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Abstract

Nanostructured materials can withstand large deformation without fail-
ure and may offer remarkable properties in the strained state: electronic,
optical, thermal, and chemical features of a strained crystal may vary dra-
matically from the unstrained counterparts. Operating within the limits of
admissible elastic strains means that these properties may be changed on de-
mand, paving the way to the elastic strain engineering (ESE). The properties
of interest are studied via the first-principles calculations, yet a large amount
of computational resources is needed if one wants to explore the 6D strain
space or perform an advanced optimization of any target figure of merit.

This problem is addressed by the deep elastic strain engineering, which
employs the surrogate machine learning (ML) model based on the ab ini-
tio simulations data. This work proposes a neural-network-based machine
learning framework, which is specifically tailored to the needs of ESE and
exploits the interaction between the model and simulations. More specifi-
cally, we take advantage of the different sources of data provided by first-
principles calculations and offer an active learning machinery for the further
training of the model. The general problem of the uncertainty quantification
in neural networks is also studied in detail; this work proposes a family of
approaches based on the Monte-Carlo dropout uncertainty estimation. The
performance of the proposed approaches is extensively studied in a number
of numerical experiments.

We explore the vast 6D space of admissible strains and offer a number
of discoveries made possible with the use of the ML model. These include
the exploratory analysis of the six-dimensional strain space, existence of the
direct bandgap, and metal transitions scenarios for the silicon and diamond
crystals, as well as a comprehensive description of the topological features
of the electronic band structure and FEM-assisted imitation of in situ experi-
ments.

We believe that the developed approaches can offer the framework for the
next-generation exploration in the field of ESE for a variety of applications in
microelectronics, optoelectronics, photonics, and energy technologies.
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1 Introduction

1.1 Motivation

One of the main objectives of materials science is materials design. To cre-
ate materials with desirable properties, humankind had experimented with
alloys since centuries ago. If we consider this from the methodological point
of view, it was a trial-and-error approach based on thousands of experiments.
Moreover, the method of choice for obtaining materials with better proper-
ties was merely mixing them in different quantities – making alloys. Different
rules of thumb emerged based on materials and years of experience.

With the rise of the understanding of nature, scientists have discovered
the first principles of the materials’ properties. The density functional theory
(DFT) (Parr, 1980) has emerged as a universal tool to solve otherwise infea-
sible ab initio equations, providing us (to some extent) with a full descrip-
tion of what is happening on the deep level. DFT as a tool is widely used
worldwide: according to several reports (Wright, 2016; Austin et al., 2018),
from 20% to 40% of supercomputing time is spend on first-principles simu-
lations, and most of them are DFT-based. However, modern algorithms and
implementations are still not scalable to the extent that they may be used for
very precise calculations with tens of thousands of atoms. From the phys-
ical perspective, there are many simpler approaches that neglect some in-
tricate effects or describe the system of interest from the global perspective.
Another popular solution to this problem is surrogate modeling: instead of
making tens of thousands of typical calculations with DFT, one may create
a simpler model that approximates the behaviour of DFT, usually trading
some accuracy for the speed. This is where machine learning comes into
play: modern algorithms, such as deep neural networks (LeCun et al., 2015),
may help to improve performance in not only ML-popular fields, such as
computer vision (Guo et al., 2016), or natural language processing (Cambria
and White, 2014) but could help with the understanding of physical effects
(Zdeborová, 2017; Carrasquilla and Melko, 2017), post-process the billions of
on-site experiments and help in scientific discovery (Aad et al., 2012; Derkach
et al., 2020), or, as it was stated above, speed-up the calculations by analyz-
ing the gathered data and emerge as a powerful tool in the hands of explorers
(Radovic et al., 2018).

For the last few decades, a microworld became a point of interest for
physicists. The quest for better materials led to the invention of graphene
(Novoselov et al., 2004) and the forthcoming burst in the research of 2D ma-
terials. The industry is interested in micromaterials because of the nice the-
oretical properties that are put on the table, which involve better efficiency.
Talking about graphene as an example: it has some intriguing properties, like
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increased chemical reactivity, or remarkable electron mobility. After that,
a large number of “low-dimensional” materials (2D, 1D, or even 0D) have
drawn significant interest from both scientists and industry, see (Ge et al.,
2016; Akinwande et al., 2017; Momeni et al., 2020) for detailed reviews.

1.2 Goal of the work

On the wave of interest to low-dimensional materials, elastic strain en-
gineering has emerged as a promising tool to explore materials properties.
Nanostructured materials can withstand much higher tensile/shear elastic
strains without mechanical relaxation or failure than their conventional coun-
terparts, opening up a huge parameter space for rational engineering of ma-
terials properties by elastic strain (Li et al., 2014). The electronic, optical, ther-
mal, and chemical properties of crystals are functions of the 6-dimensional
elastic strain tensor εεε, which allows us to tune materials’ properties on the
fly by applying a corresponding strain, and this effect is reversible in a pretty
large region of the strain space. However, the 6D space of parameters is large
and easy to lost in: if one would like to explore the properties for a given
crystal in a range from -5% to 5% with a 0.5% step, this would require more
than 85 million first-principles calculations. As a standard DFT fails to pre-
dict most of the essential properties for semiconductors (such as a bandgap)
with an error of more than 50% for a silicon crystal, one also needs to work
with much more intricate procedures, such as GW correction (Hedin, 1965;
Shishkin and Kresse, 2006), which involves taking into account more lower-
level physical concepts and slows down the calculation time by several or-
ders of magnitude.

This problem is addressed by the deep elastic strain engineering (Shi et al.,
2019), which involves the construction of special surrogate models in order
to mimic the heavy GW calculations. This includes tailored training, which
allows learning more from fast, but inaccurate DFT calculations, and active
learning, that allows to sample and calculate fewer data. The primary goal of
this work is to design a suitable surrogate model for ab initio calculation that
can help with the elastic strain engineering-related tasks.

1.3 Thesis structure

This thesis is organized as follows.
In Chapter 2, we will provide a brief yet comprehensive introduction to

the physical side of the problem, namely, a crystal physics and the band struc-
ture. We will also discuss the topic of DFT calculations important for the
band structure prediction. It is followed by a part dedicated to the machine
learning machinery in general and its applications and challenges related to
modern materials science. We will especially focus on approaches to the ac-
tive learning (Settles, 2012), also known as adaptive experimental design (Fe-
dorov, 1972), as the surrogate models, including the ones used in this work,
may greatly benefit from it.
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The next chapter, Chapter 3, will be wholly dedicated to the review of the
elastic strain engineering as the main topic of this work. We will consider
both theoretical and experimental findings in this area. This chapter will
conclude the introductory part of the thesis, and the next part starts from
the methodology description, given in Chapter 4. Here, questions of both
machine-learning and ab initio calculations setup will be considered. Chapter
5 focuses on the model design as well as the selected approaches to the model
training and active learning.

Chapter 6 covers a detailed discussion of the conducted numerical exper-
iments. Specific aspects of uncertainty estimation and active learning for the
fully-connected neural networks are extensively examined here.

Chapter 7 will represent the quintessence of the ESE-related experiments,
providing the reader with the findings and discoveries obtained from the
deep machine learning model in previous chapters.

This will bring us to the concluding part of the research – discussion of
both ESE and active learning results, as well as the possible future prospects,
which are provided in Chapter 8.
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2 Background

2.1 Crystal structure and deformation

In this section, we will briefly discuss the ideal crystal from the physical
and mathematical perspective and will define the necessary concepts for later
use.

2.1.1 Crystal structure

A crystal is a solid material whose microscopic components (usually atoms
or molecules) are arranged in highly ordered structures. Many minerals are
naturally formed as crystals, and most of the solid materials, including met-
als, are usually arranged in a crystal form as well.

An ideal crystal consists of two components: a basis (or motif ), which
is a group of atoms or molecules (“repeating pattern”), and a lattice, which
describes how exactly this group of particles repeats in space. Ideal crystals
do not exist in nature since the pattern is repeated infinitely in all dimensions,
yet surface conditions play a significant role in determining the properties
of the material, see, e.g., Nie et al. (2019). Moreover, grains, or microscopic
crystals, are usually formed inside of the real crystals (for example, alloys),
and a thorough analysis should take grains into consideration. However, an
ideal crystal may be used to describe the properties of the real crystals in most
of the cases and is the only accessible way to perform accurate first-principles
calculations for now.

The lattice is defined by three translation vectors a1, a2, a3, which preserve
the translation symmetry, i.e., the atomic arrangement is exactly the same for
both points r and r′, defined as:

r′ = r + n1a1 + n2a2 + n3a3 (2.1)

for arbitrary integers n1, n2, n3. The set of points {r′} defines a lattice, which
is also referred to as a Bravais lattice.

A basis of atoms is attached to every lattice point. The position rj of the
center of atom j (of natoms atoms) of the basis relative to the associated lattice
point is

rj = xja1 + yja2 + zja3, (2.2)

where 0 ≤ xj, yj, zj ≤ 1, j = 1, . . . , natoms. The volume spanned by the basis
vectors is also referred to as a unit cell. A primitive cell a unit cell with
minimal volume, meaning there is no cell of smaller volume that can serve as
a building block for the crystal structure. A primitive cell may be constructed
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by applying Voronoi decomposition to a Bravais lattice; it is also referred to
as Wigner-Seitz cell.

In this work, we are focused on silicon and diamond as materials of in-
terest, and the crystal structure for both materials (as well as for some oth-
ers, like germanium, tin, boron nitride) is diamond cubic, which denotes
two atoms in a certain relative position, repeated according to FCC Bravais
lattice, see Figure 2.1 for the visual representation. The latter means that
a1 = a2 = a3 = a, where a is a lattice constant, which can be defined exper-
imentally yet should be checked for every ab initio method used. The prim-
itive cell contains two atoms, shifted by 0.25 in lattice-related coordinates.
Given that, we may define the primitive basis (associated with the primitive
cell) B = {(xj, yj, zj)}, j = 1, 2 as

(x1, y1, z1) = (0, 0, 0);
(x2, y2, z2) = (0.25, 0.25, 0.25).

(2.3)

One possible set of the corresponding lattice vectors forms a lattice matrix

L =

0.5 0.5 0
0.5 0 0.5
0 0.5 0.5

 . (2.4)

From the perspective of first-principle calculations, it is much more effec-
tive to consider the primitive cell; however, in some occasions, calculations
may be double-checked by using a conventional unit cell that consists of 8
atoms; see Appendix A for details.

2.1.2 Reciprocal lattice and critical points

A Fourier transform takes us from the “real” space, where a Bravais lat-
tice of an ideal crystal exists, to the reciprocal space, often called k-space. It
transforms the crystal lattice into the reciprocal lattice, which is also a Bra-
vais lattice, and Voronoi decomposition shatters the reciprocal lattice into the
Brillouin zones (also referred to as the first Brillouin zone), which are the
Wigner-Seitz (primitive) cells of the reciprocal lattice. These concepts are es-
sential since the description of the properties of an ideal crystal can be com-
pletely characterized by taking a single Brillouin zone into consideration.

Points of k-space (referred to as k-points) are used to describe electronic
properties within the ideal crystal. Several k-points of high symmetry are of
special interest – these are called critical (sometimes symmetrical) points. For
the FCC lattice, where the Brillouin zone is a truncated octahedron, these are
listed below (see Figure 2.1 for the graphical representation):

• Γ: center of the Brillouin zone;

• K: middle of an edge joining two hexagonal faces;

• L: center of a hexagonal face;

• U: middle of an edge joining a hexagonal and a square face;
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• X: center of a square face.

Among the lines that connect the critical k-points in the reciprocal space,
we introduce the ∆-line that connects the Γ and X k-points. This notation
will be used later, as one of the results of this work (namely, Section 7.2) is a
complete k-space description as the function of strain. For the visualization
of the electronic properties of an ideal crystal, a path that connects several
k-points is used as referred to as a k-path.

FIGURE 2.1: Brillouin zone for FCC lattice. This image is cour-
tesy of inductiveload https://commons.wikimedia.org/wiki/
User:Inductiveload user from wikipedia.org. Critical points

Γ, L, and others are of special interest in this study.

2.1.3 Deformation tensor

The straining of a crystal lattice is described by applying the symmetric
3× 3 tensor transformation to the primitive (or conventional unit) cell:

εεε =

ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

 . (2.5)

The components of elastic strain tensor εεε are often referred to as

ε1 = ε11 = εxx, ε2 = ε22 = εyy, ε3 = ε33 = εzz,
ε4 = ε23 = εyz, ε5 = ε13 = εxz, ε6 = ε12 = εxy.

We will distinguish between the special case of strains that have the shear
(non-diagonal) components equal to zero:

εεε? = (εxx, εyy, εzz, 0, 0, 0) ∈ ε3Dε3Dε3D,

https://commons.wikimedia.org/wiki/User:Inductiveload
https://commons.wikimedia.org/wiki/User:Inductiveload
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while the general case will be referred to as ε6Dε6Dε6D.
However, due to crystal symmetries presented and in order to avoid re-

dundant computations, we want to make sure that each strain we apply to
the crystal has a one-to-one correspondence to a distinct deformation case.
The non-translational part of a homogeneous deformation of a crystal can
be defined by a second-order deformation gradient tensor FFF, which can be
viewed as the Jacobi matrix linking deformed and undeformed lattice vec-
tors. The relationship between the symmetric strain tensor εεε and FFF is given
by

εεε =
1
2
(FFF + FTFTFT)− I, (2.6)

where I is an identity matrix.
Since the band structure does not change upon rotations of the crystal, we

can eliminate the rotational degrees of freedom by adopting upper triangular
FFF to map out all deformation cases, as in Figure 2.2.

FIGURE 2.2: ESE achieved by applying a reduced deformation
gradient tensor to the undeformed diamond cubic lattice of Si
or C in the real space. The upper-triangular deformation ten-
sor F ensures a one-to-one correspondence between the applied

strains and deformation cases.

We want to note that the Brillouin zone for the deformed lattice is different
from the undeformed one. The notation for the critical points, in this case,
would alter a bit, see Appendix B for the additional details.

2.1.4 Elastic and inelastic deformations

The crystal deformation is called elastic if it transforms into the original
unstrained shape after the removal of external forces; otherwise, deformation
is inelastic. Methodologically, we are interested in the elastic deformations,
as we may imagine the special devices which could strain the tiny crystal in
order to control its properties on demand. However, one could design the
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devices with less flexible and reversible changes of the crystal, opening the
path to inelastic strain engineering (ISE).

It is hard to determine whether the deformation is elastic or not based on
the first-principles calculations. The real check should be performed in situ,
in the experimental setup, as it is done in Banerjee et al. (2018). Instead, we
check the structural stability of a crystal by performing the phonon stability
calculations, i.e., checking the phonon spectrum (lattice vibrations) in order
to estimate the stability of the crystal. In the forthcoming investigation of
silicon and diamond crystals, we did our best to operate within the stable
strains range.

This ends the basic introduction into the crystal structure. In the next
section, we will focus on the physical equations that describe the states of the
electrons in an ideal crystal, and the series of consequent approximations to
them, which are necessary for the successful solution.

2.2 Density functional theory

Modern computational chemistry and computational materials science
stem from two great discoveries of the twentieth century: the Schrödinger
equation and the density functional theory, which paved the way towards its
efficient numerical solutions. Both inventions were distinguished by Nobel
prizes in physics: the first in 1933, and the second in 1998, more than half a
century later.

This chapter will briefly introduce the basic concepts of density functional
theory. Since this work focuses on machine learning with application to elas-
tic strain engineering, this introduction will follow the steps from Sholl and
Steckel (2011), focusing on the practical aspect of calculations as it is seen
from the ab initio package user perspective.

2.2.1 From Schrödinger equation to DFT

We begin by introducing the time-independent, non-relativistic Schrödinger
equation:

Hψ = [
h̄2

2m

N

∑
i=1
∇2

i +
N

∑
i=1

V(rrri) +
N

∑
i=1

∑
j<i

U(rrri, rrrj)]ψ = Eψ. (2.7)

In the equation above, H is the Hamiltonian operator, E is ground-state
energy of the electrons, and ψ = ψ(rrr1, . . . , rrrN) is an electronic wave function,
which is a complex-valued function of each of the spatial coordinates of each
of the N electrons. A complete representation of ψ should also include an
electron spin, yet we omit it for the sake of clarity of presentation and the
fact that spin does not affect our calculations1. The three terms in brackets

1This was tested by double-checking selected results with an ab initio calculations that
account for the spin.
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in this equation define the kinetic energy ∆ of each electron, the interaction
energy V between each electron and the collection of atomic nuclei, and the
interaction energy U between different electrons.

The equation above is already subject to the Born–Oppenheimer approx-
imation, in which the motion of atomic nuclei and electrons in a crystal can
be treated separately. The main reason for the approximation is a simplifi-
cation of consideration and the fact that the atomic nuclei are three orders
of magnitude heavier than the electrons and thus respond to the changes in
the system much slower compared to electrons. The equation (2.7) is written
for fixed nuclei, and the wave function here is a function of 3N variables, a
solution to a many-body problem. This makes it computationally intractable
to consider any systems with even a moderate number of atoms.

The next step is to consider a density of electrons at a particular position
in space:

n(rrr) = 2 ∑
i

ψ?
i (rrr)ψi(rrr).

Here, the asterisk is the complex conjugate, and the factor of two appears
due to the Pauli exclusion principle, which states that each individual elec-
tron wave function can be occupied by two separate electrons with different
spins. It turns out that the equation above may be described not in terms of
the electronic wave function ψ but in terms of the electron density n(rrr), which
significantly reduces the number of dimensions of unknowns to 3. The two
related fundamental theorems by Hohenberg and Kohn are:

• The ground-state energy E from equation (2.7) is a unique functional F
of the electron density n(rrr).

• The electron density nminF (rrr) that minimizes the energy of the overall
functional F is the true electron density ntrue(rrr) corresponding to the
full solution of the equation (2.7).

While these two theorems encourage researchers to use the electron den-
sity instead of the bulk wave functions, they do not provide any hints on how
to construct the corresponding functional F except for the fact that given a
“true” Ftrue we can find the electron density nminF (rrr) that minimizes its en-
ergy and this will be a solution to the equation (2.7).

The functional described by the first Hohenberg–Kohn theorem can be
expressed in term of single-electron wave functions ψi(rrr), involving both
“known” parts, and “unknown”, approximated parts, referred to as exchange-
correlation (XC) functional (we refer to Sholl and Steckel (2011) for the full



Chapter 2. Background 19

description):

E[n(rrr)] = E[ψi(rrr)] =

=
}2

m ∑
i

∫
ψ?

i ∇2ψid3r+ (electron kinetic energy)

+
∫

V(rrr)n(rrr)d3r+ (Coulomb interaction between electrons and nuclei)

+
e2

2

∫ ∫ n(rrr)n(r′r′r′)
|rrr− r′r′r′|

d3r d3r′+ (Coulomb interactions between pairs of electrons)

+ Eion+ (Coulomb interactions between pairs of nuclei)
+ EXC[ψi]. (exchange− correlation functional)

(2.8)
This energy can be minimized by solving the Kohn-Sham equations, which

have the form:

[
h̄2

2m

N

∑
i=1
∇2

i + V(rrr) + VH(rrr) + VXC(rrr)]ψi(rrr) = εiψi(rrr), (2.9)

for i = 1, . . . , N. The main thing that discriminates this equation from
equation (2.7) is that each equation involves only a single electron, and the
main player here is an exchange-correlation potential VXC, which is approx-
imated in a number of ways, starting from the simple local density approx-
imation (LDA) (Gross and Kohn, 1985), which assumes the ideal case of a
uniform electron gas:

VLDA
XC (rrr) = Velectron gas

XC [n(rrr)],

up to the generalized gradient approximations (GGA) (Perdew et al., 1996):

VGGA
XC (rrr) = VXC[n(rrr),∇(rrr)],

and hybrid (Yanai et al., 2004; Heyd and Scuseria, 2004) or even meta-GGA
(as in Zhao and Truhlar (2006)), which include more physical information or
combine several levels of approximations.

In this work, we will use the Perdew–Burke–Ernzerhof (PBE) (Perdew
et al., 1996) functional, which is a common choice for solid-state calculations.
This functional is known for the poor performance within the semiconduc-
tors properties estimation. Hence, on the top of it, we also use the G0W0 cor-
rection (Shishkin and Kresse, 2006), which accounts better for excited states
and results in better approximation compared to experimental data (Blase,
2003; Zanolli et al., 2007).

We can finally describe in general terms the self-consistent procedure of
solving the equations (2.9) Sholl and Steckel (2011):

1. Define an initial trial electron density n(rrr)2.
2Actually, in most ab initio packages, including VASP, this procedure starts with the trial

ψi. After that, the electron density is calculated (step 3), and the procedure continues. The
text remains unchanged since this part directly cites Sholl and Steckel (2011).
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2. Solve the Kohn–Sham equations defined using the trial electron density
to find the single-particle wave functions ψi(rrr).

3. Calculate the electron density defined by the Kohn–Sham single-particle
wave functions from the previous step, nKS(rrr) = 2 ∑i ψ?

i (rrr)ψi(rrr).

4. Compare n(rrr) and nKS(rrr). If they are the same, then this is the ground-
state electron density, otherwise, n(rrr) must be updated in some way
and the process goes to step 2.

This procedure, which resembles the classic expectation-maximization
approach in machine learning (Dempster et al., 1977), has many pitfalls and
details we omit in this work since the majority is addressed by the Vienna
Ab Initio Package (VASP) (Kresse and Furthmuller, 1996), which we use for
most of our first principles experiments. In the next section, we will finally
introduce the intrinsic crystal properties of our interest.

2.2.2 Electronic band structure and bandgap

Due to crystal symmetries and periodicity, solutions to the Schrödinger
equation (2.7) can be written in the form of Bloch waves:

ψjkkk(rrr) = eikkkrrrujkkk(rrr), (2.10)

where i is the imaginary unit, and ujkkk(rrr) are periodic functions with the same
periodicity as the crystal. For each value of kkk, there are infinitely many so-
lutions ψ1kkk, ψ2kkk, . . . , that enumerate the energy bands – a special name for
the functions that define in which positions and with which energies elec-
tron can exist in the periodic structure of a crystal. Bands are the result of the
overlap of atomic orbitals, and for each band we can define a function Ej(kkk)
– the dispersion relation for electrons in that band.

To visualize the function Ej(kkk), band structure plots are used. In these
plots, the bands are drawn as kkk changes across the specific kkk-path. An exam-
ple is shown in Fig. 2.3. Band energies Ej(kkk) are usually normalized by the
Fermi level – the highest energy state occupied by electrons in a material at
absolute zero temperature. The last band, occupied by the electrons, is called
the valence band (VB), and the next to it is the conduction band (CB).

Arguably the most important property of the semiconductor materials is
the energy bandgap, or simply bandgap, which is the difference between the
maximal energy the valence band possesses and the minimal energy of the
conduction band:

Eg = min
kkk

ECB −max
kkk

EVB.

As the difference of energy dispersion relations, bandgap is measured in
units of electron-volts (eV).

The bandgap is a significant factor that determines the electrical conduc-
tivity: the larger the bandgap, the more energy electrons should possess to
jump from the occupied valence band to the conduction band. According to
the bandgap value, solids are classified as:
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FIGURE 2.3: An example band structure along the L− Γ− X−
U|K − Γ kkk-path for the diamond crystal under some strain ε∗ε∗ε∗.
In this case, the bandgap (Eg = 2.94 eV) is direct and shown
on the picture; in the general case, one should check all the kkk-
points available within the calculation data. Both VB maxima

and CB minima are located at the Γ kkk-point.

• insulators, that have a large bandgap (e.g. ≥ 4 eV);

• semiconductors, that have a small bandgap (e.g. < 4 eV);

• semimetals, which have a negative bandgap;

• metals, which have a zero bandgap metals, which have a zero bandgap
with the bands being filled up to the Fermi level.

The material has a direct bandgap, if the conduction band minimum
(CBM) is situated at the same point(s) of kkk-space as the valence band max-
ima (VBM):

argmin
kkk

ECB = argmax
kkk

EVB.

Otherwise, the bandgap is called indirect.
For materials with the direct bandgap, an electron from the valence band

can be excited into the conduction band by a photon with an energy larger
than the bandgap. In the case of the indirect bandgap, a phonon, or some
vibrational motion, is required. This makes the direct bandgap a desirable
property for optoelectronic materials, e.g., solar cells. Our ab initio calcu-
lations are restricted to the case of zero temperature (0 K); in the general
case, the bandgap also depends on the temperature (Varshni, 1967), and the
zero-point renormalization (Giustino et al., 2010) should be also taken into
account.

Another property that could be obtained from the electronic band struc-
ture is the Hessian of the conduction band, evaluated at the conduction band
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minima, called the free electron effective mass tensor m?:

1
m?

=
1
ĥ


∂2ECB

∂k2
1

∂2ECB
∂k1∂k2

∂2ECB
∂k1∂k3

∂2ECB
∂k2∂k1

∂2ECB
∂k2

2

∂2ECB
∂k2∂k3

∂2ECB
∂k3∂k1

∂2ECB
∂k3∂k2

∂2ECB
∂k2

3


∣∣∣∣∣∣∣∣∣

CBM

. (2.11)

This tensor is used in transport calculations, e.g., electron transport or
carrier density estimates. Both second derivative and inversion require cal-
culations and corresponding surrogate models to be very precise.

We want to note that this tensor can also be calculated for the valence
band at the valence band maxima, accessing the hole conductivity. However,
in this work, we focus on the m?.

This work is mostly dedicated to the silicon crystal, which is a typical
semiconductor in the unstrained state, and the carbon diamond crystal, which
is an insulator in the unstrained state. Both silicon and diamond crystals
have an indirect bandgap. In the next chapters, we will demonstrate that the
strain may change the bandgap significantly as well as its type, opening new
ways to smart engineering of materials. On this path, the main methodolog-
ical instrument we rely on in the world of complicated and computationally
expensive calculations is the machine learning.

2.3 Machine learning

2.3.1 General formulation

The term “machine learning” (ML) usually refers to the automatic con-
struction of the models that can infer predictions based on the existing data
or introduce specific labels to it (in case of clustering or anomaly detection
algorithms). It usually differs from the statistics in terms of making fewer as-
sumptions about the data and thus leading to more generalizable, “general-
purpose” models (Bzdok et al., 2018).

In this work, we will be mostly focusing on the supervised learning –
a setting in which we have a tabulated relation between the properties that
describes the data (features) and the properties of our interest (targets, or
labels), which we want to infer from the data not presented before. More
specifically, we are focused on the regression problem, where the target vari-
ables are the subset of real numbers.

Let
y = f (x), x ∈ X ⊂ RMinput , y ∈ RMoutput

be some unknown function which we want to approximate using the values
from the training set

Dtrain = {xtrain
j , f (xtrain

j )}, j = 1, . . . , Ntrain.
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Suppose we have a model f̂ that approximates the f :

f̂ : X → RMoutput .

We train this model on Dtrain with a loss function

L( f̂ , Dtrain) =
Ntrain

∑
j=1
|| f (xtrain

j )− f̂ (xtrain
j )|| (2.12)

as a fitting (optimization) criterion. Here, || · || is usually an L2-norm.
If we denote the set of parameters that describes the model as ω, then

the optimization problem of finding the optimal model parameters ωoptimal,
which describe the training data Dtrain best (in terms of (2.12)), could be writ-
ten in the following form:

ωoptimal = argmin
ω

L( f̂ (ω), Dtrain)). (2.13)

The problem (2.13) is then solved using suitable optimization algorithms.
A typical solution is sub-optimal (i.e., ωoptimal is a local minimum of f̂ (ω, Dtrain),
not the global one), since the obtaining of an optimal solution is an NP-
complete problem for most of the modern models (see, e.g., Blum and Rivest
(1992)). However, in most cases, practitioners rely on the sub-optimal solu-
tions, as the training time is limited and modern models are powerful enough
to describe the existing data. The training procedure for deep learning mod-
els is empirically shown (Mishkin and Matas, 2015) to benefit from the weight
initialization (Glorot and Bengio, 2010; Klambauer et al., 2017). As the opti-
mization algorithms are iterative (i.e., they perform the same procedure until
convergence or stopping criteria meeting), one often tracks the change of the
loss function on the separate set of the data, called the validation set:

Dval = {xval
j , f (xval

j )}, j = 1, . . . , Nval.

Apart from the ω, model f̂ usually has other properties to tune, called
hyperparameters. Typical examples include the kernel choice for the kernel-
based methods, a number of models in ensemble and ensembling type for the
ensembling methods, and the architecture for the case of neural networks. In
most of the cases (except for the Gaussian regression), the choice of hyperpa-
rameters is done via separate experiments on the validation set as well.

