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Abstract

The presented work addresses two important control aspects of power systems: fre-

quency control and congestion management. In contrast to the other types of trans-

portation networks (e.g. pipeline systems), in power networks it is not possible to store

electrical energy in amounts sufficiently large for reliable network operation. As a result,

generation in power networks must always be equal to demand. Frequency oscillations

are indicators of power imbalance. Frequency control is aimed to keep power balance and

consequently to reduce frequency oscillations. Traditional frequency control is divided

into primary and secondary parts represented by proportional and integral controllers

respectively. Control operates regulator valves on the generator unit’s turbines. There-

fore, there always exists control lag caused by turbine governor dynamics that may

threaten system’s stability, should control coefficients (proportional and integral gains)

become too high. Thus, effectiveness of this traditional control is limited.

Such issue becomes more significant if system’s inertia is reduced due to introduction

of renewable generation. Improvement of control performance can be achieved via the

following two approaches:

1. Addition of load-side control in order to avoid delay in the turbine governor dy-

namics;

2. Change of the control scheme to a new one less susceptible to the control lag.

Within this work both approaches are utilized. Load-side control implies controllability

of some loads e.g. air conditioning units that may form up to 35% of total power

consumption. Their short-term shut down does not lead to significant problems on

the consumer side; however, it allows system operator to reduce consumption almost

instantly. Such approach leads to significant increase of controllable buses (generators

or loads) number. As a result, centralized control, as it is implemented in the present

days, may not be feasible. Therefore, within this work it is assumed that buses have

limited communication range and can only exchange information with adjacent buses of

the network. Such reduction of communication complexity allows us to introduce plug-

and-play approach, when a bus can be added to or removed from the network without

alteration of the control operation.

There exists a large number of works that address frequency control and congestion
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management problems. Majority of them utilizes improvement possibilities discussed

above. However, in this work we derive globally asymptotically stable control that

provides both frequency control and congestion management for the system model that

includes second order turbine-governor dynamics. The latter introduces cascade type

structure to the system of differential algebraic equations that define system’s behavior.

The usage of second order dynamics is necessary to ensure model correctness. However,

cascade structure of the system makes it complicated to derive general form of Lyapunov

function for such system. In order to counter this effect, the following approach is

used. Firstly, optimization problem based on the imbalance size is formulated. Its

solution gives control values that restore power balance with minimal deviation of power

generation from the reference point. After that, control system is derived as a set of

integral algebraic equations (IAE) that converges to the solution of the optimization

problem. Special form of the control equations allows their decentralized implementation

when communication is required only between neighboring buses.

Task of congestion management is to keep line power flows within the acceptable lim-

its. Currently this task is done within the tertiary frequency control, when (N-x) secure

constraint optimal power flow problem is solved, meaning that failure on any 𝑥 elements

of a power system does not render this system inoperable. However, if, congestion man-

agement is applied not only at tertiary control, but continuously at the timeframe of

secondary frequency control, the system would become more robust. Moreover, such

approach may relax (N-x) requirement; thus, reducing cost of the generation. In order

to implement congestion management into the frequency control scheme the following

algorithm is used. Firstly optimization problem is complemented with inequality con-

straints corresponding to the line limits. Then, differential equations with piece-wise

linear right-hand sides are formulated based on Karush-Kuhn-Tucker (KKT) condition

complementary slackens equations for the line limits. These equations are added to the

IAE control system. This way the algorithm restores power balance in the system, thus

performing frequency control, while keeping all line flows within the acceptable limits.

This thesis starts with the description of frequency and power flows dynamics. Then,

power system model is chosen so that it provides realistic representation of the system’s

behavior. After that control scheme is derived step by step starting from simplest case of

only frequency control with no decentralization and finishing with the decentralized full
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frequency control and congestion management problem. Global asymptotic stability

proofs of the developed control are provided for every step of the control derivation

together with the results of the numerical experiments.
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1 Introduction

Relevance of the problem. The subject of research is frequency control and congestion

management in power systems. Power systems proved to be effective and secure method of

long distance power transportation. However, power systems have a set of unique properties.

First difference from other transportation networks is lack of energy storage capacity sufficient

to provide power system’s reliable operation. Energy storages are used for price arbitrage [4],

additionally, they can be used as equipment for power systems control [5]. However, an

installation and maintenance cost of the energy storage capacity necessary to cover power

consumption for even short period of time is unacceptably high. As a result, generation

must always be equal to demand in order to keep power balance. Second difference is lack

of direct control over lines power flows. Power flows act according to the second Kirchhoff

law and their regulation can only be done through changes in generation or demand. As

a result, simultaneous control of power flows and power balance is a nontrivial task that

requires advanced dynamical control system.

Frequency control is designed to keep power balance in the system. Frequency oscillations

are indicator of deviations from power balance. If power generation is insufficient, electrical

power drawn from the generators is higher, than the mechanical power injected in the gen-

erators by the turbines. As a result, generators slow down and frequency drops. Opposite

situation happens in case of an energy surplus. Acceleration of generators leads to frequency

increase. Such oscillations happen regularly due to deviations in power consumption or in

rare cases due to power outage. Frequency oscillations lead to equipment wear, and big

frequency deviations (above 2 Hz) may lead to generator units destruction. As a result,

generator unit control decouples it from the network, which may lead to power deficit and

cascade blackout.

Congestion management is also one of the important control aspects of power systems. It

is responsible for the keeping lines power flows within acceptable limits dictated by thermal

limitations or voltage stability requirements. In case of the thermal limits their short-term

violations do not lead to line failure.

Currently implemented solution. Frequency control and congestion management are
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conducted via primary, secondary, and tertiary controls [6].

Primary frequency control (droop control) is aimed to limit maximal frequency deviations

from the nominal value. This control is distributed (its operation requires only local frequency

measurements and does not need any information from the rest of the network) and operates

during first 10-30 seconds after imbalance appearance. Originally primary frequency control

was implemented via centrifugal governor. Nowadays control values are calculated digitally

through proportional controller with proportional gain (droop constant) varying between

2-6% based on the generator type.

Secondary frequency control (or Automatic Generation Control, AGC) is aimed to restore

frequency to its nominal value. It is presented by proportional integral controller using fre-

quency deviation as an argument of the controller. This control is implemented in centralized

way. Frequency measurements are taken from several reference buses and sent to the system

operator. Then, the system operator calculates control values and broadcasts them to all

controllable buses.

Another function of secondary frequency control is control of inter-area flows. Usually,

large networks are divided into areas for a set of reasons for example, country borders or

different system operators. Inter-area flow is a sum of power flows that go into or leave the

area. They should be equal to the nominal values. This allows us to restore balance of

an area using only generators of the power reserves of this area. Moreover, power reserves

distributed evenly throughout the system and avoid long distance power transfers that may

result in big power losses.

Tertiary control is conducted once per every 15-120 minutes or in response to credible

contingencies (i.e. those that are reasonably possible to occur or have the potential for a

significant impact on the power system [7]), depending on the power system type. Similarly

to the secondary control it is done in a centralized way, (N-x) Security Constrained Optimal

Power Flow (SCOPF) aimed towards cost minimization is solved during its operation. The

(N-𝑥) condition is introduced in order to increase robustness of the system. It means that

power system remains operational if 𝑥 or less elements of the system (buses and lines) fail.

Congestion management is done within tertiary control as a part of SCOPF.

Improvement possibilities. In case of power imbalance appearance frequency does

15



not change instantly. Frequency in power systems is proportional to the rotational speed of

generators which have big inertia; therefore, change of rotational speed as well as frequency

takes 5-10 seconds [8]. Power plants using renewable energy generation (wind and solar

plants) have low or zero inertia. As a result, frequency behavior becomes volatile in systems

with high amount of renewable penetration. Thus, existing control scheme cannot stabilize

frequency in such networks and system operator limits the amount of power generated by

renewable sources (e.g. in 2016 averaged amount of available but not used wind power

in Ireland is equal to 2.7% of the installed capacity [9]). Smart grids and systems with

distributed generation are also susceptible to this problem.

Control nowadays is done via adjusting generators’ power output [10]. Load disabling

is done only in emergency situations. Nevertheless, it is possible to utilize load-side control

during normal operation of power system. Short term disabling of some loads (e.g. air

conditioning units that form up to 35% of total power consumption [11,12]), does not lead to

any difficulties on the consumer side, therefore, it can be utilized along with generator side

control.

If control signal change happens, it takes some time (5-20 seconds) for the generator

unit to adjust its power output due to the delay in turbine-governor dynamics. This makes

frequency drop during first several seconds after disturbance almost uncontrollable even if

control response is instant. Load-side control can be performed much faster. As a result,

load-side control allows us to control system during the first seconds after the disturbance,

thus improving frequency behavior.

Centralized control scheme requires synchronization of communications (communication

delays do not exceed discretization time of the control) with all buses participating in the

control. As a result, signal broadcast cannot happen often (e.g. SCADA does one signal

broadcast every 5 seconds). Thus, control gains have upper bound defined by the system’s

stability. Thus, speed of the secondary frequency control is limited to 5-10 minutes after

power imbalance appearance. Moreover, communication synchronization implies limitation

on the number of the controllable units. Therefore, load-side control with big number of

controllable loads in the network might become problematic for the existing control scheme.

Congestion management is performed in preventive-corrective mode according to sched-
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ule and in response to credible contingencies. Such approach implies introduction of (N-𝑥)

criteria. As a result, majority of the lines is not fully loaded because from the mathematical

perspective (N-𝑥) criteria is an introduction of additional constraints to the cost minimization

problem. Thus, it increases generation costs and requires overbuilt line capacity. Normally

𝑥 = 1 and system remains stable after a single failure. This requirement is sufficient in

majority of the cases because simultaneously appearance of two failures is highly unlikely.

However, in the cases when 𝑥 ≥ 2 (i.e. in England 𝑥 = 2) number of possible failure scenarios

is equal to the number of 𝑥-combinations from N elements (𝐶𝑥
𝑛 = 𝑁 !

𝑥!(𝑁−𝑥)!
). This number is

large for 𝑥 ≥ 2, which makes analysis of the system with such requirement computationally

expensive and may not be a reliable approach for safe operation of power systems.

Even if computational complexity issues are solved and corrective SCOPF is used if

the system suffered from a failure [13], there is still a possibility to improve congestion

management as corrective SCOPF responds to only credible contingencies. Thus corrective

SCOPF does not respond to small fluctuations of power consumption and System Operator

must keep lines under-loaded in order to counter overheat issues that may occur due to

nonsensitivity of corrective SCOPF.

Objective of the work. It can be seen that the existing control scheme does not allow

power systems with high penetration of renewable and distributed generation to release their

full potential. The scheme does not use possibility to utilize load-side control. Finally,

slow congestion management leads to the need of (N-𝑥) security criteria for the lines, which

increases generation cost and requires new lines installation. Thus, we define the following

set of objectives:

1. Choose power system model that would provide realistic dynamics of frequency and

power flows and define set of system parameters that can be realistically measured and

used for control.

2. For the chosen power system model derive control that would have following capabilities:

(a) Improved frequency control. Maximal frequency deviation (nadir) as well as fre-

quency restoration time must be reduced in comparison to the traditional control;
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(b) Real-time congestion management. Control must respond to line flow to contin-

gencies within the timeframe of secondary frequency control;

(c) Inter-area flows control. This control must be implemented as it is a part of the

currently used AGC;

(d) Minimization of control cost function;

(e) Distributed implementation;

(f) Load-side control;

(g) Operation in feedback and feedforward modes, depending either on the available

information about system state or on the disturbance measurements.

3. Prove global asymptotic stability of the control.

4. Provide numerical test that would support the theoretical results. Power system models

used for the numerical experiments must include more complicated ones in comparison

to the one used for theoretical results in order to ensure control robustness.

Research methodology. Despite the power balance oscillations being constantly present

in the system, it is at most important to analyse systems behavior in the emergency case

caused by power outage or line trip. Such situations are modeled by a step change in power

generation, or consumption, or change in the system’s topology, or combination of them. All

these parameters are considered to be constant after this step change. Everywhere further

systems dynamics are analysed after such type of step change disturbances.

While it is possible to formulate optimal control problem, communication limitations and

lack of information about the system as well as constraints on the phase variables (system

state) make it impossible to derive a general form optimal control solution. Thus, we firstly

analyze after transient steady-state. Our goal is to minimize control cost function subject to

frequency deviations being equal to zero and all line constraints. Solution for this optimiza-

tion problem will theoretically give the steady-state control values. We show that frequency

and power flows are defined uniquely by the control values, thus solution of the optimization

problem is sufficient to deliver physical system into a state, where all the control requirements
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are fulfilled. However, due to the lack of information and communication limitations it is

impossible to solve the optimization problem directly.

Therefore corresponding Karush-Kuhn-Tucker condition (KKT) [14] is analyzed. The

complementary slackness conditions are replaced with piece-wise linear equations of special

form. After that transition from algebraic equations of modified KKT condition to first order

piecewise linear integral algebraic equations is done. This approach allows us to limit the

amount of required information and communications to the acceptable margins.

The available information is used in the following way. It is known, that power balance

is restored if and only if sum of control signals equals to the minus sum of the disturbances

(change in power generation is equal to the change in power consumption). Therefore, any

frequency control approximates size of the disturbance. We separate our control into two

stages in order to utilize this property. First stage approximates the disturbance using the

available information about the system. The second stage uses disturbance approximation

as an input in order to calculate control values.

The describe method allows us to derive globally asymptotically stable control that de-

livers power system to the desired state at minimal control cost. However, we do not provide

any analysis of the transient performance of the control. Therefore, numerical experiments

are provided in order to ensure acceptable system dynamics. Power system model for the

experiments is more detailed than the one used for the theoretical results. Disturbance is

considered to be nonconstant. Some of the controllable buses control limits change over time.

Control on some of the buses turns on several minutes after the disturbance appearance.

Scientific novelty. There exists a large number of works dedicated to the frequency

control and congestion management. The novelty of the presented work in comparison to

others can be summarized in the two items:

1. Frequency control and congestion management algorithm is developed for the power

system model with second order turbine governor dynamics.

2. Global asymptotic stability is proved for this power system model.

To the authors knowledge stability of such control is proved either for lower order model, is

local or both.
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While usage of the detailed power system model grants realistic representation of the

system dynamics, overcomplication unusually makes it impossible to provide any proof of

control stability, while too simple model does not accurately represent system behavior and

may be stable, while the actual system is not.

We use the simplest model that provides realistic dynamics of frequency under controls

of proportional integral type in order to prove global asymptotic stability. Then we test the

obtained control on the more detailed model in order to ensue correctness of the analytical

results. Equations corresponding to the second order turbine governor dynamics are the key

to realistic representation of the system response to fast changes of the control signal. It

will be shown later that simpler model can provide unrealistically optimistic results, such

as stability with any gain of proportional controller. The second order model represents an

analytical basis for derivation of the control that as the numerical experiments will show

remains stable even for more detailed models of power system.

Second order turbine governor dynamics introduce cascade (triangular) type block to

the power system model. Thus direct stability analysis of overall system (power model and

control) becomes difficult, as to the knowledge of the author it is not possible to derive general

form of Lyapunov function for the system that consists of two blocks (physical system and

control system) connected by the cascade block. Therefore stability is analysed in parts.

Firstly, we derive properties of the control sufficient for the physical system stability. Then

we derive control system that satisfies these properties. Such solution becomes possible due to

the two stage control structure. Explicit disturbance approximation makes control dependant

on a parameter (approximation) that is very close to the one independent of the system state

(disturbance). As a result, control, stability to a large extent can be analysed as a stability

of a feedforward control, despite the latter being feedback if necessary.
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2 Overview of the existing results

In this section we provide an overview of the works dedicated to frequency control and

congestion management. The detailed overviews of the problems in power systems can be

found in surveys [15], [16], and [17]. Here we provide description of the works that are

closely related to this thesis. Section has the following structure. Firstly we provide overview

of frequency control works and general classification of the most used approaches within

this topic. Then, we provide similar description of the works, dedicated to the congestion

management. After that we highlight the main features of all considered works. Finally, we

provide a comparison of the presented work with three theses on the same topic followed up

by a general comparison with all the considered results. Works, dedicated to the frequency

control problems:

∙ Paper [18] is dedicated to modification of the existing frequency control for the low-

inertia systems. The authors provide modification of the AGC control called Enhanced-

AGC. While AGC minimizes quadratic function in stationary point, Enhanced-AGC

minimizes integral quadratic function on the observation period [𝑡0,∞) subject to the

physical system linear dynamics equations. Such approach is one of the few that ex-

plicitly optimizes transient performance.

∙ Paper [19] is dedicated to enhance the existing frequency control via introduction of

adaptive control gains. The authors use reduced turbine governor model, but they

keep the nonlinear generator dynamics. The developed algorithm allows to reduce cost

associated with the control actions due to the adaptive control gains.

∙ Paper [20] is dedicated to the demand response. The aim is to introduce load-side

controller that would turn on and off the appliance to achieve balance between needs

of the consumers and need of the grid. The authors consider aggregated model of the

system dynamics.

∙ Paper [21] is dedicated to the demand response. The control is applied to transmission

level star topology networks. The control is distributed, allowing to reduce communi-

cation between controllable loads.
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∙ Paper [22] is dedicated to the combination of frequency control, congestion manage-

ment. This paper has the most similarities with this work. It solves the same control

problem for both generators and loads. It is based on the primal-dual approach for the

first order turbine governor model. However, as it was shown in [23], it is not possible

to expand this approach to the higher order model.

∙ Paper [24] is dedicated to usage of a fuzzy neural network to substitute traditional

generators frequency control with an algorithm for the distributed energy resources.

∙ Paper [5] is dedicated to control of distributed energy resources and energy storage.

The distributed gradient descend method is used for the control values to converge to

the solution of optimization problem formulated for the stationary point.

∙ Paper [25] is dedicated to the distributed demand response algorithm. Here algorithm

is based on the Markov decision approach, therefore optimization problem for the sta-

tionary point is formulated. Such approach allows the authors to derive algorithm

capable of scheduling many small loads to contribute to the frequency reserve for a

case of frequency drop.

∙ Paper [26] is dedicated to the derivation of distributed frequency control. The approach

is similar to the standard AGC from the point of view that control in [26] integrates the

frequency deviation. However, this integral is substituted with the frequency deviations

from the adjacent buses.

∙ Paper [27] is dedicated to the load side primary frequency control. In this case propor-

tional controller is substituted with bounded cost function inverse.

∙ Paper [28] is the extension of the previous work [27]. Here congestion management is

implemented in addition to the frequency control. Here linear system of differential

algebraic equations without governor turbine model is used in order to describe power

system dynamics.

∙ Paper [29] similarly to the previous two works is based on the primal-dual approach

without congestion management, but with the first order turbine governor dynamics.
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∙ Papers [30] and [31] are two parts of the primal-dual frequency and congestion man-

agement control for generators and loads. It is a continuation of the works [28], [29],

and [22]. Here, similarly to the previous works of these authors, linear system with first

order turbine governor dynamics is considered.

∙ Paper [32] is dedicated to the load-side control based on a primal-dual approach. This

algorithm allows to do frequency control and congestion management for linear physical

system with no turbine governor dynamics.

∙ In [33] frequency control is derived for a star topology grids. The control is once again

based on the primal dual algorithm. However, here the algorithm is based on the

interior point method and not on gradient method, used in the majority of the papers.

∙ In [34] frequency control is derived for a tree topology grids. Distributed control is

derived for a grid, described by a system of linear differential equations with first order

turbine governor dynamics. Additionally, line limits are introduced; thus, the algorithm

also performs congestion management.

∙ In [35] hierarchical approach is used. Here, similarly to [18], optimal control approach

is used to minimize quadratic integral cost function.

∙ In [36] frequency control and congestion management are performed based on the

primal-dual approach. Congestion management is introduced via addition of the penalty

component to the cost function. Power system model includes non-constant voltages

but omits governor turbine equations.

∙ The work [37] is an expansion of the previous work [34] on the average topology with

an addition of congestion management.

∙ In [38] frequency control is derived based on the primal-dual approach with different

cost function for the frequency sensitive loads, traditional generation and renewable

generation.

∙ In [39] passivity based approach is used to derive frequency control for nonlinear system

dynamics with time-varying voltages.
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∙ In [40] distributed PI controller is derived. Stability is proven by integral Lyapunov

functions for a linear system without turbine-governor dynamics.

∙ In [41] similarly to the previous work, PI controller is derived for a linear system.

However, here physical system is described by a general system of liner differential

equations.

In general, approaches in the majority of the papers above can be separated into three

categories:

1. Primal-dual type approach firstly developed in [42–44]. This approach is used in

works [22, 27–34, 36–38]. Primal-dual approach is based on optimization over the

set of stationary points. The Karush-Kuhn-Tucker conditions [14] are formulated for

this problem. Then, after some modifications, continuous version of gradient method

(in [22,27–32,34,36–38]) or interior point method (in [33]) is applied. As a result, some

of the optimization method equations coincide with the equations of the system dynam-

ics (primal part) is provided by the physical systems. The other differential equations

of the optimization algorithm (dual part) is provided by the controller dynamics.

2. Averaging type methods are presented in [26, 40, 41]. Here PI controllers (either mod-

ifications of the traditional control or a new approach) are used to provide frequency

restoration.

3. Optimal control approach is considered in the papers [18, 35]. Here explicit analysis

of the transient dynamics is considered. The authors introduce integral quadratic ob-

jective functions in order to minimize frequency deviations not only in the stationary

point, but during the entire observation period.

It is necessary to point out, that several works above provide solution for the congestion

management as an addition to the frequency control. In general, there exist very few works

dedicated to the congestion management only. As can be seen from the survey [17] in majority

of the cases congestion management is a part of more general problem. Exception of this

rule can be found in the work [45], where differential evolution algorithm is used to ensure

correct power flows in the AC model. In the list above frequency control is the main goal of
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all works. Thus, the control is derived as a continuous function in order to ensure mid-term

stability. Power flows oscillations are significantly less dangerous to the system stability; thus,

application of congestion management as a part of real time OPF is also of interest, since it

is based on the construction of discrete control. Below are the works, dedicated to the real

time OPF problem. There exists a wide range of works dedicated to this problem that can be

found in [16]. However, here we consider algorithms that allow distributed implementation.

1. The paper [46] is dedicated to solution of non-convex OPF problem for radial networks

via gradient projection algorithm. The intermediate iterations of the derived algorithm

always satisfy operational constraints.

2. In [47] a model free extremum seeking algorithm is used to solve AC OPF problem for

a radial network.

3. In [48] alternating direction multiplier method for an arbitrary topology network.

4. In [49] distributed feedback controller is developed. Primal-dual gradient method is

used to provide fast (unlike in the previous work) control of the system in order to

bypass standard hierarchical structure.

The approaches above ignore turbine dynamics. The trade-off here is control of not only

active but also reactive power flows.

The control in this work will be derived in the piece-wise differential form, it is necessary

to note some general results on such control types and corresponding stability estimation ap-

proaches [50–55]. However, decentralization requirement cannot be easily represented in the

form of typical control constraints, since a set of admissible control types remains unchanged,

but limitations are implied on the control inputs. The results specialized for the distributed

control development are presented in [56–62]. Control decentralization usually rises questions

of communication limitations and delays. Information about such properties with regards to

the power systems can be found in [63–65]. Within this work firstly optimization problem

that defines optimal state of the power system is derived. Then, control is obtained with

the only requirement to deliver the system to the optimal state. Such approach does not

provide analytical analysis of the transient behavior; however, this problem is substituted
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by numerical experiments. Similar approach is used in [22] and some other works devoted

to the distributed control [27–32]. More results on the frequency control problem are given

in [5, 24–39]. This results include centralized control schemes [38, 39] that considers non-

constant voltage magnitudes, methods that allow us to control frequency without control

of power flows (congestion management) or inter-area flows [5, 24–26] and [36, 37]. Some

works use simpler first order dynamics of turbine governor equations or ignore the dynam-

ics [26–32, 36, 37] compared to the model considered in this work. One of the reasons for

the development of a new control is reduction of the system inertia due to the introduction

of renewable generation. Analysis of the inertia reduction impact on the power system’s

dynamics are presented in [66]. Works, aimed to modify the existing control in order to

account for the increasing amount of wind turbines are [67–72]. Additionally, some works are

dedicated to the general low-inertia systems: [15,18,19]. One of the possible ways to increase

controllability is usage of the controllable loads, works [22, 27–32] combines generator and

load side controls, while other works [20, 21] are dedicated to the controllable loads only.

As this work considers linear model of the system dynamics, we will mostly consider global

asymptotic stability even for the cases when the developed control is nonlinear. However,

results for standard control on more detailed models can be found in [73–79], in particular

numerical stability analysis in [74–76] and analytical approaches in [73, 77–79]. This results

correlate with the transmission planning works [80, 81] as the latter must take into account

the stability constraints.
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3 Novelty and Contribution to Knowledge

3.1 Comparison with Literature

Before we compare the approaches above with the approach in this work, let us consider 3

theses related to the same topic [1–3]. Main difference between the first two works is presence

of congestion management and inter-area flows regulation. Without them problem becomes

simpler, because in case of only frequency control we need to equate sum of control signals

to the sum of the disturbances.

Let us firstly compare the presented work within the scope of only frequency control. Let

us consider two theses [1, 2] dedicated to this problem. In the presented work the developed

control algorithm requires less information about the system than the algorithms presented

in these theses. Usually, it is difficult to accurately approximate time constants of turbine

and governor. Algorithm in [1] requires knowledge of their ration (Assumption 5.5.4) to en-

sure algorithm stability. However, ratio of two inaccurately approximated values may differ

significantly from the correct one. In the presented thesis knowledge of these parameters is

required for the first three problems. However, in the presented work we only need to give

an upper approximation of their minimum to ensure controller stability. For the rest of the

problems the knowledge of these constants are not needed at all due to the approach to the

disturbance approximation (section 9.1). If we consider thesis [2], the algorithms require

knowledge of line parameters (control equations 3.52), which are excluded in the presented

work in the problems that consider frequency control only because the latter requires only

power balance restoration and does not work with power flows. Finally, they prove local

asymptotic stability only without determining convergence radius. The authors consider

nonlinear dynamics which results in the presence of sin functions in physical system differ-

ential equations. However, corresponding Lyapunov functions (e.g. (5.17) in [1] thesis and

(3.37) in [2] thesis) limit arguments of sin function to be within its monotonous region near

origin: [−𝜋/2, 𝜋/2]. Thus, locality is either caused by cascade structure of turbine governor

dynamics or controller dynamics. Both latter issues are considered in the presented thesis

and global asymptotic stability is proven.
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Finally, let us consider existing works dedicated to the problem, analysed in the presented

work, namely frequency control together with congestion management. The thesis [3] con-

siders only first order turbine-governor dynamics. The detailed description of this approach

will be presented below, after additional discussion about the existing literature.

Control in [1] The presented control

Congestion management Not present
Present

(Problem 6, Section 13.3)

Inter-area flows regulation Not present
Present

(Problem 7, Section 13.4)

Measurement of turbine
Needed Not needed for Problems 2-7

and governor constants

Asymptotic stability
Local with no estimation

Global
of the convergence radius

Table 3.1: Comparison with [1].

Control in [2] The presented control

Congestion management Not present
Present

(Problem 6, Section 13.3)

Inter-area flows regulation Not present
Present

(Problem 7, Section 13.4)

Measurement of line parameters,
Needed

Not needed

turbine and governor constants (for frequency control)

Asymptotic stability
Local with no estimation

Global
of the convergence radius

Table 3.2: Comparison with [2].

Similarly to the first two theses [1], [2], the works considered above are mainly con-

centrated on frequency control only and omit congestion management or inter-area flows

regulation. The scope of works that consider all aspects of the control is reduced to the

works [37], [82], [22]. However, works [37] and [82] do not consider load-side control; thus,
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Control in [3] The presented control

Turbine-governor dynamics First order Second order

Table 3.3: Comparison with [3].

the problem considered in the presented thesis is analysed only in the work [22]. While deriva-

tion of the load-side control may be easier from the implementation perspective, however have

low or zero inertia corresponding to load buses usually results in significant oscillations in

transient. This work (as well as [82]) does not consider second order turbine governor dy-

namics. Such approach removes delay in the dynamics, thus relaxing some constraints on the

control. For example, let −𝐾𝐼𝜔 be droop control. Then, the system remains stable for any

𝐾𝐼 > 0. Moreover, taking 𝐾 very close to +∞ might demonstrate the best possible results

(Section 5, Figure 5.2 in the presented thesis). Thus, it is not possible to predict how con-

troller, derived for such system, would behave on more realistic one. In particular we showed

in [23] that Unified Control [22] becomes unstable, if applied for a system with second-order

turbine governor dynamics. We analysed this issue and modified it in [23]; however, only

local stability was shown.

3.2 Novelty of the approach

In the previous section we made the general overview of the results in control theory that

are close or correlate with our research. Let us now discuss the novelty of the proposed

approach. The existing approaches to the frequency control can be separated into two main

groups: controls based on the averaging approach and control based on the primal-dual

algorithm. Within this work we propose a new approach based on the idea of separation

of control and physical system dynamics as much as possible. Frequency control is aimed

to restore power balance in the system. Therefore, control actions are complete if and only

if sum of control signals is equal to the sum of the disturbances. Thus, every frequency

control estimates size of the disturbance. Within this work we expand this idea. We derive

our control as a feedback control consisting of two parts. First part uses system state,

namely measurements of frequencies and electrical powers on every bus in order to obtain

some approximation of the disturbance. Further we show that this approximation can differ
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from the actual disturbance, but it provides approximation accurate enough for the next

part. The second part uses the calculated approximation in order to calculate control values

in a distributed way. It can accept both disturbance approximation, obtained in the first

part and disturbance measurement. This way the control acts as a feedback control. If for

some reason the disturbance is known (e.g. system loses a bus with known consumption or

generation), then the second part of the controller can act as a feedforward controller using

disturbance vector as an input. Moreover, controller can operate in a mixed regime, when

some components of the disturbance are approximated via the feedback part and some of the

components are an input of the second part as a feedforward action. As a result, we utilize

the fact that every disturbance is measured or approximated within every frequency control.

However, we separate the disturbance approximation into separate decentralized block. Thus,

distributed control block not only can act separately as a feedforward controller, if necessary.

Moreover, the developed controller can combine this approaches. General control block-

diagram is presented on the Figure 3.1. Here 𝑟 is the vector of bus disturbances, 𝑟 is vector

of known disturbance measurements 𝑟𝐼 is a vector of indicators that show if the measurement

is available. Vector 𝑢 is a vector of bus control signals sent to the turbines regulating valves,

𝜔 and 𝑝𝑒 are vectors of bus frequency deviations and electrical powers respectively. The

internal structure of the controller is presented on the Figure 3.2. Here 𝑟 is vector of bus

disturbances approximations.

The algorithm of control derivation technique is given in the Figure 3.3. It is not clear how

to explicitly analyse dynamics of the controller that includes frequency control, congestion

management, and inter-area flows regulation during transient if we include communication

limitations. Thus, we start analysis by formulation optimization problem for the station-

ary point (here our approach coincides with the primal-dual approach). Knowledge of the

disturbance vector is sufficient for the control derivation. However, this information is not

available; therefore, we approximate it using the system state. Next step is reduction of

Karush-Kuhn-Tucker conditions. Our goal is to exclude or replace all physical variables with

the exception of those used for the disturbance approximation. This allows us to decouple

dynamics of the physical system from dynamics of the controller in the following scene: dy-

namics of the controller depends only on disturbance approximation based on the system
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Physical System

Available 
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Figure 3.1: General Controller block-diagram.
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Figure 3.2: Controller block-diagram.
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Figure 3.3: Algorithm of the control derivation.
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state. All physical dynamics are suppressed in the disturbance approximation state, because

disturbance is an external parameter with respect to the system dynamics.

Such approach allows us to do both: bypass the issues with cascade dynamics and exclude

physical variables that we cannot measure (e.g. mechanical power injections). The bypass

of the control dynamics provides the main novel contribution of this work. Namely, it allows

to keep control response globally asymptotically stable even when the other types of control

(as is shown in [83]) lose stability.

In addition during this stage we modify complimentary slackness conditions and replace

them with piece-wise linear continuous equality constraints (constraints that are defined by

piece-wise linear continuous functions). Finally, we transition from a system of algebraic

equations to a system of integral algebraic equations in order to

1. Exclude frequency derivative from a set of required information. Although, it is possible

to measure frequency derivative, its measurement is noisy and can be used only after

some averaging. However, the latter requires observation window of ∼ 5 seconds, which

is too big since frequency control must respond immediately after the frequency change.

2. Low-pass filtering. All measurements as well as information obtained from the neigh-

bouring buses goes through low-pass filter; thus, robustness of the algorithm increases.

3. Control distribution. The controller allows us to do distributed implementation.

The list above states goals that in other works were only fulfilled for a simpler turbine

governor dynamics.
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4 Thesis structure

Section 5 consists of all the notations used further in the thesis and contains list of the most

used variables. In section 6 we provide general overview of the problems in power systems.

Then in the section 7 we discuss in details issues related to frequency control and congestion

management. Further sections of this work are organized in the following way. We start

with the description of the known results in stability theory that are used within this work

(section 8). In section 9 we discuss power system model used for the further research and

justify our choice. The control derivation is separated in 7 problems described in sections

12.1 — 13.4. First 3 problems are dedicated to the centralized control and are focused on the

derivation of the general control idea. The last 4 problems are more focused on the control

properties, namely distributed communication, congestion management and inter-area flows

control. This approach is used in order to consequently increase complexity of the control

problems. For each problem separate control is derived. All controls perform frequency

control and utilize load-side control. The details of each problem are shown in the table 4.1.

Here "+" sign is used if the control aspect is present and "−" otherwise. Control in problem

2 does not have control limits, but can limit the number of controllable buses, therefore "±"

sign is used.

Communication Problem
Section

Control Distributed Congestion Inter-area flows

type number limits communication management regulation

Centralized

1 12.1 − − − −

2 12.2 ± − − −

3 12.3 + − − −

Decentralized

4 13.1 − + − −

5 13.2 + + − −

6 13.3 + + + −

7 13.4 + + + +

Table 4.1: Problems structure
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5 Notations

Set of real numbers is denoted by R. Set of natural numbers is denoted by N. For an arbitrary

matrix 𝑋 its transpose is denoted by 𝑋𝑇 . Identity matrix of the size 𝑛 × 𝑛 is denoted

by 𝐼𝑛. Vector of ones of size 𝑛 is denoted by 1𝑛 = (1, . . . , 1)⊤. Matrix diag(𝑥1, . . . , 𝑥𝑛) ∈

R𝑛×𝑛, 𝑥𝑖 ∈ R — diagonal matrix with numbers 𝑥𝑖 on the diagonal. Matrix diag(𝑋1, . . . , 𝑋𝑛) ∈

R𝑚×𝑚, 𝑋𝑖 ∈ R𝑛𝑖×𝑛𝑖 , 𝑚 =
∑︀𝑛

𝑖=1 𝑛𝑖 — block-diagonal matrix with matrices 𝑋𝑖 on the diagonal.

