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Abstract

The dynamical foundations of statistical physics are based on the assumptions that

a typical interacting many-particle system is chaotic and ergodic. The classical def-

initions of chaos and ergodicity rely on the notion of phase space trajectories. This

definition is impractical for diagnosing chaos experimentally in many-particle sys-

tems because it is impossible to track all phase space coordinates of the system in

a physical experiment. It therefore remains unclear how to demonstrate chaoticity

of an interacting many-particle system. In addition, there are conceptual problems

with generalizing the notions of chaos and ergodicity to quantum systems. In the

broader context of dynamic thermalization, there is a consensus that a typical inter-

acting many-particle system does equilibrate after a sufficiently long time. However,

the quantitative description of this process is still a challenge for relaxation from a

far-from-equilibrium state (quench). The above issues are addressed in the present

Thesis in the context of the dynamics of the discrete Gross-Pitaevskii equation on

a lattice. This equation can describe coupled Bose-Einstein condensates on optical

lattices, and other systems with mathematically similar order parameters, such as

superconductors or charge-density-wave materials.

In this Thesis:

1. We propose an experimentally realizable method for demonstrating the pri-

mary characteristic of chaos, namely the Lyapunov instability. The method

is based on monitoring equilibrium noise of virtually any observable quan-

tity before and after time reversal of dynamics (Loschmidt echo), from which,

following the proposed procedure, one can extract the value of the largest

Lyapunov exponent of the system.

2. We introduce a new characteristic time of ergodization as the time required

to detect the largest Lyapunov exponent of the system. We further show that

the quantity that needs to be monitored in order to extract this measure is the

classical counterpart of the so-called quantum “out-of-time-order correlators”

(OTOCs). Thereby, we show that the exponential growth rate of an OTOC
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systematically exceeds the largest Lyapunov exponent, and further demon-

strate that the difference between the two becomes smaller with the increase

of the dimensionality of the lattice. We investigate this difference and show

that it is proportional to the ergodization time of the system. We also pro-

pose a practical erdogicity test that can be implemented with the help of a

Loschmidt echo.

3. We numerically study dynamical thermalization after thermal quenches across

the second-order phase transition associated with a spontaneous symmetry

breaking in the DGPE lattice. We show that topological defects significantly

slow down the process of dynamical thermalization. At the same time, the

dynamics of the system remains ergodic. Our simulations are used to describe

laser-induced melting of the charge-density-wave order in a solid. The results

are found to be in a good agreement with a recent experiment in LaTe3.

The above results are obtained by a combination of analytical considerations and

numerical simulations.
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Never mind, the notion of trying to twirl time is a trouvaille; it resembles

the neat formula a physicist finds to keep people happy until the next

chap snatches the chalk.

—Vladimir Nabokov,

Look at the Harlequins!

Chapter 1

Introduction

1.1 Foundations of Statistical Physics

The foundations of thermodynamics were laid in the 19th century by Carnot, Kelvin

and Clausius [4–6]. Later, Maxwell and Boltzmann established the statistical foun-

dations of the thermodynamic laws by applying Newtonian mechanics to, hypo-

thetical at that time, molecules in gas [7, 8]. The daunting problem of solving the

equations of motion for a colossal number of interacting particles (of the order of

1023) was reduced to just a few variables by the introduction of several ingenious

and intuitive assumptions about the microscopic dynamics in the thermodynamic

equilibrium. Further cornerstones in the foundations of statistical physics were laid

by Gibbs, Planck and Einstein [9–11], who extended the scope of statistical physics

to radiation and condensed matter systems.

Given the relative simplicity of the basic assumptions of statistical physics, it

is surprising that, for some of them, rigorous mathematical proofs or well-posed

applicability limits have been actively debated for more than a century and still

require further investigation.

Boltzmann and Gibbs used the “molecular chaos hypothesis” requiring the inter-

nal dynamics of a typical interacting many-body system to be chaotic and ergodic.

Since the pioneering works of Poincare on the three-body problem [12], chaos the-

ory has become a subject of active research. Lyapunov studied the stability of

trajectories of dynamical systems to perturbations [13]. Now, a classical system is
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Chapter 1. Introduction 1.1. Foundations of Statistical Physics

called chaotic if its phase space trajectories are exponentially sensitive to infinites-

imal perturbations. The exponents characterizing sensitivity are called Lyapunov

exponents. The original assumption that the results of averaging over phase space

and over time are equivalent for a physical observable—“the ergodic hypothesis”—

has been actively disputed since the Poincaré recurrence theorem [12]. In 1930s, in

the works by Birkhoff [14] and von Neumann [15], the mean and pointwise ergodic

theorems were proven for special classes of dynamical systems.

Original debates over quantification of chaotic and ergodic properties of many-

body systems had taken place before quantum mechanics was developed in 1920s.

In many respects, quantum statistical physics relied on Gibbs’ classical statistical

physics, which, at that moment, was already recognized as a well-developed the-

ory. Classical statistical ensembles were straightforwardly generalized to quantum

systems by replacing a classical Hamiltonian and observables with their quantum

counterparts. Given that chaos and ergodicity require well-defined phase-space tra-

jectories for their classical definition, it is more problematic to reintroduce these

concepts for quantum systems for which the whole notion of phase space is poorly

defined. The theories of quantum chaos [16] and quantum ergodicity [17] have been

constantly advancing, but are mostly left out of scope of this Thesis.

While trying to derive the irreversibility of thermodynamic processes required by

the second law of thermodynamics, Boltzmann introduced entropy as the H-function

and proved that it would grow monotonically under the special assumption of molec-

ular chaos and ergodicity. Yet, Loschmidt objected to the H-theorem by arguing that

it is impossible to deduce irreversibility from fully time-reversible Newtonian me-

chanics. In Loschmidt’s Gedankenexperiment of reversing all velocities of molecules

in a gas, a time-reversal of the system’s dynamics is achieved (Loschmidt echo),

thus leading to a process with increasing H-function (decreasing entropy)—known

as Loschmidt’s paradox. Experimentally, the Loschmidt echo was observed in NMR

in the 1970s [18, 19]. Another debate over quantitative aspects of ergodicity dates

back to the Poincaré recurrence theorem [12], stating that a dynamical system in a

bounded phase space, after a sufficiently long time, is going to pass arbitrarily close

to the initial point. The Zermelo paradox points at the H-function’s quasi-periodicity
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Chapter 1. Introduction 1.1. Foundations of Statistical Physics

stemming from the Poincaré recurrence theorem [20]—a direct contradiction to the

Boltzmann H-theorem and the second law of thermodynamics.

However, as already noted by Boltzmann [21, 22] and since then became fairly

obvious for the practitioners in the field [14, 23], the ergodization time of many-

particle systems, defined via the Poincaré recurrence time, is impractically long

to be observable on experimental timescales and, hence, to be relevant to mea-

surable properties. Instead, a more practical, but less mathematically stringent

criterion is usually used. Namely, a many-particle system is called “ergodic” as soon

as it establishes the Boltzmann-Gibbs equilibrium on an experimentally observable

timescale [24]. It still remains a challenge to define the corresponding ergodization

time and to measure this time experimentally.

In the 1940s, Krylov studied relaxation processes in statistical systems [25, 26],

and stressed that in real physical systems ergodicity per se is seldom present and the

notion of chaotic mixing is more physically relevant. If one chooses a set of points

in the phase space of a mixing system and tracks the evolution of this set over time,

the set eventually spreads over the whole shell constrained by the energy and other

integrals of motion. Its volume would be conserved due to the Liouville theorem.

The relation between mixing and ergodicity has been extensively studied in er-

godic theory and produced the ergodic hierarchy classifying the properties of dy-

namic systems into five levels: ergodicity, weak mixing, strong mixing, Kolmogorov

and Bernoulli, in the ascending order of randomness [24].

In the 1950s, Kolmogorov and Sinai introduced the concept of Kolmogorov-Sinai

(KS) entropy, which is positive in a chaotic dynamical system. It is equal to the

sum of all positive Lyapunov exponents of the system [27, 28]. The KS entropy

is now used as a practical definition of a classical chaotic system: when a system

has at least one positive Lyapunov exponent, it has a positive KS entropy. The KS

entropy also gives an upper bound for the information entropy production rate (the

Shannon entropy) of the process generated by a chaotic system [29–31]. The method

of extracting the KS entropy from a time-series of an observable is laborious, but it

was attempted with limited success for the Brownian motion [32–35] and for spin

lattices [36]. In the 1960s, Sinai investigated dynamical billiards and proved that a
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Chapter 1. Introduction 1.2. Classical chaos and Lyapunov exponents

dynamical system can be both chaotic and ergodic [37, 38].

For more than half a century after the original works of Maxwell, Boltzmann

and Gibbs, only analytical methods were available, which limited rigorously treat-

able model systems to few-body or special kinds of analytically solvable many-body

systems. By the mid-20th century, the direct numerical simulations of nonlinear

many-body systems became possible. In 1953, the work of Fermi, Pasta, Ulam and

Tsingou was the first attempt to numerically investigate ergodicity and thermaliza-

tion in chains of nonlinear classical oscillators [39]. Since then, numerical simulations

serve as an indispensable tool for testing the foundations of statistical physics.

In this Thesis, we investigate the ergodicity and the dynamic thermalization of

the discrete Gross-Pitaevskii equation (DGPE) on one-, two- and three-dimensional

lattices. The DGPE describes the quasi-classical regime of Bose-Einstein conden-

sates on optical lattices and can be also applicable to the dynamics of superconduc-

tors, superfluids and charge-density-wave materials.

In the rest of this Chapter, we define the largest Lyapunov exponent of a chaotic

dynamical system, discuss the Loschmidt echo and its quantum extension in the

form of out-of-time-order correlators (OTOCs). Next, we will formally define the

DGPE lattice and review the state-of-the-art knowledge about its dynamic and

thermodynamic properties. This Chapter ends with the outline of the rest of the

Thesis.

1.2 Classical chaos and Lyapunov exponents

In general, a conservative system with 2𝑉 -dimensional phase space is characterized

by a spectrum of 𝑉 pairs of Lyapunov exponents of the same absolute value and op-

posite signs. The largest Lyapunov exponent, 𝜆max, describes the average expansion

rate along the direction of the corresponding eigenvector in tangential space.

A classical system is called chaotic if it has at least one positive Lyapunov ex-

ponent, hence it is exponentially sensitive to perturbations of initial conditions. In

quantitative terms, this means that when two phase space trajectories R1(𝑡) and

R2(𝑡) are initially infinitesimally close to each other, their separation from each
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Chapter 1. Introduction 1.3. Loschmidt echoes and out-of-time-order correlators (OTOCs)

other, 𝛿R(𝑡) = R2(𝑡)−R1(𝑡), after sufficiently long time is controlled by the largest

positive Lyapunov exponent, 𝜆max. The definition of the largest Lyapunov exponent

reads

𝜆max ≡
1

𝑡
lim

(︂
log

|𝛿R(𝑡)|
|𝛿R(0)|

)︂
𝑡→∞,|𝛿R(0)|→0

. (1.1)

If a chaotic dynamic system is ergodic, the largest Lyapunov exponent defined

by Eq. (1.1) must not depend on the choice of the initial conditions on a shell of

fixed integrals of motion and thus must be characteristic of the whole shell.

The definition (1.1) is not practical for numerical simulations because it, in gen-

eral, requires unachievable computational precision. Instead, the standard numerical

algorithm [40, 41] is usually used. This algorithm tracks two trajectories: the refer-

ence trajectory R1(𝑡) and the slightly perturbed trajectory R2(𝑡) = R1(𝑡) + 𝛿R(𝑡).

The ratio log |𝛿R(𝑡)|
|𝛿R(0)| fluctuates in time as the reference trajectory R1(𝑡) explores

the energy shell. The algorithm uses the instantaneous stretching rates defined as

𝜆(𝑡) = 𝑑
𝑑𝑡

log |𝛿R(𝑡)|
|𝛿R(0)| , and the largest Lyapunov exponent is then obtained as the

average of instantaneous stretching rates over a sufficiently long time: 𝜆max = 𝜆(𝑡).

In numerical simulations, 𝜆max can be obtained from the direct calculations of

the phase space trajectories R1(𝑡) and R2(𝑡). However, such an approach is imprac-

tical experimentally, because it requires tracking all phase-space coordinates of the

system. An alternative, more practical approach was proposed in Refs. [42]. That

approach is based on monitoring the effect of Loschmidt echo on the equilibrium

noise of almost any observable.

