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ABSTRACT

The scope of this doctoral dissertation is to study the interactions of electromagnetic (EM)
waves and biological tissue in the presence of a strong magnetic field, and demonstrate the util-
ity of novel methods via their application to simulations for the Magnetic Resonance Imaging
(MRI) of realistic human head models. In problems related to MRI, the maximum use of the sin-
gle operating frequency allows the careful design and optimization of fast and robust algorithms
of computational electromagnetics (CEM), based on integral equations (IE). Specifically, surface
integral equations (SIE) are employed to analyze the radio-frequency (RF) transmit-receive coils
of the magnetic resonance (MR) scanner, while volume integral equations (VIE) model the EM
interactions of human tissues with finite electrical properties (EP). The fast and accurate esti-
mation of the interactions above is of paramount importance since a poor design of an RF coil
might lead to detrimental effects in the quality of the MR image and the safety of the patient,
especially in modern ultra-high-field (UHF) scanners.

Specifically, in the first part of this thesis, we present a method of memory footprint reduction
for FFT-based, EM VIE formulations. The arising Green’s function tensors have low multilin-
ear rank properties, which allows the employment of tensor decompositions (Tucker, Canonical
decompositions, and Tensor Train) for their compression, thereby significantly reducing the re-
quired memory storage for numerical simulations. Consequently, the compressed components
can fit inside a graphical processing unit (GPU) on which highly parallelized computations can
vastly accelerate the iterative solution of the arising linear system. Besides, we provide a vari-
ety of novel and efficient matrix-vector product methods that maintain the linear complexity
of the traditional element-wise product of FFT-based VIE and can provide up to an order of
magnitude of acceleration. For the second part, we turn our interest to the non-invasive cross-
sectional mapping of the electrical property (EP) distributions of realistic human head models
using MR measurements, and the recently introduced Global Maxwell Tomography (GMT). Pre-
vious work evaluated GMT using ideal radiofrequency (RF) excitations, while this dissertation
aims to assess GMT’s performance in simulation, using a realistic RF coil. The designed coil is
a transmit-receive array with eight decoupled channels for 7 Tesla head imaging. We calculated
the RF transmit field inside inhomogeneous head models for different RF shimming approaches,
and used them as input for GMT to reconstruct brain EP. The coil tuning/decoupling remained
relatively stable when the coil was load with different head models. The mean error in EP es-

v



timation changed from 7.5% to 9.5% and from 4.84% to 7.2% for the relative permittivity and
conductivity, respectively, when changing head models without re-tuning the coil. When an
SVD-based RF shimming algorithm is applied, in place of excitation with one coil channel at a
time, we observed that the reconstruction slightly improves. Despite errors in EP, the prediction
of the RF transmit field, and the voxel-wise absorbed power have less than 0.5% mean error over
the entire head. Also, GMT could accurately detect a numerically inserted tumor. The results
summarized above show that GMT can reliably reconstruct EP in realistic simulated scenarios
using a tailored 8-channel RF coil design at 7 Tesla, thus, enabling future in-vivo GMT experi-
ments. The significance of this work is that GMT could provide accurate estimations of tissue
EP, which could be used as biomarkers and could enable patient-specific estimation of RF power
deposition, which is an unsolved problem for UHF MRI. Finally, there is a costly trade-off be-
tween accuracy and time footprint for GMT, and regrettably, the reconstruction requires days
to converge, especially for fine resolutions. Thus we investigate deep learning architectures that
can vastly accelerate the reconstruction and overcome such impasses. The proposed approach
is to train a tensor-to-tensor convolutional neural network that maps the MR measurements to
the corresponding EP of tissue-mimicking phantoms.

The novel RF coil designs can aid GMT to provide accurate estimations of tissue EP, which
could be used as biomarkers and could enable patient-specific estimation of RF power deposi-
tion, which is an unsolved problem for UHF MRI. Moreover, the novel accelerated through GPU
programming, tensor decomposition-based methods, will offer more precise and faster biomed-
ical analysis. As a result, both contributions of this thesis could help to exploit the full potential
of UHF MRI.
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Chapter 1
INTRODUCTION

Magnetic Resonance Imaging (MRI) has become an indispensable tool for the non-
invasive biomedical imaging of biological tissue, disease diagnosis, and pathology
characterization. Magnetic resonance (MR) belongs to a family of medical imaging

techniques of radiology, such as the well-known X-ray radiography, ultrasound, computed to-
mography, and the positron emission tomography, among others. MR is established as a power-
ful modality because it does not expose the human body to harmful radiations. Thus it is widely
used in neuroimaging, angiography, cardiovascular, musculoskeletal, liver, and gastrointestinal
imaging. Paul Lauterbur [9] introduced MRI in 1973 based on the work of Felix Bloch [10] and
Edward Purcell [11] in nuclear magnetic resonance in 1946. In the following decades, MRI be-
came available for clinical usage in hospitals and medical centers, and the biomedical imaging
quality was enhanced. MRI is still developing to this day, through a vast number of applications
and the introduction of higher quality clinical scanners.

The imaging process in MRI depends on a large number of variables, such as the main power
of the magnet, the operating frequency, the resonating atoms, the transceive coils, and their re-
spective voltage calibration patterns, the receive coils, the magnetic field encoding, among others.
Depending on the application of interest, specific sets of parameters are used, i.e., in most ap-
plications, the nuclei of 1H are resonated, at a frequency proportional to the gyromagnetic ratio
γ = 42.58 MHz/Tesla, since the human body consists mostly of water. During the last years,
MR scientists focused on increasing the power of the magnet from 1.5 to 7 Telsa [12] to retrieve
detailed images of the interior anatomical structure of the human body, by exploiting the larger
signal-to-noise ratio (SNR) available with this larger main magnetic field. Regrettably, the res-
onating frequency of hydrogen atoms (Larmor frequency) multiplies the strength of the field,
thus resulting in an operating frequency of ∼ 300 MHz. The associated wavelength inside the
biological tissue is short enough to result in dominating interactions between electromagnetic
(EM) waves and the tissue itself. Consequently, these interactions might lead to detrimental ef-
fects in the medical images’ quality and strong radiofrequency (RF) power deposition in local
spots of the tissue.
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To tackle the impasse mentioned above, the accurate modeling of the EM phenomena is
crucial. Truthfully, in ultra-high-field (UHF) MR scanners (≥ 7 Tesla), the precise design of
RF transmit coils and their associated EM fields is pivotal for practical applications, without the
risk of compromising patient safety [13–16]. Therefore, the employed EM simulations have to
lead to the superior numerical accuracy needed, without relinquishing computational time, to
ensure quick testing of multiple designs. The present dissertation aims to provide a technique
for a significant speed-up of such EM simulations.

Nevertheless, one can only perform a small number of EM simulations, since the number
of available electrical property (EP) maps of realistic human body models [17] is quite small.
Thus, results in simulation, could easily lead to erroneous predictions of the EM field behavior
in patients with significantly different anatomical structures [18]. Although numerous ex vivo
or in situ animal measurements have been made over time, preliminary access to in vivo EP dis-
tributions of human tissue have remained extremely limited, and indeed fundamental questions
regarding the origin and distribution of these properties have tantalized scientists for decades.
However, a reliable method for the non-invasive cross-sectional mapping of tissue electrical
properties, based on measurements obtained with MR imaging systems has been proposed [3].
The method, dubbed Global Maxwell Tomography (GMT), provides an insight on the distribu-
tion of EM fields in tissue, which can be used to improve the diagnostic power of MR imaging,
but could also enable marked improvement in speed and accuracy over current probe-based EM
field mapping approaches used to satisfy safety regulatory requirements for wireless devices. Fur-
thermore, in vivo electrical properties, maps could be employed as biomarkers for cancer (and
other pathologies), as well as to improve the effectiveness of existing therapeutic modalities, such
as RF ablation, RF hyperthermia, and electrochemotherapy. A part of this thesis is devoted to
the performance investigation of GMT using realistic RF coils, in simulation, thus pushing it one
step closer to future in-vivo experiments.

1.1 Historical and Literature Review

The EM phenomena in the macroscopic scale can be described with the solution of Maxwell’s
equations [19]. In general cases and applications, the geometry under-study is arbitrary, and the
electrical properties are inhomogeneous, e.g., a human head, thus the equations are impossible
to solve analytically. This fact, in line with the ever-increasing computational power of mod-
ern central processing units (CPU), has been the principal cause for the development of various
numerical techniques for the estimation of the solution of Maxwell’s equations [20]. All these
methods synthesize the subject matter of computational electromagnetics (CEM) [21], which,
over the years, has become a centerpiece of the EM field theory. The particular method of choice
between the copiousness of arithmetic techniques is crucial since their respective particularities
assess their reliability and effectiveness in the application of interest.

A wide variety of broadly employed over the past years and well-entrenched CEM techniques
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can model the interactions between EM waves and biological tissue. Nevertheless, in MRI, the
single operating frequency allows the customization of fast algorithms, if methods, based on in-
tegral equation (IE) formulations, are used, i.e., the magnetic-resonance integral equation suite
(MARIE) [22–24] and the MARIE 2.0 (soon the be released) [1, 4] can produce reasonable EM
field estimations in minutes for the analysis of a realistic human head model of clinical voxel
resolution (5mm3 up to 2mm3). The expression of IE formulations begins with the imposition
of the boundary conditions for the electric and magnetic fields. Precisely, the boundary con-
ditions are replaced from unknown equivalent sources using the surface or volume equivalence
principles [25]. For inhomogeneous bodies, volume sources are used, while the conductors are
replaced with a surface equivalent current source 1. Depending on the initial boundary condi-
tion that was used one can end up to different IE formulations (i.e., for surfaces we can derive the
electric or magnetic field integral equations, EFIE, MFIE, and for volumes the current, electric
field or electric flux volume integral equations, JVIE, EVIE, DVIE, among others). The resulting
equations can be solved using a discretization technique like the method of moments (MoM) for
the estimation of the unknowns [26].

In both surface and volume integral equation (SIE, VIE), the boundary conditions between
the interfaces of the media and the radiation conditions in the infinite sphere are amalgamated
in the Green’s functions. Thus, we only need to discretize the surfaces or the volumes of interest,
which results in a dense matrix. The arising 4D or 6D integrals can be computed with quadrature
rules, such as the Gauss-Legendre, while the singular integrals that arise in the diagonal of the
matrix are tackled with highly sophisticated semi-analytical integrations [27, 28]. In SIE formu-
lations, these matrices are usually small, since only the surface is discretized, however, in VIE
the resulting MoM matrices are vast in terms of memory, and it is only possible to store them
for very coarse resolutions.

For the dimensions of a human head, using an MRI clinical resolution of 2 mm3, the aris-
ing MoM matrix requires millions of GB of storage memory, unavailable in any commercial
CPU. This impasses led to the employment of the Fast Multipole Method (FMM) [29] in 1990
from Rokhlin [30] for the solution of the vector wave equation. The multilevel FMM (MLFMA)
[31–37] compress the off-diagonal blocks of the MoM matrix and reduces its memory com-
plexity from O(n2) to O(n logn). Besides, the matrix-vector product can be implemented with
O(n logn) operations 2 with the aid of an iterative solver of choice, instead of theO(n3) complex-
ity of the Gaussian elimination (LU decomposition). In the next years, other methods have been
proposed for the memory compression of the MoM-IE (i.e., the impedance matrix localization
[38], the matrix decomposition method [39] and the wavelet decomposition method [40–49]).

Alternatively, the translational invariance property of the Green’s function can be exploited

1We note that for a homogeneous volume, surface currents can still be used. We refer the reader for additional
information on Chapters 2 and 3.

2The actual complexity is O(cn logn), where c is a relatively big multiplicative constant.

3



Chapter 1

if the discretization grid is uniform (or projected to one) to enforce a Toeplitz structure on the
MoM matrix. In this case, the matrix-vector product can be carried out just by using the Toeplitz
defining tensor in O(n logn) complexity 3. These techniques exploit the Fast Fourier Transform
(FFT) [50] inside an iterative solver, e.g., the conjugate gradient (CG) method, thus are dubbed as
CG-FFT. In contrast with the MLFMA, the CG-FFT are suitable mostly for VIE problems, since,
their application on SIE requires significant preprocessing with methods such as the precorrected
FFT (pFFT) [51]. The VIE methods that employ the CG-FFT technique are dubbed FFT-based
VIE or simply FFT-VIE. Here is a non-exhaustive list [52–65] of the applications and techniques
that arose due to the versatility of the method. Very recently, a preconditioning technique for the
FFT-VIE, based on Tony Chan’s work [66], was proposed, where the number of iterations of CG
is reduced [67]. Regrettably, the method requires homogeneous EP (or close to homogeneous)
for significant acceleration; thus, for a human head simulation, it is not applicable efficiently.

FFT-based VIE is employed in the open-source software MARIE package, thus the swift con-
vergence time of the solver. Specifically, polynomial basis functions are used to map the equiv-
alent electric currents to the electromagnetic field and precisely simulate the EM interactions
between biological tissue and RF coils. However, in [4], it was shown that the results obtained
with piecewise constant basis functions (PWC) were not able to achieve the desired superior
numerical accuracy in clinical resolutions. Thus higher-order polynomials have to be availed,
i.e., piecewise linear basis functions (PWL). The numerical results were excellent, and the solver
stable and robust, but, regrettably, the required memory footprint of the discretized Green’s func-
tion operators, formulated as tensors, was excessive, forbidding the usage of heterogeneous com-
puting techniques (using CPUs and graphical processing units, GPU, in tandem). The inability
to use a GPU is a drawback towards real-time simulations since the usage of its highly parallel
architecture can lead to significant accelerations for the FFT and element-wise products in the
matrix-vector product routine of the FFT-VIE.

The need for new fast methods in VIE is necessary. Thankfully, in MRI frequencies, the
dimensions of the human body are comparable with the operating wavelength. Thus, the Green’s
function VIE tensors 4 present low-rank properties [5,68], and their required memory footprint
vastly decreases from hundreds of GB to dozens of MB. In the first part of this dissertation, we
exploit this remarkable compression, using Tucker and other tensor decomposition algorithms.
As a result, we can use GPUs for the acceleration of the matrix-vector, with proposed novel and
efficient methods, achieving an order of magnitude speed-up over the traditional methods that
cannot fit in GPU [1]. Namely, problems of 84million unknowns can fit in a 12GB GPU, and the
time footprint of the matrix-vector product is less than two hours, while the traditional methods
need around twelve.

3In this case, the multiplicative constant is much smaller than the one appearing in MLFMA.
4The Toeplitz defining vectors of the MoM matrix are formulated as tensors since the geometries under study

are 3D.
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In parallel with the development of the methods presented herein, other EM scientists em-
ployed tensor decompositions for the memory compression of IE formulations. Specifically,
the authors in [69, 70] employed the higher-order singular value decomposition (HOSVD) to
compress the storage, of the translation operator tensors in FMM-FFT, accelerated SIE formula-
tion [71], up to 90%. The authors in [72,73] propose a new method dubbed conjugate gradient-
tensor train (CG-TT). They reshape the MoM matrix of SIE and VIE formulations to a multi-
dimensional array and compress it with the TT-cross approximation [74] algorithm to reduce
the memory and operations complexity. However, CG-TT is only applicable for problems with
homogeneous EP since the method compresses the whole MoM matrix and not just the Green’s
function tensors, as in our case.

The shrewd reader could argue that machine learning methods can be employed for the
speed-up of VIE simulations. A safe way to apply machine learning is with the novel archi-
tectures of autoencoders [75] and UNETs [76]. Precisely, one could build a tensor-to-tensor
translation network between pairs of EP distributions and incident fields and polarisation cur-
rents and then using these currents as an initial guess of the iterative solver used in FFT-based
VIE. The better initial guess, used in tandem with the proposed tensor decomposition-based
methods, could lead to even faster simulations, since the iteration count would be much smaller,
comparing to the one obtained by initiating the solver with zeros everywhere. Howbeit, for hu-
man head simulations, the realistic and available data are ten [17], a number too small for robust
neural network (NN) training. Variations, translations, and rotations [77] can be employed to
such heads, but still, the resulting dataset will not be rich enough for generalization in entirely
different testing head models.

The previous paragraph is just one small example of the usability of accurate EP tomography-
mapping (EPT) for heads. The EP reconstruction concerns the second part of this thesis since
their in-vivo access will lead to a series of applications, except the availability of machine learning
datasets. The EPs, namely, relative electric permittivity and electric conductivity, can be used as
additional biomarkers 5 for pathogenic processes, especially for the detection of malignant tu-
mors. From ex-vivo experiments [78–80], we already know with confidence that the electric
conductivity and relative permittivity of tumors, e.g., malignant tumor in the liver, infiltrating
breast carcinoma, human glioma, change up to 30% comparing to the peripheral and surround-
ing tissues. Thus, not only the widely-known electrochemotherapy [81,82] can be improved, but
also the hyperthermia [83, 84], which is directly connected with the power deposition, thus the
EP distributions of the tissue.

Moreover, the undeviating relation between the EP and the EM waves, through Maxwell’s
equations, make the EPT a versatile tool to address the safety concerns in UHF MRI. Concretely,
the generated incident EM waves from the RF coils have short wavelengths in these frequencies,
and the arising interactions between them and the biological tissue can lead to damages due

5There is already access to the relaxation times, T 1 and T 2, and the proton density through the traditional MRI.
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to high heating. However, prior knowledge of the EP distribution of the tissue can result in
patient-specific simulations for various coil designs, thus ensure the safety prerequisites for ef-
ficient scanning. The main metric used to study these problems is the specific absorption rate
(SAR) given from

SAR =
$
V

σe (r) |e (r)|2

ρ (r)
dr (1.1)

where V is the volume of the tissue in study, r is the vector of the position, e(r) is the electric
field intensity, σe(r) is the electric conductivity and ρ(r) is the proton density (additional details
can be found in Chapter 2). SAR should be lower than a predefined upper bound to avoid tissue
overheating. Unfortunately, the higher the frequency, the higher the magnitude of the electric
field intensity, thus the higher the SAR. Therefore, to ensure that the upper bound of SAR is not
reached, highly accurate, and patient-specific, simulations have to be used, for which EPT is a
ubiquitous commodity.

Historically, the EPT has proven to be a by no means trivial task. In the following, we will
briefly mention all the proposed methods developed and used over the years for the EPT. On the
one hand, before the widespread use of magnetic resonance tomography, scientists used several
antennas and sensors placed around the body that radiate incident electromagnetic fields to the
biological tissue under study. The backscattering radiation was measured using receiver anten-
nas on the surface of the body. The resulting inverse problem is heavily ill-posed, meaning that
it is severely underdetermined since the receivers are much less than the number of unknowns
(even in very coarse resolutions), and leads to non-unique solutions. One the other hand, the
usage of MR measurements, that encode the spatial distributions and the anatomical structure
of the tissue in the received signal, was proposed. According to Bloch’s equations (the funda-
mental equations in MRI), the signals are related to the total magnetic field in the interior of the
body; thus, the problem becomes significantly more well-posed. This unique advantage led to
the naming of these methods as MR-based, while for the aforementioned to non-MR-based. In
the following, we will briefly refer to some of the most well-known EPT methods, starting from
the non-MR-based ones.

The oldest non-MR method is the electrical impedance tomography (EIT). This non-invasive
technique aims to infer the EPs of the biological tissue, by employing the voltage measurements
obtained from arrays of electrodes placed on the surface of the body [85–89]. The mechanics of
the method start with the imposition of electric currents on the body, using an electrode pair.
At the same instant, the voltages of the receiving electrode pairs are measured. The voltage mea-
surement is repeated for every pair of electrodes and results in a cross-sectional image of the
EP distributions. The speed and the simplicity of the method are quite evident from its me-
chanics, while the electromagnetic radiation appearing is not harmful to the human body (small
magnitude of the electric currents, zero ionizing radiation). Regrettably, the method has three
significant drawbacks. First, it only works for low spatial resolutions. Second, a finite number of
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electrode pairs can be used, thus, resulting in a small number of measurements, and third, the
SNR is low. The problem is inherently ill-posed; thus, the authors in [90] propose to use EIT for
breast carcinoma detection by combining it with other cancer diagnosis methods.

The counterpart of the EIT is called magnetic induction tomography [91] (MIT). Here, the
electrodes are replaced by coils, which operate as receive and transmit antennas. In EIT, the direct
contact between body and electrodes led to small SNR due to the movements of the patient. In the
case of MIT, SNR is higher, since both receive and transmit coils are placed away from the body.
MIT can accurately determine the geometrical characteristics of the target [92]. Howbeit, the
inverse problem to solve is still highly ill-posed, and only low spatial resolutions can be obtained.

Although MR measurements are used, the magnetic resonance electrical impedance tomog-
raphy (MREIT) belongs to the same family of EIT and MIT. The induced by the electrodes,
electric currents on the surface of the body scatter EM fields in the inner biological tissues. Thus,
magnetic flux density arises (Maxwell’s equations), which can be measured by employing an MR
scanner. The usage of the MR measurements allows for EP cross-sectional images with very fine
resolutions (≤ 1 mm2) [93–95]. In [96], the first MREIT in-vivo experiment was performed.
Nevertheless, the method is still not suitable for clinical usage: The image resolution substan-
tially worsens, if the magnitude of the induced electric current is small enough to ensure the
patient safety prerequisites. Higher magnitudes put the safety of the patient at risk.

Another technique, dubbed magnetoacoustic tomography with magnetic induction (MAT-
MI), was developed by Yuan Xu et al. in 2005 [97]. The method starts with the positioning of the
body in a magnetostatic and a magnetodynamic field. According to Faraday’s law of induction,
the magnetodynamic field induces eddy current on the body. Due to the magnetostatic field, this
current produces mechanical vibrations, which results in the propagation of ultrasonic waves
(Lorentz force). As in EIT and MIT, a set of receivers 6 outside the body collect the waves to
perform the EP reconstruction. In [98], the authors discuss the limitations and potential clinical
usage of MAT-MI.

The authors in [99] exploit the ordinary Hall effect for the reconstruction of the electric con-
ductivity. Edwin Hall discovered ordinary Hall effect in 1879 [100] and is expressed as follows:
If a magnetic field is applied to an electric conductor, perpendicular to an electric current on
the conductor, then a voltage difference 7 is generated over the conductor and transverse to the
current. The Hall effect imaging (HEI) employs an ultrasound pulse, and the resulting acoustic
waves, which encode the spatial information of the voltage difference, are collected and used
for conductivity reconstruction. The method has promising potential for the reconstruction of
high-quality images. However, it is still in the prototype stage [101].

Microwave imaging is a promising method for the detection of abnormalities, such as breast
carcinoma [102–104] and brain tumors [105, 106]. In the same manner, as in EIT and MIT,

6Detectors is a more appropriate term since the waves are ultrasonic.
7The so-called Hall Voltage
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the idea is the usage of transceiving and receiving antennas in the microwave frequencies. The
backscattered EM field is collected and recorded. Microwave imaging is very ill-posed; thus,
the high-resolution images are vulnerable to noise and unwelcome reflections. However, the
low cost of the modality makes it very useful in other applications, such as the quick detection
of foreign bodies in food containers [107]. Since microwave imaging is suitable for abnormali-
ties detection, the resulting images can be used as a fruitful classification dataset for a machine
learning algorithm.

The methods described above can be used for abnormality detection, but are unable to pro-
duce high resolute images. Thus the EPT of a highly inhomogeneous biological brain is not fea-
sible. To produce such images, methods that exploit the spatial information encoded in the MR
signal are used. The first MR-based method was introduced in 1991 by Haacke et al. [108], where
the reconstruction of multilayered phantoms was performed in simulations for 1 and 1.5 Telsa
scanners. Even by exploiting the MR data, the problem is still ill-posed, and the reconstructions
were not good. In 2003 Han Wen performed a non-invasive quantitative electric conductivity re-
construction in animal experiments [109]. In 2009 [110] an EPT mapping was performed using
the complex transceive magnetic flux (b+1 ). In this case, an assumption is made for the phase of
b+1 , which does not hold in UHF scanners [111]. The only truly measurable quantities in MR are
the absolute values of the b+1 and the relative phases between each excitation channel [112]. Later
in 2012, Local Maxwell Tomography (LMT) was proposed, which is assumption-free but requires
additional scanning time, which is not pleasant for the patient. Furthermore, the methods, as
mentioned earlier, exploit the partial differential (PDE) forms of Maxwell’s equations. Thus, the
computation of the EP distributions leads to MRI noise amplifications 8. To tackle the noise
amplification impasse and to remove the boundary artifacts appearing between different tissues,
gradient methods were proposed [114, 115]. In [116, 117], the authors formulate the problem as
an optimization-minimization of a cost function between simulated (obtained from the solution
of the forward model) and experimental MR measurements. These approaches are accompanied
by a Total Variation (TV) regularizer to account for the noise. Deplorably, the methods require
assumptions that are not true in UHF, and the EP distribution presents discontinuities between
tissue boundaries. These approaches are tested both for simulation and in-vivo experiments. In
2015, the contrast source inversion-EPT (CSI-EPT) was proposed [118]. The method uses the
IE form of Maxwell’s equations, where the noise amplification of the b+1 does not appear since
its Laplacian is not calculated. Nevertheless, this method only works for symmetrical scatterers,
and it was not generalized to 3D scatterers.

In the present thesis, GMT is employed for the EP reconstruction of brain tissue [3]. GMT is
an assumption-free method and only employs measurable MR quantities for the formulation of
an inverse problem. The goal is to minimize a cost-function between iteratively simulated MR
measurements and experimental ones. For the solutions of the forward problem, the volume IE

8The EP distributions are proportional to the Laplacian of the b+1 [113]
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representation of Maxwell’s equations is employed. To make the inverse problem robust to noise,
the so-called match regularizer, is used. The gradient of the cost function and the regularizer
are calculated analytically, ensuring superior accuracy and a faster optimization algorithm. The
method is 3D, and it is highly parallelizable to n independent problems, corresponding to each
of the n excitations. GMT is tested in simulation for 7 Tesla MRI frequencies, where the b+1
encodes additional anatomical information, in contrast to MR scanners with lower field strength,
i.e., 3 and 1.5 Tesla. In our initial work, GMT [3] was verified using an ideal excitation, an
ultimate EM basis with randomly excited and randomly oriented dipoles. This basis produced
orthonormal excitations that proved to be favorable for the EP reconstruction. However, the
excitations were ideal, and it is yet unknown how a traditional RF coil could generate the same
current distributions as the basis.

Nevertheless, an experiment was performed for the EP reconstruction of a homogeneous
cylinder in [3], using the excitations produced by a coil design presented in [119, 120]. The coil
is an eight-channel transmit-receive array, and its construction allows for excellent decoupling
between all channels. The resulting b+1 maps differ for each channel, thus, producing an or-
thogonal set. In [6, 7] we attempted the reconstruction of more challenging inhomogeneous
tissue-mimicking phantoms, and the results were excellent. Finally, in our currently under-
review work [2], we are proposing the usage of a novel RF coil design, uniquely designed for
brain tissue EP reconstruction.

With the recent rise of deep learning [121], it was only a matter of time until the EPT was
attempted with a NN. In 2019 Stefano Mandija et al. attempted to reconstruct the EP of brain
tissue by training an image-to-image translation network. The method is a brute-force network
in 2D where the input is the b+1 map and the spin-echo MR image, and the output the relative
permittivity or the electric conductivity 9. While the reconstruction for cases close to the training
dataset is admirable, this approach deals with the problem more from the scope of image sim-
ilarities and less from the underneath electrodynamic phenomena. We propose a more general
approach, where we train a NN with input only the measurable b+1 quantities, and output both
EP, for the whole 3D volume of the scatterer. The proposed tensor-to-tensor translation network
investigates on the feasibility of the EPT using NNs, for simple tissue-mimicking inhomogeneous
scatterers [8].

1.2 Thesis Structure and Contribution

The subjects of the work presented herein are mainly motivated by the impasses described in
the previous section. The thesis can be divided into two main parts. The first one aims to develop
new memory-efficient methods for the execution of FFT-based VIE simulations in GPU, even for
fine resolutions, thus providing a significant acceleration over traditional approaches. The second
part of this thesis investigates the performance of GMT, using novel problem-dedicated RF coil

9Two networks are trained: One for the relative permittivity and one for the electric conductivity
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designs, thus pushing it one step closer to in-vivo experiments and clinical usage. An attempt to
perform the EPT using deep learning networks is proposed. Each chapter of the thesis furnishes
the reader with a wide variety of results, showing the superior performance of the novel methods,
mainly focusing on problems of MRI. In the following paragraphs, we describe the contents and
the novel contributions of this dissertation.

The first introductory Chapter starts with the presentation of a literature review in the re-
search activity related to memory compression techniques of integral equation formulations, in
problems of electromagnetics. A variety of methods is referred, while a novel method, based on
tensor decompositions, is proposed. With the aid of GPU, high-speed simulations can be carried
efficiently even for fine resolutions. Subsequently, methods for the reconstruction of the electri-
cal property distribution of biological tissue are presented. The difficulties of these methods are
recorded, where, up to this day, none of them managed to be employed for clinical usage. The
advantages and disadvantages of GMT are stated, while a problem-dedicated RF coil design is
proposed to push GMT one step closer to future in vivo experiments. Finally, some light is shed
on the usage of deep learning algorithms for the EP reconstruction problem. Both the tensor
decomposition method for fast simulations, and the novel RF coil design, demonstrate - accord-
ing to the writer - the critical parts of this dissertation, while they underline its necessity and
importance.

In the second Chapter, fundamental theorems and elements of electromagnetism are pre-
sented. First, the general form of Maxwell’s equations is written, followed by their integral and
the time-harmonic form. A paragraph is devoted to the proof of boundary conditions between
two media with different electromagnetic properties. Furthermore, the superposition, the dual-
ity, and the reciprocity theorems are introduced, followed by the definition of the dyadic Green’s
function and the vector wave equation. These fundamental aspects are essential for the deriva-
tion of the surface and volume equivalence theorems, which with their turn, are vital for the
derivation of the SIE and VIE formulations, respectively, used later in the thesis. The Chap-
ter is concluded with brief addressing of the MoM, a technique used for the efficient numerical
solution of SIE and VIE.

A detailed presentation of the IE methods for the solution of scattering problems from con-
ductive and homogeneous surfaces and inhomogeneous volumetric objects is the subject of the
third Chapter. The Chapter is divided into two main sections. Specifically, the first section of
the Chapter is devoted to -as far as possible- the best possible representation of all those steps
required to numerically solve the state-of-the-art surface integral equations, with the help of the
MoM, both for perfect electric conductors (PEC) and for homogeneous objects. In particular, the
critical role of Rao-Wilton-Glisson (RWG) basis functions in the discretization of the SIE is high-
lighted, per the Galerkin equation. Answers are also given to all issues related to corresponding
MoM matrix element calculations, as well as the system’s solution. Multiple SIE formulations are
studied, with the main focus of the EFIE for PEC, where its numerical problems are presented.
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Results of the far-field and the power are shown for spherical scatterers, and the accuracy of
SIE is verified via comparisons with the Mie series solution. The SIE section is concluded with
two paragraphs on the lumped elements modeling on top of conducting surfaces, and the net-
work parameters’ calculation of PEC RF coils modeled with the EFIE. Even though none of the
aforementioned results present any novelty, they aim to provide the reader with a deeper under-
standing of SIE and their versatility and usefulness on problems of EM radiation. The second
section of the third Chapter focuses on VIE. A theoretical investigation of the performance of
multiple VIE formulations is shown, and the superiority of JVIE is established. The JVIE dis-
cretization with polynomial basis functions is described, and the discretized Green’s function
operators, namely N and K, are shown. An assiduous analysis of the DVIE formulation follows,
which is used by the MR community to study the EM phenomena that occur in the presence
of human tissue. There, the precise details of the CG-FFT algorithm are shown. Subsequently,
the superiority of JVIE over the DVIE formulation is presented by performing simulations on
a realistic head model for multiple discretizations. Not only JVIE, expanded with PWL basis
functions, converges faster to the solution, but it is also more accurate in the entire region of the
head model. Τhe Chapter closes by mentioning the so-called coupled VIE-SIE (VSIE) solvers.

Τhe development of a series of methodologies for the memory footprint reduction of the
tensors appearing in FFT-VIE methods, along with a set of novel matrix-vector product imple-
mentations, is the subject of the fourth Chapter. The usability of the new methods is verifed
by a plethora of results. Ιn particular, the Tucker decomposition, the canonical polyadic model
(CP), and the TT decomposition are employed through a varied set of numerical linear algebra
algorithms, i.e., HOSVD, cross-Tucker, Tucker+CP, for the compression of the Green’s function
tensors appearing in the discretized FFT-VIE formulations. The immense memory compression
enables the usage of GPUs, even for fine discretizations, and problems that bow to fate to CPU
execution for hours can now be simulated in fifteen minutes. This speed-up corresponding to
an order of magnitude of acceleration is achievable since novel matrix-vector product methods
are proposed, where the linear complexity of the element-wise product (used in the traditional
matrix-vector product) is preserved. The new methods are tested in EM simulations for the scat-
tering of realistic human head and body models. Their accuracy, in some cases, is higher than
the tolerance of the iterative solver, which results in zero error between them and the traditional
technique. Finally, the Chapter is concluded by providing a mathematical trick in the implemen-
tation of the FFT in the tensor of the unknowns, which allows additional memory compression,
so problems with up to 84 million unknowns can be solved in a 12 GB GPU fast.

In the fifth Chapter, a novel RF coil design is developed and used in tandem with the GMT
algorithm for the EP reconstruction of biological head tissue in a simulated 7Tesla MRI environ-
ment. The design is inspired by a smaller coil, used for the reconstruction of tissue-mimicking
phantoms, also presented in the Chapter. The fundamental theory behind GMT is briefly men-
tioned, while the disadvantages of the ideal excitation used in earlier GMT reconstructions are
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presented. Afterward, the EFIE for PEC scatterers, extensively described in the third Chapter, is
employed for the modeling of the RF coils, while the effect of the lumped elements is included in
the MoM using the delta-gap method. To perform RF coil, tuning, matching, and decoupling, a
novel optimization process was developed, which optimizes the values of the variable capacitors,
spread across the coil, to ensure power transfer from the feeding ports to the loading scatterer,
and minimize reflections. A set of carefully designed experiments follows. Specifically, using dif-
ferent voltage calibration patterns, the EP reconstructions are presented, with small error over
the ground truth. The reconstructed properties are enough the estimate the electromagnetic field
intensities in the interior of the scatterer, with excellent accuracy. Finally, the superior perfor-
mance of the coil is shown for the challenging case of a head model with a malignant tumor.
GMT can detect the tumor’s location, while its reconstructed EPs are precise. The last section
of the fifth Chapter studies the performance of a convolutional neural network (CNN) for the
translation of MR measurements to EP maps. The proposed network is the well-known UNET
for 3D data. A dataset of simple geometrical objects with different shapes and EP is generated,
while randomly, a random amount of spherical features (with random EP each), is inserted in
every one of these objects. The network shows good performance for a vast number of testing
examples that did not exist on the training set. However, it is noted that this network is just
one particular example; thus, robust conclusions cannot be driven yet, regarding the usage of
machine learning in the EP reconstruction problem.

Last but not least, in the Conclusion chapter, the contributions of the methods presented in
the thesis are summarized, and future projects are suggested. After the bibliography section, five
appendices are included for completeness. Correctly, in appendix A, the Mie series solution for
spherical scatterers is presented. In B preliminary details on Wirtinger calculus are noted. In C,
we summarize some numerical linear algebra definitions and algorithms, used extensively in the
thesis. In D, the numerical integration techniques, employed for the computation of the integrals
appearing in SIE and VIE, are shown. Finally, in appendix E, the computation of the gradient of
a cost-function is described.
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Chapter 2
ELECTROMAGNETIC THEORY

2.1 Fundamental Theorems of Electromagnetism

2.1.1 Maxwell’s Equations and Boundary Conditions

The problems of electromagnetism can be described from the four Maxwell’s equations
[19] and all numerical forms for electromagnetic field calculations starts from them. The
most known form of the equations is their differential time-domain form, which was

presented in 1861 from James Clerk Maxwell as a combination of equations proposed by Gauss,
Ampere, Faraday, and Henry.

∇×H = J+
∂D
∂t

Ampere-Maxwell law

∇×E = −M− ∂B
∂t

Faraday’s law

∇ ·B = ρm Gauss’ law for magnetic fields

∇ ·D = ρe Gauss’ law.

(2.1)

In the above equations and for the rest of this dissertation t is time measured in seconds, E
is the electric field intensity in V/m, D is the electric flux density in C/m2, H is the magnetic
field intensity in A/m, B is the magnetic field density in Wb/m2 := T, J is the electric current
density in A/m2, M is the magnetic current density in V/m2, ρe is the electric charge density in
C/m3 and ρm is the magnetic charge density in Wb/m3. M and ρm are fictitious quantities and
are employed only for mathematical utility in the equations. All units are derivatives from the
International System of Units (SI).

We can derive additional equations by taking the divergence of Ampere-Maxwell law or Fara-
day’s law and applying the Gauss’ law for magnetic fields or Gauss’ law, respectively. By making
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use of calculus identities, one can find the following continuity equations

∇×H = J+
∂D
∂t

electric charges

∇×E =M− ∂B
∂t

magnetic charges.
(2.2)

The continuity equations can be used as fundamental ones instead of the Gauss’ laws. Although,
for this dissertation, the four Maxwell’s equations are considered the fundamental equations.
Additionally, a set of natural relationships between some terms appearing in Maxwell’s equations
is defined as follows.

D = ϵ0ϵrE

B = µ0µrH

J = σeE

M = σmH,

(2.3)

where the scalar terms are the so-called electrical properties, µ0 is the vacuum magnetic perme-
ability, and it is equal to 4π · 10−7 (H/m). ϵ0 is the vacuum electric permittivity, and it is equal
to 1/(µ0c2), with c = 299792458 m/s being the speed of light. ϵr and µr are the media’s rel-
ative permittivity and permeability, respectively, while σe and σm are the electric and magnetic
current conductivity measured in S/m and Ω/m respectively.

These terms characterize the electrodynamic and electrostatic behavior of the media and play
a fundamental role in the problems studied in this dissertation. The electrical properties ϵr , µr ,
σe, and σm can vary through the material’s section where they are categorized as homogeneous if
they are constant through the whole material or inhomogeneous if they are not. Moreover, they
are called dispersive if their value changes along with the operating frequency. Finally, they are
characterized as linear if they are independent of the field intensities and isotropic if they are in-
dependent of the field polarity. For example, a human head is dispersive, highly inhomogeneous,
linear, and isotropic 1.

Through this point, we have introduced the most fundamental concepts of electromagnetism.
In the remaining of this Chapter we will introduce additional theorems of electromagnetism
and work our way to a robust definition of an integral equation formulation that can be solved
numerically and return the electromagnetic field measurements of a known media and excitation
pattern 2. Towards this direction, we will derive the integral form of Maxwell’s Equations.

2.1.1.1 Integral form of Maxwell’s Equations

Let us consider an open Euclidean surface S1 terminated by a contour C and a Euclidean
surface S2 enclosing a volume V , shown in the left of 2.1 and right respectively.

