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Abstract

Sustainable and energy-saving production of food are becoming increasingly impor-
tant with the growth of the world population and global warming. Today food
production demands for automation and optimization of growth dynamics and re-
sources consumption. Thus, a reliable mathematical approach that can perform a
comprehensive description of growth systems should be developed for solving this
task. However, at present hardly any mathematical approach is universal, flexible,
and robust enough to meet the demands and describe and predict plant growth
dynamics in controlled conditions. The existing solutions are partial – though they
involve a huge amount of empirical data and parameters, the proposed models of
plant growth dynamics vary dramatically. Thus each particular design of a growth
system and every sample of plant cultivation need these models to be adapted and
optimized. Noteworthy, the systems under consideration should be treated espe-
cially carefully, as even a subtle change brought to the system might impair the
applied model and thus destroy the predicting performance of the mathematical ap-
proach. Another factor to be taken into account is a rapid increase in the number of
plant hybrids, which makes it a hopeless task to perform a comprehensive analysis of
each plant hybrid and to develop a strict mathematical model describing its growth
under different conditions.

In view of the aforementioned, the main scientific issues to be solved in the
present thesis are (i) developing universal data-driven approaches for real-time pre-
cise description of growth conditions and (ii) improving the accuracy and robustness
of the whole cycle of plant growth dynamics assessment and prediction in different
controlled environments. In recent years there has been significant progress in the
implementation of computer vision and machine learning technologies for precision
agriculture in particular for plant phenotype and for growth dynamics prediction.
However, the implementations of these technologies are partial. This thesis seeks
to fill in the gap and contribute to improving and adapting current data-driven
approaches for precision agriculture, as well as to achieving end-to-end implementa-
tions. To go in further detail, the present work includes the following steps:
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• Developing and constructing novel automated artificial growth systems equipped
with sensor systems and non-invasive machine vision plant growth monitoring
systems.

• Collecting relevant and unique datasets in laboratory and industrial experi-
mental setups, describing plant growth dynamics in different environments.

• Proposing new approaches, adapting, and improving different existing state-
of-the art data-driven and hybrid modeling approaches for plant phenotype
and growth dynamics prediction. Evaluation and comparison of used methods
on the collected datasets. The main data-driven and hybrid methods that were
adapted and implemented are: Kalman filtering, dynamic mode decomposi-
tion, merging 2D/3D data, convolutional (fully) neural networks, recurrent
neural networks (benefits and drawbacks of all the enlisted methods are to be
discussed in the thesis).

• Developing a novel computer vision based system for continuous seeds germina-
tion monitoring. The proposed system allows to automatically seed detection
and quantification of germination rate.

• Plant health monitoring. Proposing a novel and practically useful approach
enabling to find optimal spectral wavebands for early remote plant disease
detection and classification. Testing the proposed approach on the own hyper-
spectral near-infrared dataset obtained in reflected spectra for apple tree dis-
eases on different stages of development.

• Modeling of environmental parameters that have effect on plant growth dy-
namics in field conditions. Applying machine learning techniques to model the
spatial distribution of highly variable environmental parameters and quality
of growth conditions. Improving of the current state-of-the-art results of en-
vironmental parameters modeling. These problems have not been solved yet
precisely due to the high complexity and non-linearity of parameter depen-
dencies in open systems. Also, approaches developed for open systems can be
easily transferred to artificial systems.

Overall, all the proposed and tested data-driven methods for plant phenotype and
growth dynamics prediction showed high accuracy, universality, and significant level
of automatization. The created experimental setups and collected unique datasets
appear to be highly relevant and could be used in further investigations in this
research area.
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Chapter 1

Introduction

1.1 Thesis objectives and contribution

The present thesis focuses on several problems related to applying computer vi-

sion and machine learning approaches to solving problems in precision agriculture,

including plant phenotype growth dynamics prediction and environmental condi-

tions assessment. Contributions to these topics are briefly discussed in the following

sections:

Artificial growth systems equipped with machine vision and sensors sys-

tems. Collecting of the relevant datasets.

At the first step two small-scale artificial growth systems were designed and con-

structed. The former has the capacity to grow up to 20 plants simultaneously in

entirely artificial conditions. The environmental parameters of the system, such as

nutrient solution and light spectra, were controllable; the system was equipped with

a system of sensors to measure automatically all the basic growth conditions (pH,

electrical conductivity (EC), temperature, humidity). To obtain sequences of images

allowing the growth dynamics reconstruction and prediction, a robotic system with

a mounted digital camera taking high resolution images was created. The system

also includes an algorithm for an automatic leaves area (projection) calculation. All

measurements were synchronized and organized as a structured database. To repre-

sent the state of the system in-situ monitoring web interface was developed. Also,
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this experimental setup allows to obtain 3D scans of plants, which can be used for

reconstructing 3D model of the plant during its growth.

The other system was similar to the first one, except that its growth capacity

was 54 plants simultaneously, and nutrient solution could be directed to different

sections of the system. The projected leaves area and environmental conditions were

measured automatically in the same manner. The process of exploiting the systems

showed that they appeared to be very sensitive and allowed us to obtain reliable

data. Diurnal fluctuations of the leaves area projection and relatively low changes in

the environmental conditions were captured with a good resolution. These systems,

being artificial, allowed us to alter growth parameters in order to investigate the

growth rate under different conditions.

Thus, it is possible to obtain relevant datasets of growth conditions and corre-

sponding plant responses for building and testing huge variety of different models for

reconstruction and prediction of the plant growth dynamics. Overall, the developed

experimental setups can be used for setting up a variety of laboratory experiments

aimed at investigating CV, ML, or other approaches for modeling plant growth

dynamics and plant phenotype.

Data-driven techniques for growth dynamics modeling and plant pheno-

type

A novel approach for evaluating and predicting of plant growth dynamics using

computer vision and machine learning approaches was proposed. This approach

consists of the application of convolutional neural networks (CNN) for segmentation

of plants allowing projected leaves area calculation. Also, CNNs were used for solving

instance segmentation task allowing to track the growth of leaf. It was shown that

it is possible to model the growth dynamics of each leaf. Recurrent neural networks

(RNN) were used as the basis for the prediction of growth dynamics. End-to-end

solutions that were able to collect and preprocess data that describe plant growth

dynamics, extract features and predict plant growth dynamics was proposed and

successfully tested in the developed experimental setups. The possibility to assess

and predict biomass by merging 2D and 3D techniques was also shown. The main
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feature of the proposed approach is that it allows to predict biomass using simple

2D cameras and correlations between biomass and leaves area. Proposed approaches

showed their practical usefulness, prediction errors for different time horizons were

low compared to existing techniques.

The main advantage of the proposed methodology is that it can be universally

adapted to different plant species and environmental conditions. Also, this method-

ology can be easily implemented practically. Being installed, such a system requires

minimal involvement of the user in the data processing and dynamics prediction pro-

cedure. The novelty of research is such end-to-end implementation of CV and ML

techniques. Implementing the proposed data-driven approaches into the embedded

systems opens up new vistas for building novel distributed monitoring and analysis

systems in the greenhouse.

Hybrid modeling of plant growth dynamics

Since incorporating of precise measurement systems and training neural networks

not always practically reasonable in the existing greenhouses, an alternative ap-

proach was proposed. It is based on more straightforward CV algorithms and the

models widely used to describe and predict the state of dynamical systems. In

particular, CV algorithms were used as feature extractors and Kalman filter was

adopted for growth dynamics prediction. In addition, a novel application of dy-

namic mode decomposition (DMD), initially designed for describing flow dynamics,

was proposed and tested. The approach under consideration suggests to use the

features derived from the set of differential equations as a state vector and then to

use the DMD approach to perform system identification. The proposed approaches

for growth dynamics evaluation and prediction have several advantages: they are

computationally fast and comparably accurate, and they need less data as compared

to the above mentioned data-driven methods. However, one of the drawbacks of our

approaches contrary to pure data-driven techniques, is that they require fine-tuning

and adaptation before being applied to a particular plant species and greenhouse.
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Computer vision for seeds germination

Germination rate is a crucial parameter that predefines the future growth of the

plant. Currently, the monitoring of seed germination is largely performed manually.

This procedure has several drawbacks. First, this method disturbs the germination

system. Second, it is quite a time consuming process. Finally, manual measurements

do not presuppose a continuous period of monitoring. Therefore, an automatic

system detecting and quantifying the germination rate is of a high demand.

The present study describes a novel experimental setup equipped with CNN-

based and CV methods for automatic germination rate assessment. The proposed

methods were evaluated on the own obtained dataset and showed a high accuracy

and the ability to monitor the germination process precisely and continuously. This

intelligent system opens up endless possibilities for performing data-driven optimiza-

tion of the germination process, which is state-of-the-art for precision agriculture.

Industrial experiment for obtaining the unique dataset, and plant biomass

prediction

The thesis includes unique industrial experiment on plant growth dynamics pre-

diction in greenhouses. The experiment was set up in a greenhouse; in its course

image data were collected and biomass measurements were obtained for 540 plants.

Environmental conditions were measured using a developed sensing system, while

the images were taken by mounted 4 digital cameras. The image dataset was la-

beled by putting segmentation masks on the plants. Based on the labeled dataset

several architectures of fully convolutional neural networks (FCNN) were trained.

The trained FCNNs showed that it was possible to derive each mask of the plant

and to calculate projected leaves area in the industrial environment. The sequence

of images in couple with FCNN allowed us to derive plant growth dynamics in the

greenhouse; biomass measurements showed the correlation between the biomass and

the projected leaves area and were used to predict the biomass. The main advantage

and uniqueness of the conducted experiment is that it was obtained comprehensive

dataset and CV and ML algorithms were tested in industrial conditions showing

high practical usefulness.
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Hyper-spectral approach for disease detection

Detecting plant diseases and deviations in growth is a high priority for both field cul-

tures and those grown in greenhouses, since these phenomena may result in dramatic

yield losses. Currently, there is a great demand for a precise, non-invasive system

that would enable detecting diseases at the initial stages and, thus, prevent the dis-

ease from spreading. The present thesis argues for a high potential of near-infrared

spectrum region to detect diseases at early stages. A unique dataset was collected,

which included several of the most common fungal apple trees diseases and reflected

the spectrum of each disease in near-infrared spectra region correspondingly to the

stage at which it was obtained. The resultant dataset was shared with the commu-

nity. Basing on resultant spectra and the developed mathematical approach a novel

methodology was proposed for deriving optimal wavebands. This methodology was

proved to be effective for early detection of a particular disease. It should be noted

as well that the developed methodology could be implemented to a wider range of

plants, as fungal diseases are mainly of the same origin.

Data-driven modeling of environmental parameters

The present thesis presents and discusses the ways to use data-driven techniques

in solving several topical environmental issues that closely relate to the precision of

plant growth modeling. These issues either remained unsolved so far or solutions

were based on old fashioned, inaccurate methods and required an exceeding number

of assumptions to be made. Direct modeling gives inaccurate results due to soil

factors have high non-linear and complex effects. Therefore, the existence of one

general approach giving accurate results for a huge variety of soils is highly doubtful.

The first problem to be solved is soil phytotoxicity assessment and deriving the

main factors that influence phytotoxicity and biological response. To study the way

ML methods such as SVR and feed-forward NNs could be used in addressing these

problems, we tested these approaches on two datasets. The first one contains of the

soil samples contaminated by oil and the second contains of the soil samples mixed

with phosphogypsum. For all the soil samples chemical, biological and toxicolog-

ical properties were measured. The tested ML methods showed that an accurate
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prediction of biological and toxicological parameters could be obtained for a huge

variety of soils. Moreover, ML methods were able to derive key soil parameters and

to quantify the effect of biological and toxicological responses.

Another problem that regularly appears in open systems (i.e. fields) is modeling

a spatial distribution of environmental parameters. The present thesis proposes an

approach to solve such a problem for environmental modelling. Kriging (Gaussian

process), the method widely used for this purpose, was improved by implementing

an automatic optimal kernel structure search based on Bayesian information criteria.

This method have never been applied before in precision agriculture. It was tested on

the dataset describing water quality measurements taken in different locations and

showed a much better accuracy and robustness as compared to standard methods.

Another advantage of the method is its automatic routine. It finds the best possible

kernel structure, which reduces the human factor.

Noteworthy, the data-driven approaches developed and tested for open systems

can be adapted for greenhouses and artificial systems to solve several problems, such

as finding key factors in nutrient solution that affect growth dynamics or finding the

spatial distribution of humidity and temperature in a greenhouse.

1.2 Thesis structure

The diagram in Fig. 1-1 illustrates the flow of information through the structure of

the thesis.

Section 1.4 - Motivation: Review of global trends in digital agriculture.

In this section the emerging trend for precision agriculture as a subject for

investigations is described. The discussion is proved by statistical numbers

reflected the dynamics of research specific publication activity and amount of

funding during the last years. The review resulted in a publication in "APK

Russia" Journal [Pukalchik et al., 2018] (co-author).

Chapter 2 - Background. Review of the background of different techniques that

are used in the following chapters. More specifically, the section is focused
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Figure 1-1: Thesis structure.

on the following branches: artificial growth systems, sensor systems in pre-

cision agriculture, imaging technologies for plant phenotype, deep learning

methods for growth dynamics prediction, hybrid models for growth dynam-

ics prediction, approaches for seeds germination monitoring, computer vision

methods for diseases detection. The background also includes section, where it

is shown the benefits and limitations of the differential-equations based mod-

eling of plant growth dynamics. The discussion and conclusions supported by

the performed modeling.
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Chapter 3 - Hybrid combination of methods for modeling of plant growth

in controlled environments.

In this chapter, small scale experimental setups and obtained relevant datasets

were described. Using these datasets, it was shown the implementation of

Kalman filtering approach, dynamic mode decomposition approach, instance

segmentation coupled with simple models for plant growth dynamics predic-

tion and plant phenotype. Finally, the approach for biomass prediction was

proposed. This work resulted in five publications in conferences proceedings:

three papers in IEEE International Instrumentation and Measurement Tech-

nology Conference (I2MTC) [Shadrin et al., 2018a, 2019a, 2020a], paper in

British Machine Vision Conference proceedings (BMVC, CVPPP) [Shadrin

et al., 2018b], and IEEE International Symposium on Industrial Electronics

[Nesteruk et al., 2020].

Chapter 4 - Data-driven enhancement for plant growth modeling in con-

trolled environments.

The first part of this chapter presents a wide range of possible ways to apply

data-driven approaches. In particular, it describes the application of RNNs

and CNNs to the plant growth dynamics prediction based on the data obtained

in two experiments. The first was a small-scale experiment on growing tomato

plants in artificial conditions conducted in DLR (Deutsches Zentrum für Luft-

und Raumfahrt, German Aerospace Agency). The second was an industrial-

scale experiment on growing cucumber plants in Michurinsk greenhouse. The

results of the pure implementation of data-driven approaches were published

in IEEE Transactions on Instrumentation and Measurement Journal [Shadrin

et al., 2019d]. The sensor system that is used for the industrial experiment

described in other published work [Somov et al., 2018] (co-author).

The second part of the chapter describes the developed intelligent computer

vision based system for germination rate assessment and evaluates the perfor-

mance of the system. It is concluded that the developed system shows a high

accuracy and autonomy. This work was published in IEEE Sensors Journal
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Shadrin et al. [2019b]. This system was used for optimization of germination

rate and based on this research another paper was published in Plant Methods

Journal [Nikitin et al., 2019] (co-author).

The last section describes the plant health monitoring approach based on near-

infrared hyper-spectral data analysis. The procedure of obtaining of hyper-

spectral dataset on apple tree diseases and finding optimal wavebands for

disease detection using the proposed methodology is described. The proposed

methodology showed that it is possible to detect different diseases in the initial

stages when they can not be visually detected. This research was published in

ICLR 2020 (CV4A) conference proceedings [Shadrin et al., 2020c].

Chapter 5 - Data-driven modeling of environmental parameters for im-

provement plant growth prediction.

This chapter is aimed at the description of proposed data-driven approaches

for improvement of modeling universality and accuracy of the important en-

vironmental parameters that have a huge effect on plant growth dynamics.

Improvement in the modeling of spatial distribution was proposed based on

Gaussian process regression and automatical kernel structure search. This ap-

proach outperforms all existing methods which was demonstrated on modeling

of water quality map. The results are under revision in Frontiers in Plant Sci-

ence journal. By means of using ML methods accuracy and descriptive ability

were also improved in predicting phytotoxicity effects of contaminants and in

deriving the driving factors that make an effect on growth dynamics in case

of using fertilizers. The results were published in Ecotoxicology and Envi-

ronmental Safety [Shadrin et al., 2020b], and Journal of Soils and Sediments

[Pukalchik et al., 2019] (co-author).

Chapter 6 - Conclusion. The concluding chapter of the thesis presents and dis-

cusses the obtained results.
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1.3 Co-authorship statement

Chapter 1 and Chapter 2 are my own work on the introduction to the thesis and

description of the background and related literature. Section 1.4 in Chapter 1

is joint work with Prof. Maria Pukalchik. Together we aggregated informa-

tion about trends in publication activity and funding in precision agriculture.

Maria is a primary author of the review paper, which is based on the obtained

analysis.

Chapter 3 is mainly my own work. However, different colleagues contributed to

different sections in this chapter.

I designed and assembled Two experimental setups were. I also wrote the code

for receiving data from sensors and cameras and create and implement the

algorithm for automatical projected leaves area calculation. All these pieces

of code were synchronized by me properly. This enable to obtain high quality

datasets. I collected several datasets including data from sensors, 2D data,

3D data that describe plant growth dynamics. Dr. Jens Hauslage helped with

the critical suggestions for the improvement for the second experimental setup

developed by me in DLR.

Kalman filtering for growth dynamics prediction was adapted together with

Prof. Tatiana Podladchikova. I performed the implementation of the theo-

retical model in code, modeling and writing paper. Co-authors helped with

formatting and proofreading.

Dynamic mode decomposition for growth dynamics prediction was a joint work

with George Ovchinnikov and Artem Chashchin. George Ovchinnikov and I

proposed the idea to extract features and prepossess dataset for application

of DMD based on theoretical findings. Together with Artem Chashchin this

method was implemented and growth dynamics were modeled. Paper was

written mainly by me and Artem Chashchin.

Instance segmentation for plant phenotype was performed by me and Vik-

tor Kulikov. Data labeling was performed by me. Data preprocessing and
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training of CNNs for obtaining segmentation masks were done together. Data

post-processing for tracking of each leaf and growth dynamics prediction was

done by me. I mainly wrote the paper on the implementation of data-driven

approaches for plant growth dynamics prediction.

Merging of 2D/3D approach for biomass prediction performed by me, from

the idea and 2D/3D data collection to testing of prediction algorithms. The

paper was written by me with the help of Prof. Andrey Somov.

Chapter 4 is mainly my work with contributions from my colleagues to different sec-

tions. Seeds germination system was proposed by me. I collected the dataset

and preprocessed it. Together with Dmitry Ermilov, we trained CNNs for

proposing regions with seeds. I developed and implemented the algorithm for

quantification of the germination rate inside the proposed regions. Alexander

Menshchikov was responsible for the embedding of all intelligent system. The

major part of the paper was written by me, several sections were written by

Alexander and Dmitry. Andrey Somov helped with the overall structure.

Training and evaluation of recurrent neural networks were performed by me on

the own obtained data in the DLR’s experiment. Alexander was responsible

for the embedding of all intelligent system. I wrote the major part of the paper,

the section about the embedded system was written by Alexander. Andrey

Somov helped with the overall structure.

I proposed and developed the design of the industrial experiment which is

aimed generally for biomass prediction. Together with Artyom Nikitin we de-

ployed the sensor system and collected relevant data. I guided the process of

labeling of the dataset based on which I trained fully convolutional neural net-

works for performing semantic segmentation. Alexander helped with the data

prepossessing procedure. Together we worked on the publication preparation.

Methodology for processing of hyper-spectral data and finding optimal wave-

bands for early plant disease and was proposed, implemented and evaluated

by me. Hyper-spectral data were collected mainly by me with the help of

colleagues from the robotics lab, who are co-authors of the respective paper.
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Paper was written mainly by myself.

Chapter 5 is a joint work with Maria Pukalchik. Maria, being the expert in the

research field of open environments, helped to correctly state the problems and

shared knowledge about state-of-the-art solutions. Development of improve-

ments to the current state-of-the art based on ML approach and implemen-

tation of them in code was performed by me. We published several papers

with Maria. She was responsible for the expertise, discussion, and problem

statement. I was responsible for technical development and implementation of

improvements to current approaches and demonstration of the results.

Chapter 6 is my own work on summarizing the whole thesis and outlining the main

results

Research, discussed above, were conducted under the supervision of Maxim

Fedorov, who helped to find the most relevant directions and suggested the

general approaches for solving the particular problem.

1.4 Motivation: Review of global trends in digital

agriculture

This review examines the world trends in research interest and financing of research

projects for precision agriculture for the period from 2008 to 2017. Six priority

research areas are identified: Artificial intelligence and data visualization, livestock,

crop production, information systems, genetics and Earth sciences. The importance

of interdisciplinary projects is increasing. This increase includes the application of

methods for processing huge amounts of received data. The most influential scientific

trend in precision agriculture today is the implementation of artificial intelligence

systems and digital methods in data processing for various sectors of the agricultural

industry.

The main objective of the agricultural industry is to achieve sustainable growth

in agricultural production while reducing the consumption of energy and natural re-

sources [Shatalina, 2017]. In the search for a solution to this problem, a development
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direction has been formed, called “precision agriculture” or “precision farming”, which

involves the implementation of solutions for collecting, storing and processing data

on the state of various objects, preparing recommendations for the best management

of them [Kaloxylos et al., 2012]. The global market for precision agriculture is con-

stantly growing, according to experts, by 2022 it can reach 25.4 billion dollars with

an annual expected growth up to 12.6% [Orbis Research, 2018]. Automatic control

systems for machines and equipment, sensors, remote sensing, integrated electronic

communications and machine learning methods are widely used for collecting data

on the state of land resources, planning irrigation measures, and distributing of fer-

tilizer application [Kukar et al., 2019, Daccache et al., 2015, Nefedov, 2015]. The

agricultural industry is rapidly transforming under the influence of nanotechnology,

the capabilities of metagenomics for the selection of living organisms, manufacturers

integrate production and marketing chains and adapt their products to the needs of

a particular consumer. At the same time, digitalization tools are getting cheaper,

and cloud technologies are designed to make their use massive and affordable for

consumers. A number of reviews provide comprehensive information on the current

capabilities and disadvantages of the well-known technological methods for various

sectors of agriculture and animal husbandry, and factors affecting the success of the

introduction of precision farming systems in Russia are indicated [Wolfert et al.,

2017, Kiryushin, 2009, Yakushev V.P., 2014].

The challenge facing the industry and manufacturers of high technology products

is to identify and support promising trends. Future key decisions for global markets

are formed primarily at the stage of research. The purpose of this is to give new

possibilities, which allows us to solve specific practical problems in agriculture in the

future. The main channel for disseminating information about the research is not

only the publications of researchers in scientific journals but also data on allocated

funding for individual projects published in open sources. Therefore, it is possible

to evaluate the trends that will determine the course of development of precision

agriculture in the future, including through an analysis of global trends in financing

of individual research projects on precision farming and precision agriculture.
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Data sources

Information on the financing of research for the period from 2007 to 2017 is given

according to the database (DB) Dimensions (see Table 1.1). The review deals with

the financing of research primarily through foreign foundations and scientific orga-

nizations, which occupy a leading place in the open "grant market". These include

foundations such as the European Commission (Belgium), the National Institute for

Food and Agriculture (USA), the British Council for Biotechnology and Biological

Sciences (UK), the Russian Science Foundation (Russia), as well as scientific organi-

zations such as the French National Institute of Agriculture farms (France), Institute

of Technology in Switzerland (Switzerland), Institute of Agricultural Chemistry and

Agriculture (USA). The share of financial investments of these funds and institutions

in the global grant market is small relative to global R&D expenditures, but fame

and authority allow to consider them the most influential investors in intellectual

innovation defining global trends.

The source of information for assessing the publication activity of researchers

in the desired areas was the database of publications in English Web of Science

Core Collection (hereinafter - the database Web of Science) and the database of

publications in Russian eLibrary (hereinafter - the eLibrary database). A Russian

publication is understood to mean a publication, the author (or at least one of the

co-authors) of which indicated the Russian organization as affiliation. The review

includes a comparison in the areas of research “precision farming” and “precision

agriculture”, the specificity and frequency of occurrence of individual sub-areas of

research in the world scientific literature according to the Web of Science database.

The list of information resources used in the preparation of the article is presented

in Table 1.1.

Table 1.1: Information resources used in review.

Data base Type URL
Dimensions R&D Data base https://www.dimensions.ai/
Web of Science Abstract Data base https://apps.webofknowledge.com
eLibrary Abstract Data Base https://elibrary.ru
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Figure 1-2: Frequency of the use of the terms precision agriculture and precision
farming in publications from the Web of Science database from 2008 to 2018 indi-
cating key research areas within the framework of topics.

Results of the review

The key element of the search and identification of works on a given topic is termi-

nology. “Precision farming is an integrated agricultural production system based on

the achievements of information technology, the use of automatic control and reg-

ulation systems for agricultural machinery and equipment, sensor technology and

the general computerization of all agricultural management processes and aimed

at optimizing agricultural technologies and stabilizing the productivity with min-

imal negative environmental impact” [Shpaara D., 2009]. In the worlds scientific

literature, two types of key terms are used: “precision farming” and “precision agri-

culture”, the scope of which are overlapped in many applications. An analysis of the

Web of Science database publications over the past 10 years shows that livestock,

food, and veterinary medicine are included in the field of precision farming, whereas

precision agriculture is characterized by such unique areas as crop production, plant

visualization and phenotyping (see Fig. 1-2).

Comparison of publications in identical research areas (for example, agriculture,

engineering, etc.) by using in search the keywords “precision farming” and “precision

farming” show that among the most highly cited articles are native English speakers

(USA, Great Britain, Australia) more often use the terminology "precision agricul-
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Figure 1-3: Trends in research financing in the field of precision farming and precision
agriculture for the period 2008-2017 (The x-axis reflects the year the projects began
financing; the y-axis - the amount of funds allocated according to the Dimensions
database, million dollars per year; the circle size and the value inside it reflect the
number of projects supported during one calendar year, units).

ture", while scientists from non-English-speaking countries (China, India, the EU,

Iran, etc.) in similar cases use the term "precision farming". In this study, the

search was conducted simultaneously using these two terms to obtain more relevant

statistics. Today, precision farming and precision agriculture are in a phase of rapid

growth. The trend of the last decade is the increasing interest to developments in

this field of science, the total amount of allocated funds for research on the lines of

various funds according to the Dimensions database has increased from 34$ million

in 2008 to 68$ million by 2017 (see Fig. 1-3)

The study of the structure of supported grants, including an analysis of the aver-

age annual numbers of supported research projects for 2008-2017, is presented in Fig.

1-4a. It has been revealed that research in the world is being conducted or is being

prepared for carrying out mainly in six areas, conditionally aggregated according

to the semantic principle in the following tags: artificial intelligence and data visu-
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alization, animal husbandry, crop production, information systems, genetics, earth

sciences (soil science). This list gives a real picture of the key growth points in the

field of precision farming on a planetary scale. There is a constantly increasing in-

terpenetration of related, previously separately developed, scientific fields. Research

increasingly goes beyond the scope of one discipline, acquiring the properties of a

“scientific composite”, becoming in the full sense multidisciplinary.

The main direction of the world agriculture industry of the future, as expected,

should be "Artificial intelligence and data visualization". The distribution of the

topics of scientific researchers in this area is presented in Fig. 1-4b. These trends

may be due to a significant breakthrough in artificial intelligence, robotics and en-

gineering over the past decade. Because of the introduction of advanced computer

vision systems, it has become possible to apply automation technologies not only

in large agricultural holdings but also in individual farms and small farms. As a

positive result of recent discoveries, we can expect progress in optimizing and pre-

dicting crop yields for various soil and climatic zones. Among the many supported

projects, it is worth noting the Scientific and Research Workshop “Robots for Micro

farms” (2017–2021), funded by the European Union as part of the Horizon 2020

program [Robotics Microfarms, 2018]. The ultimate goal of the developers is to

create a digital platform for monitoring the status of crops using robotics and a

hardware-software complex for supporting decision-making on farm management.

The research direction of remote detecting of plant diseases is actively developing.

The prerequisites for this development were a series of qualitative breakthroughs in

the field of data processing technologies, as well as multispectral cameras that have

a good resolution (1010 × 1010 pixels or more). These tools allow to obtain exten-

sive information on the status of crops in the field, and to identify the development

of diseases in the early stages [Behmann et al., 2018, Kuska and Mahlein, 2018,

Mahlein et al., 2012, Candiago et al., 2015]. The project “Improving the forecast

of risks for precision agriculture: automated monitoring of the spread of pathogenic

plants” (2014-2018), aims to monitor the spread of “rust” of wheat leaves caused

by Phragmidium or Puccinia mushrooms in real-time [Robotics Microfarms, 2018].

Successful implementation of the project will undoubtedly lead to a significant re-

35



Chapter 1. Introduction 1.4. Motivation: Review of global trends in digital agriculture

(a)

(b)

Figure 1-4: The number of supported grants and distribution by priority topics
within the direction of precision agriculture and precision farming for the period
2008-2017 according to the Dimensions database (a). The number of supported
grants and sub-topics of research in the field of “Artificial intelligence and data
visualization” for precision farming and precision farming (b).
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Figure 1-5: A comparative analysis of publication activity (according to the Web
of Science database) and project financing of millions of dollars (according to the
Dimensions database) in the field of precision agriculture and precision farming.

duction in losses for farmers in the UK associated with crop losses, reaching £ 50

million per year [Mitchell, 2014]. An important role will be assigned not to fight

the consequences of plant diseases, but to prevent and early detect, and then, in the

long run, to significantly optimize and reduce the consumption of fungicides.

The data were obtained using the Web of Science database show that the number

of publications in key areas of research financing in the field of precision agriculture

and precision farming is also constantly growing (Fig. 1-5). An increase in funding

in the direction leads to a significant increase in publication activity.

Conclusions

The growing use of precision agriculture approaches creates a huge commercial mar-

ket for the development of the agriculture industry around the world. Over the

past ten years, leading countries have invested huge amounts and efforts to gain an

advantage in this industry. Obviously, all of these technologies should be intensively
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developed in particular the following areas:

1. Development of mathematical algorithms and artificial intelligence systems for

automatic plant phenotype and growth optimization.

2. Development of recommendation systems for monitoring and controlling the

quality of land resources, as well as livestock and crop production facilities.
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Chapter 2

Background

2.1 Internet of Things approach for controlling of

artificial growth systems

The constant increase in the Earth’s population and the ongoing urbanization im-

pose certain requirements on the amount of food that would suffice and satisfy the

growing demands of cities and remote areas. At the same time, food production is

limited by the season and the characteristics of each territory. These factors imply

severe restrictions on food quantity and its availability. Another limiting factor is

the degradation of soils and the inherent lack of adjusting the growing environmental

conditions [Turner et al., 2016]. These factors pose an obstacle for many countries

to securing a sufficient food production on their territory. Precision agriculture is a

technological paradigm that seeks to optimize the outcomes of observing the agri-

cultural system by means of automatizing the processes of observing, measuring

and responding to every stage, while keeping the overall control of the growth sys-

tem to secure its resource efficiency. Undoubtedly, precision agriculture opens up

wide vistas for exploiting state-of-the-art technologies that have been successfully

applied recently, e.g. remote sensing [Zhou et al., 2016], artificial intelligence [Lane

et al., 2017], robotics [Chaudhury et al., 2015], sensor networks [Eugster et al., 2015]

and Internet of Things (IoT) [Alavi et al., 2018]. These technologies seem to be a

promising path to secure food safety, reduce negative anthropogenic impacts on the
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environment, and, ensure the economic profit [Elijah et al., 2018, Taylor et al., 2013].

Artificial growing systems with the hydroponic environment, e.g. greenhouses,

are effective enough in maintaining optimal resources consumption and thus in in-

creasing the yields. These systems are flexible enough to adjust the growing parame-

ters all over the year. It results in their efficient operation: they provide 10-12 times

higher harvesting from 1 𝑚2 comparing to the field cultivation [Muñoz et al., 2007].

Originally, the problem of plant growth dynamics assessment in controlled artificial

conditions was a crucial point in life support systems development for space and as-

sociated ground applications. Although coming from space technologies, developing

artificial closed controlled systems for pervasive agriculture is in high demand nowa-

days, it is expected to guarantee food provision to meet the demand imposed by the

increasing population of the world, including the people who live in remote areas or

in harsh environments [Wark et al., 2007]. The successful production of vegetables

in a typical greenhouse assumes the involvement of an experienced grower. The

grower takes the best action after assessing all available factors having impact on

the growing process. However, decisions, in this case, are grounded on the experi-

ence rather than on science. One of the problems, that should be solved is obtaining

comprehensive data in real-time that describe the dynamics of plant growth as well

as state of growing system. Accurate and reliable assessment of plant growth dy-

namics parameters is crucial for the future success of the whole growing system

parameters optimization. Such a task may be performable if the Internet of Things

approach is used. By means of the recent achievements in the Internet of Things

related technologies precision agriculture can become a reality [Miorandi et al., 2012,

Sasidharan et al., 2014, Taylor et al., 2013, Wark et al., 2007].