1.3 Loschmidt echoes and out-of-time-order corre-

lators (OTOCs)

The Loschmidt echo is a time reversal of a system’s dynamics, which can be realized

in practice by reversing the sign of the system’s Hamiltonian. In recent years, there

has been a renaissance of theoretical and experimental interest in the Loschmidt

echoes in the form of out-of-time-order correlators (OTOCs). Originally, the OTOCs
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Chapter 1. Introduction 1.3. Loschmidt echoes and out-of-time-order correlators (OTOCs)

first appeared in the late 1960s in the work of Larkin and Ovchinnikov [43], yet not

in the context of chaos. The pioneering works on the relation of OTOCs (in the

form of Loschmidt echoes) and the Lyapunov exponents in classical and quantum

spin lattices were done in the early 2010s [42, 44, 45]. In these works, the presence

of exponential sensitivity of an OTOC for classical spin lattices, and quantum large-

spin lattices was demonstrated in numerical simulations. At the same time, the

study of quantum lattices of spin-1/2 [42] showed the absence of the exponential

regime of the OTOC. However, the original works had drawn less attention than the

subsequent works on the application of OTOCs to the problem of a bound on chaos in

quantum systems by Kitaev [46] and Maldacena, Shenker and Stanford [47]. Those

works conjectured that the largest Lyapunov exponent is limited by temperature,

𝜆max ≤ 2𝜋𝑘𝐵𝑇/~. After that, experimental probes of OTOCs in quantum many-

body systems were implemented, for example, in nuclear spins [48] and trapped-ion

quantum magnets [49, 50]. Also, OTOCs have drawn much theoretical attention

and have been studied for different model systems: the quantum kicked rotator [51,

52], the quantum statium billiard [53], the non-linear sigma model [54], the Dicke

model [55], the Bose-Hubbard model [56] and many others [57–73].

In this Thesis, a version of the Loschmidt echo involving measuring equilibrium

noise of an observable is considered, its quantum counterpart in the form of OTOC

is also discussed. In Fig. 1-1, we outline the Loschmidt echo routine. It consists of

the following steps.

(i) Measuring and recording the equilibrium noise of an observable X as a func-

tion of time 𝑡 for a system governed by Hamiltonian ℋ. At time 𝜏 , reversing the sign

of the Hamiltonian with a slight perturbation of the system at the moment of the

Hamiltonian reversal, and measuring and recording the equilibrium noise after the

reversal. The noise is to be denoted as X(𝜏−∆𝑡) and X(𝜏+∆𝑡), where ∆𝑡 = |𝑡− 𝜏 |.

(ii) Calculating the difference of the equilibrium noise of observable X before

and after slightly imperfect time reversal:

∆X(∆𝑡) ≡ X(𝜏 + ∆𝑡) −X(𝜏 − ∆𝑡). (1.2)
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Figure 1-1: Sketch of a slightly imperfect noise reversal. Equilibrium noise of an
observable X before and after an imperfect time reversal of a system’s dynamics at
time 𝜏 is denoted, respectively, as X(𝜏 −∆𝑡) (green line) and X(𝜏 + ∆𝑡) (red line),
where ∆𝑡 = |𝑡− 𝜏 |. In order to facilitate visual comparison, “Time” on the horizontal
axis represents 𝑡 before the time reversal and 2𝜏 − 𝑡 after the time reversal. The
difference between the direct and the reversed noise ∆X(∆𝑡) ≡ X(𝜏+∆𝑡)−X(𝜏−∆𝑡)
(thick black line) fluctuates around 0. For a chaotic system, the envelope of ∆X(∆𝑡)
grows exponentially (dashed lines).

If the perturbation is infinitesimally small, the quantity X(𝜏 + ∆𝑡) will be tracking

the quantity X(𝜏 − ∆𝑡), while gradually departing from it as ∆𝑡 increases.

(iii) Repeating the procedure of measuring ∆X(∆𝑡) for an ensemble of randomly

chosen initial conditions on an energy shell.

Defined by Eq. (1.2), ∆X(∆𝑡) is the basic observable that will allow us to extract

the chaotic and ergodic properties of a many-particle system. In Chapters 2 and

3, we will consider the Loschmidt echo for the equilibrium noise generated by the

DGPE system, and show how to extract the largest Lyapunov exponent and estimate

the ergodization time from it.

The quantum-mechanical description of Loschmidt echoes involves out-of-time-
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order correlators (OTOCs) [42, 45, 49–52, 57, 58, 64, 65, 74, 75] having the form

⟨
𝐴(0)�̂�(𝑡)𝐴(0)�̂�(𝑡)

⟩
, (1.3)

where 𝐴(0) and �̂�(𝑡) are two quantum operators taken at different times.

To illustrate the quantum-classical correspondence between the quantity of in-

terest (1.2) in the Loschmidt echo routine and a quantum OTOC, let us consider

|∆X(∆𝑡)|2 = 2X2 −X(𝜏 + ∆𝑡)X(𝜏 − ∆𝑡) −X(𝜏 − ∆𝑡)X(𝜏 + ∆𝑡). (1.4)

We focus here on the last two terms. They are equal classically, but can become

different in the quantum case, if X(𝜏−∆𝑡) does not commute with X(𝜏+∆𝑡). Both

of the terms become OTOCs in the quantum limit after calculating their quantum

equilibrium averages. Below, we show this for ⟨X(𝜏 + ∆𝑡)X(𝜏 − ∆𝑡)⟩.

Let us consider a quantum system in equilibrium described at 𝑡 = 0 by Hamil-

tonian ℋ̂. The thermal density matrix of the system is 𝜌0 ∼= exp
(︁
− ℋ̂

𝑇

)︁
. We are

interested in the fluctuations of an observable quantity represented by quantum op-

erator X̂. Let us further assume that the Hamiltonian changes sign at 𝑡 = 𝜏 , and,

at the same moment of time, the system components experience an infinitesimally

small random perturbation describable by quantum operator �̂� (see Ref. [42] for a

concrete example). As a result, operator X̂ evolves as

X̂(𝑡) =

⎧⎪⎨⎪⎩ 𝑒𝑖ℋ̂𝑡X̂(0)𝑒−𝑖ℋ̂𝑡,

𝑒𝑖ℋ̂𝜏 �̂�+𝑒−𝑖ℋ̂(𝑡−𝜏)X̂(0)𝑒𝑖ℋ̂(𝑡−𝜏)�̂�𝑒−𝑖ℋ̂𝜏 ,

𝑡 < 𝜏

𝑡 > 𝜏

. (1.5)

We now consider the quantum average

⟨
X̂(𝜏 + ∆𝑡)X̂(𝜏 − ∆𝑡)

⟩
≡ Tr

{︁
X̂(𝜏 + ∆𝑡)X̂(𝜏 − ∆𝑡)𝜌0

}︁
,

which, with the help of Eq. (1.5) and a simple manipulation, can be transformed

into ⟨
X̂(𝜏 + ∆𝑡)X̂(𝜏 − ∆𝑡)

⟩
= Tr

{︁
�̂�+X̂(−∆𝑡)�̂�X̂(−∆𝑡)𝜌0

}︁
. (1.6)
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Noting that X̂, as a physical observable, must be describable by a Hermitian op-

erator, i.e. X̂+(𝑡) = X̂(𝑡), we rewrite Eq. (1.6) as
⟨
X̂(𝜏 + ∆𝑡)X̂(𝜏 − ∆𝑡)

⟩
=⟨

�̂�+(0)X̂+(−∆𝑡)�̂�(0)X̂(−∆𝑡)
⟩
, which is the standard form of OTOC.

1.4 Microcanonical thermodynamics

The microcanonical ensemble is the ensemble of all points on the energy shell in the

phase space of a dynamical system. The microcanonical temperature is defined as:

𝛽 ≡ 1

𝑇
≡ 𝜕𝑆

𝜕𝐸
, (1.7)

where 𝑆 is the microcanonical entropy proportional to the logarithm of the volume

of the energy shell 𝑤(𝐸), 𝑆 ≡ log 𝑤(𝐸)

(2𝜋~)𝑉 − 1
2
. In this Thesis, the Boltzmann’s constant

is set to be equal to unity, 𝑘𝐵 ≡ 1 (except for Chapter 4, where a mapping of the

3D DGPE lattice’s properties to those of a real material is discussed). A recipe for

calculating the microcanonical temperature from conservative dynamics was intro-

duced in the pioneering works of Rugh [76, 77] and den Otter [78, 79]. The original

definition of the dynamical temperature for an ergodic system reads:

1

𝑇 (𝐸)
≡ lim

𝑡→∞

1

𝑡

∫︁ 𝑡

0

𝑑𝜏Φ(R(𝜏)), (1.8)

where R(𝜏) is a phase space trajectory and the observable

Φ = ∇
(︂

∇ℋ
‖∇ℋ‖2

)︂
, (1.9)

is representative of the geometric properties of the Hamiltonian on the energy shell

in the phase space.

Approaches similar to that of Rugh have been extensively used for Bose-Einstein

condensates (BECs), which are often well isolated from the environment [80–83].

We adapt a numerical recipe, developed for classical spin lattices with one in-

tegral of motion [84] and consistent with Rugh’s analytical approach [76, 77], to

the calculation of the microcanonical temperature of the DGPE lattices with two

integrals of motion. The original idea is to replace the functional in Eq. (1.9) with
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its approximate numerical value by sampling the vicinity of the point in phase space

R(𝜏), and generating an ensemble of energy realizations, corresponding to each sam-

ple point. Then, by calculating the variance of energy fluctuations ⟨∆𝐸2⟩ and the

mean fluctuation ⟨∆𝐸⟩, one can extract the local approximation to Φ(R) as

Φ ≡ 2⟨∆𝐸⟩
⟨∆𝐸2⟩

. (1.10)

We note that ⟨∆𝐸⟩ ≠ 0 due to the fact that, in general, there are exponentially

more states above the energy shell than below it, which in turn reflects the fact that

the entropy in Eq. (1.7) is proportional to the logarithm of the energy shell volume,

and the temperature is positive. The temperature is then calculated as the time

average of Eq. (1.10), 1/𝑇 = Φ̄.

We use Eq. (1.10) with an additional constraint due to the fixed second integral

of motion, the number of particles, hence, when sampling the vicinity of a phase

space point, we sample only the vicinity on the shell of a fixed number of particles,

⟨. . .⟩𝑁 , which gives

𝑇 =
⟨∆𝐸2⟩𝑁
2⟨∆𝐸⟩𝑁

. (1.11)

From the same sampling, we can also obtain the chemical potential as

𝜇 = −𝑇 2⟨∆𝑁⟩𝐸
⟨∆𝑁2⟩𝐸

. (1.12)

1.5 Discrete Gross-Pitaevskii equation (DGPE)

The DGPE is a classical mean-field approximation for the single-orbital Bose-Hubbard

model, which is defined by the Hamiltonian

ℋ̂𝐵𝐻 = −𝐽
∑︁
⟨𝑖,𝑗⟩

�̂�+𝑖 �̂�𝑗 +
𝑈

2

∑︁
𝑖

�̂�𝑖�̂�𝑖, (1.13)

where �̂�+𝑖 and �̂�𝑖 are the quantum creation and annihilation operators for site 𝑖 re-

spectively, �̂�𝑖 ≡ �̂�+𝑖 �̂�𝑖 is the number of particles at site 𝑖, 𝐽 is the hopping parameter,

𝑈 is the on-site interaction parameter, and the notation ⟨𝑖, 𝑗⟩ stands for the nearest-

neighbor sites. For the single-orbital Bose-Hubbard model to be valid, the hopping
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term 𝐽 must be relatively small, so that the lattice potential is deep enough and, as

a result, the gap ∆0 between the lowest and the second lowest bands is sufficiently

large [85, 86].

When the number of bosons in each potential well is sufficiently large, the fol-

lowing substitution: �̂�𝑖 → 𝜓𝑖, �̂�+𝑖 → 𝜓*
𝑖 , �̂�𝑖 → 𝑛𝑖 ≡ |𝜓𝑖|2, allows one to approximate

the quantum Bose-Hubbard Hamiltonian (1.13) with the classical mean-field DGPE

Hamiltonian:

ℋ = −𝐽
∑︁
⟨𝑖,𝑗⟩

𝜓*
𝑖𝜓𝑗 +

𝑈

2

∑︁
𝑖

|𝜓𝑖|4 , (1.14)

where 𝜓𝑗 is a complex number, describing the order-parameter of a condensate at

site 𝑗. 𝐽 and 𝑈 are two parameters, controlling the hopping and the nonlinear on-

site interactions, respectively. The total number of sites, i.e. the lattice volume, is

denoted by 𝑉 , hence 𝑖 = 1 . . . 𝑉 .