1The EPs are anisotropic; however, the effect of the anisotropicity is negligible in high-field, and UHF MRI related
studies

2a wide variety of textbooks investigate deeply on these theories of electromagnetics [20, 26, 122–128], thus, we
will keep the definitions brief
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l̂dC

n̂dS1

S1

C
S2

n̂V

Figure 2.1: (left) Open Euclidean surface S1, terminated by a contour C , and their respective
differential elements. (right) Euclidean surface S2 enclosing the volume V .

By integrating the Ampere-Maxwell and the Faraday’s law over the surface S1 and applying
Kelvin-Stokes theorem, we derive the following"

S1

(∇×H) · dS1 =
"
S1

J · dS1 +
"
S1

∂D
∂t
· dS1⇒

∮
C

H · l̂dC =
"
S1

(
J+

∂D
∂t

)
· dS1"

S1

(∇×E) · dS1 = −
"
S1

M · dS1 −
"
S1

∂B
∂t
· dS1⇒

∮
C

E · l̂dC = −
"
S1

(
M+

∂B
∂t

)
· dS1,

(2.4)

where n̂ is the surface normal vector, dS1 is the differential surface element and l̂dC is the
differential contour element. Integrating Gauss’ laws and applying Gauss’ theorem (divergence
theorem) we end up to the following equations$

V

(∇ ·D) · dV =
$
V

ρedV ⇒
	
S2

D · dS2 =
$
V

ρedV

$
V

(∇ ·B) · dV =
$
V

ρmdV ⇒
	
S2

B · dS2 =
$
V

ρmdV ,
(2.5)

where dV is the differential volume element and dS2 the differential surface element.
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2.1.1.2 Time-harmonic form of Maxwell’s Equations

Plethora of electromagnetic related problems, and especially MRI applications which are the
main interest of this thesis, use time-harmonically varying fields, at a working frequency (or
frequencies) f , measured in Hz. In this case the following equation holds true for the electric
field

E =Re{ee−iωt}, (2.6)

whereω is the angular frequency equal to 2πf , measured in rad/s and the complex vector e ∈ C3

is called electric field phasor. Thus, for time-harmonic electromagnetic fields, using 2.1 and 2.6
one can rewrite Maxwell’s equations in the following simplified form

∇×h = j− iωϵ0ϵre

∇× e = −m+ iωµ0µrh

∇ · (µ0µrh) = ρm
∇ · (ϵ0ϵre) = ρe.

(2.7)

All of the equations as mentioned earlier can be redefined using this simpler representation for
time-harmonic fields.

In general, in the problems of electromagnetism, the current densities can be separated into
excitation and induced currents. By definition, this phenomenon is expressed as

j = jexc + σee, m =mexc + σmh. (2.8)

The electric and magnetic conductivities can be expressed as the imaginary part of a complex
relative permittivity and permeability given from the following

ϵ = ϵ0

(
ϵr − i

σe
ωϵ0

)
, µ = µ0

(
µr − i

σm
ωµ0

)
, (2.9)

and they represent the material losses. Using the above one can rewrite Mawxell’s equations
(using the continuity equations 2.2 in their time-harmonic form), as follows

∇×h = jexc − iωϵe

∇× e = −mexc + iωµh

∇ · (µh) = −∇ ·mexc
iω

∇ · (ϵe) = −
∇ · jexc
iω

,

(2.10)
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or in their integral form as ∮
C

h · l̂dC =
"
S1

(jexc − iωϵe) · dS1

∮
C

e · l̂dC = −
"
S1

(mexc − iωµh) · dS1	
S2

ϵe · dS2 =
$
V

∇ · jexc
iω

dV

	
S2

µh · dS2 =
$
V

∇ ·mexc
iω

dV .

(2.11)

2.1.1.3 Boundary Conditions

The electric and magnetic fields obey a set of boundary conditions between media with dif-
ferent EP, i.e., different brain tissues of a human body or boundary between a perfect electric
conductive coil material and the air. In 2.2 we show the boundary between the medium 1 and
2 with EPs ϵ1,µ1 and ϵ2,µ2 respectively. The surface S1 and its contour C correspond to the
infinitesimally small orthogonal shown on the left of 2.2, while the volume V and the surface
S2 correspond to the infinitesimally small cylinder illustrated on the right. We assume that the
height ∆h is close to 0. Using the integral form of Maxwell’s equations, the integrals are reduced
to 1D (Ampere-Maxwell law, Faraday’s law) and 2D (Gauss’ laws).

∆l
∆h

←t̂

n̂1
C

V enclosed by S2

∆h

n̂1

n̂2 = −n̂1

medium 1 : (e1,h1)

medium 2 : (e2,h2)

Figure 2.2: Boundary between two media 1 and 2 with different EP.

Since the quantities ϵe and µh are finite at the interface between the two media, one can
derive the following equations

(h1 −h2) · t̂ =
[
jexc ·

(
n̂1 × t̂

)]
∆h = jexc∆h = jd

(e1 − e2) · t̂ = −
[
mexc ·

(
n̂1 × t̂

)]
∆h = −mexc∆h = −md,

(2.12)

where jd and md are called impressed electric and magnetic current densities at the interface,
respectively.
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Similarly, the Gauss’ laws obtain the following form

n̂1 · (µ1h1 −µ2h2) = ρm∆h = ρmd

n̂1 · (ϵ1e1 − ϵ2e2) = ρe∆h = ρed ,
(2.13)

where ρmd and ρed are called impressed electric and magnetic surface charge densities at the
interface, respectively.

In the problems of interest in the presented dissertation, magnetic currents and charges do
not exist, and the boundary conditions acquire the following elegant form

n̂1 × (h1 −h2) = jd

n̂1 × (e1 − e2) = 0

n̂1 · (µ1h1 −µ2h2) = 0

n̂1 · (ϵ1e1 − ϵ2e2) = ρed .

(2.14)

It is observed that the tangential electric field is continuous across the interface, while the tan-
gential magnetic field is discontinuous due to the impressed electric current density. Finally, if
one of the media is a perfect electric conductor (RF coils), then e2 and h2 are 0 everywhere, and
the boundary conditions are simplified. These boundary conditions are crucial for the deriva-
tion of surface and volume integral equations, as will be seen later in the present and the next
Chapter.

2.1.2 Superposition, Duality and ReciprocityTheorems

Using the fundamental Maxwell’s equations and the boundary conditions, one can derive
multiple vital theorems in electromagnetics. One of them is the superposition theorem, where for
a linear medium, it is proven that the total electromagnetic field intensity due to multiple sources
is the sum of the electromagnetic field intensities produced by each source independently. This
theorem is extremely useful in modern 7 Tesla MRI problems, where the number of transmit
coil channels is 8. In this case, one can consider each channel as a single excitation, solve all 8
of them with a numerical method (see in the next Chapters) and sum them with any weighting
factor to derive any form of excitation (for example the excitation modes of birdcage coils) used
for imaging.

Let us consider n excitation sources. In this case, Ampere-Maxwell law and Faraday’s law are

∇×hi = jexc
i − iωϵei

∇× ei = −mexc
i + iωµhi ,

(2.15)

where i = 1,2, . . . ,n. By adding the n set of equations together, it is clear that

e =
n∑
i=1

ei , h =
n∑
i=1

hi . (2.16)
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Another important theorem is the duality theorem, where it is stated and proven that the
electric and magnetic field quantities are commutable. Specifically, Ampere-Maxwell law can
be derived from Faraday’s law if m → −j, e → h, h → −e and µ → ϵ, while Faraday’s law is
obtained through Ampere-Maxwell law if j → m, e → h, h → −e and ϵ → µ. The duality
theorem can greatly reduce the computational time of electromagnetic simulations for specific
applications.

A useful theorem in electromagnetic applications is the reciprocity theorem. The theorem
states that the electromagnetic field and the electromagnetic sources are commutable, without
affecting the systems’ response. The proof of the reciprocity theorem can be found in multiple
textbooks [127, 128]; thus, it is skipped.

2.1.3 Vector Wave Equations

Ampere-Maxwell law and Faraday’s law are coupled in a sense that the unknown electric and
magnetic field intensities appear in both of them. Alternatively, one can decouple these equations
and derive one differential equation of higher order for each of the electric and magnetic field
intensities. Even if the order is higher, the decoupled now system is a more elegant form for
problems of computational electromagnetics. After some operations on Faraday’s law, one can
derive the following

∇×
(
1
µr
∇× e

)
− k20ϵre = iωµ0jexc −∇×

(
1
µr
×mexc

)
⇒

∇×∇× e− k2e+µr∇
(
1
µr

)
×∇× e = iωµjexc −∇×mexc −µr∇

(
1
µr
×
)
×mexc.

(2.17)

Similarly, starting from Ampere-Maxwell law, one can derive the following

∇×
(
1
ϵr
∇×h

)
− k20µrh = iωµ0mexc +∇×

(
1
ϵr
× jexc

)
⇒

∇×∇×h− k2h+ ϵr∇
(
1
ϵr

)
×∇×h = iωϵmexc +∇× jexc + ϵr∇

(
1
ϵr
×
)
× jexc.

(2.18)

The 2.17 is the electric field vector wave equation, while the 2.18 is the vector magnetic field wave
equation. k is the wavenumber of the medium and it is equal to k0

√
ϵµ, where k0 is the wavenum-

ber of vacuum and it is equal to 2πf /c.

2.1.4 Green’s function

One key aspect of the electromagnetic field theory is Green’s functions and play a crucial role
in the derivation, solution, and sophisticated algorithm application in the IE methods. Con-
cretely, the vector wave equations can be solved with the help of Green’s functions with a gen-
eralization of the method initially proposed by George Green, in 1828, for the solution of the
electrostatic Poisson equation of the potential produced by a given charge distribution, in [129].
In general, Green’s functions represent the response of an electrodynamic system in a delta func-
tion excitation. Thereunto, Green’s function can be considered as a mathematical description of
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the distant electromagnetic interactions between currents and loads. Finally, the electromag-
netic field quantities can be obtained as transcendental integrals of the sources multiplied by the
respective Green’s functions.

In the present thesis, we are mostly interested in the Green’s function of the electric field for
electric sources, since the human body and the RF coils are non-magnetic objects. We will refer
to this function as the dyadic Green’s function [130–133], which is nothing else than a point source
response of the electric field vector wave equation. We assume that the medium is homogeneous
and non-magnetic, while magnetic sources do not exist. The fields are time-harmonic; thus, the
quantity e−iωt can be neglected. The equation, 2.17 becomes

∇×∇× e (r)− k2e (r) = iωµjexc, (2.19)

where r is the observation point. Given that the dyadic Green’s function is the point source
response of 2.19 one can express the observed electric field at a point r as the following integral

e (r) = iωµ
$
V

Ḡ (r,r′) · jexc (r
′)dV , (2.20)

where r′ are the source points, Ḡ is the dyadic Green’s function, and V is the volume of the
homogeneous domain of interest. The dyadic Green’s function can be found from 2.19 as follows

∇×∇× Ḡ (r,r′)− k2Ḡ (r,r′) = Īδ(r− r′)⇒

Ḡ (r,r′) =
(
Ī +
∇∇
k2

) eik|r−r
′ |

4π|r− r′ |
,

(2.21)

with Ī being the unit dyad. Finally, the free-space Green’s function, or the fundamental Helmholtz
solution is defined as follows

g (r,r′) =
eik|r−r

′ |

4π|r− r′ |
. (2.22)

2.1.5 Surface Equivalence Principle

To derive the integral equation formulations that will be used extensively in the present thesis,
one has to apply the surface and volume equivalence principles. In this section, we will derive the
so-called surface equivalence principle and extinction theorem [129,134,135] while in the next, we
will focus on the volume equivalent one. The surface equivalence principle and extinction the-
orem is very similar to the well-known Huygens’ principle: “Every point on a wave-front may
be considered a source of secondary spherical wavelets which spread out in the forward direc-
tion at the speed of light. The new wave-front is the tangential surface to all of these secondary
wavelets” [136].

In 2.3 we show a surface S , with normal n̂, bounding the volume V2 while the rest of the
space is the volume V1. In region 1 there is a current source j1 (we dropped the subscript “exc”),
while in region 2 a j2.
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S
V1

V2

j2

j1

region 2

region 1

←

n̂

Figure 2.3: Surface equivalence principle and extinction theorem.

We consider the wavenumber to be constant, and multiply the electric field vector wave equa-
tion 2.19, for source j (r), with Ḡ (r,r′) from the right. In addition, for point source response, with
multiply 2.19 with e (r) from the left. We substract these equations and result to the following

e (r) · ∇ ×∇× Ḡ (r,r′)−∇×∇× e (r) · Ḡ (r,r′) = δ (r− r′)e (r)− iωµj (r) · Ḡ (r,r′) . (2.23)

If we integrate over V1, the equation takes the following form

e (r′)− e1 (r′) =
$
V1

[
e (r) · ∇ ×∇× Ḡ (r,r′)−∇×∇× e (r) · Ḡ (r,r′)

]
dV1, (2.24)

where

e (r′) =
$
V1

δ (r− r′)e (r)dr, e1 (r
′) = iωµ

$
V1

j1 (r− r′) · Ḡ (r,r′)dr. (2.25)

The second form represents the total electric field intensity in V1 due to the source j1, since j2
exists in V2 only. Using

−∇ ·
[
e (r)×∇× Ḡ (r,r′) +∇× e (r)× Ḡ (r,r′)

]
=

= e (r) · ∇ ×∇× Ḡ (r,r′)−∇×∇× e (r) · Ḡ (r,r′) ,
(2.26)

the Gauss’ divergence theorem and Faraday’s law, the integral over V1 becomes a closed integral
between the bounding surface S and the infinite sphere S∞ as follows

e (r′)− e1 (r′) =
	

S +S∞

[
n̂× e (r) · ∇ × Ḡ (r,r′) + iωµn̂×h (r) · Ḡ (r,r′)

]
dS , (2.27)

23



Chapter 2

or r
′ ∈ V1, e (r′)

r ′ < V1, 0
= e1 (r

′) +
	
S

[
n̂× e (r) · ∇ × Ḡ (r,r′) + iωµn̂×h (r) · Ḡ (r,r′)

]
dS , (2.28)

because the electric field intensity e (r′) vanishes in V2 and the integral goes to zero at the infinite
sphere. Also, we can shift r and r′ in 2.28 and take its transpose to obtain the following formr ∈ V1, e (r)

r ∈ V2, 0
= e1 (r) +

	
S

[
∇× Ḡ (r,r′) · n̂′ × e (r′) + iωµḠ (r,r′) · n̂′ ×h (r′)

]
dS ′, (2.29)

where the reciprocity theorem was used once again on the dyadic Green’s function:

∇× Ḡ (r,r′) =
[
∇′ × Ḡ (r′,r)

]T
, Ḡ (r,r′) =

[
Ḡ (r′,r)

]T
. (2.30)

Equation 2.29 is known as the Stratton-Chu equation for the electric field. With duality, one can
derive the following Stratton-Chu equation for the magnetic fieldr ∈ V1, h (r)

r ∈ V2, 0
= h1 (r) +

	
S

[
∇× Ḡ (r,r′) · n̂′ ×h (r′)− iωϵḠ (r,r′) · n̂′ × e (r′)

]
dS ′, (2.31)

The cross products of the electric and magnetic field intensities with the normal of S can be
though as surface quantities of S . Specifically, we can define them as equivalent surface currents
on S

meq (r
′) = −n̂′ × e (r′) , jeq (r

′) = n̂′ ×h (r′) . (2.32)

The electric field intensity yields surface magnetic currents, while the magnetic field intensity
yields electric ones. The Stratton-Chu equation becomesr ∈ V1, e (r)

r ∈ V2, 0
= e1 (r)−

	
S

[
∇× Ḡ (r,r′) ·meq (r

′) + iωµḠ (r,r′) · jeq (r
′)
]
dS ′. (2.33)

The equation 2.33 is the surface equivalence principle [137] and it means that the total electric
field intensity e (r) in a volume V1 is generated by the sources in the interior of it (j1 (r)) and the
ones in the exterior of it (j2 (r)). In addition, the total electric field intensity can be expressed
as the sum of the electric field intensity in the interior of V1, generated by j1 (r) and an electric
field intensity generated by the radiation of the equivalent magnetic and electric surface currents
on the bounding surface of V2. Furthermore, the impressed equivalent currents on S generate
equivalent electromagnetic field intensities with the sources in V2 (j2 (r)).

The similarity with the Huygens’ principle, or the extinction theorem, can be observed from
the bottom part of 2.33. The radiation from the surface equivalent currents cancels out the elec-
tromagnetic field intensity in V2, produced by the sources in V1.
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2.1.6 Volume Equivalence Principle

Similarly with the surface equivalence principle, the volume equivalence principle aims to
use a set of equivalent polarisation currents to replace the electromagnetic field intensities gen-
erated in the presence of an inhomogeneous medium enclosed in a volume. Let us consider the
volume (object) shown on the left of 2.4. The volume is inhomogeneous with ϵ (r) and µ (r),
surrounded by vacuum. An electromagnetic current source with j (r) and m (r), away from the
object, generates a set of the so-called incident fields einc (r) and hinc (r) that excite it. As a result,
scattered electromagnetic fields are created (esca (r) , hsca (r)), to satisfy the boundary conditions
of the problem.

ϵ (r) ,µ (r)

e (r) ,h (r)

ϵ0,µ0

j (r) ,m (r)

ϵ0,µ0

e (r) ,h (r)

jeq (r) ,meq (r)

Figure 2.4: Volume equivalence principle.

The resulting total electromagnetic field intensities are nothing else than the sum of the in-
cident and scattered fields:

e (r) = einc (r) + esca (r) , h (r) = hinc (r) +hsca (r) . (2.34)

The total and incident electromagnetic field intensities satisfy Ampere-Maxwell and Faraday’s
laws. By exploiting this fact, one ends up quickly to the following equations for the scattered
electromagnetic field intensities:

∇×hsca (r) = −iω [ϵ (r)− ϵ0]e (r)− iωϵ0esca (r)

∇× esca (r) = −iω [µ (r)−µ0]h (r) + iωµ0hsca (r) .
(2.35)

Additionally, the scattered electromagnetic field intensities should satisfy Ampere-Maxwell and
Faraday’s laws as well. Therefore, this means that a set of equivalent volumetric polarisation
currents is responsible for the generation of these scattered fields and can be expressed as follows

jeq (r) = iωϵ0 [ϵr (r)− 1]e (r) , meq (r) = iωµ0 [µr (r)− 1]h (r) . (2.36)
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Equation 2.36 is the volume equivalence principle and states that the new equivalent electromag-
netic sources can replace the object with free-space.

2.2 Computational Electromagnetism

In the sections above, we have introduced the fundamental equations (Maxwell’s equations)
of the electromagnetic theory along with a set of boundary conditions between different media. If
used in tandem, one can solve for unknown electromagnetic field quantities, such as the EM field
intensities, the absorbed power, and multiple MR measurements. Towards this direction, one has
to employ the surface and volume equivalence principle to define the so-called integral equations
(more formal definitions are introduced in Chapter 3). Nevertheless, IEs are impossible to be
solved fully analytically for arbitrary, real-world objects of electrical and biomedical engineering
applications 3. Regrettably, analytical solutions exist only for perfect spheres with stratified media
layers and infinitely long cylinders, based on the Mie Series approach [138]. Therefore, numerical
methods are mandatory for the efficient calculation of the electromagnetic field quantities.

Specifically, the scientific field for such methods that are applied in problems of electromag-
netics is called computational electromagnetics and focuses on accurate, fast, and efficient nu-
merical simulations of the EM scattering in an application of interest. Apart from MR imaging
systems, and bioengineering, CEM is used in a wide variety of applications, such as photonics,
sensors, remote sensing, telecommunications, radars, and antenna theory, among others. Most
of the methods arising in this area can be applied to different applications without many alterna-
tions, thus the great versatility of CEM. This versatility is easily observed from the commercially
available packages that are used for various applications in the last decades [22,139–141]. Finally,
all numerical techniques of CEM are divided into time-domain and frequency-domain methods
and in differential and integral methods, depending on which form of Maxwell’s equations is
used.

In the first section of this Chapter, we mentioned that a wide variety of EM applications, and
especially the ones that concern this dissertation, use harmonically time-varying fields; there-
fore, using the Fourier transform, the time variable is replaced with a phase shift. As expected,
this led to multiple frequency domain methods (such as the integral equations and finite ele-
ment method) that can estimate only the spatial variations of the electromagnetic field quanti-
ties. Nevertheless, the vastly increasing computational power and memory allowed the mod-
eling of non-time harmonic EM problems. These time-domain methods (i.e., finite difference
time domain method, FDTD [142–144]) mimic the spatio-temporal behavior of the EM fields.
Specifically, the EM fields are computed and stored in the 3D space and the respective compu-
tational space should be terminated due to the limited capability of storage in the computer’s
memory. As a result, these methods are optimal by definition for closed problems, while for the
case of open scattering problems, specific absorption boundary and radiation conditions should

3Such problem is the scattering from biological tissue in the presence of RF coils
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be included. These methods can return results for multiple frequencies with one solution of the
system, while the respective frequency methods require the inversion of a matrix for a single fre-
quency solution. Finally, time-domain methods offer a more “natural” observation on the EM
fields’ behavior since they study straight the 4D electrodynamic phenomena.

Nevertheless, MRI is a single-frequency and a time-harmonic problem, and as a result,
frequency-domain methods are an excellent tool for such simulations. Besides, when the
maximal use of a specific setting is possible (single frequency), frequency methods (and
especially integral methods) provide an opportunity for customization of fast algorithms, such
as the extreme memory compression method developed in Chapter 4, which is one of the main
contributions of this thesis.

2.2.1 Differential and Integral Methods

Differential equation (DE, or PDE) methods arise straight from Maxwell’s equations or the
vector wave equations without preprocessing. Thus, these methods can be utilized to solve prob-
lems of arbitrary geometries and inhomogeneous objects. Since the electromagnetic quantities
are stored in 3D space, the methods are bounded by the memory footprint of the problem and
computer’s available memory. Therefore, such an impasse states that these methods are optimal
for closed problems, while for far-field scattering measurements, one has to employ appropri-
ate boundary and radiation conditions. Usually, PDE methods lead to vast sparse matrices that
model the local interactions between an electromagnetic field-related quantity. Finally, the most
well-known PDE methods are the finite element method (FEM) [145–148] in the frequency do-
main and the previously mentioned FDTD in the time domain.

Instead of solving Maxwell’s equations directly in their PDE form, one can exploit the surface
and volume equivalence principles and reform them as integral equations. In the case of homo-
geneous scatterers, the surface equivalence principle can be restricted in their boundary, thus
hugely reducing the dimensionality of the problem. One needs to compute the equivalent cur-
rents only on the surface of the scatterer, thus, creating a dense but much smaller matrix than the
PDE methods, which can be easily solved with classic direct approaches (Gaussian elimination).
For inhomogeneous problems, one can employ the volume equivalence principle and utilize the
free-space dyadic Green’s function for an efficient solution to the problem at hand. Regrettably,
the number of unknowns vastly increases in contrast with the surface approach, and the arising
matrix in almost impossible to be stored for fine resolutions even in modern servers.

Nevertheless, one can exploit the translational invariant property of the Green’s function if the
discretization is uniform. In this case, the arising matrix acquires a Toeplitz structure, therefore
only the Toeplitz defining vector needs to be computed for the implementation of the matrix-
vector product with a CG-FFT method [53, 57, 149, 150]. Moreover, other methods that are not
restricted to uniform grids are available in the literature, such as the precorrected FFT approach
[51] the adaptive integral equation [56], and the well-known fast multipole methods [30,32,151–
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154]. Finally, the discretization scheme for the integral equation methods is efficiently performed
through their transformation to a system of equations via the Method of Moments [155], which
is explained in the following subsection.

2.2.2 Method of Moments

Let us consider an unknown function f and an operator L, where L (f ) = g . In fact, the
operator is translated to a mapping between f ∈ D (L) and g ∈ R (L). D (L) is the domain of
L and it is an infinite dimension Hilbert space 4, while R (L) is the codomain of L and it is a
non-proper subset of D (L).

If f i , i = 1,2, . . . is an orthonormal basis of D (L) then f can be expressed as an exact linear
combination of f n as follows

f =
∞∑
i=1

aif i , ∥a∥L1 ≥ 0. (2.37)

To reduce the method to n dimensions instead of infinite, we define a linear subspace Fn (L) ⊂
D (L) and an orthonormal basis f i , i = 1,2, . . . ,n, from functions of the infinite space D (L).
Any function q ∈ Fn (L) can be approximated with the equation

q ≈
n∑
i=1

aif i , ∥a∥L1 ≥ 0. (2.38)

In addition, we define another linear subspace Wn (L) ⊂ D (L) and an orthonormal basis of it
wi , i = 1,2, . . . ,n. Any function p ∈ D (L) can be expressed, using the projection theorem, as

p = PWn(L){p}+ h, ⟨h,wi⟩Wn(L) = 0, ∀wi ∈Wn (L) , (2.39)

where PWn(L){p} is the projection of function p in Wn (L), h is the minimum distance of p from
Wn (L), and ⟨·, ·⟩X is the inner product on X.

Method of moments approximates the exact solution of 2.37 of the problem L (f ) = g with
a function given from 2.38 in such a way that the projection of the function L (f ) and L (q) on
Wn (L) are equal, or equivalently using 2.39

L (f )−L (q) = hf − hq→minimum, (2.40)

where hf and hq are the minimum distances of f and q from Wn (L) respectively. To minimize
the difference between these projections one has to enforce an equality between the projection
of the infinite and the finite functions, f and q respectively, on the orthonormal basis of Wn (L)
or equivalently

⟨wi ,L (q)⟩Wn(L) = ⟨wi ,L (f )⟩Wn(L). (2.41)

4A complete metric space, equipped with an inner product, defined in Appendix C
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Using 2.41 and 2.38 in tandem we end up in an algebraic system of equations Za = b, where

Z =


⟨w1,L (f 1)⟩ ⟨w1,L (f 2)⟩ · · · ⟨w1,L (f n)⟩
⟨w2,L (f 1)⟩ ⟨w2,L (f 2)⟩ · · · ⟨w2,L (f n)⟩
· · · · · · · · · · · ·

⟨wn,L (f 1)⟩ ⟨wn,L (f 2)⟩ · · · ⟨wn,L (f n)⟩

 ,a =

a1
a2
· · ·
an

 ,b =

⟨w1,L (g)⟩
⟨w2,L (g)⟩
· · ·

⟨wn,L (g)⟩

 . (2.42)

Vector a contains the unknown coefficients of the problem, which in integral equations are usu-
ally the equivalent currents, the electric flux density, or the electric field intensity. Finally the
solution f is approximated as

f = [f 1f 2 · · ·f n]Z
−1b. (2.43)

Method of moments is often called the Galerkin method credited to the Russian mathemati-
cian Boris Grigoryevich Galerkin and the Swiss physicist Walther Ritz. Depending on the chosen
basis and testing functions of choice, the method is called Bubnov-Galerkin or Ritz-Galerkin for
the same set of functions, and Petrov-Galerkin for different sets of functions. The optimal sets of
basis and testing functions are the ones that guarantee a solvable problem as long as we increase
n, and the inverse operator of L is bounded as n→∞. For the integral equation methods we
usually use the Ritz-Galerkin method and consider Wn (L) ≡ Fn (L) which yields accurate re-
sults, although for computational reasons, one can employ a simpler Petrov-Galerkin method,
the collocation method. For the integral methods referred to in this thesis, we use the Galerkin
approach; however, we include a brief description of the collocation method for completeness,
below.

2.2.2.1 Collocation Method

The collocation method is one of the most simple Petrov-Galerkin methods, where the basis
functions are evaluated over a set of collocation points xi , i = 1,2, . . . ,n (i.e., piecewise-constant
functions, with collocation point the center of the discretization element), and the testing func-
tions are the Dirac delta functions δ(x − xi) in the same set of collocation points. Due to the
usage of the Dirac delta functions, the Galerkin arising integrals of Z have a reduced dimension
(in surface equations from 4D to 2D and in volume equations from 6D to 3D) which simplifies
the calculation process but worsens the accuracy. Furthermore, if the number of the collocation
points is > n, the system Za = b is underdetermined. Thus, least squares approaches have to be
employed for its accurate solution.

2.2.2.2 NyströmMethod

The collocation method can be simplified even further by approximating the integral with a
weighted sum over a set of n sampled points. However, this approach can lead to singularities if
the sampled points exist on the same discretization element as the respective collocation points.
Thus, advanced quadrature integration techniques are employed to evaluate the appearing sin-
gular integrals.
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INTEGRAL EQUATIONMETHODS

The fast, efficient and accurate modeling of the EM scattering by arbitrary isotropic objects
is of paramount importance in a plethora of modern applications. After the implemen-
tation of the Mie series by Gustav Mie in 1908 [138], the only full analytical method to

study the scattering of homogeneous spherical scatterers, the numerical methods became ver-
itable workhorses for the analysis of the electromagnetic scattering. Specifically, over the last
decades, CEM solvers are considered a ubiquitous commodity for various applications. Exam-
ples include telecommunications, antenna theory, photonics, nondestructive testing, target iden-
tification, and geophysical exploration. Besides, a variety of software is available for fast and ac-
curate EM modeling and simulations. However, computational electromagnetics is still an open
area of research since more competitive applications arise daily, i.e., interactions between biolog-
ical tissue, RF coils, and EM waves in modern UHF MR (≥ 7 Tesla) scanners. In these problems,
the interactions between electromagnetic waves and human tissue becomes more dominant than
in the traditionally used MR scanners (1.5,3 Telsa), and can easily have detrimental effect to the
quality of the images and the safety of the patients, if not modeled accurately while designing
the scanner and the RF coils [13–16]. The wide variety of different tissues inside human heads
makes them truly inhomogeneous scatterers; hence the computational accurate and fast analysis
of such cases is by no means a trivial task.

When we are dealing with the scattering from objects of finite electrical properties, hence
penetrable, we can use a wide variety of methods based on partial differential equations, such as
the FDTD and the FE methods for Maxwell’s and wave equations, respectively. For general appli-
cations, these methods are a panacea, since geometries with arbitrary spatially-varying and piece-
wise homogeneous electrical properties are handled without additional retooling [156–158].
Nevertheless, methods that are based on the integrodifferential form of Maxwell’s equations
(namely integral equations) offer an ideal platform for the customization of fast algorithms where
the maximal use of a specific setting is possible, i.e., in nuclear magnetic resonance imaging where
the operating frequency is constant and a multiple of the Larmor’s frequency. Although, for a
general-purpose solver, they might become prohibitively slow and complicated.
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For linear problems, such as the scattering from an arbitrary object, the linear superposition
principle allows us to find the fundamental solution of the system or the Green’s function [129]
of the respective PDE. The Green’s function is an exact propagator of the electromagnetic field
from a source point r′ to an observation point r. Hence, the grid dispersion error that appears
on PDE methods vanishes for IE [143, 159]. IE methods are divided into two families, surface
and volume methods. In the case of surface equations, the unknowns reside on the surface of
the scatterer [20]. Thus we do not need to solve for the whole 3D space around and interior of
the scatterer like in PDE cases. However, VIE has to be solved for the whole 3D space, since it
is used to model inhomogeneous objects; thus, a more significant number of unknowns than in
the surface equation case is required.

Moreover, many advantages can be exploited in a simulation, based on IE. The arising Green’s
function operators do not depend on the characteristics of the scatterer, but only from the do-
main of the mesh, thus they can be precomputed before the simulation. Furthermore, due to the
similar nature of SIE and VIE, a coupling between the MRI RF coil and the human tissue can be
used [23]. SIE is optimal for perfect electrical conductors like the metal of the RF coil, while VIE
can solve for the inhomogeneity of the human tissue inside the scanner. IEs are also handy for
the efficient reconstruction of the electrical properties of human tissue [160] since they can form
a fully 3D global problem. Furthermore, IEs have been used as a method for the construction of
a so-called ultimate basis that allows the representation of a reduced-order model for the RF coil
- human body interactions, or dielectric pad - human body interactions.

In terms of implementation complexity, A PDE-based software can be implemented simpler
than an IE-based one, since IEs require the proper evaluation of arising singular integrals in their
Green’s function kernels. However, sophisticated packages are implemented and used, for this
reason, such as [27, 28], even as a black-box solution. On the one hand, a PDE method solves a
sparse matrix system with O(n) complexity (n is the number of unknowns), which significantly
reduces the computation and memory cost. On the other hand, the associated IE systems require
the storage of a dense matrix with memory complexity O(n2), and for many years IE could not
be used for realistic problems. However, this impasse was tackled with the introduction of fast IE
solvers [20,30,31,151,161–164] which allow us to perform the arising matrix-vector product with
O(n logn) complexity either by exploiting the translational invariance property of the Green’s
function, by representing the unknown physical quantities on uniform tessellations (FFT-based
VIEs), or by using the fast multipole method [165].

The present thesis introduces tensor decomposition techniques that can be used on FFT-
based VIE and compress the arising Green’s function tensors more than 3000 times [1, 5, 68],
this compression allows us to fit and run simulations of huge problems inside GPU and thus, ac-
celerate their solution by order of magnitude. These methods are described in Chapter 4. In the
remainder of this Chapter, we will present the state-of-the-art SIE solvers and focus on the accel-
erated VIE methods based on FFT. Additionally, we will describe the lumped element modeling
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for RF coils, which will be used extensively in Chapter 5 for the design of problem-dedicated RF
coils for the EP reconstruction problem.

3.1 Surface Integral Equations

Electromagnetic scattering problems are studied as radiation problems where incident sources
generate the arising radiating currents on the surface of the scatterer. For instance, in antenna
theory, the currents, as mentioned earlier, are created via a voltage source, and then they radiate
a scattered field. To derive accurate representations of the current induced on the surface of the
finite size object, we can exploit the surface equivalence principle. In this section, we will focus
on surface integral equation methods, in which we solve a linear system for the induced current
on the surface of a PEC or homogeneous scatterer. The integrodifferential operator is applied
to the unknown current, thus, the name integral equation. Usually, the MoM is used to derive
a linear system where the vector of the unknowns describes the components of the current on
specific points of the in-study surface (determined by the discretization technique and the ba-
sis functions). After the solution of the arising dense linear system (either with a standard LU
decomposition or an iterative solver), the electromagnetic fields inside and outside the scatterer
can be calculated by solving the integrals of the equation mentioned above.

3.1.1 Surface Integral Equation for Impenetrable Scatterers

In this section, we present two IE formulations for perfect electric conductors: the electric
and magnetic field IE. The scatterers are termed as impenetrable objects since no electromag-
netic energy can penetrate inside them, originating from a source in the exterior space. Simi-
larly, impenetrable scatterers are the perfect magnetic conductors (PMC) in which the tangential
magnetic field is zero on their interior. We consider an incident electromagnetic field einc that
impinges on a PEC. Thus, equivalent electric current will be induced on the surface S of the
object, and a scattered field will appear. Graphically this can be observed in figure 3.1.

Just outside surface S we define another surface S +, approximately large enough to contain
it, and we apply the equivalence principle and the extinction theorem. Equivalent electric and
magnetic currents arise on S + as follows

jeq = n̂×h, and meq = −n̂× e. (3.1)

However, since the object is a PEC, no magnetic currents will be imposed on its surface. Thus,
the equivalence principle and the extinction theorem can be written as followsr ∈ V1, e(r)

r ∈ V2, 0
= einc(r) +

∫
S +

iωµḠ(r,r′)jeq(r
′)dr′, (3.2)

where r denotes the observation point, r′ the source point, V1 the volume outside the surface
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einc

esca

jeqS

S +

Figure 3.1: Scattering by a PEC surface.

S + and V2 the volume encolsed by it. For r ∈S the theorem can be written as the following IE

einc(r) +
∫

S +

iωµḠ(r,r′)jeq(r
′)dr′ = 0. (3.3)

A similar magnetic field-based IE can be derived by taking the curl of 3.3 (or its dual)

hinc(r) +∇×
∫

S +

iωµḠ(r,r′)jeq(r
′)dr′ = 0. (3.4)

Since S + is infinitesimally close to S the tangential component of the magnetic field, n̂ × h
is equal, for both surfaces. Thus the equivalent electric current on S is equal to the equivalent
current on S +. In addition, since n̂×e = 0 on the surface it is sufficient to use only the tangential
component of 3.3 and 3.4. Thus, the aforementioned equations become

n̂× einc(r) + iωµn̂×
∫

S +

Ḡ(r,r′)jeq(r
′)dr′ = 0

n̂×hinc(r) + n̂×∇×
∫

S +

iωµḠ(r,r′)jeq(r
′)dr′ = 0.

(3.5)

These equations are referred to in the literature as Electric Field Integral Equation and Magnetic
Field Integral Equation and they find many applications, especially in antenna theory. To avoid
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carrying the integral, we introduce the following operator notation

L(j) = iωµ
∫

S +

Ḡ(r,r′)jdr′

K(j) = ∇×
∫

S +

Ḡ(r,r′)jdr′.
(3.6)

The K operator can be simplified by using the following property of the dyadic Green’s function

∇× Ḡ(r,r′) = ∇×
[
Ī +

( 1
k2
∇ ·∇g(r,r′)

)]
. (3.7)

Since, ∇×∇g(r,r′) = 0 we can write the 3.7 as follows

∇× Ḡ(r,r′) = ∇g(r,r′)× Ī . (3.8)

Thus, the K operator becomes:

K(j) = ∇×
∫

S +

∇g(r,r′)× jdr′. (3.9)

When r = r′ the gradient of Green’s function goes to infinity (∝ 1/ |r− r′ |2), thus, the integral of
K is strongly singular. To calculate it the Cauchy’s principal value theorem is used as follows

n̂×


∫

S +

jeq(r
′)×∇′g(r,r′)dr′

 =
n̂×


∫

S +−δS +

jeq(r
′)×∇′g(r,r′)dr′ +

∫
δS +

jeq(r
′)×∇′g(r,r′)dr′

 ,
(3.10)

where δS + is a small circular region of radius α in S + located close to r, and it is portrayed in
the following figure 3.2.

δS

ẑ

α

ρ′

r

r′

Figure 3.2: Local circular region

We will choose the center of δS + as the origin of a local cylindrical coordinate system in
order to have |r− r′ | =

√
(ρ′)2 + (z − z′)2, and we assume that n̂ = ẑ inside δS +. Therefore, the

Green’s function in the new local coordinate system can be approximated as follows

g(r,r′) ≈ 1

4π
√
(ρ′)2 + (z − z′)2

, |r− r′ | ≪ 1. (3.11)
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Inside δS + the current jeq(r′) is everywhere tangential to the surface, since n̂ = ẑ. Moreover,
since δS + is infinitely small, we can also assume that jeq(r′) is approximately equal to jeq(r) and
constant. By exploiting the gradient form ∇′ = ∂

∂ρ′ ρ̂+
1
ρ′

∂
∂ϕ′ ϕ̂

′ + ∂
∂z′ ẑ we have

n̂×


∫
δS +

jeq(r
′)×∇′g(r,r′)dr′

 =
∫
δS +

ẑ × jeq(r′)×∇′g(r,r′)dr′ =
∫
δS +

jeq(r
′)
[
∂g(r,r′)
∂z′

]
dr′ z

′=0=

∫
δS +

jeq(r
′)

z

4π
[
(ρ′)2 + (z − z′)2

] 3
2
dρ′ =

jeq(r′)
2

α∫
0

zρ′

4π
[
(ρ′)2 + (z)2

] 3
2
dρ′ =

jeq(r′)
2

[ z
|z|
− z

α2 + z2

]
⇒

lim
z→0+

jeq(r′)
2

[ z
|z|
− z

α2 + z2

]
=
jeq(r)
2

.