Indeed, high quality and comprehensive monitoring systems are required to per-

form optimal control [Somov et al., 2012]. Different types of such systems with im-

proved performance have been proposed recently; most of them are typically based

on wireless sensor network (WSN) and the Internet of Things (IoT) paradigm involv-

ing myriads of sensors in the monitoring process [Spirjakin et al., 2015, Bai et al.,

2018, Ferentinos et al., 2017]. For example, the wireless sensor network paradigm

application to control the climate and environment conditions in a greenhouse is
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reported in [Pahuja et al., 2013b, Mirabella and Brischetto, 2011, Mendez et al.,

2012]. Tiny sensors were deployed at different height to measure temperature and

relative humidity. If threshold values are violated, actuators are activated to keep

the predefined settings in the greenhouse. This approach relies on compact sensor

nodes that can be deployed anywhere to perform low-power monitoring tasks and

periodically send the obtained measurement to the user or the cloud via a wireless

channel. Noteworthy, the sensor nodes can be deployed in difficult-to-access areas

without cabling production. It makes them easy to be set up and debugged, and

reduces the maintenance costs for monitoring the infrastructure. Many types of

sensors were developed to ensure ubiquitous monitoring in greenhouses [Lachure

et al., 2015]. The possibility for optimization of WSN systems by their synchroniza-

tion making possible to distributed systems described in [Macii et al., 2009]. Deep

learning based feature representation can also help for processing data and soft sen-

sor development [Yao and Ge, 2018]. Though there is a significant progress in IoT

research that described in [Mehra et al., 2018, Ibayashi et al., 2016, Shadrin et al.,

2019, Siregar et al., 2017], the successful implementation and deployment of IoT

solutions into existing greenhouse infrastructure is still fragmented [Somov et al.,

2018].

The main benefit of greenhouses is that all their parameters including the water

consumption, nutrients addition, light duty cycle, can be adjusted. Growing plants

in artificial soilless system has several advantages over the traditional soil systems,

since they guarantee almost a total control on the growing process at different stages

[Rius-Ruiz et al., 2014, Cho et al., 2015, Jung et al., 2014, Andaluz et al., 2016].

There is a huge variety of existing designs of soilless systems based on hydropon-

ics, aquaponics, or aeroponics approaches. All of them play a significant role in

commercial food production [Lakkireddy et al., 2018]. Moreover, various systems

– different in size and features – could be used in a range of application scenarios

from industrial greenhouses to small-scale systems for scientific experiments [Resh,

2016, Billings, 2018]. A solid theoretical ground makes it the possible to control the

greenhouses in order to provide them with optimal growing conditions. For instance,

automated and smart solutions were proposed for running a greenhouse efficiently
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using the sensor network paradigm and Internet of Things [Frighetto et al., 2019,

Pahuja et al., 2013a, Somov et al., 2018]. Examples of wireless sensing and control

systems for aeroponic and for the hydroponic artificial growing systems are described

in [Kernahan, 2016] and [Ibayashi et al., 2016] respectively. The design of artificial

soilless systems for the industry is becoming increasingly complicated; likewise, the

productivity of these systems has been increased significantly in recent years. This

became possible due to the wide implementation of optimization technologies in

this industry. Such systems proposed in [Montero et al., 2017, Palencia et al., 2016,

Putra and Yuliando, 2015, Silva, 2016, Kloas et al., 2015, Harun et al., 2015, Kozai

et al., 2015, Kaneda et al., 2015].

2.2 Computer vision and machine learning for plant

growth dynamics assessment and prediction

Image based technologies for plant phenotyping

The study of plant growth dynamics responses to the environment is a key com-

ponent to improve the combination of image-based and dynamic controlled closed

artificial systems. Knowing the plant structure and the possibility to study its func-

tioning in an autonomous manner through image processing enable predictive anal-

ysis performing and creating recommendation models for growing plant in the best

possible conditions under resources constraints [Fiorani and Schurr, 2013, Granier

and Vile, 2014, Golzarian et al., 2011]. In-situ image analysis is currently a very

popular and well developed method for monitoring and diagnosing large-scale crop

fields aimed at optimizing resources consumption [Zhou et al., 2017, Aboutalebi

et al., 2018, Duan et al., 2017].

Leaves area and structure is one of the most important characteristics that repre-

sents dynamics and wellness of the plant growth. It provides the basics for research

in the following areas: plant phenotyping, plant physiology, and plant pathology

[Scharr et al., 2016, An et al., 2016, Freschet et al., 2015]. It seems to be a promis-

ing way to apply the method to the plant growth dynamics optimization using the
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rate of leaves area growth, since the rate fluctuation indicates nutrient and energy

resources consumption [Medrano et al., 2015, Kang and Wang, 2017]. Leaves area

can also be effectively used as an indicator of the total biomass accumulation in

the plant; this parameter, in its turn, can be directly used for modeling the plant

growth and for the assessment and optimization of the nutrient and energy resources

consumption [Weraduwage et al., 2015]. The advanced tool for automatic leaves

structure investigation, in particular, leaves vein analysis using imaging techniques

is described in [Bühler et al., 2015]. This tool allows to segment veins and perform

quantification analysis of their properties. However it is still challenging to develop

the automatic, non-destructive, universal, scalable, robust and precise method for

leaves area assessment and prediction. The major bottlenecks are high variety of

species, huge amount and complexity of the underlying processes and stresses which

have an effect on the output (i.e. leaves area) [Singh et al., 2016, Campbell et al.,

2018].

In greenhouses and indoor farming image-based technologies have been being

implemented since recently. The 2D approach is often used if the plant is char-

acterized by large leaves and a simple structure. However, it typically relies on a

complicated software to perform the analysis and suffers from leaf overlap and con-

cavity [Li et al., 2014, Minervini et al., 2015, Ghanem et al., 2015]. 2D approach

perfectly works for in-situ investigation of plant growing phenomics at the initial

stage. Computer vision and machine learning based solutions do have their advan-

tages not only in assessing the plant growth phenomics, but also in assessing fruit

characteristics [Pouladzadeh et al., 2014]. Training machine learning algorithms al-

low for a deeper understanding of the dependencies in plant growth systems. At

the same time, dynamics predictions can be based on the high-quality plant images

and the data associated with the conditions of the plant growth. Quite a number

of reviews describe the development and application of image-based technologies

for analysing the plant structure and functioning. Generally, most plant phenotype

CNN-based algorithms for object detection or segmentation are similar to the one

described in [Ubbens and Stavness, 2017, Dai et al., 2015, 2016, Scharr et al., 2016,

Gu et al., 2015].
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Development and validation of computer vision algorithms require good quality

annotated database. The most popular first comprehensive benchmark data that

can be used for typical computer vision tasks was obtained by [Minervini et al.,

2016, Cruz et al., 2016]. The previously obtained datasets that can serve for solving

a smaller range of computer vision problems were described in [Silva et al., 2013,

Nilsback and Zisserman, 2010]. High demand for benchmark data is reflected by

the frequency of their usage. Thus, for example, an open-source datasets were used

for evaluating the precise recurrent instance segmentation algorithm in which the

end-to-end RNN architecture with an attention mechanism was proposed [Romera-

Paredes and Torr, 2016, Ren and Zemel, 2017]. Open-source datasets were used

for evaluating of the instance embedding approach where pixels of an object are

encoded into vectors and clustered using the popular mean-shift algorithm [De Bra-

bandere et al., 2017]. Since the process of an annotated dataset preparation is time-

consuming and not always precise, (e.g leaf masking), computer-generated models or

so-called synthetic plants can help to overcome this problem [Giuffrida et al., 2017,

Ubbens et al., 2018]. Also, imaging systems may be costly, thus, affordable hardware

and a software setup for plant phenotyping are currently in a great demand. One of

the proposed systems with such features provides the possibility to count the leaves

area using a robust machine learning algorithm [Minervini et al., 2017]. Another

one can perform time resolved analyses of plant growth which is also essential for

understanding growth phenotypes [Dhondt et al., 2014].

3D imaging

Another set of approaches is based on 3D imaging. This approach helps to cap-

ture the plant shape in three dimensions and study it. Undoubtedly, it may seem

tempting to process 3D images of the plant growth as we can derive more infor-

mation about the plant structure in comparison with 2D images, but the systems

for receiving precise 3D imaging data are typically on several orders of magnitude

more expensive than 2D imaging systems. Laser scanning is also used for plant

digitization and has been successfully applied to forestry and statistical analysis of

canopies [Paulus et al., 2014, Yang et al., 2013]. Its application is limited to extract-
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ing single plant attributes due to these tasks are computationally intensive. The 3D

scanning system for taking quick and accurate images is proposed in [Nguyen et al.,

2016]. The approach involves two tilting cameras, the methods for camera calibra-

tion and background removal. Quite a similar approach, where the authors use a

robotic arm equipped with a 3D imaging system for 3D plant growth measurement

is proposed in [Chaudhury et al., 2015]. The drawback of the invention is that it

requires much time for processing and data recording. A semiautomatic 3D imaging

system for plant modeling is reported in [Quan et al., 2006]. The bottom line of

this research is to combine reconstructed 3D points and the images for guarantying

a more effective segmentation of the data into individual leaves. Although the 3D

imaging approach is getting popular, the image acquisition for 3D reconstruction is

typically carried out manually [Paulus et al., 2013]. A 3D phenotyping platform for

laboratory experiments was successfully developed and a 3D dataset in couple with

environmental information was obtained in one of the most recent works [Uchiyama

et al., 2017]. Different approaches for 3D plant reconstruction are described in

[Gibbs et al., 2017, Liang et al., 2013, Pound et al., 2014, Vázquez-Arellano et al.,

2016, Chaudhury et al., 2015].

Machine learning for modeling of growth dynamics

In fact, societal concerns about food safety and the environmental impact resulted

in the growing interest in the application of artificial intelligence in agriculture[Eli-

Chukwu, 2019]. The recent advances in data science and machine learning for con-

strained devices are vital for making real-time inference procedures and prediction

[Davies and Clinch, 2017b, Lane et al., 2017]. At the same time, it requires real data

for providing high-quality inference to the user. Indeed, AI opens up wide oppor-

tunities for more accurate monitoring or optimization if based on computer vision

(CV), deep learning (DL), and machine learning (ML) methods. For example, CV

is vital for plant health monitoring, overall biomass assessment, and non-destructive

measurement of the elements content in plants [Lin et al., 2013, Chaudhury et al.,

2015, Mao et al., 2015].

When it comes to the prediction of plants growth dynamics, there is a lack of
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robust universal models available for the quantitative prediction of plant biomass

changing with time. Although there are mathematical models to be applied to direct

simulation of plant growth (the so-called ‘bottom-up’ approach [Rodríguez et al.,

2015]), most of them are based on solving the systems of differential equations and

involve large numbers of (semi) empirical parameters. Therefore, they have to be

adapted to each specific type of plants, as well as to the cultivation technique.

This makes them sensitive to some hidden changes in the environmental and other

conditions that are difficult to track [Vereecken et al., 2016]. In fact, technically, in

the remote areas it is almost impossible to obtain all the necessary parameters for

making a good quality predictive model to assess the plant growth dynamics based

on the “bottom-up” approach.

The good examples of using deep learning for plant growth dynamics in partic-

ular, yield prediction in a greenhouse was made using RNNs based on the former

yield and stem diameter values, as well as microclimate conditions [Alhnaity et al.,

2019, Hochreiter and Schmidhuber, 1997]. Examples of predicting the greenhouse

environmental conditions, such as 𝐶𝑂2 concentration, temperature, humidity based

on recurrent neural network were proposed in [Jung et al., 2020]. The possibilities

of using deep learning methods for solving challenges in precision agriculture are

presented in a comprehensive review [Kamilaris and Prenafeta-Boldú, 2018]. The

conclusions drawn by the authors were that in most cases deep learning outperformed

the existing regression and classification models, as well as classical computer vision

methods. The productivity of deep learning methods for dynamic optimization of

water temperature is reported in [Yumeina et al., 2015]. Another type of machine

learning methods that can be useful for precision agriculture is reinforcement learn-

ing. It can be used for modeling and optimizing the duty cycle of artificial light,

and predicting the plant growth, where 2D imaging is often used to perform the

leaves analysis and to make the associated inference [Somov et al., 2018, Rajendran

et al.]. However, there is still a gap between modeling and experimentation: the

reason is that many more experimentally collected data are required for modeling

of agriculture-related scenarios [Rötter et al., 2018].
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Non-destructive methods for assessment of seeds germination

Another task for agriculture is optimization seed germination process. It includes

a number of interconnected processes that influence the optimal plant growth. The

problem of seed germination modeling under different conditions was tackled in

[Bello and Bradford, 2016]. However, at present the research in this area remains

fragmented. One of the aspect of germination process, in particular the connec-

tion between the oxygen consumption and the germination rate of roots, as well

as a presumable method to obtain such measurements was described in [Lee et al.,

2017]. Several dynamic models of seeds germination are discussed in [Forcella et al.,

2000, Bello and Bradford, 2016]. The computer vision system for monitoring the

germination time course of a sunflower is described in [Ducournau et al., 2005]. The

comprehensive study on the root growth response (temporal and spatial) to the

limited nutrient availability based on modeling and experimental results is shown

in [Postma et al., 2014]; this paper stated which of the parameters that are defin-

ing the root growth should be used to maximize crop production. The way to use

k-nn to analyse the images of diverse germination phenotypes and to detect single

seed germination in miscanthus sinensis was shown in [Awty-Carroll et al., 2018].

The study of low-level root phenomics was described in [Miyamoto et al., 2001]; the

paper investigated hydraulic conductivity of rice roots. The use of 2D and 3D image-

based technologies for in-depth examination of root-soil interactions is described in

[Gregory et al., 2009]. The methodology for high precision three dimensional imag-

ing of roots in soil based on the magnetic resonance imaging is presented in [van

Dusschoten et al., 2016]. This technology allows non-destructive monitoring of root

parameters, performing quantitative analysis and deriving spatial distribution of

roots, which opens a wide range of possibilities to perform fundamental research on

the root growth response for different environmental conditions and stresses. The

comparison of magnetic resonance imaging with X-ray computed tomography for

reconstruction of the three dimensional root structure in soil is presented in [Met-

zner et al., 2015]; the paper states that these methods have benefits for application

on different scales. Although the proposed and evaluated methods are very precise,

they are very expensive. A variety of methods that can be coupled with the image-
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based sensing technologies for the roots phonemics are described in [Das et al., 2015].

However, there are no publicly available benchmark datasets for investigating the

seeds germination process. Still, from the viewpoint of testing, it is vital to rely

on a relevant benchmark dataset. Recently, such a tool for monitoring germination

process and obtaining relevant datasets was developed by [Falk et al., 2020]. The

main idea of this research is to use fully convolutional neural networks to perform

segmentation of a germinated seed.

Plant diseases detection

The other important task for precision agriculture is plant diseases detection. Auto-

matic systems for visual monitoring, along with the newest machine learning tech-

niques, are very powerful tools for monitoring and assessing the quality and quantity

of agricultural production. At the same time, these systems could help farmers to de-

crease their yield losses due to remote monitoring. The possible application of plant

growth optimization by advanced non-invasive technologies for disease detection has

been previously described in [Hanan, 2017, Park et al., 2011, Mahlein et al., 2012,

Rumpf et al., 2010]. Nowadays, farmers are going to improve the overall quality and

quantity of their harvest, to predict maturation rate, and to check the productivity

of the plantings, while decreasing the workload [Fan et al., 2011]. Harvest losses

because of pests and diseases are a major threat that costs billions of dollars every

year [Rubatzky and Yamaguchi, 2012]. Meanwhile, most of the current approaches

for monitoring and detecting diseases performed manualy, result in approximate as-

sessment. Special tools moreover are time-consuming and require many of human

resources. In addition, workers without special equipment can hardly cover and

analyze all plantations or greenhouses due to their large sizes. This problem leads

to a loss of important information about the epicenters of new plants diseases and

their real diversity. In addition, it is challenging to build a comprehensive map of

diseases that occurs in space and time. Diseases in a plant can occur quickly in real

field environments: e.g., common fungal diseases such as apple scab can attack the

plant in two weeks, thus, only real-time monitoring can help to detect diseases at

early stages to apply fungicides promptly [Vanderplank, 2012, Sophie et al., 2010].
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Computer vision systems go beyond human capabilities and help to evaluate

long-term processes and events occurring in the whole electromagnetic spectrum.

Among them, hyper-spectral systems provide the features that can be used as fin-

gerprints of plant diseases at a certain wavelength. This finding can be used as

a tool for developing new computer vision systems adapted for specific agriculture

purposes. The importance of the fluorescence imaging systems and multispectral

imaging for deriving features that are related to plant health and properties are

described in [Fiorani et al., 2012]. It is also important to discriminate one disease

from another one by using classification approaches jointly with image processing

[Khan et al., 2019, Pantazi et al., 2019, Sarfraz, 2014, Patil and Kumar, 2011].

Nowadays, deep learning models for plant disease detection, that include long-short

term memory neural networks (LSTM) coupled with convolutional neural networks,

in particular for the detection of apple scab, are showing good results [Baranwal

et al., 2019, Turkoglu et al., 2019, Ferentinos, 2018]. Neural networks have also

shown their usefulness for plant disease detection based on the hyper-spectral data

[Golhani et al., 2018]. There are several recently published datasets that allow train-

ing deep learning models, such as [Parraga-Alava et al., 2019, Nouri et al., 2018].

However, in the available near-infrared hyperspectral dataset, there are not so many

obtained data and spectra for training ML algorithms, and also, their bandwidth

are narrow [Nouri et al., 2018]. The use the hyper-spectral data can improve the

accuracy if the specific spectra for diseases detection are known. In addition, it is

not necessary to collect a huge dataset, as the features have already been extracted.

This allows using simpler algorithms to detect plant diseases, which in turn enables

a low-power implementation in embedded devices.

Embedded systems

Most of the data-driven approaches proposed in the literature are computationally

heavy, so the actual infrastructure of greenhouses would hardly allow to run such

systems directly because complex transmission systems and data processing sys-

tems are to be created. This leads us to the challenges associated with the system

autonomous operation. In terms of an autonomous operation, it is the limited en-
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ergy storage and high-power consumption that are of great concern. To address

the above problem, a distributed low-power embedded solution with AI on board is

required. An essential pre-requisite for solving this problem is artificial intelligence

which is able to run on a low-power embedded system. This solution does not re-

quire local powerful data processing or complicated data transmission to the cloud

which is restricted in the wireless sensor networks applied to the monitoring tasks

in greenhouses [Pahuja et al., 2013a]. As it was mentioned, the bottleneck could

be addressed by the application of edge computing paradigm [Shi et al., 2016]. It

performs the data-intensive computation tasks onboard of nodes without involving

massive data transmission to the remote server. The ultimate advantage of these

systems is a significant reduction in the output data size. For example, instead of

sending images to the cloud server (in the range of few MB), edge-computing sys-

tems generate the post-processed data, e.g. segmentation masks or the text files

with coordinates, labels of objects on the image and quantity characteristics of in-

terest (in the range of few KB) which are used for further system control. Also,

such a distribution improves the reliability and prevents the data losses caused by

the blackouts or hackers attacks to the server. Nowadays, edge computing is a

very relevant topic, because of an intensive development of mobile platforms, IoT,

robotics, embedded systems, wearables, etc. Edge computing has multiple advan-

tages in comparison with cloud computing and fog computing due to the following

technological limitations: privacy issues, dependency on the internet connection,

delays associated with network latency, the number of possible clients depends on

the servers computational capabilities [Marantos et al., 2018, Ignatov et al., 2018].

This is why the application of variety fitting approaches of ML algorithms to mobile

and embedded platforms with a limited computational capacity is necessary also for

overcoming the above-mentioned issues. There are many ways to fit the machine

learning algorithm on board of edge computing platforms. They may include hard-

ware acceleration (HA) by digital signal processor (DSP) [Codrescu et al., 2014]

or graphical processing unit (GPU) [Latifi Oskouei et al., 2016]. The DSP HA is

widely used in mobile platforms due to their high performance along with a low

power consumption (even in comparison with CPUs and GPUs). The GPU HA im-
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plies parallel computations split between CPU and GPU. It could be implemented

with the following libraries: TensorFlow Mobile [TFM, 2019], Android neural net-

work API (NNAPI) [NNA, 2019], RenderScrpit-based CNNdroid [Latifi Oskouei

et al., 2016] and RSTensorFlow. The latter is a GPU-based accelerator of ma-

trix operations, which makes it possible to accelerate matrix multiplication up to

3 times [Alzantot et al., 2017]. Furthermore, some studies show that RenderScript

could be used even with CPUs imprecise computing modes to lower execution time

of computationally-intensive models [Motamedi et al., 2019]. In addition, System-

on-Chip (SoC) manufacturers propose SDKs compatible with their products only.

They include SNPE by QUalcomm, HiAI platform by HiSilicon, NeuroPilot SDK

by MediaTek, etc.

Bottlenecks of ML and CV application

There are several Bottlenecks of the CV application. ML and CV methods are

essentially black boxes, so it is often impossible to properly interpret their results

from the physical point of view [Minervini et al., 2015, Alhnaity et al., 2019]. The

state-of-the-art DL methods that are suitable for performing phenotyping tasks are

quite heavy from the computational point of view which significantly limits their

application in real scenarios. A huge amount of data has to be obtained and an-

notated for training neural networks (NN) powering the DL approaches, which is

usually a time-consuming task. Additionally, the computational infrastructure in

some greenhouses is not powerful enough to run the NNs. This is why a method

for plant growth dynamics prediction that requires less training data and is com-

putationally efficient as well as accurate enough, is in a high demand now. One of

the possible solutions is using computationally simple algorithms that rely on the

extracted features of plant growth. Such algorithms can be based on the Kalman

filters that have already demonstrated their efficiency in a wide range of applica-

tions, e.g. sensors networks, control, vehicle trajectory tracking, interferometry,

radar tracking [Kalman, 1960, Zhou et al., 2018, Pletschen and Diepold, 2017, Xia

et al., 2018, Nilsson et al., 2015, Kulikov and Kulikova, 2015]. However, they have

limited applications in precise agriculture where they were exploited in the crop
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phenology evaluation [Vicente-Guijalba et al., 2013], in improving the prediction

performance of the deterministic model [Ruíz-García et al., 2013], or crop disease

detection [Hamuda et al., 2018]. It was reported an approach based on Kalman

filter to monitor biomass evolution in plant cells that are featured with very low vol-

ume of samples [Albiol et al., 1993]. From this perspective, using Kalman filters as

a computational core of a plant dynamics prediction system is a promising approach

in terms of accuracy and computational efficiency.

2.3 “Bottom-up” modeling of plant growth: review,

examples

In this section the "Bottom-up" modeling are reported to show the advantages

and disadvantages of this approach, basing on the theoretical models described in

[Bessonov and Volpert, 2006]. One of the typical approaches to describe plant growth

dynamics is modeling of kinetics. To develop the basic model of plant growth it is

necessary to define the most important physical principles that underlying plant

growth. To show such principles let us consider the growing plant in one dimension

(vertical stem). The plant takes nutrients from the bottom (roots), then these

nutrients are transported to the top of the plant, where metabolites are generated.

Using these metabolites and nutrients, cells are fissioned and stem is growing. Light

also plays a very important role in plant growth, but in the following modeling, it is

supposed that the amount of photoactive radiation (PAR) is enough to support all

processes in plants. Also, it is supposed that nutrients are not consumed by roots

development. From the biological point of view it is assumed a constant and narrow

width of the meristem (the tissue on the top that is responsible for cell division).

After cell division, newly divided cells are becoming new meristem on the top, while

the previous meristem layer is becoming common tissue of the plant.

Let 𝐿 be the length (height) of the plant, which is much larger that the width.

The concentration of nutrients in the point 𝑥 = 0 is fixed (it is supposed that

there is unlimited access to the nutrients and no growth of the roots). In the point

𝑥 = 𝐿(𝑡), which represents the top of the plant, metabolites are creating and the
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plant is growing. Increasing the length of the plant can be described using the

following equation:

𝑑𝐿

𝑑𝑡
= 𝑓(𝑅), (2.1)

where 𝑅 is the concentration of metabolites. Cells that are responsible for trans-

mission of the nutrients to the top of the plant are located in the internal part of

the plant 0 < 𝑥 < 𝐿(𝑡). Nutrient concentration 𝐶 in this part is depending on 𝑥

and 𝑡. It is supposed that diffusion-advection equation can describe the process of

transmitting of the nutrients to the top:

𝜕𝐶

𝜕𝑡
+ 𝑣

𝜕𝐶

𝜕𝑥
= 𝑑

𝜕2𝐶

𝜕𝑥2
, (2.2)

Figure 2-1: Graphical sketch of
the solved mathematical problem.

where the diffusion coefficient is 𝑑 and 𝑣 is the

nutrients (fluid) transmission velocity. As the

nutrient solution is assumed to be incompressible

and to have uniform distribution in plant, 𝑣 can

be presented as:

𝑣 =
𝑑𝐿

𝑑𝑡
. (2.3)

The following boundary conditions should be

introduced into the Eq. (2.2) according to our

assumptions:

𝑥 = 0 : 𝐶 = 1;𝑥 = 𝐿(𝑡) : 𝑑
𝜕𝐶

𝜕𝑥
= −𝑔(𝑅)𝐶.

(2.4)

The boundary condition 𝑑𝜕𝐶
𝜕𝑥

= −𝑔(𝑅)𝐶 rep-

resents the nutrients flow from the internal part

of plant to the top boundary. It depends on the

nutrient concentration 𝐶(𝐿, 𝑡) and function 𝑔(𝑅)

that is responsible for controlling the cell divi-
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sion.

The last equation that should be provided to complete the system of differential

equations is that describing dynamics of changing of metabolites concentration 𝑅,

Eq. (2.5):

ℎ
𝑑𝑅

𝑑𝑡
= 𝑔(𝑅)𝐶 − 𝜎𝑅, (2.5)

where 𝑔(𝑅)𝐶 represents the dynamics of the creation of metabolites, while 𝜎𝑅 rep-

resents the consumption by the divided cells, h is width of the plant. It was made

the assumption that the rate of changing of metabolites concentration 𝑅 depends

on the metabolites concentration of 𝑅.

Overall, it was obtained a system of differential equations that allow modeling

the growth dynamics of one dimensional plant (stem) with the assumptions. 𝑅 is

produced only by mitosis and defines the plant growth rate. There is a continuous

nutrient exchange and converting on the top boundary. The generating of 𝑅 de-

pends on the certain function 𝑔(𝑅) and nutrient concentration 𝐶. The schematic

representation of the developed mathematical model is presented in the Fig. 2-1.

It will be shown in the following examples of modeling that the shape of 𝑔(𝑅)

has dramatic influence on the total result of modeling. Function 𝑔(𝑅) assumed to

have piecewise shape as the process of generating 𝑅 is assumed to be autocatalytic

(see Fig. 2-2b), while 𝑓 is the step function. It is supposed that there is no growth

(𝑓 = 0) until 𝑅 reaches certain threshold 𝑅𝑓 and after that 𝑓 = 𝑐𝑜𝑛𝑠𝑡 (see Fig.

2-2a). These assumptions have the biological basis as the process of generation of

𝑅 can be self-accelerating.

Simulations. The simulations of the plant growth dynamics based on the model

described above (1D case) were performed in the Matlab environment. First, it was

investigated the influence of critical parameters on the result of simulation. There

are two critical parameters in functions 𝑓(𝑅) and 𝑔(𝑅): 𝑅𝑓 and 𝑅𝑔. If 𝑅 > 𝑅𝑓 then

plant grows, if 𝑅 > 𝑅𝑔 then the generation of metabolites is accelerated. There are

two different simulation scenarios for different relations between 𝑅𝑓 and 𝑅𝑔. For

simulations the following values were set constants 𝑑 = 0.001 𝑠𝑢2

𝑡𝑢
and 𝜎 = 0.009 𝑠𝑢

𝑡𝑢
,
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(a) (b)

Figure 2-2: Shapes of functions (a) 𝑓(𝑅) and (b) 𝑔(𝑅), Source: [Bessonov and
Volpert, 2006].

ℎ = 0.001𝑠𝑢, 𝑔0 = 0.01 𝑠𝑢
𝑡𝑢

, ℎ0 = 0.0031 𝑠𝑢
𝑡𝑢

, where 𝑠𝑢 is space unit and 𝑡𝑢 is time unit.

Figure 2-3 shows an example of simulations in the case if 𝑅𝑓 > 𝑅𝑔: 𝑅𝑔 = 0.01,

𝑅𝑓 = 0.08. It can be observed the linear growth and when the length approaches

the maximum length, the growth stops. The concentration of the metabolites and

nutrients at the apex monotonically decrease and tend to zero.

If 𝑅𝑓 < 𝑅𝑔: 𝑅𝑔 = 0.01, 𝑅𝑓 = 0.08 (all the other parameters are the same

as above) it can be observed the periodical growth (see Fig. 2-4). This happens

because it is needed time to accumulate the metabolites and to exceed 𝑅𝑓 to trigger

the growth. Increasing the length of the plant the time period for accumulation also

increases (see Fig. 2-4).

In order to investigate the sensitivity of the model to the parameters simulations

were performed to derive dependencies of the maximum length on the various of the

estimated parameters for the case of the periodic growth (𝑅𝑓 < 𝑅𝑔). The results

about dependence of the maximum length on diffusion coefficient 𝑑, width ℎ and

parameter 𝑔0 for various 𝑅𝑔 values are presented in Fig. 2-5(a-c) correspondingly.

All the other parameters remain constant and their values are the same as above.

From these results it can be noticed the high sensitivity of the maximum length to

the model parameters. For example, if 𝑅𝑔 = 0.1 and the diffusion coefficient changes

from 0.0005 to 0.0014 the final length is increasing from 2.17 to 6.72 and for the

same 𝑑 = 0.0014 if the 𝑅𝑔 is double from 0.1 to 0.2, the final length is increasing

from 3.45 to 6.72 (see Fig. 2-5a). The maximum length monotonically decreases
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Figure 2-3: 𝑅𝑓 > 𝑅𝑔, Linear growth of stem length with corresponding changing of
the concentrations of metabolites and nutrients concentration at apex.

Figure 2-4: 𝑅𝑓 < 𝑅𝑔, Periodic growth of stem length with corresponding changing
of the concentrations of metabolites and nutrients concentration at apex.
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with the increase of width ℎ for almost all investigated values of the parameter 𝑅𝑔

(see Fig. 2-5b). For example for 𝑅𝑔 = 0.1, the maximum length halved from 4.79 to

2.44, while ℎ is changing from 0.001 to 0.011. It can be observed the high sensitivity

to the values of 𝑅𝑔 for the same value of ℎ. If ℎ = 0.001, for 𝑅𝑔 = 0.1 maximum

length is 4.79 and for 𝑅𝑔 = 0.2 the maximum length is 1.34. Finally, modeling

showed the sensitivity of the maximum length to the small values of 𝑔0. With the

increase of 𝑔0 from the 0.003 to 0.01 for 𝑅𝑔 = 0.1, the maximum length increases

from 3.64 to 5.17 (see Fig. 2-5c).

The performed modeling based on the "Bottom-up" approach which includes

differential equations showed that there are lots of uncertainties and it is difficult

to obtain a robust prediction even for 1D case. Here lots of assumptions were

done on shapes of curves, critical values, parameters of the model. The complex

processes of photosynthesis and respiration also were not included. In real life all

these parameters are unknown. So it is hard assess them with the necessary precision

for perform modeling that will give the meaningful result, and also they can vary

for different plants. For 2D cases and plants with branching, it was also shown, that

solutions are not always stable in [Bessonov and Volpert, 2006]. All these make this

approach almost impossible to use for growth dynamics assessment of the real plants

or it can be used for a narrow range of tasks. However, the power of this approach

is in the possibility to do the "low-level" modeling and theoretically investigate any

case and influence of any parameter on the growth dynamics.
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(a)

(b)

(c)

Figure 2-5: Results on the modeling of the maximum length dependence on (a)
diffusion coefficient 𝑑 for various 𝑅𝑔; (b) width ℎ for various 𝑅𝑔 and (c) parameter
𝑔0 for various 𝑅𝑔, in the case of periodic growth: 𝑅𝑓 < 𝑅𝑔.
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Hybrid combination of methods for

modeling of plant growth in

controlled environments

3.1 Experimental setups, collection of relevant data

from experiments

Experimental Setup

Artificial growth and monitoring systems. The experimental setup was de-

signed and created based on the greenhouse hydroponic system. The main advantage

of hydroponic systems over the open soil systems is the ability to control almost all

the conditions influencing the plant’s growth rate. In addition to that, the plant

response time is much faster, since its roots are always in the direct contact with a

nutrient liquid solution, so one can find and evaluate the impact of the individual

chemical compounds on the growth process and invesigate the quantitative effect of

each parameter on the plant growth. Also, it is possible overcome perception-action

problems that typically occur when plants are grown in the soil. Moreover, the hy-

droponics allows for the exploration of the plant reaction on different environmental

conditions or maintain the particular state for a long period of time. It creates the

opportunity for carrying out a variety of experiments and collecting all the relevant
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data about the plant growth dynamics. It also enables the optimization of the whole

growth process. The experimental setup is shown in Fig. 3-1.

Figure 3-1: The experimental greenhouse hydroponic system enabling the monitor-
ing of growth dynamics and system parameters in real-time.

The testbed consists of two subsystems: the first one is for growing plant (hy-

droponic system) and the second one is for monitoring growth dynamics and system

parameters. Plants nutrition was provided by the constant feeding layer technology

realized through recycling of a nutrient solution on a floating table. In the con-

struction 1 𝑐𝑚 feeding layer was provided by a 10 𝑊𝑎𝑡𝑡 pump and a 50 𝑙 tank for

satisfying requirement for such systems that it should be 1-2 full recycle of nutrient
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Feature Value/description
Max. amount of plants 20
Illumination 150 Watt multispectral LED
Feeding solution recycle 60 liter tank, 10 Watt pump and 1.5 𝑐𝑚 of feeding layer
Substrate 0.65 liter rock wool blocks
Fertiliser Flora NOVA produced by GHE

Table 3.1: Hydroponic growth system design summary

solution per one hour. Feeding solution was prepared by using the recommended

recipe of popular commercial fertiliser concentrate Flora NOVA produced by com-

pany GHE. Each plant grew in a 0.65 𝑙 (10x10x6.5𝑐𝑚) rock wool substrate. The

testbed possesses the ability to grow up to 20 small plants, e.g. dwarf tomatoes.