For any vector 𝑥 ∈ R𝑛 and set 𝐾 ⊆ {1, . . . , 𝑛} vector 𝑥𝐾 is subvector of 𝑥 that consists of

elements 𝑥𝑖, 𝑖 ∈ 𝐾. For any matrix 𝑋 ∈ R𝑛×𝑚 and sets 𝐾1, 𝐾2 matrix 𝑋𝐾1 is row

submatrix that consists of elements 𝑥𝑖𝑗, 𝑖 ∈ 𝐾1, 𝑗 ∈ {1, . . . ,𝑚}, matrix 𝑋𝐾1,𝐾2 is submatrix

that consists of elements 𝑥𝑖𝑗, 𝑖 ∈ 𝐾1, 𝑗 ∈ 𝐾2. Comparison operators (<, >, ≤, ≥) applied

to vectors are considered to be element wise. For a power network graph set of buses adjacent

to bus 𝑖 is denoted by Adj(𝑖), set of lines adjacent to bus 𝑖 is denoted by Adj(𝑖). Further the

following piece-wise linear functions will be used:

∙ Function 𝜈𝑛 : R𝑛 × R𝑛 × R𝑛 → R𝑛,

𝜈𝑛𝑖 (𝑥, 𝑦, 𝑧) = max{min{𝑥𝑖, 𝑦𝑖}, 𝑧𝑖}, 𝑖 ∈ {1, . . . , 𝑛}. (5.1)

∙ Function 𝜑𝑛 : R𝑛 × R𝑛 → R𝑛,

𝜑𝑛
𝑖 (𝑥, 𝑦) =

⎧⎨⎩ 𝑥𝑖, if 𝑥𝑖 ≥ 0 or 𝑦𝑖 ≥ 0,

0 otherwise.
, 𝑖 ∈ {1, . . . , 𝑛}. (5.2)

It is necessary to mention that (𝜈𝑛(𝑥, 𝑦, 𝑧))𝑖 = 𝜈1(𝑥𝑖, 𝑦𝑖, 𝑧𝑖), (𝜑𝑛(𝑥, 𝑦))𝑖 = 𝜑1(𝑥𝑖, 𝑦𝑖).
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Γ power system graph;

𝐸 set of edges (lines);

𝑁 set of vertexes (buses);

𝐺 set of generator buses;

𝐿1 set of load buses with inertia;

𝐿0 set of load buses without inertia;

𝑞 number of lines;

𝑛 number of buses;

𝑔 number of generator buses;

𝑙1 number of load buses with inertia;

𝑙0
number of load buses without

inertia;

𝑛𝑎𝑟𝑒𝑎 number of areas;

𝛼(𝑘) set of border buses of the area 𝑘;

𝛽(𝑘)
set of buses from areas 𝑘 ̸= 𝑘

adjacent to buses from 𝛼(𝑘);

𝛾(𝑘)
set of lines connecting border buses

with other areas;

𝑚𝑖 synchronous machines inertia;

𝑑𝑖

sum of synchronous machines

damping and response of frequency

dependant loads;

𝑡𝑚𝑖 generator time constants;

𝑡𝑣𝑖 regulating valves time constants;

𝑏𝑗
line parameters in inverse ratio to

the line suseptances;

𝑀 diagonal matrix of 𝑚𝑖;

𝐷 diagonal matrix of 𝑑𝑖;

𝐵 diagonal matrix of 𝑏𝑖;

𝐶 incidence matrix of the graph Γ;

𝑆 incidence matrix of inter-area flows;

𝑤𝑖

participation factors of the

controlled buses;

𝑊 diagonal matrix of 𝑤𝑖;

𝑟𝑖 bus power disturbance ;

𝜔𝑖 bus frequency deviations;

𝜃𝑖 bus phase angles deviations;

𝑝𝑗 power flows deviations;

𝑝𝑒𝑖 bus electrical powers;

𝑝𝑚𝑖
generators mechanical power

injections;

𝑣𝑖 regulating valves positions;

𝑢𝑖 control signals;

𝑢𝑖 upper control limits;

𝑢𝑖 lower control limits;

𝑝𝑗 upper line flow limits;

𝑝
𝑗

lower line flow limits;

𝜁𝑘 inter-area flows reference values;

𝑟𝐼 measurements of bus disturbances;

𝑟𝐼𝑖
indicators of bus disturbances

measurements availability;

𝑟̊𝑖

output of the disturbance

approximation control block (either

available measurement 𝑟𝑖 or

approximation 𝑟𝑖);

𝑝𝑚𝑖
mechanical power injections

approximations;

𝑦𝑖 auxiliary variables.
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6 Power System’s Structure

The first electrical lightning system was a network of Yablochkov candles. It was launched on

May 30, 1878 in Paris on Avenue de l’Opera. The first power system was created by Edison

in 1882 and consisted of generator and distribution network, which delivered power to the

customers on Pearl Street in Manhattan. Nowadays power systems vary in size, power, and

components. Nevertheless, it is possible to point out a number of their basic characteristics.

1. Power systems are three phase systems with almost constant voltages.

2. Mainly synchronous machines are used to generate electrical power. Energy of pri-

mal source (e.g. chemical energy of fuel or potential energy of water) is converted to

mechanical in turbine, and then converted to electrical by synchronous generator.

3. Electrical energy can be transmitted through long distances and to a large number of

consumers.

Deliverance of electrical power to the consumer is a transportation problem that has two

features:

1. Generated and consumed powers must always be equal in the power system. Despite

existence of storage possibility in the form of energy storage, it is not possible to

store significant amounts of power due to the high energy storage installation and

maintenance cost.

2. Unlike in majority of transportation networks (e.g. pipelines networks), generally in

power systems it is not possible to directly control power flow on every line. Line power

flows are defined by the second Kirchhoff’s law and can be changed only via adjusting

generation or demand of the controllable buses.

It is possible to identify basic power system components shown in the Figure 6.1 [84].

Historically power system is divided into physical and electrical components. At the first

stage fuel energy is converted into heat in the boiler. Then, produced steam sets in motion

turbine, which produces mechanical power. Mechanical power is injected into synchronous
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Figure 6.1: Power system structure

generator, which produces electrical power. The latter is transmited to the consumer through

the network.

6.1 Synchronous machines

Generators in power networks are synchronous machines [10]. They are divided into high-

speed (3000-1500 rpm) driven by steam or gas turbines and low-speed (1000-50 rpm) driven

by hydro turbines.

All synchronous machines consist of two parts made of magnetic steel: stator which

has armature windings and rotor. Armature winding consists of three identical equidistant

windings. Rotor is a set of electromagnets supplied by DC current from the excitation system.

The current produces magnetic flux with the strength proportional to the current. This

magnetic flux rotates with respect to the armature windings. Thus, sinusoidal electromotive

force is induced on each of three windings, which produces AC current. Electrical frequency

of a generator can be calculated according to the following formula:

𝑓 =
𝑝𝑛

120
, (6.1)

where 𝑝 is the number of rotor poles, 𝑛 is rotor rotational speed (rpm) and 𝑓 is electrical

frequency (Hz). For example, in order to produce 50 Hz electricity 2-pole rotor should rotate

at 3000 rpm.

By design type, rotors are divided into two categories: with salient and non-salient mag-

netic poles. In salient poles rotors excitation windings are placed on explicitly projected
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t-shaped poles. Such rotors are used in low-speed generators used on hydro power plants.

Due to their low speed centrifugal force as well as windage losses are low. Such rotor construc-

tion allows us placement of multiple poles, thus providing possibility to operate at different

speed depending on the number of excited poles.

Non-salient poles rotors are used in high-speed generators. They have cylindrical form

and excitation windings are placed in parallel slots on the surface of the rotor as it is techno-

logically impossible to create salient pole rotors for such generators due to high centrifugal

force. Such generators have 2 or 4 poles which corresponds to rotational speed of 3000 rpm

or 1500 rpm respectively.

Frequency of the induced electromotive force is proportional to the rotation speed of the

rotor. Multiple synchronous generators must operate at the same electrical frequency; thus,

their rotational speeds must be proportional to each other. Additionally, frequency must

be kept within close neighborhood of the nominal value. This requirement is enforced by

significant drop of turbines’ efficiency in case of non optimal speed operation. Moreover,

high frequency oscillations (over 2 Hz) may result in turbine damage. Therefore, in case of

high frequency oscillations generation unit will automatically disconnect from the system.

6.2 Generating unit structure

Structure of a generating unit is presented in the Figure 6.2 [85]. Here 𝑝𝑟𝑒𝑓 is nominal value

of electrical power, 𝑝𝑒 is value of electrical power, 𝑓 is frequency, 𝜔 is rotor’s rotation speed,

𝑉 𝑟𝑒𝑓 is nominal voltage magnitude value, 𝑉𝑔 is voltage magnitude value, 𝐼𝑔 is current value.

Energy carrier (steam in this case) is delivered to the turbines through governor valves

and sets turbine’s rotor in motion. Turbine and generator rotors are located on one shaft

that has shaft counter. DC current is provided to the generator rotor by the exciter.

Generator outputs power through a three-phase line connected to a step-up transformer

needed to reduce losses as they are proportional to current squared. Finally, the transformer

is connected to power network through circuit-breaker, which disconnects generating unit

from the network in case of emergency.

Two main control systems are presented on a generator unit. Frequency regulator adjusts

position of governor valves; thus, changes power output in order to perform frequency control.
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Voltage regulator changes current of the exciter, thus changing generator output voltage.

6.3 Wind generators

In case of wind generators, mechanical energy injected to the generator is provided by wind

tribune. Its rotational speed varies in between 15-20 spins per minute. Wind turbine is

connected to the generator by a gearbox. The major difference of conventional generating

units compared to the wind ones from the perspective of frequency control is low inertia of the

latter [10]. As a result, volume of kinetic energy available for arresting frequency oscillation

is reduced. Effect of inertia in frequency control is discussed in more details in section 7.4.

6.4 Active and reactive power

Let us consider a synchronous machine connected to an infinite bus. Under the assumption

that generator rotor is ideally cylindrical and air resistance is equal to zero generator active

and reactive power outputs are defined by the following formulas:

𝑃𝐺 =
|ℰ||𝑉 |
𝑋

sin 𝜃, (6.2a)

𝑄𝐺 =
|ℰ||𝑉 |
𝑋

cos 𝜃 − |𝑉 |2

𝑋
, (6.2b)

where 𝑃𝐺 is active power, 𝑄𝐺 is reactive power, |ℰ| is EMF magnitude, |𝑉 | is voltage mag-

nitude of an infinite bus, 𝑋 is its reactance, 𝜃 is rotor angle with respect to an infinite

bus.

In power systems voltages can deviate from the nominal values only by several percent.

Thus, fraction in equation (6.2a) is close to constant and active power is defined by rotor

angle 𝜃. In equation (6.2b) voltage of an infinite bus is the only quadratic term; thus, it has

the major impact on reactive power value. Variables 𝑃𝐺, 𝜃 and 𝑄𝐺, 𝑉 are strongly coupled,

while dependencies out of this couples are almost non existent in transmission networks.

6.5 Types of power systems dynamics

Power systems function is generation of electrical energy and its transportation to consumers.

This operations requires usage of large variety of different components that perform different
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Figure 6.3: Power system dynamics classification.

functions at different timescales. Nevertheless, it is possible to divide all dynamical processes

into categories based on timescales, causes and types of effect (Figure. 6.3 [85], [84]). One of

the primary points of interest is system’s reaction to change of consumption or appearance

of disturbance caused by a loss of the power system element (e.g. loss of generator or line).

Nevertheless, it is necessary to note that some processes (for example, frequency control) can

cover several time intervals.

6.6 Power system stability

System stability is ability of power system to remain in the neighbourhood of predefined

stationary point even if some disturbances appear. Disturbance types were briefly discussed

in the previous section. Based on these types power system stability is divided into several

categories (Figure 6.4 [86], [87]). This division is based on usage of different mathematical

models required for accurate representation of system’s behavior.
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Figure 6.4: Power system stability types classification.

6.7 Rotor angle stability

Rotor angle stability is capability of synchronous machines of the system to keep syncronism.

During normal operation magnetic field in synchronous machine rotates at the speed of rotor.

If due to some disturbance rotor speed deviates from the synchronous speed of magnetic

field, the latter ceases to be stationary with respect to the rotor. As a result, current is

induced on damper windings. This current, according to the Lenz’s law produce torque

opposite to the direction of magnetic field rotation, thus restoring synchronism.

If disturbance is large, deviation of rotor speed may lead to a loss of sychnronism. In this

case generating unit is either disconnected from the network or is returned to synchronous

regime by out-of-step conditions liquidation system.

Rotor angle stability is traditionally divided into two categories:

1. Small signal stability is an ability of power system to remain sycnhronism after small

disturbances. In this case disturbances size allows us to analyse system using linearized

model.

2. Transient stability is an ability of power system to remain sycnhronism after large

disturbances. Linearization is not applicable due to loss of model accuracy. Usually,

post-disturbance state of the power system differes from the one before the disturbance.
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6.8 Voltage stability

Voltage stability is the capability of power system to keep acceptable voltage values on all

system’s buses not only during normal operating conditions but also after appearance of

disturbances. Let us consider equation (6.2a).Maximal active power that can be transported

to an infinite bus is equal to

𝑃max =
|ℰ|2

𝑋
. (6.3)

It is achieved when |ℰ| = |𝑉 |. Further increase of power consumption on the infinite bus will

lead to reduction of active power flow and consequently stability loss. Additionally, voltage

converges to zero, which results in voltage collapse.

Voltage stability is divided into two categories:

1. Small disturbance voltage stability. Disturbance is caused by for example, daily change

in power consumption. System’s steady-state is used to analysed voltage stability.

2. Large disturbance voltage stability. Disturbance is caused by a failure (e.g. loss of a

generator or a line). Dynamical model of the system is considered for a time interval

varying from couple of seconds to several minutes.

6.9 Frequency stability

Frequency stability is capability of power system to keep frequency at nominal value as during

the normal system operation as well as during disturbances. Main difference here from the

previous types of stability is slow dynamical processes. Reason for that is dependence of

frequency on rotational speed of synchronous machines of the system.

Frequency stability is divided into the following types:

1. Mid-term stability. Here system’s dynamical response to a disturbance caused by any

possible reason (including daily consumption changes and system’s components fail-

ures).

2. Long-term stability. Steady-state of the system is analysed, after attenuation of all

dynamical effects.
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6.10 Power system control types

The following criteria are used to identify reliability of power systems:

1. Power system must quickly adapt to changes of loads since no means to store electrical

energy of significant sizes exist.

2. Voltage changes must be strictly limited.

3. Frequency oscillations must be strictly limited.

4. Power system must withstand loss of system’s element.

In order to satisfy these criteria a set of various controls is applied to the system depending

on the state of the latter (Figure 6.5, [85], [88]):

1. At normal state power balance is held, frequency is at nominal value, all system pa-

rameters such as voltages and power flows are within acceptable limits. Disturbances

that may appear in the system are caused by daily load changes.

2. At alert state values of power system parameters such as voltages may be close to

the acceptable limits. Moreover, system does not satisfy safety criteria (e.g. inter-

area flows are different from the nominal). Otherwise all system’s components operate

normally; however, disturbance that would otherwise be considered safe may lead to

system components failure.

3. At emergency state power is supplied to the majority of the consumers; however, power

system suffers from significant frequency and voltages deviations from nominal values.

Some elements of the system such as lines or generating units may not work. If failures

happen on multiple elements, system may go into in extremis state.

4. In extremis state is defined as a power system state when control over the system is

lost. As a result, system may separate into multiple synchronous islands and shut down

fully or partially.
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Figure 6.5: Power system states classification.

5. At restorative state automatic and manual actions (such as generating units and loads

reconnection, synchronization of islands) are taken to return power system to normal

state.

Figure 6.6 [89] represents statistics based information about types of failures develop-

ments. Each arrow represents type of failure or control action, percentages are counted from

total amount of failures. In some cases multiple events may develop simultaneously; thus,

for example, after stage 6 some of percentages of following events is bigger than 100%.
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Figure 6.6: Power system cascade failures development types.
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7 Frequency control

This section is dedicated to the problem of keeping frequency at the nominal value. Since

connection between reactive power and frequency is weak in transmission networks [90],

everywhere further only active power is considered.

In power systems frequency is an indicator of the power balance. If power consumption

is higher than generation, synchronous generators start to slow down; thus, frequency drops.

The opposite situation happens, when there is surplus of power in the system.

There exists multiple techniques aimed two keep power balance [10]. The large slow

(from several hours to several days) changes in power consumption are addressed via unit

commitment procedure that defines which generators must be turned on or off or ramped up

or down. In the case of large unexpected power loss, if the system is in an emergency state,

load shedding is carried out (Figure 6.6). The remaining niche includes system operation at

timescale below the timescale of unit commitment with the state being in normal or alert

state. Further, we will analyse the existing control and derive the new control scheme for

this type of system operation.

Frequency oscillations are countered by frequency control. Frequency control (shown in

the Figure 6.2) opens or closes governor valves changing input of energy carrier into turbines.

As a result, it drives mechanical power output of the turbine to the desired value.

In addition to keeping frequency at the nominal value control solves two additional prob-

lems. Regulation of inter-area flows and congestion management (control of line power flows).

Some of the power systems are divided into several areas. Reasons for such division might

be different: system’s size, loads distribution, regional or country borders. Inter-area flow of

an area is a sum of flows through lines that connect area to the rest of the system. Con-

trol of inter-area flows is required due to the number of reasons: (a) it allows us to limit

power flows through long distances, thus reducing power losses, (b) after power imbalance

being compensated by generators of the same area; operation of the other areas remains

unchanged. Deviations of inter-area flows do not lead to equipment damage; nevertheless,

control of inter-area flows is important for the system’s robustness.

Congestion management is needed due to the following reasons: (a) amount of power that
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can be transmitted through a line is limited by formula (6.3), violation of this limit leads to the

voltage collapse, (b) lines have thermal limits, their violation leads to line overheat and trip.

In case of transmission lines thermal limits are the restricting ones. Despite the possibility

of line trip, short-term violation of thermal limits does not lead to negative consequences.

7.1 Traditional control scheme

Control scheme, used today in power systems, consists of three parts: primary, secondary

and tertiary controls

∙ Primary control is dynamic control aimed to suppress frequency oscillations.

∙ Secondary frequency control is dynamic control, which purpose is frequency restoration

as well as inter-area flows control. It works in a centralized way in every area. If spinning

reserves are insufficient to restore frequency additional generation units are put into

operation.

∙ Tertiary frequency control solves secure constraints optimal power flow problem, which

includes congestion management. Tertiary control is the only static control presented

here: it ignores networks dynamics and is performed at regular time intervals.

In the following paragraphs controls will be described in more details.

7.2 Primary frequency control

Historically centrifugal governor was used for primary frequency control, which is also called

droop control. Nowadays control is implemented via electronics. Primary frequency control is

the fastest among all three. It works in a distributed way using only local information during

several tens of seconds after disturbance appearance. It uses spinning reserves in order to

work. Primary frequency control cannot restore frequency to the nominal values and only

limits frequency deviations. This control is a proportional controller with deadband:

𝑢𝐼(𝑡) =

⎧⎨⎩ 0, if |𝜔(𝑡) − Ω| ≤ ∆𝜔,

−𝑘𝐼𝑃 𝑛Ω−1 ((𝜔(𝑡) − Ω) − ∆𝜔 sign(𝜔(𝑡) − Ω)) in other cases.
(7.1)
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Figure 7.1: Primary frequency control graph.

Here Ω is nominal frequency (50 or 60 Hz), ∆𝜔 is a deadband size, 𝑃 𝑛 is installed generator

power, 𝑢𝐼 is control value, and 𝑘𝐼 > 0 is a dimensionless control gain, which usually varies

from 15 to 25 and is defined by the system operator so that the system is stable.Parameter

∆𝜔 is called deadband. Control signal for |𝜔(𝑡)| < ∆𝜔 is equal 0. The deadband is used due

to the following reasons:

1. If frequency is close to nominal, control signal of different generators can have opposite

signs due to measurements errors. As a result, generators will "fight" each other.

2. Deadbands of different sizes allow some generators (e.g. hydro generators) to respond

to a disturbance quicker than the other.

Figure 7.1 represents dependence of generator electrical power output on the frequency value.

As can be seen, frequency drop leads to increase of power output. The opposite happens

in case of frequency increase. Primary frequency control operates at all system’s states

presented in section 6.10. Nevertheless, in some power systems in case of high frequency

oscillations (when the system is in critical state) primary frequency control switches from

frequency control to speed control. The latter is represented by proportional controller with

higher control gain 𝑘𝐼 [10].
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7.3 Secondary frequency control

Secondary frequency control is responsible for delivering frequency to the nominal value.

This control works in a centralized way: frequency measurements are taken from one or

several reference generators, and then system operator calculates control values and sends

them synchronously to every controllable bus. Secondary frequency control is represented

by an integral controller. Frequency deviation measured at reference buses are integrated in

order to obtain control signals 𝑢𝐼𝐼 . Let 𝐺 be set of system’s generators, 𝜔𝑟𝑒𝑓 be frequency on

the reference generator that sends frequency measurements to the system operator. Then,

secondary frequency control is represented by the following formulas:

𝑦(𝑡) = −𝑘𝐼𝐼
∫︁ 𝑡

0

(𝜔𝑟𝑒𝑓 (𝜏) − Ω)𝑑𝜏, (7.2a)

𝑢𝐼𝐼𝑖 =
𝑦

𝑤𝑖

, 𝑖 ∈ 𝐺. (7.2b)

Here 𝑤𝑖, 𝑖 ∈ 𝐺 are generators participation factors, 𝑘𝐼𝐼 > 0 (𝑀𝑊/𝐻𝑧) is an integration

coefficient. Its choice is discussed in section 7.4.

Participation factors have the following interpretation. Let us consider the case, when

system suffers from a step change disturbance, which is then compensated by frequency

control action (7.2). Then, participation factors are equal to coefficients of quadratic function,

which is being minimized during secondary frequency control operation:

1

2

∑︁
𝑖∈𝐺

𝑤𝑖(𝑢
𝐼𝐼
𝑖 )2. (7.3)

Frequency control response is presented in the Figure 7.2. Change of electrical power

nominal value moves droop characteristic along the 𝑝𝑒 axis, thus allowing to return frequency

to the nominal value.

Secondary frequency control in addition to frequency restoration is also responsible for

control of inter-area flow. In order to do so, value of inter-area flow deviation is added to

integrated of (7.2a). After such modification values of 𝑦 function are not unique for the entire

system, but are unique for each area of the system.

Let power system be divided into 𝑘max areas, and 𝑟𝑒𝑓𝑘 is in index reference generator in
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Figure 7.2: Droop characteristics for different reference values 𝑢𝐼𝐼

the area 𝑘 ∈ {1, . . . , 𝑘max}. Then, equations (7.2) are updated to the following form:

𝑦𝑘(𝑡) = −𝑘𝐼𝐼
∫︁ 𝑡

0

(𝜔𝑟𝑒𝑓𝑘(𝜏)−50)+𝐾𝑎𝑟𝑒𝑎
𝑘 (𝑃𝑘(𝜏)−𝑃 𝑟𝑒𝑓

𝑘 )𝑑𝜏, 𝑘 ∈ {1, . . . , 𝑘max}, 𝑙 ∈ {1, . . . , 𝑘max},

(7.4a)

𝑢𝐼𝐼𝑖 =
𝑦𝑘
𝑤𝑖

, 𝑖 ∈ 𝐺𝑘, 𝑘 ∈ {1, . . . , 𝑘max}. (7.4b)

Here 𝑃𝑘 is inter-area flow, 𝑃 𝑟𝑒𝑓
𝑘 is nominal value of inter-area flow. Coefficient 𝐾𝑎𝑟𝑒𝑎

𝑘 is cho-

sen so that value inter-area flow deviation would affect function 𝑦 much less, than value of

frequency deviation. Thus, in case of disturbance appearance, generators from all areas par-

ticipate in frequency restoration, ensuring system’s safety. Then, after frequency oscillations

are suppressed, generation is adjusted subject to the inter-area flows nominal values. Hence,

after the transient, disturbance is compensated only by the generators of the disturbance’s

area.

7.4 Frequency dynamics in power systems

Power system’s reaction to a step change disturbance is represented in the Figure 7.3. Here

𝑟 is total power consumption of the system, ∆𝑟 is the step change disturbance. Upper plot
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represents frequency response to the disturbance, lower plot shows participation of kinetic

energy, primary and secondary controls in mechanical power output.

During the first 5-10 seconds after the disturbance appearance draw of additional electrical

energy is compensated only by the change of the generator’s kinetic energy. Primary and

secondary control respond to the frequency change; however, due to the delay in turbine

governor dynamics, they do not change mechanical power output during this period. As a

result, generator continues to supply power system with energy; however, generator’s speed

as well as system’s frequency drop. If system does not have any control, then frequency will

continue to drop (graph 𝑓𝑘𝑖𝑛𝑒𝑡𝑖𝑐 on the upper plot).

Primary frequency control reacts to the frequency drop by opening governor valves hence,

increasing input of energy carrier to the turbine (green area, 𝑢𝐼). Then, mechanical power

delivered by the energy carrier becomes bigger than the disturbance size ∆𝑟, hence, kinetic

energy loss is compensated. Primary frequency control is represented by proportional con-

troller; thus, it cannot fully compensate the disturbance, and should the system have no

secondary frequency control, the system frequency will stabilize at some suboptimal value

(graph 𝑓𝑃𝐹𝐶 on the upper plot).

Finally, secondary frequency control (blue area, 𝑢𝐼𝐼) changes mechanical power output by

∆𝑟, thus restoring frequency. Oscillations of the mechanical power output can be observed.

They appear due to the control lag caused by the delay of governor and turbine dynamics as

well as difference between responses of the system’s generators.

Example 7.1 (Primary and secondary control coefficients). Let us consider New England

IEEE 39 bus system [8], shown in the Figure 7.4. It consists of 39 buses including 10

generators marked G1,. . . ,G10. Per unit system is used: all parameters are scaled with

respect to the base power value of 100 MVA. Parameters of the system are given in the

tables 7.1 and 7.2 here 𝑘𝐼 = 20. In the table we present values 𝑃 𝑛
𝑖 𝑘

𝐼 in the column droop

response (where 𝑃 𝑛
𝑖 is a reference power of the generator G𝑖.Turbine and governor constants

are taken from [90].
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Generator number Bus number Inertia (s) Damping (p.u.) Droop response (p.u.)

1 39 50.0000 12.5000 0.1326

2 31 4.2000 28.6465 0.3039

3 32 3.0300 32.5000 0.3448

4 33 3.5800 31.6000 0.3353

5 34 2.8900 25.4000 0.2695

6 35 2.6000 32.5000 0.3448

7 36 3.4800 28.0000 0.2971

8 37 2.6400 27.0000 0.2865

9 38 2.4300 41.5000 0.4403

10 30 3.4500 50.2646 0.5333

Table 7.1: IEEE New England 39 bus system generators’ parameters.

Line number Output bus Input bus Line reactance (p.u.)

1 1 2 0.0374

2 1 39 0.0232

3 2 3 0.0139

4 2 25 0.0077

5 2 30 0.0165

6 3 4 0.0204

7 3 18 0.0124

8 4 5 0.0125

9 4 14 0.0125

10 5 8 0.0110

11 5 6 0.0025

12 6 7 0.0090

13 6 11 0.0079

14 7 8 0.0045

15 8 9 0.0350
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16 9 39 0.0235

17 10 11 0.0041

18 10 13 0.0041

19 10 32 0.0201

20 11 12 0.0423

21 12 13 0.0423

22 13 14 0.0097

23 14 15 0.0209

24 15 16 0.0089

25 16 17 0.0083

26 16 19 0.0180

27 16 21 0.0126

28 16 24 0.0055

29 17 18 0.0076

30 17 27 0.0161

31 19 33 0.0136

32 19 20 0.0132

33 20 34 0.0180

34 21 22 0.0129

35 22 23 0.0087

36 22 35 0.0130

37 23 24 0.0324

38 23 36 0.0247

39 25 26 0.0290

40 25 37 0.0215

41 26 27 0.0134

42 26 28 0.0429

43 26 29 0.0568

56



30

G10

G8

G1

G2

G3

G9

G5

G4

G6

G7

2

1   

39

5

9

8

7

4

3

18

25

37

6

31

26

27

17
16

15

14

12

11

10
13

32

28

24

21

22

35 23

36

19

20

34

33

29

38

Figure 7.4: New England IEEE 39 bus system.

44 28 29 0.0137

45 29 38 0.0146

46 6 31 0.0238

Table 7.2: IEEE New England 39 bu system line param-

eters

It is assumed that partial outage happens resulting in step change disturbance of 100 MW

on the generator 10 (Figure 7.5). In the Figure 7.6 initial frequency drop corresponds to the

loss of kinetic energy. Then, primary frequency control operates during 5-40 seconds after

the disturbance. Finally, secondary frequency control restores frequency 6 minutes after the

disturbance. Primary and secondary frequency control responses are shown in the Figure

7.7. Even though controls change positions of the governor valves it is convenient to measure
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Figure 7.5: New England IEEE 39 bus system. Partial outage.
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Figure 7.6: Frequency, normal droop constants

it in MW similar to the generator output. If, for example, control signal is changed by

1 MW, generator output will also be changed by 1 MW after attenuation of all transient

processes. Since primary frequency control is represented by proportional controller (7.1) its

signal graph (blue line) is very close to mirrored graph of frequency in the Figure 7.6. Signal

of secondary frequency control (orange line) converges to the 100 MW disturbance value,

thus restoring frequency. As a consequence value of primary frequency control converges to

0.

After control signal is sent it takes some time for the mechanical power output to adjust.

Turbogenerators act as low pass filters that have control signal as input and mechanical

power as output. This dynamics is shown in the Figure 7.8. Such behavior of turbines

introduces control, thus imposing limits on the control gains 𝐾𝐼 and 𝑘𝐼𝐼 . It can be seen,

that approximately at 10 seconds mechanical power output reaches its local maximum. At

the same time frequency in the Figure 7.6 reaches its local minimum, which results in rapid

growth of control signal and consequently frequency at 20 seconds. If control gains will be

increased such effect will lead to increase of frequency oscillations (Figures 7.9 — 7.11) and

loss of stability (Figures 7.12 — 7.14). As a result, droop coefficients 𝐾𝐼 are taken to be

0.03 − 0.07 and gain of the secondary frequency control 𝑘𝐼𝐼 ≈ 0.002 [10].
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Figure 7.7: Control signals, normal droop constants
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Figure 7.8: Control signal and mechanical power output, normal droop constants
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Figure 7.9: Frequency, droop constants x5
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Figure 7.10: Control signals, normal droop x5
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Figure 7.11: Control signal and mechanical power output, droop constants x5
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Figure 7.12: Frequency, droop constants x20
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Figure 7.13: Control signals, normal droop x20
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Figure 7.14: Control signal and mechanical power, normal droop x20
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Figure 7.15: New England system with two wind farms.

Example 7.2 (Low-inertia system). In section 6.3 it was mentioned that one of the issues of

renewable generation is low inertia. Let us consider New England network from the example

7.1. However, now two generators G1 and G10 are replaced with wind farms of the same

capacity. Inertia of both generators is reduced 10 times to represent dynamics of the wind

generators. Thus, after the same loss of 100 MW on G10 frequency oscillates at greater rate

as it is shown in the Figure 7.16.

7.5 Tertiary control. Optimal power flow and security constrained

optimal power flow.

While primary and secondary frequency controls are used to regulate dynamic processes in

power systems, tertiary frequency control is used periodically to adjust generation according

to the prices given by the power market, and performs congestion management. In order
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Figure 7.16: Frequency for systems with and without renewable generation.

to do so optimal power flow problem (OPF) is solved for the desired time interval (15-120

minutes). Additionally, it is run again after any failure in order to readjust power generation.

Optimal power flow problem is an optimization, usually non-convex problem. Non-

convexity appears due to the formulas that define active and reactive power flows as well

as due to the cost function in some cases. Nevertheless, for some systems direct current OPF

(DC OPF) is solved. In this case reactive power flows are ignored and voltage magnitudes

|𝑉 | and electromagnetic force |ℰ| are considered to be constant. Let the power system be

defined by the oriented graph (𝑁,𝐸), where 𝑁 is the set of buses, |𝑁 | = 𝑛, 𝐸 is the set of

lines, |𝐸| = 𝑞. Formulation of DC OPF is a simplified version of the formulation in [91]:

min
(𝑢𝑖,𝜃𝑖,𝑝𝑖𝑗 :
𝑖∈𝑁,𝑖𝑗∈𝐸)

𝑐(𝑢1, . . . , 𝑢𝑛), (7.5a)

0 =
∑︁

𝑗:𝑗𝑖∈𝐸

𝑝𝑗𝑖 −
∑︁

𝑗:𝑖𝑗∈𝐸

𝑝𝑖𝑗 + 𝑢𝑖 + 𝑧𝑖, 𝑖 ∈ 𝑁, (7.5b)

𝑝𝑖𝑗 = 𝑏𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗), 𝑖𝑗 ∈ 𝐸, (7.5c)

𝑢𝑖 ≤ 𝑢𝑖 ≤ 𝑢𝑖, 𝑖 ∈ 𝑁, (7.5d)

𝑝
𝑖𝑗
≤ 𝑝𝑖𝑗 ≤ 𝑝𝑖𝑗, 𝑖𝑗 ∈ 𝐸. (7.5e)

Here variables of the system are
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∙ 𝑢𝑖, 𝑖 ∈ {1, . . . , 𝑛} — active power, generated on the bus 𝑖;

∙ 𝑝𝑖𝑗, 𝑖𝑗 ∈ 𝐸 — power flow on the line 𝑖𝑗.

System’s parameters are:

∙ 𝑧𝑖, 𝑖 ∈ {1, . . . , 𝑛} — consumption on the bus 𝑖;

∙ 𝑏𝑖𝑗, 𝑖𝑗 ∈ 𝐸 — line parameter calculated according to the formula 𝑏𝑖𝑗 =
|𝑉𝑖||𝑉𝑗 |
𝑋𝑖𝑗

, where |𝑉𝑖|

and |𝑉𝑗| are fixed voltage magnitudes of buses 𝑖 and 𝑗 respectively, 𝑋𝑖𝑗 — line reactance;

∙ 𝑢𝑖, 𝑢𝑖, 𝑖 ∈ {1, . . . , 𝑛} — upper and lower generation limits on the bus 𝑖;

∙ 𝑝𝑖𝑗, 𝑝𝑖𝑗, 𝑖𝑗 ∈ 𝐸 — upper and lower power flow limits on the line 𝑖𝑗.