(3.12)

According to the above, the MFIE takes the following form

0 = n̂×hinc(r)−
jeq(r)
2

+ n̂×


∫

S −δS

jeq(r
′)×∇′g(r,r′)dr′

 . (3.13)

The equation holds when the circular area δS + is planar. In the case of geometry with sharp
edges, like the apex of a cone, a correction in the approximation is required. According to [166]
equation 3.12 results to Ω0/4π · jeq(r), where Ω0 accounts to the exterior solid angle. MFIE
becomes

0 = n̂×hinc(r)−
(
1− Ω0

4π

)
jeq(r) + n̂×


∫

S −δS

jeq(r
′)×∇′g(r,r′)dr′

 . (3.14)

For smooth geometries, Ω0 = 2π and equation 3.14 becomes the 3.13. However, an adjustment
on the solid angle, as it was done in [167], yields more accurate results. Finally, we note that
MFIE is derived using a limiting argument for closed scatterers, and, in contrast with EFIE, it
cannot be applied to open surfaces (RF coils with width = 0).

3.1.2 Surface Integral Equation for Penetrable Scatterers

While the IE formulations mentioned above for PEC objects are of paramount importance,
since they can be used to model metallic antennas, it is also interesting to study the scattering
of penetrable objects as well. Such problem tantalized scientists for years [146, 147, 168–173]
and it was only after 1960 when IEs were used to study such problems [155,174–177]. However,
in [178], a comprehensive method was provided.

In the case of homogeneous dielectric objects, electromagnetic energy flows into the scatterer,
and different boundary conditions (than in the PEC case) have to be satisfied. Similarly, as in SIE
for PEC scatterers, one can derive the EFIE and MFIE for homogeneous scatterers with complex
permittivity ϵ and a permeability µ like in 3.3.

In this case, the equivalent surface currents on S+ are

jeq = n̂×h, meq = e× n̂. (3.15)
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einc

esca

eint

ϵ,µ

jeq meq
S

S +

Figure 3.3: Scattering by a surface with permittivity ϵ and permeability µ.

The equivalence principle and extinction theorem is witten asr ∈ V1, e(r)

r ∈ V2, 0
= einc(r) +

∫
S +

iωµḠ(r,r′)jeq(r
′)dr′ −∇×

∫
S +

Ḡ(r,r′)meq(r
′)dr′. (3.16)

After the application of the extinction theorem we have

0 = einc(r) +
∫

S +

iωµḠ(r,r′)jeq(r
′)dr′ −∇×

∫
S +

Ḡ(r,r′)meq(r
′)dr′, (3.17)

which is called Electric Field Integral Equation for Penetrable Objects. Another EFIE equation
can be defined if we apply the extinction theorem on the surface of our object in an inside-out
manner. Thus, both EFIEs can be written with the help of L and K operators as follows

−einc(r) = L1

(
jeq(r

′)
)
−K1

(
meq(r

′)
)

0 = L2

(
jeq(r

′)
)
−K2

(
meq(r

′)
)
,

(3.18)

where the subscripts 1,2 denote the medium (either inside or outside the scatterer). The equiva-
lent surface currents are the same across the surface S − (A surface just inside S , used to derive
the interior EFIE) and S +, since the continuity of the tangential electric and magnetic fields,
must be preserved on S . By invoking the duality principle on EFIE or by applying the curl
operator, we can derive the Magnetic Field Integral Equation for Penetrable Objects.

−hinc(r) =
ϵ1
µ1

L1

(
meq(r

′)
)
−K1

(
jeq(r

′)
)

0 =
ϵ2
µ2

L2

(
meq(r

′)
)
−K2

(
jeq(r

′)
)
.

(3.19)

However, even though we have two equations with two unknowns (for each set of equations), we
cannot solve for the equivalent surface currents, since the continuity conditions that have to be
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satisfied are
etan

int = etan
inc + etan

scat

htan
int = htan

inc +htan
scat.

(3.20)

Thus, both EFIEs and MFIEs are equivalent. To tackle this problem, and solve for the unknown
currents, a linear combination of the exterior equations and the interior equations of EFIE and
MFIE is used. According to [179], the solution of such formulation is unique. The combination
is modeled as the following weighted sum

−α1einc(r) =
[
α1L1

(
jeq

)
+α2L2

(
jeq

)]
−
[
α1K1

(
meq

)
+α2K2

(
meq

)]
−η1β1hinc(r) = −η1

[
β1K1

(
jeq

)
+ β2K2

(
jeq

)]
+ η1

[
β1
ϵ1
µ1

L1

(
meq

)
+ β2

ϵ2
µ2

L2

(
meq

)]
,

(3.21)

where η1 = µ1
ϵ1

is used, in the second equation, in order to ensure that both equations of the
system are of the same units. Furthermore, it is proved that the product αiβ∗i should be real and
positive, in order to have a unique solution. For α1 = α2 = β1 = β2 = 1 the system forms the
Poggio - Miller - Chang - Harrington - Wu - Tsai formulation (PMCHWT) [178], and for α1 =
β1 = 1,α2 = −ϵ2ϵ1 ,β2 = −µ2µ1 the Müller formulation. According to [128], PMCHWT produces
accurate results for high contrasts, whereas the Müller formulation is accurate for low contrasts.

3.1.3 Rao-Wilton-Glisson Basis Functions

The SIE mentioned above formulations are extensively used to solve the scattering problem
of arbitrary surfaces. It is known that the most optimal discretization technique for such sur-
faces is the Delaunay triangulation - a Voronoi diagram based method. Furthermore, in order to
obtain accurate results from the relevant numerical simulations, an appropriate choice of well-
defined basis functions is of paramount importance. Such a set of functions are the well known
Rao-Wilton-Glisson functions, introduced in the celebrated paper [180]. These basis functions
are defined on pairs of adjacent triangular elements of the discretization and yield an accurate
approximation of the equivalent surface electric current (free of line and point charges). RWG
functions are the equivalent of the rooftop functions on rectangular patches [181].

An RWG function is associated with an interior edge of the patch model, as it is shown in
3.4, and it vanishes everywhere else, except in the two triangles that share this edge. Thus, it is
defined as follows

fn(r) =



ln
2a+n

ρ+n r ∈T +
n

ln
2a−n

ρ−n r ∈T −
n

0, elsewhere

, (3.22)

where ln is the length of the shared edge, a±n is the area of the triangle T ±
n and ρ±n is the vector

that defines the position and the direction of the RWG inside the triangle.

The equivalent surface currents (both electric and magnetic) in the surface integral equation
formulations have no component normal to the boundary of the triangles pair (excluding the
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ln

2a+n
ln

2a−n
ln

ρ+n ρ−nT +
n T −

n

Figure 3.4: RWG functions defined on the common edge of two triangles.

joint edge), and hence no line charges exist along this boundary. Thus, the RWG functions are
very well suited for the currents’ approximation. Moreover, the normal, to the joint edge, com-
ponent of the current is constant and continuous across the edge. We note that this is the reason
for the multiplicative normalization factor ln

2a±n
. Finally, the divergence of RWG is

∇sfn(r) =


ln
a+n

r ∈ T +
n

− lna−n r ∈ T −n
0, elsewhere

. (3.23)

From Maxwell’s equations, we know that the divergence of the surface current is proportional
to the surface charge density. Hence, according to 3.23, this density should be constant in each
triangle and zero in every triangle pair with joint edges. Consequently, the surface currents can
be written with the aid of RWG basis functions as

jeq =
N∑
n=1

jnfn(r), meq =
N∑
n=1

mngn(r), (3.24)

whereN is the number of the non-boundary edges of the scatterer, fn(r) and gn(r) are the RWG
basis functions on the edge n and j ,m are the equivalent surface electric and magnetic current
coefficients in the discretization elements, respectively. Each element j i ,mi represents the nor-
mal component of electric and magnetic current density, respectively, flowing through the ith

edge. For open surfaces, on the boundary edges, the values of these components are zero, since
we need to enforce the continuity of the normal current component.

The application of the MoM technique with RWG basis functions is quite simple. First of all,
the testing functions are considered as RWG as well (Galerkin projection) and each element of
the matrix is defined as follows

Zmn =
3∑
p=1

3∑
q=1

Qmnpq , (3.25)
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where Qmn corresponds to the interactions between each edge p of the source triangle n with
each edge q of the observation trianglem. A graphical representation is illustrated on 3.5 for two
triangles Tn and Tm.

O

2′

3′

1′

2
3

1

r′3

r2
fn1

fn2

fn3

fm1

fm2
fm3

Tn

Tm

Figure 3.5: Interaction between two triangles Tn and Tm.

For a PEC surface, the electric field intensity on r produced by the equivalent surface current
jn(r

′) on one element Tn, is

e(r) = iωµ
∫
Tn

g(r,r′)jn(r
′)dr′ +

1
iωϵ
∇
∫
Tn

g(r,r′)∇′jn(r′)dr′. (3.26)

Thus, the elements of the MoM matrix (Galerkin projection with RWG) will have the following
form

Zmn = −
∫
Tm

jm(r) · e
[
jn(r

′)
]
dr

Zmn = iωµ
∫
Tm

jm(r)
∫
Tn

g(r,r′)jn(r
′)dr′dr+

1
iωϵ

∫
Tm

∇ · jm(r)
∫
Tn

g(r,r′)∇′ · jn(r
′)dr′dr

Zmn = iωµ
∫
Tm

[fm1(r),fm2(r),fm3(r)]
T
∫

Tn

g(r,r′)[fn1(r
′),fn2(r

′),fn3(r
′)]dr′dr

+
1

iωϵ

∫
Tm

[∇ · fm1(r),∇ · fm2(r),∇ · fm3(r)]
T
∫
Tn

g(r,r′)
[
∇′ · fn1(r′),∇′ · fn2(r′),∇′ · fn3(r′)

]
dr′dr.

(3.27)

According to 3.25 and 3.27 the interactions between the edges p = n1 or n2 or n3 and q =

m1 or m2 or m3 are

Qmnpq = iωµ
∫
Tm

fp(r)
∫
Tn

g(r,r′)fq(r
′)dr′dr+

1
iωϵ

∫
Tm

∇ · fp(r)
∫
Tn

g(r,r′)∇′ · fq(r′)dr′dr. (3.28)
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The integrals can be calculated with a Gauss quadrature rule for triangles if we transform each
triangular element to an orthogonal one by using its barycentric coordinates (more information
regarding these methods in Appendix D).

For the discretization of the MFIE, a similar logic is followed and Qmnpq takes the following
form

Qmnpq =
1
2

∫
Tm

fp(r) · fq(r)dr−
∫
Tm

n̂× fp(r)
∫
Tn

∇′g(r,r′)× fq(r′)dr′dr. (3.29)

We note that the first term of the right-hand side is computed only when the two elements, Tm

and Tn overlay (n = m). In addition, in the literature, it is proven that MFIE discretized and
tested with RWG functions is not as accurate as the EFIE. However, a variety of alternatives (here
is a non-exhaustive list [182–188]) are used in order to make MFIE more accurate, e.g., testing
with n̂× fRWG.

For the PMCHWT formulation, the MoM matrix (by expanding both currents with RWG
functions) is

Z = Zin +Zout =

Z1in +Z1out Z2out +Z2in

Z3out +Z3in Z4out +Z4in.

 (3.30)

The subscripts in and out denote the inside and outside of the scatterer, respectively. The elements
Qmnpq are

Q1mnpq = iωµ
∫
Tm

fp(r)
∫
Tn

g(r,r′)fq(r
′)dr′dr+

1
iωϵ

∫
Tm

∇ · fp(r)
∫
Tn

g(r,r′)∇′ · fq(r′)dr′dr

Q2mnpq = −
∫
Tm

(
n̂m × fp(r)

)
· fq(r)dr−

∫
Tm

fp(r)
∫
Tn

∇′g(r,r′)× fq(r′)dr′dr

Q3mnpq = η
ϵ
µ
Q1mnpq , Q4mnpq = ηQ2mnpq .

(3.31)

3.1.3.1 Singular Integrals

The above 4D surface integrals contain the Green’s function, which presents singularity when
r′ = r, or when the triangles overlay or share an edge or node. Such integrals are called signu-
lar (weakly for g(r,r′) and strongly for ∇g(r,r′)) and a variety of methods can be used to solve
them, such as the semi-analytical calculations in [189–192]. The content of these articles is im-
plemented as sophisticated software packages, dubbed DEMCEM [27], which we will use as a
black-box in order to tackle the aforementioned integrals.

3.1.4 Numerical Problems of EFIE

In this section, we will provide an insight into the most well-known problems of EFIE. Even
though EFIE has been used extensively in the past in various applications, it is not free of prob-
lems. For example, either the applied discretization, the operating frequency, or the geometry of
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the problem affect the condition number of the arising MoM matrix, thus making the conver-
gence time of an iterative prohibitively slow.

3.1.4.1 Combined Field Integral Equation

Let us consider that we are studying closed scatterers, e.g., a metallic sphere. Since the EFIE
is imposed on the surface of the scatterer, it cannot distinguish the difference between a dense
scatterer and a scatterer-shell, e.g., a dense metallic sphere is the same as a thin metallic spherical
shell. Such a shell is a resonance cavity. Since the scatterer is approximated with triangular
elements, electromagnetic energy can leak into the polygonic shell and, as a result, excite the
internal resonance modes. These modes contribute to the equivalent surface currents and change
their value from the expected solution in an EFIE solver. Besides, when the operating frequency
and the resonance frequency are similar, the modes, as mentioned earlier, leak more energy to
the exterior of the surface, thus, giving rise to erroneous scattered fields. When the operating
frequency is close to the internal resonance frequency, the MoM matrix becomes ill-conditioned,
and the EFIE has a null-space solution; thus, the surface current is nonunique [126,128,166,193].

An extended boundary condition has to be applied to enforce the interior field to be zero.
The dual-surface electric and magnetic integral equations (DSEFIE, DSMFIE) [194] are two for-
mulations that establish such boundary conditions. In both cases, an interior shell is placed just
inside the first surface, and a combined integral equation arises, which satisfies the new bound-
ary conditions and produces unique solutions at all frequencies. However, since this equation
is solved for two times more unknowns, it is usually avoided. Alternatively, one can force the
internal resonances of the shell to correspond to complex frequencies in order for the operating
frequency to not coincide with them. To achieve this a linear combination of the EFIE and MFIE,
referred to as the combined field integral equation is considered

ZCFIE = αZEFIE + (1−α)
η

k0
ZMFIE. (3.32)

Since the null spaces of the EFIE and MFIE differ, the null-space of CFIE can only occur at com-
plex resonance frequencies. Hence, the equation is free from the internal resonance problem,
and the solution is unique. Moreover, α is a free parameter, and it determines if CFIE will be-
have more as an EFIE or as an MFIE. The most common choices are ∼ 0.2 for MFIE, ∼ 0.8 for
EFIE or ∼ 0.5 for similar behavior. The CFIE is an already established method and has been
used extensively in the past for various applications [20, 151, 152, 195–199]. Finally, following a
suchlike logic, one can define a CFIE for penetrable scatterers as in [200, 201].

3.1.4.2 Low-Frequency Catastrophe of EFIE

EFIE appears to be problematic when the operation frequency is small [202], meaning that
the maximum dimension of the scatterer is equal to only a few hundred wavelengths [203]. This
phenomenon is called low-frequency breakdown (or catastrophe) of EFIE, and it happens be-
cause its first term is proportional to the angular momentum ω, while the second term is in-
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versely proportional to it [204]. The arising RWG-MoM matrix is ill-conditioned. Thus an iter-
ative solver converges to the final solution extremely slow [205]. To tackle such a problem, we
need to study the behavior of the electric current when ω → 0. According to Maxwell’s equa-
tions, the electrostatic and the magnetostatic field decompose. A current irrotational component
generates the electrostatic field and a solenoidal one, the magnetostatic. The use of RWG func-
tions does not take into account such behavior for the equivalent surface electric current; thus,
the breakdown appears. A new set of div-conforming basis functions can be used, such as the
Loop-Star [206] or the Loop-Patch [207], to avoid the breakdown. More information can be
found in [208], where the basis mentioned above are discussed.

3.1.4.3 Calderón Preconditioner

In the previous subsubsection, we underlined that an EFIE solver based on RWG is no panacea.
Not only the condition number grow as long as we increase the wavelength, but also when we
h-refine the discretization. On the one hand, EFIE is extremely slow when it is applied to ge-
ometries with subwavelength features. On the other hand, MFIE does not suffer from such ill-
conditioning problems: it is an integral equation of the second kind, and the identity operator of
the first term on its right-hand side does not allow the eigenvalues of the MoM matrix to tend to
zero. Moreover, the square of the EFIE operator is the MFIE operator, meaning that it has a self-
regularizing property. Thus it can be physically preconditioned effectively. Such preconditioning
techniques [209–212] tackle the ill-conditioning that comes from the discretization density. The
most well-known is the Calderón multiplicative preconditioner [213], which can be easily ap-
plied over the RWG-based MoM matrix and it is based on div- and quasicurl-conforming basis
functions [214] (Buffa-Christiansen, BC basis functions).

The PMCHWT formulation suffers from several drawbacks as well: the condition number
grows arbitrarily large as long as we h-refine the geometry. Even though we could use the Müller
integral equation, since it does not suffer from such breakdown, it is known that it is far less
accurate in comparison with PMCHWT [215]. Thus, a Calderón multiplicative preconditioner
[216] is used in such cases as well.

All the problems mentioned above are summarized in Figure 3.6. In both plots, the con-
dition number of a SIE MoM matrix is portrayed, for various wavelengths. The first plot con-
cerns a PEC sphere of unit radius, while the second plot studies a diamond sphere with ϵr =
5.68− i0.0023/(ϵ0ω) and unit radius as well. For small wavelengths (high frequencies), a weird
behavior is noted; this happens because the edge length of the triangles of the discretization
is comparable with the wavelength. Thus an accurate approximation is impossible. For large
wavelengths (low frequencies), we notice the catastrophe mentioned above for EFIE (and the
dielectric formulations since they are related to EFIE). Besides, as long as we h-refine, the condi-
tion number of EFIE increases. Moreover, the low and steady condition number of MFIE for all
frequencies indicate its well-posedness. Finally, in specific frequencies (λ ≃ 2.3), the condition
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number of EFIE presents sudden peaks, a phenomenon due to the similarity of the sphere’s res-
onance frequency and the operating frequency. In such cases, CFIE presents a smaller condition
number as expected.

3.1.5 Far Field Measurements

One of the most important measurements regarding antenna theory is the far-field, as it de-
termines the antenna’s radiation pattern. Moreover, antennas are frequently used for wireless
communication for long distances. Thus, the far-zone region defines their field of operation.
The electromagnetic field radiated by an antenna is a spherical wave, and it is proportional to
1/rn, n = 1,2,3, . . . . Neglecting higher-order terms (n = 2,3, . . . ) one can derive that the r com-
ponent of each field goes to 0. Also, the electric and magnetic field components are orthogonal
to each other at the far-zone, which is defined as the region where the radial distance is, at least,
ten times larger than 2d2/λ. d is the maximum dimension of the scatterer. To find the far-field,
we do not need to recalculate the integrals of SIE formulations since closed-form solutions ex-
ist in the relevant literature [25, 127]. In Figure 3.7 we illustrate the radiation pattern of a PEC
sphere with unit radius for one azimuthal cut (ϕ = 0), irradiated by a linear polarized plane
wave einc = x̂e−ik0z with operating wavelength 4 m. The far-field is obtained with Mie solution,
the EFIE, the MFIE and the CFIE (α = 0.5) and for three discretizations with 230, 920 and
3280 triangular elements. In 3.8, 3.9, 3.10 the same radiation pattern is illustrated for a dia-
mond (ϵr = 5.68 − j0.0023/(ϵ0ω)), a concrete (ϵr = 4.5), and a titanium (ϵr = 100) sphere
respectively with the Mie solution, the PMCHWT and the Müller formulations for the same dis-
cretizations as in the PEC case. For the PEC the diamond and the concrete spheres, the results
are in great agreement with the Mie series, while for the titanium sphere (of high contrast with
the surrounding vacuum), the results are relatively accurate for the finest discretization.

In Figure 3.11, the L2 relative error of the far-field, on the aforementioned azimuthal cut, is
portrayed for the PEC and the diamond sphere, and 40 different wavelengths. As expected, the
error decreases as long as we increase the operating frequency and refine the discretization. It is
observed that EFIE is superior to MFIE and CFIE and that PMCHWT and Müller formulations
have a similar relative error.

3.1.6 Computation of Power

For the computation of the absorbed or the scattered power in electromagnetics we can cal-
culate the Poynting vector [217] as follows

sext =
1
2
Re {einc ×h∗sca + esca ×h∗inc} . (3.33)

However, this method requires the calculation of the scattered electromagnetic field, which re-
quires post-processing of the solution of the respective linear system of the SIE. Thus, it would
be beneficial if we could extract the power by using only the equivalent surface currents. Thank-
fully, in [218], the authors note that the power absorbed by a compact body can be computed
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Figure 3.6: Condition number of the MoM matrix of the (top) EFIE, MFIE and CFIE formu-
lations for a PEC sphere, and the (bottom) PMCHWT and Müller formulations for a diamond
sphere with ϵr = 5.68− j0.0023/(ϵ0ω), of unit radiuses.
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Figure 3.7: Radiation pattern of a PEC sphere with unit radius on the azimuthial cut ϕ = 0. The
incident field is a linear polarized plane wave. The far-field is obtained with the Mie solution and
the EFIE, MFIE, CFIE, for three different discretizations.
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Figure 3.8: Radiation pattern of a diamond sphere with unit radius on the azimuthial cut ϕ = 0.
The incident field is a linear polarized plane wave. The far-field is obtained with the Mie solution
and the PMCHWT, Müller, for three different discretizations.
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Figure 3.9: Radiation pattern of a concrete sphere with unit radius on the azimuthial cut ϕ = 0.
The incident field is a linear polarized plane wave. The far-field is obtained with the Mie solution
and the PMCHWT, Müller, for three different discretizations.
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Figure 3.10: Radiation pattern of a titanium sphere with unit radius on the azimuthial cutϕ = 0.
The incident field is a linear polarized plane wave. The far-field is obtained with Mie solution
and the PMCHWT, Müller, for three different discretizations.
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Figure 3.11: L2 relative error of the far-field of a (top) PEC and (bottom) a diamond sphere with
unit radiuses on the azimuthial cut ϕ = 0, in respect to the wavelength, using the (top) EFIE,
MFIE, CFIE and (bottom) PMCHWT, Müller, for three different discretizations and comparing
with the Mie solution.
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directly from the surface currents without computing the scattered fields. Furthermore, in [219]
clear and compact solutions are provided for the calculation of Power,Force and Torque (PFT) as
a bilinear product 1 of the form

q = j∗Qj, (3.34)

where q is the desired quantity, j is the expansion coefficients vector of the equivalent surface
current, and Q is a q−dependant matrix. Three different methods can be invoked based on
classical electrodynamics such as the Poynting vector and the first law of Joule to express the
matrix Q.

The first method is dubbed Displaced Surface-Integral (DSI), and it is based on the Poynting
vector. The Poynting vector p is integrated over a bounding surface Sb surrounding the object
S of interest (but it is located away from it). The flux of energy is given from

p · n̂ = (e∗ ×h) · n̂, (3.35)

where n̂ is the outward-pointing surface normal vector. The time-average absorbed power, of
the enclosed object by Sb is

pabs = −
1
2
Re


	
Sb

(p(r) · n̂)dSb

 . (3.36)

Using the RWG equivalent surface current expansion 3.24 one can end up to the following equa-
tion for the absorbed power

pabs =
N∑
i,j=1

[j∗i m
∗
i ]

 M∑
m=1

−wm [L2(rm) · (n̂×K2(rm)) +K2(rm) · (n̂×L2(rm))]


 jjmj

 , (3.37)

where we considered that the points rm lie in a region with no sources, and the integration was
performed using a Lebedev cubature rule with M weights wm and points rm if we consider the
bound surface as a sphere. The matrix Q is nothing else than the quantity inside the brackets of
the equation 3.37, and the absorbed power can be expressed as a bilinear product of the form of
3.34. To significantly simplify this method, we consider Sb to coincide with the surface of the
object. The required electromagnetic fields exist only on the surface of the object, which means
that we can directly use the surface equivalent currents instead of surface fields. This method is
dubbed as Overlap method. After some operations, the absorbed power is

pabs =
N∑
i=1

N∑
j=1

[j∗i m
∗
i ]

14
	
Sb

[
f ∗i ·

(
n̂× gj

)
− g∗i ·

(
n̂× f j

)]
dSb


 jjmj

 , (3.38)

1The PFT have a quadratic relation to the electromagnetic field intensities, thus to the equivalent surface currents
as well
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where the Q matrix is the quantity inside the brackets, and the integral can be evaluated with
a Lebedev rule. The new Q matrix involves local overlaps between the basis functions, thus, in
the case of RWG functions, the matrix is sparse (RWG has a support of two elements), and the
computations can be significantly accelerated.

Instead of expressing the power as a quadratic form of the electromagnetic field intensities
of the equivalent currents, we can express it as a product between fields and currents and derive
the Equivalence-Principle formulation, which reminds us the Joule’s first law of heating. By con-
sidering the equivalence principle and extinction theorem, we can replace the dielectric object
S with an empty volume V , and equivalent electric and magnetic currents which flow on its
bound. The absorbed power now is given from

pabs =
1
2
Re


$
V

[j∗(r) · e(r) +m∗(r) ·h(r)]dV

 . (3.39)

Since the equation, 3.39, uses the electromagnetic field intensities on the surface of the object,
and due to tangential continuity, we can either use the exterior or the interior ones. To avoid
complicated operations we usually choose the domain where incident sources do not exist, i.e.,
for an exterior plane wave, the absorbed power is

pabs =
1
2
Re

[j∗i m∗i ]Zin

 jjmj


 =

1
2
[j∗i m

∗
i ]Re {Zin}

 jjmj

 . (3.40)

Moreover, the extinction and scattered power can be easily calculated as follows

pext =
1
2
[j∗i m

∗
i ]Re {Zin +Zout}

 jjmj

 , pscat =
1
2
[j∗i m

∗
i ]Re {Zout}

 jjmj

 . (3.41)

To validate the robustness and accuracy of the Equivalence-Principle method, we will study
a spherical scatterer for a wide range of frequencies, and we will compare the results with the
Mie Solution (Appendix A). We consider a gold nanoparticle with radius r = 1µm and complex
permittivity

ϵr = ϵ0

1− ω2
p

ω(ω − iγ)

 , (3.42)

where ωp = 1.37 × 1016 and γ = 5.32 × 1013. Gold nanoparticles play a significant role in a
variety of applications, such as electronics, photodynamic therapy, therapeutic agent delivery,
sensors and diagnostics; thus, an accurate approximation of its power deposition is important.
The nanoparticle is irradiated by a linear polarized plane wave einc(r) = x̂e−ik0z. The PMCHWT
formulation is used and the nanoparticle is discretized with 230,920 and 3280 triangular ele-
ments. For visualization purposes we will portray in 3.12 the absorption and the scattering power
efficiencies σ/(πr2), where σ is the absorption (σabs = 2ηpabs) or the scattering (σscat = 2ηpscat)
cross section. The results are extremely close to the analytical solution for the whole range of
frequencies, even for small discretizations.
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Figure 3.12: Absorbed and scattered power efficiencies for a gold nanoparticle, irradiated with a
linearly polarized plane wave, for a wide range of frequencies. The image of the gold nanopar-
ticle is obtained from the department of chemistry and molecular biology of the University of
Gothenburg.

3.1.7 Lumped Elements

In all MR-systems, one of the essential components is the radiofrequency coil that accom-
panies the scanner and generates the electromagnetic field required for the excitation of the hy-
drogen atoms inside the human body, in order to produce the desired MR image. Furthermore,
the RF coils act as intermediary helpers for the interaction of electromagnetic fields of the scan-
ner and biological tissue. Thus, each coil should be designed in a sophisticated manner for the
application of choice, i.e., breast coils [220], head coils [221] and body coils [222]. Moreover,
most MR coils operate as resonators since they are designed in a way to enforce a uniform |b+1 |
field inside the body. Therefore, good signal gains are generated, and as a result, the quality of
the MR image is enhanced. In most cases, the coil is equipped with additional tuning capacitors
in order to establish decoupling and resonation at the desired frequency.

Nowadays, the modeling of MRI RF coils can be easily implemented through a variety of
computational electromagnetics-based techniques. For example, for low frequencies, the lumped-
element circuit model has proven to be the method of choice [223–226] mostly because of its
simplicity and speed. In this method, the conductive strips of the coil are modeled as induc-
tances. Each strip couples with the other strips due to the mutual inductance appearing from
their interaction. Additional capacitors and capacitive elements are modeled as lumped capaci-
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tors. Therefore, the RF coil becomes an electric circuit and can be analyzed both analytically with
Kirchhoff ’s laws, or with a sophisticated software package [227]. However, when the free-space
wavelength decreases (increasing the magnetic resonance frequency), the method becomes in-
accurate (especially for 7 Tesla MR scanners, which are the main interest of this thesis).

For higher frequencies and more accurate simulations, methods that are based on Maxwell’s
equations are needed. Methods such as the FD or the FEM, from the family of PDEs, can be
used, but for reasons explained previously in this Chapter we choose to use the SIE which has
been applied successfully for the simulation of unloaded [228–232] and loaded [23] MRI RF
coils. For our applications of interest, the delta-gap method [230] is accurate enough. Notably,
in the delta-gap method, each lumped element or feeding port of the coil is treated as sets of
continuous and parallel edges of the triangular mesh, as in 3.13, where a capacitor is replaced
with the red edge between two triangular elements of the discretization. The usage of triangular
elements and RWG basis functions are crucial for this method’s accuracy and feasibility, while the
modeling of the geometry and the meshing process is straightforward and can be implemented
easily with various packages [233, 234].

Figure 3.13: (left) Actual capacitive lumped element of an RF coil and (right) modelled element
with the delta-gap method (red line).

Since most RF coils can be treated as open surfaces (infinitely small width) and they are cre-
ated from copper (a highly conductive material), the EFIE for PEC objects can be used to model
them. Each lumped element or feeding port introduces a voltage jump equal to vδ, therefore

einc(r) = vδδ(r− r′)n̂, (3.43)

where n̂ is the normal to r′ , the location of the element, or the port. In the case of the feeding
ports, after the Galerkin projection, the voltage across the edges that model the port becomes

vport = −
edges∑
i=1

"
Ti

vδδ(r− r′i)n̂i · j i(r)dr = −
edges∑
i=1

livδ, (3.44)
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where Ti is the triangle that the edge i belongs to, li is the length of the edge and j i(r) is the
current appearing on this edge. The same procedure is applied for multiport coils, and the right-
hand-side of the MoM system becomes FV , i.e., for an n port network with m edges at each
feeding port we have

F =



F1 0 0 · · · 0

0 F2 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · Fn
0 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · 0


, Fj =


−l1j
−l2j
· · ·
−lmj

 , (3.45)

where lij is the length of the i-th edge of port j . V is equal to diag(vδ,i), i = 1, . . . ,N .

In the case of lumped elements the equivalent electric field due to the voltage jump across
the edges is

einc(r) = zelement

edges∑
i=1

j iliδ(r)n̂, (3.46)

where zelement is the impedance of the lumped element. Thus, the voltage jump will be

vport = −zelementlport


edges∑
i=1

bili

 , (3.47)

where b is the vector with the RWG coefficients. Since the unknown surface equivalent current
appears on the RHS of EFIE, we can move it to the LHS and update the appropriate elements of
the MoM matrix Z as follows

Qmnpq =Qmnpq + zelementlplq. (3.48)

Here,m,n are the triangles that p,q edges belong to respectively.

3.1.8 Network Parameters

The previously described RF coils consist of multiple excitation ports. Thus they can be mod-
eled as black-box circuits with known network parameters [235]. Let us consider a coil, where
each feeding port is expressed with just one edge of the discretization. The equivalent surface
current can be written as

jeq =
p∑
n=1

jnfn(r) +
N∑

n=p+1

jnfn(r), (3.49)

where t is the number of feeding ports on the coil, N is the total number of edges, and jn is the
solution of the MoM system. The MoM system can be rewritten asZpp Zpe

Zep Zee

jpeqjeeq
 = vp0

 , (3.50)
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whereZpp is the block matrix representing interactions between the edges that model the feeding
ports, while Zee models the interactions between the rest of the edges of the mesh. The current
of the feeding ports is jpeq and of the rest of the edges jeeq. Finally, vp is the vector of voltage
excitations at the feeding ports. The impedance parameters of the circuit that models the coil
can be found as the matrix Zp, where

Zpj
p
eq = vp. (3.51)

After a simple manipulation of 3.50 we derive the following equation for the impedance param-
eters of the coil

Zp = Zpp −Zpe (Zee)−1Zep. (3.52)

3.2 Volume Integral Equations

In this section, we will present the so-called FFT-based VIE methods. Specifically, on the
contrary with SIEs, VIEs require an enormous amount of storage space for their MoM matrix,
since the discretization concerns the whole domain (not only the 2D surrounding surface). In
some cases (that will be studied later in this section), the matrix mentioned above would re-
quire around 200 PB, a prohibitive number for any computer’s random-access memory (RAM).
However, as mentioned before, a variety of techniques can be used for the extreme reduction
of these unrealistic significant needs for storage, such as exploiting the translationally invariant
property of the Green’s function. If the discretization of the domain takes place over a uniform
grid, the MoM matrix acquires a block-Toeplitz with Toeplitz-blocks (BTTB) form, and con-
sequently, only its defining vector have to be stored for the implementation of the subsequent
matrix-vector products. Relevant methods have been studied widely over the last three decades
(here is a non-exhaustive list [52–55,57,236–246]) that exploit this property and solve for either
the unknown electric field or electric flux density with div-conforming basis functions (rooftop).

However, the cases mentioned above are proved to be unstable [247, 248] for highly in-
homogeneous scatterers, e.g., the human head. As a result, more competitive VIE methods
arise [4,24,249] to tackle related biomedical applications and other challenging problems. These
methods solve for the unknown polarization currents (both electric and magnetic) since the
relevant integral equations are of the second kind; thus, well-posed for any scatterer. In the fol-
lowing, we will compare the current-based VIE (JMVIE) with the EVIE and DVIE and underline
its superior convergence properties.

Moreover, we will briefly mention a discretization scheme for JMVIE with piecewise polyno-
mial approximations as basis functions [4,24] along with an electric flux-based formulation [53]
that it is not entirely Galerkin-based. However, it is used in MR-community for the calcula-
tions of interactions between human tissue and electromagnetic waves. Finally, we will provide
a plethora of results relevant to MRI applications.
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3.2.1 Current-Based Volume Integral Equation

We consider the electromagnetic scattering by a penetrable object, in a closed domain V , in
the three-dimensional Euclidean space R3 and we illustrate it in 3.14. The permittivity and per-
meability of the scatterer are functions of r, ϵ = ϵr (r)ϵ0 and µ = µr (r)µ0 respectively, where ϵ0
and µ0 are the free-space electromagnetic properties, and ϵr (r), µr (r) are the relative properties
of the scatterer. The wavelength is λ and the wavenumber is k0 = 2π/λ. The electric field, as a
function of the equivalent electric and magnetic polarization currents (jp,mp) is

e(r) = einc(r) +
1
ce

(
k20 +∇ ·∇

)$
V

g(r− r′)jp(r′)dr′ −∇×
$
V

g(r− r′)mp(r
′)dr′, (3.53)

where
jp(r)≜ ceχe(r)e(r), mp(r)≜ cmχm(r)h(r)

χe(r)≜ ϵr(r)− 1, χm(r)≜ µr(r)− 1

ce ≜ iωϵ0, cm ≜ iωµ0.

(3.54)

According to the above, the current based VIE can be written with the following simple matrix
form Mϵr −MχeN ceMχeK

−cmMχmK Mµr −MχmN

 jpmp

 = ce 0

0 cm

Mχe 0

0 Mχm

einc

hinc

 . (3.55)

The operator Mϕ denotes a multiplication over the respective parameter ϕ, I is the identity
operator, and N and K are the integrodifferential Green’s function operators, given from

N (c)≜ ∇×∇×
$
V

g (r− r′)c (r′)dr′

K (c)≜ ∇×
$
V

g (r− r′)c (r′)dr′.
(3.56)

j m

ϵ (r)
µ (r)

Figure 3.14: Scattering by a volume with permittivity ϵ(r) and permeability µ(r).

Similar integral equations can be derived if we solve for the electric field or the electric-flux
density instead of the equivalent polarization currents. In the present dissertation, we are focus-
ing on problems of MRI, and specifically to the scattering of non-magnetic objects, µr(r) = 1,
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such as the biological tissue. Therefore, the VIE formulations can be simplified further as follows

EVIE:
(
Mϵr −NMχe

)
e = einc

DVIE:
(
I−LMχe

)
M1/ϵr d = ϵ0einc

JVIE:
(
Mϵr −MχeN

)
j = ceMχeeinc.

(3.57)

The human body is a highly inhomogeneous scatterer, with high contrast. Hence, it is essential
to study the behavior of the formulations mentioned above when ϵr → +∞. In such limiting
cases the VIE formulations become

lim
ϵr→+∞

EVIE: (I−N)e = 0

lim
ϵr→+∞

DVIE: −Ld = ϵ0einc

lim
ϵr→+∞

JVIE: (I−N) j = ceeinc.

(3.58)

Only JVIE is an integral equation of the second kind, thus, well-conditioned. However, even
though JVIE has a steady condition number, it requires many iterations for the convergence of
the iterative solver [4] primarily when objects of high contrast are studied. Thus, a physically
preconditioned version is preferred [24, 250] where, we need to divide JVIE with the electric
permittivity, to ensure the existence of the identity operator on the first term on its left-hand side
to prohibit the eigenvalues of the arising discretization matrix from tending to zero.

JVIE-II:
(
I−Mχe/ϵrN

)
j = ceMχe/ϵreinc. (3.59)

From now on, when we refer to JVIE, we will mean the preconditioned formulation JVIE-II.