To measure the performance of different models, the residual between the
prediction and the correct answer is done on the separate set, which was not
used for the training or validation:

Dtest = {xtest
j , f (xtest

j )}, j = 1, . . . , Ntest. (2.14)

The three sets are chosen so they do not intersect:

Dtrain ∩ Dtest = Dtrain ∩ Dval = Dval ∩ Dtest = ∅.
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This alters a bit from the empirical risk minimization principle (Vapnik,
2013), according to which one should use the training set Dtrain to estimate
the generalization error. Indeed, in line with the statistical learning theory, in-
put data is assumed to be sampled from some probability distribution (x ∼
X ), and the goal is to find the parameters ω that minimize the loss expecta-
tion, similar to (2.12):

EX∼X L( ˆf (ω), X). (2.15)

Nevertheless, (2.14) is still a good and unbiased estimate of the general-
ization error (2.15) given Dtest, Dtrain, Dval ∼ X . As a matter of fact, the main
reason for holding a separate set of data is the overfitting – an empirically
observable or expected difference between the training loss (2.12) and the
generalization error (2.15).

2.3.2 Overfitting and regularization

In the last two decades, the exponential growth of the computational
power and the “rise of the data” (Cukier and Mayer-Schoenberger, 2013),
expressed as the burst in the amount of information humankind generates,
stores, and processes every year, have shifted machine learning trends to
the models with the large expressive power. Theoretically, the richness of
the class of functions f̂ comes from may be measured in terms of the Vap-
nik–Chervonenkis dimension (Vapnik and Chervonenkis, 2015) for the bi-
nary classification problem, and more recent Rademacher and Gaussian com-
plexities (Bartlett and Mendelson, 2002) for the regression. From the practical
point of view, one could compare the complexities of two models from the
same class based on the number of parameters (dim ω) and several hyperpa-
rameters.

Unless one knows the most suitable algorithm, general-purpose models
are of great use. The downside of these models is their ability to replicate
the training data nearly perfectly while failing to achieve the desired level of
accuracy on the test set, resulting in overfitting. In some cases, this problem
could be tracked on the training stage by comparing the loss values for the
training and validation sets; in this case, the aforementioned stopping cri-
teria based on the validation loss serves as the regularization (Zhang et al.,
2005; Yao et al., 2007; Raskutti et al., 2014). Yet the most straightforward and
widely accepted mechanism is the introduction of the special terms to the
loss function, which are called regularizers:

L( f̂ , Dtrain) =
Ntrain

∑
j=1
|| f (xtrain

j )− f̂ (xtrain
j )||+ λ||ω||R, (2.16)

where || · ||R is usually an L1- or L2-norm. λ is used to tune the regularization
level and is also considered as a hyperparameter.

Another popular option is the incorporation of the noise into the input
or output data (noisy training or data augmentation (Van Dyk and Meng,
2001; Wang and Perez, 2017)) or into the model parameters (like dropout
(Srivastava et al., 2014) or Gaussian noise injection (Wager et al., 2013)). In
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these cases, one could also regulate the noise level and adjust it to the needs
of the model.

A less popular option is a structural decrease in the model’s complexity.
For the neural networks, this includes decreasing the number of weights: re-
moving unnecessary layers, decreasing the layer’s width for the fully-connected
parts, and removing extra filters and introducing dilation (Yu and Koltun,
2015) for the convolutional part. Kernel-based methods could reduce the
overfitting by removing unnecessary parts of kernel or kernels. Decision
trees could be regularized by the pruning (Mehta et al., 1995) or other struc-
tural diminishments (Friedman et al., 2001).

Thinking outside of the model, one could also come up with new data,
resulting in a better sampling from the generative distribution, from which
data comes. While effective and straightforward by itself, this method could
be further improved by active learning, as will be described later.

In our models, we rely on the weight regularization and dropout in the
case of the neural networks. For other algorithms, we would use the standard
means of regularization as well.

2.3.3 Modern models in machine learning

Below we will briefly describe the classes of modern machine learning
models, which are widely used in computational material science, computa-
tional chemistry, and in general. For a more comprehensive overview of the
presented methods, please refer to Bishop (2006).

Kernel-based methods

In general, kernel methods are based upon the idea of similarity, which is
defined on the pairs of points (x, x′) ∈ X by the kernel function k:

k : X ×X 7→ R,

k(x, x′) = 〈Φ(x), Φ(x′)〉V ,

where feature map Φ maps into some dot product space V, and 〈·, ·〉V is an
inner product. Most of the popular algorithms avoid the explicit mapping
and do operate within the feature space directly, thus enabling the linear al-
gorithms to have a non-linear decision boundary (in case of classification);
this is also known as the kernel trick. Algorithms such as Supporting Vec-
tor Machines (SVM) (Cortes and Vapnik, 1995) and Kernel Ridge Regression
(KRR) (Vovk, 2013) learn a linear function in the space induced by the respec-
tive kernel k and the data; if k is a non-linear mapping, the resulting function
in the original space X would be non-linear as well.

Kernel methods are arguably the popular choice for the Bayesian-based
methods, especially Gaussian Processes (Rasmussen, 2004). The downside of
these approaches is the need of kernel selection, which requires the user to
know the data well, and near-cubic scaling with the training data, which is
imposed by the need of operations on the kernel matrix K ∈ RNtrain×Ntrain in



Chapter 2. Background 26

the inference scenario. However, several approaches to complexity reduction
exist, such as the choice of anchor points (Liu et al., 2010) and approximate
inference (Rasmussen, 2004).

Ensembles on trees

Another popular candidate for a general-purpose machine learning model
is an ensemble-powered tree classifier, such as Random Forest (Ho, 1995)
and Gradient Boosting (Friedman, 2001). Popular implementations, which
provide a remarkable off-the-shelf functionality, include XGBoost (Chen and
Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova
et al., 2018). These models consist of the ensembles of simple regressors (or
classifiers), namely decision trees (Breiman et al., 1984), which are empow-
ered by the bagging and boosting (see Bishop (2006) for the detailed explana-
tion), as well as a number of empirical and performance tricks. Another neat
property is that the base model – decision tree – could naturally work with
the categorical data, which reduces the complexity overhead connected with
the feature transformation into the numerical type.

Two main drawbacks of these models are the imposed piece-wise linear-
ity of the feature space separation, which prevent the models to effectively
address the non-linear relations in the small data scenario, and the connected
memory overhead, which may appear on large data sets. The last problem
could be addressed by imposing additional regularization, e.g., tree pruning
(Mehta et al., 1995).

Neural networks and deep learning

The term “deep learning” is typically used to describe the complex mod-
els, which usually consist of several different parts (LeCun et al., 2015). How-
ever, due to the overwhelming popularity of neural networks in machine
learning, it is now somewhat synonymous with the usage of neural networks
within the model.

Most of the neural network architectures consist of several structural parts,
called layers, which are connected to each other in a consecutive fashion (in
simple cases) until they produce an answer. All the parts are usually end-to-
end trained – the gradients from the loss function at the end of the network
are passed backward to update the layers’ parameters (weights); this process
is referred to as backpropagation, and the corresponding models are thus fully
differentiable. A simple, fully connected layer in the neural network may be
described as:

Sh
i =

Nh−1

∑
j=1

ωh
ijO

h−1
j , i = 1, . . . , Nh, (2.17)

where Oh
i is an output of the h-th layer of the neural network given by a

non-linear transformation σ(·) of the corresponding pre-activation Sh
i :

Oh
i = σ

(
Sh

i
)
, i = 1, . . . , Nh.
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One may construct the network using the fully connected layers only; we
utilized this simple yet powerful model in Section 5.1.1 and in Shi et al. (2019)
for a silicon crystal and use it as a baseline or supportive model for the dia-
mond crystal case. For the special problems or the special data types (such
as images, video, audio, text, sequences of variable length), special layers
are developed. For instance, to reduce the number of weights to process the
image as an input (which consists of millions of parameters!), the convolu-
tional layers (LeCun et al., 1989) are used, which exploit the data structure
(the pixels in the image are similar to their neighbours) and lead to the dra-
matic decrease in the parameter number, thus enabling rapid training. There
are more special tricks to deal with images, as well as special layers and ar-
chitectures for the different tasks, yet they are out of the scope of this work.

Different kinds of layers, together with symbolic differentiation, are im-
plemented in a number of free-to-use packages, such as PyTorch (Paszke
et al., 2019), Tensorflow (Abadi et al., 2016), and MXNet (Chen et al., 2015), to
name a few. One of the great advantages is that the architectures, especially
convolutional ones, are well-suitable to be accelerated on GPU (Oh and Jung,
2004).

One of the substantial disadvantages is that the neural networks are mostly
“black-box” – it is hard to determine what influenced the decision making
due to the complex structure of the typical deep learning model. Another dis-
advantage is the absence of a straightforward mechanism for the uncertainty
quantification within the popular models. This problem will be addressed in
detail in Sections 5.2.1 and 5.2.2, and is discussed in the next section as well.

2.3.4 Uncertainty estimation

In the modern machine learning, problems of estimating the uncertainty
of model predictions usually arise in the context of applying such estima-
tions for solving problems of adaptive design of experiments (active learn-
ing) and Bayesian optimization, while researchers pay relatively little atten-
tion to the accuracy of such estimates. Existing approaches to the uncertainty
estimation usually work with a specific class of models based on probabilis-
tic assumptions, such as linear regression and Gaussian processes-based re-
gression models. However, despite the active development of Bayesian ap-
proaches for model training, the question of how to obtain uncertainty esti-
mations for the most popular and accurate models, such as neural networks,
is still being discussed.

The main methods for uncertainty quantification in neural networks in-
clude the following approaches:

• Uncertainty quantification using model ensemble

This model for estimating uncertainty was proposed in the 1990s (Cohn,
1994; Cohn et al., 1996). The method itself, which consists in training
of several models and estimating the variance (standard deviation) of
their predictions, does not depend on the type of model; however, it is
appealing in this particular case due to the large number of parameters
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of the neural network, as well as the stochasticity of the learning pro-
cess. Ensembles of neural networks (see Li et al. (2018b) for a detailed
review) often boil down to an independent training of several models,
which works well in some applications (Beluch et al., 2018), but is com-
putationally expensive for the large-scale applications. There are many
works aimed at the further diversification of the ensemble - models are
made different from each other structurally (using different architec-
tures (Opitz and Shavlik, 1996) and models (Lu and Bongard, 2009)),
use different data subsets (bagging), (Zhou et al., 2002). Recently, forc-
ing models in ensembles to be more diverse was shown to improve
results even further in Jain et al. (2019). This approach is being actively
used at the present time (Smith et al., 2018; Pearce et al., 2018) due to
the simplicity of both the method and its implementation.

The main disadvantage of this approach is the increased amount of
computational resources needed: using N neural networks trained in-
dependently increases the time required for training by N times and
also requires N times more memory to store weights. This leads to
a significant drop in the performance of the modern large neural net-
work architectures. One of the options for speeding up this approach is
to use previous weights (snapshot ensemble as in Huang et al. (2017)),
but this reduces the diversification of models and imposes additional
costs on the model weights storage.

• Uncertainty estimation based on Bayesian approach

This approach is applied to Bayesian neural networks (Kononenko, 1989;
Bishop, 1997), whose weights are random variables with an explicitly
defined distribution (prior) that changes during the training process.
In some cases, this technique makes it possible to explicitly express the
variance of the model output (Richard and Lippmann, 1991) and is also
suitable for the rapid generation of an ensemble of models on the fly.
Unfortunately, the straightforward use of the Bayesian approach is very
costly in terms of computational resources due to a large number of
neural network parameters and large amounts of data, often accompa-
nying the use of deep learning models. Most of the works in this field
are aimed at reducing this complexity and theoretically justifying the
existing heuristic methods for training models from the Bayesian point
of view (Neklyudov et al., 2017; Molchanov et al., 2017; Teye et al., 2018;
Matthews et al., 2018). It is worth noting that finding suitable prior
weighting distributions of scales is especially important in the context
of this approach (Hafner et al., 2018; Malinin and Gales, 2018).

Another direction in uncertainty estimation is the incorporation of ele-
ments of random processes in the architecture and/or loss function for
a neural network (Lee et al., 2017; Garnelo et al., 2018; Sun et al., 2018).
This approach is associated with modern theoretical work in the field
of Bayesian methods for neural networks but focuses on the practical
component instead.
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Connections between neural networks and Gaussian processes recently
gain significant attention, see Matthews et al. (2018); Lee et al. (2017),
which study random, untrained NNs, and show that such networks
can be approximated by Gaussian processes (GP) in the infinite net-
work width limit. Another direction is the incorporation of the GP-like
elements into the NN structure, which may provide theoretical guar-
antees on the uncertainty estimates while preserving the power of NN,
see (Sun et al., 2018; Garnelo et al., 2018) for some recent contributions.
In Bradshaw et al. (2017), authors propose an NN+GP pipeline that may
be trained end-to-end; however, the GP part slows down both training
and inference, whereas in Sections 5.2.3 and 6.4 we use the GP for the
inference only.

• Dropout-based uncertainty quantification

Dropout (Srivastava et al., 2014) was first introduced as an empirical
method to fight the correlation of weights of a neural network, and
then found its theoretical justification as stochastic averaging of an en-
semble of models (Srivastava et al., 2014), the realization of a Bayesian
neural network with Bernoulli weights distribution (Gal and Ghahra-
mani, 2016), and the hidden state model (Maeda, 2014).

The main idea of dropout is to omit ("drop out") part of the activa-
tions of the hidden layer (while preserving the sample mean) during
the training time. This allowed state of the art models to reach better
accuracy at the cost of increased training time. Nowadays, most of the
modern deep learning architectures use dropout.

The breakthrough came with the idea of the use of a dropout not only
at the training stage but also at the inference stage; this approach ap-
peared recently in the works of Gal (see Gal (2016)), where uncertainty
estimates based on the Bayesian approach and the dropout were pro-
posed and analyzed. Most of the works in this direction are focused
on the classification task (Kampffmeyer et al., 2016; Gal et al., 2017).
However, most of the tasks of the so-called “physics of processes” are
devoted to regression. The dropout-based approach is attractive due to
the simplicity of its implementation and the possibility of application
to the already trained models and established architectures. Dropout-
based uncertainty often estimated as less computationally costly com-
pared to the Bayesian analogues, and we exploit it as the main method
for uncertainty estimation (UE) throughout the work.

The uncertainty quantification can be used to construct the confidence
intervals of the model prediction (Cohn et al., 1996; Zhang et al., 2019; Pearce
et al., 2018). In some cases, it makes sense to calibrate model predictions on a
separate data subset (Kuleshov et al., 2018) to obtain more robust uncertainty
estimates.

In the context of this work, we use the uncertainty estimation in order
to rank the samples of the unlabelled data for the consequent first-principles
calculations. The results of these calculations do enrich the training data and,
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with further additional training, may lead to a more accurate model. This
approach, in general, is called an active learning and is described in detail in
the next section.

2.3.5 Pool-based active learning

Active learning (Settles, 2012) is a subfield of machine learning that op-
erates under the following assumptions. Let

foracle : x 7→ y, x ∈ X ⊂ RMinput , y ∈ RMoutput

be an oracle function that, although its unknown, black-box nature, may be
used on demand to get the predictions. Although the user and algorithms
have access to this function, its usage implies some cost, which may be asso-
ciated with the calculation time, cost of computational resources, or wage of
human annotators. Luckily, a limited amount of labeled data (often associ-
ated with the training set) is usually available:

Dlabeled = {xlabeled
j , foracle(xlabeled

j )}, j = 1, . . . , Nlabeled,

as well as an unlabeled data set

P = {xj}, j = 1, . . . ,

either finite or infinite, from which new instances may be drawn. In the fi-
nite unlabeled set setting, to which we will stick in this work, it is called
pool. As before, we want to construct an approximator f̂oracle that mimics
the underlying oracle (in terms of generalization error), and also minimizes
the total cost, i.e., uses the oracle as few times as possible. A general problem
in active learning is to construct a sampling algorithm (called an acquisition
function, or querying function) that ranks the samples from the pool based
on the surrogate model:

A( f̂oracle,P) : P → R. (2.18)

Based on this mapping, data would be sampled (either single point at the
time, or in batches), annotated by the oracle, and added to the training set,
see the typical active learning cycle at Fig. 2.4. This process is usually contin-
ued until the needed accuracy of the surrogate model f̂oracle is reached, new
samples do not increase the accuracy for a few consecutive active learning
iterations, or one is out of resources to use the oracle anymore.

In our setting, the role of an oracle is played by the VASP package that
calculates the values of interest for us. Therefore, while the active learning
framework is somewhat close to the machine learning framework described
in Section 2.3.1, we should benefit from the opportunity of having an oracle
at hand.

The main hypothesis of active learning is that one could come up with
an acquisition function that outperforms a random sampling. In practice,
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FIGURE 2.4: Pool-based active learning cycle. The machine
learning model queries samples from the pool P , which are
then annotated by the oracle. Labeled samples are added to the
training set, and the model is trained on the updated training

set. Adapted from Settles (2012).

there is a number of scenarios for which we cannot be sure that there a better
solution exists: for example, it is hard to come up with a suitable model in
case of a very noisy oracle, which has some uncertainty in its predictions.

Another key assumption is connected to the construction of the acquisi-
tion function (2.18). It is natural to expect that the samples with the largest
model error (the difference between the predictions and true answers) could
be of great use if annotated by the oracle; we will later (in Section 5.2.2) re-
fer to this as an ideal error sampling. This leads to the proposition, which
is widely used by the active learning practitioners: uncertainty estimates,
which are expected to correlate with the model’s error, are the best candi-
dates for an acquisition function. However, this is not true for a number
of problems; we will provide the reader with examples in the experimental
Section 6.3.

The last yet very important component of the active learning framework
is the ability of the model to be trained on the additional data, which is called
warm-start training. One could also train the model from scratch; how-
ever, this may require additional time and may affect the acquisition function
(2.18), which depends on the approximator f̂oracle. Moreover, data-hungry
ensemble models and neural networks would not benefit from a few addi-
tional points; active learning for them is performed in the batch scenario,
which has its own drawbacks (like sampling two close points from the same
region of features space). In general, for the modern machine learning meth-
ods, several approaches exist:

• In the case of the Gaussian Processes, two scenarios may appear:
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1. If active learning results in a few new data points added, one could
just recalculate the kernel’s parameters for a prediction.

2. If a significant amount of data is added, one could fix the hyperpa-
rameters and recalculate the covariance matrix in an effective way
(Burnaev and Panov, 2015). The hyperparameters may be updated
later.

• For the ensembles on trees, one could simply add more trees to the en-
sembles and possibly re-weight them in a fashion of making the recent
prediction more important.

• In the case of neural networks, one could simply run more epochs (full
sweeps throught the training set) on the updated data set. Shim et al.
(2020) propose to emphasize the new samples by amplifying the gra-
dients. Still, Ash and Adams (2019) claim that warm-start training can
hurt generalization.

This concludes the general introduction to the machine learning models,
which are used in this work. In the next section, we will review the existing
works and approaches to the elastic strain engineering and surrogate model-
ing in the materials science.
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3 Related work

3.1 Elastic strain engineering

3.1.1 Industrial perspective and motivation

One of the first questions that may appear is a choice of materials to study
with the elastic strain engineering: why do we focus on the silicon and dia-
mond as the primary candidates for investigation?

The answer for the silicon is pretty straightforward: it is a cheap and uni-
versal semiconductor, which appears in the transistor industry; main use
cases include the CMOS (Complementary metal-oxide semiconductor) and
MOSFET (metal-oxide semiconductor field-effect transistor) production. A
nice review of the history of strained silicon from the industrial point of view
can be found in Chidambaram et al. (2006). The main point igniting the re-
searching interest starts from the early 2000s research and patents by IBM
(Huang, 2001), AMD (Xiang, 2003), and later Intel (Bohr, 2007) (all connected
to the old 1993 patents by IBM and Amberwave Systems (Brasen et al., 1993))
on the strained silicon technology in a variety of chips and transistors. A
1% uniaxial strain in a certain direction offered a large boost in the carrier
mobility – up to 50% (Bedell et al., 2014) and increased central processing
unit (CPU) clock speed correspondingly. Strain engineering remained a hot
topic for a long time: see Figure 3.1 for the statistics on the strained silicon
patents for the last 30 years. A more technical description of the strained Si
technology can be found in Mistry et al. (2007).

As for the diamond crystal, it has an ultra-wide bandgap of 5.5 eV in the
unstrained state; moreover, superior properties in terms of durability and
melting temperature makes it quite challenging to bend. However, in Baner-
jee et al. (2018), the possibility of a diamond straining was proven experi-
mentally; the strain amount both materials can withstand is fantastic: a 9%
local tensile strain for the diamond and 16% for the silicon (Zhang et al., 2016)
opens a window of opportunity to explore the vast strain space in the quest
for better materials.

We would like to note that from the experimental perspective, it is impor-
tant to measure the actual strain of the deformed material. This is usually ei-
ther estimated via theoretical finite-element simulations, as in Banerjee et al.
(2018), or experimentally via transmission electron microscopy (Hÿtch and
Minor, 2014).

A comprehensive overview of the state-of-the-art techniques and results
for the elastic strain engineering can be found in Li et al. (2014); we will
discuss some important milestones from it below.
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FIGURE 3.1: A general overview of the patents for the strained
silicon in 1990–2020. Data is taken from the Google Patents sys-
tem on the “strained silicon” query: https://patents.google.
com/?q=strained+silicon&oq=strained+silicon. One can
observe a significant rise in the number of patents together with

patent-holders diversification in the 00s.

3.1.2 Notable materials for ESE

A tremendous number of works is dedicated to the straining of semicon-
ductors and materials. A short overview of the leading research directions is
provided below.

• 1D and 2D materials, primarily carbon- and silicon-based, deserve a
separate chapter with an overwhelming number of both theoretical and
experimental works on it; we would restrict ourselves with a few se-
lected works related to the elastic strain engineering.

In Guinea et al. (2010), authors investigate how strain can lead to the
pseudomagntic field in graphene without changing the bandgap; they
also discuss various scenarios on how to strain the nanosheets. Peng
and De (2014) studies the elastic limits for silicene (2D silicon), silicane
(silicene with the hydrogen group) for a wide range of strains (up to
20%) via PBE calculations. Topsakal et al. (2010) explores the bandgap
change and plastic transition for graphane via GW calculations. In Mi-
namisawa et al. (2012), an industrial technology of silicon nanowires
is described. In Kumar et al. (2015), a comprehensive description of
monolayer graphene membranes is provided.

As for other 2D materials, Fei and Yang (2014) explores the phospho-
rene (2D P) changing conducting direction under 6% uniaxial and 5%
biaxial strains. Guo et al. (2015) explores Bi2Te3 nanosheets for the engi-
neering of topological surface states. In Wang et al. (2013), a reversible
lattice deformation for Ni nanowires is described.

https://patents.google.com/?q=strained+silicon&oq=strained+silicon
https://patents.google.com/?q=strained+silicon&oq=strained+silicon
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Another interesting direction is the research on “quantum dots” (also
referred to as 0D materials); in Kuklewicz et al. (2012), authors investi-
gate exciton energy tuning with strain, using glue for the elastic defor-
mation of InGaAs.

• Germanium (Ge). Germanium was shown to have a direct bandgap
under specific biaxial strain (El Kurdi et al., 2010), which makes it an-
other desirable alternative for solar cell development and other opto-
electronic applications (Nam et al., 2012). Sukhdeo et al. (2014) de-
scribes a direct bandgap Ge on Si sheet provided by 5.7% uniaxial strain
(epitaxy).

• Ferroic (SrTiO3, BiFeO3, EuTiO3, . . . ) and other oxides. A nice com-
pilation of both theoretical and practical results for ferroic oxides can
be found in Schlom et al. (2014). Yildiz (2014) studies effects on electro-
catalysis and diffusion, discovering the tremendous influence of strain
on the molecule adsorption energy, dissociation barrier, and other prop-
erties. Jang et al. (2008) explores polarization direction tuning via de-
formation. In Cao et al. (2009), a Mott transition for VO2 under elastic
strain is described. Fu et al. (2014) explore -5% to 5% strains for the ZnO
semiconductor in terms of exciton dynamics.

• Aluminium and other metal alloys. In Reddy (2004), authors demon-
strate the strain-stress curves (obtained via in situ experiments) for the
Al-Si-C alloys under the uniaxial strain up to 5%. Another study (Cao
et al., 2015) measures elastic strain energy density, similar to proposed
in Section 4.2.2, and derive fracture criteria based on the experimen-
tal analysis of more than 7000 specimens of aluminium alloy. A shape
memory of NiTi alloys and investigation of its properties under inelas-
tic strain is described in Du et al. (2015). Mosca et al. (2008) investigates
the magnetocaloric effect and magnetic phase transition under elastic
strain. In Yan et al. (2016), authors show how strained films change the
catalytic activity in hydrogen evolution reaction.

• Molybdenum disulfide (MoS2) has attracted notable attention due to
nice properties in the layered form. While bulk MoS2 crystal has an in-
direct bandgap of 1.8 eV, its layered form shows a 1.2 eV direct bandgap,
making it a notable candidate for the various microelectronic applica-
tions. Experimental works show the possibility of creating micropro-
cessors (Wachter et al., 2017), as well as memristors (Li et al., 2018a;
Xu et al., 2019) with MoS2. In Conley et al. (2013), authors use both
GW0 calculations and experimental results to estimate the effect on the
optical bandgap (which differs from the usual bandgap by excitonic
binding energy) for small (up to 2.2%) uniaxial strains. Experimental
continuous tuning of the electronic band structure was demonstrated
in He et al. (2013). Castellanos-Gomez et al. (2013) demonstrates the ex-
perimental measurements combined with the tight-binding model cal-
culations for the strains up to 2.5%. Li et al. (2016) considers MoS2 with
vacancies of S (from 0.1 to 5%) and a small range of strains (up to 1%).
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A large strain (up to 9% biaxial strain) appears in Feng et al. (2012),
where the idea of a solar funnel is investigated via G0W0 calculations.

In the next section, we will take a step away from the topic of elastic strain
engineering and will discuss the related work for the machine learning-ab
initio simulation interaction.

3.2 ML-assisted simulation

This section is related to a brief overview of the machine learning models
used for materials science. More specifically, we will discuss the models that
are used on the top of (or based on) the first-principles calculations, with a
detailed description of the approaches similar to the ones we design in this
work.

3.2.1 ML-simulation taxonomy

We start with a concise description of both means and methods of ma-
chine learning and simulation, and will refer to (von Rueden et al., 2019,
2020) for a detailed discussion. This section aims to answer the general
methodological question: in what ways machine learning models and simu-
lators can interact and benefit from each other? This allows our approach to
find a place among similar approaches used in materials science and surro-
gate modeling.

While machine learning starts from the data and the end goal is to con-
struct the model, which could be used for inference or prediction, simula-
tion starts from the model, which generates the data that supports decision-
making. In other words, machine learning produces inductive models (that
generalize from the data) by its nature, while simulations use a deductive
model, which is usually provided by the physical laws or its approximations.
A typical example of the machine learning model is the prediction of hand-
written digits: given the labeled data of images and corresponding digits,
one may train a model (taking, for instance, the CNN as a model type) to in-
fer the class of a new image; this model can be used, for example, to enhance
the text recognition for post offices, archives, etc. A typical simulation, in
turn, is based on the physical model of a particular phenomenon and is used
to derive the data; for instance, the model for weather forecasting includes a
(data-free) system of partial differential equations that characterizes the de-
velopment of air flow parameters (such as pressure, air velocity and others)
over time. This model is fed with the data from the weather towers as an
input, and the prediction is used to describe the weather in a particular re-
gion. The general overview that summarizes the aforementioned taxonomy,
adapted from (von Rueden et al., 2020), is shown in Figure 3.2.

