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Abstract

The history of code division for multiple access channels (MAC, for short) started
with the famous paper of Claude Shannon � �Two-way communication channels
� (1961) [1], where it was shown that code division can outperform time division.
During next decades, a lot of theoretical results were obtained, including the exact
characterization of the capacity region for many di�erent models of MAC. Despite
that the ordinary capacity is widely known, on the contrary, the zero-error ca-
pacity is mainly unknown for the same MAC models. For instance, the zero-error
capacity region is unknown for the binary adder channel with just two users,
which is one of the simplest MAC model. Even less is known about the zero-error
capacity for MAC with partial users activity, when not more than t users among
total M users are active at each time slot. The last problem was originated in
ALOHA type communication systems, i.e., in systems with random users access
to a joint communication channel. It is very useful for such systems to know in
advance which users will be active during a next communication session. The
corresponding codes with zero-error probability are called signature codes. This
thesis is devoted to the investigation of signature codes for MAC, digital �nger-
printing codes, especially multimedia ones, group testing as well as their interplay.

The �rst chapter describes in details main objects of the thesis, namely, di�er-
ent models of MACs and codes for them, digital �ngerprinting codes and especially
multimedia �ngerprinting codes, di�erent variations of the group testing problem
and the relationships between all these objects.

The second chapter is devoted to the A-channel. Based on the established re-
lationship between signature codes for A-channel and separating codes we derive
new upper and lower bounds on the rate of the best signature codes for A-channel.
First construction of signature codes with e�cient, i.e., polynomial complexity in
the code length, coding and decoding procedures is proposed. Moreover, the case
of A-channel with adversarial noise is considered and upper and lower bounds on
the rate of signature codes resistant to such type of noise are proved.

In the third chapter we investigate signature codes for nonbinary B-channel
and weighted adder channel. New upper and lower bounds on the rate of sig-
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nature codes for nonbinary B-channel are proved. The proof of lower bound is
based on the random coding method, and the proof of the upper bound is based
on the entropy method. Explicit constructions of signature codes for weighted
binary adder channel, which can be considered as some variation of B-channel,
are proposed for noiseless and for adversarial noise cases.

In the last chapter we consider three possible applications of signature codes.
The �rst application, known as multimedia digital �ngerprinting (MDF) codes,
is motivated by the digital right management (DRM). The idea of this technique
is to construct the set of �ngerprints that are embedded in the original digital
content and that have the following property � if at most t users collude to pro-
duce a forged copy, then a distributor can identify at least one of these users.
This property is often called identifying parent property or IPP, for short. It is
shown that di�erent reformulations of this problem for MDF codes are equivalent
to signature codes for A-channel and for weighted binary adder channel. Based
on this relationship we derive new results about MDF codes.

The second application devoted to newly introduced class of IPP codes,
namely, constant weight IPP codes, which is a class of codes with identifying par-
ent property and �simple decoding�, i.e., tracing at least one guilty user by �nding
the nearest in the Hamming distance codeword. A new notion of nonbinary trace-
ability codes (or set systems) introduced and an analogue of Gilbert-Varshamov
bound for these codes is proved.

The last application is known as the symmetric group testing (SGT) prob-
lem that comes from the general group testing problem. The problem is to �nd
the set of defective elements in a base set by conducting tests in which answers
provide more information than classical group testing, namely, an answer says
0 if no defective samples in a given testing set, says 1 if all chosen samples are
defective, and says ∗ - otherwise. In the case of non-adaptive search this problem
is equivalent to the construction of signature codes for A-channel, what allows to
derive new results on the minimal number of tests.

This Thesis contains not only some new results from so di�erent areas of
research as signature codes for multiple access channels, digital �ngerprinting
codes and symmetric group testing, but also a new approach which allows us to
investigate these areas uniformly.
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Introduction

This PhD thesis was started from my simple observation that already known
families of superimposed codes [2] can be used as digital �ngerprinting codes for
multimedia (MDF codes, for short), resistant to coalition's attacks, and the fact
that these codes have rate R separated from zero, was unknown before my very
�rst paper [3]. A bit later I found out that this observation wasn't totally new,
see [4]. Then I improved this approach and derived that MDF codes are, in fact,
t-signature codes for A-channel, where t is the maximal possible size of malicious
coalitions. Moreover, it was proved in [5] that t-signature codes for A-channel can
be used as MDF codes which can �nd a malicious coalition not only in the case of
the so-called �averaging� attack, as it was considered in all previous papers, but
also in the case of general linear attack. It became a bridge between the theory
of signature codes and its applications to investigation of MDF codes [5]. The
corresponding results can be found in chapters 1, 2 and 4.

On the contrary, a relationship between signature codes for MACs and non-
adaptive group testing was well known for many years. Nevertheless, I found a
new (despite rather obvious) relationship between symmetric group testing and
signature codes for A-channel, and this approach is used in Chapter 4.

In the binary case the adder channel and B-channels coincide. In non-binary
case they are rather di�erent and asymptotic lower and upper bounds for B-
channel were unknown. Note that B-channel provides the maximal possible infor-
mation about the inputs of the channel and therefore its rate should be maximal
among all q-ary MACs. V.Potapova and I independently found the correspond-
ing lower and upper bounds [6], [7]. The corresponding results are described in
chapter 3.

This research was not a one-way road, only from signature codes for MACs to-
wards the �ngerprinting codes and symmetric group testing. Detailed analysis of
multimedia �ngerprinting codes (MDF) has shown some weaknesses of quantized
model and the corresponding coalition attacks. We consider a continuous model
of MDF codes what led us to introducing a weighted adder channel, which is a
generalization of the classical adder channel, and to constructing of more e�ective
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families of codes protecting multimedia content from illegal redistribution. These
results became parts of chapters 1 and 4.

Problem statement and its history

The problem of simultaneously transmitting many messages over a single commu-
nication medium is known as multiplexing and its history actually is as old as the
communications itself. As popular examples, one may consider AM or FM radio,
television or telephony, and nowadays � mobile communications. All these types
of communication use some form of multiplexing, i.e., the transmission of multiple
signals over a common channel in such a way that at a receiver side these signals
can be separated with small or no interference among them. The most popular
and studied forms of multiplexing are known as frequency division multiplexing
(FDM), time division multiplexing (TDM), space division multiplexing (SDM),
code division multiplexing (CDM) and orthogonal frequency-division multiplex-
ing (OFDM).

The general idea of multiplexing schemes is to construct such set of signals
that if these signals are mixed together to form a composite signal then the con-
stituting parts (individual signals) can be recovered from the composite form.
Mechanisms of forming a mixed signal and recovering the parts constitute the
main di�erence of multiplexing schemes of di�erent types.

The most studied example of code division multiplexing system with a sin-
gle receiver is known as the multiple access channel (MAC). The study of MAC
was initiated in the famous paper �Two-way Communication Channel� by Claude
Shannon [1]. Let us start from a short description of MAC's mathematical model.
MAC consists of M independent information sources (or users) and a common
channel for information transmission to the single receiver, which is the same for
all users. The i-th user has mi messages to be transmitted, which are encoded
by some code C(i) of the same cardinality mi and length n over some �nite set
X, which is called the input alphabet. We assume that di�erent users have the
same alphabet X. We assume also that all M users maintain bit and word syn-
chronization. Period of communications is split on sessions and during a session
each user sends one of its messages by sending the corresponding codeword.

There is the following classi�cation of MAC models:

1. Discrete or continuous time: for discrete time it is assumed that the session
is divided in the �nite number of time slots, and the signal is de�ned for
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each time slot; for continuous time MACs inputs and output are considered
as the functions of time X(t), Y (t) with t ∈ R.

2. Noiseless or noisy: for noiseless cases it is assumed that the transmission
passes without any disturbance; for noisy case the real output might be
di�erent from what it was intended to be.

3. With or without feedback: for channels with feedback all senders receive
a feedback information from the receiver and usually it is assumed that
feedback is error-free.

4. Full or partial activity: when each user transmits a message and when only
part of users has messages (information) to be transmitted. In the last case
it could be that users has only single message to be transmitted, namely, to
show that a given user is active. The corresponding codes with zero-error
probability are called signature codes, and constitute the main object of this
thesis.

5. Memoryless or with memory: for memoryless the output of the channel de-
pends only on the inputs of the current session, and does not depend on
previous input-output pairs as it is for channels with memory.

We shall consider deterministic memoryless multiple access channels with
discrete time, without feedback, mainly with partial activity and noiseless
as well as with noise (when we have a solution since noisy case is surely
more di�cult). MAC is de�ned by its input and the output alphabets X
and Y correspondingly, where for a given input symbols x1, . . . , xM ∈ X
the output of the channel equals y = s(x1, . . . , xM) ∈ Y and s(.) is some
map XM → Y , which is the main �ingredient� of MAC. We assume that
the channel is memoryless and, hence, for input codevectors

c(1) = (c
(1)
1 , . . . , c(1)

n ), . . . , c(M) = (c
(M)
1 , . . . , c(M)

n )

the output of the channel is

y = S(c(1), . . . , c(M)) = (y1, . . . , yn),

where yi = s(c
(1)
i , . . . , c

(M)
i ).

The following transfer functions s generates the most popular models of
deterministic MACs.

Examples.
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(a) Binary adder channel (Figure 1): X = {0, 1}, Y = {0, 1, 2, . . .} := N0

and

s(x1, . . . , xM) =
M∑
i=1

xi, (1)

where sum is the ordinary sum of integers and N0 denotes the set of
all non-negative integers.

(b) OR-channel: X = Y = {0, 1} and

s(x1, . . . , xM) =
M∨
i=1

xi (2)

(c) A-channel (Figure 2): X = {0, 1, . . . , q − 1}, Y = {0, 1}q

s(x1, . . . , xM) = (y0, ..., yq−1), (3)

where yi = 0 if |{j : xj = i}| = 0 and yi = 1 � otherwise

(d) B-channel (Figure 2): X = {0, 1, . . . , q − 1}, Y = {y =
(y0, y1, . . . , yq−1)} and

s(x1, . . . , xM) = (y0, ..., yq−1), where yi = |{j : xj = i}| (4)

(e) Adder by mod 2 channel: X = {0, 1}, Y = {0, 1} and

s(x1, . . . , xM) = x1 ⊕ x2 ⊕ . . .⊕ xM , (5)

where ⊕ denotes the sum by mod 2.

(f) Nonbinary adder channel: X = {0, 1, . . . , q − 1}, Y = N0 and

s(x1, . . . , xM) =
M∑
i=1

xi, (6)

where sum is the ordinary sum of integers.

(g) Weighted binary adder channel: X = {0, 1}, Y = R and

s(x1, . . . , xM) =
M∑
i=1

αixi, (7)

where αi are some nonzero real numbers (called �weights�, despite that
αi can be negative) and the sum is the sum of real numbers.
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U = { User1, User 3, User M}

...
...

1 0 1 1 0 ... 1 0User 1
0 1 1 0 0 ... 0 1User 2
1 0 0 0 1 ... 1 1User 3 +R

1 1 1 1 0 ... 0 0User M

S(U) =( 3 1 2 2 1 ... 2 1 )

Figure 1: Model of the binary adder channel with user 1, user 3 and user M as
active users

U = { User1, User 3, User M}

...
...

1 0 1 ... 1 0User 1
1 2 1 ... 0 2User 2
1 2 2 ... 1 0User 3 B-channel

A-channel

1 2 1 ... 1 1User M

without intensity knowledge

S(U) =

0 1 0 . . . 0 1

1 0 1 . . . 1 1

0 1 1 . . . 0 0



with intensity knowledge

S(U) =

0 1 0 . . . 0 2

3 0 2 . . . 3 1

0 2 1 . . . 0 0



Figure 2: Model of A-channel and B-channel with user 1, user 3 and user M as
active users

Classical information theory provides the exact solution for the ordinary ca-
pacity, i.e., when the probability of wrong decoding tends to zero, of general
deterministic MAC model in the case of all-active users and blocklength tends to
in�nity, see [8, 9].

A lot of e�orts were devoted to evaluation of the zero-error capacity for rather
natural and simple models of MAC. Codes C1, . . . , CM are called uniquely decod-
able orM -user code with zero-error probability if the receiver can uniquely recover
transmitted messages of all users by observing the corresponding output of MAC.
Formally, it means that for any codevectors c(1), ĉ(1) ∈ C1, . . . , c

(M), ĉ(M) ∈ CM
if S(c(1), . . . , c(M)) = S(ĉ(1), . . . , ĉ(M)) then c(1) = ĉ(1), . . . , c(M) = ĉ(M).

The rate of M -user code is, by the de�nition, M -dimensional vector R =
(R1, . . . , RM), where Rj = n−1 log |Cj| (here and below all logarithms are binary,
except of cases when we shall use other base of the logarithm). Finding the zero-
error capacity region means to �nd all achievable (when codes' length increase
to in�nity) rates R for a given MAC. The zero-error capacity region is mostly
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unknown, in particular, for �rst four MACs described above in examples. In par-
ticular, it is unknown even for the binary adder channel (BAC) in the simplest
case of two users, and it is one of the most intriguing topics of MAC theory today,
see [10] for the latest results.

In this thesis we consider a particular case of M -user code with zero-error
probability when at most t users are active, i.e., only they send information while
other users are silent. Moreover, we will be interested in the case when all users
have only one message to transmit, i.e., i-th user sends vector ci ∈ Xn for sending
message that he is active, and doesn't send a vector if he is inactive. Then, the
property of being uniquely-decodable transforms to the so-called signature prop-
erty de�ned as follows.

De�nition. A code C = {c1, . . . , cM} ⊂ Xn of the cardinalityM and length
n over the alphabet X is called a (t,M)-signature code or simply a t-signature
code for a given MAC with the transfer function S if for any two di�erent subsets
J, J ′ ⊂ {1, . . . ,M} such that |J | ≤ t and |J ′| ≤ t the corresponding outputs are
di�erent also, i.e., S(J) 6= S(J ′).

Signature codes are very closely related to some old and new problems in
group testing and digital �ngerprinting. These relationships will be described in
details in Ch.1 and Ch.4. In particular, there are known relationships between
some combinatorial problems of non-adaptive group testing (search of counterfeit
coins among M coins on a spring scale, see [11, 12]), and signature codes for the
binary adder channel with M users, what was observed in [13]. Another well
known relationship is between signature codes for OR-channel and the classical
group testing, introduced in 1943 [14]. There is a variation of the classical group
testing called symmetric group testing which is not so well studied. We consider
this problem by establishing its relation to signature codes for A-channel and de-
rive new upper bound on the rate signature codes for A-channel as well as new
lower bound on the minimal number of tests in symmetric group testing, see Ch.
1, 2 and 4.

A big part of this thesis is devoted to signature codes for two deterministic
multiple-access channels � A-channel and B-channel. These channel models were
proposed in [15] and are known as multi-frequency channels with and without in-
tensity information, or as A-channel and B-channel, see examples 3 and 4 above,
respectively. Let us explain how these MAC models are arisen in practice.

Consider the set F = {f0, f1, . . . , fq−1} of q frequencies which can be em-
ployed by users for information transmission with the following restriction: each
active user at each time slot employs only one frequency. The di�erence between
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these two channel models occurs in the channel's output. Namely, the output of
A-channel is the set of frequencies occurred as inputs of the channel at a given
time slot, or the corresponding binary vector of length q. Whereas for the B-
channel the output at a given time slot shows how many times each frequency
was used for transmission, i.e., the output is an integer vector of length q with
all coordinates being non-negative and their sum equals to t′ ≤ t - the number of
active users. Hence, replacing frequencies fi on their q-ary �numbers� i leads us
to MAC of examples 3 and 4 correspondingly.

Note, that for binary case B-channel and adder channel coincide. For non-
binary case they are very di�erent and obtaining new lower and upper bounds of
signature codes for these channels constitutes probably the main part of the thesis.

It was mentioned above that my investigation of signature codes for di�erent
types of MACs has been started from an attempt to construct digital �ngerprint-
ing codes for multimedia which are better than known ones. Note that known at
that time multimedia �ngerprinting codes have rates which tends to zero when
the code length increases. It's an obvious drawback which was overcame in my �st
papers by usage of a new approach based on the relationship between signature
codes for MAC and digital �ngerprinting codes, see the corresponding explanation
in Ch.1, and new results are given in Ch. 2 and 4.

Goals

Goals of the PhD thesis are the following:

• Derive new upper and lower bounds on the rate of signature codes for A-
channel, B-channel and their modi�cations;

• Develop new constructions of the corresponding signature codes and their
e�cient decoding algorithms;

• Study these channels with noisy output;

• Investigate possible applications of constructed codes towards digital �nger-
printing codes and symmetric group testing.

Scienti�c novelty of the work

All results obtained in this thesis are new. The following main results were ob-
tained:
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1. New lower and upper bounds on the rate of signature codes for B-channel.

2. A new explicit construction of signature codes for A-channel with e�cient
(polynomial time) decoding algorithm.

3. A new upper bound on the rate of signature codes for A-channel with ad-
versarial noise.

4. A new class of signature codes for weighted adder channel with explicit
construction and performance better than for known codes.

5. A new class of digital �ngerprinting codes with simpli�ed tracing traitors
based on minimum distance decoding.

6. New classes of multimedia �ngerprinting codes with signi�cantly better per-
formance than all previously known multimedia �ngerprinting codes.

7. New upper bound for the minimal number of tests in symmetric group
testing with adversarial noise.

Research Methodology

Throughout this thesis classical �probability method� (due to Paul Erdos) also
known as �random coding� (due to Claude Shannon) is used in order to prove
the existence of asymptotically good codes. Also some analytic methods and
combinatorial coding theory methods were used.

Practical and theoretical signi�cance of the work

The results of the thesis are mostly theoretical with description of possible practi-
cal applications. They may be useful to specialists working in information theory,
combinatorial coding theory and cryptography.

Organization of the thesis

The thesis consists of an introduction, four chapters, conclusion and list of refer-
ences.

In the �rst chapter we describe di�erent models of MACs and known results
about error-free codes for these MACs, and pay especial attention to relation-
ships among signature codes for MACs, non-adaptive group testing and digital
�ngerprinting codes. In section 1.1 we describe the so-called �Zoo of MACs�, and
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establish a partial order on MACs, what allows us later to derive some results �for
free�. In section 1.2 we describe relationships between error-free codes for some
MACs and corresponding non-adaptive group testing problem. In particular, we
derive a new relationship between symmetric group testing and signature codes
for A-channel and prove a new upper bound on the minimal number of tests in
symmetric group testing. Last section is devoted to digital �ngerprinting codes,
especially to multimedia digital �ngerprinting codes, and how to construct such
codes from signature codes for the corresponding MACs (mainly, A-channel and
weighted adder channel).