3.2.1.1 Galerkin Linear System

Similar to the SIE case, we will employ the Galerkin projection method to create a linear
system in order to solve for the unknown current components. According to [251, 252], the ex-
pansion functions should span the L2 dual of the range of the associated operator, and since there
is no need for the satisfaction of a continuity condition (like in DVIE and EVIE), the functions
can be polynomial. In [24], piecewise constant functions are used, which do not produce such
accurate results for coarse and clinical resolutions. Hence we present a p-refinement with piece-
wise linear basis functions [4] that leads to superior numerical accuracy for coarse and clinical
resolutions. Moreover, PWL basis functions are handy for the precise computation of the mag-
netic field, which by its nature is very smooth; thus, they are the method of choice for the inverse
problem’s performance, which is presented in Chapter 5. The functions are defined below

jq =
Nv∑
m=1

4∑
l=1

u
ql
mc

l
m(r), (3.60)

where Nv is the number of the voxels of the discretization, q ∈ {x,y,z} indicates the component
of the current, m corresponds to a specific voxel with (xm, ym, zm) being its center, uqlm is the
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unknown current coefficient at the m-th voxel and cqm are the scalar basis function per voxel,
which are equal to

c1m(r) = pm(r)

c2m(r) =
x − xm
∆x

pm(r)

c3m(r) =
y − ym
∆y

pm(r)

c4m(r) =
z − zm
∆z

pm(r),

(3.61)

where pm is a volumetric pulse, equals to 1 inside the m-th voxel and 0 elsewhere (c1m(r) rep-
resents the PWC approximation), and δx,δy and δz are the dimensions of each voxel in the
x,y and z directions respectively (resolution). Since we are dealing with 12 unknowns per voxel,
the arising MoM matrices related to N and K operators will be of size 12Nv × 12Nv , each, or
144 smaller Nv ×Nv matrices. However, these matrices are BTTB, since the Green’s function
kernels are transnationally invariant over the uniform discretization grid. Thus, we only need
to store the BTTB defining vectors of them in order to perform the matrix-vector products with
the vector of the unknowns (a more detailed algorithm will be presented in the next section for
the DVIE technique). Hence, the model reduces from 144 matrices to 144 vectors reshaped as
tensors N and K. In addition, due to symmetries and zero entries, only 60 unique N and 30

unique K tensor components are stored in the memory. Finally, their elements are given via the
standard L2 inner product (defined in Appendix D) as follows

N ql,q′l′

ijk = ⟨f ql111,Nf
q′l′

ijk ⟩

Kql,q′l′

ijk = ⟨f ql111,Kf
q′l′

ijk ⟩,
(3.62)

where q̂, q̂′ ∈ {x̂, ŷ, ẑ}, and

f
q′l′

ijk = uq
′l′

{i,j,k}c
l′

{i,j,k}(r)q̂
′

f
ql
111 = u

ql
{1,1,1}c

l
{1,1,1}(r)q̂.

(3.63)

For the calculation of the singular integral, in the {1,1,1} element of each tensor component, a
sophisticated package is used [28]. The nature of these tensors will be studied in the next Chapter,
where we will exploit their low-multilinear rank property.

3.2.2 Flux-Based Volume Integral Equation

In the current subsection, we will analyze and solve the flux-based VIE formulation with
the method introduced in 1992 by Peter Zwamborn [53, 253]. The particular method can solve
challenging problems like the scattering from a highly inhomogeneous realistic human head, and
it is used in the MR community up to this day [254]. However, a robust numerical study for this
formulation does not exist. Therefore we will deepen in some specific assumptions of this model,
and we will observe its convergence properties in comparison with the well-posed current-based
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formulations. The integral equation to solve is the following

e(r) = einc(r) +
k20
ϵ0

$
V

Ḡ(r,r′)χ(r′)d(r′)dr′, (3.64)

where the incident electric field can be expressed through the following equation

einc(r) =
d(r)
ϵ(r)
− (k20 +∇ ·∇)a(r). (3.65)

a is the magnetic vector potential, and it is given from

a(r) =
1
ϵ0

$
V

g(r,r′)χe(r
′)d(r′)dr′. (3.66)

It is known that the normal component of d(r) is continuous across the interface of surfaces (i.e.,
voxels). Thus, the equation can be employed to model highly inhomogeneous geometries (i.e.,
human head). Furthermore, it can tackle the scattering from anisotropic scatterers with some
post-processing [255].

3.2.2.1 Galerkin Linear System

The domain of interest is a cuboid, and it is uniformly discretized with voxels. The expansion
of the electric flux is done with rooftop basis functions [57, 256, 257], since they are divergence
conforming, therefore, suitable to model the continuity of the electric flux along the voxels of
the domain. Each voxel represents a different material (or tissue). The discretization can be
formulated as

rijk =
{(
n1 −

1
2

)
δx,

(
n2 −

1
2

)
δy,

(
n3 −

1
2

)
δz

}
, (3.67)

where n1,n2,n3 are the dimensions of the domain, and δx,δy,δz are the voxel’s resolutions in
each direction, which we choose to be the same δx = δy = δz = δ for convenience. The rooftop
basis function are given from the following equations

ψxijk(r) =Λ

(
x − xijk +

1
2
δ;2δ

)
Π(y − yijk;δ)Π(z − zijk;δ)

ψ
y
ijk(r) =Π(x − xijk;δ)Λ

(
y − yijk +

1
2
∆;2δ

)
Π(z − zijk;δ)

ψzijk(r) =Π(x − xijk;δ)Π(y − yijk;δ)Λ
(
z − zijk +

1
2
δz;2δ

)
,

(3.68)

where Λ is the piecewise linear function with two voxels as a support, and Π is the piecewise
constant function with support one voxel. In order to solve the equation 3.65, we will use a MoM
technique. However, the authors of [53] use an irregular Galerkin projection implementation in
which the testing procedure is applied (inner product with rooftop functions) first, and then
each quantity (flux, potential, incident field) is expanded with the basis functions (rooftop), in
contrast with the approach in [236]. We initiate the analysis with the testing procedure$

V

ψ
q
ijk(r)e

inc
q (r)dr =

$
V

(
ψ
q
ijk(r)

dq(r)

ϵ(r)
dr− k20ψ

q
ijk(r)aq(r) +∂qψ

q
ijk(r)∇aq(r)

)
dr, (3.69)
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where q = {x,y,z}. The Galerkin projection requires the expansion, of the electric flux, the mag-
netic vector potential, and the incident electric field in the same basis functions as follows

dq = ϵ0

n1,n2,n3∑
i,j,k=1

d
q
ijkψ

q
ijk aq =

n1,n2,n3∑
i,j,k=1

a
q
ijkψ

q
ijk , einc

q =
n1,n2,n3∑
i,j,k=1

e
q,inc
ijk ψ

q
ijk . (3.70)

Since we are choosing rooftop functions as basis and testing functions, the equations 3.69 acquire
the following form

δ3

6

(
ex,inci+1jk +4ex,incijk + ex,inci−1jk

)
=

3∑
n=1

[
b
(x)
n d

x
i+n−2jk + c

(x)
n a

x
i+n−2jk

]
+

+
2∑
n=1

2∑
m=1

[
t
(z)
nma

y
i+m−2j+n−1k

]
+

2∑
n=1

2∑
l=1

[
t
(y)
nl a

z
i+n−2jk+l−1

]
δ3

6

(
e
y,inc
ij+1k +4ey,incijk + ey,incij−1k

)
=

3∑
m=1

[
b
(y)
m d

y
ij+m−2k + c

(y)
m a

y
ij+n−2l

]
+

+
2∑
n=1

2∑
m=1

[
t
(z)
mna

y
i+m−1j+n−2k

]
+

2∑
m=1

2∑
l=1

[
t
(x)
mla

z
ij+m−2k+l−1

]
δ3

6

(
ez,incijk+1 +4ez,incijk + ez,incijk−1

)
=

3∑
l=1

[
b
(z)
l d

z
ijk+l−2 + c

(z)
l a

z
ijk+l−2

]
+

+
2∑
n=1

2∑
l=1

[
t
(y)
ln a

y
i+m−1jk+l−2

]
+

2∑
m=1

2∑
l=1

[
t
(x)
lma

z
ij+m−1k+l−2

]
.

(3.71)

The coefficients, b, c, and t are given from the following equations

b(x) =
ϵ0δ

3

6


1

ϵi−1jk
2

ϵi−1jk
+ 2
ϵijk

1
ϵijk

 , b(y) =
ϵ0δ

3

6


1

ϵij−1k
2

ϵij−1k
+ 2
ϵijk

1
ϵijk

 , b(z) =
ϵ0δ

3

6


1

ϵijk−1
2

ϵijk−1
+ 2
ϵijk

1
ϵijk

 , (3.72)

c(x) = c(y) = c(z) = −
δ3k20
6


1

4

1

+ δ

−1
2

−1


t(x) = t(y) = t(z) = δ

−1 1

1 −1

 ,
(3.73)

the quantities d,a and einc are given from the following equations, due to the particular choice
of rooftop functions as expansion functions

d
q
ijk =

dq
(
rijk − 1

2δq̂
)

ϵ0
, a

q
ijk = aq

(
rijk −

1
2
δq̂

)
, e
q,inc
ijk = einc

q

(
rijk −

1
2
δq̂

)
. (3.74)

To avoid the calculations of complex singular integrals, the spherical mean, (Appendix D.4) is
used for the evaluation of the integrals of equations 3.74. The use of spherical mean is another
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difference between the presented implementation and other standard implementations [236] that
follow the appropriate Galerkin projection rules. The spherical mean of Green’s function is

[G](r) =

#
|ρ|<δ

g(r+ ρ)dρ#
|ρ<δ|

ρdρ
, (3.75)

where ρ is the vector starting from the middle point of the voxel in-study and ends up on the
surface of a sphere, with radius δ and center the starting point of ρ. Therefore, one can come up
with the following weak-form expression of the Green’s function

[g](r) =



(
1− 1

2 ik0δ
)
e
1
2 ik0δ − 1

1
6πk

2
0δ

3
, if |r| = 0,

sinh(ik0|r|)
[(

1
2 ik0δ − 1

)
e
1
2 ik0δ

]
+ ik0|r|

1
6 iπ (k0δ)

3 |r|
, if 0 < |r| < δ,

eik0|r|
[
sinh( 12 ik0δ)

1
2 ik0δ

− cosh
(
1
2 ik0δ

)]
1
3π (k0δ)

2 |r|
, if |r| ≥ δ.

(3.76)

Thus, the spherical mean for the magnetic vector potential obtains the following form

[a](r) =
1
ϵ0

$
V

[g] (r− r′)χe (r′)d (r′)dr′, (3.77)

by using a 3D trapezoidal rule, we have the following

[aq]ijk = δ
3
n1∑
i′=1

n2∑
j ′=1

n3∑
k′=1

[g] ((i − i′)δ, (j − j ′)δ, (k − k′)δ)χ(q)
e,i′j ′k′d

(q)
i′j ′k′ , (3.78)

where

χ
(x)
e,i′j ′k′ =

χe(ri−1jk) +χe(rijk)

2

χ
(y)
e,i′j ′k′ =

χe(rij−1k) +χe(rijk)

2

χ
(z)
e,i′j ′k′ =

χe(rijk−1) +χe(rijk)

2
.

(3.79)

In the above analysis, an extra layer of voxels is required. Thus, vacuum is used as a boundary
around the domain of interest and is discarded in the final results. With the usage of spherical
mean, we avoid the analytic calculation of strongly singular integrals. Thus, the DVIE acquires a
simple yet effective, weak formulation, and its integrals can be computed much faster. However,
the averaging of contrast over neighboring voxels is arbitrary and can lead to numerical artifacts,
especially if the contrast is high (the boundary between biological tissue and air, or different brain
tissues).
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The computation of the discrete convolution in 3.78 requires an immense amount of compu-
tational memory. However, the tensor [g] has a BTTB structure since the grid is uniform, and it
depends only from the difference r−r′ (transnationally invariance property), which allows us to
accelerate the arising matrix-vector product with the help of the FFT. In the following subsubsec-
tion, we provide the implementation algorithm of such products, along with a brief background
on the fundamental theory behind it. An extensive analysis of these particular matrix-vector
products using tensor decomposition methods is done in Chapter 4.

3.2.2.2 CG-FFT Matrix-Vector Products

We will focus on Toeplitz square matrices for simplicity. Let us consider a matrix A ∈ Cn×n,
where Aij = ti−j . The matrix A (shown below) is called Toeplitz or diagonal-constant matrix
named after Otto Toeplitz

A =



t0 t−1 t−2 · · · t−n+1
t1 t0 t−1 · · · t−n+2
t2 t1 · · · · · · · · ·
· · · · · · · · · · · · · · ·
tn−1 · · · t2 t1 t0


. (3.80)

In addition, let us define a matrix C ∈ Cn×n with elements given from

C =



c0 cn−1 cn−2 · · · c1
c1 c0 cn−1 · · · c2
c2 c1 · · · · · · · · ·
· · · · · · · · · · · · · · ·
cn−1 cn−2 cn−3 · · · c0


. (3.81)

This matrix is called circulant matrix and it is a special case of Toeplitz matrices. For all circulant
matrices it is proven that C = 1/n · Fdiag(Fc)F, where F is the Fourier matrix ∈ Cn×n. We
consider a function f (x) = c0 + xc1 + · · · + xn−1cn−1, where xn = 1. If we multiply f (x) with
1,x, . . . ,xn−1, n times we can easily derive the following equation

f (x)
[
1 x . . . xn−1

]
=

[
1 x . . . xn−1

]
C. (3.82)

If x is chosenn times as an element of the Fourier matrix, then one can end up to diag(Fc)F = FC

or
C =

1
n
F∗diag (Fc)F. (3.83)

Thus, to perform the matrix-vector product between C and an arbitrary vector y we only need
the circulant defining vector c and O (n logn) operations.

Cy = ifft {fft {c} ◦fft {y}} . (3.84)
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Returning to integral equations, the matrix G (discretization of [g]) is BTTB, and thus in order
to be able to perform the matrix-vector product, we have to embed it in a block Circulant with
Circulant blocks (BCCB) form. To do so, we can use the algorithm 1 below.

Algorithm 1 FFT-Accelerated Matrix-Vector Product
1: Embed the BTTB defining vector, formulated as tensor G in its BCCB defining tensor C

(following Matlab notation)

C(1 : n1,1 : n2,1 : n3) = G;

C(n1 +1, :, :) = 0;

C(:,n2 +1, :) = 0;

C(:, :,n3 +1) = 0;

C(n1 +2 : 2n1, :, :) = G(n1 : −1 : 2, :, :);

C(:,n2 +2 : 2n2, :) = G(:,n2 : −1 : 2, :);

C(:, :,n3 +2 : 2n3) = G(:, :,n3 : −1 : 2);

C(n1 +2 : 2n1,n2 +2 : 2n2, :) = G(n1 : −1 : 2,n2 : −1 : 2, :);

C(n1 +2 : 2n1, :,n3 +2 : 2n3) = G(n1 : −1 : 2, :,n3 : −1 : 2);

C(:,n2 +2 : 2n2,n3 +2 : 2n3) = G(:,n2 : −1 : 2,n3 : −1 : 2);

C(n1 +2 : 2n1,n2 +2 : 2n2,n3 +2 : 2n3) = G(n1 : −1 : 2,n2 : −1 : 2,n3 : −1 : 2);

2: Calculate the elementwise products χ(q)
e · d(q), q = {x,y,z} and store them to the tensors

xq.

3: Pad the tensors xq with zeros, in order to match the dimensions of C:

xq(n1 +1 : 2n1,n2 +1 : 2n2,n3 +1 : 2n3) = 0.

4: Calculate the elementwise products between the DFT of C and xq:

Mq = F {C} ◦F {xq}.

5: Calculate the IDFT of Mq and discard the embedded elements and compute the magnetic
vector potential tensor A:

Aq = δ3F−1 {Mq} (1 : n1,1 : n2,1 : n3).

In the above, the dq are the unknowns. Therefore, we can use an iterative solver and ap-
proximate them in each iteration by using the above algorithm; thus, the name of the method
conjugate-gradient-fast-Fourier-transform. To complete the evaluation of the unknown, we will
use the spherical mean on the incident field appearing on the right-hand side. For a plane wave,
it is given from
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[einc](r) = e0ĥe
ik0(θ̂r) 12

(k0δ)
2

sinh
(
1
2 ik0δ

)
1
2 ik0δ

− cosh
(1
2
ik0δ

)
e
q,inc
ijk = [einc

q ](rijk −
1
2
δq̂)

(3.85)

where e0 is the amplitude of the plane wave, ĥ the polarization, and θ̂ the direction of the prop-
agation.

3.2.3 Scattering from Homogeneous Spheres

In this section, we will study the accuracy of the DVIE solver. To do so, we will calculate the
scattered electric field from a dielectric sphere of radius r = 7.5 cm, with its center in {0,0,0},
and we will compare the solution with the analytical one from the Mie scattering. Since we
are highly interested in biomedical applications, we will consider homogeneous spheres whose
material properties are the average of the gray and white matter [258], which exist in abundance
in a human brain. The spheres are illuminated with the linear polarized plane wave x̂eik0z, for
various frequencies that correspond to Larmor ones that appear in industrial and experimental
MR scanners. We tabulate the aforementioned cases in 3.1.

Table 3.1: Simulation characteristics for various spheres

Main MR field (T) f (MHz) ϵr σe (S/m)

0.5 21.29 227 0.25

1 42.58 184 0.3

1.5 63.87 141 0.35

3 127.74 68 0.5

7 298.06 64 0.51

14 596.12 56 0.62

We consider four different discretization schemes with voxel resolution dV = 7.5, 3.7, 1.9,
1.4 mm3 respectively. The generalized minimal residual method (GMRES) with 50 inner iter-
ations, 200 outer iterations, and tolerance of 10−5 was used for the solution of the system. The
total electric field on the ŷ axis for the above cases is shown in 3.15 along with the relevant Mie
series solution, in logarithmic scale. In 3.2 the number of iterations needed for the convergence
of the solver, for each simulation, is depicted. As expected, the finer the discretization, the more
accurate the approximation will be. However, even the finner discretization cannot accurately
depict small details i.e., the side lobes of the radiation pattern, especially in low magnetic fields, a
problem for which the staircase effect is responsible [259]. Besides, we notice the ill-conditioning
of DVIE as long as we increase the operating frequency and the discretization. First, the DVIE is
not truly an integral equation of the second kind and is unable to be transformed into one; thus,
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it is an ill-posed formulation. Second, the high condition number in case of higher frequencies
is a problem of IE in general [260]. The results above, even though accurate, are not enough in
order to robustly abut to fruitful conclusions. Thus, we need to study the convergence properties
and the accuracy of the method for inhomogeneous scatterers with high contrast, like a realis-
tic human body model and compare the method with other VIE formulations to determine a
panacea formulation for accurate simulations, in MR-based applications (especially in 7 Tesla).
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Figure 3.15: Total electric field on the ŷ axis of homogeneous spheres irradiated with a linear po-
larized plane wave, articulated from biological material properties, corresponding to 0.5 (green),
1 (red), 1.5 (magenta), 3 (cyan), 7 (blue), 14 (black) Tesla MRI. Each color represents a different
sphere, and each marker a different resolution, according to the legend.

Table 3.2: Number of iterations of GMRES for tolerance 10−5

dV

(ϵr ,σe) (227,0.25) (184,0.3) (141,0.35) (68,0.5) (64,0.51) (56,0.62)

7.5 mm3 74 77 70 71 83 216

3.7 mm3 74 77 74 72 92 240

1.9 mm3 78 79 91 89 122 375

1.4 mm3 80 79 87 87 128 383
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3.2.4 Scattering from Realistic Human Body Models

In this subsection, we focus on the convergence properties and the interior electric field in-
tensity measurements of a realistic human head model of a young girl dubbed “Billie”. The rel-
ative permittivity and the conductivity are provided through 7 Tesla, at f = 298 MHz, MRI
scans, and sophisticated geometrical reconstructions from [17] for three domain discretizations,
namely with 5, 2 and 1 mm voxel isotropic resolutions. We will compare the performance of the
JVIE (both for PWC and PWL) and DVIE to determine the most accurate approach. Firstly, we
depict the relative residuals in 3.16 in order to study the numerical conditioning of the formula-
tion. To be as accurate as possible, we used GMRES for all three cases, with the same settings as in
the previous example. The superiority of JVIE-PWL is clear, since the required iterations remain
almost the same for all discretizations, around 160, while the JVIE-PWC approaches this num-
ber as long as we h-refine the computational grid. The DVIE formulation has a higher condition
number for such a highly inhomogeneous head case, and in contrast with the JVIE, the condition
number significantly increases as we h-refine. These conclusions confirm the theoretical analysis
done in [24, 260].

50 100 150 200 250 300 350 400
10-5
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10-3

10-2

10-1

100

Figure 3.16: Convergence properties of JVIE (-PWC, -PWL) and DVIE formulations for the
highly inhomogeneous realistic human body model “Billie”.

In the following we illustrate the total interior electric field in a sagittal, a coronal and an axial
cut of the head model, calculated with the solvers mentioned above, when we illuminate the head
model with a linearly polarized plane wave (einc = x̂e−ik0z). The results are shown for all three
discretizations in the figures 3.17 (sagittal), 3.18 (coronal), and 3.19 (axial), along with the EPs
for the respective visualized slice. DVIE presents some extremely high-peaks on the boundary
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of the head (skull), due to the averaging of the electrical properties between neighboring vox-
els (skull and vacuum), which are masked out (set to zero) for enhanced visualization. These
catastrophic inaccuracies are mostly appearing on the boundary of the head (bottom bound of
the axial cut, top and bottom bounds of the coronal cut, and top-left bound of the sagittal cut).
The JVIE formulations are not affected by such a problem since the polynomial basis functions
require only one voxel support, and there is no need for averaging the EPs of neighboring voxels.
Although, the presence of the extreme inaccuracies on the boundaries, DVIE seem to produce
similar results with JVIE-PWL on the rest of the head as long as we h-refine, albeit, JVIE-PWC
converges to a different solution.

3.3 Volume-Surface Integral Equations

In the previous, we briefly studied the interactions of surface and volumetric geometries
placed in free-space with electromagnetic waves and expressed them as integral equations. A
challenging case that was not mentioned before is the interactions between conductive RF coils,
human tissue, and electromagnetic waves, all in one integral equation. In this case, to compute
the interior electromagnetic fields of the human tissue, neither a purely surface or a pure volume
equation in the previous sense can be applied. SIEs are not enough to express the various EP in
the human tissue, while VIE breakdown when the conductivity value increases significantly (in
the case of PEC, it is equal to −i∞).

The simulation of such a phenomenon is crucial in MRI. Specifically, when a port of the RF
coil is excited, surface equivalent currents are generated on the coil and scatter electromagnetic
field. These fields illuminate the load of the coil (the human body); thus, an electric current
distribution is generated on it. The body currents, in turn, scatter electromagnetic field to the
outer space of the body, thus on the coil itself. As a result, the original surface currents of the coil
are perturbed.

Thankfully, due to the nature of the integral equation solvers mentioned above, we can for-
mulate a coupled solver, since both equations are solved through the Galerkin projection. There-
fore, the discretized coupled system isZcc Zcb

Zbc Zbb

jcjb
 = vc0

 (3.86)

wherevc is the vector with the voltage excitations at the feeding ports, jc are the equivalent surface
currents on the coil, and jb are the polarization currents on the body. The MoM block-matrix
Zcc models the interactions between the edges of the coil, while Zbb is the block-MoM matrix
that models interactions between the voxels of the computational grid. Zbc =

(
Zcb

)T
is the MoM

block-matrix that models the interactions between edges of the coil (RWG functions) and voxels
(PWC/PWL functions).

A straightforward construction of this system will require an immense amount of memory
since the matrix Zbb is very costly to be constructed. However, in [23], the authors exploited the
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Figure 3.17: (a) Relative permittivity and (b) conductivity of a sagittal cut of “Billie” head, cor-
responding to 7T MR measurements. (c,d,e) Magnitude of the total electric field for the same
sagittal cut calculated with DVIE, JVIE-PWC and JVIE-PWL respectively. (From left to right)
5, 2 and 1 mm3 resolution.
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Figure 3.18: (a) Relative permittivity and (b) conductivity of an axial cut of ‘Billie” head, cor-
responding to 7T MR measurements. (c,d,e) Magnitude of the total electric field for the same
axial cut calculated with DVIE, JVIE-PWC and JVIE-PWL respectively. (From left to right) 5, 2
and 1 mm3 resolution. (From left to right) 5, 2 and 1 mm3 resolution.
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Figure 3.19: (a) Relative permittivity and (b) conductivity of a coronal cut of “Billie” head, cor-
responding to 7T MR measurements. (c,d,e) Magnitude of the total electric field for the same
coronal cut calculated with DVIE, JVIE-PWC and JVIE-PWL respectively. (From left to right)
5, 2 and 1 mm3 resolution. (From left to right) 5, 2 and 1 mm3 resolution.
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BTTB property of the matrix and solved the system without using an extensive amount of mem-
ory. This solver is implemented in the open-source software package MARIE [22]; therefore, we
can adjust it to our needs and applications.

The usability of such solvers is a crucial component to the calculation of the network param-
eters of loaded RF coils in modern MRI applications. In particular, the existence of a human
body inside the region of a coil tweaks its resonance frequency. Thus, additional tuning on its
variable parameters, i.e., tuning capacitors, is needed. Moreover, the conductivity of a body al-
lows decoupling between opposite neighbors, while it allows finding the best matching network
in the feeding port of the coil (more on tuning, matching and decoupling on Chapter 5). The
network parameters can be calculated by following the same approach as in the purely SIE case,
although now the matrices appearing in the equations have to include the interaction with the
voxels as well 2.

2We refer the reader to [23] for additional information on VSIE solvers
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Chapter 4
MEMORY FOOTPRINTREDUCTION FORTHE

FFT-BASEDVIE

In the last decade, MRI modality has proven to be a powerful and essential tool for disease
diagnosis, by providing extremely precise details of the anatomical structure of biological
tissue. Indeed, with the usage of UHF MR scanners (which are clinically available [12]) the

resonance frequency of the atomic nuclei of hydrogen (1H) inside the body increases and thus
leads to shorter scanning times and improvements on both spatial and spectral resolutions, over
conventional used systems [13]. In fact, in the last decade, a finger scan time was thirty minutes
with a 1.5 Tesla scanner, while nowadays, a complete head scan requires just ten, using a 7 Tesla
scanner. Faster acquisition times and higher quality images are strongly related to the SNR,
which increases proportionally to the main magnetic field strength of the scanner. Regrettably,
this results in higher operating RF of the coils in the scanner. Hence, the interactions between
EM fields projected by the coils to tissue are dominant and not only can affect the quality of the
images but also the safety of the patient. Therefore, accurate and robust simulations have to be
employed for the modeling and design of the scanner and RF coils.

Such a simulation technique was presented in Chapter 3, where the fast and accurate FFT-
based JVIE method was used for the efficient EM scattering calculations of complex, realistic
anatomical models. We saw that, by expanding the unknowns of FFT-based VIE with higher-
order polynomials [4], superior numerical accuracy is in place, contrary to standard low-order
approximations, even for the challenging dielectric shimming technique [261–263]. However,
the required memory footprint of the arising Green’s function tensors significantly increases,
thus, forbidding the usage of heterogeneous computing techniques, and forcing the simulations
to run for many hours or days, in CPU, until they converge. To scrutinize this impasse, we refer
to [264], where it is proved that the Green’s function related integrodifferential operators, ap-
pearing in the integral equation approaches, that arise from two well-separated geometry blocks
have low-rank properties. When we compute the MoM matrix, the off-diagonal blocks model
such interactions; thus, are low-rank. The same property is extensively exploited in the celebrated
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FMM [30]. In the case of uniform grids, where only the defining BTTB tensor is stored, the inter-
actions between one voxel and all the others are modeled, meaning that we calculate interactions
between distant voxels as well. Thus, a low multilinear rank approximation can be achieved in
the tensor form of N and K. Moreover, according to [265], for 3D geometries, like the one’s
understudy, the ranks are proportional to the operating frequency O (k0). This low-rank prop-
erty is proven to be useful for simulations in MHz (MRI problems) since the dimensions of the
computational domain (human body) are comparable with the operating wavelength; thus, we
expect a dramatic compression in the discretized operators.

For such purpose, one of the main scopes of this thesis revolves around methods of memory
footprint reduction for FFT-based VIE formulations. Specifically, the celebrated Tucker decom-
position [266] is employed to compress the Green’s function tensors, thereby greatly reducing
the required memory storage for numerical simulations. Consequently, the compressed compo-
nents can fit inside a graphical processing unit on which highly parallelized computations can
vastly accelerate the iterative solution of the arising linear system. Furthermore, the appearing
element-wise products throughout the iterative solver’s traditional approach require additional
flops. Thus, we provide a variety of novel and efficient methods that maintain the linear com-
plexity of the traditional element-wise product with an additional multiplicative small constant.

Moreover, as long as we h-refine the grid, the tensors of the unknowns (in their FFT form)
are vast, thus cannot fit in GPU. For these extreme cases, we propose the usage of a sparse 3D
FFT that is implemented partially in parallel with the element-wise products, which together
with the Tucker compression can reduce the required memory even more. The utility of the new
approaches is verified for the FFT-JVIE method expanded with PWL basis functions and for
simulations for the MRI of a human head. For these simulations, we report an order of magnitude
acceleration over standard techniques. We note that the methods presented herein are applicable
for all FFT-based VIE formulations (like the DVIE, mentioned in Chapter 3, and EVIE). For
the 2D equivalent FFT-VIE approach, matrix decomposition like singular value decomposition
(SVD) or adaptive cross approximation (ACA) can be employed.

4.1 Tensor Decompositions

In the 3D problem of MRI and its respective electrodynamic counterpart, tensors are widely
employed for efficient storage and computation. Indeed, tensors are an indispensable tool for
multidimensional data analysis, in various scientific fields, and provide a natural representation
of the quantities under study. Tensors can be defined simply as generalizations of matrices and
vectors. Specifically, if n1,n2, . . . ,nm are positive integers, then A ∈ Cn1×n2×···×nm is a complex-
values tensor of order m. As in the case of matrix decompositions for efficient numerical algo-
rithm implementations, a variety of tensor decompositions (or factorizations) can be employed
form dimensional problems.

Tensor decompositions originated with Frank Hitchcock in 1927 [267,268], followed by Ray-
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mond Cattell in 1944 and 1952 [269,270] and Tucker in 1966 where he introduced the celebrated
Tucker decomposition [266, 271, 272]. Later Richard Harshman and Douglas Carroll et al. in-
troduced the canonical polyadic decomposition (CANDECOMP) and the parallel factor analysis
(PARAFAC) respectively [273–275], which were equivalent and a generalization of the SVD con-
cept in m dimensions.

It might seem unexpected, but most of the initial approaches on Tucker decomposition ap-
peared in the field of psychometrics and not in mathematical literature [266,271,272]. It was only
years later that Carl Appellof [276], and Rasmus Bro et al. introduced the Canonical polyadic
decomposition in the field of chemometrics [277–280] where it was widely used [281–288].
Through the years, tensor decompositions found multiple applications: in signal processing
[289–298], neuroscience [299, 300], neuroimaging [301, 302], bioinformatics [303], medicine
and biology [304], data mining [305–309], graph theory [310–312], computer vision [313–320],
computational statistics, [321, 322], numerical analysis [323–325]. Finally, the research in nu-
merical linear algebra field is vast [326–341] and still ongoing. It was only a decade ago where
Ivan Oseledets et al. introduced a new tensor decomposition, dubbed tensor train [74,342–344],
that offers an alternative approach instead of Tucker and Canonical decompositions that works
nicely for any number of dimensions and does not suffer from the curse of dimensionality. A
method based on TT dubbed quantized TT was proposed later [345–347].

Tensor decompositions offer a natural approach that fits the real dimensions of the problem at
hand, while matrix decompositions, such as the SVD, have only a two-mode representation. For
example, one can consider the well-known eigenfaces [348] method, which is a low-dimensional
representation of face images, with multiple applications in face recognition. The method works
only if the input faces have the same conditions as the ones used to generate the eigenfaces. To
tackle this impasse, Alex Vasilescu et al. [313], proposed the usage of a new multidimensional
basis, called tensorfaces, where Tucker decomposition is employed for its generation. The new
basis combines several modes, such as different geometries, expressions, poses, and illuminations
of the faces. This example shows the superiority of tensor decompositions in higher-dimensional
problems.

Finally, tensor decompositions found applications in integral equation problems for electro-
magnetics. The first approach was made in 2014, where Polimeridis et al. [68] used the Tucker
decomposition to compress the individual tensor components of N and K in FFT-JVIE, using
PWC basis functions. The observed compression was immense, thus, motivated by these results
and attempting to tackle the high memory cost of FFT-JVIE with PWL basis functions, in this
thesis, we employed multiple tensor decompositions to compress the N and K components, and
propose novel matrix-vector products, efficient for GPU programming. Our work has been pub-
lished in [1, 5]. In the last couple of years, scientists employed Tucker and TT decompositions
for other integral equation methods [69, 70, 72].
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4.1.1 Tucker Decomposition

Tucker decomposition is the mainly used decomposition scheme in this thesis. It is very
stable since most of the algorithms implementing it are based on steady approaches. In addition,
for 3D arrays, the achievable compression factor with Tucker decomposition algorithms is greater
than the one obtained with other stable approaches. A three-dimensional array A ∈ Cn1×n2×n3

can be approximated with a prescribed accuracy ϵ according to Tucker’s model [266] as follows

A≜ Ã+ E , ∥E∥F = ϵ. (4.1)

Here ∥·∥F is the tensor Frobenius norm (defined in Appendix D). Given three integers {r1, r2, r3},
the approximation Ã can be expressed as

Ãijk =
r1∑
α=1

r2∑
β=1

r3∑
γ=1

GαβγU1
iαU

2
jβU

3
kγ . (4.2)

The matrices Uq ∈ Cnq×rq ,q=1,2,3 are orthognal and they are called Tucker factors. The tensor
G ∈ Cr1×r2×r3 is the Tucker core and has the property of all-orthogonality, meaning

r1∑
α=1

r2∑
β=1

GαβχGαβψ =
r1∑
α=1

r3∑
γ=1

GαχγGαψγ =
r2∑
β=1

r3∑
γ=1

GχβγGψβγ = 0, χ , ψ. (4.3)

The Tucker-core plays a similar role as the diagonal singular value matrix of the SVD; however,
it does not have any diagonal structure. Tucker decomposition can be written in an elegant Ein-
stein summation convention form using mode convolutions or n-mode products (also defined in
Appendix D) as follows

Ã = G ×1U1 ×2U2 ×3U3. (4.4)

A graphical representation of the n-mode product form of Tucker decomposition of A is visu-
alized in 4.1.

Ã

n1

n2

n3

G
U1

U2

U3

r1
r2

r3

=

Figure 4.1: Tucker decomposition of a low multilinear rank tensor A.
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One can imagine that each Tucker factor multiplies from the left specifically oriented matrices
of the Tucker core, i.e., Every column of G is multiplied with U1. The triplet {r1, r2, r3} is called
Tucker rank or multilinear rank of A and depends from the algorithm of choice. We note that
there are major differences between matrix and higher-order tensor ranks since there is not a
stable equivalent generalization of singular value decomposition. Thus, tensor ranks cannot be
defined uniquely (In the following, we will define the canonical rank and observe the major
difference with the Tucker rank).

4.1.2 Canonical Polyadic Decomposition

Another important decomposition for n-dimensional arrays is the canonical polyadic model
[267, 268]. Using the CP model, a 3D tensor A ∈ Cn1×n2×n3 can be decomposed, with a pre-
scribed accuracy ϵ, into the following sum

A ≈ Ã =
r∑
l=1

λlV
1
l ⊙V

2
l ⊙V

3
l . (4.5)

Here V i ∈ Cni×r , i = 1,2,3 are the so-called CP factors of A and r is the canonical rank, meaning
the minimal number of terms for the decomposition to achieve the desired accuracy ϵ (it is
evident that the canonical rank is a single number, in contrast with the triplet Tucker rank). The
scalar term λl is usually absorbed in the last CP factor for simplicity. The outer product ⊙ is
defined in Appendix D, and the decomposition is visualized in 4.2.

CP decomposition is the equivalent of the SVD in two dimensions [273], since it approxi-
mates the original tensor with the sum of rank-one tensors. One can think CP as Tucker where,
instead of a dense core G ∈ Cr×r×r , only the diagonal elements Gi,i,i , 0, i = 1,2, . . . , r . Fi-
nally, CP is unique (under moderate conditions [290]), but in some cases the proposed algo-
rithms are ill-posed, thus an optimal approximation might not exist at all for a specific number
of terms [338].

Ã

n1

n2

n3

V 1
1

V 2
1 V 3

1

V 1
r

V 2
r V 3

r

V 1

V 2

V 3

= =+ · · ·+

Figure 4.2: Canonical polyadic decomposition of a tensor A.

4.1.3 Tensor Train Decomposition

In recent years a new tensor decomposition arose [343], dubbed Tensor Train decompo-
sition, that can achieve excellent compression factors for higher dimensional tensors. Tucker
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decomposition requires O
(
dnr + rd

)
, where n is tensor’s linear size, r is one component of the

Tucker rank, and d is the dimensionality of the tensor. It is obvious that for problems with d≫ 3,
the Tucker core requires an exponentially increasing amount of storage memory, along with sig-
nificantly more operations for its construction. To avoid this problem, we can always use the
canonical decomposition, but the computation of the canonical rank is NP-hard [349], and the
decomposition might be ill-posed. Thus, for such applications, TT has proven to be the method
of choice. Consider a d-dimensional complex tensor A ∈ Cn1×···×nd . A can be approximated
with Ã as follows.

Ãi1,··· ,id =
r1∑
α1

· · ·
rd−1∑
αd−1

G
[1]
i1,α1

G[2]
α1,i2,α2

· · ·G[d]
αd−1,id

, (4.6)

where

G[1] ∈ Cn1×r1 ,G[2] ∈ Cr1×n2×r2 , . . . ,G[d] ∈ Crd−1×nd . (4.7)

The decomposition can be represented elegantly by the following tensor-train network.

G[1]
G[2] G[3] G[4]

· · ·

G[d−1]
G[d]

Figure 4.3: Tensor Train of A in d dimensions.

The indexes r are the ranks of reshapes of A to a matrix, as follows with Matlab notation

rp = rank(A(k)) = rank

reshape

A,
p∏
i=1

ni ,
d∏

i=p+1

ni


 . (4.8)

The memory complexity of TT is O
(
(d − 2)nr2 +2rn

)
which is greater than the one of Tucker

decomposition for d = 3, but much smaller for large d. Potentially, one can compress the TT
scheme more (O

(
(dnr + (d − 2)r3

)
) by using the Tucker decomposition on each tensor compo-

nent of TT and reach the achieved Tucker compression for 3D cases. However, such an approach
will require additional operations in the decompression of each tensor component, which is cru-
cial in the time footprint of the novel matrix-vector product discussed in this Chapter. The most
common algorithm to compute the tensor train is the TT-SVD [343]. In addition to TT, other
decompositions are used for higher-order tensors, i.e., Quantized TT [340,350] and hierarchical
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Tucker decomposition [347].

