
Skolkovo Institute of Science and Technology

Mathematical Modelling and Analysis of Intelligent
Monitoring Platform for Precision Agriculture

Doctoral Thesis
by

Alexander Menshchikov

Doctoral Program in Computational and Data Science and
Engineering

Supervisor
Assistant Professor, Andrey Somov

Moscow - 2020

© Alexander Menshchikov 2020



 

  

I hereby declare that the work presented in this thesis 

was carried out by myself at Skolkovo Institute of 

Science and Technology, Moscow, except where due 

acknowledgement is made, and has not been submitted 

for any other degree. 

 

Candidate (Alexander Menshchikov) 

Supervisor (Prof. Andrey Somov) 

 

 



Mathematical Modelling and Analysis of Intelligent

Monitoring Platform for Precision Agriculture

by

Alexander Menshchikov
Friday 2nd October, 2020 04:18

Submitted to the Skoltech Computational and Data Science and Engineering
on July 2020, in partial fulfillment of the requirements for the

Doctoral Program in Computational and Data Science and Engineering

Abstract

The population of humanity is continuously growing. As a consequence, it leads
to the growth of human needs in food. Therefore there is increasing demand in
chemicals for fertilization, which affects the environment. To sustain the growing
population with sufficient food, we will need to use even more fertilizers to cover
a greater area. It is expensive and not environmentally friendly. Aerial monitor-
ing opens vast possibilities for precise plant treatment to minimize chemical inputs
for bigger farm fields. However, monitoring of bigger areas requires bigger memory
storage on board of the monitoring platform as well as bigger computation capa-
bilities for post-processing of the collected data. That is why precision agriculture
requires new methods for plant growth monitoring. These new strategies should
allow to cover greater areas, work under various weather conditions, and exclude
human labor from this activity.

To address these problems, one can rely on modern approaches to monitoring.
They include satellite imagery, aerial surveillance by drones, and tracking by Wire-
less Sensor Networks (WSN). The high-resolution satellite imagery is expensive,
doesn’t resolve individual plants, and is not allowed by demand. The WSN has
smaller coverage and implies the active engagement of humans into the mainte-
nance. Unmanned Aerial Vehicles (UAVs) are cheap, can operate by request, and
collect the data in high resolution. It is an appropriate platform to solve the task.

This work is devoted to mathematical modeling and analysis of the electrical
Vertical Take-Off and Landing (eVTOL) UAV, empowered by Machine Learning
capabilities for semantic segmentation and classification of objects of interest in the
real-time onboard. The primary application of the vehicle belongs to the area of
smart agriculture - the reconnaissance of harmful plants like hogweed (lat. Hera-
cleum). Such an application requires a comprehensive enhancement of UAV range
and agility, intelligence, and computer vision capabilities. These challenges are ad-
dressed in this work by the development of the morphing wing, and optimization
of the semantic segmentation neural network to real-time processing of the video
stream onboard of the low-power embedded system.

The methodology behind the morphing wing development includes the Compu-
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tational Fluid Dynamics (CFD) investigation and the wind tunnel investigation of
the wing’s prototype in relevant flight conditions. A primary measurement technique
in the experiment is the Particle Image Velocimetry (PIV). The prototype showed
∼5% of maximum lift-to-drag ration enhancement and also increased stalling angle
for ∼ 4∘ for all the flight regimes. It means expanding the range, controllability,
and agility. It also means enhancement of the battery charge for at least 3%. This
energy could be redistributed for performing the on board data processing.

The computer vision task was addressed by optimization of Fully Convolutional
Neural Network (FCNN) architecture for operation on embedded Visual Processing
Units (VPU) and Graphical Processing Units (GPU). It resulted in a frame rate of
up to 0.64 frames per second (FPS) in real-time operation for a high definition video
stream. The ultmiate system is deployed and investigated in real conditions.
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"Before beginning, plan carefully"

Cicero

Chapter 1

Introduction

Let me introduce to the topic of my Ph.D. work at the Skolkovo Institute of Science

and Technology. The research topic belongs to the area of Precision Agriculture.

Nowadays, there is a need for the platform, which is capable of covering larger areas

and perform data-intensive computations in real-time on board. That is why the

research aims to mathematical modeling and evaluation of different aspects of the

electric Vertical Take-Off and Landing (eVTOL) Unmanned Aerial Vehicle (UAV),

empowered by Artificial Intelligence (AI) system deployed on board for effective de-

tection of harmful or ecology-unfriendly plants with the subsequent approbation of

the developed approach in real-world conditions. Even though modern UAVs have

high-quality multispectral imaging capabilities, the processing of these images is

still a challenging task for machine vision algorithms due to the complex structure

of plants’ topology and broad variety types of background. Partially this problem

can be solved by using Fully Convolutional Neural Network (FCNN) for semantic

segmentation. However, due to the complexity of the proposed problem, existing al-

gorithms cannot adequately perform semantic segmentation of diverse plants in field

conditions. Furthermore, there is still a problem with optimizing high-performance

computational algorithms for mobile platforms, and resolving this new fundamental

approach should be investigated and implemented.

Currently, there are numerous techniques for aerial imagery segmentation. For

example, Haug et al. [2014] proposes to use Random Forest (RF) classifier to es-

timate crop and weed certainty based an overlapping neighborhood around sparse
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Chapter 1. Introduction

pixel positions. At the same time, in Lottes et al. [2016], the authors improved

the method. They added a relative plant arrangement based on Markov Random

Field (MRF) optimization on exploiting the topological relationships between key-

points. Potena et al. [2016] uses a cascade of Convolutional Neural Network (CNN)

for crop and weed classification. In the proposed method the primary CNN de-

tects plants, then the output of this network is further classified by a deeper CNN.

In a similar research Fawakherji et al. [2019] the authors attempt to overcome the

generalization limitations of CNN when the dataset has a few pixel-wise annotated

pictures. They also use a cascade of CNNs, where the primary network performs bi-

nary segmentation between vegetation and soil terrain, while the secondary network

performs a blob-wise classification. Some authors apply Fully Convolutional Neu-

ral Network (FCNN) for semantic segmentation of aerial imagery collected by RGB

camera Badrinarayanan et al. [2017] as well as multispectral camera Sa et al. [2018].

In similar fashion, Lottes et al. [2018] propose an encoder-decoder network archi-

tecture that includes spatial information by considering image sequences. Milioto

et al. [2018] uses a similar structure: they propose to create auxiliary input channels,

which include various vegetation indices, like NDVI, ExG, etc. These approaches

are usually applied to the processing of the data collected onboard the UAV and

further transferred to the computer for processing. Moreover, all these researches

only state that their approaches could be used in real-time processing onboard the

UAV; however, none supports it by test flight data.

That is why the first part of the study creates a generic embedded artificial

intelligence system for large-scale detection and monitoring of plants in real-time.

Direct monitoring of harmful plants using computer vision methods is a unique

study that relies on the latest achievements in the field of AI. The system performs

the detection and segmentation of the hotspot distribution areas of harmful plants

onboard. It sends the plants’ position to the operator, therefore eliminating the

bottleneck of the traditional earth observation pipeline. It usually implies data

collection onboard, uploading to the computer, and further time-consuming post-

processing. Even though it allows us to receive exhaustive multimodal data, it

is often overshot for specific missions, like certain breeds of plant classification.
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The proposed computer vision system was subsequently tested in various scenarios,

including the climate chamber, greenhouse, and aerial monitoring platform. The

development of such an intelligent aerial robotics platform also implies the flying

UAV itself.

Therefore, the second part of the study is devoted to the mathematical mod-

eling of eVTOL aircraft with Morphing Wing (MW). It focuses on aerodynamic

design, development of controller, and estimator. The vehicle has capabilities and

a fixed-wing to perform fast, long-range flight with low power consumption. Due to

higher dynamics of the atmosphere at low altitudes and due to mission requirements,

the vehicle operates under rapidly changing flight regimes. However, aerodynamic

surfaces of such type of aircraft usually stay suboptimal in a rapidly changing envi-

ronment, which leads to losses due to reduced lift-to-drag ratio and control authority.

The proposed aircraft performs the flight in multiple rapidly changing regimes. It

motivates the search for new means of physical control of the vehicle dynamics.

The Morphing Wing (MW) is the right option for this role. There are multiple

approaches to improve the aerodynamic performance of the aircraft using MW. They

usually rely on the optimization of various geometric parameters of the wing to better

fit specific conditions. That could be an adaptive trailing edge Kota et al. [2009] for

saving fuel during take-off and landing. Variable wing span Bashir and Rajendran

[2018] and sweep angle Di Luca et al. [2017] apply to multipurpose UAVs for flight

in a vast range of flight regimes. Variable dihedral, along with span-wise bending,

allows improving lateral stability. Morphing winglets Spivey and Suh [2018] enable

the control of aircraft under the smooth turns more effectively. All these research

works at most develop morphing structures for large scale aircraft, which operate

under large values of Reynolds number. However, the medium-sized UAV, which

usually engaged in agricultural monitoring, operates under low Reynolds number.

This area of aerodynamics is poorly explored, and there is a need for the development

of the morphing structure for a particular application in smart agriculture.

Since MW has the ultimate capability to stay optimal for many flight regimes.

This promising technology could significantly improve the performance and maneu-

verability of the aircraft during the flight. Therefore I assess the performance of the
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wing with the traditional and morphing mechanization using computer simulation

followed by the experiments in the wind tunnel environment. This work also pro-

vides the morphing wing’s design: the compliant rib, made from a combination of

hard and soft plastic and the skin made from the elastomer. The servo actuators

drive the MW. The research demonstrates that the application of the morphing

wing mechanization could improve the lift-to-drag ratio by 15% for specific regimes,

thereby improving the range and time of operation, which is crucial for eVTOL

aircraft.

The study demonstrates the complex approach, which eliminates two key bot-

tlenecks of the modern earth observation drones, used in the precision agriculture

domain. (i) Elimination of the data processing bottleneck through the development

of the payload with edge computing capabilities. (ii) Prolongation of range and im-

provement of controllability through numerical and wind tunnel investigation of new

physical means of control (the Morphing Wing). This task also implies the deriva-

tion of control and estimation algorithms for eVTOL UAV with MW. Even though

MW and proposed computer vision system belongs to different research areas, they

have essential feature - they are inherent parts of UAV, the platform with limited

power. It means that the electric power, saved due to application of the MW, could

be applied for the operation of the computer vision system and vice-versa.

1.1 Thesis Structure

The Ph.D. Thesis has the following composition:

Chapter 1 - Introduction The first chapter includes general information on the

topic of the dissertation. It contains brief Overview, the Scope, the Motiva-

tion, the Goal and Objectives of the Thesis. It also describes Methods and

Approaches of the investigation in brief.

Chapter 2 - State-of-the-art The second chapter contains the literature overview.

It has three subsections; they relate to edge computing and computer vision

with application in precise agriculture, mathematical modeling of eVTOL air-

craft, and aerodynamics of the MW, respectively.
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Chapter 3 - Methodology The third chapter describes the research behind every

thesis objective. It includes the following subtopics:

• Edge Computing: hardware and optimization techniques for particular

task:

– Seed germination task;

– Tomatoes growth task;

– Hogweed localization task;

• Description of the testbed for data collection and data processing;

• Aerodynamic design of the drone;

• Mathematical modeling, numerical investigation and wind tunnel exper-

iments of the MW;

Chapter 4 - Conclusion In the last chapter, we discuss the results obtained dur-

ing the implementation of all the abovementioned thesis objectives.

1.2 The Scope of the Thesis

Modern precision agriculture requires precise and effective monitoring with high

resolution. UAVs could be effectively used to address this challenge since they are

low cost, cover large areas, and, unlike ground vehicles, do not have a mechanical

impact on the field. Unfortunately, modern UAVs, used in precision agriculture, have

limited capabilities. They are focused on the traditional approach to fertilization

with uniform application of plant solutions to the field. That is why this study

is devoted to mathematical modeling and analysis of the intelligent aerial platform

with AI capabilities for effective monitoring of harmful plants. Such a platform needs

to have a visual detection system onboard to predict localization and geometric

parameters of the plant correctly. It should have low power consumption for long-

range flights. The first task is addressed by developing a fully convolutional neural

network and its optimization for inference on a low-power embedded system. The

development of UAV with MW and algorithms of control for it addresses the second

task.
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As a practical application of such a platform, we determine the Hogweed of Sos-

nowski (lat. Heracleum). It is poisonous for humans, dangerous for farming crops,

and local ecosystems. This plant is fast-growing and has already spread all over

Eurasia: from Germany to the Siberian part of Russia, and its distribution expands

year-by-year. In-situ detection of this harmful plant is a tremendous challenge for

many countries. Meanwhile, there are no automatic systems for in-situ detection

and localization of hogweed. In this Thesis, I propose, evaluate, and test a new

combined approach for fast and accurate detection of hogweed by UAV.

1.3 Thesis Goal and Objectives

The goal of the current research is mathematical modeling and evaluation of a unique

intelligent UAV platform for the detection and elimination of harmful plants during

the flight. The platform should have capabilities for data processing, classification,

and spread assessment of harmful plants using AI on low-power embedded systems

onboard. These capabilities should be enhanced by new physical means of drone

control, like MW. These capabilities should become an inherent part of the con-

trol system for effective spraying and eliminating harmful plants during the flight.

For the successful implementation of a complex trajectory, new physical means of

control, like MW, should be created. This thesis goal should be addressed by the

following thesis objectives, which could be separated into two groups: (I) modeling

and development of computer vision system and (II) analysis of aerodynamic sur-

faces for effective implementation of the flight. These two groups contain detailed

sub-tasks.

1. Computer Vision System:

• Collection of the dataset for further training of the neural networks and

computer vision algorithms. It should include birds-eye view images and

segmentation of the harmful plants. Dataset collection will engage the

usage of multispectral and RGB cameras. The data should be collected

in different areas for both individual plants and thickets and should have
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different ambient conditions (like weather and lighting). These images

should be labeled using a semantic mask for two classes: "hogweed" and

"not hogweed."

• Creating a new neural network architecture optimized for embedded elec-

tronics. This task implies test of different optimization techniques and

development of new optimization technique for inference of FCNN on-

board of mobile device, based on Central Processing Unit (CPU), or

Graphics Processing Unit (GPU), or Visual Processing Unit (VPU). the

computationally effective architecture will allow not only to detect the lo-

cation of harmful plants but also will be able to process video in real-time

during the flight, taking into account image blur and different ambient

conditions (light, weather).

• Development of the platform for data collection and data processing. It

will be the payload for the drone. Hence it should have both capabilities

for onboard data-processing and the data-transferring of the processed

data to the operator.

• Analysis of the obtained results. Testing of software and hardware sys-

tem (UAV) in field conditions. Verification of the work of the proposed

algorithms at the test field areas where the data was not previously col-

lected. Thus, the testing of the methodology and the proposed solution

will be independent, and the test results will show applicability in real

conditions. This objective also includes the optimization of the software

and hardware based on the results of field testing.

2. Analysis of aerodynamic surfaces for effective implementation of the mission:

• Creating new physical means and control methods for the effective exe-

cuting of the flight for precise data collection.

• The range of the vehicle and its controllability should be enhanced by

these physical means.

• The investigation should be performed both by computational methods

and in relevant flight conditions during the wind tunnel experiment.

21



Chapter 1. Introduction 1.4. Methods and approaches

1.4 Methods and approaches

The methodology behind the research mostly rely, on the following theoretical, nu-

merical, and experimental approaches:

• Dataset collection will be carried out with the help of a UAV with a camera

in manual or autonomous mode in different weather conditions and under

different light conditions. Manual dataset labeling as well as with the help of

a pre-trained neural network. The list of equipment contains:

– Portative multispectral cameras: CMS-V (8 color bands + black and

white channel, range 550-850 nm), SeekThermal Pro (portable thermal

imaging camera), Mapir kernel (19 bands including the near-infrared

range).

– UAVs registered in the manner prescribed by the legislation of the Russian

Federation: DJI Phantom 4, DJI Matrice 200, and Geoscan 201 Agro.

– Mobile laboratory based on Kamaz for the organization of field trips with

the drone and its recharging during the day.

• The development of all software will be carried out using the programming

languages Python and C++.

• Development and testing of the architecture of the neural networks using

Python with Caffe, TensorFlow, OpenCV, scikit libraries based on FCNN for

mobile platforms.

• Application of embedded systems and single-board computers to be the core

part of the payload’s processing unit.

• Testing of existing optimization techniques and development of new optimiza-

tion techniques for inference of FCNNs onboard of low-power embedded sys-

tems.

• Application of the embedded systems and external GPUs to be inherent parts

of the autopilot.
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• Application of Sensor Fusion methods and methods for processing signals from

sensors (such as Kalman filters, particle filters, etc.) in the development and

implementation of the navigation, orientation, and stabilization systems, to

support reliable flight and good quality data collection.

• Testing of all subsystems separately and in the assembly will be conducted in

the laboratory and operating conditions.

• Application of Computational Fluid Dynamics (CFD) software for analysis of

MW for the proposed eVTOL system.

• Manufacturing of the model for wind tunnel testing and flying tests, using 3D

Printers, Computer Numerical Control (CNC) machines, and carbon manu-

facturing facilities to produce

• Wind tunnel testing of the MW prototype with Particle Image Velocimetry

(PIV).
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"Criticizing someone else’s, offer

your own, and by offering - do it."

Sergei Korolev

Chapter 2

State-of-the-art

Here is a comprehensive review of the literature related to the topic of this work. The

research focuses on the development of the UAV platform for effective monitoring

and eliminating harmful plants. As an example, we determine the Hogweed of

Sosnowski (lat. Heracleum). The approach includes the UAV with an embedded

system onboard running various FCNN. The UAV airframe also includes the MW.

Therefore the Literature Overview contains three parts: (i) Plants’ Phenotyping;

(ii) Edge Computing in Precision Agriculture; (iii) UAV Control and MW.

2.1 Plants Phenotyping

The worldwide population is continuously growing. As well as the average daily

calorie consumption per capita increases annually. Therefore precision agriculture is

becoming a hot topic for countries and organizations engaged in agriculture Pahuja

et al. [2013a]. Indeed, the growing population, the need to extend the area of arable

land, and the increase of the chemical inputs to the soil caused many issues regarding

environmental impact and food safety. Hence, the interest in emerging technologies

developed for the mitigation of these issues also grows Elijah et al. [2018b], Taylor

et al. [2013b]. The greenhouse climate control system continuously advance Gupta

and Quan [2018] in many ways, including application of IoT paradigm Elijah et al.

[2018a] along with AI had been applied to precision agriculture Muangprathub et al.

[2019] Kamilaris and Prenafeta-Boldú [2018]. All these modern technologies along
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with the ML techniques are also widely used for modeling the plants for further

estimation Ali et al. [2017a] and investigation of agriculture deployments Abouzar

et al. [2016]Somov et al. [2018].

According to the International Society of Precision Agriculture ISPAG [2020],

the precision agriculture is a management strategy that gathers, processes and ana-

lyzes temporal, spatial and individual data and combines it with other information

to support management decisions according to estimated variability for improved

resource use efficiency, productivity, quality, profitability and sustainability of agri-

cultural production. This scientific area engages the emerging technologies that have

been successfully applied recently, e.g. remote sensing Zhou et al. [2016], artificial

intelligence Lane et al. [2017c], robotics Chaudhury et al. [2015], sensor networks

Eugster et al. [2015] and IoT Alavi et al. [2018]. These promising technologies allow

for securing food safety, reduce the impact on the environment, and ensures profit

for the economy.

Therefore, precision agriculture is a vast domain and includes almost all areas

of agro technologies. However, for the proposed research, there are three relevant

cases for application and testing of Edge AI: seed germination in a climate chamber,

growth of plants in a greenhouse, growth of plants in an open ground. All of these

challenges are addressed by applying and testing different Edge AI solutions with

computer vision capabilities. The subsections below overview the most recent and

relevant researches behind the topic.

2.1.1 Detection of Seeds During Germination

The controlled seed germination is a crucial problem for modern precision agricul-

ture. As an adult plant, it also has many growing stages that further influence

plant growth and health. The controlled seed germination has already been ad-

dressed Bello and Bradford [2016]. However, the research in this area is rather

fragmented Lee et al. [2017], Ducournau et al. [2005], Awty-Carroll et al. [2018].

From the industrial point of view, the seed germination control by low-power em-

bedded sensors Somov et al. [2015] is a missing link in the greenhouse automation

process, especially for the remote areas. This approach helps to realize distributed
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intelligent sensing into practice.

Modern ML, along with computer vision algorithms, has become a powerful tool

in modern precision agriculture Yao and Ge [2018] and covers many hot topics in

this area. A combination of these techniques advances studies in plant phenotyping,

plant growth dynamics analysis, large-scale data processing for detailed investiga-

tion of the plants, and their characteristics. The image-based approaches behind

this area mostly rely on various CNN and FCNN. These architectures and their

possible implementation Gu et al. [2018] could be applied for classification, detec-

tion, semantic, and instance segmentation tasks. These computer vision techniques

demonstrated promising results in various scenarios. For example, the leaves seg-

mentation for plant phenotyping Scharr et al. [2016], Dai et al. [2015], Dai et al.

[2016], various tasks in greenhouse control and indoor farming Ghanem et al. [2015],

Li et al. [2014], etc. These data-driven algorithms require datasets collection and

benchmarking. Nowadays there is plenty of various datasets for multiple tasks in

precision agriculture, like phenotyping and growth dynamic evaluation Cruz et al.

[2016], Minervini et al. [2016], Silva et al. [2013]. Even though there are several dy-

namic models of seeds germination Forcella et al. [2000], Bello and Bradford [2016]

and a variety of methods of root phenomics Das et al. [2015], there are no publicly

available datasets for seed germination task. Therefore, one of the dissertation’s

objectives is the collection of such a dataset, and it will be described in more detail

in the further sections.

The papers that report on the most recent advances in the area of precision

agriculture Taylor et al. [2013a], Elijah et al. [2018a] declare that deployment of

AI on embedded systems is not a well-studied area yet and there is a high demand

in the industry for the implementation of such systems. At the same time, there is

no mentioning of autonomous monitoring with AI aboard, as well as the prediction

tasks in the agriculture domain. Moreover, for the autonomous operation, it is the

limited energy storage and high-power consumption that has been of great concern.

As has been noticed earlier, computer vision, together with machine learning and

low-power sensing, could help in addressing the seed germination control problem

for industrial automation Zhabelova et al. [2015]. However, squeezing the machine
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learning algorithms into the low-power embedded systems is a non-trivial task Lane

et al. [2017a].

An essential prerequisite for solving this problem is the AI algorithms that can

run on a low-power embedded system. This idea could be realized by applying the

edge computing paradigm performing data processing with the artificial intelligence

aboard a low-power sensing device. This solution does not require local powerful

data processing or complicated data transmission to the cloud, restricted in the

Wireless Sensor Networks (WSN) applied to the monitoring tasks in greenhouses

Pahuja et al. [2013a].

WSN is a collection of wireless battery-powered sensor nodes deployed over a vast

territory Ivanov et al. [2015]. The sensor nodes perform the monitoring tasks and

send the data to a user/server over the wireless network. Sensor nodes are equipped

with the low-power sensors and inherently avoid applications involving the images or

video processing and their transmission as it implies the strict power consumption

requirements. Although some works on the use of AI to image processing in WSN

already exist Shadrin et al. [2019b], this approach does not allow for the extensive

areas coverage, the long-term and autonomous operation of sensing devices. The

applications of WSN with the AI are typically limited to the smart monitoring of

greenhouses Somov et al. [2018].

Indeed, the general bottleneck of cloud computing technology is the throughout

capacity of a data transmission system, e.g., the Wireless Sensor Networks (WSN),

the computational capability, and occupancy of the server. This bottleneck could

be addressed by the application of the edge computing paradigm Shi et al. [2016]. It

performs the data-intensive computation tasks onboard of nodes without involving

massive data transmission to the remote server. The ultimate advantage of these

systems is a significant reduction in the output data size. For example, instead of

sending images to the cloud server (in the range of few Megabytes), edge-computing

systems generate segmentation masks (or the text files). They contain coordinates,

labels of objects on the image, and quantity characteristics of interest (in the range

of few Kilobytes) used for further system control. Such a distribution improves the

reliability and prevents the data losses caused by the blackouts or hack attacks on
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the server.

2.1.2 Detection of Plants in Greenhouse

The investigations accomplished in the area of precision agriculture in recent years

demonstrated significant advances. However, there are still some challenges, that re-

main unresolved. Indeed, a high number of approaches have already been proposed

to automate greenhouses and process environmental data De Silva and De Silva

[2016], Li et al. [2014]. However, the problem of automating greenhouses and mon-

itoring plant growth in remote areas (particularly in developing countries) Pahuja

et al. [2013b] still exists. It can be explained by the challenges associated with the

system autonomous operation and transmission of collected data to high-performance

computers/clouds for further processing. In terms of autonomous operation, it is the

limited energy storage and high-power consumption that has been of great concern.

Regarding prediction, there is a lack of robust universal models available for the

quantitative description of plant biomass changing with the time that can perform

the predictive analysis. Although there are mathematical models that can be ap-

plied to the direct simulation of plant growth (the so-called "bottom-up" approach

Rodríguez et al. [2015]), most of them are based on solving systems of differential

equations and involve large numbers of semi-empirical parameters. Therefore, they

have to be adapted to each specific type of plant and the cultivation technique. It

makes them sensitive to some hidden changes in the environmental and other con-

ditions that are difficult to track Vereecken et al. [2016]. Technically, in the remote

areas, it is almost impossible to obtain all the necessary parameters for making a

good quality predictive model to assess the plant growth dynamics based on the

"bottom-up" approach.

A distributed low-power embedded system with AI on board is required for

addressing this problem. This solution is in line with the "edge computing" paradigm

aimed at data processing with the AI on board the sensing device without involving

complicated data transmission and its further processing in the cloud.

Recent success in smart agriculture domain is mainly powered by the advances in

Wireless Sensor Networks (WSN), 2D/3D imaging systems, machine learning, and
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cloud computing. Although this research and relevant prototypes are still limited,

we provide a concise discussion of the successful attempts in this direction.

The Wireless Sensor Networks (WSN) paradigm is a driving force for monitoring

and control applications Somov et al. [2013] including the control of the climate

conditions in a greenhouse Pahuja et al. [2013b], Mirabella and Brischetto [2011],

Mendez et al. [2012]. Environmental monitoring is a reasonable chip solution for

greenhouses and tends towards the set-to-forget monitoring option for long periods

Lombardo et al. [2018]. Tiny sensors were deployed in difficult-to-access areas at

different height and measured the greenhouse relative humidity and temperature.

The simple control mechanism characterizes this deployment: the actuators are

activated if the threshold values are violated. In this case, the system controls

the predefined settings of the greenhouse. Although this study reports on compact

wireless sensing devices performing energy-efficient tasks when the measured data

are delivered directly to the user or cloud facilities for further processing and data

storage, they inherently lack intelligence. It happens due to the limited computation

and processing resources on microcontrollers, which are not able to run complicated

algorithms.

Up to date, AI has been applied for modeling applications in agriculture. For

example, the machine learning approach is successfully applied for modeling and

further estimating grasslands in Ireland Ali et al. [2017b]. The authors estimate

by processing large volumes of available image data. In terms of modelling, three

models were developed: Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy

Inference System (ANFIS), and Multiple Linear Regression (MLR).

Imaging approaches include 2D, 3D, and sometimes 2D/3D imaging. The 2D ap-

proach is typically helpful in scenarios when a simple structure characterizes a plant

and rather large leaves as analyzed in Rajendran et al. [2009]. Simultaneously, com-

puter vision and machine learning-based solutions demonstrated their advantages in

performing the assessments of fruit characteristics Pouladzadeh et al. [2014]. The

disadvantage of 2D imaging is the complicated software exploited for image anal-

ysis. It suffers from the leaf overlap and concavity. A laser scanning approach is

often a good option when plant digitization is required. It has been successfully
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applied, for instance, to forestry and canopies statistical analysis Yang et al. [2013].

Due to computationally intensive data processing, its application is limited to the

extraction of single plant attributes.

3D imaging is used to capture the shape of the plant and its further analysis

in three dimensions. Thus it overcomes the problems typical for 2D imaging. One

of these methods is reported in Quan et al. [2006]. The authors demonstrate a

semiautomatic 3D imaging system for plant modeling where the reconstructed 3D

points and the actual images are combined. According to this research, more effective

segmentation of the data into individual leaves will be guaranteed for the user.

Another research proposes a 2D/3D system enriched with many sensors Shadrin

et al. [2018a], which can find the correlations between the leaf area and biomass.

The demonstrated approach assists in predicting the growth rate and the leaf area of

the plant. This solution requires a computer or a cloud solution for data processing,

though.

Detailed reviews of the state-of-the-art smart approaches with a particular em-

phasis on the agriculture domain are present in the articles Elijah et al. [2018b],

Taylor et al. [2013b]. To the best of our knowledge, these works do not report on the

deployment of AI on the embedded systems. Also, they do not target autonomous

monitoring, as well as analysis and prediction tasks in agriculture.