Both machine learning and simulation could benefit from each other on
every step of the model construction process and during the inference; how-
ever, as this work is dedicated to the machine learning enhancement of the
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FIGURE 3.2: Components of machine learning and simulation.
Top: machine learning produces inductive models (that gener-
alize from the data) by its nature, while simulations use a de-
ductive model, which is usually provided by the physical laws
or its approximations. Bottom: typical components of machine
learning and simulation. Adapted from (von Rueden et al.,

2020).

first-principles calculations (=simulations), we will focus on this particular
scenario. In terms of taxonomy shown in Figure 3.2, machine-learning as-
sisted simulation can be performed in the following non-mutually exclusive
cases (as described in von Rueden et al. (2020)):

• Model reduction and surrogate modeling. The most widely used sce-
nario is a replacement of a heavy underlying model with an approxi-
mate yet fast ML model, which is known as surrogate modeling. These
models, as an example, could be trained on cheaper data from other
simulations, or experimental results. Another possibility is the model
order reduction (see Schilders et al. (2008) for review), which is usually
based on the matrix or tensor decomposition of the underlying high-
order formulation. It should be noted that, depending on the context,
the full replacement of the simulation routine with the ML model is also
referred to as surrogate modeling.
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• Input data choice. Machine learning offers a variety of techniques for
the intelligent data sampling and experimental design, starting from
space decomposition (e.g., using the Latin hypercube sampling (McKay
et al., 1979)) up to Bayesian models-assisted sampling (Burnaev and
Panov, 2015). An active learning scenario for the surrogate model con-
struction also belongs to this category, setting up the inputs for the next
simulations.

• Numerical methods enhancement. Another important integration type
is the replacement of numerical techniques with ML analogues. A typi-
cal example is the injection of interatomic potentials within the process
of molecular dynamics or atom relaxation (Podryabinkin and Shapeev,
2017).

• Result processing for scientific discovery. The last yet arguably the
most significant usage of machine learning lies within the interpreta-
tion of simulation results: pattern recognition and assisted optimiza-
tion, which could be performed using a rich set of tools like clustering
and manifold learning.

We would like to note that the ML machinery we design may also benefit
from the physical knowledge and insights incorporated; see Sections 4.3 and
5.1.2 for details. Moreover, the most relevant results are verified with the
simulations, like all the particular deformation cases listed in Section 7.1. The
general view on the methodology used for the ESE learning is discussed in
Section 4.1.

In the next part, we will review the important works on the machine-
learning-assisted ab initio calculations.

3.2.2 Selected works in ML-assisted simulation

As we are focused on the works related to the first-principles calculations
and simulations, we begin with a few words on the main problems, and chal-
lenges in this field. This section can be considered as a short overview of
main data sources, problems, models and challenges in the field of machine
learning applications to chemoinformatics and materials science, as many of
these models influenced the methodology described in this work.

Databases

We start with the data; in terms of machine-learning like, ready-to-go
dataset, we should mention the various datasets collected through exten-
sive ab initio calculations. First of all, it is QMX (QM7, QM9, etc.) and
GDB-X (GDB-7, GDB-9, GDB-11) datasets, which provide a mapping from
the organic molecules to its properties, which were calculated using DFT-
like XC-functional (B3LYP (Yanai et al., 2004) in most of the cases). These
databases serve as a benchmark for different ML-based methods to compare.
We would like to note that there exists a tremendously large database of 166
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billion molecules (GDB-17, (Ruddigkeit et al., 2012)), which does not provide
any properties yet may be suitable for the large unsupervised exploration in
future by, e.g., learning the lower-dimensional representations, or grouping
molecules into the clusters.

Among other notable databases, we would like to mention an AFLOW
database (Setyawan and Curtarolo, 2010; Curtarolo et al., 2012; Rose et al.,
2017) of more than 3.2 million compounds with over 588 million calculated
properties, which also provides a friendly interface for easy access (Taylor
et al., 2014). The creation and existence of such databases boosted the devel-
opment of computational materials science and slightly pushed it to the ML
side in the 2010s.

While these databases offer a tool to explore and validate the machine-
learning models that may assist in simulation, a real use case is to some-
how connect these to the “oracle” that performs the first-principles simula-
tions. Therefore, some authors do not test their models extensively on these
databases and report the performance on open problems instead, marrying
their ML machinery with the simulation software.

Problems

Most of the properties of interest require not a single calculation (as for
the bandgap or electronic band structure case) but a series of calculations
and approximations; examples include thermoconductivity, reaction rate es-
timation, and so on. Two important types of multi-step ab initio calculations
are molecular dynamics (MD) that describes the system evolution in time
and is usually related to the interaction of molecules, and relaxation, that de-
scribes the system evolution under external or internal forces, and is closely
related to materials science. Both procedures require additional QM calcu-
lations, and one of the most exploited ways to enhance the speed is related
to “simulating” the call to a first-principle calculation by replacing the result
with the ones produced by an ML model.

Another challenge is connected to the simulation of large-scale systems.
When the system size reaches thousands and tens of thousands of atoms,
most of the calculations break due to the memory limitations or require too
much time. Therefore, another approach machine learning can help with
is connected to breaking such a system into parts (which are pretty similar
to each other) and then assembling the contribution of each into the final
answer. To that end, most of the modern models related to simulation impose
locality – an ability to operate within a certain range for each atom.

Notable models

As can be seen in the Schrödinger equation (2.7), the properties of the
system of the atoms are fully described by the atom types and the distances
between them. The main question is how to operationalize this knowledge
and embed it within a model – in other words, how to extract useful features.

A classic approach requires the calculation of pairwise distances between
pairs of atoms, and angles between the triples (quadruples, etc.) of atoms,
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within a certain cutoff radius of each atom. These quantities are then com-
bined in a way to represent the local environment for each atom, and the
final answer is parametrized over the features within each local environment
and all the environments in total. An important note is related to the various
symmetries such a model should impose; usually, it is a translational and ro-
tational symmetries, as well as the permutational symmetry (you can swap
any two atoms of the same type, and the system would be the same). Popular
models could be roughly divided into the following categories:

• BoB-based (Bag of Bonds) models and its modifications are usually con-
structed on the aforementioned type of features and are KRR-based
(Hansen et al., 2015; Brockherde et al., 2017; Chmiela et al., 2017; Hansen
et al., 2013; Chmiela et al., 2018). A comprehensive review can be found
in Huang and Von Lilienfeld (2016).

• NN-based models that inspired by the Behler–Parinello networks (an
extensive review on early models is provided in Behler (2011)) do con-
struct similar types of features automatically of semi-automatically and
are usually fully-differentiable, that enables easy end-to-end training.
The downside is that for most of the cases, such networks need an “in-
teraction” (or message-passing) steps that are launched in advance to
the usual parameter training by gradient descent; the performance of
the network is usually dictated by the number of such steps, which
ensures additional hyperparameter manipulation in order to find the
most suitable model. Another notable downside is a moderate perfor-
mance on small-scale datasets. Modern models of this class include
message-passing neural networks (MPNNs, described and classified
in Gilmer et al. (2017)), ANI-1(x) models (Smith et al., 2017; Zubatyuk
et al., 2019), and SchNet-related models (Schutt et al., 2017; Schütt et al.,
2018).

• A curious approach based on the gradient boosting trees is presented
in (Isayev et al., 2017), where authors propose a graph-based dissection
of a crystal system.

• Another important approach is GAP (Gaussian Approximation Poten-
tials), developed in Bartók et al. (2010), where authors propose to use
Gaussian Processes on the basis set of 4D spherical harmonics. Among
non-NN based approaches, this approach is by far among the most ac-
curate approximations yet is the most computationally expensive one.

• An interesting approach based on the Moment Tensor Potentials was
proposed in Shapeev (2016). It offers a feature representation based
on the invariant polynomials and could be classified as a generalized
linear model from the ML point of view. A small number of trainable
parameters coupled with a suitable feature set results in the most effec-
tive performance among the non-NN models (Zuo et al., 2020).

These models (referred to as interatomic potentials as they take into ac-
count interaction on the atomic level) are universal in the sense that they
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could learn any property of a system. A lot of different approaches, which are
tailored to the specific figures-of-merit (like the one described in this work)
are not included in this small review. For a more detailed review of the ap-
plication to energy materials, we refer to Chen et al. (2020).

Steps to discovery

Of course, one could solve the problems of material optimization and
chemical discovery without such potentials, on the pure DFT (or with the
help of inaccurate semi-empirical potentials). One of the most famous ex-
amples is USPEX (Universal Structure Predictor: Evolutionary Xtallography,
Oganov and Glass (2006)), which is based on the genetic algorithm, and led to
many discovered structures that were then proven experimentally. Among
the other works, we would like to note a similar approach to the bandgap
engineering in Chang and von Lilienfeld (2018), where authors use a com-
bination of gradient descent and genetic algorithm to generate the crystal
structures with a large direct bandgap. Both (and many more) exploration
methods can benefit from the ML model incorporated into the discovery al-
gorithm.

The main purpose of the interatomic potentials mentioned in a previous
section is not to fit a given dataset perfectly but to deliver useful and explain-
able results for a given problem. In terms of ML-assisted simulations, all of
these models can be used as a surrogate to the ab initio calculations, but only
a few can provide a mechanism for the active learning or estimate its own
error.

One important approach is related to ANI-1 type networks. In the subse-
quent works, the authors propose two notable extensions to the simulation
process. In Smith et al. (2018), they develop an active learning mechanism
based on the ensemble of ANI-1 networks and demonstrate that the corre-
sponding uncertainty estimate actually correlates with the model error and
is also useful in an active learning scenario. They also show that the data fu-
sion scenario, implemented via transfer learning, is capable of reaching better
accuracy with a small amount of high-fidelity data in Smith et al. (2019). Both
introduced features – transfer learning and active learning – are exploited in a
similar manner in our work. Compared to other NN-based potentials, works
on ANI-1 demonstrate effectiveness and applicability to the ML-assisted sim-
ulation.

Another outstanding approach is explored in the consecutive works on
MTP. In (Podryabinkin and Shapeev, 2017; Gubaev et al., 2018), authors de-
velop an active learning methodology that estimates the uncertainty based
on the distance from the training set (with the D-optimality criterion), and
evaluate its effectiveness in different scenarios. These include the study of
diffusion processes (Novoselov et al., 2019), application to the chemical re-
action rate estimation (Novikov et al., 2018), accelerating the alloy discovery
(Gubaev et al., 2019), and combination with the USPEX machinery for the
boron structures prediction (Podryabinkin et al., 2019).
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Apart from the direct simulation acceleration, we would like to note a few
works that use the ML machinery to explore the intrinsic properties of the
chemical space. These include a high-level review on how similar models can
be used for materials properties exploration (von Lilienfeld et al., 2019), an
explainable analysis of “feature importance” on the molecular level (Schutt
et al., 2017), and tSNE-like deep exploration of the chemical space (Karlov
et al., 2019), to name a few.

Related works

We would like to conclude this chapter with a brief discussion of works
especially related to ours. Apart from the aforementioned “alchemical” ap-
proach to the bandgap engineering, described in (Chang and von Lilienfeld,
2018), bandgap prediction with the help of neural networks was first ad-
dressed in (Zhaochun et al., 1998) and later appeared in a number of works;
we would refer to the high-level reviews in (Schmidt et al., 2019; Chen et al.,
2020). A more complicated take on the dispersion relation and band struc-
ture are made in (Malheiros-Silveira and Hernandez-Figueroa, 2012; Pilozzi
et al., 2018); a tight-binding model functional approach is discussed in Peano
et al. (2019). Since the band structure prediction is only the part of the prob-
lem in some cases, some authors propose a more target-oriented approach to
the prediction of band-crossing and other topological features (Zhang et al.,
2018; Claussen et al., 2019).

The method presented in this work is focused on the electronic band
structure prediction for a very specific problem – elastic strain engineering
of semiconductor crystals – and offers a number of ideas on the physical-
informed model construction as well as develops a framework for an effec-
tive interaction with the ab initio simulations. In the next chapter, we will
discuss the details on both model design and the overall methodology of
ML-assisted simulation applied to the specific problem of ESE.
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4 Methodology

4.1 General ESE methodology

We begin the methodology chapter with the high-level formulation on
how exactly the machine learning model for ESE and the corresponding first-
principles calculations affect and complement each other. This section serves
the purpose of both a general view on the ESE models we design and a brief
overview of the upcoming methodology sections.

From the ML-assisted simulation perspective, mentioned in Section 3.2.1,
the components of the whole ab initio simulation process for ESE may be
described in the following way:

• Model is the density functional theory, which, in turn, is a handy ap-
proximation described in Section 2.2.

• Parameters and input data are the VASP settings, described in Section
4.2 and listed in Appendix C, and the deformation tensor εεε, correspond-
ingly. In terms of ML-simulation interaction, we will refer to the strain
value εεε only.

• Numerical methods are the set of internal VASP routines for conver-
gence of band energies.

• Simulation result is ultimately an electronic band structure, represented
as a rank-4 tensor, or a set of these calculations. Three out of four di-
mensions represent the k-space coordinates, and the last dimension de-
notes the band number, see Section 5.1.2 for details.

From the machine learning side, the process parts are as follows:

• Training data is a set of strain-band structure pairs (ε jε jε j, E(ε jε jε j)) in the
general case or set of strain-bandgap pairs (ε jε jε j, Eg(ε jε jε j)) for the simplified
case of silicon crystal.

• Hypothesis set is an underlying model class we use for training: NNs
and CNNs, with a particular variants described in detail in Sections
5.1.1 and 5.1.2, correspondingly.

• Algorithm is a standard gradient descent algorithm with variations tai-
lored to the NN architectures, such as Adam (Kingma and Ba, 2014).

• There is plenty of final hypotheses we test with the developed ML ma-
chinery, starting from the extreme bandgap values (see Section 7.1) up
to the exploration of the band structure topology (Section 7.2).
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The methodological approach implemented in this work fuses both ML-
assisted simulation (see Section 3.2.1) and simulation-assisted machine learn-
ing, resulting in a rapid exploration of the strain space. In particular, two
following parts of simulation benefit from the ML model:

• Input data for the simulation may be provided by the active learning al-
gorithm within the CNN, see Section 5.1.2 for details and Section 6.1.2
for the empirical estimate of active learning applicability for the ESE
project. As a side note, not related to strain engineering, the developed
active learning algorithms (Sections 5.2.1, 5.2.2, 5.2.3) were tested in a
number of problems and scenarios, with quantified results presented in
Sections 6.2, 6.3, and 6.4. Of special importance are the numerical ex-
periments that emulate the real experience of interaction with the sim-
ulator: active learning with the SchNet (Section 6.4.3) and surrogate
model for the fluid flow in a wellbore in drilling scenario (Appendix
E).

• A machine learning-based approach with the surrogate modeling makes
it possible to detect patterns and test hypotheses for scientific discov-
ery. Optimization routines that are looking for the best combination of
figures-of-merit and straining effort require tens of thousands of calcu-
lations. Large maps describing how the figures-of-merit evolve within
the vast strain space, like the ones presented in Section 7.1 require mil-
lions of calculations; discoveries presented in this work would simply
be inaccessible for plain DFT calculations.

The surrogate machine learning model we design benefits from the calcu-
lations in the following ways:

• Apart from the obvious benefit of having an “oracle” (in terms of Sec-
tion 2.3.5) for querying data by demand, ab initio simulations offer an-
other possibility of obtaining fast approximations of the electronic band
structure by using cheap yet inaccurate PBE calculations without the
GW approximation step. This “low-fidelity” data enables the option of
fast preliminary training for the corresponding model, see Section 5.1.2
for details for the diamond ESE model; throughout the text, we refer
to this approach as data fusion. Another possibility is the so-called “∆-
ML” approach when one model is trained on the inaccurate data, and
another is fitted either on the difference between inaccurate and accu-
rate data answers, or having the prediction for an inaccurate data as
an input. This scenario was implemented in the silicon model case and
described in Section 5.1.1.

• The hypothesis set, which corresponds to the class of ML models we
use, was specifically tailored to the known physical symmetries and
properties, including ones derived from the data. Section 5.1.2 is dedi-
cated to this translation from the data- and physics-derived properties
into the language of ML machinery.
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• Last yet not the least, is thorough verification of the selected results
discovered using a machine learning model with additional simula-
tions. As an example, all the particular deformation cases listed in Sec-
tion 7.1 were double-checked by separate GW calculations.

In the next section, we will take a close look at how the first-principles
calculations are organized.

4.2 First-principles calculations

4.2.1 General settings

We used the Perdew-Burke-Ernzerhof (PBE) (Perdew et al., 1996) exchange-
correlation functional and the projector augmented wave method (PAW) (Blochl,
1994) in our DFT simulations implemented in the Vienna Ab initio Simula-
tion Package (Kresse and Furthmuller, 1996) with spin-polarization incorpo-
rated. Computations that invoke GW corrections were run based upon the
same PBE-PAW settings; we utilized the following three-step procedure:

1. Preliminary ground-state calculation. This is a standard preparation
step1, as GW calculations always require a one-electron basis set. We
will refer to the results obtained on this step as PBE results: PBE band
structure, PBE bandgap, etc. This step is computationally cheap.

2. DFT virtual orbitals calculation. Another step on the way on GW cal-
culation preparation, we need to enrich the band structure with a rea-
sonable number of virtual orbitals (50-100 per atom, as recommended
in VASP tutorials).

3. GW calculation. In order to save time (after all, we need thousands of
calculations!), we utilize the “single-shot” quasi-particle energies method,
referred to as G0W0. This method operates on the diagonal matrix ele-
ments of the self-energy only, with a Taylor expansion of the self-energy
around the DFT energies as an approximation step.

The listings for the input INCAR files are provided in the Appendix C.
In all calculations, a plane wave basis set with an energy cutoff of 600 eV

was adopted to expand the electronic wavefunctions. The Brillouin zone in-
tegration was conducted on an 8× 8× 8 (6× 6× 6 for silicon calculations)
Monkhorst-Pack (Monkhorst and Pack, 1976) k-point mesh. We had deliber-
ately reduced the symmetry setting to include the k-space reflection symme-
try only (ISYM = 0) to unify the data processing pipeline. Atomic coordinates
in all the structures were relaxed until the maximum residual force was be-
low 0.0005 eV Å

−1
.

Density functional perturbation theory (DFPT) calculations were performed
to determine the phonon stability on a 16-atom diamond supercell with a

1Not in the case of self-consistent GW.
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2 × 2 × 2 k-mesh. The same pseudopotential and convergence criteria as
above were kept.

We want to note that even this setup and methods may be far from the
truth, according to the various studies. For instance, Giustino et al. (2010)
suggests that zero-point renormalization of the bandgap for the diamond
crystal may be as large as 0.6 eV. We also do not consider the Varshni effect
(Varshni, 1967), which suggests that the bandgap for the non-zero tempera-
ture is, in fact, smaller. Another significant limitation is connected with the
possible defects of the crystal and surface effects, which may alter the re-
sult (see Nie et al. (2019)); to address these challenges, one needs to consider
larger supercell in the calculation, including vacuum or defects. Last but not
least, is a DFT convergence error: we did not use large parameters of energy
cutoff or dense k-mesh in order to find a balance between calculation time
and accuracy. A thorough discussion on the accuracy of ab initio approaches
is out of scope for this work; however, ML machinery developed here may
be applied to more rigorous data as well.

4.2.2 Elastic strain energy density

Elastic strain engineering seeks to identify metastable states of matter for
optimizing functional properties and performance. A strained material is in
a state of higher energy than when it is in a stress-free state, characterized by
the elastic strain energy density (ESED) h, which we define as:

h(ε) ≡
Etotal(ε)− E0

total
V0 , (4.1)

where Etotal(ε) is the total energy of the cell deformed by strain ε, and
E0

total and V0 are the total energy and volume of the undeformed cell, re-
spectively. Elastic strain energy density is naturally measured in units of
meV/Å

3
.

Addressing the following question is at the heart of ESE: What is the en-
ergy cost (h) to achieve the desired property change? In the stress-free equi-
librium state, silicon has a bandgap of 1.1 eV; with an increase in strain en-
ergy density, a variety of possible bandgaps emerge. Even silicon with as
little strain energy density as 0.2 meV/Å

3
can become quite a different mate-

rial from the stress-free silicon.
Mathematically, we can define the cumulant “density of states” of bandgap

(cDOB) as the following:

c(E′g; h′) ≡
∫

h(ε)<h′
d6εδ(E′g − Eg(ε)) =∫

d6εδ(E′g − Eg(ε))H(h′ − h(ε)),
(4.2)

where d6ε ≡ dε1dε2dε3dε4dε5dε6 is the measure in the 6D strain-space, δ(·)
is the Dirac delta function, and H(·) is the Heaviside step function. We then
define the “density of states” of bandgap (DOB) at h′ by taking the derivative
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of the cumulant with respect to h′:

ρ(E′g; h′) ≡
∂c(E′g; h′)

∂h′
=
∫

d6εδ(E′g − Eg(ε))δ(h′ − h(ε)). (4.3)

The meaning of DOB is as follows: provided one is willing to consider elasti-
cally strained states within the (h− dh

2 , h + dh
2 ) energy interval, the distribu-

tion of bandgaps that these states provide. The DOB function ρ(Eg; h) offers
a blueprint to what bandgaps are accessible at what energy cost. One can
use the definition (4.3) not only for the electronic bandgap, but also generally
for any scalar properties (thermoelectric figure of merit zT, Baliga’s figure
of merit, Curie temperature, etc.), that will provide an essential road map for
ESE, as will be demonstrated in Section 7.1. We can define an upper-envelope
function Eupper

g (h) and lower-envelope function Elower
g (h) based on ρ(Eg; h)

also:
Eupper

g (h) ≡ max suppEg
(ρ(Eg, h)),

Elower
g (h) ≡ min suppEg

(ρ(Eg, h)).
(4.4)

In deep ESE, Elower
g (h) also indicates the 6D steepest descent strain direction

to obtain a certain figure of merit. The whole bandgap envelope is analogous
to the “flight envelope” used in aerodynamics to describe the allowable Mach
number at a given atmospheric density (altitude) for an aircraft. In this work,
the shape of the “entire iceberg” is revealed for silicon and diamond, and we
can visualize the entire range of possibilities that deep ESE can achieve.

Certainly, for optical applications, another huge question is whether a
bandgap is direct or indirect. This direct bandgap envelope will be a subset
embedded within the DOB. We can define the density of direct bandgaps
(cDOD) in parallel to (4.2), (4.3), (4.4), but with Edirectg instead of Eg, to obtain
cDOD ρd(Edirectg, h) and its bounds Eupper

directg(h), Elower
directg(h). Obviously, if direct

bandgaps exist at any strain (Corkill and Cohen, 1993; Saladukha et al., 2018;
Inaoka et al., 2015), for that strain, there will be

(Elower
directg(h), Eupper

directg(h)) ⊆ (Elower
g (h), Eupper

g (h)). (4.5)

The elastic strain energy density, as well as the other quantities, would
be thoroughly analysed on the data available from calculations in the next
section.

4.3 Exploratory data analysis of diamond crystal
data

Understanding data is a very first and crucial step for solving any ma-
chine learning problem. Various visualizations often help to get deep insights
into the problem and act correspondingly. In this section, we look into some
specific projections of the data given by the first-principles calculations for
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a strained diamond crystal case. Although data for silicon crystal is mostly
omitted here, we would like to emphasize that the same insights do hold for
Si as well.

4.3.1 Stability estimates

In order to first roughly estimate the stability boundaries for the diamond
crystal, we have conducted a series of phonon stability experiments (con-
ducted by Zhe Shi). We have sampled > 10 000 strains within the following
limits:

|ε jj| < 30%, j ∈ {x, y, z};
|εij| < 20%, i, j ∈ {x, y, z}, i 6= j.

A bivariate distribution plot is shown at Figure 4.1. Here, inspired by the
results of stability region estimates in 2D materials (Kumar et al., 2015), we
used the sums of absolute values for diagonal and off-diagonal elements of
the strain tensor as quantities for axes:

Σdiag = |εxx|+ |εyy|+ |εzz|;
Σshear = |εxy|+ |εyz|+ |εxz|.

FIGURE 4.1: Bivariate distribution plot for the strains sampled
for the stability boundaries estimation. Two classes are not lin-
early separable; a conservative estimate (4.6) visualized as a
dashed line; see Figure 4.2 for the details on this estimate. The
stability here is phonon stability accessed from the ab initio cal-

culations.

While Figure 4.1 suggests that there is no linearly separable model to dis-
tinguish the stable cases from the unstable ones, we have decided to come
up with a simple rough estimate in these terms. This is connected to the ac-
curacy limits in the phonon stability calculations: these were done for the
Γ critical point only and hence reliably indicate the unstable cases only. We
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have done a separate stability estimation for the actual GW calculations we
performed later; on the initial stage, we used the following linear estimate:

Σshear < 0.25− 0.5Σdiag. (4.6)

FIGURE 4.2: The percent of unstable strains as a function of
the line translation parameter in inequality (4.6). The chosen
parameter of b = 0.25 corresponds to the 90% confidence es-
timated on the data set. Regardless of this estimate, all major

results were double-checked for stability.

The details on the estimation of the line translation parameter are shown
in Figure 4.2; we have taken the value for a 90% confidence estimation of true
negative rate (TPR). The slope has been estimated as an orthogonal vector to
the line that connects the centers of distributions in Figure 4.1.

4.3.2 Electronic band structure correlations

We want to start by pointing out that there are two kinds of symmetries
that hold by construction within the electronic band structure regardless of
the strain value:

• k-space reflection, or time-reversal symmetry:

En(kkk) = En(−kkk), (4.7)

which holds for materials with no strong magnetic properties. This
includes all the semiconductors of our possible interest: silicon, germa-
nium, gallium arsenide, and many other materials, including carbon
diamond.

• k-space periodicity:
En(kkk + k?k?k?) = En(kkk), (4.8)

where k?k?k? = (aiii, bjjj, cmmm), a, b, c ∈ Z, iii, jjj, mmm are reciprocal space lattice
vectors.
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This may be viewed as a periodic boundary in k-space.

To demonstrate the intrinsic connections within the electronic band struc-
ture data from the GW calculations, we have studied the relationship for the
adjacent points in k-space. We have considered two metrics: median intra-
band Pearson correlation:

ρintra(n, d) = med
j=1,...,N,

||k1k1k1−k2k2k2||L∗1=d

ρ(Ej
n(k1k1k1), Ej

n(k2k2k2)), (4.9)

and median interband Pearson correlation:

ρinter(n1, n2) = med
j=1,...,N

ρ(Ej
n1(k1k1k1), Ej

n2(k2k2k2)), (4.10)

where

• ρ(·, ·) is a Pearson correlation coefficient between the two samples. It
measures the power of a linear relationship.

• med is a sample median. We take median instead of average for a more
robust estimate.

• || · ||L∗1 is a Manhattan distance. It seems to have a straightforward dis-
tance choice in the k-space given the discrete nature of k-space grid.
The asterisk here shows that the k-space periodicity (4.8) is taken into
account.

• Ej
n(kkk) is a dispersion relation for electrons of nth band at the wavewec-

tor k, defined in Section 2.2.2.

• N is a number of samples.

Each of the energy bands evolves piecewise-smoothly with changes in k,
and the information within the energy dispersion of a specific band includes
intraband correlations with respect to k. In other words, we do expect adja-
cent points from the same band of k-space to correlate in terms of dispersion
relation energies En(kkk), just like intensities of adjacent pixels for a gray-scale
image do correlate with each other. Figure 4.3 shows that for most of the
bands, the dependence is really close to linear, with the conduction and up-
per bands (n ≥ nCB) showing a stronger relationship.

As suggested by solid-state physics, the energy bands are not “indepen-
dent” from each other. Instead, they collectively describe the physical nature
of the crystal. For example, if we consider single electron in a periodic po-
tential resulting from the interaction of the electron with the ions and other
electrons, by solving the Schrödinger equation, we get a series of Bloch waves
as solutions (see Section 2.2.2), each of which has a predicted dispersive form.
Through the first-principles method, the quantized energy levels are deter-
mined altogether at once, meaning that the nth band is not calculated alone
but is affected and determined by its neighbouring bands, including the ad-
jacent (n − 1)th and (n + 1)th bands as well as other non-adjacent bands
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FIGURE 4.3: Heatmap for the median intraband Pearson corre-
lation coefficient (4.9) between the energies in two points sep-
arated by a given Manhattan distance in k-space. Unsurpris-
ingly, the correlation is strongest in the case of two adjacent k-

points.

(Perdew et al., 1996). In other words, there is information regarding the inter-
band correlations against n that is included in the band structure of a crystal.
As the exploratory analysis of the median interband correlation (Figure 4.4)
suggests, this connection is strong and evident in the case of the valence and
higher bands (n ≥ nVB).

This again resembles the image structure, where different color channels
are not independent of each other. To reveal and preserve the internal for-
mation of the band structure data in the means of our model, we incorporate
into our ML scheme convolutional structure to carry out the band structure
prediction task. The CNN is known for its ability to extract hierarchical pat-
terns in images and assembling more complex patterns out of smaller ones,
e.g., the “jittered-clustered” image dataset NORB (Ciresan et al., 2011; Cire-
gan et al., 2012). Due to the pictorial nature of the band structure, CNN can be
expected as a good tool in extracting and exploiting useful “image patterns”,
or band correlations, in our task.

