g_{q}^{(l)}(v, u) \quad \text { and } \quad f_{q^{-1}}(u, v)=f_{q}(v, u) \tag{5.21}
\end{equation*}
$$

We act with φ onto (4.1) using (3.9)-(3.11). It implies in particular

$$
\begin{equation*}
\varphi\left(\mathbb{B}_{q}\left(\left\{\bar{t}^{1}\right\} ;\left\{\bar{t}_{\Pi}^{k}\right\}_{2}^{j-1} ;\left\{\bar{t}^{k}\right\}_{j}^{N}\right) \prod_{\nu=2}^{j-1} \alpha_{\nu}\left(\bar{t}_{\mathrm{I}}^{\nu}\right)\right)=\frac{\mathbb{B}_{q^{-1}}\left(\left\{\bar{t}^{k}\right\}_{N}^{j} ;\left\{\bar{t}_{\Pi}^{k}\right\}_{j-1}^{2} ; \bar{t}^{1}\right)}{\prod_{k=1}^{N} \widetilde{\alpha}_{N+1-k}\left(\bar{t}^{k}\right)} \tag{5.22}
\end{equation*}
$$

Remark that the functions α_{v} play a non-trivial role in the game. Then, the action of the morphism φ onto (4.1) gives

$$
\begin{align*}
\mathbb{B}_{q^{-1}}\left(\left\{\bar{t}^{k}\right\}_{N}^{2} ;\left\{z, \bar{t}^{1}\right\}\right)=\sum_{j=2}^{N+1} \frac{\widetilde{T}_{N+2-j, N+1}(z)}{\widetilde{\lambda}_{N+1}(z)} \sum_{\operatorname{part}\left(\bar{t}^{2}, \ldots, \bar{t}\right)} & \mathbb{B}_{q^{-1}}\left(\left\{\bar{t}^{k}\right\}_{N}^{j} ;\left\{\bar{t}_{\mathrm{I}}^{k}\right\}_{j-1}^{2} ; \bar{t}^{1}\right) \\
& \times \frac{\prod_{v=2}^{j-1} g_{q}^{(l)}\left(\bar{t}_{\mathrm{I}}^{v}, \bar{t}_{\mathrm{I}}^{v-1}\right) f_{q}\left(\bar{t}_{\mathrm{I}}^{v}, \overline{\mathrm{I}}_{\mathrm{I}}^{v}\right)}{\prod_{v=1}^{j-1} f_{q}\left(\bar{t}^{v+1}, \bar{t}_{\mathrm{I}}^{v}\right)} \tag{5.23}
\end{align*}
$$

Using the relations (5.21), relabeling the sets of the Bethe parameters $\bar{t}^{k} \rightarrow \bar{t}^{N+1-k}$, changing indices $j \rightarrow N+2-j, v \rightarrow N+1-v$ and replacing $q^{-1} \rightarrow q$ (which means going from $\mathscr{A}_{m}^{q^{-1}}$ to \mathscr{A}_{m}^{q}) we get (4.3).

5.3 Proofs of corollary 4.3

The proof for corollary 4.3 follows the same steps as in section 5.2, but using the antimorphism Ψ instead of the morphism φ. Thus, we just sketch the proof.

One starts with relation (4.1) and applies Ψ, to get in $\mathscr{A}_{m}^{q^{-1}}$:

$$
\begin{align*}
\mathbb{C}_{q^{-1}}\left(\left\{\frac{1}{z}, \frac{1}{\bar{t}^{1}}\right\} ;\left\{\frac{1}{\bar{t}^{k}}\right\}_{2}^{N}\right)=\sum_{j=2}^{N+1} \sum_{\operatorname{part}\left(\bar{t}^{2}, \ldots, \bar{t}^{j-1}\right)} \mathbb{C}_{q^{-1}} & \left(\left\{\frac{1}{\bar{t}^{1}}\right\} ;\left\{\frac{1}{\bar{t}_{\pi}^{k}}\right\}_{2}^{j-1} ;\left\{\frac{1}{\bar{t}^{k}}\right\}_{j}^{N}\right) \frac{\widetilde{T}_{j, 1}\left(\frac{1}{z}\right)}{\widetilde{\lambda}_{2}\left(\frac{1}{z}\right)} \\
& \times \frac{\prod_{v=2}^{j-1} \widetilde{\alpha}_{v}\left(\frac{1}{\bar{t}_{1}^{v}}\right) g_{q}^{(l)}\left(\bar{t}_{1}^{v}, \bar{t}_{1}^{v-1}\right) f_{q}\left(\bar{t}_{\pi}^{v}, \bar{t}_{1}^{v}\right)}{\prod_{v=1}^{j-1} f_{q}\left(\bar{t}^{v+1}, \bar{t}_{1}^{v}\right)} . \tag{5.24}
\end{align*}
$$

Now, renaming the parameters $t_{k}^{v} \rightarrow \frac{1}{t_{k}^{v}}, z \rightarrow \frac{1}{z}$ and using the relations

$$
\begin{equation*}
g_{q}^{(r)}\left(\frac{1}{x}, \frac{1}{y}\right)=g_{q^{-1}}^{(l)}(x, y) \quad \text { and } \quad f_{q}\left(\frac{1}{x}, \frac{1}{y}\right)=f_{q^{-1}}(x, y) \tag{5.25}
\end{equation*}
$$

we obtain

$$
\begin{align*}
& \mathbb{C}_{q^{-1}}\left(\left\{z, \bar{t}^{1}\right\} ;\left\{\hat{t}^{k}\right\}_{2}^{N}\right)=\sum_{j=2}^{N+1} \sum_{\operatorname{part}\left(\bar{t}^{2}, \ldots, \bar{t}^{j-1}\right)} \mathbb{C}_{q^{-1}}\left(\left\{\bar{t}^{1}\right\} ;\left\{\tilde{t}_{11}^{k}\right\}_{2}^{j-1} ;\left\{\bar{t}^{k}\right\}_{j}^{N}\right) \frac{\widetilde{T}_{j, 1}(z)}{\tilde{\lambda}_{2}(z)} \\
& \times \frac{\prod_{\nu=2}^{j-1} \widetilde{\alpha}_{v}\left(\bar{t}_{1}^{v}\right) g_{q^{-1}}^{(r)}\left(\bar{t}_{1}^{v}, \bar{t}_{1}^{\nu-1}\right) f_{q^{-1}}\left(\bar{t}_{11}^{v}, \bar{t}_{1}^{v}\right)}{\prod_{v=1}^{j-1} f_{q^{-1}}\left(\bar{t}^{\nu+1}, \bar{t}_{1}^{v}\right)} . \tag{5.26}
\end{align*}
$$

It remains to change $q^{-1} \rightarrow q$ to get relation (4.4). Similar considerations lead to (4.5).

6 Proof of proposition 4.5

In this section we provide an explicit representation of the rational coefficients $W_{\text {part }}$ (4.8) in terms of the HC. For this we consider the original monodromy matrix $T(u)$ as a monodromy matrix of a composite model (3.20). Then we should use the representation (3.24) for the Bethe vector $\mathbb{B}(\bar{t})$ and the representation (3.25) for the dual vector $\mathbb{C}(\bar{s})$. As a consequence, the scalar product $S(\bar{s} \mid \bar{t})=\mathbb{C}(\bar{s}) \mathbb{B}(\bar{t})$ takes the form

$$
\begin{equation*}
S(\bar{s} \mid \bar{t})=\sum \frac{\prod_{v=1}^{N} \alpha_{v}^{(1)}\left(\bar{s}_{\mathrm{ii}}^{v}\right) \alpha_{v}^{(2)}\left(\bar{t}_{\mathrm{i}}^{v}\right) f\left(\bar{s}_{\mathrm{i}}^{v}, \bar{s}_{\mathrm{ii}}^{v}\right) f\left(\bar{t}_{\mathrm{ii}}^{v}, \bar{t}_{\mathrm{i}}^{v}\right)}{\prod_{\nu=1}^{N-1} f\left(\bar{s}_{\mathrm{i}}^{v+1}, \bar{s}_{\mathrm{ii}}^{v}\right) f\left(\bar{t}_{\mathrm{ii}}^{\nu+1}, \bar{t}_{\mathrm{i}}^{v}\right)} S^{(1)}\left(\bar{s}_{\mathrm{i}} \mid \bar{t}_{\mathrm{i}}\right) S^{(2)}\left(\bar{s}_{\mathrm{ii}} \mid \bar{t}_{\mathrm{ii}}\right), \tag{6.1}
\end{equation*}
$$

where

$$
\begin{equation*}
S^{(1)}\left(\bar{s}_{\mathrm{i}} \mid \bar{t}_{\mathrm{i}}\right)=\mathbb{C}\left(\bar{s}_{\mathrm{i}} \mid T^{(1)}\right) \mathbb{B}\left(\bar{t}_{\mathrm{i}} \mid T^{(1)}\right), \quad S^{(2)}\left(\bar{s}_{\mathrm{i}} \mid \bar{t}_{\mathrm{ii}}\right)=\mathbb{C}\left(\bar{s}_{\mathrm{ij}} \mid T^{(2)}\right) \mathbb{B}\left(\bar{t}_{\mathrm{ii}} \mid T^{(2)}\right) . \tag{6.2}
\end{equation*}
$$

Note that in this formula $\# \bar{s}_{\mathrm{i}}^{\nu}=\# \bar{t}_{\mathrm{i}}^{\nu}$, (and hence, $\# \bar{s}_{\mathrm{ii}}^{\nu}=\# \bar{t}_{\mathrm{ii}}^{\nu}$), otherwise the scalar products $S^{(1)}$ and $S^{(2)}$ vanish. Let $\# \bar{s}_{i}^{v}=\# \bar{t}_{\mathrm{i}}^{v}=k_{v}^{\prime}$, where $k_{v}^{\prime}=0,1, \ldots, r_{v}$. Then $\# \bar{s}_{\mathrm{ii}}^{v}=\# \bar{t}_{\mathrm{ii}}^{v}=r_{v}-k_{v}^{\prime}$.

Now let us turn to equation (4.8). Our goal is to express the rational coefficients $W_{\text {part }}$ in terms of the HC. For this we use the fact that $W_{\text {part }}$ are model independent. Therefore, we can find them in some special model whose monodromy matrix satisfies the $R T T$-relation.

Let us fix some partitions of the Bethe parameters in (4.8): $\bar{s}^{\nu} \Rightarrow\left\{\bar{s}_{\mathrm{I}}^{\nu}, \bar{s}_{\mathrm{I}}^{\nu}\right\}$ and $\bar{t}^{\nu} \Rightarrow\left\{\bar{t}_{\mathrm{I}}^{\nu}, \bar{t}_{\mathrm{I}}^{\nu}\right\}$ such that $\# \bar{s}_{1}^{\nu}=\# \bar{t}_{1}^{\nu}=k_{v}$, for some $k_{v}=0,1, \ldots, r_{v}$. Hence, $\# \bar{s}_{\mathbb{I}}^{\nu}=\# \bar{t}_{\mathbb{I}}^{\nu}=r_{v}-k_{v}$. Consider a concrete model, in which

$$
\begin{array}{lll}
\alpha_{v}^{(1)}(z)=0, & \text { if } & z \in \bar{s}_{\mathbb{I}}^{v} \tag{6.3}\\
\alpha_{v}^{(2)}(z)=0, & \text { if } & z \in \bar{t}_{\mathrm{I}}^{v} .
\end{array}
$$

Due to (3.23) these conditions imply

$$
\begin{equation*}
\alpha_{v}(z)=0, \quad \text { if } \quad z \in \bar{s}_{\Pi}^{v} \cup \bar{t}_{1}^{v} . \tag{6.4}
\end{equation*}
$$

Then the scalar product is proportional to the coefficient $W_{\text {part }}\left(\bar{s}_{\mathrm{I}}, \bar{s}_{\mathrm{I}} \mid \bar{t}_{\mathrm{I}}, \bar{t}_{\mathrm{I}}\right)$, because all other terms in the sum over partitions (4.8) vanish due to the condition (6.4). Thus,

$$
\begin{equation*}
S(\bar{s} \mid \bar{t})=W_{\text {part }}\left(\bar{s}_{\mathrm{I}}, \bar{s}_{\mathrm{I}} \mid \bar{t}_{\mathrm{I}}, \bar{t}_{\mathrm{I}}\right) \prod_{k=1}^{N} \alpha_{k}\left(\bar{s}_{\mathrm{I}}^{k}\right) \alpha_{k}\left(\bar{t}_{\mathrm{I}}^{k}\right) . \tag{6.5}
\end{equation*}
$$

On the other hand, (6.3) implies that a non-zero contribution in (6.1) occurs if and only if $\bar{s}_{\mathrm{ii}}^{v} \subset \bar{s}_{\mathrm{I}}^{v}$ and $\bar{t}_{\mathrm{i}}^{v} \subset \bar{t}_{\mathrm{I}}^{v}$. Hence, $r_{v}-k_{v}^{\prime} \leq k_{v}$ and $k_{v}^{\prime} \leq r_{v}-k_{v}$. But this is possible if and only if $k_{v}^{\prime}+k_{v}=r_{v}$. Thus, $\bar{s}_{\mathrm{ii}}^{v}=\bar{s}_{\mathrm{I}}^{v}$ and $\bar{t}_{\mathrm{i}}^{v}=\bar{t}_{\mathrm{I}}^{v}$. Then, for the complementary subsets we obtain $\bar{s}_{\mathrm{i}}^{v}=\bar{s}_{\mathrm{II}}^{v}$ and $\bar{t}_{\mathrm{ii}}^{v}=\bar{t}_{\mathrm{I}}^{v}$. Thus, we arrive at

$$
\begin{equation*}
S(\bar{s} \mid \bar{t})=\frac{\prod_{v=1}^{N} \alpha_{v}^{(1)}\left(\bar{s}_{\mathrm{I}}^{v}\right) \alpha_{v}^{(2)}\left(\bar{t}_{\mathrm{I}}^{v}\right) f\left(\bar{s}_{\mathrm{I}}^{v}, \bar{s}_{\mathrm{I}}^{v}\right) f\left(\bar{t}_{\mathrm{I}}^{v}, \bar{t}_{\mathrm{I}}^{v}\right)}{\prod_{v=1}^{N-1} f\left(\bar{s}_{\mathrm{I}}^{v+1}, \bar{s}_{\mathrm{I}}^{v}\right) f\left(\bar{t}_{\mathrm{I}}^{v+1}, \bar{t}_{\mathrm{I}}^{v}\right)} S^{(1)}\left(\bar{s}_{\mathrm{I}} \mid \bar{t}_{\mathrm{I}}\right) S^{(2)}\left(\bar{s}_{\mathrm{I}} \mid \bar{t}_{\mathrm{I}}\right) . \tag{6.6}
\end{equation*}
$$

It is easy to see that calculating the scalar product $S^{(1)}\left(\bar{s}_{\text {II }} \mid \bar{t}_{\text {II }}\right)$ we should take only the term corresponding to the conjugated HC. Indeed, all other terms are proportional to $\alpha_{v}^{(1)}(z)$ with $z \in \bar{s}_{\text {II }}^{v}$, therefore, they vanish. Hence

$$
\begin{equation*}
S^{(1)}\left(\bar{s}_{\mathrm{I}} \mid \bar{t}_{\mathrm{I}}\right)=\prod_{v=1}^{N} \alpha_{v}^{(1)}\left(\bar{t}_{\mathrm{I}}^{v}\right) \cdot \bar{Z}\left(\bar{s}_{\mathrm{I}} \mid \bar{t}_{\mathrm{I}}\right) . \tag{6.7}
\end{equation*}
$$

Similarly, calculating the scalar product $S^{(2)}\left(\bar{s}_{\mathrm{I}} \mid \bar{t}_{\mathrm{I}}\right)$ we should take only the term corresponding to the HC:

$$
\begin{equation*}
S^{(2)}\left(\bar{s}_{\mathrm{I}} \mid \bar{t}_{\mathrm{I}}\right)=\prod_{v=1}^{N} \alpha_{v}^{(2)}\left(\bar{s}_{\mathrm{I}}^{v}\right) \cdot Z\left(\bar{s}_{\mathrm{I}} \mid \bar{t}_{\mathrm{I}}\right) \tag{6.8}
\end{equation*}
$$

Substituting this into (6.6) and using (3.23), (6.5) we arrive at (4.11).
The reader can easily convince himself that the above proof coincides with the one given in [58] for the $Y(\mathfrak{g l}(m \mid n))$ based models.

As already mentioned, the proofs for the results presented in section 4.2 and 4.4 are also similar to those of the $Y(\mathfrak{g l}(m \mid n))$ based models and given in [58, 59], thus we don't repeat them here. In the following section we deal with the proof for section 4.3 , focusing on the parts that truly differ from the Yangian case.