The amount of simultaneously growing plants depends on a purpose of research.

For identifying the nutrient uptake it makes sense to put into the system as much

plants as possible: it will be easier for sensors to detect the dynamics of parameters

changing, e.g. changing of pH, EC, temperature. In the case of imaging it is rec-

ommended to put plant sparse for avoiding overlapping of leaves. Typically, light

emitting diodes (LED) are used as a light source in a small size artificial growth

system. This choice is justified due to their much easier control comparing to other

types of light source. According to best-known practices, it was decided to use

blue/red diodes which are one of the most important for the photosynthesis process

in ratio 1/4 and total power 150 𝑊𝑎𝑡𝑡 equipped with a relay module for controlling

the LEDs. For this particular system, the period from germination to the end of

vegetation for lettuce is approximately one month, the same period for tomatoes.

The summary of the system design showed in Table 3.1. The hydroponic system

design was developed based on the best world practices for providing the optimal

conditions for a plant growth [Jones Jr, 2016, Sanyé-Mengual et al., 2015].

Monitoring system The system for monitoring of growth dynamics and system

parameters has a 2D-plotter (MakeBlock) with the mobile carrier on which an RGB

digital camera Logitech c920 (1980x1080) is mounted. The assembled system allows

to automatically take the sets of images of each plant in high resolution in a pre-
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defined time period. Also, the placement of camera directly above the plane where

the plants are located makes perspective distortions minimal and avoids effect of

shadowing. The environmental conditions that will be used for further modelling

were measured automatically using the electrical conductivity (EC), temperature,

pH, relative humidity (RH), and feeding solution flow rate sensors. All these sensors

and digital cameras before starting the experiment were tuned and calibrated. The

LED system is constructed as a part of the whole experimental setup and it can be

controlled as well [Shadrin et al., 2018].

Data Acquisition

Fig. 3-2 shows the system architecture and relations among the testbed subsys-

tems. By using the hydroponic system and automatic data acquisition system,

data which describe the plant growth dynamics (2D images) and system parameters

were recorded. Next, this data were sent to a database, then a server process this

data, calculates the projected leaves area, and predicts the projected leaves area

growth based on the selected model. Red lines indicate the semi-automatic con-

trol effectuated between two blocks. For example LED-duty cycle was controlled

semi-automatically. LED illumination had a duty cycle 18h/6h (day/night) at the

beginning of the experiment and by the end of the experiment, duty cycle was

slightly decreased to 16h/8h (day/night). For collecting and processing data auto-

matically, a custom software for a desktop PC and smartphone was developed (see

Fig. 3-2). The developed software is flexible: the user can easily integrate new

sensors in the monitoring system. Also, the proposed system showed its robustness

to the power interruption: the XY-plotter is automatically re-calibrated in case of

power shut up. The software was released via a custom made scripts developed

in Python and C programming languages. A set of continuous experiments on the

different types of plants aimed at growth dynamics assessment and collecting the

relevant dataset for more than a month was successfully performed. For these exper-

iments it was developed software for hardware control, e.g. stepper drivers on the

XY plotter and controllers for LED, and software for data receiving and processing.

Both pieces of software must be synchronized properly. During the experiments,

62



Chapter 3. Hybrid combination of methods for modeling of plant growth in controlled
environments 3.1. Experimental setups, collection of relevant data from experiments

2D images of plants were taken every 30 minutes within approximately one month

for each type of plant cultivation. In parallel, remaining system parameters were

collected, they were measured automatically, organized and stored into a database.

A high-precision algorithm for calculating the projected leaves area of plants was

developed and successfully implemented. The developed algorithm relies on a refer-

ence point - the red square object (see Fig. 3-3) with known area for performing the

calibration, i.e. calculation of a specific pixel size: area/pixel. Then the algorithm

performs the calculation of a number of green pixels which belong to the plant. A

pixel is identified as green in its RGB value if it is in the certain bounds which are

set up before the experiment starts. A Similar approach was discussed in [Easlon

and Bloom, 2014]. A white background was used to reduce noise, e.g. green pixels

not belonging to the plant. For monitoring of the experiment online it a custom

web-interface was developed.

Figure 3-2: System architecture for 2D data acquisition and processing.

Totally, two small scale experiments were conducted for obtaining relevant data
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about lettuce and tomato growth dynamics.

The first one was conducted within nearly one month during which four dwarf

tomato plants ’MicroTina’ [Scott et al., 2000] grew. It was decided not to use too

many samples to avoid overlapping of plants and obtaining good quality images.

During this experiment the data from the sensors and images were taken simulta-

neously every 30 minutes to be recorded into a database. The dataset of the time-

sequenced top-down images of plant growth (3168 images) and growth conditions is

available online https://github.com/DmitriiShadrin/TGD-Tomato-Growth-Dynamics.

Figure 3-3: Examples of top-down tomato images received during the experiment.

Figure 3-4: Projected leaves area calculations during the experiment.
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Figure 3-5: Measurements of humidity during the experiment.

Figure 3-6: Illumination duty cycle (Photosynthetic Photon Flux Density).
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An example of raw top-down images for different tomatoes are shown in Fig.

3-3, where the time interval between two pictures from left to right is approximately

three days. For each image the projected leaves area was calculated automatically

using the procedure, discussed above. Totally, 1079 images were obtained for each

tomato plant, and the same amount of data points from each sensor. For further

growth dynamics assessment and system identification purposes, 792 first images of

each plant and the same amount of the data points were used from each sensors. This

was done because on the later stage of growth leaves started to overlap significantly

and the projection of leaves area can be significantly different from the actual leaves

area.

Fig. 3-4 presents the calculated projected leaves area for each one of the four

plants. In the Fig. 3-4 it can be observed the diurnal fluctuations (oscillations)

of projected leaves area. This happens because of the diurnal movements of the

leaves. This effect was investigated in detail in [Kao and Forseth, 1992], where diur-

nal soybean leaves movement were investigated under different nitrogen and water

availability. One of the outcomes of this study was that cosine of leaves surface (nor-

mal) to the horizontal surface varies dramatically during day and the amplitude of

variation differs up to twice for different nutrition. Machine vision approach for de-

tection of plant water stress is discussed in [Kacira et al., 2002], where as the feature

of the stress detection was used the coefficient of relative variation of top-projected

canopy area. In general, the diurnal regulation of plant growth one of the effects of

which is leaves movements is described in [Nozue and Maloof, 2006]. The proposed

in this section automatical measurements of projected leaves area allow assessing

the stresses caused by nutrition, illumination and other environmental factors that

influence growth dynamics by numerical analysis of the obtained fluctuations of the

in projected leaves area.

Two out of six recorded parameters are presented in Fig. 3-6 and Fig. 3-5 for

showing the system performance during the experiment on tomato growth dynam-

ics assessment. Figure 3-5 shows humidity during the experiment representing an

example of the data obtained from the sensors. Light duty cycle was set most of

the time during the experiment and was 16/8 hours reconstructing day/night cycle
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except in some days. Fig. 3-6 shows the light duty cycle.

A similar experiment was conducted for lettuce growth dynamics assessment.

Data from the sensors and digital camera were taken in the same time interval as

for tomatoes in 30 minutes. The growth conditions were maintained at the optimal

level through the experiment. Overall, a sequence of 7380 raw images was obtained

(example in the Fig. 3-7a) along with the corresponding environmental conditions.

Images were processed in-situ on the collection stage using the developed software.

The projected leaves area of each plant is shown in Fig. 3-7b. Fluctuations as in the

first experiment are not observed in this case as the calculated projected leaves area

was smoothed. The experiment stopped when leaves started overlap, thus making

impossible to estimate the actual leaves area from just 2D images properly.

(a)

(b)

Figure 3-7: Examples of collected data on lettuce: (a) raw top-down images of
lettuce, (b) calculated and pre-processed projected leaves area for 9 plants.
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(a)

(b)

Figure 3-8: Examples of measurements from sensors, recorded during the experi-
ment: (a) dynamics of relative humidity change during the experiment - maintained
in the optimal range, (b) dynamics of feeding solution temperature change during
the experiment - maintained in the optimal range.
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Figure 3-8a and Fig. 3-8b show examples of measured environmental parameters

as well as the fact the growing system supports the stable plant growing. This point

ensures that the obtained data can be used for model testing purposes. Also, it is

beneficial that the amount and quality of data (images and data from sensors) are

good enough for training machine learning algorithms.

3D data collection

For the purpose of biomass estimation and finding correlations between leaves area

and plant biomass 3D data that describe different stages of plant growth was col-

lected. It should be noticed that in the case of 3D experiment there is no projection

of leaves area and the actual leaves area is measured A hydroponic system with a

constant feeding layer was designed and assembled for control of ambient conditions.

For data collection, a manual 3D scanner Artec Space Spyder was used. Below the

features of the hydroponic system shown in Fig. 3-9 are summarized:

• System for growing 18 tomato plants,

• 180W multispectral LED light,

• 60 liter tank,

• 0.65 liter rock wool blocks as a substrate,

• 8 W pump (100 liter/h),

• 1.5 cm of feeding solution layer

Apart from the benefits of usage of the rock wool blocks as a substrate for plants

cultivation described above it also gives an opportunity to inspect and perform

3D scanning of each plant in the experiment without interruption of the system

operation and without damaging the plants. Fig. 3-9 shows the performance of the

system and acceleration of the physiological processes in the plants in a hydroponic

system of this type. In this experiment it took around one month from germination

to the first flowering.
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(a) (b)

(c) (d)

Figure 3-9: Hydroponic system where tomato plants were growing during 1 month
and 1 week: (a) germination stage, (b) vegetation stage, and (c-d) flowering.

Figure 3-10: 3D images of the tomato plant in the beginning of vegetation lifetime.
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For initial data acquisition, 18 tomato plants were used. These experimental

samples were composed of two dwarf tomato sorts: Bonsai Micro (9 plants) - the

same sort as that was used in 2D experiment and Bonsai (9 plants) were germinated

in optimal conditions and then transplanted into the hydroponic system. The sys-

tem conditions were monitored manually for the sake of controlling the allowable

rates of feeding solution parameters (pH, temperature, humidity, electric conductiv-

ity). All of these parameters could be corrected if necessary. 3D images collection

of plants was organized in the following way: first the plant was taken out from the

hydroponic system, then it was put on to a rotating table, and scanned using the

3D scanner under green spectrum illumination conditions (because plants reflect this

spectrum making the final 3D image more accurate). After receiving the 3D images,

their preprocessing, and smoothing, the main parameters including the actual leaf

areas and their biomass were calculated. Smoothing and preprocessing procedures

were performed by commercial Artec Studio software which supports the scanner

operation. The preprocessing helps to reduce the noise and to remove unnecessary

parts of scanned image where the parameters were indicated by program recommen-

dations with manual tuning. One of the main functions in the Artec studio and used

in this work is “Fusion”. This function enables the creation of a polygonal 3D model

based on received clouds of points. Fig. 3-10 shows an example of a 3D image of

the tomato in the beginning of vegetation lifetime. In total, 80 3D cloud of points

of dwarf tomato plants were received and processed for the period from germination

to the beginning of flowering. These 3D images represent the dynamics of plant

growth and can be used for biomass (volume) assessment, based on leaves area (or

projected leaves area) calculations. Also, 55 3D clouds out of 80 will be used for

biomass (volume) dynamics assessment.

3.2 Kalman filter for simple models

Development of a state-space model of plant growth

In this section it will be presented the Kalman filtering approach for growth dynamics

prediction based on the selected growth model. One of the models that is widely
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used for estimating the crop growth dynamics and for estimating the population

growth in biological systems is the Verhulst model Eq. (3.1) [Frighetto et al., 2019,

Kalmykov and Kalmykov, 2015]. It is also known as logistic S-curve:

𝑑𝑆

𝑑𝑡
= 𝜇𝑆(1 − 𝑆

𝑆𝑚𝑎𝑥

), (3.1)

where 𝜇 is growth rate ( 1
𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝

), 𝑆 and 𝑆𝑚𝑎𝑥 - current and maximum leaves area

(projected) respectively in 𝑐𝑚2. Integration of (3.1) gives the following Eq. (3.2):

𝑆(𝑡) = 𝑆𝑚𝑎𝑥
𝑆0𝑒

𝜇𝑡

𝑆𝑚𝑎𝑥 + 𝑆0(𝑒𝜇𝑡 − 1)
. (3.2)

The Verhulst model is widely applied for assessment of the dynamics of life systems.

For example, Verhulst model was applied for spatio-temporal population control to

management of aquatic plants [Frighetto et al., 2019] [Costa et al., 2003]. It should

be noticed that the Verhulst model was used for assessment of the dynamics of

the projected leaves area, not the leaves area themselves. In the experiments, it was

obtained 2D top-down images of plants. Using these images, the projection of leaves

area was calculated. Growing plants broadwise can have an effect on the values of

the calculated projected leaves area. The projection of leaves area has limitations for

the investigated plants because these plants are not able to grow infinitely broadwise.

This effect was also observed experimentally. For the development of models data

from the initial stages of growth will be used and is assumed that the plant has

some maximum projected leaves area. Also, it will be shown that the obtained

experimental data have a good fit to the Verhulst model.

The main aim of the following modelling procedure is to estimate the main

growth parameters 𝜇 and 𝑆𝑚𝑎𝑥 based on the current measurements of the projected

leaves area. In general case parameters 𝜇 and 𝑆𝑚𝑎𝑥 are time-dependent. hanging

of these parameters are guided by the environmental conditions. In the following

modeling it will be estimated the evolution of these parameters in time and compared

the results with true (measured) values of them. Rearranging Eq. (3.2) leads to Eq.
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(3.3):

𝑆(𝑡) =
1

( 1
𝑆0

− 1
𝑆𝑚𝑎𝑥

)(𝑒−𝜇𝑡 − 1) + 1
𝑆0

. (3.3)

It should be noted that based on Eq. (3.3), 𝑆(𝑡) tends to 𝑆𝑚𝑎𝑥 as 𝑡 growth. On

the one hand, if 𝑡 is small then expression (𝑒−𝜇𝑡 − 1) in Eq. (3.3) is close to zero.

It means that the model of growth is less sensitive to 𝑆𝑚𝑎𝑥 and the estimation of

𝑆𝑚𝑎𝑥 can be done for larger values 𝑡. On the other hand, for large values of 𝑡, 𝑒−𝜇𝑡

(containing unknown parameter 𝜇) tends to be zero and the contribution of this

expression to the total value of 𝑆(𝑡) is low. It means that the measurements of the

projected leaves area 𝑆(𝑡) will have more impact on the estimation of 𝜇 compared

to 𝑆𝑚𝑎𝑥 on the initial stage of growth.

Equation (3.2) that reflects the growth dynamics trends of plants was taken as

a basis for the model creation at state-space. The state vector 𝑋𝑘 at time 𝑘 was

defined as follows in Eq. (3.4):

𝑋𝑘 =

⎡⎣ 𝜇𝑘

𝑆𝑚𝑎𝑥,𝑘

⎤⎦ , (3.4)

where 𝑘 is the 𝑘 − 𝑡ℎ state of the system. The future state of the system 𝑋𝑘+1 is

presented as a function of the current state in Eq. (3.5):

𝑋𝑘+1 = 𝐹𝑘+1,𝑘𝑋𝑘 + 𝑊𝑘+1, (3.5)

where 𝐹𝑘+1,𝑘 is the transition matrix relating the state vectors 𝑋𝑘 and 𝑋𝑘+1 is given

by Eq. (3.6):

𝐹𝑘+1,𝑘 =

⎡⎣ 1 0

0 1

⎤⎦ . (3.6)

The state noise is defined by Eq. (3.7) to take into account the unpredictable
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variations of plant growth:

𝑊𝑘 =

⎡⎣ 𝑤𝜇
𝑘

𝑤𝑆𝑚𝑎𝑥
𝑘

⎤⎦ , (3.7)

where 𝑤𝜇
𝑘 and 𝑤𝑆𝑚𝑎𝑥

𝑘 are the noises of growth rate and maximum projected leaves

area, respectively, with zero mathematical expectation - 𝐸[𝑊𝑘] = 0. Covariance

matrix of the state noise is defined in Eq. (3.8):

𝐸[𝑊𝑘,𝑊
𝑇
𝑘 ] = 𝑄 =

⎡⎣ 𝛿2𝜇 0

0 𝛿2𝑆𝑚𝑎𝑥

⎤⎦ , (3.8)

where 𝛿2𝜇 is the variance of parameter 𝜇 and 𝛿2𝑆𝑚𝑎𝑥
is the variance of the parameter

𝑆𝑚𝑎𝑥. If 𝜇 and 𝑆𝑚𝑎𝑥 are assumed to be constant, then 𝑄 = 0.

To estimate the state vector �̂�𝑘+1, the measurements of projected leaves area

of plants were used. The measurement equation is defined in the following way,

presented in Eq. (3.9):

𝑧𝑘 = 𝑆𝑘 + 𝜈𝑘 = ℎ(𝑋𝑘) + 𝜈𝑘,

ℎ(𝑋𝑘) =
1

( 1
𝑆0

− 1
𝑆𝑚𝑎𝑥

)(𝑒−𝜇𝑘 − 1) + 1
𝑆0

,
(3.9)

where 𝑧𝑘 is the measurement of projected leaves area, ℎ(𝑋𝑘, 𝑘) is the nonlinear

measurement function of the state vector 𝑋𝑘 and 𝜈𝑘 is the measurement noise with

variance 𝛿2𝜈,𝑘 and zero mathematical expectation. During the modelling procedure

it can be assumed that the variance of the measurement noise depends on 𝑆(𝑡)

and equals for example 𝛼𝑆(𝑡) because with larger projected leaves area, a greater

measurement error occurs.

The recurrent algorithm of Kalman filter consists of two repeating procedures,

namely extrapolation and filtration:

Extrapolation is performed to estimate the future state vector 𝑋𝑘 using Eq.
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(3.10)

�̂�𝑘,𝑘−1 = 𝐹𝑘,𝑘−1�̂�𝑘−1,𝑘−1, (3.10)

where �̂�𝑘,𝑘−1 is the the extrapolated estimate of the state vector 𝑋𝑘. The first

subscript 𝑘 denotes the time at which the extrapolation is made, while the second

subscript 𝑘 − 1 represents the number of observations 𝑧1, 𝑧2, ..., 𝑧𝑘−1 used to obtain

the extrapolated estimate �̂�𝑘,𝑘−1.

The prediction error covariance matrix 𝑃𝑘,𝑘−1 is given by Eq. (3.11):

𝑃𝑘,𝑘−1 = 𝐹𝑘,𝑘−1𝑃𝑘−1,𝑘−1𝐹
𝑇
𝑘,𝑘−1 + 𝑄, (3.11)

Filtration equation incorporates a new observation for obtaining an improved

estimate and is given by Eq. (3.12):

�̂�𝑘,𝑘 = �̂�𝑘,𝑘−1 + 𝐾𝑘(𝑧𝑘 − ℎ(�̂�𝑘,𝑘−1, 𝑘)), (3.12)

where �̂�𝑘,𝑘 is the filtered estimate of state vector 𝑋𝑘 at time 𝑘 using 𝑘 available

measurements.

The filter gain 𝐾𝑘 and filtration error covariance matrix 𝑃𝑘,𝑘 are calculated ac-

cording to Eq. (3.13):

𝐾𝑘 = 𝑃𝑘,𝑘−1�̃�
𝑇
𝑘 (�̃�𝑘𝑃𝑘,𝑘−1�̃�

𝑇
𝑘 + 𝛿2𝜈,𝑘)

−1
,

𝑃𝑘,𝑘 = (𝐼 −𝐾𝑘�̃�𝑘)𝑃𝑘,𝑘−1,
(3.13)

where �̃�𝑘 is the derivative ℎ(𝑋𝑘) as the dependence between the projected leaves

area measurements 𝑧𝑘 and the state vector 𝑋𝑘 is nonlinear. �̃�𝑘 is computed from

calculating the partial derivatives of ℎ(𝑋𝑘) with respect to the state vector 𝑋𝑘 in
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the point �̂�𝑘,𝑘−1, where �̂�𝑘,𝑘−1 =

⎡⎣ �̂�𝑘,𝑘−1

𝑆𝑚𝑎𝑥,𝑘,𝑘−1

⎤⎦:

�̂�𝑘 =
𝑑ℎ(𝑋, 𝑘)

𝑑𝑋𝑇
|�̂�𝑘,𝑘−1

=

=

⎡⎢⎣ 𝑘( 1
𝑆0

− 1

𝑆𝑚𝑎𝑥,𝑘,𝑘−1
)𝑒−�̂�𝑘,𝑘−1𝑘𝑆2

𝑘,𝑘−1

− (𝑒
−�̂�𝑘,𝑘−1𝑘−1)𝑆2

𝑘,𝑘−1

𝑆2
𝑚𝑎𝑥,𝑘,𝑘−1

⎤⎥⎦
𝑇

.

(3.14)

In Eq. (3.14) as the extrapolated estimation of the projected leaves area should be

used Eq. (3.15):

𝑆𝑘,𝑘−1 =
1

( 1
𝑆0

− 1

𝑆𝑚𝑎𝑥,𝑘,𝑘−1
)(𝑒−�̂�𝑘,𝑘−1𝑘 − 1) + 1

𝑆0

. (3.15)

It can be noticed from Eq. (3.14) that the expression 𝑘𝑒−�̂�𝑘,𝑘−1𝑘 at the numerator of

the first element tends to zero with the increase of 𝑘 since the exponential function

decreases faster compared to the linear increase of 𝑘. This means that the first

element of �̂�𝑘 defining the weight of the parameter 𝜇 in the projected leaves area

measurements can be estimated more accurately for lower values of 𝑘. The opposite

situation for the second element in Eq. (3.14) was detected where the numerator

increases with the increase of 𝑘. Thus, more precise estimation of 𝑆𝑚𝑎𝑥 can be

achieved using larger values of 𝑘.

Results of modeling

Assessment of a plant growth dynamics based on simulated data. The

main aim of the performed modelling using the simulated data is to show the ro-

bustness of the method and present the boundaries of the method application. The

example of simulated leaves area growth (projected) based on Eq. (3.2) and mea-

surements is shown in Fig. 3-13. For simulations it was assumed that the variance

of the measurement error is 𝛿𝜈,𝑘 = 0.01 * 𝑆𝑘. The growth rate was assumed to be

𝜇 = 0.04 and maximum projected leaves area 𝑆𝑚𝑎𝑥 = 1000 𝑐𝑚2 for performing the
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simulation. First, it was evaluated the method assuming the zero state variances:

𝛿2𝜇 = 0 and 𝛿2𝑆𝑚𝑎𝑥
= 0. The results of the reconstructed 𝜇 and 𝑆𝑚𝑎𝑥 (for 𝑄 = 0)

are shown in Fig. 3-11 and Fig. 3-12. From these figures, it can be noticed that the

proposed method is characterised approximately by the same convergence rate as

for the non-linear least squares for both the maximum projected leaves area and the

growth rate. However, Kalman filtering is much faster as it is an iterative method.

It takes 0.012 𝑠 for the simulation by using Kalman filtering with the parameters

described earlier. For non-linear least squares execution time is 29.827 𝑠.

Figure 3-11: True, estimated by Kalman filter and by the non-linear least square
dynamics of growth rate changing in time. Modeling was made with the assumption
that 𝑄 = 0.

Next, this method was evaluated assuming the following state variances: 𝛿2𝜇 =

0.01 and 𝛿2𝑆𝑚𝑎𝑥
= 10. Fig. 3-13 presents the estimation of the projected leaves area

based on the filtered estimations of 𝜇 and 𝑆𝑚𝑎𝑥. The results of the reconstructed

𝜇 and 𝑆𝑚𝑎𝑥 are shown in Fig. 3-14 and Fig. 3-15. As it was discussed previously

in this section, 𝜇 is better reconstructed on the initial stage of growth (first half

of simulated data) while 𝑆𝑚𝑎𝑥 is better estimated on a later stage of growth (see

Fig. 3-14 and Fig. 3-15).
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Figure 3-12: True, estimated by Kalman filter and by the non-linear least square
dynamics of maximum projected leaves area changing in time. Modeling was made
with the assumption that 𝑄 = 0.

Figure 3-13: Projected leaves area: true, measurements and filtration. Modelling
was made with the assumption that 𝑄 ̸= 0.

78



Chapter 3. Hybrid combination of methods for modeling of plant growth in controlled
environments 3.2. Kalman filter for simple models

Figure 3-14: Simulated and estimated by Kalman filter dynamics of growth rate.
Modeling was made with the assumption that 𝑄 ̸= 0.

Figure 3-15: Simulated and estimated by Kalman filter dynamics of maximum pro-
jected leaves area. Modeling is made with the assumption that 𝑄 ̸= 0.
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Figure 3-16: Plants growth rate dynamics estimation from the experimental data is
shown for each plant (number 1-9, except for the 5-th). The 2-nd plant showed the
maximum growth rate which matches the experimental data.

Assessment of plants growth dynamics based on collected data. For evalu-

ating the proposed method on the experimental data the collected dataset on lettuce

growth described in Section 3.1 was used. From the Fig. 3-7b it can be noticed that

the obtained data represent the initial stage of plant growth. It means that based

on the findings discussed previously it is feasible to estimate the growth rate for

this period. The results of plant growth rate estimation (all plants except for the

5-th as it was an outlier as its germination period was twice longer) are presented

in Fig. 3-16. According to Fig. 3-7b the visible growth of almost all plants started

approximately from the 10-th day; the same is observed in Fig. 3-16. Also, as can

be seen from Fig. 3-16 the 2-nd, the 3-rd, and the 9-th plants (decreasing order)

have the maximum growth rate, which correctly reflect the experimental growth

dynamics that is shown in Fig. 3-7b.

Conclusions

In this section, the Extended Kalman filter approach was adapted and implemented

for the evaluation of the plants’ growth dynamics. Validation of the proposed

method was performed on the simulated and obtained on the custom made experi-

mental setup. The results of the methods’ validation showed its high accuracy and
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potential for the application in precision agriculture and solving the optimization

tasks. In particular, the benefit of the proposed method is the high computational

efficiency which allows its usage on embedded devices. Also, this method is model-

based which means that it is possible to include the additional parameters into the

model and evaluate the effect of them on the growth dynamics.

3.3 Instance segmentation for high throughput plant

phenotyping systems

Dataset annotation

Instance segmentation algorithms allows to receive more detailed information that

describes plant growth dynamics. In particular, using the series of images of plants

and performing instance segmentation of leaves for each image it is possible to

assess projected area of each leaf, thus to reconstruct and model each leaf growth

dynamics. For demonstration of this approach the same dataset (as for Kalman

filtering) of top-down 2D images of lettuce growth was used (see description in

the Section 3.1). The part of the raw dataset was labelled. This labelled dataset is

suitable for testing semantic and instance segmentation algorithms based on FCNNs

for phenotype and also gives possibilities to test other types of computer vision

algorithms. This annotated dataset is publicly available: https://github.com/

DmitriiShadrin/PlantGrowthDynamics. The dataset includes 4815 raw lettuce

images for the period of 11 days growth after germination and 75 manually annotated

image data. All these data have a time reference that gives the possibility to estimate

plant growth dynamics. For these images, leaf masks and leaf bounding boxes were

extracted manually by using online labelling tool LabelMe [Russell et al., 2008].

Figure 3-17 shows examples of images from the dataset with the corresponding leaf

masks (bounding boxes were included in the dataset, but are not represented in Fig.

3-17 as the image will be confusing). In total, 356 leaf masks and bounding boxes

were obtained. The dataset contains both: relatively simple annotated images - 62

with three instances, 47 with four instances, and complicated - eight images with
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rich structure and 10 instances. By now 75 images were annotated as it was enough

for training the instance segmentation model, but the amount of annotated images

will be increased and added to the current publicly available dataset. A similar

benchmark dataset was collected and annotated by [Scharr et al., 2016], and is very

popular for conducting challenges, where competitors try to achieve the highest IoU

(Intersection over Union) of different CV algorithms (in majority FCNNs). The

annotated dataset on lettuce proposed in this section, compared to existing has one

big advantage: the sequences of images with time reference ones with allow dynamics

modeling after performing segmentation tasks.

Figure 3-17: Examples of lettuce images at different growth stages with correspond-
ing leaf masks; the pictures are taken from manually annotated data set.

Image processing

The estimation of individual leaf growth dynamics requires separation between leaf

instances on the image. In order to solve this task it was used the Deep Coloring

method [Kulikov et al., 2018]. Deep Coloring reduces instance segmentation to the

task of pixel classification (coloring). The latter task can be accomplished using

almost any of the recently developed deep convolutional architectures for semantic

segmentation. In this work, U-net as semantic segmentation backbone was used

[Ronneberger et al., 2015]. Simply speaking, this method enforces all pixels of the

same object to take the same color, while also enforcing pixels belonging to different

but adjacent object instances to take different colors. The example of output of this
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method (performance on the test images) is depicted in Fig. 3-18 (top). A simple

component analysis allows to extract individual leaves on the image.

To train an instance segmentation network, the annotated dataset described

above was used. The training set was split into two parts: training and test set, 65

and ten images respectively. The training set was augmented with random crops,

rotations, flips and scaling. Other training parameters were taken from [Kulikov

et al., 2018]. The instance segmentation accuracy, achieved on the test set was 0.74

symmetric best dice coefficient (SBD) [Scharr et al., 2016]. This score is slightly

worst than the score of this algotirhm on CVPPP A1 dataset, where the instance

segmentation method achieves 0.80 SBD [Kulikov et al., 2018].

The instance segmentation algorithm produces labels for instances independently

for each image and they may differ between sequential frames. In order to estimate

the leaf growth dynamics, a post-processing step had been implemented. The post-

processing includes tracking each label and making sure that each instance has the

same index for the whole sequence. For each sequential pair of labeled images the

linear assessment problem based on the inverted pairwise intersection over union

between instances was solved [Munkres, 1957]. Linear assessment provides us cor-

respondences between labels, the labels on the second frame are modified to match

the labels from the first frame. To make this procedure more stable, over-segmented

images were removed from each sequence.

Growth dynamics of projected leaves area was reconstructed according to the

already used model (see Eq. (3.2)). 𝑆𝑚𝑎𝑥 and 𝑆0 are constant and set to 100𝑐𝑚2

and 0.5𝑐𝑚2 respectively, 𝜇 is the estimated parameter [van Eeuwijk et al., 2018].

Overall, it was reconstructed the growth dynamics for each leaf of plants in the

dataset, described in Section 3.1 (lettuce) for the period of 11 days after germination.

For each image, the instance segmentation network was applied along with detailed

masks of individual leaves as shown in Fig. 3-18 (top). Each leaf instance was

tracked thought all time sequence providing information about its size in pixels. In

order to convert the size to real-world units, a calibration objects (red square of size

1 × 1𝑐𝑚) was used.

The observed growth dynamics is presented in Fig 3-18 (bottom), where the
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Figure 3-18: Results of dynamics reconstruction. Dotted lines depicted the fitted
growth model for third and fourth leaves, based on the predicted segmentation
masks that represent projected leaves area. Pictures above represents raw lettuce
images with segmented leaf instances masks by instance recognition; the images
approximately correspond to the graph time frame.
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Plant sample Growth rate of 3-rd leaf, 1/day Growth rate of 4-th leaf, 1/day
1 0.43 0.48
2 0.47 0.52
3 0.47 0.55
4 0.44 0.59
5 0.47 -
6 0.40 0.48
7 0.40 0.48
8 - -
9 0.43 0.67
mean ± std 0.438 ± 0.027 0.538 ± 0.066

Table 3.2: Growth rate estimation.

exponential growth of third and fourth leaves can be observed. The First and

second leaves that appeared in the beginning grew up to 1𝑐𝑚2 and then their size

remained stable for all investigated plants. This is happened due to physiological

reasons. For almost all plants similar and feasible values of growth rate 𝜇 were

received. Assessed growth rates are presented in Table 3.2. It was not possible

to calculate such dynamics for the eighth lettuce sample due to its side location

relative to the camera. For the fifth lettuce sample, the fourth leaf not appear till

the 11-th day. It is important to notice that results of modeling (assessment of leaves

growth rate) are in correspondence with the results obtained by Kalman filtering

(see Section 3.2).

Conclusions

A novel high-throughput method for analysis and prediction of plant growth dy-

namics by a combination of modern computer vision and modelling techniques was

developed and presented. This methodology was tested on the obtained datasets.

The results of the tests show the possibility to make detailed reconstruction of dy-

namics of plant growth. In particular, the advantage of the proposed methodology

that it is possible not only to perform high-throughput plant phenotyping, which

is commonly used for quantitatively non-invasive monitoring of plant organs, but

also for the assessment of the dynamics of plants organs growth. Such CV systems

are very important for plant studies. One of the limitations of this method is that
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method is based on the computationally complex FCNN. The other limitation of the

methodology is that for a more complex background much larger annotated dataset

than described above, is needed (starting from hundreds of images with thousands

of instances) for achieving reasonable accuracy (IoU or SDB). However, this problem

can be overcome by using the pre-trained FCNNs. Such FCNNs can be fine-tuned,

which allows to reduce the amount of trained data. This approach can provide a

background for development of systems for automatic optimization of plant growth

in artificial conditions based real-time detailed plant growth dynamics. In addition,

an annotated dataset that describes 11 days of growth under controlled conditions

was obtained.

3.4 Dynamic mode decomposition for complex models

Development of the model

For calculation experiments, the modified DMD algorithm was used [Schmid, 2010].

This algorithm was originally designed to solve the problem of extracting features

of dynamic systems (specifically of flow fields) based only on its snapshots. Series of

images of plants, or features from these images and growth conditions parameters

can be represented like snapshots and the DMD algorithm can be applied for them.