2.1.3 Detection of Plants in Open Ground by UAV

At present, agricultural monitoring is typically realized through the Wireless Sensor

Networks (WSN), satellites, or UAV. Since harmful plants usually spread around in

the wild and open fields, this subsection is devoted to an overview of the most useful

aerial platforms for precision agriculture - satellites and UAVs.

The distribution of Hogweed of Sosnowskyi (lat.Heracleum) is a growing problem

in agriculture for many countries. This fast-growing weed spreads over Eurasia

quickly: from Germany to the Siberian part of Russia, and its distribution area is

expanding from year to year. Hogweed is a weed of 3–5 m in height characterized by

a straight, firm stem typically reaching a diameter of 12 cm. Its root is very firm and

is up to 30 cm diameter; the inflorescence is a big umbel located at the end of each
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stem. While blooming, it produces thousands of seeds that are easily distributed by

the wind and water. The hogweed is poisonous for humans, dangerous for farming

crops, and local ecosystems. It creates another research demand to detect and

remove this dangerous weed. The detection task, therefore, imposes many critical

requirements:

• monitoring and detection should be realized without the human presence to

avoid the distribution of the seeds.

• monitoring is expected to cover vast areas.

• for quick-acting, the data analysis results must contain the positioning data

and be available ’real-time.’

UAVs and satellites are another options for collecting the agricultural images

and performing smart monitoring. Both drones and satellites have advantages and

disadvantages. Some of them are critical for precision agriculture.

The Satellites-UAV tradeoff

For satellites, the selection of the altitude above the ground is always a trade-off

between the Field of View (FOV) and Ground Ground Sample Distance (GSD). That

is why a satellite can capture thousands of km2 per orbit pass lasting for around

90 minutes with a low GSD typically equal tens to hundreds of meters per pixel.

The best available resolution for satellite image is 30 cm/px Shean et al. [2016].

Drones usually capture the tens of km2 per flight with the sub-centimeter precision.

It is critical for many agriculture-related tasks Rodriguez-Moreno et al. [2017], e.g.

weeds classification Liu et al. [2013], identification of crop diseases Zhao et al. [2012],

vegetation indices Vega et al. [2015]. That is why the hogweed detection problem

requires high GSD as well.

Another critical advantage of drones in comparison to the satellite option is a

high temporal resolution. The satellites usually keep the sun-synchronous or polar

orbits for the Earth observation, which ensures daily revisiting of the same location

on the ground in specific local time. The problem of capturing the same area several
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times a day by satellites can only be solved by satellite constellation, distributed

over different orbits. Drones can perform a mission by demand along an arbitrary

trajectory over the same location at any local time. It is an essential factor for

hogweed detection since it is a fast-growing plant, and space imagery could miss the

flowering phase.

Nowadays, there are many UAV systems for monitoring agricultural fields Hu-

uskonen and Oksanen [2018]. However, the UAVs accumulate images during the

flight about the absolute coordinate system, and the postprocessing of these images,

e.g., segmentation and classification, occurs on the computer after the mission. De-

pending on the task, these operations have to be performed daily or even hourly. It

is an inefficient and labor-intensive task. Recent research works have demonstrated

the opportunity of creating the autonomous systems and their application in agricul-

ture Andrew et al. [2019]. While none of them perform the semantic segmentation

fully on board, many tasks require the semantic image segmentation and the object

classification during the mission. At the same time, there are no available relevant

multispectral or visual spectrum datasets with a high resolution for plant detection,

segmentation, and classification in the field. These datasets are essential for training

different Machine Learning (ML) algorithms to deploy the trained algorithms on the

embedded systems.

There are examples of detection of thickets of harmful plants based on the blue,

green, red, and near-infrared multispectral bands of the satellite Sentinel-2; For ex-

ample, blooming hogweed stood out in the pictures as pixel scatter spots Tovstik

et al. [2018]. A project similar in content is being carried out in the "CosmoInform-

Center," the detection of malicious bushes based on the analysis of multispectral

high-resolution RGB satellite images. The bright green mask highlights the target

object in pictures. In this case, the spectral brightness of the pixels corresponding to

the hogweed differs from the background pixel values of the surrounding vegetation

and human-made objects in the spectral range of 450-870 nm. The common short-

comings of these methods include the limit of the spatial resolution of images (6.5 -

10 m), which means the impossibility of detecting individual plants and a high error

of determination. Besides, it is impossible to obtain images at a given point in time
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(data from freely distributed LandSat-8, Sentinel -2A updates with the frequency

of shooting at 16 and 10 days, respectively). That is why the UAV development,

capable of performing data processing on board, is on high demand.

The cost of satellite design, manufacturing, launch, and operation are usually

disparate compared to the cost of the drone. For example, the WorldView-3, the

modern reconnaissance satellite by DigitalGlobe, costs 650 million US dollars to

build and launch Kakaes et al. [2015]. Satellites perform continuous operation all

the time in orbit. The operation cycle can last from several months (for Low Earth

Orbit (LEO) nanosatellites) to 15 years (for Geostationary (GEO) satellites). That

is why the price of a single shot by the satellite stays constant in the range 250-

350 US dollars per 25 km2. Drones operate by-demand; hence the price per shot

depends on the particular drone utilization capacity and captured area. That is why

the drones are cost-effective only for the ’small’ areas of several hectares. Matese

et al. [2015].

All the satellites are the subject of a cloudy sky problem. Clouds cover around

40% of the Earth’s surface, which is inaccessible for the carrying out the space

imagery Kakaes et al. [2015]. The drones perform the local imagery missions even

in the case of the low cloud conditions.

Finally, the satellite imagery can be accessed only during the radio window avail-

ability when the satellite and the ground station are in the line of sight. The drone

imagery can be obtained during or right after the flight.

To sum up, UAV is a suitable platform for agricultural field monitoring, especially

in the case of hogweed and other harmful plants. There could be both the thickets

and the individual plants. Individual plants usually occupy a limited area. However,

they can produce up to 20 000 seeds a year. That is why the detection of individual

plants is crucial for the effective elimination of hogweed. Modern remote sensing

technologies can’t observe individual plants with sufficient precision from space.

That is why UAVs are the most appropriate platform for effective hogweed detection.
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Sensors for Plant Phenotyping in Aerial Imagery: Multi-spectral and

RGB cameras

Multi-spectral imaging opens a wide vista for performing the precise plant and phe-

notype detection Dutta et al. [2015] Sodhi et al. [2017] Humplík et al. [2015]. The

main difference between the plant detection in multi-spectral range and common

RGB is the following: some plants have their unique reflection wavebands, which

could be out of visible range. The multi-spectral approach enables the applica-

tion of simple classification algorithms instead of complex FCNNs for plant shape

detection. These algorithms classify the pixels and find those with the intensity rep-

resenting the required waveband and belonging to a certain plant. Many research

works in multi-spectral plant phenotype were dedicated to the remote plant disease

detection Martinelli et al. [2015]. Application of multi-spectral and hyper-spectral

digital cameras for the plants’ disease detection is an exciting research area as a vast

amount of diseases on the initial and developing stages have their unique spectral

characteristics. This approach allows farmers to detect the diseases at an early stage

and prevent the infections from spreading Picon et al. [2019] Große-Stoltenberg et al.

[2018]. Multi-spectral imaging is also used for the detection of physical stress Hong

et al. [2019]. One of the disadvantages is the cost of high quality commercial multi-

spectral cameras comparing to the cost of the typical RGB cameras. The low-cost

multi-spectral solutions mostly aimed at measuring the Normalized Difference Veg-

etation Index (NDVI) Kitić et al. [2019], Kim et al. [2019] and they can not measure

the necessary wavebands for specific plant detection. Hyperspectral cameras can

measure spectrum in a vast range and have an excellent spectral resolution, but

they are too expensive and heavy to put them on the drone as a payload Shuaibu

et al. [2018]. Research work reported in Khan et al. [2018] has shown that the trained

CNN reconstructs the NDVI index from the RGB images. It is commercially effec-

tive to use the RGB camera together with the CNN algorithm in comparison to the

multi-spectral camera. Therefor, in the research we use RGB camera.
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Methods of Aerial Imagery Segmentation

The problem of phenotyping and estimating the various plants distribution in farms

has been addressed by different methods. Several processing algorithms have been

proposed for aerial imagery analysis. The localization and phenotyping of vari-

ous plants have been addressed for many years by different methods relying on the

handcrafted features Lottes et al. [2016]Lottes et al. [2017] or the end-to-end prin-

ciple Potena et al. [2016] Di Cicco et al. [2017]Sa et al. [2018]. The first group of

research works involves a reasonably simple approach, e.g., extraction of statistics

from the HSL (Hue, Saturation, Lighting) color space and using them as an input for

the neural network Burks et al. [2000]. However, recent methods based on classical

Machine Learning approaches engage the Random Forest classification Haug et al.

[2014] and a variation of this method which includes Random Markov Field Lottes

et al. [2016] optimization. The same methodology was applied for the aerial imagery

classification, which includes the RGB channels only Lottes et al. [2017]. Due to

the limitations associated with flexibility, the algorithms behind the remote sensing

analysis in precision agriculture move to the end-to-end approaches. They rely on

various deep learning methods to a large extent. These methods include Convolu-

tional Neural Networks (CNN) and Fully Convolutional Neural Networks (FCNN).

The first ones proved their efficiency in classification and detection tasks. In the area

of precision agriculture, the cascades of CNNs showed high efficiency in the gener-

alization and processing of previously unseen data Potena et al. [2016]Fawakherji

et al. [2019]. Whereas the FCNNs became a standard approach for the semantic and

instance segmentation tasks Badrinarayanan et al. [2017]Ronneberger et al. [2015]?.

FCNNs work well for both the RGB Lottes et al. [2018] and the multispectral im-

agery Sa et al. [2018]Milioto et al. [2018]. However, FCNN is slow for real-time

processing tasks, especially while running on the low-power embedded systems. In

some cases, it is impossible to make the inference using it. In the current research,

we investigate the optimization techniques for making inference of the FCNN archi-

tectures running on the low-power embedded systems.
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2.2 Edge Computing in Precision Agriculture

In modern science and technology, there is a rapid development of mobile elec-

tronics nowadays. Following Moore’s law, the number of transistors placed on an

integrated circuit increases twice every two years. It leads to a reduction in the size

and power consumption of electronics Zaffiro [2015], which means the emergence of

increasingly high-performance miniature devices, such as wearable electronics, lap-

tops, smartphones, portable photos and video cameras, devices for the Internet of

Things (IoT). Also, a similar trend is in the industry, which leads to the emergence

of such embedded systems as miniature autopilot for UAVs Venkatesh et al. [2017]

Santoso et al. [2015], microelectronics for nanosatellites and their subsystems Osman

and Mohamed [2017] Sánchez-Macián et al. [2017], unmanned vehicles Gurghian

et al. [2016] Bojarski et al. [2016], smart cities Misbahuddin et al. [2015], smart

houses Kodali et al. [2016], as well as electronics for automated production (the

so-called Industry 4.0) Cheng et al. [2016].

On the other hand, in the last decade, there has been a rapid development of arti-

ficial intelligence technology. It became possible due to the ubiquitous development

of the Internet (which is necessary for collecting large amounts of data for training

neural networks) and multiprocessing and multi-threaded processors (for example,

graphics chips essential for the effective implementation of neural networks). In turn,

this pushed the development of the so-called Convolutional Neural Network (CNN),

as well as methods of segmentation of objects using computer vision. They include

K-means methods Dhanachandra et al. [2015], methods of growing regions Vo et al.

[2015], segmentation using the watershed method Bai and Urtasun [2017], semantic

segmentation Shadrin et al. [2018b], and many other methods He et al. [2016a]. Over

the past decades, convolutional neural networks have also made great strides. Start-

ing from the classification of handwritten numbers LeCun et al. [1989] and ending

with the classification of emotions by facial expression Fan et al. [2016], interpolation

of frames in slow motion Jiang et al. [2018], improvement of the quality of Magnetic

Resonance Tomograph (MRI) images Milletari et al. [2017], UAV control Smolyan-

skiy et al. [2017] Carrio et al. [2017], unmanned vehicles Bojarski et al. [2017], etc.
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Along with this, the use of semantic segmentation technology in image detection

and classification tasks allows determining the boundaries of an object with pixel

accuracy in real-time Kulikov et al. [2018]. Besides, a field of deep learning (Deep

Neural Network (DNN)) has appeared, which significantly expands and deepens the

capabilities of neural networks Schmidhuber [2015].

The development of technologies for embedded electronics and artificial intelli-

gence led to the emergence and development of cost-effective multiprocessing and

multi-threaded video processors for systems with low computational power Marantos

et al. [2018] Wang et al. [2016]. And also to the emergence of special neural network

architectures for efficient and fast data classification on mobile platforms: You Only

Look Once (YOLO) Redmon et al. [2016], You Only Look Twice (YOLT) Van Et-

ten [2018], Darknet Redmon and Farhadi [2017], Fast Regions with CNN Features

(R-CNN) Girshick et al. [2014], MobileNet Single Shot Detector (SSD) Howard

et al. [2017], Region-based Fully Convolutional Neural Network (R-FCN) Dai et al.

[2016], etc.

Besides, nowadays the edge computing has become of high demand due to the

intensive development of mobile platforms, IoT, robotics, embedded systems, wear-

ables, etc. Edge computing has multiple advantages compared with Cloud comput-

ing and Fog computing Marantos et al. [2018] due to the following technological

limitations Ignatov et al. [2018]:

• privacy issues;

• dependency on an internet connection;

• delays associated with network latency;

• bottleneck problems: the number of possible clients depends on the server’s

computational capabilities.

These trends have significantly influenced the development of modern means of

obtaining and processing aerial photographs. The development of embedded elec-

tronics has contributed to the widespread development of various UAVs for aerial
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photography, agriculture monitoring, and infrastructure inspection. The methodol-

ogy could rely on obtaining depth maps by stereo pairs or lidars as well as on various

thermal and multi-spectral cameras. It has led to the accumulation of a significant

amount of Earth Remote Sensing (ERS) data, particularly aerial photography data.

Such data as Dataset for Object Detection in Aerial Images (DOTA) Xia et al. [2018],

INRIA Aerial Image Labeling Dataset Maggiori et al. [2017], SpaceNet Yuan [2017],

VIRAT Video Dataset Oh et al. [2011], CLIF 2007 Dataset CLIF [2007], Stanford

Drone Dataset Robicquet et al. [2016], EPFL MMSPG Video Drone Dataset Bonetto

et al. [2015], as well as many other data from aerial photography and space photog-

raphy. On the other hand, the accumulation of a large amount of data allowed the

use of neural networks to solve problems more effectively in various industries. The

exception was not the task of germinating seeds Rasti et al. [2018] and monitoring

agricultural land with the help of UAVs Candiago et al. [2015].

At the moment, there are many UAV systems for monitoring agricultural land.

However, usually, such UAVs accumulate photographs during the flight relative to

the absolute coordinate system. The processing (and classification of objects on

them) occurs post-factum on a personal computer or server after the flight. De-

pending on the task, these operations have to be performed daily or even hourly,

inefficient, and labor-intensive. Thus, at the moment, there are no commercially

available UAVs that classify images directly on board during the flight. However,

there are already many tasks, which require semantic image segmentation and ob-

ject classification during the flight Chamoso et al. [2014] Pérez et al. [2014] Jordan

et al. [2015] Xu et al. [2017] Flammini et al. [2016] Adão et al. [2017].

However, implementing such a smart computer vision system on board of low-

power embedded electronics with the constrained size is the problem. The reason

is the lack of energy stored in the battery-powered IoT devices and computation

capability, which are expected to be deployed everywhere and available anytime.

Many research projects tackle the long-term operation problem of low-power sens-

ing devices, e.g., sensor nodes, from a different perspective Minakov and Passerone

[2013], Khaled et al. [2015], Kaup et al. [2014]. It is worth noting that most sens-

ing devices are based on a low-power Micro Controller Unit (MCU), and relatively
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computational extensive algorithms could be run Somov et al. [2017]. However, the

research in adopting artificial intelligence for energy-constrained devices, e.g., em-

bedded systems and mobile phones, is still fragmented Lane et al. [2017b] with the

limited number of experimental-based research projects Chauhan et al. [2018].

A solution to address this problem could be to use Single Board Computer (SBC)

with powerfull CPU, embedded or external GPU and VPU; or use FPGA or devices

for executing these algorithms.

Therefore, the application of various fitting approaches of ML algorithms to mo-

bile and embedded platforms with limited computational capacity is necessary to

overcome the issues mentioned above. There are many ways to fit the Machine

Learning algorithm on board of edge computing platform. They may include hard-

ware acceleration (HA) by Digital Signal Processor (DSP) Codrescu et al. [2014] or

GPU Latifi Oskouei et al. [2016]. The DSP HA is widely used in mobile platforms

due to high performance with low power consumption (even in comparison with

CPUs and GPUs). The GPU HA implies parallel computations across CPU and

GPU. The following libraries could implement it: TensorFlow Mobile TFM [2019],

Android Neural Network API (NNAPI) NNA [2019], RenderScrpit-based CNNdroid

Latifi Oskouei et al. [2016], and RSTensorFlow. The last one is the GPU-based ac-

celerator of matrix operations, making it possible to accelerate matrix multiplication

up to 3 times Alzantot et al. [2017]. Furthermore, some studies show that Render-

Script could be used even with CPUs imprecise computing modes to lower execution

time of computationally-intensive models Motamedi et al. [2019]. Also, System-on-

Chip (SoC) manufacturers propose the SDKs, compatible with their products only.

They include SNPE by Qualcomm, HiAI platform by HiSilicon, NeuroPilot SDK by

MediaTek, etc.

2.3 Morphing Wing for Control of the UAV

2.3.1 UAV Optimal Control

The subject of UAV optimal control could be divided into two fields: control and

estimation. Control usually implies applying different PID (Proportional, Integral,
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Differential) controllers, which use the control signals and sensory data, processed

by estimators, to send correct commands to the actuators and motors. Even though

simple 1D and 2D motion, a single P, PD, or PID controller are sufficient, in case

of complex 3D motion, the system of cascaded PID controllers is required.

Estimation of UAV implies evaluating the current state vector (usually consisting

of 3 translation, three rotational coordinates, and their first, second derivatives, and

biases) from UAV’s sensor values and control inputs. Since the data from sensors is

usually noisy, this problem becomes challenging. Moreover, due to weight and cost

constraints, UAVs have limited on board processing capabilities. Therefore, there

is a need to estimate the abovementioned values as quickly as possible. Estimation

traditionally relies on application of various Bayes Filters, like Extended Kalman

Filter (EKF) Thrun et al. [2005]. It is a nonlinear extension of the Kalman filter,

which linearizes a nonlinear transition and measurement model around the current

state. However, the Unscented Kalman Filter (UKF) Wan and Van Der Merwe

[2000] has comparable runtime, but it is simpler to implement, and it has better

accuracy.

Usually, the accelerometer and gyro inputs are used as control inputs. For ex-

ample, Erdem and Ercan [2015] show, that it is usually better to process the data

from both positioning (either Geo Positioning System (GPS) or camera) and atti-

tude, Inertial Measurement Unit (IMU) sensors for the measurement stage. Cristi

and Tummala [2000], Quan [2017] also showed in their works, that multi-rate KF

improves the precision of estimation. However, the update is performed separately

for the GPS, magnetometer, and IMU.

It means that the state vector contains both acceleration and angular velocity.

However, it could be neglected to simplify the math and implementation, as per-

formed in the Ardupilot ard [Accessed March 5, 2018]. Due to the limitations of

computational capabilities, one may use different state transition models in control

compared to the EKF.

It was shown in Erdem and Ercan [2015] that EKF for a mobile device with IMU

and camera has the best performance, while the IMU used as a measurement input.

It gives 1 cm accuracy. At the same time, the algorithms behind Ardupilot men-
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tioned above, rely on the idea of using IMU data to perform control and prediction

updates. For example, according to Bry et al. [2012], it is a standard approach.

2.3.2 Morphing Wing for UAV

UAV progressed a lot within the last decades Lim et al. [2012]. This technology en-

ables a high number of monitoring applications Colomina and Molina [2014], as well

as commercial services Liu et al. [2014]. At the same time, the UAVs do not carry

humans, opening up wide vistas for experimentation on mechanical parts and elec-

tronic systems. The Morphing Wing (MW) is a promising technology Noviello et al.

[2017], helping improve the flight control and efficient use of the fuel. MW relates

to the so-called Intelligent Structures Wada et al. [1990] that have close integra-

tion of the actuation, sensing, controlling, and computing capabilities. That kind of

structure can sense and perform actions according to the external conditions based

on non-trivial controlling and computing algorithms. Highly cognitive properties of

those structures make them the kind of bio-inspired embedded neuro systems for

engineering applications. To better understand the Intelligent Structures concept,

one may refer to the article Wada et al. [1990], where they are described as the

subset of a complex intersection of adaptive, sensory, and controlled structures and

include the high authority control system Crawley [1994]. The adaptive structures

are defined as those that possess the actuators that alter system states and charac-

teristics in a controlled manner Wada et al. [1990]. According to another definition,

the Adaptive Structures are the structures that can modify their geometric configu-

rations and physical properties purposefully Larson [1966]. The adaptive structures

have a system of distributed actuators. All the wings of conventional aircraft have

multiple actuators for flaps, slats, ailerons, etc. That is why the wings of tradi-

tional aircraft are the adaptive structures. The sensory structures Mustapha [2017]

have the system of distributed sensors. These sensors send back information about

the state of the structures or the external conditions (temperature, flow velocity,

pressure, current, etc.). The controlled structures Sairajan et al. [2016] are within

the overlap of the adaptive and sensory structures. The state of these structures

could be influenced by the information from sensors in a simple close-loop or more
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advanced control system architecture. The active structures Wu et al. [2016] are

within the subset of controlled structures. Their actuators also have load-bearing

functionality. Intelligent structures, in turn, is the subset of active structures. They

usually have complex computational architecture on top of the control system. Cur-

rently, there are many examples of how intelligent structures can be applied to the

modern aerospace industry. These examples include: aeroelastic control and maneu-

ver enhancement of a helicopter Dimino et al. [2017], active structure damping Tang

et al. [2017], wave propagation control Bergamini et al. [2015], active stabilization

(aircraft flutter) Tsushima and Su [2017], vibration and shape control Zhang et al.

[2015], creating the adaptive nozzle for the noise reduction Machairas et al. [2014].

Intelligent Structures could be found in many applications including lighter-than-air

aircraft Sun et al. [2016], civil Dimino et al. [2017] and military aircraft Marks et al.

[2015], UAVs Jenett et al. [2017], flapping wing aircrafts Zhang and Rossi [2017], etc.

Nowadays, the crown of that technology is the so-called Smart Intelligent Aircraft

Structures (SARISTU) project Wölcken and Papadopoulos [2015]. It is the interna-

tional collaboration of over 50 organizations aimed at developing the highly-efficient

MW for civil airliners. The materials behind the topic of Intelligent Structures are

mostly deformable and could implement multiple tasks. Some of them - due to its

crystal lattice. Piezo-electric ceramics and polymers, for example, are widely used

as both sensors and actuators Gaudenzi [2009]. Smart Memory Alloys (SMA) and

Smart Memory Polymers (SMP) Gaudenzi [2009] are used as actuators for smooth

and continuous deformation of internal structures or skin. Other materials could

perform multiple tasks due to their topology. Corrugated skin Previtali et al. [2016]

makes it possible to stretch and contract skin regions, which need to stay highly

flexible for the actuator (e.g., skin on the bottom part of the wing in the wing-flap

joint). Compliant mechanisms Vasista et al. [2016] are the topologically optimized

kind of structures. They usually are single-part joint-less mechanisms that can easily

substitute the analogous multi-partial mechanisms. They are designed to distribute

mechanical stress over the whole structure and, consequently, sustain billions of de-

formations. Furthermore, due to the absence of joints, they have higher efficiency of

momentum transition, hence significantly lower backlashes and higher grasp preci-
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sion than multi-joint tools. Due to these features, compliant mechanisms are widely

used as microgrippers in medicine and physics Chen et al. [2016]. These mechanisms

do not produce noise and perform smooth deformations. Therefore, they are appli-

cable in soft robotics Liu et al. [2018], aerodynamics, and hydrodynamics. They

could be used as part of wings Wakayama and White [2015], wind turbines Alejan-

dro Franco et al. [2017], car spoilers, etc. Structures with the cellular honeycomb

cores are usually used as an internal filler of the wing, and they are not new in aero-

nautics. Nowadays, however, it is possible to apply them as an inner deformable

part of the morphing wing: as the under-skin morphing filler for smooth aileron or

flap deformation Olympio and Gandhi [2010]. It could also be used as an internal

structural part for morphing wings with variable wingspan Bashir and Rajendran

[2018]. The skin of MW with a wide range of stable shapes could be manufactured

from multi-layered smart laminates, which incorporate multiple layers made from

different materials with specific properties Ferreira et al. [2016]. These properties

vary depending on the aeronautics system, their purpose, and the particular applica-

tion of the material. They could have various capabilities: transformable structures,

skin with variable electric resistance or thermal conductivity, etc. In some fields, all

these smart materials are not applicable or appropriate. That is why the structures

made from traditional materials (like aluminum, titanium, steel alloys or carbon

and glass fibers) with the optimized topology of the internal structure Aage et al.

[2017] could become the lightweight smoothly deformable airframe. The Morphing

Wing concept, as part of Intelligent Structures, could be classified into three main

categories Sofla et al. [2010]: planform alteration, out-of-plane transformation, and

airfoil profile adjustment. Planform alteration includes span-wise, chord-wise, and

sweep transformation (swing wing and oblique wing). The out-of-plane transforma-

tion includes chord-wise, span-wise bending, and wing twisting. The most notable

approaches behind these types of MW are wing sweep and wing twisting. However,

the present study focuses on the development of MW with airfoil profile adjust-

ment. The first MW of such type was created in 1986 as an embedded part of

F-111 jet fighter Crawley and Lazarus [1991]. However, at that time, it was inef-

ficient and impractical. A few years later, incorporating actuators into the wing
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substructure or skin, thereby developing the actual adaptive aeroelastic structure,

has been investigated with the promising results Kota et al. [2009]. However, 20

years later, “FlexSys inc.” proved, that the adaptive wing with a smooth variable

flap for business jets could become effective and commercially attractive Huston

and Bond [2017]. Modern UAVs with morphing structures could smoothly deflect

their leading edge to increase lifting force and shift separation point downstream

on high Angle of Attack (AoA). They do that more effectively than UAVs with

traditional mechanization Sodja et al. [2019]. There are also applications with an

adaptive trailing edge. The deflection of the trailing edge could be local (adaptive

flap or aileron) Kota et al. [2009] or can continuously and smoothly vary over the

span Burdette et al. [2015]. Variable wingspan Bashir and Rajendran [2018] and

sweep angle Di Luca et al. [2017] wings are used for multi-functional UAVs that need

to perform both high-efficient loitering and high-speed maneuverable flight during

the mission. UAVs with a variable dihedral angle and span-wise bending are de-

signed to increase lateral stability and implement new approaches in aerodynamic

control of the aircraft Guo et al. [2017]. Aircraft with a variable twist angle usually

have better controllability and higher authority per degree deflection. These wings

are often lightweight due to the advanced structural shape and distribution of the

air loads over the wingspan, leading to reducing the weight of the spar Wölcken and

Papadopoulos [2015]. The morphing winglet is Boeing’s new advance in aeronautics

materials Spivey and Suh [2018]. Although it is purposely designed for passenger

aircraft, it is currently investigated onboard the UAV 1:11 scale model of passenger

aircraft. It could further be used as an inherent part of the advanced morphing UAV.

The abovementioned aircraft belong to classes of small, medium, and large UAVs.

However, there is also wide domain of Micro Aerial Vehicles (MAV) Zakaria et al.

[2012]. It usually includes paper plane-size aircraft and bio-inspired flapping wing

machines, which mimic birds, insects, bats, and other flying animals. MAVs mass

and wingspan doesn’t exceed 100g and 15 cm respectively Shahzad et al. [2018].

The flight mechanics of these tiny machines are complex and unusual for bigger

aircraft because flapping motion is usually associated with continuous deformation

of flexible airfoil during a single flap Su et al. [2017]. Furthermore, aerodynamic
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lift generation mechanisms for natural flyers usually produce unsteady aerodynamic

forces, which vary over the phase of a flap; they include clap and fling, delayed

stall, rapid pitch rotation, wake capture, etc. Zhu and Sun [2017]. The intensity

of these mechanisms depends on many aspects: geometry (planform shape and as-

pect ratio) Shahzad et al. [2018], position (positional, deviation, and pitch angles)

and amplitude of motion Zhu and Sun [2017]. For example, insect flyer with high

stroke amplitude (120∘-160∘) mainly produces high lift by the delayed stall mecha-

nism, whereas in a case with low amplitude (∼60∘), so-called “paddling mechanism”

would dominate Zhu and Sun [2017]. Numerical investigations of such mechanics

rely on high-performance computing because flexible wings with complex topology

require moving mesh. Moreover, the periodic motion of lifting surfaces generates

sophisticated velocity and vorticity profiles Han et al. [2018]. The design of shape

morphing lifting surfaces relies on the so-called aerodynamic-structural coupling.