4.3.3 Bandgap and band extrema

PBE vs GW bandgap

We start the exploration of one of the most significant electronic proper-
ties we explore – the bandgap Eg. The relationship is shown in Figure 4.5.
As an ad hoc solution, one could come up with a linear estimate of the GW
bandgap given the (much computationally cheaper) PBE one:

EGW
g ≈ 1.178EPBE

g + 0.982. (4.11)
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FIGURE 4.4: Median interband Pearson correlation coefficient
(4.10) between the energies in the same points in k-space but
different bands. The correlation is strong in the case of adjacent
bands: top VB (n = nVB), lowest CB (n = nCB) and its adjacent

band (n = nCB+1).

The relation (4.11) demonstrates that the so-called “scissors-cut”, or con-
stant shift estimate that connects both methods, is not very far from the truth.
However, we can also see that for a specific region of EPBE

g < 0, the relation-
ship loses its linearity. For a more accurate estimate, one should adopt a more
advanced ML model.

Another important reason for the data visualization is that one could
detect the anomalies in the data. We have essentially improved our data
sampling and processing pipeline with a similar visualization, avoiding the
“garbage in – garbage out” scenario.

Conduction band minima

Within the strain space we sampled from, the valence band maxima is
always located at the Γ point. The situation is different for the conduction
band minima (CBM), for which we have discovered the following approxi-
mate distribution:

• ’∆’-line: 75% of cases. This is also a CBM for the unstrained crystal.

• Γ k-point: 14% of cases. The similar rate for a direct bandgap for silicon
was < 1%.

• ‘X’ k-point: 11% of cases.
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FIGURE 4.5: PBE vs GW bandgap along with the histograms
for both. The relationship is very similar to the linear for the

most of the population.

Direct bandgap

The ability of elastic strain engineering to turn the indirect bandgap of an
unstained diamond crystal into the direct one could be exploited in a num-
ber of ways, possibly leading to the new optoelectronic devices. The direct
bandgap is not of a rare occasion in terms of the 6-dimensional strain space,
and we will fully explore it not by mere sampling from the strains but using
the power of the surrogate model we design. Nevertheless, we would like to
explore some statistics of the direct bandgap data subset.

It is of interest to explore the regions in the strain space that correspond
to the direct bandgap. Unfortunately, the direct visualization of the strain
space is difficult, and we start by introducing the pairwise projections on
the strain components axes in Figure 4.6. This plot indicates that the typical
requirement for a direct bandgap to appear involves the strain cases with the
shear (off-diagonal) components being far from zero: |εxy|, |εyz|, |εxz| � 0.

Figure 4.6 also indicates that it is hard to locate the exact regions of the
direct bandgap. tSNE also indicates that the cases are indistinguishable from
the general sample. We can try to answer the following question: is the subset
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FIGURE 4.6: Pairwise scatter plot for direct bandgap cases.
Pairwise plots for εxy, εyz, εxz suggest that these strain com-
ponents are unlikely to hit zero simultaneously in the direct
bandgap case. At the end of each row, density plots, or
smoothed histograms, are provided for the strain components.

of direct bandgap strains contained within the manifold of a smaller dimen-
sion? And the answer is yes.

One of the standard techniques in the intrinsic dimension estimation is
the maximum likelihood estimation (MLE) applied to the distances between
close neighbours (Levina and Bickel, 2005). Since it is stochastic by its na-
ture, we conducted several runs of intrinsic dimension MLE for the whole
sample, random samples, and direct bandgap subset. The results are shown
in Figure 4.7. It illustrates that the direct bandgap strains are likely to form
a 5-dimensional manifold within the 6-dimensional manifold of admissible
strains.

4.3.4 Strain-bandstructure symmetries

For the bandgap as an electronic bandstructure property, the symmetry
group of the crystal permutations consists of 48 elements. However, due
to the usage of the specific strain tensor (see Section 2.1.3 for details) the
corresponding symmetries are not held anymore. In this section, we will
explore some symmetry cases and their possible utilization.
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FIGURE 4.7: Intrinsic dimension MLE for the strain data: full
data set, random points in 6-dimensional space, direct bandgap
strains, and random points in 5-dimensional space. Intrinsic
dimension for a direct bandgaps is less than one for the general

sample.

Let us consider four arbitrary strain cases:

εA = (εxx, εyy, εzz, εyz, εxz, εxy);
εB = (εxx, εyy, εzz, εyz,−εxz,−εxy);
εC = (εxx, εyy, εzz,−εyz, εxz,−εxy);
εD = (εxx, εyy, εzz,−εyz,−εxz, εxy).

For these, there is a complicated one-to-one correspondence between the
dispersion energies in k-points of the corresponding electronic band struc-
tures we found empirically:

En(kB
1 , kB

2 , kB
3 ) = En(kA

1 , kA
1 − kA

3 , kA
1 − kA

2 );

En(kC
1 , kC

2 , kC
3 ) = En(kA

2 − kA
3 , kA

2 , kA
2 − kA

1 );

En(kD
1 , kD

2 , kD
3 ) = En(kA

3 − kA
2 , kA

3 − kA
1 , kA

3 ).

(4.12)

The mean absolute deviation for these is near 7e-5 eV, which looks like
a rounding error of VASP routines since we used 4 decimal digits after a
comma in the standard OUTCAR output file.

This equivalence matters a lot since we now have 4 times more data with-
out the corresponding loss in accuracy. The scheme is close to the data aug-
mentation, which is widely used for the CNN training.

These findings conclude the exploratory analysis section. In the next sec-
tion, we will show how the explored properties influenced the model design.
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5 Methodology development

5.1 Model design

By that point, when the preliminary analysis is done, we can finally raise
some realistic expectations about our surrogate model and discuss it in detail:

• Band structure prediction. Instead of focusing on the single property
(like the bandgap Eg or its type), we aim to gather the full electronic
band structure information at once due to a number of reasons. First,
Section 4.3 have demonstrated that the data is intensively intercon-
nected, and exploiting these connections may be beneficial in terms of
accuracy of the whole procedure. Second, obtaining a full bandstruc-
ture at once offers a more comprehensive description of what is go-
ing on in terms of effects caused by the band structure change, and is
required for a proper bandgap estimation. For example, with a band
structure at hand, one could estimate how stable is the direct bandgap
in terms of other minima in k-space being close. Another example is
a possible prediction of a electronic mass tensor (2.11), which requires
the position of conduction band minima and the values in several k-
points. Moreover, with the help of other additional calculations, it of-
fers the prediction of other properties and figures-of-merit (FoMs), such
as the absorption coefficient. Nevertheless, we would compare the per-
formance of the “general” model, which predicts the whole band struc-
ture, with a “specialized” model focused on a single property, in exper-
imental Section 6.1.2.

In this work, we are focusing on the approach that fixes a k-point mesh
and predicts the energy dispersion relations on its nodes based on the
six-dimensional strain εεε. Another possible solution could be the model
that is designed to take both strain and k-point coordinates as input
and predict the energy relation for a given band. This model was de-
signed for the case of PBE data, and the accuracy results are reported
in Section 6.1.1. However, switching to the next accuracy level with
the GW calculations is hard due to computational constraints and spe-
cific requirements to the k-mesh generation – one just be lacking data
to train the model on.

• Warm start (incremental fitting). We definitely want our surrogate
models to learn successfully from several data sets and assimilate them.
This capability is becoming increasingly important with the spread of
materials property databases that collect data from different studies
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(Jain et al., 2013). Luckily, most of the modern models may theoreti-
cally be used in this fashion, as discussed in Section 2.3.5. The ability of
models to handle the warm start in practice is accessed in Section 6.1.1;
in particular, we are looking forward to the utilization of the vast PBE
data we can generate for cheap.

• Active learning. As mentioned in Section 2.3.5, we would like to take
advantage of the access to the oracle (i.e., VASP) that could calculate the
electronic band structure for a given strain value εεε. To this extent, we
want to access the uncertainty estimates and use them as an acquisition
function.

• High accuracy and fast inference. Last, but not the least, are the per-
formance requirements our model should meet. Of course, one could
use rough linear-like estimates similar to (4.6) for a fast approximation,
yet for a number of applications, the required accuracy is not enough.
The situation gets worse for a small bandgap materials, such as silicon
crystal: the mean absolute error of 0.1 eV is 1-2 % relative error for the
diamond crystal yet close to 6-7 % for the silicon crystal and could reach
10-15 % for the narrow-bandgap germanium.

The high-throughput requirement is connected with an exploration of
the vast six-dimensional strain space. While optimization routines may
require tens of thousands of calculations, the approaches aimed at the
full description may require millions or even billions of runs. To that
end, we want our model to be fast in terms of the inference time, and
this is also the main reason we do not learn separate models for the
energy dispersion relation for each band and each k-point, as this in-
creases the inference time by the three orders of magnitude (4 (energy
bands) × 260 (k-points for 83 mesh, excluding time-reversal symmetry
(4.7))).

We could think of two families of models that meet these requirements:

• Gaussian Processes and kernel-based methods. The high accuracy
and uncertainty estimation are natural to these models, and they could
be generalized to work on multi-output fashion. Unfortunately, setting
up such a model requires intensive kernel search, and fast inference
coupled with the large output dimension is challenging, as well as the
active learning on large amounts of data.

• Neural networks. We have ended up using these models due to the fol-
lowing reasons. Most of the properties are natural to these models, and
there exist specialized architectures. Moreover, on the implementation
side, deep learning libraries, such as Tensorflow Abadi et al. (2016) or
Torch Paszke et al. (2019) are pretty mature and popular, which means
extensive support may be found online. The situation with the Gaus-
sian processes is not that bright; it is connected with the lesser popular-
ity of this approach in general.
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One of the main drawbacks of neural networks are still-developing
techniques of uncertainty estimation. To overcome this difficulty, we
do propose various methods of uncertainty estimation for the neural
networks in general, and evaluate them within the course of the ESE
project and for standard ML-related problems and benchmarks as well
in Chapter 6.

We would like to point out that our understanding of approaches suitable
for the elastic strain engineering has changed along with the research course.
For a silicon crystal, we took advantage of simple models, probing the sur-
rogate model landscape that is described in the next Section 5.1.1 in detail
and in Shi et al. (2019) in short. A more thorough analysis was performed for
the diamond crystal, and this resulted in a fundamental redesign of the neu-
ral network architecture on top of the previous method to incorporate more
physics at the very beginning. Based on an improved understanding, we fur-
ther proposed a better data representation scheme and a more advanced al-
gorithm based upon convolutional neural network (CNN) structure capable
of bringing about significantly improved ML outcomes that invoke physical
insights, see Section 5.1.2. The fast and reliable inference of the proposed
model opens a path towards analyzing and scrutinizing the unexplored cor-
ners of the vast 6D strain space and find the most energy-efficient ways for
FoM optimization by ESE.

5.1.1 NN description for Si crystal

Neural networks were implemented within the Tensorflow (Abadi et al.,
2016) framework. To predict the bandgap for a silicon crystal, we used ar-
chitecture with four hidden layers with a (64 – 128 – 256 – 256) in the case of
three-normal-strains strains (εxy = εyz = εxz) and a (512 – 256 – 256 – 256)
architecture for the general case with shear strains, as shown in Figure 5.1.
For the more complicated task of band energy prediction at a single k-point,
the (512 – 256 – 256 – 256) architecture was used. The leaky rectified linear
unit (Maas et al., 2013) was chosen as an activation function. We used the
Adam stochastic optimization method (Kingma and Ba, 2014), the orthogo-
nal weight initialization (Saxe et al., 2013), and the dropout (Srivastava et al.,
2014) technique to prevent overfitting.

Training procedure: data fusion

Data fusion represents the concept of combining different data sources
in order to improve the model (Khaleghi et al., 2013). We adopted this ap-
proach to further improve the learning outcome for Eg, the most technically
important property for electronic material. While the data fusion model pre-
diction in Ramakrishnan et al. (2015) corresponds to a baseline value plus
a correction, our data fusion approach is more advanced. More specifically,
given EPBE

g computed using an approximate baseline level of theory (PBE) at
a particular query strain case, a related EPBE

g value corresponding to a more
accurate and more demanding target level of theory (GW) can be estimated
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as a function of both EPBE
g and elastic strain εεε. Therefore, the EGW

g consistent
with the query strain case is learned using exclusively ε and EPBE

g as input, as
illustrated in Figure 5.1.

FIGURE 5.1: Machine learning workflow with a fully-connected
neural networks. For a typical bandgap-prediction task, the in-
put contains the strain information only, and the target is either
EPBE

g or EGW
g . In the data fusion process, the bandgap predicted

from fitting the PBE dataset is also taken in as an input to fit
the GW bandgap. For the whole band structure fitting task, the
input contains both strain information and the k-point coordi-
nates, and the target is the energy dispersion En(kkk, ε), where n
is the band index, k is the wavevector, and ε is the crystal strain
tensor. The hidden-layer structures of the two associated deep

NNs are also depicted.

5.1.2 CNN description

We are focused on the accurate prediction of the electronic band struc-
ture, from which most of the FoMs may be directly derived. In the search of
a concept that better represents the nature of energy dispersion as an object,
we, inspired by the tremendous success of deep learning in the field of im-
age processing LeCun et al. (2015), found the desired analogy in an idea of
image. Indeed, the "pictorial" view, with concepts like RGB color channels
that do correlate with each other, and the pixel-like discretization as the tool
to perceive the continuous nature of the phenomena, imparts an important
knowledge of the true essence of the band structure. Now we can rightly
regard the energy dispersions as some sort of stacked 3D “images”, with the
reciprocal coordinates kkk = (k1, k2, k3) representing the “voxels” (i.e., 3D “pix-
els”) of an image and En denoting the “color-scale” (similar to the RGB or
grayscale of a real image) at each voxel for a particular 3D image, n (band
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index). As we demonstrated in Section 4.3.2, energy bands evolve piecewise-
smoothly with changes in k, and the information within the energy disper-
sion of a specific band includes intraband correlations with respect to k. An
illustration of this pictorial nature of band structure can be found in Figure
5.2.

FIGURE 5.2: Different representations of a band structure. In
the “flattened” view, a band structure is represented as N
stacked flattened arrays (vectors) and processed like indepen-
dent values. Each array is m3 in length. In the “pictorial” view,
the band structure is considered as N 3D images stacked to-
gether, each of which has a “voxel” dimension of m × m × m.
The eigenvalues on an energy band can be thought of as the
“color-scale” of the voxels. The bands are shown in 2D for vi-

sualization purposes.

It is noted that the baseline here is the simpler and straightforward ML
scheme, which is based on feed-forward neural network that treats an energy
band as a flattened array of independent values, will ignore the information
of intraband correlation (shown in Figure 4.3). Figure 5.3 summarizes the
key differences between the baseline approach and the proposed CNN.

As was highlighted earlier in Section 4.3.2, we rely on the convolutional
neural networks as an essential piece of our model. The general setup of the
proposed CNN-based model is illustrated in Figure 5.4.

It consists of two consecutive blocks: the fully-connected part and the
convolutional part. In the beginning, the strain tensor εεε is taken as the in-
put and transformed into a feature vector through a series of fully-connected
layers, as depicted in Figure 5.4. This feature vector has a length of Nm3,
where m3 equals the number of k-points sampled in the Brillouin zone, and
N is the number of bands we aim to approximate altogether. Depending on
the k-mesh density, the feature vector can be made very long and adopted as
a rich representation of the intraband information for a band structure. For
instance, if we aim to use a total of four bands (N = 4) to describe the energy
dispersion near the bandgap under a particular deformation, we could come
up with 4 vectors, each of which has a length of m3, to represent, respectively,
the band energy dispersion for the top valence band (VB, n = nVB), the low-
est conduction band (CB, n = nCB), and their adjacent two bands (n = nVB−1
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FIGURE 5.3: Comparison of the two different approaches to ma-
chine learning the ESE. One can predict the eigenvalues on an
energy band independently by directly utilizing the “flattened”
band structure representation, or take into account the inner re-
lations between the values provided by the physical nature of
the data and result in getting the entire band structure at once.

FIGURE 5.4: CNN architecture for the band structure predic-
tion. The strain components are passed through a few fully-
connected layers, with the last layer reshaped into a rank-5 ten-
sor. After a few convolutional layers (with residual connections
He et al. (2016) that improve convergence by avoiding the gra-
dient vanishing), the network produces the band structure as
the output, which is fitted against the targeted DFT-computed
band structure. Here, b is a batch size, and n is a number of

bands.

and n = nCB+1). Stacking them together, we can build an m × m × m × N
tensor representation of the band structure for any individual strain data, as
illustrated in Figure 5.5. This is then fed into the next block of convolutions.

The convolutional block consists of several layers that update this tensor
representation until the final output – the band structure. We expect the ten-
sor representations closer to the final layer are more relevant to the output,
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FIGURE 5.5: Tensor representation and physical insights incor-
porated into the CNN model: time-reversal symmetry, k-space

periodicity, and inter- and intraband convolutions.

as in the case of the image processing models. Note that the output tensor re-
tains the same dimension of the band structure, i.e., m×m×m× N. This ex-
traction process can proceed for many layers and a band structure tensor full
of detailed features involving deep intra- and inter-band information will be
delivered to fit the eventual target, which is the true band structure obtained
by DFT calculations, and thus complete the ML inference. The power of our
model lies in the architecture of the proposed CNN model, which is tailored
to the known physical structure and exploratory data analysis results (see
Section 4.3.2 for details) in order to simplify the training and speed up the
inference. In particular, it takes advantage of:

• The time-reversal symmetry (4.7), which holds for the diamond crys-
tal. Corresponding tensor representation holds this property.

• The correlation between energy dispersion relations at the same k-point
of different bands (interband correlation, see Figure 4.4). An interband
convolution between the bands is applied to each k-point so bands
could affect each other.
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• The correlation between the energy eigenvalues associated with adja-
cent k-points of the same band (intraband correlation, see Figure 4.3)),
which represents the fact that the band energy is a piecewise-smooth
function of the k-space coordinates. We run intraband convolutions for
several cycles (computational blocks) so that the underlying physics of
how energy eigenvalues from adjacent k-points affect each other can be
well-learned.

• Band structure calculations take advantage of the periodic nature of a
crystal lattice (4.8), exploiting its symmetry. The band structure plot
resulting from restricting k to the first Brillouin zone, also known as
the reduced zone scheme, is used most typically by physicists. This
reciprocal lattice periodicity is represented in our model using a special
padding technique for periodic boundary condition that follows the
reduced zone scheme.

Training procedure

The training of our model consists of three parts: preliminary training,
data fusion, and active learning. In the first part, we trained our model on
the large dataset (≈ 35 000 strain values) of computationally inexpensive PBE
calculations1. After a reasonable accuracy was achieved, in the second part,
we performed training on the much smaller amount (≈ 6 000 samples) of
the accurate GW data (sampled according to the Latin Hypercube Sampling
(McKay et al., 1979)), starting from the NN parameters we learned in a pre-
vious stage. This approach is known as the knowledge transfer as some of
the knowledge that the NN has gathered from the low-fidelity PBE data is
exploited to ease the training on the costly yet reliable GW data, see Fig-
ure 5.6 for a schematic representation of this process. The third integral part
of the training is the active learning procedure. In our case, we used the
dropout-based uncertainty estimation to sample the most “uncertain” strain
cases for further improvement of the model. Specifically, after the first round
of the training on the GW data, we performed an estimation over a large set
of random strains in 6D and chose a small amount of 200 strain cases with
the largest expected error as evaluated by this temporary model (uncertainty
measurement). These strain cases were added to the training set for the next
round of training, as illustrated in Figure 5.6. Our study indicates that 5-
10 cycles of the above active learning may enable the trained CNN to reach
the same level of accuracy with twice or three times less additional data,
thus considerably reducing the total amount of ab initio calculations without
compromising the robustness of our ML model, see 6.1.2.

1We used all the data calculated on the exploratory analysis part of the research; in prac-
tice, the model may be pre-trained on a much smaller amount of data (≈ 5 000 strains).
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FIGURE 5.6: The whole ML scheme involving pre-train, data
fusion, and active learning. The solid arrows show the work-
flow, and clock symbols indicate the time (in log scale) required
for ab initio calculations. This framework is designed to benefit
from both “oracle” existence and low-fidelity data by introduc-
ing the active learning and pre-training parts, correspondingly.

5.2 Uncertainty estimation and active learning in
neural networks

This section is dedicated to the technical details on the uncertainty esti-
mation for the neural networks. We will step off a bit from the elastic strain
engineering and will focus on the more general case of the fully-connected
neural networks. While generally feasible methods were described in brief in
Sections 2.3.4 and 2.3.5, here we will focus on the dropout-based approaches
and its derivatives as an original content produced in search of both low-
effort and reliable uncertainty estimates for the neural networks. We will
begin with a description of the basic model and then will turn into possible
and tested improvements.

5.2.1 Basic dropout-based UE and active learning

Using dropout at the prediction stage allows us to generate stochastic pre-
dictions, and, consequently, to estimate the variance of these predictions. Our
approach is based on the hypothesis that data samples with higher standard
deviations have larger errors of true function predictions. Although this is
not always the case, concerning a neural network of a reasonable size trained
on a reasonable number of samples, we can possibly observe a correlation
between dropout-based variance estimates and prediction errors. It should
be noted that the result does vary (like any other result of neural network
training) depending on several factors: architecture and size of the neural
network, samples used for initial training, and hyperparameters, such as reg-
ularization, learning rate, and dropout probability. Following the notation
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introduced in Sections 2.3.4 and 2.3.5, we propose an MCDUE (Monte-Carlo
Dropout Uncertainty Estimate)-based active learning algorithm as follows:

1. Initialization. Choose a trained neural network f̂ (x) = f̂ (x, ω), where
ω is a vector of weights. Set the dropout probability π. Set the number
of stochastic runs T.

2. Variance estimation. For each sample xj from the pool P :

(a) Make T stochastic runs of the model f̂ using dropout and collect
outputs yk = f̂k(xj) = f̂ (xj, ωk), k = 1, . . . , T, where ωk are sam-
pled from Bernoulli distribution with parameter π.

(b) Calculate the standard deviation (as an acquisition function):

sj = AMCDUE(xj) =

√√√√ 1
T − 1

T

∑
k=1

(yk − ȳ)2, ȳ =
1
T

T

∑
k=1

yk.

3. Sampling. Pick m samples with the largest standard deviations sj.

Step 2 here essentially obtains the uncertainty estimate. In literature, this
estimate is often referred to as MC Dropout, or MCD, and used as a baseline.
The computational cost per sample is O(TNpool). However, on modern GPU-
based implementations, the sampling can be done in parallel. One could
also decrease T to speed up the procedure. It should be emphasized that we
can start with a pre-trained neural network from the previous iteration if we
train the model on the extended training set; such a method may significantly
speed-up retraining.

We would like to note that the basic dropout-based UE and the corre-
sponding active learning procedure have several drawbacks, including bi-
ased estimation, greedy sampling algorithm, and loose theoretical guaran-
tees, which will be discussed in detail in the next sections. In order to ad-
dress these drawbacks, two approaches are proposed: GP-based enhancing
of a trained NN, described in Section 5.2.3, and dropout mask diversification,
introduced in the next section.

5.2.2 Diversified dropout

Another view on the dropout-powered uncertainty estimation is to treat
a neural network with dropout as an implicit ensemble of models. To fur-
ther strengthen it, we propose to sample the most diverse models from it to
improve the uncertainty estimation. As a particular realization of the gen-
eral idea, we suggest sampling masks using the machinery of determinantal
point processes (DPP) (Macchi, 1975; Kulesza et al., 2012), which are known
to give diverse samples. Inference with dropout for single models can be
combined with ensembles to increase the quality of uncertainty estimation
even further.

This methodology was developed in collaboration with Maxim Panov
and Kirill Fedyanin.
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Dropout as a set of random masks

An application of dropout to neurons results in the following formula for
the output:

Oh
i = σ

(Nh−1

∑
j=1

ωh
ijm

h
j Oh−1

j

)
, i = 1, . . . , Nh,

where

• ωh are a set of weights on the h-th layer of the neural network;

• Oh
i is an output of the h-th layer of the neural network;

• σ(·) is a non-linear transformation (activation function);

• mh
j are Bernoulli random variables with the probability of 0 equal to p.

We omitted the bias term here just to simplify the representation. Note that
if an input variable of the neural network is denoted by x, then the output of
every layer is a function of x, i.e. Oh

i = Oh
i (x).

Let us denote the vector of dropout weights mh
j for the h-th layer by mh =

(mh
1, . . . , mh

Nh
)T and the full set of dropout weights by M = (m1, . . . , mK).

Thus, any neural network f̂ (x) with dropout layers essentially has 2 sets
of parameters: the full set of learnable weights W and the set of dropout
weights M:

f̂ (x) = f̂ (x |W, M).

Let us have a neural network with dropout, which was trained on some
dataset giving weight estimates Ŵ. Then the dropout weights M remain the
free parameters and require selection at the time of inference:

f̂ (x |M) = f̂ (x | Ŵ, M).

The originally proposed by Hinton et al. (2012) and currently the standard
choice is to take

M̂ =
1

1− p
I,

where p is the dropout rate used during training and I is the identity ma-
trix of the corresponding shape. Such an approach gives the fixed function
f̂ (x | M̂), which is known to give reasonably good performance despite being
a heuristic choice.

The MC Dropout may be inferred if one considers Bernoulli distribution
as a prior over elements of a matrix M (Gal and Ghahramani, 2016; Nalisnick
et al., 2019), which results in a Bayesian model:

f̂ (x) = f̂ (x |M), M ∼ Bernoulli(1− p).

Within this approach, one can sample some number T of i.i.d. realizations
M1, . . . , MT from the prior distribution and compute approximate posterior
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mean

f̄T(x) =
1
T

T

∑
i=1

f̂ (x |Mi)

and variance

σ̄2
T(x) =

1
T

T

∑
i=1

(
f̂ (x |Mi)− f̄T(x)

)2, (5.1)

with the last equation being nothing less than Monte-Carlo Dropout un-
certainty estimate (MCDUE) we introduced above.

We suggest a different approach, namely we treat f̂ (x |M) as an ensemble
of models indexed by dropout masks M. Such a view allows us to decouple
inference from training and pose an intuitive question: what set of masks
M1, . . . , MT should one choose in order to obtain the best uncertainty esti-
mate σ̄2

T(x)? Importantly, here we do not limit the selection of masks to be
samples from standard dropout distribution, which in principle should al-
low to obtain better estimates. However, the design of the mask selection
procedure is a non-trivial problem, which we discuss below in detail.

The first incentive is to directly sample the masks as the most diverse
set of vectors in the mask space, and it may seem that we can do this with
approaches like Hamming code (Hamming, 1950) or Latin Hypercube Sam-
pling (McKay et al., 1979). One of the main challenges that stop us from doing
so is the curse of dimensionality: the random set of such masks will be really
close to the optimal set in terms of the average (maximal) distance between
the masks. Therefore, we do not expect these data-agnostic approaches to
strictly beat the random sampling since many neurons in the network are
highly correlated in practice. For example, consider a correlation matrix
of neurons in a linear layer of a convolutional neural network, trained on
CIFAR-10 (see Figure 5.7). The correlation was computed on 10 000 sam-
ples and clearly shows groups of highly correlated neurons. It suggests that
sampling masks for such a layer completely at random might lead to many
highly correlated neurons in the sample. This property is non-desirable as it
leads to more correlated models in the ensemble. Therefore are focusing on
the data-based approaches instead, since fighting the correlation between the
neurons is best done by first measuring it.

Another piece of motivation comes from the fact that sampling masks for
the layer like shown in Figure 5.7 uniformly at random might result in high
variance of pre-activations. As a result, the estimates for the whole network
may require a significant number of samples (stochastic passes through the
NN) T to converge. We illustrate this behaviour in Figure 5.8, where we ob-
serve that several hundreds of simple MC dropout estimates are required for
the convergence of the log-likelihood values. It is clearly seen that a larger
number of samples improves the values of log-likelihood, yet may impose
computational cost too large to be used in real-world applications due to
computational restrictions. However, one may expect that the knowledge
about the correlations between neurons can help to sample more diverse neu-
rons and improve the estimates.
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FIGURE 5.7: Correlation matrix C between the outputs of the
neurons in a linear layer of the convolutional NN, trained on
the CIFAR-10 dataset. Correlations are computed based on a
set of 10 000 samples; columns and rows are reshuffled with the
biclustering. Groups of correlating neurons can be clearly seen.

FIGURE 5.8: Log-likelihood computed via MC dropout in-
creases with an increase of the number of stochastic passes T.

More than 100 samples are needed to reach convergence.