Function 𝑐(·) is some generation cost function, defined by the rules of power market. Con-

sumptions 𝑟𝑖 are predicted based on the previously gathered statistics.

Solving (7.5) allows us to minimize generation and perform congestion management. How-

ever, in practice a modification of this problem, called security constrained optimal power

flow (SCOPF) is solved. It is needed to ensure system’s compliance with all line limits in

case of a line or a bus failure, when statistics based prediction is incorrect. It is said that

the system satisfies (N-𝑥) criteria, if it can remain its efficiency after 𝑥 of its elements (lines

or buses) fail. The DC SCOPF solved during the tertiary control has the following form.

Let 𝛼𝑖 ∈ {0, 1}, 𝑖 ∈ {1, . . . , 𝑛} and 𝛽𝑖𝑗 ∈ {0, 1}, 𝑖𝑗 ∈ 𝐸 be indicators of working capacity of

buses and lines respectively. If 𝛼𝑖 = 1 then bus 𝑖 works, if 𝛼𝑖 = 0 then bus 𝑖 does not work,

and the same notations applied to lines’ indicators. Then, for (N-𝑥) criteria the following

inequality holds:

1 ≤
𝑛∑︁

𝑖=1

𝛼𝑖 +
∑︁
𝑖𝑗∈𝐸

𝛽𝑖𝑗 ≤ 𝑁 − 𝑥. (7.6)

Let 𝑋𝛼 be combinations of all possible combinations of 𝛼𝑖 (for each 𝛼𝑖 there exists set of 𝛽𝑖𝑗

such that inequality (7.6) holds). Then, its cardinality is equal to

|𝑋𝛼| =
𝑥∑︁

𝑗=0

𝑛!

(𝑛− 𝑗)!𝑗!
. (7.7)

Let all sets from 𝑋𝛼 be enumerated: (𝛼𝑘
1, . . . , 𝛼

𝑘
𝑛), 𝑘 ∈ {1, . . . , |𝑋𝛼|}. Then, for each number

𝑘 it is possible to introduce set 𝑋𝛽(𝑘) that consists of all possible combinations of 𝛽𝑖𝑗 such

that inequality (7.6) holds. Here

|𝑋𝛽(𝑘)| =

𝑥−𝛼𝑘
0∑︁

𝑗=0

𝑞!

(𝑞 − 𝑗)!𝑗!
, (7.8)
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where 𝛼𝑘
0 =

∑︀𝑛
𝑖=1 𝛼

𝑘
𝑖 . As before it is possible to enumerate all elements of 𝑋𝛽(𝑘): (𝛽𝑙

𝑖𝑗, 𝑖𝑗 ∈

𝐸), 𝑙 ∈ {1, . . . , |𝑋𝛽(𝑘)|}. Then, one formulation of the SCOPF with (N-𝑥) criteria is a

simplified version of the formulation in [91]:

min
(𝑢𝑖,𝜃𝑖,Δ𝑝𝑘𝑖 ,𝜃

𝑘𝑙
𝑖 ,𝑝𝑖𝑗 ,𝑝

𝑘𝑙
𝑖𝑗 :

𝑖∈𝑁,𝑖𝑗∈𝐸,
𝑘∈{1,...,|𝑋𝛼|},𝑙∈{1,...,|𝑋𝛽(𝑘)|})

𝑐(𝑢1, . . . , 𝑢𝑛), (7.9a)

0 =
∑︁

𝑗:𝑗𝑖∈𝐸

𝑝𝑗𝑖 −
∑︁

𝑗:𝑖𝑗∈𝐸

𝑝𝑖𝑗 + 𝑢𝑖 + 𝑧𝑖, 𝑖 ∈ 𝑁, (7.9b)

𝑝𝑖𝑗 = 𝑏𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗), 𝑖𝑗 ∈ 𝐸, (7.9c)

𝑢𝑖 ≤ 𝑢𝑖 ≤ 𝑢𝑖, 𝑖 ∈ 𝑁, (7.9d)

𝑝
𝑖𝑗
≤ 𝑝𝑖𝑗 ≤ 𝑝𝑖𝑗, 𝑖𝑗 ∈ 𝐸, (7.9e)

0 =
∑︁

𝑗:𝑗𝑖∈𝐸

𝑝𝑘𝑙𝑗𝑖 −
∑︁

𝑗:𝑖𝑗∈𝐸

𝑝𝑘𝑙𝑖𝑗 + 𝛼𝑘
𝑖 (𝑢𝑖 + 𝑧𝑖 + ∆𝑝𝑘𝑖 ), 𝑖 ∈ 𝑁, 𝑘 ∈ {1, . . . , |𝑋𝛼|}, 𝑙 ∈ {1, . . . , |𝑋𝛽(𝑘)|},

(7.9f)

𝑝𝑘𝑙𝑖𝑗 = 𝛽𝑘𝑙
𝑖𝑗 𝑏𝑖𝑗 sin(𝜃𝑘𝑙𝑖 − 𝜃𝑘𝑙𝑗 ), 𝑖𝑗 ∈ 𝐸, 𝑘 ∈ {1, . . . , |𝑋𝛼|}, 𝑙 ∈ {1, . . . , |𝑋𝛽(𝑘)|}, (7.9g)

𝑢𝑖 ≤ 𝑢𝑖 + ∆𝑝𝑘𝑖 ≤ 𝑢𝑖, 𝑖 ∈ 𝑁, 𝑘 ∈ {1, . . . , |𝑋𝛼|}, 𝑙 ∈ {1, . . . , |𝑋𝛽(𝑘)|}, (7.9h)

𝑝
𝑖𝑗
≤ 𝑝𝑘𝑙𝑖𝑗 ≤ 𝑝𝑖𝑗, 𝑖𝑗 ∈ 𝐸, 𝑘 ∈ {1, . . . , |𝑋𝛼|}, 𝑙 ∈ {1, . . . , |𝑋𝛽(𝑘)|}. (7.9i)

Here similarly to (7.5) generation cost function is minimized for power system with all its

elements working. However, additional constraints are introduced that correspond to failure

of 1 to 𝑥 elements of the system. The system responds according to the rules of primary

and secondary frequency controls; therefore, generation in (7.9f) is adjusted by ∆𝑝𝑘 for each

type of bus failure. It can be seen, that this adjustments do not depend on the type of line

failure 𝑙(𝑘). It is done due to the fact, that primary and secondary frequency controls do not

take into consideration line limits. Let us consider the case, when for some 𝑘 all 𝛼𝑘
𝑖 = 1 and

some 𝛽𝑘
𝑖 = 0. For such type of failure control action 𝑦𝑘 = 0, since frequency control takes

into consideration only disturbances in power balance. Moreover, since frequency control is

blind to line constraints it can increase power flow on the congested lines. Therefore, tertiary

control has to preventivelly adjust generation so neither any failure or control action would
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not violate line limits. Hence SCOPF (7.9) is called SCOPF with preventive (N-𝑥) criteria.

Such preventive approach results in the underloading of the majority of lines as well as cheap

generators consequently in increase of generation cost.

If primary and secondary controls would have more complicated structure that would

recognize and correct line flows violations than optimization problem (7.9) can be relaxed

into the following problem, called SCOPF with corrective (N-𝑥) criteria:

min
(𝑢𝑖,𝜃𝑖,Δ𝑝𝑘𝑙𝑖 ,𝜃𝑘𝑙𝑖 ,𝑝𝑖𝑗 ,𝑝

𝑘𝑙
𝑖𝑗 :

𝑖∈𝑁,𝑖𝑗∈𝐸,
𝑘∈{1,...,|𝑋𝛼|},𝑙∈{1,...,|𝑋𝛽(𝑘)|})

𝑐(𝑢1, . . . , 𝑢𝑛), (7.10a)

0 =
∑︁

𝑗:𝑗𝑖∈𝐸

𝑝𝑗𝑖 −
∑︁

𝑗:𝑖𝑗∈𝐸

𝑝𝑖𝑗 + 𝑢𝑖 + 𝑧𝑖, 𝑖 ∈ {1, . . . , 𝑛}, (7.10b)

𝑝𝑖𝑗 = 𝑏𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗), 𝑖𝑗 ∈ 𝐸, (7.10c)

𝑢𝑖 ≤ 𝑢𝑖 ≤ 𝑢𝑖, 𝑖 ∈ {1, . . . , 𝑛}, (7.10d)

𝑝
𝑖𝑗
≤ 𝑝𝑖𝑗 ≤ 𝑝𝑖𝑗, 𝑖𝑗 ∈ 𝐸, (7.10e)

0 =
∑︁

𝑗:𝑗𝑖∈𝐸

𝑝𝑘𝑙𝑗𝑖 −
∑︁

𝑗:𝑖𝑗∈𝐸

𝑝𝑘𝑙𝑖𝑗 + 𝛼𝑘
𝑖 (𝑢𝑖 + 𝑧𝑖 + ∆𝑝𝑘𝑙𝑖 ), 𝑖 ∈ 𝑁, 𝑘 ∈ {1, . . . , |𝑋𝛼|}, 𝑙 ∈ {1, . . . , |𝑋𝛽(𝑘)|},

(7.10f)

𝑝𝑘𝑙𝑖𝑗 = 𝛽𝑘𝑙
𝑖𝑗 𝑏𝑖𝑗 sin(𝜃𝑘𝑙𝑖 − 𝜃𝑘𝑙𝑗 ), 𝑖𝑗 ∈ 𝐸, 𝑘 ∈ {1, . . . , |𝑋𝛼|}, 𝑙 ∈ {1, . . . , |𝑋𝛽(𝑘)|}, (7.10g)

𝑢𝑖 ≤ 𝑢𝑖 + ∆𝑝𝑘𝑙𝑖 ≤ 𝑢𝑖, 𝑖 ∈ 𝑁, 𝑘 ∈ {1, . . . , |𝑋𝛼|}, 𝑙 ∈ {1, . . . , |𝑋𝛽(𝑘)|}, (7.10h)

𝑝
𝑖𝑗
≤ 𝑝𝑘𝑙𝑖𝑗 ≤ 𝑝𝑖𝑗, 𝑖𝑗 ∈ 𝐸, 𝑘 ∈ {1, . . . , |𝑋𝛼|}, 𝑙 ∈ {1, . . . , |𝑋𝛽(𝑘)|}. (7.10i)

Here control adjustments ∆𝑝𝑘𝑙 depend on both type of bus failure and type of line failure. It

is possible to switch from corrective constraints in (7.10) to preventive by adding additional

constraint 𝑝𝑘,𝑙1 = 𝑝𝑘,𝑙2 for all 𝑘 ∈ {1, . . . , |𝑋𝛼|}, 𝑙1, 𝑙2 ∈ {1, . . . , |𝑋|𝛽(𝑘)}. Therefore, SCOPF

with corrective constraints always has value of objective function better or equal to the one

of SCOPF with preventive constraints. in majority of the systems 𝑥 is set to 1, since is highly

unlikely that more than one failure would happened in between to tertiary control operation.
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7.6 Reasoning behind new control scheme

The frequency control scheme described above is used in every power systems possibly with

some modifications. Nevertheless, there exists a number of reasons for developing a new

one. The following issues compose a basis for update and modification of the used control

algorithms.

1. Usage of renewable energy sources. As it was shown in section 6.1, generator units

that work from the renewable sources have low inertia. In traditional power systems

rapid frequency drop as a consequence of a disturbance is not possible. Traditional

generators have high inertia; thus, loss of kinetic energy does not change their speed

rapidly. Usage of renewable sources reduces overall inertia of the system. As a result,

frequency responds abruptly even to small disturbances. The existing control scheme

cannot respond to such quick changes in frequency and consequently cannot provide

sufficient reliability level for the systems with high penetration of renewables.

2. Usage of controllable loads can improve frequency dynamics. Short-term shut down

(or reduction of power consumption) of some loads can provide necessary balancing

action after a disturbance of significant size. Generator-side control is implemented via

position changes of governing valves of turbines. However, valves are set in motion by

hydraulics or servomotors, which requires some time. Moreover, after governor valves

change their position, change of the turbines’ mechanical power output takes some time

(usually 5-20 seconds) due to dynamics of energy carrier. As a result, during first sec-

onds after disturbance generators do not change their output and frequency dynamics

depends only on the change of kinetic energy of the systems’ synchronous machines.

Thus, load-side control can help rebuffing frequency drop at the very beginning. Addi-

tionally, short-term shut down of some loads such as air conditioning units causes little

or no complications on the consumer side.

3. AGC requires centralized operation within each area or entire system. Synchronized

information collection followed by control signal broadcast imposes limit on the control

signals update frequency. In practice equations (7.4) are discretized with discretization
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time. If control will be performed in the distributed way, so only neighbours can

communicate trough point to point connections, the discretization can be reduced to

tens of milliseconds, which may improve control performance. Additionally, even after

aggregation, number of load buses is several times bigger, than number of generator

buses. Load-side control organized in the centralized way would require complicated

communication system that would support control with synchronized communication,

which makes centralized generator and load control difficult to implement.

4. Congestion management is performed as a part of tertiary control, which is done once

per 15-120 minutes. Corrective control is used only after a failure occurs. As a result,

(N-𝑥) criteria is implemented to ensure system’s stability. It is necessary, since real-

time congestion management is not a part of traditional control scheme. If 𝑥+ 1 of the

system will fail, line limits violations, caused by this failure will not be cleared until the

next tertiary control. Real-time congestion management would allow to switch from

preventive (N-𝑥) criteria to corrective one reducing generation cost.

The issues above are considered in a large variety of works considered in section 2. The

novelty of the presented work is in the usage of high order turbine governor model that

ensures realistic modeling of the power system dynamics, hence provides possibility of control

implementation.
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8 Preliminaries of stability theory

Here the known results from stability theory, needed further in the work, are presented. Let

us introduce the autonomous system of differential equations

𝑥̇ = 𝑓(𝑥), 𝑥(0) = 𝑥0, (8.1)

where 𝑓 : R𝑛 → R𝑛, 𝑓 is continuous and Lipschitz on 𝑅𝑛. Its solution is denoted by

𝑥(𝑡, 𝑥0) = 𝑥(𝑡).

Definition 8.1. Solution 𝑥(𝑡, 0) ≡ 0 of the system (8.1) is called globally asymptotically

stable if for any 𝑥0 ∈ R𝑛 lim𝑡→∞ 𝑥(𝑡, 𝑥0) = 0.

Definition 8.2. Function 𝑊 : R𝑛 → R is called positive (negative) definite if 𝑊 (𝑥) > 0

(𝑊 (𝑥) < 0) for all 𝑥 ∈ R𝑛 ∖ {0} and 𝑊 (0) = 0.

Theorem 8.1 (Lyapunov asymptotic stability theorem [92]). Assume there exists a con-

tinuously differentiable function 𝑉 : R𝑛 → R such that 𝑉 (𝑥) = 𝑉 (𝑥(𝑡)) has the following

properties: 𝑉 (𝑥) is positive definite and 𝑉̇ (𝑥) = 𝑉 ′(𝑥(𝑡))𝑓(𝑥(𝑡)) is negative definite. Then,

solution 𝑥(𝑡, 0) ≡ 0 is globally asymptotically stable.

Function 𝑉 in the theorem 8.1 is called Lyapunov function.

Definition 8.3. A set ℳ ⊆ R𝑛 is an invariant set with respect to the system (8.1) if

ℳ = {𝑥(𝑡, 𝑥0) | 𝑡 ≥ 0, 𝑥0 ∈ ℳ}. (8.2)

Theorem 8.2 (Barbashin-Krasovskii-LaSalle theorem [93], [94]). Assume there exists a con-

tinuously differentiable Lyapunov function 𝑉 : R𝑛 → R such that 𝑉 (𝑥) = 𝑉 (𝑥(𝑡)) has the fol-

lowing properties: 𝑉 (𝑥) is positive definite and 𝑉̇ (𝑥) = 𝑉 ′(𝑥(𝑡))𝑓(𝑥(𝑡)) ≤ 0 for any 𝑥(𝑡) ∈ R𝑛.

Let ker 𝑉̇ (𝑥) = {𝑥(𝑡) ∈ R𝑛 : 𝑉̇ (𝑥(𝑡)) = 0} and let ℳ be the largest invariant set contained in

ker 𝑉̇ (𝑥). Then, any solution 𝑥(𝑡, 𝑥0) converges to a trajectory from ℳ.

Definition 8.4. Function 𝑉 : R𝑛 → R with argument 𝑥 is called positive (negative) definite

over subvector 𝑥𝐼 , 𝐼 ⊆ {1, . . . , 𝑛} if there exists such positive (negative) definite function

𝑊 : R|𝐼| → R that 𝑉 (𝑥) ≥ 𝑊 (𝑥𝐼).
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Definition 8.5. Solution 𝑥(𝑡, 0) ≡ 0 of the system (8.1) is called globally asymptotically

over subvector 𝑥𝐼 , 𝐼 ⊆ {1, . . . , 𝑛} if for any 𝑥0 lim𝑡→∞ 𝑥𝑖(𝑡, 𝑥
0) = 0, 𝑖 ∈ 𝐼.

Theorem 8.3 (Rumyantsev partial stability theorem [95]). Assume there exists a contin-

uously differentiable Lyapunov function 𝑉 : R𝑛 → R such that 𝑉 (𝑥) = 𝑉 (𝑥(𝑡)) has the

following properties: 𝑉 (𝑥) is positive definite and 𝑉̇ (𝑥) = 𝑉 ′(𝑥(𝑡))𝑓(𝑥(𝑡)) is negative definite

over subvector 𝑥𝐼 , 𝐼 ⊆ {1, . . . , 𝑛}. Then, solution 𝑥(𝑡, 0) ≡ 0 is asymptotically stable over

subvector 𝑥𝐼 .
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9 Power system model

Here we model power system network. If we choose model to be too detailed it might be not

possible to derive any analytical results. If the chosen model is overly simplified, it might

not correctly describe the dynamics of the network. Therefore, for the analytical results we

use simpliest model that provides accurate simulation of the system dynamics with primary

frequency control (proportional controller).

Per unit system is used. This allows us to exclude transformers from the model and also

assume that network electrical frequency is equal to the rotational speed of the generators.

Additional assumptions are taken in accordance with [85] and [90]. Namely, as it was shown

in section 6.4, reactive powers and voltages have little effect on frequency. Therefore, voltage

magnitudes are assumed to be constant and equal 1 p.u. and reactive power is not consid-

ered. Second order generator model is used as sufficient for the analysis of frequency, which

dynamics is within a timeframe of seconds.

We use different system models for the theoretical results and numerical simulations in

section 14 in order to ensure applicability of the derived control in practice. Namely, model

used for theoretical results has linear DC linear power flows and second order turbine and

governor dynamics, while model used in numerical experiments has nonlinear DC power flows

and more realistic turbine and governor model for steam and hydro turbines.

Control is denoted by a continuous vector function 𝑢 ∈ 𝐶(R𝑛). In generator units (section

6.2) control signals are sent to the regulation valves servomotors, which act as low pass filters.

Therefore, in practice control can be discontinuous. Such property must be utilized if optimal

control approach is utilized to find control functions. However, we will derive control by a

transition from the optimization problem on the set of the stationary points to integral

algebraic system of equations. Therefore, we do not use discontinuities and, consequently,

assume the control to be continuous in order to analyse system stability.

In further section we will explicitly define control inputs and information availability. We

do not consider issues of the communication delays and discretization.
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9.1 Model for derivation of theoretical results

General form of the model for theoretical results is given in the Figure 9.1. Classical generator

model is used [85]:

𝑚𝜔̇ = −𝑑𝜔 − 𝑝𝑒 + 𝑝𝑚 + 𝑟, (9.1)

𝜃 = 𝜔. (9.2)

Here variables have the following meanings:

∙ 𝜃 is phase angle;

∙ 𝜔 is deviation of frequency from the nominal angle;

∙ 𝑝𝑒 is electrical power;

∙ 𝑝𝑚 is mechanical power, injected by the turbine.

Here and further only deviations of frequency will be used. Frequency value itself will not

be present. Therefore, frequency deviations are denoted by 𝜔 instead of ∆𝜔. As a part of

the assumption, reactive power does not affect the considered problem; therefore, everywhere

further electrical power 𝑝𝑒 corresponds to active power.

Generator’s parameters have the following values:

∙ 𝑚 is generator and turbine inertia;

∙ 𝑑 is generator damping;

∙ 𝑟 is unknown sum of load and change in generation due to failure. This parameter is

further referred as disturbance.

Here inertia constants of turbine and generator are summed into one, product −𝑑𝜔 approxi-

mates combination of fast electromagnetic processes.

𝑡𝑚𝑝̇𝑚 = −𝑝𝑚 + 𝑣, (9.3)

𝑡𝑣𝑣̇ = −𝑣 + 𝑢. (9.4)

Here variables have the following meanings:

∙ 𝑢 is control signal,

𝑢 ∈ [𝑢, 𝑢]; (9.5)

∙ 𝑣 is governor valve position.

74



G
o

ve
rn

in
g

 v
al

ve
s

Network

Measuring element

Network

Measuring element

GeneratorTurbine

Frequency 
regulator

E
n

er
g

y 
ca

rr
ie

r

Shaft

Frequency 
regulator

Load
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Figure 9.2: Governor turbine model.

Equation (9.3) describes lag of governor valves. Equation (9.4) describes turbine dynamics.

Parameters have the following meanings [90], [96]:

∙ 𝑡𝑣 is time constant characterizing response of governor valve to the control signal;

∙ 𝑡𝑚 is time constant characterizing energy carrier dynamics in turbine.

Choice of the second order turbine governor model is necessary for accurate representation

of system’s response to control signals. Let us consider case, when droop control constants

𝐾𝐼 are increased 30 times above standard values. For simplicity, it is assumed, that the

system has no secondary frequency control. As it was shown in section 7.4 system should

become unstable. Then, results of numerical experiments for the models with no turbine

governor dynamics model (𝑝𝑚 ≡ 𝑢) and with turbine governor model of the first (𝑣 ≡ 𝑢) and

second order are considered Figure 9.2. It can be seen, that in the first case system remains

stable, and thus, such model is insufficient for accurate representation of frequency dynamics.

In the second case the system suffers from significant frequency oscillation; however, is still

stable. On the contrary second order governor turbine model is sufficient to represent correct

behavior of the system.

Balance equations for load buses with synchronous machines are similar to the equations
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of the classical generator model [90]:

𝑚𝜔̇ = −𝑑𝜔 − 𝑝𝑒 + 𝑢+ 𝑟, (9.6)

𝜃 = 𝜔. (9.7)

As presence of synchronous machines is not guaranteed on every bus, balance equations for

load buses without synchronous machines are also introduced [90]:

0 = −𝑑𝜔 − 𝑝𝑒 + 𝑢+ 𝑟, (9.8)

𝜃 = 𝜔. (9.9)

Difference between 9.8 and 9.6 appears due to the lack of synchronous machines’ inertia in

the latter case. Parameter 𝑑 in equations for load buses is a sum of two components: damping

of synchronous machines (if present) and response of frequency dependent loads.

Load side control can be implemented via switching on and off electrical appliances.

Such process has discrete structure. For simplicity, it is assumed that due to aggregation

of the loads in each bus discretization step is small, so load side control can be considered

continuous. Since switching on and off is almost instant process, control 𝑢 is added directly

to the power balance equations 9.8 and 9.6.

It is assumed that some loads may be located on the same bus as generator. Then, bus

is still considered a generator bus and equations (9.1), (9.2), (9.3), (9.4) remain unchanged.

However, in this case 𝑚 is a sum of inertia’s of all synchronous machines, and 𝑑 is a sum of

damping of synchronous machines (if present) and response of frequency dependent loads.

Lines power flows are modeled by DC flows. All voltage magnitudes in per unit system

are considered to be equal 1. As a result, power flow equation for a line connecting to buses

with phase angles 𝜃1 and 𝜃2 is a simplification of equation (6.2a):

𝑝 = 𝑏 sin(𝜃1 − 𝜃2), (9.10)

where 𝑏 = |𝑉1||𝑉2|
𝑋

= 1
𝑋

. Then, sin function is linearized in the origin:

𝑝 = 𝑏(𝜃1 − 𝜃2). (9.11)

Power system is defined by an oriented connected graph Γ = (𝑁,𝐸), where 𝑁 is set of buses,

|𝑁 | = 𝑛. It is assumed that a bus is defined by its index. Set of generator buses is denoted
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by 𝐺, |𝐺| = 𝑔. Without loss of generality it is assumed, that generator buses are the first

𝑔 buses of the system: 𝐺 = {1, . . . , 𝑔} ̸= ∅. The other buses are load buses. Their set is

denoted by 𝐿 = {𝑔 + 1, . . . 𝑔 + 𝑙}. Load buses are divided into buses with non-zero and zero

inertia: 𝐿 = 𝐿1 ∪ 𝐿0, 𝐿1 = {𝑔 + 1, . . . , 𝑔 + 𝑙1}, 𝐿0 = {𝑔 + 𝑙1 + 1, . . . , 𝑔 + 𝑙1 + 𝑙0}.

Set 𝐸 is set of lines (|𝐸| = 𝑞). It is assumed that lines in 𝐸 are sorted in lexicographic

order, thus, each line 𝑖𝑗 is indexed by unique 𝑘 ∈ {1, . . . , 𝑞}. Further, variables and parame-

ters associated with lines will be used with both types of indices 𝑖𝑗 and 𝑘 (for example, line

flow can be denoted by 𝑝𝑖𝑗 and 𝑝𝑘).

System’s dynamics is described by the following system of differential algebraic equations:

𝜃𝑖 =𝜔𝑖, 𝑖 ∈ 𝑁, (9.12a)

𝑚𝑖𝜔̇𝑖 = − 𝑑𝑖𝜔𝑖 − 𝑝𝑒𝑖 + 𝑝𝑚𝑖 + 𝑟𝑖, 𝑖 ∈ 𝐺, (9.12b)

𝑡𝑚𝑝̇𝑚𝑖 = − 𝑝𝑚𝑖 + 𝑣𝑖, 𝑖 ∈ 𝐺, (9.12c)

𝑡𝑣𝑣̇𝑖 = − 𝑣𝑖 + 𝑢𝑖, 𝑖 ∈ 𝐺, (9.12d)

𝑚𝑖𝜔̇𝑖 = − 𝑑𝑖𝜔𝑖 − 𝑝𝑒𝑖 + 𝑢𝑖 + 𝑟𝑖, 𝑖 ∈ 𝐿1, (9.12e)

0 = − 𝑑𝑖𝜔𝑖 − 𝑝𝑒𝑖 + 𝑢𝑖 + 𝑟𝑖, 𝑖 ∈ 𝐿0, (9.12f)

𝑝𝑖𝑗 =𝑏𝑖𝑗(𝜃𝑖 − 𝜃𝑗), 𝑖𝑗 ∈ 𝐸, (9.12g)

𝑝𝑒𝑖 =
∑︁

𝑗:(𝑖,𝑗)∈𝐸

𝑝𝑖𝑗 −
∑︁

𝑗:(𝑗,𝑖)∈𝐸

𝑝𝑗𝑖. 𝑖 ∈ 𝑁. (9.12h)

This system is derived from the equations (9.1)-(9.11). Here

∙ 𝜃𝑖, 𝑖 ∈ 𝑁 is phase angle on the bus 𝑖;

∙ 𝜔𝑖, 𝑖 ∈ 𝑁 is frequency deviation from the nominal value on the bus 𝑖;

∙ 𝑝𝑒𝑖 , 𝑖 ∈ 𝑁 is electrical power generated on the bus 𝑖;

∙ 𝑝𝑖𝑗, 𝑖𝑗 ∈ 𝐸 is power flow on the line connecting buses 𝑖 and 𝑗. If 𝑝𝑖𝑗 > 0, than power

flow is directed from bus 𝑖 to 𝑗, if 𝑝𝑖𝑗 < 0, then it is direct from 𝑗 to 𝑖. This variables

can be used with a single index corresponding to the line 𝑖𝑗: 𝑝𝑘;

∙ 𝑝𝑚𝑖 , 𝑖 ∈ 𝐺 is mechanical power, injected by the turbine on the bus 𝑖;

∙ 𝑣𝑖, 𝑖 ∈ 𝐺 is governor valve position on the bus 𝑖.

System’s parameters
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∙ 𝑚𝑖, 𝑖 ∈ 𝐺 ∪ 𝐿1 is inertia of synchronous machines on the bus 𝑖;

∙ 𝑑𝑖, 𝑖 ∈ 𝑁 is sum of damping of synchronous machines (if present) and response of

frequency dependent loads on the bus 𝑖;

∙ 𝑟𝑖, 𝑖 ∈ 𝑁 is sum of load and unknown disturbance on the bus 𝑖;

∙ 𝑏𝑖𝑗, 𝑖𝑗 ∈ 𝐸 is line parameter reciprocal to reactance. This parameter can be used with

a single index corresponding to line 𝑖𝑗: 𝑏𝑘;

∙ 𝑡𝑣𝑖 , 𝑖 ∈ 𝐺 is time constants characterizing response of governor valve to the control

signal on the bus 𝑖;

∙ 𝑡𝑚𝑖 , 𝑖 ∈ 𝐺 is time constants characterizing energy carrier dynamics in turbine on the

bus 𝑖.

Control signals: 𝑢𝑖, 𝑖 ∈ 𝑁 .

Further, matrix representation of the system (9.12) will be used:

𝜃 =𝜔, (9.13a)

𝑀𝐺,𝐺𝜔̇𝐺 = −𝐷𝐺,𝐺𝜔𝐺 − 𝑝𝑒𝐺 + 𝑝𝑚 + 𝑟𝐺, (9.13b)

𝑇𝑚𝑝̇𝑚 = − 𝑝𝑚 + 𝑣, (9.13c)

𝑇 𝑣𝑣̇ = − 𝑣 + 𝑢𝐺, (9.13d)

𝑀𝐿1,𝐿1𝜔̇𝐿1 = −𝐷𝐿1,𝐿1𝜔𝐿1 − 𝑝𝑒𝐿1
+ 𝑢𝐿1 + 𝑟𝐿1 , (9.13e)

0 = −𝐷𝐿0,𝐿0𝜔𝐿0 − 𝑝𝑒𝐿0
+ 𝑢𝐿0 + 𝑟𝐿0 , (9.13f)

0 =𝐵𝐶𝑇 𝜃 − 𝑝, (9.13g)

0 =𝐶𝑝− 𝑝𝑒. (9.13h)

Here vector representation of the variables is used: 𝜃 = (𝜃1, . . . 𝜃𝑛)𝑇 , 𝜔 = (𝜔1, . . . , 𝜔𝑛)𝑇 ,

𝑝 = (𝑝1, . . . , 𝑝𝑞)
𝑇 , 𝑝𝑚 = (𝑝𝑚1 , . . . , 𝑝

𝑚
𝑔 )𝑇 , 𝑣 = (𝑣1, . . . , 𝑣𝑔)

𝑇 , 𝑢 = (𝑢1, . . . , 𝑢𝑛)𝑇 as well as

matrix representation of parameters: 𝑀 = diag(𝑚1, . . . ,𝑚𝑔+𝑙1), 𝐷 = diag(𝑑𝑖, . . . , 𝑑𝑛), 𝑟 =

(𝑟1, . . . , 𝑟𝑛), 𝐵 = diag(𝑏1, . . . , 𝑏𝑞), 𝑇𝑚 = diag(𝑡𝑚1 , . . . , 𝑡
𝑚
𝑔 ), 𝑇 𝑣 = diag(𝑡𝑣1, . . . , 𝑡

𝑣
𝑔). Matrix 𝐶 is

incidence matrix of Γ.

In matrix form we can separate differential and algebraic equations as follows:

𝑥̇1 =𝐴11𝑥1 + 𝐴12𝑥2 + 𝑍1𝑢+ 𝑟1, (9.14a)

0 =𝐴21𝑥1 + 𝐴22𝑥2 + 𝑍2𝑢+ 𝑟2, (9.14b)
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where

𝐴11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 (𝐼𝑛𝐺)⊤ 0 0 (𝐼𝑛𝐿1
)⊤

0 −𝑀−1
𝐺,𝐺𝐷𝐺,𝐺 𝑀−1

𝐺,𝐺 0 0

0 0 −(𝑇𝑚)−1 (𝑇𝑚)−1 0

0 0 0 −(𝑇 𝑣)−1 0

0 0 0 0 −𝑀−1
𝐿1,𝐿1

𝐷𝐿1,𝐿1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐴12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝐼𝑛𝐿0
)⊤ 0 0

0 −𝑀−1
𝐺,𝐺𝐼

𝑛
𝐺 0

0 0 0

0 0 0

0 −𝑀−1
𝐿1,𝐿1

𝐼𝑛𝐿1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

𝑍1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

(𝑇 𝑣)−1𝐼𝑛𝐺

𝑀−1
𝐿1,𝐿1

𝐼𝑛𝐿1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑥1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜃

𝜔𝐺

𝑝𝑚

𝑣

𝜔𝐿1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑟1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

𝑀−1
𝐺,𝐺𝑟𝐺

0

0

𝑀−1
𝐿1,𝐿1

𝑟𝐿1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐴21 =

⎛⎜⎜⎜⎝
0 0 0 0 0

0 0 0 0 0

−𝐵𝐶⊤ 0 0 0 0

⎞⎟⎟⎟⎠ , 𝐴22 =

⎛⎜⎜⎜⎝
−𝐷𝐿0,𝐿0 −𝐼𝑛𝐿0

0

0 𝐼𝑛 −𝐶

0 0 𝐼𝑞

⎞⎟⎟⎟⎠ ,

𝑍2 =

⎛⎜⎜⎜⎝
𝐼𝑛𝐿0

0

0

⎞⎟⎟⎟⎠ , 𝑥2 =

⎛⎜⎜⎜⎝
𝜔𝐿0

𝑝𝑒

𝑝

⎞⎟⎟⎟⎠ , 𝑟2 =

⎛⎜⎜⎜⎝
𝑟𝐿0

0

0

⎞⎟⎟⎟⎠ .

It can be seen that 𝐴22 is triangular matrix and det𝐴22 ̸= 0. Thus, the system has a unique

solution for any continuous vector-function 𝑢 and the system (9.13) can be reduced to a

system of differential equations [97]. Hence, everywhere below functions 𝜃, 𝜔, 𝑝𝑚, 𝑣, 𝑝, 𝑝𝑒 are

understood as a unique solution of the system (9.13).

Equations (9.13c) and (9.13d) do not depend on other system’s equations. Therefore,

equations (9.13c), (9.13d) can be analysed separately from the rest of the system. Hence the

following lemma is correct.