The DGPE is the corresponding Hamilton’s equations of motion for Hamilto-

nian (1.14):

𝑖
𝑑𝜓𝑗

𝑑𝑡
= −𝐽

∑︁
𝑘∈NN(𝑗)

𝜓𝑘 + 𝑈 |𝜓𝑗|2 𝜓𝑗, (1.15)

where the summation over 𝑗 extends over the nearest-neighbors NN(𝑖) of site 𝑖, the

number of which for a 𝑑-dimensional cubic-like lattice is 2𝑑. The DGPE conserves

the total energy 𝐸 (the r.h.s. of Eq. (1.14)), as well as the total number of particles:

𝑁 ≡
𝑉∑︁
𝑗=1

𝑛𝑗 =
𝑉∑︁
𝑗=1

|𝜓𝑗|2 . (1.16)

The microcanonical state of the DGPE system is naturally defined by the three

parameters (𝐸,𝑁, 𝑉 ). All of them are extensive. It is useful to introduce the

corresponding intensive parameters: the energy density,

𝜀 = 𝐸/𝑉, (1.17)

i.e. the energy per lattice site, and the particle density, i.e. the number of bosons
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per lattice site,

𝑛 = 𝑁/𝑉. (1.18)

In the chaotic regime, the DGPE adequately approximates the quantum dynam-

ics of the Bose-Hubbard model at the timescales of order of the Ehrenfest time:

𝜏𝐸 ∼ 1

𝜆max

log 𝑛, (1.19)

which represents the typical timescale of washing out the classical chaotic dynamics

due to quantum interference. In order to observe the exponential growth regime of

the initial perturbation in a quantum system, the typical 𝑛 should be, at least, of the

order of 10 . . . 100. In such a case, the Ehrenfest time would span several Lyapunov

times, which is sufficient for the objectives of this Thesis.

To reduce the number of free parameters in simulations, it is further convenient

to rescale 𝜓𝑗, such that the particle density is equal to unity, 𝜓𝑗 = 𝜓𝑗/
√
𝑛. Then

Hamiltonian (1.14) reads:

ℋ = 𝑛𝐽

⎛⎝−
∑︁
⟨𝑖,𝑗⟩

𝜓*
𝑖𝜓𝑗 +

𝑔

2

∑︁
𝑖

⃒⃒⃒
𝜓𝑖

⃒⃒⃒4⎞⎠ , (1.20)

where 𝑔 = 𝑈𝑛/𝐽 . After the rescaling of time 𝑡 = 𝑡𝐽 , the corresponding dimensionless

equations of motions can be written as

𝑖
𝑑𝜓𝑗

𝑑𝑡
= −

∑︁
𝑘∈NN(𝑗)

𝜓𝑘 + 𝑔
⃒⃒⃒
𝜓𝑗

⃒⃒⃒2
𝜓𝑗. (1.21)

The phase space of a conservative dynamical system defined by Eqs. (1.21) is 2𝑉 -

dimensional.
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1.6 Dynamic and thermodynamic properties of the

DGPE

The DGPE has been studied in various contexts. It is usually called “DGPE”, when

applied to Bose-Einstein condensates [87, 88]. In laser physics and nonlinear optics,

it is rather known as the discrete nonlinear Schrödinger equation (DNLSE) [89, 90].

When the universality classes of the XY-model are studied, an analog of the DGPE

is called the “soft-spin” O(2), the “soft spin” XY, or the “soft spin” 𝜙4 model [91–95].

The DGPE is a special case of a more general discrete self-trapping equation [96,

97].

Many results were obtained for 1D DGPE chains with nearest-neighbor interac-

tions. Those include the absence of one-to-one correspondence between the micro-

canonical state variables, (𝜖, 𝑛), and the grand-canonical variables (𝛽, 𝜇) in the ther-

modynamic limit [98]. There exist microcanonical states above the infinite grand-

canonical temperature, which are accessible in microcanonical simulations. The im-

portant feature of those states is the presence of localized breather-like excitations

that are almost decoupled from the rest of the system. The existence of breathers is

proven to be a general property spanning beyond the DGPE to the time-reversible

or Hamiltonian networks of weakly coupled oscillators [99]. They were observed in

Bose-Einstein condensates in a one-dimensional optical lattice [100].

In the last two decades, the non-Gibbs states at energies higher than those corre-

sponding to 𝛽 = 0 have been extensively studied. The idea of separating the system

into two subsystems, a condensate and hot localized breathers above it, proved to

be useful. In a series of papers, Rumpf analytically studied the microcanonical

entropy of the 1D DGPE chain, linked the localization of energy to having two con-

served quantities, and investigated a transition from a low-energy regime without

breathers to a high-energy regime with breathers, and examined the metastability

of breathers [101–103]. There is a non-zero activation energy for the excitation of

breathers if the lattice dimension is larger than critical, which is the case for 3D lat-

tices [104, 105]. A microcanonical study of the phase containing localized breathers

showed that such states can have negative temperatures and, for 1D DGPE chains,
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may equilibrate at times inaccessible in numerical simulations [106, 107]. Later, the

slow relaxation times were linked to the second integral of motion, the norm conser-

vation, and to a coarsening process where a higher breather gets less coupled to its

background, thus its relaxation effectively becomes frozen [108–113]. However, later

it was shown that the non-Gibbs states cannot be simply described by the Gibbs

states with negative temperatures [114]. More complicated settings based on the

DGPE have been also investigated, for example the DGPE with disorder [115], and

the DGPE with dissipation or in contact with a thermal bath [109], but they are

out of scope of this Thesis.

1.7 Topological defects in lattice systems

Topological defects in condensed matter physics have been studied since the predic-

tion of existence of quantum vortices in superfluid helium by Onsager in 1949 [116].

More thoroughly, these vortices were described by Feynman in 1955 [117]. In 1957,

Abrikosov [118] used the notion of vortices to explain type-II superconductivity. For

this and related works, he received the Nobel Prize in 2003. The existence of vor-

tices is a generic topological property caused by the fact that the superfluid order

parameter has phase that can vary in space. The superfluid velocity is proportional

to the gradient of phase, hence the velocity field is normally irrotational and its

circulation within a closed loop in superfluid is zero. However, if the loop encircles

a non-superfluid region, the circulation can be non-zero, which is equivalent to the

presence of a vortex.

Vortices are topological objects. Their appearance in 2D XY-model leads to

the Berezinskii-Kosterlitz-Thouless (BKT) transition [119–121], for which Koster-

litz and Thouless received the Nobel Prize in 2016. The BKT transition is of the

infinite order. Recently, it was shown that the classical XY-models can be effectively

simulated and controlled experimentally in the coupled arrays of exciton-polariton

condensates [122, 123].

In 3D systems, vortices are linear rather than point-like objects. Therefore, the

amount of energy much larger than 𝑇 is required for them to appear. In the con-
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text of the 3D DGPE lattices, the dimensionality of the lattice is 3, whereas the

dimensionality of the order parameter of each condensate is 2, hence the topological

defects in this systems have to be one-dimensional [124]. In practice, the topological

defects in such systems either form closed-loop vortices, for example in systems with

periodic boundary conditions, or form linear vortices terminating at open bound-

aries. The 3D DGPE model is in this respect similar to the three-dimensional 𝑂(2),

𝑈(1) and XY-models.

Vortex loops in 3D systems can possibly emerge when a temperature associated

with a spontaneous symmetry breaking is crossed by non-adiabatic cooling. This

is the so-called Kibble-Zurek mechanism originally introduced in the cosmological

context [125–128]. When a system is driven across the temperature of spontaneous

symmetry breaking at a finite rate, then, due to the critical fluctuations, it cannot

fully equilibrate. Hence, space-separated uncorrelated domains of the ordered phase

emerge. The topological defects are then formed once the domains become smoothly

connected.

Once the topological defects appear in the system, they may lead to glassy dy-

namics associated with the extreme slowing down of relaxation [129–132]. This oc-

curs due to high activation barriers for the annihilation of topological defects [133].

Such a glassy system has long dynamical memory and can experience aging phe-

nomena [134].

In the 3D XY-model and the 3D 𝑂(2) model in equilibrium, the percolation of

vortex loops is responsible for a phase transition and a symmetry breaking [135–

137]. In the context of high-𝑇𝑐 superconductors, the role of vortex-loop interactions

was studied in Refs. [138, 139].

The non-equilibrium properties of vortex loops and the phase-ordering kinetics

have been also studied for the 𝑂(𝑛) and the XY-models in continuous space [140–

145]. For the continuous 3D Gross-Pitaveskii equation, vortex tangles can emerge,

after non-equlibrium quenches, which leads to a significant slowing down of the

condensate formation [146–149]. Various versions of Gross-Pitaevskii equations

were used for simulating turbulence and vortex rings [150–159]. Long-lived vor-

tices were also observed in the simulations of a trapped quantum gas with the help
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of a stochastic version of the Gross-Pitaevskii equation [160]. The experiments with

Bose-Einstein condensates showed evidence of the spontaneous formation of vortices

and topological defects [161–164].

1.8 Thesis structure

The outline of the rest of this Thesis is the following.

Chapter 2 - Extracting Lyapunov exponents A method for extracting the largest

Lyapunov exponent from monitoring the equilibrium noise of the DGPE lat-

tices after an imperfect time-reversal of the dynamics (Loschmidt echo) is

proposed and validated numerically.

Chapter 3 - Estimating ergodization time A method for estimating the er-

godization time of a many-particle system from Loschmidt echoes is proposed

and validated numerically for the DGPE lattices. The relation of this method

to OTOCs is established.

Chapter 4 - Non-equilibrium quenches Non-equilibrium quenches across the

ordering phase transition of 3D DGPE lattices are simulated. The role of

closed-loop vortices in slowing down the recovery of the order parameter is

analyzed. The scaling of the order-parameter recovery time with the lattice

size is obtained.

Chapter 5 - Conclusions and outlook
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Nobody can imagine in physical terms the act of reversing the order of

time. Time is not reversible. Reverse motion is used in films only for

comic effects—the resurrection of a smashed bottle of beer.

—Vladimir Nabokov,

Look at the Harlequins!

Chapter 2

Experimentally realizable method for

extracting Lyapunov exponents in an

interacting many-particle system

One of the outstanding issues of the foundations of modern statistical physics is

how to produce experimental evidence that a typical many-particle system is in-

deed chaotic. The practical challenge here is that it is impossible: first, to monitor

all phase space coordinates of a many-body system and, second, to prepare initial

conditions with very high accuracy required for extracting Lyapunov exponents. A

method of extracting the largest Lyapunov exponent of a many-particle classical

system without using full phase space trajectories was proposed in Ref. [42]. The

method is based on the Loschmidt echo for the equilibrium noise of an observable

(see Section 1.3). In Ref. [42], the possibility to extract the largest Lyapunov ex-

ponent was demonstrated for a lattice of classical spins, whereas, in the present

Chapter, we generalize the same analysis to a system of coupled Bose-Einstein con-

densates (BEC) on a lattice in the classical regime describable by the DGPE. In

other words, we consider the classical dynamics of this system, despite the fact that

the system is of quantum origin. The advantage of coupled Bose-Einstein conden-

sates over classical spins is that the former were already realized experimentally.

In particular, Struck et al. [165] have recently performed an experimental simula-

tion of frustrated classical magnetism using Bose-Einstein condensates of ultracold
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atoms. However, Ref. [165] concentrated on simulating the low-temperature equi-

librium properties of the system, while the present Chapter concentrates on the

finite-temperature dynamics and its time-reversal. Time-reversal of the DGPE was

previously considered in Refs. [166, 167], but not in the context of extracting the

largest Lyapunov exponent. An alternative time-reversal procedure analogous to

the sign change of all particle velocities in classical mechanics was already experi-

mentally realized for the propagation of a wave-packet of intense light in a nonlinear

crystal, which is describable by the continuous nonlinear Schrödinger equation, an

analog of the continuous Gross-Pitaevskii equation [168]. We further note that, for

Bose gases in optical lattices, the extraction of Lyapunov exponents from OTOCs

was considered in Ref. [169] in intermediate and high-temperature regimes not de-

scribable by the DGPE.

In this Chapter, we propose theoretically an experimentally realizable method

to demonstrate the Lyapunov instability and to extract the value of the largest

Lyapunov exponent for a chaotic many-particle interacting system. We support the

theoretical analysis by direct numerical simulations demonstrating that the largest

Lyapunov exponent can indeed be extracted from the Loschmidt echo routine. We

also discuss possible values of experimental parameters required for implementing

this proposal.

2.1 Lyapunov exponent from Loschmidt echo: gen-

eral idea

For extracting the largest Lyapunov exponent (1.1) defined in Section 1.2, it is

necessary to track two phase space trajectories R1(𝑡) and R2(𝑡) that are initially

infinitesimally close to each other. Their separation from each other after sufficiently

long time is controlled by 𝜆max. In practice, 𝜆max describes the average expansion

rate along the direction of the corresponding eigenvector in tangential space, which

typically has fluctuating projections on all phase space axes. Let us choose one

of the axes of the phase space to correspond to the observable quantity of interest

X. In such a case, it is expected that the projection of the difference between the
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two separating phase trajectories R1(𝑡) and R2(𝑡) on this axis will exhibit erratic

behavior, but the envelope of that behavior will grow exponentially and will be

controlled by 𝜆max.