Suppose that we have a series of snapshots 𝑥𝑖 = 𝑥(𝑡𝑖) ∈ R𝑁 , 𝑖 = 1, . . . , 𝑀 , over

time periods 𝑡1, 𝑡2, . . . , 𝑡𝑀 , where 𝑡𝑖+1 = 𝑡𝑖 + ∆𝑡. Also, suppose that there is a

linear operator 𝐴 that approximates the evolution of the system: 𝑥𝑖+1 ≈ 𝐴𝑥𝑖, 𝑖 =

1, . . . ,𝑀 − 1. If we denote 𝑌 =
[︁
𝑥2 . . . 𝑥𝑀

]︁
and 𝑋 =

[︁
𝑥1 . . . 𝑥𝑀−1

]︁
, then the

previous result can be written as 𝑌 ≈ 𝐴𝑋.

The goal of the DMD algorithm is to find the eigen decomposition of such oper-

ator 𝐴, which in turn can be rewritten as 𝐴 = argmin
𝐴∈R𝑁×𝑁

‖𝑌 − 𝐴𝑋‖2𝐹 . Later, a more

generalised definition of DMD was given that allows to use it with data collected

at irregular timings: 𝐴 = 𝑌 𝑋+, where + is the Moore-Penrose pseudoinverse [Tu

et al., 2013].

The actual version of the algorithm incorporates an additional control which is

discussed in [Proctor et al., 2016]. The original matrix 𝑋 is replaced with �̃� =
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⎡⎣𝑋
𝑈

⎤⎦ ∈ R(𝑁+𝐾)×𝑀 , where 𝑈 ∈ R𝐾×𝑀 is a matrix of 𝐾 control variables measured

at 𝑁 timesteps. The matrix 𝐴 now has the size 𝑁 × (𝑁 + 𝐾) and the problem

transforms to the search of 𝐴 = argmin
𝐴∈R𝑁×(𝑁+𝐾)

‖𝑌 − 𝐴�̃�‖2𝐹 = 𝑌 �̃�+.

Due to linearity of DMD, the non-linear dependence of the data must be created

because processes in plants are non-linear. The Fishman and Genard approach

was used as a basis to create features, that could describe non-linear dynamics of

plant growth [Fishman and Génard, 1998]. In the original paper, a fruit, namely a

peach, was investigated. However, this approach can be extended to processes, that

describe the entire dynamics of plant growth. First, it was considered the equation

for modelling water balance in the plant. The rate of change of amount of water 𝑤

in the plant is the algebraic difference of water inflow from substrate 𝑈𝑖𝑛 and the

transpiration from surface of the plant 𝑇𝑝 [Fishman and Génard, 1998]:

𝑑𝑤

𝑑𝑡
= 𝑈𝑖𝑛 − 𝑇𝑝. (3.16)

Transpiration 𝑇𝑝 is assumed to be proportional to the surface area of plant 𝑆𝑝

and to the difference between the relative humidity of the air-filled space within the

plant 𝐻𝑝 and the ambient air 𝐻𝑓 :

𝑇𝑝 = 𝛼𝑆𝑝𝜌(𝐻𝑓 −𝐻𝑝), (3.17)

where 𝜌 is the permeation coefficient of the plant surface to water vapour. Coefficient

𝛼 is defined as following:

𝛼 = 𝑀𝑊𝑃 */𝑅𝑇, (3.18)

where 𝑀𝑊 is the molecular mass of water, 𝑃 * is the saturation vapour pressure, 𝑅

is the gas constant and 𝑇 is the absolute temperature.

Plant surface area 𝑆𝑝 is assumed to be proportional to the plant mass 𝑚 (except

roots):

𝑆𝑝 = 𝛽𝑚𝜃. (3.19)
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Here 𝛽 and 𝜃 are an empirical constants. It should be noticed that the 𝑆𝑝 values are

mostly defined by leaves area of plant. Investigation of dependency between leaves

area and the biomass in the Eq. (3.19) is needed to assess parameters 𝛽 and 𝜃 can

be performed by using data-driven approaches. This issues, will be discussed in the

next sections and chapters.

The inflow of fertilizer 𝑈𝑖𝑛 is proportional to differences between chemical po-

tential of water in plant Φ𝑝 and chemical potential of nutrients in substrate Φ𝑠:

𝑈𝑖𝑛 = 𝛾(Φ𝑝 − Φ𝑠), (3.20)

where 𝛾 is empirical coefficient. The chemical potential of water in the plant Φ𝑝 is

the difference between turgor pressure 𝑃𝑝 and osmiotic pressure 𝜋𝑝:

Φ𝑝 = 𝑃𝑝 − 𝜋𝑝. (3.21)

The osmotic pressure is:

𝜋𝑝 = 𝑅𝑇𝑛𝑠/𝑤, (3.22)

where 𝑅 is the gas constant, 𝑇 is the temperature, 𝑛𝑠 is the number of moles of

osmotically active solution, 𝑤 is the water volume. To model turgor pressure 𝑃𝑝, it

is necessary to model the plastic deformations of the leaves. The chemical potential

of water in a substrate Φ𝑠 is commonly measured in the experiments.

The state vector for DMD method was constructed based on theoretical findings

discussed above. First, the following parameters were included into the state vector:

Humidity, temperature of ambient air, temperature of nutrient solution, electrical

conductivity (EC), recycling flow rate and 𝑒−𝑝𝐻 (based on Eq. (3.22), where 𝜋𝑝 de-

pends on nutrient concentration 𝑛𝑠, which is an exponent of -pH). These parameters

are directly measured by sensors. The light duty cycle was also added to the state

vector. The moving average over 3 samples to its values was applied. This was done

for taking into account the fact that there is some delay in plant reaction to the

illumination.

The state vector was supplemented by non-linear parameters. Taking into ac-
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count the transpiration equation (3.17), the following parameter was constructed:

𝐹1 = 𝑆(𝑇 − 𝑇𝑤𝑒𝑡)/𝑇, (3.23)

where it was assumed that humidity 𝐻 ≈ 𝑇 − 𝑇𝑤𝑒𝑡 and 1/𝑇 was taken from 𝛼

coefficient. T is the ambient temperature and 𝑇𝑤𝑒𝑡 is the temperature of fertilizer.

Another set of parameters are related to inflow of fertilizer and approximates osmotic

pressure 𝜋𝑝 (Eq. 3.20):

𝐹2 = 𝑒−𝑝𝐻𝑇𝑤𝑒𝑡/𝑆
1.1,

𝐹3 = 𝑒−𝑝𝐻𝑇𝑤𝑒𝑡/𝑆
1.2,

(3.24)

where 𝑒−𝑝𝐻 represents the concentrations of nutrients 𝑛𝑠, 𝑇𝑤𝑒𝑡 is the temperature of

fertilizer. The total volume of the water in plant 𝑤 is assumed to be proportional

𝑆1.1 or 𝑆1.2. The tugor pressure 𝑃𝑝 is connected to plasticity effects. The only

possible way to take it into account (using the measured parameters) is to include

inverses of all parameters (except for light duty cycle).

In total, 19 parameters were proposed to construct the state vector. Parameters

selection procedure for the state vector will be performed numerically, by comparing

the prediction accuracy based on the selected subset of parameters. The abbrevia-

tions of these parameters are listed in Table 3.3.

Table 3.3: Some control parameters and their definitions.

Variable Description
𝑝𝐻 pH - acidity of an aqueous solution
𝐻 Relative humidity
𝑇 Temperature of ambient air
𝑇𝑤𝑒𝑡 Temperature of nutrient solution
𝐸𝐶 Electrical conductivity of feeding solution
𝐹 Recycling flow rate
𝐿 Light duty cycle with applied moving average
𝐹1 𝑆(𝑇 − 𝑇𝑤𝑒𝑡)/𝑇
𝐹2 𝑒−𝑝𝐻𝑇𝑤𝑒𝑡/𝑆

1.1

𝐹3 𝑒−𝑝𝐻𝑇𝑤𝑒𝑡/𝑆
1.2
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Searching for optimal subset of parameters

Next, the optimal subset of controlled parameters that could help to learn the dy-

namics of the system by using of DMD should be defined. The dataset that describes

tomato growth dynamics will be used for modeling (see Section 3.1). In the Fig.

3-4 it can be noticed that after approximately 400 timesteps (which corresponds

to approximately 12 days of observations) there are noticeable oscillations of the

leaves area projection and its significant growth compared to the previous values.

As it was discussed before, these oscillations happen due to the plant physiology, in

particular, due to the diurnal processes occurring in plants. Thus, it makes sense

to work with two datasets: the first includes 400 timesteps and the second includes

392. In addition, it was discovered that modeling the growth dynamics using the

same parameters for the entire dataset, results in worse accuracy compared to the

option when the dataset is split into two parts. For each dataset, the DMD algo-

rithm with control will be applied to the values for the first three plants (train set)

and predictions will be made for the fourth plant’s values (test set) given the vector

at the first timestep and the matrix 𝐴 obtained from training procedure of DMD.

Different combinations of parameters will be used for control. The optimal choice of

set of parameters will be the combination that gives the smallest root mean squared

error (3.25):

𝜀𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡∑︁
𝑖=1

‖𝑥𝑖 − 𝑥𝑝𝑟𝑒𝑑
𝑖 ‖2. (3.25)

The smallest error was obtained with the following parameters: 𝐻, 𝑇 , 𝑇𝑤𝑒𝑡, 𝐿,

𝐹1, 𝐹2, 𝑒−𝑝𝐻 , 1/𝐹1, 1/𝐹2, 1/𝐹3 for the first part of the split dataset and 𝑇 , 𝑇𝑤𝑒𝑡,

𝐿, 1/𝐹 and 1/𝐹3 for the second one. It should be noticed that the majority of the

parameters are the same for each part of the split dataset. However, the weights

for these parameters are different in each case and the impact of each parameter

on the plant growth dynamics has a different effect. By using the reconstructed

matrix 𝐴 and the initial vector predictions of the growth dynamics (projected leaves

area) for 400 steps ahead (12 days) with acceptable accuracy were obtained. Such

big prediction horizon opens wide possibilities for optimizing of the system. During
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the experiments it was noticed that it is even possible to reconstruct the diurnal

oscillations.

Figure 3-19: Relative errors for DMD prediction with control applied to the first
part of the data.

Figure 3-20: Prediction of the projected leaves area for DMD with control applied
to the first part of the data.

Results of modeling by using DMD

Fig. 3-19 shows the relative error of DMD prediction of projected leaves area for

the first part of the data. This relative error decreases in time and has fluctuations
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Figure 3-21: Relative errors for DMD prediction with control applied to the second
part of the data.

Figure 3-22: Prediction of projected leaves area for DMD with control applied to
the second part of the data
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around 10% that means reasonable accuracy. The average relative error for the

whole time interval for the first part of the modelled data is 15%. Fig. 3-20 presents

the originally measured projected leaves area of tomato growth over time and the

modelled projected leaves area for the first part of the data. Fig. 3-22 demonstrates

the measured and modelled projected leaves area for the second part of the data. The

fluctuations of projection are observed in measurements and in the reconstructed

model. Relative error (see Fig. 3-21) also decreases in time to its minimum of

1.1 · 10−3% and then increases. The spike in Fig. 3-22 which leads to the spike

in latter part of Fig. 3-21 happens due to the rapid and dramatic decrease in the

pH value during the experiment. The average relative error for the whole time

interval of the second part of the modelled data is 16%. Also, 4-fold cross-validation

was performed for the data obtained from four plants. For the first part of split

dataset the cross-validation error (as an average relative error) has the mean 23.9%

and the variance 8.8%. For the second part of the split dataset the mean is 18.5%

and the variance 8.6%. The result of the variance of the error is not completely

representative for the data and the method used since it was applied only to the 4

folds cross-validation and the accuracy increases over the time on average. Overall,

the main trend and oscillations can be accurately predicted using the proposed

approach.

Conclusions

The promising approach for modeling of the plant growth dynamics using the data

obtained from artificial growth system and parameters was demonstrated. This

method was derived from growth model and data-driven method, namely, dynamic

mode decomposition. The achieved results on reconstructing the plant growth dy-

namics and assessment of the system dynamics ensured its practical feasibility, ro-

bustness, and prediction accuracy proved by the average relative error that is 15%.

Such a method can be widely and easily applied to other types of plants, because in

the proposed method specifics of plant growth dynamics are taken into account by

DMD algorithm that use as the input parameters derived from general equations.

This means that it is not necessary to adopt equations and coefficients for each type
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of plant for using the proposed approach.

3.5 Merging 2D/3D computer vision techniques for

biomass growth assessment

As it was discussed previously, one of the main objective function for optimization

of plant growth dynamics is biomass. However, it is very complicated to obtain

direct measurements of plant biomass without interruption of growth process. It

is also time consuming to do direct measurements of plant biomass. One of the

possible ways to perform biomass assessment and prediction is usage of data-driven

non-invasive image based techniques. Based on these approaches it will be possible

to obtain relevant information about plant biomass with high time resolution which

in turn will allow to perform fine control of objective function (biomass) and to

solve optimization problems for growing plants in greenhouses. In this section it

will be described a generic approach for predicting plant biomass growth dynamics

using data-driven approaches. This approach is based on statistical analysis of

the dependency between actual leaves area and biomass without performing multi

parameter modelling of each particular plant. In the following modeling, sequences

of 2D and 3D images (clouds of points) will be used along with associated image

analysis. This allows merging benefits of both techniques: 2D and 3D imaging. In

this section tomato growth dynamics will be investigated. Two datasets will be used:

(1) dataset of sequence of 2D images of growing dwarf tomatoes and environmental

parameter, that was used for DMD modeling (see Section 3.1 and Section 3.4),

(2) dataset of 3D images of dwarf tomatoes on different stages of growth (cloud of

points) for biomass estimation (see Section 3.1).

For modeling the plant biomass growth dynamics, the following key steps were

identified:

• Collection of 2D and 3D data describing plant growth dynamics.

• Derivation of dependencies between the actual leaves area and biomass of the

investigated plants based on 3D images (cloud of points).
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• Modeling and prediction of projected leaves area based on 2D images and

different modeling techniques.

• Reconstruction and prediction of the biomass based on derived dependencies

between actual leaves area and biomass and predicted projected leaves area.

Following the methodology, for further reconstruction of the biomass using pre-

dicted projected leaves area it is important to find dependency between them. It

should be noted that the term biomass is used in the meaning of plants’ volume,

because the total mass of the plant is determined mainly by water content, which

in turn form the volume of the plant. Thus, knowledge about plant volume allows

easily to reconstruct biomass. In Section 3.4 it was mentioned that the coefficients

of Eq.(3.19) are identified empirically. One of the approaches is to make direct mea-

surements of the biomass and leaves area, but during these, it is necessary to disturb

the plant. Another approach that is proposed and will be used is taking 2D and 3D

images, of plant during its growth. In this case the disturbing of plant is minimal.

First, the Eq.(3.19) was rewritten in the form Eq. (3.26):

𝑚 = 𝛼𝑆𝛾, (3.26)

where according to Eq.(3.19) 𝛼 = 1
𝛽

1
𝜃 and 𝛾 = 1

𝜃
. Using the dataset described above,

volume of plants leaves and corresponding actual leaves area were calculated using

3D clouds of points. In Fig. 3-23 the calculations of actual leaves area and volumes

as well as the estimated parameters of Eq. (3.26) are shown for three plants (out of 18

plants in the experiment for which 3D measurements were obtained). In particular,

these three plants were chosen for modeling because 3D data were collected very

frequently, every day. For other plants in the experiment 3D data obtained once per

2-3 days. The summary of the obtained parameters Eq. (3.26) is presented in Table

3.4.

From Table 3.4 it can be noticed that estimated parameters for two similar sorts

of dwarf tomatoes have close values. This means that it is possible to use them for

modeling similar types of dwarf tomatoes. As it was discussed previously (see Section

3.1 and Section 3.4), a large dataset of 2D sequences of images of MicroTina dwarf
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Table 3.4: Summary of the obtained parameters for actual leaves area and biomass
dependency.

Sort 𝛼 𝛾
Bonsai micro 0.0019 1.72
Bonsai micro 0.0022 1.69
Bonsai 0.0020 1.67

(a)

(b)

Figure 3-23: The relationships between leaves volume and actual actual leaves area
for (a) Bonsai micro (two selected plants), (b) Bonsai (one selected plant) dwarf
tomato sort.
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tomatoes growth was created. MicroTina dwarf tomatoes have a similar structure

as the Bonsai and Bonsai micro tomato sorts (only one difference is that it growth

slower and finally it is more compact). Thus, it is possible to use the obtained

coefficients for modeling and predicting the MicroTina tomatoes biomass based on

2D images. For all 4 tomato plants growth parameters 𝜇 and 𝑆𝑚𝑎𝑥 of the growth

model Eq. (3.2) were estimated based on the trend of projected leaves area growth

calculated from the set of 2D images. The results are presented in the Table 3.5

Table 3.5: Growth parameters estimation of the Verhulst model for four dwarf
tomato plants

1 2 3 4
𝜇, 1/day 0.2806 0.2757 0.2705 0.2715
𝑆𝑚𝑎𝑥, 𝑐𝑚2 191.3 110.4 120.3 154.5

From the Table 3.5 it can be noticed that estimations of growth rate for four

plants is similar. This means good estimation of these parameters. For the tomatoes,

data were obtained on the initial stage of vegetation period. Such precise assessment

of the growth rate was observed and explained while modeling the initial stage of

growth dynamics of lettuce in the Section 3.2. Figure 3-24 shows the Verhulst model

fitting Eq. (3.2) applied to one of four tomato plants. The average relative error is

13%.

Using the fitted model (see Fig. 3-25a) it is possible to assess and to predict

biomass (volume) (see Fig. 3-25b) based on 𝛼 and 𝛾 parameters obtained previ-

ously. It should be noted that any suitable and precise method for modeling and

predicting projected leaves area growth can be used as a basis for further biomass as-

sessment. For example, Kalman filtering (see Section 3.2) or DMD (see Section 3.4)

that rely on both model-based and data-driven techniques or pure data-driven ap-

proaches based on recurrent neural networks and fully convolutional neural networks

(see Section 4) have already shown their accuracy and robustness for plant growth

dynamics prediction.

Besides obtaining dependencies between biomass and leaves area using collected

3D data for biomass prediction it is also possible to reconstruct and investigate some

physiological processes in plants. After plotting and approximating the trend of how
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Figure 3-24: Example of Verhulst model fitting to experimental data on tomatoes
growth.

(a) (b)

Figure 3-25: Biomass (volume) prediction using predicted projected leaves area and
obtained actual leaves area/biomass dependencies
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the ratio between leaves area and biomass changes in time for several plants (power

model) it was observed effect that this ratio decreases and tends to 1 (see Fig. 3-26).

The standard deviations of the fitted models are 0.55 and 1.3 respectively. Similar

findings were observed using model-based approaches in [Weraduwage et al., 2015].

(a)

(b)

Figure 3-26: Dynamics of the ratio of actual leaves area/volume changing in time
for (a) Bonsai micro and (b) Bonsai tomato sorts.
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Conclusions

In this section, the workflow and the possibilities of 2D/3D based approaches for

non-invasive and robust plant biomass growth dynamics prediction were shown.

One of the advantages of this method is that it is necessary to obtain 3D data only

once for the particular type of plant. Then predictions of biomass can be done

using only 2D images and this in turn opens wide possibilities for solving real-time

biomass growth optimization problems in greenhouses. One of the limitations of this

method is that it gives accurate results only for plants with a simple structure of

for plants at the initial stage of growth when leaves are not overlapping. However,

during the later stages of growth, it can be overcome by introducing the set of 2D

cameras that have different angles of view on the plants. The other limitation is

that there is a difference between the actual leaves area measured by 3D camera and

projected leaves area, measured by 2D camera, but at the initial stage of growth this

difference is insignificant. The benefit of the proposed method is that 2D cameras are

cheap and easy to use. All these will give affordable actual information to farmers

about the current and future status of plant growth dynamics. A combination of

2D and 3D techniques, as it was shown, also gives ample opportunities to perform

a non-invasive investigation of physiological processes in plants.

3.6 Conclusions

In this chapter, the developed experimental setups for the collection of the relevant

data was presented. Hybrid modeling approaches that allow to describe and pre-

dict plant growth dynamics were evaluated. Using the experimental setups several

comprehensive and novel datasets that describe plant growth dynamics (2D and 3D

images) and growth conditions (data from sensors) in artificial environments were

obtained. These datasets were used for testing the following proposed methods:

• Extended Kalman filtering. Growth parameters such as maximum projected

leaves area and growth rate were predicted on the modeled and experimental

data. Computer vision methods were used for calculating projected leaves

area. The main benefit of this method is the high computational efficiency
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which allows its implementation in embedded devices. Also, there is a wide

possibility to include additional parameters into a state vector and to evaluate

the effect of them on growth dynamics.

• Instance segmentation. It was shown experimentally that using instance seg-

mentation in couple with a simple growth model allows to predict the growth

rate of each leaf of the plant, enabling the real-time detailed reconstruction of

growth dynamics.

• Dynamic mode decomposition. By using the features derived from growth

model that is based on differential equations along with dynamic mode de-

composition, it was shown that it is possible to perform accurate prediction of

plant growth dynamics. The main benefit of this method is that it is accurate,

includes physical principles in modeling procedures and small amount of data

points are needed to train DMD algorithm.

• The workflow for biomass prediction based on the merging of 2D and 3D ap-

proaches and simple models was shown and evaluated. Using these approaches,

the dependence between actual leaves area and biomass was estimated and the

prediction of biomass based on 2D images was performed.

Overall, the proposed methods showed good trade-off between complexity, uni-

versality and accuracy for plant growth dynamics assessment and prediction.
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Chapter 4

Data-driven enhancement for plant

growth modeling in controlled

environments

4.1 Recurrent neural networks and computer vision

for plant growth dynamics prediction

Recent advances in computational methods, machine learning and increase of com-

putational power, together with the availability of sensors, enabled the collection

and processing of enormous amounts of data [Mois et al., 2017, Davies and Clinch,

2017a]. This progress led to the development of data-driven modeling approaches,

e.g. ANNs, possessing huge expressive power for high-dimensional data description

and generalization for precision agriculture.

In the following section, the RNNs for prediction of the plant growth dynamics

will be used. The RNN is a class of ANN where the nodes contain the feedback

response and enable the storage of information about their internal state. One of

RNNs attractive features is that they are potentially able to link previous informa-

tion with the current state. The RNN can process the data that are represented as

time dependent sequences by using the internal state information. A typical RNN

may have a problem with the processing of long-term dependencies. To overcome
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this problem the Long Short-Term Memory (LSTM) NNs were introduced as a spe-

cial architecture of RNN capable of learning long-term dependencies [Hochreiter and

Schmidhuber, 1997]. The key element of LSTM is a cell state which can be changed

in the process of training. This feature is important for modeling the plant growth

dynamics since the future dynamics of the plant growth is in strong relation with the

previous states passed long time before. Recently, many applications for the LSTM

NN architecture have appeared. [Stollenga et al., 2015]. However, the application

of RNN (LSTM or GRU) in precision agriculture for crop yield prediction or plant

growth dynamics description based on environmental growth conditions is a novel

research direction [Chlingaryan et al., 2018]. The ubiquitous and efficient applica-

tion of these models is essential. For tackling this problem, a low-power sensing

solution able to run the models on board and functioning in a distributed manner

was proposed and tested.

To perform plant growth modeling and dynamics prediction, an experimental

setup based on the hydroponic approach allowing simultaneous plants growth in

different conditions (nutrient solutions) was designed. This setup was equipped with

an automatic image acquisition system and controlled LED illumination. Using this

experimental setup, one month experiment was conducted. During this experiment,

the sequences of raw images of plants growth were collected in fixed time intervals

under different conditions. Using similar approach, discussed in the Section 3.2

projected leaves area were calculated simultaneously based on the obtained images.

The data on the projected leaves area were used for training the NNs and other

machine learning algorithms.

Experimental setup and measuring system

The designed and assembled experimental setup is shown in Fig. 4-1. In this

system, it is possible to grow up to 54 small plants (e.g. dwarf tomatoes), and

to automatically monitor their growth by cameras. In the experiment 48 dwarf

tomatoes MicroTina were grown [Scott et al., 2000]. The tray for growing plants

was separated into 6 isolated sections. In each of them, the plants were fed using

different feeding solutions. Each of the sections contained 8 plants. They were fed
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Figure 4-1: Experimental setup: growing (bottom) and data collection system (see
video cameras on top).

manually and were grown in a 0.65-liter rock wool block. The tray was covered by

the foam plastic so as to facilitate the post-processing images. The imaging system

contained 6 high resolution cameras Logitech c920 mounted above each section on a

regulated platform. The artificial illumination of the plants was provided with 150

Watt Neususs LED. Additional white LED illumination was added and switched on

while the cameras took pictures. The automatically controlled day/night light duty

cycle was 17/7 hours. It was slightly decreased by the end of the experiment to 15/9

hours due to plant physiology reasons.

At the beginning of the experiment, 70 seeds of MicroTina were germinated in

a small rock wool cartridge in a separate tray under LED light with a 17-hour duty

cycle (from 1 a.m. to 6 p.m.) at a 0.6 m. distance. The commercial nutrient solution

in the amount of 1.3 𝑙 was used for germination of all seeds (Vostex concentration: 0.5

𝑚𝑙/𝑙 of water). A special type of solution for each section was prepared. There were

five feeding solutions that contained the base feeding solution which is the output

of the filtering system used in life support systems. To this “Base” solution special

additives (P, K, Ca, Mg, Microelements) were added. The other one is the reference

solution known as the “Hoagland” nutrient solution [Hoagland et al., 1950]. Then

48 of 70 seeds that had already been propagated, were put into the experimental

setup. Each rock wool block from a particular section was watered with 0.5 𝑙 of
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Figure 4-2: Nutrient solutions properties: pH and EC. Properties were measured for
each type of nutrient solutions that were prepared four times during the experiment.

a solution prepared for a section, respectively (8 blocks-4 𝑙 of each solution were

initially used). The experiment was conducted slightly longer than one month; the

solutions, therefore, were prepared four times. Properties, such as pH and electrical

conductivity (EC) of the prepared nutrient solutions, are presented in Fig. 4-2. EC

and pH were measured with ±0.5 𝜇Sm and ±0.005 accuracies respectively. It is

essential to prepare solutions with the same EC for ensuring similar conditions in

each section of the plant growth. Deviations of the pH level are not crucial, since

for each type of solution it should lie within a certain range. Every day at around

15:00 each plant was fed with 20 𝑚𝑙 of nutrient solution.

Image data acquisition and elaboration

During this experiment images of each section with plants were automatically taken

and recorded every 30 minutes. In total, 5514 raw images with a strict time depen-

dency were collected. Examples of raw images are shown in the Fig. 4-3.
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Figure 4-3: Example of top-down images obtained in the experiment. On the left:
tomatoes on the 5-th day after germination. On the right: tomatoes on the 10-th
day after germination

Prior to starting the experiment, cameras and the algorithm for projected leaves

area calculation were calibrated. For this purpose, from the tomato leaf, it was cut

out the part of the leaf of a certain area (0.5, 1, and 2 𝑐𝑚2 leaf areas were tried out).

Then, the projected leaves area was recalculated relatively to the label with a known

area (red square with a known area) and set up the algorithm and lighting, trying

to minimize the error in determining the projected leaves area. A similar calibration

procedure was also performed for different parts of the camera field of view. During

the main experiment, the same illumination as in the calibration procedure was used.

The leaves area of the tomatoes was not measured directly during the experiment,

but several control checks of the algorithm and the camera were carried out. Due

to the fact that during these checks it is necessary to stop the experiment for about

5 minutes, these checks were not done frequently though. During checking, a part

of leaf with manually measured area was placed in the camera field of view. Then

the reference projected leaves area was estimated by taking two consecutive pictures

of only tomatoes and tomatoes with the reference. Then the projected leaves area

obtained from one picture with the reference was subtracted from projected leaves

area obtained from another picture without the reference. As a result of these checks

at various stages of the experiment, no serious deviations in the operation of the
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(a)

(b)

Figure 4-4: (a) Example of projected leaves area calculation for dwarf tomato plants
that were grown in section with “Base+P” feeding. (b) Average projected leaves area
of plants in each growing section with corresponding feeding solution.
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system and an estimate of the surface area of the foliage were found.

Figure 4-4a shows an example of the projected leaves area calculations for each

tomato plant fed by the nutrient solution “Base + P”, the average variance of the

calculated projected leaves area is 5.4. Figure 4-4b shows the average projected

leaves area for the plants in each section, the average variance of the projected leaves

area is 21.2. From Fig. 4-4b it can be concluded which additive to the base solution

is the best. In this case phosphorus additive has the best effect among others. It is

highly important that it is possible to estimate the effect of different factors on plant

growth dynamics by using simple cameras. This opens a wide possibility to drive

plant growth process in the most useful direction. In totally, 44112 measurements

of the leaves area projection were obtained. It should be noted that the estimation

of the leaves area was done by measuring its maximum projection which, in general,

may not be equal to the real leaves area. However, these measurements also can give

us additional information about the hidden dynamics of the plant growth (such as

diurnal fluctuations in relative location of leaves discussed before). This additional

information can be included in the predictive model, making it more precise. As

there is no need to use classical statistical methods, it is possible to directly use

obtained data as an input to NN without estimation of errors.

Performance evaluation

Calculation experiments were done by using the data of 12 days and the LSTM

model was trained for each section. The dataset was split into the training and test

sets with 400 and 200 data points for each section, respectively.

The adam optimizer was used with hyper-parameters: 𝑙𝑟 = 0.001 (learning rate);

𝑏𝑒𝑡𝑎1 = 0.9 (exponential decay rate for the first moment); 𝑏𝑒𝑡𝑎2 = 0.999 (exponen-

tial decay rate for the second moment); 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 10−8. Hyper-parameters were

taken similar to the most commonly used in practice [Kingma and Ba, 2014]. The

mean squared error was used as a loss function. The hidden states were reset for

each epoch of training. The network was trained for 20 epochs which is a reasonable

amount for the stabilization of the loss function for most of the tested architectures

with one hidden layer of LSTM. Different amount of points from the previous steps
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for doing predictions and realized, that 3-4 data points set is enough for doing ac-

curate predictions even for a 3 hour horizon. The train/test dataset was created

in a following way. Each train/test data sample contained 13 points: a sequence

of 3 points (projected leaves area) from the previous three steps and a sequence of

10 points for the next 10 steps. Dataset preparation process also included transfor-

mation to stationary time series and scaling to (-1:1) range. In this work, it was

evaluated the root mean square error (RMSE) of predictions for time horizon from

30 minutes to 5 hours.

The results of leaves area (projection) prediction presented for three out of six

possible options (6 different solutions were in the experiment) are shown in Fig.

4-5a, Fig. 4-5b and Fig. 4-5c. Projected leaves area in Fig. 4-5a, Figure 4-5b

and Fig. 4-5c was taken as a sum of leaves area of all the plants in the section.

Diurnal fluctuations were also predicted by the trained model. This result allows us

to assess real leaves area by interpolation of the resulting curve on top. The results

of this prediction demonstrate good fit to the ground truth. RMSE in Fig. 4-6

shows how the error changes with respect to the size of step prediction. It is worth

noting that we have a good prediction even for the 5 hour prediction horizon. Since

RMSE varies from 9 to 14 for different solutions for 5 hour prediction horizon and

for the test dataset projected leaves area values varies from approximately 100 to

140, it was demonstrated that the obtained performance withstands the application

requirements even for the 5 hour horizon (maximum that is required): 5-10% of

relative error. For lower prediction horizon the relative error is less. There are

several types of responses of the plants to the stress: long-term and short-term.

The long-term response typically appears in up to several days. The short-term

response to the stress is typically much more damaging and has a time lag of up

to 5-6 hours [Roy, 2012, Acevedo et al., 1971]. Modeling the plant growth for this

period is vital as it allows for predicting and preventing the effects of stress on the

plant growth dynamics. It is expected that the accuracy of predictions capture the

diurnal fluctuations of the plant growth dynamics (relative leaves locations) as it is

one of the main and explicit short-term driving reason for changing of leaves area

projection. Thus, the amplitude of fluctuations can serve as the lowest bound of
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permissible prediction accuracy.

Comparative study on RNN architectures and methods

The ablation study was also performed with different amount of neurons and differ-

ent architectures. Some of results that are calculated for the section with “Base+P”

feeding solution presented in Table 4.1. As an example, for 2 LSTM units, there

are 62 trainable parameters and the RMSE is 3.25 and 9.01 for 30 minutes and 3

hours prediction horizon, respectively. For 10 LSTM units, there are 670 trainable

parameters (which is not acceptable as we have 400 data samples for training and

the common rule is that the number of estimated parameters should be less than the

train set size) and the RMSE is 3.19 and 8.72 for 30 minutes and 3 hours prediction

horizon, respectively. If 2 layers of LSTM NN will be used, then in the case of 2

LSTM units on each layer RMSE will be 3.27 and 9.2 for 30 minutes and 3 hours

prediction horizon, respectively, and in the case of 4 LSTM units on each layer the

RMSE is 3.2 and 9.0 for 30 minutes and 3 hours prediction horizon, respectively.

Based on these findings it was decided to use LSTM with 4 units as a compromise

between the amount of parameters (178), accuracy (RMSE is 3.18 and 8.6 for 30

minutes and 3 hours prediction horizon, respectively) and complexity.

Table 4.1: Performance of different architectures of LSTM neural networks.