Lemma 9.1. System (9.13c), (9.13d) is asymptotically stable.

Proof. Let us consider homogeneous system corresponding to (9.13c), (9.13d):

𝑝̇𝑚 =(𝑇𝑚)−1(−𝑝𝑚 + 𝑣), (9.15a)

𝑣̇ =(𝑇 𝑣)−1(−𝑣). (9.15b)
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Its matrix has form: ⎛⎝ −(𝑇𝑚)−1 (𝑇𝑚)−1

0 −(𝑇 𝑣)−1

⎞⎠ . (9.16)

This matrix is triangular with negative diagonal elements. Hence it is negative-definite and

system (9.13c), (9.13d) is asymptotically stable.

Corollary 9.2. Let 𝑢(𝑡) → 𝑢*𝐺. Then, 𝑝𝑚(𝑡) → 𝑢*𝐺 and 𝑣(𝑡) → 𝑢*𝐺.

This result is a consequence of the system (9.13c), (9.13d) asymptotic stability. It shows

that mechanical power of the turbine converges to the control value at exponential rate.

The other equations of the system (9.13), namely (9.13a), (9.13b), (9.13e), (9.13f), (9.13g),

(9.13h) can be reduced to a system of differential equations by expressing variables 𝜔𝐿0 , 𝑝

and 𝑝𝑒 from equations (9.13f), (9.13g), (9.13h) and excluding this variables from the system.

The obtained system is given by the following equations:

𝑀𝜔̇𝐺 = −𝐷𝐺,𝐺𝜔𝐺 − 𝐶𝐺𝐵𝐶
𝑇 𝜃 + 𝑝𝑚 + 𝑟𝐺, (9.17a)

𝑀𝜔̇𝐿1 = −𝐷𝐿1,𝐿1𝜔𝐿1 − 𝐶𝐿1𝐵𝐶
𝑇 𝜃 + 𝑢𝐿1 + 𝑟𝐿1 , (9.17b)

𝜃𝐺∪𝐿1 =𝜔𝐺∪𝐿1 , (9.17c)

𝐷𝐿0,𝐿0𝜃𝐿0 = − 𝐶𝐿0𝐵𝐶
𝑇 𝜃 + 𝑢𝐿0 + 𝑟𝐿0 . (9.17d)

Equations for variables 𝑝𝑚 are not a part of this system; therefore, corresponding homoge-

neous system has the following form:

𝑀𝜔̇𝐺∪𝐿1 = −𝐷𝐺∪𝐿1,𝐺∪𝐿1𝜔𝐺∪𝐿1 − 𝐶𝐺∪𝐿1𝐵𝐶
𝑇 𝜃, (9.18a)

𝜃𝐺∪𝐿1 =𝜔𝐺∪𝐿1 , 𝜃𝐺∪𝐿1(0) = 𝜃0𝐺∪𝐿1
, (9.18b)

𝜃𝐿0 = −𝐷−1
𝐿0,𝐿0

𝐶𝐿0𝐵𝐶
𝑇 𝜃, 𝜃𝐿0(0) = 𝜃0𝐿0

. (9.18c)

Lemma 9.3. System (9.17) is asymptotically stable over 𝜔𝐺∪𝐿1.

Proof. Lyapunov function

ℒ0(𝜔𝐺∪𝐿1 , 𝜃) =
1

2

(︀
𝜔𝑇
𝐺∪𝐿1

𝑀𝜔𝐺∪𝐿1 + 𝜃𝑇𝐶𝐵𝐶𝑇 𝜃
)︀

(9.19)
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is positive definite 𝜔𝐺∪𝐿1 . Its time derivative with respect to homogeneous system (9.18):

ℒ̇(𝜔𝐺∪𝐿1 , 𝜃) = 𝜔𝑇
𝐺∪𝐿1

(−𝐷𝐺∪𝐿1,𝐺∪𝐿1𝜔𝐺∪𝐿1 − 𝐶𝐺∪𝐿1𝐵𝐶
𝑇 𝜃)+

+𝜃𝑇𝐶𝐵(𝐶𝐺∪𝐿1)
𝑇𝜔𝐺∪𝐿1 − 𝜃𝑇𝐶𝐵(𝐶𝐿0)

𝑇𝐷−1
𝐿0
𝐶𝐿0𝐵𝐶

𝑇 𝜃 =

= −𝜔𝑇
𝐺∪𝐿1

𝐷𝐺∪𝐿1,𝐺∪𝐿1𝜔𝐺∪𝐿1 − 𝜃𝑇𝐶𝐵(𝐶𝐿0)
𝑇𝐷−1

𝐿0
𝐶𝐿0𝐵𝐶

𝑇 𝜃.

(9.20)

Derivative ℒ̇(𝜔𝐺∪𝐿1 , 𝜃) is negative definite over 𝜔𝐺∪𝐿1 . Therefore, system (9.17) is asymptot-

ically stable over 𝜔𝐺∪𝐿1 .

Theorem 9.4. Let 𝑢(𝑡) → 𝑢*. System (9.13) is asymptotically stable over 𝜔, 𝑝𝑚, 𝑣, 𝑝, 𝑝𝑒.

Variables 𝜔, 𝑝𝑚, 𝑣, 𝑝, 𝑝𝑒 converge to vectors 𝜔*, (𝑝𝑚)*, 𝑣*, 𝑝*, (𝑝𝑒)* respectively. Additionally,

𝜔*
𝑖 = 𝜔*

𝑗 =

∑︀
𝑖∈𝑁 𝑢

*
𝑖 + 𝑟𝑖∑︀

𝑖∈𝑁 𝑑𝑖
, 𝑖, 𝑗 ∈ 𝑁. (9.21)

Proof. Asymptotic stability of 𝑝𝑚 and 𝑣 was shown in lemma 9.1, asymptotic stability of

𝜔𝐺∪𝐿1 is a result of lemma 9.3 due to the fact that 𝑝𝑚 and 𝑣 do not depend on the rest of

the system’s variables. Vector 𝑝𝑚 can be considered as converging inhomogeneity in equation

(9.13b). Hence 𝑝𝑚 does not depend on the convergence of (9.12a), (9.12b), (9.12e), (9.12f),

(9.12g), (9.12h).

Let us now prove asymptotic stability over 𝜔𝐿0 and their convergence to 𝜔*. Let us assume

that the system does not have any synchronous machines: 𝐺 ∪ 𝐿1 = ∅. Then, 𝐿0 = 𝑁 , and

equation (9.17d) has form:

−𝐶𝐵𝐶𝑇 𝜃 + 𝑢+ 𝑟 = 𝐷𝜃 = 𝐷𝜔. (9.22)

Sum of the equation’s rows gives:∑︁
𝑖∈𝑁

𝑑𝑖𝜔𝑖(𝑡) =
∑︁
𝑖∈𝑁

𝑢𝑖(𝑡) + 𝑟𝑖 →
∑︁
𝑖∈𝑁

𝑢*𝑖 + 𝑟𝑖. (9.23)

Differentiation of both sides of the equation (9.22) gives

𝐷𝜔̇ = −𝐶𝐵𝐶𝑇𝜔. (9.24)

Matrix −𝐶𝐵𝐶𝑇 is symmetric negative semi-definite; therefore, 𝜔(𝑡) converges to some

𝜔*. Vector 𝜔* is a solution of the system

𝐶𝐵𝐶𝑇𝜔* = 0, (9.25a)
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∑︁
𝑖∈𝑁

𝑑𝑖𝜔
*
𝑖 =

∑︁
𝑖∈𝑁

𝑢*𝑖 + 𝑟𝑖. (9.25b)

First equation of this system gives 𝜔*
𝑖 = 𝜔*

𝑗 ∀𝑖, 𝑗 ∈ 𝑁 . Therefore, the second equation is

equivalent to

𝜔*
1 =

∑︀
𝑖∈𝑁 𝑢

*
𝑖 + 𝑟𝑖∑︀

𝑖∈𝑁 𝑑𝑖
, (9.26)

which proves convergence of 𝜔(𝑡) to
∑︀

𝑖∈𝑁 𝑢*
𝑖+𝑟𝑖∑︀

𝑖∈𝑁 𝑑𝑖
.

Let us now consider the case, when system has at least one synchronous machine: 𝐺∪𝐿1 ̸=

∅. Then, differentiation of (9.17d) gives

𝐷𝐿0,𝐿0𝜔̇𝐿0 = −𝐶𝐿0𝐵𝐶
𝑇𝜔 = −𝐶𝐿0𝐵

′𝐶𝑇
𝐿0
𝜔𝐿0 − 𝐶𝐿0𝐵𝐶

𝑇

⎛⎝ 𝜔𝐺∪𝐿1

0

⎞⎠ . (9.27)

Here matrix 𝐵′ is a submatrix of 𝐵 obtained by exclusion of all rows and columns cor-

responding to lines 𝑖𝑗 such that 𝑖 ̸∈ 𝐿0 and 𝑗 ̸∈ 𝐿0. Matrix 𝐶𝐿0𝐵
′𝐶𝑇

𝐿0
is obtained by

exclusion corresponding rows and columns from weighted Laplacian matrix 𝐶𝐵𝐶𝑇 . Thus,

𝐶𝐿0𝐵
′𝐶𝑇

𝐿0
can be represented as 𝐶 ′𝐵′(𝐶 ′)𝑇 + 𝐻, where 𝐶 ′ is incidence matrix of subgraph

that consists of buses 𝐿0, 𝐻 is diagonal positive semi-definite matrix, which diagonal ele-

ments are sums of parameters of lines that connect the subgraph to the rest of the system.

Therefore, matrix 𝐶𝐿0𝐵
′𝐶𝑇

𝐿0
= 𝐶 ′𝐵′(𝐶 ′)𝑇 +𝐻 is positive semi-definite as a sum of two sym-

metric positive semi-definite matrices. This matrix can have zero eigenvalues if and only if

ker(𝐶 ′𝐵′(𝐶 ′)𝑇 ) ∩ ker(𝐻) ̸= ∅. But ker(𝐶 ′𝐵′(𝐶 ′)𝑇 ) = {1𝑙0}, and 𝐻1𝑙0 ̸= 0, as graph Γ is

connected and 𝐻 has at least one nonzero entry. Thus, ker(𝐶 ′𝐵′(𝐶 ′)𝑇 ) ∩ ker(𝐻) = ∅ and

𝐶𝐿0𝐵
′𝐶𝑇

𝐿0
= 𝐶 ′𝐵′(𝐶 ′)𝑇 + 𝐻 ≻ 0. System (9.27) is a system with negative definite matrix;

therefore,

−𝐶𝐿0𝐵𝐶
𝑇

⎛⎝ 𝜔𝐺∪𝐿1

0

⎞⎠→ −𝐶𝐿0𝐵𝐶
𝑇

⎛⎝ 𝜔*
𝐺∪𝐿1

0

⎞⎠ = const . (9.28)

As a result, variables 𝜔𝐿0(𝑡) are asymptotically stable and converge to some 𝜔*. Similar to

the previous case 𝜔* satisfies (9.25); therefore, 𝜔𝑖 = 𝜔𝑗 =
∑︀

𝑖∈𝑁 𝑢*
𝑖+𝑟𝑖∑︀

𝑖∈𝑁 𝑑𝑖
, 𝑖, 𝑗 ∈ 𝑁 .

Asymptotic stability 𝑝𝑒 can be obtained from the equations (9.13a), (9.13e) and (9.13f):

𝑝𝑒𝐺 = −𝑀𝐺,𝐺𝜔̇𝐺 −𝐷𝐺,𝐺𝜔𝐺 + 𝑝𝑚 + 𝑟𝐺 →

→ −𝐷𝐺,𝐺𝜔
*
𝐺 + 𝑢*𝐺 + 𝑟𝑔 = (𝑝𝑒)*𝐺,

(9.29a)
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𝑝𝑒𝐿1
= −𝑀𝐿1,𝐿1𝜔̇𝐿1 −𝐷𝐿1,𝐿1𝜔𝐿1 + 𝑢𝐿1 + 𝑟𝐿1 →

→ −𝐷𝐿1,𝐿1𝜔
*
𝐿1

+ 𝑢*𝐿1
+ 𝑟𝑔 = (𝑝𝑒)*𝐿1

,
(9.29b)

𝑝𝑒𝐿0
= −𝐷𝐿0,𝐿0𝜔𝐿0 + 𝑢𝐿0 + 𝑟𝐿0 →

→ −𝐷𝐿0,𝐿0𝜔
*
𝐿0

+ 𝑢*𝐿0
+ 𝑟𝑔 = (𝑝𝑒)*𝐿0

.
(9.29c)

Let us now show asymptotic stability of 𝑝. From (9.13g) and (9.13h)

𝑝𝑒 = 𝐶𝐵𝐶𝑇 𝜃. (9.30)

Since vector 𝑝𝑒 is asymptotically stable we have 𝐶𝐵𝐶𝑇 𝜃(𝑡) → (𝑝𝑒)*. Let 𝜃* be some solution

of the equation 𝐶𝐵𝐶𝑇 𝜃* = (𝑝𝑒)*. Then, 𝐶𝐵𝐶𝑇 𝜃(𝑡) → 𝐶𝐵𝐶𝑇 𝜃*. Since ker(𝐶𝐵𝐶𝑇 ) =

ker(𝐶𝑇 ) we have 𝑝(𝑡) = 𝐶𝑇 𝜃(𝑡) → 𝐶𝑇 𝜃* = 𝑝*.

9.2 Model for a numerical experiment

For this case we use more complicated system model in comparison to the one, used for the

analytical results. Firstly, we use nonlinear model of the power flows instead of the equations

(9.13g):

𝑝𝑖𝑗 = 𝑏𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗), 𝑖𝑗 ∈ 𝐸, (9.31)

or in vector form

𝑝 = 𝐵 sin(𝐶⊤𝜃). (9.32)

Secondly, generators are divided into 3 categories: 𝐺𝑠 — set of generators with tandem

compound single-reheat turbines [85], [90]; 𝐺ℎ — set generators with hydro turbines, [85], [90];

𝐺𝑔 — set of other generators with generic second-order turbine model, 𝐺 = 𝐺𝑠 ∪ 𝐺ℎ ∪ 𝐺𝑔,

|𝐺𝑠| = 𝑔𝑠, |𝐺ℎ| = 𝑔ℎ, |𝐺𝑔| = 𝑔𝑔. Dynamics of steam turbine and governor is given by the
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following equations:

𝑝𝑚𝐺𝑠 =𝛼𝑥1𝑠 + 𝛽𝑥2𝑠 + 𝛾𝑥3𝑠, (9.33a)

𝑇 1𝑠𝑥̇1𝑠 = − 𝑥1𝑠 + 𝑣𝐺𝑠 , (9.33b)

𝑇 2𝑠𝑥̇2𝑠 = − 𝑥2𝑠 + 𝑥1𝑠, (9.33c)

𝑇 3𝑠𝑥̇3𝑠 = − 𝑥3𝑠 + 𝑥2𝑠, (9.33d)

𝑇 4𝑠𝑣̇𝐺𝑠 = − 𝑣𝐺𝑠 + 𝑥4𝑠, (9.33e)

𝑇 5𝑠𝑥̇4𝑠 = − 𝑥4𝑠 +𝑅𝑠𝜔𝐺𝑠 + 𝑢𝐺𝑠 . (9.33f)

Here vectors 𝑥𝑖𝑠(𝑡) ∈ R𝑔𝑠 , 𝑖 ∈ {1, . . . , 4} are auxiliary variables, used to describe dynamics.

Parameters 𝑇 𝑖ℎ 𝑖 ∈ {1, . . . , 5} are diagonal positive definite matrices of size 𝑔𝑠 × 𝑔𝑠. 𝑅𝑠 ∈

R𝑔𝑠×𝑔𝑠 is a diagonal positive definite matrix of droop coefficients. Coefficients 𝛼, 𝛽 and 𝛾 are

positive and 𝛼 + 𝛽 + 𝛾 = 1.

Dynamics of hydro turbines are given below:

𝑝𝑚𝐺ℎ =𝑥1ℎ − 2𝑣𝐺ℎ , (9.34a)

𝑇 1ℎ𝑥̇1ℎ = − 𝑥1ℎ + 3𝑣𝐺ℎ , (9.34b)

𝑇 2ℎ𝑣̇𝐺ℎ =𝑥2ℎ, (9.34c)

𝑇 3ℎ𝑥̇2ℎ = − 𝑥2ℎ − (𝑅𝑡ℎ +𝑅ℎ)𝑣𝐺ℎ −𝑅𝑡ℎ𝑥3ℎ − 𝜔𝐺ℎ + (𝑅ℎ)−1𝑢𝐺ℎ , (9.34d)

𝑇 4ℎ𝑥̇3ℎ = − 𝑥3ℎ − 𝑣𝐺ℎ . (9.34e)

Similarly to the previous case 𝑥𝑖𝑠(𝑡) ∈ R𝑛𝑠
𝑖 ∈ {1, . . . , 3} are auxiliary variables. Parameters

𝑇 𝑖ℎ 𝑖 ∈ {1, . . . , 4} are diagonal positive definite matrices of size 𝑔ℎ × 𝑔ℎ. Matrices 𝑅ℎ, 𝑅𝑡ℎ ∈

R𝑔ℎ×𝑔ℎ are diagonal positive definite matrices of static droop and transient droop coefficients

respectively.

Finally, turbine governor dynamics of the rest of the buses is described by a second order

model:

𝑇 1𝑔𝑝̇𝑚𝐺𝑔 = − 𝑝𝑚𝐺𝑔 + 𝑣𝐺𝑔 , (9.35a)

𝑇 2𝑔𝑣̇𝐺𝑔 = − 𝑣𝐺𝑔 +𝑅𝑔𝜔𝐺𝑔 + 𝑢𝐺𝑔 . (9.35b)

Here 𝑇 1𝑔 and 𝑇 2𝑔 are diagonal positive matrices of size 𝑔𝑔 × 𝑔𝑔. Matrix 𝑅𝑔 ∈ R𝑔𝑔×𝑔𝑔 is

diagonal positive definite matrix of droop coefficients. As a result full model for the numerical
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experiment is given by the following system:

𝜃 =𝜔, (9.36a)

𝑀𝐺,𝐺𝜔̇𝐺 = −𝐷𝐺,𝐺𝜔𝐺 − 𝑝𝑒𝐺 + 𝑝𝑚 + 𝑟𝐺, (9.36b)

𝑝𝑚𝐺𝑠 =𝛼𝑥1𝑠 + 𝛽𝑥2𝑠 + 𝛾𝑥3𝑠, (9.36c)

𝑇 1𝑠𝑥̇1𝑠 = − 𝑥1𝑠 + 𝑣𝐺𝑠 , (9.36d)

𝑇 2𝑠𝑥̇2𝑠 = − 𝑥2𝑠 + 𝑥1𝑠, (9.36e)

𝑇 3𝑠𝑥̇3𝑠 = − 𝑥3𝑠 + 𝑥2𝑠, (9.36f)

𝑇 4𝑠𝑣̇𝐺𝑠 = − 𝑣𝐺𝑠 + 𝑥4𝑠, (9.36g)

𝑇 5𝑠𝑥̇4𝑠 = − 𝑥4𝑠 +𝑅𝑠𝜔𝐺𝑠 + 𝑢𝐺𝑠 , (9.36h)

𝑝𝑚𝐺ℎ =𝑥1ℎ − 2𝑣𝐺ℎ , (9.36i)

𝑇 1ℎ𝑥̇1ℎ = − 𝑥1ℎ + 3𝑣𝐺ℎ , (9.36j)

𝑇 2ℎ𝑣̇𝐺ℎ =𝑥2ℎ, (9.36k)

𝑇 3ℎ𝑥̇2ℎ = − 𝑥2ℎ − (𝑅𝑡ℎ +𝑅ℎ)𝑣𝐺ℎ −𝑅𝑡ℎ𝑥3ℎ − 𝜔𝐺ℎ + (𝑅ℎ)−1𝑢𝐺ℎ , (9.36l)

𝑇 4ℎ𝑥̇3ℎ = − 𝑥3ℎ − 𝑣𝐺ℎ , (9.36m)

𝑇 1𝑔𝑝̇𝑚𝐺𝑔 = − 𝑝𝑚𝐺𝑔 + 𝑣𝐺𝑔 , (9.36n)

𝑇 2𝑔𝑣̇𝐺𝑔 = − 𝑣𝐺𝑔 +𝑅𝑔𝜔𝐺𝑔 + 𝑢𝐺𝑔 , (9.36o)

𝑀𝐿1,𝐿1𝜔̇𝐿1 = −𝐷𝐿1,𝐿1𝜔𝐿1 − 𝑝𝑒𝐿1
+ 𝑢𝐿1 + 𝑟𝐿1 , (9.36p)

0 = −𝐷𝐿0,𝐿0𝜔𝐿0 − 𝑝𝑒𝐿0
+ 𝑢𝐿0 + 𝑟𝐿0 , (9.36q)

0 =𝐵 sin(𝐶𝑇 𝜃) − 𝑝, (9.36r)

0 =𝐶𝑝− 𝑝𝑒. (9.36s)

This model provides one of the best possible DC approximations of the network dynamics.

Thus, it is chosen to provide numerical experiment of the control dynamics in section 14.
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10 Control derivation algorithm

In the previous section we formalized description of the power system. That allows us to

formalize control derivation idea, which idea was presented in section 3.2. We start with the

optimization problem defined for the set of stationary points of the physical system (9.13).

Firstly we introduce the participation factors function similarly to (7.3).

Definition 10.1. The participation factors function:

𝑓(𝑢̂) =
1

2

∑︁
𝑖∈𝑁

𝑤𝑖(𝑢̂𝑖)
2 =

1

2
𝑢̂𝑇𝑊𝑢̂, (10.1)

where 𝑊 = diag(𝑤1, . . . , 𝑤𝑛) ≻ 0.

In addition we introduce three sets of linear inequality and equality constraints: control

limits, line limits and inter-area limits. For simplicity, within this section we define a convex

set determined by this constraints by 𝑋. The optimization problems considered in the further

sections are modifications of the following:

min
𝑢,𝑥1,𝑥2

𝑓(𝑢), (10.2a)

0 =𝐴11𝑥1 + 𝐴12𝑥2 + 𝑍1𝑢+ 𝑟1, (10.2b)

0 =𝐴21𝑥1 + 𝐴22𝑥2 + 𝑍2𝑢+ 𝑟2, (10.2c)

(𝑥1, 𝑥2) ∈ 𝑋. (10.2d)

This is a quadratic problem with linear constraints, thus, if all parameters of the equations

are known, it can be easily solved. However there are three difficulties that render such

approach impossible:

1. The problem must be solved in a distributed way. There exists a wide range of dis-

tributed solvers for OPF problem. They are analysed in section 2. The main issue of

these distributed solvers is insufficient control response speed to the system dynamics.

2. Some parameters of the system, i.e. turbine and governor time constants are unknown.
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3. Disturbance vector is unknown.

In order to address first two items control calculation block in the Figure (3.2) is written in

the form of integral algebraic equations that converge to solution of the optimization problem

(10.2). In order to address the third issue disturbance approximation block is introduced.

Similarly to the control calculation block it also consists of integral algebraic equations.

Further sections describe in details disturbance approximation and control calculation.

However they all have the same general structure. Firstly the general form of integral alge-

braic equations is presented. This is done in order to explicitly limit the available information

obtained via system measurements and communications. In case of disturbance approxima-

tion we then provide explicit form of the equations. In case of control calculation we update

optimization problem, then provide KKT condition based on which control equations satis-

fying control form are derived.

Systems of equations for both disturbance approximation and control calculation are

derived in the form of first order integral algebraic equations. In case of disturbance approx-

imation equations are divided into two blocks with different roles: 1) calculation of auxiliary

variables vector 𝑝𝑚 (approximation of mechanical power injections); 2) calculation of distur-

bance approximation. Same approach is used for the control calculation block: 1) calculation

of auxiliary variables vector 𝑦; 2) calculation of the control variables. Such approach allows

us to keep all calculations in the easy for numerical implementation first-order form and

exclude requirement for any derivatives that may introduce noise to the system.

Example 10.1. Consider both Primary and Secondary frequency control described in section

7.1. For simplicity, we omit control deadbands. Corresponding block-diagram is given in

Figure 10.1. In the form of first order integral algebraic equations the control has the following

form:

𝑢(𝑡) = 𝑦(𝑡), (10.3a)

𝑦𝑖(𝑡) =

⎧⎨⎩ −𝑘𝐼𝑖 𝜔(𝑡) − 1
𝑤𝑖
𝑘𝐼𝐼
∫︀ 𝑡

0
𝜔𝑟𝑒𝑓 (𝜏)𝑑𝜏, if 𝑖 ∈ 𝐺,

0, otherwise,
𝑖 ∈ 𝑁. (10.3b)

Here 𝑦 is a scalar of auxiliary variables. As it was show in the example 7.2 system stability

depends on the coefficients 𝑘𝐼 and 𝑘𝐼𝐼 . If the system is stable, than due to the integral part of
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Figure 10.1: Block diagram of primary and secondary frequency control.

the controller frequency deviations 𝜔 = 0 in stationary point. As a result, proportional part

of the controller also equals zero and control values 𝑢𝑖 in inverse ratio to the coefficients 𝑤𝑖.

Thus control delivers minimum of the participation function in the set of stationary points

with frequency deviations equal 0.
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11 Disturbance vector approximation

In this section we consider the disturbance approximation block of the control scheme (Figure

3.2). Normally, in frequency control approaches goal of disturbance approximation is not

stated explicitly. However, frequency in power system can be restored if and only if power

balance is restored. Thus, sum of frequency control signals must be equal to the minus sum

of the disturbances. This is necessary and sufficient condition of the frequency restoration.

Therefore, any frequency control approximates disturbance size near the stationary point at

latest. Disturbance approximation will be done in any case if the frequency is to be restored.

Therefore, we separate this approximation into an explicit control block.

In the previous section we gave general form of the optimization problem on the set of

stationary points (10.2). It is a strictly convex problem, thus it has a unique solution. For

a system with a fixed set of parameters 𝐴11, 𝐴12, 𝐴22, 𝐴22, and feasible set 𝑋 the solution

is uniquely defined by the disturbance vector 𝑟. Therefore knowledge of this vector (or its

approximation) is not only necessary and sufficient information needed for frequency control,

but also a sufficient information for congestion management and inter-area flows control.

In the case, when disturbance is approximated with sufficient accuracy, the control cal-

culation block (Figure 3.1) can do all necessary actions for frequency control, congestion

management and inter-area flows control with minimal cost relying only on the disturbance

approximation. As a result we separate control inputs (both feedback system state and

feedforward disturbance measurements) from the calculation of the control values. All infor-

mation input goes into the disturbance approximation block. Firstly, this provides control

flexibility, as it can work in feedback and feedforward modes or in any combination of them.

Most importantly system state is used only to approximate disturbance which does not de-

pend on system state or control systems, thus oscillation of either does not lead to positive

feedback, which appearance was shown in the Figure (9.2). As a result in the further sections

we will prove global asymptotic stability of the control for the second order turbine-governor

dynamics.
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11.1 Information availability

The developed control must work in both feedback and feedforward modes. If disturbance

measurements are known, then there is no need to approximate the disturbance. However

these measurements usually are not known for all or any buses. Moreover, we consider case,

when some of the bus disturbance measurements become available or unavailable during

transient and control must switch between feedback and feedforward mode.

Let us consider the case, when disturbance measurements are not available. It must be

approximated using the available information about the system state and bus parameters. It

is not possible to calculate mechanical power injections 𝑝𝑚 and valve positions 𝑣. Moreover,

time constants 𝑇𝑚 and 𝑇 𝑣 are also unknown [85]. Therefore, it is not possible to restore

dynamics of the physical system (9.13). The only available information is presented below.

∙ current frequency deviations values 𝜔(𝑡);

∙ stored frequency deviations values in definite integral form:
∫︀ 𝑡

0
𝜔(𝜏)𝑑𝜏 ;

∙ stored values of electrical power in definite integral form:
∫︀ 𝑡

0
𝑝𝑒(𝜏)𝑑𝜏 ;

∙ synchronous machines inertia 𝑀 ;

∙ synchronous machines damping and coefficients of frequency dependent loads 𝐷;

∙ indicators of buses types 𝜅 = (𝜅1, . . . , 𝜅𝑛)⊤,

𝜅𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if 𝑖 ∈ 𝐿0,

1, if 𝑖 ∈ 𝐿1,

2, if 𝑖 ∈ 𝐺,

𝑖 ∈ 𝑁 ; (11.1)

∙ identifications of available disturbance measurements 𝑟𝐼 = (𝑟𝐼1, . . . , 𝑟
𝐼
𝑛)⊤,

𝑟𝐼𝑖 =

⎧⎨⎩ 1, if measurement is available on the bus 𝑖,

0, if measurement is not available on the bus 𝑖,
𝑖 ∈ 𝑁 ; (11.2)

∙ values of available disturbance measurements
∫︀ 𝑡

0
𝑟𝑑𝜏 , where 𝑟 = (𝑟1, . . . , 𝑟𝑛)⊤,

𝑟𝑖 =

⎧⎨⎩ 𝑟𝑖, if 𝑟𝐼𝑖 = 1,

0, otherwise,
𝑖 ∈ 𝑁 ; (11.3)

.
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In addition to the limitations above we will allow to use only local information to approx-

imate bus disturbance: bus 𝑖 can only use 𝜔𝑖(𝑡),
∫︀ 𝑡

0
𝜔𝑖(𝜏)𝑑𝜏,

∫︀ 𝑡

0
𝑝𝑒𝑖 (𝜏)𝑑𝜏,𝑚𝑖.𝑑𝑖, and 𝜅𝑖. While

control calculations can be done almost instantly, given low computational complexity, mea-

surements of the system state require some time [63–65] and may cause delay. While we do

not consider this issue explicitly we enforce this locality condition in order to provide more

realistic system behavior.

11.2 Approximation equations

We will approximate the disturbance using generator swing equations (9.13b) and balance

equations (9.13e) and (9.13f). Let us firstly move disturbance to the left side of this equations

and everything else to the right side:

𝑟𝐺 = 𝑀𝐺,𝐺𝜔̇𝐺 +𝐷𝐺,𝐺𝜔𝐺 + 𝑝𝑒𝐺 − 𝑝𝑚𝐺 , (11.4a)

𝑟𝐿1 = 𝑀𝐿1,𝐿1𝜔̇𝐿1 +𝐷𝐿1,𝐿1𝜔 + 𝑝𝑒 − 𝑢𝐿1 , (11.4b)

𝑟𝐿0 = 𝐷𝐿0,𝐿0𝜔𝐿0 + 𝑝𝑒𝐿0
− 𝑢𝐿0 . (11.4c)

Within this equations measurements of 𝜔̇, 𝑝𝑒 and 𝑝𝑚 are unknown. In order to exclude the

first two we integrate right and left hand sides of the equations:∫︁ 𝑡

0

𝑟𝐺𝑑𝜏 = 𝑀𝐺,𝐺(𝜔𝐺(𝑡) − 𝜔𝐺(0)) +

∫︁ 𝑡

0

𝐷𝐺,𝐺𝜔𝐺(𝜏) + 𝑝𝑒𝐺(𝜏) − 𝑝𝑚𝐺 (𝜏)𝑑𝜏, (11.5a)

∫︁ 𝑡

0

𝑟𝐿1𝑑𝜏 = 𝑀𝐿1,𝐿1(𝜔(𝑡)𝐿1 − 𝜔(0)𝐿1) +

∫︁ 𝑡

0

𝐷𝐿1,𝐿1𝜔𝐿1(𝜏) + 𝑝𝑒𝐿1
(𝜏) − 𝑢𝐿1(𝜏)𝑑𝜏, (11.5b)∫︁ 𝑡

0

𝑟𝐿0𝑑𝜏 =

∫︁ 𝑡

0

𝐷𝐿0,𝐿0𝜔𝐿0(𝜏) + 𝑝𝑒𝐿0
(𝜏) − 𝑢𝐿0(𝜏)𝑑𝜏. (11.5c)

Vector of mechanical powers 𝑝𝑚 together with constants 𝑇𝑚 and 𝑇 𝑣 is unknown; therefore,

an auxiliary variable 𝑝𝑚 is used. It plays role of mechanical power injections approximation

and is defined by

𝑇𝑝𝑚(𝑡) =

∫︁ 𝑡

0

(−𝑝𝑚(𝜏) + 𝑢𝐺(𝜏)) 𝑑𝜏, 𝑇 = diag(𝑡1, . . . , 𝑡𝑛) ≻ 0. (11.6)

Here choice of 𝑇 is based on the stability requirement and is discussed in the theorem 12.3.

From the equations (9.13c) and (9.13d) mechanical power 𝑝𝑚 converges to the control 𝑢.
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Thus, equation (11.6) is chosen to define 𝑝𝑚 as the simplest approximation of mechanical

power dynamic. Thus, we approximate the disturbance using the following formula:

∫︁ 𝑡

0

𝑟𝑖𝑑𝜏 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝑖(𝜔𝑖(𝑡) − 𝜔𝑖(0)) +

∫︀ 𝑡

0
𝑑𝑖𝜔𝑖(𝜏) + 𝑝𝑒𝑖 (𝜏) − 𝑝𝑚𝑖 (𝜏)𝑑𝜏, 𝑖 ∈ 𝐺,

𝑚𝑖(𝜔(𝑡)𝑖 − 𝜔(0)𝑖) +
∫︀ 𝑡

0
𝑑𝑖𝜔𝑖(𝜏) + 𝑝𝑒𝑖 (𝜏) − 𝑢𝑖(𝜏)𝑑𝜏, 𝑖 ∈ 𝐿1,∫︀ 𝑡

0
𝑑𝑖𝜔𝑖(𝜏) + 𝑝𝑒𝑖 (𝜏) − 𝑢𝑖(𝜏)𝑑𝜏, 𝑖 ∈ 𝐿0,

𝑖 ∈ 𝑁. (11.7)

Finally, we use the calculated disturbance only if disturbance measurements are unavailable.