7 Symmetry of the highest coefficient

To prove (4.12), we consider the sum formula (4.8)

$$
\begin{equation*}
S_{q}(\vec{s} \mid \vec{t})=\sum W_{\mathrm{part}}^{q}\left(\vec{s}_{\mathrm{I}}, \vec{s}_{\mathrm{I}} \mid \vec{t}_{\mathrm{I}}, \vec{t}_{\mathrm{I}}\right) \prod_{k=1}^{N} \alpha_{k}\left(\bar{s}_{\mathrm{I}}^{k}\right) \alpha_{k}\left(\bar{t}_{\mathrm{I}}^{k}\right), \tag{7.1}
\end{equation*}
$$

where we have stressed the ordering (3.12) of the Bethe parameters and put a label q to distinguish scalar product for the algebra \mathscr{A}_{m}^{q} from $\mathscr{A}_{m}^{q^{-1}}$. Let us act with the morphism φ (3.9) on this scalar product. This can be done in two ways. First, using (3.11) and (3.18) we
obtain

$$
\begin{align*}
\varphi\left(S_{q}(\vec{s} \mid \vec{t})\right)=\varphi\left(\mathbb{C}_{q}(\vec{s}) \mathbb{B}_{q}(\vec{t})\right) & =\frac{\mathbb{C}_{q^{-1}}(\overleftarrow{s}) \mathbb{B}_{q^{-1}}(\overleftarrow{t})}{\prod_{k=1}^{N} \widetilde{\alpha}_{N+1-k}\left(\bar{s}^{k}\right) \widetilde{\alpha}_{N+1-k}\left(\bar{t}^{k}\right)} \\
& =\frac{S_{q^{-1}}(\overleftarrow{s} \mid \overleftarrow{t})}{\prod_{k=1}^{N} \widetilde{\alpha}_{N+1-k}\left(\bar{s}^{k}\right) \widetilde{\alpha}_{N+1-k}\left(\bar{t}^{k}\right)} . \tag{7.2}
\end{align*}
$$

The scalar product $S_{q^{-1}}(\overleftarrow{s} \mid \overleftarrow{t})$ has the standard representation (4.8). Thus, we find

$$
\begin{equation*}
\varphi\left(S_{q}(\vec{s} \mid \vec{t})\right)=\sum_{\text {part }} \frac{W_{\mathrm{part}}^{q^{-1}}\left(\overleftarrow{s}_{\mathrm{I}}, \overleftarrow{s}_{\mathrm{I}} \mid \overleftarrow{t}_{\mathrm{I}}, \overleftarrow{t}_{\mathrm{I}}\right)}{\prod_{k=1}^{N} \widetilde{\alpha}_{N+1-k}\left(\bar{s}^{k}\right) \widetilde{\alpha}_{N+1-k}\left(\bar{t}^{k}\right)} \prod_{k=1}^{N} \widetilde{\alpha}_{k}\left(\bar{s}_{\mathrm{I}}^{N-k+1}\right) \widetilde{\alpha}_{k}\left(\bar{t}_{\Pi}^{N-k+1}\right) \tag{7.3}
\end{equation*}
$$

On the other hand, acting with φ directly on the sum formula (7.1) we have

$$
\begin{equation*}
\varphi\left(S_{q}(\vec{s} \mid \vec{t})\right)=\sum_{\text {part }} W_{\mathrm{part}}^{q}\left(\vec{s}_{\mathrm{I}}, \vec{s}_{\Pi} \mid \vec{t}_{\mathrm{I}}, \vec{t}_{\mathrm{I}}\right) \prod_{k=1}^{N}\left(\tilde{\alpha}_{N+1-k}\left(\bar{s}_{\mathrm{I}}^{k}\right) \widetilde{\alpha}_{N+1-k}\left(\bar{t}_{\mathrm{I}}^{k}\right)\right)^{-1} \tag{7.4}
\end{equation*}
$$

Comparing (7.3) and (7.4) we arrive at

$$
\begin{align*}
& \sum_{\text {part }} W_{\mathrm{part}}^{q^{-1}}\left(\overleftarrow{s}_{\mathrm{I}}, \overleftarrow{s}_{\mathrm{I}} \mid \overleftarrow{t}_{\mathrm{I}}, \overleftarrow{t}_{\mathrm{I}}\right) \prod_{k=1}^{N} \widetilde{\alpha}_{N+1-k}\left(\bar{s}_{\mathrm{I}}^{k}\right) \widetilde{\alpha}_{N+1-k}\left(\bar{t}_{\mathrm{I}}^{k}\right) \\
&=\sum_{\text {part }} W_{\mathrm{part}}^{q}\left(\vec{s}_{\mathrm{I}}, \vec{s}_{\mathrm{I}} \mid \vec{t}_{\mathrm{I}}, \vec{t}_{\mathrm{I}}\right) \prod_{k=1}^{N} \widetilde{\alpha}_{N+1-k}\left(\bar{s}_{\mathrm{I}}^{k}\right) \widetilde{\alpha}_{N+1-k}\left(\bar{t}_{\mathrm{I}}^{k}\right) \tag{7.5}
\end{align*}
$$

Since α_{i} are free functional parameters, the coefficients of the same products of $\tilde{\alpha}_{i}$ must be equal. Hence,

$$
\begin{equation*}
W_{\mathrm{part}}^{q}\left(\vec{s}_{\mathrm{I}}, \vec{s}_{\mathrm{I}} \mid \vec{t}_{\mathrm{I}}, \vec{t}_{\mathrm{I}}\right)=W_{\mathrm{part}}^{q^{-1}}\left(\overleftarrow{s}_{\mathrm{I}}, \overleftarrow{s}_{\mathrm{I}} \mid \overleftarrow{t}_{\mathrm{I}}, \overleftarrow{t}_{\mathrm{I}}\right) \tag{7.6}
\end{equation*}
$$

for arbitrary partitions of the sets \bar{s} and \bar{t}. In particular, setting $\bar{s}_{\mathrm{II}}=\bar{t}_{\mathrm{I}}=\emptyset$ we obtain (4.12).
To prove (4.13), we start again with the sum formula (4.8) and use the antimorphism Ψ :

$$
\begin{equation*}
\Psi\left(S_{q}(\bar{s} \mid \bar{t})\right)=\mathbb{C}_{q^{-1}}\left(\bar{t}^{-1}\right) \mathbb{B}_{q^{-1}}\left(\bar{s}^{-1}\right)=S_{q^{-1}}\left(\bar{t}^{-1} \mid \bar{s}^{-1}\right) \tag{7.7}
\end{equation*}
$$

The lhs of (7.7) can be computed from the relation (4.8):

$$
\begin{equation*}
\Psi\left(S_{q}(\bar{s} \mid \bar{t})\right)=\sum W_{\mathrm{part}}^{q}\left(\bar{s}_{\mathrm{I}}, \bar{s}_{\mathbb{\Pi}} \mid \bar{t}_{\mathrm{I}}, \bar{t}_{\Pi}\right) \prod_{k=1}^{N} \tilde{\alpha}_{k}\left(\frac{1}{\bar{s}_{\mathrm{I}}^{k}}\right) \widetilde{\alpha}_{k}\left(\frac{1}{\bar{t}_{\mathbb{I}}^{k}}\right) . \tag{7.8}
\end{equation*}
$$

The rhs of (7.7) is computed directly from (4.8) written for $\mathscr{A}_{m}^{q^{-1}}$:

$$
\begin{equation*}
S_{q^{-1}}\left(\bar{t}^{-1} \mid \bar{s}^{-1}\right)=\sum W_{\mathrm{part}}^{q^{-1}}\left(\bar{t}_{\mathrm{I}}^{-1}, \bar{t}_{\Pi}^{-1} \mid \bar{s}_{\mathrm{I}}^{-1}, \bar{s}_{\Pi}^{-1}\right) \prod_{k=1}^{N} \widetilde{\alpha}_{k}\left(\frac{1}{\bar{t}_{\mathrm{I}}^{k}}\right) \widetilde{\alpha}_{k}\left(\frac{1}{\bar{s}_{\Pi}^{k}}\right) . \tag{7.9}
\end{equation*}
$$

Since α_{i} are free functional parameters, the comparison of these two equalities leads to

$$
\begin{equation*}
W_{\mathrm{part}}^{q}\left(\bar{s}_{\mathrm{I}}, \bar{s}_{\mathrm{II}} \mid \bar{t}_{\mathrm{I}}, \bar{t}_{\mathrm{I}}\right)=W_{\mathrm{part}}^{q^{-1}}\left(\bar{t}_{\mathrm{II}}^{-1}, \bar{t}_{\mathrm{I}}^{-1} \mid \bar{s}_{\mathrm{II}}^{-1}, \bar{s}_{\mathrm{I}}^{-1}\right) \tag{7.10}
\end{equation*}
$$

Setting $\bar{s}_{\mathrm{I}}=\bar{t}_{\mathrm{I}}=\emptyset$, we get (4.13).
Combining (4.12) and (4.13), we get (4.14).
Applying the property (4.14) to (4.15), one obtains a new recursion written for the parameters \bar{t}^{-1} and \bar{s}^{-1}. Using the relations

$$
g^{(l)}\left(\frac{1}{x}, \frac{1}{y}\right)=g^{(l)}(y, x) \quad \text { and } \quad f\left(\frac{1}{x}, \frac{1}{y}\right)=f(y, x)
$$

together with the replacement $\bar{t}^{-1} \rightarrow \bar{t}$ and $\bar{s}^{-1} \rightarrow \bar{s}$, we get the recursion (4.16) for the highest coefficient.

Conclusion

In this paper, we have shown how the results obtained for the scalar products and the norm of Bethe vectors for $Y(\mathfrak{g l}(m))$ based models can be generalized to the case of $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$ based models. In this way, we have obtained recursion formulas for the Bethe vectors of these models, as well as a sum formula for their scalar products. We have obtained different recursions for the highest coefficients, which characterize the sum formula. When the Bethe vectors are on-shell, we have also shown that their norm takes the form of a Gaudin determinant.

Comparing these results with the ones obtained for the case of $Y(\mathfrak{g l}(m))$, one can see that for the most of them the generalization is quite straightforward. The only minor difference is that in the Yangian case the highest coefficient of the scalar product coincides with its conjugated, while for the \mathscr{A}_{m}^{q} algebra they are related by the transformations (4.12), (4.13). This difference was already pointed out in [49] for the particular case of the $U_{q}\left(\widehat{\mathfrak{g l}}_{3}\right)$ based models.

The sum formula itself is rather bulky, however, we recall that it is obtained for the most general case of the Bethe vectors scalar product. This formula can be used as a starting point for calculating form factors of the monodromy matrix entries. In this case we deal with scalar products involving on-shell Bethe vectors. Then, the free functional parameters $\alpha_{k}(u)$ disappear from the sum formula due to Bethe equations, and we obtain a possibility for additional re-summation. This re-summation might lead to compact determinant representations for form factors (see e.g. [50] for the \mathscr{A}_{3}^{q} case), like in the case of the norm of on-shell Bethe vector.

One more possible simplification of the sum formula is related to consideration of specific models, in which the free functional parameters $\alpha_{k}(u)$ are fixed. For instance, for the spin chain based on $U_{q}\left(\widehat{\mathfrak{g}}_{m}\right)$ fundamental representations, $\alpha_{1}(u)$ is a rational function, while $\alpha_{k}(u)=1$ for $k>1$. Thus, in this case most of these functional parameters also disappear from the sum formula, which gives a chance for its simplification.

These two possibilities of further development certainly are worthy of attention. Finally, we wish to note that it seems to us rather obvious that the results presented here can also be readily generalized to the case of models based on $U_{q}(\widehat{\mathfrak{g l}}(m \mid n))$. We plan to come back on this generalization in a further publication.

Acknowledgements

The work of A.L. has been funded by Russian Academic Excellence Project 5-100, by Young Russian Mathematics award and by joint NASU-CNRS project F14-2017. The work of S.P. was supported in part by the RFBR grant 16-01-00562-a.

A The simplest $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ Bethe vectors

In this section we construct Bethe vectors for a very specific case of the \mathscr{A}_{m}^{q} monodromy matrix $T(u)=R(u, \xi)$, where $R(u, \xi)$ is given by (2.1) and ξ is a complex number. In other words, we consider spin chain with only one site which carries a fundamental representation of \mathscr{A}_{m}^{q}. The Bethe vector construction procedure is still based on the embedding (5.1) of \mathscr{A}_{m-1}^{q} into \mathscr{A}_{m}^{q}. In this appendix, to distinguish Bethe vectors corresponding to the R-matrices (2.1) and (5.3) we respectively equip them with superscripts (m) or ($m-1$).

This case has many peculiarities which allow a simple and explicit calculation of Bethe vectors. First of all, the space of states is $\mathscr{H}=\mathbf{C}^{m}$ with the pseudovacuum $|0\rangle=e_{1}$. As usual, the Bethe vectors depend on $N=m-1$ sets of variables \bar{t}^{ν}. However, due to the nilpotency
of the creation operators ${ }^{6}$ each set consists at most of one element. Furthermore, $D_{i, i}|0\rangle=|0\rangle$ for all $i=2, \ldots, m$. Therefore, in the framework of the algebraic Bethe ansatz, the matrix D is equivalent to the identity matrix. Hence, we can omit this matrix in the definition (5.6).

Proposition A.1. The monodromy matrix $T(u)=R(u, \xi)$ has $m-1$ Bethe vectors of the form

$$
\begin{equation*}
\mathbb{B}^{(m)}\left(\left\{t^{\nu}\right\}_{1}^{k-1},\{\emptyset\}_{k}^{m-1}\right)=\left(\prod_{v=2}^{k-1} \frac{g^{(l)}\left(t^{\nu}, t^{\nu-1}\right)}{f\left(t^{v}, t^{\nu-1}\right)}\right) g^{(l)}\left(t^{1}, \xi\right) e_{k}, \quad k=2, \ldots, m \tag{A.1}
\end{equation*}
$$

One additional Bethe vector coincides with the pseudovacuum e_{1}.
Proof. One can easily prove (A.1) via induction over m. Indeed, for $m=2$ we have only two Bethe vectors: the pseudovacuum $e_{1}=\binom{1}{0} \in \mathbf{C}^{2}$ and

$$
\begin{equation*}
\mathbb{B}^{(2)}\left(t^{1}\right)=T_{12}\left(t^{1}\right) \mathrm{e}_{1}=g^{(l)}\left(t^{1}, \xi\right) \mathrm{E}_{21} \mathrm{e}_{1}=g^{(l)}\left(t^{1}, \xi\right) \mathrm{e}_{2}=g^{(l)}\left(t^{1}, \xi\right)\binom{0}{1} \tag{A.2}
\end{equation*}
$$

Assume that (A.1) holds for $m-1$. One of the $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ Bethe vectors still coincides with the pseudovacuum vector $\mathbb{B}^{(m)}(\emptyset)=e_{1}$. The other Bethe vectors can be constructed via (5.8), where one should set $\lambda_{2}(u)=1$:

$$
\begin{equation*}
\mathbb{B}^{(m)}\left(t^{1}, \ldots, t^{m-1}\right)=\sum_{k=2}^{m} T_{1, k}\left(t^{1}\right) e_{1} \frac{\left[\mathbb{B}^{(m-1)}\left(t^{2}, \ldots, t^{m-1}\right)\right]_{k}}{f\left(t^{2}, t^{1}\right)} \tag{A.3}
\end{equation*}
$$

Here $\left[\mathbb{B}^{(m-1)}\left(t^{2}, \ldots, t^{m-1}\right)\right]_{k}$ is the k-th component of the Bethe vector $\mathbb{B}^{(m-1)}(\bar{t})$ of the monodromy matrix $r\left(u, t^{1}\right)$ (5.3). Due to the induction assumption we have

$$
\begin{equation*}
\left[\mathbb{B}^{(m-1)}\left(\left\{t^{\nu}\right\}_{2}^{j-1},\{\emptyset\}_{j}^{m-1}\right)\right]_{k}=\delta_{j k}\left(\prod_{\nu=3}^{k-1} \frac{g^{(l)}\left(t^{v}, t^{\nu-1}\right)}{f\left(t^{\nu}, t^{\nu-1}\right)}\right) g^{(l)}\left(t^{2}, t^{1}\right) \tag{A.4}
\end{equation*}
$$

Thus, taking into account that for $k>1, T_{1, k}(u)=g^{(l)}(u, \xi) E_{k 1}$ and

$$
\begin{equation*}
T_{1, k}\left(t^{1}\right) e_{1}=g^{(l)}\left(t^{1}, \xi\right) e_{k} \tag{A.5}
\end{equation*}
$$

we immediately arrive at (A.1).

B Comparison with known results of $U_{q}\left(\widehat{\mathfrak{g l}}_{3}\right)$ based models

Propositions 4.4 and 4.5 were already obtained for $m=3$ in [46, 49], but using different normalization of Bethe vectors, and a different notation and normalization for the HC. We present here the connection between the two conventions. To clarify the presentation we will put a subscript old for the quantities dealt in [46, 49], and a subscript new for the ones used in the present article.

Normalisation of (dual) Bethe vectors. By comparison of their main terms, we get the following correspondence for Bethe vectors:

$$
\begin{equation*}
\mathbb{B}_{\text {new }}(\bar{t})=\frac{\lambda_{2}\left(\bar{t}^{2}\right)}{\lambda_{3}\left(\bar{t}^{2}\right)} \mathbb{B}_{\text {old }}\left(\bar{t}^{1}, \bar{t}^{2}\right) \quad \text { and } \quad \mathbb{C}_{\text {new }}(\bar{s})=\frac{\lambda_{2}\left(\bar{s}^{2}\right)}{\lambda_{3}\left(\bar{s}^{2}\right)} \mathbb{C}_{\text {old }}\left(\bar{s}^{1}, \bar{s}^{2}\right), \tag{B.1}
\end{equation*}
$$

where $\bar{s}=\left\{\bar{s}^{1}, \bar{s}^{2}\right\}$ and $\bar{t}=\left\{\bar{t}^{1}, \bar{t}^{2}\right\}$. Note that in $[46,49]$, the sets \bar{s}^{1}, \bar{s}^{2} and \bar{t}^{1}, \bar{t}^{2} were noted $\bar{u}^{\mathrm{C}}, \bar{v}^{\mathrm{C}}$ and $\bar{u}^{\mathrm{B}}, \bar{v}^{\mathrm{B}}$ respectively.