In what follows, we consider the probabilistic generation of masks mh
from some distribution P(h) with possibly non-i.i.d. distributions of com-
ponents. Similarly to the case of dropout, we suggest using an unbiased
estimate of the layer-wise mean. Our main motivation is to approximately
preserve the average performance of the trained network. The construction
of the unbiased estimator is non-trivial and is given by celebrated Horvitz-
Thompson (HT) estimator Horvitz and Thompson (1952):

Sh
i = ∑

Nh−1
j=1

1
πh

j
mh

j wh
ijO

h−1
j , i = 1, . . . , Nh, (5.2)
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where πh
j is the marginal probability of value 1 for the random variable mh

j .

Decorrelation Approaches

Let us consider a certain layer h of the network with dropout. We assume
that we have access to the correlations C(h)

ij = corrx
{

Oh
i (x), Oh

j (x)
}

, i, j =

1, . . . , Nh. In practice, we compute an empirical correlation based on some
set of points which represents the data distribution well enough, obtaining
the correlation matrix:

C(h) ∈ RNh×Nh (5.3)

between the neurons of the h-th hidden layer. Below we discuss several ap-
proaches to sampling neurons in a way that the correlation between sampled
neurons is as small as possible. We note that instead of the correlation matrix
C(h) one may consider the covariance matrix K(h) in any of the approaches
described below. The properties of the methods significantly depend on the
choice of the matrix, and we will perform the empirical evaluation of the
methods based on each of them in the experiments.

• Leverage score sampling. A basic approach for non-uniform sampling
of rows and columns in kernel matrices is the so-called leverage score
sampling Alaoui and Mahoney (2015). In this approach, the neurons are
sampled independently with different probabilities πh

j :

πh
j ∼ `

(h)
λ (j) =

[
C(h)(C(h) + λI

)−1
]

jj
, j = 1, . . . , Nh,

where the quantities `(h)λ (j) are called leverage scores.

This approach makes neurons from large and highly correlated clus-
ters to be sampled less frequently. In Section 6.3, we show that leverage
score sampling indeed allows obtaining better uncertainty estimates for
out-of-distribution data in regression tasks compared to MC dropout.
However, its performance for in-domain data is even inferior to uni-
form sampling.

• Sampling with Determinantal Point Processes. Determinantal Point
Processes (DPPs) (Kulesza et al., 2012) are specific probability distri-
butions over configurations of points that encode diversity through a
kernel function. They were introduced in (Macchi, 1975) for the needs
of statistical physics and were used for a number of ML applications,
see Kulesza et al. (2012) for an overview. DPP can be seen as a prob-
abilistic MaxVol algorithm (Goreinov et al., 2010; Çivril and Magdon-
Ismail, 2009) of finding a maximal-volume submatrix.

We use correlation matrix C(h) as the likelihood kernel for DPP. Then,
given a set S of selected points for a mask distribution mh ∼ DPP

(
C(h)),

we obtain

P[mh = S] =
det C(h)

S

det[C(h) + I]
, h = 1, . . . , K,



Chapter 5. Methodology development 70

where C(h)
S =

[
C(h)

ij

]
i,j∈S

, i.e., a square submatrix of C(h) obtained by

keeping only rows and columns indexed by S. Finally, we sample T
masks for each layer based on corresponding correlation matrices.

To better understand the DPP, let us come back to the correlation matrix
depicted in Figure 5.7. The probability for DPP to take highly correlated
neurons into the sample S is low as in such case the corresponding de-
terminant det C(h)

S will have a small value. Thus, DPP tends to sample
neurons from different clusters, increasing the diversity of the ensem-
ble.

From a computational point of view, DPP-sampling requires O(N3
h )

operations for generating each sample. It is quite expensive but com-
pletely viable even for modern large networks, which usually have up
to 1024 neurons in fully-connected layers. Importantly, masks can be
precomputed once, and then the same masks are used on the inference
stage for every test sample with no additional overhead. Also, com-
putations in last fully-connected layers with dropout usually require
only a few percents of the total computational budget in ImageNet-size
networks. Therefore, a computational overhead caused by the DPP-
sampling does not have a significant impact on the inference time.

• k-DPP. The k-DPP is a variation of the DPP, conditioned to produce
samples of fixed size |S| = k. With the cost of introducing an additional
parameter, it allows to tune the sampling procedure as the choice of k
apparently has a significant influence on the result. Motivated by clus-
tered behaviour observed in real-world correlation matrices (see again
Figure 5.7), we suggest taking k dependent on the rank of matrix C(h)

and set
k = π · rank

(
C(h))

for some value 0 < π ≤ 1. In practice, matrixC(h) is never exactly
low-rank, and some notion of efficient rank should be used.

Importantly, if π = 1 and matrix C(h) is indeed block-structured and
thus low-rank, the resulting sampling procedure for k-DPP will always
give one neuron sampled from every block giving the same resulting
approximation for all the samples. This behaviour contradicts our ini-
tial goals of diversifying samples; therefore, we took π = 0.5 in most of
the experiments. In the case of k-DPP, the computation of the marginal
probabilities πh

j for HT-estimator 5.2 is non-trivial and requires the sep-
arate optimization procedure, see the details in Amblard et al. (2018).
We also note that DPP-based sampling may be considered from a fully
Bayesian perspective, with DPP being a special prior on masks promot-
ing diversity.
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5.2.3 GP-based enhancing of dropout NNs

Bayesian introduction

The uncertainty estimate, defined in Section 5.2.1, may be accessed through
the Bayesian point of view: we can treat neural networks as probabilistic
models p(y | x, ω). The vector of neural network weights ω is assumed to
be a random variable with some prior distribution p(ω). The likelihood
p(y | x, ω) determines the distribution of network output at a point x given
specific values of parameters ω. In the regression case, the likelihood can be
simply assumed to be Gaussian with the mean value given by the function
f̂ (x, ω), which is the neural network itself. There is a vast literature on train-
ing Bayesian networks (see Graves (2011) and Paisley et al. (2012) among
many others), which mostly targets the so-called variational approximation
of the intractable posterior distribution p(ω |D) by some easily computable
distribution q(ω).

The approximate posterior predictive distribution reads as:

q(y | x) =
∫

p(y | x, ω) q(ω) dω.

The simple way to generate random values from this distribution is to use
the Monte-Carlo approach, which allows estimating the mean:

Eq(y | x) y ≈ 1
T

T

∑
t=1

f̂ (x, ωt),

where the weight values ωt are i.i.d. random variables from distribu-
tion q(ω). Similarly, one can use Monte-Carlo to estimate the approximate
posterior variance σ̂2(x | f̂ ) of the prediction y at a point x and use it as an
acquisition function:

A(x | f̂ , D) = σ̂2(x | f̂ ).

We note that the considered acquisition function formally doesn’t depend
on the dataset D except for the fact that D was used for training the neural
network f̂ .

The standard active learning approaches rely on the greedy point selec-
tion by design. If one tries to obtain several samples with the same acquisi-
tion function, it usually results in obtaining several nearby points from the
same region of design space, see Figure 5.9. Such behaviour is typically un-
desirable as nearby points are likely to have very similar information about
the target function. Moreover, neural network uncertainty predictions are
sometimes overconfident in out-of-sample regions of design space.

There are several approaches to overcome these issues each having its
drawbacks:

1. One may retrain the model after each point addition, which may result
in a significant change of the acquisition function and lead to the se-
lection of a more diverse set of points. However, such an approach is
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FIGURE 5.9: Contour plot of neural network variance predic-
tion for bivariate problem and pool points (white). Five points
from the pool with maximum values of variance lie in the same

region of design points (upper-left corner).

usually very computationally expensive, especially for neural network-
based models.

2. One may try to add a distance-based heuristic, which explicitly pro-
hibits sampling points which are very close to each other and increase
values of acquisition function for points positioned far from the train-
ing sample. Such an approach may give satisfactory results in some
cases yet usually requires fine-tuning towards particular applications
(like the selection of specific distance function or choice of the parame-
ter value which determines whether two points are near or not), while
its performance may degrade in high-dimensional problems.

3. One may treat specially normalized vector of acquisition function val-
ues at points from the pool as a probability distribution and sample the
desired number of points based on their probabilities (the higher the
acquisition function value, the point is more likely to be selected). This
approach usually improves over the greedy baseline procedure. How-
ever, it still gives many nearby points.

GP approximation of Bayesian NN

We propose to overcome the difficulties mentioned above by considering
the full approximate posterior distribution. Effectively, the random function

f̂ (x, ω) = Ep(y | x,ω) y

is the stochastic process indexed by x.
The covariance function of the process f̂ (x, ω) is given by

k(x, x′) = Eq(ω)

(
f̂ (x, ω)−m(x)

)(
f̂ (x′, ω)−m(x′)

)
,
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where m(x) = Eq(ω) f̂ (x, ω).
As was shown in Matthews et al. (2018) and Lee et al. (2017), neural net-

works with random weights converge to Gaussian processes in the infinite
layer width limit. However, one is not limited to asymptotic properties of
purely random networks as Bayesian neural networks trained on real-world
data exhibit near Gaussian behaviour, see the example in Figure 5.10.

FIGURE 5.10: Bivariate distribution plots for the stochastic NN
output at points x1, x2 and x3, where x1 is much closer to x2 in
feature space than to x3. Both univariate and bivariate distribu-
tions are Gaussian-like, while the correlation between function

values is much higher for closer points.

We aim to make the Gaussian process approximation ĝ(x | f̂ ) of the stochas-
tic process f̂ (x, ω) and compute its posterior variance σ̂2(x | f̂ , X) given the
set of anchor points X = {xi}N

i=1. Though the set X can be chosen arbitrar-
ily, in practice, the approximation quality benefits from X being uniformly
spread over the design space. Typically, X is a subset of the training sample.
Given X, Monte-Carlo estimates k̂(x′, x′′) of the covariance function k(x′, x′′)
for every pair of points x′, x′′ ∈ X ∪ x allow computing

σ̂2(x | f̂ , X) = k̂(x, x)− k̂T(x)K̂−1k̂(x), (5.4)

where K̂ =
[
k̂(xi, xj)

]N
i,j=1 and k̂(x) =

(
k̂(x1, x), . . . , k̂(xN, x)

)T.

We note that only the trained neural network f̂ (x, ω) and the ability to
sample from the distribution q(ω) is needed to compute σ̂2(x | f̂ , X).

The benefits of the Gaussian process approximation and the usage of the
formula (5.4) are not evident as one might directly estimate the variance of
neural network prediction f̂ (x, ω) at any point x by sampling from q(ω) and
use it as an acquisition function. However, the approximate posterior vari-
ance σ̂2(x | f̂ , X) of Gaussian process ĝ(x | f̂ ) has an important property that
is has large values for points x lying far from the points from the training set
X. Thus, out-of-sample points are likely to be selected by the active learning
procedure.
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Moreover, the function σ̂2(x | f̂ , X) depends solely on covariance func-
tion values for points from a set X (and not on the output function values).
Such property allows updating uncertainty predictions by just adding sam-
ple points to the set X. More specifically, if we decide to sample some point
x, then the updated posterior variance σ̂2(x | f̂ , X′) for X′ = X ∪ x′ can be
easily computed:

σ̂2(x | f̂ , X′) = σ̂2(x | f̂ , X)− k̂2(x, x′ | f̂ , X)

σ̂2(x′ | f̂ , X)
, (5.5)

where k̂(x, x′ | f̂ , X) = k̂(x, x′) − k̂T(x)K̂−1k̂(x′) is the posterior covariance
function of the process ĝ(x | f̂ ) given X.

Importantly, σ̂2(x | f̂ , X′) for points x in some vicinity of x′ will have low
values, which guarantees that further sampled points will not lie too close
to x′ and other points from the training set X. The resulting NNGP active
learning procedure is depicted in Figure 5.11 and described in Algorithm 1.

FIGURE 5.11: Schematic representation of the NNGP approach
to active learning. GP is fitted on the data from a stochastic
output of NN, and the posterior variance of GP is used as an
acquisition function for sampling. The most computationally
expensive part (function evaluation at sampled points and neu-
ral network retraining) is done only every M steps of sampling,
while all the intermediate iterations are based solely on trained

neural network and corresponding GP approximation.

Let us also consider the multi-step active learning process, which should
be computationally efficient, i.e., provide high approximation quality with a
minimum number of points selected and also minimize the number of other
computationally expensive operations, such as neural network retraining. It
is summarized in Algorithm 2 and also shown in Figure 5.11

5.2.4 Baselines

We use the following baselines to compare the performance of the pro-
posed UE and AL machinery:
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Algorithm 1 NNGP

Require: Number of samples to generate Ns, pool P , the set X∗ of induc-
ing points for Gaussian process model, neural network model f̂ (x, ω),
dropout probability π and regularization parameter λ.

Ensure: Set of points Xs ⊂ P with |Xs| = Ns.
1: for t = 1, . . . , T do
2: ωt ∼ Bern(π).
3: ωt = ω̂(ωt).
4: yi

t = f̂ (xi, ωt) for each xi ∈ P .
5: zj

t = f̂ (xj, ωt) for each xj ∈ X∗.
6: end for
7: Calculate the covariance matrix K̂ =

[
cov(zi, zj)

]N
i,j=1.

8: for each xj ∈ P do

9: k̂ j =
[
cov(zi, yj)

]N
i=1.

10: vj = var(yj).
11: σ̂2

j = vj − k̂T
j (K̂ + λI)−1k̂ j.

12: end for
13: Return Ns points from pool P with largest values of the variance σ̂2

j .

Algorithm 2 M-step NNGP

Require: Number of samples to generate Ns, number of samples per active
learning iteration M, pool P , the set X∗ of inducing points for Gaussian
process model, neural network model f̂ (x, ω), dropout probability π and
regularization parameter λ.

Ensure: Set of points Xs ⊂ P with |Xs| = Ns.
1: Initialize sets Xs := ∅,P∗ := P .
2: for m = 1, . . . , M do
3: Run NNGP procedure with parameters Ns/M,P∗, X∗ ∪ Xs, f̂ , π, λ,

which returns a set of points Xo.
4: Xs = Xs ∪ Xo.
5: P∗ = P∗ \ Xo.
6: end for
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• Random sampling. This algorithm samples random points x from the
pool. Computational cost is O(1) in this case, which makes this algo-
rithm the fastest compared to all the others. This approach may be used
for both classification and regression tasks.

• Greedy max-min sampling. To sample a point, this algorithm takes the
point from the pool most distant from the training set (in the l2 sense)
and adds it to the training set. This process continues until the required
number of points is added to the training set. The acquisition function
for max-min sampling is

AMM(x) = min
k
‖x− xtrain

k ‖2.

In this case, computational cost can be estimated as O(NtrainNpool).

• Batch max-min sampling. Although straightforward and intuitive, the
max-min sampling is also computationally expensive in the case of a
large number of dimensions and pool/training set size since it requires
that a full distance matrix is calculated on every stage of active learning.
We propose the batch version that has the same acquisition function
but samples K points which are the most distant from the training set.
Although it does seem less optimal, this solution speeds up sampling
up to K times, assuming K is the number of samples to be sampled on
each iteration. In our experiments, we set K equal to 4.

• We also consider oracle sampling, which simply make uses of the ac-
tual model errors at test points. Of course, the real errors are not avail-
able in practice; however, it is natural to assume that good uncertainty
estimates should correlate with model’s errors. Thus, oracle errors can
be used in experiments to compare the performance with considered
approaches for both classification and regression tasks.

5.2.5 Metrics

To measure the performance of the uncertainty estimation and active learn-
ing we either use the Dolan-More performance curves (see Section 5.3.3) or
the following metrics:

• Uncertainty estimation. In general, for uncertainty estimates, we, fol-
lowing (Hernández-Lobato and Adams, 2015; Jain et al., 2019), com-
pute log-likelihood of Gaussian distribution with uncertainty estimates
plugged in place of standard deviation. Standard deviation of multi-
ple stochastic runs (or predictions, in case of ensembles) is used as an
uncertainty estimate and in acquisition function as well.

• Active learning. During the neural network training, we usually op-
timize the mean squared error (MSE, l2) metric, and it is natural to re-
port this loss as an error on the test set that the actively trained model
reaches. However, we also report the mean absolute error (MAE, l1)
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and maximum absolute error (MaxAE, l∞). We believe that the actual
task of regression is more general than optimization of one given met-
ric (e.g., MSE); thus, the choice of a particular metric is merely an op-
erationalization of the real problem behind the regression task. More-
over, several applications exist, in which the maximal error is a much
more appropriate accuracy metric (like chemistry or physical simula-
tions) than the mean error. Unfortunately, it is hard to use the l∞ loss
function for training neural networks since it is non-differentiable. In
case one deals with two algorithms that have a similar MSE and sig-
nificantly different MaxAE, the algorithm with a smaller maximal error
should be preferred.

5.3 Numerical experiments setup

In this section, we introduce the methodology of measuring the perfor-
mance of our models, as well as the details on the training procedure and the
architecture of large-scale experiments on active learning and uncertainty es-
timation.

5.3.1 Models for ESE

As the NN-based ESE models were defined above with the architecture
and training procedure specifically tailored to the corresponding problem,
we will, therefore, focus on the fine training details, mostly for other baseline
models, and optimization specifics.

Silicon crystal

Data split. In all the cases involving the model accuracy measurement,
the train-test data split was done in 9:1 ratio. For the models that optimized
hyperparameters, the validation set was typically chosen over 10-fold cross-
validation.

Models optimization metric. All the models optimized the MSE (mean
squared error) metric.

Tree-based ensemble baselines. Ensemble algorithms, based on decision
trees (Breiman et al., 1984), are extensively studied and widely used in mod-
ern machine learning tasks. Most of the algorithms are prone to overfitting,
can work with various types of features, and thus require no or little data
preprocessing. For our regression task, we used the following two types of
ensembling on decision trees: the random forest algorithm (Breiman, 2001),
and the gradient boosting regression (Friedman, 2001).

One of the major drawbacks of most of these algorithms is the memory
size used for storing the trained model. The memory size rapidly grows as
the depth of the trees increases. Moreover, the size of the models increases
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linearly with the increasing number of estimators (trees) for the random for-
est and extra trees algorithms. Thus, to obtain good accuracy, one needs to
use a lot of memory on both hard disk drive and RAM.

We did a cross-validation over the following hyperparameters, with the
best ones marked with a bold font:

• random forest: maximal tree depth (3, 10, 15), number of estimators (50,
100, 200, 300, 500), minimal number of samples for splitting (2, 5, 10).

• gradient boosting: maximal tree depth (3, 5, 10), learning rate ( 0.01,
0.03, 0.1, 0.3), number of estimators (30, 100, 200, 300), minimal number
of samples for splitting (2, 5, 10).

Although the random forest regression algorithms with 500 estimators
show slightly better results than the one with 300 estimators, we used 300
estimators to avoid memory problems. We used the subsampling technique
(see details in (Friedman, 2002)) for the gradient boosting regression to pre-
vent overfitting.

Incremental fitting. We also show that our NN-based surrogate mod-
els can successfully learn from several datasets and assimilate them. This
capability is becoming increasingly important with the spread of materials
property databases that collect data from different studies (Jain et al., 2013).
The incremental training of the NN starts from the same weights but is done
on the extended dataset with the additional data included. We also increase
the learning rate of stochastic gradient descent algorithm and regularizers
(dropout rate and weight regularization) to circumvent limitations arising
from the same local minima of the loss function established during the train-
ing on the initial dataset. This allows the model to not only handle additional
training on the incoming data appended to a database but to do it much faster
than from scratch.

It is important to note that the joint data set is imbalanced in the sense
of having more values from data drawn from ε6Dε6Dε6D. In order to balance the
number of samples, one may use various approaches for over-sampling and
under-sampling, see Batista et al. (2004); we used random over-sampling for
the models.

Optimization. The optimizations performed in this part of the research
were performed using the SciPy package (Virtanen et al., 2020) implemen-
tations. Namely, finding the shortest pathways to the metallic behaviour of
the silicon crystal and the location of bandgap isosurfaces’ edges used an up-
graded version of differential evolution (Storn and Price, 1997) for the global
optimization, and the adaptive Nelder-Mead method (Gao and Han, 2012)
for the local optimization.

Elastic strain energy density model. The model for the energy density
estimation (h, defined in Section 4.2.2) was based on the kernel ridge regres-
sion, implemented in Scikit-learn Python library (Pedregosa et al., 2011). The
mean absolute error measured on the test set was not exceeding 0.001 eV.
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Diamond crystal models

Data split. In all the cases involving the model accuracy measurement,
the train-test data split was done in 9:1 ratio in random. For the models that
optimized hyper-parameters, the validation set was typically chosen over 5-
fold cross-validation.

Inference time measurements. The performance was measured using
the timeit function from the standard Python library. At least 10 cycles were
performed, and the average value is reported together with the standard de-
viation.

Models optimization metric. For all the regression tasks, the MSE was
used as an optimization metric, and a cross-entropy was used for the classi-
fication tasks. We would like to note that the implementation of the CNN we
provide is capable of optimizing more complex metrics in order to tailor the
model for a specific metric, e.g., bandgap; yet we were not exploiting it in the
reported experiments.

Elastic strain energy density model. A feed-forward neural network
with (128-256-256-512) architecture was used to provide the predictions for
the elastic strain energy density h (see Section 4.2.2). It uses a rectified lin-
ear unit (Glorot et al., 2011) as an activation function, was trained for 20 000
epochs using the Adam optimizer (Kingma and Ba, 2014), and demonstrated
the mean absolute error of 0.2978 eV on the separate test set.

Effective mass estimation. The partial derivatives used in the effective
mass estimation (2.11) were approximated using central differences with the
mesh size proportional to the k-grid internal distance:

∂2ECB

∂k1∂k2

∣∣∣∣
(k?1 ,k?2 ,k?3)

≈ 1
4δ2 (ECB(k?1 + δ, k?2, k?3)−

ECB(k?1 − δ, k?2, k?3)+
ECB(k?1, k?2 + δ, k?3)−
ECB(k?1, k?2 − δ, k?3)).

(5.6)

In a 8× 8× 8 k-mesh, δ =
√

2
8 (2π

a ) when computing m? positions along
the ‘∆‘-line and is in the unit of the reciprocal of length, where a is the lattice
constant of a carbon diamond. All the other derivatives are approximated in
the same way to achieve the effective mass tensor approximation.

Kernel ridge regression baselines. We were using the kernel ridge re-
gression with an RBF kernel implemented in Scikit-learn Python library (Pe-
dregosa et al., 2011). Hyper-parameters were optimized with an adaptive
Nelder-Mead optimization method (Gao and Han, 2012) over the validation
set; the best of three separate runs starting from random points were chosen.
A linear kernel was used for the classification task.

Feed-forward NN baselines. We have used a deep architecture (128-256-
256-512-512-1024-1024) so the number of parameters of a feed-forward neu-
ral network will be larger than the number of parameters for the complex
CNN model, thus resulting in a more fair comparison. The leaky rectifier
unit (Maas et al., 2013) was used as an activation function, and the same
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stopping criteria as for CNN were used, as well as the adaptive learning rate
and l2-regularization schedule.

5.3.2 Active learning and uncertainty estimation

We focus on the non-Bayesian methods as comparable in terms of the
computational time for large datasets and models.

MCDUE-based experiments

For the experiments described in Section 6.2, we used the following ex-
perimental setup:

1. Initialization of the initial dataset I, training pool P , number of samples
added on each step m, the final size of the dataset f , network architec-
ture, and learning parameters.

2. The network is trained on the initial dataset I. Its weights are copied to
the networks corresponding to each active learning algorithm.

3. For each active learning algorithm:

(a) While |I| < f :

i. Obtain the rank rj for every xj ∈ P using an acquisition func-
tion A.

ii. Sample point set S ⊂ P , |S| = m with maximal ranks rj.
iii. Add S to I: I := I

⋃
S.

iv. Exclude S from the corresponding P : P := P/S.
v. Train the neural network on I.

(b) Calculate the metrics.

For each experiment, the number of training epochs was set to 10 000. We
used the l2-regularization of the weights with the regularization parameter
α = 10−5, a five-layer fully-connected network with the 256− 128− 64 archi-
tecture and leaky linear rectifier (Maas et al., 2013) with leakiness β = 0.01
as an activation function. We used the Theano library (Al-Rfou et al., 2016)
and Lasagne framework (Dieleman et al., 2016). Data points were shuffled
and split in the following ratio: 20% on a training set, 60% on a pool, 20%
on the test set. Also, if the network was trained from scratch (re-initialized
weights), the number of training epochs is doubled (to catch up with the ini-
tial training). Since the neural network training procedure is stochastic by its
nature, we conducted 20 experiments shuffling the dataset and re-initializing
weights each time.
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Experiments on the dropout diversity masks

All the regression models were trained with RMSE as a loss function. For
DPP-based methods, we use the DPPy implementation provided in (Gautier
et al., 2019). On top of single models, we also consider a straightforward
ensemble approach with NNs trained exactly the same way as single models
from different initializations.

The specific details for each experiment are as follows:

• Uncertainty Estimation for Regression Datasets. For this experiment,
we used feed-forward NNs with leaky ReLU activation function (Maas
et al., 2013) and (128-128-64) architecture. For each dataset, 50% was
used for the training and 50% for testing. Multiple experiments are
done via 2-fold cross-validation, and multiple runs / UE runs. See Ap-
pendix D.2 for the list of datasets used.

Neural networks were trained for 10 000 epochs maximum, with check-
ing the error on the validation set every 100 iterations: early stopping
triggers if the error did not decrease for five consecutive checks (pa-
tience = 5). Batch size equals to 500, dropout applied after the hid-
den layers only (except for the last layer) with rate equal to 0.5, except
for the experiment C (see below). MSE was used as a loss function,
and optimization was performed with the standard settings of PyTorch
Adadelta optimizer.

For in-domain uncertainty estimation: for each dataset, random 50%
of points were used for training and other 50% for testing. The log-
likelihood values are averaged over testing set. Multiple experiments
are done via 5 random train-test splits, 2-fold cross-validation and 5
runs of the training procedures for every model (resulting in 50 aver-
age log-likelihood values contributing to each boxplot). Uncertainty
estimates were computed for the different number of stochastic passes
T = 10, 30, and 100 for every model.

Ensembles of models were trained separately on the same data from
different random weight initializations.

• Regression Datasets: NN Configurations Effect. In order to testify UE
approaches on slightly different settings of NN architecture, we settled
out three more experiments with variations in:

– architecture. Different problems require different fully-connected
layers of NNs to be used in order to being able both train on data
successfully and do not overfit.

– activation function. It was shown in (Hein et al., 2019) that the
choice of activation function might alter the confidence of the pre-
dictions on the out-of-distribution data. To that end, we consid-
ered both linear and non-linear rectifiers.

– dropout rate. While in classic papers the most robust dropout rate
p = 0.5 is often considered, for real problems, lesser values of p
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are used in order to speed up the convergence and smaller NNs
to be used. Initially (Gal, 2016), the dropout rate is proposed to be
chosen in a cross-validation round together with other hyperpa-
rameters, such as regularization term, learning rate, etc.

The variations in the settings are provided in Table 5.1.

TABLE 5.1: Settings for UCI experiments.

Index Architecture Activation p
A (main text) 128-128-64 leaky ReLU 0.5

B 32-32-16 leaky ReLU 0.5
C 128-128-256 CELU 0.2
D 256-256-512 CELU 0.5

NNGP-based experiments

Setup details for each provided experiment are as follows:

• Airline delays dataset and NCP comparison. Following Hafner et al.
(2018), we use the airline delays dataset (see Hensman et al. (2013)) and
NN consisting of two layers with 50 neurons each, leaky ReLU acti-
vation function, and trained with respect to NCP-based loss function.
We took a random subset of 50 000 data samples from the data avail-
able on the January – April of 2008 as a training set, and we chose 100
000 random data samples from May of 2008 as a test set. We used the
following variables as input features PlaneAge, Distance, CRSDepTime,
AirTime, CRSArrTime, DayOfWeek, DayofMonth, Month, and ArrDelay +
DepDelay as a target. We would like to note that we used (as in the
original paper) an NCP-based (noise contrastive prior-based, see de-
tails in Hafner et al. (2018) loss function different from classic MSE.

• Experiments on UCI datasets. We conducted a series of experiments
with active learning performed on the data from the UCI ML reposi-
tory Dua and Taniskidou (2017). All the datasets represent real-world
regression problems with 15+ dimensions and 30000+ samples, see
Section D.1 of Appendix D. The datasets were chosen to be hard-to-
fit-with-GP.