4.2 Compression Algorithms

4.2.1 Higher-Order Singular Value Decomposition

The Tucker decomposition can be expressed as a convincing multilinear generalization of
the SVD terminology or as a higher-order singular value decomposition. Specifically, the Tucker
factors U1,2,3 and the Tucker core G can be derived with a proven upper error bound on the
approximation, based on the HOSVD algorithm, proposed in [328]. The algorithm is based
entirely on the well-possed SVD; thus, it always exists, and it achieves an optimal fit to the initial
array. The first step to approach the 3D problem with SVD is to introduce unfolding matrices of
the tensor, shown in 4.4. By introducing the unfoldings, automatically we can use SVD for their
compression, and obtain three ranks. Each of these ranks defines an element of the Tucker rank
triplet.

A

A

A

A(3)

A(2)

A(1)

n1

n2

n3

n1

n2

n3

n1

n2

n3 1 2 · · · n2

1 2 · · · n3

1 2 · · · n1

1 · · ·n3

1 · · ·n1

1 · · ·n2

1

1

1

· · ·

· · ·

· · ·

n1

n2

n3

Figure 4.4: Unfoldings of A.

According to the Tucker decomposition, every tensor A ∈ Cn1×n2×n3 can be written as

A = G ×1U1 ×2U2 ×3U3. (4.9)

where U i ∈ Cni×ri , i = 1,2,3 is unitary and G ∈ Cn1×n2×n3 with the all-orthogonality property
and ordering. Thus, one can define the Frobenius norm of a slice matrix of G as the n-mode
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singular value of A, and Un as the n-mode singular matrix of A. Concretely, one can use the
following algorithm to perform the Tucker decomposition based on SVD.

Algorithm 2 HOSVD
1: Assume A ∈ Cn1×n2×n3 .

2: Get the unfoldings of A
A(1) ∈ Cn1×(n2·n3)

A(2) ∈ Cn2×(n1·n3)

A(3) ∈ Cn3×(n1·n2).

In matlab notation:

A(1) = reshape (A,n1, [])

A(2) = reshape (permute (A, [2,1,3]) ,n2, [])

A(3) = reshape (permute (A, [3,1,2]) ,n3, []) .

3: Set the desired tolerance ϵ for the SVD on the unfoldings

4: for i=1,2,3 do truncated SVD on the unfoldings

A(i) ≈U i
riΣ

i
ri

(
V i
ri

)∗
ri = rank

(
A(i)

)
.

5: Tucker Rank: {r1, r2, r3}.

6: Tucker Factors: U i =U i
ri .

7: Tucker Core: G =A×1
(
U1

)∗
×2

(
U2

)∗
×3

(
U3

)∗
.

The resulting tensor Ã satisfies the quasi-optimality condition.∥∥∥A− Ã∥∥∥
F
≤
√
3∥A−Abest∥F , (4.10)

where Abest is the best Tucker approximation of A.

4.2.2 Tucker-BasedThree-Dimensional Cross Approximation

Tucker decomposition can be constructed by using only some rows, columns, and fibers of
A ∈ Cn×n×n with a cross-Tucker approximation algorithm. Various implementations exist in the
literature [351, 352] and achieve the decomposition with linear complexity (best case: O(nr3))
over the O(n3) complexity of HOSVD. Specifically, only r1 rows, r2 columns and r3 fibers are
used of the initial BTTB defining tensor component. Specifically, in FFT-JVIE, each entry of
these tensors requires the computation of a costly multidimensional integral; thus, cross ap-
proximation algorithms are ideal for fast approximations.
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The cross approximation (or skeleton decomposition algorithm) is a technique that approx-
imates a low-rank matrix by using only a small set of rows and columns of it, thus skipping its
complete construction. A variety of such algorithms exist in the literature like the adaptive cross
approximation and the maximum volume algorithm (MaxVol), which are briefly explained in
Appendix D. Such algorithms can be exploited efficiently in the case of Tucker decomposition,
since we are dealing with the approximation of three low-rank matrices (unfoldings of A). For
our applications, we choose an algorithm developed in [351] with linear complexity concerning
tensor’s linear size O(nr4). The idea of the algorithm is to apply a cross approximation method
and calculate only some columns (O(n)) and rows (O(n2)) of each unfolded matrix. However,
instead of calculating each long row (which requires n2 operations), the algorithm approximates
it by reshaping it as a matrix (n × n) and applying a second inner cross approximation (O(n)).
Below, we provide the algorithm for the unfolding A(3).

Algorithm 3 Cross-Tucker
1: Initialize:

Ã = 0, R = 0, p = 1, and a tolerance ϵ
Choose a random fiber kp of A (for A(1) a row, for A(2) a column)

2: loop

3: ACA on R::kp =A::kp − Ã::kp

R::kp =
r∑
q=1

B
p
:q

(
C
p
:q

)T
4: Find max(R::kp), located at

(
ip,jp

)
5: wp = Ripjpk/max

(
R::kp

)
6: Find max(wp), located at kp+1 , kp

7: Update the approximation Ã

Ã = Ã+
r∑
q=1

B
p
:q ⊙C

p
:q ⊙wp

8: if ω ∥wp∥2 ∥Bp∥2 ∥Cp∥2 > ϵ
∥∥∥Ã∥∥∥

F
then p = p+1

9: else Return B, C, W

In step (5), an approximant maximum element can be found with O(r2) operations via the
MaxVol algorithm (Appendix D), in order to avoid the n2 searches in all the elements of the

81



Chapter 4

matrix. After the termination of the algorithm, the approximation of A admits the following
form:

Ãijk =
r∑
p=1

 r∑
q=1

B
p
iqC

p
jq

wpk = r2∑
t=1

BitCjtWkt. (4.11)

As a result, the Frobenius norm of Ã can be calculated as follows:

∥∥∥Ã∥∥∥2
F
=

n1∑
i=1

n2∑
j=1

n3∑
k=1

|Ãijk |2 =
r2∑
α=1

r2∑
β=1

⟨B:α,B:β⟩⟨C:α,C:β⟩⟨W:α,W:β⟩. (4.12)

The stopping criterion in step (8) gives a good approximation of the error since we cannot cal-
culate the exact Frobenius norm of the initial array 1. The multiplicative scalar ω is an arbitrary
parameter, and, usually, it is equal to n− p.

After the repetition of the algorithm for all three unfoldings, we obtain the matrices W 1,
W 2,W 3 ∈ Cn×r2 . To calculate the Tucker factors, we are using the QR decomposition on them,
and retrieve three orthogonal matrices Q1,Q2,Q3 ∈ Cn×r . Thus, the orthogonality property of
Tucker factors is satisfied (since they correspond to singular vector matrices). The Tucker core
is:

Hαβγ =
r2∑
δ=1

⟨W 1
:δ,Q

1
:α⟩⟨W 2

:δ,Q
2
:β⟩⟨W

3
:δ,Q

3
:γ⟩. (4.13)

and the cross-Tucker decomposition of A is written as

A ≈H×1Q1 ×2Q2 ×3Q3. (4.14)

4.2.3 Tucker + Canonical Decomposition Method

Tucker decomposition methods achieve an excellent compression factor since they are based
on already established numerical algorithms like SVD and ACA. On the contrary, the canonical
decomposition is unstable when used on big tensors, since it is based on heuristic least square
algorithms. However, it achieves the most compact representation of an array, since it only uses
three factor-matrices, without any core-tensor. To exploit this compact form we can use the
Tucker+CP method [278,353], in which we apply Tucker decomposition on our array of interest,
which is significantly faster and more stable than CP, and then we compress the Tucker core with
CP, since it is small, as it is illustrated in 4.5. Therefore, the new tensor decomposition requires
only three Tucker+CP factors. For the sake of completeness, we provide a short description of
the algorithm below:

Algorithm 4 Tucker+CP
1: Assume A ∈ Cn1×n2×n3 .
1We can, but this requires the construction of the array.
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2: Tucker decomposition on A ≈ G ×1U1 ×2U2 ×3U3, G ∈ Cr1×r2×r3 .

3: Choose appropriate CP algorithm and canonical rank r .

4: CP on G ≈
r∑
l=1
V 1
l ⊙V

2
l ⊙V

3
l :

V i ∈ Cri×r , i = 1,2,3.

5: Create the Tucker+CP factors: W i =U iV i .

For our simulations, in step 3, the implementation of CP is done with the open-source Matlab
software packageTensorlab [335] which approaches the problem with an alternating least squares
(ALS) method. ALS minimizes 3 problems for each CP factor. For V 1 we have

q
(
V 1

)
=
1
2

∥∥∥∥G(1) −V 1
(
V 2⊛V 3

)T ∥∥∥∥
F
, i = 1,2,3. (4.15)

Here ⊛ denotes the Khatri-Rao product (defined in Appendix D), and G(1) is the first unfolding
of G (see figure 4.4). The gradient of q gives the ALS update rule when it is equal to 0.

∂J
(
V 1

)
∂V 1 = V 1

(
V 2⊛V 3

)T (
V 2⊛V 3

)
−G(1)

(
V 2⊛V 3

)
,

V 1← G(1)
(
V 2⊛V 3

)((
V 2⊛V 3

)T (
V 2⊛V 3

))−1
.

(4.16)

Efficient computations of the gradient are crucial for the convergence speed of the CP, according
to [298, 354]. Finally, the Tucker+CP approximation of A is given from the following equation
and is visualized in 4.5.

Ã =
r∑
l=1

W 1
l ⊙W

2
l ⊙W

3
l . (4.17)

4.3 Matrix-Vector Product Implementation

4.3.1 Circulant Embedding and Fourier Transform

One of the tensor decompositions mentioned above can be employed for the compression of
all the unique tensor components of N and K. The compression of the Green’s function tensors
can be performed either in their BTTB defining tensor form, their BCCB defining tensor form,
or their BCCB defining tensor form after the application of the 3D FFT. In all these cases, the
multilinear ranks will be the same, since the circulant embedding and the FFT are unitary trans-
forms, and they do not affect the rank of the BTTB defining tensor (i.e., the Fourier matrix has a
condition number of exactly 1). To avoid performing the SVD, required in the algorithms above,
in large matrices, or performing the 3D FFT in large tensors (the circulant embedded ones) we
will exploit the method in [352], where the authors propose to apply, univariate respective one-
dimensional transforms along the columns of the Tucker or Tucker+CP factors. The Tucker core
(if used) remains the same. Using this approach we are able to drastically reduce the operation
and memory complexity to O(rini logni), where ni , i ∈ {1,2,3} is the tensor’s linear size.
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Figure 4.5: Visual representation of Tucker + CP method.

4.3.2 Matrix-Vector Product Cost

In this section, we will focus on an efficient implementation of the matrix-vector product
arising in FFT-based VIE, where the Green’s function tensors are compressed with the aforemen-
tioned Tucker-based decompositions. If the tensors of the unknowns (current, flux, field inten-
sity) could be compressed with Tucker decomposition, one could use the methods in [355] and
perform the element-wise products without the need for tensor decompressions. Regrettably,
for an inhomogeneous head model, with an arbitrary excitation from an RF coil, the unknowns
are by no means low-rank. Therefore, by default, the decompression of the Green’s function
tensors cannot be avoided, and additional operations are required over the traditional approach.
However, we do not have to decompress all tensors at once. Thus, the occupied memory remains
much smaller than the traditional approach, and, as a result, we can fit the matrix-vector product
in the limited memory of a GPU, and exploit its high parallel structure to accelerate it.

Without any decomposition, the matrix-vector product requires the implementation of element-
wise products between the Green’s function tensors and the tensors of the unknown currents, and
multidimensional FFTs with O(Nv) and O(Nv logNv) complexity respectively. In this case, the
required memory is significantly large, and, for our applications of interest, it overflows GPU’s
memory. By using a tensor compression algorithm, each Green’s function tensor component is
stored in a compressed form; thus, the implementation of the product requires an extra decom-
pression step, that can be implemented in two ways. First, we can decompress the appropriate
component using the equations (4.4), (4.14), or (4.17) and then implement the element-wise
product with the appropriate current component. Afterward, we repeat the same process for
the rest of the components by using the same buffer in memory. Alternatively, we can avoid
storing any Green’s function tensor by doing the decompression and the element-wise product
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simultaneously via a 6D (Tucker) or a 4D (Tucker+CP) loop. In this case, we decompress only
one element of the Green’s function tensor, then multiply it with the corresponding element of
the appropriate current component, and repeat the same process for the rest of the elements,
without occupying additional memory. Due to the presence of the Tucker core, this technique is
inherently slow for Tucker decomposition, although it can be as fast as the previous approach if
the Tucker+CP method is used. The FFTs are done as in the full-form case for the vector of the
unknowns. These techniques summarize the novel matrix-vector products, which can overtake
the previous memory overflow obstacle.

Regarding the methods mentioned earlier, for Tucker decomposition, the full tensor decom-
pression is much faster, but it requires the additional memory buffer, which for large problems,
might lead to memory overflow in GPU (GPU memory is minimal, and our problems are large).
Alternatively, we can use the element by element decompression with Tucker+CP decomposi-
tion and avoid GPU’s memory overflow. Not only is the costly 6D loop of HOSVD reduced to a
faster 4D loop (considering that the canonical rank is the minimum of Tucker ranks), but we also
do not use any additional storage space. We summarize both the memory and the complexity of
the operations of these matrix-vector product methods (the FFT cost is excluded since it is the
same) in the table 4.1, for the multiplication of the 12 unknown current components with the
relevant Green’s function tensors, in the case of FFT-JVIE. The Tucker and the canonical rank
are {r1, r2, r3} and r respectively andNv is the number of voxels. Also, in 4.6, we show a graphical
scheme of the tensor decomposition-based solvers. All 60 unique components of N are com-
pressed with HOSVD or cross-Tucker algorithm in CPU. Optionally, we can use the Tucker+CP
decomposition for additional compression and the previously explained reasons. Then we pass
the compressed tensors in GPU and implement one of the proposed matrix-vector product al-
gorithms in each iteration of the iterative solver.

Table 4.1: Complexity of Novel Matrix-Vector Products

Decomposition Method Operations Memory

- Traditional implementation O (Nv) 72Nv

Tucker
Component decompression O (r3Nv) 13Nv

Multidimensional loop O (r1r2r3Nv) 12Nv

Tucker+CP
Component decompression O (rNv) 13Nv

Multidimensional loop O (rNv) 12Nv

4.3.3 Time Footprint of the Matrix-Vector Product

In this subsection, we will shed some light on the time footprint of the proposed matrix-
vector product implementations in the GPU and CPU. Since the operations in each iteration of
the iterative solver and between different components are the same, we will focus only on one
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Figure 4.6: Visual representation of the tensor decomposition-based solvers.

product. We consider double precision complex random arrays: One tensor with dimensions
n×n×n corresponding to the unknown current coefficients, one tensor with dimensions r×r×r
corresponding to the Tucker core and three matrices with dimensions n×r corresponding to the
Tucker or Tucker+CP factors. In the previous Chapters, we showed that the realistic human head
models require domains of size ∼ 80− 400 (circulant defining tensor’s linear size), thus for this
experiment, we choose three sizes: n = 100, 200, and 300. The Tucker and canonical ranks are
set to 25 (this is a reasonable choice according to the results shown in the next section).

All the methods were implemented both in CPU and GPU. The measurements in CPU are
needed since, for vast domains, even the vector of the unknowns is not able to fit in GPU, thus
by employing the cross-Tucker method, we can perform simulations that required a tremendous
amount of memory > 1 TB. All the calculations were done in a CentOS 6.9 server equipped with
the following:

• CPU: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30 GHz, 36 cores, 2 threads per core, 378 GB
memory

• GPU: NVIDIA Tesla K40M, 12 GB memory
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For the CPU implementation, we used C++, compiled with gcc 4.9.2 along with highly optimized
Level 3 routines of BLAS and the FFTW [50]. The GPU coding was done in CUDA, compiled
with nvcc V8.0.61 along with the respective Level 3 routines of cuBLAS and the cuFFT. More-
over, the products were implemented in Matlab too, (version 9.2) both in CPU and GPU with
a fully vectorized code, when it was possible. We note that the implementations can be further
optimized with advanced programming techniques.

In table 4.2, we present the time footprint of the proposed methods. In the first two columns,
we provide the time needed for the decompression methods, both with Tucker and Tucker+CP.
In C++ and CUDA versions, both decompressions require similar times, however, in the Matlab
implementation, since the Khatri-Rao product cannot be implemented with a fully vectorized
code, the Tucker+CP decompression requires additional time. In the next two columns, the
element-wise product through the multidimensional loop technique is presented. In this case,
Matlab is significantly slower, since we are unable to construct a vectorized code. The lack of
this vectorization leads the GPU implementation of it to an impasse; thus, it is not applicable.
Besides, the loop implementation of Tucker+CP requires briefly more time, than the decom-
pression cases, since it cannot be implemented optimally with BLAS and cuBLAS routines for
the CPU and GPU respectively. However, it is hundreds of times faster than the HOSVD loops
method as expected. Hence, it is an excellent choice for GPU programming, since it does not
require the additional memory buffer that decompression approaches need. Finally, the last col-
umn provides the required time of the three-dimensional FFT. The use of cuFFT over FFTW
is expected to significantly accelerate the convergence of the current-based VIE solver since it
is used 13 times in every iteration of the solver of choice (12 FFTs on the unknown current
components and 1 inverse FFT on the result of the element-wise product). What we are mostly
interested in is the comparison between FFT in CPU and the novel matrix-vector products in
GPU. Specifically, for n = 200 we focus on the red colored entries in table 4.2 and we observe
that the novel products of rn operations are∼ 3 times faster than the FFT of n log(n) operations.
Therefore, a GPU implementation, of the tensor decomposition-based matrix-vector products,
can offer a significant speed-up over the traditional CPU approach, considering that r = 25 and
log(200) ≈ 2.3.

4.4 Results

4.4.1 Multilinear Rank

In [264], it is proved that the Green’s function related integrodifferential operators that arise
from two well-separated geometry blocks have low-rank properties, with rank given as functions
of the operating frequency. Therefore, the off-diagonal blocks of the Galerkin MoM matrix are
low-rank since they represent such interactions. In the case of uniform grids, we do not exploit
this property since only the defining BTTB tensor is stored. However, in this defining tensor,
the interactions between one voxel and all the others are modeled (first column of the MoM ma-
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Table 4.2: Time Footprint in ms of Matrix Vector Product

Dim Case
HOSVD HOSVD+CP HOSVD HOSVD+CP

FFT

decomp. decomp. loops loops

100

C++ 2.6 1.3 2.4e+3 3.3 1.2

Matlab CPU 5.9 6.4 2.5e+5 522 2

CUDA 0.96 0.79 855 1.28 0.58

Matlab GPU 1.37 7.73 N.A. N.A. 0.76

200

C++ 25.2 22.9 1.7e+4 24.6 20.4

Matlab CPU 47.3 56.4 2e+6 3.2e+3 24.6

CUDA 6.03 5.79 5.9e+3 8.9 5.68

Matlab GPU 7.09 13.58 N.A. N.A. 7.14

300

C++ 74.9 77.5 5.8e+4 81.6 55.5

Matlab CPU 140 136.8 1.5e+7 1e+4 55.6

CUDA 17.4 20.1 1.9e+4 29.4 26.9

Matlab GPU 19.82 27.83 N.A. N.A. 31.43

trix), meaning that distant interactions are still calculated. Therefore, it makes sense to wonder
if there is a relation between the Tucker rank and the operating frequency. According to [265],
for 3D geometries, the ranks of the discretized operators, corresponding to interactions between
well-separated geometrical source and observation domains, are proportional to the operating
frequency O(k0), while for the 2D case the relation is O(

√
logk0). The case presented herein is

expected to share similarities in the dependence of the multilinear rank and frequency. However,
since the voxel {1,1,1} is part of both domains, due to the form of the Green’s function tensors
(3.62), not an exact linear dependence is expected. To study this dependence, we construct the
following simple Green’s function operator for a cube with unit edge

G (c) =
$
V

g(r− r′)c(r′)dr′, (4.18)

and discretize it using the Galerkin expansion and PWC basis functions. The matrix is BTTB,
and Tucker decomposition can be applied to the defining tensor. Furthermore, we present the
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maximum of all multilinear ranks of the unique N and K components expanded with PWL
functions (the rank of the most memory consuming component). Since the Tucker rank is a
triplet, we illustrate the largest of r1, r2, and r3 for the above cases. The multilinear ranks are cal-
culated with the HOSVD algorithm with SVD tolerance ϵ = 10−8. The frequency sweep analysis
is implemented for the cases 0.3i GHz , i = 1, . . . ,10 and for three different discretizations with
resolutions λ/10, λ/20 and λ/30. The results are summarized in 4.7, and as expected, the de-
pendence between the ranks and the frequency is almost linear [265], and an excellent overall
compression factor is established. For instance, the maximum rank of a 300×300×300 tensor
is no greater than 32, which means that G (and each component of N and K) can be compressed
at least ≈ 440 times.

0 0.5 1 1.5 2 2.5 3

10

15

20

25

30

35

Figure 4.7: The maximum ranks of Green’s function tensors. They scale almost linearly with
respect to frequency.

4.4.2 Compression Factor

Focusing or MRI applications, we consider an example of a realistic human body model, rel-
evant to 7 Tesla scanners, with operating frequency f = 297.2 MHz. The domain is a cuboid
with dimensions 0.538×0.28×1.802 m3 with a voxel isotropic resolution equal to 2 mm. The
discretized version of the domain requires 270× 141× 902 voxels. In table 4.3, we provide the
memory footprint of the domain and the arising discretized N operator, expanded with PWL
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basis functions. The table presents the immense memory needed in the full Galerkin MoM ma-
trix and the compressed one for the BTTB defining tensors.

Table 4.3: Memory Requirements of discretized N with PWL functions

Array Number of Elements Storage Memory

Domain Nv 256 MB

MoM matrix 12Nv × 12Nv 2.35 EB

Symmetric MoM matrix (12Nv × 12Nv)/2 1.17 EB

BTTB defining tensors 144Nv 74 GB

Unique tensors 60×Nv 31 GB

Circulant embedding 8× 60×Nv 246 GB

According to 4.3 the overall memory for the unique circulant forms ofN is 245.6GB (122.8
GB for K), a forbidden memory cost for any available GPU. It is evident that the uniform grid
expansion and the translation-invariant property of Green’s function offered a substantial com-
pression of the initial MoM matrix, but not enough to implement the simulation in GPU. In table
4.4 we provide the memory of the decomposed, N and K unique tensor components, using the
HOSVD [328], the cross-Tucker decomposition [351] and the TT-SVD algorithms 2, in respect
to the SVD and ACA tolerances.

Table 4.4: Memory (in MB) for the decomposed N and K tensors

Decomposition ϵ 10−4 10−5 10−6 10−7 10−8 10−9 10−10

HOSVD
N 18.04 24.16 32.10 40.94 50.82 60.90 71.71

K 12.06 16.26 21.24 26.15 31.03 35.69 40.96

Cross-Tucker
N 19.77 27.73 37.20 47.15 57.37 68.53 79.74

K 14.59 19.52 24.70 29.51 35.58 41.47 47.00

TT-SVD
N 23.79 37.90 59.56 86.45 118.68 154.92 192.78

K 19.19 30.55 45.68 62.28 79.40 96.85 115.97

The compression is tremendous. In 4.8 and 4.9, the dual-axis charts portray, on the red axis,
2For the TT-SVD we used the open-source TT-Toolbox [344] software package
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the overall compression factor 3 of the tensor components, and on the blue axis, their maximum
ranks with HOSVD, cross-Tucker decomposition, and TT-SVD, using the same SVD (or 2D
cross) tolerances. On 4.8, the results are shown for the unique components of N (60), and on 4.9
for the unique components of K (30). The large compression factor (between 1000 and 11000

for all the cases) allows us to easily fit the decomposed N and K components in a single GPU or
personal laptop’s CPU, instead of using servers equipped with significantly large RAM. Moreover,
as expected, Tucker-based algorithms can achieve a significantly better compression than TT-
SVD (∼ 2.5 times less memory for a tolerance of 10−10). Even if a TT-based compression of
1000 is still remarkable, Tucker decomposition is preferred.
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Figure 4.8: (Left axis) Maximum rank of the triplet {r1, r2, r3} for the worst case scenario and
(right axis) overall compression factor for all the unique components of N . Results are shown
for various tolerances.

4.4.3 EM Simulations for Realistic Human Body Models

In this section, we implement an EM simulation for a realistic human head in order to ob-
serve the accuracy of the solver, in case tensor decompositions, are used. We excite the “Duke”
highly inhomogeneous realistic human head model [17], with a linear polarized plane wave
einc = x̂e−ik0z . The model has corresponding relative dielectric permittivity and conductivity

3Number of elements of the full forms divided with the number of elements of the decomposed forms
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Figure 4.9: (Left axis) Maximum rank of the triplet {r1, r2, r3} for the worst case scenario and
(right axis) overall compression factor for all the unique components of K. Results are shown
for various tolerances.

relevant to 7Tesla MR measurements, which are shown in 4.11 (left) on a sagittal (a) a coronal (b)
and an axial (c) cut of the head. Finally, the domain is a cuboid, discretized with 93×119×125
voxels with 2 mm3 resolution, and the currents are expanded with PWL functions.

The matrix-vector product calculations were performed with Matlab (version 9.2) with our
in-house suite MARIE [22], by embedding the decompositions mentioned above and PWL im-
plementation in it. The iterative solver of choice is the GMRES with tolerance 10−5 and inner
and outer iterations 50 and 200, respectively. The traditional FFT-JVIE implementation leads
to a memory overflow in GPU since it requires a vast amount of computational memory; thus,
it is executed in CPU. On the contrary, tensor decomposition methods (namely HOSVD and
HOSVD+CP) tackle this problem and can fit the simulation in GPU and drastically reduces the
convergence time of the solver. The time footprint for the three solves is tabulated in 4.5. It is
observed that an order of magnitude acceleration has been achieved, even though more flops
are required for the matrix-vector product when tensor decompressions are used (O(rNv) over
O(Nv)). Undoubtedly, tensor decomposition methods are veritable workhorses for exploiting
the GPU architecture, in FFT-based VIE simulations.

In 4.10, the L2 relative error of the absorbed power pabs and the absolute value of the trans-
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Table 4.5: Convergence time of GMRES

Method PU Time footprint

Traditional implementation CPU 2h 39’ 58”

HOSVD decompression GPU 14’ 11”

HOSVD+CP decompression GPU 16’ 01”

verse magnetic flux density |b+1 | between the Tucker decompostion-based implementations and
the traditional FFT-JVIE are presented. The aforementioned EM quantities are

pabs =
1
2
σe|e|2, |b+1 | = |hx + ihy |. (4.19)

We have chosen to portray the absorbed power [356] since it is a realistic magnitude that provides
the power deposition of the human body, and the |b+

1 | which expresses the transmitted RF field
in MR scanners. Both magnitudes are fundamental for the MRI community [13]. We perform
the numerical simulation for 9 different SVD tolerances (10−4,10−5, . . . ,10−12) and for a 1000
iterations for the CP decomposition. It is observed that the error of HOSVD reduces linearly with
respect to the given tolerance. On the contrary, Tucker+CP does not have a linear dependence
with the SVD tolerance, since the CP decomposition does not achieve an optimal fit of the Tucker
cores.

In 4.11, we illustrate (for SVD tolerance: 10−10) the aforementioned absorbed power and
the |b+1 | on a sagittal, a coronal, and an axial slice of the head model. The mentioned scalar
magnitudes are masked outside the head for enhanced visualization. The results seem to be in
striking visual resemblance.

Given that FFT-based VIE is already faster than differential methods, which require dozens
of hours for realistic head model simulations, a speed-up from≈ 3 hours to≈ 15 minutes, might
not seem so significant. However, the time comparison is relative to the problem, and a simula-
tion requiring a day to converge can be completed within 2 hours when the novel matrix-vector
products are used in tandem with GPU programming. Such inherently slower problems appear
when high contrast objects are part of the scatterer, i.e., an implant modeled as a dielectric ma-
terial with high conductivity. In those cases, regrettably, the VIE formulations are significantly
ill-posed. Therefore, the required number of iterations vastly increases, even if a second-kind
integral formulation is used.

Such challenging problem are the EM simulations for the dielectric shimming technique [261–
263]. Specifically, dielectric shimming is a recently proposed method, where high permittivity
dielectric pads, i.e., barium pads with ϵr = 300 and σe = 0.25 S/m, are placed between the RF
coils of the MR scanner and the human body to effectively address the RF transmit field inhomo-
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Figure 4.10: Relative error of the absorbed power and |b+1 |, between the Tucker decomposition-
based approaches and the traditional one.

geneity, reduce the specific absorption rate and increase the signal to noise ratio, in UHF MRI.
The effect of placing the pad close to the head introduces a strong asymmetry in the |b+1 | maps,
which enables the illumination of darker areas, where nulls occur without the pad. Potentially
shading artifacts can be removed from the final MR image. However, for the patient’s safety, ac-
curate simulations have to employed for designing and positioning the dielectric pad. Due to the
extremely high contrast and inhomogeneity of the scatterer, only higher-order basis functions
can establish the superior numerical accuracy for the EM field estimations [4]. However, due to
the high contrast, even the robust FFT-JVIE (JVIE-II) expanded with PWL basis functions re-
quire hundreds of iterations for small iterative solver’s tolerance, and it converges in more than
9 hours in CPU (for a voxel isotropic resolution of 2 mm), for the example shown in [4]. In this
case, the usage of HOSVD is indispensable and reduces the convergence time, with the aid of
GPU, to less than an hour for an SVD tolerance ϵ = 10−8 (same system and GMRES settings
with the previous example).

Finally, the importance of p-refinement (PWL basis functions) is highlighted when coarse
resolutions are studied (namely 5 mm3), since the traditional approach can fit in GPU, and the
results are accurate enough. However, when we model the scattering from large domains, such
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Figure 4.11: (from left to right and top to bottom) Relative permittivity, absorbed power calcu-
lated with the FFT-JVIE traditional solver, the HOSVD-based solver, and the Tucker+CP solver,
conductivity and |b+1 | calculated with the same solvers respectively for a (a) sagittal, coronal (b)
and an axial (c) cut of “Duke” realistic human head model, corresponding to 7 Tesla MRI appli-
cations.
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as the whole body, even for these coarse resolutions, the problem is large enough, and the sim-
ulations cannot be executed in GPU with the traditional FFT-JVIE approach. In the same logic
as in the previous examples, tensor decomposition-based methods, compress the simulation to
fit in GPU easily and, thus, requiring only ≈ 15 minutes to converge, in the same system as
before and the same parameters for the iterative solver, (SVD tolerance was 10−7). In figure
4.12, we present the electrical properties, the electric field, the magnetic field, the polarisation
current, the absorbed power, the |b+1 | and the |b−1 |, for a coronal cut of “Billie” realistic human
body model, using the HOSVD-based method. All the values are masked outside the body for
enhanced visualization.

  

Figure 4.12: (from left to right and top to bottom) Relative permittivity and conductivity on a
coronal cut of “Billie” body model, corresponding to 7 Tesla MR-measurements. Total electric
field, total mangetic field, polarisation current, absorbed power, |b+1 | and |b−1 |.
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4.4.4 Scaling Properties of Memory Compressed Approaches

Here we study the scaling properties of the Tucker decomposition-based approaches in com-
parison with the traditional method, namely time convergence and memory footprint, as we
refine the grid, thus, increasing the number of the unknowns. Concretely, we choose a homo-
geneous sphere of radius 0.15 m and electric properties ϵr = 65, σe = 0.6. The EP and the
dimensions were picked in order to create a tissue-mimicking scatterer, which is illuminated by
a linear polarized plane wave einc = x̂e−ik0z at 298MHz (7Telsa MRI). The domain is a cuboid of
length 0.3m, and the voxel’s isotropic resolution is 10, 5, 3.3, 2.5, 2mm for each h-refinement of
the computational grid. Such resolutions result to ∼ 0.3, 2.6, 8.7, 20.7, 40.5 million unknowns
respectively, for PWL basis functions. The GMRES tolerance is set to10−5 and the SVD tolerance
to 10−8. The CP model is allowed to run for 1000 iterations with machine precision tolerance.
We perform the simulation with the traditional FFT-JVIE, the HOSVD, and the Tucker+CP ap-
proaches. In 4.13, on the left axis, the time convergence of GMRES is shown, which runs for
∼ 250 iterations for all the refinements and solvers, while on the right axis the memory require-
ments of the unique N components are portrayed. We can conclude that for coarse resolutions
(up to 3.3 mm3 ), the traditional FFT-JVIE approach can fit in the limited memory of GPU and,
as expected, is the fastest solver. For finer resolutions, the memory requirements of the unique
N components are high. Thus, the simulation is forced to run in CPU, and the time footprint
explodes from ∼ 11 to ∼ 486 minutes for a 3.3 to 2 mm3 refinement. For these resolutions, the
use of compression algorithms, like HOSVD or Tucker+CP, is crucial if we want to accelerate
the solution with GPU programming. Their time footprint, e.g., for HOSVD, starts from ∼ 13

and grows to ∼ 45 minutes as we refine the grid (zoomed part of 4.13), guaranteeing an order of
magnitude of acceleration. For finer resolutions, the memory of the unknown currents in their
zero-padded + FFT form is larger than the memory of modern GPU cards; thus, such problems
require additional compression techniques that will be discussed in the next section.

Finally, in 4.14, the relative error between the scalar absorbed power of the CEM simulations,
and the analytic solution of the Mie series is shown. The error between the traditional FFT-JVIE
and the HOSVD approach is identical as expected since only the SVD is used for compression,
while the absorbed power calculated with the Tucker+CP approach does not necessarily lead to
more accurate results as we refine the computational grid. The relative error might seem high
even for fine discretizations, given that we are using PWL basis functions for our simulations,
although this is not surprising at all since the voxelized grid creates a staircase approximation of
the sphere [259].

4.5 Current Compression on the FFT-based VIE

In the previous sections we proved that the memory of the Green’s function tensors appear-
ing in FFT-based VIE could be vastly compressed through the Tucker decomposition, thus, al-
lowing the implementation of the matrix-vector product in GPU [1], even for large domains,

97



Chapter 4

2 3 4 5 6 7 8 9 10

10
-3

0

50

100

150

200

250

300

350

400

450

500

10
0

10
1

10
2

10
3

10
4

10
5

2 2.5 3

10
-3

10

20

30

40

50

Figure 4.13: (Left axis) Convergence time of GMRES and (right axis) memory footprint for all
the unique components of N . On the top right corner we zoom on the convergence time of finer
resolutions for enhanced visualization.

leading to an order of magnitude of acceleration over the traditional method. Nevertheless, in
case of very fine resolutions of realistic human body models for MRI applications, e.g., 1 mm
voxel isotropic resolution of a head model, even the memory requirements of the FFT tensor
of the unknowns, appearing in the matrix-vector product, is larger than the memory limit of
modern GPUs thus, forcing the problem to be executed in CPU for many hours. In this section,
we present a memory-efficient implementation of the 3D FFT applied to the vector of the un-
knowns. Correctly, we implement 1D FFTs in two dimensions, while we hold the last 1D FFT
to be executed in parallel with the element-wise multiplication, with a purpose to reduce the
memory storage 8/5 times. The new approach leads to additional operations but allows higher
memory compressions when it is combined with the Tucker decomposition-based matrix-vector
product of the Green’s function tensors, thus, making the usage of a GPU feasible.

The traditional implementation of the matrix-vector product requires the zero-padding, fol-
lowed by a 3D FFT, of the tensors of the unknown currents, in order to match the dimensions of
the circulant embedding of the Green’s function tensor. In each iteration of the iterative solver,
eight times more elements are needed for the unknowns. Alternatively, one can follow the novel,
memory-efficient strategy: First, we zero-pad the tensor of the unknowns over one dimension,

98



4.5. Current Compression on the FFT-based VIE

2 3 4 5 6 7 8 9 10

10
-3

0.01

0.015

0.02

0.025

0.03

0.035

0.04

einc = x̂e−ik0z

Figure 4.14: The relative error of the scalar absorbed power between the traditional FFT-JVIE,
HOSVD, Tucker+CP methods, and the Mie series.

e.g., x followed by multiple 1D FFTs, and we repeat the process for the second dimension, e.g.,
y. Now, the required memory of the unknows is four times their initial size. This is illustrated in
the left of figure 4.15. For the implementation of the element-wise product, we use the following
algorithm in each iteration. n is the number of Green’s function tensors G, appearing in the VIE
formulation.

Algorithm 5 Memory-Efficient Matrix-Vector Product
1: for i=1:n do

2: Decompress Gi .

3: for j=1:4 do

4: Zero pad j−th cubic set of unknowns over the last dimension, e.g., z.

5: Apply 1D FFTs on j−th cubic set (Figure: 4.15 right).

6: Element-wise multiplication between the j−th sets of the unknown’s
elements and the respective set of Gi ’s elements.

7: Clear the buffer of memory for the j−th cubic set of unknowns.
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x,n1y,n2

z,n3

Figure 4.15: Sparse FFTs on the tensor of the unknown currents (green array). The yellow arrows
define the direction of the zero-padding and the 1D FFTs. (left) Implementation of 1D FFTs over
x and y dimensions and (right) 1D FFTs on the z direction for one cubic set of unknowns.

With this approach, the overall memory of the unknowns is 8/5 times less than the tradi-
tional one. The trade-off is the additional operations in step 2 and 3. However, the additional
operations come from the FFT, which is a favorable operation for GPU, through the highly op-
timized library cuFFT, according to the results shown in 4.2.

To test the efficiency of the novel matrix-vector product, we perform an EM simulation for
a realistic human head model, since UHF MR scanners motivate the method. Concretely, we
choose the highly inhomogeneous realistic human head model of “Billie”, and we illuminate it
with a linear polarized plane wave einc = x̂e−ik0z. The working frequency is 298 MHz and cor-
responds to a 7 Telsa MR scanner. The voxel’s isotropic resolution of the grid is 1 mm and the
overall size of the domain is 16.8×18.8×22.2 cm3 or 168×188×222 voxels. We use the FFT-
JVIE [4] formulation and expand the unknown currents with piecewise linear basis functions,
resulting in a vast number of 84 million unknowns for the entire domain. The Green’s function
tensors are compressed with HOSVD, and SVD tolerance 10−8. The iterative solver of choice is
GMRES with a tolerance of 10−5. The operating system is the same as in the previous examples.
For this problem, the memory requirements of the unknown currents (in their zero-padded +
FFT form) are too big for the limited memory of GPU; thus, the methods presented in [1] and
the previous sections, are not suitable. The time footprint of the iterative solver for the traditional
and the novel approaches are summarized in the following table.

Table 4.6: Convergence time of GMRES

Method PU Time

Traditional FFT-JVIE CPU 11h 35’ 47”

Memory-efficient matrix-vector product GPU 1h 44’ 47”

The relative error between the scalar absorbed power of both methods, calculated with the
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formulas presented in [356], is 1.9 ·10−7. Finally, for a qualitative validation, in 4.16, we present
the voxel-wise absorbed power, for both methods, at a sagittal and an axial cut of the head model.
Both cases lead to identical results.