In the second chapter we introduce the general idea of coding for multiple
access A-channel, in particular, the notion of signature codes. We establish the
connection between signature codes for A-channel and separating codes. Recall
that a q-ary code C is called (s, t)-separating code if for any two disjoint sets
V, U ⊂ C such that |V | ≤ s, |U | ≤ t there exists at least one coordinate which
separates them, i.e., there exists coordinate k s.t. Vk ∩ Uk = ∅, see [16�19]. It
is easy to see that any (1, t)-separating code is a t-signature code for A-channel,
and a t-signature code for A-channel is, at the same time, a (1, t− 1)-separating
code. Then known results on separating codes imply the following upper and
lower bounds on the rate of the maximal possible rate RA

t of binary t-signature
codes for A-channel, when the code length n tends to in�nity and t is large but
�xed:

Θ(t−2) ≤ RA
t ≤ O

(
log t

t2

)
.

In section 2.3 we provide the �rst construction of signature codes for A-channel
with polynomial in code length complexity of decoding. We �pay� for this property
by decreasing the code rate to t−3 instead of order t−2 for general signature codes
for A-channel, but in return we decrease decoding complexity from exponential to
polynomial. The proposed construction is based on the concatenation technique
where binary (1, t)-separating codes are taken as inner codes and codes with large
minimal code distance as outer codes (algebraic-geometry codes, Reed-Solomon
codes, in particular), see [5].

In section 2.4 we consider A-channel with adversarial noise, i.e., when the
channel output might be erroneous but in no more than L positions and these
positions could be chosen in the worst for users way. The following bounds on
the rate of binary t-signature codes that are able to correct up to L errors are
proved [20,21]. Firstly, the following upper bound is proved [21]:

Rt(δ) ≤
1

t− 1
R(δ),
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where δ = 2L+1
n and R(δ) denotes the asymptotic maximal possible rate of a

code in the Hamming space with relative distance δ. On the other hand, for any
δ < δcrit = t−1(1− t−1)t the following lower bound holds

Rt(δ) ≥
2 log2 e

t
(δcrit − δ)2,

where δcrit < (et)−1.
In the third chapter the signature codes for B-channel as well as for its mod-

i�cation, known as weighted adder channel, are considered. Denote by MB
q (n, t)

the maximum possible size of a q-ary t-signature code for B-channel of length n,
and by RB

q (n, t) = n−1logq(M
B
q (n, t)), the maximum possible rate of such a code.

To simplify notations let us denote RB
q (t) := limn→∞Rq(n, t) (in Ch. 3 we use

correct notations since the limit may not exists). The main result of the chapter
is the proof that for t large enough we have the following upper and lower bounds
on the asymptotic rate RB

q (t) of the best t-signature codes for B-channel [6, 7]:

(q − 1)
logq t

4t
− c1

4t
≤ RB

q (t) ≤ 2

(
(q − 1)

logq t

4t
+
c2

4t

)
,

where c1 = c1(q) = q(1− logq(2π)) + 2 logq e and c2 = c2(q) = q(−1 + 4 logq e).

Note that the binary adder channel and binary B-channel coincides. Therefore
we consider in this chaper also the following modi�cation of the binary adder
channel, which we call weighted binary adder channel, or wBAC for short. The
output of the wBAC is a linear combination (with unknown coe�cients) of the
code vectors that correspond to active users. For such model the following lower
and upper bounds on the rate of corresponding signature codes was proved [22]

log t

t
(1 + o(1)) ≥ R ≥ 1 + o(1)

t
.

In the fourth chapter three di�erent applications of signature codes are pre-
sented. The �rst application concerns the digital right management area and is
called multimedia digital �ngerprinting codes (MDF codes). Namely, it is shown
that the problem of constructing the set of �ngerprints that could protect the
digital content from illegal redistribution under collusion attacks can be reformu-
lated in two ways: quantized and continuous. For the quantized reformulation the
construction of �ngerprinting codes is equivalent to the problem of constructing
signature codes for the A-channel. Such equivalence allows us to prove better
results than all previously known results for the multimedia digital �ngerprinting
codes. Namely, previously known constructions do not give �good codes�, since
the rate of corresponding codes tends to zero with the growth of the code length.
The relationship with separating codes allows to prove the existence of good codes
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with non-vanishing rate [5]. Moreover, the proposed construction with e�cient
decoding also can be used for the MDF codes, and this construction also improves
previously known results, see [5].

As for another reformulation, i.e., without quantization, it turned out that the
problem is equivalent to the generalization of binary B-channel, namely, weighted
binary adder channel for which the allowed weights of linear combinations are such
that λj ∈ (0, 1] and

∑
j∈J λj = 1 where J is a set of active users, or equivalently,

users from a coalition. It was proved [22] that the rate of corresponding codes is
of order at least Θ(t−1) which signi�cantly improves previously known results as
well as the new results for quantized version.

Another application that is considered in the fourth chapter is also related to
digital right management problem, namely, to the broadcast encryption scheme.
The traceability property for the most general broadcasting scheme is considered,
i.e., the scheme which allows to identify at least one user from the malicious coali-
tion by minimal distant decoding. The analogue of Gilbert-Varshamov bound is
proved for the corresponding codes, and some numerical results are provided.

The last application that is considered in the fourth chapter is the symmetric
group testing (SGT). The ordinary formulation of group testing is well studied
problem whereas the symmetric group testing model is rather unexplored. SGT
di�ers from ordinary group testing in the question-answer model. In SGT the
response on a test equals 0 i� no defective elements belong to the tested subset,
equals 1 i� all elements of tested subset are defective, and equals {0, 1} otherwise,
i.e., the output is in the ternary alphabet. It is easy to check that the problem of
non-adaptive search of t defective elements in a symmetric model is equivalent to
the problem of constructing t-signature codes for A-channel. So, the results about
upper and lower bounds for noisly and noiseless cases as well as construction can
be also applied for t-SGT codes. This equivalence, as well as the received results
are new for the SGT codes.
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Chapter 1

Coding for multiple access channels, non-

adaptive group testing and digital �nger-

printing

This chapter provides state of the art of signature codes for di�erent models
of multiple access channels, introduces a notion of partial order on MACs, and
establishes relationships among three main objects of this thesis, namely, signature
codes for MACs, digital �ngerprinting codes and non-adaptive group testing.

1.1 Zoo of MACs and error-free codes for them

We consider deterministic memoryless multiple-access channel (MAC), i.e., for
the given input symbols x1, . . . , xM the output of the channel equals to y =
s(x1, . . . , xM) ∈ Y− the output alphabet.
The following transfer functions s are the most studied. In the parentheses we
give the labels of the channels which will be used for short references.

1. Binary adder channel (label BAC ): X = {0, 1}, Y = {0, 1, 2, . . .} = N0

and

s(x1, . . . , xM) =
M∑
i=1

xi, (1.1.1)

where
∑

is the ordinary sum of integers.

2. OR-channel (label OR): X = Y = {0, 1} and

s(x1, . . . , xM) =
M∨
i=1

xi. (1.1.2)

22



3. A-channel (label A): X = {0, 1, . . . , q − 1}, Y = {0, 1}q and
s(x1, . . . , xM) = (y0, ..., yq−1), where yi = 0 if |{j : xj = i}| = 0 and
yi = 1 - otherwise

4. B-channel (label B): X = {0, 1, . . . , q − 1}, Y ⊂ Zq and s(x1, . . . , xM) =
(y0, ..., yq−1), where yi = |{j : xj = i}|

5. Adder by mod 2 channel (label Σ⊕): X = {0, 1}, Y = {0, 1} and

s(x1, . . . , xM) = x1 ⊕ x2 ⊕ . . . xM , (1.1.3)

where ⊕ denotes the sum by mod 2.

6. Non-binary adder channel : X = {0, 1, . . . , q − 1}, Y = N0 and

s(x1, . . . , xM) =
M∑
i=1

xi, (1.1.4)

where sum is the ordinary sum of integers.

7. Weighted binary adder channel (label wBAC): X = {0, 1}, Y = N0 and

s(x1, . . . , xM) =
M∑
i=1

αixi, (1.1.5)

where αi are some real numbers (called �weights�, despite that αi can be
negative) and the sum is the sum of real numbers.

We will be interested in error-free coding for MAC when every user wants only
to inform the receiver (the output of the MAC) if he/she is active or not. If i-th
user is active than he/she sends vector ci, and sends nothing � otherwise.

De�nition 1.1.1. The set C = {c1, . . . , cM} of q-ary vectors is called a (t,M)-
signature code or a t-signature code if for any two di�erent subsets U, V ⊂ C both
of the cardinality at most t the corresponding outputs of MAC are di�erent too.

Let as usual de�ne the code rate R(C) = n−1 logqM and let Rα(t, n) denote
the maximal possible rate of t-signature code of length n for a given MAC, and
α is its label. Let informally de�ne

Rα
t = lim

n→∞
Rα(t, n)

Below we give an overview of known results on Rα
t for aforementioned MACs.
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1.1.1 Partial order on MACs

Let A and B be two MACs with the same input alphabet X, output alphabets YA
and YB and the corresponding transfer functions SA and SB. We introduce the
following partial order on the set of all MACs by saying that MAC A is �smaller�
than MAC B and denoted as A � B if there is a function f : YB → YA such that
f(SB(U)) = SA(U) for any t-subset U ⊂ X. Saying informally, it means that
the output of the channel A provides less information than the output of the the
channel B.

For example, the following orderings hold:

• OR-channel � A-channel;

• Adder by mod 2 channel � BAC;

• B-channel is the maximal element of the MACs poset.

Proposition 1.1.1. If A � B and a code C ⊂ Xn is a t-signature code for MAC
A then it is a t-signature code for MAC B.

Proof. Indeed, let C be a t-signature code for MAC A but not for MAC B. The
last property means that there are two di�erent t-subsets U, V ⊂ C, |U |, |V | ≤ t
such that SB(U) = SB(V ). But then f(SB(U)) = f(SB(V )), i.e., SA(U) = SA(V )
what contradicts to the property C is a t-signature code for MAC A.

The established relationship helps to establish the bound on the rate of signa-
ture codes using di�erent partially ordered channels, i.e. if A � B then RAt ≤ RBt .

1.1.2 Codes for the binary adder channel

Let us start from the remark that error-free codes for binary adder channel were
�rst discovered in group testing under the name of non-adaptive search of coun-
terfeit coins on a spring scale. Let us recall this problem.

There is a set of M coins and it is known that some of them are counterfeit,
and the weights of genuine and counterfeit coins are known. And there is an exact
spring scale which gives us the exact weight of a chosen subset of coins, hence
allows to �nd out how many false coins are in a given weighted (tested) subset.
The problem is to propose a non-adaptive strategy with the minimal possible
number of weightings that allows to �nd all counterfeit coins. Let us enumerate
coins as {1, . . . ,M}, and let x = (x1, . . . , xM) be a binary vector, where xi = 1
if the i-th coin is counterfeit, and xi = 0 if the i-th coin is genuine one. Let
Tj ⊂ {1, . . . ,M} be the set of coins which are measured by j-th weighting. Denote
by HC the n × M binary matrix which rows are characteristic vectors of sets
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T1, . . . , Tn. This matrix is called search matrix. Then the corresponding non-
adaptive strategy of n weightings can detect all counterfeit coins i� for any two
di�erent binary vectors x,y ∈ {0, 1}M the following holds:

HCx
T 6= HCy

T . (1.1.6)

Now consider a binary M -signature code C = {c1, . . . , cM} ⊂ {0, 1}n for
BAC. It means that sums

S(J) =
∑
j∈J

cj (1.1.7)

are di�erent for distinct subsets J . Consider n×M matrix HC which columns are
vectors c1, . . . , cM . It is easy to see from (1.1.6) that the property (1.1.7) is equiv-
alent that the matrix HC is a search matrix for M coins and hence non-adaptive
search of counterfeit coins is equivalent to constructing (M,M)-signature code
for BAC.

Denote by nM the minimal possible dimension of an (M,M)-signature code
for BAC, or, the same, the minimal possible number of weightings among all non-
adaptive strategies which can detect all counterfeit coins among M coins. Then

nM =
2M

log2M
(1 + o(1)). (1.1.8)

for M →∞. Formula (1.1.8) as an upper bound was proved by P. Erd�os and A.
Reniy [12] and as a lower bound � in [23], [24] by proposing the corresponding
construction of matrix HC.

Let us relax the propery (1.1.7), namely, by demanding that sums S(J) are
di�erent only for subsets J of the cardinality at most t. On the language of group
testing it means that we known in advance that the number of counterfeit coins is
at most t. On the language of t-signature codes it means that the corresponding
code C = {c1, . . . , cM}, by the de�nition, is a t-signature code for BAC. Such
codes are strongly related to generalized Sidon sequences or Bt-sequences, see [25].
Recall that a Sidon sequence (or Sidon set) is a sequence (a1, a2, . . .) of natural
numbers such that all pairwise sums ai + aj, where i ≤ j, are di�erent and the
question is what is the largest possible size of such sequence if all its members are
at most N . This problem �rstly occur in the theory of Fourier series and later
became a cross point of additive number theory and combinatorics, starting from
the paper of [26], see also [18, 25, 27]. This notion was generalized to the case of
larger sums (up to t elements) and arbitrary Abelian groups. For the Abelian

group of residues by modulo qt+1−1
q−1 , where q is a prime power, there is the con-

struction, given by Bose-Chowla theorem [28], of a set of q+ 1 elements such that
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all its t sums are di�erent. In particular, for t = 2 it gives perfect Singer sets [29].

Note that the problem of constructing t-signature code for BAC is equivalent
to the problem of non-adaptive search for counterfeit coins on a spring scale when
it is known a priory that the number of false coins is at most t. The following
upper and lower bounds are known for t-signature codes for BAC when t is �xed
but large [30]

log t

4t
+ o(t−1) ≤ RBAC

t ≤ log t

2t
+ o(t−1). (1.1.9)

It is easy to see that Rt ≤ t−1 log t. Indeed, all coordinates of MAC outputs
are integers in the range [0, t], hence there are (t + 1)n di�erent outputs. On
the other hand, di�erent t-subsets of the code should get di�erent outputs, i.e.,(
M
t

)
≤ (t+ 1)n, and hence asymptotically for t→∞ one has that Rt ≤ t−1 log t.

Improvement of this simple bound follows from the �entropy method�. It is worth
to mention that for BAC we know that the rate of best t-signature codes has the
order t−1 log t. Explicit constructions, namely, columns of parity-check matrices
of binary BCH or Goppa codes, gives RBAC

t,constr ≥ t−1. This rate loss is rather
small given the simple (with polynomial in length) decoding procedure of the
corresponding codes. For other channel that we discuss below we shall �pay�
more.

1.1.3 Signature codes for disjunctive channel or superimposed codes

Another well studied MAC with partial activity is OR-channel or the so-called dis-
junctive channel. Again, historically, �rstly the corresponding problem appeared
not in the context of MAC but in the context of group testing in 1943 [14]. Group
testing problem consists in �nding all unknown defective elements (samples) of a
search space, using subsets of the search space as tests (queries). The answer for
a test is �yes� if at least one defective element is in the tested subset, and �no� if
there are no defective elements. It is easy to see that the group testing model is
equivalent to the logical OR function, i.e., disjunction, and a non-adaptive search
of defective elements, which number is at most t, amongM elements is the same as
a t-signature code for OR channel. These codes appeared �rst time in Kautz and
Singleton paper [2]. They also introduces codes, called t-superimposed codes, with
somewhat stronger property, namely, that for any code subset U ⊂ C, |U | ≤ t
and any codevector c /∈ U ∨

u∈U

u 6=
∨
u∈U

u ∨ c. (1.1.10)

Note that this property signi�cantly simplify �decoding� algorithm which recov-
ers the input codewords, since it allows the decoding by checking M codewords
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instead of M t.
If replace vectors c1, . . . , cM of t-signature code C of length n on the correspond-
ing sets X1, . . . , XM ⊂ {1, . . . , n} then the property that logical sums of t or less
vectors ci are distinct means that unions of t or less sets Xi are distinct, and the
property (2.2.1) means that no set of X1, . . . , XM is covered by the union of t
others � in context of the set systems this notion was introduced by Erdos, Frankl
and Furedi [31], see also [32,33]. Therefore these codes also called cover-free codes.

It is well-known (and easy to check) that a t-signature code for OR-channel is
t − 1 cover-free code and t-cover-free code is a t-signature code for OR-channel.
The following upper and lower bounds are known for large t, see [31], [32]

Θ

(
1

t2

)
≤ ROR

t ≤ O

(
log t

t2

)
. (1.1.11)

1.1.4 Signature codes for A-channel

There is a well-known in coding theory class of codes which is called separating
codes and these codes play the same role for A-channel as cover-free codes for
OR-channel. Separating codes has a long story started in 60s of the last century.
A code C is called (s, t)-separating code if for any two code subsets U, V ⊂ C
and U ∩V = ∅, where |U | ≤ s, |V | ≤ t, there is a coordinate i s.t. Ui∩Vi = ∅. It
is easy to check that a signature code for A-channel is (1, t− 1)-separating code
and (1, t)-separating code is a signature code for A-channel. Since MAC OR �
MAC A, one has that for the binary A-channel ROR

t ≤ RA
t . On the other hand, it

is easy to see (and well known) that RA
t ≤ 2ROR. Hence, it follows from (1.1.11)

that for large t:

Θ

(
1

t2

)
≤ RA

t ≤ O

(
log t

t2

)
. (1.1.12)

1.1.5 Signature codes for B-channel

We mentioned already that B-channel provides the maximal information among
the considered MACs. Therefore it looks like constructing codes for this channel
should be an easy task. In contrary, not much was known about codes for B-
channel in general case, only upper and lower bounds for the binary case when
B-channel is the same as binary adder channel and these bounds are given by
(1.1.9). One of the main goal of this Thesis is to generalize these bounds to
nonbinary case.
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1.1.6 Signature codes for adder by mod 2 channel

It is the most simple to analyze example of seven MACs. Indeed, a code C =
{c1, . . . , cM} is a t-signature code for the adder by mod 2 channel, the property
that di�erent sums of t or less vectors are di�erent is equivalent that any 2t
codevectors are linear independent over GF (2). Then it is well known object,
namely, these vectors are columns of a parity-check matrix of a binary linear code
correcting t errors. Hence, at least for the case when t is �xed we know, thanks
to Hamming bound and BCH-codes, that

RΣ⊕
t =

1

t
+ o(1). (1.1.13)

Note, that it is the only case of MAC when the asymptotical rate of the best
signature codes is known. Moreover, even the case of adversarial noise can be
solved, see [34].