For every experiment, data are shuffled and split in the following pro-
portions:

– training set Dtrain: 10%;

– test set Dtest: 5%;

– validation set (Dval (for early-stopping): 5%;

– pool P : 80%.
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We used a simple neural network with three hidden layers of sizes 256,
128 and 128. We performed 16 active learning iterations with 200 points
picked at each iteration. The learning rate started at 10−3, its decay was
set to 0.97 and changed every 50 000 epochs. The minimal learning rate
was set to 10−5. We reset the learning rate for each active learning al-
gorithm in the hope of beating the local minima problem. The training
dropout rate was set to 0.1. L2 regularization was set to 10−4. Batch size
set to 200.

• SchNet training. We tested MCDUE and NNGP on the problem of
predicting the internal energy of the molecule at 0K from the QM9 data
set (Ramakrishnan et al., 2014). We used a Tensorflow implementation
of a SchNet (Schütt et al., 2018) with the same architecture as in the orig-
inal paper except for an increased size of hidden layers (from 64 and 32
units to 256 and 128 units, respectively) and dropout layer placed in
between of them and turned on during an inference only. It is expected
that wider hidden layers lead to better uncertainty estimation, as the
infinite-width layer will theoretically result in an unbiased estimate of
both mean and variance for the corresponding Bayesian neural network
(Gal, 2016).

In our experiment, we separate the whole dataset of 133 885 molecules
into the initial set of 10 000 molecules, the testing set of 5 000 molecules,
and the rest of the data allocated as the pool. On each active learning
iteration, we perform 100 000 training epochs and then calculate the
uncertainty estimates using either MCDUE or NNGP approach, or ran-
dom sampling as a baseline. We then select 2 000 molecules with the
highest uncertainty from the pool, add them to the training set and per-
form another active learning iteration.

5.3.3 Performance curves

To compare the performance of the algorithms across the different datasets,
the initial number of training samples and training samples themselves, we
will use Dolan-More curves, which, following Dolan and Moré (2002), may
be defined as follows. Let qp

a be an error measure of the a-th algorithm on the

P-th problem. Then, defining the performance ratio rp
a = qp

a
minx(q

p
x)

, we can
define the Dolan-More curve as a function of the performance ratio factor τ:

ρa(τ) =
#(p : rp

a ≤ τ)

np
, (5.7)

where np is a total number of evaluations for the problem p. Thus, ρa(τ)
defines the fraction of problems in which the a-th algorithm has the error not
more than τ times bigger than the best competitor in the chosen performance
metric.

Dolan-More performance curves are a natural and popular choice for the
benchmarking. However, Gould and Scott (2016) states that this tool should
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be used with care, providing an example of possible misinterpretation of
comparison results.

5.4 Summary

This chapter was dedicated to a detailed description of the developed
methodology. Starting from the portrayal of the desirable properties of the
future model, in Section 5.1.1, we have described simple fully-connected NN
models we used for the fitting of silicon crystal’s properties. Here, we also
provided insights on how to combine the data with different fidelity into a
single model.

Based on the insights provided in Section 4.3, we have redesigned a straight-
forward fully-connected property-based model into a powerful convolutional
neural network that mimics some of the intrinsic properties of the output
data by special convolutional layers. In Section 5.1.2, we also provided de-
tails on the intricate training procedure, which involves both pre-training on
the PBE data and a few active learning cycles.

In the following Section 5.2, three dropout-based algorithms for the neu-
ral networks are suggested: a simple MC dropout, first described in Gal
(2016) (yet extensively tested further in this work), its modification that aims
to the diversification of the masks using determinantal point processes (DPPs),
and GP-based approximation of the neural network’s output. The explana-
tion is followed by a brief description of baselines and metrics. This method-
ology was developed in collaboration with Maxim Panov and Kirill Fedyanin.

At the end of this chapter, in Section 5.3, we provide more technical details
on how the experiments for ESE-related models and UE approaches were
designed. We also introduce the Dolan-More performance curves to measure
the performance across different algorithms and datasets.

In the next chapter, we present the results of numerical experiments that
evaluate the accuracy of the designed ESE machinery and provide the com-
parison of the designed AL and UE methods for a wide range of problems.
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6 ML experiments

6.1 Numerical experiments for ESE models

This section is dedicated to the numerical experiments that estimate the
performance of the ESE models for silicon and diamond crystals. The sup-
porting information is provided in Section 5.3.1.

6.1.1 Silicon crystal model

PBE data model

We start with the results on a cheap yet inaccurate data from the PBE cal-
culations. These preliminary experiments are important due to the following:

• PBE-PAW data could be sampled on a much larger scale since it is 100-
1000 times cheaper than G0W0 data in terms of computational time
of first-principles calculations. Therefore, one may check the poten-
tial large-scale applications and estimate the model performance in this
scenario.

• Low-fidelity data could be used to pre-train the model in a variety of
ways. The most simple scenario is “∆-ML” (Ramakrishnan et al., 2015),
when another model fits the discrepancy between the low-fidelity-data
model’s predictions and more credible data; we will make use of this
scenario for the diamond crystal experiments. Another possible ap-
proach is transfer learning when the low-fidelity-data model requires
additional training on more accurate data; it is often considered with
the “freezing” of some model’s parameters (Samala et al., 2017).

Ensemble methods on decision trees, including gradient boosting regres-
sion (GBR) and random forest regression (RFR), Lagrange interpolation, and
artificial NN were adopted for ML fitting. Table 6.1 shows the results on the
accuracy of these models in the case of non-shear deformation (ε3Dε3Dε3D). The best
results were attained by the NN, which have fast evaluation time and thus
are more preferable.

GW data model

After obtaining a very accurate model for the PBE data by the neural net-
work, we fit the difference between this model and GW calculations as a
function of a strain and PBE bandgap, resulting in a model with the accuracy
comparable to experimental data (∆-ML). It is shown that GW bandgap in
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TABLE 6.1: Root mean squared error (RMSE) for various ML
algorithms for the bandgap prediction and energy prediction
tasks from PBE data (in units of eV). Lagrange polynomial of

degree 8 is used.

ML input Lagrange GBR RFR NN ML target
εεε3D 0.0150 0.0367 0.0247 0.0049 Eg
εεε6D - 0.0743 0.0781 0.0264 Eg

kkk and εεε3D - 0.1125 0.1078 0.0131 En(kkk; εεε) at VB
kkk and εεε6D - 0.1593 0.1555 0.0184 En(kkk; εεε) at CB

ε3Dε3Dε3D strain case can be approximated within an accuracy of 8 meV, see Table
6.2. Our model yields better fitting results compared to a model based on
the GW data only, suggesting that our data fusion technique is successfully
learning out the GW theory by itself in fitting the electronic bandstructure of
a material.

TABLE 6.2: MAE and RMSE (in units of eV) for ML algorithms
for bandgap prediction with or without the ∆-ML model. Here,
the Lagrange polynomial of degree 8 is used. Relative error:
norm of the difference between the true value and the predic-

tion divided by the norm of the true value.

GW GW+PBE (∆-ML)
ML algorithms MAE RMSE MAE RMSE

Lagrange 0.0211 0.0274 0.0186 0.0241
GBR 0.0334 0.0521 0.0135 0.0209
RFR 0.0434 0.0596 0.0145 0.0215
NN 0.0099 0.0144 0.0080 0.0118

NN relative error 1.72% 2.78% 1.38% 2.05%

Incremental fitting

The proposed model is, in fact, also able to fuse the learning outcomes
from the different datasets. Numerical experiments demonstrate that incre-
mental fitting of the models effectively reduces the error on a new dataset,
see Table 6.3. Such incrementally fitted models are, thus, equally applicable
to the bandgap approximation and various optimization tasks. Moreover,
these models may be reused when shifting to other materials such as Ge,
since the implicit insights about symmetries, transitions, and extreme cases
are stored in the parameters of NN. Training the model for the other material
starting from the weights for Si can significantly reduce the time and amount
of data needed due to knowledge transfer, leading to the rapid development
of versatile surrogate models for ESE.

The successful combination of the quantitative advantage of PBE and the
qualitative advantage of GW results in a bandgap-prediction model with a
level of accuracy comparable to experiments.
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TABLE 6.3: Si bandgap prediction errors, RMSE and MAE (in
units of eV), for the incremental fitting scenario on reduced
datasets. The error in both metrics is reduced for both ε3Dε3Dε3D and

ε6Dε6Dε6D datasets after the incremental fitting.

ε3Dε3Dε3D ε6Dε6Dε6D

Metric before after before after
RMSE 0.0403 0.0069 0.0264 0.0253
MAE 0.0167 0.0052 0.0179 0.0167

6.1.2 Diamond crystal model

In this section, we compare the designed CNN model to the baselines:
kernel ridge regression (KRR), and simple feed-forward NN (with the total
number of trainable parameters close to one of CNN). We also provide the
comparison between the specialized, property-based models (trained to pre-
dict a single feature, such as the bandgap or the CBM position as a class), and
the band structure models that predict all the bands at once like CNN does.

Property-based models

Table 6.4 shows the results of the comparison between the specialized NN
and KRR models and the general-purpose CNN model. The results suggest
that the simple NN is better in terms of both value prediction as well as the
inference speed. However, the CNN accuracy is close to the NNs, and in
the more complicated task of the conduction band minima prediction, the
proposed model shows better accuracy, let aside the ability to predict a new
class (a CBM not presented in the training set).

We also visualize the error distribution for the bandgap and Γ gap predic-
tion in Figure 6.1.

Bandstructure models

For the more complicated task of the band structure prediction (1040 val-
ues with the time-reversal symmetry taken into account), we have set the NN
with 1040 values on the last layer and an ensemble of 1040 KRR models as
the baselines. Table 6.5 shows the results of numerical experiments. In most
of the cases, CNN demonstrates the superior accuracy with the KRR model
having a similar error. It should be noted that in the current implementa-
tion, the ensemble of KRR models has three orders of magnitude larger in-
ference time. This problem could possibly be mitigated by transferring the
implementation from CPU to GPU. The proposed CNN model offers a nice
combination of both accuracy and inference time.
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TABLE 6.4: Accuracy comparison among specialized models.
This means that all the models (except for the CNN) were
trained for the selected task only. Bold font indicates the best

result in a category.

Metric CNN NN KRR
Bandgap prediction

RMSE, eV 0.108214 0.096223 0.168535
(relative error, %) (2.22%) (1.83%) (3.21%)

MAE, eV 0.072424 0.062605 0.122125
(relative error, %) (1.38%) (1.19%) (2.33%)

Γ gap prediction
RMSE, eV 0.088265 0.085658 0.146379

(relative error, %) (1.62%) (1.57%) (2.68%)
MAE, eV 0.053497 0.055520 0.115819

(relative error, %) (0.98%) (1.02%) (2.12%)
CBM prediction (classification)

Error 2.34% 5.70% 33.8%1

Inference time
Time 14.4 ms ± 59.2 μs 1.29 ms ± 14.6 µµµs 48.8 ms ± 287 μs

FIGURE 6.1: Error distribution for different algorithms for the
bandgap and Γ gap prediction tasks. CNN and NN demon-
strate similar performance, while KRR shows the long tail error

distribution.

Active learning

We investigate the active learning scenario on the PBE data, as the GW
calculations are far too expensive to be used in the comprehensive experi-
ment. Our study indicates that 5-10 cycles of the above active learning may
enable the trained CNN to reach the same level of accuracy with less addi-
tional data, thus reducing the total amount of ab initio calculations without
compromising the robustness of our ML model, see Fig. 6.2.
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TABLE 6.5: Accuracy comparison among specialized models.
This means that all the models (except for the CNN) were
trained for the selected task only. Bold font indicates the best

result in a category.

Metric CNN NN KRR
Valence band prediction

RMSE, eV 0.038464 0.052195 0.043643
(relative error, %) (0.23%) (0.31%) (0.26%)

MAE, eV 0.031379 0.042052 0.035710
(relative error, %) (0.19%) (0.25%) (0.21%)

Conduction band prediction
RMSE, eV 0.045981 0.111479 0.059352

(relative error, %) (0.30%) (0.72%) (0.38%)
MAE, eV 0.035453 0.091714 0.042620

(relative error, %) (0.23%) (0.59%) (0.27%)
Inferenced bandgap prediction

RMSE, eV 0.108214 0.158525 0.101998
(relative error, %) (2.22%) (3.02%) (2.13%)

MAE, eV 0.072424 0.120696 0.082020
(relative error, %) (1.38%) (2.30%) (1.56%)

Inferenced Γ gap prediction
RMSE, eV 0.088265 0.149067 0.097539

(relative error, %) (1.63%) (2.73%) (1.79%)
MAE, eV 0.053497 0.105048 0.063617

(relative error, %) (0.98%) (1.92%) (1.17%)
Inferenced CBM prediction (classification)

Error 2.34% 4.50% 6.25%
Inference time

Time 14.4 ms ± 59.2 μs 2.48 ms ± 32.2 µµµs 25 s ± 105 ms

As for the GW part of the training cycle described in Section 5.1.2, we
made 10 iterations of 200 samples each to extend the training set. The error
curve is shown on the Figure 6.3, and indicates that the last three AL cycles
did not improve the model in terms of accuracy.

EM estimation

To further demonstrate the capability of our ML framework in physics in-
vestigation and exploration, we approximate the electron effective mass, m?.
It is a quantity used to model the behavior of a free electron with that mass
and is an important basic parameter that influences measurable properties of
a solid, from the efficiency of a solar cell to the speed of an integrated circuit.
If we denote the conduction band energy dispersion as ECB(kkk), then the cor-
responding free electron effective mass tensor can be defined in terms of the
Hessian matrix H(ECB(kkk)) consisting of second partial derivatives against k.
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FIGURE 6.2: Steady improvement of model performance dur-
ing active learning with and without uncertainty estimation on
PBE data. MCDUE-based active learning showed results infe-
rior to the random sampling, yet NN+GP approach is showing

promising results and thus was used for the GW data part.

FIGURE 6.3: Improvement of model performance during active
learning with NN+GP approach on GW data. 200 samples were
drawn at each AL step. The last three cycles did not improve

the model in terms of accuracy.

Based upon the values drawn from our ML model, we obtain the m? tensor
for an undeformed diamond at CBM through fitting the band structure.

Given the second-order derivative nature of m?, it reveals not only the
shape of an energy band but also provides more detailed information of en-
ergy dispersion. The anisotropy at CBM is characterized by a longitudinal
mass (ml = 1.55m0, where m0 is the free electron mass) along the correspond-
ing equivalent (100) reciprocal space direction and two transverse masses
(mt = 0.31m0) in the plane perpendicular to the longitudinal direction. Our
results for ml and mt are close to both the GW and experimental values (Table
6.6), offering more evidence for the reliability of our electronic band structure
fitting machinery. Using this model, we can accurately predict the m? tensor
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for every k-point at every strain level, allowing us to further study the elec-
tronic transport properties of a material and gain an insight on how these
properties can be tuned by elastic strain.

TABLE 6.6: Longitudinal and transverse electron effective mass
at CBM in undeformed diamond (in units of m0). The re-
sults obtained through our CNN model are compared with
experiments, our previous feed-forward NN model, and ex-
plicit calculations using existing methods including GW, linear
muffin-tin-orbital (LMTO) model, G0W0, and quasiparticle self-

consistent GW (QSGW).

Method Source ml mt ml/mt
CNN this work 1.55 0.31 5.0
NN Shi et al. (2019) 1.63 0.31 5.16
GW this work 1.44 0.31 4.61

LMTO Willatzen et al. (1994) 1.5 0.34 4.41
G0W0 Lofas et al. (2011) 1.1 0.22 5.0
QSGW Lofas et al. (2011) 1.2 0.22 5.45

Experiment Nava et al. (1980) 1.4 0.36 3.89

To demonstrate the accuracy and applicability of our model, we also show
the results on the EM difference for the case of hydrostatic compression and
tension (εxx = εyy = εzz, εxy = εyz = εxz). The reciprocal components of the
effective mass tensor diagonal are shown in Figure 6.4, which shows that our
advanced CNN model is capable of predicting intricate derivative properties
with suitable accuracy.
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FIGURE 6.4: Top: Reciprocals to the effective mass tensor val-
ues; GW calculations versus CNN predictions. Both predicted
and real EM estimates are close to each other, so we visualized

the difference on the bottom plot.

6.2 Active learning with MC dropout

This section is dedicated to the results of initial active learning exper-
iments with a simple dropout uncertainty estimate, which were also pub-
lished in Tsymbalov et al. (2018). For the data sets list used in this section,
please refer to the Section D.1 of Appendix D.
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6.2.1 Correlation plots

We would start with the demonstration of the possible relations between
the simple MC Dropout uncertainty estimate, defined in Section 5.2.1, and
the real error on the points UE produced for. The performance of the algo-
rithm depends on the variety of factors, starting from the NN architecture,
training procedure, and active learning protocol, up to the data in hand and
the amount of it available. So the results may vary from the ones shown in
Figure 6.5, where no observable correlation is found, up to the ones in Figure
6.6, where the relationship is evident. The latter is usually observed in the
case of very close data distribution of train and test data, and is rather close
to the ideal case. However, ever for the case shown in Figure 6.5, the median
error for the randomly selected samples is lower than the median error for
the selected by the uncertainty estimation 1% of the data.

6.2.2 Ratio plots

First, we compare our MCDUE-based approach with the baseline ap-
proaches using the ratio of errors in various metrics. Figures 6.7 and 6.8
show that our active learning approach has a better performance than ran-
dom sampling in RMSE and MaxAE metrics, and a small accuracy increase
as compared to a max-min algorithm. It should be noted that as the number
of active learning iterations (new data gathering and learning on the top of
it) increases (thus leaving the data pool empty), the ratio turns to 1.

6.2.3 Dolan-More plots

We conducted a number of experiments with a single iteration of active
learning performed on the datasets listed in Section D.1 of Appendix D, see
Figure 6.9 for Dolan-More curves (defined in Section 5.3.3). Note that ρa(1) is
the ratio of problems on which the a-th algorithm performance was the best,
and it is always the case of the MCDUE-based algorithm. Judging by the
area under curve (AUC) metric, the MCDUE-based approach outperforms
the random sampling and is slightly better than a batch max-min sampling.

6.3 Diversified dropout masks

In this section, we present the results of the numerical experiments on the
DPP-powered dropout approach described in Section 5.2.2. For the details
on the setup and dataset processing, please refer to Section 5.3.2. Most of
these experiments were published in Tsymbalov et al. (2020). The code re-
producing the majority of experiments is available at https://github.com/
stat-ml/dpp-dropout-uncertainty.

We also tested this approach for the problems of image classification,
please refer to Appendix F for details.

https://github.com/stat-ml/dpp-dropout-uncertainty
https://github.com/stat-ml/dpp-dropout-uncertainty
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FIGURE 6.5: Scatter plot shows the relation between the MC
standard deviation and the absolute error for test samples. The
black dashed lines correspond to the medians of distributions,
the vertical blue line corresponds to the 0.99 percentile of the
MC standard deviation distribution, while the horizontal blue
line shows the median percentile of the absolute error distribu-
tion of corresponding samples, which is equal to 0.783 in this
case. Five-layer neural network with a 256-128-64 structure was
used on the Online News Popularity dataset (Fernandes et al.,
2015). The Pearson correlation coefficient equals to 0.056, thus
showing no linear relation between the absolute error and the

MC standard deviation.

6.3.1 Uncertainty Estimation for Regression Datasets

Similarly to Jain et al. (2019), we run a series of experiments on various re-
gression datasets, see Appendix D.2 for the full list of datasets. We show the
resulting distributions of log-likelihood values for each dataset in Figure 6.10.
We observe that either DPP or k-DPP always show the best results. Most
importantly, DPP works very well already for a small number of stochastic
passes T = 10 and consistently has low variance, which is extremely impor-
tant for practical usage.
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FIGURE 6.6: Scatter plot shows the relation between the MC
standard deviation and the absolute error for test samples. The
black dashed lines correspond to the medians of distributions,
the vertical blue line corresponds to the 0.99 percentile of the
MC standard deviation distribution, while the horizontal blue
line shows the median percentile of the absolute error distribu-
tion of corresponding samples, which is equal to 0.975 in this
case. Five-layer neural network with a 256-128-64 structure was
used on the CT slices dataset (Graf et al., 2011). The Pearson
correlation coefficient equals to 0.93, thus showing an almost
linear relation between the absolute error and the MC standard
deviation, so if we choose a sample with a relatively high MC
standard deviation, it will probably have large absolute error.

We also performed an experiment with out-of-distribution (OOD) data.
To generate OOD data we pick a random feature and split the data into the
training set and OOD set by the median value on this feature. The experi-
ments were run for 5 different splits. For OOD data, good uncertainty es-
timates should have in average higher values compared to in-domain data.
Tables 6.7, 6.8, 6.9 provide the percentages of OOD points with UE values
higher than α percentile of UE distribution for training data (α = 80%, 90%, 95%).
The resulting numbers should be considered with a significant grain of salt
due to their high variance but still DPP and k-DPP show the best results
based on average values.

6.3.2 Ensembling for Regression Datasets

We consider ensembles of 5 models and combine them with the differ-
ent inference methods for individual models. We visualize the log-likelihood
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FIGURE 6.7: Comparison of MCDUE-based algorithm and ran-
dom sampling algorithm: the ratio of errors (training curves)
for various metrics on the KEGG Network dataset (Shannon
et al., 2003). A ratio bigger than 1 (dashed line) shows the su-
periority of the MCDUE-based algorithm. The blue line shows
the mean over 25 experiments, the standard deviation is also
shown. One can see that the proposed algorithm outperforms
the random sampling significantly on RMSE and MaxAE met-

rics.

FIGURE 6.8: Comparison of MCDUE-based algorithm and
max-min sampling algorithm: the ratio of errors (training
curves) for various metrics on KEGG Network dataset (Shan-
non et al., 2003). A ratio bigger than 1 (dashed line) shows
the superiority of the MCDUE-based algorithm. The blue line
shows the mean over 25 experiments, the standard deviation is
also shown. One can see that the proposed algorithm slightly
outperforms the max-min sampling across all the metrics by up

to 20%.

metric for each dataset, see Figure 6.11. There is no single method that gives
the best results uniformly over the considered datasets, yet DPP-based meth-
ods show superior performance more often than other approaches. Also, it
is clearly seen that pure ensembling without sampling in individual models
is usually inferior even to the plain MC dropout, while the combination of
ensembling with sampling consistently improves the quality of uncertainty
estimation.
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FIGURE 6.9: Dolan-More curves for various metrics and acqui-
sition functions. Figures on the legend indicate the area un-
der the curve (AUC) metric for each algorithm. The number of
training samples was chosen randomly from 1000 to the 20% of
the training set, the number m of points to sample from the pool
P was chosen randomly from 100 to 1100, with a 140 exper-
iments conducted in total. The MCDUE-based approach out-
performs the random sampling and is slightly better than batch

max-min sampling.

FIGURE 6.10: Log-likelihood metric across various UCI
datasets for NN UE models with a different number of stochas-
tic passes T = 10, 30, 100. DPP and k-DPP give better results
compared to other methods with DPP working well already for

T = 10 and consistently showing lower variance.

TABLE 6.7: Percentages of OOD points with UE values higher
than specified percentile of UE distribution for training data for
concrete dataset. DPP and k-DPP show the best results based on
average values (top-2 average values are put in bold). For all

the methods, T = 100.

percentile MC dropout leverage DPP k-DPP
80 55.0±27.6 61.3±27.7 70.4±26.0 71.9±28.0
90 46.0±30.7 52.9±30.8 59.6±30.1 60.8±33.7
95 40.6±32.1 46.5±33.1 52.1±32.9 51.8±36.3

6.3.3 Regression Datasets: NN Configurations Effect

In order to testify UE approaches on slightly different settings of NN ar-
chitecture, we settled out three more experiments with variations in architec-
ture, activation function, and dropout rate; for the details on it as well as the
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TABLE 6.8: Percentages of OOD points with UE values higher
than specified percentile of UE distribution for training data for
Boston housing dataset. DPP and k-DPP show the best results
based on average values (top-2 average values are put in bold).

For all the methods, T = 100.

percentile MC dropout leverage DPP k-DPP
80 49.6±26.9 68.1±23.7 69.2±29.3 83.1±23.2
90 36.9±27.9 53.6±26.9 59.6±31.5 63.7±29.4
95 28.2±26.7 40.7±30.0 53.5±32.5 50.9±36.0

TABLE 6.9: Percentages of OOD points with UE values higher
than specified percentile of UE distribution for training data for
red wine dataset. DPP and k-DPP show the best results based on
average values (top-2 average values are put in bold). For all

the methods, T = 100.

percentile MC dropout leverage DPP k-DPP
80 50.4±26.9 53.1±22.3 73.5±23.9 60.9±26.5
90 36.6±28.0 39.1±23.5 61.8±29.2 45.0±31.1
95 27.3±27.7 30.1±22.6 51.0±31.9 34.7±34.2

FIGURE 6.11: Log-likelihood across various UCI datasets for
single models and ensembles of NN UE models. Arrows on
the bottom indicate box plots being below the bottom bound-
ary. DPP constantly shows good results in the single model

scenario, being not far from ensemble-based methods.

introduction of additional metrics, please refer to Section 5.3.2.
We have visualized the results for other experiments in Figures 6.12, 6.13,

and 6.14. DPP-based methods show the best performance for the majority of
cases. For the very large (relative to the size of the datasets) NN architecture,
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the leverage score-based approach shows promising performance as well.

FIGURE 6.12: Log-likelihood across various UCI datasets for
single models of NN UE for the small-NN experiment B, see
Section 5.3.2 for setup details. DPP shows outstanding perfor-
mance; it also demonstrates the most stable results in terms of
the variance between the runs. Arrows on the bottom indicate

box plots being below the bottom boundary.

FIGURE 6.13: Log-likelihood across various UCI datasets for
single models of NN UE for the large-NN experiment C with
the reduced dropout rate, see Section 5.3.2 for setup details.
A larger number of stochastic runs (30, 100) demonstrate the
performance inferior to the 10 runs approach. DPP and k-DPP
methods show stable dominance over other approaches. Ar-
rows on the bottom indicate box plots being below the bottom

boundary.

6.4 Enhancement with Gaussian Processes

In this section, we are presenting the results of the numerical experiments
on the NN+GP approach described in Section 5.2.3. For the details on the
setup and dataset processing please refer to Section 5.3.2. Please also refer to
the Appendix E for the experiments with the hydraulic simulator. Most of
these experiments were published in Tsymbalov et al. (2019).
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FIGURE 6.14: Log-likelihood across various UCI datasets for
single models of NN UE for the large-NN experiment D, see
Section 5.3.2 for setup details. DPP and leverage mask decor-
relation shows the best results. Arrows on the bottom indicate

box plots being below the bottom boundary.

6.4.1 Airline delays dataset and NCP comparison

We start the NNGP experiments by comparing the proposed approach
with the one based on uncertainty estimates obtained from a Bayesian neural
network with Noise Contrastive Prior (NCP), see Hafner et al. (2018). Follow-
ing this paper, we use the airline delays dataset (see Hensman et al. (2013)).

The results for the test set are shown in Figure 6.15. The proposed NNGP
approach demonstrates a comparable error with respect to the previous re-
sults and outperforms (on average) other methods in the continuous active
learning scenario.

6.4.2 Performance curves for UCI dataset

To compare the performance of the algorithms across the different data
sets (see Section D.1 of Appendix D) and different choices of training sam-
ples, we constructed the Dolan-More curves for the errors of approximation
for considered problems after the 16th iteration of the active learning proce-
dure, see Figure 6.16. We see that the NNGP and M-step NNGP procedures
are superior in terms of RMSE compared to MCDUE and random sampling.

6.4.3 SchNet training

To demonstrate the power of our approach, we conducted a series of nu-
merical experiments with the state-of-the-art neural network architecture in
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FIGURE 6.15: Root mean squared errors as functions of active
learning iteration for different methods on the Airline delays
data set. Plots show the median of the errors over 25 runs.
NNGP initially has a much higher error, but shows the rapid
improvement and becomes the best method near iteration 300.

FIGURE 6.16: Dolan-More curves for UCI datasets and differ-
ent active learning algorithms after 16 active learning iterations.
Root mean squared error (RMSE) on an independent test set is
considered. NNGP- and M-step NNGP-based algorithms show
better performance compared to MCDUE and random sam-

pling.

the field of chemoinformatics “SchNet” (Schütt et al., 2018). This network
takes information about an organic molecule as an input, and, after special
preprocessing and complicated training procedure, outputs some properties
of the molecule (like energy). Despite its complex structure, SchNet contains
fully connected layers, so it is possible to use a dropout in between them.