[^19]Sum formula. Once the normalisation is fixed, one can compare the scalar product of Bethe vectors and the expressions given in proposition 4.4. In [49], the scalar product is expressed in term of functionals $r_{1}(z)=\alpha_{1}(z)$ and $r_{3}(z)=\alpha_{2}(z)^{-1}$. Using the normalisation (B.1), we get a sum formula identical to (4.8) with

$$
W_{\text {old }}\left(\begin{array}{cc|cc}
\bar{s}_{1}^{1} & \bar{t}_{1}^{1} & \bar{s}_{\mathbb{I}}^{1} & \bar{t}_{\pi}^{1} \tag{B.2}\\
\bar{s}_{\mathrm{I}}^{2} & \bar{t}_{1}^{2} & \bar{s}_{\mathrm{I}}^{2} & \bar{t}_{\mathrm{I}}^{2}
\end{array}\right)=f\left(\bar{s}^{2}, \bar{s}^{1}\right) f\left(\bar{t}^{2}, \bar{t}^{1}\right) W_{\text {new }}\left(\bar{s}_{\mathrm{I}}, \bar{s}_{\mathrm{I}} \mid \bar{t}_{\mathrm{I}}, \bar{t}_{\mathrm{I}}\right) .
$$

Note that in order to make the comparison, one has to exchange the subsets $\bar{s}_{1}^{1} \leftrightarrow \bar{s}_{\|}^{1}$ in one of the sum formulas. This change is harmless since one performs a summation over all partitions $\bar{s}^{1} \Rightarrow\left\{\bar{s}_{\mathrm{I}}^{1}, \bar{s}_{\Pi}^{1}\right\}$.

Expression in term of HCs. Applying the correspondence (B.2), the relation (4.11) is identical to the one obtained in [49] with

$$
\begin{align*}
& Z_{\text {old }}^{(l)}\left(\bar{s}^{1}, \bar{t}^{1} \mid \bar{s}^{2}, \bar{t}^{2}\right)=f\left(\bar{s}^{2}, \bar{s}^{1}\right) f\left(\bar{t}^{2}, \bar{t}^{1}\right) Z_{\text {new }}\left(\bar{s}^{-1}, \bar{s}^{2} \mid \bar{t}^{1}, \bar{t}^{2}\right), \tag{B.3}\\
& Z_{\text {old }}^{(r)}\left(\bar{s}^{1}, \bar{t}^{1} \mid \bar{s}^{2}, \bar{t}^{2}\right)=f\left(\bar{s}^{2}, \bar{s}^{1}\right) f\left(\bar{t}^{2}, \bar{t}^{1}\right) \bar{Z}_{\text {new }}\left(\bar{s}^{-1}, \bar{s}^{2} \mid \bar{t}^{1}, \bar{t}^{2}\right) .
\end{align*}
$$

C Coproduct formula for the dual Bethe vectors

The presentation (3.24) for the Bethe vector of the composite model can be treated as a coproduct formula for the Bethe vector. Indeed, equation (3.20) formally determines a coproduct Δ of the monodromy matrix entries

$$
\begin{equation*}
\Delta\left(T_{i, j}(u)\right)=\sum_{k=1}^{m} T_{k, j}(u) \otimes T_{i, k}(u) . \tag{C.1}
\end{equation*}
$$

Then (3.24) is nothing but the action of Δ onto the Bethe vector.
The action of the coproduct onto the dual Bethe vectors can be obtained via antimorphism (3.16) thanks to the relation

$$
\begin{equation*}
\Delta_{q^{-1}} \circ \Psi=(\Psi \otimes \Psi) \circ \Delta_{q}^{\prime}, \tag{C.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{q}^{\prime}\left(T_{i, j}(u)\right)=\sum T_{i, k}(u) \otimes T_{k, j}(u) . \tag{C.3}
\end{equation*}
$$

Then applying (C.2) to $\mathbb{B}_{q}(\bar{t})$, we get

$$
\begin{align*}
& \Delta_{q^{-1}}\left(\Psi\left(\mathbb{B}_{q}(\bar{t})\right)\right)=\Delta_{q^{-1}}\left(\mathbb{C}_{q^{-1}}\left(\bar{t}^{-1}\right)\right)=(\Psi \otimes \Psi) \circ \Delta_{q}^{\prime}\left(\mathbb{B}_{q}(\bar{t})\right) \\
& =(\Psi \otimes \Psi)\left(\sum \frac{\prod_{v=1}^{N} \alpha_{v}^{(1)}\left(\bar{t}_{\mathrm{I}}^{\nu}\right) f_{q}\left(\bar{t}_{\mathrm{I}}^{v}, \bar{t}_{\mathrm{I}}^{\nu}\right)}{\prod_{v=1}^{N-1} f_{q}\left(\bar{t}_{\mathrm{I}}^{v+1}, \bar{t}_{\mathrm{I}}^{\nu}\right)} \mathbb{B}_{q}\left(\bar{t}_{\mathrm{I}}\right) \otimes \mathbb{B}_{q}\left(\bar{t}_{\mathrm{\Pi}}\right)\right) \tag{C.4}\\
& =\sum \frac{\prod_{\nu=1}^{N} \widetilde{\alpha}_{v}^{(1)}\left(\frac{1}{\bar{t}_{\mathrm{I}}^{\nu}}\right) f_{q}\left(\bar{t}_{\Pi}^{v}, \bar{t}_{\mathrm{I}}^{v}\right)}{\prod_{\nu=1}^{N-1} f_{q}\left(\bar{t}_{\Pi}^{\nu+1}, \bar{t}_{\mathrm{I}}^{v}\right)} \mathbb{C}_{q^{-1}\left(\bar{t}_{\mathrm{I}}^{-1}\right) \otimes \mathbb{C}_{q^{-1}}\left(\bar{t}_{\mathrm{I}}^{-1}\right) .}
\end{align*}
$$

Relabeling the subsets $\bar{t}_{1}^{\nu} \leftrightarrow \frac{1}{\bar{\tau}_{11}^{v}}$ and using (5.25), we arrive at

$$
\begin{equation*}
\Delta_{q^{-1}}\left(\mathbb{C}_{q^{-1}}(\bar{t})\right)=\sum \frac{\prod_{v=1}^{N} \widetilde{\alpha}_{v}^{(1)}\left(\bar{t}_{\Pi}^{v}\right) f_{q^{-1}}\left(\bar{t}_{1}^{v}, \bar{t}_{\pi}^{v}\right)}{\prod_{v=1}^{N-1} f_{q^{-1}}\left(\bar{t}_{1}^{v+1}, \bar{t}_{\Pi}^{v}\right)} \mathbb{C}_{q^{-1}}\left(\bar{t}_{\mathbb{I}}\right) \otimes \mathbb{C}_{q^{-1}}\left(\bar{t}_{\mathrm{I}}\right) . \tag{C.5}
\end{equation*}
$$

It remains to make the change $q^{-1} \rightarrow q$ to obtain (3.25).

References

[1] H. Bethe, Zur Theorie der Metalle, Z. Physik 71, 205 (1931), doi:10.1007/BF01341708.
[2] E. K. Sklyanin, L. A. Takhtadzhyan and L. D. Faddeev, Quantum inverse problem method. I, Theor. Math. Phys. 40, 688 (1979), doi:10.1007/BF01018718.
[3] L. A. Takhtadzhan and L. D. Faddeev, The quantum method of the inverse problem and the Heisenberg XYZ model, Russ. Math. Surv. 34, 11 (1979), doi:10.1070/RM1979v034n05ABEH003909.
[4] V. E. Korepin, N. M. Bogoliubov and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, ISBN 9780511628832 (1993), doi:10.1017/CBO9780511628832.
[5] L. D. Faddeev, How Algebraic Bethe Ansatz works for integrable model, in A. Connes, K. Gawedzki and J. Zinn-Justin (eds.), Les Houches Lectures: Quantum symmetries, eds A. Connes et al, North Holland, (1998) 149, doi:10.1142/9789814340960_0031.
[6] C. N. Yang and C. P. Yang, Thermodynamics of a One-Dimensional System of Bosons with Repulsive Delta-Function Interaction, J. Math. Phys. 10, 1115 (1969), doi:10.1063/1.1664947.
[7] R. Baxter, Exactly solved models in statistical mechanics, Academic Press (1982), doi:10.1142/9789814415255_0002.
[8] M. Gaudin and J.-S. Caux (translator), The Bethe Wavefunction, Cambridge University Press, Cambridge, ISBN 9781107053885 (2009), doi:10.1017/CBO9781107053885.
[9] O. Babelon, Representations of the Yang-Baxter algebrae associated to Toda field theory, Nucl. Phys. B 230, 241 (1984), doi:10.1016/0550-3213(84)90125-1.
[10] M. Jimbo, Aq-difference analogue of $U(G)$ and the Yang-Baxter equation, Lett. Math. Phys. 10, 63 (1985), doi:10.1007/BF00704588.
[11] E. H. Lieb and W. Liniger, Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State, Phys. Rev. 130, 1605 (1963), doi:10.1103/PhysRev.130.1605.
[12] E. H. Lieb, Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum, Phys. Rev. 130, 1616 (1963), doi:10.1103/PhysRev.130.1616.
[13] V. E. Korepin, Calculation of norms of Bethe wave functions, Commun. Math. Phys. 86, 391 (1982), doi:10.1007/BF01212176.
[14] N. A. Slavnov, Calculation of scalar products of wave functions and form factors in the framework of the alcebraic Bethe ansatz, Theor. Math. Phys. 79, 502 (1989), doi:10.1007/BF01016531.
[15] N. Kitanine, J. M. Maillet and V. Terras, Form factors of the XXZ Heisenberg finite chain, Nucl. Phys. B 554, 647 (1999), doi:10.1016/S0550-3213(99)00295-3.
[16] J. M. Maillet and V. Terras, On the quantum inverse scattering problem, Nucl. Phys. B 575, 627 (2000), doi:10.1016/S0550-3213(00)00097-3.
[17] F. Göhmann and V. E. Korepin, Solution of the quantum inverse problem, J. Phys. A: Math. Gen. 33, 1199 (2000), doi:10.1088/0305-4470/33/6/308.
[18] N. Kitanine, J. M. Maillet, N. A. Slavnov and V. Terras, Spin-spin correlation functions of the $X X Z-1 / 2$ Heisenberg chain in a magnetic field, Nucl. Phys. B 641, 487 (2002), doi:10.1016/S0550-3213(02)00583-7.
[19] F. Göhmann, A. Klümper and A. Seel, Integral representations for correlation functions of the XXZ chain at finite temperature, J. Phys. A: Math. Gen. 37, 7625 (2004), doi:10.1088/0305-4470/37/31/001.
[20] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov and V. Terras, Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions, J. Stat. Mech. P04003 (2009), doi:10.1088/1742-5468/2009/04/P04003.
[21] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov and V. Terras, A form factor approach to the asymptotic behavior of correlation functions in critical models, J. Stat. Mech. P12010 (2011), doi:10.1088/1742-5468/2011/12/P12010.
[22] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov and V. Terras, Form factor approach to dynamical correlation functions in critical models, J. Stat. Mech. P09001 (2012), doi:10.1088/1742-5468/2012/09/P09001.
[23] J.-S. Caux and J. M. Maillet, Computation of Dynamical Correlation Functions of Heisenberg Chains in a Magnetic Field, Phys. Rev. Lett. 95, 077201 (2005), doi:10.1103/PhysRevLett.95.077201.
[24] C. N. Yang, Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction, Phys. Rev. Lett. 19, 1312 (1967), doi:10.1103/PhysRevLett.19.1312.
[25] B. Sutherland, Further Results for the Many-Body Problem in One Dimension, Phys. Rev. Lett. 20, 98 (1968), doi:10.1103/PhysRevLett.20.98.
[26] B. Sutherland, Model for a multicomponent quantum system, Phys. Rev. B 12, 3795 (1975), doi:10.1103/PhysRevB.12.3795.
[27] P. P. Kulish and N. Yu. Reshetikhin, Generalized Heisenberg ferromagnet and the GrossNeveu model, Sov. Phys. JETP 53, 108 (1981).
[28] P. P. Kulish and N. Yu. Reshetikhin, GL(3)-invariant solutions of the Yang-Baxter equation and associated quantum systems, J. Sov. Math. 34, 1948 (1986), doi:10.1007/BF01095104.
[29] P. P. Kulish and N. Yu Reshetikhin, Diagonalisation of GL(N) invariant transfer matrices and quantum N-wave system (Lee model), J. Phys. A: Math. Gen. 16, L591 (1983), doi:10.1088/0305-4470/16/16/001.
[30] S. Belliard and E. Ragoucy, The nested Bethe ansatz for 'all' closed spin chains, J. Phys. A: Math. Theor. 41, 295202 (2008), doi:10.1088/1751-8113/41/29/295202.
[31] S. Z. Pakuliak, E. Ragoucy and N. A. Slavnov, Bethe vectors for models based on the superYangian $Y(\mathfrak{g l}(\boldsymbol{m} \mid \boldsymbol{n}))$, J. Integrab. Syst. 2, 1 (2017), doi:10.1093/integr/xyx001.
[32] A. A. Hutsalyuk, A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy and N. A. Slavnov, Current presentation for the super-Yangian double $D Y(\mathfrak{g l}(m \mid n))$ and Bethe vectors, Russ. Math. Surv. 72, 33 (2017), doi:10.1070/RM9754.
[33] V. Tarasov and A. Varchenko, Asymptotic Solutions to the Quantized Knizhnik-Zamolodchikov Equation and Bethe Vectors, Amer. Math. Society Transl., Ser. 2 174, 235 (1996).
[34] S. Khoroshkin and S. Pakuliak, A computation of an universal weight function for the quantum affine algebra $U_{q}\left(\widehat{g l}_{N}\right)$, J. Math. Kyoto University 48277 (2008), doi:10.1215/kjm/1250271413.
[35] B. Enriquez, S. Khoroshkin and S. Pakuliak, Weight Functions and Drinfeld Currents, Commun. Math. Phys. 276, 691 (2007), doi:10.1007/s00220-007-0351-y.
[36] A. Os'kin, S. Pakuliak and A. Silantyev, On the universal weight function for the quantum affine algebra $U_{q}(\mathfrak{g l}(N))$, Algebra i Analis 21196 (2009); St. Petersburg Math. J. 21, 651 (2010), doi:10.1090/S1061-0022-2010-01110-5.
[37] S. Pakuliak, E. Ragoucy and N. A. Slavnov, Bethe vectors of quantum integrable models based on $U_{q}\left(\widehat{\mathfrak{g l}}_{N}\right)$, J. Phys. A: Math. Theor. 47, 105202 (2014), doi:10.1088/17518113/47/10/105202.
[38] S. Belliard, S. Pakuliak, E. Ragoucy and N. A. Slavnov, Bethe vectors of GL(3)invariant integrable models, J. Stat. Mech. P02020 (2013), doi:10.1088/17425468/2013/02/P02020.
[39] N. Yu. Reshetikhin, Calculation of the norm of bethe vectors in models with SU(3)symmetry, J. Math. Sci. 46, 1694 (1989), doi:10.1007/BF01099200.
[40] M. Wheeler, Scalar Products in Generalized Models with SU(3)-Symmetry, Commun. Math. Phys. 327, 737 (2014), doi:10.1007/s00220-014-2019-8.
[41] S. Belliard, S. Pakuliak, E. Ragoucy and N. A. Slavnov, Highest coefficient of scalar products in SU(3)-invariant integrable models, J. Stat. Mech. P09003 (2012), doi:10.1088/17425468/2012/09/P09003.
[42] M. Wheeler, Multiple integral formulae for the scalar product of on-shell and offshell Bethe vectors in SU(3)-invariant models, Nucl. Phys. B 875, 186 (2013), doi:10.1016/j.nuclphysb.2013.06.015.
[43] S. Belliard, S. Pakuliak, E. Ragoucy and N. A. Slavnov, The algebraic Bethe ansatz for scalar products in SU(3)-invariant integrable models, J. Stat. Mech. P10017 (2012), doi:10.1088/1742-5468/2012/10/P10017.
[44] S. Belliard, S. Pakuliak, E. Ragoucy and N. A. Slavnov, Form factors in SU(3)invariant integrable models, J. Stat. Mech. P04033 (2013), doi:10.1088/17425468/2013/04/P04033.
[45] S. Pakuliak, E. Ragoucy and N. A. Slavnov, Form factors in quantum integrable models with GL(3)-invariant R-matrix, Nucl. Phys. B 881, 343 (2014), doi:10.1016/j.nuclphysb.2014.02.014.
[46] S. Belliard, S. Pakuliak, E. Ragoucy and N.A. Slavnov, Bethe vectors of quantum integrable models with gl(3) trigonometric R-matrix, SIGMA 9, 058 (2013), doi:10.3842/SIGMA.2013.058.
[47] S. Belliard, S. Pakuliak and E. Ragoucy, Universal Bethe Ansatz and Scalar Products of Bethe Vectors, SIGMA 6, 94 (2010), doi:10.3842/SIGMA.2010.094.
[48] S. Z. Pakuliak, E. Ragoucy and N. A. Slavnov, Scalar products in models with the GL(3) trigonometric R-matrix: General case, Theor. Math. Phys. 180, 795 (2014), doi:10.1007/s11232-014-0180-z.
[49] S. Z. Pakuliak, E. Ragoucy and N. A. Slavnov, Scalar products in models with a GL(3) trigonometric R-matrix: Highest coefficient, Theor. Math. Phys. 178, 314 (2014), doi:10.1007/s11232-014-0145-2.
[50] N. A. Slavnov, Scalar products in GL(3)-based models with trigonometric R-matrix. Determinant representation, J. Stat. Mech. P03019 (2015), doi:10.1088/17425468/2015/03/P03019.
[51] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy and N. A. Slavnov, Scalar products of Bethe vectors in models with $\mathfrak{g l}(2 \mid 1)$ symmetry 2. Determinant representation, J. Phys. A: Math. Theor. 50, 034004 (2016), doi:10.1088/1751-8121/50/3/034004.
[52] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy and N. A. Slavnov, Scalar products of Bethe vectors in models with $\mathfrak{g l}(2 \mid 1)$ symmetry 1. Super-analog of Reshetikhin formula, J. Phys. A: Math. Theor. 49, 454005 (2016), doi:10.1088/1751-8113/49/45/454005.
[53] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy and N. A. Slavnov, Form factors of the monodromy matrix entries in $\mathfrak{g l}(2 \mid 1)$-invariant integrable models, Nucl. Phys. B 911, 902 (2016), doi:10.1016/j.nuclphysb.2016.08.025.
[54] J. Fuksa and N. A. Slavnov, Form factors of local operators in supersymmetric quantum integrable models, J. Stat. Mech. 043106 (2017), doi:10.1088/1742-5468/aa6686.
[55] O. Foda and M. Wheeler, Colour-independent partition functions in coloured vertex models, Nucl. Phys. B 871, 330 (2013), doi:10.1016/j.nuclphysb.2013.02.015.
[56] J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability, J. High Energ. Phys. 28 (2011), doi:10.1007/JHEP09(2011)028.
[57] N. Gromov, F. Levkovich-Maslyuk and G. Sizov, New construction of eigenstates and separation of variables for $S U(N)$ quantum spin chains, J. High Energ. Phys. 111 (2017), doi:10.1007/JHEP09(2017)111.
[58] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy and N. A. Slavnov, Scalar products of Bethe vectors in the models with $\mathfrak{g l}(m \mid n)$ symmetry, Nucl. Phys. B 923, 277 (2017), doi:10.1016/j.nuclphysb.2017.07.020.
[59] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy and N. A. Slavnov, Norm of Bethe vectors in models with $\mathfrak{g l}(m \mid n)$ symmetry, Nucl. Phys. B 926, 256 (2018), doi:10.1016/j.nuclphysb.2017.11.006.
[60] A. G. Izergin, Partition function of the six-vertex model in a finite volume, Sov. Phys. Dokl. 32, 878 (1987).
[61] P. P. Kulish and E. K. Sklyanin, Solutions of the Yang-Baxter equation, J. Math. Sci. 19, 1596 (1982), doi:10.1007/BF01091463.
[62] A. G. Izergin and V. E. Korepin, The quantum inverse scattering method approach to correlation functions, Commun. Math. Phys. 94, 67 (1984), doi:10.1007/BF01212350.
[63] S. Pakuliak, E. Ragoucy and N. A. Slavnov, GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors, SIGMA 11, 063 (2015), doi:10.3842/SIGMA.2015.063.
[64] J. Fuksa, Bethe vectors for composite generalised models with $\mathfrak{g l}(2 \mid 1)$ and $\mathfrak{g l}(1 \mid 2)$ supersymmetry, SIGMA 13, 015 (2017), doi:10.3842/SIGMA.2017.015.
[65] H. J. De Vega, Yang-Baxter Algebras, Integrable Theories and Quantum Groups, Int. J. Mod. Phys. A 4, 2371 (1989), doi:10.1007/978-1-4615-3802-8_10.