If the system is ergodic the value of 𝜆max does not depend on where the two phase

space trajectories start, but the corresponding eigenvector and the resulting fluctu-

ating projection on the chosen axis do. It is therefore expected that if one averages

over an ensemble of initial conditions on the same energy shell, then the fluctuating

component of the difference between the trajectories would average into a constant

multiplied by a factor exp (𝜆max𝑡) (for more detailed discussion see Section 3.1.3).

As suggested in Ref. [42], the above considerations can be converted into the

following scheme of extracting 𝜆max. We apply the Loschmidt echo routine described

in Section 1.3 to a chaotic classical system and produce the quantity of interest

defined by Eq. (1.2): |∆X(∆𝑡)| = |X(𝜏 + ∆𝑡) −X(𝜏 − ∆𝑡)|. It fluctuates as a

function of time, but its envelope is modulated by exp (𝜆max∆𝑡). The preceding

consideration then suggests that 𝜆max can be extracted from the following average

over the initial conditions

𝜆max =
1

∆𝑡
⟨log |X(𝜏 + ∆𝑡) −X(𝜏 − ∆𝑡)|⟩ , (2.1)

where 𝜏 should be larger than ∆𝑡 1.

The typical behavior of ⟨log |X(𝜏 + ∆𝑡) −X(𝜏 − ∆𝑡)|⟩ as a function of ∆𝑡 for

almost any reasonable quantity X is qualitatively depicted in Fig. 2-1. It starts

growing from a tiny value at ∆𝑡 = 0 and then evolves through a transient regime,

where all Lyapunov exponents contribute to the growth, and the largest one is

not dominant yet. After the transient regime, the system enters the exponential

growth regime, where the largest Lyapunov exponent controls the growth. For

any finite initial difference between the two departing phase space trajectories, the

exponential growth regime is eventually followed by the saturation regime, where

|X(𝜏 + ∆𝑡) −X(𝜏 − ∆𝑡)| is no longer small enough to be describable by linearized
1In Chapter 3, we will also consider the logarithm of the ensemble average of the quantity of

interest defined by Eq. (3.3) as opposed to the ensemble average of the logarithm of the quantity
of interest defined by Eq. (2.1). A systematic correction in the value of 𝜆max will be related to the
ergodization time of the system.
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Figure 2-1: Sketch of a typical Loschmidt echo response
⟨log |𝑋(𝜏 + ∆𝑡) −𝑋(𝜏 − ∆𝑡)|⟩ (thick black line). Three characteristic regimes
described in the text are indicated: transient, exponential growth and saturation.

dynamics. This means that, experimentally or numerically, the perturbation of

a perfect time-reversal should be small enough, so that the time ∆𝑡 for which

|X(𝜏 + ∆𝑡) −X(𝜏 − ∆𝑡)| remains small is sufficiently long to extract 𝜆max, i.e. the

exponential growth regime must span at least a decade of the perturbation growth.

In chaotic systems, no matter how small the above perturbation is, the separation

between the direct and the reversed phase space trajectories is bound to grow and

reach large values characteristic of the saturation regime. This is the quintessential

“butterfly effect” of chaotic dynamics. It means that, in an experiment, one does

not need to specially create a perturbation — any imperfection of the time-reversal

procedure will initialize the butterfly effect. Practically in computer simulations, we

introduce an additional small perturbation. The strength of the initial perturbation

controls the time span of the exponential growth regime before its transition to the

saturation regime.

As follows from the above analysis, the method does not use any specific prop-
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erties of quantity X, thus it can be either scalar or vector. If one chooses a

𝐾−dimensional vector observable X = {𝑋𝑖}, then the perturbation of interest

|X(𝜏 + ∆𝑡) −X(𝜏 − ∆𝑡)| can be defined as
√︁∑︀𝐾

𝑖=1 (𝑋𝑖(𝜏 + ∆𝑡) −𝑋𝑖(𝜏 − ∆𝑡))2.

We, finally, remark, that, as demonstrated in Ref. [42], the qualitative picture

of the three regimes, that are sketched in Fig. 2-1, remains valid also when the

perturbation making the time-reversal imperfect comes not only from a small shaking

of the system at time 𝜏 , but also from an imperfect reversal of system’s Hamiltonian.

2.2 Formulation of the problem

For all DGPE calculations (see Section 1.5) in this Chapter, we have chosen 𝐽 = 1,

𝑈 = 1 and the initial conditions |𝜓𝑖|2 = 𝑛𝑖(0) = 1 with almost random phases of

𝜓𝑖, fixed such that the energy per one site 𝜀 = 1 (corresponding to the microcanon-

ical temperature 𝑇 ∼ 2 . . . 6 dependent on the dimensionality of the lattice), see

Eq. (1.17), by the procedure described in Section 2.3. With the above choice, the

energy is nearly equally distributed among different sites and between the hopping

and the interaction terms in Eq. (1.14). This allows the system to stay in the er-

godic regime without long-lived solitonic or breather-like solutions. (The experience

with classical spin lattices [170, 171] indicates that many-body classical systems

are generically ergodic and chaotic at energies corresponding to sufficiently high

temperatures.)

We mark all the variables corresponding to the time interval preceding the time-

reversal at time 𝜏 with a subscript “−” and succeeding the time-reversal with a

subscript “+”.

Loschmidt echo is implemented as follows. The time evolution of the system

during time interval [0, 𝜏 ] is governed by the Hamiltonian ℋ− (1.14) and, after time

𝜏 , by the sign-reversed Hamiltonian ℋ+ = −ℋ−, i.e. we change the sign of the

Hamiltonian parameters at time 𝜏 : 𝐽+ = −𝐽−, 𝑈+ = −𝑈−. How to realize such

a time-reversal experimentally will be discussed in Section 2.5.3. At the moment

of time reversal, we also introduce a tiny perturbation to the state vector: 𝜓𝑖(𝜏 +

0) = 𝜓𝑖(𝜏 − 0) + 𝛿𝜓𝑖, where {𝛿𝜓𝑖} is a random vector, subject to the constraint
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√︁∑︀
𝑖 |𝛿𝜓𝑖|2 = 10−8.

We have chosen a set of on-site occupations 𝑛𝑖 ≡ |𝜓2
𝑖 | as the quantity of interest

X(𝑡) ≡ {𝑛1, 𝑛2, . . . , 𝑛𝑉 }. Thus, we characterize the Loschmidt echo by the function

𝐺(∆𝑡) ≡ ⟨log |X(𝜏 + ∆𝑡) −X(𝜏 − ∆𝑡)|⟩, which, for the chosen quantity of interest,

can be written as

𝐺(∆𝑡) ≡

⟨
log

⎯⎸⎸⎷ 𝑉∑︁
𝑖=1

[∆𝑛𝑖(∆𝑡)]
2

⟩
−−−−→
Δ𝑡→∞

𝜆max∆𝑡, (2.2)

where ∆𝑛𝑖(∆𝑡) ≡ 𝑛𝑖(𝜏 + ∆𝑡)−𝑛𝑖(𝜏 −∆𝑡), and ⟨. . .⟩ denotes the ensemble averaging

over initial conditions; the asymptotic relation for the regime of the exponential

growth of perturbation, from which the value of the largest Lyapunov exponent can

be extracted is explained in Section 2.1.

In the following sections, we demonstrate the validity of the above proposition

by, first, directly calculating 𝜆max according to the algorithm from Section 1.2, and

then comparing it with the value extracted from Eq. (2.2) on the basis of direct

simulations of Loschmidt echoes.

We will do this for a one-dimensional lattice with 10 sites, a two-dimensional

square lattice of size 10 × 10 and a three-dimensional cubic lattice of size 4 × 4 × 4

with nearest-neighbor interactions and periodic boundary conditions.

2.3 Numerical algorithm

To simulate the solutions of the DGPE, we employ the 4th order Runge-Kutta

algorithm with discretization step 𝛿𝑡=0.001. This limits the algorithmic error to

𝑂(𝛿𝑡5) or roughly 10−15, whereas, by using the quadrupole-precision numbers, we fix

the machine precision to roughly 10−33. The choice of a relatively simple integrator

(Runge-Kutta) is justified by the fact that the energy drift of the DGPE solutions

due to the non-symplectic nature of the algorithm is negligible for the purposes of

this Thesis. See Ref. [172] for more advanced integration schemes.

The value of 𝜆max, in general, depends on the two conserved quantities of the

system 𝐸 and 𝑁 .
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We generate an ensemble of initial conditions corresponding to 𝜀 = 1 and 𝑛 = 1.

We do this by choosing initially all |𝜓𝑖| = 1, with random phases. Then, we minimize

(𝜀− 1)2 + (𝑛− 1)2 by the steepest descent optimization procedure.

As mentioned in Section 2.2, we introduce a small perturbation at the moment

of time-reversal by adding a random perturbation {𝛿𝜓𝑖} to the state vector {𝜓𝑖}.

The length of the perturbation vector is 10−8. This procedure slightly changes 𝐸

and 𝑁 , but the resulting difference in the value of the largest Lyapunov exponent is

several orders of magnitude smaller than the chosen precision of 3 significant digits.

Therefore, we can neglect it.

For further details one can refer to the source code published in a GitHub repos-

itory2.

2.3.1 Direct calculation of the largest Lyapunov exponent

The definition of the largest Lyapunov exponent from Eq. (1.1) is not practical.

Instead, we perform the direct calculation of the largest Lyapunov exponent 𝜆max

following the standard numerical algorithm described in Section 1.2. Hence, we track

two trajectories: the reference trajectory R1(𝑡) and the slightly perturbed trajectory

R2(𝑡) = R1(𝑡) + 𝛿R(𝑡), 𝑑(𝑡) = |𝛿R(𝑡)|. The algorithm starts with |𝛿R(0)| = 𝑑0 and

then lets 𝛿R(𝑡) grow during time interval 𝑇0, then it shifts R2(𝑡) closer to R1(𝑡) by

resetting the length of 𝛿R back to 𝑑0. This procedure is repeated as many times as

necessary, until the average of instantaneous stretching rates log
⃒⃒⃒
𝑑(𝑡𝑚)
𝑑0

⃒⃒⃒
converges:

𝜆max =
1

𝑀𝑇0

𝑀∑︁
𝑚

log

⃒⃒⃒⃒
𝑑(𝑡𝑚)

𝑑0

⃒⃒⃒⃒
, (2.3)

where 𝑀 is the number of resets, 𝑚 is the reset index, 𝑡𝑚 is the time just before the

𝑚-th reset. The time evolution of the distance 𝑑(𝑡) in the course of such simulation

is presented in Fig. 2-2(a).

In all simulations, we test the ergodicity of system’s dynamics numerically by

checking that the values of 𝜆max obtained for several randomly chosen initial condi-

tions on a shell with the given values of 𝜀 and 𝑛 are the same. In all cases reported
2The code used for the analysis in the present Thesis is published in a GitHub repository at

https://github.com/TarkhovAndrei/DGPE
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(a)

(b)

Figure 2-2: Illustrations of the numerical routine for computing 𝜆max directly. (a)
Black line: distance 𝑑(𝑡) = ‖R1(𝑡) −R2(𝑡)‖2 between two phase space trajectories
R1(𝑡) and R2(𝑡) used for computing 𝜆max for the DGPE on a one-dimensional lattice
with 𝑁 = 10 sites. Time is divided into intervals of duration 𝑇0 ≈ 20, each starts
at the reset time 𝑡𝑚 (green dots), for which 𝑑(𝑡𝑚) = 𝑑0 = 10−8, and finishes at time
𝑡𝑚 + 𝑇0 (red triangles). According to Eq. (2.3), the contribution to 𝜆max from each
such an interval (instantaneous stretching rate) is 1

𝑇0
log
⃒⃒⃒
𝑑(𝑡𝑚)
𝑑0

⃒⃒⃒
. (b) Ergodicity test:

lines represent 𝜆max obtained from Eq. (2.3) as a function of the number of resets
𝑀 . Each line is obtained for different randomly-chosen initial conditions for R1(𝑡)
on the same shell of constant 𝜀 and 𝑛. Convergence to a single value of 𝜆max with
time indicates that the system is ergodic.
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below, this test confirmed ergodicity. One example of such a test is illustrated in

Fig. 2-2(b).