We tested our approach on the problem of predicting the internal energy
of the molecule at 0K from the QM9 data set (Ramakrishnan et al., 2014),
and conducted two experiments on training. For the details on the SchNet
modification, data splitting, and differences in experiments, please refer to
Section 5.3.2.

The results are shown in Figures 6.17. Both NNGP and MCDUE ap-
proaches demonstrate a steady decrease in error and are superior to the ran-
dom sampling. Such improvement is very significant in terms of the time
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savings for the computationally expensive quantum-mechanical calculations.
For example, to reach the RMSE of 1 kcal/mol (a state of the art error reported
in Schutt et al. (2017)) starting from the SchNet trained on 10 000 molecules,
one need to additionally sample 15 000 molecules in case of random sam-
pling or just 10 500 molecules using the NNGP or MC dropout uncertainty
estimation procedure.

FIGURE 6.17: Training curves for the active learning scenario
for SchNet (see Section 5.3.2 for details). Starting from 10 000
random molecules we pick 2 000 based on the uncertainty esti-
mate. Dropout-based algorithms result in the 15% decrease in
mean absolute test error compared to random sampling. The
results are averaged over three independent runs with random

choices of the starting 10 000 molecules.

6.5 Discussion

This section was dedicated to the results of numerical experiments on ma-
chine learning models. We cover not only the performance of the models for
elastic strain engineering but also access the accuracy of various uncertainty
estimation and active learning approaches on a separate set of problems.

In Section 6.1.1, we examine NN-based models for a silicon crystal. Nu-
merical experiments on PBE data demonstrate that the error for the neural
network is significantly lower than one for the baseline methods (Lagrange
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interpolation, GBR, RFR). We also show that in the case of GW data, one can
increase the accuracy by utilizing predictions produced by the PBE model
in ∆ − ML fashion. Another important point is that mixing the different
datasets (one on the large subspace of three-dimensional data and another
on the smaller subspace of six-dimensional data) increases accuracy for both
tasks, paving the way for a combination of results produced for different
simulations.

In next Section 6.1.2, we address the question of performance of the de-
rived CNN model in comparison to the NN and KRR baselines. While NN
shows slightly better results for the prediction of a single property (e.g., bandgap
Eg or Γ gap), it shows worse results for the tasks of band structure prediction
and conduction band minima classification. This is also demonstrated for
the advanced problem of effective mass estimation, where the model should
both locate CBM correctly and then produce accurate values for the estima-
tion of the second derivative provided by finite differences. Therefore, the
CNN model is more preferable, although it is possible to use a simpler NN if
one aims to predict only a single feature, such as the bandgap value. We also
show how the active learning for CNN works in a case of PBE data, where
it outcompetes the random sampling baseline, and discovered that a simple
MCDUE approach is inapplicable here. For the GW data, we demonstrate
a moderate accuracy improvement with a learning curve using NN-GP ap-
proach.

The rest of the section is dedicated to the general active learning and un-
certainty estimation for neural networks. Section 6.2 presents the results of
a simple dropout-based active learning, and also reveals possible problems
with its use. We enhance the MCDUE baseline in the next Section 6.3, where
the improvement caused by the use of diversification of dropout masks via
DPPs is demonstrated on a number of tasks. We would like to note that not
all of these methods were used for the ESE problems; this research direction
is left for the future work.

While MCDUE (even with the diversification add-on) may show accept-
able results for the uncertainty estimation, various active learning caveats,
such as sampling of close points within a single batch, do exist. We address
them in Section 6.4, where the approach of post-processing with Gaussian
processes is proposed. It is tested on a number of problems, including the
interaction with simulators in Sections 6.4.3 and Appendix E, where it shows
promising results.

To sum up, all of the proposed approaches are (or close to) state-of-the-art
in MC dropout-based uncertainty estimation for neural networks. However,
the general mechanism of obtaining both robust and simple UE is unknown
and yet to be explored. Similarly, a question of how to organize active learn-
ing for the case of NN is mostly unanswered, yet there is a certain rise of
interest to this topic in ML community.

As for the ESE, numerical experiments demonstrate the ability of de-
veloped models to mimic the DFT calculations within a reasonable accu-
racy level; this statement is further checked in the next section, where pro-
posed machinery is used to explore the strain space, and selected results were
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checked and confirmed by a separate ab initio calculations.
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7 Strain-induced properties

This section represents the quintessence of this work – namely, results and
insights discovered by the use of high-throughput machine learning models.
We will first provide the readers with the description of the bandgap “enve-
lope” – a density plot that represents the many-to-many relation between the
bandgap and elastic strain energy density, defined in Section 4.2.2. This will
be followed by the detailed analysis of the bandgap topology in the strain
space, with examples of the distinguished strains. On top of that, we will
provide an example of how this machinery may be used for assisting in situ
experiment.

This part of the research was carried out in close collaboration with Zhe
Shi and other coauthors.

7.1 Bandgap optimization and “envelope”

7.1.1 Silicon crystal case

The many-to-many relation between h(ε) and the bandgap Eg(ε) is shown
in Figure 7.1. In the stress-free equilibrium state, silicon has a bandgap of 1.1
eV; with an increase in strain energy density, a variety of possible bandgaps
emerge. Even silicon with as little strain energy density as 0.2 meV/Å

3
can

become quite a different material from the stress-free silicon. As h further
increases, the largest allowable bandgap drops and an “envelope” forms, as
evidenced by the change of maximal and minimal bandgap reachable under
a fixed h. The shading of the envelope regions in Figure 7.1 reflects the dis-
tribution of the available bandgap. A darker shading qualitatively indicates
that the number of possible strains to achieve a specific bandgap at a given h
is higher. Outside the envelope, the shading color is white, meaning that the
corresponding bandgap is not attainable.

An upper-envelope function Eupper
g and lower-envelope functions Elower

g ,
defined in 4.4 and rendered as the black and red dotted lines in Figure 7.1
indicate the path to obtain the fastest change in Eg. For instance, if the goal
is to reduce the bandgap of silicon from 1.1 eV as fast as possible, with the
least cost of elastic energy, the red-dotted line in Figure 7.1 offers the best
design of the strain tensor to achieve this goal. This is further detailed on
Figure 7.2, which illustrates that silicon’s “fastest path to metallization” is ac-
tually a curved path in the strain space: the initial fastest-descent direction
for Eg (at h = 0) is quite different from when Eg hits zero, and linear perturba-
tion theory such as the deformation potential theory (Bardeen and Shockley,
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1950) is not expected to work well in deep-strain space. At 1.35 meV/Å
3

the
bandgap of Si can vanish, corresponding to the minimum energy required
for semiconductor-to-metal transition in the whole 6D strain space (open red
circle on the horizontal axis of Fig. 7.1). The deformation case is

ε1 = −5.4928%, ε2 = 2.416%, ε3 = 1.3348%,
ε4 = 1.1057%, ε5 = −1.096%, ε6 = 0.5024%.

(7.1)

Both fastest descent path and zero bandgap strain were found using the
differential evolution optimization algorithm by Storn and Price (1997), which
was launched on the deep ESE model. The zero bandgap strain was verified
by a separate GW calculation; its electronic band structure is shown in Figure
7.3.

Our deep ESE model found within experimentally accessible strain range
that the indirect-to-direct bandgap transition takes place in silicon in the high
h region and a minimum strain energy density hmin

d around 15.4 meV/Å
3

exists for the direct bandgap to appear. The little red direct bandgap “island”
of DOD (density of direct bandgaps, see 4.2.2) can be achieved by applying
ε1 = ε2 = ε3 ≥ 9.3%.

We will discuss the other ways to reach the zero bandgap in the Section
7.2, yet there is only a single way to obtain the maximum bandgap of 1.24
eV reachable by strained silicon, which is to apply a hydrostatic tensile strain
of 6.5%. It should be noted that silicon strained to such an extent can nearly
reach the maximum theoretical efficiency, known as the Shockley–Queisser
limit (Ruhle, 2016) of a single p-n junction solar cell, demonstrating the pos-
sible application of ESE in solar energy conversion devices.

7.1.2 Diamond crystal case

The DOB plot for the case of a diamond crystal is shown in Figure 7.4.
The maximal bandgap reachable is 6.5 eV, which could be realized by the
hydrostatic compression of 10%. The lowest energy density cost for reaching
the direct bandgap is h = 20 meV/Å

3
at the (1.1%, 2.4%, 0.6%, -3.0% , -3.3%,

2.7%) strain. A complete ranking of the common crystal directions regarding
their ability to reducing the bandgap can be found in the Appendix G.

In the case of a diamond, deep ESE provides an opportunity to reduce its
bandgap to a level comparable to that of InAs. Our results propose that by
straining diamond in the most optimal way, it can be transformed to mimic
the properties of a lower-bandgap semiconductor while almost preserving
its own uniqueness such as high strength and thermal conductivity, thereby
paving the way for designing hitherto unexplored combinations of material
characteristics.

While the direct bandgaps in the strain space could be relatively easily
located and described as a distinct subregion for the silicon crystal case, the
situation is more tricky for the diamond crystal. An exploratory study con-
ducted in Section 4.3.3 suggests that there may exist a 5-dimensional mani-
fold within the 6-dimensional manifold of admissible strains; this, however,
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does not say anything on how to locate or visualize the manifold. One of the
insights drawn from both data and model is that one needs to use the shear
components of the strain; we visualize 1000 most distinct indirect bandgap
cases and 150 most distinct direct bandgap cases (to conserve the relative
share) in Figure 7.5.

The conventional way to modulate electronic properties in semiconduc-
tors is the so-called compositional grading technique. Through varying the
stoichiometry of a semiconductor through, for example, molecular beam epi-
taxy, a graded bandgap can be produced (Capasso, 1988). This means of
tweaking the material property is conceptually based on traditional chemi-
cal alloying, whereby the chemical composition is tuned in an alloy melt to
produce desirable strength or ductility. Invoking this approach, conventional
bandgap engineering resorted to chemical alloying such as GaAl1−xAsx or
Ga1−xInxAs. However, we have demonstrated here that the stress-free situa-
tion is usually not the optimal state for a figure-of-merit, and elastic strains al-
low the bandgap to exhibit many more possible values so that each pure ma-
terial candidate should occupy a much larger hyperspace enabled through
the achievable 6D strain space. The more general bandgap engineering ap-
proach should utilize gradients in both composition and strain to achieve the
desired band alignment.

We also data-mined the 6D strain space to study the conduction related
properties and the elastic strain energy density against ε. Here, we adopted
our ML model to acquire the many-to-many relation between conductivity
effective mass for the conduction electron m?

cond(ε) and h(ε), as shown in Fig-
ure 7.6a. The values of scalar m?

cond are obtained by averaging individual
longitudinal and transverse effective masses, as in Van Zeghbroeck (2010):

m?
cond =

3
1

m11
+ 1

m22
+ 1

m33

. (7.2)

The purple shading in Figure 7.6a reveals the distribution of the available
m?

cond, with darker shading implying more strains are able to reach a specific
value of m?

cond at a given h. In principle, by using our model, we can accu-
rately predict any components of the m? tensor and their arithmetic averages
for every k-point at every strain level.

In the design of photovoltaic cells and scintillators, it is desirable to adopt
a semiconductor material with a direct bandgap and small effective mass to
allow for a combining high light yield and conductivity. When ESE is used
to modulate the bandgap and effective mass together, a lower elastic strain
energy density is often preferable than a higher energy density for reach-
ing the same property design. However, in our case of materials properties
optimization, the best solution that simultaneously minimizes all objectives
(namely Eg, m?

cond, and h) does not exist. Instead, we found out Pareto-
efficient solutions that cannot be better off (decreased) in any of the three
values without worsening off (increasing) at least one of the other two val-
ues. As shown in Figure 7.6b, the 3D Pareto front of minimized Eg, m?

cond,
and h indicates a trade-off must be made in simultaneously having a small
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bandgap and conductivity effective mass, where h could increase up to more
than 120 meV/Å

3
. One cannot achieve, for example, a near-zero bandgap

and m?
cond < 0.25me without paying a considerable price in h by deforming

diamond, as indicated by the “infeasible region” in Figure 7.6b. Also, one
can usually find higher h values that correspond to the same (Eg, m?

cond) com-
bination. The strain cases with such h values are in the “feasible region” in
Figure 7.6b. In addition, if one would like to access to all possible combi-
nations of (Eg, m?

cond) achieved by straining diamond and to find the lowest
elastic strain energy density (hmin) for each combination, Figure 7.6c could
be a blueprint for this purpose. Note that it is not a 2D projection of the 3D
Pareto front of Figure 7.6b where only minimized Eg and m?

cond are present.

7.2 Bandgap topology

7.2.1 Silicon crystal case

As was shown above, the effect of different deformations on the bandgap
value may be degenerate. Here we choose silicon crystal as an example to
demonstrate the power of our deep ESE model in investigating the bandgap
topology and bandstructure-related physics. While a set of the reachable
bandgap values in the full 6D strain space does not allow for an explicit vi-
sualization, we can explore the accessible electronic bandgap range directly
if we restrict ourselves to tensile and compressive strains (ε4 = ε5 = ε6 = 0).
Figure 7.7 illustrates the Si bandgap isosurfaces, i.e., the set of points in the
strain space where the bandgap is equal to some given values for different
levels obtained by our high-throughput NN model. Since both the crystal
structure and deformation tensor have some symmetries, and the bandgap as
a function of strain is invariant with respect to some of them, the isosurfaces
appear to have the shape of a convex polyhedron for every strain having the
following symmetric structure:

1. The µ and χ points lie on the ε1 = ε2 = ε3 line. We thus denote their
coordinates by (a, a, a) and (b, b, b), respectively.

2. The αj (j = 1, 2, 3) points form a regular triangle which lies in a plane
orthogonal to the ε1 = ε2 = ε3 line. Their coordinates are denoted by
(c, d, d), (d, c, d), and (d, d, c), respectively.

3. The β j (j = 1, 2, 3) points also form a regular triangle which lies in a
plane orthogonal to the ε1 = ε2 = ε3 line. Their coordinates are denoted
by (e, e, f ), ( f , e, e), and (e, f , e), respectively.

The shape of the isosurface is similar for both PBE and GW bandgaps,
although the specific strain values may differ for the same PBE and GW
bandgap levels. It was found that the easiest way (with the least h(ε3Dε3Dε3D))
to obtain the 0-eV bandgap without any shear strain is to apply a normal
strain of -3.86 and 4.36% along any two of the three 〈100〉 directions while
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leaving the third 〈100〉 direction undeformed. Therefore, there are six strain
cases that are equivalent, as indicated by red dots in Fig. 7.9. The position of
the vertices of the Eg isosurface in the strain space is the function of selected
bandgap value, and the detailed relationship between the bandgap and the
strains is shown in Fig. 7.10.

The formation of the Eg isosurfaces, such as the ones in Fig. 7.7, is due
to the relative position of the valence band maximum (VBM) and the con-
duction band minimum (CBM). Despite different shape variations of the two
energy bands, modulating elastic strain provides possibilities for the VBM
and CBM to differ by the same amount with respect to the vacuum level. For
undeformed silicon with a bandgap of 1.1 eV, the VBM is located at the Γ
point, and the CBM lies on the straight line (the ∆-line) in the k-space and is
positioned at about 85% of the way from the Brillouin zone center to the zone
boundary (Jenkins, 1956). Under 3D deformation, the cubic crystal symmetry
of Si is lifted and we follow the k-point labeling scheme explained in the Ap-
pendix B to describe band extrema positions. It is found that VBM remains at
Γ for both silicon and diamond crystal irrespective of deformation, whereas
the position of CBM can be greatly affected by external strains. Using the
geometry of the Eg isosurface as a visualization tool, we identify four types
of k-space transition in CBM that may happen across the ridgelines on the
isosurface.

Starting with the strain points on the lower faces separated by µ-αj ridge-
lines of the Eg isosurface in Fig. 7.7, we found that the CBM retains roughly
the same relative position along the “∆”-type line as in the undeformed case,
and that crossing the ridgelines only switches CBM among ∆1 = (0, k1, k1),
∆2 = (k1, 0, k1) , and ∆3 = (k1, k1, 0) where k1 ≈ 0.425. In other words, µ-
α1 ridgeline corresponds to ∆2/∆3 transition, µ-α2 ridgeline corresponds to
∆1/∆3 transition, µ-α3 ridgeline corresponds to ∆1/∆2 transition, and we can
indeed label each carapace by its CBM character ∆1, ∆2, ∆3. We term this tran-
sition occurring in the small strain region as the ∆-switching. In this case, the
linear deformation potential theory can be used to describe the strain effects
on the band extremum (Bardeen and Shockley, 1950). However, investiga-
tion of the large deformation points on its upper faces in Fig. 7.7 reveals that
the CBM would not retain its location and major changes would happen.

Our ML model captures the occurrence of “L − ∆” transition across the
βi − αj ridgelines where the CBM changes to “L” points in k-space: L1 =
(0.5, 0, 0), L2 = (0, 0.5, 0), L3 = (0, 0, 0.5); see Fig. 7.11A and B, where, for
example, “∆3 carapace” changes to “L1 carapace” across the α1 − β3 ridge-
line, and “∆3 carapace” changes to “L2 carapace” across the α2− β3 ridgeline.
None of the ridgelines or carapaces (e.g., ∆3 carapace bound by µ− α1− β3−
α2− µ) are truly flat. The large, nonperturbative deformation makes the con-
ventional theory ineffective in predicting it. Moving further toward χ in the
strain space, CBM would remain at L and a cross-over of the χ2 − β j ridge-
lines is referred to as an L-switching. Indirect-to-direct bandgap transition
occurs near the upper tip of the paleolith-like isosurface where CBM appears
at Γ, as shown in Figure 7.11C. This can be explained by the competition be-
tween drops of different band edges. In general, as strain increases, the band
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edge at both Γ and L would decrease. As a result of high strains, the energy
decrease at Γ is faster and eventually the bandgap becomes direct, as shown
in Figure 7.11D. In this case, we transition, for example, from the L1 carapace
(α1− β3− χ3− χ2− β2− α1 in Figure 7.7) to “Γ carapace” (χ1− χ2− χ3− χ1
in Figure 7.7) across the χ2 − χ3 ridgeline. When the strained Si turns into a
direct-bandgap semiconductor, it will exhibit a significant enhancement in its
optical transitions around the fundamental adsorption edge compared with
an undeformed Si, due to the elimination of phonon involvement to facil-
itate adsorption or emission. As absorbance increases exponentially with
thickness in a material, a solar cell based on direct bandgap Si with a high
adsorption coefficient would require much less thickness to absorb the same
amount of light, paving the way for the design of lightweight high-efficiency
solar cells. Table 7.1 summarizes all of the details of the k-space transitions,
thus resolving the conduction band properties exhaustively for a wide range
of strains.

TABLE 7.1: k-space CBM transitions. Each of 12 separating
edges of the polyhedron is tabulated. The constants k1 and
k2 are approximately equal to 0.425 and 0.5, corresponding to

points on ∆ and L, respectively.

Type Plane 1↔ Plane 2 k-coordinate of CBM

‘∆’-switching
α2β1µ↔ α2β2µ (k1, k1, 0)↔ (0, k1, k1)
α3β2µ↔ α3β3µ (0, k1, k1)↔ (k1, 0, k1)
α1β3µ↔ α1β1µ (k1, 0, k1)↔ (k1, k1, 0)

‘L’-switching
β1β3χ↔ β2β3χ (k2, 0, 0)↔ (0, 0, k2)
β2β3χ↔ β1β2χ (0, 0, k2)↔ (0, k2, 0)
β1β2χ↔ β1β3χ (0, k2, 0)↔ (k2, 0, 0)

‘L-to-∆’ transition

β1β2α2 ↔ α2β1µ (0, k2, 0)↔ (k1, k1, 0)
β1β2α2 ↔ α2β2µ (0, k2, 0)↔ (0, k1, k1)
β2β3α3 ↔ α3β2µ (0, 0, k2)↔ (0, k1, k1)
β2β3α3 ↔ α3β3µ (0, 0, k2)↔ (k1, 0, k1)
β1β3α1 ↔ α1β1µ (k2, 0, 0)↔ (k1, k1, 0)
β1β3α1 ↔ α1β3µ (k2, 0, 0)↔ (k1, 0, k1)

Indirect-to-direct Eg transition
β1β3α1 ↔ χ1χ2χ3 (k2, 0, 0)↔ (0, 0, 0)
β1β2α2 ↔ χ1χ2χ3 (0, k2, 0)↔ (0, 0, 0)
β2β3α3 ↔ χ1χ2χ3 (0, 0, k2)↔ (0, 0, 0)

7.2.2 Diamond crystal case

For the case of a diamond crystal, the corresponding bandgap isosurface
in εxx − εyy − εzz space exposes less interesting structure, as there are the
conduction band minima only and no transition to the direct bandgap, see
Figure 7.12(b-d) for the details. Key features of this bandgap isosurface in 3D
include carapaces that are piecewise smooth, ridgelines where two smooth
carapaces meet, and corners where three ridgelines meet. The multifaceted
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nature of the isosurfaces is attributed to the switch of the CBM k-space posi-
tion. As a consequence of strain tensor and crystal symmetries, this isosur-
face has the following strain and electronic properties:

• Three carapaces labeled as ∆1, ∆2, and ∆3 correspond to strain cases
with the same value of indirect bandgap but different CBM positions of
(0, 0.375, 0.375), (0.375, 0, 0.375), and (0.375, 0.375, 0), respectively.

• Three ridgelines labeled as r1, r2, and r3 with the strain relations εyy =
εzz, εxx = εzz, and εxx = εyy, respectively.

• The corner µ is the intersection of r1, r2, and r3 is the most “tensile”
hydrostatic strain point on the bandgap isosurface, i.e., εxx = εyy = εzz.

However, the "shear-only" strain space εxy− εyz− εxz shows more promis-
ing picture, see Figure 7.12e. Besides three different indirect bandgap CBM
positions at X1:(0, 0.5, 0.5), X2:(0.5, 0, 0.5), and X3:(0.5, 0.5, 0), 3D shear strains
can also give rise to direct bandgap in diamond where CBM is at the Γ point.
The change from the carapace labeled as X1 to the carapace labeled as Γ thus
indicate an indirect-to-direct bandgap transition in a diamond (yellow arrow
in Figure 7.12e). The corresponding band structures are shown in Figure 7.12f
and g, respectively.

7.3 Diamond metallization case

In this section, we will briefly demonstrate the use case of the proposed
ML machinery for the simulation of the in situ experiment described in Baner-
jee et al. (2018). This part of the research was mostly carried out by Zhe Shi
and Ming Dao. The top-level scheme of the experiment is shown in Fig-
ure 7.13: diamond nanoneedles grown on silicon substrate are bent by the
diamond nanoindenter tip. Different parts of the diamond nanoneedle are
subject to the different deformation; one can use the finite element modeling
to estimate the strain in the different points (as done in the original paper).
Moreover, based on the obtained values of strain, we can estimate the local
bandgap via the machine learning model.

The results of this multistage simulation suggest that a metallization oc-
curs, see the bottom right part of Figure 7.13. The corresponding defor-
mations were double-checked by the independent first-principles calcula-
tions. The elastic strain energy density values, accessible via the experimen-
tal setup, are thus estimated to be near 80-85 meV/Å

3
, which is a bit larger

than the suggested lower bound, presented in Figure 7.4, yet is more robust
and explainable. For further details, see Shi et al. (2020).

The abovementioned experiment with the FEM-ML coupling demonstrates
the applicability of the proposed ML scheme to the real-world engineering
problems and scientific discoveries. This part of the research was mostly car-
ried out by Ming Dao and Zhe Shi.
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7.4 Discussion

This chapter effectively demonstrated ESE-related use cases for the ML
machinery developed throughout the work. Brand new knowledge of the
nature of silicon and diamond crystals under strain is brought into existence
by the combined effort of ab initio calculations and machine learning.

DOB plots in Section 7.1 shows a general map of ESE capabilities in the
Eg–h plane, unveiling possible (and most probable, in terms of randomly
sampled strain) values of bandgap for the silicon and diamond crystals. These
values show that the options of widening the bandgap are limited, yet one
could effectively reduce the bandgap by controlling the deformation in a spe-
cial way.

We would like to point out that presented optimization results (of zero
and direct bandgaps) were double-checked by separate calculations. How-
ever, theoretically, more optimal values, omitted by the ML machinery, can
exist. Moreover, due to the limitations of the underlying first-principles cal-
culations, namely a limited k-point mesh, the proposed values are actually
upper-bound estimates of the theoretical bandgap.

Section 7.2 is dedicated to a deeper analysis of the electronic band struc-
ture, namely, conduction band minima transitions, that are studied and vi-
sualized on the example of reduced shear-free strain space (ε3Dε3Dε3D). This kind
of theory was before addressed in a smaller scale (e.g. considering uniaxial
or biaxial strains) and usually by means of k · p perturbation theory, which
considers the band structure at the vicinity of critical points only. Another
option is to use imprecise PBE calculations, with the results being far from
the ground truth. In this work, we made it possible on the level of GW cal-
culations, which are much closer to the experimental results. To put this into
computational perspective, Figure 7.7 requires 8 000 000 (2003 calculations to
produce (this number may be decreased by one order of magnitude if sym-
metries are taken into account) and took less than a minute to both calculate
and render on a laptop using the ML surrogate model. We would like to note
that while this part of the research was limited to the 3D case for the visual-
ization properties, a more comprehensive description in 6D space is yet to be
described, and the corresponding ML machinery for it is already developed.

The last part of the chapter, Section 7.3 demonstrates how developed
models may be used to support simulations of real-life experiments on the
elastic strain engineering. We use FEM to access the deformation on the par-
ticular parts of the nanoneedle; however, our model (due to the features of
underlying ab initio calculations) is focused on the bulk materials and does
not takes into account the surface effects, which may alter the values a lot,
especially in the diamond case, see Nie et al. (2019) for a detailed discussion.
Nevertheless, it is still a solid approximation to start from. This part of the
research was mostly carried out by Zhe Shi and Ming Dao.

This section concludes the main part of the thesis. In the next chapter, an
extended summary of the work will be provided together with the outlined
extensions of current research planned for future work.
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FIGURE 7.2: The most energy-efficient strain pathway to reach
the zero-bandgap state (end of ε1 − ε6 curves), i.e., the lower-
envelope function Elower

g (h) in silicon corresponding to the red-
dotted line in Fig. 7.1. The zero-bandgap state (open red cir-
cle on the horizontal axis of Fig. 7.1) corresponds to the de-
formation case of ε1 = –5.4928%, ε2 = 2.416%, ε3 = 1.3348%, ε4
= 1.1057%, ε5 = –1.096%, and ε6 = 0.5024% in [001],[010],[001]

coordinate frame.

FIGURE 7.3: GW band structure associated with deformation
7.1. The fractional coordinates for the three high-symmetry
points along the selected k-path are (0.5, 0, 0), (0, 0, 0), and (0.5,

0, 0.5), respectively.
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FIGURE 7.5: Indirect and direct bandgap cases for the dia-
mond crystal. Every Green-Lagrange strain is represented here
as a hexagon with vertices on the corresponding axes. Black
hexagons (filled the background) correspond to random 6D
strains; red hexagons (∼ 15% in amount) correspond to the di-
rect bandgap strains generated by our ML model. White circles

denote the axis ticks in polar coordinates.
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FIGURE 7.6: ML of electron effective mass. (a) Distribution and
density of states of conductivity effective mass. Strain region
where direct bandgap may appear is bound by the red dashed
line. Inset is the zoomed-in plot near h = 0 of the m?

cond distri-
bution. (b) Pareto front for minimizing m?

cond, bandgap, and
h. The color contours indicate different elastic strain energy
densities h. Points within the Pareto front are feasible while
those beyond the Pareto front (under the colored surface) are
infeasible. (c) Color contour plot of the lowest elastic strain en-
ergy density (hmin) required for achieving any combinations of
bandgap and m?

cond. (c) contains more (Eg, m?
cond) points and is

not a 2D projection of (b).



Chapter 7. Strain-induced properties 118

FIGURE 7.7: Bandgap isosurfaces for silicon in the ε1ε2ε3 strain
space appear to have the paleolith shape for every bandgap
level. The main corners (χ, µ, αj, β j) of an isosurface at Eg =
0.9 eV are indicated by different colors and the “carapaces” are
distinguished by their associated k-space CBM labels. The red
triangular faces indicate the direct-bandgap region at different
Eg levels. As bandgap increases, the area for the red triangle

eventually shrinks to a single χ point.

FIGURE 7.8: Bandgap isosurface shown through the ε1 – ε2 pro-
jection of Si at 1 eV level. The χ point corresponds to the direct-
bandgap case and it splits into three at small Eg as shown in

Figure 7.7.
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FIGURE 7.9: Zero-bandgap isosurface in the strain space. The
blue point corresponds to the strain-free state; red points are

strains with the least h of 1.65 meV/Å on this isosurface.