Chapter 6

New symmetries of $\mathfrak{g l}(N)$-invariant Bethe vectors

Introduction:

In this Chapter we proposed a new representation of Bethe vectors in terms of inverse monodromy matrix entries. It was proven that such representation is related to the usual one, but with the converted parameters. This relation gives important formula describing symmetry of the highest coefficient in the scalar product.

Contribution:

I proved the central result of this Chapter Theorem 4.1. The statement of the theorem is related to the symmetry of Dynkin diagram for $\mathfrak{g l}_{N}$. The combinatorial formula (5.12) for the highest coefficient was obtained by me.

New symmetries of $\mathfrak{g l}(N)$-invariant Bethe vectors

A Liashyk ${ }^{1,2,3,4}$, S Z Pakuliak ${ }^{5,6}$, E Ragoucy ${ }^{7}$ and N Á Slavnov ${ }^{8}$
${ }^{1}$ Bogolyubov Institute for Theoretical Physics, NAS of Ukraine, Kiev, Ukraine
${ }^{2}$ Faculty of Mathematics, National Research University Higher School of Economics, Moscow, Russia
${ }^{3}$ Skolkovo Institute of Science and Technology, Moscow, Russia
${ }^{4}$ Institut Denis-Poisson, Universit de Tours, Parc de Grandmont, 37200 Tours, France
${ }^{5}$ Moscow Institute of Physics and Technology, Dolgoprudny, Moscow reg., Russia
${ }^{6}$ Laboratory of Theoretical Physics, JINR, Dubna, Moscow reg., Russia
${ }^{7}$ Laboratoire de Physique Thöorique LAPTh, CNRS and USMB, BP 110, 74941 Annecy-le-Vieux Cedex, France
${ }^{8}$ Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
E-mail: a.liashyk@gmail.com, stanislav.pakuliak@jinr.ru, eric.ragoucy@lapth.cnrs.fr and nslavnov@mi-ras.ru

Received 7 November 2018
Accepted for publication 23 January 2019
Published 1 April 2019
CrossMark
Online at stacks.iop.org/JSTAT/2019/044001
https://doi.org/10.1088/1742-5468/ab02f0

Abstract

We consider quantum integrable models solvable by the nested algebraic Bethe ansatz and possessing $\mathfrak{g l} \rightarrow>$,-invariant R-matrix. We study two types of Bethe vectors. The first type corresponds to the original monodromy matrix. The second type is associated to a monodromy matrix closely related to the inverse of the monodromy matrix. We show that these two types of Bethe vectors are identical up to normalization and reshuffling of the Bethe parameters. To prove this correspondence we use the current approach. This identity gives new combinatorial relations for the scalar products of the Bethe vectors. The q-deformed case, as well as the superalgebra case, are also evoked in the conclusion.

Keywords: algebraic structures of integrable models, integrable spin chains and vertex models, quantum integrability (Bethe ansatz)

Contents

1. Introduction 2
2. RTT-algebra and notation 3
2.1. Notation 5
3. Bethe vectors 6
3.1. Bethe vectors of the matrix $\boldsymbol{T}_{\boldsymbol{I}}+\boldsymbol{U}$, 7
4. Correspondence between two types of Bethe vectors 8
4.1. Gauss decomposition of the monodromy matrix 8
4.2. Bethe vectors and currents 11
5. Symmetry of the highest coefficients 15
5.1. Dual Bethe vectors 15
5.2. Symmetries of the scalar products 15
Conclusion 17
Acknowledgments 18
Appendix A. Proof of lemmas 4.2 and 4.4 18
Appendix B. Gauss coordinates and proof of theorem 4.2 20
References 23

1. Introduction

The algebraic Bethe ansatz developed by the Leningrad school [1-3] is a powerful method to investigate quantum integrable systems. One can use this approach to find the spectra of quantum Hamiltonians. Besides, this method can be used for calculating correlation functions of quantum integrable models [4-7]. In the framework of the algebraic Bethe ansatz this problem reduces to calculating scalar products of Bethe vectors.

The notion of the Bethe vector is one of the most important notions of the algebraic Bethe ansatz. These vectors belong to the physical space of states of the quantum model under consideration. They depend on a set of complex numbers called Bethe parameters. Under certain constraints imposed on the Bethe parameters, the Bethe vector becomes an eigenvector of the quantum Hamiltonian. In this case it is commonly called an on-shell Bethe vector. Otherwise, if the Bethe parameters are generic complex numbers, the corresponding vector sometimes is called an off-shell Bethe vector.

In the $\mathfrak{g l t}$, based model, the form of the Bethe vectors is quite simple [1-4]. However, in the quantum integrable models with higher rank symmetry algebra, the
construction of Bethe vectors becomes very intricate. There are several ways to specify these vectors. A recursive procedure for constructing the off-shell Bethe vectors was given in the papers [8-10]. An explicit formula for these vectors (trace formula) containing tensor products of the monodromy matrices and R-matrices was proposed in [11-13]. Another approach to this problem, based on projections in the current algebra was formulated in [14-17]. Explicit formulas for the Bethe vectors in terms of the monodromy matrix entries acting on a reference state were obtained in [18, 19].

In this paper we find a new symmetry of the Bethe vectors in the models with $\mathfrak{g l} \rightarrow>$,-invariant R-matrix. It is quite natural to expect that the symmetries of the monodromy matrix should generate corresponding symmetries of the Bethe vectors [10, $11,18,19]$. In the present paper we consider a mapping of the monodromy matrix T to a new matrix , closely related to the inverse monodromy matrix. We study the properties of the Bethe vectors associated to both matrices. We show how these two types of Bethe vectors are related to each other. As a direct application of this correspondence, we find new symmetries of the Bethe vector scalar products.

The paper is organized as follows. We recall basic notions of the algebraic Bethe ansatz in section 2. There we also give a notation used in the paper. Section 3 is devoted to the description of the properties of the Bethe vectors. The main results of our paper are given in section 4, where we use an identification of the Bethe vectors with certain combination of the generators of the Yangian double [19] to prove the claimed symmetry of the Bethe vectors. In section 5 we study symmetry properties of the scalar products of the Bethe vectors. Several appendices gather technical details of the proofs.

2. RTT-algebra and notation

We consider quantum integrable models solvable by the algebraic Bethe ansatz and possessing $\mathfrak{g l} \leftrightarrow>$,-invariant R-matrix

$$
\begin{equation*}
+=, \mathrm{e} \quad \mid \quad . \quad+=, \quad=\quad+=, \mathrm{e}-[\tag{2.1}
\end{equation*}
$$

Here e $\quad{ }_{t \# 2}^{\ell} \quad{ }_{t t}$ is the identity operator acting in the space ${ }^{\ell},{ }_{t x}$ are \gg matrices with the only nonzero entry equal to 1 at the intersection of the i th row and j th column, e ${ }_{t \mid x \neq 2}^{\ell} \epsilon_{t x} \mid \in_{x t}$ is the permutation operator acting in ${ }^{\ell} \mid{ }^{\ell}, c$ is a constant, and = are arbitrary complex parameters called spectral parameters.

The key object of the algebraic Bethe ansatz is a monodromy matrix + , with operator-valued entries $T_{i j}(u)$ acting in a Hilbert space (physical space of a quantum model). It satisfies an $R T T$-algebra:

$$
\begin{equation*}
+=,++,|\quad,+|\quad+,, \mathrm{e}+|\quad+,,++,| \quad, \quad+=,[\tag{2.2}
\end{equation*}
$$

Equation (2.2) yields the commutation relations of the monodromy matrix entries

$$
\begin{equation*}
\xi t x+,=\diamond+, \text { ne } \quad+=,+_{t>}+, \quad<x+,-\quad t>+,<x+,,[\tag{2.3}
\end{equation*}
$$

Using (2.2) it is easy to prove that

$$
\xi+,=+, \text { ne }]=
$$

where $\quad+, \mathrm{e} \quad{ }_{t}{ }_{t t}^{+}+$, is the transfer matrix. Thus, the transfer matrix is a generating function for the integrals of motion of the model under consideration.

We assume the following dependence of the monodromy matrix elements $T_{i j}(u)$ on the parameter u

$$
\begin{equation*}
t x^{+}+\text {, e } u_{t x} \cdot{ }_{p \geqslant)} t x \mathrm{gn}^{-p-2}= \tag{2.4}
\end{equation*}
$$

where and $t x \mathrm{~g}$ nare respectively the unity and nontrivial operators acting in the Hilbert space .

Remark. In fact, for our purpose, the condition (2.4) is optional. We impose this requirement on the asymptotics of + , only in order to facilitate the presentation. In quantum models of physical interest, the monodromy matrix may have a different asymptotic expansion, however, it can easily be reduced to the expansion (2.4).

We also assume that the space has a pseudovacuum vector] (reference state) such that

$$
\begin{align*}
& \left.\left.{ }_{t t}^{+}+,\right] \text {e } g_{t}+,\right]= \\
& \left.\left.{ }_{t x}+,\right] \text { e }\right]=j= \tag{2.5}
\end{align*}
$$

where $g_{t}+$, are some functions depending on the concrete quantum integrable model. The action of $T_{i j}(u)$ with $i<j$ onto the pseudovacuum is nontrivial. In the models of physical interest, multiple action of these operators onto] generates a basis in the space .

Since the monodromy matrix is defined up to a common normalization scalar factor, it is convenient to deal with the ratios:

$$
\begin{equation*}
\Lambda_{t} \notin, \text { e } \frac{i_{t} \not U,}{i_{t+2} H,}=\psi \mathrm{e} 0 \Rightarrow p p p \Rightarrow-0[\tag{2.6}
\end{equation*}
$$

We treat the functions $N_{t} \notin$, as free functional parameters (generalized model) up to the restriction which follows from (2.4).

Besides the original monodromy matrix $k \notin$, we also can consider its inverse matrix. For this, we first introduce the quantum determinant of the monodromy matrix $\mathrm{a}^{-\wedge} 4(k+U$,$) [20-23] by$

Here the sum is taken over all permutations p of the set $0=\Rightarrow p p>, q+4$, being the i th element of the permutation p of the set $0=\neq p p p>$. The quantum determinant belongs to the center of the RTT-algebra

$$
) \mathrm{a}^{-\wedge \triangle t} k+\mathbb{H},\left(=k_{t x}+, \mid \mathrm{e}\right][
$$

It is also easy to see that due to (2.5)

$$
\left.\mathrm{a}^{-\wedge \Delta} k \notin,(] \text { e } i_{2} H, i \bullet \uplus-\delta, p p i_{\ell} \nVdash-\mapsto-0, \delta,\right][
$$

Similarly to the quantum determinant, we can introduce quantum minors of the size $\quad(0 \leqslant W v>)$

Here the sum is taken over permutations of the set $0=\neq p p W, q+/<$ being the i th element of the permutation p of the set $0=\Rightarrow p p p$.

Now we can introduce the inverse monodromy matrix $\vec{B}^{3} \|$,

$$
\begin{equation*}
3, U, k \notin, \mathrm{e}= \tag{2.8}
\end{equation*}
$$

where the entries $\vec{r}_{t x} \notin$, are given by quantum minors divided by the quantum determinant

Here and mean that the corresponding indices are omitted.
It is known [23] that the inverse monodromy matrix satisfies the $R T T$-relation with opposite sign of the constant c, that is

Then, defining $k_{\boldsymbol{f}_{x}} \notin$, by

$$
\begin{equation*}
k_{\mathbf{f} x}+U, \text { e } \vec{k}_{\ell+2-x(\ell+2-t}+U,= \tag{2.10}
\end{equation*}
$$

we find that the elements $k_{\boldsymbol{f} x} \notin$, satisfy commutation relations

Since these commutation relations coincide with (2.3), we conclude that $k_{\mathrm{I}} \uplus$, satisfies the $R T T$-algebra (2.2) with the same R-matrix (2.1).

Thus, a mapping

$$
\begin{equation*}
k_{t x} H, \quad k_{\mathbf{i x}} H U \tag{2.11}
\end{equation*}
$$

is an automorphism of the RTT-algebra. The aim of this paper is to investigate the symmetries of the off-shell Bethe vectors (see section 3) related to this automorphism.

Note that this symmetry is specific to higher rank algebras (and the existence of several simple roots). Indeed, in the $\mathfrak{g l} \sharp 4$, case, one gets $k \notin$, e $k_{1} \notin$, , and the symmetry becomes trivial, while it becomes informative as soon as the rank is higher than 1 (see e.g. section 5).

2.1. Notation

In this section we describe the notation that we use below. First, we introduce a special notation for the combination $0 . s+U=$,

$$
\begin{equation*}
P \nVdash=, \text { e } 0 . s \nVdash=, \text { e } \frac{U-. \delta}{U-}[\tag{2.12}
\end{equation*}
$$

Second, we formulate a convention on the notation of sets of variables. We denote them by bar: l^{t}, , and so on. Here the superscripts refer to different sets. Individual elements of the sets are denoted by subscripts: $L_{x}^{L}, \quad{ }_{<}^{c}$, and so on. Thus, for example, Le $L^{2}=\mathscr{L}$ means that the set I is the union of two sets I^{2} and Γ°. At the same time, each of these two sets consists of the elements \mathbb{L}^{C} e $\mathbb{L}_{2}^{C} \mathscr{C}_{C}^{C}=p p p=E_{C}^{C}$, where e $0=1$.

Notation $)^{t}$. \rangle means that a constant $>$ is added to all the elements of the set \rangle^{t}. Subsets of variables are denoted by roman indices: $\mathcal{L},)^{c}$, and so on. In particular, we consider partitions of sets into subsets. Then the notation $\mathbb{C}=\mathscr{L}^{C} \quad \mathbb{L}^{C}$ means that the set \mathscr{L}^{c} is divided into two disjoint subsets \mathbb{L}^{C} and \mathbb{L}^{C}. The order of the elements in each subset is not essential.

To make the formulas more compact we use a shorthand notation for the products of functions depending on one or two variables. Namely, if the f-function (2.12) depends on a set of variables (or two sets of variables), this means that one should take the product over the corresponding set (or the double product over both sets). For example,

We use the same prescription for the products of commuting operators, their vacuum eigenvalues i_{t} (2.5), and the ratios of these eigenvalues $\Lambda_{t}(2.6)$

We will extend this convention for new functions that will appear later. Finally, by definition, any product over the empty set is equal to 1 . A double product is equal to 1 if at least one of the sets is empty.