2.3.2 Loschmidt echo simulations

Figure 2-3: Loschmidt echo response exp (𝐺(∆𝑡)) obtained from Eq. (2.2) for a
one-dimensional chain of 10 sites (1D, blue line), a two-dimensional 10 × 10 square
lattice (2D, green line) and a three-dimensional 4×4×4 cubic lattice (3D, red line).
The inset shows the behavior of exp (𝐺(∆𝑡)) in the transient regime at small echo
times, where all Lyapunov exponents contribute to the growth. The transient regime
takes longer time for lower dimensions. In Table 2.1, the values of 𝜆max obtained by
fitting the exponential growth regime according to Eq. (2.2) are compared to the
results of averaging of instantaneous stretching rates from Eq. (2.3).

We have computed the Loschmidt echo response function𝐺(∆𝑡) given by Eq. (2.2)

for one-, two- and three-dimensional lattice geometries with the parameters defined

in Section 2.2. The results of these simulations are presented in Fig. 2-3.

As clearly seen in Fig. 2-3, the expected exponential growth regime of 𝐺(∆𝑡)

is present in all three cases. The values of 𝜆max characterizing this regime are

summarized in Table. 2.1, where they are also compared with the values of 𝜆max
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obtained from the direct calculation described in Section 2.3.1. The agreement

between the two sets of values is within the numerical accuracy of the calculations.

Similar agreement was demonstrated previously in Ref. [42] for classical spins. We

finally note here that the fact that the largest Lyapunov exponent for the 3D cubic

lattice is slightly smaller than that for the 2D square lattice is presumably a finite

size effect related to the small size of the 3D lattice, which is consistent with the

previous observations for classical spin lattices [170].

𝜆max from direct calculation, Eq. (2.3) 𝜆max from Loschmidt echo, Eq. (2.2)
1D 0.481 ± 0.002 0.475 ± 0.004
2D 0.703 ± 0.003 0.702 ± 0.004
3D 0.648 ± 0.002 0.650 ± 0.003

Table 2.1: Comparison of the largest Lyapunov exponents 𝜆max obtained from the
direct averaging of instantaneous stretching rates, Eq. (2.3), with those extracted
from the Loschmidt echoes according to Eq. (2.2) and shown in Fig. 2-3 for one-,
two- and three-dimensional lattices.

2.4 Applicability of DGPE as a constraint on ex-

perimental implementation

Throughout this Chapter, we used the DGPE to model the dynamics of Bose-

Einstein condensates on a lattice. In order to observe experimentally the regime

of exponential growth 𝐺(∆𝑡) and to extract from this regime the value of 𝜆max, the

measured system should be such that the DGPE approximates its dynamics with a

very high accuracy. The question then arises whether such an accuracy is feasible

for realistic experimental settings. To address this question, we have to define the

experimental regime, where both conditions would be satisfied simultaneously: the

Bose-Hubbard model from Eq. (1.13) would be applicable and the classical mean-

field approximation to it would be sufficiently accurate.

For the single-orbital Bose-Hubbard model to be valid, the hopping term 𝐽 must

be relatively small, so that the lattice potential is deep enough and, as a result,

the gap ∆0 between the lowest and the second lowest bands is sufficiently large [85,

86]. In addition, in order for a Lyapunov instability to be observable, not only
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the order-parameters 𝜓𝑖 but also small deviations 𝛿𝜓𝑖 should be well defined in

the mean-field approximation, which implies sufficiently large values of 𝑛𝑖. The

implementation of the proposal then requires the following conditions to be satisfied:

(i) 𝐽 ≪ ∆0 — the condition for not involving the second band, (ii) 𝑈𝑛𝑗 . 𝐽 — the

condition preventing the system from exhibiting self-trapping [173–178], (iii) ideally,

the number of particles per well 𝑛𝑖 should be of the order of 500 or larger [85,

86, 179]. In such a case, the Ehrenfest time of the system defined in Eq. (1.19)

would span several Lyapunov times sufficient for detecting the Lyapunov instability.

(Although in the simulations we used the numbers of particles per well |𝜓𝑖(0)|2 = 1,

the simulation results also represent any case with 𝑈 |𝜓𝑖(0)|2 = 1, i.e. for |𝜓𝑖(0)|2 =

500 they correspond to 𝑈 = 0.002.) We note here that (ii) together with (iii) imply

that the condition for the validity of the mean-field approximation in the Bose-

Hubbard model, 𝑈/𝐽 ≪ 1, is automatically fulfilled. It should be possible to satisfy

all the above conditions with an optical lattice having potential depth of the order

of 5 ÷ 10 recoil energies and not too strong interactions between atoms [180]. We

also note that the numerical experience with large quantum spins [45] indicates that

even 𝑛𝑖 ∼ 15 might be already sufficient to extract the largest Lyapunov exponent.

2.5 Experimental Proposal

An experiment implementing the proposal should satisfy the following requirements:

(i) high accuracy of the measurements of the number of particles 𝑛𝑖 for individual

sites leading to the high accuracy of 𝐺(∆𝑡) extracted from these measurements,

(ii) high accuracy of the experimental realization of the time-reversed Hamiltonian

and (iii) high accuracy of the DGPE approximation for the given experimental

setting. The relative accuracy in each case should be at least 10−2 and, preferably,

better. Let us now consider the above requirements one by one.

2.5.1 Measurement of the quantity of interest

In order to extract 𝐺(∆𝑡) from experiment, the initial and the final values of 𝑛𝑖

should be measured with high accuracy. In principle, there exist techniques, such
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as the absorption imaging [181] or the resonant fluorescence detection [182] that

allow one to achieve the required accuracy. In particular, the current state-of-the-

art record for the resonant fluorescence detection [182] is to measure the number of

atoms of the order of one thousand with accuracy better than one percent. However,

the proposal implies an additional requirement, namely, that the initial measurement

should not significantly perturb 𝑛𝑖, so that the measured values represent the initial

conditions for the actual experimental run. This implies that destructive techniques,

such as absorption imaging, would not be suitable for the initial measurement, be-

cause they would destroy the condensate. Therefore, it is preferable that at least

the initial measurement is performed by a non-destructive technique, such as, e.g.,

dispersive (off-resonance) imaging [183, 184] or the techniques used in Refs. [185,

186]. The alternative approach would be to controllably prepare the initial state

with an accurate a priori knowledge of the initial number of particles on each site.

The final measurement can then be done by either a destructive or a non-destructive

imaging technique.

2.5.2 Initial and final conditions

We propose to create the optical lattice initially with sufficiently high potential

barriers between adjacent sites, which would suppress hopping between them while

the initial occupations are measured. Then, the barriers should be lowered to the

heights corresponding to the desired value of the hopping parameter 𝐽 . The barriers

should be lowered sufficiently fast, so that the initial occupations of individual wells

remain the same. At the same time, after the barriers are lowered the initial phases

of individual order-parameters 𝜓𝑖 are expected to be random. Thereby an ensemble

of random initial conditions is to be implemented. After this, both the direct and

the reversed time evolution should last for a time 𝜏 each. Then, the barriers should

be raised again, so that the final occupations of individual wells can be measured

slowly and accurately.
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2.5.3 Time-reversal of dynamics

In order to reverse the sign of the Hamiltonian ℋ (1.14) at time 𝜏 , one can change

the sign of the hopping parameter 𝐽 and the interaction parameter 𝑈 .

The sign-reversal of 𝐽 can be implemented using fast periodic shaking of the

optical lattice. As shown in Refs. [165, 187, 188], the effective hopping parameter

𝐽 depends on the periodic forcing amplitude 𝐹 and the modulation frequency 𝜔 as

follows:

𝐽(𝐹, 𝜔) = 𝒥0

(︂
𝑑 |𝐹 |
~𝜔

)︂
𝐽, (2.4)

where 𝒥0 is the zeroth order Bessel function, 𝐽 is the bare hopping parameter and 𝑑

is the lattice spacing. Since 𝒥0 is a sign-alternating function, one can find pairs of pa-

rameters 𝐹1, 𝜔1 and 𝐹2, 𝜔2, such that 𝐽(𝐹2, 𝜔2) = −𝐽(𝐹1, 𝜔1). Such a time-reversal

can be implemented on the timescale of the order of the modulation frequency 𝜔,

which is several kHz [165, 189, 190].

The sign-reversal of the interaction parameter 𝑈 can be implemented with the

help of Feshbach resonances [191, 192]. This parameter is proportional to the atomic

𝑠-wave scattering length 𝑎𝑠𝑐, whose value and sign can be controlled by the value

of external magnetic field 𝐵. Cesium or rubidium-85 could be good candidates for

this kind of experiment, due to their broad Feshbach resonances [193–195]. In this

case, the on-site interaction can be reversed on a timescale of fractions of ms.

According to the above proposal, the time-reversal of the effective Hamiltonian ℋ

can be implemented within a fraction of ms, whereas the system dynamics controlled

by the values of 𝐽 and 𝑈 can be at least one order of magnitude slower.

Bose-Einstein condensates with attractive interaction (which will be required

either for the forward or the backward time-evolution) are in general unstable to

collapse. However, if they are constrained to a finite volume, the collapse happens

only for numbers of atoms above a certain critical value, which for realistic optical

lattice parameters can be above 1000 per lattice site [196–201]. As mentioned earlier,

the implementation of the proposal requires about 500 atoms per lattice site.

Another useful possibility that potentially improves the flexibility of experimen-
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tal implementation is to achieve the time-reversal not by realizing the strict condition

ℋ+ = −ℋ−, but, instead, borrowing the idea from the magic echo of nuclear mag-

netic resonance [202, 203], to change the sign of 𝐽 and 𝑈 in such a way that the

Hamiltonian before the time-reversal 𝐽−, 𝑈− are related to the parameters after the

time-reversal 𝐽+, 𝑈+ as follows: 𝐽+ = −𝑐𝐽−, 𝑈+ = −𝑐𝑈−, where 𝑐 is some positive

constant. In such a case, ℋ+ = −𝑐ℋ−, so that the time-reversal routine would

consist of the direct time-evolution taking time 𝜏 and the reversed time-evolution

taking time 𝜏/𝑐.

2.5.4 Lattice geometry

Experimentally realized optical lattices are, normally, not quite translationally in-

variant because of the presence of physical borders. This, in particular, leads to an

effective position-dependent on-site potential and/or position-dependent hopping,

whose values near the borders of the lattice are different from those in the bulk.

In such a case, the time-reversal of the full Hamiltonian requires reversing the sign

of the above position-dependent terms, which, in turn, poses an additional exper-

imental complication. It is, therefore, preferable for implementing the proposal to

use an optical lattice that actually has periodic boundary conditions, which, for all

practical purposes, leaves us with a ring-shaped one-dimensional lattice. Such a

lattice can be realized, for example, on the basis of an interference pattern of two

Laguerre-Gauss modes with different orbital indices [204, 205].

2.6 Discussion

In this Chapter, we proposed a method to extract the largest Lyapunov exponent

for a lattice of Bose-Einstein condensates on the basis of a Loschmidt echo routine.

We have validated this method by numerical simulations and discussed its possible

experimental implementation with ultracold bosonic atoms in optical lattices. A suc-

cessful realization of this proposal may produce the long-sought direct experimental

evidence that the dynamics of a typical many-particle system is chaotic. This, in

turn, would put the theory of dynamic thermalization on a firmer foundation.
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Because her memory is too short. As with so many phenomena of time,

recurrent combinations are perceptible as such only when they cannot

affect us any more—when they are imprisoned so to speak in the past,

which is the past just because it is disinfected.

—Vladimir Nabokov,

Bend Sinister

Chapter 3

Extracting ergodization time from

the Lyapunov process

In this Chapter, we define the ergodization time of a chaotic system as the charac-

teristic time one needs to monitor the system in order to extract its primary chaotic

parameter, namely, the largest Lyapunov exponent. The advantage of this definition

is that it is unbiased in the sense of not being coupled to any particular system’s

coordinate. The ergodization time can be also defined as a typical self-averaging

time for a chosen observable [112], however, such a definition depends on the choice

of the observable, which, in turn, make it difficult to compare ergodization times in

systems with qualitatively different degrees of freedom. The goal is to theoretically

propose and numerically test a method based on the Loschmidt echo, which can be

used to experimentally determine whether the system ergodizes, and if yes, then to

extract the ergodization time. We validate the method by the numerical simulation

of an array of coupled Bose-Einstein condensates in the regime describable by the

DGPE (1.15). Various aspects of this Chapter are relevant to the previous investi-

gations of lattice gauge models [206–210] and spin lattice models [42, 45, 170, 171].

The relation between the present results to OTOCs in quantum systems is also to

be discussed in the end of this Chapter.