Therefore, output of the disturbance approximation control block has the following output:

∫︁ 𝑡

0

𝑟̊𝑖𝑑𝜏 =

⎧⎨⎩ 𝑟𝑖, 𝑟𝐼𝑖 = 0,

𝑟𝑖, 𝑟𝐼𝑖 ,
𝑖 ∈ 𝑁. (11.8)

In general
∫︀ 𝑡

0
𝑟(𝜏)𝑑𝜏 is calculated according to the following formulas (block diagram in Figure

11.1): ∫︁ 𝑡

0

𝑟̊𝑖(𝜏)𝑑𝜏 = 𝐹

(︃
𝜔𝑖(𝑡),

∫︁ 𝑡

0

𝜔𝑖(𝜏)𝑑𝜏,

∫︁ 𝑡

0

𝑝𝑒𝑖 (𝜏)𝑑𝜏,

∫︁ 𝑡

0

𝑢𝑖(𝜏)𝑑𝜏,

∫︁ 𝑡

0

𝑝𝑚(𝜏)𝑑𝜏,

𝑚𝑖, 𝑑𝑖,

∫︁ 𝑡

0

𝑟𝑖(𝜏)𝑑𝜏, 𝑟𝐼𝑖 , 𝜅𝑖

)︃
+ 𝑟̊0𝑖 ,

(11.9a)

𝑝𝑚𝑖 (𝑡) = 𝐺̃

(︂∫︁ 𝑡

0

𝑝𝑚(𝜏)𝑑𝜏,

∫︁ 𝑡

0

𝑢𝑖(𝜏)𝑑𝜏

)︂
+ 𝑝𝑚0, (11.9b)

for 𝑖 ∈ 𝑁 . Here 𝐹 : R8×{0, 1}×{0, 1, 2} → R and 𝐺̃ : R2 → R are functions of the following

form. For 𝑧 ∈ R8, 𝑧9 ∈ {0, 1}, 𝑧10 ∈ {0, 1, 2}.

𝐹 (𝑧) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑧8, if 𝑧9 = 1,

𝑧7𝑧2 + 𝑧3 − 𝑧4, if 𝑧9 = 0 and 𝑧10 = 0,

𝑧7𝑧2 + 𝑧3 − 𝑧4 + 𝑧6𝑧1, if 𝑧9 = 0 and 𝑧10 = 1,

𝑧7𝑧2 + 𝑧3 − 𝑧5 + 𝑧6𝑧1, if 𝑧9 = 0 and 𝑧10 = 2.

(11.10)

Function 𝐹 is continuous over 𝑧. Note that 𝑟𝐼𝑖 and 𝜅𝑖 are constant, thus this function is

continuous within the disturbance approximation block. For 𝑧 ∈ R2

𝐺̃(𝑧) =
1

𝑡
(𝑧2 − 𝑧1). (11.11)
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Figure 11.1: Disturbance approximation block diagram.
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11.3 Conclusion

Disturbance is approximated directly or indirectly by every frequency control (i.e. traditional

frequency control does it via integration of frequency deviation). Control restores power

balance if and only if sum of control signals is equal to the minus sum of the disturbances.

We utilize this idea and separate disturbance approximation into a separate control block

(3.1). This control block either uses bus disturbances measurements or estimates disturbances

using system state if measurements are unavailable. The disturbance is approximated either

from the balance equations for the load buses or generator swing equations for the generator

buses with approximation for mechanical power injections. Thus, turbine dynamics, which

are unknown, are excluded from the estimation. The control uses system state as an input,

but uses it only to estimate disturbance, which is an external force independent from the

system dynamics. As a result, unknown transient processes in turbine and governor do not

effect disturbance approximation control block output. Such approach allows to solve issues

with the cascade structure of the turbine and governor equations, which introduce instabilities

that cannot be observed in simpler models, as it was shown in [98]. In the further sections we

will prove global asymptotic stability of the control for the system with the cascade structure

of turbine and governor, which is one of the key points of the presented work.

Disturbance approximation approach is utilized in frequency control as a part of manda-

tory actions but also in the congestion management and inter-area flows control problems. In

order to deliver system (9.13) to the desired state we formulate optimization problem on the

set of stationary points (10.2). This problem is strictly convex, thus it has always a unique

solution. Therefore, for any set of fixed system parameters 𝐴11, 𝐴12, 𝐴21, 𝐴22, and feasible

set 𝑋 its solution is uniquely defined by the disturbance vector 𝑟. Therefore, information,

given by the disturbance approximation control block, is sufficient to not only do frequency

control, but also to perform congestion management and inter-area flows control.

Due to the lack of information about the system state it is not possible to recover bus

disturbances, therefore we recover its integral instead. Further we will show sufficiency of

this information. In this work we provide analytical results for the case, when 𝑟 = const.

Therefore, for the load buses theoretically it is possible to estimate integral of the disturbance
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for some 𝑡 > 0 using formulas (11.5b) and (11.5c) and then use it in all further calculations.

However, this statement is only true if all parameters and system state are measured ideally

without any errors. Moreover, such approach is not applicable for non-constant 𝑟 for which

we provide numerical experiments in section 14.

It can be seen from the general form of the disturbance approximation (11.9) that the

same approach is used on every bus and only local information is required. Therefore, this

approximation method supports decentralized implementation. Additionally, lack of any need

for communication ensures that communication delays cannot affect this estimation.
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12 Centralized control

12.1 Problem 1. Frequency control with no control limits.

The simplest frequency control problem is considered within this section. It is assumed

that communications is done in a centralized way. In this problem it is assumed that all

generators have sufficient spinning reserves so control limits are never reached, line limits are

never reached and control is present on all buses.

12.1.1 Problem statement

It is needed to keep power balance in the system at minimal cost of the participation function

(10.1). Let us define corresponding stationary point of the system:

Definition 12.1. Optimal type 1 steady-state (OS1) is a point (𝑢̂*, 𝜃*, 𝜔̂*, 𝑝𝑚*, 𝑣*, 𝑝*, 𝑝𝑒*)

that delivers a solution of the following optimization problem:

min
𝑢̂,𝜃,𝜔̂,𝑝𝑚,𝑣,𝑝,𝑝𝑒

𝑓(𝑢̂), (12.1a)

(𝜃, 𝜔̂, 𝑝𝑚, 𝑣, 𝑝, 𝑝𝑒) ∈ Ψ, (12.1b)

where Ψ = {(𝑢*, 𝜃*, 𝜔*, 𝑝𝑚*, 𝑣*, 𝑝*, 𝑝𝑒*)} is the set of stationary points of the system (9.13).

From (9.17d) it can be seen that in all stationary points 𝜔* = 0, thus, power balance is

restored in OS1. Let us now define control form.

Problem 1 (Frequency control without control limits). Let 𝑠 be the size of auxiliary variables

vector 𝑦. Then, it is required to find Lipschitz continuous controller functions

𝐹 : R𝑠 × R𝑛×𝑛 → R𝑛, (12.2a)

𝐺 : R𝑛 × R𝑛 × R𝑠 → R𝑠, (12.2b)

such that

1. Control 𝑢 is defined by a system of integral-algebraic equations

𝑢(𝑡) = 𝐹 (𝑦(𝑡),𝑊 ), (12.3a)

𝑦(𝑡) =

∫︁ 𝑡

0

𝐺(̊𝑟(𝜏), 𝑢(𝜏), 𝑦(𝜏))𝑑𝜏 + 𝑦0, 𝑦0 ∈ R𝑠. (12.3b)
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2. Control 𝑢 must be globally asymptotically stable.

3. System (9.13) with control 𝑢 must converge to OS1.

It can be seen that if the solution of the system (12.3) exists, then vector functions 𝑢

and 𝑦 are continuous. Our goal is to prove global asymptotic stability of the control in

order to ensure its reliable operations for any state of the system. In addition control must

converge to a constant vector. This requirement is necessary from the practical point of

view: we consider constant disturbance, thus, after some time, control must be constant

too. Additionally, according to the Theorem 9.4 this requirement sufficient for the global

asymptotic stability of the frequency deviations.

The solving process is divided into two stages:

1. Formulation of an optimization problem that defines stationary point to which the

system (9.13) should converge under developed control. It is possible to derive equations

for the stationary point of the corresponding Lagrange function. However, its solution

requires knowledge of the vector 𝑟, which is unavailable.

2. Transition from algebraic equations of the stationary point to a system of integral

equations. The solution of optimization problem from the first item gives a set of

algebraic equations depending on 𝑟. Thus, the system of integral equations that depends

on
∫︀ 𝑡

0
𝑟𝑑𝜏 and converges to the solution of optimization problem is derived.

12.1.2 Optimal steady-state analysis

Let us explicitly write constraints of the optimization problem for the OS1:

min
𝜃,𝜔̂,𝑝𝑚,𝑣,𝑝,𝑝𝑒,𝑢̂

𝑓(𝑢̂), (12.4a)
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0 =𝜔̂, (12.4b)

0 = −𝐷𝐺,𝐺𝜔̂𝐺 − 𝑝𝑒𝐺 + 𝑝𝑚 + 𝑟𝐺, (12.4c)

0 = − 𝑝𝑚 + 𝑣, (12.4d)

0 = − 𝑣 + 𝑢̂𝐺, (12.4e)

0 = −𝐷𝐿1,𝐿1𝜔̂𝐿1 − 𝑝𝑒𝐿1
+ 𝑢̂𝐿1 + 𝑟𝐿1 , (12.4f)

0 = −𝐷𝐿0,𝐿0𝜔̂𝐿0 − 𝑝𝑒𝐿0
+ 𝑢̂𝐿0 + 𝑟𝐿0 , (12.4g)

𝑝 =𝐵𝐶𝑇 𝜃, (12.4h)

𝑝𝑒 =𝐶𝑝. (12.4i)

Constraints (12.4b)-(12.4i) guarantee any feasible point of the problem to be a stationary

point of the system (9.13) with frequency deviations being equal 0. From (12.4b) 𝜔̂ is equal

0 and can be excluded from the rest of the system. From (12.4d) and (12.4e) 𝑝𝑚 = 𝑣 = 𝑢̂;

thus, variables 𝑝𝑚 and 𝑣 can be replaced with 𝑢 in the system. As a result, equations (12.4c),

(12.4f) and (12.4g) are equivalent to

0 = −𝑝𝑒 + 𝑢̂+ 𝑟. (12.5)

Let us consider the sum of the right-hand sides:

0 = −1𝑇
𝑛𝑝

𝑒 + 1𝑇
𝑛 (𝑢̂+ 𝑟). (12.6)

However, 1𝑇
𝑛𝑝

𝑒 = −1𝑇
𝑛𝐶𝑝 = 0 as a sum all flows in the system. Thus, problem (12.4) can be

simplified to the following:

min
𝑢̂

1

2
𝑢̂𝑇𝑊𝑢̂, (12.7a)

1𝑇
𝑛 (𝑢̂+ 𝑟) = 0. (12.7b)

Let 𝑢̂* be solution of this problem. This problem is strictly convex, thus, 𝑢̂* is the unique

solution [14]. Corresponding Lagrange function:

𝐿(𝑢̂, 𝜆̂) =
1

2
𝑢̂𝑇𝑊𝑢̂− 𝜆̂1𝑇

𝑛 (𝑢̂+ 𝑟). (12.8)

Corresponding stationary point is defined by the system of algebraic equations:

𝑊𝑢̂− 1𝑛𝜆̂ = 0, (12.9a)
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1𝑇
𝑛 (𝑢̂+ 𝑟) = 0, (12.9b)

which is equivalent to

𝑢̂ = 𝑊−11𝑛𝜆̂, (12.10a)

1𝑇
𝑛 (𝑊−11𝑛𝜆̂+ 𝑟) = 0. (12.10b)

Solving this system gives

𝑢̂* = −𝑊−11𝑛
1𝑇
𝑛𝑟

1𝑇
𝑛𝑊

−11𝑛

. (12.11)

Lemma 12.1. Let 𝑢(𝑡) → 𝑢̂*, then system (9.13) converges to the optimal type 1 steady-state.

Proof. From the Theorem 9.4 variables 𝜔, 𝑝𝑚, 𝑣, 𝑝, 𝑝𝑒 of the system (9.13) converge to

constant vectors. Let us now show that 𝜃 also converges to a stationary point.

Vector 𝑢̂* is a unique solution of the problem (12.10) and, consequently, a part of the

solution of (12.4) and (12.1). Additionally, from the theorem (9.4) frequency in stationary

point is uniquely defined by control values, thus, from (12.4b) frequency deviations are equal

0, thus 𝜃 = 0 and 𝜃 converges to some constant vector.

If 𝑢(𝑡) ≡ 𝑢̂*, then, according to the Theorem 9.4, system (9.13) converges to OS1. How-

ever, in order to calculate 𝑢̂* it is necessary to use 𝑟, which is unknown. Thus transition to

integral algebraic equations is done in the next section.

12.1.3 Transition to control equations

Transition to a system of algebraic integral system is done be replacement of the equation

(12.10b) with an integral version of it. Idea behind this transition is the following: it is

not possible to solve equation (12.10b) directly, thus, it makes sense to apply some iterative

method. Newton method as a one with high convergence speed for the highly sparse systems

[99] seems to be an appropriate candidate. Since equation (12.10b) does not depend on 𝑢̂,

corresponding Newton method iteration is given by

𝜆̂𝑘+1 = 𝜆̂𝑘 + (1𝑇
𝑛𝑊

−11𝑛)−11𝑇
𝑛 (−𝑊−11𝑛𝜆̂

𝑘 + 𝑟). (12.12)

Equivalently

1𝑇
𝑛𝑊

−11𝑛(𝜆̂𝑘+1 − 𝜆̂𝑘) = 1𝑇
𝑛 (−𝑊−11𝑛𝜆̂

𝑘 + 𝑟). (12.13)
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Figure 12.1: Control block diagram for the Problem 1.

Replacement of 1𝑇
𝑛𝑊

−11𝑛(𝜆̂𝑘+1− 𝜆̂𝑘) with 𝜆̇ and transition to the continuous algorithm gives

𝜆̇ = −1𝑇
𝑛 (𝑊−11𝑛𝜆+ 𝑟). (12.14)

It can be seen that equation (12.14) can also be obtained from the (12.10b) by replacing right-

hand side zero with the derivative of 𝜆. Here 𝜆̂ is used instead of 𝜆 in order to separate vector

𝜆 in the optimization problem (12.7) and function 𝜆 in (12.14). The obtained differential

equation is replaced with the equivalent integral in order to satisfy control form (12.3):

𝜆(𝑡) =

∫︁ 𝑡

0

−1𝑇
𝑛 (𝑊−11𝑛𝜆(𝜏) + 𝑟)𝑑𝜏 + 𝜆0. (12.15)

Replacement of 𝑟 with 𝑟̊ from the previous section gives overall control system

𝑢(𝑡) = 𝑊−11𝑛𝜆(𝑡), (12.16a)

𝜆(𝑡) = −
∫︁ 𝑡

0

1𝑇
𝑛 (𝑢(𝜏) + 𝑟̊(𝜏))𝑑𝜏 + 𝜆0. (12.16b)

Block-diagram corresponding to the control equations is shown in Figure 12.1.

12.1.4 Control stability and applicability

From (11.8)

𝑟̊𝐺(𝑡) = 𝑟𝐺 + 𝑝𝑚(𝑡) − 𝑝𝑚(𝑡). (12.17)
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As a result, (9.13) values 𝑟𝐺(𝑡) depend only on 𝑝𝑚 defined by equations (9.13c) and (9.13d).

Thus, in order to prove asymptotic stability of 𝑢(𝑡) it is sufficient to prove asymptotic stability

of the system (12.16), (9.13c) and (9.13d). This system contains both integral and differential

equations. For simplicity they are all reduced to the differential ones:

𝜆̇ = − 1𝑇
𝑛 (𝑊−11𝑛𝜆+ 𝑟) + 1𝑇

𝑔 diag(𝑟𝐼𝐺)(𝑝𝑚 − 𝑝𝑚), (12.18a)

𝑝̇𝑚 = − (𝑇𝑚)−1𝑝𝑚 + (𝑇𝑚)−1𝑣, (12.18b)

𝑣̇ = − (𝑇 𝑣)−1𝑣 + (𝑇 𝑣)−1𝑊−1
𝐺,𝐺1𝑔𝜆, (12.18c)

˙̃𝑝𝑚 = − 𝑇−1𝑝𝑚 + 𝑇−1𝑊−1
𝐺,𝐺1𝑔𝜆. (12.18d)

Or in matrix form

𝑥̇ = 𝐴𝑥+𝑅, (12.19)

where

𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜆

𝑝𝑚

𝑣

𝑝𝑚

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎝
−1𝑇

𝑛𝑊
−11𝑛 −1𝑇

𝑔 0 1𝑇
𝑔 diag(𝑟𝐼𝐺)

0 −(𝑇𝑚)−1 (𝑇𝑚)−1 0

(𝑇 𝑣)−1𝑊−1
𝐺,𝐺1𝑔 0 −(𝑇 𝑣)−1 0

𝑇−1𝑊−1
𝐺,𝐺1𝑔 0 0 −𝑇−1

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑅 =

⎛⎜⎜⎜⎜⎜⎜⎝
−1𝑇

𝑛𝑟

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ .

(12.20)

For this system the following result is obtained.

Lemma 12.2. In stationary point (𝜆*, 𝑝𝑚*, 𝑣*, 𝑝𝑚*) of the system (12.18) 𝜆* coincides with

𝜆̂* in (12.10)

Proof. It can be seen that in stationary point (𝑝𝑚)* = (𝑝𝑚)*. Thus, equation (12.18a) is

equivalent to (12.10b) if 𝜆̇ = 0.

Theorem 12.3 (Control stability). Let

𝑡𝑖 ≤ max{𝑡𝑚𝑖 , 𝑡𝑣𝑖 }, 𝑖 ∈ 𝐺. (12.21)

Then system (12.19) is globally asymptotically stable.

Proof. Let us consider characteristic equation for the matrix 𝐴:

det(𝐴− 𝐼1+3𝑔𝜂) = 0. (12.22)

103



If we take determinant of the lower 3𝑔 × 3𝑔 block we get

𝑃1(𝜂) = det

⎛⎜⎜⎜⎝
−(𝑇𝑚)−1 − 𝐼𝑔𝜂 (𝑇𝑚)−1 0

0 −(𝑇 𝑣)−1 − 𝐼𝑔𝜂 0

0 0 −𝑇−1 − 𝐼𝑔𝜂

⎞⎟⎟⎟⎠ =

=
∏︁
𝑖∈𝐺

(︂
− 1

𝑡𝑚𝑖
− 𝜂

)︂(︂
− 1

𝑡𝑣𝑖
− 𝜂

)︂(︂
− 1

𝑡𝑖
− 𝜂

)︂
.

(12.23)

Thus, for 𝑃1(𝜂) = 0 it is necessary 𝜂 = ℜ𝜂 < 0. If 𝑃1(𝜂) ̸= 0, then according to the Schur

complement formula

det(𝐴− 𝐼1+3𝑔𝜂) = 𝑃1(𝜂)𝑃2(𝜂), (12.24)

where 𝑃2(𝜂) is given by the formula

𝑃2(𝜂) = det

(︃
− 1𝑇

𝑛𝑊
−11𝑛 − 𝜂 −

(︁
−1𝑇

𝑔 0 1𝑇
𝑔 diag(𝑟𝐼𝐺)

)︁
·

·

⎛⎜⎜⎜⎝
−(𝑇𝑚)−1 − 𝐼𝑔𝜂 (𝑇𝑚)−1 0

0 −(𝑇 𝑣)−1 − 𝐼𝑔𝜂 0

0 0 −𝑇−1 − 𝐼𝑔𝜂

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎜⎝

0

(𝑇 𝑣)−1𝑊−1
𝐺,𝐺1𝑔

𝑇−1𝑊−1
𝐺,𝐺1𝑔

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ =

= det

(︃
− 1𝑇

𝑛𝑊
−11𝑛 − 𝜂 −

(︁
−1𝑇

𝑔 0
)︁
·

·

⎛⎝ −((𝑇𝑚)−1 − 𝐼𝑔𝜂)−1 −(𝑇𝑚)−1(−(𝑇𝑚)−1 − 𝐼𝑔𝜂)−1(−(𝑇 𝑣)−1 − 𝐼𝑔𝜂)−1

0 −((𝑇 𝑣)−1 − 𝐼𝑔𝜂)−1

⎞⎠ ·

·

⎛⎝ 0

(𝑇 𝑣)−1𝑊−1
𝐺,𝐺1𝑔

⎞⎠+ 1𝑔 diag(𝑟𝐼𝐺)(−𝑇−1 − 𝐼𝑔𝜂)𝑇−1𝑊−1
𝐺,𝐺1𝑔

)︃
=

= −
∑︁
𝑖∈𝑁

1

𝑤𝑖

− 𝜂 +
∑︁
𝑖∈𝐺

𝑟𝐼𝑖
𝑤𝑖

(︃
1

𝑡𝑚𝑖 𝑡
𝑣
𝑖 (

1
𝑡𝑚𝑖

+ 𝜂)( 1
𝑡𝑣𝑖
− 𝜂)

− 1

𝑡𝑖(
1
𝑡𝑖

+ 𝜂)

)︃
.

(12.25)

For simplicity let us denote 𝑦𝑖1 = 1
𝑡𝑚𝑖

, 𝑦𝑖2 = 1
𝑡𝑣𝑖

, 𝑦𝑖3 = 1
𝑡𝑖
, 𝑖 ∈ 𝐺. Then

𝑃2(𝜂) = −
𝑛∑︁

𝑖=1

1

𝑤𝑖

− 𝜂 +

𝑔∑︁
𝑖=1

𝑟𝑖
𝑤𝑖

(︂
𝑦𝑖1𝑦

𝑖
2

(𝑦𝑖1 + 𝜂)(𝑦𝑖2 + 𝜂)
− 𝑦𝑖3
𝑦𝑖3 + 𝜂

)︂
. (12.26)

Let us now show that for ℜ𝜂 = 𝛼 and ℑ𝜂 = 𝛽 equations 𝑃2(𝜂) = 0 does not have solutions

such that 𝛼 ≥ 0. We consider the following expression:

𝑦𝑖1𝑦
𝑖
2

(𝑦𝑖1 + 𝜂)(𝑦𝑖2 + 𝜂)
− 𝑦𝑖3
𝑦𝑖3 + 𝜂

. (12.27)
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Let us introduce new functions:

𝑧𝑖1(𝛼, 𝛽) =
𝑦𝑖1

(𝑦𝑖1 + 𝛼) + 𝛽𝑗
= 𝑦𝑖1

(︂
𝑦𝑖1 + 𝛼

(𝑦𝑖1 + 𝛼)2 + 𝛽2
− 𝛽

(𝑦𝑖1 + 𝛼) + 𝛽2
𝑗

)︂
, (12.28)

𝑧𝑖2(𝛼, 𝛽) =
𝑦𝑖2

(𝑦𝑖2 + 𝛼) + 𝛽𝑗
= 𝑦𝑖2

(︂
𝑦𝑖2 + 𝛼

(𝑦𝑖2 + 𝛼)2 + 𝛽2
− 𝛽

(𝑦𝑖2 + 𝛼) + 𝛽2
𝑗

)︂
, (12.29)

𝑧𝑖3(𝛼, 𝛽) =
𝑦𝑖3

(𝑦𝑖3 + 𝛼) + 𝛽𝑗
= 𝑦𝑖2

(︂
𝑦𝑖3 + 𝛼

(𝑦𝑖3 + 𝛼)2 + 𝛽2
− 𝛽

(𝑦𝑖3 + 𝛼) + 𝛽2
𝑗

)︂
, (12.30)

Substitution (12.28)-(12.30) into (12.27) gives

𝜙𝑖(𝛼, 𝛽) = ℜ
(︀
𝑧𝑖1(𝛼, 𝛽)𝑧𝑖2(𝛼, 𝛽) − 𝑧𝑖3(𝛼, 𝛽)

)︀
= (12.31)

= 𝑦𝑖1𝑦
𝑖
2

(︂
(𝑦𝑖1 + 𝛼)(𝑦𝑖2 + 𝛼)

((𝑦𝑖1 + 𝛼)2 + 𝛽2) ((𝑦𝑖2 + 𝛼)2 + 𝛽2)
− 𝛽2

((𝑦𝑖1 + 𝛼)2 + 𝛽2) ((𝑦𝑖2 + 𝛼)2 + 𝛽2)

)︂
− (12.32)

− 𝑦𝑖3(𝑦
𝑖
3 + 𝛼)

(𝑦𝑖3 + 𝛼)2 + 𝛽2
. (12.33)

For 𝛽 = 0:

𝜙𝑖(𝛼, 0) = 𝑦𝑖1𝑦
𝑖
2

(︂
1

(𝑦𝑖1 + 𝛼)(𝑦𝑖2 + 𝛼)

)︂
− 𝑦𝑖3
𝑦𝑖3 + 𝛼

= 𝑧𝑖1(𝛼, 0)𝑧𝑖1(𝛼, 0) − 𝑧𝑖3(𝛼, 0). (12.34)

From (12.28)

𝛼 =
𝑦𝑖1

𝑧𝑖1(𝛼, 0)
− 𝑦𝑖1. (12.35)

Then, from (12.29), (12.30) and (12.35)

𝑧𝑖2(𝛼, 0) =
𝑧𝑖1(𝛼, 0)𝑦𝑖2

𝑧𝑖1(𝛼, 0)(𝑦𝑖2 − 𝑦𝑖1) + 𝑦𝑖1
, 𝑧𝑖3(𝛼, 0) =

𝑧𝑖1(𝛼, 0)𝑦𝑖3
𝑧𝑖1(𝛼, 0)(𝑦𝑖3 − 𝑦𝑖1) + 𝑦𝑖1

. (12.36)

We introduce auxiliary variables:

𝑢𝑖1 = 𝑧𝑖1(𝛼, 0) =
𝑦𝑖1

𝑦𝑖1 + 𝛼
, 𝑢𝑖2 = 𝑧𝑖2(𝛼, 0) =

𝑦𝑖2
𝑦𝑖2 + 𝛼

, 𝑢𝑖3 = 𝑧𝑖3(𝛼, 0) =
𝑦𝑖3

𝑦𝑖3 + 𝛼
. (12.37)

For 𝛼 > 0 auxiliary variables 0 < 𝑢𝑖𝑘 6 1, 𝑘 = 1, 2, 3. Using (12.36), we get

𝜙𝑖(𝛼, 0) = 𝑢𝑖1𝑢
𝑖
2 − 𝑢𝑖3 = 𝑢𝑖1

(︂
𝑢𝑖1𝑦

𝑖
2

𝑢𝑖1(𝑦
𝑖
2 − 𝑦𝑖1) + 𝑦𝑖1

− 𝑦𝑖3
𝑢𝑖1(𝑦

𝑖
3 − 𝑦𝑖1) + 𝑦𝑖1

)︂
= 𝑢𝑖1𝜓𝑖(𝑢

𝑖
1). (12.38)

Derivative of 𝜓:

𝜓′
𝑖(𝑢

𝑖
1) =

𝑦𝑖2
𝑢𝑖1(𝑦

𝑖
2 − 𝑦𝑖1) + 𝑦𝑖1

− 𝑢𝑖1𝑦
𝑖
2(𝑦

𝑖
2 − 𝑦𝑖1)

(𝑢𝑖1(𝑦
𝑖
2 − 𝑦𝑖1) + 𝑦𝑖1)

2 +
𝑦𝑖3(𝑦

𝑖
3 − 𝑦𝑖1)

(𝑢𝑖1(𝑦
𝑖
3 − 𝑦𝑖1) + 𝑦𝑖1)

2 = (12.39)
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=
𝑦𝑖2

𝑢𝑖1(𝑦
𝑖
2 − 𝑦𝑖1) + 𝑦𝑖1

(︂
1 − 𝑢𝑖1(𝑦

𝑖
2 − 𝑦𝑖1)

𝑢𝑖1(𝑦
𝑖
2 − 𝑦𝑖1) + 𝑦𝑖1

)︂
+

𝑦𝑖3(𝑦
𝑖
3 − 𝑦𝑖1)

(𝑢𝑖1(𝑦
𝑖
3 − 𝑦𝑖1) + 𝑦𝑖1)

2 = (12.40)

=
𝑦𝑖2

𝑢𝑖1(𝑦
𝑖
2 − 𝑦𝑖1) + 𝑦𝑖1

· 𝑦𝑖1
𝑢𝑖1(𝑦

𝑖
2 − 𝑦𝑖1) + 𝑦𝑖1

+
𝑦𝑖3(𝑦

𝑖
3 − 𝑦𝑖1)

(𝑢𝑖1(𝑦
𝑖
3 − 𝑦𝑖1) + 𝑦𝑖1)

2 . (12.41)

If 𝑦𝑖3 − 𝑦𝑖1 > 0, then 𝜓′
𝑖(𝑢

𝑖
1) > 0 and 𝜓𝑖 is monotonously increasing. From 𝜓𝑖(1) = 0 we have

𝜓𝑖(𝑢
𝑖
1) 6 0, 𝑢𝑖1 ∈ (0, 1]. Therefore, 𝜙(𝛼, 0) 6 0, 𝛼 > 0. Additionally, 𝑢𝑖1 = 1 if and only if

𝛼 = 0, thus, 𝜙(𝛼, 0) < 0 for 𝛼 > 0. From (12.29)

𝛼 =
𝑦𝑖2

𝑧𝑖2(𝛼, 0)
− 𝑦𝑖2. (12.42)

Same derivation gives 𝜙(𝛼, 0) < 0 for 𝛼 > 0 and 𝑦𝑖3 − 𝑦𝑖2 > 0.

Let us introduce new variables:

𝑘𝑖1 = 𝑦𝑖1𝑦
𝑖
2(𝑦

𝑖
1 + 𝛼)(𝑦𝑖2 + 𝛼), 𝑐𝑖1 = (𝑦𝑖1 + 𝛼)2, 𝑐𝑖2 = (𝑦𝑖2 + 𝛼)2, 𝑐𝑖3 = (𝑦𝑖3 + 𝛼)2. (12.43)

Then

𝜙𝑖(𝛼, 𝛽) =
𝑘𝑖1 − 𝛽

(𝑐𝑖1 + 𝛽)(𝑐𝑖2 + 𝛽)
− 𝑘𝑖2
𝑐𝑖3 + 𝛽

= (12.44)

=
−(1 + 𝑘𝑖2)𝛽

2 + (𝑘𝑖1 − 𝑐𝑖3 − 𝑘𝑖2(𝑐
𝑖
1 + 𝑐𝑖2))𝛽 + 𝑐𝑖3𝑘

𝑖
1 − 𝑘𝑖2𝑐

𝑖
1𝑐

𝑖
2

(𝑐𝑖1 + 𝛽)(𝑐𝑖2 + 𝛽)(𝑐𝑖3 + 𝛽)
=

𝑓𝑖(𝛽)

(𝑐𝑖1 + 𝛽)(𝑐𝑖2 + 𝛽)(𝑐𝑖3 + 𝛽)
.

(12.45)

From 𝑓𝑖(0) = 𝜙𝑖(𝛼, 0) 6 0 we have 𝑐𝑖3𝑘𝑖1 − 𝑘𝑖2𝑐
𝑖
1𝑐

𝑖
2 6 0. Furthermore

𝑦𝑖3 > 𝑦𝑖1 ⇒ 𝑐𝑖3 > 𝑐𝑖1 ⇒ 𝑘𝑖1𝑐
𝑖
3 > 𝑘𝑖1𝑐

𝑖
1 ⇒ 𝑘𝑖1𝑐

𝑖
1 − 𝑘𝑖2𝑐

𝑖
1𝑐

𝑖
2 < 𝑘𝑖1𝑐

𝑖
3 − 𝑘𝑖2𝑐

𝑖
1𝑐

𝑖
2 < 0 ⇒ (12.46)

⇒ 𝑘𝑖1 − 𝑐𝑖3 − 𝑘𝑖2𝑐
𝑖
1 − 𝑘𝑖2𝑐

𝑖
2 < −𝑐𝑖3 − 𝑘𝑖2𝑐

𝑖
1 < 0. (12.47)

Thus, all second-order coefficients of 𝑓𝑖 are negative and from 𝑓𝑖(0) 6 0 we have 𝑓𝑖(𝛽) 6 0.

Then 𝜙𝑖(𝛼, 𝛽) 6 0 and

𝑃2(0) = −
𝑛∑︁

𝑖=1

1

𝑤𝑖

< 0. (12.48)

Therefore, equation 𝑃2(𝜂) = 0 has solution only if 𝛼 < 0, thus, all real parts of eigenvalues of

𝐴 are negative and system (12.19) is globally asymptotically stable if 𝑦𝑖3−𝑦𝑖1 > 0 or 𝑦𝑖3−𝑦𝑖2 > 0

or in original variables 𝑡𝑖 ≤ max{𝑡𝑚𝑖 , 𝑡𝑣𝑖 }, 𝑖 ∈ 𝐺.

Theorem 12.4 (Control applicability). Formulas

𝐹 (𝑦,𝑊 ) = 𝑊−11𝑛𝑦, (12.49)

106



𝐺(̊𝑟, 𝑢, 𝑦) = −1⊤
𝑛 (𝑢+ 𝑟̊) (12.50)

define controller functions for the Problem 1 with 𝑠 = 1.

Proof. Substitution of 𝐹 and 𝐺 into (12.3) gives system (12.16) with 𝑦 = 𝜆, thus item 1 of

the Problem 1 is satisfied. From the Theorem 12.3 control 𝑢 is global asymptotically stable

and converges to a constant control, thus item 2 of the Problem 1 is satisfied. From the

Lemma 12.2 𝑢 converges to 𝑢̂*, thus from Lemma 12.1, system (9.13) with the control 𝑢

converges to the optimal type 1 steady-state.

12.2 Problem 2. Frequency control with control present on some

buses.

Here, similarly to the previous section, no control limits or line limits are present and commu-

nication is centralized. However, now control is present only on a subset of buses 𝑁𝑢 ⊆ 𝑁 ,

𝑛𝑢 = |𝑁𝑢|. Without loss of generality it is assumed that 𝑢𝑖(𝑡) ≡ 0 on all other buses

𝑖 ∈ 𝑁 ∖𝑁𝑢. Further the indicator vector will be used: 𝜅𝑢 = (𝜅𝑢1 , . . . , 𝜅
𝑢
𝑁)𝑇 ,

𝜅𝑢𝑖 =

⎧⎨⎩ 1, if 𝑖 ∈ 𝑁𝑢,

0, if 𝑖 ̸∈ 𝑁𝑢.
(12.51)

This problem is intermediate between the one considered in the section 12.1, when no control

limits are present and problem with control limits considered in the section 12.3.

12.2.1 Problem statement

Problem statement is similar to the one in the previous section. Main difference is in the

presence of the vector 𝜅𝑢.