It is an already well-studied technique in the development of MW for medium-size

UAVs Gamboa et al. [2009]. This technology would help in the design of MW for

bio-inspired robotics and other flapping machines with complex dynamics in the

future. Summing up, the Morphing Wing is a promising technology that enables

improvements in efficiency, stability, and controllability of multipurpose UAVs. It

implies applying multi-functional materials with embedded structural, sensing, and

control capabilities, as well as lightweight structures due to their topological, dy-

namic, or material properties. ‘FlexSys inc.’ currently owns the most advanced

technology, which demonstrates progress in topology optimization for compliant

mechanisms, smart materials, and actuators, as well as implantation of corrugated

skin. However, it was created for business jets – fast passenger airplanes that fly in

the conditions with high Reynolds numbers, low AoA, and perform gentle maneu-

vers with low g-loads. UAVs, in contrast, operate in conditions with low Reynolds

numbers and low to high AoA. Furthermore, they could perform abrupt maneuvers

with high g-loads. Such a system is on high demand in application to precision

agriculture, for tasks of detection of harmful plants, which usually grow irregularly

in remote locations. It significantly influences the path planning of the UAVs, which

need to be agile. And MW enhances this capability.
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"The method is more important

than discovery, because the right re-

search method will lead to new, even

more valuable discoveries."

Lev Davidovich Landau

Chapter 3

Methodology

The upcoming sections are devoted to developing and testing the low-power embed-

ded platform with computer vision capabilities for monitoring applications in smart

agriculture. The common research question of all the sections is "how to design a

self-contained system capable of plant detection by using low-power computational

devices and maintaining a high level of accuracy on the results." The first three

sections address this question from the hardware and algorithmic perspective, the

latter from the power consumption perspective, which is closely connected to the

overall platform’s aerodynamic aspects. Investigation begins with the computer vi-

sion system development (3.1), continues with testing under laboratory conditions

in the climate chamber (3.2), then follows by the examination in the greenhouse

(3.3) and finalizes by the trial on board of the UAV (3.4). Then the study turns to

aerodynamical aspects of the proposed UAV, which include CFD investigation and

wind tunnel experiment (3.5.2) and key aspects of the control system development

for the UAV (3.5.3).
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3.1 Development of the Embedded System with AI

Capabilities

3.1.1 Introduction

The current section reports on the development of the monitoring platforms for

various computer vision tasks. Such as classification, object detection, and seman-

tic segmentation. The proposed approach demonstrates how to design a low-power

autonomous monitoring platform with AI capabilities for various applications in

precision agriculture. These applications include seeds germination in the climate

chamber, the tomato growth monitoring in the greenhouse, and real-time hogweed

monitoring on board of Unmanned Aerial Vehicle (UAV). The approach relies on

trading-off and benchmarking the Single Board Computer (SBC) by a variety of

characteristics. Besides, the optimization technique for inference of Convolutional

Neural Network (CNN) on board of low-power embedded systems is reported. The

section’s outcomes are the basis for the monitoring platforms, reported in the sec-

tions 3.2, 3.3 and 3.4.

The results of this section were published in the conference proceedings Prutyanov

et al. [2019].

3.1.2 The Trade-Off Study of the Available Platforms

The key component of the proposed embedded system with AI capability should

be a SBC because these platforms are small, lightweight, cheap, and can handle

computer vision tasks. However, their computational performance is significantly

lower than that for modern desktops and laptops. Therefore the RAM size and

the performance of the processor are limited. However, since this platform will

become the key part of the testbeds in the laboratory, greenhouse, and flight tests,

the characteristics of mass, size, and power become critical. The SBC candidates

were chosen among the most popular commercially available computers: Raspberry

Pi (RPi), Neural Computer Stick (NCS) (version 1 and 2), Nvidia Jetson Nano,

Google Coral, Odroid XU4 and commercially available laptop, used as a reference.
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For details see the Table 3.1.

All the proposed platforms have multiple cores and adequate RAM size to per-

form inference of modern CNNs and FCNNs on board. However, for real-time

processing of video streams, this is not sufficient. The platform should have some

AI acceleration coprocessor for fast inference. From this point of view, Raspberry

Pi with various combinations of external VPU as well as Jetson Nano with power-

ful multiple cores GPU and Google Coral with mobile TPU seem to be the most

suitable platforms for the mobile computer vision task. However, the monitoring

platform should have data-intensive computing capabilities, low power consumption,

small size, and weight. It will become a core part of a compact autonomous device.

From this point of view, plain RPi is the lightest platform with the smallest power

consumption. Therefore, there is a need to benchmark all the abovementioned plat-

forms in various computer vision tasks. The Odroid UX4 was discarded from this

list since it does not significantly outweigh other platforms.

48



Chapter 3. Methodology 3.1. Development of the Embedded System with AI Capabilities

C
ri

te
ri

on
L
ap

to
p

A
S
U

S
U

X
30

5C
A

R
P

i
3B

R
P

i
3B

+
N

C
S

R
P

i
3B

+
N

C
S
2

Je
ts

on
N

an
o

G
oo

gl
e

C
or

al
O

d
ro

id
X

U
4

A
rc

hi
te

ct
ur

e
x8

6_
64

A
R

M
A

R
M

A
R

M
A

R
M

A
R

M
A

R
M

T
yp

e
In

te
l

C
or

e
m

3-
6Y

30
C

or
te

x
A

53
C

or
te

x
A

53
C

or
te

x
A

53
C

or
te

x
A

57
C

or
te

x
A

53
C

or
te

x
A

15

C
or

es
4

4
4

4
4

4
8

R
A

M
,G

b
4

1
1

1
4

1
2

A
I

ac
ce

l-
er

at
io

n
co

pr
oc

es
so

r

N
/A

N
/A

N
C

S
w

it
h

12
12

8-
bi

t
SH

AV
E

co
re

s
@

0.
6

G
H

z

N
C

S2
w

it
h

16
12

8-
bi

t
SH

AV
E

co
re

s
@

0.
7

G
H

z

12
8-

co
re

N
V

ID
IA

M
ax

w
el

l
@

0.
92

1
G

H
z

G
oo

gl
e

E
dg

e
T

P
U

M
L

ac
-

ce
le

ra
to

r
co

-
pr

oc
es

so
r

N
/A

G
F
LO

P
S

41
.9

3.
62

10
3.

62
10

03
.6

2
47

2
40

00
8.

3
Av

er
ag

e
P
ow

er
,W

15
.9

2.
4

3.
4

3.
4

10
15

13
.9

G
F
LO

P
S/

W
2.

63
1.

51
30

.4
8

29
5.

18
47

.2
26

6.
67

0.
6

Si
ze

,
W

xD
xH

,
m

m

32
5x

22
6x

12
.7

85
.6

x5
6.

5x
17

14
5.

6x
56

.5
x1

7
14

5.
6x

56
.5

x1
7

10
0x

80
x2

9
88

.1
x5

9.
9x

22
.4

83
x5

9x
18

W
ei

gh
t,

gr
am

s
90

7
45

80
80

14
0

13
8

60

Ta
bl

e
3.

1:
Si

ng
le

B
oa

rd
C

om
pu

te
rs

Tr
ad

e-
O

ff
St

ud
y.

49



Chapter 3. Methodology 3.1. Development of the Embedded System with AI Capabilities

3.1.3 The Benchmarking

The characteristics enlisted in the Table 3.1 are mostly available in datasheets by

manufacturers. However, some of these parameters provide only general character-

istics, like average power consumption. For a better understanding of the embedded

system performance under conditions close to the real-time video stream processing,

the dynamics of the following characteristics is required:

• Frames per Second (FPS)

• Power consumption

• CPU Temperature

The framerate could significantly change depending on the neural network type,

the input sample’s size, and available RAM and CPU. The power consumption

and temperature of the CPU will change with the overall computational load of

the system. A high CPU’s temperature could lead to overheating. The power

consumption is the limiting factor of the autonomous monitoring platform’s power

budget. Moreover, there is the need to improve all these parameters by optimization

of the neural networks. Therefore, the objectives of this section are:

1. Find maximum framerate for different pre-trained CNNs for the following com-

puter vision tasks:

• Classification

• Detection

• Segmentation

2. Find the power consumption during various modes, including the inference of

CNNs.

3. Find the peak CPU temperature during the inference.

4. Implement an optimization technique for the improvement of the abovemen-

tioned parameters.
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The CPU and RAM loads are limiting factors of SBCs in several ways. Firstly,

all the platforms with AI acceleration coprocessors (see Table 3.1) rely on CPU as

the vital element for receiving the data from the camera and sending it to the CNN

input. The CNN inferences on the AI accelerator and do not influence the CPU

performance. Secondly, the RPi also uses CPU as the critical component for data-

intensive calculations. Therefore, the CPU performance as a limiting factor of the

overall monitoring platform performance. Besides, the amount of RAM influences an

SBC capability to load the neural networks’ parameters and provide high-resolution

images at high framerate to a CNN input. Both parameters significantly influence

FPS, Power Consumption, and CPU temperature. Nevertheless, the latter parame-

ters are the most important in the current research; therefore, they will be outlined

in this subsection. However, the CPU and RAM load will be demonstrated in the

next subsection in the CNN optimization techniques.

FPS

For the application of SBC in different precision agriculture tasks the framerate or

Frames per Second (FPS) characteristic is essential. High FPS is especially impor-

tant in terms of a further application for the development of monitoring payload

for UAV. The FPS in this application will significantly influence the real-time plant

detection capability during the flight of the UAV.

The proposed SBCs were tested in various computer vision tasks, including clas-

sification, object detection, and segmentation. The results of the experiment are

enlisted in Table 3.2. Note, that "N/A" (not applicable) results could occur due to

various reasons: not sufficient memory capacity, unsupported layers or frameworks,

or hardware and software limitations.

The methodology behind the framerate test is the following. The pre-trained

Mobile Net v2 Howard et al. [2017], Inception v1 Szegedy et al. [2015] were used for

classification task; Tiny YOLO v3 Redmon and Farhadi [2017] and MobileNet SSD

v2 Howard et al. [2017]- for the object detection tasks. These neural networks were

trained on the Common Objects in Context (COCO) dataset Lin et al. [2014]. The

test image with ten recognizable objects was sent to the neural network’s input 10000
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Table 3.2: Comparative study of SBCs performance in computer vision tasks

Model Jetson
Nano

RPi 3B RPi 3B +
NCS

RPi 3B +
NCS2

Google
Coral

Classification
MobileNet
v1
(300x300)

64 FPS 2.5 FPS 7.5 FPS 30 FPS 130 FPS

Inception
v1
(224x224)

55 FPS N∖𝐴 5.8 FPS 12 FPS 243.9
FPS

Object Detection
Tiny
YOLO v2
(416x416)

25 FPS 0.5 FPS 2.57 FPS 5.1 FPS N∖𝐴

MobileNet
SSD v2
(300x300)

39 FPS 1 FPS 4.5 FPS 11 FPS 48 FPS

Segmentation
UNet
(1x512x512)

18 FPS N ∖𝐴 N∖𝐴 5 FPS N∖𝐴

times; after that, the average FPS was computed. A similar test was performed with

UNet Ronneberger et al. [2015]. However, it was pre-trained on the original dataset

for cells’ membranes segmentation.

According to Table 3.2, the Google Coral outperforms all the other candidate

platforms. However, Jetson Nano and Raspberry Pi with various s demonstrate a

better capability to run different types of s. In contrast, Google Coral cannot run

some types of object detection and semantic segmentation neural networks. More-

over, for most of the precision agriculture tasks addressed in the current research,

the framerate greater than 30 FPS is an overshoot. Even for aerial monitoring

tasks. Furthermore, Google Coral does not support upsampling operation, which is

the subject to discard it from the list of platforms candidates for semantic segmen-

tation of plants from aerial imagery. Moreover, according to the Table 3.1, Google

Coral has higher power consumption in comparison to the other platforms, it could

become a limiting factor for all the precision agriculture applications, described in

the upcoming sections.
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Power Consumption

Power consumption is a crucial factor in the evaluation of the energy efficiency of the

system. The monitoring platform will be further used in the laboratory, greenhouse

environment, and payload for a UAV. In all cases, it will operate autonomously.

Therefore it will be powered from a local power source as a battery. That is why the

evaluation of power consumption under various conditions is essential. The average

power consumption, measured by the manufacturer is not sufficient for monitoring

tasks, since the monitoring platform operates in different modes, as hibernation and

monitoring modes; therefore, idle and peak power consumption are necessary to

estimate.

The methodology behind the investigation is the following. All the platforms

were plugged to the 5V power source via the multimeter, connected inline. The

multimeter has an accuracy of ±0.01𝐴. In the case of Raspberry Pi, used with NCS1

and NCS2, the multimeter was used only in line with the Raspberry Pi’s power input.

Therefore, the power consumption by the whole platform was measured. However,

the power consumption by NCS1/2 was not. According to the manufacturer’s official

data, the power consumption by NCS1/2 is 1W (as depicted in Table3.1, the power

consumption by RPi 3B + NCS1/2 is the sum of RPi power consumption and the

NCS1/2 power consumption). However, according to the study Sukholeyster [2020],

the NCS power consumption depends on architecture and the number of Streaming

Hybrid Architecture Vector Engine (SHAVE) cores used in operation. Thus, power

consumption of NCS can vary from 0.7 to 1.7 Watts.

In the experiment, the testing platform was unplugged from the keyboard, mouse,

monitor, and camera to evaluate the power consumption by the plain SBC only. Dur-

ing the test, the voltage and current under different operation modes were measured.

Then, the power consumption was calculated by the formula: 𝑃 = 𝐼 *𝑈 , where P is

the power consumption, I is current, and U is the input voltage. The results of the

test are enlisted in Table 3.3. In addition three neural network architectures were

used for power consumption estimation of the RPi and RPi with NCS: Inception v1

Szegedy et al. [2015], Tiny-YOLO v2 Redmon and Farhadi [2017] and MobileNet v1

Howard et al. [2017], see 3.4.
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Table 3.3: Comparative study of SBCs power consumption in different modes

Model Jetson
Nano

RPi 3B RPi 3B +
NCS

RPi 3B +
NCS2

Google
Coral

Idle (W) 2.25 2.05 2.5 2.4 3
Peak (W) 6.1 5.25 4.3 4.55 4.8

Table 3.4: Comparative study of SBCs power consumption for different CNN infer-
ence on board of RPi and RPi with NCS

Model RPi 3B RPi 3B + NCS
Inception v1 (300x300) N∖𝐴 3.71
MobileNet v1 (300x300) 2.2 3.195

Tiny-YOLO v2 (416x416) 2.659 3.675

According to the investigation, the Raspberry Pi has the minimum power con-

sumption under idle mode. Therefore, it might be efficiently used in various appli-

cations, characterized by a prolonged hibernation mode period. Such applications

might include seed germination prediction in thermal camera and time series predic-

tion of tomato growth in a greenhouse. Raspberry Pi with NCS1/2 and Google Coral

have smaller power consumption in the peak mode than Raspberry Pi. Neverthe-

less, they have more significant power consumption in idle mode. Therefore, these

platforms are favorable in the application, where object detection takes a significant

part of operation time. Jetson Nano has the highest power consumption among all

the platforms. However, Jetson and RPi + NCS2 seem to be the best candidates

for semantic segmentation of aerial data, since they can efficiently process FCNN

on board, see Table 3.2.

Temperature Measurements

The evaluation of the CPU temperature is essential from the point of operation

under various conditions. Any SBC might face the problem of overheating in ser-

vice, even being under operating temperature. Overheating may lead to throttling

the performance or even end up with switching off or rebooting the SBC. All the

cases may end up with undesirable consequences, including data loss and operation

interruption. To prevent overheating, one needs to anticipate it on the design stage.

Therefore, estimation of the CPU temperature under various conditions is essential.
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Table 3.5: Comparative study of SBCs internal CPU temperature

Model Jetson
Nano

RPi 3B RPi 3B +
NCS

RPi 3B +
NCS2

Google
Coral

CPU tem-
perature
(C𝑜)

53 83 RPi 51/
NCS 45

RPi 52/
NCS2 45

60

Operation
tempera-
ture range
(C𝑜)

-25 to 80 -40 to 85 0 to 40 0 to 40 0 to 50

The investigation methodology relies on the measurements by the temperature

sensors on board SBCc. All the measurements were performed under the environ-

mental temperature of 24 degrees Celsius. During the investigation, an SBC was

isolated from heat sinks and sources. The data from the CPU temperature sensors

was accessed from the Linux command line. All the temperature measurements were

performed after 10 000 inferences of the MobileNet v2 (300x300). The recommended

operating temperature, as well as the results of the experiment, are in the Table 3.5.

According to the results, the Raspberry Pi demonstrates the highest CPU tem-

perature during the inference of the MobileNet v.2. At such temperature, it is

exposed to performance throttling due to high temperature. Therefore, for reliable

operation, it requires an external heat sink or active cooler. However, the applica-

tion of an AI accelerator significantly reduces the external temperature from 83 to

51 degrees. It happens due to transferring all the calculations from the RPi CPU

to the external VPU. The temperature of other platforms: Google Coral, Jetson

Nano, and both NCSs are stable during the operation. However, only Jetson and

Coral stay in the operating temperature range. Therefore, they seem to be the most

reliable in terms of overheating; the Raspberry Pi requires an additional heat sink

or external VPU for reliable operation.

55



Chapter 3. Methodology 3.1. Development of the Embedded System with AI Capabilities

3.1.4 Optimization of CNN for inferencing on low-power em-

bedded device

This subsection reports on the optimization technique implemented for MobileNet

v1, pre-trained on ILSVRC2012 dataset, Russakovsky et al. [2015]. It was tested

on the Raspberry Pi 3B and Raspberry Pi 3B with NCS, Intel Movidius. The

optimization technique relies on an adjustment of depth and input size of CNN.

The input size is a resolution of the input image. In the experiment it takes the

following values: 128, 160, 192 and 224. The depth is the characteristic, specified

by parameter 𝛼, which takes the following values in the experiment: 0.25. 0.5, 0.75

and 1.0. This parameter influences the number of input and output channels for

each convolutional layer of the MobileNet v1. For example, 𝛼 = 1.0 corresponds to

original MobileNet v1 with no changes, 0.5 corresponds to the architecture with half

of the input and output channels, and so on. Therefore 𝛼 significantly influences

the number of operations and accuracy of the neural network (see Fig. 3-1), either

the input size of the image (see Fig. 3-2).

Figure 3-1: MobileNet classification accuracy and computational complexity with
different depths.

Consequently, shrinkage of the input size and depth of the CNN results in a

reduction of the number of operations. However, it also results in the accuracy

reduction. Nevertheless, the right combination of these two parameters would reduce

CPU and RAM load and increase FPS.
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Figure 3-2: MobileNet classification accuracy and computational complexity against
different input sizes.

FPS

Figure 3-3 shows the FPS value dependency on the parameters of executable neural

networks. All the input images have a square shape. Therefore, the first number

corresponds to the depth of the neural network and the second - to the input layer’s

size.

Figure 3-3: Different MobileNet FPS rates with and without Movidius.

For most experiments, the RPi with NCS (Movidius) FPS is around 20, while the

mean value of RPi FPS is 7. In general, for an object detection related applications,

1 FPS is a good result. That is why RPi can be used even for more reliable MobileNet

neural networks in a frames-per-second metric.
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CPU and RAM load

Next, CPU and RAM loads were considered as shown in Figure 3-4 and Figure 3-5,

respectively. In real applications, in addition to running a camera with the neural

networks predicting labels, the user will most likely run other processes, e.g., storing

it to a database or running other system scripts. Therefore, it is essential to consider

that only running a heavy neural network on RPi can take up almost all CPU power

and a considerable portion of RAM.

Figure 3-4: Raspberry Pi CPU load during MobileNet execution on Raspberry Pi
and Movidius NCS.

Usage of NCS does not affect CPU functioning, and only 20% is used for the

pre-processing image task. On the contrary, using only RPi takes an additional 20%

to 60% of CPU usage, depending on the neural network size.

Figure 3-5 shows a comparative study on RAM Load while using the lightest and

the heaviest models. Movidius requires the same amount of memory for both cases,

which is around 22%. If using only RPi, the extra 10% is needed when launching a

heavier model.

CPU Temperature

The most critical part of the experiments is to figure out whether the neural net-

works could be safely executed for an extended period. If the IoT device has suf-
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Figure 3-5: Raspberry Pi RAM consumption during the MobileNet execution on
Raspberry Pi and Movidius NCS.

ficient power supply, the only thing that should be avoided is overheating. CPU

Temperature analysis, while using only RPi and Movidius, is depicted in Figure 3-6.

Figure 3-6: Raspberry Pi CPU package temperature during the MobileNet execu-
tion.
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The CPU Temperature is compared for cases with the lightest and the heav-

iest models on board. The Movidius CPU in operation heats up to 64° in both

experiments. However, executing the same neural networks only on RPi results in

overheating in the second experiment with the largest model. It means that if this

experiment continues over an extended period, the problem of performance reduc-

tion will unavoidably appear. It will also result in increased power consumption and

CPU performance throttling.

In the case of the MobileNet v1 set of neural networks, one can execute up to the

depth equal to 1 and input size equivalent to 160 models on RPi without Movidius.

Heavier models (with the depth 1.0 and input sizes 192 and 224 pixels) result in

overheating, and the use of Movidius is necessary in this case.

3.1.5 Conclusions

To sum up, the research demonstrates that even platforms with low computational

performance might be useful for specific tasks and that high performance is not

necessarily the critical factor. Low power consumption and better cooling efficiency

might significantly influence real-life operation. Thus, a platform might be useful

in some cases and useless in others. Therefore, it was demonstrated that plain

Raspberry Pi might be used as a monitoring platform for applications with pro-

longed periods of hibernation and low requirements to framerate. It might be useful

for object detection and classification tasks like seeds germination monitoring and

tomato growth prediction. Similarly, the Raspberry Pi with an external AI acceler-

ator, either NCS1 or NCS2, might be used in the same tasks. It is due to a higher

framerate and reduced probability of overheating. However, it results in higher

power consumption for both idle and peak modes. Raspberry Pi with NCS2 could

also be used for semantic segmentation tasks; however, Jetson Nano was chosen for

this role due to higher framerate, which is essential for real-time aerial monitoring

tasks. Google Coral demonstrated exceptionally high framerate for classification

and object detection tasks. However, such a high framerate is an overshoot for the

abovementioned seeds’ germination monitoring and tomato growth prediction tasks.

Furthermore, this platform has higher power consumption then Raspberry with var-
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ious NCSs. On the other hand, such a high framerate could significantly improve

the efficiency of aerial monitoring platform. Unfortunately, it does not support the

upsampling operation, which is essential for semantic segmentation. Thus, Google

Coral was discarded from the list of the platforms candidates for further investiga-

tions. Odroid XU4 was also discarded from the list because it does not outweigh

other platforms.

The optimization technique demonstrated in the current section resulted in a

significant reduction of CPU load (up to 40% for plain Raspberry Pi and up to 17%

for Raspberry Pi with NCS). It also resulted in an 8% RAM load and 14 degrees

CPU temperature reduction for plain Raspberry Pi. However, the improvement of

the RAM usage and CPU temperature for RPi with NCS was insignificant. This

technique was applied for pre-trained classification CNN on two platforms only.

However, the same technique was applied to the semantic segmentation task on

board of Jetson Nano - the results are reported in section 3.4. The results of this

section will be used as a basis for further intellectual monitoring platforms develop-

ment in sections 3.2, 3.3 and 3.4.

3.2 Detection of Seeds During Germination

3.2.1 Introduction

In this section, an intelligent embedded system for the seeds recognition and germi-

nation detection is presented. The proposed system is a sensor node characterized

by sensing, processing, and communication capabilities with a particular focus on

data processing. For this reason, we collected a dataset in an industrial chamber and

designed a CNN consisting of 2 convolutional blocks, 2 linear blocks, and a sigmoid

block. To process the images, we equipped the embedded system with an external

GPU. We managed to achieve 97% accuracy of seeds recognition accuracy and 83%

of the average IoU score. Simultaneously, the proposed solution takes advantage of

scalability, small size, and the ability to be powered by batteries, therefore ensuring

autonomous intelligent operation in the forthcoming IoT era.

The research, described in this section, was accomplished in close collaboration
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with Dmitrii Shadrin, a Ph.D. student at Skoltech. He contributed the following

parts of the study: setting up a continuous experiment, data annotation, and train-

ing the CNN. My part of the research includes squeezing the pre-trained CNN,

implementing the embedded monitoring system with AI capabilities, testing the

embedded platform, and algorithm in the experimental environment (climate cham-

ber). The abovementioned contribution by Dmitrii Shadrin is also part of his Ph.D.

thesis "Data-driven modeling of plant growth dynamics in controlled environments."

Also, the results of this section were published in the IEEE Sensors journal Shadrin

et al. [2019b].

3.2.2 Methodology

In this section the methodology used in the present work is described.

Approach

The methodology includes a number of important steps needed to detect the seeds

germination process:

• Set up of a continuous experiment for the seeds image data collection. Within

this step, we combine the pictures with timestamps to follow the germination

process. The pictures are collected continuously with a predefined period.

• Data annotation, needed to provide the dataset with the examples of positive

and negative samples.

• Training of the CNN algorithm based on the collected data. After the ex-

traction of the patterns from the data process, the algorithm can search for

patterns in new previously unseen data.

• Assembling the embedded platform equipped with external VPU-based AI

accelerator and running the designed CNN on it.

• Detection of the seeds using CNN, followed by the detection of germinated

seeds using computer vision techniques.
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• Test of the embedded platform and algorithm in the climate chamber.

3.2.3 Implementation of the Smart Sensing Platform

The goal of the investigation is to create intellectual monitoring platform for seed

germination recognition. Seed germination is a relatively slow process, and a rea-

sonable statistics collection might be achieved even daily. However, in this study,

we collected the data every 3 hours because HD camera resolution is still too low to

detect reasonable changes in subsequent frames. Moreover, data collection within a

smaller period would result in error accumulation for time series prediction. There-

fore, the predictions will be made within 3 hours period (see Fig.3-7. Thus the

platform needs to stay in a hibernation mode for 3 hours than collect the data and

make a prediction. The platform should withstand overheating inside the climate

chamber, be reliable to operate continuously for 36 hours and perform data-intensive

calculations on board. Relying on the experimental results from the section 3.1, the

Raspberry Pi (RPi) with Neural Computer Stick (NCS) "Intel Movidius" is the most

appropriate platform for this task.

Figure 3-7: Photos of seeds germination process taken with 3 hours period.

In this subsection, the platform with the embedded AI aboard the low-power

embedded sensing system (see Figure 3-8) is proposed. It is based on RPi 3B single

board computer and NCS (an external VPU). The platform can easily run the pre-

trained CNNs. Although it initially had restricted computational capabilities, the

external VPU significantly expands the platform performance. It has 12 sharp vector

engines, which results in over 100 GFLOPS performance at power consumption 1 W

only. Its 450 Gb/s carrying capacity allows to process data from 8 High Definition
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Raspberry Pi 3
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Figure 3-8: System block diagram

(HD) web camera sensors simultaneously. An external battery powers the prototype.

The only sensor used in the prototype is an HD web camera, Fig.3-9.

The proposed platform successfully works with the pre-trained NNs. The CNN

used in the investigation was trained on a desktop computer using Python with

a PyTorch library. The resultant code was converted to the Caffe model by open

source software and was finally compiled into the binary graph file using Intel’s

OpenVINO library.

The Neural Network Architecture

In this work, the PyTorch framework Paszke et al. [2017] is used to train and evaluate

the performance of CNN. The structure of the CNN applied is summarized in Table

3.6.

The CNN showed in Table 3.6 includes 2 convolutional blocks, 2 linear blocks,

and a sigmoid block. The convolutional block consists of the following layers: con-

volutional, batch normalization, max pooling, ReLU activation, and dropout. The
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(a) (b)

Figure 3-9: Climate chamber (a) Embedded system assembly for testing of Machine
learning (CNN) algorithm; (b) Example of photos of the containers with seeds taken
during the experiment.

Table 3.6: Convolutional Neural Network Architecture

# Layer Dimension Kernel StrideWidth Height Depth
0 Input 90 90 3 - -
1 Convolution 40 40 48 11 2
2 Normalization 40 40 48 - -
3 Pooling 20 20 48 2 2
4 ReLU 20 20 48 - -
5 Dropout(p=0.1) 20 20 48 - -
6 Convolution 16 16 96 5 1
7 Normalization 16 16 96 5 1
8 Pooling 8 8 96 2 2
9 ReLU 8 8 96 - -
10 Dropout(p=0.1) 8 8 96 - -
11 Fully Connected 1 1 100 - -
12 Normalization 1 1 100 - -
13 ReLU 1 1 100 - -
14 Dropout(p=0.1) 1 1 100 - -
15 Fully Connected 1 1 100 - -
16 Normalization 1 1 100 - -
17 ReLU 1 1 100 - -
18 Dropout(p=0.1) 1 1 100 - -
19 Fully Connected 1 1 1 - -
20 Sigmoid 1 1 1 - -
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linear block includes the fully connected, batch normalization, ReLU activation, and

dropout layers. The sigmoid block is composed of the fully connected and sigmoid

activation layers. It is assumed that the values from the previous layer are the input

for the next one. The convolutional layer takes the input frame and sums the frame

values with weights. It helps extract the local features of the input. The batch nor-

malization layer centers the input with the mean and scales it with the dispersion.