Amount of Mean RMSE and std for 0.5/3 ℎ Amount of
LSTM neurons prediction horizon trainable p-rs

2 3.25 ± 0.022/9.01 ± 0.13 62
10 3.19 ± 0.012/ 8.72 ± 0.21 670
2/2 3.27 ± 0.002/9.2 ± 0.041 118
2/4 3.2 ± 0.004/8.9 ± 0.045 210
4 3.18 ± 0.014/8.6 ± 0.042 178

The performance of LSTM was also compared with the performance of 4 units

Gated Recurrent Unit (GRU) RNN with 146 parameters. The RMSE is 3.21 and

8.7 for 30 minutes and 3 hours prediction horizon, respectively, for GRU RNN. It

means that it is also possible to use other highly efficient types of RNNs. The

same amount of epochs, i.e. 20, was used for training the RNN with GRU neu-
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rons. The adam optimizer with the same parameters as for the LSTM RNN was

used. Also, data preparation procedure was implemented for GRU RNN, including

the transformation to the stationary time series, scaling, splitting to the train/test

dataset, was equal to the tested LSTM RNN. Non-recurrent approaches were also

tested. Prediction based on CNN over a window of data. 1D convolution with 16

filters and 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 = 2 was tested. Then max pooling and dense layers with

ReLU activation were put. The data prepossessing procedure was the same as for

the LSTM RNN, however, 50 epochs are required for convergence and loss stabi-

lization. The amount of parameters is 328 and accuracy (RMSE) is 3.71 and 9.7

for 30 minutes and 3 hours prediction horizon, respectively. This result is worse

than for the LSTM architecture used in this work and more parameters have to

be estimated. Increasing the amount of filters/layers leads to dramatic increase in

the number of training parameters, while small number of training parameters is

crucial for the tested dataset. For window size 10, 𝑅𝑀𝑆𝐸 = 4.61 (excellent result

over all window sizes and approx. 40% worse than for LSTM), for window size 2,

RMSE reached 7.91. Based on this research it was realized that LSTM showed its’

robustness compared to simpler approaches.

It was investigated how newly obtained data during the experiment could im-

prove the accuracy, and whether it is important to retrain the algorithm. For doing

this, tests with several splitting options of the dataset were conducted. Four hundred

data samples in the training set showed the acceptable accuracy of the predictions

and further increase of training samples does not significantly improve the accu-

racy. It means that it is not necessary to retrain the NN during this time period

for achieving more precise results, and this is highly important since the embedded

sensing system with AI onboard works only with the pre-trained NNs - there is no

need to periodically upload newly trained NN, which could lead to the decrease of

system autonomy.
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(a) (b)

(c) (d)

Figure 4-5: (a) Prediction of a projected leaves area for section that fed with
“Hoagland” nutrient solution. (b) Prediction of a projected leaves area for sec-
tion that fed with “Base + P” nutrient solution. (c) Prediction of a projected leaves
area for section that fed with “Base + Ca” nutrient solution. (d) Prediction of a
projected leaves area based on autoregression for section that fed with “Base + P”
nutrient solution. Each time step in (a), (b), (d) represents 30 minutes.

Figure 4-6: Dependence of root mean squared errors for prediction of projected
leaves area on the number of prediction steps for all 6 solutions.
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Implementation and performance evaluation of the developed ML models

in low-power embedded systems

Embedded low-power systems allow to construct distributed autonomous sensing

systems for precision agriculture. One of the attractive features of such systems in

precision agriculture is that it is easy to cover huge growth areas for sensing without

constructing complex communications because such systems not only receive sensing

information, but also process it on-board, sending only useful processed information.

The LSTM NN that showed the best performance in the Section 4.1 was first trained

on the desktop and then implemented by converting to the binary graph on the

embedded device. It was decided to use Raspberry Pi 3B in couple with the external

Graphical Processing Unit (GPU) Intel Movidius based on Myriad processor for

running NNs on it [Ionica and Gregg, 2015]a. The block diagram of the low-power

prototype is presented in Fig. 4-7. One of the limitations of the external GPU is

that it allows only to run trained NN architectures, it is impossible to train NNs on

board. However, external GPU allows to run trained state-of-the-art deep neural

networks (CNN, RNN), which could be enough to perform high-throughput plant

phenotype.

Performance evaluation of the proposed low-power embedded system was done.

First, LSTM was trained on the desktop, then this pre-trained model was deployed

on the developed low-power system. To obtain statistics on the average prediction

time and power consumption, the system was run iterative. Power consumption

and prediction time were assessed for each iteration. Each iteration means that

the system turns on, then receive the picture of plants, after that process it and

reconstructs projected leaves area, sends this information to the LSTM NN and

finally, the pre-trained NN make predictions. Overall this process takes 30 seconds

in average, 3 seconds of which needs to make predictions. As obtaining images

of plants and making predictions once every 30 minutes is enough, consuming 30

seconds for the whole prediction cycle is reasonable. The power bank with a capacity

2550 mAh was used during testing of the system. Mean power consumption was

measured for each run of the loop. Using this battery, system can perform 8663

continuous predictions before the battery was fully discharged. The mean power
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Figure 4-7: Block diagram of the proposed intelligent low-power sensing system for
precision agriculture.

consumption among all iterations was 2.23 𝑊 . Since predictions are made once per

30 min, this means that 48 predictions per day should be done. Thus, the capacity

of the tested battery is enough for system running up to six month.

Conclusions

In this section, the generic solution for predicting plant growth dynamics using

data-driven approach was presented. The implementation of the predictive system

(LSTM and CV) on the low-power embedded platform was also shown. Perfor-

mance evaluation of the proposed solution has demonstrated that the developed AI

architecture based on a recurrent neural network (RNN), in particular the Long-

Short Term Memory network (LSTM) is characterized by reasonable precision for

big horizon of prediction. The proposed solution can be used as an autonomous

tool for continuous plant growth dynamics monitoring for up to 180 days. Together

with an actuating capability, the proposed approach is promising for guarantying

easy-to-deploy, generic, and robust optimization tool for the precision agriculture.

The Tomato Growth dataset for training and testing procedures were collected by
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the designed and assembled experimental setup coupled with the automatic imaging

and processing system Shadrin et al. [2019c]. This dataset is publicly available for

the research community. It can be used in a variety of computer vision tasks for

the development and verification of new machine learning algorithms. For effectu-

ating the growing process on the experimental setup a hydroponic system approach

was used which ensures the optimal control of the plant nutrition and provides the

opportunity to "drive" the growth system in a desirable way.

4.2 Computer vision in industrial scale experiments

for growth dynamics assessment

The main idea of this experiment is to perform the industrial deployment of the

AI approaches discussed and tested before, in the small scale laboratory artificial

systems and to show their practical usefulness. This industrial experiment was

conducted in a Michurinsk greenhouse where set of sensor nodes including digital

cameras were deployed for collecting data describing plant growth dynamics at the

initial stage. Digital cameras were used for collecting image datasets for performing

semantic segmentation of plants and calculating projected leaves area. Cucumbers

(𝐶𝑢𝑐𝑢𝑚𝑖𝑠 𝑠𝑎𝑡𝑖𝑣𝑢𝑠 L.) were used as a tested plant species. One of the features of

the experiment is that it allows to build a comprehensive database for obtaining

statistically reliable results. Also, direct measurements of biomass were performed

sequentially on a specially developed grid to find correlations between biomass and

projected leaves area and give us the possibility to perform in-situ biomass assess-

ment and prediction using the methodology, described in the Section 3.5. The

cucumber (𝐶𝑢𝑐𝑢𝑚𝑖𝑠 𝑠𝑎𝑡𝑖𝑣𝑢𝑠 L.) is one of the most produced crops in a greenhouse.

Over the last years, several dynamic or simulations models have been proposed to

predict the cucumber growth in greenhouse conditions Sun et al. [2012], Ramírez-

Pérez et al. [2018]. Such models include a huge amount of different heterogeneous

environmental conditions parameters, complicated mathematical models that de-

scribe crop growth and need to be tuned and adapted for each plant hybrid and

growing system. Also, precise measurements of some of these parameters are pos-
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sible only manually which is time consuming and ineffective. This means, that the

efficiency of simulations can be low in cases when the farmers could not monitor

all parameters as a routine. The incorporating IoT and computer vision systems

can help to solve these issues, because they provide possibilities to monitor the

plant’s phenology changes in real time, and produce highly satisfactory forecasting

of biomass (or other target parameters). The other important outcome of this re-

search is that the proposed methodology is possible to use for fundamental research

that aims at finding plant characteristics, dependencies and assessment the plant re-

sponse to changes of the environmental parameters with high time resolution. This

in turn opens wide possibilities for investigation of the hidden dynamics that was

impossible to observe before, using standard techniques.

Methodology

This research aimed at the development of the intelligent computer-vision based

system that provides the robust and accurate plant biomass growth dynamics pre-

diction. As sensors, digital cameras generating images for further analysis and en-

vironmental sensors for monitoring specific anomalies were used. The methodology

of the conducted research is the following:

• To deploy and tune set of sensors and digital cameras. The sensors and cameras

were installed in the industrial greenhouse to collect the data describing the

plant growth dynamics (images) and the environmental parameters.

• To set up one month experiment on cucumbers growth and collect relevant data

from sensors and cameras as well as carry out the biomass measurements.

• To train and evaluate FCNN for performing the segmentation tasks and pro-

jected leaves area calculation. To calculate per-plant projected leaves area

using sequences of the obtained images.

• To derive dependency between the projected leaves area and biomass.

• To estimate the parameters of projected leaves area growth model and perform

predictions.
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• To reconstruct and predict the biomass based on the assessed and predicted

values of predicted leaves area.

Deployment

Plants and growing system. The cultivation of cucumber seedlings was carried

out according to the low-volume hydroponic technology based on growing plants

it rock wool substrate. Sowing for each seed was carried out in rock wool blocks

10×10×6.5 𝑐𝑚 (Grodan delta). All rock wool blocks were preliminary dunk in a

specially prepared nutrient solution (see Table 4.2). Vermiculite was sprinkled on

top of the seeds to avoid additional evaporation. Totally, 496 plants were sowed and

evenly distributed on the floating table in rock wool blocks for the experiment.

Table 4.2: The composition of the nutrient solution for initial saturation of cubes
by fertilizer and further watering of plants.

Chemical component 𝑁𝐻4+ 𝐾+ 𝐶𝑎2+ 𝑀𝑔2+ 𝑁𝑂3
− 𝑆04

2− 𝐻2𝑃𝑂4
4−

𝑚𝑚𝑜𝑙/𝑙 1.25 6.75 4.5 3.0 16.75 2.5 1.25

Chemical component 𝐹𝑒 𝑀𝑛 𝑍𝑛 𝐵 𝐶𝑢 𝑀𝑜

𝑚𝑚𝑜𝑙/𝑙 20.0 10.0 5.0 30.0 0.75 0.5

The rock wool blocks were placed on one table, 8 𝑚 long, 1.82 𝑚 wide according

to the experimental scheme (see Fig. 4-9). The rock wool blocks were saturated

with a nutrient solution. The parameters of the fertilizer solution that was used for

initial blocks saturation are electrical conductivity (EC) that was 1.50 𝑚𝑆/𝑐𝑚 and

pH was in range 5.3-5.5. Further watering of plants was carried out by the partial

flooding method. Necessary watering time was determined by the weight of the rock

wool block. The weight of a fully saturated rock wool cube 10×10×6.5 𝑐𝑚 is 650-660

𝑔. Watering was carried out by adding 350-370 𝑔 of nutrient solution. As seedlings

grow, they need more elements of mineral nutrition; therefore, EC of feeding solution

was slightly increased during the experiment (see Table A.1). However, when the

seedlings formed four real leaves and a good root system, according to the technology

of cultivation, they should be transplanted on rock wool slabs, which have a capacity

of 16𝑙 of nutrient solution, 4𝑙 per plant (4 plants per slab). In our experiment
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seedlings continued to grow in a 0.65𝑙 cube. So further watering using the common

technology was impossible and the last few waterings were made with distillate water

(see Table A.1). The biomass measurements during the experiment are shown in

Fig. 4-8, where each point contains from 11 to 82 measurements of biomass. So,

480 measurements were done in total.

Figure 4-8: Biomass changing in time.

Conductivity measurements (EC), measured in 𝑚𝑆/𝑐𝑚. Conductivity measure-

ments were performed with a METTLER TOLEDO conductivity meter. Measure-

ments of pH were carried out on a Sartorius PB-11 instrument. Measurements of

changing EC and pH in the rock wool blocks parameters during the experiment are

presented in the Table A.2. Solutions samples were taken out by a syringe from

a rock wool block. Two samples from the middle of each one of the 3 zones were
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Figure 4-9: Industrial experiment scheme and biomass measurements schedule

taken. According to Table A.2 the following samples were taken: from zone I -

samples 1 and 4, from zone II - samples 2 and 5 and from zone III - samples 3 and 6.

These measurements ensure equal conditions for growing all plants. Such procedure

reduces the deviations and makes the obtained dataset relevant and statistically

correct.

Sensor system. The IoT system was deployed in the greenhouse with a total area

of 5000 𝑚2 located in Michurinsk, the Tambov Region, Russia. The experiment was

conducted in the special zone where plants were growing at the initial stage (720

𝑚2). In the deployment, WaspMote sensor nodes organized in a WSN were used.

These devices are built around the low power ATmega microcontroller, communicate

at 2.4 GHz and have mesh networking capability. The transmission power level was

set up at level 3 (-0.77 dBm) and was chosen after the analysis of the Received

Signal Strength Indicator (RSSI) only since the Link Quality Indicator (LQI) and

Packet Delivery Rate (PDR) metrics are not available in the industrial-oriented
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WaspMotes. As a power source, it was used a battery pack containing three 3.7 V

Li-ion polymer cells connected in parallel with the output of 6600 mAh ensuring long-

term operation for the devices. The sensor nodes are equipped with the following

sensors: temperature, PAR, humidity and 𝐶𝑂2 concentration. Several sensor nodes

per tray were deployed: one at the beginning and the second at the end of each tray

(8 m x 1.82 m) with plants. The distance between the two neighbour sensor nodes

is 3m. The goal of WSN nodes is to take measurements at the root level and send

data every 5-10 minutes (depending on type of sensor) to a gateway. There are extra

WSN nodes in each zone for measuring the ambient conditions of the greenhouse.

The nodes collect the data and transmit them to the Libelium gateway which stores

the data at the local Data Storage and sends them to the cloud for planning and

modeling purposes.

Figure 4-10: Sensor data collection and storage.
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Figure 4-11: Temperature measurements.

Figure 4-12: Humidity measurements.

Software and Data Storage. Schematic view of the data collection system is

shown in Fig. 4-10. It consists of three main components: (i) A Flask-based HTTP

server implemented in Python programming language; (ii) a distributed task queue

Celery and in-memory Redis database as a message broker with persistence enabled;

and (iii) a general-purpose schema-less Database Management System (DBMS)

MongoDB allowing for the storage of unstructured data along with the arbitrary

binary objects using GridFS. The HTTP API server allows for the collection of sen-

sor data using push strategy with the sensor nodes sending measurements every 30

minutes. The MongoDB database was used to store the sensor measurements and

camera images. It is hosted using a DBaaS service which was sometimes inaccessi-

ble due to the intermittent Internet connectivity of the deployment site. Therefore,

it is crucial to persistently store the received data locally using Celery queue with

Redis as a broker and task storage. When the Internet connection is restored the
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Figure 4-13: (a) Distribution of the first derivatives for temperature (b) Distribution
of the first derivatives for humidity

data were sent to MongoDB. Additionally, Celery allows one to periodically (every

30 minutes) receive the image data from the cameras using a poll strategy. All of

the software components were built using Docker containerization system, that is

easy-to-deploy.

Some examples of obtained measurements of temperature and humidity corre-

sponding to the experimental results described below are shown in Fig. 4-11 and Fig.

4-12. They ensure the permissible values of these environmental parameters during

the experiment. For maintaining sustainable growth of the plants it is important to

monitor not only the absolute values of the environmental conditions, but also the

rate of changing (first derivatives). Rapid changes of the environmental parameters,

even being in the optimal boundaries, may affect the growth dynamics. They can

lead to plant development in a wrong way. Tracking these changes is only possi-

ble using distributed sensors that collect measurements with high time resolution.

The analysis of the derivatives was performed using the obtained measurements.

The results are shown in Fig. 4-13a and Fig. 4-13b. These results show that the

environmental parameters changed smoothly what lead to a normal plant growth

dynamics.

Image data collection and annotation. According to Fig. 4-9, 4 digital cam-

eras with the resolution 1920x1080 were mounted 2 meters above the floating table.

These cameras took 2 images sequentially every 30 minutes for 31 days. 2494 raw

images were taken from each camera; 9976 top-down images were taken in total.

After the data cleaning procedure and choosing the images only for the time in-
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Figure 4-14: U-net architecture, Source: [Ronneberger et al., 2015].

terval that represents the active growth stage interval, 4 sequences of 975 images

representing 25 days of observation for each camera were kept. These data were

used for further investigation and assessment of growth dynamics. All images were

flattened using the calibration images to avoid distortions. Totally, 248 images were

annotated. A selection of 62 images out of 975 from each of 4 cameras for annotation

purposes was done in the following way: from each day of observation 3 images at

9:00, 15:00 and 21:00 were kept. The annotation procedure consisted of putting the

segmentation masks and bounding boxes for each plant in the image. Overall, 45389

instances for 248 images were obtained after the annotation procedure.

Growth assessment and modeling

FCNNs for leaves segmentation. The set of FCNNs, e.g. U-Net [Ronneberger

et al., 2015], FCN8s, FCN16s [Long et al., 2015], was trained within the PyTorch

framework and validated using the labeled dataset. The architecture of the U-Net

is presented in the Fig. 4-14. U-Net consists of a contracting path that captures

context and an expanding path that enables precise localization. It is effective for

segmentation of the small datasets with excessive data augmentation and also it is
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Figure 4-15: FCN architecture, Source: [Long et al., 2015].

effective for border segmentation which is important for plant segmentation. The

contracting path consists of 3x3 unpadded convolutions, each followed by ReLU,

max-pooling 2x2 with stride 2. The expansive path contains the upsampling of the

feature map, followed by 3x3 convolutions. After upsampling, the resulting feature

map concatenates with the corresponding feature map from the contracting path.

Then it is followed by two 3x3 convolutions each followed by ReLU. Finally, 1x1

convolution is used for each one of the 64 components. After that, the pixelwise

softmax over the whole feature map was calculated. The architecture of the typ-

ical FCN is presented on the Fig. 4-15. FCN’s convolutional layers that include

pooling and ReLU activations are followed by deconvolutional layers (or backwards

convolutions) to upsample the intermediate tensors so that they match the width

and height of the original input image.

Out of 62 images from each camera 50 were used for training and 12 for validation.

The other 913 images from each camera were kept as test data. To assess the quality

of the trained model the average IoU between the predicted masks and the ground

truth masks for validation data was evaluated using the following formula:

∑︀
∀{𝑤𝑔 ,𝑤𝑝} IoU(𝑤𝑔, 𝑤𝑝)

#{𝑤𝑝}
, (4.1)

where
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(a)

(b)

Figure 4-16: (a) Loss dynamics and (b) IoU changing during training and validation
procedure.
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(a)

(b)

Figure 4-17: Predicted masks on the validation dataset
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(a)

(b)

Figure 4-18: Predicted masks on the test dataset
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IoU =
Area of Overlap
Area of Union

, (4.2)

and ∀{𝑤𝑔, 𝑤𝑝} are all the possible pairs of ground truth and predicted masks, while

#{𝑤𝑝} is the number of predicted masks. The average IoU on the validation set

using a FCN8s semantic segmentation neural network achieved value of 0.81. The

training parameters were selected as follows: batch size = 2, learning rate = 0.008,

class weight = 0.5. Images were also resized to 1280x720. Figure 4-16a and Fig.

4-16b present train and validation losses and the corresponding values IoU for 100

epoch. Early stopping criteria was used to retrieve the best model during the process

of learning. The examples of predicted masks on the validation dataset are shown

in Fig. 4-17a, whereas Fig. 4-17b represents images for different stages of growth.

The examples of predicted masks on the test dataset are shown in the Fig. 4-18a

and Fig. 4-18b. As it can be noticed from these figures, the predicted masks are

very accurate and visually in full correspondence with the actual plants.

Growth dynamics prediction. Using the sequence of selected 975 images from

each camera, per-plant projected leaves area was calculated. As there are many

plants in the images, also the table can move in horizontal direction, and there were

direct biomass measurements of plants, different amount of plants appear in images.

This means that the total segmented area should be divided by the actual amount

of plants to obtain the averaged area of each plant. An example of the average pro-

jected leaves area calculated per plant on the image sequence obtained from one of

the cameras is shown in Fig. 4-19. It should be noticed that there was a total power

interruption for several days on the 18-th day of the active plant growth. In Fig.

4-19 the first 760 data points, representing the continuous growth are shown. The

accuracy of the proposed FCNN used for segmentation is additionally proved by the

fact that it was able to capture the diurnal fluctuations in relative leaves location

(see Fig. 4-19) of the projection of the leaves area that is caused by biological rea-

sons, specifically respiration. After the power interruption, the system switched on

automatically and continued collecting images and data from sensors (215 images).

This experience showed the high relevance of the autonomous embedded systems
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Figure 4-19: Reconstructed dynamics of the specific projected leaves area based on
the calculations by using of FCNN

for greenhouses to overcome the problem. Nevertheless, the collected images and

biomass measurements were sufficient to find dependency between projected leaves

area and biomass (similar that was proposed in the Section 3.5). Figure 4-20 shows

the approximated dependency between projected leaves area and biomass using Eq.

3.26.

To construct this dependency, it was used data points representing direct mea-

surements of biomass and corresponding FCNN-calculated projected leaves area

during the first 18 days (first 10 points of the biomass measurements form Fig. 4-8).

The derived dependency for cucumbers is the following (Eq. (4.3)):

𝑚 = 0.00755 * 𝑆1.57, (4.3)

It should be noticed that the reconstructed coefficient 𝛾 = 1.57 that represents

non-linearity for the dependency between biomass and projected leaves area for

cucumbers is close to the 𝛾, reconstructed for different individual tomatoes (𝛾 =

1.72; 1.69; 1.67, see Section 3.5) . This result also proves the high accuracy of the

measurements performed in the by 3D scanner (see Section 3.5). Using the obtained

dependency it is possible to assess and predict biomass using the projected leaves

area predicted by the Verhulst model (see Eq. 3.2).

The non-linear least square method was used for estimation of the parameters
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Figure 4-20: Dependency between averaged biomass and specific projected leaves
area

in the growth model (Eq. (3.2)) based on the projected leaves area calculations

obtained by the FCNN for the first 18 days. The results of the estimation are

𝜇 = 0.23 1/30𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥 = 700 𝑐𝑚2 and 𝑆0 = 5.07 𝑐𝑚2. The relative error of the

approximation of the data by the model is 5.5%. The obtained coefficients were

used for extrapolation of the projected leaves area growth curve. The result of the

fitting to the experimental data and prediction of the projected leaves area for 12

days ahead is shown in Fig. 4-21.

Using these fitted and extrapolated values for the projected leaves area and the

derived dependency between projected leaves area and biomass, the biomass for

one month including the extrapolation interval (last 12 days) was calculated the

predicted. It can be seen from the experiment that after the initial stage of cu-

cumbers growth (3-4 first leaves), they start growing upwards, and the projections

obtained from the top-down images don’t change significantly (the changing of pro-

jected leaves area that can occur due to the overlapping effect starts to prevail). The
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Figure 4-21: Result of the fitting to the experimental data and prediction of the
projected leaves area for 12 days ahead based on the Verhulst model and calculations
of the projected leaves area obtained by FCNN for the first 18 days of the experiment.

estimation and modeling of the biomass were done at the initial stage of growth. So,

the biomass that is accumulated at the initial stages and estimated using the first

3-4 projected leaves area has its limitations. The result of biomass calculation is

shown in Fig. 4-22, where the predicted biomass is presented along with the biomass

measurements that were used for construction of the dependency. Also, Fig. 4-22

shows the measurements of the biomass that were taken during the last 12 days

and that were not included in construction of the dependency. These last 7 points

were used to validate of the prediction accuracy. The average relative error of the

biomass prediction reached 10.7%.

Conclusions. In this section, the industrial deployment of the AI-enabled sensing

system for robust and accurate plant growth dynamics prediction was presented and

tested. For the purpose of dataset collection that includes image data, environmen-

tal conditions, and biomass measurements, a one-month experiment on cucumbers
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Figure 4-22: Assessment of the biomass based on the correlations and predictions
of the projected leaves area vs. experimental measurements.

growth in the greenhouse was conducted. Specifically, a dataset with sequences of

9976 top-down images from 4 cameras, 480 direct measurements of biomass for 17

days period, and environmental data from sensors was created. First, the obtained

dataset was labeled and the FCNNs were trained to perform automatic segmentation

of cucumbers. The accuracy of the trained FCNN on the validation set was 81% of

the IoU. Second, the trained FCNNs were applied to the sequences of images, thus,

reconstructing average per-plant projected leaves area and growth dynamics. Then,

the correspondence between the area of leaves (projected) and biomass using the

direct measurements of the biomass was established. Finally, the dynamics of the

biomass was predicted based on the predictions of the projected leaves area within

10% average error for the 12 days prediction horizon. Obviously, the advantage of

the proposed methodology is that it allows monitoring huge amount of plants and

quantify the actual growth dynamics in real-time using simple cameras. This is

impossible to do manually. This, in turn, allows the automatization of the whole
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monitoring process and obtain relevant information on the current status of plant

growth. One of the limitations of this method is that huge labeled dataset is needed

for training of FCNN that will perform segmentation task. Also, FCNNs are com-

putationally complex, however, it was shown that it is possible to implement them

using current state-of-the-art technologies into the embedded systems. The other

limitation is that in spite that segmentation algorithm works well at all stages of

plants growth, the accurate leaves area (projection) assessment by segmentation of

plants is only possible on the initial stage of growth when leaves do not overlap. The

other benefit of the proposed system is that it provides useful data for the prediction

algorithms. So, prediction of plants’ growth dynamics becomes possible. The other

issue discussed in the section above is biomass prediction. The advantage of the

proposed method that it allows to assess and predict biomass using simple 2D cam-

eras. However. the limitation of this method is that a dataset that contains biomass

measurements of a particular plant type is needed for calculating the dependency

between projected leaves area and biomass and it works only at the initial stage of

growth.

Overall, the highly effective and reliable data-driven based pipeline for the plant

growth dynamics assessment and prediction was proposed and evaluated. The ac-

tual deployment showed the high industrial potential of the implementation of the

proposed data-driven approaches for plant growth dynamics assessment and predic-

tion.

4.3 Data-driven computer vision based system for

monitoring of seeds germination process

Seeds germination is one of the most important processes in the whole growth cycle

defining the future plant development. In this section it will be presented the AI

system for monitoring the seeds germination process. The proposed system is a

sensor node characterized by sensing, processing and communication capabilities

with a special focus on data processing. For this reason it was collected a dataset in

an industrial chamber and designed a CNN for germination recognition. First, all
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the monitoring system was evaluated on a desktop. Then similarly to the Section 4.1,

the developed monitoring system was deployed on the low power embedded system

with an external GPU. It was achieved 97% accuracy of seeds recognition and 83%

of average IoU score. At the same time, the proposed solution takes advantage of

scalability, small size and the ability to be powered by batteries, therefore, ensuring

autonomous intelligent operation.

Methodology

The methodology includes a number of important steps needed to monitor the seeds

germination process:

• Set up of a continuous experiment for seeds image data collection. Within

this step the images of seeds during germination process should be recorded

certain timestamps.

• Data annotation (bounding boxes and sprouts) is applied to provide the ma-

chine learning (convolutional neural network (CNN)) algorithm with the ex-

amples of positive and negative samples for training purposes.

• Training of the CNN algorithm based on the collected data.

• Assembling the embedded platform equipped with external GPU and imple-

menting the designed CNN on it.

• Detection of the seeds germination using CNN followed by the detection of

germinated seeds using computer vision techniques.

• Testing of the system.

Data Collection

The experiment was set up on radish seeds which were germinated under controlled

conditions. Images of seeds were taken during the continuous experiment. Seeds are

initially ordered and located in isolated plastic containers having a size of 18x14x1

cm (LxWxH). In the experiment 18 containers were used, with 16 seeds in each.
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For germination of seeds two sections with the fiber substrate were wet by 6 ml of

distillate water. The containers were located vertically into two climate chambers

(Binder climate chambers) - 9 containers per each climate chamber. Both of the

chambers ensure 80% humidity. The temperature was set differently: 21∘C for the

first chamber and 24∘C for the second one. The use of climate chambers for the

germination of specific seeds was driven by the only purpose to create the particular

environmental conditions.

Every 2-4 hours during the experiment and depending on the germination stage

all the containers were moved out of the climate chambers to take images of the

containers (see Fig. 4-23a). Images of seeds were collected using the 1920×1080

resolution digital camera Logitech 920 mounted in the stand. The above procedure

was repeated 12 times during the experiment. Every iteration 18 images were taken.

As an outcome of the experiment an annotated dataset which contains the time or-

dered sequence of the labelled high-resolution images showing the seeds germination

process was obtained [Shadrin, 2018]. Some examples of such images are shown in

Fig. 4-24a and Fig. 4-24b. The obtained dataset was used for training the neural

network for the identification of germinated seeds and estimation of germination dy-

namics. In Fig. 4-25a and Fig. 4-25b the dynamics of each of the seed germination

processes is shown. It demonstrates that at 24∘C germination process in the climate

chamber is faster than at 21∘C. For testing the developed ML algorithm an embed-

ded system with the external GPU was assembled for conducting high performance

calculations, as it is shown in Fig. 4-23b.

Implementation, machine learning and computer vision

The state-of-the-art approach for object recognition based on CNNs. These neural

networks (NNs) are effective for extracting local spatial features of an image. For

creating, training and validation the CNN, the PyTorch framework was used [Paszke

et al., 2017]. The structure of the proposed custom CNN is presented in Table 4.3.

The CNN proposed in Table 4.3 includes 2 convolutional blocks, 2 linear blocks

and a sigmoid block. The convolutional block consists of the convolutional, batch

normalization, max pooling, ReLU activation and dropout layers. The linear block
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(a)

(b)

Figure 4-23: Climate chamber (Binder) (a) Process of germination for obtaining
dataset; (b) Embedded system assembly for testing of machine learning (CNN)
algorithm
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(a) (b)

Figure 4-24: Example of images of the containers with seeds taken during the ex-
periment. Seeds germinated in different conditions: (a) 21∘C; (b) 24∘C.

(a)

(b)

Figure 4-25: Images of seeds germination process taken during the experiment. All
the images have time reference and were taken with a 3-hour time period. The top
and bottom images were taken at the same time, but illustrate the seeds germinated
in different conditions: (a) 21∘C; (b) 24∘C.
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Table 4.3: Convolutional Neural Network Architecture.

# Layer Dimension Kernel StrideWidth Height Depth
0 Input 90 90 3 - -
1 Convolution 40 40 48 11 2
2 Normalization 40 40 48 - -
3 Pooling 20 20 48 2 2
4 ReLU 20 20 48 - -
5 Dropout(p=0.1) 20 20 48 - -
6 Convolution 16 16 96 5 1
7 Normalization 16 16 96 5 1
8 Pooling 8 8 96 2 2
9 ReLU 8 8 96 - -
10 Dropout(p=0.1) 8 8 96 - -
11 Fully Connected 1 1 100 - -
12 Normalization 1 1 100 - -
13 ReLU 1 1 100 - -
14 Dropout(p=0.1) 1 1 100 - -
15 Fully Connected 1 1 100 - -
16 Normalization 1 1 100 - -
17 ReLU 1 1 100 - -
18 Dropout(p=0.1) 1 1 100 - -
19 Fully Connected 1 1 1 - -
20 Sigmoid 1 1 1 - -
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includes the fully connected, batch normalization, ReLU activation and dropout

layers. The sigmoid block is composed of the fully connected and sigmoid activation

layers. The convolutional layer takes the input frame and sums the frame values

with weights. Thus, the local spatial features of the input are extracted. The batch

normalization layer centers the input with the mean and scales it with the variance.

Commonly, the batch normalization layer is used to make the convergence more

stable. The max pooling layer takes the input frame and finds the frame maximum

over the kernel with predefined size. It helps to extract the local peaks and compress

the input size. The ReLU activation layer turns the negative input values into zeros.

This speeds up the convergence process. The dropout layer turns the input values

into zeros with the probability 𝑝. It makes network robust to overfitting and respon-

sible for neural network generalization. The fully connected layer sums all the input

values with weights for every value in it. It helps find the meaningful connections

between the input values. The sigmoid activation function of 𝑥 is 𝜎(𝑥) = 1
1+𝑒−𝑥 . It

is used for converting the values into probabilities. When, for example, the picture

frames 90x90x3 (𝑝𝑖𝑥𝑒𝑙𝑠 × 𝑝𝑖𝑥𝑒𝑙𝑠 × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) is used as the input, the probability

belonging to the seed class will be the output. It should be noted that, we tried to

adapt the advanced deep CNN architectures (e.g. VGG16 [Kucer et al., 2018]) to

solve this task. However, the increase in accuracy is insignificant and is about 1%.

On the other hand, VGG16 has much more parameters compared to the proposed

architecture and this leads to difficulties to running it on an embedded system.

Thus, the proposed architecture is a trade-off between accuracy and complexity.

The proposed CNN architecture (as well as VGG16 etc.) was trained to perform

the seeds recognition task (’exist or not exist’) in the predefined window area (90×

90). Using this trained CNN, the recognition and localization of the seeds in the

picture was performed with the application of the sliding window technique [Noh

et al., 2016]. For this purpose, 90 × 90 windows that overlap less than 90%: every

next window was obtained from the previous one by a small shift in the horizontal

or vertical direction. After cropping images from the picture, they were used as the

input of the pre-trained CNN to recover the labels (existing or not existing seed).

All the 90×90 pixels windows with positive labels (’seed exists’) were combined and
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non-maximum suppression technique was applied to them [Oro et al., 2016]. This

technique allows to merge close images (windows) into one in order to avoid multiple

references to the same place of the picture. The result is presented in Fig. 4-26.