For extracting the ergodization time, the standard Loschmidt echo routine, de-

scribed in Section 1.3 and sketched in Fig. 1-1, is extended to include the following

steps. The statistics of the quantity of interest from Eq. (1.2) is gathered for an en-
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semble of random initial conditions on a shell of the chosen energy and the number

of particles. The gathered statistics is used for calculating two kinds of ensemble

averages ⟨log |∆X(∆𝑡)|⟩ and log ⟨|∆X(∆𝑡)|⟩. For ∆𝑡 → ∞, the former average ap-

proaches 𝜆max∆𝑡, while the latter one approaches Λ∆𝑡, where 𝜆max is the largest

Lyapunov exponent, and Λ is a parameter to be discussed later. As we show below,

the ergodization time 𝜏𝑒𝑟𝑔 is proportional to the difference between Λ and 𝜆max.

The method is generally applicable to systems where time-reversal of the dy-

namics can be practically implemented. As in Chapter 2, we illustrate the method

for one-, two- and three-dimensional DGPE lattices, and choose a set of on-site

occupations X(𝑡) = {𝑛1, 𝑛2, . . . , 𝑛𝑉 } as a measurable quantity of interest.

3.1 Ergodization time

3.1.1 Definition of ergodization time based on the Lyapunov

process

In Section 1.2, we defined the instantaneous stretching rates 𝜆(𝑡) = 𝑑
𝑑𝑡

log
⃒⃒⃒
𝐷(𝑡)
𝐷(0)

⃒⃒⃒
,

where 𝐷(𝑡) = |𝛿R(𝑡)| is the distance between the two phase-space trajectories.

The largest Lyapunov exponent can be calculated as the average of instantaneous

stretching rates over time: 𝜆max = 𝜆(𝑡). In Fig. 3-1, we plot 𝜆(𝑡) for one-, two- and

three-dimensional lattices along with the number of lattice sites actively participat-

ing in the Lyapunov eigenvector corresponding to the largest Lyapunov exponent.

The Lyapunov eigenvectors are normally localized in the sense that the projections

on the axes representing individual sites are large only for a small subset of sites,

which itself depends on time 𝑡. The number of sites participating in the Lyapunov

eigenvector is defined as the reciprocal of the inverse participation ratio for the

perturbation 𝛿𝜓𝑗(𝑡) corresponding to 𝛿R(𝑡):
(︁∑︀

𝑗 |𝛿𝜓𝑗(𝑡)|2
)︁2
/
∑︀

𝑗 |𝛿𝜓𝑗(𝑡)|4. The

fluctuations of 𝜆(𝑡) and the number of participating lattice sites are anti-correlated.

Let us consider the fluctuations of the instantaneous stretching rates 𝛿𝜆 (𝑡) ≡

𝜆 (𝑡) − 𝜆max, and introduce their autocorrelator
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(a)

(b)

(c)

Figure 3-1: Fluctuations of instantaneous stretching rates 𝜆(𝑡) (thin black lines) and
the number of sites participating in the Lyapunov eigenvector (thick black lines) for:
(a) a 1D chain of 1024 sites, (b) a 2D square lattice 32 × 32, (c) a 3D cubic lattice
10 × 10 × 10.

𝜙(𝑡) ≡ ⟨𝛿𝜆(𝑡)𝛿𝜆(0)⟩ . (3.1)
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Figure 3-2: Autocorrelation function 𝜙(𝑡) for instantaneous stretching rates 𝜆(𝑡) for
a 1D chain of 100 sites (red), a 2D square lattice 10×10 (orange), a 3D cubic lattice
4 × 4 × 4 (light blue). In the inset, the tails of 𝜙(𝑡) are plotted for longer times.

In Fig. 3-2, we plot the autocorrelation function 𝜙(𝑡) for three chosen lattices.

We propose to use the convergence of 𝜆(𝑡) as an indicator of ergodization, and define

the ergodization time as

𝜏𝑒𝑟𝑔 ≡
1

⟨𝛿𝜆2⟩

∫︁ ∞

0

𝜙(𝑡)𝑑𝑡. (3.2)

As shown in Fig. 3-1, the Lyapunov process is controlled by dynamically localized

Lyapunov eigenvectors. Hence, the ergodization time (3.2) defined from such a

process would be also a local measure of ergodization.

In contrast to the typical diffusion time across the system (the Thouless time),

which is a more global measure of ergodization, the ergodization time defined in

terms of the Lyapunov process is sensitive to the variations in the local environment

of different lattice sites. Glass is an example, where such a local ergodization breaks

down.
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3.1.2 Ergodization time from Loschmidt echoes

The Loschmidt echo is implemented as in Chapter 2. However, in addition to the

function 𝐺(∆𝑡) from Eq. (2.2), we introduce a new kind of ensemble averaging of

∆𝑛𝑖(∆𝑡):

𝑊 (∆𝑡) ≡ log

⟨⎯⎸⎸⎷ 𝑉∑︁
𝑖=1

[∆𝑛𝑖(∆𝑡)]
2

⟩
−−−−→
Δ𝑡→∞

Λ∆𝑡, (3.3)

where

Λ ≡ 1

𝑡
log

⟨
exp

∫︁ 𝑡

0

𝜆(𝑡′)𝑑𝑡′
⟩
. (3.4)

The function 𝐺(∆𝑡) and the relation (2.2) were used in Chapter 2 for extracting

𝜆max. Now, we concentrate on the relation (3.3). The reason for the difference

between parameter Λ (sometimes referred to as the generalized maximum Lyapunov

exponent [211–214]) and 𝜆max is the different order of operations of taking logarithm

and ensemble averaging. This difference is controlled by the amplitude and the

correlation time of fluctuations 𝛿𝜆(𝑡). In order to demonstrate this, we first note

that

Λ − 𝜆max =
1

𝑡
log
⟨
𝑒
∫︀ 𝑡
0 𝛿𝜆(𝑡′)𝑑𝑡′

⟩
. (3.5)

The average on the right-hand side can be calculated analytically on the basis of

the assumption that variable
∫︀ 𝑡

0
𝛿𝜆(𝑡′)𝑑𝑡′ is Gaussian, by a stochastic-noise method

analogous to the one developed by Anderson and Weiss [215] in a different context,

namely, for the calculation of exchange-narrowed magnetic resonance linewidths.

We represent the average on the right-hand side of Eq. (3.5) as

⟨
𝑒
∫︀ 𝑡
0 𝛿𝜆(𝑡′)𝑑𝑡′

⟩
=

∫︁
𝑑𝑌 𝑃𝑡(𝑌 )𝑒𝑌 , (3.6)

where

𝑌 (𝑡) =

∫︁ 𝑡

0

𝛿𝜆(𝑡′)𝑑𝑡′ = lim
𝛿𝑡→0

𝛿𝑡
∑︁
𝑡𝑖

𝛿𝜆(𝑡𝑖), (3.7)

and 𝑃𝑡(𝑌 ) is the probability distribution of 𝑌 (𝑡). We assume that the system fluc-

tuates near equilibrium, and, therefore, the process 𝛿𝜆(𝑡) is stationary, i.e. its prob-

ability distribution 𝑝(𝛿𝜆(𝑡𝑖)) is independent of 𝑡𝑖.
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If 𝛿𝜆(𝑡) is a Gaussian random variable, then 𝑌 is also a Gaussian random variable

for all times, i.e. 𝑃𝑡(𝑌 ) is Gaussian. If 𝑝(𝛿𝜆) is not Gaussian, but the variable 𝛿𝜆(𝑡)

has a finite memory time 𝜏𝑒𝑟𝑔, then 𝑃𝑡(𝑌 ) still becomes Gaussian for 𝑡 ≫ 𝜏𝑒𝑟𝑔

(consequence of the central limit theorem).

Assuming Gaussianity of 𝑃𝑡(𝑌 ) ≡ (2𝜋 ⟨𝑌 (𝑡)2⟩)−
1
2 exp

(︁
− 𝑌 2

2⟨𝑌 (𝑡)2⟩

)︁
, we can rewrite

Eq. (3.6) as:

⟨
𝑒
∫︀ 𝑡
0 𝛿𝜆(𝑡′)𝑑𝑡′

⟩
=
(︀
2𝜋
⟨︀
𝑌 2
⟩︀)︀− 1

2

∫︁
𝑑𝑌 𝑒

− 𝑌 2

2⟨𝑌 2⟩+𝑌
= 𝑒

⟨𝑌 2⟩
2 . (3.8)

We calculate the variance of 𝑌 as

⟨︀
𝑌 2
⟩︀

=

⟨[︂∫︁ 𝑡

0

𝛿𝜆(𝑡′)𝑑𝑡′
]︂2⟩

=

∫︁ 𝑡

0

𝑑𝑡′
∫︁ 𝑡

0

𝑑𝑡′′ ⟨𝛿𝜆(𝑡′)𝛿𝜆(𝑡′′)⟩ . (3.9)

Since 𝛿𝜆(𝑡) is assumed to be stationary: ⟨𝛿𝜆(𝑡′)𝛿𝜆(𝑡′′)⟩ = ⟨𝛿𝜆(0)𝛿𝜆(𝑡′′ − 𝑡′)⟩ ≡ 𝜙(𝑡′′−

𝑡′), and Eq. (3.9) becomes

⟨︀
𝑌 2(𝑡)

⟩︀
=

∫︁ 𝑡

0

𝑑𝑡′
∫︁ 𝑡−𝑡′

−𝑡′
𝜙(𝑡′′)𝑑𝑡′′ =

∫︁ 𝑡

0

𝑑𝑡′𝑔(𝑡′), (3.10)

where 𝑔(𝑡′) =
∫︀ 𝑡−𝑡′

−𝑡′
𝜙(𝑡′′)𝑑𝑡′′. The dynamics is time-reversible, thus 𝜙(−𝑡′) = 𝜙(𝑡′),

and �̇�(𝑡′) = −𝜙(𝑡− 𝑡′) + 𝜙(−𝑡′) = −𝜙(𝑡− 𝑡′) + 𝜙(𝑡′). The integration of Eq. (3.10)

by parts leads to

⟨︀
𝑌 2(𝑡)

⟩︀
= 𝑡 · 𝑔(𝑡) −

∫︁ 𝑡

0

𝑑𝑡′ · 𝑡′�̇�(𝑡′) =

= 𝑡

∫︁ 0

−𝑡

𝜙(𝑡′′)𝑑𝑡′′ −
∫︁ 𝑡

0

𝑑𝑡′ · 𝑡′𝜙(𝑡′) +

∫︁ 𝑡

0

𝑑𝑡′ · 𝑡′𝜙(𝑡− 𝑡′) =

= 𝑡

∫︁ 𝑡

0

𝜙(𝑡′)𝑑𝑡′ −
∫︁ 𝑡

0

𝑑𝑡′ · 𝑡′𝜙(𝑡′) +

∫︁ 𝑡

0

𝑑𝑡′ · (𝑡− 𝑡′)𝜙(𝑡′) =

= 2

∫︁ 𝑡

0

𝑑𝑡′(𝑡− 𝑡′)𝜙(𝑡′). (3.11)

We substitute Eq. (3.11) into Eq. (3.8), and finally obtain
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⟨
𝑒
∫︀ 𝑡
0 𝛿𝜆(𝑡′)𝑑𝑡′

⟩
= 𝑒

∫︀ 𝑡
0 𝑑𝑡′(𝑡−𝑡′)𝜙(𝑡′). (3.12)

This integral converges if 𝜙(𝑡) decays faster than 1
𝑡2

. In such a case, for 𝑡→ ∞

⟨
𝑒
∫︀ 𝑡
0 𝛿𝜆(𝑡)𝑑𝑡

⟩
= 𝐶𝑒𝑡

∫︀ 𝑡
0 𝑑𝑡′𝜙(𝑡′), (3.13)

where 𝐶 = exp
(︀
−
∫︀∞
0
𝑑𝑡′ · 𝑡′𝜙(𝑡′)

)︀
.

Using this relation together with Eq. (3.2), we obtain Λ − 𝜆max =
∫︀∞
0
𝜙(𝑡′)𝑑𝑡′ ≡

⟨𝛿𝜆2⟩ 𝜏𝑒𝑟𝑔. Therefore, the ergodization time can be expressed as

𝜏𝑒𝑟𝑔 =
Λ − 𝜆max

⟨𝛿𝜆2⟩
. (3.14)

3.1.3 Independence of the choice of an observable

If it were experimentally possible to track all phase-space coordinates of a system,

then one could have obtained the largest Lyapunov exponent by identifying the

phase-space direction 𝛿R along which the growth of a perturbation is the quickest—

the Lyapunov eigenvector corresponding to the largest Lyapunov exponent. How-

ever, a realistic experiment is limited to an observable X. It is overwhelmingly likely

for the eigenvector to have a non-zero projection onto X. This means that

∆X(∆𝑡) = ∆X(0) cos𝛼(∆𝑡)𝑒
∫︀Δ𝑡
0 𝜆(𝑡′)𝑑𝑡′ , (3.15)

where 𝛼(∆𝑡) is the angle between the eigenvector and the direction corresponding

to ∆X(∆𝑡) in the many-dimensional phase space.