3. Bethe vectors

One of the main tasks of the algebraic Bethe ansatz is to find the eigenvectors of the transfer matrix, that usually are called on-shell Bethe vectors. To do this, one should first construct off-shell Bethe vectors (or equivalently, Bethe vectors), that belong to the Hilbert space. The latter are special polynomials in $T_{i j}(u)$ with $i<j$ acting on]. In the simplest $\mathfrak{g l} \sharp \mathbb{1}$, case the Bethe vectors have the form $k_{2^{\wedge}} \nmid \mathbb{D}$,], where Џe $\left.U_{2}=p p p \neq, Z \mathrm{e}\right] \neq=p p$. However, in the general $\mathfrak{g l} \rightarrow>$, case, the form of the Bethe vectors is much more involved (see e.g. [19]).

In the $\mathfrak{g l} \mapsto$, based models, an off-shell Bethe vector $\mathbb{B} \nleftarrow$ depends on $N-1$ sets of complex numbers Le $L^{2}=\mathbb{L}=p p p L^{\mathscr{C}}-2$ called Bethe parameters. The Bethe vector $\mathbb{B}+\mathbb{L}$ is symmetric over permutations of the Bethe parameters within each subset l^{t}. However, it is not symmetric with respect to rearrangements of subsets, and also for replacements $L_{x}^{t} \quad L_{\lesseqgtr}$ If the Bethe parameters satisfy a special system of equations (Bethe equations), then the Bethe vector becomes an eigenstate of the transfer matrix. However, generically no constraint on the Bethe parameters $t_{<}^{t}$ are imposed.

Given a monodromy matrix $k H$, , the different procedures ${ }^{9}$ to construct off-shell Bethe vectors provide, up to a global normalization factor, the same vectors, although several different explicit forms may exist due to the commutation relations (2.3). Then, it remains to fix unambiguously this normalization factor. In this paper we use the same normalization as in [24]. Namely, we have already mentioned that a generic Bethe vector has the form of a polynomial in $T_{i j}$ with $i<j$ applied to the pseudovacuum]. Among all the terms of this polynomial, there is one monomial that contains the operators $T_{i j}$ with $j-i=1$ only. We call this term the main term and denote it by $\mathbb{B}+\mathbb{L}$. We fix the normalization of the Bethe vectors by fixing the numeric coefficient of the main term

Recall that we use here the shorthand notation (2.13) and (2.14) for the products of the operators $T_{i, i+1}$, the vacuum eigenvalues i_{t+2}, and the f-functions.

3.1. Bethe vectors of the matrix $\boldsymbol{T}_{\mathbf{l}}(\boldsymbol{u})$

We have seen in the previous section that the matrix $k_{1} \notin$, satisfies the $R T T$-relation (2.2). Using the definition of $k_{\boldsymbol{t} x}$ (see (2.9), (2.10) and (2.7)) one can find the action of the operators $k_{\boldsymbol{j} x}$ onto the pseudovacuum. A straightforward calculation shows that

$$
\begin{align*}
& \left.k_{\mathbf{f x}+U,]} \text { e }\right]=\psi<A= \\
& \left.\left.k_{\mathbf{t}^{t}} H,\right] \text { e } s_{t} H,\right]= \tag{3.2}
\end{align*}
$$

where

$$
\begin{equation*}
s_{t} H U, \text { e } \frac{0}{i_{\ell-t+2} H-\mapsto-\psi_{i} \delta,}{ }_{r \# 2}^{\ell-t} \frac{i_{p} H-F \delta,}{i_{p} H-H-0, \delta,}[\tag{3.3}
\end{equation*}
$$

It follows from (3.3) that the ratios of the vacuum eigenvalues have the following form

$$
\begin{equation*}
s_{t} H U, \text { e } \frac{\mathbb{q}_{t} H,}{\mathbb{s}_{t+2} H,} \text { e } \quad N_{\ell-t} H-\mapsto-\psi_{;} \delta,[\tag{3.4}
\end{equation*}
$$

Finally, the operators $k_{\boldsymbol{f} x}$ with $i<j$ act on] as creation operators.
Thus, we can construct off-shell Bethe vectors $\mathbb{B} L$, associated to the monodromy matrix $k_{\Perp} \notin$,. These vectors are uniquely defined provided their normalization is fixed. We do this as in (3.1). Namely, the main term $\mathbb{B}+L$ of the off-shell Bethe vector $\mathbb{B}+\mathcal{L}$ reads

[^20]Here we have extended the shorthand notation (2.13) and (2.14) to the products of the operators $k_{\mathbf{l}(t+2}$ and the vacuum eigenvalues \mathbb{s}_{t+2}.

The main result of this paper is a correspondence between $\mathbb{B}+\mathbb{L}$ and $\mathbb{B}+L$.

4. Correspondence between two types of Bethe vectors

In order to formulate the main result of this paper we introduce a mapping of the sets of Bethe parameters:

$$
\begin{equation*}
u+L_{1} \cdot u+L^{2}=\dot{L} \Rightarrow p p=L^{\ell-2} \text {, e } \subset L^{t-2}-\delta=L^{\ell-\wedge}-1 \delta \Rightarrow p p p L^{2}-\mapsto-0, \delta[\tag{4.1}
\end{equation*}
$$

Thus, this mapping reorders the sets Y^{t} and shifts every set I^{t} by $-\psi->, \delta$.
Theorem 4.1. The off-shell Bethe vectors \mathbb{B} and \mathbb{B} of integrable models with $\mathfrak{g l} \rightarrow$,-invariant R-matrix are related by

Here $2 L$ is the total cardinality of all the sets \beth^{t}, and according to (4.1)

We prove this theorem using identification of the off-shell Bethe vectors with certain combinations of the generating series of the Yangian double generators (see [19]). The main tool of this approach relies on the Gauss coordinates of the monodromy matrix rather than considering its matrix elements $T_{i j}(u)$.

4.1. Gauss decomposition of the monodromy matrix

The idea of using the Gauss decomposition of the monodromy matrix satisfying the $R T T$-relation (2.2) goes back to the paper [25] where this decomposition was used to prove the isomorphism between R-matrix and current realization of the quantum affine algebras. Then the Gauss decomposition of the monodromy was used in the series of papers [14-17] to find closed and explicit formulas for the off-shell Bethe vectors. The Bethe vectors were expressed in terms of the Gauss coordinates using a projection method developed in those papers. In this section we find the relation between the Gauss coordinates of the original $k \not H$, and the 'transpose-inverse' monodromy $k_{\mathbf{1}} H$, . It will imply the statement of theorem 4.1.

As it was shown in the paper [19], in order to obtain the off-shell Bethe vectors in the form where the main term $\mathbb{B} \not \psi_{L}$, is given by (3.1), one has to use the following Gauss decomposition of the monodromy matrix $k \notin$, (for $i<j$):

$$
\begin{equation*}
k_{t x}+U, \text { e } \mathrm{t}_{x t}+\mathbb{U}, B_{x}+\mathbb{U} . \underset{x k p \leqslant \ell}{ } \mathrm{t}_{p t}+\mathbb{U}, B_{p}+\mathbb{H}, \mathrm{q}_{x p} H,= \tag{4.4}
\end{equation*}
$$

$$
\begin{align*}
& k_{t t} \notin, \text { e } B \notin, . \underset{ }{t k p \leqslant \ell}{ }^{\mathrm{t}}{ }_{p t} \notin, B_{p} \notin, \mathrm{q}_{t p} \Psi U= \tag{4.5}\\
& k_{x t} \notin, \text { e } \quad B_{x} \not \uplus, \mathrm{q}_{t x} \not \uplus, . \underset{x k p \leqslant \ell}{ }{ }^{\mathrm{t}}{ }_{p x} \notin, B_{p} \notin, \mathrm{q}_{t p} \notin,[\tag{4.6}
\end{align*}
$$

These formulas are the result of product of three matrices

$$
\begin{equation*}
k \notin, \text { e } \quad U, \varsigma \quad U, \varsigma \quad U,[\tag{4.7}
\end{equation*}
$$

In the above formula, \forall, is an upper-triangular matrix with unities 0 on the diagonal, \notin, e ${ }^{-} \mathrm{E} \# B_{2} H,=B+U,=p p p=B_{\ell} H$, , is a diagonal matrix, and H, is a lower-triangular matrix again with unities on the diagonal (see appendix B for an example of these matrices in the case $N=3$).

It is clear from the reference state definition (2.5) that the Gauss coordinates $\mathrm{q}_{t x}+U$, annihilate this state: $\mathrm{q}_{t x} \notin$,] e]. The definition also implies that it is a common eigenstate of the matrix $\quad U$, diagonal elements: $B \notin$,$] e i_{t} \notin$,] and that the Gauss coordinates $\mathrm{t}_{x t} \notin \mathbb{U}$, create non-trivial vectors in the space of states of the quantum integrable models.

In order to describe the 'transpose-inverse' monodromy matrix $k_{\mathbb{1}} \notin$, in terms of the Gauss coordinates $\mathrm{t}_{x t} \nexists,, \mathrm{q}_{t x} \notin,, k_{i}(u)$ we have to invert the matrices $\quad U, \quad \notin$, and $H,$. The Gauss coordinates of the inverse matrices

$$
\begin{align*}
& \notin,{ }^{-2} \mathrm{e} \cdot{ }_{t k x} \in_{t x}{ }^{3}{ }_{x t} \not U,= \\
& \mathbf{F} H,,^{-2} \mathrm{e}^{-} \mathrm{E} \# B_{2} H,,^{-2}=B+,^{-2}=p p p=B_{l} H,{ }^{-2},= \tag{4.8}\\
& H,^{-2} \mathrm{e} \cdot{ }_{t k x} \epsilon_{x t} 3_{t x} H,=
\end{align*}
$$

are given by the following.
Lemma 4.1. The Gauss coordinates $\mathfrak{\beta}_{x t} \notin$, and $\hat{q}_{t x} H,, 0 \leqslant \psi v \leqslant \leqslant>$ are

$$
\begin{align*}
& \mathrm{q}_{t x} \notin, \mathrm{e}_{p \#)}^{x-t-2}+{ }^{p+2}{ }_{x l t_{\ell} l \cdots l t_{1} l t} \mathrm{q}_{t_{\ell}(x} H, \mathrm{q}_{t_{\ell-1}\left(t_{\ell}\right.} \Psi, \mathrm{q}_{t_{1}\left(t_{2}\right.} H, \mathrm{q}_{t\left(t_{1}\right.} \notin,[\tag{4.10}
\end{align*}
$$

Proof of this Lemma follows from a direct verification.
According to the assumed dependence (2.4) of the monodromy matrix $k \not U$, on the spectral parameter u we may conclude from the formulas (4.4)-(4.6) that the Gauss coordinates $\mathrm{t}_{x t} \notin, \mathrm{q}_{t x} \notin,, k_{i}(u)$ have the following dependence on the parameter u

The zero mode operators $\mathrm{t}_{x t}$ g $\mathrm{n} \mathrm{q}_{t x \mathrm{~d}}$ g nand $k_{i}[0]$ play an important role. In particular, according to the $R T T$ commutation relations (2.2) the Gauss coordinates with bigger
difference of the indices $j-i$ may be expressed as commutators of zero-mode operators and Gauss coordinates with smaller difference $j-i$. In what follows we will need following

Lemma 4.2. The Gauss coordinates $\mathrm{t}_{x t} \notin, \mathrm{q}_{t x} H$, and $\bigotimes_{x t} \notin, \mathcal{\Theta}_{t x} \notin$, can be written as multiple commutators $(j>i)$

and
$\mathrm{q}_{t x} H$, e $\delta^{t+2-x} \mathrm{q}_{t(t+2} \mathrm{g} \mathrm{n}=\mathrm{q}_{t+2(t+\wedge} \mathrm{g} \mathrm{n}=\mathrm{q}_{x-3(x-\wedge} \mathrm{g} \mathrm{n}=\mathrm{q}_{x-\wedge(x-2 \mathrm{~g}} \mathrm{n} \mathrm{q}_{x-2(x} H, \quad=$
$\mathrm{q}_{t x} \nexists, \mathrm{e}-\delta^{t+2-x} \quad \mathrm{q}_{t(t+2} H,=\mathrm{q}_{t+2(t+\wedge} \mathrm{g} \mathrm{n}=\mathrm{q}_{t+\wedge}\left(t+3 \mathrm{~g} \mathrm{n}=\mathrm{q}_{x-\wedge(x-2} \mathrm{g}\right] \mathrm{n}=\mathrm{q}_{x-2(x} \mathrm{g} \mathrm{n}[$

Proof is based on the $R T T$-relation for the monodromy matrix $k H$, and its inverse $k^{3} \not U,$. Details are given in appendix A.

After applying the transposition with respect to the anti-diagonal to the inverse monodromy matrix $k_{3} \nVdash$, we obtain for the matrix $k_{\mu} \notin$, a Gauss decomposition (for $i<j$)
$k_{\mathbf{1} x} H$, e $B \ell+2-x H,{ }^{-2} \mathfrak{\vartheta}_{\ell+2-t(\ell+2-x} H, . \int_{2 \leqslant p k \ell+2-x} \mathfrak{q}_{p(\ell+2-x} H, B_{p} H,{ }^{-2} \mathfrak{\beta}_{\ell+2-t(p} H,=$
$k_{\mathbf{H}} H$, e $B_{\ell+2-t} H,^{-2} \cdot \int_{2 \leqslant p k \ell+2-t} \exists_{p(\ell+2-t} H, B_{p} H,,^{-2} \mathfrak{Z}_{\ell+2-t(p} H,=$

similar to the Gauss decomposition (4.4)-(4.6) of the original monodromy matrix $k \notin$, . The only crucial difference is the ordering of the 'new' Gauss coordinates in the formulas (4.14)-(4.16).

We call a product of the Gauss coordinates normal ordered if all the coordinates $\mathrm{t}_{x t} \notin$, are on the left of the product of all other Gauss coordinates and all $\mathrm{q}<\Psi$, are on the right. This ordering is adapted to the action of the Gauss coordinates onto reference state described above.

By construction, the expressions (4.4)-(4.6) of the monodromy matrix elements $T_{i j}(u)$ in terms of the Gauss coordinates $\mathrm{t}_{x t} \notin,, \mathrm{q}_{t x} \notin, i<j$ and $k_{i}(u), \ell=\star \mathrm{e} 0=p p_{1}=>$ are written in the normal ordered form. However, the formulas (4.14)-(4.16) for the inverse monodromy matrix are not normal ordered. The normal ordering is given by the following.

Theorem 4.2. The normal ordered Gauss decomposition of the monodromy $k_{1}+\mathbb{U}$, has literally the same form as in (4.4)-(4.6) with the Gauss coordinates $\mathrm{t}_{x t} \Psi_{U}, \mathrm{q}_{t x} \mathbb{U}_{\mathrm{H}}, k_{j}(u)$ replaced by ${ }^{\S}{ }_{x t} \notin$, , $\AA_{t x} \notin$, $B_{x} \notin$, where (for $i<j$)

$$
\begin{equation*}
\mathfrak{§}_{x t} \nVdash, \text { e } \exists_{\ell+2-t(\ell+2-x} \not U-\mapsto-A . \quad 0, \delta,= \tag{4.17}
\end{equation*}
$$

$$
\begin{align*}
& \Phi_{x} H, \text { e } \frac{0}{B_{\ell+2-x} H-\mapsto-A \delta,}{ }_{F \# 2}^{\ell-x} \frac{B_{p} H-F \delta,}{B_{p} H-+F-0, \delta,}= \tag{4.18}\\
& \S_{t x} H, \text { e } \dot{q}_{\ell+2-x(\ell+2-t} H->-A .0, \delta,[\tag{4.19}
\end{align*}
$$

Proof is based on the presentation of the Gauss coordinates as multiple commutators. The shifts of the indices in (4.17) and (4.19) can be seen from the formulas (4.14) and (4.16), while the shifts of the spectral parameters and transformation of the diagonal generating series $B_{x} \notin, \quad B_{x} \notin$, follow from the commutation relations between Gauss coordinates. They are gathered in appendix B. Note that formulas (4.18) are in accordance with the action of the diagonal matrix elements (3.2) onto the reference state].

4.2. Bethe vectors and currents

This section is devoted to the proof of theorem 4.1. We heavily use the results of the paper [19] where the off-shell Bethe vectors were explicitly constructed from the current generators of the super-Yangian double $g R+\mathfrak{g l} h W Z,$. . In what follows we will use some results of this paper in the case $m=N, n=0$.