0
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0.15

0.2

0.25

Figure 4.16: Local absorbed power on (top) a sagittal and (bottom) an axial cut of “Billie”. (left)
Traditional FFT-JVIE and (right) memory-efficient MatVec approach. The field is masked out-
side the head for enhanced visualization.

4.6 Summary

In this chapter, we presented a method for significant memory reduction of Green’s function
tensors arising in current-based VIE, via Tucker-based decompositions. This immense compres-
sion allows us to efficiently handle higher-order polynomial basis functions and use the highly
parallel performance of GPU programming to significantly accelerate the numerical evaluation
of relevant EM simulations. Similar compression is expected for other FFT-based VIE formula-
tions (flux and field-based) since they consist of similar Green’s function-based kernels. Finally,
the presented work can be used to speed-up the time-consuming inverse EM scattering prob-
lems, e.g., GMT, where the forward problem needs to be solved hundreds of times to retrieve an
accurate dielectric property mapping of biological tissue.
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Chapter 5
RFCOILDESIGN FORGLOBALMAXWELL

TOMOGRAPHY

Each individual material in the nature can be characterized electrodynamically, with a set
of electrical properties, namely electric permittivity and conductivity (Maxwell’s equa-
tions), in the same manner as in the spin-dynamics with the relaxation times and the

proton density (Bloch’s equations). The EPs are a mean for the interaction between EM fields
and materials and are of paramount importance for human tissue characterization [357, 358].
Specifically, an EP tomography of brain tissue could be used for the significant improvement of
therapeutic modalities, such as magnetic resonance imaging. Moreover, medical and biomedical
applications could be further improved with an EP map. For example, electrochemotherapy and
hyperthermia [359,360], could use these maps as additional biomarkers for tumor characteriza-
tion. Finally, (RF) ablation [361, 362] and transcranial magnetic stimulation [363, 364] can also
be improved.

Regrettably, the EPT is by no means a trivial task, since, an imaging technique as in MRI,
using specific EM field encodings, does not exist. Therefore, the problem requires the inverse
solution of Maxwell’s equations. Thus, the EPT is an extremely ill-posed problem, since antennas
can only be placed in the exterior of the head and can only measure the scattered field at their
location, thus neglecting the interior field intensities in the brain. Thankfully, MRI can assist the
EPT tremendously, since it provides magnetic field measurements from the interior structure of
the brain, that encode and reflect the EP structure and values. A significant amount of research
has been done over the so-called MR-EPT in simulation, and the proposed methods are divided
into the PDE, and IE approaches.

MR-EPT is an inverse scattering problem. Mark Haacke et al. proposed the first approach
in 1991 [108], where he attempted to solve the inverse differential form of Maxwell equations
directly. Specifically, he estimated the conductivity of a 1D problem, using the complex-valued
transmit magnetic field (b+1 ). The inverse problem was iterative, and in every iteration, a better
guess of the electrical conductivity was calculated. The first 3D MR-EPT was proposed more
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than fifteen years later from Ulrich Katscher et al. [110, 365]. However, the MR-EPT method
required assumptions that restrict its application in a realistic environment. First, the receive
and transmit phases of the magnetic field were considered to be equal 1. Second, the magnetic
field intensity at the ẑ direction was zero. Third, the proposed method neglects the EP gradients,
which leads to erroneous assumptions between boundaries of different tissues [110, 366] (in the
case of a highly inhomogeneous head, many artifacts appear with the method). Unfortunately,
these assumptions are only valid in the central region of the head, and only if it excited with a
traditional birdcage coil, at 1.5 Tesla (or lower) MR scanners.

In the last decade, MR and EM scientists attempted to tackle these assumptions and pro-
pose additional novel techniques. Firstly, MR-EPT was extended for transmit and receive coils
with multiple channels [367, 368], while more robust PDE methods were used to address the
ill-conditioning of the problem [369]. Moreover, the usage of the b+1 phase was proposed as a
quicker electrical conductivity mapping technique [370], which is free of the transceive phase
assumption and the EP gradients’ neglection at the boundaries between different tissues [115].
Moreover, other simplifications were proposed that assumed constant EP over a specified axis
[371], which is not always the case. In 2012 Daniel Sodickson et al. proposed a PDE method
[372], dubbed Local Maxwell Tomography that is free of assumptions. The method leads to good
results in simulation, but the required number of fields (both from transmit and receive chan-
nels of the RF coils) was too large. Furthermore, MR-EPT was combined with another method
dubbed electrical impedance tomography for higher accuracy, which, however, is invasive to
the human body [373–376]. To overpass the impasses of noise, other approaches used only the
robust to noise, receive magnetic field sensitivities b−1 . Also, the authors in [377] attempted to
remove the noise from the b+1 before MR-EPT. Others proposed the usage of classic image de-
noising regularizers in their iterative reconstruction [116], which smooth the EP maps and, as a
result, information on the boundaries between different tissues is lost.

On the one hand, all methods arising from PDE are by default limited, since the numerical
approximations of the derivatives significantly amplify the noise. On the other hand, one can
use integral kernels, that are more robust to noise, since the gradients can be easily expressed
with respective Hermitian-adjoint operators. As in the PDE case, many techniques were pro-
posed mainly in the last five years. However, most of them require assumptions, such as the
transceive phase assumption [118, 378], the zeroing of the bz [379] and the knowledge of the
complex-valued b+1 [380]. Finally, an assumption-free MR-EPT method, dubbed Global Maxwell
Tomography (counterpart of LMT with IE formulations), was proposed by Jose Serrallés et al.
recently [160]. GMT attempts to reconstruct cross-sectional mappings of the electrical proper-
ties distributions of human tissue, using MR measurements obtained from 7 Tesla MR scanners.
The reason behind the employment of UHF MR scanners [12] is that the b+1 becomes inhomo-
geneous as we increase the operating frequency; thus, it encodes additional information for the

1This is known as “transceive phase assumption”
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anatomical EP structure of the head under-study.

GMT is a fully 3D global inverse scattering algorithm that uses higher-order FFT-based VIEs
and employs them through a non-linear least squares optimization routine to estimate the b+1 by
updating the unknown electrical properties in every iteration until specific criteria are met. GMT
differs from alternative EP reconstruction methods because it does not require any simplifying
assumptions considering that it uses only the measurable absolute value and the relative phase
of the b+1 [112]. In addition, it does not suffer from boundary artifacts or noise amplification.

In previous works on GMT [160,381,382] the scatterer of interest was excited using a numer-
ical ultimate EM basis to investigate the technique independently from coil design. The scope
of this approach was to generate a set of orthonormal (unitary) incident fields for scatterer illu-
mination. Prior results have shown that the numerical conditioning of GMT strongly depends
on the number and spatial distribution of the measured b+1 . The numerical EM basis offered
inhomogeneous fields, thus favorable for GMT, and was preferred over a standard transmit RF
coil since the coil might not be able to generate the quality of excitations needed. Regrettably,
to perform in-vivo experiments, the EM basis is not easily applicable, because the arising sur-
face currents are difficult to generate in precisely the same way using a realistic transmit RF coil.
Thus, GMT has its limitations as well.

The scope of this Chapter is dedicated to the investigation of GMT’s performance with real-
istic RF coils, in simulation, for the EP reconstruction of tissue-mimicking phantoms and more
complex structures such as highly inhomogeneous human head models. Since GMT operates in
7 Tesla MRI, there is not a standard problem-dedicated coil design to be used for an EP re-
construction application, and most coils in this frequency are only experimentally available.
Therefore, we propose a novel problem-dedicated 8-channel head coil design for 7 Tesla and
investigate its performance with GMT for different voltage calibration patterns and loads (head
models). Our focus resolves around coils that can produce distinguishable (orthogonal) b+1 maps
from each channel since they favor GMT’s cost function. A working coil design for GMT will
enable its application in realistic environments and potentially provide the first accurate EP maps
of human heads.

5.1 Theoretical background on Global Maxwell Tomography

GMT is an inverse problem with scope to recover the unknown electrical properties of human
tissue in the presence of noise. The measurable EM field quantities from a modern MR scanner
is the absolute value of b+1 from each channel of the transmit coil and their relative phase. There-
fore, we can write a cost function that exploits all the aforementioned quantities and estimates
the degree of difference between them and predicted ones from a highly accurate numerical
simulation, to predict underlying EP maps of the unknown tissue. The cost function, f (ϵr,σe),
includes a hand-crafted regularizer, fr(α,β,γ,ϵr,σe), where the three parameters α,β,γ can be
changed depending the problem and the level of noise. GMT is an optimization problem without
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bounds, or more properly with box constraints that do not allow unrealistic EP measurements,
namely ϵr ≥ 1 and σe ≥ 0. The optimization problem is expressed below

argmin
ϵr ,σ e∈CNs

f (ϵr ,σ e) + fr(α,β,γ,ϵr ,σ e)

s.t. Re{ϵ} ≥ 1

−Im{ϵ} ≥ 0.

(5.1)

Note that the unknowns are the ϵr and σ , however, for consistency in their magnitudes, we
choose to optimize over the complex-valued ϵ . The cost function f is real, with complex ar-
guments. Therefore its derivative can be computed using the CR-Calculus (Appendix B) by
exploiting the solution of VIE using Hermitian adjoint operators. To avoid the costly compu-
tation of the Hessian, the L-BFGS-B algorithm [383], is used, which estimates the Hessian with
rank one updates of the gradient. Finally, The cost function is given from

f (ϵr ,σ e) =

√
8∑
i=1

8∑
j=1

∥∥∥∥wi ◦wj ◦ (b̂+1,i ◦ (b̂+1,j)∗ − b+1,i ◦ (b+1,j)∗)∥∥∥∥22√
8∑
i=1

8∑
j=1

∥∥∥∥wi ◦wj ◦ (b̂+1,i ◦ (b̂+1,j)∗)∥∥∥∥22
+ fr(α,β,γ,ϵr ,σ e), (5.2)

where
b+1,i ◦

(
b+1,j

)∗
≡ |b+1,i | ◦ |

(
b+1,j

)∗
| ◦ ei

(
ϕ+
i −ϕ

+
j

)
. (5.3)

The two summations over i and j iterate over all unique field maps of a multiple-channel (usually
8 channel, for 7 Tesla MRI) transmit array. The b+1,i and b̂+1,i refer to the estimated and measured
b+1 maps, that correspond to the ith channel, respectively. The relative phase between the maps i
and j is given from

(
ϕ+
i −ϕ

+
j

)
. We choose to express the cost function in this form, because the

predicted complex b+1 is computable from the simulation, while the experimental one is given
from the scanner without knowing the absolute phase information. The absolute phase of the
transmit fields cannot be measured with standard MRI experiments [372]. The weights wi are
chosen in such a way to prioritize regions with higher SNR when estimating EP.

To calculate the b+1 , we are solving the FFT-based JVIE using piecewise linear basis functions
for supreme numerical accuracy. The polarisation currents can be seamlessly mapped to the b+1
through the K operator as:

b+1 = µ0htot = µ0
[
hincx +Kjx + i

(
hincy +Kjy

)]
. (5.4)

The subscripts x and y denote the appropriate cartesian component of the particular EM mea-
surements. The matrix K is the discretization of the K operator that maps electric polarisation
currents to magnetic fields.

GMT is mainly a reconstruction problem, but in the presence of noise, it should behave as a
denoising one as well. Therefore a regularization term is essential to cancel the noise from mul-
tiple sources, appearing in an MR scan [384]. The authors in [3] proposed the so-called match
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regularizer that operates on the finite-difference approximation of the EPs along each direction
|∆qϵ|, where q ∈ {x,y,z}, and for every voxel. The regularizer is given from the following com-
plicated formula:

fr(α,β,γ,ϵr ,σ e) = α
1

3N
2
3
v

∑
n∈Nv

∑
q∈{x,y,z}

1− e γ2

|β|2
√
γ2+|β|2

(
γ−
√
γ2+|∆qϵn|2

) , (5.5)

where Nv is the number of voxels of the scatterer and ∆qϵn is the difference of voxel’s n EP
with neighboring ones over q direction. The regularizer behaves like a classic total variation
L2 when the difference in the neighboring EPs is small, and as they increase, it becomes an L1
or an L0 regularizer. The scope of this approach is to model small jumps between the EPs as
noise, while higher ones as different tissues, through the optimization procedure. Those above
are related to a triplet of parameters {α,β,γ} that can be set for each problem independently and
highly determine the performance of the regularizer. The match regularizer has shown excellent
performance for boundaries with high contrast since it behaves as an L0 regularizer; however,
for low contrast, it behaves like a total variation which, results in blurring. Since GMT is a costly
problem, it is next to impossible to test various triplets and measure their performance in order
to pick the best. A possible solution to this problem is to train a neural network to optimize
these parameters. This thinking is motivated by the recently developed variational networks
[385], where the network is built as an outer iteration loop around the optimizer and trains the
parameters of the so-called fields of experts regularizer [386]. For additional information on the
regularizer, we refer to [3].

5.2 RF Coil Design for Global Maxwell Tomography

The area of EP reconstruction is not mature enough for clinical applications. Therefore spe-
cific RF coils do not exist for such a purpose, and the traditional ones, employed for MR imaging,
are used. Besides, 7 Tesla scanners became clinically available only recently [12]; thus, the num-
ber of available RF coils is limited in this frequency. For this purpose, using the theory intro-
duced in Chapter 3, we will model and simulate problem-dedicated RF coils for the non-invasive
cross-sectional mapping of the electrical property distributions of human tissue.

Thus far, GMT has been demonstrated in simulation employing eight orthogonal incident
fields, constructed using a numerical EM basis, as the transmit fields of a hypothetical coil ar-
ray [381]. Using the EM basis, it was shown that GMT could accurately estimate the relative
permittivity and electric conductivity for simulations. However, these basis incident fields are
difficult to generate with actual coils and, therefore, GMT performance could become worse in
practice. To shed some light on this issue, we investigate the performance of GMT in simu-
lation, using incident EM fields generated by realistic 8-element transmit arrays illustrated in
5.1. Specifically, we design a cylindrical 8-channel transmit-receive triangular loop array, based
on a previously proposed coil [119, 120] for tissue-mimicking phantom simulations [6, 7] and
a similar design for heads on a stadium substrate. The main reason behind such coil design is
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because they can be highly decoupled and produce strongly diverse b+1 , favorable for GMT’s cost
function.

Figure 5.1: (top) Cylindrical coil and (bottom) Stadium coil. (left) The 8-channel triangular loop
array loaded with the 4-compartment tissue-mimicking phantom (the relative permittivity and
conductivity of each compartment are indicated in the legend) and the head model. (right) The
locations of the lumped elements are shown for a representative array element.

In this section, we focus on the design of the coil, the tuning procedure, and the calcula-
tion of the scattered fields to the interior free-space (or the incident fields for the loading scat-
terer), in a 7 Tesla MRI-realistic environment. The simulations are performed using the EFIE
for the PEC surface of the coil along with the delta-gap method for lumped elements model-
ing. Both coil designs have similar properties: The nearest neighbors can be decoupled through
a set of tuning capacitors, while the next-nearest neighbors with a pair of counter-wound in-
ductors. Each feeding port is matched to 50Ω by a series and a parallel capacitor placed across
the port. The positions of the lumped elements are shown in 5.1 (right) for one representative
loop. The cylindrical coil is loaded with a tissue-mimicking four-compartment phantom, with
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relative permittivity {44.5,55.6,74.5,64.5} and electric conductivity {0.7,0.65,1.07,0.76} for
each compartment also shown in 5.1 (left, top), while the stadium coil is loaded with the head
model “Duke” from the Virtual Family population [17] (left, bottom). In tables 5.1 and 5.2 we
present some information for the proposed RF coils.

Table 5.1: Information on the cylindrical 8-channel RF coil

Diameter 15.2 cm

Height 14.6 cm

Width of the conductor 1 cm

32 tuning capacitors 1− 19 pF

8 matching parallel capacitors 5.6,4.7 pF (top and bottom ports respectively)

8 pairs of counter wounded inductors 22 nH each, −0.9 mutual inductance coefficient

Cable trap at each port Excitation only at 297.2 MHz

Discretization 728 Triangles

Table 5.2: Information on the stadium 8-channel RF coil

Radius of semicircles 10.2 cm

Length of the edge of the rectangle 3.8 cm

Height 22 cm

Width of the conductor 1 cm

32 tuning capacitors 1− 5 pF

8 variable matching in series capacitors 1-50 pF

8 variable matching parallel capacitors 1-2 pF

8 pairs of counter wounded inductors 22 nH each, −0.9 mutual inductance coefficient

Cable trap at each port Excitation only at 297.2 MHz

Discretization 1852 Triangles

In the lumped element analysis shown in Chapter 3, the delta-gap method updates the el-
ements of the MoM matrix only when a lumped element exists across the respective edges of
the triangular mesh. Therefore we need to generalize the theory in order to include the mutual
inductance phenomenon as well. Explicitly, we model each inductor as a voltage jump across its
edge, due to its impedance, and as a voltage jump across the edge of the mutually coupled induc-
tor, due to their shared mutual inductance impedance. From classic electric circuit theory [387]

109



Chapter 5

we know the following v1v2
 =  iωL1 kiω

√
L1L2

kiω
√
L1L2 iωL2

i1i2
 , (5.6)

where vn, in,Ln, n = 1,2 are the voltage, current and inductance of the n-th inductor, and k is
the mutual inductance coefficient. If we consider that L1 exists on a set of edges i = 1, . . . ,n and
L2 on j = 1, . . . ,m, then the aforementioned equations can be translated easily to the delta-gap
method as follows

Qi,i′ =Qi,i′ + iωL1lili′

Qj,j ′ =Qj,j ′ + iωL2lj lj ′

Qi,j ′ =Qi,j ′ + kiω
√
L1L2lilj ′

Qj,i′ =Qj,i′ + kiω
√
L1L2lj li′ ,

(5.7)

where i′, j ′ are edges of the set of i and j respectively.

5.2.1 Tuning, Matching and Decoupling Optimization

In order to make sure that the coil resonates at the frequency of choice (297.2MHz), we need
to make adjustments to the values of the tuning capacitors, thus perform the so-called tuning.
Furthermore, in order to make sure that the power does not reflect on the feeding port, we need
to adjust the values of the matching capacitors appropriately or perform the so-called matching.
Finally, to ensure that the power is transferred from the coil’s feeding ports to the load and not
to the other feeding ports, we need to perform the so-called decoupling.

Decoupling is by no means a trivial choice, especially in multiport network-coils, since shift-
ing the value of one capacitor might decrease the coupling between two ports, but increase the
coupling between two other ports. Thus, specific adjustments to the lumped elements are re-
quired in an optimization sense. Instead, other approaches are used in the literature like geo-
metrical decoupling techniques [388], which are useful for first-order neighbor decoupling, or
the usage of external circuitry [389], which is validated for up to four coil channels, and might
require complicated matching circuitry for excellent performance in eight channels. In the coils
presented herein, a set of tuning capacitors distributed in the legs of each loop is used to de-
couple first order neighbors, while a set of counter wounded inductors is used to decoupled
second-order neighbors. For third and fourth (opposite) neighbors, the decoupling is performed
through the conductivity of the load.

From those mentioned above, the shrewd reader would have noticed that for the presented
coil designs, only adjustments to the lumped elements are required in order to perform all three,
tuning, matching and decoupling, procedures for the 7 Tesla scanner’s frequency. In terms of
the impedance (Z) parameter matrix, tuning minimizes the imaginary part of all elements (res-
onance), matching sets the real part of the diagonal elements to be equal to the impedance of
the feeding cable in each port (usually z0 = 50Ω), and decoupling minimizes the real part of the
off-diagonal elements. All the above lead to a scattering (S) parameter matrix with minimum
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absolute values. In real experiments, the capacitors are adjusted using a screwdriver until the
maximum possible power is transferred to the body inside the scanner. In the case of simula-
tions, these adjustments can be expressed as an optimization procedure, i.e., a simple approach
is to minimize over the Frobenius norm of the S parameter matrix, for the values of the tunable
lumped elements c.

argmin
c

1
2
∥S(c)∥2fro . (5.8)

Let us consider the cylindrical RF coil loaded with the aforementioned four-compartment
phantom. A straightforward minimization of the S parameters will require updates in the MoM
matrix of SIE, thus, thousands of solutions of the EFIE and, as a result, the coupling solver be-
tween the body and the coil [23]. To avoid this costly computation we can consider all the tuning
elements of the RF coil as feeding ports and then solve the EFIE 40 (8 original ports and 32 tun-
ing capacitors) times by applying 1 Voltage excitation at 297.2 MHz at one port, while the rest
are short-circuited. This method leads to a 40×40 S parameter matrix, which can be reduced to
an 8×8matrix by attaching lumped elements to the appropriate ports since the coupling between
them and the body is insignificant. This reduction can be made very fast inside an optimization
procedure multiple times until the resulting S parameter matrix has small enough values. Af-
terward, the lumped elements, with their resulting values from the optimization routine, can be
reattached to the coil. To find the surface equivalent currents on the coil, we need to solve the
coupled solver 8 times, where we excite one feeding port with 1 Voltage, while the rest are closed
with their matching circuitry (in this case just one capacitor or two capacitors) in parallel to the
resistance of the feeding cable, which is usually 50Ω. Finally, the scattered electric and magnetic
field from the coil to the interior free-space can be computed by projecting the currents with the
volume integrodifferential operators N (electric current to the electric field) and K (electric
current to the magnetic field), as

einc,i = N
(
jeq,i

)
, hinc,i = K

(
jeq,i

)
, (5.9)

where i = 1, . . . ,8 is the excited port and jeq,i is the surface equivalent current generated by the
excited port i.

We perform the optimization for the tissue-mimicking four-compartment phantom in order
to decouple the nearest and next-nearest neighbors. In the optimization algorithm, first, we
reattach the tuning capacitors in the admittance (Y ) parameter matrix. The multiport network
Yn is reduced to Ym by combining the following equations.Y ppn Y

pl
n

Y
lp
n Y lln


IpI l

 = V p

V l


YLI

l = −V l .

(5.10)

Here, Y ppn is the block of Yn corresponding to the actual feeding ports of the coil, and Y lln is the
block corresponding to the ports where the tuning capacitors will be reattached. Withal, YL is
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a diagonal matrix with the admittance values of the tuning capacitors that are reattached to the
ports l. By solving the system of equations, we end up to the following(

Y
pp
n −Y

pl
n

(
Y lln +YL

)−1
Y
lp
n

)
Ip = V p. (5.11)

The reduced Ym parameter matrix is equal to Y ppn − Y
pl
n (Y lln + YL)−1Y

lp
n . To attach the parallel

matching capacitors to Ym, we have to add a diagonal matrix with their admittances. In case
we want to include series elements between the feeding port and the feeding cable, we have to
invert the new Ym matrix and add a diagonal matrix with the impedances of these elements (for
the stadium RF coil case). At this point, the resulting Ym matrix can be transformed to an Sm
matrix. The cost function of the optimization problem is nothing else than the Frobenius norm
of the Hadamard product between a matrix of weights,W , and the Sm matrix.

f (c) = ∥W ⊙ Sm(c)∥fro . (5.12)

We choose to include this weight matrix in case we want to prioritize the reduction of the values
of specific elements, i.e., tuning and matching focus on the diagonal while decoupling focuses
on specific off-diagonal elements. For faster and more reliable computations in the optimization
process, we include the gradient of the cost function in our optimization routine (the calculations
of the derivatives are shown in Appendix E). The above procedure can be followed for an RF coil
that requires tuning, matching, and decoupling with any lumped elements even with complex
impedances. In this case, the cost function is real-valued with complex arguments; thus, its
gradient can be computed with the CR−Calculus (Appendix B).

In 5.2, the S parameters are shown after the optimization process for the cylindrical coil
loaded with the 4-compartment phantom. The indexing follows a right-hand orientation with
indices 1,3,5,7 for the top ports and 2,4,6,8 for the bottom ports (1,2 are first-order neighbors,
1,3 next nearest, and 1,5 across ones). From the matrix, we can conclude that no power returns
to the feeding ports, while the first and second-order neighbors are almost perfectly decoupled
(values less than−15 dB). Ports across of each other have stronger coupling since there is nothing
but free-space between them (the length of the phantom is smaller than the length of the coil). In
5.3 we show the S parameters for the stadium coil while loaded with the head model “Duke”. The
optimization leads to even better results in this case since the selected geometry of the coil likens
the structure of the head; thus, it does not allow much free-space in the interior region, which
could result in a stronger coupling between the channels and lower SNR in MRI experiments.

5.2.2 Numerical Results

5.2.2.1 Projected Electromagnetic Fields

The VIE-based version of GMT requires as an input the b+1 measurements and a set of inci-
dent fields that generate these b+1 maps, for the EP distribution of the scatterer in the study. In the
case of the four-compartment phantom and the cylindrical coil, the set of these incident fields are
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Figure 5.2: The S parameters of the cylindrical coil, while loaded with the 4-compartment phan-
tom, after optimizing for the values of the variable capacitors.

shown in 5.4. The fields are used as one input in GMT. Intuitively we expect that orthogonal MR
measurements are in favor of GMT’s cost function since it operates on all eight measurements (7
Tesla MR scanners can support up to eight channels). As a result, since the coil is decoupled, the
incident fields look different from each other. Thus, a well-conditioned set of |b+1 | is expected to
be generated with these incident fields.

Using the current-based VIE formulation expanded with PWL basis functions, we generate
the eight b+1 maps on the region of the phantom. The maps are not orthogonal but do form a
well-conditioned set (with condition number ∼ 7.7). Additionally, we corrupted the maps with
a Gaussian noise appearing in MR-systems (peak SNR = 100, corresponding to mean SNR from
23 to 28 for all 8 maps) and then used as synthetic MR measurements in the GMT algorithm.
In 5.5 we portray the absolute value of the eight synthetic MR measurements for the central axial
section of the tissue-mimicking phantom.

Using the same logic as for the four-compartment phantom, we generate a set of incident
fields for the head model and the stadium coil and portray them for an axial cut in 5.6. The re-
sulting b+1 maps in the interior of the head form a well-conditioned matrix (∼ 4.75). We corrupt
again the maps with Gaussian noise of peak SNR = 200, corresponding to mean SNR from 82

to 88 for all 8 maps. The absolute values of the b+1 are shown in 5.7. To be precise, in an MRI
environment, it is the measured signal that is corrupted with Gaussian noise, which propagates
to the b+1 , which is obtained later through a technique based on MRI fingerprinting [390]. The
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Figure 5.3: The S parameters of the stadium coil, while loaded with the “Duke” head model, after
optimizing for the values of the variable capacitors.

Figure 5.4: (from left to right and top to bottom) The scattered electric and magnetic fields from
each channel of the cylindrical coil, used as incident fields for GMT.

noise propagation comes across as a little backward in the noise modeling and requires additional
investigation in future work.
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Figure 5.5: (from left to right and top to bottom) Synthetic noisy MR measurements (|b+1 | ) for
each of the eight transmit coils, inside the central axial section of the tissue mimicking phantom.
Peak SNR was set to 100.

Figure 5.6: (from left to right and top to bottom) The scattered electric and magnetic fields from
each channel of the stadium coil, used as incident fields for GMT.

5.2.2.2 Voltage Calibration Patterns

The incident electric and magnetic field intensities in the space occupied by the phantom can
be calculated by projecting the surface currents through the N and K operators as in 5.9. From
the incident fields, we can compute the total magnetic field intensity distribution for each coil
channel (eight separate VIE simulations) inside the head model and generate the corresponding
synthetic b+1 maps that can be used directly in GMT. We dub this approach as “one port at a time”
calibration.
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Figure 5.7: (from left to right and top to bottom) Synthetic noisy MR measurements (|b+1 | ) for
each of the eight transmit coils, inside an axial section of the head model. Peak SNR was set to
200. The field is masked outside the head for enhanced visualization.

In [3], it was shown that GMT results depend strongly on the orthogonality of the b+1 maps,
and optimal reconstruction was achieved using an ultimate EM basis for excitation. Therefore,
we tried to investigate on the problem’s conditioning by performing different excitation (or more
correctly voltage calibration) patterns. First, an “SVD shimming” was performed to calibrate the
driving voltages (both absolute value and phase) at each coil to construct orthonormal b+1 maps.
The SVD was applied on the reshaped matrix of the b+1 maps BNv×8 = USV ∗, where Nv is the
number of voxels. The resulting left singular vectors U were used as an orthonormalized set of
b+1 svd maps. The voltage calibration for this approach lies in a matrix of weights Q, which can
be easily obtained as Q = V S−1. Since the condition number for this approach will always be
1, the GMT reconstruction is expected to improve from the “one port at a time” case and re-
sult in similar reconstruction as in the ultimate basis approach. However, in actual experiments,
where the impasse to replicate the coil in simulation and reality in an exact manner appears, this
approach could lead to unwanted biases between the experimental b+1 maps and those syntheti-
cally generated by solving the forward problem, which would negatively affect GMT. If B is not
well-conditioned, to begin with (e.g., poorly tuned, matched, and decoupled), the entries of Q
matrix could significantly differ from each other, which might result into additional problems.
Moreover, the SVD is applied to the complex b+1 maps, which are not fully available in reality.
Finally, to experimentally obtain the b+1 svd maps, one has to perform two MRI scans on the same
patient (first to find the b+1 , and compute Q, and the second to obtain the b+1 svd), which should
be avoided, given that the patient has to remain still inside the scanner for the whole procedure.

Finally, in LMT [372], the authors attempted to minimize the nulls in b+1 maps. This approach
dubbed “all but one” will lead to strong b+1 in all regions of the scatter, but since it is generated
by constructively adding all the b+1 in the middle voxel in an attempt to cancel out the phase
differences there, it might not be optimal for GMT. In 5.8, we show the relative phases for the
“one port at a time” case between the first channel and the rest seven, and we can easily observe
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the differences between each measurement, which will be lost with the new approach.
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Figure 5.8: Relative phase between the b+1 produced from the first channel and the rest in the
interior structure of the head model with the stadium coil (port 1 to 8, from left to right and top
to bottom).

The eight new b+1 maps are created by subtracting, one at a time, the individual coils’ b+1 from
the combined map. We then used the combined map and the first seven “all but one” maps as
the eight b+1 maps for the simulated GMT experiment. In an actual GMT experiment, this RF
shimming approach could be achieved by calculating the RF shims to constructively combine
all b+1 at the center and turning off (i.e., zero voltage) one channel at a time to create the distinct
excitations.

5.2.2.3 Tuning-Matching-Decoupling Sensitivity

The GMT results presented in this dissertation are purely in simulation, however in future
work, if one wants to perform an in-vivo experiment, one of the impasses that will appear is the
sensitivity of the coil in respect to its tuning, matching, and decoupling. In figure 5.9 we show that
the optimization lead to pretty small values for the Sm matrix for capacitor values between 1 and
5 pF (a typical range for7T coils). Specifically, the small entries in the diagonal elements (−36.61
to−17.36 dB), indicate good tuning and matching at 297.2MHz, whereas the small off-diagonal
elements (−25.86 to −13.31 dB) confirm that the channels were well-decoupled. Regrettably,
since the broadband geometric decoupling [388] is not able to give good EP reconstructions
(see next section), it was not used, and the sensitivity of the Sm parameters has to be assessed
concerning the load. To perform this, we calculated a new Sm matrix after loading the stadium
coil with the “Ella” head model, from the Virtual family population [17]), which had a different
shape and interior structure than “Duke” which was used to tune, match and decouple the coil
initially. In particular, “Ella” consists of 20 different tissues, and it is in a domain of dimensions
equal to 17.5 × 21 × 24 cm3, whereas “Duke” has 21 tissues with unique EP and it is larger
(enclosed in a domain of 19 × 23.5 × 23 cm3). The new setup and the corresponding Sm are
shown in 5.9. The results are auspicious since the tuning and matching remain stable. Practically,
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this translates to the following: the surface coil currents alternation due to the presence of the
head is similar no matter the different head model that loads the coil. The off-diagonal element
entries (S12,S18 and S23) are slightly higher and approximately equal to −10 dB. These higher
values are a normal phenomenon, since first-order neighbor decoupling is done through tuning
capacitors and, therefore, is heavily affected by the loading condition.

5.2.2.4 Electrical Properties Reconstruction

In the case of the cylindrical, triangular coil, and the four-compartment phantom, starting
from a homogeneous guess (mean of the phantom’s EPs), GMT optimization procedure itera-
tively simulated b+1 maps. The incident fields generated from each coil channel (“one port at a
time approach”) were used to generate these maps. Finally, GMT updated the guess of the EP
until the difference between the simulated b+1 maps and the synthetic MR measurements reached
a minimum. To measure the error between the ground truth and the reconstructed EP, we used
the peak normalized absolute mean error (PNAME). The PNAME, between a ground truth X
and a reconstruction X̂ for n samples, is given from the following equation

1
n

n∑
i=1
|Xi − X̂i |

max{X}
. (5.13)

The PNAME over the entire volume of the phantom (14112 voxels at 4 mm voxel isotropic
resolution) was ∼ 0.45% and ∼ 0.6% for the reconstructed relative permittivity and the re-
constructed conductivity, respectively. We note that the mean error we found is similar to that
previously reported for the same numerical phantom, using a peak SNR of 50 and the ultimate
EM basis elements as incident fields [3]. In 5.10 we show the reconstructed EP for the central
axial plane of the scatterer.

The reconstruction of the head model is a much more challenging problem, due to its com-
plicated structure and to the finer details of the brain tissue. Starting from the mean value of the
EP of all head voxels, we performed three GMT reconstructions for 500 iterations each, with
all three proposed voltage calibration patterns. In figure 5.11 the ground truth and the three
reconstructions are shown for an axial, a sagittal, and a coronal cut of the head model. For all
cases, we notice that the interior structure of the head is preserved. However, some expected
blurring occurs between specific regions of similar EP, e.g., at grey and white matter boundaries.
The blurring is an effect of the TV regularization component of the match regularizer used in the
cost function of GMT [3]. Regrettably, these settings are not optimal for the head reconstruc-
tion, and a perfect calibration of the regularization parameters is by far a non-trivial task. Each
inverse problem requires many hours (or days) to converge, and as a result, a cross-validation
technique is quite costly for all three parameters, while machine-learning approaches such as the
recently proposed variational networks [385] need months of training. Moreover, in the “all but
one” approach, zeroings appear in the middle head region, an expected outcome due to the lack
of relative phase differences there. The condition number for this case was ∼ 40, which explains
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Figure 5.9: (top) The stadium triangular coil loaded with the realistic human head model “Ella”.
(bottom) The new Sm parameters of the RF coil while loaded with “Ella” head model. The coil
was tuned, matched and decoupled with “Duke” head model as a load.

the higher PNAME. All PNAME for the head voxels, both for the relative permittivity and the
conductivity, are summarized in 5.3.
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Figure 5.10: Reconstructed EP using GMT with a homogeneous initial guess for the middle axial
section of the phantom. Both EP were estimated with negligible error.

Table 5.3: PNAME for the EP reconstructions

Excitation Pattern EP “Duke” “Ella” Four-Comp. Ph. “Billie” (overlap coil)

SVD calibration
ϵr 5.7% NA NA NA

σe 3.6% NA NA NA

One port at a time
ϵr 7.5% 9.5% 0.45% 15.2%

σe 4.8% 7.2% 0.6% 11.3%

All but one
ϵr 11.4% NA NA NA

σe 7.0% NA NA NA

To test the sensitivity of GMT in respect to the Sm parameters, we perform the reconstruction
for “Ella” with the “one port at a time” approach, without retuning the coil. The reconstruction
is shown in 5.12 and the PNAME is tabulated in 5.3. As expected, the error is higher, and the
reconstruction is not qualitatively as good as it was for the “Duke” head model.

To show the superior performance of the stadium design coil, we excited a cropped head
model of “Billie” using the “one port at a time” approach with an overlapping coil design. The
coil is shown in 5.13. It consists of eight individual coils with four next-nearest neighbors exist-
ing on a cylinder of radius 10.8 cm while the rest four are in a cylinder of radius 11 cm. The
overlapping distance was found to give the best possible decoupling for all first-order neigh-
bors at 2 cm (∼ −10 dBs). Finally, the length of the coil was 13 cm, and the capacitor values
2 were optimized, with lower and upper bounds 1 and 19 pF respectively, using the aforemen-
tioned tuning-matching-decoupling optimizer. The reconstruction with this approach is shown
in 5.14, and it is clear that the performance is sub-optimal. Finally, the PNAME is much higher
than all the cases with the stadium coil, and it is included in table 5.3. Nevertheless, additional

26 spread symmetrically across each loop, one parallel and one in series in each feeding port, which is located at
the middle of the bottom side of each loop
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Figure 5.11: Reconstructed relative permittivity (top) and conductivity (bottom) for an axial, a
sagittal and a coronal slice of “Duke” head model, using three different excitation patterns. From
left to right, ground truth EP are compared with results for “SVD shimming”, “one port at a time”,
and “all but one” voltage calibration patterns.
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investigation is required for a robust conclusion on geometrically decoupled coils.
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Figure 5.12: Reconstructed relative permittivity (left sub-figure) and conductivity (right sub-
figure) are compared with ground truth EP, for an axial, a sagittal and a coronal plane of “Ella”,
using the “one port at a time” excitation pattern.

To show a quantitative voxel by voxel comparison, we choose the peak normalized absolute
error (PNAE) defined as

Xi − X̂i
max{X}

. (5.14)

The PNAE is preferred over other metrics (such as the relative error) because small differences
between low valued EPs will result in high errors, and the histograms will be biased. The PNAE
histograms are shown in 5.15 only for the “Duke” head model case and all three excitation pat-
terns since the other cases do not require additional results for further conclusions.

5.2.2.5 Estimated Electromagnetic Field Distribution

One strong motivation behind the EPs reconstruction problem is their usage for patient-
specific simulations: test various coils and the respective power deposition measurements, to
ensure optimal imaging and the safety of the patients. In this subsection, we will use the recon-
structed EP with the “one port at a time” approach to calculate EM field related measurements
generated with an excitation that is similar to the one used in traditional MRI scans (circularly
polarized mode of birdcage coils [391], first incident field of the “all but one approach”). The
resulting EM field measurements are compared to the ones obtained with the ground truth EP.