It is used to make the convergence stable. The max-pooling layer takes the input

frame and finds the frame maximum. It helps extract the local peaks and compress

the input. The ReLU activation layer turns the negative input values into zeros. It

speeds up the convergence process. The dropout layer turns the input values into

zeros with the probability 𝑝. It makes the network robust to overfitting. The fully

connected layer sums all the input values with weights for every value in it. It helps

find the meaningful connections between the input values. The Sigmoid activation

function of 𝑥 is 𝜎(𝑥) = 1
1+𝑒−𝑥 . It is used for converting the values into probabilities.

When, for example, we take the picture frames 90x90x3 (𝑝𝑖𝑥𝑒𝑙𝑠×𝑝𝑖𝑥𝑒𝑙𝑠×𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠)

as the input, we get the probability belonging to the seed class as the output.

Image Processing Workflow

The proposed CNN architecture described in previous sections was trained to per-

form the seeds recognition task (’exist or not exist’) in the predefined window area

(90 × 90). In the current study, the recognition and localization of the seeds were

performed by CNN with a sliding window technique Noh et al. [2016]. It had 90×90

windows that overlap less than 90%: every next window was obtained from the pre-

vious one by a small shift in the horizontal or vertical direction. After cropping

images from the picture, they were provided to the pre-trained CNN input to re-

cover the labels (existing or not existing seed). All the 90× 90 pixels windows with

positive labels (’seed exists’) were combined, and the non-maximum suppression

technique Oro et al. [2016] was applied to them. This technique allows us to join

close images (windows) to avoid multiple references to the same location in the pic-

ture. The result is presented in Fig. 3-10. Once the pictures covered by the windows

with seeds are obtained, the Intersection over Union (IoU) got calculated for them.
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After that, CNN predicts the germination of the seeds. It was performed with the

computer vision techniques that make it possible to calculate the number of white

pixels referring to sprouts and compare pixels to the manually defined threshold.

Fitting the Neural Network to the Embedded Platform

In the current study, the Intel Movidius NCS was used, which could be classified as

a multicore Very Long Instruction Word (VLIW) AI accelerator with a video fixed

function unit. VLIW allows the implementation of Instruction Level Parallelism

(ILP), which implies the ability to implicitly specify instructions to run in paral-

lel, whereas CPU can execute instructions in a sequence. VLIW processors use the

software to decide in advance what instructions could be run in parallel. That is

why the complexity of the instruction scheduling is moved to the compiler, leading

to a significant reduction in the hardware complexity. In the current case, it allows

shrinking of the size in a volume of USB flash memory stick. The VPU is Myriad 2

processor, its architecture relies on 16 Streaming Hybrid Architecture Vector Engine

(SHAVE) cores SHA [2019]. These processors execute instructions over all the ele-

ments of 1-D objects - vectors. It significantly increases the speed and throughput

of the whole device, especially for video and image processing tasks.

In addition to the CNN inference acceleration by the hardware, the software

optimization techniques were also applied. All these techniques were implemented

in the OpenVINO toolkit provided by the manufacturer. These techniques include

quantization, freezing, and fusion. The quantization reduces the memory required

for neural network storage and inference by changing the computer number format.

For example, it can convert all the neural network weights from 16-bit Floating

Point (FP16) to 8-bit Integer (INT8), hence reducing the memory requirements

and inference time. However, it also results in an accuracy reduction, but usually,

this accuracy drop is tolerable. Freezing the graph is the technique that reduces

all the unnecessary operations, which are usually used during the training, but are

not used during the inference. Fusion is the technique, which combines subsequent

layers into a single layer. For example, it can combine convolutional, normalization,

max-pooling, and ReLU layers into a single one, reducing the overall number of
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(a) (b)

Figure 3-10: Non-maximum suppression application. In (a) seeds are covered with
multiple windows, while in (b) we used one window per seed. This was obtained by
grouping the windows and keeping one window per group.

multiplication and addition operations.

3.2.4 Experimental Results

CNN Performance Evaluation

The CNN was trained for 50 epochs (iterations) with the cross-entropy loss for the

train and validation datasets shown in Fig. 3-11a. For each epoch, the random

horizontal and vertical flips and color jittering were applied to ensure the data

augmentation. The accuracy of this validation is more than 97%. (See ‘3-11b It

means that CNN mismatches 3 windows with seeds or background out of 100. In

the test phase, the method described in Section 3.2.3 was applied. The results are

shown in Fig. 3-12. The quality of the model was assessed by the average IoU

between the predicted windows and the ground truth windows as follows:

∑︀
∀{𝑤𝑔 ,𝑤𝑝} IoU(𝑤𝑔, 𝑤𝑝)

#{𝑤𝑝}
, (3.1)

where

IoU =
Area of Overlap
Area of Union

, (3.2)

and ∀{𝑤𝑔, 𝑤𝑝} is all the possible pairs of ground truth and predicted windows,

while #{𝑤𝑝} is a number of predicted windows. As a result, the average IoU of 0.83
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was obtained.

Germination Detection

A typical problem associated with the detection of seeds germination by images and

the application of traditional computer vision algorithms is to distinguish the white

pixels belonging to sprouts. These pixels may belong to recently germinated seeds

or other objects close to white pixels, e.g., the objects resulted from humidity and

appeared on the container walls. The key feature of the designed CNN is to propose

the regions for detecting further germination within the areas identified at an early

stage. Figure 3-12 shows that all the seeds germinated within a specified period

are characterized by the reasonable quality of the seeds used. In most cases, the

germination rate is 80-90%.

Fig. 3-13a demonstrates the example where the seeds have been localized in a

container using CNN. Later on, the germinated seeds out of the localized ones were

recognized.

For this reason, the following algorithm was developed. It is based on the Pythons

library skimage. The algorithm was then applied in each of the bounding boxes and

functioned as follows:

• Converting the RGB image into the grey-scale one.

• Using the Otsu algorithm (for each of the proposed regions) for binarization

of the image.

• Obtaining the grey-scale morphological closing of the image.

• Obtaining the bounding boxes for each instance. We put the lower 100 pixels

threshold while the seeds with more than 100 white pixels are assumed to

germinate.

• Presenting the instances: the germinated seeds and background.

Fig. 3-13b shows the proposed methodology outcome: five seeds out of all seeds

in the container are recognized as germinated on the 26-th hour after starting the

experiment.
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(a)

(b)

Figure 3-11: Cross entropy loss(a) and accuracy(b) on CNN training for 50 itera-
tions(epochs)
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Figure 3-12: Seed recognition in containers. Green boxes - ground truth, blue boxes
- estimated bounding boxes

(a)

(b)

Figure 3-13: Detection of seed germination (b) in the regions proposed by CNN (a).
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Intellectual Monitoring Platform Performance Evaluation

The CNN described in Section 3.2.3 was trained on the desktop computer. The net-

work was trained on the dataset collected during the seed germination experiment

in the climate chamber. The CNN achieved 97% accuracy and 83% mean IoU at

the validation and test stages of the experiment. In addition to the evaluation of

multiple SBC, demonstrated in section 3.1, an extra performance evaluation was

accomplished. The prototype (RPi 3B with NCS) was assessed against the lap-

top (see specification in the Table 3.1) implementation to show reasonably good

computational efficiency.

The experiment provided for the following steps:

• Analysis of the overall computational performance

• Time estimation of a single prediction

• Estimation of power consumption

The test dataset, as well as the pre-trained NN, were uploaded to both plat-

forms. Then the algorithm runs the CNN to perform 1000 iterative predictions.

The following criteria were used for performance evaluation:

• CPU and RAM usage.

• Time of prediction.

• Power consumption.

All these characteristics, timestamp, current, and voltage, were extracted simul-

taneously and were written in a single CSV file during the experiment. The entire

code for data collection was created in Python 3 using the "psutils" library to collect

CPU and RAM data. The power consumption data were collected in different ways.

For the laptop, the "powertop" python library was used to collect power consump-

tion data directly from the battery controller. Since the above approach to power

measurement with the software does not apply to Raspberry Pi-based prototypes,

similarly to the investigation in section 3.1, the multimeter was connected in line to

the power plug of the RPi to collect the current and voltage data.
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Figure 3-14: Time spent per a single prediction over the entire frame for both
platforms

The period is the characteristic that shows the time per single prediction over the

whole frame. Moreover, the laptop is 10 times faster (see Fig.3-14), so that we have

0.85 FPS for the embedded system against 4.5 FPS for the laptop when running the

same code with NN and germination detection algorithm described above. It is the

germination detection algorithm that significantly slows down both of the machines:

Raspberry Pi and laptop has 4.5 FPS and 10.8 FPS, respectively, while running the

same code with CNN only. That is why the development and training of advanced

NN are subjects of future analysis.

Even though the laptop is faster than the proposed testbed, it has higher power

consumption: its mean power consumption is 24.01 W in comparison with 2.5 W for

the testbed (see Fig.3-15). The advantage of the proposed prototype - the small and

low-power platform with AI on-board could be used in tasks where the availability of

power supply, mass, and dimensions of the platform the characteristics that count.

The embedded system’s computational performance with the NCS is lower than

the laptop due to the following reasons. First, the laptop has better computational

power capabilities comparing to the embedded system. Second, RPi has the USB

interface version 2.0, while the NCS has USB version 3.0. Therefore, the compu-

tational performance of the embedded sensing system is restricted by the USB 2.0

data-carrying capacity: USB 2.0 is 480 Mbps, and USB 3.0 is 5 Gbps maximum
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Table 3.7: Performance Evaluation for the Computer and Embedded Intelligence
Prototype

Parameter Laptop Mobile Prototype
CPU usage, %

Mean 21.99 37.04
Median 21.81 37.2
Minimum 14.85 16.0
Maximum 35.78 49.0
Mode 18.85 38.0
SD 3.03 2.23

RAM usage, %
Mean 19.48 30.67
Median 19.5 30.7
Minimum 19.1 29.1
Maximum 19.8 31.5
Mode 19.5 30.7
SD 0.20 0.38

Period, [s]
Mean 0.20 1.98
Median 0.19 1.99
Minimum 0.14 0.23
Maximum 0.59 2.19
Mode 0.18 1.98
SD 0.035 0.18

Power consumption, [W]
Mean 24.01 2.50
Median 24.01 2.49
Minimum 23.66 2.47
Maximum 24.31 2.53
Mode 23.66 2.46
SD 0.10 0.01
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(a) (b)

Figure 3-15: Histograms of power consumption for (a) the laptop and (b) the em-
bedded system equipped with NCS.

Axelson [2015].

The major disadvantage of desktop computers and laptops compared with SBCs

is their high power consumption and low mobility. The proposed prototype has 10

times lower power consumption and can be powered even by an off-the-shelf battery.

The following formula could calculate the required capacity of the battery: 𝐸 = 𝑇*𝑃
𝑈

,

where T is the time of operation, P is the power consumption, and U is the input

voltage. Assuming that the monitoring platform is plugged into 5 Volts power source

and works continuously for 36 hours consuming 2.5 Watts, the battery’s required

capacity will be 18 mAh. It seems reasonable for a 36 hours experiment, and power

banks with such capacity are commercially available.

3.2.5 Conclusion

This work demonstrates the approach to the inference of DNNs on a low-power

embedded system for detecting the seed germination dynamics without involving

extensive data transmission from the local nodes to a cloud computing server. The

proposed approach is scalable and has an industrial impact as a powerful tool for

assessing the performance of growing systems and predicting their future harvesting

period. Simultaneously, it provides an opportunity for making optimization at the

initial stage of plant growth. This optimization will further result in the optimal

management of resources in the context of precision agriculture. For implementing

the proposed approach, the dataset Shadrin [2018] was collected. It contains the
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sequentially time-ordered images of seeds germination process at different stages.

With this end in view, we have proposed a custom CNN architecture for the seeds

recognition, which achieves the 97% accuracy and 83% of IoU.

Using the CNN and computer vision, the sensing system can first localize them in

the container and, second, detect the germinated seeds. This solution is implemented

on the embedded system equipped with the NCS, which runs the CNN on board. The

proposed monitoring platform’s performance with AI capabilities against a laptop

was assessed within the experimental work. The laptop is about 10 times faster than

the embedded system, but an 18 mAh battery could power the last one for 36 hours

of continuous operation. It is beneficial for the emerging autonomous applications

in the scope of IoT and precision agriculture.

3.3 Detection of Plants in Greenhouse

3.3.1 Introduction

This section reports on the development of the low-power embedded system enriched

with the AI-based on Fully Convolutional Neural Network (FCNN) and Recurrent

Neural Network (RNN) Hochreiter and Schmidhuber [1997] called Long-Short Term

Memory (LSTM) for continuous analysis and in-situ prediction of the growth dynam-

ics of plant leaves. The monitoring platform is grounded on a low-power embedded

sensing system with a GPU and can run the neural networks on board. The pro-

posed approach guarantees the continuous autonomous system operation using a

standard Li-ion battery.

This study also shares with the research community the Tomato Growth dataset

Shadrin et al. [2019] collected during the research. The dataset contains 5514 time-

sequenced top-down images of plant growth and growth conditions. It can be used

for training the CNN for solving plant detection problems, segmentation, leaf area

estimation, and plant growth dynamics assessment. This study opens up a wide

vista for various intelligent monitoring applications, especially in the agriculture

domain.

The research, described in this section, was accomplished in close collaboration
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with Dmitrii Shadrin, a Ph.D. student at Skoltech. He contributed the following

parts of the study: setting up a continuous experiment, data annotation, and train-

ing the LSTM. My part of the research includes squeezing the pre-trained LSTM,

implementing the embedded monitoring system with AI capabilities, testing the em-

bedded platform and algorithm in the experimental environment (the greenhouse).

The abovementioned contribution by Dmitrii Shadrin is also part of his Ph.D. thesis

"Data-driven modeling of plant growth dynamics in controlled environments." The

results of this section were published in the IEEE Transactions on Instrumentation

and Measurement Shadrin et al. [2019a].

3.3.2 Methodology

Using RNNs for time-series prediction

The design of industrial plant-growth processes is typically based on the expert

knowledge, e.g. of micro-climatic requirements, contents of nutrient solution, irri-

gation schedule, as well as on the historical experimental data. This approach does

not scale and is not generic in terms of production size and crop variability.

In this subsection, the RNNs are used for the prediction of the dynamics of

plant growth. The RNN is a class of neural networks where the nodes contain

the feedback response and store the information about their internal state. One

of RNNs attractive features is that they can potentially link previous knowledge

with the current state. The RNN can process the data that is represented as time-

dependent sequences by using the internal state information. A typical RNN may

have a problem with the processing of long-term dependencies. To overcome this

problem, the Long-Short Term Memory (LSTM) NN were introduced as a particular

architecture of RNN Hochreiter and Schmidhuber [1997] capable of learning long-

term dependencies. The critical element of LSTM is a cell state, which can be

changed during training. This feature is essential for modeling the plant growth

dynamics since the future dynamics of the plant growth are in strong relation with

the previous states passed a long time before.

Recently, lots of applications for the LSTM NN architecture have appeared Stol-
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lenga et al. [2015]. However, for the precision agriculture, the application of RNN

LSTM for crop yield prediction or description of plant growth dynamics based on

the environmental growth conditions is a novel research direction Chlingaryan et al.

[2018]. In current work, the LSTM is a core of AI. It is described in detail in the

next sections.

Data Collection

The data collection system was designed to perform plant growth modeling and dy-

namics prediction (see Figure 3-16a). It is based on the hydroponic approach allow-

ing the simultaneous plant growth in different conditions (nutrient solutions). This

testbed was equipped with an automatic image acquisition system and controlled

LED illumination. The sequence of raw images was obtained in the one-month ex-

periment on the plant’s growth. It contains the data on the plant’s growth with the

fixed time interval under different conditions. In total, 5514 images with 30 min-

utes timestep were collected (see Fig. 3-16b). The FCNN was used for calculating

changes of the leaves area in time-based on the obtained images. The data on the

leaves area was used for training the LSTMs. Afterward, the ablation study was

performed. It is required to find the optimal configuration of NNs since they will be

squeezed to the low-power embedded system.

Training the Neural Network

The numerical experiments were conducted using the data for 12 days. Then the

LSTM model was trained for each section. The dataset was split into the training

and test sets with 400 and 200 elements for each section.

For optimization the adam optimizer Kingma and Ba [2014] was used. And as

a loss function the mean squared error was used. For adam optimizer the following

hyper-parameters were applied: 𝑙𝑟 = 0.001 (learning rate); 𝑏𝑒𝑡𝑎1 = 0.9 (exponential

decay rate for the first moment); 𝑏𝑒𝑡𝑎2 = 0.999 (exponential decay rate for the second

moment); 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 10−8. The hidden states for each epoch of training were reset.

The network was trained for 10 epochs, which is a reasonable amount for stabilizing

the loss function for most tested architectures with one hidden layer of LSTM.
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(a)

(b)

Figure 3-16: (a) Experimental setup: growing (bottom) and data collection system1
(see video cameras on top); (b) Example of top-down photos obtained in the ex-
periment. On the left: tomatoes on the 5-th day after germination. On the right:
tomatoes on the 10-th day after germination.

79



Chapter 3. Methodology 3.3. Detection of Plants in Greenhouse

Different amount of points from the previous steps were used. It was realized that 3

points set are enough for making accurate predictions even for a 3-hour horizon. The

train/test dataset was created in the following way. Each train/test data sample

contained 13 points: the sequence of 3 points (leaf area) from the previous three

steps and 10 points for the next 10 steps. The dataset preparation process also

included transformation to stationary time series and scaling to (-1:1) range. In this

work, the Root Mean Square Error (RMSE) was evaluated for the time horizon from

30 minutes to 5 hours.

The results of leaf area projection prediction presented for three out of six possi-

ble options (6 different solutions were in the experiment) are shown in Figure 3-17a,

Figure 3-17b and Figure 3-17c. Leaf area in Figure 3-17a, Figure 3-17b, and Fig-

ure 3-17c was taken as a sum of the leaves area of all plants in section. The results

of this prediction demonstrate an excellent fit to the ground truth. RMSE in Fig-

ure 3-18 shows how the error changes with respect to the size of step prediction.

It is worth noting that we have accurate predictions even for the 5-hour prediction

horizon. RMSE varies from 9 to 14 for different solutions for a 5-hour prediction

horizon, and in the test dataset, the leaves area values vary from approximately 100

to 140. It was demonstrated that the obtained performance withstands the applica-

tion requirements even for the 5-hour horizon (maximum that is required): 5-10%

of relative error. For the lower prediction horizon, the relative error is less. Please

note that this experiment was conducted in the closed artificial system.

3.3.3 Implementation of the Smart Sensing Platform

System Overview

The LSTM NN architecture described in Section 3.3.2 was implemented, trained,

and tested on a desktop computer. However, the real challenge for NNs is their

implementation and running on the low-power embedded and mobile systems which

are not initially designed for data-intensive computing.

In this experimental study, the ultimate goal is to demonstrate the feasibility of

the proposed approach described in previous sections and the opportunity to imple-
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(a) (b)

(c) (d)

Figure 3-17: (a) Prediction of a leaf area for the section fed with the “Hoagland”
nutrient solution. (b) Prediction of a leaf area for the section fed with the “Base +
P” nutrient solution. (c) Prediction of a leaf area for the section that fed with “Base
+ Ca” nutrient solution. (d) Prediction of a leaf area based on autoregression for
the section fed with the “Base + P” nutrient solution. Each time step in (a), (b),
(d) represents 30 minutes.

Figure 3-18: Dependence of root means squared errors for prediction of leaf area on
the number of prediction steps for all six solutions.
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ment the predictive analytics on board of a low-power embedded system. It helps

to solve real-world problems in the scope of precision agriculture and, in particular,

modeling of the plant growth dynamics.

Since the idea behind precision agriculture is to ensure intelligent, distributed,

and autonomous sensing, the following requirements for a tiny sensor node were

defined:

• Size [mm]: 100x60x20

• Mass < 100 [g]

• Processor performance: Quad-core 0.9 [GHz]

• RAM > 300 [Mb]

• Power consumption (Idle) < 5 [W]

• OS: Linux

• Interface: USB 2.0 or later

• Wireless connectivity: Wi-Fi

• Price < 100$

The size, mass, and power consumption are essential parameters for the system

deployment in a greenhouse or climate chamber. Processor and RAM requirements

are necessary for running the AI discussed earlier. The USB interface is required for

plugging a camera or connecting external devices, e.g., sensors. The last requirement

is wireless connectivity: Wi-Fi is a widely used technology in distributed wireless

sensing to connect the sensor nodes to a network. Wireless network evaluation is out

of the scope of this work. That is why the operation of a single node is demonstrated.

Each node is a consistent part of the future system.

Relying on the benchmarking and evaluation of SBCs in section 3.1, the most

appropriate platforms for such an investigation are plain RPi 3B and RPi with NCS.

However, only RPi with NCS was chosen due to reliability reasons, as described in

Section 3.1.5. Furthermore, it meets most requirements and can be further optimized

in terms of power consumption and performance.
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Figure 3-19: Block diagram of the experimental testbed

System Assessment

Experimental testbed is shown in Figure 3-19 a. All the calculations run on Rasp-

berry Pi: it receives and processes the data, then it sends the data to the external

VPU and receives back the prediction. This process goes simultaneously with the

collection of the power consumption data. The oscilloscope was connected to the

power rode of the Raspberry Pi via the 100 mΩ 1% shunt, which receives the Volt-

Ampere (VA) characteristics and sends the digital data to the COM-port of RPi.

The computational and power consumption related characteristics are collected and

recorded into ’.csv’ table. These characteristics include timestamp, test and train

scores, VA, power consumption, CPU, and RAM usage.

The experiment includes the following steps:

• Analysis of the overall computational performance of the system.

• Time estimation of the code execution for a single prediction step.

• Measurement of power consumption.

3.3.4 Experimental Results

The experiment is performed for the proposed low-power embedded system and a

laptop. Both platforms are characterized by the parameters summarised in Table

3.1.
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Pre-trained LSTM was uploaded to both platforms with the test dataset. After

that, the NN iteratively performed the predictions. The total number of iterations

is 1000. Every single run, the model and the test dataset were refreshed. During the

investigation, the RMSE and the time spent for a single prediction were measured

(see Figure 3-20). The ’prediction time’ is the difference between the final and the

start time of a single run of the prediction algorithm. Figure 3-20 demonstrates

that the time per prediction varies over the experiment for both platforms, primarily

for the RPi with NCS. It is featured lower computational performance and, hence,

the increased possibility of buffer overflow.

The computational performance of the computer as compared to the Raspberry

Pi is roughly six times higher, as it is shown in Table 3.8.

Table 3.8: Performance evaluation of computer and embedded intelligence prototype

Parameter Computer Prototype
Median prediction time, s 0.55 2.98

Maximum prediction time, s 1.26 7.82
Minimum prediction time, s 0.49 1.81

RMSE for the experimental testbed remains constant for every iteration for

Raspberry Pi and computer and equals to 8.30. Each prediction is made by the

NN, trained on a dataset with 400 elements (1 element is a one-time step, which

equals 30 minutes), and every prediction is made for the following 200 steps. The

operation period of the system is 30 minutes. During that period, the system starts,

gets pictures, processes it, and feeds it to the NN. It takes around 30 s. The rest of

the time, it is in sleep mode; hence the duty cycle is 3.4 %. Mean time for booting

up is around 20 seconds, 7 seconds takes to get and process picture, prediction time

varies from 1.8 to 7.8 s with a median value of 3 s.

The computational performance is low, mostly due to the absence of a USB 3.0

interface on board of Raspberry Pi 3B. In contrast, Movidius is equipped with it.

Even though the single board computer with Movidius has a higher prediction time,

it is still much faster than needed. For the current problem, each prediction should

be performed every 30 minutes or less frequently.
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Figure 3-20: Histogram of run time distribution. Raspberry Pi - green; computer -
gray.

For assessing the long-term operation of the proposed embedded AI system, we

used a 2550 mAh power bank and run the sequence ’load model - load test set -

make prediction’ in a loop. In this experiment, we measured the power consumption

over the iterations (see Figure 3-21).

The prototype of the proposed intellectual monitoring system requires an exter-

nal source of light. It is a scalable solution that is easy to deploy as a distributed

system in the greenhouses without additional hardware and infrastructure. Accord-

ing to the investigation, the prototype can perform 8663 continuous predictions

within 4 hours 34 minutes before the battery discharge. The mean prediction time

is 1.9 𝑠. During the investigation, the mean power consumption is 2.23 𝑊 ; the

median is 2.184 𝑊 , and the modal value of power consumption is 1.7578 𝑊 . Dur-

ing the experiment, the CPU load was 52.44 %, with a standard deviation of 3.22.

Simultaneously, the RAM had a 50.8 % load with a standard deviation of 0.19. Due

to the continuous and slow change of the plants’ state, there is no need to perform

these predictions continuously: the 3 hours time step is sufficient and still provides

high precision of predictions. Since the system is assumed to switch on and off every

30 minutes and perform one prediction within this period, the system can operate

autonomously for up to 6 hours until the battery is completely depleted. Here we

accomplished the calculation, similar to section 3.2.4. The following formula could
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Figure 3-21: Power consumption of the prototype over runs.

calculate the required capacity of the battery: 𝑇 = 𝐸*𝑈
𝑃

, where T is the time of op-

eration, P is the power consumption, E is the battery capacity in [A*h] and U is the

input voltage. Assuming that the monitoring platform is plugged into 5 Volts power

source and with 2660 mAh capacity and works continuously consuming 2.23 Watts,

the battery’s will be completely depleted in 6 hours. The obtained performance

withstands the application requirements discussed in Section 3.3.3. It is in case the

platform operates in the idle mode - prediction - idle mode routine. However, if it

operates the switch-on - make a prediction - switch-off routine with 30 min timestep,

the overall period could be prolonged for up to 180 days.

That is why the proposed solution proves to be an efficient low-power system with

AI on board. It can be beneficial for the applications where low power consumption,

low mass, and size and autonomous operation are required. The system can be easily

extended and adapted to mobile platforms, e.g., drones. Once realized into practice,

this system will close the gap and will be able to perform the full cycle of plant

growth dynamics analysis.

The power consumption of the platform varies within the time of the experiment.

This value correlates to the period spent on the prediction task. There could be

many unpredicted factors in a real deployment influencing the performance, e.g.,

reducing the system performance and increasing the power consumption (see Figure
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3-20 and Figure 3-21). The primary factor influencing the system performance is

limited RAM and cache memory of Raspberry Pi. It leads to memory overflow,

which has a negative impact on power consumption.

3.3.5 Conclusion

This work presents a generic low-power embedded platform equipped with the AI

on board to assess and predict the plant growth dynamics.

Performance evaluation of the proposed solution has demonstrated that the de-

veloped AI architecture based on a Recurrent Neural Network (RNN) called Long-

Short Term Memory (LSTM) is characterized by reasonable precision for the pre-

diction horizon. The proposed solution can be used as an autonomous tool for

continuous plant growth dynamics monitoring. Together with an actuating capabil-

ity, the proposed approach is promising for guarantying easy-to-deploy, generic, and

robust optimization tools for precision agriculture.

The Tomato Growth dataset Shadrin et al. [2019] for training and testing proce-

dures were collected by the designed and assembled experimental setup coupled with

the automatic imaging system. This dataset is publicly available for the research

community. It can be used in various computer vision tasks to develop and verify

new machine learning algorithms. For effectuating the growing stage on the experi-

mental setup, we used a hydroponic approach. It ensures the optimal control of the

plant nutrition and provides the opportunity to "drive" the system in a desirable

way.

3.4 Detection of Hogweed onboard of UAV

3.4.1 Introduction

This section reports on an aerial drone platform with an embedded system on board

capable of real-time image processing using FCNN. The developed prototype can

process the data on board and provide the detection results in a few seconds. The

output is the mask image or text file with the coordinates and parameters of hog-
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weed. The collected dataset is shared hog [2019] with the research community for

testing reasons and designing the segmentation algorithms.

This section focuses on the development of the UAV platform for effective mon-

itoring and eliminating harmful plants. As an example, the Hogweed of Sosnowskyi

(lat. Heracleum) was determined. The approach includes the UAV with an embed-

ded system on board running various FCNNs. The optimal FCNN was proposed.

Its architecture optimized for the embedded system relying on the trade-off between

the detection accuracy and maximum frame rate. The best performance of hogweed

recognition with 47 % Intersection over Union (IoU) in real-time was achieved. The

proposed model achieves ROC AUC 0.96 in the hogweed segmentation task, which

can process 4K frames at 0.46 FPS on NVIDIA Jetson Nano. The developed sys-

tem can recognize the hogweed on the scale of individual plants and leaves. This

system opens up a wide vista for obtaining comprehensive and relevant data about

the spreading of harmful plants allowing for the elimination of their expansion.

3.4.2 Methodology and Platform Overview

The core components of the research include the following three points: Deep Learn-

ing (DL) algorithms, an embedded system able to run the FCNN, and provide the

inference, and the UAV platform. The research is based on the sequence of the

following steps:

• Data collection. Several locations were investigated in the Moscow Region,

Russia. The aerial imagery dataset was collected using several flying plat-

forms, with different optical sensors and operating altitudes, to achieve better

performance of the FCNN.