1.1.7 Signature codes for weighted adder channel

It's not di�cult to check that a binary code C = {c1, . . . , cM} is a t-signature
code for this channel i� any 2t codevectors are linear independent over the �eld R
of real numbers. For binary vectors their linear independence over GF (2) implies
that they are linear independent over R. Hence binary Goppa-BCH codes show
that

RwBAC
t ≥ t−1. (1.1.14)

On the other hand, BAC is a particular case of wBAC, hence, the following upper
bound is true

RwBAC
t ≤ O(t−1 log t). (1.1.15)

Let us also note that signature codes for wBAC is almost the same as non-
adaptive search of counterfeit coins if they may have di�erent weights and weights
are unknown, see [35]

1.2 Combinatorial group testing

Group testing is a combinatorial scheme developed for the purpose of e�cient
identi�cation of defective elements in a given pool of subjects. The naive solu-
tion of the search of defective elements is to test each item separately, but group
testing allows to conduct tests in more e�cient way. The main idea is to test the
samples in groups (subsets), rather than individually, which decreases the number
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of tests conducted.

The history of this problem starts with the work of Dorfman [14], where he
formulated the problem in the context of the blood tests for the presence of the
particular disease. In this case, blood samples of di�erent persons were mixed and
then tested. If at least one of the blood samples used in this test was �defective�
then the answer was �yes�. If all blood samples were �good� then the answer was
�no�.

This version of the problem was extensively studied in the literature and
found many applications in computational molecular biology, chemical analysis
and strong connections with algorithms, complexity theory, data compression,
computational geometry and so on. For more detailed review of group testing
applications see [36].

Mentioned applications also gave rise to many other versions of group testing
problem. There are three main points of di�erence of such schemes. The �rst one
is the strategy of the search. There are two possible cases: the so called adaptive
and non-adaptive search. For the adaptive search questions/test are made in se-
ries in dependence of the answers for previous questions. For non-adaptive case
all tests are conducted simultaneously, and based on all answer one decides about
the set of defective elements. The second di�erence for group testing models is
the answer-question model. For example, one can think of tests where each sam-
ple can participate only in a �nite number of tests, and the number of samples
in one test is also bounded; or one can think of threshold schemes, where one
receives the answers �yes� only if the number of defective elements is bigger than
some prede�ned amount [37], etc. The third di�erence is the presence of noise.
Noiseless and noisy cases are considered in the literature.

There are two main models of noise for group testing. The �rst one is prob-
abilistic, where the error is designed using some probability distribution, see
e.g. [38]. The second one is combinatorial model, also known as adversarial noise,
this is exactly the type of errors that we consider in this thesis. Probably the
most famous problem of group testing with combinatorisl noise is the so-called
Ulam's problem on searching with a lie. Ulam asked in his book [39] what is the
minimal number of yes-no queries needed to �nd an unknown integer between 1
and N = 106 if one lie is allowed among answers (lie is equivalent to an error).
In fact, this problem was �rst stated by A.Renyi in [40], so it is more correctly to
call Renyi-Ulam problem (or game).

The exact answer for adaptive search algorithms and arbitraryM was given by
A.Pelc in [41], see also his review paper [42]. The corresponding asymptotic result
is known for general case of L false answers, namely, for �xed L and growing M
the minimal number of queries behaves asymptotically as log2N + L log2 log2N
and it can be achieved by non-adaptive search.
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In this Thesis we consider the modi�cation of the ordinary group testing prob-
lem, namely, symmetric group testing (SGT). The use of SGT was originally moti-
vated by applications in circuit testing and chemical component analysis [43]. As
an example, consider the testing ofN identically designed circuits using only serial
and parallel component concatenation. In the serial testing mode, one can detect
if all circuits are operational. In the parallel mode, one can detect if all circuits are
non-operational. If at least one circuit is operational and one is non-operational,
neither of the two concatenation schemes will be operational. Detecting e�ciently
which of the circuits are non-operational is exactly what symmetric group testing
is aimed to.

More formally, consider the set X = [N ] of all samples and let F ⊂ X
be a tested subset. In SGT the response on a test F equals 0 i� no defective
elements belong to F , equals 1 i� all elements of F are defective, and equals
{0, 1} otherwise. The goal is to create such family {F1, ...,Fn} of subsets (tests)
of X of minimal size n that the answers for such tests allow to uniquely identify
the subset of defective elements, given that their number is upper bounded by
some �xed parameter d. It is convenient to consider binary characteristic vectors
of the sets, i.e., we map each test F ⊂ X to the binary vector f ∈ {0, 1}N , where
fi = 1 if i ∈ F and fi = 0 otherwise. Since we consider the non-adaptive version
of symmetric group testing we can represent the family of tests in a form of n×N
matrix H where rows represent tests and, consequently, columns {h1, ..., hN} ⊂
{0, 1}n represent "identifying" vectors for each sample from a pool. If an element
hij = 1, i ∈ [N ], j ∈ [n], it means that i-th sample from the pool participates
in j-th test. The answer for such set of tests can be represented as a vector
a ∈ {{0}, {1}, {0, 1}}n, where aj is the answer for the j-th test. Then, the goal
of SGT is to construct such matrix that gives for di�erent subsets of defective
elements the di�erent answer vectors a.

1.3 Digital �ngerprinting codes

With rapid development of multimedia technologies and the steady growth in the
use of the Internet, a digital marketplace where a wide range of multimedia con-
tent (such as image, video, audio, speech...) is available, has become increasingly
popular. However, the ease with which digital content can be accessed, retrieved
and manipulated, poses the challenging task of devising methods for copyright
protection and prevention of redistribution. One of the prominent techniques
that is used to achieve that goal is called digital �ngerprinting. The main idea
consists in embedding in each copy of digital content a personalized and unde-
tectable mark, called digital watermark. Note that the �rst examples of usage of
the same method can be traced back to the XVIIth century. The creators-owners
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of logarithm tables used to introduce tiny errors in the insigni�cant digits of log x
for few speci�c values of x. Had a user of a logarithmic table sold illegal copies
of it, the errors in the table would have allowed to identify who was the owner.
This is an example of a standard digital watermarking technique which is widely
used nowadays. Embedding of di�erent marks into copies of di�erent users allows
to recognize the cases when a single dishonest user produces an illegal copy of
distributed content. There are also the cases when the users possessing di�erent
copies of the same content collude (forming a coalition) and produce a forged
version of the content based on their copies (or a single user bought few copies).
That type of attacks, known as collusion attacks, is of interest and requires the
development of more sophisticated techniques, based on digital watermarking,
that allow to maintain the security at due level. In this thesis we omit the mark
embedding procedure and concentrate on the creation of the set of �ngerprints
resistant to collusion attacks.

There are many di�erent ways of modeling the broadcasting. In this Thesis
we consider two models: the continuous one, usually called multimedia model, in
which a digital content x is represented as a vector over the �eld of real numbers
(see [?]), and another model where a digital content x is a vector over some �nite
alphabet. The later model heavily exploits secret sharing schemes.

In the multimedia model the distributor, in order to create the set of �nger-
prints, chooses n orthonormal noise-like signals (vectors), which length (energy)
is much smaller then the length of the host signal, and then set each �ngerprint
as a linear combination of these vectors. The coe�cients of linear combination
are from {±1} or {0, 1} and are di�erent for di�erent users. Thus, the vector of
coe�cients uniquely identify a particular user. As for embedding of the marks,
the additive embedding procedure is used, i.e., the marked content is just a sum
of original content vector and �ngerprint vector. To create a forged copy the
colluders calculate the linear combination of their copies where the sum of coef-
�cients (of weights) equals one, which is needed to maintain the proper level of
energy of the signal. The fact that users are restricted to the linear attacks and
cannot manipulate the individual (basis) signal constitutes the so called marking
assumption for multimedia version. The main problem is the same: to create a
set of vectors (of coe�cients) of maximal possible cardinality in such a way that
the distributor can reveal at least one participant of coalition of size ≤ t. In
overwhelming majority of cases the authors considered only the case of averaging
type of the collusion attack, namely, the colluders have the same impact into the
resulting forged vector, i.e., all the coe�cients of linear combination are equal.
But from the cryptography point of view the averaging attack is much weaker
than the general linear attack since in this case the strategy of colluders is known
to the distributor. In the Thesis we consider the case of arbitrary weights and we
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derive more e�cient results (codes) for the case of stronger attack. We establish
teh relationship between this problem and signature codes for the corresponding
multiple access channels and propose also a family of codes with an e�cient al-
gorithm for tracing colluders.

Another model, based on secret sharing schemes, was proposed in the begin-
ning of nineties by Chor, Fiat and Naor in [44] where they invented a combinatorial
scheme for broadcast encryption known today as traitor tracing scheme. Consider
a distributor who has some digital content to broadcast and who wants to sell the
access to this content only to authorized users, i.e., users who paid for the access.
To prevent illegal redistribution of the data, the distributor encrypts the data
blocks with session keys and gives to each authorized user the corresponding set
of keys which we will also call decoders. These decoders are needed to decipher
session key and then the original content. The main challenge of broadcast en-
cryption schemes is to make them collusion resistant. Indeed, malicious users, in
order to create a pirate version of the decoder and not to reveal completely their
identities, can form a coalition and create a pirate version as a mixture of their
decoders. In other words, the pirate version represents users from the coalition
but only partially, so for the distributor it becomes harder to identify the partici-
pants of the coalition. Assuming that the cardinality of a possible coalition is not
greater than some integer t, the desired property is that once a forged decoder
is found, the distributor can trace it back to at least one traitor from the corre-
sponding malicious coalition.

There are three particular cases of tracing traitors schemes known as codes
with the identi�able parent property (IPP codes) [45], (binary) set systems with
the identi�able parent property (IPP set systems) [46], [47] and non-binary IPP
set systems [48]. The IPP codes were extensively studied in the literature, see
e.g. [49], [50], [51], also a detailed overview can be found in [52], [53]. These codes
(schemes) are based on a perfect (n, n)-threshold secret sharing scheme (see [54],
[55]). As for the binary IPP set systems, it started with the papers [46], [47]
and the most recent results can be found in [56], [57] and [58]. These schemes
are based on a perfect (w, n)-threshold secret sharing scheme. A new, the most
general type of IPP systems, called non-binary IPP set systems, was introduced
in [48], and further developed in [59], [60]. Non-binary IPP set systems have
IPP codes and binary set systems as its partial cases. Such scheme constitute
the subject matter of the fourth chapter devoted to the applications of signature
codes. In particular, we shall shown how codes for such scheme are connected
with the so-called �malicious MAC�, when the output of a MAC is controlled by
our opponent who can chooses the input symbol among accessible ones. Namely,
we consider A-channel with additional property that the receiver (decoder) sees
not all used elements of the input alphabet X, but only one of them, and this
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element is chosen by dealer's opponent.
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Chapter 2

Signature codes for A-channel

2.1 Coding for multiple access A-channels

In [15] authors introduced a MAC model called q-frequency M -user multiple ac-
cess channel without intensity information, or, simply, A-channel. Formally, this
channel model can be described as follows. Consider a multiple access channel
with M users, where every user can occupy one of q frequencies f1, f1, ..., fq to
transmit on at each time slot during a session. Each session consists of n time
slots. For the A-channel, the output at each time slot is a symbol that repre-
sents the subset of frequencies occurred as inputs to the channel at that time slot.
Now the name of the channel becomes clear � for A-channel only frequencies
are known, but how many users used a particular frequency at a particular time
slot is unknown, thus without intensity information. The channel for which this
information is known is called B-channel and will be studied in the next chapter.
The output of the entire session for A-channel consists of n such symbols, one
symbol for one time slot. For simplicity, the input alphabet will be represented
as A = {1, 2, ..., q} and output alphabet as a set of all binary vectors of length
q. Indeed, for the A-channel the output symbol can be represented as a binary
vector of length q for which the j-th coordinate (j ∈ [q] := {1, . . . , q}) equals 1
if and only if frequency fj was used by at least one user at considered time slot.
In the paper [15] authors considered the case of information transmission, i.e.,
when each user has a code Ci, i ∈ [M ] that consists of signals corresponding to
the messages. Signals are represented as q-ary vectors, each coordinate de�nes
the frequency that is used for information transmission at the corresponding time
slot. At each session user can transmit one of its signals (messages). The problem
is to construct such set of codes for users that given the output of the A-channel
it is possible to identify which message was sent by each user. The parameter
that is studied for such systems is called the sum rate and is de�ned as

RA
sum = RA

1 + ...+RA
M ,

where RA
i = n−1 log |C|i. In [15] both information-theoretic bounds on the achiev-

able sum rate and constructive coding schemes were investigated.
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In that chapter, we will say signature code to refer to signature codes for A-
channel, since the whole chapter is devoted to the A-channel.

Formally, the output of the A-channel can be de�ned as follows. Consider a
set C ⊂ {0, 1, 2, ..., q−1}n consisting of some q-ary vectors of length n, each such
vector represents one user. According to the described model of A-channel, the
output can be formally described as the following transfer function SA that maps
a subset of C = {c1, ..., cM} to the binary matrix of size n× q:

SA : C → {0, 1}n×q (2.1.1)

according to the following rule : let U ⊂ C then SA(U) is a binary matrix of size
n× q such that the element

SA(U)ij = 1 i� ∃u ∈ U : ui = j

for i ∈ [n], j ∈ [q]. In other words, the output matrix describes the presence
of each frequency (element of q-ary alphabet) at each time slot. So, following
the general de�nition of t-signature code for multiple access channel (de�nition
1.1.1) a q-ary code C is called a t-signature code for adder channel if for any two
di�erent subsets U, V ⊂ C such that |U |, |V | ≤ t it holds that

SA(U) 6= SA(V ). (2.1.2)

The binary case will be of a main interest in this chapter and it is convenient
to consider the output SA(U) as a vector of length n over a ternary alphabet
{0, 1, {0, 1}}. Note, that SA(U)i = 1 i� all vectors u ∈ U have 1 at i-th position,
SA(U)i = 0 i� all vectors u ∈ U have 0 at i-th position, and SA(U)i = {0, 1} i�
there were both vectors with 0 and 1 at i-th position.

The main parameter that is studied in this chapter is the rate of the best
t-signature code which is de�ned as

RA
t (n) := maxn−1 log2 |C|, (2.1.3)

where the maximum is taken over all t-signature codes C of length n. In the rest
of this chapter we will consider the estimation of the rate of binary signature codes
for noisy and noiseless cases and especially its asymptotic behavior as n→∞.

2.2 Upper and lower bounds via separating codes

Recovering the whole set of active users. We argue that the task of identify-
ing all active users of a session can be solved by means of superimposed (cover-free)
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codes, introduced in 1964 [2], and later investigated in [31,32,61], and separating
codes, see [17]. Saying in other words, these two types of codes are at the same
time t-signature codes for A-channel. In what follows we will give the necessary
de�nitions and establish the connection of these notions with the speci�city of the
A-channel.

To get closer to the notions of superimposed and cover-free codes we start
with another channel model known as OR-channel or disjunctive channel. The
idea of the OR-channel is the same as the A-channel with the only di�erence in
the outputs. As for binary A-channel, each user has its own binary vector, that is
transmitted to mark the desire to be active. For OR-channel model the output of
the channel for one time slot is 1 if at least one user from the set of active users
has one, and 0 otherwise. Formally, we have the following de�nition of signature
codes that can be used to recover the set of active users for OR-channel.

De�nition 2.2.1. [2] A binary code C is called a t-signature code for OR-channel
if for any two di�erent subsets U, V ⊂ C such that |U |, |V | ≤ t

∨v∈V v 6= ∨u∈Uu,

where a ∨ b is the bitwise logical OR.

Signature codes for OR-channel appeared �rstly in the literature under the
names uniquely decipherable of order t or t-superimposed codes [2]. We will use
all these names to refer to signature codes for OR-channel. Recall one more notion
for OR-channel that will be useful also for A-channel.

De�nition 2.2.2. A binary code C ⊂ {0, 1}n is called a t-cover-free code if for
any U ⊂ C, |U | ≤ t and any z ∈ C \ U the following holds:

(∨u∈Uu) ∨ z 6= ∨u∈Uu. (2.2.1)

In other words, a code C is t-cover-free if for any U ⊂ C, |U | ≤ t and any
z ∈ C \U there exists a coordinate k = k(U, z) such that uk = {0} for all u ∈ U
and zk = 1. The name �cover-free� codes can be explained if we consider subsets
instead of their characteristic vectors. Then, the described above property means
that the family of subsets is a t-cover-free family if no set is covered by the union
of t others. The notion was coined in the paper with the same name by Erdos et
al. [31,61], but �rstly such codes appeared in [2] under the name of zero-false-drop
of order t. More over, it is well known (and easy to check) that a t-cover-free code
is also a t-signature code for the OR-channel. The advantage of cover-free codes
over the signature codes in general is that cover-free codes allow more simple and
faster identi�cation of the set of active users, since instead of considering all possi-
ble subsets of t or less users, one can just consider code vectors that are �covered�
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by the output vector. That means that the complexity of decoding is decreased
from O(M t) to O(M).

Since a t-cover-free code is also a t-signature code for the OR-channel and
OR-channel � A-channel, then Proposition 1.1.1. gives the following useful fact
that any t-cover-free code is also a t-signature code for A-channel.

As it was stated above, if C is a cover-free code then one can just check if the
output �covers� the user's vector or not. Formally, the set of active users can be
found as

Û = {z ∈ C : zi ∈ Ui, i = 1, . . . , n},
where S(U) = (U1, . . . , Un) is an output of the A-channel.

It is known [62], [31,61] that the rate Rt−cf of the best t-cover-free code is at
least Θ(t−2). Therefore we immediately conclude that for any �xed t there exist
t-signature codes for A-channel with non-vanishing rate, i.e., good codes, which
are capable of identifying the entire set of active users. But even though cover-free
codes give an idea of how to construct good signature codes for the A-channel,
there exists a more direct solution which employs the notion of separating systems.

De�nition 2.2.3. [16] A q-ary code C ⊂ {1, 1, ..., .q}n is called (s, t)-separating
code if for any two disjoint sets V, U ⊂ C such that |V | ≤ s, |U | ≤ t there
exists at least one coordinate which separates them, i.e., there exists k ∈ [n] s.t.
Vk ∩ Uk = ∅.

Note that (1, t)-separating and (t, t)-separating codes were rediscovered in [63]
under the names of frameproof and secure frameproof codes respectively. For
extensive describtion of results about separating codes see two excellent survey
papers [17], [64]. And for recent results for the case q →∞ see [65].

Let us note that (1, t)-separating codes play the same role for the A-channel as
superimposed codes play for the OR-channel, in particular, any (1, t)-separating
code is also a t-signature code for A-channel. Namely, if C is (1, t)-separating
code, then the set U of active users can be uniquely recovered as

Û := {c ∈ C : ci ∈ Ui, i = 1, . . . , n}, (2.2.2)

where S(U) = (U1, . . . , Un) is the corresponding output of A-channel and

Ui := {ui|u ∈ U}. Indeed, U ⊆ Û since ui ∈ Ui for any u ∈ U and all i.