Since the power deposition 3 is one of the most interesting measurements in radiology, we
3And the specific absorption rate, which includes the proton density, as in 1.1
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5.2. RF Coil Design for Global Maxwell Tomography

Figure 5.13: The overlapping coil loaded with a cropped realistic human head model “Billie”. The
coil was tuned, matched and decoupled with the same cropped head model as a load.
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Figure 5.14: Reconstructed relative permittivity (left sub-figure) and conductivity (right sub-
figure) are compared with ground truth EP, for an axial, a sagittal and a coronal plane of “Billie”,
using the “one port at a time” excitation pattern and an overlapping RF coil desing.
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Figure 5.15: Histograms of the PNAE for all voxels in the “Duke” head model. The error dis-
tribution is shown for (top) relative permittivity and (bottom) conductivity. Zoomed view of
two regions of the histograms are also shown to highlight differences among the three excitation
patterns.

computed the local absorbed power at each voxel as pabs = 1/2σe|e|2, along with the b+1 distri-
bution (which is inferred from the MR signal). The results are summarized in 5.16.
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Figure 5.16: (top) Absorbed power and (bottom) |b+1 | for an axial, a sagittal and a coronal planes
of the “Duke” head model. Maps were calculated for a circularly polarized mode excitation using
the ground truth EP (left) and the EP reconstructed with the “one port at a time” excitation
pattern (middle). A map of the absolute difference is shown for each estimated measurement
(right).
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Even though the PNAME of the EP was 7.5% and 4.8% for the relative permittivity and the
conductivity respectively, the PNAE histograms in 5.17 shows that the error for the absorbed
power was mostly within −5% and 5%, whereas for the |b+1 | the error was strictly between −1%
and 1%. In 5.4, additional comparisons are shown, including one for the scalar absorbed power
and one for the scalar scattered power, calculated with the formulas in [356], along with the
PNAME for the absorbed power and the |b+1 |. The table includes the number of iterations that
GMRES requires to converge to 10−5 tolerance. Since the reconstructed properties have arti-
facts, the contrast increases significantly, making the problem more ill-posed, thus the number
of iterations increases.
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Figure 5.17: Histogram of the peak normalized absolute error for the (left) absorbed power and
the (right) |b+1 | calculated using the EP reconstructed with the “one port at a time” approach for
the “Duke” head model and the stadium triangular coil.

Table 5.4: Comparison of estimated EM field quantities

Measurement Ground Truth EP Reconstructed EP

PNAME pabs NA 0.46%

PNAME |b+1 | NA 0.38%

Absorbed Power (Watt) 52.81 52.54

Scattered Power (Watt) 6.56 6.48

Iteration Count 183 266

5.2.2.6 Brain Tumor Detection

A wide variety of research in the past decades showed that the conductivity of tissue is sensi-
tive to the presence of cancer. Specifically, the conductivity of cancerous tissue differs from the
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ones of neighboring healthy tissues [78, 79] and can be three times higher compared to white
matter in the case of brain tumors [392]. Due to this fact, we aim to use GMT as a diagnostic
tool for brain tumor detection. To evaluate its diagnostic performance, in a clinical scenario,
we inserted a numerical tumor into the “Duke” head model. Based on [393], we used relative
permittivity and conductivity of 68 and 1.1, respectively. Of course, these values are not entirely
realistic but pose an excellent initial approach towards a more robust diagnostic GMT-based
tool. To achieve the most accurate reconstruction possible, we retuned the coil and performed
the GMT reconstruction for 500 iterations, using Gaussian noise in the b+1 of peak SNR of 200
as in the previous cases, in tandem with the “SVD shimming” voltage calibration pattern. The
initial guess was the ground truth EPs (without the tumor) of the head model to resemble the
detection of an abnormality (the tumor) in a healthy brain. The reconstructed EPs are compared
with the actual EPs distributions in 5.18, showing that the tumor was correctly detected.
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Figure 5.18: Relative permittivity (left) and conductivity (right) maps of “Duke” head model with
a numerically inserted tumor. Ground Truth EP (top) and GMT reconstructions (bottom) are
compared for the central axial plane of the tumor.

The presence of noise results in blurring between the tumor and its neighboring brain tissue,
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therefore it is essential to depict the position of the reconstructed tumor and compare it to the
real one. In 5.19 (top), we show a segmentation of the reconstructed and real tumors in their re-
spective 3D position inside the head periphery (we classified values between 0.8 and 1.2 for the
conductivity as tumor voxels, for the reconstructed EP). Since the number of voxels is small, we
show the values of the reconstructed conductivity of the segmented tumor voxels, instead of an
error metric, in the histogram of figure 5.19. The tumor was accurately detected, although out-
liers in the histogram suggest that its boundaries were blurred by the GMT reconstruction, due
to sub-optimal noise regularization. Precisely, we inserted the tumor in the place of a cerebral
spinal fluid, which has high conductivity, thus the high values∼ 1.4 appearing in the reconstruc-
tion. The smaller values appear in the boundary of the tumor with the white and grey matters of
the brain, where GMT mixed the respective EP values and resulted in a mean one between the
two. The results will improve with better regularization or additional iterations.

5.3 Electrical Properties Reconstruction Using Deep Convolutional Neural Networks

In those mentioned above, it was shown that GMT is a powerful tool for the non-invasive
cross-sectional mapping of the electrical property distributions of biological tissue. Its high ac-
curacy, the lack of assumptions, and the novel problem-dedicated coil designs can be used in
tandem with experimental measurements to perform in-vivo experiments soon. However, the
time footprint of the method is quite large, and the reconstruction of a 5 mm voxel isotropic
resolution head model needs days to converge. For finer resolution (clinical resolution: up to 2

mm), the Tucker decomposition can be employed (Chapter 4) in order to exploit the high par-
allel architecture of modern GPUs, but still, the problem will be slow. A significant speed-up
can be achieved if optimal regularization parameters are used, which is still an open problem for
GMT and requires additional research. Alternatively, since GMT uses a quasi-Newton method
for the Hessian estimation, a better initial guess will be able to reduce the iteration cost for GMT
highly.

One can infer a T2 weighted image from the MR scan and project it to an EP map using the
Virtual Family population measurements [17]. One advantage of this approach is the sensitivity
to tumors [394], similarly to the electric conductivity. However, there is not a robust one-to-
one relationship between the relaxation time parameters and the EP of biological tissue; thus,
an initial guess obtained in such a way will lead to inaccuracies that GMT will have to handle in
the reconstruction process. In [3], it was shown that the reconstruction of a four-compartment
phantom is faster if the initial guess is vacuum instead of the traditionally used mean value,
therefore the strategy mentioned above is not the best option. Besides, we proved that the tra-
ditional circular polarized mode used to retrieve the MR images is not the best option for the
EP reconstruction problem; thus, multiple scans will be required to perform a good T2 extrac-
tion. Alternatively, deep learning [121, 395] approaches have shown extremely great promise in
various scientific fields, and one could exploit them in the EP reconstruction as well and train
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Figure 5.19: The numerically inserted tumor is compared with the tumor segmented from the
reconstructed conductivity map (top). The histogram of the reconstructed conductivity for the
tumor voxels (bottom), showing that values were clustered around the actual value of 1.1 S/m.

a tensor-to-tensor translation network between measurable MR measurements and EPs. If the
network is robust and manages to learn the inverse form of Maxwell’s equations for a specific
coil excitation, it could be used in tandem with GMT (or replace it) as a generator of an EP map
and significantly accelerate the inverse problem.

Deep learning’s performance has already been investigated for the EP reconstruction [77].
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The authors in [77] trained an image-to-image translation network between one slice of the ab-
solute value of the b+1 and the same slice of one electrical property (training of two networks, one
for the relative permittivity and one for electric conductivity). This approach seems the right
choice as a first attempt, but unfortunately, the 3D nature of Maxwell’s equations is lost

Another limitation in the EP reconstruction is the lack of rich datasets. Data for the EP of
brain tissue does not exist in abundance in the literature, and it seems that the only realistic source
is the Virtual Family population [17]. Of course, a variety of transformations can be applied to
the existing head models, but in any case, it is hard to create a suitable dataset that can be used for
the excellent training of the network. This impasse highlights the importance of the traditional
optimization approaches such as GMT and their need for excellent accuracy. Thus, to surpass it,
the right way is to perform multiple in-vivo experiments and use them as training examples in
the network.

In this section of the thesis, we aimed to understand if a neural network could be used to
learn the inverse form of Maxwell’s equations in simple scatterers and investigate some parameter
values of the network. The proposed network is feasible because of the highly fast and accurate
simulations of higher-order VIE. Specifically, the FFT-JVIE can be exploited as a high-speed
data generator using the incident fields produced by one of the coil designs mentioned above.
PWL basis functions are used to ensure high accuracy in the resulting b+1 measurements for each
data-point.

5.3.1 Data Generation

The most crucial point in machine learning methods is the acquisition of so-called “good”
data. To investigate if a tensor-to-tensor translation network is feasible for our problem, we will
use the cylindrical, triangular coil as an excitation model and generate 10900 b+1 for tissue-
mimicking phantoms. All scatterers were enclosed in a cuboid domain (see 5.20 of dimensions
8.8× 8.8× 12.8 cm3 with voxel isotropic resolution of 4 mm. The frequency corresponds to 7

Tesla MR scans, for reasons explained in the previous sections.

The shape and structure of each individual tissue-mimicking phantom varied randomly be-
tween a cylinder, a cuboid, or an ellipsoid with random dimensions and different homogeneous
tissue-mimicking properties. Inside each scatterer, we inserted randomly 3 to 12 spherical fea-
tures with arbitrary radiuses and random tissue-mimicking properties (for each feature) to in-
troduce inhomogeneity. Four characteristic data points are shown in 5.21.

For the data generation, we tuned, matched, and decoupled the coil with the optimization
procedure described in Chapter 5, while it was loaded with a homogeneous cylinder. Afterward,
the incident field patterns were generated only once and used as a right-hand side in the FFT-
JVIE solver (we neglected the surface equivalent coil current alternations due to different loads
for faster data generation). The scatterer was excited with the “one port at a time” approach,
to introduce highly inhomogenous b+1 maps. The FFT-JVIE simulation for each data-point, re-
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Figure 5.20: Domain of interest that encloses all possible scatterers of choice (homogeneous
cylinders, ellipsoids, and cuboids with random dimensions, where 3 to 12 spherical features
with different EP were placed in their interior). The scatterers load the 8 channel radiofrequency
cylindrical, triangular coil. The working frequency was 297.2 MHz, corresponding to 7 Tesla
MRI.

quired at most 30 seconds, for GMRES tolerance of 10−4, to converge. For the previously shown
data-points, we illustrate the measurable MR quantities, along with their EP, in figure 5.22. On
top, we portray the absolute value of the b+1 from each channel of the cylindrical coil. In the mid-
dle, we show the relative phase of the b+1 between the first channel and the rest seven, while in
the bottom of the four subfigures, we portray the EP distributions. All values are masked outside
the scatterer for enhanced visualization. All results are shown for a representative axial cut.

5.3.2 Convolutional Neural Network

The choice of an optimal neural network is by no means trivial for the EP reconstruction
problem. On the one hand, one can train a fully connected network (FCN) [396] to make sure
that the global nature of the problem is preserved. On the other hand, convolutional neural net-
works (CNN) [397, 398], with a specific chosen kernel size, could lead to high accuracy without
the need of large datasets required for a FCN’s training. However, by looking at 5.22, we cannot
observe a one-to-one interaction between the EP and the magnetic field measurements, and the
individual features cannot be inferred from the magnetic field, as in an image-to-image trans-
lation problem [399]. Thus, the usage of convolution kernels might not work for this problem.
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Figure 5.21: Four randomly generated data-point geometries from a 10900 long dataset. Dif-
ferent colors indicate different spherical features. Each individual feature has different tissue-
mimicking EPs.

Finally, to determine an exact convolutional kernel size, we have to compute the effect of local
b+1 perturbations to the EP. However, a closed-form solution does not exist, and only inverse
scattering approaches such as GMT can be exploited to provide EP estimations, but the accuracy
of these methods is not enough to estimate small local perturbations of the EP (that can be used
to calculate the gradient of the EP in respect to b+1 ).
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Figure 5.22: Measurable MR quantities and EPs of four characteristic tissue-mimicking phan-
toms. (top) |b+1 | and (middle) relative phase between the first and the remaining seven channels
(the orientation of the channels is left to right and top to bottom). (bottom, left) Relative per-
mittivity and (bottom, right) electric conductivity.

5.3.2.1 UNET Architecture

The deep learning field is mature enough, and many architectures have been proposed over
the past decade, that can tackle very challenging problems. For example, the UNET was proposed
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initially for biomedical imaging segmentation [76] but had thousand other applications in the
last five years, especially because it needs a small number of data concerning the number of its
training parameters. UNET is not a typical CNN for classification, instead it aims to translate
an input of specific dimensions x × x × . . . to an output of dimensions y × y × . . . . The main
idea is to follow the input layer of the network with convolutional and max-pooling layers, while
at some point shift the max-pooling layers to transpose convolutions (or up-convolutions, or
upsampling operators in the literature) to increase the resolution of the output. This architecture
is the so-called autoencoder [75]. The UNET differs from autoencoders by concatenating the
output of the max-pooling layers to the inputs of the transpose convolution layers. The layers’
concatenation enables the network to learn more precise details.

For our problem at hand, we aim to compress the input tensor up to a small dimensional
tensor through the max-pooling layers so the network will be able to learn as much as possible
information for the relationship between the MR measurements and the EP. The inputs of the
network are 3D tensors with 15 channels, where the first 8 are the absolute values of the b+1 , and
the rest 7 are the relative phases. The output is 2 channel 3D tensor containing the relative per-
mittivity and the electric conductivity. The fact that our problem is 3D, instead of a classic 2D
one, does not create any problem since the UNET is easily generalizable to 3D cases [400]. The
network is detailed in 5.23, where the size of each layer’s channel is shown above the schematics.
The choice of a 3×3×3 convolutional kernel size is used to account for the strong local interac-
tions between the b+1 and the EP. A hidden layer with the same kernel was inserted after the first
layer to enlarge this region to 6×6×6 voxels. The network consists of an analysis and a synthesis
step. In the analysis, after down-sampling with max-pooling, we double the size of the channels,
while in the synthesis, we halve them after each transpose convolution.

The network was build in PyTorch [401]. All convolutions had paddings of 1 to be consistent
with the dimensionality of the problem, except the last one who had zero paddings. The padding
mode was a reflection and was preferred over the zero one. The max-pooling operators had a
kernel size of 2×2×2 and a stride of 2 to reduce the dimensionality. The transpose convolution
had a kernel size of 2×2×2 and stride of 2 exactly as the max pooling operations. A dilation of
2×2×1, 1×1×1 and2×2×1was need for consistency in the dimensions, for the fourth, third and
second level of synthesis respectively. The rectified linear unit (ReLU) functions on the analysis
were leaky with a slope of 0.2 while in the synthesis were not leaky. Batch normalization (BN)
followed the convolution operations in all layers, except the output layer. We cross-validated
on various regularization cases, and we observed that dropout with a rate of 0.1, 0.25 and 0.5

applied to the second, third and final level of both analysis and synthesis steps is the most optimal
choice to account for overfitting and fast training. For the training process, we used the mean
squared error (MSE) between reconstructed and true EP as the cost-function and applied the
Adam solver with learning rate 0.0002 and momentum parameters 0.5 and 0.999. The values
for most of the parameters above were picked from [399], where a UNET is used as a generator in
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Figure 5.23: 3D UNET. (top) The chosen architecture of the network. The number of channels is
shown above each layer. Each operation is followed by appropriate padding and dilation sizes to
keep the dimensions consistent. (bottom) The table denotes the operations through the hidden
layers of the network.

a conditional generative adversarial network (cGAN) [402] and performs excellently in multiple
image-to-image translation problems.
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5.3.3 Training and Testing

We trained the network on 10000 noise-free data, with a batch size of 4, and tested on the
remaining 900. The training loss (defined as the sum of the MSE of all training examples) is
shown in 5.24 (left) for 400 epochs. We terminated the training early to avoid overfitting issues.
In 5.24 (right), we show the histogram of the MSE for all testing examples and all voxels of the
domain. The error is between 0% and 10% for most cases, and in general, it is quite small for
the whole testing dataset (there are no arbitrarily large errors).
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Figure 5.24: (left) Sum of mean squared errors for all training examples. An error close to 2%

indicates good training, without overfitting. (right) Histogram of the MSE for both the relative
permittivity and the conductivity for all individual 900 testing examples. The error remains
small between 0% and 10%.

In 5.25 (top, left), we show the reconstructed EP, for the middle sagittal slice, for two repre-
sentative, noise-free, testing examples, that did not exist on the training set. The network per-
forms well both for the features position and the EP values. In 5.25 (top, right), we show the
performance of the network, after corrupting the b+1 of a testing example with Gaussian noise
of peak SNR of 200, 150 and 100 respectively. Accurately, the network performs well for high
SNR, but for peak values around 100, it treats the noise as different MR measurements, thus at-
tempts to reconstruct a different scatterer than the expected one. We note that the network was
developed as an initial reconstruction attempt, and we did not investigate deeply on denoising
regularizers. A possible solution to this problem is to train the network both for denoising and
reconstruction as in [403]. In 5.25 (bottom), we compare the three steps dropout regularizer with
a combination of an L2 regularizer of weight 0.0001 added on the cost-function and a dropout of
rate 0.5 applied only on the fourth step of the network. The effect of the L2 regularizer smooths
the reconstruction as expected, and as a result, some spherical features are not detected. This
conclusion is similar for a higher number of training epochs.
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Figure 5.25: EP reconstruction using the proposed convolutional 3D UNET. (top,left) Recon-
struction on two testing examples. (top, right) Reconstruction in the presence of additive Gaus-
sian noise to the b+1 with peak SNR (second line) 200, (third) 150, and (fourth) 100. (bottom)
Reconstruction using different regularizers: (first line) Ground Truth, (second) CNN trained for
400 epochs, using dropout on the second third and fourth step of analysis and synthesis with
rate 0.1, 0.25 and 0.5 respectively, (third and fourth) CNN Trained for 400 and 1600 epochs
using dropout on the fourth step with rate 0.5 and L2 regularizer with weight 0.0001.

5.4 Summary

In conclusion, we showed that GMT can accurately estimate EP of tissue-mimicking phan-
tom and realistic human head models at7Tesla and detect a simulated brain tumor using problem-
dedicated 8-channel transmit arrays, that yield inhomogeneous and distinct b+1 distributions.
The proposed triangular arrays could be used for GMT directly, without RF shimming, by ex-
citing one port at a time with 1 Volt. RF power deposition and transmit field distribution in
tissues could be accurately predicted despite estimation errors in EP. Future work will focus on
building the designed array, matching its S parameter matrix with the simulation, and, finally,
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performing GMT experiments on human subjects.

Furthermore, the proposed UNET can model the relation between the EP and measurable
MR measurements for simple tissue-mimicking phantoms and a specific excitation. As a result,
this CNN could be used on its own or in tandem with GMT as a fast generator of a reasonable
initial guess to reduce the required number of iterations of the optimizer considerably. Finally,
one can train a similar network for the forward problem using the EP as the input and an elec-
tromagnetic field-related measurement as the output.
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Chapter 6
CONCLUSION

6.1 Conclusions and Contributions

The present work, discusses the EM scattering problems from biological tissue, in a simu-
lated MRI environment. The analysis was based on IE methods, both for the conductive
RF coils (SIE) and the inhomogeneous human tissue (VIE). Specifically, the current-

based VIE was used for the precise modeling of the interactions between EM waves and tissue,
using higher-order polynomial basis functions and the Galerkin projection technique. IE was
immediately preferred to other families of methods of computational electromagnetism (FDTD,
FEM) since it allows tailoring of fast algorithms for the single-frequency problem of MRI. The
application of such an algorithm is one of the main contributions of this thesis.

The necessary background for this effort was provided by the in-depth investigation of the
VIE method in the frequency domain, where the basic problems were identified and understood.
Specifically, we found that the DVIE is ill-posed for highly inhomogeneous scatterers, while the
JVIE, is more robust, but, is not as accurate for clinical MRI resolutions (2mm3) if expanded with
PWC basis functions in a Galerkin manner. Nevertheless, JVIE expanded with PWL basis func-
tions is the appropriate choice leading to superior numerical accuracy and stability over other
VIE methods and, consequently, to algebraic systems with better numerical behavior. The in-
crease in memory footprint due to the usage of PWL basis functions leads to slower simulations,
which, regardless, can be heavily accelerated with GPU programming. Toward this direction,
Tucker decomposition methods were employed to dramatically reduce the memory footprint of
the discretized Green’s function operators (namely N and K) from hundreds of GB to dozens
of MB. The resulting compressed operators can fit in GPU, and the simulation is an order of
magnitude faster in contrast to the one using the traditional method, which is compelled to run
in CPU. This acceleration is achievable through the proposed novel matrix-vector product tech-
niques, depending on the tensor decomposition and compression algorithm used, between the
tensor of the unknowns and the compressed Green’s function tensors. Concretely, if HOSVD or
cross-Tucker approximation are employed for a sufficient compression of the Green’s function
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tensors, the matrix-vector product can be operated fast with an additional small multiplicative
constant over the element-wise product complexity, and an additional buffer of memory. This
buffer can be discarded if the Tucker+CP decomposition is used, with a small trade-off in the
resulting accuracy of the problem. Nevertheless, the utilization of GPU is bounded from the
memory of the FFT form of the unknowns’ tensors. To tackle this impasse, the FFT can be
applied sparsely, thus allowing additional memory compression, if used in tandem with tensor
decompositions, which is crucial for clinical resolution simulations, i.e., 1 mm3. The increase
in the operations’ complexity is insignificant over the secured speed-up provided by the highly
parallelizable structure of GPU. The EM scattering simulation for a realistic human head model,
with voxel isotropic resolution of 2 mm, required ∼ 15’ with the novel methods in GPU, while
the traditional approach was limited to run in CPU for∼ 2h40’. For1mm resolutions, the sparse
FFT in tandem with HOSVD allows the convergence of the simulation in less than 2 hours, over
the ∼ 12 hours of the traditional method.

The presented methods of memory footprint reduction can be applied to other FFT-based
VIE formulations (electric flux and electric field-based), yielding similar compression factors for
the arising Green’s function tensors. Finally, the new, accurate and fast simulations can be used
to significantly speed-up the inverse EM scattering problem, since they are called thousands of
times, in order to retrieve an accurate EP cross-sectional mapping of biological tissue. Until
now, costly inverse problems are solved for coarse resolutions, but it is desirable to be able to
use clinical resolutions for in-vivo experiments, which requires additional h-refinements of the
computational grid. As a result, the proposed methods are veritable workhorses for this appli-
cation.

The second contribution of the thesis was the design of tailored RF coils for GMT. GMT
was introduced recently as an assumption-free EP quantitative reconstruction for brain tissue
using measurable MR quantities. First, it was shown that GMT could accurately estimate the EP
of a tissue-mimicking four-compartment phantom on a simulated experiment using a realistic
RF coil model, in the presence of Gaussian noise of peak SNR of 100, a reasonable assumption
at 7 Tesla MRI. The work presented herein showed that for an RF coil array to work well with
GMT, it needs to generate distinct b+1 maps, which reflect the inhomogeneity of the underlying
EP distribution while providing acceptable SNR throughout the volume of the object of interest.
Note that this requirement pulls in the opposite direction of traditional coil design, which aims
at maximizing b+1 homogeneity. If the eight channels of the coil are driven independently and
produce eight different excitation patterns, the desired inhomogeneity is achieved. The distinct-
ness of the b+1 maps is preserved if the coil is adequately matched, tuned, and decoupled, for
which we proposed an optimization algorithm to adjusting the variable capacitors spread across
it. This optimization ensures different fields in the interior of the scatterer of interest. The rou-
tine employs SIE for the modeling of the RF coil, while the variable lumped elements are treated
as short-circuits. The resulting network parameters are optimized using circuit theory by adjust-
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ing the variable lumped elements on the scattering parameter matrix until its Frobenius norm
reaches a minimum.

For brain EP reconstruction, to fulfill the above requirements, we introduced a new coil de-
sign by arranging eight triangularly shaped coils symmetrically around a quasi-elliptical cylin-
drical (stadium) surface and employing the same tuning-matching-decoupling optimization al-
gorithm. The inhomogeneity of the resulting fields can be quickly evaluated by looking at the
condition number of the eight-column matrix containing the fields at every voxel. From the
simulations performed, we showed that a condition number around 4 is achievable; thus, almost
ideal orthogonality can be ensured. As a result, the mean PNAE over a realistic head model was
7.5% and 4.8% after 500GMT iterations exciting with one coil element at a time, for the relative
permittivity and conductivity, respectively. The error is quite small, given that the b+1 maps were
corrupted with Gaussian noise of peak SNR equal to 200, and the inverse problem is ill-posed.

A properly tuned, matched, and well-decoupled coil allows logical voltage calibration pat-
terns that can result in even lower condition numbers. Specifically, an SVD-based shimming
could bring the condition number to 1, although the effect on the accuracy of GMT was shown
to be small, suggesting the near optimality performance of the designed coil. Furthermore, we
must note that it could be challenging to apply the “SVD shimming” in actual experiments, since
it would require a lengthy pre-scan to obtain the b+1 of each coil, while the SVD could result in
a wide range of values for the amplitude and phase RF shims at each port, which may be chal-
lenging to achieve in practice. Finally, the condition number metric is large if a traditional RF
shimming technique is used that leads to homogeneous b+1 maps. In this case, the EP reconstruc-
tion is less accurate.

Historically, the EP reconstruction is proposed mainly for two reasons: Patient-specific EM
field estimations in an UHF MRI environment and brain tumor detection. The reconstruction
shown in this thesis, with proper coil optimization, presents a slight degree of blurring in regions
with small differences in EP. However, this is not crucial, since the RF field interactions with tis-
sues are profoundly affected by small voxel-by-voxel changes in the EP. Our results show that de-
spite an error≤ 7.5% in the EP estimation, the associated |b+1 | and absorbed power distributions
can be calculated with average errors smaller than 0.5%, for a traditional MRI excitation. The
occurred blurring has a more substantial effect on the diagnosis of focal lesions. However, since
the EP properties of tumors have shown to be significantly different from the surrounding tissue,
GMT could still detect it accurately. Specifically, an arbitrarily shaped brain tumor inserted on
a healthy brain model was correctly detected despite sub-optimal regularization. Specifically,
for most voxels within the cancer region, the estimated conductivity was sufficiently close to the
actual value to discriminate against the lesion from the surrounding tissue correctly. The most
significant estimation errors were found at the edges of the tumor, but we expect this would im-
prove by optimizing the regularizer. Such improvement would be even more critical for the goal
of characterizing heterogeneous tumor lesions, rather than merely detecting them.
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GMT is an optimization problem, and it is costly for an arbitrary initial guess. However, since
the optimizer is quasi-Newton, the reconstruction can be massively accelerated by optimizing
the choice of the initial guess. For in-vivo applications, one approach could be to segment the
principal tissues on a suitable MRI acquisition and pre-assign EP values based on literature. An
alternative approach could be based on machine learning. Specifically, the final contribution of
this thesis is the investigation of the performance of CNN to infer the EP from measurable MR
quantities. The proposed UNET can model the relation between the EP and the b+1 for simple
tissue-mimicking phantoms and a specific excitation using one of the proposed coil designs. The
suggested UNET could be used in tandem with GMT as a fast generator of a reasonable initial
guess to reduce the required number of iterations of the optimizer considerably.

6.2 Future Research

One of the interests of the presented thesis was focused on the acceleration of the FFT-based
VIE simulations using tensor decompositions. Further acceleration can be attained with heavily
optimized CUDA code or using single precision, since most GPUs are optimized for it, instead of
double. An alternative approach for additional speed-up is the usage of NNs as a tensor-to-tensor
translation. The network can be trained in pairs of head model EPs and excitations as inputs
and electrical polarisation currents as outputs. The resulting currents will be used as an initial
guess for the iterative solver employed in the FFT-based VIE simulations. With this method, a
significant number of iterations will be discarded, without yielding any accuracy reduction in
the result, since the EM simulator will always be used for (at least) the final iteration.

Particular future research interests are presented for the MR-based EP reconstruction prob-
lem. First of all, GMT is mature enough to be used for in-vivo experiments, with the need for
modifications in the code. In this work, we used the real EP of the head models to calibrate
the current distribution on the coil conductors, which is used to compute the incident fields.
This step consists of a VSIE coupling, which was performed before the GMT optimization. This
calibration cannot be applied to in-vivo experiments since the EP distribution of the object is
unknown. Alternatively, an initial calibration could be performed with a phantom of known
EP and used for in-vivo GMT experiments. However, since our proposed coil is close fitting
to the head, such an approach could lead to erroneous results, because the current distribution
would be sensitive to the different head sizes and EP distributions of the subjects. The most
accurate approach would be to update not only the guess of EP (polarisation currents) but also
the currents on the coil conductors at every iteration of GMT. That would require performing
a VSIE coupling calculation for each GMT iteration, which with the existing EM solver, would
be computationally expensive since the coupling matrix between the coil and the body requires
a large amount of memory. A novel approach that could avoid this costly step is to project the
triangular mesh of the coil onto voxels with the pFFT method, in order to employ the FFT and
the proposed tensor decomposition-based techniques to accelerate the matrix-vector products.
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This method would remove the computational burden of performing the VSIE coupling step, as
shown in [404].

We can further enhance the performance of GMT by reducing the condition number of the
b+1 maps matrix if the decoupling between coil array elements is improved. Additional decou-
pling can be achieved by including the inductor pairs and the mutual inductance coefficient in
the tuning-matching-decoupling optimization, or by using a more complex circuit at each port.
However, both solutions could make the matching between simulated and experimental inci-
dent fields, which is critical for GMT accuracy, more challenging. Besides, it is not clear by how
much the EP estimation would improve, since the errors we observed in this work could be due
to nonoptimal settings of the regularizer, rather than imperfect excitations. As for all inverse
problems affected by noise, the performance of the regularizer is important for GMT. Match
regularization performs intrinsically well at boundaries with high contrast where it behaves as
an L0 regularizer, but in regions of low contrast, where it behaves as total variation, it can result in
blurring. The regularizer’s performance could be improved by manually tweaking the three pa-
rameters upon which it depends, but the computational cost of running GMT multiple times for
different settings have prevented such optimization. A possible alternative that could be explored
in future work would involve training a neural network to optimize the regularization term, as
was proposed for a different MR-related inverse problem in [385]. Finally, another approach to
make the inverse problem more well-posed will be to modify the cost function to include the
receive sensitivity information as well as the transmitted fields. It is shown in [372], that the
combination of transmitting and receive field information is sufficient to resolve fundamental
indeterminacies related to the absolute field phase. Though GMT uses a specific coil model to
circumvent the problem of unknown coil phases, the incorporation of additional receive-related
information present in MR signals would likely improve the performance of GMT as well. How-
ever, the computation time would considerably increase.

In this dissertation, only a minor deep learning application was attempted for the EP recon-
struction problem. Therefore, there is still a wide variety of techniques and methods to investi-
gate on. First of all, the robustness of the network needs to be studied, and if proven untrustwor-
thy, other networks should be studied, like a cGAN. Specifically, since IE software, like MARIE,
can be extremely fast for EM simulations in the MRI environment, one could use them instead
of one of the networks in a cGAN. MARIE could act like the discriminator (or the generator)
of a cGAN, while the generator (or the discriminator) will be the trainable network. In such
a way, MARIE would force additional constraints in the network, driving it for the learning of
the inverse form of Maxwell’s equations instead of image similarities. Furthermore, in future
work, the performance of the network in the presence of noise should be thoroughly studied.
In the last years, machine learning has shown exceptional performance for denoising; thus, it
will be useful to combine this capability with a reconstruction architecture. Moreover, machine
learning is only as good as its training dataset. Therefore, the data generation for heterogeneous
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head models is one of the main concerns in future research. Specifically, only a small number
of realistic data is available; as a result, either GMT has to be employed accurately for in-vivo
experiments, or a generalization technique of the existing dataset should be found, i.e., creating
a basis. Finally, in [405] NNs are employed for topology optimization. Specifically, the input of
the network is the guess of the optimizer after a small number of iterations along with the value
of the gradient of the cost-function at this iteration, and the output is the ground truth solution.
This idea seems promising for application in inverse problems, such as the EP reconstruction.
The network aims to learn the behavior of the optimizer itself and not the highly non-linear
inverse form of Maxwell’s equations.

From the results presented in this thesis, it is evident that the superior performance of GMT
in the EP reconstruction of an object is achieved when the RF coil is tuned, matched, and de-
coupled when loaded with the same object. Regrettably, the traditional RF coil tuning is im-
plemented once, for an arbitrary phantom, and it is not changed again in ensuing scans. For
future clinical applications of GMT, it would be ideal to perform patient-specific tuning; thus
achieving optimal EP reconstructions. It makes sense to investigate automated tuning-matching-
decoupling processes, while the coil is loaded with the patient, i.e., [406]. An automatic tuning-
matching-decoupling is indeed a very challenging problem since traditionally, the adjustment
of variable capacitor values is made with a screwdriver by an RF coil scientist, which is a gener-
ally slow method. In future research, it might be worthwhile to investigate an automatic control
system, placed inside the scanner, that can adjust the capacitor values of the coil to reduce the
scattering parameter values of the coil-network as much as possible. A bolder proposal is to dis-
card the lumped elements and the conductors completely and instead build the next-generation
MRI coils with a different material, and the capability of motion, for each channel on a substrate,
to ensure optimal performance.
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Appendix A
MIE SCATTERING

In this appendix, we will provide a brief analysis of the Mie solution to Maxwell’s equations
for the scattering of a sphere, when a linear polarized plane wave irradiates it. The solution
developed initially in [138] by Gustav Mie, takes the form of an infinite series expansion, with
basis the vector spherical harmonics (wave functions). Modern formulations of the solution
can be found in many textbooks in the literature like [407–414]. Finally, most of the following
implementations are available as open-source software on GitHub [415].

A.1 Debye’s Potentials

The electromagnetic field can be expressed with the help of Debye’s potentials (electric πe,
magnetic πm). We note that the Debye’s potentials are connected to the well-known Hertz po-
tential (πh) according to the following

rπm = jωϵ(πh · r̂)

rπe = (∇×πh) · r̂ ,
(A.1)

where ω is the angular frequency, ϵ is the permittivity of the dielectric medium and r is the
distance in the Euclidean space. As a result, the electromagnetic field is written as follows

e = ∇× (πer) +
1

iωϵ
∇×∇× (πmr)

h = − 1
iωµ
∇×∇× (πer) +∇× (πmr).

(A.2)

The first term of the right hand side of A.2 is a transverse electric (TE) wave and the second one
is a transverse magnetic (TM) wave. Since our goal is to find the scattered electromagnetic field
from a sphere, it makes more sense to use spherical cooridnates from now on. Therefore, the
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electromagnetic field can written as

er =
1

iωϵ

(
∂2

∂r2
+ k2

)
(rπm) , hr = −

1
iωµ

(
∂2

∂r2
+ k2

)
(rπe)

eθ =
1

iωϵr
∂2(rπm)
∂r∂θ

+
1

r sinθ
∂(rπe)
∂ϕ

, hθ = −
1

iωµr
∂2(rπe)
∂r∂θ

+
1

r sinθ
∂(rπm)
∂ϕ

eϕ =
1

iωϵr sinθ
∂2(rπm)
∂r∂ϕ

− 1
r

∂(rπe)
∂θ

, hϕ = − 1
iωµr sinθ

∂2(rπe)
∂r∂ϕ

− 1
r

∂(rπm)
∂θ

,

(A.3)

where k is the wavenumber of the medium. By applying the Maxwell’s equations on the TE wave,
we will obtain the following differential equation

[(∇×∇×)− k2]πer = ∇ψ, (A.4)

where ψ is an arbitrary function. By considering the following identity for f

∇×∇× f = ∇(∇ · f)−∇2f, (A.5)

the equation A.4 becomes

∇[∇ · (πer)]− (∇2 + k2)(πer) = ∇ψ. (A.6)

Now, using the identities

∇(ϕf) = ϕ∇f+ f∇ϕ

∇2 (ϕf) = ϕ∇2f+ f∇2f+2(∇ϕ · ∇)f,
(A.7)

and also that ∇r = 3 and ∇2r = 0, the equation A.6 acquires the following form

r(∇2 + k2)πe = ∇
(
∂(rπe)
∂r

−ψ
)
. (A.8)

Since, ψ is an arbitrary function, it can be equal to ∂(rπe)/∂r . Consequently, the equation A.8
becomes the homogeneous Helmholtz equation (∇2 + k2)πe = 0. It is proven (following the
same thinking) that πm satisfies the same equation. Therefore, in order to find the electric and
the magnetic field, we have to solve the Helmholtz equation, which, in spherical coordinates can
be written as(

∂2

∂r2
+
2
r
∂
∂r

+
1
r2

∂2

∂θ2 +
cotθ
r2

∂
∂θ

+
1

r2 sin2θ

∂2

∂ϕ2 + k
2
)
π(r,θ,ϕ) = 0, (A.9)

whereπ is either the electric or the magnetic Debye’s potential. It is proven that the equation A.9
has a solution of the form π(r,θ,ϕ) = R(r)Θ(θ)Φ(ϕ). For Φ(ϕ) the solution is

Φe(ϕ) = cos(mϕ)

Φo(ϕ) = sin(mϕ),
(A.10)
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A.1. Debye’s Potentials

wherem = −iµ and µ ∈ Z. The marks e and o denote the even and the odd symmetry in respect
to x̂ axis. The solutions Θ(θ) are the associate Legendre functions of the first and second kind
Pmn (cosθ), Qmn (cosθ) respectively. The second kind functions are not accepted as solutions be-
cause they are not blocked at θ = 0, θ = π and θ = −π. The functions of the first kind are
connected with the Legendre polynomials with the following equation

Pmn (x) = (−1)m(1− x2)
m
2
dm

dxm
Pn(x) 0 < m ≤ n. (A.11)

Some Legendre polynomials are portrayed in figure A.1.
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Figure A.1: Legendre polynomials.

Finally, the solutions ofR(r) are the spherical Bessel functions of the first and second kind and
the spherical Hankel functions of the first and second kind. Their general form isR(r) = z(i)n (kr),
where

z
(1)
n (kr) = jn(kr)

z
(2)
n (kr) = yn(kr)

z
(3)
n (kr) = h(1)n (kr)

z
(4)
n (kr) = h(2)n (kr).

(A.12)

All these functions are linear independant for every value ofn ∈ N. In the case of a standing wave,
the solutions will contain the spherical Bessel functions of the first and second kind. Although
if the solution must be finite in the point (0,0,0), then we must reject the second kind functions
since they tend to infinity when r → 0. This behavior is illustrated in figure A.2. In the case of
radiated waves, the solution will contain spherical Hankel functions of the first and second kind.
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Figure A.2: Spherical Bessel functions of the first and second kind.

Furthermore, for kr ≫ 1 the approximations

h
(1)
n (kr)→ (−i)n+1 e

ikr

kr

h
(2)
n (kr)→ in+1

e−ikr

kr
,

(A.13)

contain the factor e±ikr /kr , which characterizes travelling spherical waves. Thus, if the depen-
dence of the time is e−iωt , we will use the first kind functions, but, if the dependence is eiωt , then
the second kind functions are used.

To conclude, the solution of A.9 has the following general forms

f iemn = z
(i)
n (kr)Pmn (cosθ)cos(mϕ)

f iomn = z
(i)
n (kr)Pmn (cosθ)sin(mϕ),

(A.14)

which means that Debye’s potentials can be written as

πe =
∞∑
n=0

n∑
m=0

Mmnf
ie,o
mn , πm =

∞∑
n=0

n∑
m=0

Nmnf
ie,o
mn . (A.15)

The constantsMmn andNmn depend from the sphere, and they can be identified with the appli-
cation of the proper boundary conditions.