• Labeling of the dataset. The manual labeling of the dataset for two classes

(hogweed and not-hogweed) was implemented.

• Training of the FCNN. Several FCNNs were trained to solve the semantic

segmentation tasks. Their performance was also evaluated.

• Inference of FCNNs on the desktop. The performance of the proposed FCNNs
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was checked on the desktop computer. The investigation subject is as follows:

the images from the test dataset and previously captured test video. Evalu-

ating the performance using the following characteristics: Frames Per Second

(FPS), ROC AUC, the potentially covered region (in m2) in a mission.

• Inference of the NNs on a Single Board Computer (SBC) on the ground (with

previously captured video). In addition to the characteristics from the previous

step, the power consumption was also measured.

• Performing the inference of the NNs on the SBC in the flight mode. The SBC

was used as a payload of the drone. The performance of NNs was estimated

as in the previous step.

Platform Requirements

Figure 3-22: The diagram of the proposed platform

• Minimum Area Covered: 15 ℎ𝑎,

• Minimum ROC AUC: 0.90,

• Maximum Power Consumption: 7.5 𝑊 .

The evaluation of all investigated CNNs for the semantic segmentation task was

accomplished on the Nvidia TX 1080Ti and single board computer Nvidia Jetson

Nano. For the CNN’s’ assessment three parameters were chosen: ROC AUC, which
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can be regarded as a quality metric, FPS as a measure of the speed of computa-

tions, power consumption and area coverage. However, it is better to understand

which area the user can cover with a flying drone to estimate the proposed solu-

tion’s performance in practice. It is the reason why we calculated the Area Covered

parameter.

Nvidia Jetson Nano was used as a payload for the drone DJI Matrice 200. The

images are collected using 12 MP camera. The altitude of flight is 10 meters, the

range of the mission is limited by 40 minutes, and there is no overlap between the

neighbor photos. The drone makes a photo then flies to the next position for taking

the next one. We calculate the total area as follows:

𝑆 = 𝐺𝑆𝐷2 * 𝑥 * 𝑦 * 𝐹𝑃𝑆 * 𝑡 (3.3)

where

𝐺𝑆𝐷 =
𝐻

𝑓
=
𝐿

𝑙
(3.4)

Figure 3-23: Ground Sample Distance.

Ground Sample Distance (GSD) (see Fig. 3-23) is the distance on the ground (L)

covered by a single pixel (l) of a camera. This value also equals to the ratio of the

altitude (H ) and the focal distance of the camera (f ). It is measured in cm/pixel

and varies for different camera’s sensors and altitudes, e.g. for 12 MP camera at 10
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m altitude GSD stands for 0.43 𝑐𝑚/𝑝𝑥; x and y is the quantity of pixels along the

x and y axes of the photo respectively; FPS are the frames per second; t equals to

the 40 minutes time period. Higher frame rate (due to the NN performance) allows

for flying with higher speed on the same altitude hence allows for coverage of larger

area during a single flight.

Dataset Collection and Labelling

Although various species of hogweed exist across Eurasia, Sosnowsky’s hogweed

represents one of the most widely spread weed both in Europe and Asia Cock and

Seier. It is one year plant and could reach a height of up to 5 meters. The leaves

could be as long as 0.5 meters and appear at the beginning of May each year.

Inflorescence represents an umbel, located at the end of each stem. It reaches up to

0.4 meters in size — the Sosnowsky’s hogweed blooms in the middle of each summer.

Hogweed usually displaces all other plants.

The extensive distribution area and big leaves of hogweed make an aerial data

collection relatively easy. The green color of leaves (visible spectrum) could vary

across the season and location, which also has to be considered during the dataset

collection. The dataset was collected during the middle of May 2019. At that

time, leaves have already reached around 0.4 meters in length, and the plants were

approximately 1 meter in height. There was no inflorescence. Hogweed covers

significant areas across Russia, including the Moscow region. The current dataset

was collected near Yurlovo village in Krasnogorsk city district in Moscow Region

(117 meters above the sea level, Latitude: 55 deg 53’ 51.78" N, Longitude: 37 deg

16’ 16.25" E).

For reaching better generalization, the data was collected from different locations.

Some of the received images were near the trees, other ones were in the lowland with

some water content, and we also covered the highland places with more dry soil. All

of these conditions lead to different lighting and different plant nutrition. Therefore,

the collected data has a noticeable variation in the plant growth environment. Also,

various backgrounds on the images with and without hogweed allowed for training

more robust NNs.
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(a) DJI Phantom 3 drone (b) DJI Mavic Pro drone (c) Xiaomi action camera

Figure 3-24: Captured images using different platforms.

For cost-effective and reasonable simplicity reasons, the research was conducted

in the visible spectrum and used regular RGB cameras. At the same time, we

carried out a comparative study on the UAVs and collected the images using different

platforms. It also helped to collect a dataset from heterogeneous sources. Two of

them were quadcopters, and one was a handheld action camera. We used DJI

Phantom 3 drone (sensor 1/2.3” CMOS, image size 4000x3000 pixels, 92 images

collected), DJI Mavic Pro drone (sensor 1/2.3” CMOS, image size 4000x2250 pixels,

102 images collected), and Xiaomi Yi action camera (sensor 16MP CMOS, image

size 4608x3456 pixels, 69 images collected).

These platforms allowed for taking the images from a wide variety of positions

and orientations. Multiple flights were accomplished to obtain the dataset. Some

of these missions were performed in autonomous mode with DroneDeploy applica-

tion for the DJI drones. Another portion of the images was collected during the

manual flight and manual image capture. All platforms used the default camera

settings. Operation altitude for the drones was maintained at 8-12 meters above

the ground. The action camera was placed at around 1 meter above the hogweed

leaves. Examples of the images are shown in Fig. 3-24.

The collected dataset was labeled manually in the Supervisely. The dataset

contains images, semantic masks, and json for two classes and complete orthophotos.

It is publicly available and could be used for deep learning investigations in precision

agriculture. The number of annotated images is summarized in Table 3.9.
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Figure 3-25: The architecture of the modified SegNet, used in the investigation.

Table 3.9: Summary of obtained images

Device DJI Phantom 3 DJI Mavic Pro Xiaomi action
camera

Total

Without objets 3 15 0 18
Separate objects 31 30 24 85
Many objects 58 57 45 160

263

FCNNs for Semantic Segmentation of Hogweed: a Comparative Study

The general idea behind the FCNN architecture is applying a convolution network

followed by the deconvolution layers. A 1x1 convolution layer usually connects these

two parts. The convolution part is a classification network such as VGG Simonyan

and Zisserman [2014] or ResNet He et al. [2016b]. The deconvolution task is to

project the features created by the convolution part onto the high-resolution image.

In this work, various FCNN were used: SegNet Badrinarayanan et al. [2017],

variety of U-Net Ronneberger et al. [2015], and RefineNet with the ResNet backbone

to compare the performance on the hogweed segmentation. Principal schemes of

the used FCNN Noh et al. [2015] for semantic segmentation task are shown in

Fig. 3-25. The detailed architecture of the used FCNNs is available in Appendix

A.1. For solving hogweed segmentation, different FCNN architectures were tested.

The training parameters (number of epochs, batch size, layers’ parameters) were

varied to obtain the best possible performance. Moreover, different data preparation

procedures were used, including cropping, flipping, resizing, rotating, color jittering,
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and many others. Next, we describe the training and data preparation procedure

that guaranteed us the best performance. The proposed FCNNs were trained on

the cluster of four Nvidia 1080Ti. Then their performance was evaluated on both

the cluster and Nvidia Jetson Nano.

SegNet

SegNet Badrinarayanan et al. [2017] is a neural network architecture for multi-

class pixel-wise segmentation. It consists of a sequence of encoding blocks and

corresponding decoding blocks followed by the classifier (see Fig. 3-25). Each encoder

block includes a convolutional layer, Batch Normalization (BN) and ReLU non-

linearity. The first 13 convolutional layers in the encoder were taken from the first

13 convolutional layers in the VGG-16 network.

The SegNet was trained on the hogweed dataset described in the previous sub-

section. We trained the network on 512x512 frames with a 50% chance of horizontal

and vertical flips and random rotation up to 30∘. LogSoftmax layer is used to pre-

dict the hogweed class after the last convolution. The negative log-likelihood loss is

applied to calculate the derivatives and make step by Adam optimizer with default

parameters (𝐿𝑅 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999). It took around 9 hours to train

this network over 1500 epochs for obtaining acceptable accuracy. This long period

is required due to the high number of network trainable parameters: 29,444,166.

Fig. 3-26 depicts the example of SegNet prediction.

U-Net

U-Net Ronneberger et al. [2015] is a convolutional network architecture for semantic

segmentation. U-Net, as well as SegNet, is an encoder-decoder architecture. In this

study, some modifications were applied to the original U-Net architecture. First of

all, the BN layer was inserted after each convolutional layer. Thus, in this study,

the U-Net with the following architecture was used: 9 double convolution blocks

composed of two convolutions, BNs and ReLU activations, and the output convo-

lution layer. Some convolutional channels of the UNet were made adjustable for

further application of the width scaling technique Tan and Le [2019]. It is set by
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the parameter 𝑊 , which denotes the number of output channels in the first con-

volutional layer. Also, to make the depth scaling possible, one encoder block and

one decoder block are made removable. It is indicated by the parameter 𝐷, which

denotes how many blocks are in the encoder. During the training process, we use

the augmentation techniques such as the random crop with the size of 512×512,

random horizontal flip, and random rotation on the angle from [−𝜋/2; 𝜋/2]. We

use a weighted binary cross-entropy as the loss function. Classes of background and

hogweed are taken into account with weights 1 and 2 to compensate for the imbal-

ance. As an optimizer, we use Adam with the default learning parameters. Fig. 3-26

shows the example of U-Net output.

RefineNet with ResNet backbone

The current research feature is large scale images (commonly 2250x4000 pixels) that

must be processed rapidly and accurately. For achieving this goal, one should choose

from several unique architectures that can handle these problems. RefineNet Lin

et al. [2016] is a popular general framework for building the high-resolution segmen-

tation networks at the top level of some other networks (backbone), e.g. ResNet’s

family. The main idea of RefineNet is to fuse various levels of details on the differ-

ent layers of convolutions. On the one hand, this approach allows us to keep the

fine structures of the original images. On the other hand, it does not use the large

intermediate features’ maps, which do not use much memory.

ResNet is a popular architecture proposed by the Microsoft Research team with

the residual connections between functional blocks He et al. [2016b]. Residual con-

nections allow for constructing very deep networks that can achieve good quality.

The implementation of RefineNet with a pre-trained ResNet-50 network was used

in the research as backbone Nekrasov et al. [2018].

The RefineNet output is 1/4 of the original input size by design: the interpola-

tion was performed to restore the original mask size. For data augmentation, the

following techniques were used: the random rotation, random frame cut, horizontal

and vertical flips with 0.5 probability. The performance of RefineNet on the test

image is shown in Fig. 3-26.
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(a)

(b)

(c)

(d)

Figure 3-26: (a) The input frame with annotation. Target class probability pre-
dictions made by neural network models: (b) Frame and Annotation; (b) U-Net
(W=32; D=5); (c) SegNet; (d) RefineNet
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Figure 3-27: Processing pipeline

Implementation of the FCNNs on Embedded System

As mentioned earlier, the ultimate goal is the end-to-end UAV-based platform capa-

ble of autonomous real-time detection of dangerous weeds. It requires a lightweight

network capable of running at a high frame rate and the computationally powerful

low-voltage on board processing unit for running the network.

The results of section 3.1 demonstrate that Nvidia Jetson Nano is the best plat-

form for implementing the intellectual monitoring platform for aerial imagery pro-

cessing on board the UAV. Apart from many advantages for semantic segmentation

task, Jetson also has the standard CUDA interface. Unlike the various revisions of

Intel Movidius, it does not require any neural network conversion and allows one to

launch a model written on any CUDA-aware framework. Besides, it is a standalone

device where CPU-to-GPU communication is implemented most efficiently.

However, this platform has a limited memory - all 4 Gb of RAM is shared between

the CPU and GPU. Each 4K input frame and temporal memory for convolution re-

sult of the same size takes about 100 Mb. There are two possible approaches to

fit 4K images to the FCNN’s input: (i) rescaling and (ii) cutting the frame into

tiles. The second approach is better for two reasons. Firstly, training of the neural

network (especially FCNN type) usually requires much more training parameters,

therefore, a bigger computational capacity of the computer, which is a limiting fac-

tor. Furthermore, it leads to a bigger size of the resulting pre-trained FCNN, which

can easily reach several Gb. However, in our case, it is not a problem, since UNet

occupies 100 Mb RAM. Secondly, rescaling leads to a reduction in the input sample’s

number of features, which easily leads to underfitting. In the case of cutting the im-

age into tiles, we preserve the features from the original photo. Therefore, we have

better output results - higher Intersection over Union (IoU). It is essential in the case
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of semantic segmentation of hogweed, which usually has a green background. This

approach also reduces the number of trainable parameters, reducing the required

RAM and the time of inference. Therefore, the image is split into smaller chunks

for realizing one-by-one processing. The processing pipeline is shown in Fig. 3-27,

where the red and blue areas depict the CPU and GPU memory, respectively.

Dividing the frame into parts and using a sliding window does not speed up the

network. It helps in reducing the used memory. To achieve truly high performance

requires investigation and changing the networks. For example, the original U-

Net with 4K resolution input frames runs at 0.025 FPS on NVIDIA Jetson Nano.

This result is inadmissible in the real-time application. However, it contains many

parameters and may be exposed to the model scaling without a significant loss of

accuracy. Thus, the model scaling was applied:

• Width scaling: reduce the number of output channels in the convolutional

layers. Parameter 𝑊 indicates the degree of scaling. Original U-Net is char-

acterized by 𝑊 = 64.

• Depth scaling: reduce the number of convolutional blocks. Original U-Net has

𝐷 = 5 and U-Net scaled by depth has 𝐷 = 4.

• Compound scaling: apply width and depth scaling simultaneously.

These techniques were applied to UNet training to identify the best combination

of D and W parameters.

Metrics

For the recognition quality evaluation, the Area Under the Curve (AUC) of a ROC

curve was used. The following formulas define the true positive rate and false positive

rate:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3.5)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(3.6)
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Table 3.10: Model quality and size among with Nvidia Jetson Nano inference results

Model Parameters
(×106)

FPS ROC
AUC

Area cov-
ered, ha

Power, W

U-Net (W=32,D=5) 3.4 0.074 0.967 3.0 7.0
U-Net (W=16,D=5) 0.84 0.15 0.965 6.0 7.0
U-Net (W=8,D=5) 0.21 0.27 0.963 10.8 6.5
U-Net (W=4,D=5) 0.053 0.46 0.958 18.4 5.5
U-Net (W=3,D=5) 0.03 0.53 0.946 23.5 5.5
U-Net (W=2,D=5) 0.013 0.68 0.938 27.6 5.5
U-Net (W=32,D=4) 0.84 0.085 0.956 3.4 6.5
U-Net (W=16,D=4) 0.21 0.16 0.954 6.4 6.5
U-Net (W=8,D=4) 0.053 0.28 0.952 11.2 6.0
U-Net (W=4,D=4) 0.014 0.47 0.948 18.8 5.5
U-Net (W=3,D=4) 0.0077 0.55 0.939 24.0 5.5
U-Net (W=2,D=4) 0.0035 0.70 0.938 28.3 5.0

SegNet 29.4 0.020 0.969 0.8 7.0
RefineNet 27.3 0.20 0.968 8.2 7.5

where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , 𝐹𝑁 are the numbers of true positive, true negative, false

positive, and false negative classifications for target class, respectively. For the

inference performance assessment, the frame rate, or FPS, was used. The input

frame has a 4000×2250 resolution. Apart from the recognition quality and inference

performance, the embedded system power consumption during the inference was

assessed.

3.4.3 Experimental Results

Comparison of the models in terms of recognition quality, inference performance,

number of parameters, and current consumption is shown in Table 3.10. It demon-

strates that the more parameters the model has, the more time inference takes.

As mentioned earlier, the recognition quality is expressed using the area under

the ROC-curves. This metric helps in demonstrating a detailed view of some of the

trained models (see Figure 3-28). It shows that the best models in ROC AUC also

have the highest true-positive rate and the lowest false-negative rate compared with

other models with the same threshold value.

Figure 3-29 shows how inference performance and recognition quality are related

to some trained models. In particular, it shows that complex models, e.g., SegNet, U-
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(a)

(b)

Figure 3-28: (a) ROC AUC for UNet versions with D = 4; (b) ROC AUC for UNet
versions with D = 5
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Net(𝑊 = 32, 𝐷 = 5), and RefineNet, provide high recognition quality, but operate

too slowly. We assumed that by reducing the size of the model, it is possible to

significantly increase its operation speed while not reducing the quality significantly.

This hypothesis is generally true as it is made evident by U-Net(𝐷 = 5) width

scaling results. In comparison with U-Net(𝑊 = 32, 𝐷 = 5), the 4 times scaled

U-Net(𝑊 = 8, 𝐷 = 5) is 3.6 times faster and only 0.5% worse in quality. The

8 times scaled U-Net(𝑊 = 4, 𝐷 = 5) is 6.1 times faster, and only 1.0% worse in

terms of quality. Since further width scaling leads to a significant loss of quality,

U-Net(𝑊 = 4, 𝐷 = 5) is an acceptable trade-off between the quality and the frame

rate. This investigation also shows that the depth scaling (models with 𝐷 = 4) has

almost no effect on the inference speed, but leads to significant quality drop. It can

be explained by the fact that as the network depth decreases, the receptive field for

pixels in the U-Net bottleneck feature maps decreases.

Figure 3-29: Performance and quality comparison on NVIDIA Jetson Nano

Besides that, Figure 3-30 shows the power efficiency comparison of the same

models. Despite different current values, the inference speed makes a significant

contribution to power efficiency.

Carried out analysis of FCNNs output showed that in some cases, the NNs predict

correct masks even if they were not labeled by hand (see Figure 3-26). At this point,
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Figure 3-30: Power efficiency comparison

we demonstrate that different architectures return different results in several cases,

as it is shown in Figure 3-32. Our models work correctly for a variety of scenarios:

• Single plant. In this case, the NN takes the input image with the single object

of interest or with a few objects spread over the photo.

• Brushwood. In this situation, the drone identifies multiple plants covering

more than 50% of the photo.

• Hogweed thickets mutual spatial arrangements.

Using equation (3.3) and frame rate results, we calculate the potential covered

area for a typical industrial drone, e.g., DJI Matrice 200 equipped with the 12MP

4000×2250 camera, for a 40-minutes flight. The results are shown in Figure 3-31.

Figure 3-28 and Figure 3-26 show that the SegNet, U-Net(𝑊 = 32, 𝐷 = 5)

and RefineNet models have the best results in recognition quality. On the one hand,

these NNs return very detailed results (highlighting even tiny features on the mask).

On the other hand, its performance is not sufficient for the large area coverage (see

Figure 3-31). However, in terms of power consumption (see Figure 3-30), the result

is not among the best solutions. It is worth noting that the power consumption is an

important point in terms of NN trade-off. We found out that NVIDIA Jetson Nano

is sensitive to the input voltage. Also, the voltage drop due to the low battery charge
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Figure 3-31: The potential area covered while using different neural networks

at the end of the mission could switch off the computer. That is why U-Net(𝑊 = 4,

𝐷 = 5) is the best option for the mission in real conditions.

All the proposed AI algorithms and optimization techniques were tested in the

simulation. The aerial data, collected during the flight, was stitched into orthophoto

mosaics. Using Surface From Motion (SFM) algorithm, the series of overlapped

aerial images were converted into a textured 3D model, which repeats the origi-

nal landscape. Both the orthophoto mosaic and 3D models were created in the

WebODM software. The 3D model was further used in the AirSim simulator Shah

et al. [2017]. It is a platform for AI-related research to experiment with deep learning

algorithms for autonomous vehicles, e.g., drones and cars. AirSim allows the user to

load 3D models of orthophoto maps (see Figure 3-33) of areas in the Moscow region,

Russia, where hogweed is growing and perform a simulation of the drone flight. The

simulation engaged two computers - the desktop, which ran the simulation environ-

ment, and the SBC, which performed the simulator’s flight and processed all the

input data in real-time. It allowed us to make all the relevant measurements depicted

in the Results section: FPS, ROC AUC, Area coverage, and Power Consumption.

The research methodology includes the data collection, labeling, training, and

optimization of FCNNs for embedded devices. However, several assumptions could

influence the scaling and could limit the proposed system. First of all, the data

could be obtained in wavebands behind the visual spectrum. All the demonstrated
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Figure 3-32: Predicted masks for SegNet, U-Net and RefineNet for different situa-
tions: the image with the single plant on it, with multiple plants and with variety
of other objects

(a) (b)

Figure 3-33: (a) Aerial images from simulator. (b) Simulator window screenshot.
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digital cameras could work in the red-edge and near-infrared bands using special op-

tics. These cameras, along with the multispectral cameras, could provide additional

features for better plant segmentation. It could lead to the development of faster

segmentation algorithms.

Indeed, multispectral imaging opens a wide vista for performing the precise plant

and phenotype detection Dutta et al. [2015]Sodhi et al. [2017] Humplík et al. [2015].

The main difference between the plant detection in multi-spectral range and common

RGB is the following: some plants have unique reflection characteristics outside of

the visual range. Multispectral imagery may involve simple classification algorithms

instead of FCNNs for plant phenotyping. These algorithms classify the pixels and

find those with the intensity representing the required waveband and belonging to

the certain plant Pignatti et al. [2019]. However, one of the disadvantages is the cost

of high-quality commercial multi-spectral cameras compared to the RGB cameras’

cost.

An RGB camera for hogweed detection was used as a cost-effective solution that

meets the work requirements. We can detect the hogweed on the vegetation stage,

one of the most complex detection problems. As the hogweed is green and blends

in with the background, the only specific hogweed shape can be detected in the

vegetation stage. In the later stages, e.g., flowering, it is much easier for the AI

algorithms to detect the hogweed since its white flowers can be easily recognized in

the RGB range even without the application of complex FCNN.

Although it is out of this research’s scope, there is still an open issue about

the instance segmentation for two and more classes. The proposed platform was

tested in real conditions and a 3D simulator in real-time. The orthophotos were

created out of the imagery captured in the first phase of the investigation. ROC-

curves showed in Figure 3-28 and images shown in Figure 3-26 demonstrate that all

networks perform the hogweed segmentation with reasonably high quality.

The experimental evaluation confirms the existence of the U-Net modifications,

which preserve the acceptable segmentation quality rate and outperform the original

U-Net, SegNet, and RefineNet in terms of power efficiency and inference speed.

These modifications are obtained with the model scaling method. Also, we assume
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the U-Net (𝑊 = 4, 𝐷 = 5) as a NN of choice for our further research. It outperforms

other networks by frame rate, except for the modifications with 3 or fewer channels

in the first convolution layer, which have significantly lower recognition quality.

Compared to RefineNet (best baseline model), it is only 1% worse in terms of the

target quality metric, but it works 2.3 times faster and 2.9 times more power-efficient.

The obtained results could be compared with relevant research work Sa et al.

[2017], where the tasks are similar. The authors reported ROC AUC 0.945 for ’crop’

class and 0.787 for ’weed’ class, ROC AUC 0.968 for hogweed is a comparable result

in terms of recognition quality. That system requires about 550 𝑚𝑠 per 480×360

frames on NVIDIA Jetson TX2 (twice as many GPU cores than Jetson Nano) when

images are loaded from a disk. In the same inference scenario, U-Net (𝑊 = 4,

𝐷 = 5) result is 65 𝑚𝑠 per frame on NVIDIA Jetson Nano, which is 8.5 times faster.

Finally, it is worth noting that our solution is scalable to other applications,

including plants’ disease detection, forest monitoring, and building construction

monitoring.

3.4.4 Conclusion

In this work, an aerial platform for real-time hogweed detection is proposed. The

platform consists of a UAV with the embedded system able to run AI on board.

We performed the analysis and implemented several FCNN architectures for the

hogweed detection problem. A comparative study followed it in terms of quality of

detection (ROC AUC), power consumption, frame rate, and the area covered by a

typical mission. Afterward, the aerial platform for real-time detection of harmful

plants considering hogweed was designed and tested. This study included data

collection, training the NN, inference on the embedded platform, experimentation,

and evaluation. This study shows that different NN architectures successfully solve

the semantic segmentation task for the aerial hogweed detection of two classes. For

example, the SegNet has the best ROC AUC 0.969. Along with other networks, it

can detect the hogweed, which was not initially labeled.

Modified U-Net architecture is characterised by the high frame rate (up to

0.7 FPS) and reasonable recognition quality (ROC AUC ≥ 0.938). This archi-
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tecture demonstrates its applicability for real-time scenarios and its running on

edge-computing devices along with low power consumption. Experimental results

showed that one of the U-Net modifications could achieve 0.46 FPS on the NVIDIA

Jetson Nano platform with the ROC AUC 0.958. The pilot study demonstrated

that the proposed solution could explore 18.4 hectares within a 40-minute flight by

the UAV equipped with a 12 MP 4000×2250 camera at 10 𝑚 altitude in detection

mode. The proposed approach is promising for effectuating the weeds’ removal and

enables disruptive innovation in precision agriculture.

3.5 Morphing Wing for Control of the UAV

3.5.1 Introduction

Aircraft performs flight in multiple regimes with different speeds, Angle of Attack

(AoA), sideslip angles, and at different altitudes. Designers usually choose the airfoil

having the best performance for the cruise mode only or being able to stay subopti-

mal for all the flight regimes. It leads to a reduction of maximum lift-to-drag ratio

for a specific regime and the deterioration of the overall performance. That is why

the adaptive wing, with its ability to stay optimal for any of the flight regimes is

a promising technology that could significantly improve the aircraft’s performance

and maneuverability during the flight. In this section, the performance of the wing

with the traditional and adaptive mechanization is assessed. These wings have a

flap and a slat. They were investigated using computer simulation followed by the

experiments in the wind tunnel environment. This section also provides the design

of the adaptive wing with adaptive flap and slat. All the investigations were per-

formed for the two-dimensional (2D) airfoil under different Reynolds numbers and

AoA. The results of the research were published in the journals A. Menshchikov

and Somov [2019b], A. Menshchikov [2018b].
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3.5.2 Methodology

The research is aimed at investigating and evaluating the aerodynamic performance

of the morphing wing with the adaptive slat and aileron in low Reynolds numbers.

As it is focused on aerodynamics, the section of the wing used as a testbed is bulky,

but can smoothly deform and achieve the proper outer shape. The research is

split into three parts: the software benchmarking, the two-dimensional (2D) CFD

analysis, and the wind tunnel experiment. In both cases, the wing was investigated

separately in the undeflected and deflected modes for flap and slat.

Mesh validation and benchmarking

The validation and benchmarking of the mesh was performed in OpenFoam soft-

ware, relying on the results of the wind tunnel experiment Kohlman and Wentz Jr

[1968]. It represents an investigation of vortex breakdown over slender delta wing

for high subsonic speeds. The investigated geometry (Fig. 3-34) has the following

characteristics:

• The sweep angle is 𝜒 = 75∘

• The aspect ratio is 𝜆 = 1.07

• The relative thickness of the airfoil is 𝑐 = 0.55%

• The wingspan is L = 244.9 mm

• The root chord is b = 457.3 mm

• The 𝑏𝑎 = 304.8𝑚𝑚

• Edge chamfer is 7.5∘

• The thickness of the edge is 0.254 mm

During the experiment, multiple aerodynamical phenomena occur: separation

of flow, vortex generation, vortex breakdown, shockwave generation. Even though

the geometry and flight regimes are irrelevant for the present study, this validation
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(a) The geometry of the delta wing

(b) The blunt edge of the delta wing

Figure 3-34: The validatiob model

study shows the overall computational performance, possibilities, and reliability of

the solver. The solver relies on Finite Element Analysis (FEA) methodology and

solves a system of Navier-Stokes equations for 3D case:

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌�̄�) = 0 (3.7)

𝜕𝜌𝑢

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑢�̄�) = −𝜕𝑝

𝜕𝑥
+ 𝑑𝑖𝑣(𝜇∇𝑢) + 𝑆𝑀𝑥 (3.8)

𝜕𝜌𝑣

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑣�̄�) = −𝜕𝑝

𝜕𝑦
+ 𝑑𝑖𝑣(𝜇∇𝑣) + 𝑆𝑀𝑦 (3.9)

𝜕𝜌𝑤

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑤�̄�) = −𝜕𝑝

𝜕𝑧
+ 𝑑𝑖𝑣(𝜇∇𝑤) + 𝑆𝑀𝑧 (3.10)

𝜕𝜌𝑖

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑖�̄�) = −𝑝𝑑𝑖𝑣(�̄�) + 𝑑𝑖𝑣(𝑘∇𝑇 ) + Φ + 𝑆𝑖 (3.11)

𝑝 = 𝑝(𝜌, 𝑇 ) (3.12)

𝑖 = 𝑖(𝜌, 𝑇 ) (3.13)

Where Φ is dissipation function and 𝑆𝑀 - is mass forces.