Finally, image covered by the windows where the seeds should exist was obtained

the. Using windows obtained by CNNs then it should be detected in them whether

the seeds have or have not germinated. This was performed with computer vision

techniques that make possible to calculate the amount of white pixels referring to

sprouts and compare pixels to the manually defined threshold.

Dataset labeling. In the experiment, data from 18 containers with seeds of 12

time periods (which leads to 216 raw pictures) were collected. For every picture, it

was manually defined the ground truth boxes (windows) where seeds are located. 4

containers, #8-11, were referred to test dataset, while other containers, #1-7 and

#12-18, were referred to the train dataset. From pictures of the containers in the

train dataset 90×90 pixels images with seeds (ground truth boxes) and background

were cropped. As a result, 2400 images of seeds and 3300 images of background

were acquired. The train dataset was split into the train (80%) and validation (20%)

parts. During the training and validation phases, random horizontal and vertical

flips along with color jitter were applied to increase the model robustness. Color

jittering grants the benefits of including the simulation of different illumination

sources. During the validation phase the model predicted labels of images from

the validation part. During the test phase a picture of the containers from the test

dataset was taken. Then using this image it was obtained the 90×90 pixels windows

with the window scrolling and for them labels were predicted. After that NMS was

applied to leave only one predicted window per group and to estimate the average

IoU between the ground truth windows and the predicted windows.

CNN Performance Evaluation. The CNN was trained for 50 epochs (itera-

tions) with the cross-entropy loss for the train and validation datasets shown in

Fig. 4-27a. For each epoch the random horizontal and vertical flips and color jitter-

ing were applied to ensure the data augmentation. The accuracy of trained CNN on

the validation is more than 97%. (See 4-27b). It means that the CNN mismatch

140



Chapter 4. Data-driven enhancement for plant growth modeling in controlled environments
4.3. Data-driven computer vision based system for monitoring of seeds germination process

(a)

(b)

Figure 4-26: Non-maximum suppression application. In (a) seeds are covered with
multiple windows, while in (b) one window per seed was used. This was obtained
by grouping the windows and keeping one window per group.
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(a)

(b)

Figure 4-27: Cross entropy loss(a) and accuracy(b) on CNN training for 50 itera-
tions(epochs).

3 windows with seeds or background out of 100. In the test phase the method was

applied for containers #8-11. The results are shown in Fig. 4-28. To assess the qual-

ity of the developed model the average IoU between the predicted windows and the

ground truth windows were evaluated using the formula (4.1). As a result, obtained

of the average IoU was 0.83.

Germination Detection. A typical problem associated with the detection of

seeds germination using images and by application of traditional computer vision

algorithms is distinguishing the white pixels belonging to sprouts. These pixels may

belong to recently germinated seeds or to other objects close to white pixels, e.g.
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(a) (b)

Figure 4-28: Seed recognition in the 9𝑡ℎ(a) and 11𝑡ℎ(b) containers.

the drops resulted from humidity and appeared on the container. The key feature

of the designed CNN is to propose the regions for detecting further germinations

within the regions identified by it. Figure 4-28 shows that all the seeds germinated

within a certain period of time are characterized by the reasonable quality of the

seeds used. In most cases the germination rate is 80-90%.

Fig. 4-29a demonstrates the example where the seeds have been localized in a

container using CNN. Then it was recognized which seeds out of the localized ones

are germinated. For this reason it was developed the following algorithm based on

the Pythons library skimage. The algorithm was then applied to each bounding

boxes and works as follows:

• It converting the RGB image into a grey-scale one.

• Using the Otsu algorithm (for each of the proposed regions) the image, is

turned into binary.

• Grey-scale morphological closing of the image is obtained.

• The bounding for each instance is obtained. Threshold of 100 pixels was
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(a)

(b)

Figure 4-29: Detection of seed germination (b) in the regions proposed by CNN (a).

chosen. Thus, seeds with more than 100 white pixels are assumed to have

already been germinated.

• Presenting the instances: the germinated seeds and background.

Figure 4-29b shows the outcome of the application of the proposed methodology:

five seeds out of all seeds in the container are recognized as germinated ones on the

26-th hour after starting the experiment.

Implementation and evaluation of ML algorithms on the smart sensing

embedded platform

All the developed machine learning algorithms mentioned above were implemented

on the smart sensing low-power embedded platform (see Fig. 4-30). Similarly to the

platfrom described in the Section 4.1 this platform is based on a Raspberry Pi 3

single board computer and an external GPU Intel Movidius with Myriad processor.

The platform can easily run the pre-trained CNNs and deep neural networks (DNN).

Although Raspberry Pi has restricted computational capabilities, the external GPU

significantly expands the platform performance. The power consumption of GPU

is 1 W with 100 GFLOPS performance at this power consumption. The system
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Figure 4-30: System block diagram

is powered by an external battery. The proposed platform successfully works with

the pre-trained NN. The CNN used in the investigation was implemented on the

embedded system in the following way. First, it was trained on a desktop computer

using the PyTorch library. Then, the trained model was converted to the caffe

model by open source software and finally was compiled into the binary graph to

upload it on the GPU using the Intel’s Movidius Neural Compute Stick library. NCS

with Myriad processor was chosen because it has comparable performance per watt

capabilities to Tesla K40 and Tegra K1.

The test dataset and the pre-trained CNN were uploaded into embedded system.

Then the system run the pre-trained CNN to perform sequence of 1000 predictions

on the test dataset. Such characteristics as CPU and RAM usage, time for prediction

and power consumption were measured. Power, current and voltage measurements

of the embedded system were collected every 100 ms.

For the developed prototype the mean CPU and RAM usage were about 37.04%

and 30.67% respectively. In fact, if comparison is done with a desktop computer,
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it will use much more CPU and RAM in absolute values, because there are a lot

of background processes on the desktop, that consume additional resources. The

mean period for prediction is 1.98 s. The mean power consumption of the prototype

is 2.5 W. The proposed prototype dissipates 10 times less power consumption and

can operate even if it is powered by an off-the-shelf battery. Assuming that a single

prediction is accomplished within a 0.5-3 hours period and the device is in hybernate

mode between the predictions, the operation time provided by a single battery (with

2600 mAh power capacity) could be significantly extended.

Conclusions

In this section, the application of CNNs in couple with CV algorithms for germina-

tion detection was demonstrated. A custom CNN architecture for seeds recognition

achieves 97% accuracy and 83% of IoU. Using the CNN and computer vision, the

sensing system is able to, first, localize them in the container and, then, detect the

germinated seeds. It is beneficial for the emerging autonomous applications in the

scope of IoT. For implementing the proposed approach it was collected a dataset

which contains the sequentially time-ordered images of seeds germination process at

different stages. Also, this solution was deployed on a low-power embedded system.

One of the limitations of the developed system is that a labeled dataset is needed for

training of CNNs. Most probably the CNN should be retrained for usage for other

types of seeds or in other germination systems. The application of the system can

also lead to wrong results if germinated seeds will overlap. One of the advantages of

the proposed system is the possibility to provide a real-time quantitative assessment

of the germination rate. This could be useful for conducting laboratory experiments

aimed at optimization of the germination process and finding optimal environmental

parameters for a particular type of seeds. The other advantage is that the proposed

approach is scalable and has a strong industrial impact as a powerful tool for assess-

ing the performance of germinating systems and predicting future harvest. At the

same time, it provides an opportunity for making optimization at the initial stage

of plant growth. This optimization will further result in the optimal management

of resources in the context of precision agriculture.
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4.4 Sustainability of plant growth: early remote

diseases detection

Plant diseases can lead to dramatic losses in yield and quality of food. Data-driven

approaches being accurate and fast become more and more useful for real-time,

remote, all-encompassing plant diseases detection. Automation and early diseases

detection using data-driven technologies in turn will allow to reduce labour aimed

at manual disease monitoring and fungicide usage. In the following section it will be

proposed and evaluated the approach for finding optimal wavebands in NIR and MIR

for further plant diseases detection at early stages. Spectral analysis is widely used

for detection and discrimination of plant diseases. Discrimination among yellow rust,

powdery mildew and wheat aphid by using of multispectral analysis and Fisher’s

linear discriminant analysis was proposed in [Yuan et al., 2014]. Development of

spectral vegetation indices for detection of sugar beet diseases in the spectral range

from 450 𝑛𝑚 to 900 𝑛𝑚 by using of RELIEF-F algorithm was proposed in [Mahlein

et al., 2013]. A variety of spectroscopic and imaging techniques for plant diseases

detection was presented in a review [Sankaran et al., 2010]. One of the aim of

the proposed in following research approach is provide simple and interpretable

tool for finding optimal wavebands for diseases discrimination. This approach will

be evaluated on apple tree diseases. However, as physical and biological essences

of fungal diseases appearing in similar way, the proposed approach can be easily

expanded and adapted to the investigation other plants such as tomatoes, discussed

before [Pujari et al., 2015]. As it was shown in Section 4.3 and Section 4.1, it is easier

to implement light-weight neural networks into the embedded systems. One of the

benefit of proposed approach is that feature extraction will allow to detect diseases

with usage of light-weight CNNs or FCNNs. These NNs will use input images in

certain optimal spectra for detecting particular disease; thus it is not necessary

for NN to extract spectral features from the lower layers, so it is possible to remove

them. Also, it is not necessary to collect a huge dataset, as features have already been

extracted. The workflow is following: first, spectral data in IR reflective spectra for

different apple tree diseases (apple scab, moniliasis and powdery mildew) on different
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stages of diseases development were collected. Then, using these spectra, the optimal

wavebands based on the proposed discriminating coefficient, was obtained. The

collected dataset as well as scripts in Matlab for processing data and finding optimal

spectral bands are available link: https://yadi.sk/d/ZqfGaNlYVR3TUA

Dataset collection and spectral analysis

Apple scab is a disease of apple trees caused by fungi and it affects leaves and fruits.

Seven samples of the apple leaves were selected for obtaining spectra: four leaves

were infected with apple scab at different stages, two leaves were cured of apple

scab, and one healthy leaf was used as a reference. On each leaf, in a small region

of 1000 𝜇𝑚2, 5-6 sub-regions of 10 𝜇𝑚2 were allocated. For each of these sub-

regions, the spectrum of reflected light was measured in the infrared region with

the wavelength of 1.6-18 𝜇𝑚. The achieved spectral data were used to distinguish

between infected, diseased, cured, and healthy leaves. The 35 spectra were obtained

to get reliable results. The examples of leaf spectra and leaf samples are presented

in the Fig. 4-31. Importantly, it was noted, that there is no much difference between

the recorded spectra the regions with visible signs of scab, and other regions where

there are no visible signs of scab, i.e., regions at the earliest stage of disease (Fig.

4-31). Similar results were obtained for fully damaged leaves (Fig. 4-31b) and for

treated scab leaves (Fig. 4-31c). Unsurprisingly, spectra for healthy leaf significantly

differentiate from infected samples in all investigated sub-regions (Fig. 4-31d). This

observation creates the possibility for remote detection of apple scab. Using the

same approach, data on leaves infected by moniliasis and powdery mildew were also

collected. In total, it was obtained 20 spectra for moniliasis and 16 spectra for

powdery mildew. The full dataset was published, which may provide the chance to

further expand this study in the future.

Finding optimal spectral wavebands for apple tree diseases detection

The averaged spectra for healthy and infected by apple scab leaves are shown in

the Fig. 4-32a. These averaged spectra were used to reveal the optimal bandwidth

which can be used for for suitable infrared cameras selection for in vivo studies.
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(a) (b)

(c) (d)

Figure 4-31: Obtained spectra and leaf samples for: (a), (b) four sub-regions of
infected leaves respectively, (c) four sub-regions of cured leaf, (d) 8 sub-regions of
healthy leaf.

Based on the averaged spectra presented in the Fig. 4-32, discriminating coef-

ficients were simulated in order to solve the classification problem. Using them,

optimal bandwidths for disease detection were defined. The simulation was carried

out in MATLAB. It was proposed to introduce a new discriminating coefficient simi-

lar in structure to the normalized difference vegetation index (NDVI). The proposed

coefficient is the absolute difference of the reflection of the bands divided by their

sum for normalization as given by equation(4.4):

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑒𝑓(𝑖, 𝑗) =
|𝐴𝑈𝐶1(𝑖, 𝑗) − 𝐴𝑈𝐶2(𝑖, 𝑗)|
𝐴𝑈𝐶1(𝑖, 𝑗) + 𝐴𝑈𝐶2(𝑖, 𝑗)

, (4.4)

where 𝐴𝑈𝐶 is the area under an averaged spectrum of wavebands, 𝑖 is the wavelength

from each waveband started, and 𝑗 is the width of the waveband. The coefficients

were calculated for the available spectra for all wavelengths and for all possible

bands. The minimum bandwidth step used in the simulation is 50 𝑛𝑚, due to the
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(a)

(b)

Figure 4-32: (a) Averaged spectra for infected by apple scab and healthy leaves, (b)
averaged spectra for spored and healthy apples.
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fact that more narrow-band cameras cannot be used in the field. The results are

presented in the form of 2-d graph (see Fig. 4-33), representing the distribution of

the values of the discrimination coefficient for different wavelengths and bandwidth

for apple scab. It should be noted, that in the Fig. 4-33 simulation presented only up

to 3.2 𝜇𝑚, because the value of discriminating coefficient for larger wavelength is not

significant for this particular case (see Fig. 4-32). Areas in Fig. 4-33 with relatively

high coefficient values represent the most selective wavebands. It can be noticed

from Fig. 4-33, that the regions starting from 1.8-2.0 𝜇𝑚 wavelength with bandwidth

0.2-0.4 𝜇𝑚, as well as the regions starting from 2.4-2.6 𝜇𝑚 with bandwidth 0.1-0.4

𝜇𝑚 have a good selective ability, since the coefficient value is relatively high. This

result is very well explained by theoretical assumptions: Fungi, while destroying

cells, causes decreasing of water content, which can be clearly seen in the infrared

waveband of spectral region. The resulting classification bands coincide with the

water absorption spectrum.

Figure 4-33: Distribution of the discriminating coefficient for different spectral wave-
bands, y-axis is wavelength from which waveband started, x-axis is the width of
waveband.

Using the same approach discussed above and spectral data for other apple

tree diseases, simulations of the distribution of discriminating coefficients were per-

formed. Diagrams for Moniliasis and for Powdery mildew are shown in Fig. 4-34 and

Fig. 4-35 respectively. Results of simulations are summarized in Table 4.4. From

Table 4.4 it can be noted that optimal spectra for discriminating of different diseases
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do not overlap. This is very important as it allows to discriminate different diseases

using data, recorded from one multispectral camera.

Figure 4-34: Distribution of the discriminating coefficient for Moniliasis for different
spectral wavebands, y-axis is wavelength from which waveband started, x-axis is the
width of waveband.

Table 4.4: Summary of the highest values of the discriminating coefficient represent-
ing the best wavebands in near and short infrared spectra for detecting apple tree
diseases.

Disease Waveband, 𝜇𝑚 Coef.value
Apple scab, healthy/infected 1.8-2; 2.4-2.8 0.5
Moniliasis, spores/infected apple 2.8-3.1 0.7
Moniliasis, healthy/infected skin of apple 1.6-1.8 0.25
Moniliasis, healthy/spores 2.9-3.2; 5.9-9 0.8
Powdery mildew healthy/infected 2.7-2.9 0.41

Conclusions

In this section, the generic approach for finding optimal wavebands in IR reflectance

spectra for early-stage disease detection was shown. This approach was evaluated

with different apple tree diseases. For performing an evaluation of the proposed ap-

proach, a new dataset with spectral data in near-infrared and mid-infrared spectrum
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Figure 4-35: Distribution of the discriminating coefficient for Powdery mildew for
different spectral wavebands, y-axis is wavelength from which waveband started,
x-axis is the width of waveband.

range was built. This dataset consists of 51 spectra obtained in the spectrum range

1.6 - 18 𝜇𝑚 for different apple tree diseases. The approach was successfully tested on

the obtained dataset for detecting three different diseases. The obtained results co-

incided with theoretical assumptions and showed its accuracy. The drawback of the

proposed method is that hyper-spectral data are needed for obtaining optimal wave-

bands. This method can be useful for designing a system that will detect diseases

in field conditions. Using the obtained optimal wavebands it is possible to choose a

proper multispectral camera for further evaluation in field conditions. However, the

illumination in field conditions can slightly differ from that was used in laboratory

investigations. This can lead to the tuning of the equipment, but anyway, the pro-

posed method can provide the first assumptions of the optimal wavebands that are

useful for detecting the particular disease. The advantage of this method is that it is

universal. It can be applied to the investigation of the variety of plant diseases. Also,

features, designed from spectral data, can be useful for a deep learning approach,

in case of implementation on embedded systems for field disease detection. Using

these features will potentially allow to decreasing the number of layers, making the

deployed networks more shallow and easier to run on embedded systems. Overall
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this study shows the potential of spectral analysis coupled with CV algorithms for

remote plant diseases detection at early stages of plant growth.

4.5 Discussion

To compare developed data-driven techniques with hybrid model-based approaches,

the developed data-driven approaches were evaluated on the same datasets that were

used in Chapter 3 for creating hybrid models. First of all, the proposed in Section

4.1 RNN based technique for growth dynamics prediction can be directly compared

to the DMD approach, developed the Section 3.4. For this purpose, the LSTM

NN, with the same architecture as described above, was trained and evaluated on

the same dataset that was used for modeling by DMD method in Section 3.4 (four

tomato plants). LSTM was trained on the first half of the data and tested on the

second half. The results of evaluation using the data for the 4-th plant showed

the average relative error is 9.3% for the prediction horizon up to 5 hours (10 time

steps). While testing of DMD for the same data (presented in Fig 3-22) showed

the average relative error 16% for the whole interval of the prediction. Using the

same training procedure, the LSTM was evaluated on the data obtained for all four

tomato plants. The mean relative error among predictions for all four plants is 8.35%

for the prediction horizon up to 5 hours. A similar study of errors was conducted

for DMD during cross-validation procedure when data for different three out of

four tomato plants were used for training DMD and data for the remaining plant

were used for testing of the algorithm. The obtained relative error for 4-fold cross-

validation is 18.5%. It is important to notice that for training RNNs only previous

points in time sequence are used. However, for the DMD algorithm the data for

the whole investigated period are needed for training procedure. This means that

to train DMD algorithm it is needed to perform preliminary experiments to obtain

data for similar plants for the whole period of modeling. This, in turn, allows the

DMD algorithm to perform such long-term predictions, but it is needed to obtain

preliminary data for training. On the other hand, RNNs predictions are relying on

the data that are receiving from the same plant in real-time. RNNs are adaptive to
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different plants and are able to take into account the current and previous growth

dynamics of a particular plant. They can also be retrained while new measurements

are coming, which makes them more accurate. Thus, it is beneficial to use them,

as the universal tool for growth dynamics prediction for a variety of plants and

under various environmental conditions. However, if the growth dynamics of the

particular type of plant under certain environmental conditions was investigated

and the data were obtained for the whole period of interest, DMD allow to perform

long-term predictions (see Fig. 3-22). One of the limitations of RNNs is that they

are essential "black-boxes", so the results can’t be interpreted directly. On the other

hand, by reconstructing the evolution operator in the DMD approach, it is possible

to assess the impact of each parameter on the predicted values. However, as it was

stated in the Section 3.4, fine-tuning of a set of features that defines a state vector

is needed. The other limitation of RNNs that they are much more computationally

complex compared to DMD. Thus, DMD is much easier to deploy into the low-power

embedded systems.

For comparison of the data-driven approaches with Kalman filter, RNN was

trained and evaluated using the same data as that were used for Kalman filtering (9

lettuce plants, see Section 3.2). The first 400 data points (out of 820) were used for

training RNN, the rest data points for testing. Data obtained for 2-nd plant were

used as an example for training/evaluation procedure. Using this data, the average

relative error 5.7% was achieved for the prediction horizon up to 5 hours (10 time

steps). Similar results were obtained for other plants. The accuracy of the Kalman

filter was evaluated by reconstruction of projected leaves area, using predicted values

of 𝜇 and 𝑆𝑚𝑎𝑥 for the same tested data. The average relative error for predictions by

Kalman filter was 10.2%. Such low accuracy compared to the RNNs appears due to

the model (Verhulst) that is used for the Kalman filter. This model doesn’t capture

diurnal fluctuations in the projected leaves area. This drawback can be a benefit of

usage Kalman filter because if a more complex model will be adapted to the Kalman

filter, it will be able to provide more accurate results. Also, the Kalman filter, being

computationally simple has a high computational efficiency which allows its usage

on embedded devices. The other advantage of Kalman filter compared to RNNs is
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that no training procedure is needed. Also, no prior information such as for DMD

is required. Thus, the Kalman filter has shown itself as the most straightforward

method for raw evaluation of growth dynamics among all other investigated.

Table 4.5: Summary of models comparison

Method Advantages Limitations Relative error, %

RNN

+Universal -Difficult to Tomato dataset
+Uses the current state interpret Section 4.1, 5.4%
and past dynamics -Computationally
+Robust to real-time complex Tomato dataset
environmental changes Section 3.4, 8.35%
+Automatically Lettuce dataset
adaptive Section 3.2, 5.7%

DMD

+Long-term predictions -Uses prior Tomato dataset
+Model-based information Section 3.4, 16%

for similar plants
-Fine-tuning of
state vector

Kalman filter

+Straightforward -Complex models Lettuce dataset
+Model-based are needed for Section 3.2, 10.2%
+Computationally accurate estimations
effective -Linearization errors

-Convergence

The main obtained results as well as advantages and limitations of methods are

shortly summarized in Table 4.5.

4.6 Conclusions

In this chapter, a set of approaches for assessment and prediction of plant growth

dynamics at different stages using data-driven approach was presented. More specif-

ically the following studies were conducted:

• Implementation and evaluation of RNNs, in particular, LSTM for growth dy-

namics prediction. This approach was applied to an own dataset obtained on

the developed artificial system equipped with CV and sensing systems. The

proposed approach, being accurate, showed the high potential in industrial

application due to easy end-to-end deployment and universality.
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• Implementation of CV and sensing system in an industrial experiment. This

experiment allowed to collect comprehensive imaging and environmental data

and biomass measurements. These data were used for training FCNNs to

perform semantic segmentation and to calculate projected leaves area of each

plant automatically. After this, growth dynamics was reconstructed using

sequences on images.

• Creation of the system for germination rate detection based on CV approaches.

CNNs were trained for seeds localization based on own experimental data. Us-

ing the proposed regions, CV techniques were applied for germination quantifi-

cation and rate detection. The developed autonomous system for germination

monitoring is scalable accurate and autonomous, showing high practical use-

fulness for industrial application.

• Evaluation of an approach for finding optimal wavebands in IR reflectance

spectra for early-stage disease detection. The data that describe plant diseases

at the different stages in near-infrared and mid-infrared spectrum range were

collected. The results showed that it is possible to detect and to discriminate

diseases at early stages, when they can not be detected in visible spectrum.

This approach can also help to extract features making CV-based approaches

for diseases detection less complex and more reliable.

To sum up, in this chapter an end-to-end implementation and evaluation (on own

experimental datasets) of data-driven approaches for growth dynamics assessment

and prediction were proposed. Such approaches proved to be robust, universal and

useful in supporting sustainable plant growth.
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Chapter 5

Data-driven modeling of

environmental parameters for

improvement of plant growth

prediction

5.1 Problem statement and proposed solutions

Controlling and predicting plants growth on the field is a complicated task due to a

high variety of parameters that influence growth dynamics. There is a huge amount

of factors that can a have positive or negative effect on the growth rate, the final

yield and the quality of production. These factors can be divided into controlled and

uncontrolled. There are some model-based methodologies, implemented in software,

that can model the yield taking into account different controlled and uncontrolled

parameters [Nendel et al., 2011]. There are two problems that should be solved for

improving the accuracy of such model-based techniques:

• Accurate prediction of the spatial distribution of the uncontrolled (or slightly

controlled) environmental parameters that are included in the models.

• Accurate assessment of the effects of controlled environmental parameters,

that are not included in the models, on growth.
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Prediction of spatial distribution of uncontrolled parameters. For solving

this issue, a robust and accurate method for prediction of the spatial distribution

of environmental parameters should be proposed. The example set of soil and en-

vironmental parameters the spatial distribution of which should be modeled before

including them into the model for yield prediction [Krishnan and Aggarwal, 2018]:

• Thickness, sand content, silt content, clay content

• Hydraulic conductivity initial moisture

• Ammonium content, nitrate content, pH, electrical conductivity

• Groundwater composition

More comprehensive knowledge of these parameters, their distribution and accu-

racy of measurements leads to more precise predictions. Currently used solutions for

modeling of spatial distribution of the environmental parameters are mainly based

on the ordinary Gaussian process regression (GPR). The procedure of obtaining the

interpolated maps of each modeled parameter includes a manual selection of the

kernels (variograms) and their parameters. This leads to an important drawback:

The results of modeling can differ dramatically for the same used data because dif-

ferent kernels and their parameters can be selected. The process of tuning model

by selection of different kernels and parameters is also time-consuming. In order to

overcome these problems, it was proposed an advanced technique based on Gaus-

sian process regression (GPR) and optimal kernel structure selection using Bayesian

information criteria (BIC) (see Section 5.2). The main advantage of the proposed

method is that it automatically finds the best possible kernel structure which also has

the least complexity for the particular problem (dataset). The proposed technique

was validated on a new dataset for freshwater chemical composition, which is the

important uncontrolled factor that should be included in the modeling of the plant

growth dynamics and final yield. The dataset was obtained in the newly added to

Moscow territories in 2011 and contains data samples (chemical composition) form

1194 wells, 222 small rivers, and 153 springs. As an additional enhancement of the

developed methodology, it was proposed the PCA-based aggregated index that au-

tomatically defines the most influential chemical water properties to construct one
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aggregated water quality index (WQI). The proposed GPR with BIC method for

spatial interpolation was evaluated on the aggregated WQI. However, it should be

noticed that any of the chemical compounds that are included in the WQI can be

interpolated directly in the same way as for WQI by using the proposed technique.

This technique can also be applied directly to obtain the spatial distribution of any

soil and environmental parameters that are listed above. According to basic methods

for assessing goodness of fit and cross-validation (average 𝑅2 is about 0.64 by 5 fold

cross-fold validation, and average root mean squared error RMSE is about 0.065),

it was concluded that the proposed method is more accurate than traditional inter-

polation techniques such as ordinary and universal kriging. The proposed method

is also universal because of automatical kernel structure selection. Thus, the pow-

erful mathematical approach for modeling of the spatial distribution of the most

important environmental parameters was developed and evaluated.

The proposed methodology and its evaluation as well as experimental data are

discussed in details in the Section 5.2.

Assessment of the effect of controlled parameters on growth. There are

still some factors that are not included in the modeling since they have a complex

and unstudied effect on plant dynamics. One of the most important factors that

was not taken into consideration is phytotoxicity. This factor can affect growth

and plants quality dramatically [Nagajyoti et al., 2010]. However, there are no

robust models that can predict phytotoxicity effects in a huge amount of different

types of soils. Machine learning approaches opens huge perspectives for solving this

problem. There are two main sources of toxicity: (1) direct exposure of harmful

substances (such as oil contamination) and (2) concomitant insertion of fertilizers

into the soil. The advantages of ML approaches over other methods for solving the

problem of phytotoxicity prediction were shown based on investigations focused on

total petroleum hydrocarbons (TPH) phytotoxicity assessment (which represents as

direct exposure by pollutants) and on the assessment of effects of mineral waste-

based fertilizer insertion. Two use cases were studied for evaluating the proposed

ML techniques that are able to predict the effect of controlled parameters on growth.

160



Chapter 5. Data-driven modeling of environmental parameters for improvement of plant growth
prediction 5.1. Problem statement and proposed solutions

The first one is modeling the TPH acute phytotoxicity effects that was performed

on eleven samples of soils from Sakhalin island in greenhouse conditions. Different

soils were contaminated with crude oil in different doses ranging from the 3.0 to 100.0

g•kg-1. Measuring the Hordeum vulgarie root elongation, the crucial ecotoxicity

parameter was estimated. Also, the contrast effect in different soils was investigated.

To predict TPH phytotoxicity, different machine learning models were used, namely

artificial neural network (ANN) and support vector machine (SVM). These models

were proved to be valid using the mean absolute error method (MAE), the root

mean square error method (RMSE), and the coefficient of determination (𝑅2). It

was shown that ANN and SVR can successfully predict barley response based on soil

chemical properties (pH, LOI, N, P, K, clay, TPH). The best achieved accuracy was

as following: MAE – 8.44, RMSE –11.05, and 𝑅2 –0.80. The proposed methodology

and its evaluation as well as experimental data are discussed in details in the Section

5.3.1.

The second use case is modeling the toxicity effect of mineral waste-based fer-

tilizer insertion in soil. The phytotoxicity was evaluated by the quantification of

the effects of different doses input of phospogypsim (PG). The results show a sim-

ilarity between the 0%, 1% and 3% PG treatments at all collection times based on

toxicological and biological properties. Beyond 7.5% PG, some biological test was

significantly inhibited in response to trace element stress. Among all tested param-

eters, soil urease activities, soil respiration activities after glucose addition, S. alba

root lengths and E. fetida survival rates show a sensitivity to PG addition. This

means that the prediction and quantification of the effects of different doses input

of phospogypsim (PG) is crucial for plant growth modeling. Machine learning algo-

rithms revealed that only several elements (mobile and water-soluble forms of Ca,

Ba, Sr, S, and Na, water-soluble F) could be responsible for elevated soil toxicity for

those indicators. SVR models able to predict soil biological and ecotoxicity prop-

erties, and increasing numbers of randomly selected training examples from 50% to

90% of initial experimental data significantly improved model performance. The

benefits of unsupervised and supervised machine learning methods for investigating

the toxicity of man-made substances in soil were shown. Tracking and assessment
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of phytotoxicity effects on plant growth based on ML methods will give possibility

to complement the existing models with missing but important parameters allowing

to decrease modeling uncertainties. The proposed methodology and its evaluation

as well as experimental data are discussed in details in the Section 5.3.2.

Overall, the proposed in the following sections data-driven modeling of environ-

mental parameters gives an opportunity:

• To include controlled parameters such as toxicity effects by inserting of fertil-

izer in existing model-based algorithms for yield prediction making them more

precise and robust.

• To predict more accurately the spatial distribution of the uncontrolled envi-

ronmental parameters making the existing model-based algorithms for yield

prediction more precise.

5.2 Machine learning approaches for assessment of

water quality distribution

Introduction

Accurate and large-scale monitoring of freshwater and groundwater quality is one

of the main tools used to assess current ecological situation and to indicate the

drivers and trace sources of pollution, which particularly can affect the agriculture

industry by yield losses [Han et al., 2016, Berger et al., 2017]. Since water resources

can be described by a large number of chemical, physical and biological parameters,

normally, studies dedicated to water quality assessment implement one integral pa-

rameter to characterise the overall water state: the water quality index (WQI). The

WQI aims to reduce the wide range of individual parameters to one joint descrip-

tive characteristic of high practical importance and easy to interpret at the same

time. Normally, monitoring parameters for the calculation of the WQI with specific

levels of importance are selected in two different ways: subjectively by expert opin-

ion [Ramakrishnaiah et al., 2009] or objectively on the basis of statistical methods
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[Sun et al., 2016, Tripathi and Singal, 2019b], such as principal component analysis,

factor analysis and cluster analysis for the next stage of data transformation into a

mathematical expression.

Big data approaches to the collection, evaluation and prediction of environmental

data, including water quality, have become more popular due to recent advances in

machine learning applications and the availability of modern, high-accuracy equip-

ment and sensors for water quality measurement [Alilou et al., 2019, Mitrović et al.,

2019, Karami et al., 2014]. For example, the Next Generation Weather Radar, and

the Global Precipitation Measurement Mission collect tens of terabytes of data every

year. In the meanwhile, the measurement of water quality in many countries, in-

cluding Russia, is still based on spot networks; more importantly, the overall density

of sample collection may be very low [Zhulidov et al., 2000]. Concerning this fact,

the development of adaptable algorithms to select the best sampling point locations

is a matter of topical interest, and using ML methods for data extrapolation have a

great potential to become a "workhorse" of scientific community as well as being im-

plemented for management issues [Madrid and Zayas, 2007, Keskin and Grunwald,

2018].

Regarding water quality parameter spatial prediction, different tools (SAGA GIS,

QGIS, ArcGIS, special packages in the environments of R and Python) exist and

provide frameworks for kriging and mapping the spatial distribution of properties

of natural objects, including forestation, soil properties and groundwater properties,

on the basis of limited data [Barzegar et al., 2019, Khaki et al., 2018, Sajedi-Hosseini

et al., 2018]. The basic limitations of these tools are the non-automatic method of

variogram fitting and the manual selection of calculation parameters (e.g. search

distance and maximum points in search distance), which should be discussed clearly

every time to obtain the same result on the same data, or, in contrast, hidden options

in closed-source software. Meanwhile, the state-of-the-art approaches now involve

ML algorithms coupled with geostatistical data processing; these approaches allow

more precise, high-resolution establishment of the spatial distribution of character-

istics.

The main aims of the following study are:
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• The development and validation of the improvement of the standard Gaussian

process regression (GPR) technique.

• The demonstration of the practical usefulness for environmental parameters

interpolation by investigation of the use case of water quality prediction.

Materials and methods

Site description and available dataset. The object of current study is the

newly added territories to Moscow, located adjacent to the city of Moscow in the

Central European part of Russia (55∘N, 37∘E) and extends over 1480 𝑘𝑚2 area.