FIGURE 7.10: Strain-space coordinates of the bandgap isosur-
face corners (defined as in Figure 7.7) as a function of the
bandgap level. The maximum bandgap possible in this strain
space is about 1.24 eV, and it is reached at the triaxial strain of
6.5%. In the cases where three χ-type points exist, b equals the
average coordinate of them. See Section 7.2.1 for the detailed

description of the presented values.
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FIGURE 7.11: Illustration of k-space transition in Si predicted
by our model. All the transitions are verified by DFT calcula-
tions with GW0 correction. (A→ B) represents the ‘∆-L’ transi-
tion and (B → C) shows the indirect-to-direct transition. The
CBM (red arrows) locates at k-point (0.433, 0.433, 0), (0.5, 0,
0), and (0, 0, 0) respectively. (D) The enlarged bandstructure
around Fermi energy shows the competition of the three possi-
ble CBM positions. The three non-shear strain cases for (A-C)
are (-0.23%, 1.84%, 3.45%), (4.63%, 8.23%, 9.22%), and (9.85%,
9.31%, 9.4%), corresponding to points on the different faces of
the bandgap isosurface in Figure 7.7; this sequence of band-
structure plots represents the ”journey“ on the isosurface: it
starts at the ∆3 face (A), then moves to the L1 face (B) and ends

at the Γ “tip” (C).
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FIGURE 7.12: Bandgap isosurfaces for the diamond crystal
case. (b-d) “Paleolith”-like bandgap isosurfaces in the εxx −
εyy − εzz (normal only) strain space at 2 eV, 3 eV, and 4.25
eV levels, respectively. The carapaces, ridgelines, and cor-
ners are indicated in red, green, and brown letters, respec-
tively. (e) Bandgap isosurface in the εxy − εyz − εxz (shear only)
strain space at 3.5 eV. The yellow arrow indicates a change
of carapaces on this isosurface pertaining to indirect-to-direct
bandgap transition in diamond. The corresponding change of
CBM k-space coordinate from X1(0, 0.5, 0.5) to Γ (0, 0, 0) is
shown in band structure plots (f) and (g), respectively. Red ar-

rows in both plots indicate the CBM.
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FIGURE 7.13: FEM predictions of the local compressive and
tensile strain distributions and predictions of the NN and ma-
chine learning algorithm of the distribution of bandgap for a
diamond nanoneedle with its <110> crystallographic direction
aligned with the needle axis. The inset shows a scanning elec-
tron micrograph of the deformed nanoneedle during the bend-

ing experiment, from Banerjee et al. (2018).
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8 Conclusions

8.1 Summary

In this work, an ML-assisted simulation pipeline was developed for the
problems of elastic strain engineering, namely, prediction of the electronic
band structure.

Elastic strain engineering offers superior performance to the existing semi-
conductor materials. Yet electronic properties of deformed crystals are esti-
mated by costly ab initio simulations, and the thorough exploration or op-
timization within the vast strain space may require millions of such calcula-
tions. To cope with this problem, an approach involving a tailored NN-based
surrogate model was designed, together with an intricate protocol for the in-
teraction with the underlying ab initio model, which involves a combination
of different data sources and active-learning-powered additional training.
The resulting model is demonstrated to be both accurate compared to the
initial data, and fast, reducing the calculation time by four orders of magni-
tude. This opens up a number of opportunities for the optimization of figures
of merit (FoM), as well as the coupling with the finite-element methods.

Instead of focusing on the prediction of a given FoM, our model is de-
signed to predict the whole electronic band structure, from which necessary
properties may be easily derived. This corresponding regression to the high-
dimensional domain is not only capable of predicting all the properties at
once but also shows an accuracy superior to one of the specialized model in
a number of tasks, such as the conduction band minima classification. The
resulting data structure – the electronic band – is a subject to the number
of intrinsic features and symmetries; these characteristics were thoroughly
analysed and taken into account during the model design and helped to both
reduce the number of parameters by adopting the CNN-based architecture
and preserve the internal structure in a physically-informed ML fashion.

The specifics of data being produced by the first-principles simulations
open up the opportunity for continuous learning. An important question is
how to sample and how to surpass the random sampling baseline, if possible:
can we query the data our model is least certain at? Therefore, an uncertainty
estimation methodology based on the dropout-based Monte-Carlo sampling
was proposed for the fully-connected neural networks in general, and a num-
ber of approaches to enhance the dropout baseline were suggested. The re-
sulting methods were tested in a variety of problems, not limited to the elas-
tic strain engineering, and showed the performance superior to the one of
random sampling and other baselines. This easy-to-implement approach en-
hanced the surrogate model for the ESE as well, showing promising results
in the active learning scenario.
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Another important feature of the ab initio data is the possibility to com-
pute the answer on the different levels of theory: one can adopt fast PBE-
PAW calculations for an imprecise estimate of the electronic band structure,
or use the costly GW approximation, which provides answers closer to exper-
imental values and is used as a reference. This aspect of the first-principles
calculations is exploited to help the data-hungry NN model to fight the lack
of GW data (that takes up to three orders of magnitude more time to obtain)
by pre-training on the larger amount of PBE-PAW data. The models trained
on the aforementioned “data fusion” scenario demonstrate more robust per-
formance compared to the models fed with the GW data only.

All the above-mentioned components were combined together to con-
struct surrogate ML models that help in the process of exploring the vast pos-
sibilities of elastic strain engineering of silicon and diamond crystals. With
the help of designed machinery, we performed an exploratory analysis of the
six-dimensional strain space and discovered the indirect-to-direct bandgap
transitions as well as semiconductor-to-metal transitions, together with the
effort estimates required to induce these effects experimentally. Our models
suggest that ESE offers a large variety of crystal states, surpassing the pos-
sibilities provided by the mere compounding of elements like Si1−xGex or
InxGa1−xN in terms of bandgaps available. We also performed a deep analy-
sis of the band structure topology and corresponding transitions induced by
the strain and used our model in the FEM-assisted imitation of in situ exper-
iments. Selected results discovered with the help of surrogate models were
double-checked by a separate ab initio calculations.

In summary, this work extends the frontier of knowledge in the field of
elastic strain engineering with the help of machine learning, allowing to in-
crease the capability of existing first-principles methods by approximating
them with the blazing speed. In the next section, we will emphasize the pos-
sible future directions of this work.

8.2 Future work and research extensions

8.2.1 ESE development

The applicability of the proposed approaches is not limited to the exam-
ined examples of silicon and diamond crystals. The proposed NN architec-
ture is scalable to include more bands and larger k-meshes, and many handy
symmetries we exploit may be easily omitted or turned off in the current im-
plementation. For instance, in the case of ionic materials, the E(kkk) = E(−kkk)
symmetry may break, and one would need to account for it in the corre-
sponding model. Another example may include larger k-meshes, which may
demonstrate stronger interference in the k-space; increasing the receptive
field of the convolutional layer may help.

To further increase the accuracy, one generally needs either more data or
reduce the model class in order to reduce the number of parameters. The
first way is possible if one will loose the deformation tensor restrictions put
in Section 2.1.3. This will lead to the many-to-many relationship between the
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tensor deformation and electronic band structure, i.e., there would be many
deformations corresponding to a single band structure. However, this will
open many opportunities for data augmentation, as the 48-fold symmetry
group will result in a tremendous amount of data. As for the other oppor-
tunity, we believe that the Gaussian Processes with the careful kernel choice
(ideally accounting for all the symmetries) may lead to the superior results
in most of the cases.

One of the possible future directions is connected to the finer band struc-
tures. It inevitably means more time for the ab initio calculation to be done
yet may be necessary for certain cases of multicomponent materials. A sim-
ple yet powerful way to do it is to try a super-resolution approach (as, for
instance, in Tai et al. (2017)), fitted on cheap PBE data.

As for the possible extensions in terms of the values to tune and predict,
we would like to mention the phonon bandstructure fitting, deeper explo-
ration of the calculated properties (e.g., exploring the hole conductivity and
enhancement of carrier mobilities, which involves tuning more Hessians like
the one for the effective mass tensor). Another desirable application is the
coupling of the proposed models with the FEM simulators, which was tack-
led in Section 7.3 yet can be used for the broader range of materials science
tasks.

Active learning, demonstrated as a proactive interaction between the sur-
rogate model and first-principles simulator, is clearly a trend now (Podryabinkin
and Shapeev, 2017; Podryabinkin et al., 2019; Smith et al., 2018). One of the
options is indeed to use MLIP (Podryabinkin et al., 2019) as an additional
driver for the NN: to use it between the complex NN and ab initio calcu-
lations, as an intermediate model that is powerful enough to provide the
NN with the approximate answers instead of VASP. We have proposed three
dropout-based approaches to the active learning yet tested only two of them
for the problems of ESE, where only NN-GP approach showed moderate per-
formance. One may think of the various improvements depending on the
model and task at hand. However, the first and the most important pos-
sible step is taking into account the cost of future calculations; this field is
known as cost-sensitive active learning, see, e.g., Donmez and Carbonell (2008)
for details. We put effort into the development of the machine-learning style,
ensemble-agnostic approach, and tested it against the simple random base-
lines for ESE problems. In the next section, we will briefly sum up the part of
this work related to the uncertainty estimation and active learning for neural
networks.

8.2.2 Active learning development

A variety of approaches to uncertainty estimation and active learning
exists. This topic becomes more and more popular as the amount of data
increases dramatically every year, yet the abilities for processing, cleaning,
and selection are not. Another factor is the increasing popularity of machine
learning as the topic for the traditionally simulation-based fields, such as
fluid dynamics, geospatial processing, and others.
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A simple active learning procedure may be performed using a committee
of models, and this is a solid baseline in the cases of sufficient computational
resources available. In Section 6.3, we demonstrated one way of further per-
formance improvement via diverse dropout means; other traditional ways
include data and model diversification.

While we ultimately avoided the thorough discussion of the Bayesian
neural networks, the field is now actively developing, and one may expect
BNNs to become a handy and available tool in the future with the develop-
ment and popularization of corresponding libraries.

In this work, we described an easy-to-implement, ensemble-free approach
to the uncertainty estimation and its basic modifications. For robust system
design, one may need to derive better and more empirically straightforward
criterion on whether it can trust the current prediction or not. While we
mostly used the uncertainty estimates to rank the samples within a pool, a
more intuitive measure, such as a confidence interval, may be more useful
in practice. The simplest way is an uncertainty calibration, e.g., Platt-based
one (Guo et al., 2017), can be used. In general, a better approach may be con-
nected with the explicit or implicit tolerance to uncertainty incorporated into
the loss function, for instance, a Noise Contrastive Prior loss (Hafner et al.,
2018), mentioned in Section 6.4.

8.3 Author’s contribution

The results presented in this work would not be possible without the ex-
tensive collaboration. This section lists the author’s contribution to each re-
search project showed in this work.

For the projects related to the elastic strain engineering, all the machine
learning models (including training and active learning methodology) were
designed and implemented by the author, as well as approximately half of
the ab initio calculations and thorough data analysis. The choice of the ab
initio setup, processing, and discussion of the results, as well as the writ-
ing the core of the corresponding articles were made in co-authorship with
the Zhe Shi from Massachusetts Institute of Technology, not to mention top-
level guidance from other co-authors: Alexander Shapeev (Skolkovo Insti-
tute of Science and Technology), Ju Li and Ming Dao (Massachusetts Institute
of Technology) and Subra Suresh (Nanyang Technological University). As
for the results presented in Section 7.3, related to the FEM-coupling for the
diamond metallization exploration, the author solely performed machine-
learning-based calculations (using designed models) and was partially in-
volved in the data analysis.

As for the projects related to the dropout-based active learning for the
neural networks, the author performed the model design, implementation,
and run experiments solely for the cases of MCDUE-based models (Sections
5.2.1 and 6.2) and NN-GP coupling (Sections 5.2.3 and 6.4). As for the part
with dropout mask diversification (Sections 5.2.2 and 6.3), the author holds
credits for the early implementation of the decorrelation method and per-
formed all the regression-related experiments. Together with the co-authors



Chapter 8. Conclusions 127

Kirill Fedyanin and Maxim Panov (Skolkovo Institute of Science and Tech-
nology), the author extensively participated in the code debugging, data
analysis, and results interpretation.
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A Conventional unit cell

The conventional lattice matrix would be an identity matrix: Lconventional =
I, and the basis Bconventional = (xj, yj, zj), j = 1, . . . , 8 as

(x1, y1, z1) = (0, 0, 0);
(x2, y2, z2) = (0.25, 0.75, 0.75);
(x3, y3, z3) = (0, 0.5, 0.5);
(x4, y4, z4) = (0.75, 0.75, 0.25);
(x5, y5, z5) = (0.5, 0, 0.5);
(x6, y6, z6) = (0.75, 0.25, 0.75);
(x7, y7, z7) = (0.75, 0.25, 0.75);
(x8, y8, z8) = (0.5, 0.5, 0).

(A.1)
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B On the critical point notation for
the Brillouin zone of a strained
crystal

Under general 3D three-normal-strains deformation, the original Oh crys-
tal point group of Si (diamond C) turns into a D2h point group. The Brillouin
zone for for deformed crystal case is shown in Figure B.1. In general, it is
not anymore a regular truncated octahedron with equilateral hexagonal and
square faces, as in Figure 2.1. The reciprocal space lattice vectors are adjusted
by the inverse transpose of the deformation gradient tensor in real space, i.e.,
FFF−T, as a result of the deformation. The center of any type of Brillouin zone
is labeled as Γ, and we keep this tradition. In undeformed Si, the centers of
the square and regular hexagonal surfaces on the Brillouin zone boundary
are completely degenerate and labeled as X and L, respectively. For the sim-
plicity of comparison, we follow the same spirit and still denote the ‘X’-type
points as the centers of the tetragon surfaces and ‘L’-type points as the cen-
ters of the regular/non-regular hexagonal surfaces. The lines that connect
the Γ point to the ‘X’-type points are labeled as ‘∆’-type. This way, the six
‘X’-and ‘L’-type points, though non-degenerate, would keep the correct frac-
tional coordinates of 〈0.5, 0, 0.5〉-and 〈0.5, 0, 0〉-type, and the k-points along
the Γ-‘X’ line would all have the 〈ζ, 0, ζ〉-type coordinates. k-points of our
concern always appear on either the center of the Brillouin zone, the center
of the zone boundary surfaces, or the line connecting the zone center and
surface center; thus, our notations are sufficient.
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FIGURE B.1: Brillouin zone of diamond cubic crystal under
three-normal-strains deformation. It is a tetradecahedron with

8 hexagonal and 6 quadrilateral faces.
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C VASP calculation settings

C.1 Silicon calculations on a primitive cell

C.1.1 Preliminary ground state calculation

ENCUT = 600
ISMEAR = 0
SIGMA = 0.05
EDIFF = 1E-8
NPAR = 4
ISIF = 2
ISYM = 0

C.1.2 DFT virtual orbitals calculation

ENCUT = 600
ALGO = Exact
NBANDS = 128
LOPTICS = .TRUE. ;
CSHIFT = 0.1
NEDOS = 2000

ISMEAR = 0
SIGMA = 0.05
EDIFF = 1E-8
NPAR = 4
ISYM = 0

C.1.3 GW calculation

ENCUT = 600
ALGO = GW0 ;
LSPECTRAL = .TRUE. ;
NOMEGA = 50
NBANDS = 128
ISYM = 0
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C.2 Diamond calculations on a primitive cell

C.2.1 Preliminary ground state calculation

ENCUT = 600
ISMEAR = 0
SIGMA = 0.05
EDIFF = 1E-8
NPAR = 4
ISYM = 0

ISIF = 2
IBRION = 2
NSW = 1000

C.2.2 DFT virtual orbitals calculation

ENCUT = 600
ALGO = Exact
NBANDS = 96
LOPTICS = .TRUE. ;
CSHIFT = 0.1
NEDOS = 2000

ISMEAR = 0
SIGMA = 0.05
EDIFF = 1E-8
NPAR = 4
ISYM = 0

C.2.3 GW calculation

ENCUT = 600
ALGO = GW0 ;
LSPECTRAL = .TRUE. ;
NOMEGA = 50
NBANDS = 96
ISYM = 0
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D Data sets for NN experiments

D.1 Active learning with vanilla dropout

We took the data from UCI ML repository Dua and Taniskidou (2017), see
the Table D.1 for more details. All the datasets represent real-world problems
with 15+ dimensions and 30000+ samples. The exception is the synthetic
Rosenbrock 2000D dataset, which has 10000 samples and 2000 dimensions.

TABLE D.1: Summary of the datasets used in our experiments.

Dataset name # of samples # of attributes Feature to predict
BlogFeedback Buza (2014) 60021 281 Number of comments

SGEMM GPU Nugteren and Codreanu (2015) 241600 18 Median calculation time
YearPredictionMSD Bertin-Mahieux et al. (2011) 515345 90 Year

Relative location of CT slices Graf et al. (2011) 53500 386 Relative location
Online News Popularity Fernandes et al. (2015) 39797 61 Number of shares

KEGG Network Shannon et al. (2003) 53414 24 Clustering coefficient
Rosenbrock 2000D Rosenbrock (1960) 10 000 2000 Function value

D.2 Diversified dropout

TABLE D.2: Summary of the datasets used in UCI experiments
section, see Dua and Taniskidou (2017).

Dataset name Samples Columns
boston Harrison Jr and Rubinfeld (1978) 506 13

concrete Yeh (1998) 1030 8
energy Tsanas and Xifara (2012) 768 8

kin8nm 1 8192 8
naval Coraddu et al. (2014) 11934 16

ccpp Tufekci (2014) 9568 4
red wine Cortez et al. (2009) 1599 11
yacht Gerritsma et al. (1981) 308 6
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E Hydraulic simulator

This part of the research was carried out in collaboration with Maxim
Panov and Evgeny Podryabinkin.

In the oil industry, to determine the optimal parameters and control the
drilling process, engineers carry out hydraulic calculations of the well’s cir-
culation system, which are usually based on either empirical formulas or
semi-analytical solutions of the hydrodynamic equations. However, such
semi-analytical solutions are known just for a few individual cases, while
in the other ones, only very crude approximations are usually available.As
a result, such calculations have relatively low precision. On the other hand,
the full-scale numerical solution of the hydrodynamic equations describing
the flow of drilling fluids can provide a sufficient level of accuracy, but it
requires significant computational resources and subsequently is very costly
and time-consuming. The possible solution to this problem is the use of a
surrogate model.

We used a surrogate model for the fluid flow in the wellbore while drilling,
see Podryabinkin et al. (2013). We consider the following key parameters of
this system, varied in the following ranges:

• Diameter ratio of tubes, 0.5 ≤ DS
DH
≤ 0.9;

• Reynolds number characterizing the rate of pumping of drilling fluid
0 ≤ Rtrip ≤ 20000;

• Axial Reynolds number, characterizing the axial flow relevance 0 ≤
Rfr ≤ 20000;

• Rotational Reynolds number, characterizing the rotational flow rele-
vance 0 ≤ RRot ≤ 20000;

• Bingham number, characterizing the impact of the yield stress effects
0 ≤ Bn ≤ 50;

• Power index of fluid 0.6 ≤ n ≤ 1.

In this experiment, we used a two-layer neural network with 50 neurons
per each layer and LeakyReLU activation function. Initial training and pool
sets had 50 and 20 000 points, respectively. We completed 10 active learning
iterations, adding 50 points per each iteration.

The results are shown in Figure E.1. Clearly, NNGP is superior in terms
of RMSE and MAE, while the maximum error for NNGP is 10 times lower.
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FIGURE E.1: Training curves for the active learning scenario for
the hydraulic simulator case. The NNGP sampling algorithm
outperforms the random sampling and MCDUE with a large
margin in terms of maximal error. Here, RND refers to the ran-

dom sampling algorithm.
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F Diversified masks for image
classification

This part of my research was carried out in collaboration with Maxim
Panov and Kirill Fedyanin.

For regression, the variance of prediction is a standard uncertainty mea-
sure. However, uncertainty estimation for classification is, in some sense,
more challenging than for regression as there is no obvious candidate for un-
certainty measure.

Let us define the average probability for the class prediction by ensemble
members p̄T(y = c | x) = 1

T ∑T
i=1 p(y = c | x, Mi). The standard uncertainty

measure usually considered in the literature is

s(x) = 1−max
c

p̄T(y = c | x),

which is based solely on the mean probabilities predicted by the ensem-
ble. While providing good results in practice Snoek et al. (2019); Ashukha
et al. (2020) it doesn’t use the information about the variation of predictions
between ensemble members.

In our work, we consider BALD Houlsby et al. (2011) uncertainty measure
and combine it with different sampling schemes considered above. BALD is
equal to the mutual information between outputs and model parameters:

I(x) = H(x)− 1
T

C

∑
c=1

T

∑
i=1
−p(y = c | x, Mi)log

(
p(y = c | x, Mi)

)
,

where H(x) = −∑C
c=1 p̄T(y = c | x) log

(
p̄T(y = c | x)

)
is an entropy of

the ensemble mean. Importantly, BALD values are directly linked with the
diversity of the ensemble members, and therefore are well suited for com-
bination with our approach. The other popular uncertainty measures in the
literature (see, e.g. Freeman (1965)) are

• 1 - maximum probability: simple averaging of probabilities over the
ensemble and taking the one with maximum value: s(x) = 1−max

c
p̄T(y =

c | x)

• Variation ratio: v(x) = 1− fm(x)
T , where fm(x) is the number of predic-

tions for the most frequently chosen class by distinct runs of the model
or members of the ensemble.

We consider three datasets: MNIST, which is a toy dataset of handwritten
digits LeCun (1998), CIFAR-10, which is a 10-class image dataset with simple
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objects Krizhevsky et al. (2009), and ImageNet Deng et al. (2009), the large
scale image classification dataset. Importantly, for MNIST, we use only 500
train samples – otherwise models would have too good accuracy and uncer-
tainty estimation for in-domain data would not be relevant. For CIFAR-10,
we use 50 000 samples for training and 10 000 for testing. For the MNIST
dataset, we use a simple convolutional neural network with two convolu-
tional layers, max-pooling, and two fully connected layers. For the CIFAR-10,
we use a more powerful network with 6 convolutional layers and batch nor-
malization. Finally, for ImageNet, we use the pre-trained ResNet-18 neural
network He et al. (2016) from PyTorch Paszke et al. (2019). Dropout with rate
p = 0.5 is used before the last fully-connected layer in all the cases. T = 100
stochastic passes were made for every model. The experiments are repeated
three times with different seeds for the models.

In the classification tasks, neural networks were trained for 100 epochs
maximum, with checking the error on the validation set every epoch: early
stopping triggers if the error did not decrease for three consecutive checks
(patience = 3). The batch size equals to 128, and the dropout applied after
the hidden linear layer with a rate equal to 0.5. Cross entropy was used as a
loss function, and optimization was performed with the standard setting of
PyTorch Adam optimizer. For each dataset, we use different models. Below
we denote the convolutional layer with i input channels, j output channels
as conv(i, j). Kernel size is 3x3 for each convolution.

• For the MNIST, we used simple convolutional network with layers conv(1,
16) - maxpool - conv(16, 32) - maxpool - linear(1152, 256) - dropout - lin-
ear(256, 10)

• For the CIFAR, we used VGG-alike network with layers conv(3, 16) -
conv(16, 16) - maxpool(2, 2) - conv(16, 32) - conv(32, 32) - maxpool(2, 2)
- conv(32, 64) - conv(64, 64) - maxpool(2, 2) - linear(1024, 128) - dropout
- linear(128, 10)

• For the ImageNet, we used ResNet-18 with implementation and pre-
trained weights from PyTorch.

Ensembles of models for experiments below were trained separately on
the same data from different weight initializations.

In this section, we aim to show the applicability of the proposed methods
to the classification tasks, computer vision problems in particular.

We follow the experimental setup from Snoek et al. (2019), where it is
proposed to assess the quality of UE models by confidence-accuracy curve,
where confidence as c(x) = 1− s(x) with s(x) being an uncertainty estimate.

For in-domain uncertainty estimation, results are presented via the UE-
accuracy curve, see Figure F.1. It assumes that samples with lower uncer-
tainty will be classified with higher average accuracy. It can be clearly seen
that DPP significantly outperforms all the competitors on every dataset.

We should emphasize that the superiority of DPP is especially strong for
ImageNet, where the usage of DPP required only 2% computational over-
head compared to MC dropout according to our experiments. One of our
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(A) MNIST (B) CIFAR

(C) ImageNet

FIGURE F.1: UE-accuracy curve (the higher curve – the better).
We select the samples with low uncertainty to ensure that the

accuracy is higher for them.

initial concerns was the scalability of the methods because DPP sampling
complexity is up to N3, where N is the size of the layer. In practice, the over-
head appears to be relatively small for real-world models because the num-
ber of operations to compute dropout masks is negligible compared to the
normal forward propagation in a large network. For the ImageNet experi-
ment, the difference was less than a few percent comparing to the Monte-
Carlo dropout, see Table F.1.

TABLE F.1: Time to calculate uncertainty with different meth-
ods on 5 000 sample images from ImageNet

MC dropout DPP k-DPP
Inference time, s 125.5±0.03 129.9±0.14 132.2±0.03

We also consider the detection of out-of-distribution samples, which is
one of the important problems for the uncertainty estimation. We use fashion-
MNIST Xiao et al. (2017) and SVHN images Netzer et al. (2011) as OOD
samplesfor MNIST and CIFAR-10 correspondingly. We use the count-vs-
uncertainty curve and expect fewer points with the low uncertainty for good
uncertainty estimation methods. The results are presented in Figure F.2. We
see that the DPP-based approach allows us to detect OOD samples better for
both considered datasets.
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(A) MNIST (B) CIFAR

FIGURE F.2: Count-vs-uncertainty curve for out-of-distribution
data (the lower curve – the better).

We also provide the results for the two baseline sampling methods: 1 -
maximum probability, and variation ratio, see Figure F.3). For the probabil-
ity, we average the predictions for all dropout masks. We also report the
result for a single network without a dropout and for an ensemble of 20 in-
dependently trained networks. The same methods are applied to the OOD
experiment (Figure F.4). Note, here we provide the results for our methods
both with correlation and covariance (cov) kernels. We can see that for these
measures, our DPP approach based on the correlation kernel outperforms the
other approaches as well.

Finally, we want to present the out-of-distribution experiment for the Im-
ageNet dataset here. As OOD images, we took the 50 000 samples from
the CheXpert Small(chest radiography dataset) Irvin et al. (2019). We used
BALD uncertainty measure. The results are presented in Figure F.5. The DPP
method performs very well, while k-DPP is inferior to the MC Dropout.
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FIGURE F.3: Accuracy-vs-confidence curve (the higher curve –
the better). We provide results for max probability and varia-

tion ratio measures for MNIST and CIFAR datasets.
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FIGURE F.4: Count-vs-confidence curve for out-of-distribution
data (the lower curve – the better). We provide results for max
probability and variation ratio measures for MNIST and CIFAR

datasets.

FIGURE F.5: Count-vs-uncertainty curve for out-of-distribution
data on ImageNet (the lower curve – the better).
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G Crystal orientation effects study

According to the thorough study showcased in Figures G.1, G.2, G.3,
G.4, the ranking of common diamond or silicon crystal direction families for
obtaining the same target bandgap through uniaxial tensile or compressive
straining (i.e., constrained straining without allowing for the Poisson effect)
can be varied at different strain levels. For example, in order to achieve a
5 eV bandgap in diamond, uniaxial tensile straining along <100> direction
requires a smaller strain magnitude than along <111> direction; whereas to
achieve 4 eV bandgap in diamond, uniaxial tensile straining along <111> di-
rection requires a smaller strain magnitude than along <100> direction, as
depicted in Figure G.2. It is also found out that allowing atomic internal re-
laxation during straining results in evident structural reconfiguration, espe-
cially in large deformation cases. Some of the diamond straining cases may
even facilitate graphitization Gogotsi et al. (1999).

FIGURE G.1: Bandgap change as a function of strain for uni-
axial straining along different crystal orientations in diamond

with a non-relaxed atomic structure.
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FIGURE G.2: Bandgap change as a function of strain for uni-
axial straining along different crystal orientations in diamond

with a relaxed atomic structure.

FIGURE G.3: Bandgap change as a function of strain for uniax-
ial straining along different crystal orientations in silicon with

a non-relaxed atomic structure.
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FIGURE G.4: Bandgap change as a function of strain for uniax-
ial straining along different crystal orientations in silicon with

a relaxed atomic structure.
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