Here, we consider the growth of the initial difference ∆X(0) introduced by an

imperfect time reversal, and justify the relations (2.2) and (3.3) for ∆𝑡 → ∞ (cf.

Ref. [42]) for an arbitrary observable X: 𝐺(∆𝑡) ≡ ⟨log |∆X(∆𝑡)|⟩ −−−−→
Δ𝑡→∞

𝜆max∆𝑡

and 𝑊 (∆𝑡) ≡ log ⟨|∆X(∆𝑡)|⟩ −−−−→
Δ𝑡→∞

Λ∆𝑡. We use Eq. (3.15) to express 𝐺(∆𝑡) as

𝐺(∆𝑡) =
⟨

log |∆X(0)| + log |cos𝛼(∆𝑡)| + log 𝑒
∫︀Δ𝑡
0 𝜆(𝑡′)𝑑𝑡′

⟩
, (3.16)

where the first term is constant, the second term remains limited from above after
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ensemble averaging over initial conditions, and the third term is the only one growing

linearly with ∆𝑡. The second term log |cos𝛼(∆𝑡)| may appear problematic for ∆𝑡

corresponding to |cos𝛼(∆𝑡)| = 0. However, this singularity is integrable: it vanishes

after ensemble averaging. Given the definition of 𝜆max from Section 3.1.1, Eq. (3.16)

implies Eq. (2.2).

To prove the relation (3.3) for 𝑊 (∆𝑡), we assume that |cos𝛼(∆𝑡)| is uncorrelated

with 𝑒
∫︀Δ𝑡
0 𝜆(𝑡′)𝑑𝑡′ and hence factorize the average

⟨
|∆X(0) cos𝛼(∆𝑡)| 𝑒

∫︀Δ𝑡
0 𝜆(𝑡′)𝑑𝑡′

⟩
−−−−→
Δ𝑡→∞

⟨|∆X(0) cos𝛼(∆𝑡)|⟩ ·
⟨
𝑒
∫︀Δ𝑡
0 𝜆(𝑡′)𝑑𝑡′

⟩
. This assumption is, presumably, appropriate for

almost any non-local observable. It is supported by the extensive numerical expe-

rience, e.g. Refs. [42, 45, 170, 171], showing that the eigenvectors corresponding to

𝜆max exhibit rather erratic behavior. The above factorization leads to

𝑊 (∆𝑡) = log ⟨|∆X(0) cos𝛼(∆𝑡)|⟩ + log
⟨
𝑒
∫︀Δ𝑡
0 𝜆(𝑡′)𝑑𝑡′

⟩
, (3.17)

which, given the definition of Λ from Eq. (3.4), implies Eq. (3.3).

3.1.4 Relation to OTOCs in quantum systems

As shown in Section 1.3, the quantum-mechanical description of Loschmidt echoes

involves OTOCs. We now illustrate that the parameter Λ introduced in Eq. (3.3)

for characterization of the exponential growth of 𝑊 (∆𝑡) in the classical case, such

that

⟨|∆X(∆𝑡)|⟩ ∼ exp(Λ∆𝑡), (3.18)

also characterizes the growth of an OTOC in a quantum system, when the system’s

constituents are describable quasi-classically. Following Ref. [42], we observe that

relation (3.18) implies
⟨︀
|∆X(∆𝑡)|2

⟩︀
∼ exp(2Λ∆𝑡). In other words,

Λ =
1

2

𝑑

𝑑(∆𝑡)

[︂
lim

Δ𝑡→∞;|ΔX(0)|→0
log
⟨︀
|∆X(∆𝑡)|2

⟩︀]︂
, (3.19)

where |∆X(∆𝑡)|2 is defined by Eq. (1.4), and in the quantum case transforms to

an OTOC (1.6). Finally, we note that the quantum counterpart of the maximum

classical Lyapunov exponent can be defined as
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𝜆𝑄max =
1

2

𝑑

𝑑(∆𝑡)
lim

Δ𝑡→∞;�̂�→1̂
Tr
{︁
𝜌0 log

(︁
X̂2(𝜏 + ∆𝑡)+

+ X̂2(𝜏 − ∆𝑡) − X̂(𝜏 + ∆𝑡)X̂(𝜏 − ∆𝑡)−

−X̂(𝜏 − ∆𝑡)X̂(𝜏 + ∆𝑡)
)︁}︁

.

(3.20)

The temperature-dependent constraint on the exponential growth rate Λ of

OTOCs (when the exponential growth regime exists, which is not always the case [42])

discussed in Section 1.3, in turn, imposes a constraint on the largest Lyapunov ex-

ponent 𝜆max for a quantum system. As follows from the present Chapter, as well as

from Refs. [45, 51, 216], the value of Λ is, in general, larger than 𝜆max. The interest-

ing question then arises whether the difference between Λ and 𝜆max approaches zero

as the number of degrees of freedom in a system increases. The findings indicate

that, for a lattice of a given dimension (1D, 2D and 3D), Λ−𝜆max remains finite for

rather large systems. Yet, this difference decreases with the increase of the lattice

dimension from 1D to 2D to 3D. It is particularly small for the 3D lattice consid-

ered in this Chapter, which is consistent with the classical spin simulations for 3D

lattices done in Ref. [42], where the difference between Λ and 𝜆max was within the

computational uncertainty of the simulation and, hence, was overlooked.

We further remark that the difference Λ − 𝜆max originates from the fluctuations

of Loschmidt echo amplitude, which is, as shown in the present Chapter, sensitive

to ergodicity breakdown in classical systems. The counterpart of this breakdown in

quantum systems is the transition from an ergodic to a many-body localized phase.

It was proposed in a related study [58], that the fluctuations of a Loschmidt echo in

quantum systems are sensitive to the many-body localization transition.

Finally, even though the primary agenda of the present Chapter is to characterize

ergodicity in large systems close to the thermodynamic limit, the method based on

Loschmidt echoes should also be applicable to a-few-body systems. When classical

a-few-body systems exhibit the breakdown of ergodicity, the ergodicity criterion

proposed in Section 3.3 should be sensitive to this. As far as a-few-body quantum

systems are concerned [217–219], it is an interesting question how their energy level
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Figure 3-3: Numerical test of empirical estimate (3.21) for ⟨𝛿𝜆2⟩. The dependence
of
√︀

⟨𝛿𝜆2⟩ /𝜆2max on the number of lattice sites 𝑉 for one- (red circles), two- (orange
triangles) and three-dimensional (light blue squares) lattices. The dashed lines are
plotted at the levels of 1/𝑑, where 𝑑 is the lattice dimension.

spacing statistics is related to the ergodicity criterion in the classical limit. If a

quantum system exhibits the Wigner-Dyson statistics of energy-level spacings in

one energy range and does not exhibit it in the other one, then the respective

energy shells in the classical limit likely change from ergodic to nonergodic. In such

a case, the ergodicity criterion of Section 3.3 can be used to predict the level spacing

statistics.

3.2 Extracting the ergodization time of DGPE lat-

tices

The experimental use of Eq. (3.14) requires determining 𝜆max and Λ from Eqs. (2.2)

and (3.3) and, in addition, the knowledge of ⟨𝛿𝜆2⟩. While there might be ways
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of extracting ⟨𝛿𝜆2⟩ from experimental time-series, here we resort to an empirical

estimate ⟨︀
𝛿𝜆2
⟩︀
≈ 𝜆2max

𝑑2
, (3.21)

where 𝑑 is the lattice dimension. In Fig. 3-3, we substantiate the estimate (3.21)

on the basis of the direct numerical simulations. Why this approximation works so

well for the DGPE on large lattices and whether it works for a more general class of

systems needs further investigation. A possible explanation of Eq. (3.21) is that, in

the simulations, the Lyapunov eigenvector corresponding to 𝜆max tends to localize

at only a handful of sites, which is consistent with other observations of wandering

localization of Lyapunov eigenvectors [220–227].

The estimate (3.21) leads to the following approximation for the ergodization

time

𝜏𝑒𝑟𝑔 ≈
Λ − 𝜆max

𝜆2max

𝑑2. (3.22)

3.3 Criterion of ergodicity

When the ergodicity of a system is about to break down, one obvious indicator of this

is an anomalously large value of the ergodization time given by Eq. (3.14). One may

wonder, however, whether the Loschmidt echo response contains other signatures

of broken ergodicity. Below, we show that, indeed, it does. In an ergodic regime,

the distribution of log |∆X(∆𝑡)| should be Gaussian, and its variance 𝜎2
𝐺(∆𝑡) ≡⟨︀

log2 |∆X(∆𝑡)|
⟩︀
−𝐺2(∆𝑡) is supposed to grow linearly in time:

𝜎2
𝐺(∆𝑡) −−−−→

Δ𝑡→∞
2(Λ − 𝜆max)∆𝑡. (3.23)

In the opposite case of a non-ergodic regime, the averages in 𝐺(∆𝑡) and 𝑊 (∆𝑡)

converge poorly, which in turn leads to a non-Gaussian distribution for individ-

ual realizations of log |∆X(∆𝑡)| [228], accompanied by a deviation from the linear

growth of 𝜎2
𝐺(∆𝑡) given by Eq. (3.23). Thus, relation (3.23) can be used for an

experimentally feasible test of ergodization.
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Figure 3-4: Loschmidt echo responses 𝐺(∆𝑡) defined according to Eq. (2.2) (dashed
lines), and 𝑊 (∆𝑡) defined by Eq. (3.3) (solid lines) for: a three-dimensional 4×4×4
cubic lattice (3D, light blue); a two-dimensional 10 × 10 square lattice (2D, orange,
shifted to the right by 10); a one-dimensional chain with 100 sites (1D, red, shifted
to the right by 20). Thin black lines are linear fits from which 𝜆max and Λ, listed in
Table 3.1, were extracted.
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Figure 3-5: Ergodicity tests. The dependence of the ratio 𝜎2
𝐺(Δ𝑡)

2Δ𝑡
on the echo time

∆𝑡 for a 1D chain of 100 sites (red), a 2D square lattice 10×10 (orange), a 3D cubic
lattice 4 × 4 × 4 (light blue). The dashed lines are plotted at the levels Λ − 𝜆max

corresponding to the plateaux expected for ergodizing systems. These plots imply
that the 2D and 3D lattices are ergodized on the timescale of the simulations, while
the 1D lattice is not.

3.4 Numerical experiments

For illustration, we chose the same three model systems as in Chapter 2 with the

same DGPE parameters: a 1D chain 𝑉 = 100, a 2D square lattice 𝑉 = 10× 10 and

a 3D cubic lattice 𝑉 = 4× 4× 4. The DGPE parameters are fixed such that 𝐽 = 1,

𝑈 = 1, 𝜀 = 1, 𝑛 = 1, 𝑛𝑖(0) ≡ |𝜓𝑖(0)|2 = 1 with almost random phases of 𝜓𝑖(0). At

the moment of time reversal 𝜓𝑖(𝜏 + 0) = 𝜓𝑖(𝜏 − 0) + 𝛿𝜓𝑖, where 𝛿𝜓𝑖 is a random

vector subject to
√︁∑︀

𝑖 |𝛿𝜓𝑖|2 = 10−8. For further details one can refer to a GitHub

repository1.

In order to test the relation (3.14), we calculated the two averages of Loschmidt
1The code used for the analysis in the present Thesis is published in a GitHub repository at

https://github.com/TarkhovAndrei/DGPE
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𝑉 𝑑 𝜆max Λ
⟨𝛿𝜆2⟩ 𝜏𝑒𝑟𝑔

Eq. (3.2) Eq. (3.21) Eq. (3.2) Eq.(3.14) Eq. (3.22)
100 1 0.643 ± 0.001 0.927 ± 0.009 0.362 ± 0.001 0.413 ± 0.001 0.66 ± 0.05 0.78 ± 0.03 0.69 ± 0.02
102 2 0.698 ± 0.001 0.731 ± 0.004 0.104 ± 0.001 0.122 ± 0.001 0.32 ± 0.02 0.32 ± 0.04 0.27 ± 0.03
43 3 0.650 ± 0.001 0.670 ± 0.001 0.080 ± 0.001 0.047 ± 0.001 0.26 ± 0.02 0.25 ± 0.02 0.43 ± 0.03

Table 3.1: Summary of numerical tests of relations (3.14) and (3.22): 𝑉 is the
number of lattice sites, 𝑑 is the lattice dimensionality, 𝜆max and Λ are extracted
from Fig. 3-4; ⟨𝛿𝜆2⟩ is extracted either directly from a time-series of local stretching
rates according to Eq. (3.2) or from empirical estimate (3.21); the three values
of 𝜏𝑒𝑟𝑔 are obtained on the basis of the definition (3.2), from the Loschmidt echo
relation (3.14), and from the approximate relation (3.22).

echoes 𝐺(∆𝑡) and 𝑊 (∆𝑡) for one-, two- and three-dimensional DGPE lattices. The

results are presented in Fig. 3-4. The values of the characteristic exponents 𝜆max

and Λ extracted in each case are listed in Table 3.1. We also collected long enough

time-series of instantaneous stretching rates 𝜆(𝑡), then calculated the autocorrela-

tion function 𝜙(𝑡) and extracted ⟨𝛿𝜆2⟩ and 𝜏𝑒𝑟𝑔. It is worth noting that the above

simulations are laborious. In order to obtain a sufficiently smooth function 𝑊 (∆𝑡),

one has to gather the ensemble of at least several hundreds Loschmidt echo realiza-

tions. Each Loschmidt echo realization requires simulation of the DGPE dynamics

for double the echo time. The calculation of the autocorrelation function 𝜙(𝑡) also

requires long-time simulations of the Lyapunov process. Overall, the procedures for

large DGPE lattices become computationally expensive and require extensive CPU

and GPU parallelization.