Let U 6= Û and z ∈ Û \ U , but then z cannot be separated from U what contra-
dict to the (1, t)-separation property.
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Denote by Rt−sep the largest possible rate of binary (1, t)-separating codes and
by Rt−cf the largest possible rate of t- cover-free codes. The following relationship
between rates of best separating and best cover-free codes is rather obvious and
long known, see [2]):

Rt−cf ≤ Rt−sep ≤ 2Rt−cf . (2.2.3)

The best known results for Rt−cf have the following form for large t, see [62]:

ln 2

t2
(1 + o(1)) ≤ Rt−cf ≤

2 log2 t

t2
(1 + o(1)). (2.2.4)

Hence we now conclude that for large t:

Θ(t−2) ≤ Rt−sep ≤ O

(
log2 t

t2

)
. (2.2.5)

Note that in binary separating codes we can use both types of (1, t)-separation,
i.e., at a particular position all vectors from U, |U | ≤ t have zero and vector z has
one or the inverse � all vectors from U have one and vector z has zero. That fact
describes the advantage of separating systems over cover-free families for which
only one type of separation is allowed.

At the same time, the (1, t)-separation property is stronger than the t-
signature property for the A-channel. Indeed, signature codes demand only that
for di�erent subsets of users the corresponding outputs are also di�erent. In par-
ticular, let us note that (1, t)-separating codes a�ord a relatively simple decoding
procedure with complexity of order M instead of the brute-force complexity M t.
Therefore, it is in principle possible that t-signature codes have rate that asymp-
totically exceeds (2.2.5). The following statement due to [4] (Lemma 4.6) shows
that it is not true.

Proposition 2.2.1. Any t-signature code for A-channel is a (1, t−1)-separating
code.

Proof. Let C be a t-signature code for A-channel. This means that for any two
di�erent subsets of users U 6= V , |U | ≤ t, |V | ≤ t their signature vectors S(U)
and S(V ) are di�erent. Let V be any active subset of size t − 1 and let x be
any vector not from V . Set U := V ∪ x. Then S(U) = S(V ∪ x) 6= S(V ),
which implies that there exists a coordinate k such that xk /∈ Vk, i.e., the k-th
coordinate separates x from V .

Denote by RA
t the highest possible rate of binary t-signature codes for A-

channel. Then �nally we have
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Theorem 2.2.1. For large t

Θ(
1

t2
) ≤ RA

t ≤ O

(
log t

t2

)
. (2.2.6)

Proof. According to 2.2.1 and application of the proposition 1.1.1 to the fact that
OR-channel � A-channel, we have

Rt−sep ≤ RA
t ≤ R(t−1)−sep.

Also, according to (2.2.3)

Rt−cf ≤ Rt−sep ≤ RA
t ≤ R(t−1)−sep ≤ 2R(t−1)−cf .

So, following (2.2.5) we can conclude that

Θ(t−2) ≤ RA
t ≤ Θ

(
log t

t2

)
.

For small t there is a substantial di�erence between the rate RA
t and the rate

Rt−sep of (1, t)-separating codes. Consider as example the binary case with t = 2.
For (1, t)-separating codes it is known, see [17], [64] that

1− log2 3

2
= 0.207518 ≤ R2−sep ≤ 0.5. (2.2.7)

It is interesting to note that the lower bound from (2.2.7) which is due to Gilbert-
Varshamov type bound random coding technique was beaten by the means of
algebraic geometry (AG) codes in [66]. So, the best known lower bound for today
is

R2−sep ≥ 0.207565.

On the other hand, it is known and easy to check that A-channel with two
frequencies is the same as the binary adder channel. The adder channel also
consists of users who have binary vectors, and the output is modeled as the sum
(over real numbers) of the vectors of active users. So, equivalence of these channels
can be seen if we replace outputs of the A channel 0, 1 and {0, 1} on integers 0,
2 and 1 correspondingly, see [13], [15]. As for the rate R2 of the best 2-signature
codes for the adder channel the following bounds are known:

0.5 ≤ RΣ
2 ≤ 0.5753, (2.2.8)
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where the lower bound was obtained in [25,27], and the upper one in [67]. So, for
small t signature codes for the adder channel provide better rate than separating
codes.

Note that we consider the asymptotic behavior when �xed channel's input
alphabet is �xed but the code length n tends to in�nity. There are papers, see
the corresponding overview [68], where another type of asymptotic behavior is
considered, namely, when the code length n is �xed but the size of the alphabet
q goes to in�nity. Our consideration is arguably more in line with other basic re-
sults of information theory which typically assume a �xed channel alphabet and
increasing code length.

Recovering at least one active user. Without restricting ourselves to the
complete identi�cation of the set of active users, we can achieve even better code
rates. The following de�nition was coined in [69], where the idea of recovering
one user instead of an entire set was inspired by the �ngerprinting problem that
we will discuss later.

De�nition 2.2.1. A code C ⊂ {0, 1}n is t−single user tracing (SUT) if from the
bitwise OR of words from any subset U ⊂ C such that |U | ≤ t we can �nd out
at least one word from U .

In other words, for any family of subsets C1, ..., Ck ⊂ C such that |Cj| ≤ t
the equalities ∨

c∈C1

{c} = ... =
∨
c∈Ck

{c} imply
⋂
j=1..k

Cj 6= ∅.

Lemma 2.2.1. If the code C is t−SUT then this code can be used to recover from
the output S(U) at least one active user participating in a particular time slot.

Proof. This fact follows immediately from the fact that t-signature codes for OR-
channel can be used for A-channel.

According to [70], the rate Rt−SUT = n−1 log2 |C| for t−SUT is the following
R ≥ 1

20t > 0. Later, in [71] authors improved the results of [70] by considering
the identi�cation of bigger number of uses. Namely, the following de�nition was
introduced.

De�nition 2.2.2. A code C ⊂ {0, 1}n is k-out-of-t user tracing(k, t-UT) if from
the bitwise OR of any l ≤ t words from C one can identify at least min(k; l) of
these words.

Formally, for any family of subsets C1, ..., Ck ⊂ C such that |Cj| ≤ t the
equations ∨

c∈C1

{c} = ... =
∨
c∈Ck

{c} imply
⋂
j=1..k

Cj ≥ k.
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In [71] it was proved that if k ≤
√
t then the rate Rk,t−UT = n−1 log2 |C| of

k-out-of-t user tracing code is of order

Rk,t−UT = Θ(t−1).

Which means that the order of the rate changes only by a constant factor while
increasing the number of identi�able users. This result is more important for the
multimedia digital �ngerprinting codes (see section 4.2), rather than for multiple
access channels.

2.3 Construction of signature codes with e�cient decoding

algorithm

As already remarked, (1, t)-separating codes a�ord a decoding complexity O(nM)
which is lower than the complexity O(nM t) of identifying active users in the gen-
eral case of signature codes. At the same time, since the best t-signature codes for
A-channel have non-vanishing rate, their cardinalityM is an exponential function
of the length n, and so the overall decoding complexity O(n2Rn) is still too high
for practical applications.

In this section we take up the problem of constructing asymptotically good
t-signature codes for A-channel with decoding complexity polynomial in the code
length. We show that this is possible, although the rate that these codes attain is
smaller than the best known o rate Θ(t−2). More formally we have the following

Theorem 2.3.1. There exist t-signature codes for A-channel with rate of order
Θ(t−3) and decoding complexity polynomial in the code length.

It the chapter 3, dedicated to applications, we will show how t-signature codes
for A-channel are strongly related to digital �ngerprinting codes, but for now, we
will use the ideas presented in a series of works concerning digital �ngerprinting.
Namely, we rely on the ideas of [72] which was the �rst to construct digital �n-
gerprinting codes with non-vanishing rate and polynomial-time decoding. One of
the �rst papers where concatenation was applied for superimposed codes is [73]
and the similar construction for separating codes was considered in [74].

In what follows, we will use the code construction known as concatenated
codes [75]. To introduce reader to the notion we give a formal de�nition.

De�nition 2.3.1. Let C be a q−ary code C of length n with the minimal code
distance d and cardinality Q. And let V be a Q-ary code V of the cardinality M
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and length N over an alphabet A, |A| = Q. Codes C and V are called inner and
outer codes respectively. Let ρ be a bijection mapping

ρ : A → C,

which establish the 1-1 correspondence between codewords from C and elements
from alphabet A. The q-ary code W = C ◦ V of length nN and cardinality M
with codewords constructed as follows

W = {(ρ(v1)||...||ρ(vN)) : v = (v1, ..., vN) ∈ V },

where || denotes the concatenation of words, is called a concatenated code with
inner code C and outer code V .

It is a basic fact about concatenated codes that the code distance of concate-
nated code satis�es d(W ) ≥ dD.

It is rather common and we will do the same, namely, to use Reed-Solomon
code (RS code) as the outer code in our construction.

De�nition 2.3.2. Let Fq = {α0, ..., αq−1} be a �nite �eld,

RS = {c = (f(αi1), ..., f(αin)) | f ∈ Fq[x], deg(f) < k}.

It is a linear code of dimension k and code distance d(RS) = n− k + 1.

As in [72], we employ the idea of code concatenation with random inner
codes and Reed-Solomon codes with large distance as an outer codes. Choose
the binary inner code Cinn to be a (1, t)-separating code of length m and car-
dinality q = 2bµmc, where we can take µ = −t−1 log2(1 − (et)−1), and hence
µ ≥ (et2 ln 2)−1. Such codes can be shown to exist by constructing random codes
with independent coordinates and with probability of one equal to p1 = 1/t.
Let the outer code be a q-ary Reed-Solomon code W of length N = q and rate
Rout = t−1 over the �nite �eld GF (q).

The codewords of the resulting concatenated code have the form

(ϕ(α1), . . . , ϕ(αN)), where (α1, . . . , αN) ∈ W

and
ϕ : GF (q)→ Cinn

is a one-to-one map from the �eld GF (q) onto the inner code Cinn. This con-
struction a�ords the following decoding algorithm, similar to Algorithm 1′ in [72].
Let

S = (s11, . . . , s1m, s21, . . . , s2m, . . . , sq1, . . . , sqm) = (s1, . . . , sq)
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be an output of the A-channel. The decoding procedure is performed in two stages
and heavily relies on the famous Guruswami-Sudan list decoding algorithm [76].

Algorithm 2.3.1. Decoding procedure.

1. In the �rst stage, we use a brute-force tracing algorithm for the inner code
Cinn to decode vectors s1, . . . , sq as output vectors of A-channel.

Let U (1), . . . , U (q) be the corresponding subsets of Cinn, where |U (i)| ≤ t
and let Hi := ϕ−1(U (i)) ⊂ GF (q).

2. In the second stage of the tracing algorithm, we use a soft-decoding ver-
sion of the Guruswami-Sudan list decoding algorithm [76] which returns all
codewords w ∈ W that satisfy the inequality

r(w) :=
N∑
i=1

rwi,i ≥
√
NRout

∑
i,j

r2
ji, (2.3.1)

where rji are some non-negative weights assigned to the alphabet symbols.
In our case we take rji = 1 if j ∈ Hi and rji = 0 otherwise. It is easy to
check that we need to �nd all codewords w ∈ W such that r(w) = N .

Since the length of the inner code is logarithmic in the length of the en-
tire concatenated codeword, the brute-force search has complexity polynomial in
the code length n = mq. Also, note that with the chosen parameters, namely,∑

i,j r
2
ji =

∑
i |Hi| ≤ Nt and Rout = 1/t, the list decoder returns a polynomial-

size list that may contain some excess codewords but they can be easily sorted out.

2.4 Noise-resistant signature codes for A-channel

In this section we consider the case of noisy outputs of the A-channel and adress
the question of existance of good codes resistsnt to errors. As it was stated in
the previous section, the signature codes for the A-channel are strongly connected
with the cover-free codes for OR-channel. The cover-free codes that can deal with
the presence of noise is already a well studied subject, the most valuable results
can be found in [77], [78], [79]. As for the signature codes for A-channel, there are
only few works that study the noisy case, see, for example, [80] where the proba-
bilistic model of noise in the context of symmetric group testing was considered.

In this thesis we consider the model of adversarial errors. We assume that the
output vector might be erroneous in no more than L positions, i.e., no more than
L coordinates are incorrect. Nevertheless, the receiver should be able to reveal
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all active users. Note, that errors might be of any type, i.e., even if the correct
value is, for example, 1, the erroneous output might be both {0, 1} or 0, but the
number of such errors is upper bounded by L. The goal is the same, i.e., for the
given output vector to recover the set of active users even in the presence of noise.
Formally it can be stated as follows:

De�nition 2.4.1. A t-signature code C is said to correct up to L errors, or (t, L)-
signature code for short, if for any U, V ⊂ C such that |U |, |V | ≤ t and U 6= V
and any S ∈ {0, 1, {0, 1}}n such that

dH(S(U), S) ≤ L and dH(S(V ), S) ≤ L

the equation U = V holds.

Equivalently, a t-signature code C is said to correct up to L errors if the
outputs of the channel di�er in at least D = 2L + 1 positions. Formally, if for
any U, V ⊂ C such that |U |, |V | ≤ t and U 6= V then dH(S(U), S(V )) ≥ 2L+ 1,
where dH denotes the ordinary Hamming distance (here between two ternary
vectors). In this section we are interested in the estimation of the rate RA

t (δ) of
(t, L)-signature codes with δ = 2L+1

n . In what follows we will prove the following
lower and upper bound in the rate of (t, L)-signature codes. As for the lower
bound, we show that for any δ < δcrit = t−1(1− t−1)t the following holds

RA
t (δ) ≥ 2 log2 e

t
(δcrit − δ)2. (2.4.1)

Then, we prove the following upper bound was proved:

RA
t (δ) ≤ 1

t− 1
R(δ),

where R(δ) denotes the asymptotic maximal possible rate of a code in the Ham-
ming space with relative distance δ.

Let's �rstly introduce the notion of separating distance. Consider the function
∆(a,B) for a ∈ {0, 1}, B ∈ {0, 1, {0, 1}} de�ned as ∆(a,B) = 0 if a ∈ B and 1
otherwise.

De�nition 2.4.2. Separating distance dsep between a binary vector c ∈ {0, 1}n
and a ternary vector S ∈ {0, 1, {0, 1}}n de�nes as

dsep(c, S) :=
n∑
i=1

∆(ci, Si) = n− |{i | ci ∈ Si}|.

Now we can move to the de�nition of t-cover-free signature code for A-channel
with particular separating distance.
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De�nition 2.4.3. A binary code C of length n is called a t-cover-free signature
code with separating distance D if for any subset U ⊂ C such that |U | ≤ t and
any code vector z out of U , i.e., z ∈ C \U , there is at least D positions in which
ternary vector S(U) and binary vector z are separated, i.e., dsep(z, S(U)) ≥ D.

Informally, this de�nition means that the output of the channel di�ers from
any vector out of the set of active users in at least D position. As it was done for
the noiseless case, we can establish the connection between introduced notions.

Proposition 2.4.1. If C is a t-cover-free signature code with separating distance
D then C is also a (t, L)-signature code where L = bD−1

2 c.
Proof. Consider the inverse, then there exist two di�erent subsets U, V s.t.
|U |, |V | ≤ t and dH(S(U), S(V )) ≤ D − 1. The following relation is true for
any x ∈ U \ V :

dsep(x, S(V )) ≤ dH(S(U), S(V )) < D

which contradicts the cover-free property.

As it was shown for the noiseless case, the cover-free property provides the
e�cient recovery of the set of active users. The same thing is true for the noisy
case. Indeed, consider the output vector Ŝ which may di�er from S(U) in at most
L positions. Then, the set of active users can be recovered as

B̂ := {c ∈ C; dsep(c, Ŝ) ≤ L} (2.4.2)

which is exactly the set of active users from U . Moreover, it is not di�cult to check
that a (t, L)-signature code is (t − 1)-cover-free signature code with separating
distance D = 2L+ 1.

Proposition 2.4.2. If C is a (t, L)-signature code where L = bD−1
2 c then C is

also a (t− 1)-cover-free signature code with separating distance D.

Proof. Consider the inverse, i.e., there exist a vector x ∈ C and a set U ⊂
C, |U | ≤ t such that dsep(x, U) < D. Consider two subsets of active users: U and
V := U ∪ {x}, then

dH(U, V ) = dsep(x, U) < D

which contradicts with the ability of correcting L errors.

2.4.1 Lower bound on the rate of error-resistant signature code

The lower bound on the rate of t-signature code that is able to correct up to L
errors can be established using the known results for the t-signature codes for OR-
channel resistant to noise. As it was done for the noiseless case, we will use the
notion of cover-free codes, or signature codes for OR-channel, but in the context
where errors are present. The property of error-resistance for cover-free codes can
be formulated in the following way [77].
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De�nition 2.4.1. Superimposed �distance� dsup between two binary vectors
x, y ∈ {0, 1}n is de�ned as

dsup(x, y) = |{i : yi = 0, xi = 1}|.

Remark. Superimposed �distance� is not an ordinary distance because obvi-
ously it is not symmetric in general.

De�nition 2.4.4. A binary code C is called a t-cover-free code with superimposed
distance D if for any U ⊂ C, |U | ≤ t and any c ∈ C \ U

dsup(c,
∨
u∈U

u) ≥ D

or, equivalently, there exists at least D coordinates in which Uk = {0} and ck = 1.

The additional condition about the superimposed distance D provides the
error-tolerant property to the cover-free codes. Indeed, it can be easily checked
that if a code has superimposed distance D, then bD−1

2 c errors can be corrected.
Moreover, we have the following obvious relationship between t-cover-free code
with superimposed distance D and t-cover-free signature codes with separating
distance D.

Proposition 2.4.3. If a code C is t-cover-free code with superimposed distance
D then it is also a t-cover-free signature codes with separating distance D.

So, this fact means that we can use the known lower bounds on the rateRt,D−cf
of cover-free code with superimposed distance D to estimate the lower bound on
the rate of t-cover-free signature codes with separating distance D. The best
known result on the estimation of the asymptotic lower bound of Rt,D−cf is due
to Dyachkov, Rykov, and Rashad [77]. A bit weaker result but in a signi�cantly
simpler form was obtained in [20].

Theorem 2.4.1. For any 0 < ε < δcrit = t−1(1− t−1)t and any natural number
n there exists a binary code C of length n and rate R ≥ 2t−1ε2 log2 e such that
for any t-subset B ⊂ C and any codeword c /∈ B there are at least (δcrit − ε)n
coordinates i in which ci = 1 and bi = 0 for all b ∈ B.