The Yangian double associated with the algebra $\mathfrak{g l} \mapsto$, is a Hopf algebra of a pair of generating \gg matrices $k H$, satisfying the commutation relations

$$
\begin{equation*}
\ell H=, k^{\kappa} \not U,\left|\quad,+\left|k^{\nu}+,, \mathrm{e}+\left|k^{\nu}+,, k^{\kappa} \not U,\right| \quad, \ell \not U=,=\right.\right. \tag{4.20}
\end{equation*}
$$

where $=\mathrm{e} \quad$. Being rewritten in terms of the Gauss coordinates $\mathrm{q}_{t x} \notin, \mathrm{t}_{x t} \notin$, and $B_{4} \notin$, (4.4)-(4.6) and generating series (currents) [25]
the commutation relations (4.20) can be presented in the form (so called 'new' realization of the Yangian double)

$$
\begin{align*}
& B_{t}+U, \epsilon_{t}+, B_{t}+U,{ }^{-2} \text { e } P+\neq, \epsilon_{t}+= \\
& E_{t+2}^{\rightarrow} \notin, \epsilon_{t}+, \overrightarrow{R_{+2}} \not+U,{ }^{-2} \text { e } P H=, \epsilon_{t}+,= \tag{4.22}\\
& B+U,{ }^{-2} f_{t}+, B_{t}{ }^{+} U, \text { e } P+\neq, f_{t}+,= \\
& \overrightarrow{B_{+2}+U,}{ }^{-2} f_{t}+, \overrightarrow{B_{+2}} \notin, \text { e } P \notin=, f_{t}+,= \tag{4.23}\\
& F H=, \epsilon_{t} H, \epsilon_{t}+\text {, e } P+\neq, \epsilon_{t}+, \epsilon_{t} H,= \tag{4.24}\\
& P+\neq, f_{t} \nVdash, f_{t}+\text {, e } P \not U=, f_{t}+, f_{t} \not U,= \tag{4.25}\\
& -U-\quad-\delta, \epsilon_{t} \nexists, \epsilon_{t+2}+\text {, e } \not U-, \epsilon_{t+2}+, \epsilon_{t} \nVdash,= \tag{4.26}
\end{align*}
$$

$$
\begin{align*}
& -U-, f_{t} H, f_{t+2}+, \text { e } U-\quad-\delta, f_{t+2}+, f_{t} H,= \tag{4.27}\\
& \varepsilon f_{t} H,=\epsilon_{x}+, \text { ne } \delta \alpha_{t(x} \alpha H=, \sum B_{t}^{+} H, \text { с } B_{t+2}^{+}+U,{ }^{-2}-B_{t}^{-}+, \succ B_{t+2}^{-}+,{ }^{-2}(= \tag{4.28}
\end{align*}
$$

and the Serre relations for the currents $E_{i}(u)$ and $F_{i}(u)$. In (4.28) the symbol $\alpha \mathbb{U}=$, means the additive a-function given by the formal series

$$
\begin{equation*}
\alpha H=, \text { e } \frac{0}{U} \int_{F} \frac{p}{U^{p}}[\tag{4.29}
\end{equation*}
$$

The Borel subalgebra in the Yangian double generated by matrix $T^{+}(u)$ is isomorphic to the standard $\mathfrak{g l} \mapsto$, Yangian [23]. Then, we can identify the monodromy matrix $k H$, discussed in the previous sections with the generating matrix $T^{+}(u)$. We also identify the Gauss coordinates of these monodromy matrices

$$
\begin{align*}
& \mathrm{t}_{x t}^{+} \not+\mathrm{U} \text {, e } \mathrm{t}{ }_{x t}+\mathbb{H} \text {, e } \int_{f \geqslant)} \mathrm{t}{ }_{x t} \mathrm{Z}_{\mathrm{Z}} \mathrm{~V} U^{f-2}= \\
& \mathrm{q}_{t x}^{+} \notin, \text { e } \mathrm{q}_{t x} \nVdash \text {, e } \int_{f \geqslant)} \mathrm{q}_{t x} \mathrm{Q}_{\mathrm{Z}} U^{-f-2}= \tag{4.30}\\
& B_{t}^{+} H, \text { e } B t U, \text { e } \quad \int_{f \geqslant)} B g Z U^{-f-2}[
\end{align*}
$$

The currents $F_{i}(u), B_{x}^{+} \not U$, and $E_{i}(u), B_{x}^{-} \notin$, form the so-called dual Drinfeld Borel subalgebras with their own Drinfeld coproduct properties. According to the general theory of projections developed in [26] one can define the projections \rightarrow and \rightarrow onto intersections of these current Borel subalgebras with the standard Borel subalgebras formed by the Gauss coordinates $\mathrm{t}_{x t}^{+} \not \Psi_{,} \mathrm{q}_{t x}^{+} \notin$, , $B_{x}^{+} \notin$, and $\mathrm{t}_{x t}^{-} \notin,, \mathrm{q}_{t x}^{-} \notin,, B_{x}^{-} \notin$, .

Due to the results of the papers $[14,19]$ the off-shell Bethe vectors can be identified with the normalized projection of the product of the currents. In order to formulate this result we need to introduce some notation. For any scalar function $t \in=$, of two variables and any set \varnothing e $c U_{2} \neq p p=U$. we define the product

$$
\begin{equation*}
\left(H_{t k x} H_{x} \exists_{t},[\right. \tag{4.31}
\end{equation*}
$$

Let $t \#,$, , e $0=p p q=>-0$ be the ordered product of the currents

$$
\begin{equation*}
\mathcal{H}_{t}+\mathbb{H}, \text { e } \epsilon_{t}+U_{.}, c \epsilon_{t} \mathbb{U}_{.-2}, \epsilon_{t} U^{2}, c \epsilon_{t} H_{2},[\tag{4.32}
\end{equation*}
$$

Note that this product is not symmetric with respect to permutation of the parameters u_{i}, as it follows from the commutation relation (4.24).

One of the main result of the papers [14, 19] is the identification of the off-shell Bethe vectors with the projections of the product of the currents:

Observe that the product ($, \Psi^{p}, \mathcal{H}_{p} \not \Psi^{p}$, is symmetric with respect to permutations within the set ${ }^{p}$, due to the commutation relations (4.24). As a result, the Bethe vector given by equation (4.33) is symmetric with respect to the permutations of the Bethe parameters of the same type.

Mathematically rigorous definitions of the projections onto different type Borel subalgebras intersections can be found in the paper [26]. They use the different Hopf structures associated with different type of Borel subalgebras in the Yangian double. However, one may understand the projection entering the equation (4.33) in a more simple way. In order to calculate this projection one has to replace each current by the difference of the Gauss coordinates (4.21) and then use the commutation relations in the Yangian double (4.20) between 'positive' and 'negative' Gauss coordinates sending all 'negative' coordinates to the left and all 'positive' coordinates to the right. After such ordering the action of the projection amounts to remove all the terms containing at least one 'negative' Gauss coordinate on the left. Of course, practical implementation of this program is rather heavy. Fortunately, there exist effective methods to perform this procedure [14, 19].

In this paper we are not going to describe the methods which allow to calculate the projection in (4.33) and re-express the result of this calculation in terms of the original monodromy matrix element. We refer the interested reader to the paper [19]. In order to prove the statement of theorem 4.1 we will need only the closed expression (4.33).

The main trick in the calculation of the projection in (4.33) is the appearance of the so called composed currents $F_{j i}(u), i<j$ in the commutation relations of the currents $F_{j, s+1}(u)$ and $F_{s i}(u)$ for (e 孔. $0=p p q=f-0$. Then the rewriting of the projection in (4.33) in terms of the monodromy matrix elements relies on the fact that projections of the composed currents $j_{j}^{+} \epsilon_{x t} \nexists U$, coincide with the Gauss coordinates $\mathrm{t}{ }_{x t} \notin U$, (see appendix A of the paper [19])

$$
\begin{equation*}
j_{J}^{+}+\epsilon_{x t} \not \uplus, \text { e } \delta^{x-t-2} \mathrm{t}_{x t}^{+} \notin, \text { e } \delta^{x-t-2} \mathrm{t}{ }_{x t} \notin,[\tag{4.34}
\end{equation*}
$$

In order to prove the statement (4.2) let us consider the rhs of this equality using the expression (4.33). We have

$$
\begin{align*}
& \text { p\#2 } \tag{4.35}
\end{align*}
$$

Here we have introduced the ordered product $\mathcal{F}_{t} \not{ }^{t}$, of the shifted currents given by the product (4.32) with the currents $F_{i}(u)$ replaced by the shifted currents $e_{t} \notin$,

$$
\begin{equation*}
\mathrm{s}_{t} H, \mathrm{e}-\epsilon_{\ell-t} \Pi-\mapsto-\psi_{3} \delta,[\tag{4.36}
\end{equation*}
$$

In (4.35), we also used the identity $P+\neq, P \nVdash-\delta=$, e 0 and the fact that the function $P H=$, is translation invariant which implies ($\quad \nVdash-\lambda$ e ($\quad \nVdash$). We also used the commutation relations between currents $e^{s} t U$, and $e^{s}{ }_{t+2}+$, which follow from (4.26). The fact that one can use these commutation relations under the action of the projection was proved in paper [14].

The assertion (4.2) of theorem 4.1 now follows from two lemmas.
Lemma 4.3. The mapping

$$
\begin{align*}
& \epsilon_{t} \notin, \equiv e_{t} \notin, \text { e }-\epsilon_{\ell-t} \notin->-\psi \delta \delta=\psi \mathrm{e} 0 \Rightarrow p p p \Rightarrow-0= \\
& f_{t} H, \equiv f_{t} \nexists, \mathrm{e}-f_{\ell-t} H U-\mapsto-\psi_{i} \delta,=\psi \mathrm{e} 0 \Rightarrow p p p \Rightarrow-0= \tag{4.37}
\end{align*}
$$

is an automorphism of the Yangian double given by the commutation relations (4.22)(4.28).

Proof is based on a direct verification. It is clear that the automorphism (4.37) is induced by the corresponding automorphism (2.11) of the $R T T$-algebra.

Lemma 4.4. The projections of the composed currents $j_{j}^{+}{ }^{+} e^{\mathrm{s}}{ }_{x t}+U,,, i<j$ which appear in the commutation relations of the currents $\mathbb{e}_{x(c+2} H$, and $\mathrm{e}_{c t} H$, for $(\mathrm{e}\} .0=p p p=-0$ coincide with the shifted Gauss coordinates of the 'transpose-inverse' monodromy matrix $k_{1} H$,

$$
\begin{align*}
j_{j}^{+}+e^{\mathrm{S}} x t+U, & \text { e } \delta^{x-t-2} \mathfrak{\beta}_{\ell+2-t(\ell+2-x}^{+} H-\mapsto . \tag{4.38}\\
\text { e } \delta^{x-t-2} \mathfrak{\beta}_{\ell+2-t(\ell+2-x} H-\mapsto, & 0-A \delta,
\end{align*}
$$

given by the multiple commutators (4.12).
Proof is given in appendix A.
Proof of theorem 4.1. As we can see from the equation (4.35) the Bethe vector $\mathbb{B}+L_{1}$ for the generalized quantum integrable models built from the 'transpose-inverse' monodromy matrix is given by the same formula as in (4.33) with currents $F_{i}(u)$ replaced by the currents $e_{t}{ }_{t} \notin$. They satisfy the same commutation relations (4.22)-(4.28) with the currents $\oint_{t} \notin$, and $\mathscr{B}_{x}^{-} \not U$, due to lemma 4.3. Now using the statement of lemma 4.4 we can apply all the techniques developed in the papers $[14,19]$ and prove that $\mathbb{B}+\mathbb{L}$ is the off-shell Bethe vector constructed from the monodromy matrix elements $k_{\mathbf{f}_{x}} \notin$, (2.10). Then, this proves the statement of theorem 4.1.

5. Symmetry of the highest coefficients

As a direct application of equation (4.2), we study symmetry properties of the scalar products. For this, we should introduce dual Bethe vectors.

5.1. Dual Bethe vectors

Dual Bethe vectors belong to the dual space and can be obtained by the successive action of $T_{j i}$ with $i<j$ from the right onto a dual pseudovacuum] $\mathcal{F}\langle$. They also depend on $N-1$ sets of complex numbers 0$\left.)^{2} \Rightarrow{ }^{\wedge} \Rightarrow p p \neq\right)^{\ell-2}$. Dual Bethe vectors become dual eigenstates of the transfer matrix, if these parameters enjoy the system of Bethe equations. For more details about these vectors, we refer the reader to the works [19, 24].

For the moment, it is important for us that the dual Bethe vectors can be obtained by a transposition of ordinary Bethe vectors. Namely, a mapping $c k_{t x} \notin, /$ e $k_{x t} \notin U$, defines an anti-automorphism of the $R T T$-algebra [23]:

$$
\begin{equation*}
c \text { mot , e } c \nleftarrow, c \nleftarrow m,[\tag{5.1}
\end{equation*}
$$

Here A and B are arbitrary products of the monodromy matrix entries $T_{i j}$. Extending this mapping to the Bethe vectors by c] (e], one can prove that [18, 19]

$$
\begin{equation*}
\mathbb{C}+\text {, e e } c \mathbb{B}+1= \tag{5.2}
\end{equation*}
$$

where $\mathbb{C}+$, is the dual Bethe vector. Using this formula one can prove that the dual Bethe vectors also satisfy a property similar to (4.2). Namely, let $\mathbb{C}+$), and $\mathbb{C}+$), be dual Bethe vectors respectively associated to the monodromy matrices $k \not U$, and $k_{1} \notin$, . Then

$$
\begin{equation*}
\left.\left.\mathbb{C}+1, \mathrm{e}+0,=1)_{c \# 2}^{\ell--} P\right)^{c+2} \Rightarrow^{c}, \mathrm{I}^{-2} \mathbb{C} u+\right),([\tag{5.3}
\end{equation*}
$$

Here the notation is the same as in (4.2).

5.2. Symmetries of the scalar products

The scalar products of the Bethe vectors are defined as

$$
\begin{equation*}
\mu 丹 L, \text { e } \mathbb{C}+, \mathbb{B} \nleftarrow[\tag{5.4}
\end{equation*}
$$

The sets) and ν are generic complex numbers such that 2$)^{t}$ e $2 L^{t}$ for $ч$ e $0=p p_{1}=>-0$. If the latter condition does not hold, then the scalar product vanishes.

The scalar product of generic Bethe vectors can be described by a sum formula [24]

$$
\begin{equation*}
\left.\left.\mathbb{C}+, \mathbb{B}+\mathscr{L}_{,} \text {e } \int Y_{\mathrm{rpt} 4}+\right)_{\mathrm{I}}=\right)_{\mathrm{II}} Y_{4}=Y_{\mathrm{II}},{\underset{<\# 2}{\ell-2} N_{<} H_{\mathrm{I}}^{<}, N_{<} \dot{4}_{\mathrm{HI}}^{<},[}^{\ell} \tag{5.5}
\end{equation*}
$$

 and $\left.c)_{\mathrm{I}}^{<} \Rightarrow_{\mathrm{II}}^{<} \emptyset\right)^{<}$, such that $2{\underset{\mathrm{~T}}{2}}_{<}^{e} 2)_{\mathrm{I}}^{<}$. The sum is taken over all possible partitions of this type. The coefficients $Y_{\mathrm{rpt} 4}$ are rational functions completely determined by the
R-matrix. They do not depend on the ratios of the vacuum eigenvalues $\Lambda_{<}$. Using the results of section 4 we can easily find symmetry properties of these coefficients.
 \left.$2{\underset{Y}{<}}^{<} 2\right)_{\mathrm{I}}^{<}$, the corresponding coefficient $Y_{\mathrm{rpt} 4}$ satisfies the following property:
where $u \nrightarrow$), is defined in (4.1).
Proof. We compute the scalar product in two different ways. First, performing in

$$
\begin{align*}
& \mathbb{C} u+1,\left(\mathbb{B} u+L_{L}\left(\mathrm{e} \int_{\ell-2} Y_{\mathrm{rpt} 4} u\right)_{\mathrm{I}},=u+\right)_{\mathrm{II}}, u \psi_{4},=u+\psi_{\mathrm{II}},(\\
& \mathcal{E}^{\left.\stackrel{\ell}{\mathbf{I}}{ }^{-2} N_{<}+H_{\mathrm{I}}^{\ell-<}-B \delta, N_{<}\right)_{4 \mathrm{HI}}^{\ell}-<-B \delta,[5]} \tag{5.7}
\end{align*}
$$

Due to (3.4) we obtain

Finally, using (4.2) and (5.3) we transform the lhs as follows:

On the other hand, the scalar product of the Bethe vectors $\mathbb{E}+\dagger$, and $\mathbb{B}+L$, is given by the sum formula

Since the functions $\Delta_{t} t \in$, are free functional parameters, the equations (5.9) and (5.10) can give the same result if and only if the coefficients of every product of \AA_{t} coincide. Thus, we arrive at (5.6).

In particular, we can consider a partition such that $)_{\mathrm{I}} \mathrm{e}$) and $\eta_{\mathrm{I}} \mathrm{e}$ l. Then respectively $)_{\text {II }}$ e $\Lambda_{\text {II }}$ e. The corresponding coefficient $Y_{\text {rpt } 4}$ is called the highest coefficient. We denote it by $E+L_{\text {: }}$:

$$
\begin{equation*}
\left.E+L_{1} \text { e } Y_{\mathrm{rpt} 4}+\right)=-I=,[\tag{5.11}
\end{equation*}
$$

Then it follows immediately from (5.6) that

Conclusion

In this paper we have found a new symmetry of Bethe vectors. As we have mentioned, an off-shell Bethe vector is a polynomial in the monodromy matrix entries $T_{i j}$ applied to the pseudovacuum. The new symmetry gives a description of the Bethe vector in terms of the entries of the monodromy matrix $k_{\boldsymbol{F}^{x}(2.10) \text {. As we have already mentioned, this }}$ symmetry is specific to the algebras with the rank higher than 1 . It cannot be seen on the Bethe vectors corresponding to the $\mathfrak{g l} \sharp$, case, as it becomes trivial.

In paper [27], we have used already the symmetry of the Bethe vectors in the models with $\mathfrak{g l}+\mathrm{d}$,-invariant R-matrix. In that paper the equivalence of the two representations was proved by the use of a recursion for the Bethe vectors. Generalization of this method to the case of higher rank algebras is possible, but is technically very complex. Therefore, our proof is based on the Gauss decomposition of the monodromy matrix and the underlying current algebra. This approach was found to be very powerful in the study of the Bethe vectors for the models with high rank of symmetry [19].