Definition 12.2. Optimal type 2 steady-state (OS2) is a point (𝑢̂*, 𝜃*, 𝜔̂*, 𝑝𝑚*, 𝑣*, 𝑝*, 𝑝𝑒*)

that delivers a solution of the following optimization problem:

min
𝑢̂,𝜃,𝜔̂,𝑝𝑚,𝑣,𝑝,𝑝𝑒

𝑓(𝑢̂), (12.52a)

(𝜃, 𝜔̂, 𝑝𝑚, 𝑣, 𝑝, 𝑝𝑒) ∈ Ψ, (12.52b)

𝑢̂𝑖 = 0, 𝑖 ∈ 𝑁𝑢. (12.52c)
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Problem 2 (Frequency control with control present on some buses). Let 𝑠 be the size of aux-

iliary variables vector 𝑦. Then, it is required to find Lipschitz continuous controller functions

𝐹 : R𝑠 × R𝑛×𝑛 × {0, 1}𝑛 → R𝑛, (12.53a)

𝐺 : R𝑛 × R𝑛 × R𝑠 → R𝑠, (12.53b)

such that

1. Control 𝑢 is defined by a system of integral-algebraic equations

𝑢(𝑡) = 𝐹 (𝑦(𝑡),𝑊, 𝜅𝑢), (12.54a)

𝑦(𝑡) =

∫︁ 𝑡

0

𝐺(̊𝑟(𝜏), 𝑢(𝜏), 𝑦(𝜏))𝑑𝜏 + 𝑦0, (12.54b)

2. Control 𝑢 must be globally asymptotically stable.

3. 𝑢𝑖(𝑡) = 0, 𝑖 ∈ 𝑁𝑢, 𝑦 ≥ 0.

4. System (9.13) with control 𝑢 must converge to OS2.

12.2.2 Optimal steady-state and control equations

In order to obtain control, optimization problem similar to (12.4) is introduced with an

additional constraint of control values being equal to zero on the buses not belonging to the

set 𝑁𝑢:

min
𝜃,𝜔̂,𝑝𝑚,𝑣,𝑝,𝑝𝑒,𝑢̂

𝑓(𝑢̂), (12.55a)
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0 =𝜔̂, (12.55b)

0 = −𝐷𝐺,𝐺𝜔̂𝐺 − 𝑝𝑒𝐺 + 𝑝𝑚 + 𝑟𝐺, (12.55c)

0 = − 𝑝𝑚 + 𝑣, (12.55d)

0 = − 𝑣 + 𝑢̂𝐺, (12.55e)

0 = −𝐷𝐿1,𝐿1𝜔̂𝐿1 − 𝑝𝑒𝐿1
+ 𝑢̂𝐿1 + 𝑟𝐿1 , (12.55f)

0 = −𝐷𝐿0,𝐿0𝜔̂𝐿0 − 𝑝𝑒𝐿0
+ 𝑢̂𝐿0 + 𝑟𝐿0 , (12.55g)

𝑝 =𝐵𝐶𝑇 𝜃, (12.55h)

𝑝𝑒 =𝐶𝑝, (12.55i)

𝑢̂𝑖 =0, 𝑖 ∈ 𝑁𝑢, (12.55j)

or after simplification

min
𝑢̂

1

2
𝑢̂𝑇𝑁𝑢

𝑊𝑁𝑢,𝑁𝑢𝑢̂𝑁𝑢 , (12.56a)

1𝑇
𝑛𝑢
𝑢̂+ 1𝑛𝑟 = 0. (12.56b)

Stationary point of Lagrange function corresponding to (12.56) is defined by the following

system of equations:

𝑢̂𝑖 =

⎧⎨⎩ 𝑤−1
𝑖 𝜆̂, if 𝑖 ∈ 𝑁𝑢,

0, if 𝑖 ̸∈ 𝑁𝑢,
(12.57a)

1𝑇
𝑛𝑢
𝑊−1

𝑁𝑢,𝑁𝑢
1𝑛𝑢𝜆̂+ 1𝑇

𝑛𝑟 = 0. (12.57b)

Lemma 12.5. Let 𝑢(𝑡) → 𝑢̂*, then system (9.13) converges to the optimal type 2 steady-state.

Proof. Variables 𝑢̂𝑖 for 𝑖 ∈ 𝑁𝑢 are excluded from the optimization problem (12.56). Taking

them equal 0 makes the further proof equivalent to the proof of the Lemma 12.1.

Transition from algebraic to control equations is presented:

𝑢𝑖(𝑡) =

⎧⎨⎩ 𝑤−1
𝑖 𝜆(𝑡), if 𝑖 ∈ 𝑁𝑢,

0, if 𝑖 ̸∈ 𝑁𝑢,
(12.58a)

𝜆(𝑡) = −
∫︁ 𝑡

0

1𝑇
𝑛 (𝑢(𝜏) + 𝑟̊(𝜏))𝑑𝜏 + 𝜆0. (12.58b)

Block-diagram corresponding to the control equations is shown in Figure 12.2.
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Figure 12.2: Control block diagram for the Problem 2.

12.2.3 Control stability and applicability

Similarly to the Problem 1, in order to prove control stability we need to analyze system

𝜆̇ = − 1𝑇
𝑛𝑢
𝑊−1

𝑁𝑢,𝑁𝑢
1𝑛𝑢𝜆− 1𝑛𝑟 + (𝜅𝑢𝐺)𝑇 diag(𝑟𝐼𝐺)(𝑝𝑚 − 𝑝𝑚), (12.59a)

𝑝̇𝑚 = − (𝑇𝑚)−1𝑝𝑚 + (𝑇𝑚)−1𝑣, (12.59b)

𝑣̇ = − (𝑇 𝑣)−1𝑣 + (𝑇 𝑣)−1𝑊−1
𝐺,𝐺𝜅

𝑢
𝐺𝜆, (12.59c)

˙̃𝑝𝑚 = − 𝑇−1𝑝+ 𝑇−1𝑊−1
𝐺,𝐺𝜅

𝑢
𝐺𝜆. (12.59d)

Lemma 12.6. In stationary point (𝜆 *, 𝑝𝑚*, 𝑣*, 𝑝𝑚*) of the system (12.59) 𝜆* coincides with

𝜆̂* in the solution of (12.56).

Proof. It can be seen that in stationary point (𝑝𝑚)* = (𝑝𝑚)*. Thus, equation (12.59a) is

equivalent to (12.57b) if 𝜆̇ = 0.

Theorem 12.7 (Control stability). Let

𝑡𝑖 ≤ max{𝑡𝑚𝑖 , 𝑡𝑣𝑖 }, 𝑖 ∈ 𝐺. (12.60)

Then, system (12.19) is globally asymptotically stable.
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Proof. The proof is equivalent to the proof of 12.3 with replacement of 𝑁 with 𝑁𝑢 and 𝐺

with 𝐺 ∩𝑁𝑢.

Theorem 12.8 (Control applicability). Formulas

𝐹 (𝑦,𝑊, 𝜅𝑢) = 𝑊−1 diag(𝜅𝑢)𝑦, (12.61)

𝐺(̊𝑟, 𝑢, 𝑦) = −1⊤
𝑛 (𝑢+ 𝑟̊) (12.62)

define controller functions for the Problem 2 with 𝑠 = 1.

Proof. The proof is equivalent of the proof of the Theorem 12.4. Substitution of 𝐹 and

𝐺 into (12.54) gives system (12.58) with 𝑦 = 𝜆, thus item 1 of the Problem 2 is satisfied.

From the Theorem 12.7 control 𝑢 is global asymptotically stable and converges to a constant

control, thus item 2 of the Problem 2 is satisfied. From the Lemma 12.6 𝑢 converges to 𝑢̂*

thus from Lemma 12.5, system (9.13) with the control 𝑢 converges to the optimal type 2

steady-state.

12.3 Problem 3. Frequency control.

Here frequency control problem with control limits (9.5) is considered. It is assumed that the

problem is feasible (control reserve is sufficient to restore power balance after the disturbance

appearance):

1𝑇
𝑛𝑢 ≤ 1𝑇

𝑛𝑟 ≤ 1𝑇
𝑛𝑢, (12.63)

where 𝑢 and 𝑢 are lower and upper control limits respectively. As before control derivation

is based on the formulation of optimization problem followed by introduction of integral

equations. Main difference here is presence of the inequality constraints (9.5) that leads to

appearance of complementary slackness equations and positiveness of some dual variables.

Thus, a combination of approaches shown in sections 12.1 and 12.2 is used.

12.3.1 Problem statement

Definition 12.3. Optimal type 3 steady-state (OS3) is a point (𝑢̂*, 𝜃*, 𝜔̂*, 𝑝𝑚*, 𝑣*, 𝑝*, 𝑝𝑒*)

that delivers a solution of the following optimization problem:

min
𝑢̂,𝜃,𝜔̂,𝑝𝑚,𝑣,𝑝,𝑝𝑒

𝑓(𝑢̂), (12.64a)
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(𝜃, 𝜔̂, 𝑝𝑚, 𝑣, 𝑝, 𝑝𝑒) ∈ Ψ, (12.64b)

𝑢̂𝑖 ∈ [𝑢𝑖, 𝑢𝑖], 𝑖 ∈ 𝑁. (12.64c)

Problem 3 (Frequency control). Let 𝑠 be the size of auxiliary variables vector 𝑦. Then, it

is required to find Lipschitz continuous controller functions

𝐹 : R𝑠 × R𝑛×𝑛 × R𝑛 × R𝑛 → R𝑛, (12.65a)

𝐺 : R𝑛 × R𝑛 × R𝑠 → R𝑠, (12.65b)

such that

1. Control 𝑢 is defined by a system of integral-algebraic equations

𝑢(𝑡) = 𝐹 (𝑦(𝑡),𝑊, 𝑢, 𝑢), (12.66a)

𝑦(𝑡) =

∫︁ 𝑡

0

𝐺(̊𝑟(𝜏), 𝑢(𝜏), 𝑦(𝜏))𝑑𝜏 + 𝑦0. (12.66b)

2. Control 𝑢 must be globally asymptotically stable.

3. 𝑢𝑖(𝑡) ∈ [𝑢𝑖, 𝑢𝑖], 𝑖 ∈ 𝑁, 𝑡 ≥ 0.

4. System (9.13) with control 𝑢 must converge to OS3.

12.3.2 Optimal steady-state and control equations

Let us introduce the following control participation minimization problem:

min
𝜃,𝜔̂,𝑝𝑚,𝑣,𝑝,𝑝𝑒,𝑢̂

𝑓(𝑢̂), (12.67a)

0 =𝜔̂, (12.67b)

0 = −𝐷𝐺,𝐺𝜔̂𝐺 − 𝑝𝑒𝐺 + 𝑝𝑚 + 𝑟𝐺, (12.67c)

0 = − 𝑝𝑚 + 𝑣, (12.67d)

0 = − 𝑣 + 𝑢̂𝐺, (12.67e)

0 = −𝐷𝐿1,𝐿1𝜔̂𝐿1 − 𝑝𝑒𝐿1
+ 𝑢̂𝐿1 + 𝑟𝐿1 , (12.67f)

0 = −𝐷𝐿0,𝐿0𝜔̂𝐿0 − 𝑝𝑒𝐿0
+ 𝑢̂𝐿0 + 𝑟𝐿0 , (12.67g)

𝑝 =𝐵𝐶𝑇 𝜃, (12.67h)

𝑝𝑒 =𝐶𝑝, (12.67i)
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𝑢 ≤ 𝑢̂ ≤ 𝑢, (12.67j)

or after simplification

min
𝑢̂

1

2
𝑢̂𝑇𝑊𝑢̂, (12.68a)

1𝑇
𝑛 (𝑢̂+ 𝑟) = 0, (12.68b)

𝑢 ≤ 𝑢̂ ≤ 𝑢. (12.68c)

Lagrange function, corresponding to the optimization problem (12.68):

𝐿(𝑢̂, 𝜆̂, 𝜒̂, 𝜒̂) =
1

2
𝑢̂𝑇𝑊𝑢̂− 𝜆̂1𝑇

𝑛 (𝑢̂+ 𝑟) + 𝜒̂𝑇 (𝑢− 𝑢̂) + 𝜒̂
𝑇

(𝑢̂− 𝑢). (12.69)

According to the Karush–Kuhn–Tucker condition [14] solution of (12.68) is given by the

following system of equations:

𝑢̂ = 𝑊−1
(︁
1𝑛𝜆̂+ 𝜒̂− 𝜒̂

)︁
, (12.70a)

1𝑇
𝑛 (𝑢̂+ 𝑟) = 0, (12.70b)

𝜒̂
𝑖
(𝑢𝑖 − 𝑢̂𝑖) = 0, 𝜒̂

𝑖
≥ 0, 𝑖 ∈ 𝑁, (12.70c)

𝜒̂𝑖(𝑢̂𝑖 − 𝑢𝑖) = 0, 𝜒̂𝑖 ≥ 0, 𝑖 ∈ 𝑁. (12.70d)

As complementary slackness is represented by nonlinear equations transition to integral

equations must be done differently from the previous sections. Derivation of integral equa-

tions is based on the following idea. Let us assume that at some moment 𝑡0 ≥ 0 all components

of the vectors 𝑢(𝑡0) are within their limits. Then, control within some neighbourhood of 𝑡0

can be defined by the system (12.16). Let 𝑡1 > 𝑡0 be the first time at least one component

of control vector reaches its limit. Then, at the moment 𝑡1 control switches to form (12.58)

where 𝑁𝑢 is a set of control components at upper or lower limit with new disturbance vector

𝑟̊𝑛𝑒𝑤𝑖 (𝑢𝑖(𝑡)) =

⎧⎨⎩ 𝑟̊𝑖 + 𝑢𝑖(𝑡), if 𝑖 ∈ 𝑁𝑢,

𝑟̊𝑖, if 𝑖 ̸∈ 𝑁𝑢.
(12.71)

Thus, control component that reached its limit is interpreted as a part of disturbance vector.

As a result, we replace KKT conditions with the following.

𝑢̂ = 𝜈𝑛(𝑊−11𝑛𝜆̂, 𝑢, 𝑢), (12.72a)
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0 = −1𝑇
𝑛 (𝑢̂+ 𝑟), (12.72b)

where function 𝜈𝑛 : R𝑛 × R𝑛 × R𝑛 → R𝑛,

𝜈𝑛𝑖 (𝑥, 𝑦, 𝑧) = max{min{𝑥𝑖, 𝑦𝑖}, 𝑧𝑖}, 𝑖 ∈ {1, . . . , 𝑛}. (12.73)

As a result,control has the following form:

𝑢(𝑡) = 𝜈𝑛(𝑊−11𝑛𝜆(𝑡), 𝑢, 𝑢), (12.74a)

𝜆(𝑡) =

∫︁ 𝑡

0

−1𝑇
𝑛 (𝑢(𝜏) − 𝑟̊(𝜏)) 𝑑𝜏 + 𝜆0, (12.74b)

Corresponding control diagram is given in the Figure 12.3.

Lemma 12.9. Solutions of the systems (12.70) and (12.72) are same in 𝑢̂ and 𝜆̂.

Proof. Let us consider one of the control components 𝑢̂𝑖. If control limits are not active,

then from (12.70a), 𝜒̂
𝑖

= 𝜒̂𝑖 = 0 and 𝑢̂𝑖 = 𝑤−1
𝑖 𝜆̂. If control reaches its upper limit, then dual

variable corresponding to the lower limit is equal to zero: 𝜒̂
𝑖

= 0. Additionally, 𝑢̂𝑖 + 𝜒̂𝑖 =

𝑤−1
𝑖 𝜆̂; therefore, 𝑢̂𝑖 ≤ 𝑤−1

𝑖 𝜆̂. Similarly, if lower limit is active, 𝑢̂𝑖 ≥ 𝑤−1
𝑖 𝜆̂, thus,

𝑢̂ = 𝜈𝑛(𝑊−11𝑛𝜆̂, 𝑢, 𝑢), (12.75a)

𝜒̂𝑖 =

⎧⎨⎩ 𝑤−1
𝑖 𝜆̂− 𝑢, if 𝑤−1

𝑖 𝜆̂ ≥ 𝑢̂,

0, if 𝑤−1
𝑖 𝜆̂ < 𝑢̂,

(12.75b)

𝜒̂
𝑖

=

⎧⎨⎩ 𝑢̂− 𝑤−1
𝑖 𝜆̂, if 𝑢̂ ≥ 𝑤−1

𝑖 𝜆̂,

0 if 𝑢̂ < 𝑤−1
𝑖 𝜆̂.

(12.75c)

Substitution of (12.75a) into the first two equations of (12.70) gives

𝑢̂ = 𝜈𝑛(𝑊−11𝑛𝜆̂, 𝑢, 𝑢), (12.76a)

0 = −1𝑇
𝑛 (𝑢̂+ 𝑟). (12.76b)

Equations (12.75b) and (12.75c) ensure execution of complementary slackness conditions

(12.70c) and (12.70d). Therefore, solutions of (12.70) and (12.76) have equivalent 𝑢 and 𝜆.

However, system (12.76) delivers stationary point of (12.77). Thus, stationary point is unique

and delivers solution of the optimization problem (12.68).
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Figure 12.3: Control block diagram for the Problem 3.

Lemma 12.10. Let 𝑢(𝑡) → 𝑢̂*, then system (9.13) converges to the optimal type 3 steady-

state.

Proof. Constraints (12.68c) ensure control to be remain within the acceptable limits. Oth-

erwise optimal type 1 steady-state is similar to the optimal type 3 steady-state and further

proof of this lemma coincides with the proof of Lemma 12.1.

12.3.3 Control properties

Let us reduce equations (12.74), (9.13c), (9.13d) to a system of algebraic differential equa-

tions:

𝑢 =𝜈𝑛(𝑊−11𝑛𝜆, 𝑢, 𝑢), (12.77a)

𝜆̇ = − 1𝑇
𝑛 (𝑢+ 𝑟̊), (12.77b)

𝑝̇𝑚 = − (𝑇𝑚)−1𝑝𝑚 + (𝑇𝑚)−1𝑣, (12.77c)

𝑣̇ = − (𝑇 𝑣)−1𝑣 + (𝑇 𝑣)−1𝑢𝐺, (12.77d)

˙̃𝑝𝑚 = − 𝑇−1𝑝𝑚 + 𝑇−1𝑢𝐺. (12.77e)
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System (12.77) is a piecewise linear system, thus we use the following matrix form:

𝑥̇ = 𝐴(𝑥)𝑥+𝑅, (12.78)

where 𝐴(𝑥) is a piecewise constant function. The following lemmas are applicable for this

system:

Lemma 12.11. Stationary point (𝑢*, 𝜆*, 𝑝𝑚*, 𝑣*, 𝑝𝑚*) of the system (12.77) delivers solution

(𝑢̂*, 𝜆̂*) of the optimization problem (12.68).

Proof. The proof is similar to the proof of Lemma (12.2).

Lemma 12.12. Let

𝑡𝑖 ≤ max{𝑡𝑚𝑖 , 𝑡𝑣𝑖 }, 𝑖 ∈ 𝐺. (12.79)

Then, matrix 𝐴(𝑥) of the system (12.78) for any 𝑥 = (𝑢, 𝜆, 𝑝𝑚, 𝑣, 𝑝𝑚) is negative definite.

Proof. For a fixed 𝑥 let us define vector 𝜅𝑢(𝑥) ∈ R𝑛 in the following way:

𝜅𝑢𝑖 (𝑥) =

⎧⎨⎩ 0, 𝑢𝑖 > 𝑢𝑖 or 𝑢𝑖 < 𝑢𝑖,

1, otherwise.
(12.80)

Then result of the Theorem 12.7 gives negative definiteness of the matrix 𝐴(𝑥).

Here we cannot prove global asymptotic stability as negative-definiteness of the system

matrix at any point is not a sufficient condition (counterexamples can be found in [100]).

Thus, in the further section we adjust disturbance approximation algorithm.

12.3.4 Disturbance estimation approach

Control scheme in the previous section requires knowledge of frequency deviations and elec-

trical powers on each bus. However, according to generating unit structure described in

section (6.2), each generation unit can measure 𝜔 and 𝑝𝑒. This generating unity can always

be represented as a separate bus. As generating unit consumption (e.g. for excitation unit) is

known, thus, 𝑟𝑖 is also a known value. According to formulas (11.5c), (11.5c) value of
∫︀ 𝑡

0
𝑟𝑖𝑑𝜏

can be measured exactly,
∫︀ 𝑡

0
𝑟𝑖𝑑𝜏 =

∫︀ 𝑡

0
𝑟̊𝑖𝑑𝜏 (Figure 12.4). Hence further results are obtained

after the following model modification:
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Figure 12.4: Updated disturbance approximation block diagram.

∙ System graph Γ is constructed so generating buses from 𝐺 consist only of generating

units;

∙ Values 𝑟𝑖 are known (𝑖 ∈ 𝐺) for generator buses;

∙ Values
∫︀ 𝑡

0
𝑟𝑖𝑑𝜏 are known for load buses.

12.3.5 Control stability and applicability

Due to the exclusion of the disturbances on the generator buses we analyse stability of the

system

𝑢 =𝜈𝑛(𝑊−11𝑛𝜆, 𝑢, 𝑢), (12.81a)

𝜆̇ = − 1𝑇
𝑛 (𝑢+ 𝑟̊). (12.81b)

Proof of the system (12.81) stability requires the following lemma:
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Lemma 12.13. Let 𝑌1 = 𝜈1(𝑥1, 𝑥, 𝑥)−𝜈1(𝑥2, 𝑥, 𝑥), 𝑌2 = 𝑥1−𝑥2. Then, 𝑌1𝑌2 ≥ 0. If 𝑥1 ̸= 𝑥2

and 𝑥 < 𝑥2 < 𝑥, then 𝑌1𝑌2 > 0.

Proof. If 𝑥1 = 𝑥2, then 𝑌1 = 𝑌2 = 0 and lemma’s statement holds. If 𝑥1 > 𝑥2, then 𝑌2 > 0

and there exist 3 cases:

1. 𝑥1 ≤ 𝑥, then 𝑌1 = 0;

2. 𝑥 ≤ 𝑥2 < 𝑥, then 𝑌1 > 0;

3. 𝑥2 > 𝑥, then 𝑌1 = 0.

In all this cases lemma’s statement holds. Let 𝑥1 < 𝑥2 and 𝑌2 < 0, then similarly to the

previous case there exist 3 cases:

1. 𝑥1 ≥ 𝑥, then 𝑌1 = 0;

2. 𝑥 < 𝑥2 ≤ 𝑥, then 𝑌1 < 0;

3. 𝑥2 < 𝑥, then 𝑌1 = 0.

In all this cases lemma’s statement holds.

Theorem 12.14 (Control stability). System (12.77) is globally asymptotically stable.

Proof. Let 𝑢*, 𝜆* be stationary point of the system (12.81). Then, system (12.81) is equivalent

to the following:

𝜆̇ = −1𝑇
𝑛

(︀
𝜈𝑛(𝑊−11𝑛𝜆, 𝑢, 𝑢) − 𝜈𝑛(𝑊−11𝑛𝜆

*, 𝑢, 𝑢)
)︀
. (12.82)

Thus, the following Lyapunov function can be used for the stability proof:

𝑉 (𝜆) =
1

2
(𝜆− 𝜆*)2. (12.83)

It derivative:

𝑉̇ (𝜆) = −1𝑇
𝑛

(︀
𝜈𝑛(𝑊−11𝑛𝜆, 𝑢, 𝑢) − 𝜈𝑛(𝑊−11𝑛𝜆

*, 𝑢, 𝑢)
)︀

(𝜆− 𝜆*) =

= −
∑︁
𝑖∈𝑁

1

𝑤𝑖

(︀
𝜈1(𝜆𝑖, 𝑤𝑖𝑢𝑖, 𝑤𝑖𝑢𝑖) − 𝜈1(𝜆*𝑖 , 𝑤𝑖𝑢𝑖, 𝑤𝑖𝑢𝑖)

)︀
(𝜆− 𝜆*).

(12.84)
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According to the lemma 12.13 derivative of the Lyapunov function is negative if there exists

at least one index 𝑖0 such that 𝑢𝑖0 <
1

𝑤𝑖0
𝜆* < 𝑢𝑖0 . In this case function 𝜆 and consequently

function 𝑢 are asymptotically stable. Otherwise set 𝑁 can be divided into 2 subsets 𝑁 and

𝑁 such that 1
𝑤𝑖
𝜆* = 𝑢𝑖 for 𝑖 ∈ 𝑁 and 1

𝑤𝑖
𝜆* = 𝑢𝑖 for 𝑖 ∈ 𝑁 (if for some 𝑖0 𝑢𝑖0 = 𝑢𝑖0 , then 𝑖0

belongs to both sets). Then,

ker 𝑉̇ =

{︂
𝜆 :

1

𝑤𝑖

𝜆 ≤ 𝑢𝑖, 𝑖 ∈ 𝑁 ∖𝑁 and
1

𝑤𝑖

𝜆 ≥ 𝑢𝑖, 𝑖 ∈ 𝑁 ∖𝑁
}︂
. (12.85)

According to Barbashin-Krasovsky theorem any solution of the system (12.82) converges

to trajectory fully belonging to ker 𝑉̇ . Thus,

𝑢(𝑡) = 𝜈𝑛(𝑊−11𝑛𝜆, 𝑢, 𝑢) → 𝜈𝑛(𝑊−11𝑛𝜆
*, 𝑢, 𝑢) = 𝑢*, (12.86)

which proves global asymptotic stability of the control 𝑢.

Theorem 12.15 (Control applicability). Formulas

𝐹 (𝑦,𝑊, 𝑢, 𝑢) = 𝜈𝑛(𝑊−11𝑛𝑦, 𝑢, 𝑢), (12.87)

𝐺(̊𝑟, 𝑢, 𝑦) = −1⊤
𝑛 (𝑢+ 𝑟̊). (12.88)

define controller functions for the Problem 2 with 𝑠 = 1.

Proof. The proof is equivalent of the proof of the Theorem 12.4. Substitution of 𝐹 and 𝐺

into (12.66) gives system (12.74) with 𝑦 = 𝜆, thus item 1 of the Problem 3 is satisfied. From

the Theorem 12.14 control 𝑢 is global asymptotically stable and converges to a constant

control, thus item 2 of the Problem 3 is satisfied. From the Lemma 12.11 𝑢 converges to 𝑢̂*

thus from Lemma 12.10, system (9.13) with the control 𝑢 converges to the optimal type 3

steady-state.

12.4 Numerical experiment

New England System is used for the numerical experiments [8]. Parameters of the system

are given in the tables 7.1 and 7.2. Turbine and governor constants are taken from [90].

Partial outage of 100 MW appears on the generator 10. As a consequence of the outage,

generator G10 does not participate in the further control actions. It is assumed that only

119



30

G10

G8

G1

G2

G3

G9

G5

G4

G6

G7

2

1   

39

5

9

8

7

4

3

18

25

37

6

31

26

27

17
16

15

14

12

11

10
13

32

28

24

21

22

35 23

36

19

20

34

33

29

38

-100 MW

Figure 12.5: New England network

generators participate in the control and participation factors 𝑤𝑖 for every generator are equal

1, thus, after transient each generator should increase its output by 11.1 MW. Three control

types are considered: (1) traditional primary and secondary frequency controls (𝑢𝐼 + 𝑢𝐼𝐼),

(2) developed control (𝑢), (3) developed control summed with primary frequency control

(𝑢+𝑢𝐼). Figure (12.7) has control signals graphs for all three types of control, corresponding

frequency responses are show in the Figure (12.6). It can be seen that control 𝑢 provides

fast convergence speed; however, it does not reduce nadir in comparison to the traditional

control. Numerical experiments show that the best frequency response can be obtained by

adding primary frequency control to the developed one. Such modification does not improve

convergence speed; however, reduces nadir. Primary frequency control is represented by the

proportional controller and its signal converges to 0, thus, such modification does not change

post-transient state of the system.
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12.5 Conclusion

The presented approach separates disturbance approximation step and control calculation

steps. Frequency in power system is restored if and only if sum of the control values is

equal to the sum of elements of the disturbance vector; thus, every single frequency control

approximates the disturbance size in some way. Here we explicitly separate disturbance

approximation into a specific stage. Although the derived approximation depends on the

state of the physical system, it converges to a vector that does not depend on it (disturbance

vector). Compared to traditional control scheme, where only frequency deviations are used,

such approach provides significantly more reliable input to the control calculation stage.

Thus control can provide faster response without stability loss. Moreover, the second stage

can take as input values of some or all disturbance vector components, if the latter are

available by some other measurements. As a result, the derived approach provides fast

frequency restoration using only frequency and electrical power, disturbance measurements

or combinations of them. Moreover, based on the type of the input it can operate as feedback,

feedforward or mixed type control. Currently the control is centralized.

The control is derived as a system of piece wise linear integral algebraic equations:

𝑢(𝑡) = 𝜈𝑛(𝑊−11𝑛𝜆(𝑡), 𝑢, 𝑢), (12.89a)

𝜆(𝑡) =

∫︁ 𝑡

0

−1𝑇
𝑛 (𝑢(𝜏) − 𝑟̊(𝜏)) 𝑑𝜏 + 𝜆0. (12.89b)

Here equation (12.89b) is corresponding to the power balance in the system, while (12.89a)

is used to cut 𝑊−11𝑛𝜆 and keep values of 𝑢 within the control limits.
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13 Decentralized control

13.1 Problem 4. Distributed frequency control without control lim-

its.

Section 7.4 describes limitation of secondary frequency control response speed due to central-

ization requirement. If load side control implemented in addition to generators control, this

problem becomes even more significant due to increased amount of controllable buses. Thus,

we derive control that requires only communication between adjacent buses for its operation.

Thus, control on each bus can observe only local measurements of frequency deviations 𝜔𝑖

and electrical power 𝑝𝑒𝑖 , local values of system parameters 𝑚𝑖, 𝑑𝑖, 𝑤𝑖, and line parameters

𝑏𝑖𝑗 of adjacent lines. Thus, each regulator has only local information and does not need any

information about the rest of the system. As a result, overall number of controllable buses

does not affect amount of local communications.

13.1.1 Problem statement

Let us denote

𝑛Γ = max
𝑖∈𝑁

|Adj(𝑖)|. (13.1)

Within this section distributed control is derived. Therefore, instead of functions 𝐹 and

𝐺 that cover all control variables we introduce functions 𝐹 and 𝐺ℎ that would operate on

each bus separately from each other. Nevertheless, communication between neighbors is

allowed. Arguments of the function 𝐺 include information from the other buses. The type of

information is discussed further. However, dimension of the input parameters for 𝐺ℎ depends

on the number of the neighboring buses. Therefore, instead of introducing one function 𝐺

here a set of functions 𝐺ℎ is introduced for buses that have ℎ neighbors. Thus, ℎ is taken

from the set {1, . . . , 𝑛Γ}.

Problem 4 (Distributed frequency control without control limits). Let 𝑠 be the size of aux-

iliary variables vector 𝑦. Then, it is required to find Lipschitz continuous controller functions

𝐹 : R𝑠 × R → R, (13.2a)
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𝐺ℎ : R× R× R𝑠 × Rℎ×𝑠 → R𝑠, (13.2b)

such that

1. Control 𝑢 is defined by a system of integral-algebraic equations

𝑢𝑖(𝑡) = 𝐹 (𝑦𝑖(𝑡), 𝑤𝑖), 𝑖 ∈ 𝑁, (13.3a)

𝑦𝑖(𝑡) =

∫︁ 𝑡

0

𝐺|Adj(𝑖)|(̊𝑟𝑖(𝜏), 𝑢𝑖(𝜏), 𝑦𝑖(𝜏), 𝑌 𝑖(𝜏))𝑑𝜏 + 𝑦𝑖0, 𝑖 ∈ 𝑁, (13.3b)

where 𝑌 𝑖 is a matrix that consists of columns 𝑦𝑖, 𝑖 ∈ Adj(𝑖).

2. Control 𝑢 must be globally asymptotically stable.

3. System (9.13) with control 𝑢 must converge to OS1.

Here the form of the control equations (13.3) is used to introduce decentralization require-

ment. Here each vector 𝑦𝑖, 𝑖 ∈ 𝑁 is vector of local auxiliary variables. In order to calculate

control functions 𝑢𝑖 in (13.3a) only local 𝑦𝑖 and participation factor 𝑤𝑖 are used. Communica-

tion between neighbors is implemented in (13.3b) through the usage of the second argument

which consists of the neighboring buses auxiliary variables. It can be seen, that only
∫︀ 𝑡

0
𝑟𝑑𝜏

is the parameter from the physical system (9.13). Calculation of these integrals is discussed

in section 12.3.4. In order to calculate scalar
∫︀ 𝑡

0
𝑟𝑖𝑑𝜏 for some 𝑖 ∈ 𝑁 only information from

bus 𝑖 is needed. Thus, vectors 𝑦𝑖 are the only ones use by neighboring buses.

It can be seen that unlike in previous sections function 𝐹 defines local control values

𝑢𝑖 using only local and adjacent auxiliary variables 𝑦𝑖 and all measurements are only used

locally.

13.1.2 Optimal steady-state and control equations

Problem (12.4) is taken as initial optimization problem; however, now instead of reducing it

to (12.3) it is reduced to

min
𝑢̂,𝜃

𝑓(𝑢̂), (13.4a)

−𝐶𝐵𝐶𝑇 𝜃 + 𝑢̂+ 𝑟 = 0. (13.4b)
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Here line parameters 𝐵 are used. It is possible to exclude them and transition to the following

optimization problem

min
𝜂,𝑢̂

𝑓(𝑢̂), (13.5a)

𝐶𝐶⊤𝜂 − 𝑢̂− 𝑟 = 0. (13.5b)

For this problem we proof the following lemma.

Lemma 13.1. Let (𝜃#, 𝑢̂#1) and (𝜂#, 𝑢̂#2) be solutions (13.4) and (13.5) respectively. Then,

𝑢̂#1 = 𝑢̂#2.

Proof. According to the Fredholm theorem [101] solutions of (13.4b) has a solution if and

only if

𝑢̂ ∈ {𝑢̂ ∈ R𝑛 | ∃𝜃 : 𝐶𝐵𝐶⊤𝜃 = 𝑢̂+ 𝑟} = {𝑢̂ ∈ R𝑛 | (𝑢̂+ 𝑟)𝑇 𝑧 = 0 ∀𝑧 ∈ ker𝐶𝐵𝐶𝑇} =

{𝑢̂ ∈ R𝑛 | (𝑢̂+ 𝑟)𝑇 𝑧 = 0 ∀𝑧 ∈ ker𝐶𝐶𝑇} = {𝑢̂ ∈ R𝑛 | ∃𝜂 : 𝐶𝐶⊤𝜂 = 𝑢̂+ 𝑟}.
(13.6)

The derived statement proves the lemma.

Definition 13.1. Variable 𝜂 is used as a replacement for the phase angles, therefore every-

where further we will refer to it as to the vector of virtual phase angles.

Definition 13.2. Similarly to virtual phase angles we denote 𝜋̂ = 𝐶𝑇𝜂 virtual power flows.

Then, equation (13.5b) in the optimization problem (13.5) can be interpreted as following:

it is a power balance equations; however, power exchange between buses is described via

virtual variables linearly dependent on real power flows.