Proof. We use random coding technique with expurgation for proof. Let us gen-
erate a binary random code C of length n and cardinality M by choosing every
coordinate of a codevector equals 1 with probability t−1 and equals 0 with prob-
ability 1 − t−1 independently for di�erent coordinates and di�erent vectors. For
a given vector c and a subset B we call a coordinate i �good� if ci = 1 and bi = 0
for all b ∈ B. Let χi be a random variable which equals 1 if i is �good� and equals
0 otherwise. Then the probability

p = Pr(χi = 1) = t−1(1− t−1)t = δcrit (2.4.3)
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and the expected number of �good� coordinates

E(
n∑
i=1

χi = 1) = np = nδcrit. (2.4.4)

Let us call a codevector c and t-subset B ⊂ C, where c /∈ B, an �ε-good couple�
if the number of corresponding good coordinates is at least n(p − ε), and call a
couple (c, B) an �ε-bad couple� otherwise. The probability that a couple is bad
equals to Pbad = Pr(

∑n
i=1 χi = 1 < n(p − ε)) and according to the Hoe�ding

inequality [81]

Pbad ≤ e−2nε2. (2.4.5)

Hence the expected number of bad couples is MCt
M−1Pbad what is less

thanM
t+1

t! Pbad. Then we expurgate from every bad couple one element (for in-
stance, c) and the rest vectors of C will be a code with no bad couples. Choose

maximal M in such a way that PbadM
t+1t! ≤M/2, i.e., M = t

√
t!P−1

bad/2. There-

fore the resulting code without bad couples has cardinality at least t

√
t!P−1

bad/2/2

and its rate

R ≥ 2ε2

t ln 2
. (2.4.6)

LetM ∗
t (n, L) denotes the maximum possible cardinality of the t-signature code

that is able to correct up to L errors. Then let RA
t (n, δn) := n−1 log2M

∗
t (n, nδ/2)

denote the maximum possible rate of the (t, L)-signature code with 2L+ 1 = δn
and let RA

t (δ) := lim supn→∞Rt(n, δn). Then for any δ < δcrit = t−1(1 − t−1)t

the following holds

RA
t (δ) ≥ 2 log2 e

t
(δcrit − δ)2 . (2.4.7)

Remark. It is worthy to note that δcrit = t−1(1−t−1)t < (et)−1 and the Theorem
remains valid if to replace δcrit on (et)−1.

2.4.2 Upper bound on the rate of error-resistant signature code

In this section we will prove the upper bound on the rate of error-resistant signa-
ture code for A-channel. The theorem 2.4.2 states the upper bound on the car-
dinality of a t-signature code that is able to correct up to L errors. Let A(n′, d′)
denote the maximal cardinality of a code in Hamming space of length n′ and
distance d′, then we have the following estimation

Theorem 2.4.2.

M ∗
t (n, L) ≤ (t− 1)A

(
n

t− 1
,

⌊
2L

t− 1

⌋
+ 1

)
.
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Before proving the theorem, we shall prove the following lemma.

Lemma 2.4.1. Consider a binary code C of length n and the splitting of the
coordinates of the code in t−1 sections I1, ..., It−1 ⊂ {1, ..., n} of size n

t−1. If a code
C is (t, L)-signature code then for any c ∈ C there is an index i ∈ {1, ..., t− 1}
such that dH(c|Ii, a|Ii) ≥ b 2L

t−1c + 1 for any a ∈ C, a 6= c, where a|Ii denotes the
restriction of the vector a to the positions corresponding to the indexes from Ii.

Proof. Let's assume the opposite, i.e., there exists c ∈ C such that for each i ∈ [t−
1] there exist a codeword ci ∈ C such that dH(c|Ii, ci|Ii) ≤ b 2L

t−1c. Then, consider
two di�erent subsets of active users U = {c1, ..., ct−1} and V = {c1, ..., ct−1}∪{c},
consider also the characteristic vectors u and v corresponding to the sets U and
V . The distance dH(S(U), S(V )) ≤ b 2L

t−1c(t− 1) = 2L which contradicts the fact
that C is (t, L)-signature code. That concludes the proof of the lemma.

Now, we can move to the proof of the Theorem 2.4.2.

Proof. Let's make the same splitting of the coordinates of the code in t−1 sections
I1, ..., It−1 ⊂ {1, ..., n} of size n

t−1 . Among all submatrices that correspond to the
de�ned partitioning let's take the submatrix that contains the maximum number
of (sub)words with respect to the condition of the lemma. The number of such
words is at least N

t−1 . We know that all such words are di�erent from each other

in at least b 2L
t−1c+ 1 positions, so we can estimate N

t−1 as

N

t− 1
≤ A

(
n

t− 1
,

⌊
2L

t− 1

⌋
+ 1

)
.

The following statement reformulates the theorem in terms of the code rate.
Recall that R(δ) denotes, as usual, the asymptotic maximal possible rate of a
code in the Hamming space with relative distance δ. Then we have the following
bound

Corollary 2.4.1.

Rt(δ) ≤
1

t− 1
R(δ).

Proof of the corollary. From the theorem

N

t− 1
≤ A

(
n

t− 1
,

⌊
2L

t− 1

⌋
+ 1

)
,

so
log2N

n
≤

log2A
(
n
t−1 ,

⌊
2L
t−1

⌋
+ 1
)

n
+

log2(t− 1)

n
.
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As n→∞, it can be rewritten as

Rt(δ) ≤
R(δ) n

t−1

n
=
R(δ)

t− 1
,

where δ = 2L+1
n .

We mentioned in the previous section that any lower bound on the rate of the
best t-cover-free code capable to correct L errors is valid for the best t-signature
code correcting up to L errors. But for upper bounds the situation is converse.
Namely, the same bound was proved in [77] and its proof is very simple, based just
on counting arguments. We proved stronger result from which the result of [77]
follows immediately.
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Chapter 3

Signature codes for B-channel

3.1 Problem statement

In [15] in addition to A-channel authors also introduced a channel model called
q-frequencyM -user multiple access channel with intensity information, or, simply,
B-channel. Formally, this channel model can be described as follows. Consider
a multiple access channel with M users, where every user can use one of q fre-
quencies f1, f1, ..., fq to transmit on at each time slot during a session. For the
B-channel, the output is modeled determetistically, see Figure 2. Output at each
time slot is a symbol that represents the subset of frequencies occurred as inputs
to the channel at that time slot and the number of times that each frequency was
used. This output model is stated in the name of the channel � for B-channel both
the subset of used frequencies and how many users used a particular frequency
at a particular time slot are known (intensity information). The output of the
entire session for B-channel consists of n such symbols, one symbol for one time
slot. For simplicity, the input alphabet will be represented as A = {1, 2, ..., q}
and output alphabet as a set of all M -ary vectors of length q. Indeed, for the
B-channel the output symbol can be represented as an M -ary vector of length q
for which the j-th coordinate (j ∈ [q]) equals the number of times the frequency
fj was used by active users at considered time slot. In [15] the case of information
transmission as well as the corresponding capacity region was considered. In this
thesis we consider only the case of partial activity with activeness status, i.e., each
user transmits as information its own status only: whether it is active or not. So,
mathematically we have the following problem.

Consider an M -user multiple access channel with partial activity, where each
of the users has one q-ary vector of length n to transmit, but at any time at most
t users may transmit simultaneously. If the channel input is a set U =

{
u(j) =

(u
(j)
1 , . . . , u

(j)
n ) | j = 1, . . . , `

}
⊂ An of q-ary words where |U | = ` ≤ t, then its
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output is an n× q matrix

S(U) =

comp(u
(1)
1 , . . . , u

(`)
1 )

...

comp(u
(1)
n , . . . , u

(`)
n )

 ,

where comp(·) is de�ned as follows.

De�nition 3.1.1. The composition of a vector y = (y1, . . . , y`) ∈ A` is a se-
quence comp(y) = (w1, . . . , wq) where wa is the number of occurrences of a
symbol a ∈ A in y.

Thus, an entry S(U)ij of S(U) is the number of elements j ∈ A occurring in
the ith coordinate of vectors in U . Clearly, w1 + . . .+wq = `, and the number of

di�erent compositions for �xed q and ` is
(
`+ q − 1
q − 1

)
. In what follows, by S(U)i

we denote the ith row of S(U).

Example 3.1.1. Let A = {1, 2, 3}, n = 4, and U =




1
2
3
1

 ,


2
2
3
1

 ,


3
1
3
1

 ,


3
2
3
2


;

then S(U) =


1 1 2
1 3 0
0 0 4
3 1 0

. Here, for example, the matrix entry S(U)22 = 3, since

the element 2 occurs in the second coordinate of words in U exactly three times.

In what follows we refer to such a channel as a compositional channel or B-
channel. For partial activity channels the problem is to construct such set of
vectors that, given a channel output, one could correctly identify the set of active
users. This requirement for B-channel can be formalized as follows.

De�nition 3.1.2. A code C ⊆ An is said to be t-signature for B-channel if
compositions of any t distinct vectors (codewords) of C or less are distinct, i.e.,
S(U) 6= S(V ) for any U, V ⊆ C, U 6= V , |U |, |V | ≤ t.

In this thesis we study the asymptotic behavior of the rate of the best t-
signature codes. Denote by Mq(n, t) the maximum possible size of a q-ary t-
signature code of length n, and by RB

q (n, t) = n−1logq(Mq(n, t)), the maximum
possible rate of such a code. We are mostly interested in the behavior of the
functions

RB
q (t) := lim inf

n→∞
RB
q (n, t) and RB

q (t) := lim sup
n→∞

RB
q (n, t).
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The main result of the chapter is proving that for t large enough we have the
following inequalities:

(q − 1)
logq t

4t
− c1

4t
≤ RB

q (t) ≤ RB
q (t) ≤ 2

(
(q − 1)

logq t

4t
+
c2

4t

)
,

where c1 = c1(q) = q(1− logq(2π))+2 logq e and c2 = c2(q) = q(−1+4 logq e). In
what follows, log is understood to be the logarithm to the base q, unless otherwise
speci�ed.

3.2 Lower Bound

The main result of this section is as follows.

Theorem 3.2.1. There exists a number t∗ = t∗(q) such that for any t ≥ t∗ we
have the inequality

RB
q (t) ≥ (q − 1)

4t
log t−

q log( q
2π) + 2 log e

4t
. (3.2.1)

Before proving the main result, we prove the following auxiliary lemma.

Lemma 3.2.1. For any k ≥ 1 we have∑
k1,...,kq

k1+...+kq=k

(
k!

k1! . . . kq!

)2

≤ (2π)−q/2eq2k+q/2k
1−q
2 .

Proof. Clearly,

∑
k1,...,kq

k1+...+kq=k

(
k!

k1! . . . kq!

)2

≤

( ∑
k1,...,kq

k1+...+kq=k

(
k!

k1! . . . kq!

)) max
k1,...,kq

k1+...+kq=k

(
k!

k1! . . . kq!

)

= qk

 max
k1,...,kq

k1+...+kq=k

(
k!

k1! . . . kq!

) .

Note that the multinomial coe�cient attains its maximum at values of k1, . . . , kq
close to k/q; therefore, without loss of generality, we will assume that k1 = . . . =
kq = k/q and replace the factorial with the gamma function if necessary. We
obtain ∑

k1,...,kq
k1+...+kq=k

(
k!

k1! . . . kq!

)2

≤ qk
k!((
k

q

)
!
)q .
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By Stirling's formula,

√
2πn

(n
e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(n
e

)n
e

1
12n

for any n ≥ 1. We use a weak version of this inequality, namely

√
2πn

(n
e

)n
≤ n! ≤ e

√
n
(n
e

)n
.

The simpli�cation of the upper bound follows from the fact that
√

2πe
1

12n < e for

n ≥ 2, while for n = 1 we have e
√
n
(
n

e

)n
= 1! = 1. It is known that

Γ(n+ 1) ≥ nne−n
√

2π(n+ 1/6) > nne−n
√

2πn

for any real n ≥ 1 (see [82]). For n ∈ (0, 1] it is known from [82] that

Γ(n+ 1) ≥
√

2e

(
n+ 0.5

e

)n+0.5

.

One can easily show that

√
2e

(
n+ 0.5

e

)n+0.5

> nne−n
√

2πn.

Indeed, the function f(n) =
(

n

n+ 0.5

)n+0.5√
π increases for n ∈ (0, 1]. Hence, the

maximum is attained at n = 1, but(
1

1.5

)1.5√
π ≈ 0.964 . . . < 1.

Therefore, Γ(n+ 1) > nne−n
√

2πn for any positive real n.

Turning back to estimating the sum of squared multinomial coe�cients, we
obtain

∑
k1,...,kq

k1+...+kq=k

(
k!

k1! . . . kq!

)2

≤ qk
k!(

Γ
(
k

q
+ 1
))q ≤ qke

√
k
(
k

e

)k
(
e−k/q

√
2πk/q

(
k

q

)k/q)q
=

eq2k+q/2

(2π)q/2kq/2−1/2
= (2π)−q/2eq2k+q/2k

1−q
2 .
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Now we come back to the proof of the theorem.

Proof. We use the random coding method. Consider a random code C =
{c1, . . . , cM} with symbols chosen from a q-ary alphabet independently and
equiprobably. Let us upper estimate the probability Pr(∗) of the following event:
the random code C is not t-signature.

Note that the equality S(U) = S(V ) implies S(U \V ) = S(V \U). Also, note
that for any U ⊆ C sums of entries in all rows of S(U) are the same and equal
the cardinality of the subset U . Thus, to check whether a code is t-signature,
it su�ces to consider only disjoint sets of the same cardinality no greater than
t. Thus, a code is not t-signature if and only if there exist at least two disjoint
subsets U, V ⊆ C of cardinality k ≤ t with S(U) = S(V ). The union bound
yields

Pr(∗) ≤
∑
U,V⊆C
|U |=|V |≤t
U∩V=∅

Pr(S(U) = S(V )) =
t∑

k=1

 ∑
U,V⊆C
|U |=|V |=k
U∩V=∅

Pr(S(U) = S(V ))

 .

Note that Pr(S(U) = S(V )) =
n∏
i=1

Pr(S(U)i = S(V )i). Since Pr(S(U)i = S(V )i)

is independent of i, i.e., Pr(S(U)1 = S(V )1) = . . . = Pr(S(U)n = S(V )n), we
have Pr(S(U) = S(V )) = (p(k))n, where k = |U | = |V | and where p(k) is the
probability for compositions of two q-ary k-tuples with symbols chosen from a
q-ary alphabet independently and equiprobably to coincide. Thus, we have the
following inequality:

Pr(∗) ≤
t∑

k=1

(
M

k

)(
M − k
k

)
(p(k))n ≤

t∑
k=1

M 2k(p(k))n. (3.2.2)

Since the number of q-ary sequences of length k with a given composition

(k1, . . . , kq) is
k!

k1! . . . kq!
, we can represent p(k) explicitly:

p(k) =
∑
k1,...,kq

k1+...+kq=k

(
k!

k1! . . . kq!

)
1

qk
·
(

k!

k1! . . . kq!

)
1

qk
.

In what follows we will need the fact that for any k ≥ 1 we have

p(k) ≤ (2π)−q/2eqq/2k
1−q
2 . (3.2.3)

As it was stated in the lemma 3.2.1 for any k ≥ 1 we have∑
k1,...,kq

k1+...+kq=k

(
k!

k1! . . . kq!

)2

≤ (2π)−q/2eq2k+q/2k
1−q
2 .
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Then, clearly, we have that for any k ≥ 1 we have

p(k) ≤ (2π)−q/2eqq/2k
1−q
2 .

Hence, it follows from (3.2.2) and (3.2.3) that for any k0, 1 ≤ k0 ≤ s, we have

Pr(∗) ≤
k0∑
k=1

M 2kp(k)n +
t∑

k=k0+1

M 2k

(
e
( q

2π

)q/2
k

1−q
2

)n
, (3.2.4)

and the claim of the theorem is valid if the right-hand side of (3.2.4) is strictly
less than 1. To this end, it su�ces to show that every term in each of the two
sums is less than 1/t. Let us begin with the terms of the second sum; for them,
we have the following chain of equivalent inequalities:

M 2k

(
e
( q

2π

)q/2
k

1−q
2

)n
< 1/t,

2k logM + log((2π)−nq/2enqqn/2) +
n(1− q)

2
log k < log(1/t),

2k
logM

2nk
+

log((2π)−q/2eqq/2)

2k
+
n(1− q)

2

log k

2nk
<

log(1/t)

2nk
,

whence it follows that it su�ces that the code rate satis�es the condition

R =
logM

n
< Fq(k)− log t

2nk
, where Fq(k) =

(q − 1)

4k
log k−

q log
(
q

2π

)
+ 2 log e

4k
.

Let us check the function Fq(k) for monotonicity. Since

d

dk
Fq(k) = (4k2 ln q)−1

(
q ln

q

2π
+ q + 1− (q − 1) ln k

)
,

the function Fq(k) strictly decreases for k > k̂, where

k̂ =
( q

2π

) q
q−1
e

q+1
q−1 .

Let k0 = dq3/2e. Since k̂ < k0 for q ≥ 2, the function Fq(k) thereby strictly
decreases for k ≥ k0. Hence, if R < Fq(t), then

R < Fq(k)− log t

2nk

for all k ∈ [k0, t] and n large enough, and therefore, as was noted above, each
term of the second sum is strictly less than 1/t.
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Now we consider the �rst term and require that M 2kp(k)n < 1/t for any
k ∈ [1, k0], i.e., 2k logM + n log p(k) < − log t, or equivalently,

R < F̂ (k)− log t

2kn
, where F̂ (k) =

log(1/p(k))

2k
.

Similarly to the above, we obtain that if R < R1, where R1 =
min{F̂ (1), . . . , F̂ (k0)}, then for n large enough each term of the �rst sum in
(3.2.4) is less than 1/t. Hence, RB

q (t) ≥ min{Fq(t), R1}.
Since Fq(t) tends to zero (monotonically for t ≥ k0), there exists t

∗ such that
Fq(t) ≤ R1 for t ≥ t∗.

3.3 Upper Bound

Theorem 3.3.1. Let t and q be constants with t ≥ q ≥ 2; then

RB
q (t) ≤ (q − 1)

log t

2t
+ q
−1 + 4 log e

2t
.

Proof. Consider an arbitrary q-ary t-signature code C of length n and size M .
Denote by U a discrete random variable uniformly distributed on the set of t-
element subsets of C:

Pr(U = A) =


(M
t

)−1

if A ⊆ C, |A| = t,

0 otherwise.

The main idea of the proof, inspired by [83, 84], is estimating from above and
below the entropy of the random variable S(U). These estimates will give an
upper bound on the rate of an s-compositional code.

1. Let us estimate H(S(U)) = Hq(S(U)) from below. Since the code is t-
signature, values of S(U) for di�erent values of U are also di�erent, which implies
that H(S(U)) = H(U). Since U is uniformly distributed on t-element subsets
A of C, we have

H(U) = −
∑

A: |A|=t

Pr(U = A) log(Pr(U = A)) = log

(
M

t

)
≥ s log

M

t
(1 + o(1)).