As a direct application of the new symmetry, we proved the identity for the highest coefficients of the scalar product (5.12). However, this is not the only possible application. The new representation allows one to study the properties of combined operators that arise from the original monodromy matrix $T_{i j}$ and from the monodromy matrix $k_{\mathbf{k} x}$. Recently this type of operators was considered in [28]. There, in particular, it was conjectured that in $\mathfrak{g l t d}$,-invariant spin chains the operator

$$
\begin{equation*}
t \quad U, \text { e } k_{\wedge_{3}} H, k_{\mathbf{p} 3} U,-k_{23} U, k_{\mathbf{p}} \not U, \tag{5.13}
\end{equation*}
$$

can be used for generating on-shell Bethe vectors. Our result allows us to obtain explicit formulas for the action of $B^{g}(u)$ onto the Bethe vectors using known action formulas of the operators $T_{i j}(u)$ [18]. This allowed us to prove the conjecture of [28] and show that it is valid only for special (symmetric) representations of the Yangian [27].

Concluding, we would like to mention that symmetries of the $R T T$-algebra, analogous to those considered in this paper, also exist for the $R T T$-relations associated to the
${ }_{m} \mathfrak{g l}_{f}$, algebras and $\mathfrak{g l}+W Z$, superalgebras. As in the case discussed above, these symmetries generate new representations for the Bethe vectors associated with the inverse monodromy matrix. In turn, these representations imply symmetries of scalar products, in particular, symmetries of the highest coefficients. For the sake of completeness, we present the latter in the case of $m_{m} \mathfrak{t g}_{f}$, and $\mathfrak{g l}+W Z$, algebras.

For q-deformed algebra case ${ }_{m} \mathfrak{t g l}_{f}$, , the highest coefficient $E^{n} \dagger$ L, was introduced in [29]. Its symmetric property formally coincides with (5.12):
where
and

$$
\begin{equation*}
F^{m}+=L, \text { e } \frac{l-l^{-2} L}{-1} \tag{5.16}
\end{equation*}
$$

Relation (5.14) for the models described by ${ }_{m} \mathfrak{g l}_{3}$, algebra was proven in [30] via explicit representations for the highest coefficient.

For the superalgebra case $\mathfrak{g l t} W Z$, (with $W=Z<$] and the grading [i] $=0$ for $4 \leqslant W$ and $[i]=1$ for $i>m$), the highest coefficient $E^{f n}+L$, was introduced in [24]. The relations between highest coefficients have slightly more complex form:

$$
\begin{align*}
& E^{f n} u \neq \text {) } u+L_{L}\left(\mathrm{e}+0,{ }^{=^{k}} E^{n}{ }^{f}+\dot{L}_{b \mid-b}^{-}\right. \tag{5.17}
\end{align*}
$$

with

Note that equation (5.17) maps the highest coefficient of the scalar product in the $\mathfrak{g l}+W Z$, superalgebra to that of the scalar product in the $\mathfrak{g l}+Z W$, superalgebra. The map $\delta \equiv-\delta$ is specific to the superalgebra case (see [24] for more details).

Let us stress once more that equations (5.14) and (5.17) are direct consequences of the symmetries of the Bethe vectors. The latter can be proved exactly by the same method used in this paper.

Acknowledgments

The research of AL was carried out within the HSE University Basic Research Program and funded by the Russian Academic Excellence Project ' $5-100$ ' and by Young Russian Mathematics award. The work of SP was supported in part by the RFBR grant 16-01-$00562-\mathrm{a}$. NAS was supported by the Russian Foundation RFBR-18-01-00273a.

Appendix A. Proof of lemmas 4.2 and 4.4

We prove the statement of lemma 4.2 using the commutation relations between Gauss coordinates. In order to obtain these commutation relations from the $R T T$-relation (2.3) we use the approach of paper [25]. We also use the fact that we consider the
generalized model, and hence, eigenvalues of the diagonal monodromy matrix elements are arbitrary functional parameters. This means that after substitution of the Gauss decomposition formulas into commutation relations (2.3), we obtain equations for all possible products of the currents $B_{t} H, B_{x}+$, after normal ordering of the Gauss coordinates according to the rules described before theorem 4.2. In particular, we obtain

$$
\begin{align*}
& E_{t} \notin, \mathrm{t}_{t+2(t+}+B \notin,,^{-2} \text { e } P+\neq, \mathrm{t}_{t+2(t+}+, s \notin=, \mathrm{t}_{t+2(t} \notin,= \tag{A.1}\\
& E_{t} \notin,{ }^{-2} \mathrm{q}_{t(t+2}+, R_{t} \notin, \text { e } P+\neq, \mathrm{q}_{t(t+2}+, . s \nexists=, \mathrm{q}_{t(t+2} H U,= \tag{A.2}\\
& \text { g1 } t\left(t+2+, \neq{ }_{x+2(x)} \notin, \text { ne } \alpha_{t(x} s+\neq, \quad B \notin, B_{t+2} \notin,^{-2}-B_{t}+, B_{+2}+,^{-2}(=\right. \tag{A.3}\\
& \mathrm{t}_{x(x-2}+, \mathrm{t}_{x-2(t)} \mathrm{U}, \text { e } P+も, \mathrm{t}_{x-2(t} \mathrm{U}, \mathrm{t}_{x(x-2}+, \\
& \text {. } s \notin=, \Sigma \mathrm{t}_{x t}+,-\mathrm{t}_{x t} \notin, . \mathrm{t}_{x-2(t)} \notin, \mathrm{t}_{x(x-2} \not{ }^{H},(= \tag{A.4}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{q}_{t(x-2} H, \mathrm{q}_{x-2(x+}+\text {, e } P+\neq, \mathrm{q}_{x-2(x+}+\mathrm{q}_{t(x-2}+U, \\
& \text {. } s H=, \sum \mathrm{q}_{t x}+,-\mathrm{q}_{t x} \nVdash, . \mathrm{q}_{x-2(x)} H, \mathrm{q}_{t(x-2} H,([
\end{aligned}
$$

for any s satisfying $i<s<j$. The second equality in (4.12) is a particular case of (A.8) at $s=i+1$. This ends the proof of lemma 4.2.

In order to prove the statement of lemma 4.4 we use the results of the appendix A of paper [19]. We consider the shifted currents $\dot{e}_{t} \notin$, (4.36) and the corresponding composed currents $e_{x t} \notin U$, defined in this appendix by the formulas (A.3) and (A.7). These composed currents satisfy a relation identical to (A.17) in the same appendix of [19], which implies

$$
j_{j}^{+} \sum_{e_{x t}} H,\left(\begin{array}{ll}
\text { e } & j_{j}^{+} \tag{A.9}
\end{array} \sum_{S_{x(t+2} H} H,\left({ }_{e}^{s} t \mathrm{~g}\right] \mathrm{n}[\right.
$$

The commutativity between the projections and commutation relations with zero modes was proved in appendix B of [19]. Now the chain of equations ($\psi \mathrm{e}>.0-A$ and A e $>.0-\psi)$

$$
\begin{align*}
& \mathrm{e}-\epsilon_{\ell-t}{ }^{\mathrm{g}} \mathrm{n}=\epsilon_{\ell-t-2 \mathrm{~g}} \mathrm{n}=\epsilon_{\ell+{ }^{\wedge}-x \mathrm{~g} \mathrm{~g}^{\mathrm{g}} \dot{j}_{j}^{+} \sum_{\ell}+2-x H-\mapsto} H-0-A \delta,(\\
& \mathrm{e}-\mathrm{t}_{x(x-2 \mathrm{~g}} \mathrm{n}=\mathrm{t}_{x-2(x-\wedge} \mathrm{g} \mathrm{n}=\mathrm{t}_{t+{ }^{\wedge}(t+2 \mathrm{~g}} \mathrm{n}{ }_{t+2(t} H-\psi \delta, \infty \\
& \text { e } \delta^{x-t-2} \mathfrak{\beta}_{x t} H-\psi \delta \text {, e } \delta^{x-t-2} \mathfrak{\beta}_{\ell+2-t(\ell+2-x} H-\mapsto .0-A \delta, \tag{A.10}
\end{align*}
$$

proves relation (4.38). This ends the proof of lemma 4.4.

Appendix B. Gauss coordinates and proof of theorem 4.2

Before starting the proof of theorem 4.2 we provide explicit formulas for the Gauss decomposition used in this paper in the simplest nontrivial case $N=3$. The monodromy matrix reads

$$
\begin{align*}
& E_{2} \text {. } \mathrm{t}{ }^{\wedge}{ }_{2} E \wedge \mathrm{q}_{2}{ }^{\wedge} . \mathrm{t}{ }_{32} E_{3} \mathrm{q} \mathrm{q}_{23} \mathrm{t}{ }^{\wedge}{ }_{2} E \wedge . \mathrm{t}{ }_{32} E_{3} \mathrm{q}{ }^{\wedge}{ }_{3} \mathrm{t}{ }_{32} E_{3} \\
& k \notin, ~ e \quad B q_{2}{ }^{\wedge} . \mathrm{t}_{3^{\wedge}} B_{3} q_{23} \quad B . \mathrm{t}_{3^{\wedge}} B_{3} q^{\wedge}{ }^{\wedge} \mathrm{t}_{3}{ }^{\wedge} B_{3} \\
& B_{3} q_{23} \quad B_{3} q^{\wedge} \quad B_{3} \\
& \left.\begin{array}{ccccccccc}
& \begin{array}{cccccc}
0 & \mathrm{t}_{\wedge} & \mathrm{t}_{32} & B_{2} &] &]
\end{array} c c c c & 0 &] &] \\
& 0 & \mathrm{t}_{3^{\wedge}} &] & B &] & \mathrm{q}_{2^{\wedge}} & 0 &]
\end{array}\right][\tag{B.1}
\end{align*}
$$

For brevity, we omitted in (B.1) the dependence on the spectral parameter u for all Gauss coordinates $\mathrm{q}_{t x} \Psi U, \mathrm{t}_{x t} \Psi U$, , and $k_{i}(u)$.

The Gauss decomposition (B.1) allows one to find easily the inverse monodromy matrix

$$
\begin{array}{rcccccccc}
\beta_{3} H, ~ \mathrm{e} k H,{ }^{-2} \mathrm{e} & 0 &] &] & B_{2}^{-2} &] &] & 0 & \beta_{\wedge}{ }_{2}
\end{array} \beta_{32}
$$

where

Now the monodromy matrix $k_{\boldsymbol{\rho}} \notin$, given by the relation (2.10) has the following structure:

It is similar to the structure of the original monodromy matrix $k \notin$, (B.1).
We prove theorem 4.2 by induction starting from the lower-right corner of the monodromy matrix $k_{1} \notin$,. Due to the formulas (4.14)-(4.16) the matrix elements from the lower-right corner $k_{\boldsymbol{\ell} \ell} \not U,, k_{\boldsymbol{\ell}-2 \ell} H$, and $k_{\boldsymbol{\mathcal { R }}(\ell-2} H$, have following form:

$$
\begin{equation*}
k_{\boldsymbol{p} \ell} H, \text { e } B_{2} H,,^{-2}=k_{\mathfrak{p}-2 \ell} H, \text { e } B_{2} H,{ }^{-2} \beta_{\wedge_{2}} H,=k_{\mathfrak{p}}\left(-2 H U \text {, e }{\underset{q}{2}}^{\wedge} H, B_{2} H,{ }^{-2}[\right. \tag{B.5}
\end{equation*}
$$

In order to normal order these matrix elements we can use the commutation relations (A.1) and (A.2) specialised to $i=1$ and $\mathrm{e} u-0$. This yields

$$
\begin{align*}
& k_{\mathrm{f}-2 \ell} H, \text { e } B_{2} H,{ }^{-2} \mathrm{t}{ }_{{ }_{2}} H, \text { e } \mathrm{t} \cdot{ }_{2} H-\delta, B_{2} H,{ }^{-2}= \tag{B.6}\\
& k_{\mathrm{f}(\ell-2} H, \text { e } \mathrm{q}_{2}{ }^{\wedge} U, B_{2} H,{ }^{-2} \text { e } B_{2} H,{ }^{-2} \mathrm{q}_{2 \wedge} H-\delta,= \tag{B.7}
\end{align*}
$$

and proves formulas (4.17) and (4.19) in the particular case $i=N-1$ and $j=N$. Now using (A.3) at $i=1$ and (B.6), (B.7) we can normal order the monodromy matrix element
to obtain

$$
\begin{aligned}
& \mathrm{q}_{2}+, B_{2}+,{ }^{-2} \mathrm{t}{ }^{\wedge}+\text {, e } \mathrm{q}_{2}{ }^{\wedge}+, \mathrm{t}{ }^{\wedge}+-\delta, B_{2}+,{ }^{-2} \\
& \text { e t }{ }^{2}+-\delta, B_{2}+,{ }^{-2} \mathrm{q}_{2}{ }^{\wedge}+-\delta, \frac{B_{2}+-\delta,}{B+-\delta, B_{2}+,}-B+,{ }^{-2}[
\end{aligned}
$$

As a result, the element $k_{\boldsymbol{q}-2(\ell-2+}$, in the normal ordered form is equal to

$$
\begin{equation*}
k_{\mathfrak{\ell}-2 \ell-2}+, \text { e } \frac{B_{2}+-\delta,}{B+-\delta, B_{2}+,} \cdot \beta_{\wedge_{2}+-\delta, B_{2}+,{ }^{-2} \mathfrak{q}_{2^{\wedge}}+-\delta,=} \tag{B.8}
\end{equation*}
$$

thus proving (4.18) for $j=N-1$.
Formulas (B.6), (B.7), and (B.8) are the base of the induction. Let us assume that the statement of theorem 4.2 is valid for $l \leqslant \psi v \leqslant>$ in (4.17), (4.19) and for $l \leqslant t \leqslant>$ in (4.18). By exploring the commutation relations between the Gauss coordinates and lemma 4.2 we will prove that these formulas are valid for $1 \equiv I-0$.

Let us consider the commutation relation (2.3) for the monodromy matrix elements $k_{\mathbf{x} x} \notin$, at the values of indices $-\psi A B=S \equiv+F-0=A=A=A$ and send $\left.\iota \equiv\right\}$. Then the coefficient of u^{-1} gives (for $\vdash \mathrm{e} l=p p_{l}=>$)

$$
\begin{equation*}
k_{\boldsymbol{p}-2(x} H U, \text { e } \delta^{-2} \quad k_{\boldsymbol{k} x} H, \not \vDash_{p-2(x)} \mathrm{g} \mathrm{n}[\tag{B.9}
\end{equation*}
$$

The zero mode of the monodromy matrix element $k_{p-2(x)} \mathrm{g}$ ncan be obtained from the relation (4.14) and is equal to

$$
\begin{equation*}
k_{\mathrm{p}-2\left(x \mathrm{x}_{\mathrm{g}} \mathrm{ne}\right.} \overrightarrow{3}_{p+2(x} \mathrm{g} \mathrm{n}= \tag{B.10}
\end{equation*}
$$

where here and below the prime on the index j mean $A \mathrm{e}>.0-A$ for any index j.
According to the induction assumption, the monodromy matrix elements $k_{k x}$ (f e $l=p p=>$) have the normal ordered form

$$
\begin{equation*}
k_{k x} H, \text { e } B_{x} \notin, . \int_{x k} \bigotimes_{c \leqslant \ell} \not{ }_{c x} U, B_{c}+U, \AA_{x c} H,= \tag{B.11}
\end{equation*}
$$

where the Gauss coordinates $\oint_{c x} \Psi$, , $\mathscr{B}_{c} \notin$, , and $\AA_{x c} \notin$, respectively are given by equations (4.17)-(4.19). One can prove from the commutation relations between the Gauss coordinates that the zero mode $k_{p-2(x)} \mathrm{n}$ (B.10) commutes with $\mathbb{R}_{4} H$, and $\mathbb{\bigotimes}_{c t} \Psi \in, \quad$, except for $\mathbb{B}_{x} H$, and $\mathcal{B}_{c x} \Psi$, e $\mathcal{B}_{x c} H^{H} U$, These commutation relations are

$$
\begin{equation*}
\delta^{-2} \mathbb{B}_{x} H, \exists_{p+2(x} \mathrm{g} \mathrm{n} \text { e } \mathrm{e}_{x(p-2} H, \mathbb{B}_{x} H, \tag{B.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta^{-2} \mathfrak{\bigotimes}_{c x} H, 尹_{p+2(x} \mathrm{g} \mathrm{n} \text { e } 3_{p+2(c} H-G \delta, \text { e } \oint_{c(p-2} H,[\tag{B.13}
\end{equation*}
$$

To obtain (B.12) we used the second relation in (4.12), the commutation relation

$$
\varrho B_{t}+,^{-2}=t_{t+2\left(t g^{\prime}\right)} \text { me } \delta B_{t}+,^{-2} \mathrm{t}_{t+2(t+}+\text {, e } \delta \mathrm{t}_{t+2(t+}+-\delta, R_{t}+,^{-2}=
$$

which follows from (A.1), and the commutativity $£ \in+, \neq{ }^{\ell}{ }_{x+2(x)} \uplus$, ne $]$ for $j>i$. Equalities (B.12) and (B.13) imply that the rhs of (B.9) is (for $\angle \mathrm{e} \quad \mathrm{F}=p p_{q}=>$)

Similarly we can prove that the commutation relations between the Gauss coordinates yield

$$
\begin{equation*}
k_{\mathbf{k}(p-2} H, \text { e } \Phi_{x} H, \AA_{p-2(x)} \notin, . \int_{x k c \leqslant \ell} \S_{c x} \notin, \Phi_{c} U, \AA_{p-2(c)} H,= \tag{B.15}
\end{equation*}
$$

where the Gauss coordinates $\mathfrak{\S}_{c(p-2} \notin$, and $\S_{p-2(c)} \notin$, are given by (4.17) and (4.19) for (e $l=p p_{1}=>$.