Lagrange function is given by

ℒ(𝑢̂, 𝜂, 𝜆̂) =
1

2
𝑢̂𝑇𝑊𝑢̂− 𝜆̂𝑇 (−𝐶𝐶𝑇𝜂 + 𝑢̂+ 𝑟). (13.7)

Corresponding stationary point:

𝑊𝑢̂ = 𝜆̂, (13.8a)

𝐶𝐶𝑇 𝜆̂ = 0, (13.8b)

−𝐶𝐶𝑇𝜂 + 𝑢̂+ 𝑟 = 0. (13.8c)
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Figure 13.1: Control block diagram for the Problem 4.

Lemma 13.2. Let 𝑢(𝑡) → 𝑢̂*, then system (9.13) converges to the optimal type 1 steady-state.

Proof. Proof of this lemma coincides with the proof of Lemma 12.1.

Transition to control equations:

𝑢(𝑡) =𝑊−1𝜆(𝑡), (13.9a)

𝜂(𝑡) = −
∫︁ 𝑡

0

𝐶𝐶𝑇𝜆(𝜏)𝑑𝜏 + 𝜂0, (13.9b)

𝜆(𝑡) =

∫︁ 𝑡

0

𝐶𝐶𝑇𝜂(𝜏) − 𝑢(𝜏) − 𝑟̊𝑑𝜏 + 𝜆0. (13.9c)

Block-diagram corresponding to the control equations are shown in Figure 13.1.

13.1.3 Control stability and applicability

As before system (13.9) is reduced to a system of differential equations:

𝑢 =𝑊−1𝜆, (13.10a)

𝜂̇ = − 𝐶𝐶𝑇𝜆, (13.10b)

𝜆̇ =𝐶𝐶𝑇𝜂 −𝑊−1𝜆− 𝑟̊. (13.10c)

Lemma 13.3. Stationary points of the system (13.10) coincide with the solutions of (13.4).
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Proof. It can be seen that if 𝜂̇ = 0 and 𝜆̇ = 0 then the system (13.10) is the same as the

equations of stationary point for the Lagrange function (13.8), thus, the lemma statement

holds.

Theorem 13.4 (Control stability). In the system (13.10) solutions 𝑢 and 𝜆 are globally

asymptotically stable.

Proof. Let 𝑢*, 𝜆*, 𝜂* be stationary point of (13.10). Let us introduce Lyapunov function:

𝑉 (𝜆, 𝜂) =
1

2

(︀
(𝜆− 𝜆*)𝑇 (𝜆− 𝜆*) + (𝜂 − 𝜂*)𝑇 (𝜂 − 𝜂*)

)︀
. (13.11)

Then,

𝑉̇ (𝜆, 𝜂) = (𝜆− 𝜆*)𝑇 (𝐶𝐶𝑇 (𝜂 − 𝜂*) −𝑊−1(𝜆− 𝜆*)) + (𝜂 − 𝜂*)𝑇𝐶𝐶𝑇 (𝜆− 𝜆*) =

= (𝜆− 𝜆*)𝑇𝑊−1(𝜆− 𝜆*) ≤ 0.
(13.12)

Lyapunov function derivative is negative definite over 𝜆. Thus, system (13.10) is globally

asymptotically stable over 𝜆 and 𝑢.

Theorem 13.5 (Control applicability). Formulas

𝐹 (𝑦𝑖, 𝑤𝑖) =
𝑦𝑖2
𝑤𝑖

, (13.13)

𝐺ℎ
1 (̊𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖) = −ℎ𝑦𝑖2 + 1⊤
ℎ (𝑌 𝑖

2 )𝑇 , (13.14)

𝐺ℎ
2 (̊𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖) = ℎ𝑦𝑖1 − 1⊤
ℎ (𝑌 𝑖

1 )⊤ − 𝑢𝑖 − 𝑟̊𝑖. (13.15)

define controller functions for the Problem 4 with 𝑠 = 2.

Proof. We take

𝑦𝑖 =

⎛⎝ 𝜂𝑖

𝜆𝑖

⎞⎠ , 𝑖 ∈ 𝑁. (13.16)

Element-wise form of the equation (13.9a) is given by:

𝑢𝑖 =
𝜆𝑖
𝜔𝑖

, (13.17)

thus

𝐹 (𝑦𝑖, 𝑤𝑖) =
𝑦𝑖2
𝑤𝑖

. (13.18)
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In the equations (13.9b) and (13.9c) matrix 𝐶𝐶𝑇 is Laplace matrix of the graph Γ. Thus,

its elements are given by

(𝐶𝐶𝑇 )𝑖𝑖 = |𝐴𝑑𝑗(𝑖)|, 𝑖 ∈ 𝑁, (13.19)

(𝐶𝐶𝑇 )𝑖𝑗 =

⎧⎨⎩ −𝑘, if 𝑘 is number of the line 𝑖𝑗,

0, if there is no line between𝑖 and 𝑗.
(13.20)

Thus, equation (13.9b) has the following element-wise representation:

𝜂𝑖(𝑡) =

∫︁ 𝑡

0

∑︁
𝑗∈𝐴𝑑𝑗(𝑖)

(𝜆𝑗(𝜏) − 𝜆𝑖(𝜏))𝑑𝜏 + 𝜂0𝑖 . (13.21)

Thus, the first component of 𝐺 is given by

𝐺ℎ
1 (̊𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖) = −ℎ𝑦𝑖2 + 1⊤
ℎ (𝑌 𝑖

2 )𝑇 . (13.22)

Similarly equation (13.9c) can be represented as:

𝜆(𝑡) =

∫︁ 𝑡

0

∑︁
𝑗∈𝐴𝑑𝑗(𝑖)

(𝜂𝑖(𝜏) − 𝜂𝑗(𝜏)) − 𝑢𝑖(𝜏) − 𝑟̊(𝜏)𝑑𝜏 + 𝜆0𝑖 . (13.23)

From the equations (11.10) component 𝑌2 has the following form:

𝐺ℎ
2 (̊𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖) = ℎ𝑦𝑖1 − 1⊤
ℎ (𝑌 𝑖

1 )⊤ − 𝑢𝑖 − 𝑟̊𝑖. (13.24)

From the Theorem 13.4 control 𝑢 is global asymptotically stable and converges to a constant

control, thus item 2 of the Problem 4 is satisfied. From the Lemma 13.3 𝑢 converges to 𝑢̂*

thus from Lemma 13.2, system (9.13) with the control 𝑢 converges to the optimal type 3

steady-state.

13.2 Problem 5. Distributed frequency control.

Here we add control limits (9.5). As before the control scheme must be distributed. Here

control limits will be introduced similarly to the way they were introduced into the Problem

3.
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13.2.1 Problem statement

Problem 5 (Distributed frequency control). Let 𝑠 be the size of auxiliary variables vector 𝑦.

Then, it is required to find Lipschitz continuous controller functions

𝐹 : R𝑠 × R× R× R → R, (13.25a)

𝐺ℎ : R× R× R𝑠 × Rℎ×𝑠 → R𝑠, (13.25b)

such that

1. Control 𝑢 is defined by a system of integral-algebraic equations

𝑢𝑖(𝑡) = 𝐹 (𝑦𝑖(𝑡), 𝑤𝑖, 𝑢𝑖, 𝑢𝑖), 𝑖 ∈ 𝑁, (13.26a)

𝑦𝑖(𝑡) =

∫︁ 𝑡

0

𝐺|Adj(𝑖)|(̊𝑟𝑖(𝜏), 𝑢𝑖(𝜏), 𝑦𝑖(𝜏), 𝑌 𝑖(𝜏))𝑑𝜏 + 𝑦𝑖0, 𝑖 ∈ 𝑁. (13.26b)

2. Control 𝑢 must be globally asymptotically stable.

3. 𝑢𝑖(𝑡) ∈ [𝑢𝑖, 𝑢𝑖], 𝑖 ∈ 𝑁, 𝑡 ≥ 0.

4. System (9.13) with control 𝑢 must converge to OS3.

13.2.2 Optimal steady-state and control equations

Problem (13.5) is taken as initial and substituted with control limits:

min
𝑢̂,𝜂

𝑓(𝑢̂), (13.27a)

−𝐶𝐶𝑇𝜂 + 𝑢̂+ 𝑟 = 0, (13.27b)

𝑢 ≤ 𝑢̂ ≤ 𝑢. (13.27c)

Lagrange function is given by

ℒ(𝑢̂, 𝜂, 𝜆̂, 𝜒̂, 𝜒̂) =
1

2
𝑢̂𝑇𝑊𝑢̂− 𝜆̂𝑇 (−𝐶𝐶𝑇𝜂 + 𝑢̂+ 𝑟) + 𝜒̂

𝑇
(𝑢̂− 𝑢) + 𝜒̂𝑇 (𝑢− 𝑢̂). (13.28)

Corresponding Karush–Kuhn–Tucker conditions with complementary slackness replacement

introduced in (13.30):

𝑊𝑢̂− 𝜆̂+ 𝜒̂− 𝜒̂ = 0, (13.29a)
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𝐶𝐶𝑇 𝜆̂ = 0, (13.29b)

−𝐶𝐶𝑇𝜂 + 𝑢̂+ 𝑟 = 0, (13.29c)

𝜒̂𝑖(𝑢̂𝑖 − 𝑢𝑖) = 0, 𝜒̂𝑖 ≥ 0, 𝑖 ∈ 𝑁, (13.29d)

𝜒̂
𝑖
(𝑢𝑖 − 𝑢̂𝑖) = 0, 𝜒̂

𝑖
≥ 0, 𝑖 ∈ 𝑁. (13.29e)

The following substitution is used:

𝑢̂ = 𝜈𝑛(𝑊−1𝜆̂, 𝑢, 𝑢). (13.30)

As a result optimal point is defined by a system of piece-wise linear system of equations:

𝐶𝐶𝑇 𝜆̂ = 0, (13.31a)

−𝐶𝐶𝑇𝜂 + 𝑢̂+ 𝑟 = 0, (13.31b)

𝑢̂ = 𝜈𝑛(𝑊−1𝜆̂, 𝑢, 𝑢). (13.31c)

Lemma 13.6. Let 𝑢(𝑡) → 𝑢̂*, then system (9.13) converges to the optimal type 3 steady-state.

Proof. Proof of this lemma coincides with the proof of Lemma 12.10.

Transition to control equations:

𝑢(𝑡) =𝜈𝑛(𝑊−1𝜆(𝑡), 𝑢, 𝑢), (13.32a)

𝜂(𝑡) = −
∫︁ 𝑡

0

𝐶𝐶𝑇𝜆(𝜏)𝑑𝜏 + 𝜂0, (13.32b)

𝜆(𝑡) =

∫︁ 𝑡

0

𝐶𝐶𝑇𝜂(𝜏) − 𝑢(𝜏) − 𝑟̊𝑑𝜏 + 𝜆0. (13.32c)

Block-diagram corresponding to the control equations are shown in Figure 13.2.

13.2.3 Control stability and applicability

Reduction of (13.32) to a system of algebraic differential equations:

𝑢 =𝜈𝑛(𝑊−1𝜆, 𝑢, 𝑢), (13.33a)

𝜂̇ = − 𝐶𝐶𝑇𝜆, (13.33b)

𝜆̇ =𝐶𝐶𝑇𝜂 − 𝜈𝑛(𝑊−1𝜆, 𝑢, 𝑢) − 𝑟̊. (13.33c)
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Figure 13.2: Control block diagram for the Problem 5.

Lemma 13.7. System (13.33) has unique stationary point that delivers solution of (13.27).

Proof. Proof has the same structure as the proof of lemma 12.11. Variables 𝜒 and 𝜒 are

equivalent to max{𝜆 − 𝑢, 0} and max{𝑢 − 𝜆, 0} respectively, this together with equation

(13.33a)gives complementary slackness conditions (13.29d) and (13.29e). Equations (13.33b)

and (13.33c) with 𝜂 = 0 and 𝜆 = 0 give (13.29a) and (13.29c). Thus, stationary point of the

system (13.33) is equal to the one given by Karush–Kuhn–Tucker conditions.

Theorem 13.8 (Control stability). System (13.33) is globally asymptotically stable over 𝑢.

Proof. Let 𝑢*, 𝜆*, 𝜂* be stationary point of (13.33). Let us introduce Lyapunov function:

𝑉 (𝜆, 𝜂) =
1

2

(︀
(𝜆− 𝜆*)𝑇 (𝜆− 𝜆*) + (𝜂 − 𝜂*)𝑇 (𝜂 − 𝜂*)

)︀
. (13.34)

Then,

𝑉̇ (𝜆, 𝜂) = (𝜆− 𝜆*)𝑇 (𝐶𝐶𝑇 (𝜂 − 𝜂*) −𝑊−1(𝜆− 𝜆*)) + (𝜂 − 𝜂*)𝑇𝐶𝐵𝐶𝑇 (𝜆− 𝜆*) =

= (𝜆− 𝜆*)(𝜈𝑛(𝑊−1𝜆, 𝑢, 𝑢) − 𝜈𝑛(𝑊−1𝜆*, 𝑢, 𝑢)) =

= (𝜆− 𝜆*)𝑊−1(𝜈𝑛(𝜆,𝑊𝑢,𝑊𝑢) − 𝜈𝑛(𝜆*,𝑊𝑢,𝑊𝑢)) ≤ 0.

(13.35)

According to the lemma

ker 𝑉̇ =

{︂
𝜆 :

1

𝑤𝑖

𝜆 < 𝑢𝑖, 𝑖 ∈ 𝑁 ∖𝑁 and
1

𝑤𝑖

𝜆 > 𝑢𝑖, 𝑖 ∈ 𝑁 ∖𝑁
}︂
. (13.36)
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According to Barbashin-Krasovsky-LaSalle theorem any solution of the system (13.33) con-

verges to trajectory fully belonging to ker 𝑉̇ . Thus,

𝑢(𝑡) = 𝜈𝑛(𝑊−1𝜆, 𝑢, 𝑢) → 𝜈𝑛(𝑊−1𝜆*, 𝑢, 𝑢) = 𝑢*, (13.37)

which proves global asymptotic stability of the control 𝑢.

Theorem 13.9 (Control applicability). Formulas

𝐹 (𝑦𝑖, 𝑤𝑖, 𝑢𝑖, 𝑢𝑖) = 𝜈1
(︂
𝑦𝑖2
𝑤𝑖

, 𝑢𝑖, 𝑢𝑖

)︂
, (13.38)

𝐺ℎ
1 (̊𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖) = −ℎ𝑦𝑖2 + 1⊤
ℎ (𝑌 𝑖

2 )𝑇 , (13.39)

𝐺ℎ
2 (̊𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖) = ℎ𝑦𝑖1 − 1⊤
ℎ (𝑌 𝑖

1 )⊤ − 𝑢𝑖 − 𝑟̊𝑖. (13.40)

define controller functions for the Problem 4 with 𝑠 = 2.

Proof. The proof is equivalent of the proof of the Theorem 13.5. Substitution of 𝐹 and

𝐺 into (13.26) gives system (13.32) with 𝑦 = 𝜆, thus item 1 of the Problem 4 is satisfied.

From the Theorem 13.8 control 𝑢 is global asymptotically stable and converges to a constant

control, thus item 2 of the Problem 1 is satisfied. From the Lemma 13.7 𝑢 converges to 𝑢̂*

thus from Lemma 13.6, system (9.13) with the control 𝑢 converges to the optimal type 3

steady-state.

13.3 Problem 6. Distributed frequency control and congestion man-

agement.

Here we expand the previous problem with introduction of upper and lower line constraints

𝑝 ≤ 𝑝 ≤ 𝑝. (13.41)

Reasons of their presence are described in section (7.6). Line flows cannot be controlled

directly. They must be adjusted using the same control functions 𝑢 on buses. Thus, limits

not possible to use approach from the Problems 3 and 6 applied to implement control limits.

Instead special integral equations that correspond to the complementary slackness equations

are added.
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13.3.1 Problem statement

Definition 13.3. Optimal type 4 steady-state (OS4) is a point (𝑢̂, 𝜃, 𝜔̂, 𝑝𝑚, 𝑣, 𝑝, 𝑝𝑒) that

delivers a solution of the following optimization problem:

min
𝑢̂,𝜃,𝜔̂,𝑝𝑚,𝑣,𝑝,𝑝𝑒

𝑓(𝑢̂), (13.42a)

(𝜃, 𝜔̂, 𝑝𝑚, 𝑣, 𝑝, 𝑝𝑒) ∈ Ψ, (13.42b)

𝑢̂𝑖 ∈ [𝑢𝑖, 𝑢𝑖], 𝑖 ∈ 𝑁𝑢, (13.42c)

𝑝𝑗 ∈ [𝑝
𝑗
, 𝑝𝑗], 𝑗 ∈ {1, . . . , 𝑞}. (13.42d)

Problem 6 (Distributed frequency control and congestion management). Let 𝑠 be the size

of auxiliary variables vector 𝑦. Then, it is required to find Lipschitz continuous controller

functions

𝐹 : R𝑠 × R× R× R → R, (13.43a)

𝐺ℎ : R× R× R𝑠 × Rℎ×𝑠 × Rℎ×ℎ × R1×ℎ → R𝑠, (13.43b)

such that

1. Control 𝑢 is defined by a system of integral-algebraic equations

𝑢𝑖(𝑡) = 𝐹 (𝑦𝑖(𝑡), 𝑤𝑖, 𝑢𝑖, 𝑢𝑖), 𝑖 ∈ 𝑁, (13.44a)

𝑦𝑖(𝑡) =

∫︁ 𝑡

0

𝐺|Adj(𝑖)|(̊𝑟𝑖(𝜏), 𝑢𝑖(𝜏), 𝑦𝑖(𝜏), 𝑌 𝑖(𝜏), 𝐵𝑖, 𝐶𝑖)𝑑𝜏 + 𝑦𝑖0, 𝑖 ∈ 𝑁, (13.44b)

where 𝐵𝑖 = 𝐵Adj(𝑖),Adj(𝑖) and 𝐶𝑖 = 𝐶𝑖,Adj(𝑖).

2. Control 𝑢 must be globally asymptotically stable.

3. 𝑢𝑖(𝑡) ∈ [𝑢𝑖, 𝑢𝑖], 𝑖 ∈ 𝑁, 𝑡 ≥ 0.

4. System (9.13) with control 𝑢 must converge to OS4.
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13.3.2 Optimal steady-state and control equations

Problem (12.67) with addition of line constraints (13.41) is taken as initial:

min
𝜃,𝜔̂,𝑝𝑚,𝑣,𝑝,𝑝𝑒,𝑢̂

𝑓(𝑢̂), (13.45a)

0 =𝜔̂, (13.45b)

0 = −𝐷𝐺,𝐺𝜔̂𝐺 − 𝑝𝑒𝐺 + 𝑝𝑚 + 𝑟𝐺, (13.45c)

0 = − 𝑝𝑚 + 𝑣, (13.45d)

0 = − 𝑣 + 𝑢̂𝐺, (13.45e)

0 = −𝐷𝐿1,𝐿1𝜔̂𝐿1 − 𝑝𝑒𝐿1
+ 𝑢̂𝐿1 + 𝑟𝐿1 , (13.45f)

0 = −𝐷𝐿0,𝐿0𝜔̂𝐿0 − 𝑝𝑒𝐿0
+ 𝑢̂𝐿0 + 𝑟𝐿0 , (13.45g)

𝑝 =𝐵𝐶𝑇 𝜃, (13.45h)

𝑝𝑒 =𝐶𝑝, (13.45i)

𝑢 ≤ 𝑢̂ ≤ 𝑢, (13.45j)

𝑝 ≤ 𝑝 ≤ 𝑝. (13.45k)

simplification gives the following optimization problem:

min
𝑢̂,𝜃

𝑓(𝑢̂), (13.46a)

−𝐶𝐵𝐶𝑇 𝜃 + 𝑢̂+ 𝑟 = 0, (13.46b)

𝑢 ≤ 𝑢̂ ≤ 𝑢, (13.46c)

𝑝 ≤ 𝐵𝐶𝑇 𝜃 ≤ 𝑝. (13.46d)

This problem is convex and its unique solution is given by the corresponding Karush–Kuhn–Tucker

conditions. Lagrange function:

ℒ(𝑢̂, 𝜃, 𝜆̂, 𝜒̂, 𝜒̂, 𝛿̂, 𝛿̂) =
1

2
𝑢̂𝑇𝑊𝑢̂− 𝜆̂𝑇 (−𝐶𝐵𝐶𝑇 𝜃 + 𝑢̂+ 𝑟)+

+𝜒̂
𝑇

(𝑢̂− 𝑢) + 𝜒̂𝑇 (𝑢− 𝑢̂) + 𝛿̂
𝑇

(𝐵𝐶𝑇 𝜃 − 𝑝) + 𝛿̂
𝑇

(𝑝−𝐵𝐶𝑇 𝜃).

(13.47)
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Karush–Kuhn–Tucker conditions with replaced complementary slackness for the control lim-

its:

𝐶𝐵(𝐶𝑇𝑢− 𝛿̂ + 𝛿̂) = 0, (13.48a)

−𝐶𝐵𝐶𝑇 𝜃 + 𝑢̂+ 𝑟 = 0, (13.48b)

𝑢̂ = 𝜈𝑛(𝑊−1𝜆̂, 𝑢, 𝑢), (13.48c)

𝛿̂𝑖((𝐵𝐶
𝑇 𝜃)𝑖 − 𝑝𝑖) = 0, 𝛿̂𝑖 ≥ 0, 𝑖 ∈ {1, . . . , 𝑞}, (13.48d)

𝛿̂𝑖(𝑝𝑖 − (𝐵𝐶𝑇 𝜃)𝑖) = 0, 𝛿̂𝑖 ≥ 0, 𝑖 ∈ {1, . . . , 𝑞}. (13.48e)

Complementary slackness conditions corresponding to the control limits are excluded via

function (13.30). It is not possible to use the same approach for the line limits, since line

flows are not controlled directly and are defined by the physical system of differential algebraic

equations (9.13), while control is defined by the function 𝐹 . Thus, equations (13.48d) and

(13.48e) are replaced with

𝜑𝑞(𝐵𝐶𝑇𝜂 − 𝑝, 𝛿̂), 𝛿̂ ≥ 0, (13.49)

𝜑𝑞(𝑝−𝐵𝐶𝑇𝜂, 𝛿̂), 𝛿̂ ≥ 0, (13.50)

where function 𝜑𝑛 : R𝑛 × R𝑛 → R𝑛,

𝜑𝑛
𝑖 (𝑥, 𝑦) =

⎧⎨⎩ 𝑥𝑖, if 𝑥𝑖 ≥ 0 or 𝑦𝑖 ≥ 0,

0 otherwise.
, 𝑖 ∈ {1, . . . , 𝑛}. (13.51)

As a result, the following lemma holds.

Lemma 13.10. Let 𝑢(𝑡) → 𝑢̂*, then system (9.13) converges to the optimal type 4 steady-

state.

Proof. Proof of this lemma coincides with the proof of Lemma 12.10.
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Power balance Virtual power flows

Congestion management

Virtual phase angels

Figure 13.3: Control block diagram for the Problem 6.

This method allows us transition to the following system of control equations:

𝑢(𝑡) =𝜈𝑛(𝑊−1𝜆(𝑡), 𝑢, 𝑢), (13.52a)

𝜂(𝑡) =

∫︁ 𝑡

0

𝐶𝐵(−𝐶𝑇𝜆(𝜏) − 𝛿(𝜏) + 𝛿(𝜏))𝑑𝜏 + 𝜂0, (13.52b)

𝜆(𝑡) =

∫︁ 𝑡

0

𝐶𝐵𝐶𝑇𝜂(𝜏) − 𝑢(𝜏)𝑑𝜏 −
∫︁ 𝑡

0

𝑟̊(𝜏)𝑑𝜏 + 𝜆0, (13.52c)

𝛿(𝑡) =

∫︁ 𝑡

0

𝜑𝑞(𝐵𝐶𝑇𝜂(𝜏) − 𝑝, 𝛿(𝜏))𝑑𝜏 + 𝛿
0
, (13.52d)

𝛿(𝑡) =

∫︁ 𝑡

0

𝜑𝑞(𝑝−𝐵𝐶𝑇𝜂(𝜏), 𝛿(𝜏))𝑑𝜏 + 𝛿0. (13.52e)

Block-diagram corresponding to the control equations are shown in Figure 13.3.
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13.3.3 Control stability and applicability

Differential equations equivalent to (13.52):

𝜂̇ =𝐶𝐵(−𝐶𝑇𝜆− 𝛿 + 𝛿), (13.53a)

𝜆̇ =𝐶𝐵𝐶𝑇𝜂 − 𝑢− 𝑟̊, (13.53b)

𝑢 =𝜈𝑛(𝑊−1𝜆, 𝑢, 𝑢), (13.53c)

𝛿̇ =𝜑𝑞(𝐵𝐶𝑇𝜂 − 𝑝, 𝛿), (13.53d)

𝛿̇ =𝜑𝑞(𝑝−𝐵𝐶𝑇𝜂, 𝛿). (13.53e)

Lemma 13.11. System (13.53) has unique stationary point that delivers solution of (13.46).

Proof. Proof has the same structure as the proof of lemma 13.7. In additions to the re-

sults of lemma 13.7 equations (13.53d) and (13.53e) with 𝛿 = 0 and 𝛿 = 0 give (13.49)

and (13.50). Thus, stationary point of the system (13.53) is equal to the one given by

Karush–Kuhn–Tucker conditions.

Theorem 13.12 (Control stability). In the system (13.53) solutions 𝑢 are globally asymp-

totically stable.

Proof. Let us introduce the following Lyapunov function

𝑉 (𝜂, 𝜆, 𝛿, 𝛿) =
1

2
((𝜂 − 𝜂*)𝑇 (𝜂 − 𝜂*) + (𝜆− 𝜆*)𝑇 (𝜆− 𝜆*)+

+(𝛿 − 𝛿
*
)𝑇 (𝛿 − 𝛿

*
) + (𝛿 − 𝛿*)𝑇 (𝛿 − 𝛿*).

(13.54)

Its derivative is given by

𝑉̇ (𝜂, 𝜆, 𝛿, 𝛿) = (𝜂 − 𝜂*)𝑇𝐶𝐵(−𝐶𝑇 (𝜆− 𝜆*) − (𝛿 − 𝛿
*
) + (𝛿 − 𝛿)*)+

+(𝜆− 𝜆*)𝑇 (𝐶𝐵𝐶𝑇 (𝜂 − 𝜂*) − (𝜈𝑛(𝑊−1𝜆, 𝑢, 𝑢) − 𝜈𝑛(𝑊−1𝜆*, 𝑢, 𝑢)))+

+(𝛿 − 𝛿
*
)𝑇𝜑𝑞(𝐵𝐶𝑇𝜂 − 𝑝, 𝛿) + (𝛿 − 𝛿*)𝑇𝜑𝑞(𝑝−𝐵𝐶𝑇𝜂, 𝛿) =

= (𝜆− 𝜆*)𝑇 (𝜈𝑛(𝑊−1𝜆, 𝑢, 𝑢) − 𝜈𝑛(𝑊−1𝜆*, 𝑢, 𝑢))+

+(𝜂 − 𝜂*)𝑇𝐶𝐵(−(𝛿 − 𝛿
*
) + (𝛿 − 𝛿*))+

+(𝛿 − 𝛿
*
)𝑇𝜑𝑞(𝐵𝐶𝑇𝜂 − 𝑝, 𝛿) + (𝛿 − 𝛿*)𝑇𝜑𝑞(𝑝−𝐵𝐶𝑇𝜂, 𝛿).

(13.55)
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Let us introduce the following notations

𝜋 = 𝐵𝐶𝑇𝜂, (13.56a)

𝜋* = 𝐵𝐶𝑇𝜂*. (13.56b)

Then, derivative 𝑉̇ can be represented as a sum of 3 expressions:

𝑉̇ 0(𝜂, 𝜆, 𝛿, 𝛿) = Υ1(𝜂, 𝜆, 𝛿, 𝛿)+

+Υ2(𝜂, 𝜆, 𝛿, 𝛿) + Υ2(𝜂, 𝜆, 𝛿, 𝛿),
(13.57)

where

Υ1(𝜂, 𝜆, 𝛿, 𝛿) = −(𝜆− 𝜆*)𝑇 (𝜈𝑛(𝑊−1𝜆, 𝑢, 𝑢) − 𝜈𝑛(𝑊−1𝜆*, 𝑢, 𝑢)), (13.58)

Υ2(𝜂, 𝜆, 𝛿, 𝛿) = (𝛿 − 𝛿
*
)𝑇 (𝜑𝑞(𝜋 − 𝑝, 𝛿) − (𝜋 − 𝜋*)), (13.59)

Υ2(𝜂, 𝜆, 𝛿, 𝛿) = (𝛿 − 𝛿*)𝑇 (𝜑𝑞(𝑝− 𝜋, 𝛿) + (𝜋 − 𝜋*)). (13.60)

From the lemma 12.13

Υ1(𝜂, 𝜆, 𝛿, 𝛿) ≤ 0. (13.61)

Let us now show that Υ2(𝜂, 𝜆, 𝛿, 𝛿) ≤ 0. Three cases are possible here:

1. 𝜋* = 𝑝. Then, Υ2(𝜂, 𝜆, 𝛿, 𝛿) = (𝛿 − 𝛿
*
)𝑇 (𝜑𝑞(𝜋 − 𝜋*, 𝛿) − (𝜋 − 𝜋*)),

(a) 𝜋 ≥ 𝑝. Then, 𝜑𝑞(𝜋 − 𝑝, 𝛿) = 𝜋 − 𝜋* and Υ2(𝜂, 𝜆, 𝛿, 𝛿) = (𝛿 − 𝛿
*
)𝑇 (𝜑𝑞(𝜋 − 𝜋, 𝛿) −

(𝜋 − 𝜋)) = 0;

(b) 𝜋 < 𝑝. Then,

i. 𝛿 > 0. Then, 𝜑𝑞(𝜋−𝜋*, 𝛿) = 𝜋−𝜋*, thus, Υ2(𝜂, 𝜆, 𝛿, 𝛿) = (𝛿− 𝛿*)𝑇 ((𝜋−𝜋*)−

(𝜋 − 𝜋*)) = 0;

ii. 𝛿 = 0 and 𝜑𝑞(𝜋 − 𝜋*, 𝛿) = 0, thus, Υ2(𝜂, 𝜆, 𝛿, 𝛿) = (𝛿
*
)𝑇 (𝜋 − 𝜋*) ≤ 0 since

𝛿
* ≥ 0 as a dual variable and 𝜋* = 𝑝 > 𝜋;

2. 𝜋* < 𝑝. Then, 𝛿* = 0 as a dual variable and Υ2(𝜂, 𝜆, 𝛿, 𝛿) = 𝛿
𝑇

(𝜑𝑞(𝜋− 𝑝, 𝛿)− (𝜋−𝜋*)),

(a) 𝜋 ≥ 𝑝. Then, 𝜑𝑞(𝜋 − 𝑝, 𝛿) = 𝜋 − 𝑝 and Υ2(𝜂, 𝜆, 𝛿, 𝛿) = (𝛿 − 𝛿
*
)𝑇 (𝜑𝑞(𝜋 − 𝜋, 𝛿) −

(𝜋 − 𝜋)) = 0;

(b) 𝜋 < 𝑝. Then,
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i. 𝛿 < 0. Then, 𝜑𝑞(𝜋 − 𝑝, 𝛿) = 𝜋 − 𝑝, thus, Υ2(𝜂, 𝜆, 𝛿, 𝛿) = 𝛿
𝑇

((𝜋 − 𝑝, 𝛿) − (𝜋 −

𝜋*)) = 𝛿
𝑇

(𝜋* − 𝑝) ≤ 0;

ii. 𝛿 = 0. Then, 𝜑𝑞(𝜋 − 𝑝, 𝛿) = 0 and Υ2(𝜂, 𝜆, 𝛿, 𝛿) = −𝛿𝑇 (𝜋 − 𝜋*) ≤ 0.

Similarly inequality Υ2(𝜂, 𝜆, 𝛿, 𝛿) ≤ 0 is proven. Thus, 𝑉̇ (𝜂, 𝜆, 𝛿, 𝛿) ≤ 0 and system (13.53)

is stable. From the form of Υ1(𝜂, 𝜆, 𝛿, 𝛿) we have

ker 𝑉̇ ⊆
{︂

(𝜂, 𝜆, 𝛿, 𝛿, 𝜑) :
1

𝑤𝑖

𝜆 < 𝑢𝑖, 𝑖 ∈ 𝑁 ∖𝑁 and
1

𝑤𝑖

𝜆 > 𝑢𝑖, 𝑖 ∈ 𝑁 ∖𝑁
}︂
. (13.62)

According to Barbashin-Krasovsky theorem any solution of the system (13.53) converges to

trajectory fully belonging to ker 𝑉̇ . Thus,

𝑢(𝑡) = 𝜈𝑛(𝑊−11𝑛𝜆, 𝑢, 𝑢) → 𝜈𝑛(𝑊−11𝑛𝜆
*, 𝑢, 𝑢) = 𝑢*, (13.63)

which proves global asymptotic stability of the control 𝑢.

Theorem 13.13 (Control applicability). Formulas

𝐹 (𝑦𝑖, 𝑤𝑖, 𝑢𝑖, 𝑢𝑖) = 𝜈1
(︂
𝑦𝑖1
𝑤𝑖

, 𝑢𝑖, 𝑢𝑖

)︂
. (13.64)

𝐺ℎ
1(𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖, 𝐵𝑖, 𝐶𝑖, 𝑝𝑖, 𝑝𝑖) = 𝐶𝑖𝐵𝑖
(︀
(𝐶𝑖)⊤((𝑌 𝑖

2 )⊤ − 1ℎ𝑦
𝑖
2) − 𝑦𝑖3,...,ℎ+2 + 𝑦𝑖3+ℎ,...,2ℎ+2

)︀
,

(13.65a)

𝐺ℎ
2(𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖, 𝐵𝑖, 𝐶𝑖, 𝑝𝑖, 𝑝𝑖) = 𝐶𝑖𝐵𝑖(𝐶𝑖)⊤(1ℎ𝑦
𝑖
1 − (𝑌 𝑖

1 )⊤) − 𝑢𝑖 − 𝑟𝑖, (13.65b)

𝐺ℎ
2+𝑗(𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖, 𝐵𝑖, 𝐶𝑖, 𝑝𝑖, 𝑝𝑖) = 𝜑1(𝐵𝑖
𝑗𝑗𝐶

𝑖
𝑗(𝑦

𝑖
1 − 𝑌 𝑖

1𝑗) − 𝑝𝑗, 𝑦
𝑖
2+𝑗), 𝑗 ∈ {1, . . . , 𝑞}, (13.65c)

𝐺ℎ
2+ℎ+𝑗(𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖, 𝐵𝑖, 𝐶𝑖, 𝑝𝑖, 𝑝𝑖) = 𝜑1(𝑝
𝑗
−𝐵𝑖

𝑗𝑗𝐶
𝑖
𝑗(𝑦

𝑖
1 − 𝑌 𝑖

1𝑗), 𝑦
𝑖
2+ℎ+𝑗), 𝑗 ∈ {1, . . . , 𝑞}.