Nowadays there are numerous of scientific approaches to model the turbulence.
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The most relevant are the following:

1. Direct Numerical Simulation (DNS). This methodology works for low Reynolds

numbers, nonstationary Navier-Stokes equations, and continuity equations.

The disadvantage of DNS is that it is limited by computer’s characteristics

even nowadays. From a practical point of view, the statistics received from

DNS model studies could be used to test and calibrate models, which focus on

averaging Reynold’s equations.

2. Large Eddy Simulation (LES). The core idea here is that large scale turbu-

lence is computed using explicit equations. At the same time, the effects of

smaller vortices could be resolved using low-passing filtering of the Navier-

Stokes equations. It is still time-consuming; however, that methodology is

much faster than DNS.

3. Reynolds averaged Navier – Stokes (RANS). The most well-known methodol-

ogy of turbulence modeling. It is based on Navier-Stokes equations. The idea

behind RANS is Reynolds decomposition, whereby an instantaneous quantity

is decomposed into its time-averaged and fluctuating quantities Wilcox et al.

[1998].

The most well-known RANS models are: 𝑘 − 𝜖, 𝑘 − 𝜔, Shear Stress Transport

(SST). 𝑘 − 𝜖 is the best for free flow far from walls. 𝑘 − 𝜔 model is the best for

near-the-wall flows. Whereas SST is the mixture of 𝑘 − 𝜔 and 𝑘 − 𝜖 model. It uses

a 𝑘 − 𝜖 model for free flow simulation (it is written in equations of a 𝑘 − 𝜔 model)

and 𝑘−𝜔 model for near-the-wall precise flow simulation. Then these two solutions

are united for different types of flow. SST model is similar to the traditional 𝑘 − 𝜔

model. However, it has some significant advantages:

1. It includes advanced switching functions, which allows us to solve only 𝑘 − 𝜔

equations near the wall and only 𝑘 − 𝜖 equations far from the wall.

2. The definition of turbulent viscosity is changed to allow to make a model of

the shift of shear stress.
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Table 3.11: Properties of test meshes, used in validation study.

# of mesh Type of mesh Number of nodes
1 Unstructured 2 342 377
2 Structured 6 300 126
3 Hybrid 53 313 633

3. SST model includes cross-diffuse derivative.

4. There are many modeling constants.

These features make the SST model precise and reliable for modeling a wide

range of viscous flows apart from 𝑘− 𝜔 and other RANS turbulent models. That is

why it is used in a numerical investigation. General mathematical representation of

the SST model is similar to 𝑘 − 𝜔 model:

𝜕𝜌𝑘

𝜕𝑡
+
𝜕𝜌𝑘𝑢𝑖
𝜕𝑥𝑖

=
𝜕

𝜕𝑥𝑗

[︂
Γ𝑘

𝜕𝑘

𝜕𝑥𝑗

]︂
+𝐺𝑘 − 𝑌𝑘 + 𝑆𝑘 (3.14)

𝜕𝜌𝜔

𝜕𝑡
+
𝜕𝜌𝜔𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︂
Γ𝜔

𝜕𝜔

𝜕𝑥𝑗

]︂
+𝐺𝜔 − 𝑌𝜔 +𝐷𝜔 + 𝑆𝜔 (3.15)

Where 𝐺𝑘 represents a generation of turbulent kinetic energy, and it could be

defined in the same way as in the 𝑘−𝜔 model. 𝐺𝜔 represents a generation of 𝜔, and

it is absolutely the same as in the standard 𝑘 − 𝜔 model. Γ𝑘 and Γ𝜔 characterize

effective diffusion, k, and 𝜔. 𝑌𝑘 and 𝑌𝜔 characterize dissipation of k and 𝜔 due to

turbulence. 𝐷𝜔 represents a cross-diffuse element. The calculation will be shown

below. The elements 𝑆𝑘 and 𝑆𝜔 are defined according to the particular case. The

validation was performed for three types of meshes: unstructured, structured, and

hybrid (Table 3.11).

Unstructured mesh (Fig. 3-35) is typically used in cases with complex geometry

or when an adaptive mesh is needed. It is built automatically and fits the near-

wall layer with layers of prismatic cells, whereas the rest of the volume is fit by

tetrahedral cells. The detailing of the mesh strongly depends on the performance

of the computer. That is why sometimes it is better to spend more time to create

a structured mesh manually but make it bigger and precise. Unstructured meshes
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(a) Prismatic layer over the surface of test model and tetrahedral cells
around the model

(b) Structured mesh on the surface of the model

Figure 3-35: Structured and unstructured meshes

mostly fit for problems with complex geometry. Because creating such a mesh

manually is usually a daunting task, but a computer could solve the problem in

a matter of an hour. In contrast, structured mesh (Fig. 3-35b) is usually made

manually. Even though it takes more time, any feature of mesh and blocking could

be edited manually. Elements of structured mesh have a 3D box shape. However,

in the mesh validation study, hybrid mesh proved to be the most precise.

The hybrid mesh is a mixture of structured and unstructured meshes. Detailed

structured mesh sticks to the surface of the model to resolve the boundary layer, and

the rest of the test volume is fit by automatically generated unstructured tetrahedral
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mesh. The near-the-wall layer was 10−5 order of magnitude of the root chord to

resolve boundary laminar sublayer by a single-cell near-the-wall layer. Hence, 𝑦+

parameter is equal to 1. The rest of the boundary layer was resolved by 15 layers

with a ratio = 1.2.

To perform numerical investigation the following regimes of flight from article

Kohlman and Wentz Jr [1968] were chosen, AoA: 0∘, 10∘, 20∘, 30∘, 35∘, 37.5∘, 40∘,

42.5∘, 50∘, 52.5∘, with velocity of M = 0.15. Thus, 10 investigations were performed

for each mesh. The turbulence level was set to high = 10%. The solver ran on the

cluster computer with the following convergence criteria:

• Physical timescale: 0.001 [s]

• Residual Type: Root Mean Square Error (RMSE)

• Residual Target: 0.000001.

• Most of computations were resolved in 300 iterations. The results are the

following (Fig. 3-36).

The following conclusions could be made from this verification study. Firstly, the

hybrid mesh gives the closest to the practice results even for non-linear part of 𝐶𝐿

vs. AoA. Secondly, the number of cells also matters: structured and unstructured

meshes in the present study have the lowest quantity of cells. Thirdly, a linear part

of 𝐶𝐿 vs. AoA dependency could be resolved by any type of cells, which are built

according to the abovementioned approach. Fourthly, hybrid mesh allows modeling

even rare aerodynamic phenomena as asymmetric vortex breakdown, which usually

occurs due to the influence of velocity profile, generated by one vortex, on the core

of another vortex (Fig. 3-38).

All the principles and options used in the current verification study were later

used to design mesh around the wing with adaptive flap and aileron.

CFD Analysis of Morphing Wing

The model of investigation is the Clark YH airfoil with the following characteristics:
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(a) C𝐿𝑣𝑠.𝐶𝐷

(b) C𝐿𝑣𝑠.𝐴𝑜𝐴

Figure 3-36: Convergence of numerical investigation with experimental data
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(a) 33 (b) 38 (c) 45

(d) 33 (e) 38 (f) 45

Figure 3-37: Vortex breakdown over slender delta wing with different AoA
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(a) Traditional mechanization

(b) Adaptive mechanization

(c) Adaptive leading edge

Figure 3-38: The airfoil Clark YH with different types of mechanization. The color
depicts angle of deflection: 0∘-black; 10∘-purple; 20∘-blue; 30∘-cyan. Solid line is for
negative angles, dotted line is for positive angles.

• 11.9% thickness at 30% chord

• Max camber is 2.5% at 30% chord

• Chord is 11.2 cm

In all the experiments the flap is deflected from +30∘ to 30∘ with the 10∘ increment.

The slat has only the 20∘ deflection (see Fig. 3-38).

The investigation was performed in the OpenFOAM software with the unstruc-

tured mesh. It has the 1 000 000 nodes 2D unstructured tetrahedral mesh with a

prismatic near-wall layer. The wall has no-slip conditions for the proper modeling

of viscous phenomena, e.g., the vortex generation or separation of the flow. The

mesh has the 𝑦+ = 1 parameter to resolve the boundary layer. This parameter

represents the ratio of the laminar sublayer thickness to the first cell height and can

be expressed in two ways:
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𝑦+ =
𝜌𝑈𝜏ℎ

𝜇
(3.16)

𝑦+ =
𝑦

ℎ
(3.17)

where 𝑈𝜏 is the velocity in laminar sublayer, 𝜌 is the density of the gas, 𝜇 is

viscosity, h is the first cell height, and y is the thickness of the boundary sublayer.

The height of the first cell was 10−5 order of magnitude of the chord to resolve the

laminar sublayer of the boundary layer. The increment ratio was 1.2 to make a

slow growth of the cell size away from the airfoil model. On the one hand, this

made it possible to represent near-surface processes with high detalization. On the

other hand, it reduces the computational difficulty for distant regions with the free

stream. All the simulations were time-averaged. The turbulence was modeled with

the RANS approach with the use of the SST model of turbulence. The numerical in-

vestigation was performed for all the geometrical models of adaptive and traditional

mechanization configurations for different conditions:

• Reynolds number varies from 100 000 to 300 000 with the 100 000 increment.

• AoA varies from −5∘ to 35∘ with the 0.5∘ increment.

Wind tunnel experiment

All the experiments were conducted in the open-return wind tunnel with low-

Reynolds numbers (Fig. 3-39). Its test chamber is of octahedral shape in cross-

section. The characteristics of the wind tunnel are the following:

• Maximum airflow velocity: 30 m/s

• Test chamber width x length: 0.8 m × 1.0 m

• Mean turbulence level: 7%

It is equipped with the particle generator and high FPS optical system for the

particle dynamics detection. It consists of two high-speed cameras and a green
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Figure 3-39: Wind tunnel; 1 – source of particles; 2 – inlet; 3 – test chamber; 4
– high speed cameras for videogrammetry; 5 – laser mounting system; 6 – electric
motor and outlet.

laser. This methodology is widely known as Particle Image Velocimetry (PIV). In

our case, particles are produced by the fume generator, and then they go to the

inlet of the wind tunnel. A unique lens transforms the laser beam into the light

sheet. Then it illuminates particles inside the test chamber. The reflected light

goes to the high-speed cameras that capture the picture from different angles. The

resultant video becomes an input file for the advanced videogrammetry software,

which calculates every particle’s position and velocity in the flow for every frame.

The kinematic characteristics of these particles over time allow to calculate the

pressure distribution over the object of investigation, e.g., airfoil, as it is shown in

Fig. 3-40

The advantage of such a methodology is no touch measurements that do not

produce any disturbance of the flow. The advanced software makes it possible to

calculate the flow characteristics at every point with high accuracy. The disadvan-

tage is that the setup only returns the 2D pictures of the flow. Furthermore, it works

not simultaneously for the entire object, but the top or bottom surface at a time.

The section of the adaptive wing has the 11.2 cm chord and the 40 cm wingspan.

The morphing wing model for the wind tunnel experimentation was designed and
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(a) Videogrammetry system in
front of the wind tunnel

(b) The test chamber of the wind tunnel with the
model during operation (the flow goes from the right
side)

Figure 3-40: Experimental setup

Figure 3-41: The design of the adaptive wing segmentin SolidWorks software

tested in SolidWorks software (Fig. 3-41). The wing consists of 40 parts, made from

ABS plastic using additive manufacturing. The skin of the wing was made from

silicon. The mechanization of the wing has the following characteristics:

• Slat can deflect up to 30∘

• Flap can deflect from −30∘ to +30∘

• The thickness varies from 11.9% to 22%

All the control surfaces are deflected using 6 servos situated inside the wing. The

Arduino Uno microcontroller controls them. The proposed construction is heavy for

real flight; however, it is suitable for the wind tunnel experiment. Servomotors were

chosen as actuators for the following reasons. Firstly, they are widespread in aviation
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due to rapid and precise motion, high reliability. Secondly, they have a short latency.

Thirdly, they are easy to substitute in case of malfunction. However, servomotors

have significant disadvantages, which make them hard to use for adaptive structures

– they have a high mass, are bulky, and cannot perform any other function apart

from actuation. The last point makes it impossible to use servomotors as part

of intelligent structures. On the other hand, there are smart materials, which, in

contrast to servomotors, could have structural, actuation, and sensing capabilities.

These materials include piezoceramics, piezopolymers, SMA, SMP, electrostrictors,

magnetostrictors. Most of them are used in experimental models of MW and other

intelligent structures Wada et al. [1990] Crawley [1994]. However, they have some

features, extrinsic for servomotors. For example, piezomaterials, electrostrictors,

and magnetostrictors have low deflection amplitude; they depend on the external

electromagnetic field and have low stiffness and strain. Even though SMA and SMP

have high stiffness and strain and potentially higher amplitude of deflection, they still

require an additional heat source and heat sink, hence additional mass and power

consumption. Along with that, SMA and SMP depend on external temperature

and have high relaxation time. Even though they are used on practice for gentle

maneuvering and landing (e.g., flaps of B-2 and prototype of Boeing’s adaptive

winglets, made from SMA), they do not apply to actuation in cases, where rapid

response to control signal is required.

The prototype of the adaptive wing is demonstrated in Fig. 3-42. All these servos

could work independently and could twist the trailing edge to redistribute the airload

over the wingspan during the flight. However, the current study is focused on the

2D experiments, while the airload redistribution is a subject for future work and

pre-flight experiments.

3.5.3 Control of the Morphing Wing

All the topics mentioned in the previous sections relate to the computer vision

algorithms based on DNNs and their optimization for inference on the low-power

embedded system. All this data is further used for path planning and trajectory

reconstruction of the UAV. Even though this is a vast topic with many nuances,
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Figure 3-42: The manufacturing of the section of the morphing wing

the current research relies on well-known algorithms like 𝑅𝑅𝑇 * and 𝐴*. What is

more relevant for the study is the control of VTOL drone, fixed-wing drone, and

fixed-wing drone with the MW.

The control of the eVTOL with morphing wing relies on the cascaded controller

and an Extended Kalman Filter (EKF). The controller and are described in Ap-

pendix(A.2). There is a description of several flight modes enlisted below. The

control entirely relies on the so-called Unified Control Model, which described in

detail in the Appendix.

• Roll attitude hold

𝐸𝜑𝑡 = 𝜑𝑐𝑡 − 𝜑𝑡

𝐷𝑡 =
𝐸𝜑𝑡 − 𝐸𝜑𝑡−1

∆𝑡

𝛿𝑎𝑡 = 𝑘𝑝𝜑𝐸𝑡 − 𝑘𝑑𝜑𝐷𝑡
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• Course hold

𝐸𝜒𝑡 = 𝜒𝑐𝑡 − 𝜒𝑡

𝐼𝜒𝑡 = 𝐼𝜒𝑡−1 + 𝐸𝜒𝑡∆𝑡

𝜑𝑐 = 𝑘𝑝𝜒𝐸𝜒𝑡 + 𝑘𝑖𝜒𝐼𝜒𝑡

• Sideslip Hold

𝐸𝛽𝑡 = 𝛽𝑐𝑡 − 𝛽𝑡

𝐼𝛽𝑡 = 𝐼𝛽𝑡−1 + 𝐸𝛽𝑡∆𝑡

𝛿𝑟 = −𝑘𝑝𝛽𝐸𝛽𝑡 − 𝑘𝑖𝛽𝐼𝛽𝑡

• Pitch attitude hold

𝐸𝜃𝑡 = 𝜃𝑐𝑡 − 𝜃𝑡

𝐷𝑡 =
𝐸𝜃𝑡 − 𝐸𝜃𝑡−1

∆𝑡

𝛿𝑒 = 𝑘𝑝𝜃𝐸𝜃𝑡 + 𝑘𝑑𝜃𝐷𝜃𝑡

• Altitude hold

𝐸𝑧𝑡 = 𝑧𝑐𝑡 − 𝑧𝑡

𝐼𝑧𝑡 = 𝐼𝑧𝑡−1 + 𝐸𝑧𝑡∆𝑡

𝜃𝑐 = 𝑘𝑝𝑧𝐸𝑧𝑡 + 𝑘𝑖𝑧𝐼𝑧𝑡
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• Airspeed hold using commanded pitch

𝐸𝑉𝑡 = 𝑉 𝑐
𝑡 − 𝑉𝑡

𝐼𝑉𝑡 = 𝐼𝑉𝑡−1 + 𝐸𝑉𝑡∆𝑡

𝜃𝑐 = 𝑘𝑝𝑉2𝐸𝑉𝑡 + 𝑘𝑖𝑉2𝐼𝑉𝑡

• Airspeed hold using commanded throttle

𝐸𝑉𝑡 = 𝑉 𝑐
𝑡 − 𝑉𝑡

𝐼𝑉𝑡 = 𝐼𝑉𝑡−1 + 𝐸𝑉𝑡∆𝑡

𝛿𝑡 = 𝛿*𝑡+ 𝑘𝑝𝑉𝐸𝑉𝑡 + 𝑘𝑖𝑉 𝐼𝑉𝑡

3.5.4 Experimental Results

The CFD study of the adaptive wing with the adaptive flap showed the improve-

ment of aerodynamic characteristics. It is depicted in the polar curve - dependency

of lift coefficient (𝐶𝐿) from drag coefficient (𝐶𝐷) 𝐶𝐿 vs 𝐶𝐷 (see Fig. 3-43) and 𝐶𝐿

vs AoA (see Fig. 3-44) characteristics. The 𝐶𝐿 vs. 𝐶𝐷 characteristics show that

in the same conditions, the adaptive wing has slightly lower 𝐶𝐿 than the tradi-

tional wing. However, 𝐶𝐷 for the adaptive wing is significantly lower than for the

conventional wing under the similar condition and configuration. That is why the

lift-to-drag ratio of the adaptive wing substantially increases. It leads to the reduc-

tion of power consumption of the aircraft. The 𝐶𝐿 vs. 𝐶𝐷 characteristic is in the

polar reference frame; therefore, the modulus of the radius-vector and its inclination

represent physical characteristics. The modulus of the radius-vector shows the total

aerodynamic force, and the inclination angle shows the lift-to-drag ratio for specific

conditions. If the radius vector is the tangential line which origins in the reference

point, its inclination angle will represent the maximum lift-to-drag ratio possible in

such configuration:
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𝐾𝑚𝑎𝑥 = 𝑡𝑎𝑛(𝜃); (3.18)

Where 𝜃 is inclination of the tangential.

It is shown (see Fig. 3-43) that the graphs are slightly higher for the adaptive wing

than for the traditional one - hence the maximum achievable lift-to-drag ratio is also

increased. All the 𝐶𝐿 vs AoA (see Fig. 3-44) graphs slightly moved in the positive

direction of the AoA (horizontal) axis. Hence, the stalling angle increased for 4∘ for

all the configurations. It means an improvement in stability and maneuverability.

The critical values of 𝐶𝐿 (for stalling angle) are also increased in every case. It means

the higher values of the lifting force before stalling and, consequently, the better

controllability for the near-critical regimes. All the 𝐶𝐿 vs. AoA characteristics in the

stalling angle region are low-sloped. It means that aircraft don’t lose controllability

under stalling conditions.

The experiment was performed for every deflection angle of the flap and the AoA

from −5∘ to +35∘ with 5∘ step. The flow velocity had the following values: 10 m/s,

20 m/s, 30 m/s to achieve the 100 000, 200 000, and 300 000 Reynolds numbers.

The pictures of the illuminated airflow over the wing were received (Fig. 3-45).

These pictures and videos were the input data for the OpenPIV software. As

a result, all the important aerodynamic characteristics were calculated: lift, drag,

pressure, and velocity distribution (see Fig. 3-46).

The analysis of the experimental results proved the initial hypothesis. Further-

more, the experiment demonstrates that the flap deflection ensures the increase of

the lifting force and the lift-to-drag ratio. It also increases the torque, which means

an improvement in the controllability and maneuverability of the aircraft. The de-

flection of the adaptive flap also results in a decrease of the drag force, thereby

lowering the aircraft’s power consumption. The experiment also showed a signifi-

cant reduction of pressure over the wing’s upper surface, which, in turn, increases

the lifting force.
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(a) Traditional Configuration; Re =
100 000

(b) Adaptive Configuration; Re =
100 000

(c) Traditional Configuration; Re =
200 000

(d) Adaptive Configuration; Re =
200 000

(e) Traditional Configuration; Re =
300 000

(f) Adaptive Configuration; Re =
300 000

Figure 3-43: 𝐶𝐿 vs 𝐶𝐷 characteristics for different Reynolds numbers and configu-
rations of the wing. Angles of deflection: 0∘-black; 10∘-purple; 20∘-blue; 30∘ -cyan.
The solid line is for negative angles, the dotted line is for positive angles.
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(a) Traditional Configuration; Re =
100 000

(b) Adaptive Configuration; Re =
100 000

(c) Traditional Configuration; Re =
200 000

(d) Adaptive Configuration; Re =
200 000

(e) Traditional Configuration; Re =
300 000

(f) Adaptive Configuration; Re =
300 000

Figure 3-44: 𝐶𝐿 vs AoA for different Reynolds numbers and configurations of the
wing. Angles of deflection: 0
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Figure 3-45: The test chamber of the wind tunnel with the laser, turned on

Figure 3-46: Visualization of the pressure distribution of the airflow over the segment
of the adaptive wing
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3.5.5 Conclusion

Adaptive mechanization demonstrated multiple advantages. First, the lift-to-drag

ratio of the adaptive wing significantly increased. The result is the lower power con-

sumption of the aircraft. Second, the maximum lift-to-drag ratio increased by up

to 5% for all the configurations and regimes. The adaptive mechanization enhances

the stalling angle for 4𝑜 for all the configurations. Thus, it improves stability and

maneuverability. The critical values of 𝐶𝐿 increased in every case. Thus, the lift-

ing force was increased. The controllability was improved for near-critical regimes.

Therefore, it means an improvement in controllability under stalling conditions.

Moreover, in the investigation, the segment of the adaptive wing was successfully

designed and manufactured. It reliably worked during the experiment in the wind

tunnel. As a result of the experiment, the initial hypothesis (that the adaptive flap

and slat might significantly improve the wing’s aerodynamic characteristics) was

successfully proved.
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"Real generosity toward the future

consists in giving all to the present."

Albert Camus

Chapter 4

Conclusion

This work demonstrates different steps of mathematical modeling and analysis of

the airborne platform for analytics in precision agriculture. It includes the following

steps:

• Development of neural networks and optimization for low-power embedded

systems.

• Testing these platforms in various conditions: in the climate chamber, green-

house, onboard of the UAV.

• Mathematical modeling of the control system for the UAV.

• Mathematical modeling and experimental investigation of the Morphing Wing

for the UAV.

All these steps are necessary since the state-of-the-art UAVs for smart agriculture

have to be equipped with the capabilities for fast data processing on board. However,

such an ability significantly influences the UAV dynamics and control. The new

requirement arises, which implies the UAV to be both agile and economical. That

is why the development of the adaptive wing as a new way to lessen the energy

consumption and increase the flight range, and controllability comes to the stage.

The primary goal of this platform is the detection of hogweed and other harmful

plants. However, it is a particular task for the dissertation, which opens a wide
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vista for further development and application of such platforms for future precision

agriculture.

4.1 Low-Power Embedded System for Monitoring

in Precision Agriculture

In this work, multiple low-power embedded systems with AI capabilities were in-

vestigated. The experimental assessment on how to use a single embedded system

efficiently and the embedded system empowered with an external GPU was carried

out. It included several Single Board Computers with either external or internal

GPU or VPU. All the systems showed their capability to be used as nodes for pro-

cessing data in different conditions: a stationary environment, like a climate chamber

in a lab or greenhouse, and on a mobile platform, like UAV. The autonomous sys-

tem proved to be reliable for both scenarios. It might be used as an isolated system

without an external power source or internet connection for a prolonged period of

up to 180 days.

The system proved its applicability to run the neural networks of various types.

They include CNN, FCNN, RNN LSTM. All of these networks were demonstrated.

• The first CNN for seed germination was optimized for inference on a low-power

embedded system. It has capabilities for detecting the seed germination dy-

namics without extensive data transmission from the local nodes to a cloud

computing server. The proposed approach is scalable and has a strong in-

dustrial impact as a powerful tool for assessing the performance of growing

systems and predicting their future harvesting period. At the same time, it

provides an opportunity for making optimization at the initial stage of plant

growth. This optimization will further result in the optimal management of

resources in the context of precision agriculture. With this end in view, a

custom CNN architecture was proposed. Its primary function is seed recogni-

tion, which achieves the 97% accuracy and 83% of IoU. Using the CNN and

computer vision, the sensing system can, first, localize them in the container
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and, second, detect the germinated seeds. Even though the desktop computer

is about 10 times faster than the embedded system, but a battery could power

the last one. It is beneficial for the emerging autonomous applications in the

scope of IoT.

• The second network, RNN LSTM, demonstrated its operation in the green-

house environment onboard a similar system - single board computer, Rasp-

berry Pi with external VPU, Intel Movidius. Performance evaluation of the

proposed solution has demonstrated that the developed AI architecture based

on an RNN LSTM is characterized by reasonable precision for the horizon

of prediction. The proposed solution can be used as an autonomous tool for

continuous plant growth dynamics monitoring for up to 180 days. With an

actuating capability, the proposed approach promises to guarantee easy-to-

deploy, generic, and robust optimization tools for precision agriculture.

• And finally, the FCNN for inference onboard of the airborne platform was

demonstrated. Its primary goal is real-time hogweed detection. The platform

consists of a UAV with the embedded system on board able to run AI. Several

FCNN architectures for the hogweed detection problem were created and eval-

uated. They were evaluated in terms of IoU, power consumption, frame rate,

and the area that can be covered by a typical mission. Afterward, I tested

the aerial platform for real-time detection of harmful plants was designed and

tested. This study included data collection, training the NN, inference on

the embedded platform, experimentation, and evaluation. The performance

of FCNNs varies.

– For example, the RefineNet has the best IoU equal to 47% and the area

coverage. It detects the hogweed, which was not initially labeled with

high detalisation. However, this solution is not the best in terms of power

consumption and frame rate.

– However, modified UNet architecture is characterised by the high frame

rate (FPS = 0.64), reasonable accuracy (IoU = 37%) and detalisation.
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Along with the low power consumption, this architecture has a high po-

tential for its application in a real-time scenario.

– SegNet has a smooth mask and works well in terms of accuracy and

detalisation. However, it is the largest and the heaviest NN. these two-

point prevent its application in real-time.

The proposed platform is scalable to other detection applications and opens

opportunities for harmful plant elimination, enhancing the capabilities for fu-

ture precision agriculture.

4.2 Control System and Morphing Wing

As it was shown in part, devoted to hogweed detection, the successful application of

such a system in practice requires an advance control system and new physical means

to perform the agile and economical flight. To meet this requirement, I propose the

control system for the eVTOL drone along with Morphing Wing.

The control system consists of two parts: estimator and a cascaded controller.

The estimator relies on the EKF algorithm and allows to implement the data fusion

system, which aggregates heterogeneous data from multiple UAV sensors: IMU,

GPS, magnetometer. All this data is further used as a part of the input data of the

cascaded controller. The approach reported in this work is tested in simulations and

experiments with a calculated standard deviation, which is up to 10 cm. Further,

these algorithms, along with the Unified Control Model for fixed-wing aircraft, was

implemented to control the Morphing Wing.

Adaptive mechanization of the Morphing Wing demonstrated multiple advan-

tages. Firstly, the lift-to-drag ratio of the adaptive wing significantly increased.

The result is the lower power consumption of the aircraft. Secondly, the maximum

lift-to-drag ratio also increased up to 5% for all the configurations and regimes.

The application of adaptive mechanization resulted in the stalling angle enhance-

ment for ∼ 4∘ for all the configurations. It means an improvement in stability and

maneuverability. The critical values of 𝐶𝐿 increased in every case. It means the

higher values of the lifting force and better controllability for near-critical regimes.
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It means an improvement in controllability under stalling conditions. Moreover, in

the course of the investigation, the adaptive wing segment was successfully designed

and manufactured. It reliably worked during the experiment in the wind tunnel.

As a result of the experiment, the initial hypothesis (that the adaptive flap and slat

might significantly improve the wing’s aerodynamic characteristics) was successfully

proved.

To sum up, this dissertation is devoted to mathematical modeling and analysis of

next-generation UAV platforms for smart agriculture. It was shown that the ability

to process data-intensive computing immediately onboard the UAV is crucial for

modern farming. However, implementation of such functionality requires advances

both in terms of algorithms and physical means of control. All these challenges

were addressed employing FCNN, optimized for the low-power embedded system,

control system, and morphing wing. The task of hogweed detection was selected to

demonstrate the capabilities of such a platform. However, the proposed platform

and the methodology of developing such a platform open new opportunities for IoT,

UAV, and AI development in the area of precision agriculture.
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DOF Dimensions of Freedom. 162
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DSP Digital Signal Processor. 39
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GPS Geo Positioning System. 40
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GSD Ground Sample Distance. 31, 90

HA hardware acceleration. 39

HD High Definition. 63, 64

ILP Instruction Level Parallelism. 67

IMU Inertial Measurement Unit. 40

IoT Internet of Things. 36

IoU Intersection over Union. 66, 68, 72, 88, 97

IR Infrared. 174

LEO Low Earth Orbit. 33

LES Large Eddy Simulation. 110

LSTM Long-Short Term Memory. 76, 77, 87

MAV Micro Aerial Vehicles. 44

ML Machine Learning. 25, 26

MLR Multiple Linear Regression. 29

MoCap Motion Capture. 173

MRF Markov Random Field. 16

MRI Magnetic Resonance Tomograph. 36
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PIV Particle Image Velocimetry. 23, 118
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RANS Reynolds averaged Navier – Stokes. 110, 117
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RMSE Root Mean Square Error. 80

RNN Recurrent Neural Network. 76, 87
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ROS Robot Operating System. 174
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SST Shear Stress Transport. 110, 117
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Appendix A

Additional Resources

A.1 FCNN Architectures

In this section, we present detailed diagrams of the proposed neural network archi-

tectures.