To finish the proof of the theorem we have to prove that the Gauss coordinates
 imply the same structure of the Gauss coordinate $B_{k-2} \notin$, .

To do this we can use again the commutation relations (2.3) for $-\psi \neq B=\{\equiv \mid F-0 \equiv F F-0$, to obtain in the limit \equiv \}

$$
\begin{equation*}
k_{\mathbf{p}-2(p) U,} \not k_{\mathbf{p}(p-2 \mathrm{~g}} \mathrm{g} \mathrm{n} \text { e } \delta \Sigma_{k_{\mathbf{p} p}} H,-k_{\mathbf{p}-2(p-2}+U,(= \tag{B.16}
\end{equation*}
$$

where the zero mode operator $k_{p(p-2 \mathrm{~g}} \mathrm{ncan}$ be deduced from (4.15)

$$
k_{\mathbf{p}(p-2 \mathrm{~g}} \text { ne }-\mathrm{q}_{\ell+2-p\left(\ell+^{\wedge}-p \mathrm{~g}\right]} \text { ne }-\mathrm{q}_{p(p+2 \mathrm{~g}} \mathrm{g} \mathrm{I}
$$

Now the proof of (4.18) for $⿻_{i-2} H$, follows from the inductive assumption (B.11) and the commutation relations

$$
\begin{aligned}
& \mathrm{q}_{x(x+2 \mathrm{~g}}{ }_{x+2(x)} \notin, \quad \text { e } \delta+B_{x} \notin, B_{x+2} \notin,,^{-2}-0,= \\
& \mathrm{q}_{x(x+2 \mathrm{~g}} \mathrm{g} \boldsymbol{t}_{x+2(x \mathrm{~g}}^{\mathrm{g}} \mathrm{n} \text { e } \delta+B_{x} \mathrm{~g} \mathrm{n}-B_{x+2 \mathrm{~g}} \mathrm{n}= \\
& \mathrm{q}_{x(x+2 \mathrm{~g}} \mathrm{n} \not B_{x} H,{ }^{-2} \text { e } \delta B_{x} \notin,{ }^{-2} \mathrm{q}_{x(x+2} H-\delta,= \\
& \mathrm{q}_{x(x+2 \mathrm{~g}} \mathrm{n} 3_{x+2(p+U,} \text { e } \delta 3_{x p} H U,=
\end{aligned}
$$

and

$$
\mathrm{q}_{x(x+2} \mathrm{g} \mathrm{n}_{p x}{ }_{p x} U, \quad \mathrm{e}-\delta \dot{\mathbf{@}}_{p(x+2} H,[
$$

This finishes the proof of theorem 4.2 .

References

[1] Faddeev L D, Sklyanin E K and Takhtajan L A 1979 Quantum inverse problem. I Theor. Math. Phys. 40 688-706
[2] Faddeev L D and Takhtajan L A 1979 Russ. Math. Surv. 3411 (Engl. transl.)
[3] Faddeev L D 1998 How algebraic Bethe ansatz works for integrable model Les Houches Lectures Quantum Symmetries ed A Connes et al (Amsterdam: North-Holland) p 149
[4] Korepin V E, Bogoliubov N M and Izergin A G 1993 Quantum Inverse Scattering Method and Correlation Functions (Cambridge: Cambridge University Press)
[5] Kitanine N, Maillet J M and Terras V 2000 Correlation functions of the XXZ Heisenberg spin- $1 / 2$ chain in a magnetic field Nucl. Phys. B 567 554-82
[6] Kitanine N, Kozlowski K, Maillet J M, Slavnov N A and Terras V 2012 Form factor approach to dynamical correlation functions in critical models J. Stat. Mech. P09001
[7] Gühmann F, Kl■nper A and Seel A 2004 Integral representations for correlation functions of the $X X Z$ chain at finite temperature J. Phys. A: Math. Gen. 37 7625-52
[8] Kulish P P and Reshetikhin N Y 1981 Sov. Phys.-JETP 53 108-14 (Engl. transl.)
[9] Kulish P P and Reshetikhin N Y 1982 +d,-invariant solutions of the Yang-Baxter equation and associated quantum systems Zap. Nauchn. Sem. POMI. 120 92-121
Kulish P P and Reshetikhin N Y 1982 J. Sov. Math. 34 1948-71 (Engl. transl.)
[10] Kulish P P and Reshetikhin N Y 1983 Diagonalization of $x n \mapsto$, invariant transfer matrices and quantum N-wave system (Lee model) J. Phys. A: Math. Gen. 16 L591-6
[11] Tarasov V and Varchenko A 1994 Jackson integral representations of solutions of the quantized KnizhnikZamolodchikov equation Algebra Anal. 6 90-137
Tarasov V and Varchenko A 1995 St. Petersburg Math. J. 6 275-313 (Engl. transl.)
[12] Tarasov V and Varchenko A 2013 Combinatorial formulae for nested Bethe vectors SIGMA 9048
[13] Belliard S and Ragoucy E 2008 The nested Bethe ansatz for 'all' closed spin chains J. Phys. A: Math. Theor. 41295202
[14] Khoroshkin S and Pakuliak S 2008 A computation of an universal weight function for the quantum affine algebra $D_{m} \mathfrak{G l} \downarrow>$,, J. Math. Kyoto Univ. 48 277-321
[15] Pakuliak S and Khoroshkin S 2005 The weight function for the quantum affine algebra $\left.D_{m}{ }^{\operatorname{s} 5}\right)_{3}$, Theor. Math. Phys. 1451373
[16] Khoroshkin S, Pakuliak S and Tarasov V 2007 Off-shell Bethe vectors and Drinfeld currents J. Geom. Phys. 571713
[17] Frappat L, Khoroshkin S, Pakuliak S and Ragoucy E 2009 Bethe ansatz for the universal weight function Ann. Henri Poincarre 10513
[18] Belliard S, Pakuliak S, Ragoucy E and Slavnov N A 2013 Bethe vectors of $x n+d,-$ invariant integrable models J. Stat. Mech. P02020
[19] Hutsalyuk A, Liashyk A, Pakuliak S Z, Ragoucy E and Slavnov N A 2017 Current presentation for the double super-Yangian $g R+\mathfrak{g l}+W Z$, , and Bethe vectors Russ. Math. Surv. 72 33-99
[20] Izergin A G and Korepin V E 1981 A lattice model related to the nonlinear Schrüdinger equation Sov. Phys.—Dokl. 26 653-4
[21] Kulish P P and Sklyanin E K 1982 Quantum spectral transform method: recent developments Integrable Quantum Field Theories (Lecture Notes in Physics vol 151) (Berlin: Springer) pp 61-119
[22] Molev A, Nazarov M and Olshanski G 1996 Yangians and classical Lie algebras Russ. Math. Surv. 51 205-82
[23] Molev A 2007 Yangians and Classical Lie Algebras (Mathematical Surveys and Monographs vol 143) (Providence, RI: American Mathematical Society)
[24] Hutsalyuk A, Liashyk A, Pakuliak S Z, Ragoucy E and Slavnov N A 2017 Scalar products of Bethe vectors in the models with $\mathfrak{g l}+W Z$, symmetry Nucl. Phys. B 923 277-311
[25] Ding J and Frenkel I B 1993 Isomorphism of two realizations of quantum affine algebra $D_{m} \mathfrak{t} \mid+Z$, , Commun. Math. Phys. 156 277-300
[26] Enriquez B, Khoroshkin S and Pakuliak S 2007 Weight functions and drinfeld currents Commun. Math. Phys. 276 691-725
[27] Liashyk A and Slavnov N A 2018 On Bethe vectors in $\mathfrak{g l}_{3}$-invariant integrable models J. High Energy Phys. JHEP06(2018)018
[28] Gromov N, Levkovich-Maslyuk F and Sizov G 2017 New construction of eigenstates and separation of variables for $\mu D \mapsto$, quantum spin chains J. High Energy Phys. JHEP09(2017)111
[29] Hutsalyuk A, Liashyk A, Pakuliak S Z, Ragoucy E and Slavnov N A 2018 Scalar products and norm of Bethe vectors for integrable models based on $D_{m} \mathfrak{t g l}_{f}$, SciPost Phys. 46
[30] Pakuliak S, Ragoucy E and Slavnov N A 2014 Scalar products in models with $x n+\mathrm{d}$, trigonometric R-matrix. Highest coefficient Theor. Math. Phys. 178 314-35

Conclusions

In the thesis I consider description of Bethe vectors for quantum integrable models with super-Yangian $Y\left(\mathfrak{g l}_{n \mid m}\right)$ and quantum affine $U_{q}\left(\hat{\mathfrak{g}}_{n}\right)$ symmetries. We use the "current approach" for the description of Bethe vectors based on the Ding-Frenkel isomorphism between RTT and current realizations of quantum algebras. This approach allows to obtain many useful properties of Bethe vectors that are used to study their scalar product.

One can summarize our results:

- In the case of $Y\left(\mathfrak{g l}_{n \mid m}\right)$ using Gaussian decompositions of the monodromy matrix, the vector $\mathbb{B}(\bar{t})$ was constructed in terms of the total currents associated with simple roots of the $\mathfrak{g l}_{n \mid m}$ algebra. It has been shown that with both Gaussian expansions get the same Bethe vectors.
- In the case of $Y\left(\mathfrak{g l}_{n \mid m}\right)$ action formulas of upper-triangular and diagonal monodromy matrix elements $T_{i j}(u)$ (with $i \leq j$) onto Bethe vector was obtained in terms of Bethe vectors decomposition. Action of transfer matrix $t(u)$ and conditions for eigenvectors (system of Bethe equations) were also obtained.
- In the case of $Y\left(\mathfrak{g l}_{n \mid m}\right)$ co-product formula for Bethe vectors was found using Drinfeld co-product properties of currents.
- In the cases of $Y\left(\mathfrak{g l}_{n \mid m}\right)$ and $U_{q}\left(\hat{g}_{n}\right)$ bilinear sum formula for scalar product was found using co-product formula for Bethe vectors. This result is generalization of Izergin-Korepin formula in $\mathfrak{g l}_{2}$ case and Reshetikhin formula in $\mathfrak{g l}_{3}$ case to the higher rank cases.
- In the cases of $Y\left(\mathfrak{g l}_{n \mid m}\right)$ and $U_{q}\left(\hat{g}_{n}\right)$ recursion equations for Bethe vectors and the highest coefficient in the sum formula were found using action formulas of monodromy matrix entries onto Bethe vectors.
- In the cases of $Y\left(\mathfrak{g l}_{n \mid m}\right)$ and $U_{q}\left(\hat{\mathfrak{l}}_{n}\right)$ it was proven that the norm of eigenvector is proportional to the Jacobian of Bethe equations. This statement was first proposed by Gaudin for the $\mathfrak{g l}_{2}$ case.
- In the case of $Y\left(\mathfrak{g l}_{n}\right)$ it was shown how to build Bethe vectors in terms of inverse monodromy matrix entries. The connection of this representation of Bethe vector with usual one was determined.

The results obtained above are extremely important in context of calculation of the correlation functions of quantum integrable models with higher rank algebras symmetry. The sum formula is milestone on this way. The next step is to obtain a determinant representation of scalar products in the case when one of the Bethe vectors is an eigenvector of transfer matrix. An application of zero modes allows us to derive form-factors of local operators from the form-factors of the monodromy matrix entries. And the multi-point correlation function can be expanded in the form-factors of local operators. We will consider these problems in our further work.

The current approach has proven itself as powerful and agile instrument in algebraic Bethe ansatz. It provides a deep understanding of the symmetries and properties that underlie integrability, and allows us to simplify and unify the proofs of the properties of a scalar product of Bethe vectors. Thus, all results of the thesis can be generalized to a wide class of integrable models that are solved by algebraic Bethe ansatz. This class includes models related to Yangian and quantum affine algebras of types $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D and their super generalization.

[^0]: N.A.S. thanks LAPTH in Annecy-le-Vieux for their hospitality and stimulating scientific atmosphere and CNRS for partial financial support. The work of A.L. was funded by the Russian Academic Excellence Project (project 5-100) and the joint NASU-CNRS project F14-2016. The work of S.P. was supported in part by the Russian Foundation for Basic Research (grant no. 14-01-00547-a). N.A.S. was supported by the Russian Foundation for Basic Research (grant no. 15-31-20484-мол_а_вед).

 AMS 2010 Mathematics Subject Classification. Primary 82B23; Secondary 81R50, 17B80, 17B37.

[^1]: ${ }^{1}$ We use the notation $\mathrm{T}(u)$ to denote either $\mathrm{T}^{+}(u)$ or $\mathrm{T}^{-}(u)$ when both matrices share the same properties.

[^2]: ${ }^{2}$ We will keep the usual notation $f(u, v)=\frac{u-v+c}{u-v}$ and $h(u, v)=\frac{u-v+c}{c}$ and use it occasionally.
 ${ }^{3}$ Introduction of this graded deformation parameter lets us write many relations systematically, and this is why we do not scale the deformation parameter c to be equal to 1 .
 ${ }^{4}$ We keep the superscripts \pm in order to make the antimorphism compatible with the inclusion of a central charge in the Yangian double.

[^3]: ${ }^{5}$ Recall that $N=m+n-1$ is the number of simple roots of the superalgebra $\mathfrak{g l}(m \mid n)$.

[^4]: ${ }^{6}$ The asymmetry in the symbols ϕ_{k} and $\widehat{\phi}_{l}$ is related to the asymmetry in the different Gauss decompositions.

[^5]: ${ }^{7}$ In fact, this was proved in [28] for the case of the currents \widehat{F}_{ℓ}, but it can easily be repeated for the currents F_{ℓ}, leading to (4.27).

[^6]: ${ }^{8}$ The case $a=0$ was considered above to obtain the Bethe equations.

[^7]: , Dpssftqpoejoh bvui ps
 F.n bjmbeesfttftAi vutbravl A hn bjıdpn)B/I vutbruvl *- b/gibti zl A hn bjırdpn)B/ Mbti zl *t ubojt rhwqbl vigibl A kjos/sv)T/[/ Qbl vijbl *-f sjd/sbhpvdzA rhqui /dost/gs)F/ Sbhpvdz*- ot rbwopwA n j/sbt/sv)O/B/ Trиморw*/
 i uq;Oey/epj/psh(21/21270Kovdrqi ztc/3128/18/131
 1661.432403128 Ui f Bvui pst/ Qvengti fe cz Frnf wifs C/W Ui jt jt bo pqfo bddftt bsudrfi voefs uif DD CZ yidf otf)i uq; Odsf buyuf dpn n pot/psh0jidf otft $\left(c z 05 / 10^{*} /\right.$ Gvoefe cz TDP BQ ${ }^{4} /$

[^8]: ${ }^{3}$ Opuf ui bux f i buf di bohfe uif ef-ojugpo pguif I D x jui sftqfduy uif pof ui bux f vtfe jo pvs qsf wipvt qucigdbúpot/ Opx jujoupraft b opsn brigibupy gbdups $\prod_{j=2}^{N \cdot 2} f_{[j+2]}\left(\bar{s}^{j+2}, \bar{s}^{j}\right) f_{[j+2]}\left(\bar{t}^{j+2}, \bar{t}^{j}\right) /$

[^9]:)tff binp 141^{\prime} gps uf opo.hsbefe dbtf*bt bqspqfste pguif Cfuif wfdupst joevdfe czuif Zbohjbo dpqspevdư

[^10]: ${ }^{5}$ Ui jt di pjdf pguif gvodujpot γ_{k} jt bra bzt qpttjerfi- gps fybn qrif x ju jouif gbn fx psl pgjoi pn phfof pvt n pefme ju tqjot jo i jhifs ejn fotjpobmsfqsftfobujpot-jo xijdi joi pn phfofjuft dpjodjef xjuitpnf pguif Cfuif qbsbn fufst/

[^11]: , Dpssftqpoejoh bvui ps
 tubojt rbwqbl vigbl A kjos/sv)T/[/ Qbl vgjbl *- fsjd/sbhpvdzA rhqui /dost/gs)F/ Sbhpvdz*- ot rbwopwA n j/sbt/sv)O/B/ Trиморw*/

[^12]:

[^13]: buzqjdbnsfqsftfobupot/
 4 Ui f rbtux fjhi u ${ }^{(m+n)}$ qspujeft bujujbnsf qsftfoubjpo gss $\mathfrak{s l}(m \mid n)$ boe jt sf rimufe \mathbf{p} uif $\mathfrak{g l}(2)$ brhfcsb x i jdi jt dfousbm jo $\mathfrak{g l}(m \mid n) /$

[^14]:

[^15]: ${ }^{1}$ In fact the zero mode generators exist whatever is the asymptotic behavior of $T(u)$ at $u=\infty$. We have taken this particular behavior to simplify the presentation.
 ${ }^{2}$ To get this result one needs to assume that the zero mode matrix \mathscr{L} is upper-triangular.

[^16]: ${ }^{3}$ The last generator \mathfrak{h}_{m} is central, see (3.5).

[^17]: ${ }^{4}$ Let us stress that the order of the Bethe parameters within every subset \bar{t}^{k} is not essential.

[^18]: ${ }^{5}$ To get a dual Bethe vector in $U_{q}\left(\widehat{\mathfrak{g l}}_{m}\right)$ one should start from $U_{q^{-1}}\left(\widehat{\mathfrak{g l}}_{m}\right)$, see [37] where these considerations are detailed.

[^19]: ${ }^{6}$ Obviously, $T_{i, j}(u)=g^{(l)}(u, \xi) E_{j i}$ for $i<j$.

[^20]: ${ }^{9}$ The known procedures are the nested algebraic Bethe ansatz [8-10], the trace formula [11-13], or the projection of currents [14-17].