2. Now we estimate H(S(U)) from above. In this case the main idea consists
in estimating the entropy of entries of the matrix S(U) and applying the entropy
property

H(X1, . . . , Xn) ≤
n∑
i=1

H(Xi).
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To simplify the notation, introduce vectors w(i) = (w1
i , . . . , w

q
i ), where w

j
i is

the number of codewords with an element j ∈ Q in the ith coordinate, and a
vector k = (k1, . . . , kq); i.e., kj ≥ 0 for all j, and k1 + . . .+ kq = t. Then

Pr
(
S(U)i = k

)
= p(k,w(i)) =

(
w1
i

k1

)(
w2
i

k2

)
. . .
(
wq
i

kq

)
(
M
s

) .

Hence, for all i = 1, . . . , n, the random vector S(U)i has a multivariate hyperge-
ometric distribution, and

H(S(U)i) = H(Hyp(M, t,w(i))) = −
∑

k: k1+...+kq=t

p(k,w(i)) log(p(k,w(i))).

Put pj =
wj

i

M
.

Lemma 3.3.1. For a �xed t and M → ∞, for any k and w(i) we have the
inequality

−p(k,w(i)) log(p(k,w(i))) ≤ t!

k1! . . . kq!
pk11 . . . pkqq log

k1! . . . kq!

t!(p1)k1 . . . (pq)kq

(
1 +O

(
1

M

))
Proof. Note that

p(k,w(i)) =

(
w1
i

k1

)(
w2
i

k2

)
. . .
(
wq
i

kq

)
(
M
t

) ≤ (w1
i )
k1 . . . (wq

i )
kq

k1! . . . kq!

t!

M t

(
M

M − t

)t
,

i.e.,

p(k,w(i)) ≤ s!

k1! . . . kq!
pk11 . . . pkqq

(
1 +

t

M − t

)t
=

t!

k1! . . . kq!
pk11 . . . pkqq

(
1 +O

(
1

M

))
. (3.3.1)

Since the function −x log x is strictly increasing in the interval [0, e−1], the
claim of the lemma is valid if

s!

k1! . . . kq!
pk11 . . . pkqq (1 +O(1/M)) < e−1.

If t!(k1! . . . kq!)
−1pk11 . . . p

kq
q (1+O(1/M)) ≥ e−1, then for all j with kj > 0 we have

pj ≥ p
kj
j ≥ pk11 . . . pkqq ≥ (et!(1 +O(1/M)))−1 ≥ c > 0,
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where c is a positive constant. Thus, for any j, either kj is zero or wj
i ≥ cM .

Then

p(k,w(i)) ≥

∏
j: kj>0

(wj
i − kj + 1)kj

k1! . . . kq!

s!

M t
≥ t!

k1! . . . kq!
pk11 . . . pkqq

(
1− t

cM

)t
.

The obtained inequality and inequality (3.3.1) imply that in the considered

case we have p(k,w(i)) =
t!

k1! . . . kq!
pk11 . . . p

kq
q (1 + O(1/M)). Since the derivative

of −x log x is bounded in the interval [e−1, 1], the claim of the lemma holds in
this case with equality, which completes the proof of the lemma.

The lemma implies

lim
M→∞

H(Hyp(M, t,w(i))) ≤
∑

k1+...+kq=t

s!

k1! . . . kq!
pk11 . . . pkqq log

k1! . . . kq!

t!pk11 . . . p
kq
q

= H(Mult(t, p1, . . . , pq)).

It was proved in [85] that the entropy of the polynomial distribution attains

its maximum at p1 = . . . = pq =
1

q
, which implies

lim
M→∞

H(S(U)i) ≤H(Mult(t, 1/q, . . . , 1/q)).

Now the problem reduces to estimating the entropy of the polynomial distri-
bution at the point (1/q, . . . , 1/q). It [86] there was proved an upper bound on
the entropy of the polynomial distribution in the general case. Namely, it was
proved that for any admissible values of the parameters q and t one has

H(Mult(t, p1, . . . , pq)) ≤
1

2
log
(
(2πet)q−1p1 . . . pq

)
− q

2
log(2π)

+

(
3

2

q∑
i=1

pi
qi

+ (t− 1)

q∑
i=1

p2
i

qi
− t+

1

2

)
log e

−
q∑
i=1

(
tpi +

1

2

)
log

pi
qi
− 1

2

q∑
i=1

(1− pi)t log teqi,

where qi = max
{

1

t
, pi

}
.

In our case, t ≥ q; therefore, p1 = . . . = pq = q1 = . . . = qq = 1/q and

H(Mult(t, 1/q, . . . , 1/q)) ≤ 1

2
log
(
(2πet)q−1q−q

)
− q

2
log(2π)+

(
3

2
q − 1

2

)
log e

− 1

2

q∑
i=1

(
1− 1

q

)t
log te

1

q
≤ q − 1

2
log t+

q

2
log(e4q−1).
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Combining the upper and lower bounds and using the sub-additivity property of

the entropy, H(X1, . . . , Xn) ≤
n∑
i=1

H(Xi), we conclude that, as M → ∞, we

have

t log
M

t
≤H(S(U)) ≤ n

(
q − 1

2
log t+

c2

2

)
(1 + o(1)),

where c2 = q log
(
e4

q

)
. Since the code rate is R =

logM

n
, these inequalities imply

R ≤ (q − 1) log t+ c2

2t
(1 + o(1)) +

t log t

n
;

therefore, as n → ∞ and M → ∞ with t �xed, we obtain the following upper
bound on the asymptotic rate of q-ary t-signature codes:

RB
q (t) ≤ (q − 1)

log t

2t
+
c2

2t
.

The theorem is proved.

3.4 Binary adder and B-channels, and their generalizations

It is clear that in the binary case B-channel and adder channel coincide (almost,
see remark below), and one of natural questions is how to generalize them to
the non-binary case. The most interesting generalization is introduced by us the
weighted adder channel which is of independent interest, and will be applied in
Chapter 4 to construction of multimedia digital �ngerprinting codes.

Remark. Let us remind that for binary adder channel its i-th output symbol
is just the number of ones at the i-th position of vectors of active users. And
for binary B-channel its i-th output symbol is the number of zeros and ones. It
looks like that B-channel provides more information. The di�erence is actually
not so important, because it is possible to receive the same amount of information
from the adder channel by increasing the code length by one. Indeed, let us add
extra coordinate to user's vector and set its value equals to one. Then, the value
at this position of the output vector will be equal to the number of active users.
Asymptotically, this additional coordinate will not make any changes for the rate
of corresponding signature codes, which means that these models of channels are
equivalent.

Let us continue with an unexpected observation that non-binary B-channel
investigated in previous sections is not, in fact, so much nonbinary. Namely,
consider q-ary B-channel in the corresponding binary form where a symbol i ∈
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{1, . . . , q} corresponds to a binary vector of length q with 1 in the i-th position,
and all other symbols equal to zero. Thus, a q-ary signature code of length n and
the cardinality M becomes binary, its size is still M , and the length of binary
codewords is n2 = qn, i.e., becomes q times as large. Coming back to the original
problem setting of communication channels with multiple frequency modulation
let us asume now that users are allowed to employ not a single but any number
of frequencies, i.e. they can transmit arbitrary binary vectors. Then transmission
over a q-ary B-channel turns into transmission over a binary adder or B-channel.
Therefore, according to [30,83], we have the following upper and lower bounds on
the best possible rate R2 of an arbitrary binary code:

logq t

4t logq 2
=

log2 t

4t
. R2 =

log2M

n2
.

log2 t

2t
=

logq t

2t logq 2
, (3.4.1)

whence for the best possible rate Rq (recalculated to the base q) follows

q logq t

4t
. Rq =

logqM

n
.
q logq t

2t
. (3.4.2)

Thus, �rst, we obtain a more general upper bound, which is only in q
q−1 times

bigger than the upper bound of Theorem 3.3.1. Second, the more intriguing is our
lower bound of Theorem 3.2.1, since we consider only q di�erent �signals� instead
of 2q ones allowed in (3.4.1), whereas the obtained rate is worse by a factor of q

q−1
only.

Now let us consider possible generalizations of the binary adder channel. First
generalization is rather obvious, namely, to consider nonbinary input alphabet.
Note, that a choice of the corresponding set of integers is not unique even for
q = 3. Indeed, one can chose X = {0, 1, 2}, but other can chose X = {0, 1, 3}
and these channels as well as signature codes to them clearly not equivalent. Some
recent results on signature codes for nonbinary adder channel, with or without
noise, can be found in [87].

Here we pay attention to more interesting from our point of view generalization
of binary adder channel, which was introduced in the Thesis under the name
weighted binary adder channel, see section 1.1.7. and [88]. The generalization
consists in adding �weights� to the active users. Indeed, in all previous formulation
we considered only the fact of being active which was modeled as (speci�cally
de�ned) multiplication of the corresponding vector by 1 if user is active or by 0 if
user is inactive. The natural step towards the generalization of such model would
be to consider the arbitrary weights for vectors of active users. As a motivation
of such de�nition one can consider a wireless (mobile) network where the energy
of received signals is dependent on how far these users are from the receiver, aka
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base station. More formally, the output y for such channel, called weighted binary
adder channel, is de�ned in the following way is modeled as the most general case
of adder channel, namely,

y =
∑
j∈J

λjxj, (3.4.3)

where J denotes the set of active users with |J | ≤ t. The coe�cients λj, called
weights or gains, are any positive real numbers. The problem is to construct a set
of M code words (vectors) such that the sum of code words of any set of t or less
active users is uniquely decodable, i.e., subsets of active users and corresponding
outputs are in 1-1 correspondence. Note, that the case when all λ-s equal 1 is the
standard formulation of adder channel with partial activity.

Formally a signature code for the weighted binary adder channel (wBAC) can
be formulated as follows.

De�nition 3.4.1. The set of n-dimensional binary vectors hj = (h1j, ..., hnj) ∈
{0, 1}n is called a t-signature code of length n for wBAC i� for any subsets
J, J ′ ⊂ {1, ...,M} such that |J |, |J ′| ≤ t the following equality∑

j∈J

λjhj =
∑
j∈J ′

λ′jhj (3.4.4)

implies that J = J ′ (and λj = λ′j for all j).

Denote by M(n, t) the maximal possible cardinality of a binary t-signature
code of length n for wBAC. , i.e., the maximal cardinality of a set of binary
vectors in n-dimensional Euclidean space for which the condition (3.4.4) holds.

Theorem 3.4.1.

M(n, t) ≥ 2bn/tc.

Proof. It is easy to see that (3.4.4) is equivalent to the linear independence (over
real numbers) of any 2t vectors hj . In order to construct such a set let us consider
an irreducible binary Goppa code of length 2m with r ≤ tm redundancy symbols
which corrects t errors. Then, all 2m columns of a parity-check matrix of this code
forms the desired binary t-signature code of length r for wBAC. Indeed, any 2t
columns are linear independent over the �eld of residues by module 2, and hence
they are linear independent over the �eld of rational numbers and also over the
real numbers since in all cases dependency means that the determinant of the
corresponding t× t minor equals to 0.

So, in terms of the rate RwBAC
t := n−1 log2M(n, t), the theorem 3.4.1 give

the following result:
RwBAC
t ≥ t−1(1 + o(1)). (3.4.5)
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Let us also denote by n(M, t) the minimal possible dimension n such that
M(n, t) ≥ M , i.e., the minimal dimension in which there exists a code of the
cardinality M with any 2t code vectors are linear independent, or equivalently,
there is a t-signature code for wBAC with M code vectors. Now Theorem 3.4.1
can be rewritten in the following way:

n(M, t) ≤ tdlog2Me. (3.4.6)

Now let us show how signature codes for wBAC are related to the non-adaptive
search of counterfeit coins on a precision scale. Recall the statement of this
problem. There are M coins. Let us enumerate them and let x1, . . . , xM be
their weights with at least M − t of them being of equal weight, say a. Denote
I = {i : xi = a} and J = [n] \ I, with |J | ≤ t. There is a precision scale
that allows to know the exact weight of any subset of coins. Any non-adaptive
search with n weightings is uniquely de�ned by its n ×M binary search matrix
H which i-th row is the characteristic vector of the i-th weighted subset of coins.
The property that a given non-adaptive search de�ned by H can �nd all weights
is equivalent to the property that if HxT = HyT then x = y.

Denote by Q(M, t) the minimal number n of non-adaptive weightings which
allows to �nd weights for all coins.

The next result can be found implicitly in [35]

Proposition 3.4.1. n(M, t) ≤ Q(M, t) ≤ 2t+ 1 + n(M, t)

Let us prove that any 2t columns of H are linear independent over R and
hence Q(n, t) ≥ n(M, t). Indeed, let assume the inverse. Consider 2t columns
which are linear dependent, i.e.,

2t∑
k=1

λkhik = 0,

where hj is the j-th column of H. Then HxT = HyT , where xik = λk for
k = 1, . . . , t and the rest xi = 0, versus yik = λk for k = t+ 1, . . . , 2t and the rest
yi = 0.

Now let us show that Q(M, t) ≤ 2t + 1 + n(M, t). Let H0 be n(M, t) ×M
matrix, in which any 2t columns are linear independent, and let Im be m × m
unit matrix. Construct a matrix

H =

(
I2t+1 0
H0

)
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Let s = (s1, . . . , sn) = HxT . The following algorithm �nds x.
First of all, a := maj{s1, . . . , s2t+1} = maj{x1, . . . , x2t+1}. This the point which
di�ers signature codes for wBAC and the considered problem, because wBAC
corresponds to the case when a is known and equals to zero!
Then choose a subset L ⊂ [M ] s.t. |L| = t and solve (if possible) the following
system of linear equations H0x

T = s0, where s0 = (s2t+2, . . . , sn), xj : j ∈ L
are unknown variables and xi = a for all i /∈ L. For L = J this system has the
solution and any two solutions will give a linear dependence between at most 2t
columns of H0 what contradicts to the choice of H0.

It follows from Proposition 3.4.1 and Theorem 3.4.1 that

Q(n, t) ≤ 2t+ 1 + n(M, t) ≤ t log2 n(1 + o(1)). (3.4.7)

It was previously known that Q(n, t) = O(t lnn) [35].
The best known lower bound

Q(n, t) ≥ 2
t

log2 t
log2 n(1 + o(1))

follows from the known upper bound on the cardinality of t-signature codes for
the binary adder channel, see [30,83].

There are at least three open questions:

1. what is Q(n, t) for t = fixed and n→∞?

2. what is Q(n, t) for t = λn and n→∞?

3. to develop �decoding� algorithm which �nds weights for all coins with low
polynomial complexity for t = fixed.
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Chapter 4

Applications

In this chapter we present three possible practical applications of signature codes.
The �rst two applications come from the digital right management technologies,
and are known as multimedia digital �ngerprinting codes and digital �ngerprinting
codes with traceability property. Such codes represent the base of the technology
that is aimed to ease the search of the illegal redistribution in the case of collu-
sion attacks, i.e., when a group of users collude to produce a forged copy of the
content. The last application is the so-called symmetric group testing problem �
modi�cation of general group testing problem characterized by more information
as the answer. In what follows we give all necessary de�nitions and explanations
that are needed to show the relationship of these problems to the construction of
signature codes for A& B-channels.

4.1 Multimedia digital �ngerprinting codes

We start with the multimedia digital �ngerprinting (MDF) codes. In this section
we will show how di�erent reformulations of such problem can be reduced to the
problem of constructing signature codes for binary A-channel and for weighted
adder channel.

It is not a secret, that with the rapid development of multimedia technologies
and the steady growth in the use of the Internet, a digital marketplace where
a wide range of multimedia content (such as image, video, audio, speech...) is
available, has become increasingly popular. However, the ease with which digital
content can be accessed, retrieved and manipulated, poses the challenging task of
devising methods for copyright protection and prevention of redistribution. One
of the prominent techniques that is used to achieve that goal is called digital �n-
gerprinting. The main idea consists in embedding in each copy of digital content
a personalized mark, also called �ngerprint or watermark. In what follows we will
use both names. Although, today this type of techniques is in popular demand,
the �rst examples of usage of same method can be found even in XVII century. A
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creator-owner of logarithm tables used to introduce tiny errors in the insigni�cant
digits of log x for few speci�c values of x. Had a malicious user of a logarithmic
table sold illegal copies of it, the errors in the table would have allowed to identify
who was the owner. This is an example of a standard digital watermarking tech-
nique which is widely used nowadays. Embedding of di�erent marks into copies of
di�erent users allows to recognize the cases when a single dishonest user produces
an illegal copy of distributed content. There are also the cases when the users
possessing di�erent copies of the same content collude (forming a coalition) and
produce a forged version of the content based on their copies. Such type of at-
tacks, also known as collusion attacks, is of interest and requires the development
of more sophisticated techniques that allow to maintain the security at due level.
In this chapter we omit the mark embedding procedure and concentrate on the
creation of the set of �ngerprints resistant to collusion attacks.

There are many di�erent ways of modeling the broadcasting, in this thesis we
consider the continuous model, usually called multimedia model, when the digital
content x is represented by a vector over the �eld of real numbers ( often called
as host signal). The continuous model was �rstly considered in the papers [89,90]
in the beginning of this century. In order to create the set of �ngerprints, the
distributor chooses n orthonormal noise-like signals (vectors) with small energy
compare to the host signal, and forms �ngerprints as linear combinations of these
vectors. The coe�cients of linear combination are from {−1,+1} or {0, 1} and
are di�erent for di�erent users. Thus, the vector of coe�cients uniquely identify
a particular user. As for embedding of the marks, the additive embedding pro-
cedure is used, i.e., the marked content is just a sum of original content vector
and �ngerprint vector. To create a forged copy the colluders calculate the linear
combination of their copies where the sum of coe�cients (of weights) equals one,
which is needed to be sure that the host signal was not changed during �nger-
print embedding. The fact that users are restricted to the linear attacks and
cannot manipulate the individual (basis) signal constitutes the so-called marking
assumption for multimedia model. Assuming that the size of the coalitions is at
most t the main problem is to create a set of vectors (of coe�cients) of maximal
possible cardinality in such a way that the distributor can reveal with zero-error
of identi�cation at least one participant of the malicious coalition or maybe the
whole coalition.