(13.65d)

define controller functions for the Problem 6 with 𝑠 = 2(1 + |Adj(𝑖)|).

Proof. We take

𝑦𝑖(𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜂𝑖

𝜆𝑖

𝛿Adj(𝑖)

𝛿Adj(𝑖)

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑖 ∈ 𝑁. (13.66)
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Equation (13.52a) gives form of the function 𝐹 : Equations (13.52) give form of the functions

𝐺ℎ
𝑖 , 𝑖 ∈ {1, . . . , 𝑠}. From the Theorem 13.12 control 𝑢 is global asymptotically stable and

converges to a constant control, thus item 2 of the Problem 4 is satisfied. From the Lemma

13.11 𝑢 converges to 𝑢̂* thus from Lemma 13.10, system (9.13) with the control 𝑢 converges

to the optimal type 4 steady-state.

13.4 Problem 7. Distributed frequency control, congestion manage-

ment and inter-area flows control.

A case when power system is divided into areas is considered here. Inter-area flows must be

kept equal to the nominal values. It is assumed that power system contains 𝑛𝑎𝑟𝑒𝑎 disjoint

areas defined by sets of buses 𝛼(𝑘) ⊆ 𝑁, 𝑘 ∈ {1, . . . , 𝑛𝑎𝑟𝑒𝑎}. Nominal value of Inter-area flow

for each area 𝑘 is denoted by 𝜅𝑘. Decentralization requirement is relaxed in this section. It

is assumed that border buses (that have connections outside their areas) can communicate

between each other despite their topological locations. Therefore, it can be said, that inter-

area control is done in a centralized way for each area. Usually, area is connected to the rest

of the system by only few lines; therefore, communication between border buses is technically

easy to implement.

13.4.1 Problem statement

Definition 13.4. For each area 𝛼(𝑘), 𝑘 ∈ {1, . . . , 𝑛𝑎𝑟𝑒𝑎} buses that are connected to buses

not from the same area are called border buses. Set of this buses are denoted by

𝛼̃(𝑘) = {𝑖 ∈ 𝛼(𝑘) | ∃𝑗 ∈ Adj(𝑖) : 𝑗 ̸∈ 𝛼(𝑘)}. (13.67)

Definition 13.5. Set𝛽(𝑘) is a set of buses from areas 𝑘 ̸= 𝑘 adjacent to buses from 𝛼(𝑘).

Definition 13.6. Set 𝛾(𝑘) is a set of lines connecting border buses with other areas.

Definition 13.7. Matrix 𝑆 ∈ R𝑛𝑎𝑟𝑒𝑎×𝑞 consists of vectors 𝑠𝑖 ∈ R𝑞, with elements

𝑠𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if line 𝑗 enters area 𝑖,

−1, if line 𝑗 exits area 𝑖,

0 otherwise,

𝑖 ∈ {1, . . . , 𝑞}. (13.68)
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Definition 13.8. Optimal type 5 steady-state is a point (𝑢̂, 𝜃, 𝜔̂, 𝑝𝑚, 𝑣, 𝑝, 𝑝𝑒) that delivers a

solution of the following optimization problem:

min
𝑢̂,𝜃,𝜔̂,𝑝𝑚,𝑣,𝑝,𝑝𝑒

𝑓(𝑢̂), (13.69a)

(𝜃, 𝜔̂, 𝑝𝑚, 𝑣, 𝑝, 𝑝𝑒) ∈ Ψ, (13.69b)

𝑢̂𝑖 ∈ [𝑢𝑖, 𝑢𝑖], 𝑖 ∈ 𝑁, (13.69c)

𝑝𝑗 ∈ [𝑝
𝑗
, 𝑝𝑗], 𝑗 ∈ {1, . . . , 𝑞}, (13.69d)

𝑆𝑝 = 𝛿. (13.69e)

Problem 7 (Distributed frequency control, congestion management, and inter-area flows

control). Let 𝑠 be the size of auxiliary variables vector 𝑦. Then, it is required to find Lipschitz

continuous controller functions

𝐹 : R𝑠 × R× R× R → R, (13.70a)

𝐺ℎ : R× R× R𝑠 × Rℎ×𝑠 × Rℎ×ℎ × R1×ℎ → R𝑠, (13.70b)

𝑄ℎ : R× Rℎ×ℎ × R1×ℎ3 × R1×ℎ × R → R, (13.70c)

𝑄
ℎ1,ℎ2,ℎ3

: Rℎ1×𝑠 × Rℎ2×𝑠 × Rℎ3×ℎ3 × Rℎ1×ℎ3 × R1×ℎ3 × R → R, (13.70d)

such that

1. Control 𝑢 is defined by a system of integral-algebraic equations

𝑢𝑖(𝑡) = 𝐹 (𝑦𝑖(𝑡), 𝑤𝑖, 𝑢𝑖, 𝑢𝑖), 𝑖 ∈ 𝑁, (13.71a)

𝑦𝑖(𝑡) =

∫︁ 𝑡

0

𝐺|Adj(𝑖)|(̊𝑟𝑖(𝜏), 𝑢𝑖(𝜏), 𝑦𝑖(𝜏), 𝑌 𝑖(𝜏), 𝐵𝑖, 𝐶𝑖)𝑑𝜏, 𝑖 ∈ 𝑁 ∖

(︃
𝑛𝑎𝑟𝑒𝑎⋃︁
𝑘=1

𝛼̃(𝑘)

)︃
+ 𝑦𝑖0,

(13.71b)

𝑦𝑖(𝑡) =

∫︁ 𝑡

0

𝐺|Adj(𝑖)|(̊𝑟𝑖(𝜏), 𝑢𝑖(𝜏), 𝑦𝑖(𝜏), 𝑌 𝑖(𝜏), 𝐵𝑖, 𝐶𝑖)𝑑𝜏+

+

∫︁ 𝑡

0

𝑄|Adj(𝑖)|(𝑧𝑘, 𝐵
𝑖, 𝐶𝑖, 𝑆𝑘𝑖)𝑑𝜏 + 𝑦𝑖0, 𝑖 ∈ 𝛼̃(𝑘), 𝑘 = {1, . . . , 𝑛𝑎𝑟𝑒𝑎},

(13.71c)

𝑧𝑘(𝑡) =

∫︁ 𝑡

0

𝑄|𝛼̃(𝑘)|,|𝛽(𝑘)|,|𝛾(𝑘)|(𝑌 𝛼̃(𝑘), 𝑌 𝛽(𝑘), 𝐵𝛾(𝑘), 𝐶𝛾(𝑘), 𝑆𝛾(𝑘), 𝜁𝑘)𝑑𝜏+𝑧0𝑘, 𝑘 = {1, . . . , 𝑛𝑎𝑟𝑒𝑎},

(13.71d)
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where 𝑌 𝛼̃(𝑘) ∈ R|𝛼̃(𝑘)|×𝑠 is a matrix of auxiliary vectors 𝑦𝑖, 𝑖 ∈ 𝛼̃(𝑘). Similarly 𝑌 𝛽(𝑘) ∈

R|𝛽(𝑘)|×𝑠 is matrix of columns 𝑦𝑖, 𝑖 ∈ 𝛽(𝑘). Additionally 𝐵𝛾(𝑘) = 𝐵𝛾(𝑘),𝛾(𝑘), 𝐶𝛾(𝑘) =

𝐶𝛼̃(𝑘),𝛾(𝑘), and 𝑆𝛾(𝑘) = 𝑆𝑘,𝛾(𝑘).

2. Control 𝑢 must be globally asymptotically stable.

3. 𝑢𝑖(𝑡) ∈ [𝑢𝑖, 𝑢𝑖], 𝑖 ∈ 𝑁, 𝑡 ≥ 0.

4. System (9.13) with control 𝑢 must converge to OS5.

13.4.2 Optimal steady-state and control equations

Problem (13.45) with addition of line constraints (13.69e) is taken as initial:

min
𝜃,𝜔̂,𝑝𝑚,𝑣,𝑝,𝑝𝑒,𝑢̂

𝑓(𝑢̂), (13.72a)

0 =𝜔̂, (13.72b)

0 = −𝐷𝐺,𝐺𝜔̂𝐺 − 𝑝𝑒𝐺 + 𝑝𝑚 + 𝑟𝐺, (13.72c)

0 = − 𝑝𝑚 + 𝑣, (13.72d)

0 = − 𝑣 + 𝑢̂𝐺, (13.72e)

0 = −𝐷𝐿1,𝐿1𝜔̂𝐿1 − 𝑝𝑒𝐿1
+ 𝑢̂𝐿1 + 𝑟𝐿1 , (13.72f)

0 = −𝐷𝐿0,𝐿0𝜔̂𝐿0 − 𝑝𝑒𝐿0
+ 𝑢̂𝐿0 + 𝑟𝐿0 , (13.72g)

𝑝 =𝐵𝐶𝑇 𝜃, (13.72h)

𝑝𝑒 =𝐶𝑝, (13.72i)

𝑢 ≤ 𝑢̂ ≤ 𝑢, (13.72j)

𝑝 ≤ 𝑝 ≤ 𝑝, (13.72k)

𝑆𝑝 = 𝛿. (13.72l)

simplification gives the following optimization problem:

min
𝑢̂,𝜃

𝑓(𝑢̂), (13.73a)

−𝐶𝐵𝐶𝑇 𝜃 + 𝑢̂+ 𝑟 = 0. (13.73b)
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𝑢 ≤ 𝑢̂ ≤ 𝑢, (13.73c)

𝑝 ≤ 𝐵𝐶𝑇 𝜃 ≤ 𝑝, (13.73d)

𝑆𝐵𝐶𝑇 𝜃 = 𝜁. (13.73e)

This problem is convex and its unique solution is given by the corresponding Karush–Kuhn–Tucker

conditions. Lagrange function:

ℒ(𝑢̂, 𝜃, 𝜆̂, 𝜒̂, 𝜒̂, 𝛿̂, 𝛿̂) =
1

2
𝑢̂𝑇𝑊𝑢̂+ 𝜆̂𝑇 (−𝐶𝐵𝐶𝑇 𝜃 + 𝑢̂+ 𝑟)+

+𝜒̂
𝑇

(𝑢̂− 𝑢) + 𝜒̂𝑇 (𝑢− 𝑢̂) + 𝛿̂
𝑇

(𝐵𝐶𝑇 𝜃 − 𝑝) + 𝛿̂
𝑇

(𝑝−𝐵𝐶𝑇 𝜃)+

+𝜉𝑇 (𝑆𝐵𝐶𝑇 𝜃 − 𝜁).

(13.74)

Modified Karush–Kuhn–Tucker conditions:

𝐶𝐵(𝐶𝑇 𝑢̂− 𝛿̂ + 𝛿̂ − 𝑆𝑇 𝜉) = 0, (13.75a)

−𝐶𝑝+ 𝑢̂+ 𝑟 = 0, (13.75b)

𝑢̂ = 𝜈𝑛(𝑊−1𝜆̂, 𝑢, 𝑢), (13.75c)

𝛿̂𝑖((𝐵𝐶
𝑇 𝜃)𝑖 − 𝑝𝑖) = 0, 𝛿̂𝑖 ≥ 0, 𝑖 ∈ {1, . . . , 𝑞}, (13.75d)

𝛿̂𝑖(𝑝𝑖 − (𝐵𝐶𝑇 𝜃)𝑖) = 0, 𝛿̂𝑖 ≥ 0, 𝑖 ∈ {1, . . . , 𝑞}, (13.75e)

𝑆𝐵𝐶𝑇 𝜃 − 𝜁 = 0. (13.75f)

Lemma 13.14. Let 𝑢(𝑡) → 𝑢̂*, then system (9.13) converges to the optimal type 5 steady-

state.

Proof. Proof of this lemma coincides with the proof of Lemma 12.10.
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Transition to integral algebraic control equations:

𝑢(𝑡) =𝜈𝑛(𝑊−1𝜆(𝑡), 𝑢, 𝑢), (13.76a)

𝜂(𝑡) =

∫︁ 𝑡

0

𝐶𝐵(−𝐶𝑇𝜆(𝜏) − 𝛿(𝜏) + 𝛿(𝜏) − 𝑆𝑇 𝜉(𝜏))𝑑𝜏 + 𝜂0, (13.76b)

𝜆(𝑡) =

∫︁ 𝑡

0

𝐶𝐵𝐶𝑇𝜂(𝜏) − 𝑢(𝜏)𝑑𝜏 −
∫︁ 𝑡

0

𝑟̊(𝜏)𝑑𝜏 + 𝜆0, (13.76c)

𝛿(𝑡) =

∫︁ 𝑡

0

𝜑𝑞(𝐵𝐶𝑇𝜂(𝜏) − 𝑝, 𝛿(𝜏))𝑑𝜏 + 𝛿
0
, (13.76d)

𝛿(𝑡) =

∫︁ 𝑡

0

𝜑𝑞(𝑝−𝐵𝐶𝑇𝜂(𝜏), 𝛿(𝜏))𝑑𝜏 + 𝛿0, (13.76e)

𝜉(𝑡) =

∫︁ 𝑡

0

𝑆𝐵𝐶𝑇𝜂(𝜏) − 𝜁𝑑𝜏 + 𝜉0. (13.76f)

Block-diagram corresponding to the control equations are shown in Figure 13.1.

13.4.3 Control stability and applicability

Differential algebraic equations equivalent to (13.52):

𝜂̇ =𝐶𝐵(−𝐶𝑇𝜆− 𝛿 + 𝛿), (13.77a)

𝜆̇ =𝐶𝐵𝐶𝑇𝜂 − 𝑢− 𝑟, (13.77b)

𝑢 =𝜈𝑛(𝑊−1𝜆, 𝑢, 𝑢), (13.77c)

𝛿̇ =𝜑𝑞(𝐵𝐶𝑇𝜂 − 𝑝, 𝛿), (13.77d)

𝛿̇ =𝜑𝑞(𝑝−𝐵𝐶𝑇𝜂, 𝛿), (13.77e)

𝜉 =𝑆𝐵𝐶𝑇𝜂 − 𝜁. (13.77f)

Lemma 13.15. System (13.77) has unique stationary point that delivers solution of (13.73).

Proof. Proof has the same structure as the proof of lemma 13.15 with addition of equation

(13.77f) corresponding to the constraint (13.75f).

Theorem 13.16 (System stability). In the system (13.77) solutions 𝑢 are globally asymp-

totically stable.

Proof. Let us introduce the following Lyapunov function:

𝑉 (𝜂, 𝜆, 𝛿, 𝛿) =
1

2
((𝜂 − 𝜂*)𝑇 (𝜂 − 𝜂*) + (𝜆− 𝜆*)𝑇 (𝜆− 𝜆*)+

+(𝛿 − 𝛿
*
)𝑇 (𝛿 − 𝛿

*
) + (𝛿 − 𝛿*)𝑇 (𝛿 − 𝛿*) + (𝜉 − 𝜉*)𝑇 (𝜉 − 𝜉*).

(13.78)
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Power balance Virtual power flows

Congestion management

Inter-area flows regulation

Virtual phase angels

Figure 13.4: Control block diagram for the Problem 7.
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Its derivative is equal to the derivative of Lyapunov function from (13.12), thus, the statement

of the lemma holds.

Theorem 13.17 (Control applicability). Formulas

𝐹 (𝑦𝑖, 𝑤𝑖, 𝑢𝑖, 𝑢𝑖) = 𝜈1
(︂
𝑦𝑖1
𝑤𝑖

, 𝑢𝑖, 𝑢𝑖

)︂
, (13.79)

𝐺ℎ
1(𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖, 𝐵𝑖, 𝐶𝑖, 𝑝𝑖, 𝑝𝑖) = 𝐶𝑖𝐵𝑖
(︀
(𝐶𝑖)⊤((𝑌 𝑖

2 )⊤ − 1ℎ𝑦
𝑖
2) − 𝑦𝑖3,...,ℎ+2 + 𝑦𝑖3+ℎ,...,2ℎ+2

)︀
,

(13.80a)

𝐺ℎ
2(𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖, 𝐵𝑖, 𝐶𝑖, 𝑝𝑖, 𝑝𝑖) = 𝐶𝑖𝐵𝑖(𝐶𝑖)⊤(1ℎ𝑦
𝑖
1 − (𝑌 𝑖

1 )⊤) − 𝑢𝑖 − 𝑟𝑖, (13.80b)

𝐺ℎ
2+𝑗(𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖, 𝐵𝑖, 𝐶𝑖, 𝑝𝑖, 𝑝𝑖) = 𝜑1(𝐵𝑖
𝑗𝑗𝐶

𝑖
𝑗(𝑦

𝑖
1 − 𝑌 𝑖

1𝑗) − 𝑝𝑗, 𝑦
𝑖
2+𝑗), 𝑗 ∈ {1, . . . , 𝑞}, (13.80c)

𝐺ℎ
2+ℎ+𝑗(𝑟𝑖, 𝑢𝑖, 𝑦

𝑖, 𝑌 𝑖, 𝐵𝑖, 𝐶𝑖, 𝑝𝑖, 𝑝𝑖) = 𝜑1(𝑝
𝑗
−𝐵𝑖

𝑗𝑗𝐶
𝑖
𝑗(𝑦

𝑖
1 − 𝑌 𝑖

1𝑗), 𝑦
𝑖
2+ℎ+𝑗), 𝑗 ∈ {1, . . . , 𝑞},

(13.80d)

𝑄
ℎ
(𝑧𝑘, 𝐵

𝑖, 𝐶𝑖, 𝑆𝑘𝑖) = 𝐶𝑖𝐵𝑖𝑆𝑘𝑖𝑧𝑘, (13.81)

𝑄ℎ1,ℎ2,ℎ3(𝑌 𝛼̃(𝑘), 𝑌 𝛽(𝑘), 𝐵𝛾(𝑘), 𝐶𝛾(𝑘), 𝑆𝛾(𝑘), 𝜁𝑘) =

ℎ1∑︁
𝑖=1

𝑆𝛾(𝑘)𝐵𝛾(𝑘)(𝐶
𝛾(𝑘)
𝑖 )⊤(1ℎ1𝑌

𝛼̃(𝑘)
1,𝑖 − 𝑌

𝛽(𝑘)
1 )

(13.82)

with ℎ = 2(1 + |Adj(𝑖)|), ℎ1 = |𝛼̃(𝑘)|, ℎ2 = |𝛽(𝑘)|, ℎ3 = |𝛾(𝑘)|.

Proof. We take

𝑦𝑖(𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜂𝑖

𝜆𝑖

𝛿Adj(𝑖)

𝛿Adj(𝑖)

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑖 ∈ 𝑁, 𝑧𝑘 = 𝜉𝑘, 𝑘 ∈ {1, . . . , 𝑛𝑎𝑟𝑒𝑎}. (13.83)

Equation (13.76a) gives form of the function 𝐹 : Equations (13.76) give form of the functions

𝐺ℎ
𝑖 , 𝑖 ∈ {1, . . . , 𝑠}. From the Theorem 13.16 control 𝑢 is global asymptotically stable and

converges to a constant control, thus item 2 of the Problem 4 is satisfied. From the Lemma

13.15 𝑢 converges to 𝑢̂* thus from Lemma 13.14, system (9.13) with the control 𝑢 converges

to the optimal type 4 steady-state.
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Figure 13.5: New England System. Partial outage on the generator G10. Line (9-39) is

operating at its limit. System is divided into two areas by lines (1-39), (3-4) and (15-16).

13.5 Numerical experiment

Let us consider New England IEEE 39 bus system [8]. Parameters of the system are given

in the tables 7.1 and 7.2. Turbine and governor constants are taken from [90].

Partial outage of 100 MW appears on the generator 10. As a consequence of the outage,

generator G10 does not participate in the further control actions. It is assumed that partici-

pation factors 𝑤𝑖 for every generator are equal 1. The system is separated into two areas by

the lines (1-39), (3-4) and (16-15). Finally, line (9-39) works at its thermal limit and increase

of its power flow will lead to overheat (Figure 13.5). Let us firstly consider response of the

traditional frequency control. After the transient dynamics, power balance will be restored

by the secondary frequency control with usage of only generators of the same area: G5 —
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Figure 13.6: Standard frequency control. Power balance is restored by generators of the top

area. Line (9-39) is congested.

G9. Since all participation factors are equal they both must increase their output by 15.9

MW. However, such change leads to increased power flow from the right half of the system

to the left and from the bottom to the top, thus, line (9-39) becomes overloaded (Figure

13.6). In order to comply with all constraints the developed algorithm delivers system to the

state shown in the Figure 13.7. Here generators marked blue reduce their output and genera-

tors marked green increase their output. Here generator G1 increases output in order create

counterflow on the line (9-39). For the same reason outputs of the generators G8 and G9 are

slightly increased. This allows to remove congestion. Generators G2 and G3 decrease their

output in order to keep inter-area flow intact. Finally generators G5 — G7 are connected

to the rest of the network by a single bus 16. Thus, from the perspective of the rest of the

system they are treated as a single aggregated generator. As a result, they increase their
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Figure 13.7: Developed control. All generators are controlled individually. All constraints

are satisfied at minimal possible effort.

generation equally to each other in order to balance power at minimal cost. This way all

constraints are satisfied at minimal control effort. Dynamics of the system for both types of

control are shown in the Figures 13.8 — 13.12. Similar to the previous numerical experiment

(section 12.4), here developed control is used with addition of primary frequency control in

order to improve nadir.
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Figure 13.8: Frequency dynamics. Standard and developed control.
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Figure 13.9: Deviation of power flows for the line (9-39). Standard and developed control.
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Figure 13.10: Inter-area flow deviation. . Standard and developed control.
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Figure 13.11: Secondary frequency control
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Figure 13.12: Developed control

13.6 Conclusion

Within this section a distributed frequency control with no control limits is developed. It is

by a system of integral algebraic equations:

𝑢(𝑡) =𝜈𝑛(𝑊−1𝜆(𝑡), 𝑢, 𝑢), (13.84a)

𝜂(𝑡) =

∫︁ 𝑡

0

𝐶𝐵(−𝐶𝑇𝜆(𝜏) − 𝛿(𝜏) + 𝛿(𝜏) − 𝑆𝑇 𝜉(𝜏))𝑑𝜏 + 𝜂0, (13.84b)

𝜆(𝑡) =

∫︁ 𝑡

0

𝐶𝐵𝐶𝑇𝜂(𝜏) − 𝑢(𝜏)𝑑𝜏 −
∫︁ 𝑡

0

𝑟̊(𝜏)𝑑𝜏 + 𝜆0, (13.84c)

𝛿(𝑡) =

∫︁ 𝑡

0

𝜑𝑞(𝐵𝐶𝑇𝜂(𝜏) − 𝑝, 𝛿(𝜏))𝑑𝜏 + 𝛿
0
, (13.84d)

𝛿(𝑡) =

∫︁ 𝑡

0

𝜑𝑞(𝑝−𝐵𝐶𝑇𝜂(𝜏), 𝛿(𝜏))𝑑𝜏 + 𝛿0, (13.84e)

𝜉(𝑡) =

∫︁ 𝑡

0

𝑆𝐵𝐶𝑇𝜂(𝑡) − 𝜁𝑑𝜏 + 𝜉0. (13.84f)

Here equations (13.84a) are used to enforce control limits, equations (13.84c) correspond

to bus power balance, equations (13.84d) and (13.84e) represent complementary slackness

conditions for the line constraints and (13.84f) correspond to the inter-area flows constraints.
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14 Numerical Experiment

Let us illustrate our feedback control by the following example. We consider New England

IEEE 39 bus system [8]. Parameters of the system are given in the tables 7.1 and 7.2. Turbine

and governor constants are taken from [90]. Here we use model, described in section 9.2 with

𝐺𝑠 = {1, 2}, 𝐺ℎ = {3, 5}, 𝐺𝑔 = 𝐺 ∖ (𝐺𝑠 ∪ 𝐺ℎ). Control limits for generators are set to

[−20 𝑀𝑊, 20 𝑀𝑊 ]. Initially, loads do not participate in control (upper and lower limits for

the load buses are set to 0). The following set of events happens:

1. At 𝑡 = 1 𝑠𝑒𝑐 partial power outage of 50 𝑀𝑊 happens on generator G10. This generator

does not participate in further control.

2. At 𝑡 = 10 𝑠𝑒𝑐 additional outage of 50 𝑀𝑊 happens on generator G10.

3. At 𝑡 = 30 𝑠𝑒𝑐 generator control limits start reducing at speed of 400 𝑘𝑊/𝑠𝑒𝑐 and

−400 𝑘𝑊/𝑠𝑒𝑐 for lower and upper limits respectively. Generators usually are obliged

to provide spinning reserves for only limited amount of time sufficient for the system

operator to make regulating actions. Therefore the generators reduce their control

limits 29 seconds after the initial disturbance. This reduction will eventually lead to

the deficit of power. Therefore system operator decides to enable load-sides control to

complement for the reduction of the generator control limits. Lower and upper control

limits change at the rate of −100 𝑘𝑊/𝑠𝑒𝑐 and 100 𝑘𝑊/𝑠𝑒𝑐 respectively for the load

buses 3,4,7,8,12,15,16,18,20,21, and 23-29.

4. At 𝑡 = 40 𝑠𝑒𝑐 generator control limits stop at [−16 𝑀𝑊, 16 𝑀𝑊 ], load control limits

stop at [−1 𝑀𝑊, 1 𝑀𝑊 ]. As a result, all loads of the top area reduce their power

consumption by 1 𝑀𝑊 and loads of the bottom area increase their power consumption

by −1 𝑀𝑊 .

5. At 𝑡 = 50 𝑠𝑒𝑐 line (4-5) trips. This event reduces flow on the line (4-3) and increases

flow on the line (9-39). However, due to load-side control the case remains feasible and

the system converges to the optimal state (Figure 14.1).
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Figure 14.1: New England Power System. Partial outage on the generator G10. Line (9-39)

operates at its limit. Line (4-5) is tripped. Control for load buses marked green equals

+1 𝑀𝑊 , control for load buses marked blue equals −1 𝑀𝑊 , control for buses 4 and 15

equals −320 𝑘𝑊 and −150 𝑘𝑊 respectively. All constraints are satisfied at minimal effort.
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Figure 14.3: Generators control values with reduction of control limits.
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Figure 14.2 represents frequency response to the changes in the system state. It can

be seen that the developed control arrests both frequency drops caused by power outage

and suppresses frequency oscillations caused by changes in the control limits. Figure 14.3

represents generator control signals. Despite the distributed structure of the control, each

generator acts in order to minimize overall deviation from the initial generation. Dashed

lines demonstrate changes in control limits. Figure 14.4 represents load control signals. It is

important to outline that loads not only change the control limits buts also switch from non-

working state to controlled state simultaneously without any oscillations in physical or control

systems. Figures 14.5 and 14.6 represent power flow on the congested line (9-39) and inter-

area power flow respectively. It can be seen that all deviations are suppressed quickly despite

the changes in the system’s state. The developed algorithm performs frequency control,

congestion management, and inter-area flows regulation despite non-constant disturbance

and non-constant control limits.
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15 Suggestions for the further work

In this thesis we consider linear power system model with second order generator equations,

second order turbine and governor equations and DC power flows. For the numerical exper-

iments the model is expanded to nonlinear power flows and turbine and governor equations

for hydro and steam turbine of 4-th and 5-th orders respectively. We do not consider control

discretization, communication delays, and bandwidth. Further work is planned to be done

in the following three directions:

1. Implementation of a more realistic model. The usage of the two stage approach allows

to reduce the effect of the physical system dynamics on the control values calculations

in the stage two. This allows us to bypass issues with the cascade form of the turbine

governor dynamics. It is possible, that such approach remains valid for other complica-

tions of the system dynamics, namely full AC network model, including non-constant

voltages, reactive power flows and higher order generator model.

2. Analysis of the control robustness:

(a) All measurements go through low-pass filter, which normally improves control

reliability. It would be useful to ensure this statement with some analytical results.

(b) In order to calculate disturbance size the control uses system inertia and damping.

Errors in the measurements of this parameters will add some unwanted PI control

actions. Such problem must be analyzed. Gains of a traditional PI controller are

chosen with some margin of safety, i.e. small PI actions on top of the traditional

controller would not destabilize the system. The controller, presented in this work,

demonstrates better transient performance than the traditional one. Therefore,

it seems likely, that the developed control will remain stable after introduction of

additional unwanted PI actions.

(c) Errors in measurements of line parameters may result in power flows exceeding

corresponding limits. In general, small violations of thermal limits do not have a

negative impact on the system. However, whiting this work we do not use power
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flows measurements. It might be possible to adjust line parameters within the

control algorithm using the comparison between this measurements and virtual

power flows.

3. Analysis of control implementation issues:

(a) Discretization of the algorithm. Within this work we prove global asymptotic sta-

bility of the developed control. That gives optimistic expectations for the control

implementation. However, explicit analysis of the control scheme discretization

will provide clear requirements to the communication network and measurements

frequency.

(b) Analysis of the communication delays. While it is always possible to increase

discretization step in order to mitigate negative effect of delays, it is necessary

to analyse limits of the control effectiveness in realistic communication network

models.

(c) Analysis of the communication bandwidth. The presented control is distributed,

therefore it requires only communications between neighbours in order to work.

However, volume of the exchanged information might be too big even between two

buses. Thus, inclusion of the communication bandwidth into control analysis is

necessary.

4. Introduction of algorithms capable to work in infeasible case. In practice it might not

be possible to restore frequency after a contingency subject to all line constraints. In

this case control must remain stable and prioritize frequency restoration over conges-

tion management. The control must identify presence of infeasibility in real time and

perform corresponding actions.

5. Optimization of transient dynamics. At the current state control is obtained via tran-

sition from system of algebraic equations into a system of integral algebraic ones. It

is possible to multiply right-hand side of the integral equations by a set of positive

constants. Such multiplication would not affect stability of the system and stationary

point, but will change control system dynamics. As a result, it is possible to adjust
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control behavior in order to achieve various goals i.e. increase convergence of power

flows to the feasible set.

6. Expanded numerical experiments. The items above require more detailed numerical

experiments that would allow to ensure proper tests of all control properties. Numer-

ical experiments must use more detailed model and larger networks in order to test

scalability of the distributed control.

While the items above are not included in the current work, numerical experiments demon-

strate stable dynamics and lack of oscillations in both control and physical system for the

cases with nonconstant disturbances and control limits. This together with the proof of

global asymptotic stability of the control allows to assume that control dynamics would re-

main acceptable even in the case of more complicated dynamics, inaccurate measurements

and communication delays. Purpose of the control derivation approach, designed in this

work, is to reduce effect of the physical system dynamics on the control. In order to do so we

use information of the system state only to approximate disturbance, which is an independent

parameter.
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16 Conclusion

There exist multiple reasons for creating a new frequency control scheme: increased amount

of renewable energy, possibility to control loads, distributed generation and communication

limitations. In order to reduce impact of negative effects and utilize the new opportunities

a control scheme that performs frequency control, congestion management and inter-area

flows control in a distributed way is derived in this thesis. It is based on two main parts:

approximation of the disturbance and convergence of the power system to a state called

optimal under the developed control. For convenience the thesis is divided into 7 major

consequent problems:

1. Frequency control with no control limits: control is centralized. It is assumed, that

disturbances are too small for the control values to reach limits on any of the system’s

buses;

2. Frequency control with control present on some buses: intermediate step between con-

trol without and with limits;

3. Frequency control: centralized control with control limits. Modification of disturbance

approximation algorithm is introduced allowing us to prove global asymptotic stability;

4. Distributed frequency control without control limits;

5. Distributed frequency control;

6. Distributed frequency control and congestion management;

7. Distributed frequency control, congestion management and inter-area flows control.

For each problem a control scheme is developed and its global asymptotic stability is proven.

Numerical experiments show that the developed approach, while operating in a distributed

way, provides better transient dynamics and delivers physical system to an optimal state.

The obtained results are published in [23,83,98,99].

The control schemes derived in this work are based on the fact that any frequency control

method approximates the disturbance size, because frequency is restored if and only if power
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balance is restored and sum of control signals is equal to the sum of the disturbances. We

utilize this fact and divided our controller into two stages. First stage is aimed to approximate

the size of the disturbance using system’s state, namely bus frequencies and electrical powers.

While we use systems measurements,we approximate parameter that does not depend on the

system’s state. Such approach allows the control to remain stable and fast even for the

second-order cascade type turbine-governor equations. This control stage is decentralized

and provides disturbance approximation to the second stage. The latter is distributed, so

that communication is done only between adjacent buses or border buses of each one area.

Its control calculation algorithm is based on transition from Karush-Khunn-Takker condition

of the control cost minimization problem to integral algebraic ones. This approach allows

distributed implementation and provides low-pass filtering of all measurements inputs as well

as control signals from the adjacent buses. Additionally, the second control stage can use

as inputs disturbance measurements directly instead of approximations of the stage one, if

these disturbance are available. Separation of the control algorithm into to methodologically

different stages allows to implement the developed algorithm as feedback control using stage

one, as feedforward control using direct disturbance measurements or as any combinations

of these approaches.

We consider network model that includes second order turbine-governor dynamics and

two different types of loads in order to provide accurate frequency behavior of the frequency

band power flows in the network. Additional detalization of the model (e.g. inclusion of

nonlinear power flows, hydro generation model with transient droop), as well as analysis of

the impact of control discretization at implementation stage and communication delays are

the aim of the future work.

The results of numerical experiments suggest that control stability will be present in

more realistic models, since current dynamics of the control lack oscillations even if during

transient some of the control limits are changing, or control on some buses is getting turned

on/off.

Here we use system model with second order turbine governor dynamics. This is a neces-

sity, as simpler models provide unrealistic dynamics of the power system (i.e. system with

primary frequency control is stable regardless of the control gain). This approach ensures
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realistic behavior of the control and physical system. However, second order turbine governor

dynamics introduce cascade type structure to the power system equations. Usually it means

that corresponding Lyapunov function strongly depends on the system parameters and it is

difficult to provide its general form. Normally works on frequency control and congestion

management use lower order turbine governor dynamics in order to provide stability assess-

ment. However here we prove global asymptotic stability of the control despite the presence

of cascade block in the system. It is the key novelty of the work, as it provides strict ana-

lytical result about the control dynamics in comparison to the asymptotic stability without

convergence radius assessment or lack of cascade block that are present in other works that

consider both congestion management and frequency control.
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