Figure A-1: General architecture of RefineNet, used in the research

A.2 Estimation and Control for eVTOL

The upcoming section describes the mathematics and algorithms behind the estima-

tion and control systems of the eVTOL drone. It was made as a part of the research

devoted to the intuitive drone control. The research paper was accepted to the re-

puted conference by the IEEE society EFTA. However, the part, which describes

the NNs, Kalman Filter, and math behind gesture control was not included in this

section due to low relevance to the dissertation.
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Figure A-2: Refinenet backbone block

Figure A-3: UNet, used in the research
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Figure A-4: SegNet, used in the research

Figure A-5: Body-fixed coordinates (NED) and rotational DOFs of the UAV.

A.2.1 Drone Controller

The results of this section was published in A. Menshchikov et al. [2020, (in press].

The drone is a physical system with six Dimensions of Freedom (DOF), which

includes three coordinates for the position and three angles for the attitude in the

world’s frame (roll, pitch, and yaw). In this research, I rely on the North-East-Down

(NED) reference frame associated with the drone (see Fig. A-5). However, the state

vector of such a system has 12 dimensions:

𝑥𝑇𝑡 =
[︁
𝑥 𝑦 𝑧 𝜑 𝜃 𝜓 �̇� �̇� �̇� �̇� 𝜃 �̇�

]︁
(A.1)

The control system of the drone includes both controller and estimator implemented

using C++ programming language. The cascaded controller is a system of PD

and P controllers, effectuating the control of the specific parameters in the drone
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state vector. The estimator is the Extended Kalman Filter (EKF). It is the non-

linear version of Kalman Filter. Its operation relies on the assumption that all the

input data has Gaussian distribution, but the estimate of the current mean and

covariance need to be linearized. The development and testing of the controller and

estimator were performed in the open-source simulator and the experimental setup

(see Section A.2.3).

Controller

This part is devoted to the implementation of a 3D controller for a quadrotor. It

includes the position, altitude, and attitude controllers; each of them is a PD or

P controller. The drone has only 4 control channels assigned one per motor. The

thrust and torque generated by the motors depend on the square of the motors

rotation rate and are expressed as follows:

𝐹𝑖 = 𝑘𝑓𝜔
2
𝑖 ; 𝜏𝑖 = (−1)𝑖𝑘𝑚𝜔

2
𝑖 (A.2)

where 𝑘𝑓 and 𝑘𝑚 are the constants of motors. To control such a system, one needs

the controllers for attitude, altitude, and position. Hence, the overall architecture

of the controller for the 3D motion of a drone is the following (see Fig. A-6). Here

the values with index "a" state for the actual values received from the estimator.

The values with index "t" are the target values that are yielded from the trajectory

parameters. The values p, q, r are the body rates measured by the gyroscope (these

values are measured in the body reference frame whereas �̇�, 𝜃, �̇� - in the global

reference frame). 𝑢𝑐, 𝑢𝑝, 𝑢𝑞, 𝑢𝑟 are the control inputs for the total thrust, roll, pitch,

and yaw.

Command vector

The motor commands are accurately calculated from the total collective thrust and

total torques over the different axes. In this initial step we assume that the follow-

ing parameters are known: l is the distance from the motor to the x and y axes,

parameters of the motors 𝑘𝑓 and 𝑘𝑚, moments of inertia 𝐼𝑥, 𝐼𝑦, 𝐼𝑧. To calculate the

163



Appendix A. Additional Resources A.2. Estimation and Control for eVTOL

(a) The cascaded controller diagram.

(b) Detailed diagram of the attitude controller.

Figure A-6: The controller architecture.
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individual commands for each motor from these values, we rely on equation A.3.⎡⎢⎢⎢⎢⎢⎢⎣
𝜔2
1

𝜔2
2

𝜔2
3

𝜔2
4

⎤⎥⎥⎥⎥⎥⎥⎦ =
1

4

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑐

𝑝

𝑞

𝑟

⎤⎥⎥⎥⎥⎥⎥⎦ (A.3)

𝑐 =
𝐹Σ

𝑘𝑓
; 𝑝 =

𝐼𝑥�̄�𝑝
𝑙𝑘𝑓

; 𝑞 =
𝐼𝑦�̄�𝑞
𝑙𝑘𝑓

; 𝑟 =
−𝐼𝑧�̄�𝑟
𝑙𝑘𝑚

; (A.4)

Body rate controller

The P controller takes the moments of inertia and body rates of the drone for

calculating the commanded moments. It relies on equation A.5.⎡⎢⎢⎢⎣
𝜏𝑥

𝜏𝑦

𝜏𝑧

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝐼𝑥𝑥 0 0

0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑘𝑝𝑝(𝑝𝑡 − 𝑝𝑎)

𝑘𝑞𝑝(𝑞𝑡 − 𝑞𝑎)

𝑘𝑟𝑝(𝑟𝑡 − 𝑟𝑎)

⎤⎥⎥⎥⎦ (A.5)

where 𝑘𝑝𝑝, 𝑘𝑝𝑞 , 𝑘𝑝𝑟 are the proportional coefficients for the body rates.

Roll and Pitch controller

The controller uses the acceleration, thrust commands, and the vehicle attitude for

output the body rates commands. Also, it accounts for the non-linear transformation

from local acceleration to the body rates. We note here that z -axis coincides with

the direction of the local −→𝑔 . Hence, the lifting force has a negative value (A.6).

𝑐 = −𝐹Σ

𝑚
(A.6)

⎡⎣ 𝑝𝑐

𝑞𝑐

⎤⎦ =
1

𝑅33

⎡⎣ 𝑅21 −𝑅11

𝑅22 −𝑅12

⎤⎦⎡⎣ 𝑘𝑝(
�̈�𝑐−�̈�𝑎
𝑐

)

𝑘𝑝(
𝑦𝑐−𝑦𝑎
𝑐

)

⎤⎦ (A.7)

where indexed "R" are the corresponding rotation matrix elements.
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Altitude Controller

The altitude controller is a feed-forward PID controller that takes the data on ver-

tical position, velocity, and acceleration as an input, and returns the required total

thrust. The acceleration of the drone along the z -axis is calculated from the linear

equation (A.9).

⎡⎢⎢⎢⎣
�̈�

𝑦

𝑧

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

𝑔

⎤⎥⎥⎥⎦ +𝑅

⎡⎢⎢⎢⎣
0

0

𝑐

⎤⎥⎥⎥⎦ (A.8)

𝑧 = 𝑐𝑅33 + 𝑔 (A.9)

𝑐 =
�̄�− 𝑔

𝑅33

(A.10)

In our case �̄� = 𝑧 and is received from the PID controller equation:

�̄� = 𝑘𝑝(𝑧𝑡 − 𝑧𝑎) + 𝑘𝑑(�̇�𝑡 − �̇�𝑎) + 𝑧𝑓𝑓 + 𝑘𝑖𝑒 (A.11)

where 𝑧𝑡, �̇�𝑡 are the target altitude and the vertical component of velocity; 𝑧𝑎, �̇�𝑎

are the actual altitude and the vertical component of velocity; 𝑘𝑝, 𝑘𝑖, 𝑘𝑑 are the

PID controller coefficients; 𝑒 is the integrated altitude error; 𝑧𝑓𝑓 is the feed-forward

component of the controller. At the end of the day the final value of the total thrust

is calculated by (A.12).

𝐹Σ = −𝑚𝑐 (A.12)

Lateral Controller

The lateral position PD controller uses the local position and velocity as an input

to generate a commanded local acceleration (A.14).

�̈� = 𝑘𝑝(𝑥𝑡 − 𝑥𝑎) + 𝑘𝑑(�̇�𝑡 − �̇�𝑎) (A.13)

𝑦 = 𝑘𝑝(𝑦𝑡 − 𝑦𝑎) + 𝑘𝑑(�̇�𝑡 − �̇�𝑎) (A.14)
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Yaw Controller

The yaw controller is proportional and is described by (A.15).

𝑟𝑐 = 𝑘𝑝(𝜓𝑡 − 𝜓𝑎) (A.15)

A.2.2 Estimator

This section is devoted to the implementation of EKF for a quadrotor. It is a type

of Bayes Filter which has two general steps: predict and update. The proposed filter

works both with the IMU, Positioning System, and Magnetometer. IMU returns the

data from accelerometer and gyroscope, positioning system - the coordinates and

velocity data, magnetometer - the data about heading. Altogether these sensors

allow for estimating the values for 12 variables for the quadrotor position and atti-

tude. The state vector consists of position, velocity (both received from positioning

system), and yaw angle (received from the magnetometer).

𝑥𝑇𝑡 =
[︁
𝑥 𝑦 𝑧 �̇� �̇� �̇� 𝜓

]︁
(A.16)

The vector of control input at time t, 𝑢𝑡 is the acceleration in the body frame, where

�̇� is global frame yaw.

𝑢𝑇𝑡 =
[︁
�̈�𝑏 𝑦𝑏 𝑧𝑏 �̇�

]︁
(A.17)

EKF algorithm implemented in the current study performs the update step for IMU,

positioning system, and magnetometer separately Cristi and Tummala [2000], Quan

[2017]. The Complementary Filter processes the attitude data received from the

IMU before the EKF. The EKF algorithm includes the following steps:

Sensor Noise

For the sensor noise estimation, the simulated data have been collected. It includes

the data for positioning and accelerometer sensors along x axis. The sensors have

different measurement frequencies: 100 Hz for positioning and 200 Hz for accelerom-
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Algorithm 1 E(KF) algorithm.
1: function Predict(𝜇𝑡−1,Σ𝑡−1, 𝑢𝑡,∆𝑡)
2: �̄�𝑡 = 𝑔(𝑢𝑡, 𝜇𝑡−1)
3: 𝐺𝑡 = 𝑔′(𝑢𝑡, 𝑥𝑡,∆𝑡)
4: Σ̄𝑡 = 𝐺𝑡Σ𝑡−1𝐺

𝑇
𝑡 +𝑄𝑡

5: return �̄�𝑡, Σ̄𝑡

6: function Update(�̄�𝑡, Σ̄𝑡, 𝑧𝑡)
7: 𝐻𝑡 = ℎ′(�̄�𝑡)
8: 𝐾𝑡 = Σ̄𝑡𝐻

𝑇
𝑡 (𝐻𝑡Σ̄𝑡𝐻

𝑇
𝑡 +𝑅𝑡)

−1

9: 𝜇𝑡 = �̄�𝑡 +𝐾𝑡(𝑧𝑡 − ℎ(�̄�𝑡))
10: Σ𝑡 = (𝐼 −𝐾𝑡𝐻𝑡)Σ̄𝑡

11: return 𝜇𝑡,Σ𝑡

12: function ExtendedKalmanFilter
13: 𝑢𝑡 = ComputeControl(𝜇𝑡−1,Σ𝑡−1)
14: �̄�𝑡, Σ̄𝑡 = Predict(𝜇𝑡−1,Σ𝑡−1, 𝑢𝑡,∆𝑡)
15: 𝑧𝑡 = ReadSensor()
16: 𝜇𝑡,Σ𝑡 = Update(�̄�𝑡, Σ̄𝑡, 𝑧𝑡)

eter. The standard deviation values for positioning sensor and accelerometer are the

following:

[︁
𝜎𝑥 𝜎𝑦 𝜎𝑧

]︁
=

[︁
0.718 0.706 2.05

]︁
(A.18)

[︁
𝜎�̈� 𝜎𝑦 𝜎𝑧

]︁
=

[︁
0.488 0.01 0.109

]︁
(A.19)

Attitude Estimation

IMU usually includes a gyroscope, accelerometer, magnetometer, and some optional

sensors (barometer, thermometer, etc.). The gyroscope returns the turn rates around

body axes (in body frame), but this data is usually noisy and biased. The bias de-

pends on temperature and could drift over with the temperature change. Gyroscope

is modeled as follows:

�̂�𝑡 = 𝜔𝑡 + 𝑏+ 𝜂; 𝜂 ∼ 𝑁(0, 𝜎2
𝑔𝑦𝑟𝑜) (A.20)
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The Gaussian noise also varies with time, since the uncertainty grows over time

according to the formula:

𝜎2
𝑛 = 𝑛𝜎2∆𝑡2 (A.21)

where n is the number of measurements over time. Angle measurements rapidly shift

in the range ±3𝜎 in a matter of seconds. That is why there is always the need in

the source of additional information about the attitude. Usually, the accelerometer

provides this additional data since it can measure the acceleration’s components

in the body frame. The relation of these components returns the trigonometric

functions of the Euler angles:

𝜑𝑎𝑐𝑐𝑒𝑙 = arctan
𝑎𝑦
𝑎𝑧

(A.22)

𝜃𝑎𝑐𝑐𝑒𝑙 = arcsin
𝑎𝑥
𝑔

(A.23)

However, there is always the issue of how to combine this data with improving the

gyroscope measurements. There are many available options which include various

EKF Markley [2003] and MEKF (Multiplicative Extended Kalman Filters) Jo-

hansen and Kristiansen [2017] Crassidis et al. [2007], Complimentary Filters Quan

[2017] Higgins [1975]. Typically, both algorithms have similar computational loads.

Kalman filters can reach better accuracy while the complementary filter is usually

easier to implement. That is why we used the linear complementary filter Quan

[2017] for improving attitude estimation. The idea behind it is the following. The

attitude measurement described by the vector 𝑧𝑡, which incorporates data from the

accelerometer equation (A.22) and the bodyrates from the gyroscope:

𝑧𝑇𝑡 =
[︁
𝜑𝑎𝑐𝑐𝑒𝑙 𝜃𝑎𝑐𝑐𝑒𝑙 𝑝 𝑞

]︁
(A.24)
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The attitude state vector includes the pitch and roll angles. The yaw angle is not

included because it is received from the magnetometer measurements as follows:

𝑥𝑡 =

⎡⎣ 𝜑

𝜃

⎤⎦ (A.25)

Since the gyroscope returns the bodyrates, one needs to perform the transformation

from the body to the global reference frame.⎡⎢⎢⎢⎣
�̇�

𝜃

�̇�

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 sin𝜑 tan 𝜃 cos𝜑 tan 𝜃

0 cos𝜑 − sin𝜑

0 sin𝜑/ cos 𝜃 cos𝜑/ cos 𝜃

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑝

𝑞

𝑟

⎤⎥⎥⎥⎦ (A.26)

We perform the Euler Forward Method for the numerical integration to calculate

the Euler angles as follows:⎡⎢⎢⎢⎣
𝜑𝑡

𝜃𝑡

𝜓𝑡

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝜑𝑡−1

𝜃𝑡−1

𝜓𝑡−1

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
�̇�

𝜃

�̇�

⎤⎥⎥⎥⎦ 𝑑𝑡 (A.27)

Then all these values are used in the complementary filter to estimate pitch and roll

angles as follows:

𝜑𝑡 =
𝜏

𝜏 + 𝑇𝑠

(︁
𝜑𝑡−1 + 𝑇𝑠�̇�

)︁
+

𝑇𝑠
𝜏 + 𝑇𝑠

𝜑𝑎𝑐𝑐𝑒𝑙 (A.28)

𝜃𝑡 =
𝜏

𝜏 + 𝑇𝑠

(︁
𝜃𝑡−1 + 𝑇𝑠𝜃

)︁
+

𝑇𝑠
𝜏 + 𝑇𝑠

𝜃𝑎𝑐𝑐𝑒𝑙 (A.29)

Here 𝜏 = 0.95 is the time constant and the 𝑇𝑠 is the filter sampling period. This

new and better gyro rates integration scheme helped to receive attitude estimator

precision < 0.1 rad.
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Prediction Step

First, the predicted state vector was calculated out of current state vector and

acceleration vector.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑢𝑝𝑑

𝑦𝑢𝑝𝑑

𝑧𝑢𝑝𝑑

�̇�𝑢𝑝𝑑

�̇�𝑢𝑝𝑑

�̇�𝑢𝑝𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑐𝑢𝑟

𝑦𝑐𝑢𝑟

𝑧𝑐𝑢𝑟

�̇�𝑐𝑢𝑟

�̇�𝑐𝑢𝑟

�̇�𝑐𝑢𝑟

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇�𝑐𝑢𝑟

�̇�𝑐𝑢𝑟

�̇�𝑐𝑢𝑟

�̈�𝑐𝑢𝑟

𝑦𝑐𝑢𝑟

𝑧𝑐𝑢𝑟

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑑𝑡+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

−𝑔

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑑𝑡 (A.30)

where 𝑥𝑢𝑝𝑑 is the updated state vector, 𝑥𝑐𝑢𝑟 is the current state vector, �̇�𝑐𝑢𝑟 is the

first derivative of the state vector. To access the correct acceleration values it was

necessary to convert the acceleration vector from the body to the inertial frame.

After that the derivative of the rotation matrix 𝑅′
𝑏𝑔 was calculated:

𝑅′
𝑏𝑔 =

⎡⎢⎢⎢⎣
−𝑐𝜃𝑠𝜓 −𝑠𝜑𝑠𝜃𝑠𝜓 − 𝑐𝜑𝑐𝜓 −𝑐𝜑𝑠𝜃𝑠𝜓 + 𝑠𝜑𝑐𝜓

𝑐𝜃𝑐𝜓 𝑠𝜑𝑠𝜃𝑐𝜓 − 𝑐𝜑𝑠𝜓 𝑐𝜑𝑠𝜃𝑐𝜓 + 𝑠𝜑𝑠𝜓

0 0 0

⎤⎥⎥⎥⎦ (A.31)

Here 𝑐𝜃 = cos 𝜃; 𝑠𝜑 = sin𝜑, etc. Finally, the updated covariance 𝑔′ was calculated as

follows:

𝑔′(𝑥𝑡, 𝑢𝑡,∆𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ∆𝑡 0 0 0

0 1 0 0 ∆𝑡 0 0

0 0 1 0 0 ∆𝑡 0

0 0 0 1 0 0 𝑅′
𝑏𝑔1

∆𝑡

0 0 0 0 1 0 𝑅′
𝑏𝑔2

∆𝑡

0 0 0 0 0 1 𝑅′
𝑏𝑔3

∆𝑡

0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.32)
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where 𝑅′
𝑏𝑔𝑖

is the i-th row of the matrix multiplication 𝑅′
𝑏𝑔𝑢𝑡. The covariance matrix

is predicted by the following equation.

Σ̄𝑡 = 𝐺𝑡Σ𝑡−1𝐺
𝑇
𝑡 +𝑄𝑡 (A.33)

where 𝐺𝑡 equals to 𝑔′(𝑥𝑡, 𝑢𝑡,∆𝑡), Σ𝑡−1 and Σ̄𝑡 are the current and predicted covari-

ance matrices, Q is the uncertainty matrix, associated with the measurements.

Heading Update

To properly update the magnetometer data it is assumed that the readings (yaw)

obtained from the magnetometer in the global frame. Also, the observation 𝑧𝑡 and

the observation function ℎ(𝑥𝑡) are as follows:

𝑧𝑡 =
[︁
𝜓

]︁
(A.34)

ℎ(𝑥𝑡) =
[︁
𝑥𝑡,𝜓

]︁
(A.35)

Since the observation function is linear, the derivative is a matrix of zeros and ones.

ℎ′(𝑥𝑡) =
[︁

0 0 0 0 0 0 1
]︁

(A.36)

The yaw error is less than 0.1 rad in 1 minute of the simulation.

Position Update

Positioning System let us estimate both the position and velocity of the vehicle.

One may consider using the heading from the GPS, but it does not take into ac-

count the drone’s orientation - only the direction of travel. For the orientation, the

magnetometer and IMU data were used. Hence it is removed from the observation.

The observation vector and the measurement function are as follows:

𝑧𝑇𝑡 =
[︁
𝑥 𝑦 𝑧 �̇� �̇� �̇�

]︁
(A.37)
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Figure A-7: Crazyflie 2.0 quadrotor with four IR reflective markers and 2.4 GHz
Crazyradio.

ℎ𝑇 (𝑥𝑡) =
[︁
𝑥𝑡,𝑥 𝑥𝑡,𝑦 𝑥𝑡,𝑧 𝑥𝑡,�̇� 𝑥𝑡,�̇� 𝑥𝑡,�̇�

]︁
(A.38)

Then the partial derivative is the identity matrix augmented with a vector of zeros

for 𝜕
𝜕𝑥𝑡,𝜑

ℎ(𝑥𝑡):

ℎ′(𝑥𝑡) = 𝐼6𝑥6 (A.39)

All the math implemented in the code allowed us to perform the stable flight within

the simulated environment.

A.2.3 Results

The development and testing of the control system was performed in the open-source

simulator Fot [2018] and in the experimental setup containing the Motion Capture

(MoCap) system and Crazyflie drone.

First of all, the system was investigated in the simulator. The proposed con-

troller and estimator were coded and tested in the simulator by Fotokite. This

simulator was used in the investigation because the underlying dynamical model is
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Figure A-8: The simulation of the drone dynamics, following the square trajectory.

very detailed and allows for receiving realistic results. The dynamical parameters

of simulated drone, as well as the noisy sensors data, are adjusted to mimic the

parameters of the experimental setup (see Fig. A-8).

To track the quadrotor in the real environment a Vicon motion capture system

was deployed. It consists of 12 Infrared (IR) cameras (Vantage V5) covering 5 m

x 5 m x 5 m space. We used Robot Operating System (ROS) Kinetic framework

to run the custom software and ROS stack for Crazyflie 2.0. Four IR reflective

markers lead to the total weight of 33 grams reducing the flight time for up to

5 minutes. Crazyflie 2.0 is supplied with two controllers. The first one is the 32

bits ARM Cortex-M4 (STM32F405) for the main applications. The second one is

ARM CortexM0 (nRF51822) for power and communication purposes. Crazyflie 2.0

supports Bluetooth, but for the communication, we used the 2.4 GHz Crazyradio

showed in Fig. A-7.

Both simulation and the experiments in the real environment resulted in the

close coincidence of the trajectories (Fig. A-9). We note that the experimental

trajectories contain the take-off and landing parts, which were not included in the

evaluation. The standard deviation of experimental trajectories from the simulated

trajectories varies in the range of 10 cm. However, the deviation is very low for the

"line" trajectory, it is high for the "eight"-like trajectory (Standard deviation of x,
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y, z coordinates in the experiment from the simulated data) (A.42).

𝜎𝑠𝑞𝑢𝑎𝑟𝑒 =
[︁

0.101 0.078 0.058
]︁

(A.40)

𝜎𝑒𝑖𝑔ℎ𝑡 =
[︁

0.1 0.099 0.086
]︁

(A.41)

𝜎𝑙𝑖𝑛𝑒 =
[︁

0.037 0.027 0.01
]︁

(A.42)

A.3 Fixed Wing Control

A.3.1 Notation

Position in body frame is �⃗�𝐵 = [𝑥𝐵 𝑦𝐵 𝑧𝐵]𝑇 (A.43)

Position in inertial frame is �⃗�𝐼 = [𝑥𝐼 𝑦𝐼 𝑧𝐼 ]
𝑇 (A.44)

Attitude is Θ = [𝜑 𝜃 𝜓]𝑇 = [roll pitch yaw]𝑇 (A.45)

Rotation from frame 1 to frame 2 is 𝐻2
1 (A.46)

Rotation from inertial to body frame is 𝐻𝐵
𝐼 (A.47)

Velocity in body frame is �⃗�𝐵 = [𝑢 𝑣 𝑤]𝑇 (A.48)

Angular rate in body frame is �⃗�𝐵 = [𝑝 𝑞 𝑟]𝑇 (A.49)

Total velocity in body frame is 𝑉 =
√
𝑢2 + 𝑣2 + 𝑤2 (A.50)

Angle of attack in body frame is 𝛼 = tan−1(𝑤/𝑢) (A.51)

Flight path angle is 𝛾 = 𝜃 − 𝛼 (A.52)

Sideslip angle in body frame is 𝛽 = sin−1(𝑣/𝑉 ) (A.53)

Flight path heading is 𝜉 = 𝜓 + 𝛽 (A.54)

Bank angle is 𝛽 (A.55)

Magnitude of the thrust vector is 𝑇 (A.56)
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(a) Collected position data during the flight along the line.

(b) Collected position data during the flight along the square.

(c) Collected position data during the flight along the "eight" figure.

Figure A-9: Flight trajectories during simulations and real-life experiment.
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If the thrust of vehicle is aligned with the centerline (𝑥𝐵 axis), then

[𝑇𝑥 𝑇𝑦 𝑇𝑧]
𝑇 = 𝑇 cos𝛼, 0,−𝑇 sin𝛼 (A.57)

Aerodynamic forces are 𝑋, 𝑌, 𝑍𝐵 = 𝐻𝐵
𝐼 −𝐷,𝑆𝐹,−𝐿 (A.58)

where 𝐿 is lift, 𝐷 is drag, and 𝑆𝐹 is side force.

(A.59)

Aerodynamic moments are 𝐿,𝑀,𝑁𝐵 = 𝐻𝐵
𝐼 𝐿,𝑀,𝑁 𝐼 (A.60)

Yes, the roll moment and lift force are both denoted by L...