This territory accommodates a wide variety of land-use types, including farmlands,

croplands, natural grasslands and forests, apart from suburban settlements and

some industrial operations. The mean annual temperature of this region is about

3-4∘C. The mean temperature in the coldest month of the year (January) ranges

between -9.5∘C and -11.5∘C, while in the warmest month, July, mean temperatures

are between +17∘C and +18.5∘C. The average annual precipitation is approximately

500-520 mm, with approximately with approximately two thirds rainfall and the rest

snow. The predominant types of natural vegetation are coniferous and broad-leaved

forests, while agricultural lands include pastures and arable land mostly for feed

crops and cereals. Main specific of the investigated territory is that it has been

rapidly urbanised during the last decade.

The set of samples, using in this study, covers almost all the investigated ter-

ritory. A total of 1600 water samples were collected during 2017-2018 from wells

(1215 samples), rivers (225 samples) and springs (160 samples) covers the whole

region (see Fig. 5-1). Water samples were collected from wells, rivers, or springs by

using a 2-L stainless-steel container. The samples were bottled and then immedi-

ately transported to the laboratory for chemical analysis, eliminating the need for

conservation methods.

For each water sample, 25 parameters were measured. The pH was measured

by using a HANNA pH-meter 213. Anions (NO3, NO2, PO4, SO4 and Cl) were

measured by ion chromatography using a Dionex 1100 instrument. NH4 content

was obtained on an HACH DR2800 using colorimetric determination with Nessler’s
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Figure 5-1: Location map of the study area. Different colours mark source of col-
lected water samples - wells coloured in blue; rivers coloured in purple; and springs
coloured in yellow.
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reagent. Cation (K, Cr, Ni, Ca, Zn, Fe, Mn, Na, Cu, Mg) contents were obtained by

inductively coupled plasma atomic emission spectroscopy with an ICP-OES Agilent

5110 spectroscope. Mineralization was measured by gravimetric analysis consisting

of evaporation at 105∘C in a drying chamber. Alkalinity was obtained by titration

with 0.05N HCl. Hardness was measured by titration with Trilon B and eriochrome

black. Overall, it was obtained relatively large size of the dataset which contains

more than 1600 samples (each with 25 measured chemical parameters). It might

be useful for validation and other methodological research in community and the

dataset was shared through the following reference [Pukalchik et al., 2020].

Data preparation and methodology.

An end-to-end solution for geospatial water quality assessment using modern ma-

chine learning methods such as Gaussian process regression and Bayesian informa-

tion criteria was proposed and evaluated. Figure 5-2 presents a brief summary of

the steps involved in this procedure.

Water quality index calculation based on PCA and weighted factors. A

PCA model was used to assess the pollutant loads integral to water quality and

to avoid data redundancy. Raw data were filtered to eliminate anomalies: missing

coordinates, incorrect record type etc. After this initial pre-processing step, the

total number of useful samples decreased from 1600 to 1569. Then it was decided

to remove Hg, Cd, Co and Pb from the dataset for further analysis, as their con-

centrations were insignificant (much lower than toxic levels) and did not exceed the

required water quality standards in Russia. Twenty-one water quality parameters

were included in the PCA model. Only those components for which the correspond-

ing eigenvalue was higher than or equal to 1 following Varimax rotation, and PCs

that explained at least 5% of the observed data variation were considered for further

examination. Moreover, those parameters that were correlated with other signifi-

cant parameters (correlation more than 0.6) were eliminated only if they had the

smallest loadings among the correlated parameters. The weight scores (𝑤𝑖) derived

from PCA were used as weighted factors for the significant variables (indicators)
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Figure 5-2: Methodology for using machine learning methods for weighted WQI
calculation (Steps 1 and 2) and geospatial WQI prediction by using Gaussian process
regression with automatic kernel search (Steps 3-5).
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from respective PCs, and the WQI was calculated by using eq. 5.1:

𝑊𝑄𝐼 =
𝑆∑︁

𝑖=1

𝐿𝑖 · 𝑤𝑖, (5.1)

where S is the number of significant principal components, 𝐿𝑖 denotes the loading on

values of each selected water property included in the particular principal component

and 𝑤𝑖 denotes the weight of the corresponding component. In order to scale WQI

to the [0,1] range, the weight scores was normalized (𝑤𝑖) by using eq.5.2:

𝑤𝑖 :=
𝑤𝑖∑︀𝑆
𝑖=1 𝑤𝑖

(5.2)

Machine learning approach for geospatial modelling of WQI with auto-

matic kernel detection

Gaussian process regression: general overview of the methodology. In

order to perform geospatial modeling of multiple water properties from the collected

dataset, Gaussian Process Regression (GPR) framework was used, more commonly

known as kriging in geostatistics [Williams and Rasmussen, 2006]. A stationary

Gaussian process is completely determined by its mean 𝜇(·) and covariance (kernel)

𝑘(·, ·) functions:

𝑓(x) ∼ 𝒢𝒫(𝜇(x), 𝑘(x,x′)),

𝜇(x) = E 𝑓(x),

𝑘𝑥(x,x′) = E [(𝑓(x) − 𝜇(x))(𝑓(x′) − 𝜇(x′))],

where x ∈ R2 is a vector of 𝑑 input parameters. In this particular case, 𝑑 = 2 and

x represents a vector of spatial coordinates. Let us Consider a simple GPR model

with additive Gaussian noise:

𝑦(x) = 𝑓(x) + 𝜖,
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where 𝜖 ∼ 𝒩 (0, 𝜎2). Given the training data X = (x1, . . . ,x𝑁)ᵀ ∈ R𝑛×𝑑, y =

(𝑦1, . . . , 𝑦𝑛)ᵀ ∈ R𝑛, where 𝑛 is the number of samples and (·)ᵀ denotes the transpose

operator, the predictive distribution at the unobserved point x* is given by

𝑓(x*) ∼ 𝒩 (�̂�, �̂�2),

�̂�(x*) = 𝜇(x*) + 𝑘𝑥
*Σ(y − 𝜇(X)),

�̂�2(x*) = 𝑘(x*,x*) − 𝑘𝑥
*
𝑇Σ−1𝑘𝑥

* ,

Σ = 𝐾𝑥 + 𝜎2𝐼,

(5.3)

where 𝐼 is an identity matrix, 𝐾𝑥 = 𝑘𝑥(X,X) = 𝑘(x𝑖,x𝑗), 𝑖, 𝑗 = 1, . . . , 𝑁 is a spatial

covariance matrix between all of the training points, 𝑘𝑥
* = 𝑘(X,x*) is a spatial

covariance between training points and the single prediction point and 𝜇(X) =

𝜇(x𝑖), 𝑖 = 1, . . . , 𝑛 is the mean function calculated at the training points. The

particular choice of the kernel function depends on the assumptions about the model

and a particular application, e.g., Gaussian Kernel (corresponding to the Gaussian

variogram). Kernel hyperparameters are usually optimized using the Maximum

Likelihood Estimation (MLE) or its variations [James et al., 2013].

Figure 5-3 shows an example of GPR using a Gaussian kernel over the observa-

tions sampled from the sine function with random noise. The prediction variance

increases at points with missing observations, and increases significantly outside of

the interpolation region with the mean failing to capture the true function trend.

This emphasizes the need for a better method to select kernel hyper-parameters.

Hyper-parameter Selection using Bayesian Information Criteria. Com-

mon approaches to hyper-parameter optimisation are Maximum Likelihood Estima-

tion (known model, continuous parameters), and Cross-Validation (model is un-

known, discrete parameters). Typically, one could select multiple combinations of

different kernels, perform MLE for each of them and then compare the models using

cross-validation to choose the best overall model. It was decided to follow the ap-

proach in [Duvenaud et al., 2013] using Bayesian Information Criteria (BIC) which

represents a space of covariance function as a combination of a small number of base
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Figure 5-3: Gaussian Process Regression (red dashed line depicts the predictive mean
and orange fill depicts the standard deviation intervals) with noisy measurements
(blue dots) of the sine function (solid green line) using RBF kernel.

covariance functions using sum and product operations, and may be represented as:

𝐵𝐼𝐶 = −2 · Log-likelihood + 𝑚 · log 𝑛,

Log-likelihood = −𝑛

2
· log 2𝜋 − 𝑛

2
· log |Σ| − 1

2
· (y − 𝜇)𝑇Σ−1(y − 𝜇)

(5.4)

where 𝑛 is the number of samples, 𝑚 is the total number of optimised parameters,

and Σ is defined as in the eq. 5.3. To construct the optimal kernel, it was con-

sidered a basic set of operations, such as plus and multiplication, These operations

were applied to the following kernel functions: polynomial (Eq. (5.5)), Gaussian (Eq.

(5.6)), periodic (Eq. (5.7)) and exponential (Eq. (5.8)). Thus, the final automat-

ically constructed kernel, for example, can be the multiplication of the polynomial

kernel on Gaussian, plus periodic, etc. Optimal kernel structures can include the

multiplication of the same types of elementary kernels:

𝑘𝑝𝑜𝑙𝑦(x,x
′| 𝜃1, 𝜃2, 𝜃3) = 𝜃1

(︃
𝑑∑︁

𝑖=1

𝜃2x𝑖x
′
𝑖 + 𝜃3

)︃𝑑𝑒𝑔

, (5.5)

𝑘𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(x,x′| 𝜃4, ℓ) = 𝜃4 exp

(︃
− 1

2

𝑑∑︁
𝑖=1

(x𝑖 − x′
𝑖)
2

ℓ2𝑖

)︃
, (5.6)
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𝑘𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐(x,x
′| 𝜃5, 𝑠, 𝑇 ) = 𝜃5 exp

(︃
−1

2

𝑑∑︁
𝑖=1

1

𝑠𝑖
sin2

(︂
𝜋

𝑇𝑖

(x𝑖 − x′
𝑖)

)︂)︃
, (5.7)

𝑘𝑒𝑥𝑝(x,x
′| 𝜃6, 𝑙) = 𝜃6 exp

(︃
−

⎯⎸⎸⎷1

2

𝑑∑︁
𝑖=1

(x𝑖 − x′
𝑖)
2

𝑙2𝑖

)︃
, (5.8)

where 𝑑 = 2, polynomial was taken of degree 2; 𝜃1, 𝜃4, 𝜃5, 𝜃6 are the variances; 𝜃2,

ℓ, 𝑙 and 𝑠 are length scales; 𝜃3 is the bias; 𝑇 is period. In performed calculation

experiments all of the kernels were considered isotropic and the following constraints

during hyper-parameter optimization were applied: 𝑇1 = 𝑇2 = 𝑇 ∈ [1, 10], 𝑠1 = 𝑠2 =

𝑠 ∈ [0.1, 10] and ℓ1 = ℓ1 = ℓ ∈ [0.1, 10], other parameters were left unconstrained.

The best kernel is a combination (structure) of the elementary kernels with optimized

parameters that gives the minimal BIC value. This way, it is possible to model a

variety of stationary kernels and control the accuracy by selecting basic kernels

and boundary values for their hyper-parameters. The main goal of introducing such

boundary values is to avoid over-fitting and ensure the robustness of the performance

of the obtained optimal kernel (composition of the basic kernels). Moreover, the

aim is to reduce the model complexity by decreasing the number of tuned hyper-

parameters in the optimal kernel.

The procedure of fitting the Gaussian process is quite computationally expensive

O(𝑛3), where 𝑛 is the number of training data points. Hence, instead of brute-force

search of the best kernels, a greedy search was implemented in the current study.

Greedy search in general means that the extension with the lowest BIC is selected for

each extension of the current kernel. The main advantage of this approach is that it

does not require any handcrafting of potentially effective kernels, but instead enables

an automatic search for the best kernel structure and hyper-parameter optimisation.

Universal and Ordinary kriging. To compare the proposed method with base-

line geospatial modelling techniques, Ordinary Kriging (OK) and Universal Kriging

(UK) using the GPy library were preformed. Since this library allows to perform

Gaussian process regression, the connection between Gaussian process regression

and kriging methods is following: a) basic kernel functions 𝑘𝑝𝑜𝑙𝑦, 𝑘𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛, 𝑘𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐,
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𝑘𝑒𝑥𝑝 correspond to the respectively variograms, b) GPR with a constant mean

function 𝜇(x) = 𝜇 corresponds to OK, and c) GPR with a linear mean function

𝜇(x) = 𝛽0 + 𝛽1x1 + 𝛽2x2 corresponds to UK with linear trend. Hyper-parameters of

the kernel and mean functions are optimized using MLE approah during the training

phase.

Approach to geospatial modelling. Firstly, spatial coordinates were converted

from EPSG:4326 (latitude, longitude) format to EPSG:32637 (UTM zone 37N) for-

mat. Then, the converted coordinates were scaled down to the [0,10] range. Some

measurements of the water quality measurements were taken spatially far from the

main investigated area (Moscow region). Thus, to filter outliers, using the scaled

coordinates, clustering of the water sampling locations was performed using the

density-based DBSCAN method [Ester et al., 1996]. In particular, the hyper pa-

rameter 𝜖 = 1.0 in the DBSCAN method was used and allowed to allocate a main

cluster and outliers. The parameter 𝜖 allows to tune the size of a cluster and serves

to set the permissible distance to the point to be included into the cluster. After

clustering and removing the outliers, the coordinates again were re-scaled within

[0,10] range. Finally, it was decided to use the data only from the large class (wells,

1215 data points). In total, 391 data points were removed from the dataset (37 data

points out of them were removed by DBSCAN) and 1178 data points were kept for

further investigation. The WQI was calculated for each data sample and a rectangu-

lar 100 x 100 grid was used for geospatial modelling and mapping. The boundaries

of the selected grid were defined by the minimum and maximum coordinates of the

kept water sampling locations.

Validation procedure. To validate the developed model, it was applied a stan-

dard validation approach with 5 random splits on training and testing datasets of

relative size 90% and 10%, respectively. For each training/testing split, a) the model

to the training data was fitted, then, b) the values of WQI for the test data point

locations were predicted and c) the coefficients of determination 𝑅2 and the root

mean squared error (RMSE) were calculated:
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𝑅2 = 1 −
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)
2∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
, (5.9)

𝑅𝑀𝑆𝐸 =

√︂∑︀𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑛
, (5.10)

where 𝑦𝑖, 𝑦𝑖 are the predicted and observed values, respectively, and 𝑦 is the average

of the observed value.

The RMSE is a good comparative statistic for assessing model output, as it

provides a global indication of how similar the interpolated values are to the observed

or measured values [MacCormack et al., 2013]. When analysing the RMSE statistics,

a small RMSE value indicates that the interpolated values for the output model are

more similar to the observed values, whereas a large RMSE value suggests that

the interpolated model values are less similar to the observed data points. Thus,

the RMSE values are used here to determine how well the model fits the observed

data values, with low RMSE values indicating a high degree of model accuracy

[MacCormack et al., 2018, Mueller et al., 2004]. All the calculations were carried

out in Python using the following libraries: scikit-learn, [Pedregosa et al., 2011],

GPy, [GPy, since 2012] and Folium.

Results

PCA-based weighted water quality index. The PCA method was used to

reveal the significant contaminants among samples and calculate the weighted-loads

of tested parameters in WQI. In total, five PCs with loads above 1 and a cumulative

variance of about 61% (see Table 5.1) were observed. Then, the parameters of

each PC that were correlated significantly with others and had the lowest loading’s

among them were eliminated (see Fig. 5-4). Finally, the WQI includes only non-

correlated parameters with loadings greater than 0.3 to the contributed PCs. The

Varimax rotation was used for PCA calculation and it helped to reveal the PCs
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with the exact chemical properties of water, which were clearly interrelated and

showed specific types of pollution. As an example, the chemical indicators usually

linked with organic pollution were coupled to PC3, whereas parameters of water

mineralization were coupled to PC1 (please see Table 5.1)

Table 5.1: Chemical components loading attributed to each PCs based on the PCA
with Varimax rotation

Principal components Comp1 Comp2 Comp3 Comp4 Comp5
Eigenvalues 6.116 2.057 1.856 1.543 1.237
Variance (%) 29.12 9.79 8.84 7.35 5.89
Cumulative variance (%) 29.12 38.92 47.76 55.10 61.00
Parameters loadings
𝑁𝐻4 0.0794 0.0041 0.5602 0.0279 -0.0603
𝐻𝐶𝑂3 -0.0363 0.5385 0.0041 0.0229 0.0137
Alkalinity -0.0364 0.5386 0.0041 0.0228 0.0136
pH -0.1731 0.3074 0.2065 -0.0889 -0.1959
Hardness of water 0.2960 0.2583 -0.1245 -0.0123 0.0035
Cr 0.0076 -0.0764 -0.0718 0.5049 0.1270
Cu -0.1188 0.0103 0.0489 0.2093 0.4262
Fe -0.0179 0.0199 -0.0408 0.6504 -0.0269
Mn 0.0557 0.0913 0.1145 0.4557 -0.1452
Ni 0.2217 -0.1376 -0.0030 -0.1010 -0.0475
Zn -0.0368 0.1017 -0.1915 0.0638 0.1721
𝑆𝑂4 0.1987 -0.0145 -0.1570 -0.0894 0.3695
Cl 0.5033 -0.1380 0.0726 0.0079 -0.1002
𝑁𝑂3 0.0666 -0.1398 -0.0800 -0.1048 0.5048
𝑁𝑂2 0.0518 -0.0645 0.1705 0.1495 0.0442
𝑃𝑂4 0.0223 -0.0059 0.6047 -0.0642 0.1163
Mineralization 0.3729 0.1255 0.0228 -0.0215 0.1407
Ca 0.2973 0.2457 -0.1414 -0.0098 -0.0152
Mg 0.2552 0.2604 -0.0634 -0.0169 0.0540
Na 0.4440 -0.0817 0.1863 0.0101 -0.0330
K -0.1235 0.1455 0.2777 -0.0010 0.5150

In fact, each PC contributed to a series of chemical parameters in the tested

dataset. For example, the PC1 was linked to the chloride content, overall miner-

alization and sodium content of water (with loadings greater than 0.3). However,

all three of these parameters were correlated: 𝑟(Na & Cl) = 0.856; 𝑟(Cl & Miner-

alization) = 0.819; and 𝑟(Na & Mineralization) = 0.800. Thus, the final shortlisted

parameters from these PCs were a subset of the co-correlated parameters to prevent

overlooked results and include only Cl. A similar case with co-correlated parameters
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Figure 5-4: The correlation heatmap for chemical parameters in tested freshwater
samples. Figure [A] present correlation coefficient) between all measured chemi-
cal parameters, while figure [B] present correlation coefficient only for parameters
with significant PCA loading. Initial number of water quality parameters for WQI
constriction was reduced from twenty-one to fifteen after PCA.

was observed in parameters attributed to PC2. The PC2 revealed three main char-

acteristics of water pollution: hydrocarbonates (𝐻𝐶𝑂3), alkalinity and pH. At the

same time, only 𝐻𝐶𝑂3 & Alkalinity was characterized by 𝑟 as 1.0, while two other

parameters revealed low values of co-correlaton 𝑟(pH & 𝐻𝐶𝑂3) = 0.227, 𝑟(pH &

Alkalinity) = 0.228 and were included in the shortlisted parameters. All correlations

among significant parameters for PC3, PC4 and PC5 were low (see Fig. 5-4); thus,

all parameters with 𝑙𝑜𝑎𝑑𝑠 > 0.3 (Table 5.1) were used for the WQI calculation. In

detail, 𝑟(NH4 & PO4) = 0.437 in PC3, 𝑟(Cr & Fe) = 0.336, 𝑟(Cr & Mn) = 0.097

and 𝑟(Mn & Fe) = 0.353. The last PC, PC5, consisted of four significant parameters

with extra low co-correlations: 𝑟(Cu & SO4) = 0.0642, 𝑟(K & NO) = 0.1376, 𝑟(K

& SO4) = 0.1637, 𝑟(Cu & NO3) = 0.0571, 𝑟(SO4 & NO3) = 0.2970 and 𝑟(Cu & K)

= 0.1769.

The resulting WQI is a combination of 12 parameters with different normalized

weighted factors:
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Figure 5-5: The overall distribution of WQI in tested samples. [A] The graph
presents the number of tested samples with observed WQI and the mean value of
the WQI. [B] Pie chart of statistical distribution of WQI for tested samples. [C]
Distribution of points with estimated WQI across the study area, lower WQI values
are corresponding to good groundwater quality, and higher – to poor groundwater
quality. [D] Ratio of WQI to spatial coordinates: X – Latitude, Y – Longitude.

𝑊𝑄𝐼 = 0.2912 · (𝐶𝑙) + 0.0979 · (𝑝𝐻 + 𝐴𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦) + 0.0884 · (𝑁𝐻4 + 𝑃𝑂4)+

+0.0735 · (𝐶𝑟 + 𝐹𝑒 + 𝑀𝑛) + 0.0589 · (𝐶𝑢 + 𝑆𝑂4 + 𝐾 + 𝑁𝑂3)

(5.11)
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Table 5.2: The optimal kernel parameters for the tested Gaussian kernel with peri-
odical kernels.

Parameter Value
Gaussian kernel variance, 𝜃4 0.0367
Gaussian kernel length scale, 𝑙 4.86
Periodic kernel variance, 𝜃5 0.0204
Periodic kernel period, 𝑇 5.67
Periodic kernel length scale, 𝑠 0.1

The distribution of the calculated WQIs among the tested samples is presented

in Fig. 5-5. The mean WQI was 0.24 in the tested locations, and the median was

0.22. These values signalled that less than 0.4% of the tested samples were actually

characterized as highly polluted, with a 𝑊𝑄𝐼 > 0.75. Distribution of WQIs across

the spatial coordinates – latitude and longitude – does not show any significant

trends.

BIC method for geospatial modelling vs ordinary and universal kriging.

The technique based on GPR and kernel structure selection using BIC was proposed

and validated. The optimal kernel structure obtained by the BIC method was found

to be a sum of Gaussian and periodic kernels (see Eq. (5.12)). The optimized hyper-

parameters can be found in Table 5.2 with ℓ1 = ℓ2 = ℓ, 𝑠1 = 𝑠2 = 𝑠, 𝑇1 = 𝑇2 = 𝑇

(isotropic case).

𝑘*(𝑥, 𝑥′) = 𝜃4 exp

(︃
− 1

2

2∑︁
𝑖=1

(𝑥𝑖 − 𝑥′
𝑖)
2

ℓ2

)︃
+ 𝜃5 exp

(︃
−1

2

2∑︁
𝑖=1

1

𝑠
sin2

(︁𝜋
𝑇

(𝑥𝑖 − 𝑥′
𝑖)
)︁)︃

(5.12)

To validate the proposed approach and to compare it to baseline methods (OK

and UK with different kernels), the 5 different random splits scheme (90% and 10%

train/test split) was applied. Table 5.3 shows the corresponding 𝑅2 and 𝑅𝑀𝑆𝐸

values obtained for different validation splits. It can be seen that optimal kernel

selection gave the best 𝑅2 compared to the standard kriging methods. RMSE for

obtained model was comparable to other methods. However, the standard devi-

ation of errors on different validation data subsets was minimal compared to the
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other approaches which make the proposed method beneficial. In the case of RMSE

assessment, it is also important to compare the obtained RMSE values with the

average value for WQI in the tested dataset. As can be seen, the average value of

WQI was 0.24 (Figure 5-5A). Therefore, the calculated 𝑅𝑀𝑆𝐸 = 0.065 indicates

that the proposed GPR model coupled with BIC is suitable for modelling. Finally,

Figure 5-6 shows the results of geospatial modelling of WQI values and the corre-

sponding uncertainty maps, obtained with different approaches. The results clearly

demonstrate the advantages of automatic kernel selection using BIC, allowing to

recognize the local pollutant areas.

Table 5.3: Results of the obtained models on 5 random validation splits.

1 2 3 4 5 mean std
Kriging with BIC 𝑅2 0.729 0.487 0.609 0.641 0.702 0.637 0.098
approach RMSE 0.060 0.072 0.071 0.062 0.059 0.065 0.0063
Ordinary Kriging 𝑅2 0.580 -0.075 0.599 0.625 0.575 0.461 0.300
gaussian kernel RMSE 0.068 0.076 0.056 0.060 0.059 0.064 0.0085
Universal Kriging 𝑅2 0.610 0.014 0.604 0.646 0.622 0.499 0.271
exponential kernel RMSE 0.070 0.077 0.056 0.060 0.058 0.064 0.0088
Universal Kriging 𝑅2 0.544 -0.052 0.600 0.631 0.590 0.463 0.289
gaussian kernel RMSE 0.071 0.076 0.055 0.059 0.058 0.064 0.0093
Universal Kriging 𝑅2 -11.205 -9.316 -11.042 -6.693 -9.860 -9.623 1.820
polynomial kernel RMSE 0.129 0.113 0.109 0.097 0.103 0.110 0.0122
Universal Kriging 𝑅2 0.415 -0.038 0.579 0.637 0.593 0.437 0.278
periodic kernel RMSE 0.080 0.076 0.057 0.059 0.058 0.066 0.0114

Discussion

PCA-weighted approach in WQI construction. The WQI was proposed for

the first time in 1965 by [Horton, 1965]. The implementation of weighted factors

for quality index construction is currently becoming very popular in environmental

science. This procedure was applied earlier in the environmental sustainability index

[Esty et al., 2005] and the Langat River water quality index [Mohd Ali et al., 2013].

Nevertheless, the large diversity of approaches of WQI construction shows a list of

vulnerabilities of the idea, and many details remain unclear: the high diversity of

types of water resources on the global scale that cannot be described by the same

measure, the consequent diverse number of parameters used, and, finally, the high
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Figure 5-6: Geospatial prediction of Water quality index and uncertainty maps
based on different techniques: A - GPR coupled with BIC; B - Ordinary kriging with
Gaussian variogram; C - Universal kriging, Exponential variogram+linear drift; D -
Universal kriging, Gaussian variogramm+linear drift.179
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level of subjectivity [Sun et al., 2016]. For these reasons, most existing WQIs are not

universal and may be used only in case studies [Tyagi et al., 2013]. As a suggestion,

the WQI should be based on an algorithm including parameters with maximum

loads into general variability (thus, excluding subjectivity being adaptive).

The proposed WQI, which involves the most influential parameters, allows to

model the environmental situation in the investigated area, thus including these

features into agricultural modeling. Obviously, this simplification is a logical step

toward the description such of complicated object as water resources , and it is

convenient for use in both scientific and practical applications. PCA-based approach

helps to reveal the 12 crucial parameters of water quality (Cl, pH, Alkalinity, 𝑁𝐻4,

𝑃𝑂4, Cr, Fe, Mn, Cu, 𝑆𝑂4, K, and 𝑁𝑂3) instead of the 25 parameters initially

measured, basing on 1569 sampling points. For example, pH is a crucial water-

quality parameter that affects water chemistry, including alkalinity, speciation and

solubility.

A similar PCA-weighted approach for the water quality index, where authors

applied the PCA with Varimax rotation to select the most important features of

water quality and reduced the original dataset from 13 parameters to 9, was proposed

by [Tripathi and Singal, 2019a]. Authors used all important features of water quality;

however, unlike the proposed approach, they included even correlated parameters,

which in practice led to an overestimation of the final values.

It can be highlighted at least one possible disadvantage of the proposed ap-

proach, which may be connected with the data size required for PCA. For example,

in [Hutcheson and Sofroniou, 1999] it was recommended that at least 150 cases are

needed to obtain satisfactory results in using this method. At the same time, not

every study of environmental parameters assessment includes more than 150 col-

lection points due to high installation, operational, and maintenance costs for each

sampling representative of the whole environmental conditions (as an examples,

[Ouyang, 2005, Chen and Han, 2018]).

Automatic approach to geospatial mapping. It was proposed the improve-

ment of the Gaussian process regression based on the Bayesian information criteria
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for automatic kernel structure search. The proposed approach allows to model the

distribution of water quality precisely and to detect multiple local foci of the devia-

tions, compared with commonly used ordinary kriging and universal kriging, which

were inaccurate and ineffective for this particular problem (Fig. 5-6).

The proposed approach permits determination of the most realistic spatial dis-

tribution of the WQI due to the application of the algorithm for automatical kernel

construction, which consists of the basic, non-linear kernels. Actually, when it comes

to the end-to-end implementation in operational data processing chains, like geospa-

tial modelling, it is mandatory to invest in models that are both accurate and robust

but also require minimal user intervention for fitting parameters. An automatic ker-

nel search helps to solve the problem of manual hyper-parameter and kernel structure

selection. According to the performed validation, the developed model showed lack

of overfitting and provided an accurate prediction on the test dataset according to

the used metrics. Recently, similar approach for automatic kernel selection, was

used successfully in several cases, e.g. the estimation of chlorophyll-a concentra-

tions from remote sensing data, delineation referents of city centres by topographic

data, soft-sensor modelling for algal bloom monitoring [Gómez-Chova et al., 2011,

Lüscher and Weibel, 2013, Wang et al., 2014]. However, to date, it has not been

transferred to geospatial modelling.

Conclusions

An end-to-end high accurate framework that allows to automatically model the

geospatial distribution of ecological factors that have the effect on crop yields was

developed. This approach states the clear methodology from the step of initial data

pre-processing and detection of the driving factors from PCA to the automatic ker-

nel search for geospatial mapping. The feasibility and robustness of the proposed

methodology in the case of water quality estimation in the newly added territories

to Moscow was shown. The novel approach of an automatic kernel structure search

was adapted and applied in this framework, and this approach allows to achieve de-

tailed results for geological modelling, compared with ordinary and universal kriging

methods. Overall, the developed methodology opens wide possibilities for solving

181



Chapter 5. Data-driven modeling of environmental parameters for improvement of plant growth
prediction 5.3. Machine learning approaches for phytotoxicity effects assessment

similar problems for parameters distribution modeling in the most accurate and

efficient way.

5.3 Machine learning approaches for phytotoxicity

effects assessment

5.3.1 Machine learning methods to predict acute phytotoxi-

city in petroleum contaminated soils

Introduction

Crude oil contamination, arising from oil production and transporting procedures,

has a devastating impact on the surrounding terrestrial ecosystems entailing agricul-

tural production and thus human health [Larive, 2008, Khan et al., 2018]. Crude oil

includes various aliphatic and aromatic hydrocarbons, which are rich in petroleum

hydrocarbon and non-hydrocarbon compounds, yet are deficient in any nutritional

elements. Since total petroleum hydrocarbons (TPH) structurally belong to the

group of complex chemical compounds that are either found within crude oil they

can be used as a means of measuring soil contamination with crude oil. The level of

TPH in polluted soils largely depends on soil properties and can rise almost by 10

times as compared to the background level. What is more important, TPH input to

the soil may trigger immediate changes in the environment and thus induce adverse

biological and ecological effects [Garcia et al., 2019, Hunt et al., 2019]. Among dif-

ferent soil quality indicators, acute phytotoxicity is a conventional yet very efficient

method to assess the extent to which soil is polluted [Gerber et al., 2017]. It is

often measured by calculating the seed germination inhibition, root growth inhi-

bition, or any other adverse effects on plants. Several studies demonstrated TPH

contamination to be closely related to soil phytotoxicity [Molina-Barahona et al.,

2005, Kanarbik et al., 2014, Kaur et al., 2017]. The mechanism by which TPH may

induce soil phytotoxicity is rather complex as the effects produced by various en-

vironmental factors and soil properties are synergistic. Therefore, it is essential to
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perform an accurate simulation of the threefold relationship between plant response,

TPH content, and physicochemical factors. Thus, quantifying and predicting TPH

phytotoxicity in the soil is a crucial issue for soil planning and remediation, resulting

in the improvement of the crop yield. Meanwhile, experimental measurements as-

sessing the correlation between soil properties and phytotoxicity of the contaminants

are time-consuming and complicated, and, what is more, it seems impossible to test

all the naturally existing variants with utmost accuracy. Hence, the quest to find a

universal approach to determine a non-linear correspondence between bio-indicators

and the physicochemical data observed in the soil is necessary. These demands are

met by machine learning techniques (ML) (that demonstrated a rapid surge of in-

terest to designing models to simulate and predict soil processes Goodarzi et al.

[2016], Olawoyin [2016], Cipullo et al. [2019], Sayyad Amin et al. [2019]). Modern

supervised machine learning methods, such as support vector machine (SVM) and

artificial neural networks (ANN), are considered to be promising and efficient tools

aimed at interpreting high-dimensional and high-nonlinear data in environmental

science. Previously, SVM was used to predict spatial distribution of soil organic

carbon, soil nitrogen stock [Kou et al., 2019], and soil salinity [Wu et al., 2018].

ANNs were successfully applied to model soil physical properties in case of temper-

ature fluctuations [Ozturk et al., 2011] and erosion [Gholami et al., 2018]. It was

useful in determining soil chemical properties [Fernandes et al., 2019] as well as soil

biological activity [Jha and Ahmad, 2018, Ebrahimi et al., 2019]. The main aim

of the following research was to show that a few observations and measurements of

the soil properties provide the possibility to predict their phytotoxicity effect on the

plants based on contaminants.

Materials and methods

Top soils samples from eleven field sites on the Sakhalin island were brought to

the laboratory, where they were thoroughly mixed and quartered (see Table A.3)).

The total weight of one wet soil sample was 4 kg. The soils were stored in airtight

containers at a room temperature before being analysed. The soil samples were

classified according to WRB [Chesworth, 2007].

183



Chapter 5. Data-driven modeling of environmental parameters for improvement of plant growth
prediction 5.3. Machine learning approaches for phytotoxicity effects assessment

The experiment was conducted in greenhouse conditions (22±1ºC). Crude oil was

characterized by the bulk density 0.83 g 𝑐𝑚−3, 2.6% of the 𝐶5 −𝐶9 fraction, 21.3%

of the 𝐶9 − 𝐶15 fraction, 2.6% of the 𝐶16 − 𝐶20, 72% of the asphaltene and mazut

fractions, and low content of sulfur (148 mg 𝑘𝑔−1) [Kovaleva et al., 2017]. Different

doses of crude oil (from the 3.0 to 100.0 g 𝑘𝑔−1) were manually added to the soils

based on the expert opinion about their possible sorption capacity to TPH (https:

//doi.org/10.6084/m9.figshare.9114638.v2). Each toxicity test consisted of 6

treatments — one control treatment and five increasing oil concentrations — each

conducted in triplicate.