Formally, suppose that the multimedia content is represented as a real-valued
vector x ∈ Rm, see [4, 89�91]. To prevent unauthorized redistribution of x,
the dealer constructs a set of watermarks using a linear modulation scheme that
employs orthonormal vectors {fi ∈ Rm | i = 1, . . . , n, n ≤ m} of noise-like
signals. The �ngerprint wj of the j−th user (j ∈ {1, . . . ,M}) is represented as
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follows:

wj =
n∑
i=1

hijfi, (4.1.1)

where hij ∈ {+1,−1} is used for antipodal signals and hij ∈ {0, 1} for on-o�
keying type of modulation. The j-th user receives the vector

yj = x + wj,

where it is assumed that ‖x‖2 � ‖wj‖2 in order that the watermarking scheme
do not introduce signi�cant changes in the host signal. A group of users, called
colluders or traitors, aims to create an unauthorized copy of the content such
that the problem of tracing back to the source of leakage becomes a di�cult task
for a distributor. An important concept in digital �ngerprinting, the Marking
Assumption of [63], in the context of multimedia �ngerprinting can be expressed
in the following way: we assume that the members of the pirate coalition J ⊂
{1, . . . ,M} cannot manipulate individual signals fj, and are limited to linear
attacks. By a linear attack we mean that in order to generate a forged copy ŷ of
the host content the pirates compute a linear combination of their copies yj with
some coe�cients λj

ŷ =
∑
j∈J

λjyj, (4.1.2)

where λj > 0 for all j and
∑

j∈J λj = 1. Using these assumptions, we see that
the copy of the signal that they form

ŷ = x +
∑
j∈J

λjwj (4.1.3)

is still a usable copy of the host signal x. The task of the dealer is to �nd the
entire coalition J or at least one of its members based on the knowledge of the
vector T = T(J, {λj}) = (τ1, . . . , τn), where

τk = (ŷ − x, fk) =

〈
n∑
i=1

∑
j∈J

λjhijfi, fk

〉
=
∑
j∈J

λjhkj (4.1.4)

and 〈·, ·〉 denotes the inner product. Equivalently,

T =
∑
j∈J

λjhj, (4.1.5)

where hj = (h1j, . . . , hnj) is a vector of coe�cients used to create �ngerprint for
j-th user via linear combination.
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De�nition 4.1.1. A binary code C = {h1, ...,hM} ⊂ {0,1}n is called t-MDF
code if for any coalition J ⊂ [M ], |J | ≤ t it is possible to identify at least one
user from J given T =

∑
j∈J λjhj for any choice of λ-s s.t. λj > 0, j ∈ J and∑

j∈J λj = 1.

Very often we need stronger property, namely, that a code can reveal the whole
coalition.

De�nition 4.1.2. A binary code C = {h1, ...,hM} ⊂ {0,1}n is called strong
t-MDF code if for any coalition J ⊂ [M ], |J | ≤ t it is possible to identify the
whole coalition J given T =

∑
j∈J λjhj for any choice of λ-s s.t. λj > 0, j ∈ J

and
∑

j∈J λj = 1.

In overwhelming majority of works devoted to multimedia �ngerprinting,
starting from [89] were limited to the averaging attack of traitors, i.e., all the coef-
�cients of linear combination are equal, or, equivalently, an attack with λj = |J |−1

under the premise that this choice is the most powerful available attack. From
cryptography point of view the averaging attack assumption is incorrect since in
this case the coalition's strategy is known to the distributor which contradicts to
the basic principles of cryptography. In other words, identifying the pirates under
attacks with unknown λ-s is a priory much stronger task comparing with the case
when all λ-s are known. Hence, in the Thesis we consider the case of positive
arbitrary weights and propose more e�cient results comparing to the existing
results for stronger case (with averaging attack assumption). Moreover, even un-
der this (oversimpli�ed) assumption, all the families of multimedia �ngerprinting
codes known in the literature have code rate that tends to zero as the code length
approaches in�nity [4], [90].

In what follows we will show that the idea of using separating codes that was
explained in the �rst chapter allows to prove the existence of good, i.e., positive-
rate multimedia �ngerprinting codes. Namely, it turned out that the quantization
of the MDF problem allows to prove that the rate of the best codes is at least
Θ(t−2), where t is the size of the traitor coalition. Moreover, we will show that
these codes have a much stronger property than usual MDF codes, namely, they
reveal the whole coalition rather than just a single pirate. For this reason we
call them strong multimedia codes, see de�nition 4.1.2. It can be shown that the
general case, i.e., without quantization, is equivalent to the signature codes for
weighted binary adder channel. So, the lower bounds on the size of such families
allow to receive even better results for the rate of strong MDF codes.

Quantized version. As earlier, the dealer attempts to �nd the coalition J
via the vector T = (τ1, . . . , τn), see (4.1.4) and (4.1.5). Let hij ∈ {0, 1}, i.e.,
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assume an on-o� keying code modulation. Then τk ∈ [0, 1], where

τk = 0 i� hkj = 0 for all j ∈ J,
τk = 1 i� hkj = 1 for all j ∈ J,
0 < τk < 1 otherwise.

It was suggested in [4, 89] to consider the following reduced discrete/ quaintized
model when the dealer knows only whether τk = 0, or τk = 1, or that 0 < τk < 1,
but does not know the exact value of τk in the last case. Denote by F (.) the
following mapping of the segment [0, 1] onto the ternary alphabet consisting of
the elements 0, 1 and {0, 1} :

F (τ) =

{
τ if τ ∈ {0, 1},
{0, 1} if 0 < τ < 1.

The task of the dealer is to identify the coalition J or at least a part of it based
on the knowledge of the following vector

S = F (T) = (F (τ1), . . . , F (τn)). (4.1.6)

To accomplish this, the dealer should construct a binary code C = {h1, ...,hM}
of cardinalityM and length n. Given a coalition J , we refer to the corresponding
set of codevectors U = {hj : j ∈ J} ⊂ C also as a coalition. Let denote by

Uk = {uk : u ∈ U}

the set of values at the k-th coordinate of the vectors u ∈ U . Then, the coalition
U creates the following unique forged multimedia �ngerprint whose coordinates
are from ternary alphabet {0, 1, {0, 1}} which is exactly the vector

S(U) = F (T) = (U1, . . . , Un). (4.1.7)

We call the vector S(U) the signature of the coalition U . The goal of the
dealer is to construct a code C such that any coalition U, |U | ≤ t can be uniquely
recovered from its signature S(U).

Now it is easy to see that constructing such code is equivalent to constructing
a t-signature code for A-channel of [15] with the number of �frequencies� q = 2.

Let us recall some concepts from the theory of �ngerprinting codes, see [45,
49, 63, 72]. Suppose that the set of possible forgeries that can be created by a
coalition U is given by

D(U) = {x = (x1, . . . , xn) : xk ∈ Uk, k = 1, . . . , n}. (4.1.8)

The set D(U) is called the descendant set of the coalition.
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De�nition 4.1.3. [45] The code C is a code with the t-identi�able parent prop-
erty, or a t-IPP code for short, if for any x either⋂

U :x∈D(U), |U |≤t

U 6= ∅, (4.1.9)

or there is no coalition U ⊂ C, |U | ≤ t such that x is one of its descendants, i.e.,
x /∈ D(U) for any U ⊂ C, |U | ≤ t.

A signi�cant di�erence between these (traditional) IPP codes and multimedia
�ngerprinting codes is that in multimedia �ngerprinting a coalition can create
only a single forged �ngerprint, contrary to the large set of descendants in the case
of IPP-codes. In other words, the model of multimedia �ngerprinting assigns the
label {0, 1} to the positions of the forgery in which the IPP model allows inserting
any binary element as long as it follows the Marking Assumption. Therefore, in
multimedia the dealer's goal can be much more ambitious, namely, he attempts
to identify all the members of the coalition instead of �nding at least one of its
members which is the task for the IPP-code problem (note that binary t-IPP
codes of cardinality more than 2 do not exist).

De�nition 4.1.4. [4, 92]. A binary code C is a multimedia code with a strong
t-IPP property, or a strong t-MDF code for short, if for any two distinct coalitions
U, V ⊂ C, |U | ≤ t, |V | ≤ t their signatures are di�erent:

S(U) = (U1, . . . , Un) 6= S(V ) = (V1, . . . , Vn). (4.1.10)

Strong t-MDF codes were de�ned in [4], De�nition 4.1, where they are called
t-separable codes. But, actually, this de�nition coincides with the general de�ni-
tion 2 for signature codes for A-channel. Another de�nition of strongly separable
codes was given in [93].

Now we can use the results received for the signature codes for A-channel to
establish new results for the MDF codes. According to the theorem 2.2.1 and
(2.2.6) we have the following best known bound on the rate of t-signature codes
for A-channel or, equivalently, strong t-MDF code:

Θ(t−2) ≤ R∗t−MDF ≤ O

(
log t

t2

)
. (4.1.11)

Note, that the equivalence to MAC problem allowed not only to improve the
estimation of the rate of corresponding codes but also to consider more general
strategies of the coalitions, where we did not make any restrictions on the used
weights. Also, the construction of signature codes and the algorithm of �nding the
set of active users proposed in the �rst chapter can be used for the MDF model.
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So, the result achieved in the �rst chapter can be reformulated for MDF codes in
the following way: there is a construction of strong t-MDF codes with the rate
of order at lest t−3 and with decoding complexity polynomial in the length of the
code.

If we don't restrict ourselves to the complete identi�cation of the participants
of malicious coalitions than we also can use the results about the recovery of at
least one user which goes perfectly along with the initial tracing traitor problem
from [44] and [45] where IPP codes were introduced. Indeed, as it was introduced
in the de�nition 4.1.9, usually the recovery of at least one user is demanded. So,
if we go back to single user tracing codes for OR channel, we can see that they
provide exactly the solution for quantized MDF problem with partial recovery.
That means that in such case we can attain much bigger rate, namely of order
t−1.

Another important improvement that we can get from the results for MAC is
the noisy case. Indeed, in the �rst chapter we considered the case of erroneous
output vector which in MDF model correspond to the signature of the coalition.
The presence of noise makes MDF problem more realistic, since there are at least
three sources of errors: due to transmission, to calculation of T , or adversarial
noise.

Without quantization

Let us come back to the general formulation of MDF codes in de�nition 4.1.1
when the dealer tries to reveal a malicious coalition or at least one of its members
from the knowledge of vector T. In fact this problem is equivalent to the problem
of constructing signature codes for weighted binary adder channel. Indeed, the
problem of signature codes for WbAC is to construct a subset of binary vectors
such that all possible linear combinations of t or less vectors are di�erent. The
MDF problem is the same, since we consider the most general strategy of the
coalition without any restrictions on the value of coe�cients. It was shown in
Theorem 3.4.1 that columns of a parity-check matrix of Goppa or BCH codes,
correcting t errors, form a t-signature code for weighted binary adder channel,
hence, they form a t-strong MDF code what results in the following lower bound
on the rate of t-strong MDF codes

Rt−MDF ≥
1

t
(1 + o(1)).

This solution improves the best known bound for quantized/ hard decoding re-
formulation stated in (4.1.11).
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4.2 Constant weight IPP codes

In this section we consider another model of data redistribution with protection
from illegal redistribution. Namely, we present a new approach to broadcast
encryption and the corresponding ��ngerprinting� codes and show how they gen-
eralize (in some sense) the idea of signature codes for multiple access channels.

Consider a distribution model where a dealer uses a broadcast channel to
transmit some digital content to a wide audience. In order to restrict the access
to the distributed content only for the authorized users (who paid for the access)
the distributor should use broadcast encryption schemes. For the �rst time such
schemes were considered in [94]. In what follows we will be interested in broadcast
encryption schemes resistant to the so-called collusion attacks [44]. Such type of
attacks can be described as follows.

To prevent unauthorized users from accessing the data, the distributor en-
crypts the data blocks with session keys and gives each authorized user the cor-
responding personal decoder, consisting of the personal set of keys needed to
decrypt the data. Note that di�erent users receive di�erent decoders. Malicious
users, who want to resell the access to the distributed content without reveal-
ing their identities, can form a group (coalition of traitors) and, based on their
common knowledge (present keys and decoders), create a forged decoder. This
type of forgery constitutes the main idea of a collusion attack. So, assuming that
the cardinality of a possible coalition is not grater than some integer t, the main
problem is to construct such set of decoders (for authorized users) that for a given
unauthorized decoder (pirate version), the distributor will be able to identify at
least one of the sources of the leakage even if this unauthorized copy was produced
by a coalition.

The problem of data protection against such collusion attacks has given rise
to the well known concept of tracing traitors (TT) [44]. As a base of TT-schemes,
in [44] it was proposed to use di�erent types of perfect secret sharing schemes (SSS,
for short), which were discovered in [54, 55]. For the moment three main tracing
traitor schemes are known. Historically the �rst scheme is known as codes with the
identi�able parent property (IPP codes). Such scheme is based on the simplest
(n, n)-threshold SSS and was proposed in [44], then, it was further developed
in [45,49�51]; interested reader may address to the detailed overviews [52,95,96].
Another known scheme, based on arbitrary (w, n)-threshold SSS, was proposed
in [46,47] and is known under the name of set systems with the identi�able parent
property (IPP set systems). The most recent results can be found in [56�58,97,98].
The generalization of these two schemes was proposed in [60]. It is also based on
(w, n)-threshold SSS as for IPP set systems but uses an encryption process similar
to one used for IPP codes. In this section we shall call this generalized scheme as
non-binary IPP set systems.
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In this section we investigate the particular case of IPP-type schemes, known
as tracing traitors schemes with traceability property or traceability schemes, for
short. The main idea of traceability schemes is to create such set of decoders
that a malicious user (participant of the coalition) can be found as the �nearest�
decoder to the forged one. In fact, the �rst tracing traitors schemes constructed
in [44] have the traceability property, namely, the malicious users can be recovered
as the nearest in Hamming metric codevector to the forged vector (decoder). They
were further studied in [99,100]. The systematic study of traceability set systems
has been started in [47,101]. An original approach to construction of traceability
set systems via constant-weight codes was proposed in [102]. Unfortunately there
were some mistakes in evaluation of error-correcting codes parameters, which led
to wrong results as it was remarked in [103]. The correct version of constructing
traceability set systems via binary constant-weight codes was given in [56].

The non-binary IPP set systems with traceability constitutes the subject mat-
ter of this section. Our main result is the existence of such schemes with non-
vanishing rate. In thi section we provide a short reminder of the basics of non-
binary IPP set systems, namely, we show how (w, n)-SSS is incorporated in it and
explain the traceability paradigm for such scheme. Then, we prove GV-bound for
non-binary IPP set systems with traceability and, �nally, we de�ne the e�ective
rate of IPP-schemes what allows to compare di�erent schemes with traceability
property. As a concluding remark for the section we formulate the related open
problem and explain the connection with signature codes.

Non-binary IPP set systems

Consider the following broadcasting scenario where the distributor delivers
some digital content x to M users. In order to prevent illegal redistribution, the
distributor transmits the content x in an encrypted form z = ϕ(x, σ) obtained
by using some secret key σ ∈ K, which serves as a session key and should be
changed for distributing another portion of digital content. Firstly the key σ is
matched with the set of shares s1, . . . , sn according to perfect (w, n)-threshold
Secret Sharing Scheme [54, 55]. Let us recall that a secret sharing scheme is
called a perfect (w, n)-threshold secret sharing scheme if any w shares out of n
are enough to recover the secret σ and any less number of shares provides no
a posteriori information about the secret. Initially, in [44] authors proposed to
use perfect (n, n)-SSS and then encrypt each share on q di�erent keys. Di�erent
shares are encrypted on di�erent sets consisting of q keys, i.e., overall there are nq
encrypted shares and q encrypted versions of each share. This idea gave rise to a
notion of IPP codes [45]. Then, general case of w-out-of-n threshold perfect SSS
was used in [46, 47] for constructing IPP set systems. For such model each share
is encrypted using only a single key. Di�erent shares are encrypted on di�erent
keys, so, overall, there are n encrypted shares.

In [60] it was proposed to combine the main ideas of these two schemes. More
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precisely, it was proposed to use w-out-of-n threshold perfect SSS and encrypt
each share on q di�erent keys as it was done in [44]. Formally, the share si
is encrypted q times on the keys from the set Ai = {α1

i , ..., α
q
i}. Encrypted

version of shares are transmitted along with the encrypted content z. During the
initial stage (before the transmission) the j-th user receives the set consisting of
w decryption keys that are then used to decrypt w shares and, so, to decrypt
the secret key σ (according to the chosen SSS). Formally, j-th user receives the
subset Dj ⊂

⋃
i∈[n]Ai consisting of w di�erent keys needed to decrypt w di�erent

shares, i.e., |Dj| = w and |Dj ∩ Ai| ≤ 1 for all i ∈ [n].
In what follows we will move from subset representation of users' decoders

to vector representation. Indeed, consider some ordering of keys for each set Ai
and map each key to a symbol of q-ary alphabet A∗q = {1, 2, ..., q}, for example

by mapping αki to k ∈ A∗q for all i ∈ [n]. De�ne also the (q + 1)-ary alphabet
Aq = {0, 1, ..., q}. Then, instead of considering the subset Dj we will consider
the corresponding characteristic vector c(j) ∈ An

q such that its i-th coordinate

c
(j)
i = k if αki ∈ Dj and c

(j)
i = 0 if Dj ∩Ai = ∅ (absence of the key for i-th share).

Note that the resulting vector c(j) has exactly w non-zero coordinates, i.e., it has
weight wt(c(j)) = w over q + 1-ary alphabet Aq.

For this model the collusion attack proceeds in the following way. A malicious
coalition U ⊂ An

q in order to create a working forged �decoder� has to collect
at least w di�erent keys that can decrypt w di�erent shares. The participant of
the coalition can do so by taking at least w di�erent keys among those keys that
belong to them. Thus, the set of all forged decoders that the coalition U can
create equals to

〈U〉w = {y ∈ P ∗1 (U)× ...× P ∗n(U) : wt(y) ≥ w}, (4.2.1)

where
P ∗i (U) = {ui : u ∈ U} ∪ {0} (4.2.2)

is the i-th �projection� of the coalition U . Informally, it means that the partic-
ipants of the coalition can take one of the keys among those that they have for
any given share. If no one has a key for a particular share, then we assume that
they cannot guess the possible key.

Set systems with identi�able parent property

Now we are ready to formulate the identi�able parent property for such
scheme.

De�nition 4.2.1. [60] A (q + 1)-ary constant-weight code C ⊂ An
q of weight w

is (t, w, q)-IPP code if for any vector y ∈ An
q s.t. wt(y) ≥ w either⋂

U⊂C: y∈〈U〉w, |U |≤t

U 6= ∅, (4.2.3)
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or there is no U ⊂ C such that |U | ≤ t and y ∈ 〈U〉w.

Such property guarantees that at least one malicious user will be identi�ed
correctly. Note that if w = n then the de�nition 4.2.1 transforms to a de�nition
of t-IPP codes [45], and for the case q = 1 it transforms to (t, w)-IPP set sys-
tems [46].