Mass of vehicle is 𝑚 (A.61)

Reference area (e.g., wing area) is 𝑆 (A.62)

Wing span is 𝑏 (A.63)

Mean aerodynamic chord 𝑐 (A.64)

Elevator deflection is 𝛿𝐸 (A.65)

Aileron deflection is 𝛿𝐴 (A.66)

Rudder deflection is 𝛿𝑅 (A.67)

Dynamic pressure is 𝑞 =
1

2
𝜌𝑉 2 (A.68)
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A.3.2 Longitudinal Model:

Longitudinal equations of motion are

�̇�𝐼 = 𝑢 cos 𝜃 + 𝑤 sin 𝜃 (A.69)

�̇�𝐼 = −𝑢 sin 𝜃 + 𝑤 cos 𝜃 (A.70)

𝜃 = 𝑞 (A.71)

�̇� = 𝐹𝑋/𝑚− 𝑞𝑤 (A.72)

�̇� = 𝐹𝑍/𝑚+ 𝑞𝑢 (A.73)

𝑞 = 𝑀𝑚/𝐼𝑦𝑦 (A.74)

To get forces and moments (assuming zero wind)

Moment of inertia about the 𝑦 axis is 𝐼𝑦𝑦 (A.75)

Aerodynamic forces in stability frame:

⎡⎣−𝐷
−𝐿

⎤⎦ (A.76)

Aerodynamic forces in body frame:

⎡⎣cos𝛼 − sin𝛼

sin𝛼 cos𝛼

⎤⎦×

⎡⎣−𝐷
−𝐿

⎤⎦ (A.77)

Force in 𝑥𝐵 direction 𝐹𝑋 = 𝐿 sin𝛼−𝐷 cos𝛼 + 𝑇 −𝑚𝑔 sin 𝜃

(A.78)

Force in 𝑧𝐵 direction 𝐹𝑍 = −𝐿 cos𝛼−𝐷 sin𝛼 +𝑚𝑔 cos 𝜃 (A.79)
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We’re going to simplify by ignoring the forces and moments from the fuselage and

fuselage-wing interference, and compute the forces and moments as:

Lift: 𝐿 = 𝐶𝐿𝑞𝑆 (A.80)

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼𝛼 + 𝐶𝐿𝛿𝐸
𝛿𝐸 (A.81)

Drag: 𝐷 = 𝐶𝐷𝑞𝑆 (A.82)

𝐶𝐷 = 𝐶𝐷0 + 𝜖𝐶2
𝐿 (A.83)

= (𝐶𝐷0 + 𝜖𝐶2
𝐿0

) + 𝐶𝐷𝛼 + 𝐶𝐿2
𝛼
𝛼2 (A.84)

with induced drag factor 𝜖 (A.85)

𝐶𝐷𝛼 = 2𝜖𝐶𝐿0𝐶𝐿𝛼 (A.86)

𝐶𝐷2
𝛼

= 𝜖𝐶𝐿2
𝛼

(A.87)

Pitch: 𝑀 = 𝐶𝑀𝑞𝑆𝑐 (A.88)

𝐶𝑀 = 𝐶𝑀0 + 𝐶𝑀𝛼𝛼 + 𝐶𝑀𝛿𝐸𝛿𝐸 (A.89)

where the elevator deflection is 𝛿𝐸 (A.90)

Quantities needed to implement this model:
Initial conditions: 𝑥0, 𝑦0, 𝑧0𝐼 , �̇�0, �̇�0, �̇�0𝐼 , Θ0, �⃗�0

Vehicle properties: mass 𝑚, wing area 𝑆, mean aerodynamic chord 𝑐, inertial

matrix 𝐼

Coefficients: 𝐶𝐿0 , 𝐶𝐿𝛼 , 𝐶𝐷0 , 𝜖, 𝐶𝐿2
𝛼
,

Air density: 𝜌(𝑥)

Gravity: 𝑔

Controls: thrust 𝑇 , elevator deflection 𝛿𝐸
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A.3.3 Linearized Longitudinal Model:

�̇�𝐼 = 𝑢 cos 𝜃 + 𝑤 sin 𝜃

�̇�𝐼 = −𝑢 sin 𝜃 + 𝑤 cos 𝜃

𝜃 = 𝑞

�̇� = −𝑔 sin 𝜃 +
𝜌𝑉 2𝑆

2𝑚

[︁
𝐶𝑋0 + 𝐶𝑋𝛼𝛼 + 𝐶𝑋𝑞

𝑐𝑞

2𝑉
+ 𝐶𝑋𝛿𝑒𝛿𝑒

]︁
+ (𝑇 + 𝛿𝑇 )/𝑚− 𝑞𝑤

�̇� = −𝑔 cos 𝜃 +
𝜌𝑉 2𝑆

2𝑚

[︁
𝐶𝑍0 + 𝐶𝑍𝛼𝛼 + 𝐶𝑍𝑞

𝑐𝑞

2𝑉
+ 𝐶𝑍𝛿𝑒𝛿𝑒

]︁
+ 𝑞𝑢

𝑞 =
𝜌𝑉 2𝑐𝑆

2𝐼𝑦𝑦

[︁
𝐶𝑚0 + 𝐶𝑚𝛼𝛼 + 𝐶𝑚𝑞

𝑐𝑞

2𝑉
+ 𝐶𝑚𝛿𝑒

𝛿𝑒
]︁

𝑤 = 𝑉 sin𝛼

�̄� = 𝑉 * cos𝛼*�̄�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̄𝑥𝐼

˙̄𝑧𝐼

˙̄𝜃

˙̄𝑢

˙̄𝛼

˙̄𝑞

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −𝑢* sin 𝜃* + 𝑤* cos 𝜃* cos 𝜃* 𝑉 * sin 𝜃* cos𝛼* 0

0 0 −𝑢* cos 𝜃* − 𝑤* sin 𝜃* − sin 𝜃* 𝑉 * cos 𝜃* cos𝛼* 0

0 0 0 0 0 1

0 0 −𝑔 cos 𝜃* 𝑋𝑢 𝑋𝑤𝑉
* cos𝛼 𝑋𝑞

0 0 −𝑔 sin 𝜃*
𝑉 * cos𝛼*

𝑍𝑢

𝑉 * cos𝛼* 𝑍𝑤
𝑍𝑞

𝑉 * cos𝛼*

0 0 0 𝑀𝑢 𝑀𝑤𝑉
* cos𝛼* 𝑀𝑞

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝐼

𝑧𝐼

𝜃

�̄�

�̄�

𝑞

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

𝑋𝛿𝑒 𝑋𝛿𝑡

𝑍𝛿𝑒

𝑉 cos𝛼
0

𝑀𝛿𝑒 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎣𝛿𝑒
𝛿𝑇

⎤⎦
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Coefficient Formula

𝑋𝑢
𝑢*𝜌𝑆
𝑚

[𝐶𝑋0 + 𝐶𝑋𝛼𝛼
* + 𝐶𝑋𝛿𝑒

𝛿𝑒*] − 𝜌𝑆𝑤*𝐶𝑋𝛼

2𝑚
+

𝜌𝑆𝑐𝐶𝑋𝑞𝑢
*𝑞*

4𝑚𝑉 *

𝑋𝑤 −𝑞* + 𝑤*𝜌𝑆
𝑚

[𝐶𝑋0 + 𝐶𝑋𝛼𝛼
* + 𝐶𝑋𝛿𝑒

𝛿𝑒*] +
𝜌𝑆𝑢*𝐶𝑋𝛼

2𝑚
+

𝜌𝑆𝑐𝐶𝑋𝑞𝑤
*𝑞*

4𝑚𝑉 *

𝑋𝑞 −𝑤* +
𝜌𝑉 *𝑆𝐶𝑋𝑞 𝑐

4𝑚

𝑋𝛿𝑒
𝜌𝑉 *2𝑆𝐶𝑋𝛿𝑒

2𝑚

𝑋𝛿𝑇
1
𝑚

𝑍𝑢 𝑞* + 𝑢*𝜌𝑆
𝑚

[𝐶𝑍0 + 𝐶𝑍𝛼𝛼
* + 𝐶𝑍𝛿𝑒

𝛿𝑒*] − 𝜌𝑆𝑤*𝐶𝑍𝛼

2𝑚
+

𝜌𝑆𝑐𝐶𝑍𝑞𝑢
*𝑞*

4𝑚𝑉 *

𝑍𝑤
𝑤*𝜌𝑆
𝑚

[𝐶𝑍0 + 𝐶𝑍𝛼𝛼
* + 𝐶𝑍𝛿𝑒

𝛿𝑒*] +
𝜌𝑆𝑢*𝐶𝑍𝛼

2𝑚
+

𝜌𝑆𝑐𝐶𝑍𝑞𝑤
*𝑞*

4𝑚𝑉 *

𝑍𝑞 𝑢* +
𝜌𝑉 *𝑆𝐶𝑍𝑞 𝑐

4𝑚

𝑍𝛿𝑒
𝜌𝑉 *2𝑆𝐶𝑍𝛿𝑒

2𝑚

𝑀𝑢
𝑢*𝜌𝑆𝑐
𝐼𝑦𝑦

[𝐶𝑚0 + 𝐶𝑚𝛼𝛼
* + 𝐶𝑚𝛿𝑒

𝛿𝑒*] − 𝜌𝑆𝑤*𝐶𝑚𝛼

2𝐼𝑦𝑦
+

𝜌𝑆𝑐2𝐶𝑚𝑞𝑢
*𝑞*

4𝐼𝑦𝑦𝑉 *

𝑀𝑤
𝑤*𝜌𝑆𝑐
𝐼𝑦𝑦

[𝐶𝑚0 + 𝐶𝑚𝛼𝛼
* + 𝐶𝑚𝛿𝑒

𝛿𝑒*] − 𝜌𝑆𝑢*𝐶𝑚𝛼

2𝐼𝑦𝑦
+

𝜌𝑆𝑐2𝐶𝑚𝑞𝑤
*𝑞*

4𝐼𝑦𝑦𝑉 *

𝑀𝑞
𝜌𝑉 *𝑆𝑐2𝐶𝑚𝛿𝑒

4𝐼𝑦𝑦

𝑀𝛿𝑒
𝜌𝑉 *2𝑆𝑐𝐶𝑚𝛿𝑒

4𝐼𝑦𝑦
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A.3.4 Lateral-Directional motion:

Lateral-directional equations of motion are

�̇�𝐼 = 𝑢(cos 𝜃 cos𝜓) + 𝑣(sin𝜑 sin 𝜃 cos𝜓 − cos𝜑 sin𝜓) + 𝑤(cos𝜑 sin 𝜃 cos𝜓 + sin𝜑 sin𝜓)

(A.91)

�̇�𝐼 = 𝑢(cos 𝜃 sin𝜓) + 𝑣(sin𝜑 sin 𝜃 cos𝜓 + cos𝜑 cos𝜓) + 𝑤(cos𝜑 sin 𝜃 sin𝜓 − sin𝜑 cos𝜓)

(A.92)

�̇�𝐼 = −𝑢 sin 𝜃 + 𝑣 sin𝜑 cos 𝜃 + 𝑤 cos𝜑 cos 𝜃 (A.93)

�̇� = 𝑝+ 𝑟 cos𝜑 tan 𝜃 (A.94)

𝜃 = −𝑟 sin𝜑 (A.95)

�̇� = 𝑟 cos𝜑 sec 𝜃 (A.96)

�̇� = −𝑔 sin 𝜃 +
𝜌𝑉 2𝑆

2𝑚
[𝐶𝑋0 + 𝐶𝑋𝛼𝛼] + 𝑇/𝑚+ 𝑟𝑣 (A.97)

�̇� = 𝑔 cos 𝜃 sin𝜑+
𝜌𝑉 2𝑆

2𝑚

[︂
𝐶𝑌0 + 𝐶𝑌𝛽𝛽 + 𝐶𝑌𝑝

𝑏𝑝

2𝑉
+ 𝐶𝑌𝑟

𝑏𝑟

2𝑉
+ 𝐶𝑌𝛿𝑎𝛿𝑎 + 𝐶𝑌𝛿𝑟 𝛿𝑟

]︂
+ 𝑝𝑤 − 𝑟𝑢

(A.98)

�̇� = 𝑔 cos 𝜃 cos𝜑+
𝜌𝑉 2𝑆

2𝑚
[𝐶𝑍0 + 𝐶𝑍𝛼𝛼] − 𝑝𝑣 (A.99)

�̇� = (𝐼𝑧𝑧𝐿+ 𝐼𝑥𝑧𝑁) /(𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧) (A.100)

remembering that 𝐿 and 𝑁 are the rolling and yawing moments.

𝑞 =
𝜌𝑉 2𝑐𝑆

2𝐼𝑦𝑦

[︁
𝐶𝑚0 + 𝐶𝑚𝛼𝛼 + 𝐶𝑚𝑞

𝑐𝑞

2𝑉
+ 𝐶𝑚𝛿𝑒

𝛿𝑒
]︁

(A.101)

�̇� = (𝐼𝑥𝑧𝐿+ 𝐼𝑥𝑥𝑁) /(𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧) (A.102)
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And we can write the rolling (not lift) and yawing moments as

𝐿 =
1

2
𝜌𝑉 2𝑆𝑏

[︂
𝐶𝑙0 + 𝐶𝑙𝛽𝛽 + 𝐶𝑙𝑝

𝑏𝑝

2𝑉
+ 𝐶𝑙𝑟

𝑏𝑟

2𝑉
+ 𝐶𝑙𝛿𝑎𝛿𝑎+ 𝐶𝑙𝛿𝑟𝛿𝑟

]︂
(A.103)

𝑁 =
1

2
𝜌𝑉 2𝑆𝑏

[︂
𝐶𝑟0 + 𝐶𝑟𝛽𝛽 + 𝐶𝑟𝑝

𝑏𝑝

2𝑉
+ 𝐶𝑟𝑟

𝑏𝑟

2𝑉
+ 𝐶𝑟𝛿𝑎𝛿𝑎+ 𝐶𝑟𝛿𝑟𝛿𝑟

]︂
(A.104)

(A.105)

If we are in level flight, with a small sideslip angle 𝛽, then our forces and moments

are:

𝑌 = 𝐶𝑌𝛽𝑞𝑆𝛽 + 𝐶𝑌𝛿𝑅𝛿𝑅 (A.106)

It’s weird that the sideforce should be given with respect to the reference area 𝑆 and

dynamic pressure 𝑞. Unpacking the co-efficient, it gets renormalised for the tail, as

𝐶𝑌𝛽 =

(︂
𝑞𝑣𝑡
𝑞

)︂(︂
1 +

𝜕𝜎

𝜕𝛽

)︂
𝜂𝑣𝑡

(︂
𝑆𝑣𝑡
𝑆

)︂(︀
𝐶𝑌𝛽𝑣𝑡

)︀
. (A.107)

where 𝜂𝑣𝑡 is a tail efficiency parameter, 𝜎 is the sidewash angle which we can ignore,

and the parameters (·)𝑣𝑡 are the relevant parameters of the vertical tail. Similarly,

the rolling and yawing moments get translated to the tail, for example as

𝐶𝑁𝛽𝑣𝑡
= −𝐶𝑌𝛽𝑣𝑡𝜂𝑣𝑡

𝑆𝑣𝑡𝑙𝑣𝑡
𝑆𝑏

(A.108)

where 𝑙𝑣𝑡 is the vertical tail length, i.e., the distance from centre of mass to tail

centre of pressure. But if we are banked, then the longitudinal forces will have

lateral-directional effect too.

(A.109)

Additional quantities needed to implement this model:
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Coefficients: 𝐶𝑌0 , 𝐶𝑌𝛽 , 𝐶𝑌𝑝 ,𝐶𝑌𝑟 ,𝐶𝑌𝛿𝑎 ,𝐶𝑌𝛿𝑟 , 𝐶𝑙0 , 𝐶𝑙𝛽 , 𝐶𝑙𝑝 ,𝐶𝑙𝑟 ,𝐶𝑙𝛿𝑎 ,𝐶𝑙𝛿𝑟 ,

𝐶𝑟0 , 𝐶𝑟𝛽 , 𝐶𝑟𝑝 ,𝐶𝑟𝑟 ,𝐶𝑟𝛿𝑎 ,𝐶𝑟𝛿𝑟
Wing parameters: 𝑏, 𝑆

Tail parameters: 𝑆𝑣𝑡, 𝑞𝑣𝑡, 𝜂𝑣𝑡, 𝑙𝑣𝑡.

A.3.5 Linearized Lateral-Directional Model:

Because we have the trim state and the longitudinal model, for the lateral dynamics

case we can basically forget about the 𝑥, 𝑧 and pitch variables in the state. Given a

trim state that contains all the relevant variables, we can build and analyze a linear

model that only contains the lateral velocity 𝑣, the roll and yaw 𝜑 and 𝜓, and the

corresponding rates 𝑝 and 𝑟.

�̇� = 𝑔 cos 𝜃 sin𝜑+
𝜌𝑉 2𝑆

2𝑚

[︂
𝐶𝑌0 + 𝐶𝑌𝛽𝛽 + 𝐶𝑌𝑝

𝑏𝑝

2𝑉
+ 𝐶𝑌𝑟

𝑏𝑟

2𝑉
+ 𝐶𝑌𝛿𝑎𝛿𝑎 + 𝐶𝑌𝛿𝑟 𝛿𝑟

]︂
+ 𝑝𝑤 − 𝑟𝑢

�̇� = (𝐼𝑧𝑧𝐿+ 𝐼𝑥𝑧𝑁) /(𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧)

�̇� = (𝐼𝑥𝑧𝐿+ 𝐼𝑥𝑥𝑁) /(𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧)

�̇� = 𝑝+ 𝑟 cos𝜑 tan 𝜃

�̇� = 𝑟 cos𝜑 sec 𝜃

But

𝑣 = 𝑉 sin 𝛽

Linearizing around 𝛽 = 𝛽*:

𝑣 = 𝑉 * cos 𝛽*𝛽

˙̄𝛽 =
1

𝑉 * cos 𝛽*
˙̄𝑣
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̄𝛽

˙̄𝑝

˙̄𝑟

˙̄𝜑

˙̄𝜓

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑌𝑣
𝑌𝑝

𝑉 * cos𝛽*
𝑌𝑟

𝑉 * cos𝛽*
𝑔 cos 𝜃* cos𝜑*

𝑉 * cos𝛽* 0

𝐿𝑣𝑉
* cos 𝛽* 𝐿𝑝 𝐿𝑟 0 0

𝑁𝑣𝑉
* cos 𝛽* 𝑁𝑝 𝑁𝑟 0 0

0 1 cos𝜑* tan 𝜃* 𝑞* cos𝜑* tan 𝜃*

−𝑟* sin𝜑* tan 𝜃* 0

0 0 cos𝜑* sec 𝜃* 𝑝* cos𝜑* sec 𝜃*

−𝑟* sin𝜑* sec 𝜃* 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛽

𝑝

𝑟

𝜑

𝜓

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑌𝛿𝑎
𝑉 * cos𝛽*

𝑌𝛿𝑟
𝑉 * cos𝛽*

𝐿𝛿𝑎 𝐿𝛿𝑟

𝑁𝛿𝑎 𝑁𝛿𝑟

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎣𝛿𝑎
𝛿𝑟

⎤⎦

Aircraft are often symmetric about the plane spanned by 𝑥𝑏 and 𝑧𝑏, which means

that

𝐼 =

⎡⎢⎢⎢⎣
𝐼𝑥𝑥 0 −𝐼𝑥𝑧
0 𝐼𝑦𝑦 0

−𝐼𝑥𝑧 0 𝐼𝑧𝑧

⎤⎥⎥⎥⎦
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We can further define the following terms

Γ = 𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧

Γ1 =
𝐼𝑥𝑧(𝐼𝑥𝑥 − 𝐼𝑦𝑦 + 𝐼𝑧𝑧)

Γ

Γ2 =
𝐼𝑧𝑧(𝐼𝑧𝑧 − 𝐼𝑦𝑦) + 𝐼2𝑥𝑧

Γ

Γ3 =
𝐼𝑧𝑧
Γ

Γ4 =
𝐼𝑥𝑧
Γ

Γ5 =
𝐼𝑧𝑧 − 𝐼𝑥𝑥
𝐼𝑦𝑦

Γ6 =
𝐼𝑥𝑧
𝐼𝑦𝑦

Γ7 =
(𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝐼𝑥𝑥 + 𝐼2𝑥𝑧

Γ

Γ8 =
𝐼𝑥𝑥
Γ

We can therefore rewrite the angular rate derivatives as follows:

�̇� = Γ1𝑝𝑞 − Γ2𝑞𝑟

𝑞 = Γ5𝑝𝑟 − Γ6(𝑝
2 − 𝑟2)

�̇� = Γ7𝑝𝑞 − Γ1𝑞𝑟
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Coefficient Formula

𝑌𝑣
𝑣*𝜌𝑆𝑏
4𝑚𝑉 *

[︀
𝐶𝑌𝑝𝑝

* + 𝐶𝑌𝑟𝑟
*]︀ + 𝑣*𝜌𝑆

𝑚

[︀
𝐶𝑌0 + 𝐶𝑌𝛽𝛽

* + 𝐶𝑌𝛿𝑎𝛿𝑎
* + 𝐶𝑌𝛿𝑟𝛿𝑟

*]︀ +
𝜌𝑆𝐶𝑌𝛽

2𝑚

√
𝑢*2 + 𝑤*2

𝑌𝑝 𝑤* + 𝜌𝑉 *𝑆𝑏
4𝑚

𝐶𝑌𝑝

𝑌𝑟 −𝑢* + 𝜌𝑉 *𝑆𝑏
4𝑚

𝐶𝑌𝑟

𝑌𝛿𝑎
𝜌𝑉 *2𝑆
2𝑚

𝐶𝑌𝛿𝑎

𝑌𝛿𝑟
𝜌𝑉 *2𝑆
2𝑚

𝐶𝑌𝛿𝑟

𝐿𝑣
𝑣*𝜌𝑆𝑏2

4𝑉 *

[︀
𝐶𝑝𝑝𝑝

* + 𝐶𝑝𝑟𝑟
*]︀+𝑣*𝜌𝑆𝑏

[︀
𝐶𝑝0 + 𝐶𝑝𝛽𝛽

* + 𝐶𝑝𝛿𝑎𝛿𝑎
* + 𝐶𝑝𝛿𝑟𝛿𝑟

*]︀+
𝜌𝑆𝑏𝐶𝑝𝛽

2

√
𝑢*2 + 𝑤*2

𝐿𝑝 Γ1𝑞
* + 𝜌𝑉 *𝑆𝑏2

4
𝐶𝑝𝑝

𝐿𝑟 −Γ2𝑞
* + 𝜌𝑉 *𝑆𝑏2

4
𝐶𝑝𝑟

𝐿𝛿𝑎
𝜌𝑉 *2𝑆𝑏

2
𝐶𝑝𝛿𝑎

𝐿𝛿𝑟
𝜌𝑉 *2𝑆𝑏

2
𝐶𝑝𝛿𝑟

𝑁𝑣
𝑣*𝜌𝑆𝑏2

4𝑉 *

[︀
𝐶𝑟𝑝𝑝

* + 𝐶𝑟𝑟𝑟
*]︀+ 𝑣*𝜌𝑆𝑏

[︀
𝐶𝑟0 + 𝐶𝑟𝛽𝛽

* + 𝐶𝑟𝛿𝑎𝛿𝑎
* + 𝐶𝑟𝛿𝑟𝛿𝑟

*]︀+
𝜌𝑆𝑏𝐶𝑟𝛽

2

√
𝑢*2 + 𝑤*2

𝑁𝑝 Γ7𝑞
* + 𝜌𝑉 *𝑆𝑏2

4
𝐶𝑟𝑝

𝑁𝑟 −Γ1𝑞
* + 𝜌𝑉 *𝑆𝑏2

4
𝐶𝑟𝑟

𝑁𝛿𝑎
𝜌𝑉 *2𝑆𝑏

2
𝐶𝑟𝛿𝑎

𝑁𝛿𝑟
𝜌𝑉 *2𝑆𝑏

2
𝐶𝑟𝛿𝑟
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A.3.6 Unified Model without Forces:

𝑥𝐼 = (cos 𝜃 cos𝜓)𝑢+ (sin𝜑 sin 𝜃 cos𝜓 − cos𝜑 sin𝜓)𝑣 + (cos𝜑 sin 𝜃 cos𝜓 + sin𝜑 sin𝜓)𝑤

𝑦𝐼 = (cos 𝜃 sin𝜓)𝑢+ (sin𝜑 sin 𝜃 sin𝜓 − cos𝜑 cos𝜓)𝑣 + (cos𝜑 sin 𝜃 sin𝜓 − sin𝜑 cos𝜓)𝑤

𝑧𝐼 = 𝑢 sin 𝜃 − 𝑣 sin𝜑 cos 𝜃 − 𝑤 cos𝜑 cos 𝜃

�̇� = 𝑟𝑣 − 𝑞𝑤

�̇� = 𝑝𝑤 − 𝑟𝑢

�̇� = 𝑞𝑢− 𝑝𝑣

�̇� = 𝑝+ (𝑞 sin𝜑+ 𝑟 cos𝜑) tan 𝜃

𝜃 = 𝑞 cos𝜑− 𝑟 sin𝜑

�̇� = (𝑞 sin𝜑+ 𝑟 cos𝜑) sec 𝜃

�̇� =
(︀
−[𝐼𝑥𝑧(𝐼𝑦𝑦 − 𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑝+ [𝐼2𝑥𝑧 + 𝐼𝑧𝑧(𝐼𝑧𝑧 − 𝐼𝑦𝑦)]𝑟]𝑞

)︀
/(𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧)

𝑞 =
−(𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑝𝑟 − 𝐼𝑥𝑧(𝑝

2 − 𝑟2)

𝐼22

�̇� =
(︀
−[𝐼𝑥𝑧(𝐼𝑦𝑦 − 𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑟 + [𝐼2𝑥𝑧 + 𝐼𝑥𝑥(𝐼𝑥𝑥 − 𝐼𝑦𝑦)]𝑝]𝑞

)︀
/(𝐼𝑥𝑥𝐼𝑧𝑧 − 𝐼2𝑥𝑧)
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A.3.7 Unified Model:

𝑥𝐼 = (cos 𝜃 cos𝜓)𝑢+ (sin𝜑 sin 𝜃 cos𝜓 − cos𝜑 sin𝜓)𝑣 + (cos𝜑 sin 𝜃 cos𝜓 + sin𝜑 sin𝜓)𝑤

𝑦𝐼 = (cos 𝜃 sin𝜓)𝑢+ (sin𝜑 sin 𝜃 sin𝜓 − cos𝜑 cos𝜓)𝑣 + (cos𝜑 sin 𝜃 sin𝜓 − sin𝜑 cos𝜓)𝑤

𝑧𝐼 = 𝑢 sin 𝜃 − 𝑣 sin𝜑 cos 𝜃 − 𝑤 cos𝜑 cos 𝜃

�̇� = 𝑟𝑣 − 𝑞𝑤 − 𝑔 sin 𝜃 +
𝑞

𝑚

[︂
𝐶𝑋(𝛼) + 𝐶𝑋𝑞(𝛼)

𝑐𝑞

2𝑉𝑎
+ 𝐶𝑋𝛿𝑒

(𝛼)𝛿𝑒

]︂
+ 𝑇

�̇� = 𝑝𝑤 − 𝑟𝑢+ 𝑔 cos 𝜃 sin𝜑+
𝑞

𝑚

[︂
𝐶𝑌0 + 𝐶𝑌𝛽(𝛽) + 𝐶𝑌𝑝

𝑏𝑝

2𝑉𝑎
+ 𝐶𝑌𝑟

𝑏𝑟

2𝑉𝑎
+ 𝐶𝑌𝛿𝑎𝛿𝑎 + 𝐶𝑌𝛿𝑟𝛿𝑟

]︂
�̇� = 𝑞𝑢− 𝑝𝑣 − 𝑔 cos 𝜃 cos𝜑+

𝑞

𝑚

[︂
𝐶𝑍(𝛼) + 𝐶𝑍𝑞(𝛼)

𝑐𝑞

2𝑉𝑎
+ 𝐶𝑍𝛿𝑒

(𝛼)𝛿𝑒

]︂
�̇� = 𝑝+ (𝑞 sin𝜑+ 𝑟 cos𝜑) tan 𝜃

𝜃 = 𝑞 cos𝜑− 𝑟 sin𝜑

�̇� = (𝑞 sin𝜑+ 𝑟 cos𝜑) sec 𝜃

�̇� = Γ1𝑝𝑞 − Γ2𝑞𝑟 + 𝑞𝑏

[︂
𝐶𝑝0 + 𝐶𝑝𝛽𝛽 + 𝐶𝑝𝑝

𝑏𝑝

2𝑉𝑎
+ 𝐶𝑝𝑟

𝑏𝑟

2𝑉𝑎
+ 𝐶𝑝𝛿𝑎𝛿𝑎 + 𝐶𝑝𝛿𝑟𝛿𝑟

]︂
𝑞 = Γ5𝑝𝑟 − Γ6(𝑝

2 − 𝑟2) + 𝑞
𝑐

𝐼𝑦𝑦

[︂
𝐶𝑚0 + 𝐶𝑚𝛼𝛼 + 𝐶𝑚𝑞

𝑐𝑞

2𝑉𝑎
+ 𝐶𝑚𝛿𝑒

𝛿𝑒

]︂
�̇� = Γ7𝑝𝑞 − Γ1𝑞𝑟 + 𝑞𝑏

[︂
𝐶𝑟0 + 𝐶𝑟𝛽𝛽 + 𝐶𝑟𝑝

𝑏𝑝

2𝑉𝑎
+ 𝐶𝑟𝑟

𝑏𝑟

2𝑉𝑎
+ 𝐶𝑟𝛿𝑎𝛿𝑎 + 𝐶𝑟𝛿𝑟𝛿𝑟

]︂
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Appendix A. Additional Resources A.3. Fixed Wing Control

where

𝐶𝑝0 = Γ3𝐶𝑙0 + Γ4𝐶𝑛0

𝐶𝑝𝛽 = Γ3𝐶𝑙𝛽 + Γ4𝐶𝑛𝛽

𝐶𝑝𝑝 = Γ3𝐶𝑙𝑝 + Γ4𝐶𝑛𝑝

𝐶𝑝𝑟 = Γ3𝐶𝑙𝑟 + Γ4𝐶𝑛𝑟

𝐶𝑝𝛿𝑎 = Γ3𝐶𝑙𝛿𝑎 + Γ4𝐶𝑛𝛿𝑎

𝐶𝑝𝛿𝑟 = Γ3𝐶𝑙𝛿𝑟 + Γ4𝐶𝑛𝛿𝑟

𝐶𝑟0 = Γ4𝐶𝑙0 + Γ8𝐶𝑛0

𝐶𝑟𝛽 = Γ4𝐶𝑙𝛽 + Γ8𝐶𝑛𝛽

𝐶𝑟𝑝 = Γ4𝐶𝑙𝑝 + Γ8𝐶𝑛𝑝

𝐶𝑟𝑟 = Γ4𝐶𝑙𝑟 + Γ8𝐶𝑛𝑟

𝐶𝑟𝛿𝑎 = Γ4𝐶𝑙𝛿𝑎 + Γ8𝐶𝑛𝛿𝑎

𝐶𝑟𝛿𝑟 = Γ4𝐶𝑙𝛿𝑟 + Γ8𝐶𝑛𝛿𝑟

and we push the dependence on the angle of attack into the lift and drag co-

efficients, so that

𝐶𝑋(𝛼) = −𝐶𝐷(𝛼) cos𝛼 + 𝐶𝐿(𝛼) sin𝛼

𝐶𝑋𝑞(𝛼) = −𝐶𝐷𝑞(𝛼) cos𝛼 + 𝐶𝐿𝑞(𝛼) sin𝛼

𝐶𝑋𝛿𝑒
(𝛼) = −𝐶𝐷𝛿𝑒

(𝛼) cos𝛼 + 𝐶𝐿𝛿𝑒
(𝛼) sin𝛼

𝐶𝑍(𝛼) = −𝐶𝐷(𝛼) sin𝛼− 𝐶𝐿(𝛼) cos𝛼

𝐶𝑍𝑞(𝛼) = −𝐶𝐷𝑞(𝛼) sin𝛼− 𝐶𝐿𝑞(𝛼) cos𝛼

𝐶𝑍𝛿𝑒
(𝛼) = −𝐶𝐷𝛿𝑒

(𝛼) sin𝛼− 𝐶𝐿𝛿𝑒
(𝛼) cos𝛼
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