Barley toxicity tests. Spring barley (Hordeum vulgare L.) is one of the most

essential grain crops [Arendt and Zannini, 2013]. According to the international

standard ISO 11269-1, H. vulgare L. is also recommended for bioassay investigations.

The seeds were pre-sterilized by orbital agitation with 70% ethanol for 2 min and

then with 5% sodium hypochlorite adding several drops of Tween 80 for 30 min.

They were rinsed six times and sterilized in distilled water. All seeds were transferred

in sterile conditions into 10 mm Petri dishes containing the studied soils (20 g of dry

mass for organo-mineral soils and 10 g of dry mass for peat soils) covered with a filter

paper (Ø 90 mm Whatman #1) soaked with distilled water to achieve the moisture

level equal to 60% of the soil water holding capacity. The Petri dishes were taped

and placed in the dark at 21°C for five days under the same conditions to evaluate

root elongation. Finally, barley root elongation was calculated either as the average

mean, or as the sum of all roots emerged from each seed. The experiments were

performed three times.

Soil properties measurements. The contents of soil organic carbon by Walkley-

Black protocol, soil total nitrogen by ISO 11261, soil total phosphorus and potassium

were determined, soil in water 1:5 extract by pH-meter. Particle-size distribution in

soil samples was measured by the aerometric method. TPH in soil was determined

by the gas chromatography technique (GC-FID) in GC 6890N Agilent Technologies

with a flame ionization detector.
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Statistical analysis and machine learning. Before performing statistical anal-

ysis, normality of the data were checked by using the Kolmogorov-Smirnov test,

and data conversion was applied in cases where they were not normally distributed.

Treatments were replicated for three times. The data were processed following the

analysis of variance; the means of treatments were compared using Tukey’s mini-

mum significant difference test at the 0.05 probability level. Two approaches were

evaluated - support vector regression (SVR) and artificial neural networks (ANN)

- to predict root lengths using Python. In the course of the research the following

packages were used: Scikit-learn Python library, as well as Keras and Tensorflow

libraries for building and training neural networks. See Fig. 5-7 for more details on

the pipeline of the implemented approach to predict soil phytotoxicity:

The dataset was randomly split into training and validation datasets using the

train test split method from Scikit-learn Python library. The train sub-dataset

consisted of 172 randomly selected records, which accounted approximately for 80%

of the total amount. The test sub-dataset included other 44 records, comprising the

remaining 20% of records.

Support vector machine. Support vector regression is a learning regression al-

gorithm developed from the Support vector machine; the mathematical formulation

of SVR is provided and discussed in detail by [Drucker et al., 1997]. The strength

of SVR is the ability of the model to establish complex nonlinear relationships in

the multidimensional or hyper-dimensional feature space. Training dataset was used

for initial fit of the SVR with the Gaussian kernel (Radial basis function - RBF) in

Python, while the optimal hyper-parameters of the model were obtained by solving

an optimization problem (minimization of the RMSE) by varying of the hyperpa-

rameters C and 𝛾. The parameter search space was a priori set to 0.01 6 𝐶 6 10000

and 0.01 6 𝛾 6 50. A logarithmic grid for parameters search space was used. This

approach for SVR modelling is widely presented in the literature as example of a

successful application of the method to the problems of multidimensional regression

in various research fields [Hjorth, 2017].
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Figure 5-7: Workflow for using machine learning methods for TPH phytotoxicity
prediction.

Neural network design and training ANN modelling. For the purposes of

modelling, it was used one hidden fully connected layer and several input and hidden

layers consisting of different amounts of neurons: from 16 to 256 ones were tested.

A rectified linear unit (ReLU) was used as an activation function, exhibiting strong

biological and mathematical underpinning [Hahnloser et al., 2000]. The neural net-

work architecture and its training procedure were implemented in Python using the

Keras library with the computational core TensorFlow. In the process of learning,

the adam algorithm was used instead of the classical stochastic gradient descent to

increase the efficiency of calculations [Kingma and Ba, 2014]. Mean squared error

was used as a loss function.

Performance evaluation. Traditionally, several metrics are used to assess the

accuracy of ML models. The quality of the trained model was evaluated using the

root mean square error (RMSE) (5.10) as well as mean absolute error (MAE) (5.13):
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𝑀𝐴𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖|, (5.13)

where n is the number of training compounds, 𝑦𝑖 and 𝑦𝑖 are the estimated and

observed responses, respectively. Being independent of the response scale, contrary

to RMSE, the coefficient of determination 𝑅2 (5.9) is also considered as a useful

metrics for accuracy.

Results of modeling

Changes in physicochemical and biological properties of the soil under

crude oil pollution. The soils used for this study exhibited a wide range of soil

properties (Table A.3) and belonged to the main types of zonal and intrazonal soils of

the Sakhalin island. Soil pH ranged from 4.30 at Soil #3 (Carbic Podzol) to 5.65 at

Soil #5 (Livic Stagnosols Dystric), while in seven samples pH was lower 5.5. The LOI

varied greatly: the maximum organic carbon was at Soil #1 (Fabric Histosols Dys-

tric) 97.18%, while Soil #9 (Umbric Fluvisols Oxyaquic) had the lowest values <2%.

Clay content ranged from 0 to 28.20%. The initial concentrations of TPH in soils

ranged between 0.3–3.0 g 𝑘𝑔1; the mean barley root length in the controls was from

39 to 109 mm; the longest roots detected in the soils were with a high content of or-

ganic carbon and NPK. Injection of crude oil significantly increased TPH content in

the soils (Data represented in https://doi.org/10.6084/m9.figshare.9114638),

but phytotoxicity effects produced on barley varied greatly among different soil types

and crude oil treatments (see Fig. 5-8). As compared to the controls, the marked

phytotoxicity was measured in soils #9 (Umbric Fluvisols Oxyaquic), #10 (Hap-

lic Cambisols Dystric) and #11 (Umbric Fluvisols Oxyaquic) with doses of 20 and

30 g 𝑘𝑔−1 of crude oil in the soils. A slight hormesis effect (i.e. the stimulation

of response at low doses followed by the inhibition at high doses) was observed in

several soils (e.g. Rustic Podzols, Carbic Podzols, Histic Podzols, etc), but it was

significant (p < 0.05) only for soil #5 - Luvic Stagnosols Dystric (see Fig. 5-8).

Being applied to various soils, crude oil affected barley in such factors as intensity
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Figure 5-8: The effects different crude oil treatments (g/kg) produce on barley root
lengths phytotoxicity in different soils; the error bars represent a standard deviation
of the mean (n = 90). Soils description by WRB: 1 - Fibric Histosols Dystric; 2 -
Rustic Podzols; 3 - Carbic Podzols; 4 - Histic Podzols; 5 - Luvic Stagnosols Dystric; 6
- Histic Gleysols Dystric; 7 - Fibric Histosols Eutric; 8 - Umbric Fluvisols Oxyaquic;
9 - Umbric Fluvisols Oxyaquic; 10 - Haplic Cambisols Dystric; 11 - Umbric Fluvisols
Oxyaquic.

and direction depending on the type of the soil. Key factors influencing the root

length were determined by agglomerative hierarchical clustering and principal com-

ponent analysis; and presented in Fig. 5-9. For example, a high content of organic

matter may determine the bioavailability of TPH in the soils, because of their high

affinity to organic contaminants. This statement has been proved for soil samples

#1, 2, 3, 4 (see Fig. 5-8, 5-9). Since these soil samples were characterized by a high

value of LOI, even extremely high doses of crude oil (>30 g 𝑘𝑔−1) appeared to be

less phytotoxic than other samples with a lower content of LOI. Nevertheless, other

complementary factors also tended to affect the root lengths as in the case of other

soil samples. For instance, PCA revealed that in soil samples #3 and #4 barley

response was determined not only by TPH content, but also by initial NPK values.
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Figure 5-9: Drivers for barley root lengths depend largely on the tested soils accord-
ing to agglomerative hierarchical clustering and principal component analysis

Development of predictive toxicity models

Support vector regression performance. SVR method was trained to predict

barley phytotoxicity (mean root length) depending on the basic soil characteristics

and TPH content. RBF kernel was used in the SVR algorithm. C and 𝛾 kernel

parameters varied to produce a model with optimal performance and were cross-

validated using subsets A and B, which included 44 random records from the training

dataset. The desired level of accuracy was controlled by measuring the average mean

of RMSE and 𝑅2 with different values of C and 𝛾. Figure 5-10 shows the plots with

predicted vs actual values for root lengths for two-cross validation with different

combinations of hyperparameters C and 𝛾. Figure 5-11 summarizes in a heatmap

the calculations of 𝑅2 and RMSE on a grid of C values (varying from 0.01 to 10 000)

and 𝛾 values (from 0.01 to 50). Judging from the data in Fig. 5-10 and 5-11, it is

obvious that the lowest RMSEs were achieved with the hyperparameters C = 900,

𝛾 = 1 (Fig. 5-10A) and C = 900, 𝛾 = 0.1 (Fig. 5-10F). Thus, it was concluded that

by setting C = 900 and varying 𝛾 from 0.1 to 1, RMSE values close to 11.0 with a
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Figure 5-10: Results of the reconstruction of the mean root length obtained by
applying the SVR method to two-test sub-sets A and B with different hyperparam-
eters.

determination coefficient 𝑅2 of 0.8 could be achieved.

Artificial neural networks performance. To predict soil phytotoxicity using

artificial neural network models under different TPH concentrations in soils, soil

physicochemical and phytotoxicity properties were used as input data, as in case

of SVR. After determining the complexity of training and testing data, ANN was

designed with different numbers of neurons in the hidden and input layers. Then

the optimum structure of the networks was determined using the RMSE and MAE

criteria. Figure A-1 gives an overview of ANN model performance with a different

amount of neurons in the hidden layer and 128 neurons in the input layer (testing

sub-sets). It can be seen that the prediction accuracy of ANN is close to that of SVR

(RMSE varies in the range from 11.14 to 15.38), and does not change significantly

depending on the properties of the sample, though the number of hidden neurons was

expected to have an effect on ANN performance. The accuracy of the tuned ANN

models using RMSE metrics ranges from 11.05 to 14.79, whereas the MAE metrics

ranges between 8.44 and 12.10. It should be highlighted that architectures with a
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Figure 5-11: Results of the calculations of the determination coefficient 𝑅2 and the
root mean squared error RMSE on the grid of SVR model hyper parameters 𝛾 and
C for two different test sub-sets A and B. The contour features out the best areas
with the highest 𝑅2 and the lowest value RMSE. Perpendicular lines correspond to
the coefficients of Fig. 4A and 4F. Note: Attention. There are different scales of
RMSE values for test sub-set A and B.
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similar amount of neurons in the hidden and input layer turned out to have larger

RMSE and MAE values than other combinations (see Fig. A-1). The best prediction

with the lowest RMSE 11.05 and MAE 8.44 was achieved with the architecture of

256 neurons in the input layer and 64 in the hidden one.

Discussion

Plant bioassay is an effective and popular tool for estimating the soil quality and

assessing ecotoxicological risks [Ghosh et al., 2017]. Rapid-cycling plants like barley

(Hordeum vulgarie) allow to reveal a short-term influence from organic and inorganic

contaminants in the soil [Kim et al., 2019, Nikolaeva et al., 2019]. According to the

ISO 11269-1:2012, root elongation may be a crucial endpoint for ecotoxicological

assessment. Normally, elongation tests imply plant development during a short

5-day timespan. This period corresponds to the imbibition of dry seeds and an

intensive water uptake for the radicle protrusion through seed covering layers and

roots development, so at this stage plants are usually sensitive to contaminants

[Weitbrecht et al., 2011]. In this study the focus was on standardized plant toxicity

endpoints in different soils polluted by TPH. While phytotoxicity assessment is a

time-consuming method, requiring the development of advanced prediction models

and getting accustomed to soil types and pollutants, it was assumed that SVR and

ANN may be promising as the candidates for phytotoxicity prediction in different

soils [Cipullo et al., 2018].

The main types of zonal and intrazonal soils obtained from different parts of

Sakhalin island were studied. For each soil sample it was conducted a greenhouse

experiment to test TPH phytotoxicity of barley planted in differently TPH-treated

soils. As a result, it was received and analyzed a dataset comprising 11 types of

soils and described them according to barley phytotoxicity response, TPH content,

and some chemical properties. Many researchers previously reported significant

inhibitory effects due to the elevated dose of TPH in the early-stage plants growth.

Masakorala et al. [2013] detected a 50% and 97% reduction in Lactuca sativa L. root

lengths at 1% and 3% TPH, respectively, in freshly-contaminated soils. The TPH

contaminated soil usually had significant phytotoxic effect on the root growth even
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at low contamination level (0.5% according to [Gaskin et al., 2008]. This problem

was previously singled out for different kinds of heavy metals or TPH pollution

[Said et al., 2019]. According to the results Fig. 5-8 obtained, the traditional dose-

response curve approach seems to be unsuitable for data analysis because of the

non-linear response of root elongation under increasing TPH content and exciting

hormesis effects in some dose of crude oil in several soils. Notably, the effect of early

stimulation following TPH adding was observed in [Kirk et al., 2002, Shahsavari

et al., 2013]. Overall, the high variability of this dataset poses a challenge to predict

the dose-dependent relationships and barley response using traditional approaches.

The ML methods are very advantageous in this case because ANN and SVR can

perform nonlinear regression efficiently for high dimensional datasets.

Recently, several models have been developed to assess the quantity relationships

for various toxicity responses on TPH of terrestrial plants, microorganisms, and soil

fauna [Hentati et al., 2013, Bori et al., 2016, Tran et al., 2018, Cruz et al., 2019,

Soroldoni et al., 2019]. These relationships were defined either for soils with different

properties or those from different countries. At the same time, it is possible that

the developed models and dependencies on these data may not be proved on the

samples from other regions because of differences in soil physicochemical properties.

The deviation of the modelled soil phytotoxicity from the measured ones across the

machine learning models is shown in Fig. 5-12, where ANN and SVR predicted

values were plotted against the average measured values for the root length in a

randomly split dataset. The SVR model had a higher correlation and a lower RMSE

than other models, while ANN models were approximately equal in this regard. Both

groups of models were characterized by a suitable accuracy for predicting TPH

phytotoxicity effect on barley root length in direct soil bioassay tests. The SVR

model achieved a sufficient performance accuracy for both predicted and measured

values of phytotoxicity; using the combination of hyper parameters C=900 and

𝛾 = 0.1 it was achieved 𝑅2 of about 0.80 and RMSE values of about 11-12 (see Fig.

5-11). ANN showed the minimal calculated 𝑅𝑀𝑆𝐸 = 11.05 and 𝑀𝐴𝐸 = 8.44 with

256 inputs and 64 hidden neurons, respectively (see Fig. A-1). Previously, a similar

approach was used observed for soil heavy metals prediction [Sergeev et al., 2019],
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Figure 5-12: Measured and estimated root lengths for test subset-A of ANN (A)
and SVR (B) models. Red lines stand for 1:1 line.

and soil salinity prediction [Pouladi et al., 2019]. These results indicate that both

models could be effectively adapted in the course of training and to be further used

as a general model for predicting TPH phytotoxicity in soils.

Conclusions

This study shows the complexity and significance of the investigation of phytotox-

icity effect of contaminated soils. The modeling of the phytotoxicity effects was

demonstrated on the example of the TPH soils contamination. As it was revealed,

the range of the effect depend largely on the properties of the soil. In most tested

soils, adding TPH in the doses over 15 g 𝑘𝑔−1 tended to increase the barley root

lengths and induced marked phytotoxicity. Nevertheless, in some cases the addition

of TPH positively affected the growth of the roots as compared to the test with

a non-polluted control. It was demonstrated the benefits of applying the machine

learning approach to the prediction of TPH phytotoxicity in eleven types of soils.

In the course of research, SVR and ANN algorithms were trained based on the data

received from the greenhouse experiment. As a result, the best performance was

detected for SVR model with 𝑅2 - 0.8 and RMSE - 11. This predictive model can

definitely provide additional information about the quality of the soil on a regional

scale what it turn can improve the agricultural management and lead to increasing

crop yield.
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5.3.2 Machine learning methods for assessment and predic-

tion of phosphogypsum influence on soil

Introduction

Usage of wastes for agricultural needs is becoming more and more popular. How-

ever, the effect such utilization is not always unambiguous. Waste production is an

increasing global concern that is projected to worsen with the accelerating world’s

population. To be adduced just as an example, in the Russian Federation more than

31.5 billion tons of waste were accumulated and identified by 2016 (including 140

million tons of phosphogypsum (PG)) and 100 million tons were landfilled [Report,

2015]. Given the large quantities that are produced, and keeping in mind that only

14% of PG is used in the construction industry, it is necessary to dispose the sur-

pluses [Tayibi et al., 2009]. For instance, the land application of PG in agricultural

fields could be an important recycling alternative aiming to reduce landfilling sites

[Saadaoui et al., 2017].

The application of PG as an amendment has generally shown a positive effect on

soil chemical properties, including an increase in the available sulphur and phospho-

rus content, improvement of soil structure and crop yield [Carmeis Filho et al., 2017,

Kammoun et al., 2017]. Furthermore, PG amendment is recommended in amelio-

rating salinity in damaged soils, providing a source of Ca to replace the excess Na

in cations’ exchange [Hurtado et al., 2011]. However, there are several difficulties in

expanding the use of PG for an agronomy purpose, due to its complex structure.

Only a fraction of ecotoxicological studies have been performed to evaluate the

ecological impact of PG application on soil. PG information is particularly frag-

mentary especially regarding their inclusion of trace element pollutants and other

compounds as its specific composition and characteristics change considerably de-

pending on the geographical origin. This waste typically comprises mainly gypsum

and phosphate, but may also include the potentially hazard elements, such as fluo-

ride, strontium, barium. The presence of the latter at high levels in PG may have

hazardous impact on the soil in general and on humans and plants, in particular.

Pollutants from PG may adversely affect the soil environment by retarding the plant

195



Chapter 5. Data-driven modeling of environmental parameters for improvement of plant growth
prediction 5.3. Machine learning approaches for phytotoxicity effects assessment

growth, and enhancing the soil toxicity [Ayadi et al., 2015, Yakovlev et al., 2013,

Hentati et al., 2013].

The use of supervised ML methods trained on empirical data could be advanta-

geous to make predictions on the potential toxicity effects of exogenous substances

in soil [Deng et al., 2017, Cipullo et al., 2019], properties of drug-like molecules

[Palmer et al., 2015], and biomonitoring the pesticide toxicity [Zhu et al., 2018,

Niell et al., 2018]. ML models are able to learn the relationships between input

variables (e.g. soil amendment, soil type) and output variables (e.g. changes in soil

toxicity, or bioassay response) from a training dataset, these relationships can then

be generalized to make informed decisions in new cases. The interest to ML methods

definitely rises, especially when we deal with soil systems, because the traditional

statistical extrapolation techniques do not fit well in case of complex environment

[Jager, 2011, Fox, 2015]. Overall, it can concluded that the application of ML to

environmental issues (that are closely related to the precision agricultural domain)

is the latest cutting edge research direction.

Materials and methods. Greenhouse experiment includes different PG doses (0,

1%, 3%, 7.5%, 15%, 25% and 40%) and two times-collection points after treatments

- 7 and 28 days. For each treatment and each times-collection point it was measured:

i) soil pH, bioavailable (𝐻20 and 𝑁𝐻4𝐶𝑂𝑂𝐻-extractable) element content (S, P, K,

Na, Mg, Ca, Fe, Zn, Sr, Ba, F); ii) soil enzyme activities – dehydrogenase, urease,

acid phosphatase, FDA; iii) soil 𝐶𝑂2 respiration activity with and without glucose

addition; iv) Eisenia fetida, Sinapis alba and Avena sativa responses. The dataset

that was used for simulations is available via the link: https://doi.org/10.1007/

s11368-019-02253-2. The ordinary chemical, toxicology and biological measuring

of soil properties was combined with state-of-the-art mathematical analysis, namely:

i) support vector machines (used for prediction); ii) mutual information test (variable

importance tasks).

Mutual information test. The investigation of the factors relevance was car-

ried out by mutual information test [Kraskov et al., 2004]. This method studies

probabilistic dependencies between the target vectors and considered factors. These
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complementing measures can be useful to analyze the data from different points

of view. In contrast to correlation analysis, this test allows identifying nonlinear

relations between given factors and target vectors. Moreover, it gives a degree of

dependencies for every pair of considered factors or between factors and a target

vector. These degrees help to eliminate the most redundant and the least relevant

factors. The elimination can be based on some threshold number of required fac-

tors or the threshold value of mutual information score. In this study, with a help

of mutual information test, the load of individual chemical variables in biological

and ecotoxicity responses was practically assessed. The most important chemical

features that were identified by mutual information algorithm for the estimation of

the PG biological and ecotoxicological influence in soil are represented in Fig. 5-13.

The heatmap (5-13) shows that different features from PG were dominated for each

biological and ecotoxicity variables.

According to the experimental results, among the 9 measured soil biological and

ecotoxicity variables, only URE and SIR soil activities, S. alba root lengths and

E.fetida survival rate were negatively affected by PG treatments [Pukalchik et al.,

2019]. The results obtained from mutual information tests suggest, that only a few

elements may be dependent on the exacerbating effects of PG on the mentioned

variables, in particular: F(w), P(m), Sr(m) have the greatest load on earthworm’s

toxicity; S(m), Ca(m) and Na(m) influenced S. alba root lengths toxicity; Ca(m),

Ba(w) and Sr(m) mostly affected on soil URE activities; finally, F(w), P(w) and

P(m) affected in SIR values. These results were supported by the mutual information

scores (see Fig. 5-13). Previous studies highlighted the key role of the exacerbated F,

Sr and P soil content in toxicity to earthworms. In particular, fluorine and strontium

may have led cytotoxicity effects, and phosphorus addition with fertilizer may also

induced earthworm’s mortality [Chae et al., 2018]. The sulfur, calcium and sodium

phytotoxicity effects may be connected with their possible accumulation in roots

and ion relations effects [Negrão et al., 2017]. Inhibition activities of barium and

strontium to soil URE activities were earlier observed by [Tabatabai, 1977]. The lack

of effect of PG on soil enzyme activities like AP, FDA and DHA, looks controversial.

However, it provides the evidence in favor of the sensitivity of these enzymes to soil
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Figure 5-13: Influence of measured chemical elements in soil after PG addition to
soil biological and toxicological responses from the mutual information test. Balls
are coloured according to calculated load (from 0 to 1): the higher values coloured
in read, and the lowest values - in blue.
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contamination that could be overvalued for soil monitoring purposes. In general,

the enzyme activities are considered to be the first to respond to soil contamination;

due to their high sensitivity to react to environmental changes. Moreover, they play

a fundamental role in the dynamics of C, N, P, S which in turn have an effect on

plant growth dynamics [Caldwell, 2005]. However, obtained results in general make

it possible to assume that a high amount of fertilizer elements could interfere the

effect of trace elements on hydrolysis enzymes. As it can be seen from the mutual

information scores shown in fig. 5-13, the P, K, Na, Mg and S addition has the

highest load in AP, DHA and FDA responses among all the other elements. Thus,

it was concluded that the chosen machine learning techniques are useful to further

studies in the issues in questions and potentially help elucidate quite ‘in-obvious’

relations.

Support vector machine. In this research, the dataset was randomly split into a

training and validation datasets with different ratios (90% or 116 observations, 70%

or 88 observations, and 50% or 63 observations were used as a training datasets,

10%, 30% and 50% observations - as a text dataset). The input data (all measured

chemical, biological and ecotoxicity data) were log-transformed prior to model devel-

opment, biological and ecotoxicity data were scaling from 0 to 100 scale in compare

with NA control samples.

The training dataset was initially used to fit the SVR model with the Gaussian

kernel function and the optimal model’s hyper parameters were obtained by solving

an optimization problem (minimization of the RMSE) on a grid of hyper-parameters:

C and 𝛾. The parameter search space was a priori set to 0.001 6 𝐶 6 1000 at an

incremental ratio of 10 and 0.001 6 𝛾 6 0.3 at steps of 0.001. After training, the

derived SVR models were applied to the validation datasets to produce the apparent

soil biological and ecotoxicity properties. The performance of SVR modeling was

evaluated by the root mean squared error (RMSE) (5.10).

The trained SVR model was used to predict the soil biological and ecotoxicity

properties in the presence of different PG doses. Table 5-14 shows the performance

indicators for SVR-1, SVR-2 and SVR-3 models with varying input size on training
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Figure 5-14: Influence of training set size on SVR models performance to predict
soil biological and ecotoxicity properties after PG addition

Figure 5-15: Prediction accuracy for the selected soil toxicity data using SVR-1
model

datasets (90%, 70% and 50% of the input data were used). The RMSE values

ranged from 4.25 to 12.15 for SVR-1 model provide better accuracy for modeling

response parameters than SVR-2 and SVR-3 models. Figure 5-15 shows predicted

and experimental values for the selected biological and ecotoxicological parameters

(as an example the URE, S.alba, and E.fetida were chosen) based on the SVR-1.

As can be seen, visual correlation between measured and predicted values for the

random selected samples were satisfactory.

Models based on biological indicators could become a powerful tool in soil ecotox-

icology and could help to reduce the amount of analysis needed to adequately mon-

itoring soil systems quality [Cipullo et al., 2019]. The results of SVR performances

revealed that model prediction ability consistently improved with the increasing size

of training sets. The SVR model was able to predict the toxicity and biological prop-
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erties with adequate accuracy only in case when 90% of received data were used as

a training dataset (see Fig. 5-15). When the training dataset was reduced to 70

or 50% of experimental data the accuracy of modeling dramatically decreased (see

Table 5-14). A similar influence of training set size on SVM-based prediction have

already been investigated the phosphogypsum toxicity using the simple linear pro-

bit model [Rodríguez-Perez et al., 2017, Yakovlev et al., 2013, Hentati et al., 2015].

In particular, no observed effect concentration of PG in soil were determined from

1.24% (F. candida) to 24.61% (E. crypticus), and no toxic effect was detected for

Zea mays, and Lactuca sativa up to 25% PG was descrribed in [Hentati et al., 2015].

According to [Yakovlev et al., 2013] the most sensitive indicator of an ecosystem

stress for PG application was a microbial respiration activity, and the calculated

(not observed) effect concentration was 10.8% in artificial soil.

Conclusions. The proposed approach to identify the PG influence in soil with

advanced ML models looks beneficial in comparison with previous studies, which

can be explained by better applicability of the available knowledge because it relied

on both qualitative data (biological and ecotoxicological properties) and quantitative

data (chemical properties of soils with different doses of PG) for models training.

Keeping in mind that the relationship among pollutants and even the chemical

composition of waste is highly nonlinear and very complex, it was mandatory to

use more accurate analysis tools based on statistical learning such as the support

vector regression. It was noted that size of training datasets significantly influenced

the SVR-models performance and even a “small” amount of data could be enough

to train SVM models. At the time when the ecological monitoring programs are

declining in a cost-effective manner and it is not always possible to receive a “Big

Data” in soil environment, the usage of ML methods may be a promising candidate

tools to prevent soil degradation and contamination, thus addressing problems for

effective agricultural land fertilizers usage.
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5.4 Conclusions

In this chapter a set of data-driven methods for more accurate modeling of the envi-

ronmental parameters was proposed. This gives the opportunity to include modeled

parameters into existing model-based algorithms for yield prediction to improve

them. It was proposed and evaluated end-to-end methodology for improving ac-

curacy of prediction of spatial distribution on the environmental parameters. The

method is based on the Gaussian process regression with an automatical kernel

structure search based on Bayesian information criteria. This method was tested on

the proposed water quality index which in turn plays a crucial role in the irrigation

process defining the crop yield. The developed methodology for creating of water

quality index that describes integral characteristics of pollution can be applied to

other environmental parameters. The results of modeling showed the improving

accuracy of prediction of spatial distribution of parameter compared to standard

techniques as well as more automated process of modeling. The other techniques

described in this chapter are dedicated to prediction of toxicity effects of soil con-

tamination. There is no precise method up to day that allows to model the toxicity

effects of soil contamination. It was demonstrated that toxicity effects of such com-

plex systems as contaminated soils can be assessed precisely using ML techniques.

In particular, the advantages of using of ML techniques for prediction of toxicity

effects were shown on the problem of TPH phytotoxicity assessment. Also, the pos-

sibilities of ML methods to identify quantitative effect of addition of a fertilizer such

as phosphogypsum into soil were demonstrated. The results of modeling are more

accurate compared to previous studies and opens many possibilities to analyze soil

properties and important factors that were unavailable before.

Overall, the proposed and evaluated ML methods for modeling the environmen-

tal parameters and their effects on growth showed lots of advantages compared to

previous studies allowing to include these parameters into existing methodologies

for plant growth prediction and taking into account effects that were not consid-

ered before. Application of these approaches can be easily extended to greenhouses

giving the opportunity to perform accurate modeling of spatial distribution of envi-
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ronmental parameters and effects of different fertilizers on plant growth dynamics.
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Conclusion

The present thesis focuses on data-driven and hybrid methods to propose a set of

solutions to solve one of the most crucial problems of modelling plant growth in

the controlled environment to achieve a sustainable food production. The research

emphasizes universality and robustness of the proposed approaches as the main

feature and considers different aspects of plant growth: seed germination process,

vegetation stage of growth and disease detection.

To carry out the study most effectively novel automated artificial growth sys-

tems equipped with a sensor and non-invasive machine vision systems were devel-

oped and constructed. Using these systems unique and relevant datasets were col-

lected to describe plant growth dynamics and environmental conditions. Leaves area

(projected), being the main target parameter, was estimated using a self-developed

accurate computer vision methods. These datasets were used for the following val-

idation of the proposed methods. The set of the proposed methods was divided

into two groups based on the principals of applying the method and limiting its

implementation. The former is the hybrid approach which includes data-driven and

model-based methods. Such approaches such as Kalman filter, dynamic mode de-

composition, merging 2D/3D data, fully convolutional neural networks were adapted

and implemented to the obtained dataset. The research has shown that Kalman fil-

ter has a high computational efficiency without reducing the accuracy, which cannot

be achieved using more straightforward methods. Applying dynamic mode decom-

position in couple with a set of differential equations showed that physical principles
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could be included to modelling; this method also showed a high accuracy on a small

train dataset, though it appeared to require fine-tuning. Instance segmentation

method used along with other CV methods allowed us to track and predict growth

dynamics of each leaf, which could be used for a detailed plant growth dynamics

assessment. Merging 2D/3D promised the prediction of the plant’s biomass basing

on 2D data.

To enhance the hybrid methods, pure data-driven approaches, such as recurrent

neural networks and convolutional neural networks, were also proposed to be used

for growth dynamics assessment and prediction. Recurrent neural networks were

implemented to projected leaves area prediction. The dataset used for validation

was collected on the own small-scale experimental setup equipped with machine

vision and sensors systems. The result of the modelling showed accurate, long-term

predictions of the projected leaves area. After that, machine vision and sensing

systems were deployed into an industrial experiment, in the course of which a huge

dataset describing growth dynamics and growing conditions was collected. Using this

dataset FCNNs were trained to perform segmentation tasks for an automatic leaves

area (projection) calculation. Basing on sequences of images the growth dynamics

of plants was reconstructed. In addition, the biomass of the plants was measured,

which allowed us to find the dependencies between the projected leaves area and the

biomass and to predict the biomass using the obtained 2D images. The thesis also

proposes a methodology for seed germination rate assessment; it is based on CNNs to

propose the regions presumably containing seeds and on CV techniques to perform a

quantitative analysis of germinated seeds in the proposed region. The methodology

was evaluated on a constructed experimental setup. Another vital topic discussed in

this thesis in sustainability of plant growth. The research proposes the methodology

for finding optimal wavebands in the infrared spectrum to detect diseases at the

early stages. This method was evaluated on the own obtained dataset and was

proved to be of a high practical usefulness.

Finally, a research to model environmental parameters in field conditions that

play a crucial role in plant development was conducted. Application of machine

learning methods for modeling of the spatial distribution of highly variable en-
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Chapter 6. Conclusion

vironmental parameters was proposed. The proposed techniques improve current

state-of-the-art results on modeling of environmental parameters. Noteworthy, the

approaches initially developed for open systems could be relevant for greenhouses

as well, as they can be easily transferred to artificial systems.

To sum up, all the proposed and evaluated data-driven and hybrid techniques

showed high accuracy, universality, and robustness for solving plant growth assess-

ment and modeling tasks. These methods are highly useful for industrial applica-

tions. The developed experimental setups and the collected relevant datasets could

be used in further evaluation of newly appeared methods for growth dynamics as-

sessment and prediction.

Among the future objectives of the present research the following steps are

planned: to test the proposed methods on a larger variety of plants, to include

to the study of other environmental parameters, such as photosynthesis, and to

preform more industrial deployments.
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Figure A-1: Results of prediction errors calculation for test sub-sets depending on
the amount of neurons on input and hidden layers.
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Table A.1: Watering schedule, (d.w. - distillate water).

# date EC, mS/cm pH

1 17.05 1.6 5.5
2 21.05 1.7 5.5
3 25.05 1.8 5.5
4 27.05 1.8 5.5
5 29.05 1.9 5.5
6 31.05 1.9 5.5
7 02.06 1.9 5.5
8 03.06 1.9 5.5
9 04.06 1.9 5.5

10 05.06 1.9 5.5
11 06.06 d.w. d.w.
12 07.06 d.w. d.w.
13 08.06 d.w. d.w.
14 09.06 d.w. d.w.
15 10.06 d.w. d.w.
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Table A.2: Measurements of EC and pH changing dynamics during the experiment.
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Appendix A. Additional Resources

Table A.3: The location and selected surface soil properties (expressed on a dry-
weight basis) for sites of the Sakhalin island
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