A.2 Spherical Wave Functions

The electric and the magnetic field can be expressed with the help of Debye’s potentials as
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A.2. Spherical Wave Functions

follows

E =
∞∑
n=0

n∑
m=0

Mmnm
ie,o
mn − i

√
µ

ϵ
Nmnn

ie,o
mn


H =

∞∑
n=0

n∑
m=0

Nmnmie,o
mn −

1

i
√
µ
ϵ

Mmnn
ie,o
mn

 ,
(A.16)

where
mie,o
mn = ∇×

(
f ie,omn r

)
nie,omn =

1
k
∇×∇×

(
f ie,omn r

)
,

(A.17)

are the so-called spherical wave functions. One can easily note that these two functions are in-
dependent solutions of the homegeneous vector Helmholtz equation. They are both solenoidal
and satify the following equations

mie,o
mn =

1
k
∇×nie,omn

nie,omn =
1
k
∇×mie,o

mn ,
(A.18)

thus, they are orthogonal to each other. We will write the spherical wave functions analytically
in the spherical coordinates system

mie
mn = −θ̂z

(i)
n (kr)

Pmn (cosθ)
sinθ

msin(mϕ)

− ϕ̂z(i)n (kr)
dPmn (cosθ)

dθ
cos(mϕ)

mio
mn = −θ̂z

(i)
n (kr)

Pmn (cosθ)
sinθ

cos(mϕ)

− ϕ̂z(i)n (kr)
dPmn (cosθ)

dθ
sin(mϕ)

niemn = r̂n(n+1)
z
(i)
n (kr)
kr

Pmn (cosθ)cos(mϕ)

+ θ̂
[
z
(i)
n (kr)
kr

]′
dPmn (cosθ)

dθ
cos(mϕ)

− ϕ̂
[
z
(i)
n (kr)
kr

]′
Pmn (cosθ)

sinθ
msin(mϕ)

niomn = r̂n(n+1)
z
(i)
n (kr)
kr

Pmn (cosθ)sin(mϕ)

+ θ̂

z(i)n (kr)
kr


′
dPmn (cosθ)

dθ
sin(mϕ)

− ϕ̂

z(i)n (kr)
kr


′
Pmn (cosθ)

sinθ
mcos(mϕ).

(A.19)

where for convenience the symbol ′ denotes derivation with respect to the argument. At this
point we need to calcuate the inner product of all the above possible cases, since we will need
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it for the remaining of this Appendix. We note that the inner product of two spherical wave
functions is defined as follows

⟨x,y⟩ =
2π∫

ϕ=0

π∫
θ=0

x · ysinθdθdϕ. (A.20)

It is proven that (xe,yo) = 0 and (xmn,ym′n′ ) = 0, where m′ , m and n′ , n. If m = m′ and
n = n′ we end up to the following equations

⟨mie,o
mn ,m

ie,o
mn ⟩ =

4π
ϵm

n(n+1)
(2n+1)

(n+m)!
(n−m)!

[
z
(i)
n (kr)

]2
⟨nie,omn ,n

ie,o
mn ⟩ =

4π
ϵm

n(n+1)
(2n+1)2

(n+m)!
(n−m)!

{
(n+1)

[
z
(i)
n−1(kr)

]2
+n

[
z
(i)
n+1(kr)

]2}
,

(A.21)

with ϵm being the Neumann constant.

A.3 Incident Plane Wave

In figure A.3, we can see a sphere irradiated by a linear polarized plane wave (einc || x̂,hinc || ŷ).
In this and the following sections, we will derive analytical solutions for the electromagnetic
quantities for this simple case.

e0x̂e
ik0z

Figure A.3: Incindent plane wave.

The incident electromagnetic wave in cartesian coordinates is

einc = e0x̂e
i(ωt−k0z)

hinc =
e0√
µ0
ϵ0

ŷei(ωt−k0z). (A.22)

We can skip the time-dependent term since we are dealing with time-harmonic problems. Fur-
thermore, it is convenient to use spherical coordinates since we are dealing with spheres. The
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A.4. Scattered Wave

incident fields are

einc = e0(r̂ sinθ cosϕ+ θ̂ cosθ cosϕ− ϕ̂sinϕ)e−ik0r cosθ

einc =
e0√
µ0
ϵ0

(r̂ sinθ sinϕ+ θ̂ cosθ sinϕ− ϕ̂cosϕ)e−ik0r cosθ. (A.23)

Therefore, the Debye’s potentials can be written as

πe =
∞∑
n=1

Mnf
1o
1n

πm =
∞∑
n=1

Nnf
1e
1n ,

(A.24)

where
f 1e1n = jn(k0r)P

1
n (cosθ)cosϕf

1o
1n = jn(k0r)P

1
n (cosθ)sinϕ. (A.25)

We are choosing i = 1, because the solutions must be definite for r→ 0. Therefore the incident
field can be written with the help of spherical wave functions as follows

einc =
∞∑
n=1

(Mnm
1o
1n − i

√
µ0
ϵ0
Nnn

1e
1n)

einc =
∞∑
n=1

(Nnm
1e
1n −

1

i
√
µ0
ϵ0

Mnn
1o
1n).

(A.26)

To define the coefficientsMn andNn we have to calculate the inner product ⟨ei ,m1o
1n⟩

⟨einc,m
1o
1n⟩ = 2π

n(n+1)(n+1)!
(2n+1)(n− 1)!

[jn(k0r)]
2Mn. (A.27)

Since the left hand side is equal to −2πe0(−j)nn(n+1)[jn(k0r)]2 the coefficientsMn andNn are

Mn = −e0(−i)n
2n+1
n(n+1)

Nn =
e0√
µ0
ϵ0

(−i)n 2n+1
n(n+1)

.
(A.28)

The incident fields are

einc = −e0
∞∑
n=1

(−i)n 2n+1
n(n+1)

(m1o
1n + in1e

1n)

hinc = −
e0√
µ0
ϵ0

∞∑
n=1

(−i)n 2n+1
n(n+1)

(m1e
1n − in

1o
1n).

(A.29)

A.4 Scattered Wave

The scattered electric wave from a sphere is

esca = e0
∞∑
n=1

n∑
m=0

(−i)n 2n+1
n(n+1)

(Ao
mnm

4o
mn +A

e
mnm

4e
mn + iBomnn

4o
mn + jB

e
mnn

4e
mn). (A.30)
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In the case of a perfect electric conducting sphere with radius a we have to enforce the following
boundary condition

r̂(einc + esca)|r=a = 0. (A.31)

Thus, we can derive the following simple form

esca = −e0
∞∑
n=1

(−i)n 2n+1
n(n+1)

(Anm
4o
1n + jBnn

4e
1n), (A.32)

whereAn and Bn are coefficients to be calculated. By applying the Maxwell’s equation ∇×esca =

−iωµ0hsca we derive the following

hsca =
e0√
µ0
ϵ0

∞∑
n=1

(−i)n 2n+1
n(n+1)

(Bnm
4e
1n − jAnn

4o
1n). (A.33)

A.5 Impenetrable Sphere

In the case of an impenetrable sphere (PEC), the boundary conditions to be satisfied are
2π∫
0

π∫
0

{
[r̂ × (einc + esca)]×m1

1v

}
r=a

sinθdθdϕ = 0

2π∫
0

π∫
0

{
[r̂ × (einc + esca)]m

1e
1v

}
r=a

sinθdθdϕ = 0,

(A.34)

where v ∈ N. After some calculations we can derive the coefficients An, Bn according to

An = −
jn(k0a)

h
(2)
n (k0a)

Bn = −
[k0rjn(k0r)]′

[k0rh
(2)
n (k0r)]′

|r=a.
(A.35)

For the far field calculations, the scattered electric field is a TEM waveform given by

esca = (fθθ̂ + fϕϕ̂)
ei(ωt−k0r)

r
, (A.36)

where

fθ(θ,ϕ) = −
ie0
k0

cosϕ
∞∑
n=1

2n+1
n(n+1)

[
An
P 1
n (cosθ)
sinθ

+Bn
dP 1

n (cosθ)
dθ

]
fϕ(θ,ϕ) =

ie0
k0

sinϕ
∞∑
n=1

2n+1
n(n+1)

[
An
dP 1

n (cosθ)
dθ

+Bn
P 1
n (cosθ)
sinθ

]
.

(A.37)

We note that in the case of θ = 0, θ = π or θ = −π, we should consider the following

P 1
n (cosθ)
sinθ

|θ=0 =
dP 1

n (cosθ)
dθ

|θ=0 = −
n(n+1)

2
P 1
n (cosθ)
sinθ

|θ=±π = −dP
1
n (cosθ)
dθ

|θ=±π = (−1)nn(n+1)
2

.

(A.38)
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According to the above, the bistatic radar cross section (BRCS) is given from

σd = |f(θ,ϕ)|2 = |fθ |2 + |fϕ|2. (A.39)

Moreover, the monostatic radar cross section (MRCS) will be

σmo
πa2

=
1

(k0a)2
|
∞∑
n=1

(−1)n(2n+1)(An −Bn)|2. (A.40)

Furthermore, The total radar cross section can be computed from the following integral

σs =
∫
4π

σddΩ =

2π∫
0

π∫
0

|f(θ,ϕ)|2 sinθdθdϕ. (A.41)

After some operations we can retrieve the following elegant form

σs
πa2

=
2

(k0a)2

∞∑
n=1

(2n+1)
(
|An|2 + |Bn|2

)
. (A.42)

Finally, the elimination section is given from the following equation

σe
πa2

= − 2
(k0a)2

∞∑
n=1

(2n+1)Re{An +Bn}. (A.43)

A.6 Penetrable Sphere

In the case of a penetrable sphere (a dielectric sphere) with a refractive index ns, the interior
field is given from

eint = −e0
∞∑
n=1

(−i)n 2n+1
n(n+1)

(Cnm
1o
1n + jDnn

1e
1n)

hint =
e0√
µ0
ϵ0

∞∑
n=1

(−i)n 2n+1
n(n+1)

(Dnm
1e
1n − jCnn

1o
1n),

(A.44)

where Cn and Dn are the wave coefficients of the refracted wave. We note that the change of i
from 4 to 1, is done, because the spherical Bessel function (jn(nsk0r)) must be definite when
r→ 0. Moreover. The boundary conditions on the surface of the sphere are

r̂ × (einc + esca)|r=a = r̂ × eint|r=a
r̂ × (hinc +hsca)|r=a = r̂ ×hint|r=a,

(A.45)

and after some simple operations we can calculate the wave coefficients. We tabulate them in
A.1.

In the case of a dielectric sphere, BRCS, MRCS, total, and extinction cross-sections are given
from the same equations as in the case of the PEC sphere. However, for the dielectric spheres we
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Table A.1: Mie scattering coefficients

An (PEC) −
jn(k0a)

h
(2)
n (k0a)

Bn (PEC) − [k0rjn(k0r)]
′[

k0rh
(2)
n (k0r)

]′ ∣∣∣∣r=a
An (Dielectric) −

jn(nsk0a) [k0ajn(k0a)]
′ − jn(k0a) [nsk0ajn(nsk0a)]′

jn(nsk0a)
[
k0ah

(2)
n (k0a)

]′
− h(2)n (k0a) [nsk0ajn(nsk0a)]

′

Bn (Dielectric) −
jn(k0a) [nsk0ajn(nsk0a)]

′ −n2s jn(nsk0a) [k0ajn(k0a)]
′

h
(2)
n (k0a) [nsk0ajn(nsk0a)]

′ −n2s jn(nsk0a)
[
k0ah

(2)
n (k0a)

]′
Cn (Dielectric) −

−jn(k0a)
[
k0ah

(2)
n (k0a)

]′
+ h(2)n (k0a) [k0ajn(k0a)]

′

jn(nsk0a)
[
k0ah

(2)
n (k0a)

]′
− h(2)n (k0a) [nsk0ajn(nsk0a)]

′

Dn (Dielectric) −ns
jn(k0a)

[
k0ah

(2)
n (k0a)

]′
− h(2)n (k0a) [k0ajn(k0a)]

′

h
(2)
n (k0a) [nsk0ajn(nsk0a)]

′ −n2s jn(nsk0a)
[
k0ah

(2)
n (k0a)

]′

are dealing with the absorption cross-section σa = σe −σs as well, which was 0 for the PEC case,
which means that the dielectric sphere presents losses.

A.7 Extinction- and Scattering-Cross Sections

The scattered and extinction cross-sections from a sphere can be obtained from the following
equations

csca =
wsca
iinc

, cext =
wext
iinc

, iinc =
|einc|2

2
√
µ0
ϵ0

, (A.46)

where iinc is the intensity incident of the sphere. The scattered wsca and the extinction wext

energies can be calculated by

wsca =
1
2
Re


2π∫
0

π∫
0

(esca ×h∗sca)r2 sinθdθdϕ

 =
1
2
Re


2π∫
0

π∫
0

(
esca,θ ×h∗sca,ϕ − esca,ϕ ×h

∗
sca,θ

)
r2 sinθdθdϕ


wext =

1
2
Re


2π∫
0

π∫
0

(
einc ×h∗sca + esca ×h∗inc

)
r2 sinθdθdϕ

 =

=
1
2
Re


2π∫
0

π∫
0

(
einc,ϕ ×h∗sca,θ − einc,θ ×h

∗
sca,ϕ − esca,θ ×h

∗
inc,ϕ + esca,θ ×h∗inc,ϕ

)
r2 sinθdθdϕ

 .
(A.47)

The absorbed energy relates with the scattered and extinction energies by wabs = wext − wsca.
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Therefore, the scattering and the extinction cross-sections are

Csca =
2π

k20

∞∑
n=1

(2n+1)(An|Hn,m|2 +Bn|Fl,m|2)

Cext =
2π

k20
Re

 ∞∑
n=1

(2n+1)(An|Hn,m|2 +Bn|Fl,m|2)

 .
(A.48)

The functions Fn,m andHn,m are given from the following formulas

Fn,m =
2

n(n+1)

m=n∑
m=−n

(n−m)!
(n+m)!

|mP
m
n

sinθ
|2

Hn,m =
2

n(n+1)

m=n∑
m=−n

(n−m)!
(n+m)!

|dP
m
n

dθ
|2.

(A.49)

For the case of plane wave excitation where all terms vanish except for m = 1 the cross-sections
become

Csca =
2π

k20

∞∑
n=1

(2n+1)(|An|2 + |Bn|2)

Cext =
2π

k20
Re

 ∞∑
n=1

(2n+1)(An +Bn)

 .
(A.50)

One important term associated with cross-section is the dimensionless parameter commonly
knonw as efficiency factor or Q-factor. The extinction and scattering efficiencies are given re-
spectively by

Qext =
Cext
g
, Qsca =

Csca
g
. (A.51)

where g is the geometrical cross-section and it is equal to πa2 for a sphere of radius a.
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Appendix B
WIRTINGER CALCULUS

In the case of GMT and similar inverse problems, the real-valued cost function depends on
the complex-valued variable ϵ. Consequently, the cost function is not analytic in ϵ. Thus, its
partial derivatives or gradient cannot be calculated with the standard complex calculus sense
[416–419]. This impasse is avoided if the Wirtinger Calculus [420] or CR−Calculus [421] is
used. Additionally, in the tuning-matching-decoupling optimization process, the cost function
was real-valued with real arguments (capacitance values); however, it can be easily generalized
to complex impedances with the aid of CR−Calculus.

B.1 Introduction to CR−Calculus

In this section we will briefly provide the basic theory behind Wirtinger Calculus, for func-
tions of single complex variables z = x + iy. More information on this topic can be found
in [421–424]. First of all, we consider the function f (z)

f (z) = u(x,y) + iv(x,y). (B.1)

f (z) is holomorphic when the partial derivatives of u and v exist and also they satisfy the well-
known Cauchy-Riemann conditions:

∂u
∂x

=
∂v
∂y
,

∂v
∂x

= −∂u
∂y
. (B.2)

However, we can depict the real-valued function f (z) as a function of the real and the imaginary
parts of z, meaning as a function over R2

f (x,y) : R2→ R. (B.3)

Furthermore, f can be written as a function of (z,z∗), which means that it is holomorphic in
z (z∗) for fixed z∗ (z), if and only if the partial derivatives of u and v exist. At this point we
consider a new set of coordinates, called conjugate coordinates that exploit the representation of
f as a function of R2

c ≜ (z,z∗)T ∈ C×C, z = x+ iy, z∗ = x − iy. (B.4)
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By using the conjugate coordinates, we can define the following set of partial derivatives for any
function f (c) (complex or real-valued)

R-Derivative of f (c)≜ ∂f (z,z∗)
∂z

Conjugate R-Derivative of f (c)≜ ∂f (z,z∗)
∂z∗

,
(B.5)

or equivalently we can write

∂f (z,z∗)
∂z

=
1
2

(
∂f

∂x
− i
∂f

∂y

)
,

∂f (z,z∗)
∂z∗

=
1
2

(
∂f

∂x
+ i
∂f

∂y

)
. (B.6)

Subsequently, an R-differentiable function f is holomorphic if and only if it depends only from
z, thus it should satisfy the following new Cauchy-Riemann condition

∂f

∂z∗
= 0. (B.7)

For completeness we mention some properties and identies of such complex derivatives.

• R− and R∗− derivatives are linear operators.

• Differential Rule: ∂f =
∂f

∂z
dz+

∂f

∂z∗
dz∗.

• Chain Rule I:
∂h(g)
∂z

=
∂h
∂g

∂g

∂z
+
∂h
∂g∗

∂g∗

∂z
.

• Chain Rule II:
∂h(g)
∂z∗

=
∂h
∂g

∂g

∂z∗
+
∂h
∂g∗

∂g∗

∂z∗
.

•
∂f ∗

∂z∗
=

(
∂f

∂z

)
,

∂f ∗

∂z
=

(
∂f

∂z∗

)∗
.

• f (z) ∈ R⇒
(
∂f

∂z

)∗
=
∂f

∂z∗
.

Finally, a real-valued function f (z) has a stationary point r0 ≜ (x0, y0)T , if its R∗−derivative
vanishes at this point, or equivalently, its R−derivative vanishes at this point.

B.2 CR-Calculus of Multiple Variables

In this section we will provide basic definitions of the multivariate CR-Calculus, originally
developed in [421, 424–429]. We initiate our analysis by defining the n−dimensional complex
vector z

z = (z1, · · · , zn)T ∈ Cn, z = x+ iy, x = (x1, · · · ,xn)T , y = (y1, · · · , yn)T . (B.8)
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B.2. CR-Calculus of Multiple Variables

The space Cn is a vector space over complex numbers, with standard definitions for vector addi-
tion and scalar-vector multiplications. Moreover, we can compare this space with a space of real
numbers as follows

z ∈ Cn⇔ (x,y)T ∈ R2n = Rn ×Rn. (B.9)

The conjugate of z is defined as follows

z∗ = (z∗1, · · · , z
∗
n)
T ∈ Cn. (B.10)

In a similar way as in B.4 we can define the conjugate coordinate vectors as follows

c = (z,z∗)T ∈ C2n = Cn ×Cn. (B.11)

For the vector z we define the cogradient ∂/∂z (z∗ treated as constant) and the conjugate cogra-
dient ∂/∂z∗ (z treated as constant) operators as follows

∂
∂z

≜
(
∂
∂z1

, · · · , ∂
∂zn

)
,

∂
∂z∗

≜
(
∂
∂z∗1

, · · · , ∂
∂z∗n

)
, (B.12)

where each of the above components can be calculated with B.6, thus, the following equivalent
notation is preferred

∂
∂z

=
1
2

(
∂
∂x
− i ∂
∂y

)
,

∂
∂z∗

=
1
2

(
∂
∂x

+ i
∂
∂y

)
. (B.13)

Let us consider a mapping f(c) = f(z,z∗) : Cn→ Cm. The differential rule, in the case of multiple
variables, can be written as follows

df(c) =
∂f(c)
∂z

dz+
∂f(c)
∂z∗

dz∗, (B.14)

where the Jf(c) = ∂f(c)/∂z is the Jacobian matrix, while the Jcf (c) = ∂f(c)/∂z
∗ is the conjugate

Jacobian matrix of f. They can be calculated as follows

Jf(c) =


∂f1(c)
∂z1

· · · ∂f1(c)
∂zn

· · · · · · · · ·
∂fm(c)
∂z1

· · · ∂fm(c)
∂zn

 ∈ Cm×n, Jcf (c) =


∂f1(c)
∂z∗1

· · · ∂f1(c)
∂z∗n

· · · · · · · · ·
∂fm(c)
∂z∗1

· · · ∂fm(c)
∂z∗n

 ∈ Cm×n. (B.15)

In the case of f(c) ∈ Rm the following identity holds true

J∗f (c) =
(
∂f(c)
∂z

)
=
∂f(c)
∂z∗

= Jcf (c). (B.16)

Thus, the differential rule obtains the following elegant form

df(c) = Jf(c)dz+ J
c
f (c)dz

∗ = 2Re {Jf(c)dz} . (B.17)

XV



Appendix B

In addition the chain rule for the composition h ◦ g : Ck → Cm of two mappings h : Cn →
Cm, g : Ck→ Cn, obtains the following generalized form

I :
∂h(g)
∂z

=
∂h
∂g

∂g∗

∂z
+
∂h
∂g∗

∂g∗

∂z
, II :

∂h(g)
∂z∗

=
∂h
∂g

∂g
∂z∗

+
∂h
∂g∗

∂g∗

∂z∗
, (B.18)

or
Jh◦g = JhJg + J

c
h (J

c)∗g , Jch◦g = JhJ
c
g + J

c
hJ
∗
g. (B.19)

A vector-valued function f(z) is holomorphic in z if and only if all of its components fi(z,z∗),
i = 1, . . . ,m are holomorphic seperately on each zj , j = 1, . . . ,n or it is a function only of z or if
it satisfies the matrix Cauchy-Riemann condition

Jcf =
∂f
∂z∗

= 0. (B.20)

Therefore, in an analogus way as in B.7, a scalar real-valued function from Cn to R has a station-
ary point at (z0,z∗0) if the equivalent following conditions are satisfied

∂f(z0,z∗0)
∂z

= 0,
∂f(z0,z∗0)
∂z∗

= 0. (B.21)
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Appendix C
NUMERICAL LINEAR ALGEBRA

C.1 Definitions

Definition C.1. The Frobenius norm of a tensor A ∈ Cn1×n2×n3 is defined as follows

∥A∥F ≜

 n1∑
i=1

n2∑
j=1

n3∑
k=1

|Aijk |2

1
2

. (C.1)

Definition C.2. The Chebyshev norm of a tensor A ∈ Cn1×n2×n3 is defined as follows

∥A∥C ≜max
ijk
|Aijk |, i = 1, . . . ,n1, j = 1, . . . ,n2, k = 1, . . . ,n3. (C.2)

Definition C.3. The L2 inner product ⟨·⟩V between two vectors u,v ∈ Cn, over V , is defined as
follows

⟨u,v⟩V =
∫
V

u∗vdV . (C.3)

Definition C.4. The n-mode product between a tensor A ∈ Cm1×m2×m3 with a matrix Un ∈
Cqn×mn ,n = 1,2,3 results to a new tensor Bn obtained by the convolution over the n axis, i.e.,
for B1 ∈ Cq1×m2×m3 :

B1 =A×1U1, Bijk =
m1∑
t=1

AtjkU
1
it. (C.4)

Definition C.5. The outer product ⊙ between two multidimensional arrays A ∈ Cn1×···×nN ,B ∈
Cm1×···×mM is defined as follows

(A⊙B)i1,··· ,iN ,j1,··· ,jM = Ai1,··· ,iN ·Bj1,··· ,jM . (C.5)

Definition C.6. The Kronecker product ⊗ between two matrices A ∈ Cn1×n2 ,B ∈ Cm1×m2 is an
n1m1 ×n2m2 matrix, defined as follows

A⊗B =


A11B · · · A1n2B

· · · · · · · · ·
An11B · · · An1n2B

 . (C.6)
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Definition C.7. The Khatri-Rao product ⊛ between two matrices A ∈ Cn×q,B ∈ Cm×q is an
nm× q matrix, defined as follows

A⊛B =
[
A:1 ⊗B:1 · · · A:q ⊗B:q

]
. (C.7)

Definition C.8. The elementwise product (or entrywise product) ◦ between two arrays A ∈
Cn1×n2×·×nm ,B ∈ Cn1×n2×·×nm is is an n1 ×n2 × · ×nm array, with elements given from

(A ◦B)i1i2···im = Ai1i2···imBi1i2···im . (C.8)

In the case of matrices, the elementwise product is called Hadamard product.

C.2 Adaptive Cross Approximation

The adaptive cross approximation (ACA) [430–432], is an algorithm used for the application
of skeleton decomposition [433, 434]. The method aims to approximate a low-rank matrix only
by using some rows and columns of it, an advantage in the operation and memory complexities
over the classic SVD method. In this section, the analysis of the algorithm is presented in a
similar way as in [435, 436], where the ACA is used to compress the off-diagonal blocks of the
EFIE MoM matrix.

Let us consider a matrix A ∈ Cm×n with effective (numerical) rank r . According to skeleton
decomposition theory the matrix can be approximated as follows

Z ≈ Z̃ =UV =
r∑
i=1

U:iVi:. (C.9)

where U ∈ Cm×r and V ∈ Cr×n. This cross approximation achieves an error defined by the
matrix R as follows

∥R∥F =
∥∥∥Z − Z̃∥∥∥

F
≤ ϵ ∥Z∥F . (C.10)

where ϵ is the setted tolerance. The ACA algorithm is provided below.

Algorithm 6 Adaptive Cross Approximation Algorithm

1: Z̃ = 0

2: R̃1: = Z̃1:

3: Find j such as |R̃1j | =max(|R1:|)

4: V1: = R̃1:/R̃1j

5: R̃:j = Z:j

6: U:1 = R̃:j

7:
∥∥∥Z̃∥∥∥2

F
=

∥∥∥Z̃∥∥∥2
F
+ ∥U:1∥2F ∥V1:∥2F

8: p = 2

XX



C.3. Maxvol Algorithm

9: loop

10: Find i such as R̃ij =max
(
|R:j |

)
, i , already used rows

11: R̃i: = Zi: −
∑p−1
l=1 UilVl:

12: Find j such as |R̃ij | =max(|Ri:|) , j , already used columns

13: Vp: = R̃i:/R̃ij

14: R̃:j = Z:j −
∑p−1
l=1 VjlU:l

15: U:p = R̃:j

16:
∥∥∥Z̃∥∥∥2

F
=

∥∥∥Z̃∥∥∥2
F
+2

∑p−1
l=1

(
|UT

:l U:p||V T
l: Vp:|

)
+
∥∥∥U:p

∥∥∥2
F

∥∥∥Vp:∥∥∥2F
17: if

∥∥∥U:p

∥∥∥∥∥∥Vp:∥∥∥ > ϵ∥∥∥Z̃∥∥∥ then p = p+1

18: else return U , V

Only O(rn+rm) entries need to be stored. The complexity of the ACA algorithm is O(r2n+

r2n).

C.3 Maxvol Algorithm

Cross approximation method often requires the evaluation of a sufficiently good submatrix
of the initial array. Usually, the well-conditioning of this submatrix is measured via the absolute
value of its determinant (volume of the matrix) [437, 438]. In this section, we will provide the
algorithm, dubbed MaxVol, that is used in order to approximate such submatrix. The method
finds many applications, especially in tensor and matrix cross approximations, and in the fast
evaluation of the maximum element of matrices.

Let us consider a matrix A ∈ Cm×n with rank r . For some set of rows i and columns j , of
length r with element values between 1, . . . ,n and 1, . . . ,m respectively, the following equations
holds true

A = A:jA
−1
ij Ai:, (C.11)

where the matrix Aij = Â is non-singular. In the approximate case, this submatrix is required
to have the maximum volume over all other submatrices ofA with dimensions r × r . A practical
algorithm for finding a good submatrix is provided below.

Algorithm 7 MaxVol algorithm
1: A ∈ Cn×r

2: Arbitrary non-singular submatrix Â ∈ Cr×r

3: Reorder rows of A so Â will occupy the first r rows

4: Compute AÂ−1 = B

5: Find maximum absolute value element bij of B
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6: loop

7: if |bij | > 1+ δ then swap the rows i and j in B

8: else return Â

In step 7 the reordering of the rows leads to the increasment of the volume of Â. The param-
eter δ is∼ 10−2 and it is used to reduce the number of the required iterations in order to retrieve
the maximum volume submatrix. In addition, since in every iteration Â receives rank-one mod-
ifications we can calculate its inverse with Sherman-Woodbury-Morisson formula [439, 440],
resulting to O(2c(nr − r2)) complexity, where c is the number of iterations.

Let us consider a low-rank matrix A ∈ Cn×n with rank r to which we want to find its max-
imum element, but with linear complexity (over the classic O(n2) comparisons). By applying a
cross approximation method we have

A = BCT , (C.12)

where B,C ∈ Cn×r . In addition, let us consider a submatrix of maximum volume of A, Â. The
following inequality holds true ∥∥∥Â∥∥∥

C
≥ ∥

A∥C
r

. (C.13)

Hence, the maximum element of Â is more or less similar to the maximum element of A, and to
define it we need only O

(
r2

)
comparisons. To find Â we need to apply the MaxVol on either B

or C.
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Appendix D
INTEGRATION BACKGROUND

D.1 Simplex Coordinates

Usually, the surface integral equation formulations are discretized over triangular meshes,
in order to exploit the superior properties of RWG (or BC) basis functions. Thus, we prefer to
express these functions on the local simplex or barycentric coordinates because they transform
any triangle to a right-angled one, where the integration with a Gauss quadrature rule is trivial.
Let us consider the following triangle T on the two-dimensional Euclidean space.

(x2, y2)
(x3, y3)

(x1, y1)

p(x,y)H1

h1
T

T1

b1

Figure D.1: Triangular Element - Simplex Coordiantes.

The barycentric coordiantes of a point p(x,y) ∈T are defined as follows

ζi =
hi
Hi
, i = 1,2,3, (D.1)

whereHi is the height from the node (xi , yi) and hi is the vertical distance from p to the opposite
edge of the node (xi , yi). Thus, the following property holds true

ζi =

1 at node i

0 at other nodes
. (D.2)
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Moreover, the simplex coordinates satisfy the following equation

ζi =
hi
Hi

=
Ti
T
, (D.3)

where T is the area of T , and Ti is the area of the respective sub-triangle, portrayed with blue
color in D.1. The following property applies

ζ1 + ζ2 + ζ3 =
T1 + T2 + T3

T
= 1. (D.4)

From the aforementioned, one can write the barycentric coordinates as a function of the Carte-
sian ones as follows

ζ1(x,y) =
x2y3 − x3y2

2T
+
y2 − y3
2T

x+
x3− x2
2T

y

ζ2(x,y) =
x3y1 − x1y3

2T
+
y3 − y1
2T

x+
x1− x3
2T

y

ζ3(x,y) =
x1y2 − x2y1

2T
+
y1 − y2
2T

x+
x2− x1
2T

y.

(D.5)

Finally, the gradients of the simplex coordinates are

∇ζ1 = b1x̂+ c1ŷ

∇ζ2 = b2x̂+ c2ŷ

∇ζ3 = b3x̂+ c3ŷ.

(D.6)

D.2 Gauss Quadrature Rules

In order to accurately approximate the arising definite integrals in SIE or VIE formulations,
we can use a variety of algorithms for numerical integrations. Specifically in the current thesis we
use the Gauss-Legendre quadrature rule. This algorithm approximates the integral as a weighted
sum of function values at specified predefined points, within the domain of the integration. We
note that the n−point Gaussian quadrature rule will yield an exact result for the integration of
polynomials of degree 2n−1 or less, for a suitable choice of points xi and weightswi , i = 1, . . . ,n.
The rule for the integration of a function f , for the convetionally choosen domain of integration
[−1,1], is stated as

1∫
−1

f (x)dx ≈
n∑
i=1

wif (xi), (D.7)

where the weights wi are functions of the derivatives of the Legendre polynomials

wi =
2

(1− x2i )[P
′
n(xi)]2

, (D.8)

and xi are the roots of the Legendre polynomials Pn(xi) = 0. In addition, for integration over a
different domain we have

b∫
a

f (x)dx ≈ b − a
2

n∑
i=1

wif (
b − a
2
xi +

a+ b
2

). (D.9)
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D.2. Gauss Quadrature Rules

D.2.1 Gauss Quadrature Rule for Rectangles

If we are interested in 2D integrations, for example over a rectangle R = [−1,1]2, we need
to calculate the following integral

I =
"
R

g(ξ,η)dξdη =

1∫
−1

1∫
−1

g(ξ,η)dξdη. (D.10)

To implement such integration, we implement two 1D rules for each of the integrals, thus we
have

I ≈
M∑
i=1

N∑
j=1

ŵjwig(ξi ,ηj), (D.11)

where ξi ,wi are the points and the weights of order of M over ξ , and ηj , ŵj are the points and
the weights of order N over η. Usually we choose M =N in order to have ηi = ξi and wi = ŵi .
Thus, the final formula of the integration is

1∫
−1

1∫
−1

g(ξ,η)dξdη ≈
N∑
i=1

N∑
j=1

wjwig(ξi ,ξj). (D.12)

D.2.2 Gauss Quadrature Rule for Right-Angle Triangles

In order to calculate the quadrature rule over an arbitrary triangle, we have to transform it
first to a right-angle triange T , then to a rectangele R and finally apply the rule as in the previous
subsection. According to the axis defined in D.2, the transformation is defined as followsξ = (1+a)(1−b)

4

η = (1+b)
2

, or

a =
2ξ
1−η − 1

b = 2η − 1
. (D.13)

The Jacobian of the transformation is given from

J(a,b) = det
(
∂(ξ,η)
∂(a,b)

)
=
1− b
8

=
1− η
4

, (D.14)

and the rule takes the following final form

I =
"
T

g(ξ,η)dξdη =
"
R

g(ξ(a,b),η(a,b))|J(a,b)|dadb. (D.15)

D.2.3 Gauss Quadrature Rule for Cubes

For 3D integrations over a cube (voxel), R = [−1,1]3, the following integral

I =
$
R

g(ξ,η,ζ)dξdηdζ =

1∫
−1

1∫
−1

1∫
−1

g(ξ,η,ζ)dξdηdζ, (D.16)
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R

b

a T

η

ξ

Figure D.2: Transformation between R and T .

can be solved with Gauss-Legendre rule, if we implement three 1D rules for each integral as
follows

I ≈
M∑
i=1

N∑
j=1

L∑
k=1

ˆ̂wkŵjwig(ξi ,ηj ,ζk), (D.17)

where (ξi ,wi) ,
(
ηj , ŵj

)
,
(
ζk , ˆ̂wk

)
are the points and the weights of order of N,M,L over ξ,η,ζ

respectively. For N =M = L the integral acquires the following symmetric form

1∫
−1

1∫
−1

1∫
−1

g(ξ,η,ζ)dξdηdζ ≈
N∑
i=1

N∑
j=1

N∑
k=1

wkwjwig(ξi ,ξj ,ξk). (D.18)

D.3 Spherical Mean

The spherical mean [441] of a function around a point x, is the average of all its values on
a sphere of a given radius centered at that point. Specifficaly, considering an open set X ⊆ Rn,
a continuous function f (y) : X→ Cn, a radius r > 0 and a point x ∈ X such as the closed ball
B(x,r) ⊆ X, the spherical mean over the sphere of radius r and center x is defined as follows

[f ](r) =
1

ωn−1(r)

∫
∂B(x,r)

f (y)dS(y), (D.19)

where, ∂B(x,r) is the boundary of B(x,r), dS denotes the integration with respect to spherical
measure and ωn−1(r) is the surface area of the (n− 1) unit sphere.
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Appendix E
GRADIENT CALCULATION

The cost function of the tuning-matching-decoupling optimization process is the following

f (C) =
1
2
∥W ◦ Sm(C)∥2fro . (E.1)

Here,W is a constant matrix with various entries, depending on what values we want to prioritize
for the minimization. For the calculation of this gradient, we will considern−m tuning capacitors
attached to the ports of indices l andm feeding ports with indicesp. Also, we consider a matching
network of one parallel and one in series capacitor in each port. This approach is simple, yet very
informative since it includes all the possible attachments of lumped elements. Finally, the tuning
capacitors are denoted as Ct , the matching parallel capacitors as Cp and the matching series
capacitors as Cs.

The Sm parameters are related to the Zm parameters as follows

Sm(Ct,Cp,Cs) =
(
Zm(Ct,Cp,Cs) + z0I

)−1 (
Zm(Ct,Cp,Cs)− z0I

)
, (E.2)

where z0 is the impedance of the feeding cable (usually 50Ω) and I is the identity matrix. The
Zm parameters are related to the Ym parameters as follows

Zm(Ct,Cp,Cs) = Y
−1
m (Ct,Cp) + diag

(
1

iωCs

)
, (E.3)

where ω is the angular frequency. Finally the Ym parameters are related to the Yn parameters
(MARIE’s output) as follows

Ym(Ct,Cp) = Y
pp
n + diag

(
iωCp

)
−Y pln Y −1L Y

lp
n

YL =
(
Y lln + diag (iωCt)

)
.

(E.4)

For the computation of the cost function’s gradient concerning a capacitor c ∈ {Ct,Cp,Cs} we
calculate the following partial derivative of f :

∂f

∂c
=
1
2

trace
((
W ◦ ∂Sm

∂c

)∗
(W ◦ Sm) + (W ◦ Sm)∗

(
W ◦ ∂Sm

∂c

))
. (E.5)
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We continue by calculating the partial derivative of Sm over c.

∂Sm
∂c

= − (Zm + z0I)
−1 ∂Zm

∂c
(Zm + z0I)

−1 (Zm − z0I) + (Zm + z0I)
−1 ∂Zm

∂c
, (E.6)

where we used the identity ∂A−1 = −A−1AA−1. The derivative of Zm varies depending the set
where c belongs to. If c ∈ Cs, then ∂Zm/∂c is a matrix with all vaules equal to zero except one
element {i, i}, i ∈ p corresponding to the feeding port equipped with the matching capacitor in
series:

∂Zm
∂c ii

= − 1
iωc2

, (E.7)

and this concludes the computation of the gradient. If c ∈ {Cp,Ct} then

∂Zm
∂c

= −Y −1m
∂Ym
∂c

Y −1m . (E.8)

If c ∈ Cp then ∂Ym/∂c is a matrix with all vaules equal to zero similarly as before, except one
element {i, i}, i ∈ p corresponding to the feeding port equipped with the parallel matching ca-
pacitor:

∂Ym
∂c ii

= iω, (E.9)

thus the gradient is computed. In the last case where c ∈ Ct the derivative is

∂Ym
∂c

= Y pln Y −1L

(
∂YL
∂c

)
Y −1L Y

lp
n . (E.10)

The final derivative ∂YL/∂c is a matrix with all the elements equal to zero except the element
{i, i}, i ∈ l corresponding to the lumped elements port equipped with the tuning capacitor:

∂YL
∂c ii

= iω. (E.11)

This concludes the calculation of the gradient for all cases.
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