Set systems with traceability property

In order to formulate the traceability concept for the new type of tracing
traitors schemes, i.e., q-ary IPP set systems, we need the following �proximity
measure� S(x,y) between two vectors x,y ∈ An

q de�ned as

S(x,y) = |{i | x(i) = y(i) 6= 0}|, (4.2.4)

i.e., S(x,y) is the number of coinciding non-zero coordinates. The function
S(x,y) is obviously related to the Hamming distance dH(x,y), namely,

dH(x,y) = wt(x) + wt(y)− 2S(x,y)− J(x,y), (4.2.5)

where J(x,y) = {l : xl 6= 0, yl 6= 0, xl 6= yl}.
The traceability property can be formulated as follows.

De�nition 4.2.2. A (q + 1)-ary constant weight code C ⊂ An
q of weight w is

called a (t, w, q)-traceability set system ((t, w, q)-TSS code, for short) if for any
coalition U ⊂ C, |U | ≤ t and any y ∈ 〈U〉w, it holds

S(y,v) < max
u∈U

S(y,u) (4.2.6)

for any v ∈ C \ U .

Remark 4.2.1. Note that for the case w = n this de�nition is equivalent to
the de�nition of t-IPP codes with the traceability property. For the case q = 1
this de�nition is equivalent to the de�nition of t-IPP set systems with traceability
property. In the general case the given de�nition is more convenient than a similar
one based on the Hamming distance as we can see from the next lemma.

The following lemma establishes a su�cient condition on a (t, w, q)-set system
to have t-traceability property, which is similar to the original approach of [44]:

Lemma 4.2.1. A (q + 1)-ary constant-weight code C ⊂ An
q of weight w is a

(t, w, q)-TSS code if for any u,v ∈ C it holds

S(u,v) < w/t2. (4.2.7)
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Proof. Consider any coalition U ⊂ C, |U | ≤ t and any y ∈ 〈U〉w. Then,
maxu∈U S(u,y) ≥ w/t since wt(y) ≥ w. On the other hand, for any v ∈ C \ U ,

S(v,y) <
∑
u∈U

S(v,u) < t · w
t2

=
w

t
,

which concludes the proof.

According to Remark 1, Lemma 1 gives for IPP codes the same results as
in [44], namely, a q-ary code C with the minimal code distance dH(C) > (1−t−2)n
has the t-traceability property. As for t-IPP set systems, Lemma 1 coincides with
Lemma 61 from [101].

Let Mq(n, t, w) denote the maximal possible cardinality of (t, w, q)-TSS code
of length n. De�ne the lower asymptotic bound on the rate of best (t, w, q)-TSS
code as

Rt(ω, q) = lim inf
n→∞

n−1Mq(n, t, bnωc). (4.2.8)

We will be interested in the maximal possible rate of q-ary t-IPP set systems
with traceability as

Rt(q) = max
ω

Rt(ω, q). (4.2.9)

In the next section we will establish the Gilbert-Varshamov type bound on
the size of (t, w, q)-TSS codes.

Gilbert-Varshamov bound for non-binary IPP set systems

Let Lq(n,w, T ) denote the maximum possible number of codewords in a (q+
1)-ary code C of length n and constant weight w with S(u,v) < T for any
u,v ∈ C. To establish the lower bound for Lq(n,w, T ) we employ Gilbert-
Varshamov type bound similar to GV-bound for constant weight codes.

De�ne the �ball� Bz(n,w, T ) of radius T with the center at z as the set of all
vectors x of weight w such that S(x, z) ≥ T . Let us denote the �size� of the ball
as B(n,w, T ) since it is the same for all z s.t. wt(z) = w. It is easy to see that

B(n,w, T ) =
∑

s,u:s≥T,s+u≤w

(
w

s

)(
w − s
u

)(
n− w

w − (s+ u)

)
(q − 1)uqw−(s+u),

(4.2.10)
where s = S(x, z) and u = |{l : xl 6= 0, zl 6= 0, xl 6= zl}|. The standard Gilbert-
type arguments show that

Lq(n,w, T ) ≥
(
n
w

)
qw

B(n,w, T )
, (4.2.11)

From Lemma 1 and the equation (4.2.11) we have the following theorem
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Theorem 4.2.1.

Mq(n, t, w) ≥
(
n
w

)
qw

B(n,w,wt−2)
. (4.2.12)

We shall use the following simple upper bound on the size of the ball
Bz(n,w, T )

B(n,w, T ) ≤ n2 max
s,u: s≥T,s+u≤w

[(
w

s

)(
w − s
u

)(
n− w

w − (s+ u)

)
(q − 1)uqw−s−u

]
(4.2.13)

and the well known approximation of binomial coe�cient(
n

k

)
= 2n(H(k/n)+o(1)) for k ≤ n/2,

where H(x) = −(x log2 x + (1 − x) log2(1 − x)) is the binary entropy function.
Then from (4.2.12), by substituting w = ωn, s = yw, u = zw, next corollary
follows:

Corollary 4.2.1.

Rt(ω, q) ≥ H(ω)− max
y,z: y≥t−2,y+z≤1,z≥0

Fq(ω, y, z), (4.2.14)

where

Fq(ω, y, z) = ωH(y) + ω(1− y)H

(
z

1− y

)
+ (1− ω)H

(
ω(1− y − z)

1− ω

)
+

+ωz log2(q − 1)− ω(y + z) log2 q. (4.2.15)

Remark 4.2.2. It is easy to see from (4.2.5), (4.2.10) and (4.2.11) that in the
case of t-IPP codes, which corresponds to w = n, s+ u = w, the GV-type bound
(4.2.12) coincides with the result of [44]. In the case q = 1 we have t-IPP set
systems and the bound (4.2.14) was obtained in [56].

For the next simple case q = 2 the optimization problem (4.2.14) transforms
to

Rt(2) = max
ω

min
y,z

H(ω) + ω(y + z)−

−
(
ωH(y) + ω(1− y)H

(
z

1− y

)
+ (1− ω)H

(
ω(1− y − z)

1− ω

))
(4.2.16)

subject to ω, z ≥ 0, y ≥ t−2, y + z ≤ 1, and t is integer greater than 1. The
corresponding numerical optimization gives that for t = 2

R2(2) ≥ 0.03602,
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which is achieved for ω = 0.1156, i.e. for w/n = 0.1156, and for t = 3

R3(2) ≥ 0.006314,

which is achieved for ω = 0.048.
Consider also the case q = 3. The corresponding numerical optimization gives

that for t = 2
R2(3) ≥ 0.05369,

which is achieved for ω = 0.172, and for t = 3

R3(3) ≥ 0.00946,

which is achieved for ω = 0.073. Note, that numerical results for the case q = 1,
i.e., the case of t-IPP set systems, can be found in [56,98].

How to compare tracing traitors schemes?

In order to compare di�erent tracing traitors schemes we need to return to
the origin of this subject, namely to [44], where it was suggested to consider the
total number N = nq of transmitted �blocks� containing encrypted shares, i.e.,
consider N as the �block length� and correspondingly calculate the e�ective rate
of (t, w, q)-TSS code C as

Re� = N−1 log2 |C|.

In the case of IPP set systems (q = 1) the e�ective rate equals to the ordinary
code rate, since q = 1 and N = n.

De�ne the maximal possible e�ective rate of (t, w, q)-TSS codes as

Re�
t = max

q
Re�
t (q),

where Re�
t (q) = q−1Rt(q).

Let us compare numerically the new traceability scheme with the known
ones in the particular case of coalitions of size two and three. For t = 2
and q = 1 in [56] it was proved that Re�

2 (q = 1) = 0.0181, this bound
was later improved in [98] using combinatorial methods, and the best known
bound for today is Re�

2 (q = 1) = 0.0219. For the case t = 3 from [98] we
have Re�

3 (q = 1) = 0.00365. As for the new scheme from (4.2.16) we have
Re�

2 (q = 2) = 0.018, Re�
2 (q = 3) = 0.0179, it can be shown that Re�

2 (q) decreases
with the growth of q. If we consider 2-IPP traceability codes (w = n) the corre-
sponding e�ective rate achieves its maximum at q = 18 and is equal to 0.0162,
and for the case t = 3 the maximum is at q = 43 and is equal to 0.00301. So, we
can conclude that for now the best e�ective rate Re�

t for t = 2 is achieved at q = 1
and is equal to 0.0219 which is due to binary 2-IPP set systems with traceability
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property [98]. The same can be said for the case t = 3, the best e�ective rate is
also due to binary 3-IPP set systems with traceability and is equal to 0.00365.

Connection to MACs and signature codes In this section we introduced
generalized IPP-schemes with the traceability property that allow to investigate
uniformly t-IPP codes and t-IPP set systems with the traceability property as
two marginal cases of non-binary IPP set systems.

How the e�ective rate of the best general t-IPP schemes with traceability
behaves for t→∞ is still an open question. It is known that the e�ective rate of
t-IPP set systems with traceability Re�

t (q = 1) = t−4+o(1). Indeed, it was proved
in [57] that t-traceability set systems is a t2-cover-free family [61], therefore, it
follows from the known upper bound on the cardinality of t-cover-free families,
see [61], [32], that Rt(1) = O(t−4+o(1)). On the other hand, the GV-bound shows
that Rt(1) ≥ c1t

−4, where c1 > 0 is some constant.
We conjecture that for large t

Re�
t = t−4+o(1).

As for the connection to MAC, the described problem also can be considered
as information transmission problem. Users forming a coalition and producing
a forged vector can be considered as active users of A-channel which output is
controlled by a malicious opponent. In this model the receiver (decoder) sees only
one element (from the input alphabet) among all elements used by a coalition,
and this element is chosen by the opponent in a way preventing the dealer from
�nding the coalition or even a single element of it.

4.3 Symmetric group testing

Let us start from a short history of the research about group testing (GT) problem.
Then we investigate a particular case of GT, namely, symmetric group testing and
�nally, establish the connection with signature codes for A-channel.

Group testing is a combinatorial scheme developed for the purpose of e�cient
identi�cation of defective elements in a given pool of subjects. The naive solu-
tion of the search of defective elements is to test each item separately, but group
testing allows to conduct tests in more e�cient way. The main idea is to test the
samples in groups (subsets), rather than individually, which decreases the number
of conducted tests.

The history of this problem starts with the work of Dorfman [14], where he
formulated the problem in the context of the blood tests for the presence of the
particular disease. In this case, blood samples of di�erent persons were mixed and
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then tested. If at least one of the blood samples used in this test was �defective�
then the answer was �yes�. If all blood samples were �good� then the answer was
�no�. There are many applications of group testing in di�erent areas of science,
in particular, in computational molecular biology. For more detailed review of
group testing applications see [36].

There are three main points of di�erence of group testing schemes.

• The �rst one is the strategy of the search. There are two possible cases,
namely, adaptive and non-adaptive search. For the adaptive search ques-
tions/test are made in series in dependence of the answers for previous
questions. For non-adaptive case all tests are conducted simultaneously,
and based on all answers one decides about the set of defective elements.

• The second di�erence for group testing models is the answer-question model.
For example, one can think of tests where each sample can participate only
in a limited number of tests, and the number of samples in one test is also
upper bounded; or one can think of threshold schemes, where one receives
the answers �yes� only if the number of defective elements is bigger than
some prede�ned amount, see [37].

• The third di�erence is presence or absence of noise. Noiseless case are mainly
considered in the literature. And a noisy case could be with random nature
of errors or an adversarial errors.

Group testing with noise There are two main models of noise for group
testing. The �rst one is probabilistic, where errors are generated according to
some probability distribution, see e.g. [38]. The second model, known as adver-
sarial noise, has a combinatorial nature and it is exactly the type of errors that
we consider in this section.

Probably the most famous problem of group testing with adversarial noise is
the so-called Ulam's problem on searching with a lie. Ulam asked in his book [39]
what is the minimal number of yes-no queries needed to �nd an unknown integer
between 1 and N = 106 if one lie is allowed among answers (lie is equivalent to
an error). In fact, this problem was �rst stated by A.Renyi in [40], so it is more
correctly to call Renyi-Ulam problem.
The exact answer for adaptive search algorithms and arbitrary N was given by
A.Pelc in [41], see also his review paper [42]. The corresponding asymptotic result
is known for general case of L false answers, namely, for �xed L and growing N
the minimal number of queries behaves asymptotically as log2N + L log2 log2N
and it can be achieved by non-adaptive search.
The Renyi-Ulam problem is about �nding a single defective element in presence
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of L erroneous tests results. A generalization of this problem to the case of
many defective elements and its relation to error-correcting codes was considered
in [104], [105].

Symmetric group testing In this section we consider the modi�cation of
the ordinary group testing problem, namely, symmetric group testing (SGT) and
consider the case of the presence of adversarial noise. Informally, for a given tested
subset F ⊂ X of the ground set X the response of SGT scheme equals 0 i� no
defective elements belong to F , equals 1 i� all elements of F are defective, and
equals {0, 1} otherwise. Note that answers of SGT scheme provide more infor-
mation than the ordinary group testing. Namely, SGT allows to distinguish the
cases when a tested group consists of only defective elements and when it consists
of both defective and good elements.

The use of SGT was originally motivated by applications in circuit testing
and chemical component analysis [43], see also [106]. As an example, consider the
testing of N identically designed circuits using only serial and parallel component
concatenation. In the serial testing mode, one can detect if all circuits are oper-
ational. In the parallel mode, one can detect if all circuits are non-operational.
If at least one circuit is operational and one is non-operational, neither of the
two concatenation schemes will be operational. Detecting e�ciently which of the
circuits are non-operational is exactly what symmetric group testing is aimed to.

More formally, consider the set X = [N ] of all samples and let F ⊂ X
be a tested subset. In SGT the response on a test F equals 0 i� no defective
elements belong to F , equals 1 i� all elements of F are defective, and equals
{0, 1} otherwise. The goal is to create such family {F1, ...,Fn} of subsets (tests)
of X of minimal size n that the answers for such tests allow to uniquely identify
the subset of defective elements, given that their number is upper bounded by
some �xed parameter d. It is convenient to consider binary characteristic vectors
of the sets, i.e., we map each test F ⊂ X to the binary vector f ∈ {0, 1}N , where
fi = 1 if i ∈ F and fi = 0 otherwise. Since we consider the non-adaptive version
of symmetric group testing we can represent the family of tests in a form of n×N
matrix H where rows represent tests and, consequently, columns {h1, ..., hN} ⊂
{0, 1}n represent "identifying" vectors for each sample from a pool. If an element
hij = 1, i ∈ [N ], j ∈ [n], it means that i-th sample from the pool participates
in j-th test. The answer for such set of tests can be represented as a vector
a ∈ {{0}, {1}, {0, 1}}n, where aj is the answer for the j-th test. Then, the goal
of SGT is to construct such matrix that gives for di�erent subsets of defective
elements the di�erent answer vectors a which is formally stated in the de�nition
4.3.1.

Let supp(x) denote the set of positions where a vector x has non-zero values,
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i.e., supp(x) = {i | xi 6= 0}. And let < x, y >A be an A-scalar product, i.e.,

< x, y >A=


{0}, if supp(x) ∩ supp(y) = ∅,
{1}, if |supp(x) ∩ supp(y)| = |supp(x)|,
{0, 1}, otherwise.

Consider a binary matrix H of size n × N with rows {f1, ..., fn} ⊂ {0, 1}N and
some binary vector y of length N , then the product H ·A y is de�ned as

H ·A y := (< f1, y1 >A, < f2, y1 >A, ..., < fn, y1 >A).

(characteristic vectors of the tests). So, if H is a search matrix, then such A-scalar
products represent the answer for the tests (rows of H) if y is a characteristic
vector of a set of defective elements.

De�nition 4.3.1. A matrix H of size n×N with columns {h1, ..., hN} ⊂ {0, 1}n
is called t-SGT matrix, if for any two vectors vectors y1, y2 ∈ {0, 1}N , y1 6= y2

(vectors of defective elements) such that |supp(yi)| ≤ t, i = 1, 2, the products
H ·A y1, H ·A y2 are also di�erent.

Correspondingly, the set of columns of t-SGT matrix is called a t-SGT code.
It is not di�cult to see that the de�nition of the t-SGT codes coincides with the
de�nition of t-signature codes for A-channel. So, all the results received in the
Chapter 1 are also valid for t-SGT codes, including the lower and upper bounds
on the rate, construction of corresponding codes with an e�cient decoding algo-
rithm. Also, the noisy case of SGT can be considered in the same way as it was
done for t-signature codes for A-channel.

We assume that the output vector (vector of answers to the tests) might be
erroneous in no more than L positions, i.e., no more than L answers are incorrect.
The goal of SGT in the presence of noise is for the given answer vector to recover
the set of defective elements even if some of the answers are incorrect. Formally
it can be stated as follows:

De�nition 4.3.2. A t-SGT is said to correct up to L errors, or (t, L)-SGT code
for short, if for any y1, y2 ∈ {0, 1}N such that |supp(yi)| ≤ t, i = 1, 2 and y1 6= y2

the equation

H ·A y1 + e1 = H ·A y2 + e2, |supp(ei)| ≤ L, i = 1, 2

implies y1 = y2.

So, the estimation of upper and lower bound for the t-signature codes for
A-channel that can correct L errors can be applied to (t, L)-SGT code.
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Conclusion

In the thesis we derived some new results on signature codes for three classes
of multiple access channels, namely, A-channel, B-channel and weighted binary
adder channel, and we developed the uniform approach which allows us to apply
these results to digital �ngerprinting codes and for non-adaptive symmetric group
testing. As for the open problems that still remain unsolved for the considered
types of MACs we can name the following questions.

The �rst one concerns the constructions and decoding procedures for t-
signature codes of the considered MAC. In chapter 2 it was explained how to
construct such codes for the A-channel, however, the rate of proposed codes is
lower than the optimal one. So, the question of attaining the higher code rate
is open. As for the B-channel, no constructions are known for q-ary case, al-
though the B-channel provides the most information about the inputs. As for the
weighted binary adder channel, the lower bound proved in this thesis was obtained
in a constructive way, i.e., by exploiting the existent class of codes, namely BCH
codes. However, the decoding procedure remains unclear since for the weighted
channel we have to recover the input vectors and the corresponding weights that
were used for the transmission. This problem is di�erent from the decoding of
BCH codes which demands algebra over �nite �elds and not real numbers.

The second open questions concern the noisy case. It would be interesting
to investigate the e�ect of the adversarial noise on the rate of t-signature codes
for B-channel, in a way similar to what was done for A-channel. Also, explicit
constructions of such codes that can be resistant to noise stay as the open question.

As the last direction of the open questions, it might be interesting to consider
the recovery of only a subset of active users of the channel. The problem is
inspired by the DRM and multimedia digital �ngerprinting application where the
distributor wants to �nd at least one user from the malicious coalition, i.e., the
recovery of the whole coalition is not necessary. It was shown in the second chapter
that for the case of A-channel it can be done by employing the so-called single
user tracing and k-out-of-t-user tracing codes. Still, the analogous questions for
B-channel and weighted binary adder channel remains open.
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