Table 3.1 compares three values of the ergodization time: the one calculated on

the basis of the definition (3.2), the one given by Eq.(3.14) and the one given by the

approximation (3.22). In Eq.(3.14), we used the directly calculated value of ⟨𝛿𝜆2⟩.

For two- and three-dimensional lattices, the values of the ergodization time ob-

tained from Eqs. (3.2) and (3.14) agree very well. At the same time, we observe clear

discrepancy between Eqs. (3.2) and (3.14) for the one-dimensional lattice, which in-

dicates that the system has not ergodized on the timescale covered by the Loschmidt

echo. Non-ergodized fast growing samples in 𝑊 (∆𝑡) from Eq. (3.3) reach saturation

significantly earlier than others: an indication of this in Fig. 3-4 is an early departure

of 𝑊 (∆𝑡) from the linear growth regime.

Overall, the ergodization time decreases with the increasing lattice dimension,
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being the longest in the one-dimensional case. The ergodization time is a local mea-

sure of ergodization because the Lyapunov eigenvectors are dynamically localized.

Slow ergodization of one-dimensional chains (for Fermi-Pasta-Ulam, Klein-Gordon

chains and DGPE) has also been noticed and investigated in Refs. [229, 230].

In all three cases, we further observe that the values obtained from Eq. (3.22)

give a satisfactory approximation to Eq. (3.2).

We also performed the ergodicity test associated with relation (3.23). The results

are presented in Fig. 3-5, where the ratio 𝜎2
𝐺(Δ𝑡)

2Δ𝑡
is plotted as a function of the echo

time ∆𝑡. For the quickly ergodizing two- and three-dimensional systems, the above

ratio levels off rather quickly around the expected value Λ − 𝜆max, whereas for the

slow-ergodizing one-dimensional case it never reaches the expected plateau.

3.5 Discussion

In this Chapter, we proposed a method of estimating ergodization time of a chaotic

many-particle system by monitoring equilibrium noise before and after time reversal

of dynamics, and validated it numerically by simulations of the discrete Gross-

Pitaevskii equation. We showed that the difference between the largest Lyapunov

exponent and the growth rate of the classical counterpart of OTOCs is proportional

to the ergodization time of a system. We also introduced a related test for the

breakdown of ergodicity. The ergodization time is a local measure of ergodization

because the Lyapunov eigenvectors are dynamically localized. Hence, the ergodiza-

tion time is particularly sensitive to the presence of localized highly energetic solitons

or breathers weakly coupled to the rest of the system. The ergodization time is thus

neither connected to the typical diffusion time (Thouless time) across the system,

nor to the typical hydrodynamic timescales.
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But if I do not cheat, some kind of atrocious obstacle, which would drive

me mad if I persevered, prevents me from imagining the twist which

transforms one direction into another, directly opposite. I am crushed,

I am carrying the whole world on my back in the process of trying to

visualize my turning around and making myself see in terms of ‘right’

what I saw in terms of ‘left’ and vice versa.

—Vladimir Nabokov,

Look at the Harlequins!Chapter 4

Investigation of non-equilibrium

quenches across a second-order phase

transition

The investigations presented in this Chapter were initially motivated by the ex-

periment on the light-induced melting of a charge-density wave in LaTe3 [231] and

then extended to cover related general questions. The Chapter described our sim-

ulations of non-equilibrium quenches across a spontaneous symmetry breaking in

the 3D DGPE lattice, with a particular focus on the role of topological defects in

establishing phase coherence after a quench.

4.1 Experimental motivation

Laser-induced melting of a unidirectional charge-density wave (CDW) in LaTe3 was

investigated experimentally in Refs. [231]. The critical temperature of the CDW

transition is about 700 K. By applying laser excitation, one can melt the CDW and

temporarily destroy its order-parameter. In a time-resolved pump-probe experiment,

the recovery dynamics of the CDW order was tracked. The experiment observed that

the amplitude and the phase of the CDW after photo-excitation behave qualitatively

differently: the amplitude recovers quickly, whereas, for sufficiently high pump pulse

intensity, the recovery of phase coherence takes much longer times [232].
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Chapter 4. Non-equilibrium quenches 4.1. Experimental motivation

Figure 4-1: Time evolution of integrated intensity of the CDW electron diffrac-
tion peak after photo-excitation at varying laser pulse intensities (photo-excitation
densities). The figure reproduced from Ref. [231] in adapted form.

In Fig. 4-1, we reproduce the experimental results on ultra-fast electron diffrac-

tion of the CDW: the normalized integrated intensity of the CDW diffraction peak

is plotted as a function of delay time for various laser pulse intensities. The CDW

diffraction peak intensity is proportional to the square of the CDW order-parameter.

For smaller laser intensities, the CDW order-parameter never vanishes entirely.

Rather it initially becomes smaller and later almost recovers to the initial value.

For higher laser intensities, when the CDW becomes totally melted [232], the recov-

ery takes much longer times, and, in fact, does not reach the equilibrium value on the

timescale accessible in the experiment. The qualitative trend is that the higher the

laser intensity, the slower the CDW order recovery. The authors provided indirect

evidence that the slow recovery is caused by the emergence of topological defects of

the CDW order, followed by their subsequent slow annihilation. Even though, such

a scenario is rather natural, no direct evidence in its favor was presented. Ref. [232]

has further found that the slow recovery in the experiment cannot be explained by

the amplitude dynamics of the CDW order. Therefore, this slow relaxation was

attributed to the phase of the order parameter likely associated with the topological

defects.

The findings of Ref. [232] indicate that the initial response of LaTe3 following a

strong photoexcitation is not describable by a single order parameter because the

energy of the laser pulse is mainly absorbed by the electronic subsystem and then
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it takes a time about 2 ps for the electronic subsystem to dissipate its energy into

the lattice. Only after that, the local behavior of the system can be described by

a single CDW order parameter. It is the relaxation in this later-time regime that

we would like to describe with the help of the DGPE. The question can still arise

whether the calculations based on the purely Hamiltonian DGPE dynamics would

miss the dissipative contribution due to the coupling to the electronic excitations.

Such a contribution certainly exists in the real material. However, we assume that,

due to the smallness of the electronic specific heat relative to that of the lattice,

the dissipation caused by the electronic excitations is sufficiently small to justify the

applicability of the DGPE-based quench simulations for times longer than 2 ps.

4.2 Mapping charge-density wave dynamics to DGPE

In this Chapter, we use the 3D DGPE lattice as a simplified model for simulat-

ing the phase dynamics of CDW after a laser pulse. The mapping of the spatially

inhomogeneous CDW order onto the DGPE is inspired by the mapping of the super-

conducting order in large enough domains onto the XY-model for studying classical

phase fluctuations [233, 234].

In Fig. 4-2, a sketch of a typical dispersion relation for low-frequency excitations

in a CDW material is presented. The process of the CDW formation is associated

with softening of a phonon at the CDW wavevector q𝐶𝐷𝑊 . At the CDW critical

temperature, the frequency of the soft phonon reaches zero and the CDW is formed.

The CDW is represented as a modulation of electron charge density in the form

𝜌(r) = 𝜌0 + 𝜌1 cos (q𝐶𝐷𝑊 r + 𝜑) (4.1)

accompanied with a lattice displacement

r𝑛 → r𝑛 + u cos (q𝐶𝐷𝑊 r𝑛 + 𝜑) , (4.2)

where 𝑢 = |u| and 𝜑 are the amplitude and phase of the lattice distortion, q𝐶𝐷𝑊

is the CDW wave vector [232]. Far from equilibrium, the lattice distortion can be
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Figure 4-2: A typical acoustic phonon dispersion relation 𝜔(𝑘) — green line. The
acoustic phonon softening associated with the emergence of the CDW is shown as
a sharp dip at the CDW wavevector q𝐶𝐷𝑊 . The red line represents the dispersion
relation for temperatures higher than the critical temperature. The green dashed
line represents the region, where the acoustic phonon modes are ill-defined.

out of phase with the electronic density modulation. Here, we are interested in the

regime when the lattice and the electronic subsystem are correlated and evolve in

phase. Hence, we can choose the complex number 𝑢 exp(𝑖𝜑) as the CDW order pa-

rameter. By allowing the CDW order parameter to slowly change in space and time,

𝑢(r) exp (𝑖𝜑(r)), we can describe the elementary excitations of the CDW—phasons,

phase excitations associated with 𝜑(r), and amplitudons, amplitude excitations as-

sociated with 𝑢(r).

To map the continuous CDW order 𝑢(r) exp (𝑖𝜑(r)) to the DGPE lattice 𝜓𝑗, we

assume that each elementary volume of the CDW with a characteristic coherence

length 𝑙 represents a single site of the 3D DGPE lattice. The reasoning behind

the classical modelling is that, for large enough domains, the quantum fluctuations

can be neglected. Therefore, the mapping is achieved by averaging the CDW order

parameter over a coherence volume around the 3D DGPE lattice site at r𝑗:

𝜓𝑗 ∼
⟨︀
𝑢(r)𝑒𝑖𝜑(r)

⟩︀
|r−r𝑗 |≤𝑙

. (4.3)

62



Chapter 4. Non-equilibrium quenches 4.2. Mapping charge-density wave dynamics to DGPE

We use the 3D DGPE equation for the simulations because it possesses an excita-

tion spectrum qualitatively similar to that of the CDW. The non-interacting DGPE

has a frequency band with a quadratic dispersion relation at the bottom, which is

similar to that of the CDW precursor mode at high temperatures (pink branch in

Fig 4-2). Below 𝑇𝑐, this mode turns into the CDW phason with a linear spectrum

(green line touching zero at the CDW wavevector q𝐶𝐷𝑊 in Fig. 4-2). The 3D DGPE

with interaction also has excitations with linear dispersion at long wavelengths.

To finalize the mapping, we estimate three parameters of the 3D DGPE lattice:

• the hopping term 𝐽

• the typical value of the “particle density” parameter 𝑛 ≡ ⟨|𝜓𝑗|2⟩

• the nonlinearity parameter 𝑈

Since the CDW coherent domains are typically larger than the crystal lattice

period 𝑎, the CDW dynamics would occur at frequencies smaller than the Debye

frequency Ω𝐷 ∼ 4 THz (in LaTe3). Hence, the hopping term 𝐽 can be roughly

estimated as

𝐽 = Ω𝐷
𝑎

𝑙
. (4.4)

The CDW coherence length [235] reads

𝑙 =
~𝑣𝐹
𝜋𝜀𝑔

, (4.5)

where 𝑣𝐹 = 2𝜀𝐹
𝑝𝐹

is the Fermi velocity, 𝜀𝑔 is the CDW energy gap. For LaTe3,

𝜀𝐹 ≈ 1.5 eV and 𝑝𝐹 ≈ 3𝜋
8

~
𝑎

[236], 𝜀𝑔 ≈ 0.35 eV [237]. Hence, the direct application

of that formula would give very short 𝑙 ∼ 2𝑎. If, however, we take into account that

the critical temperature 60meV ≈ 700 𝐾 is smaller than the CDW energy gap, and

replace the energy gap with the temperature in Eq. (4.5):

𝑙 ≈ 2~
𝜋𝑝𝐹

𝜀𝐹
𝑘𝐵𝑇𝑐

∼ 10𝑎, (4.6)

hence, the present estimate for the hopping term gives 𝐽 ∼ 1 ps−1.
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A bit more involved analysis giving essentially the same estimate would start from

the observation that both the DGPE and the real CDW materials [238, 239] exhibit

strongly overdamped excitations in the vicinity of the phase transition temperature

𝑇𝑐. The experiment in Ref. [240] shows that at large temperatures the frequency

width of the phase fluctuations is of the order of the ampliduton’s frequency at

the CDW wavevector q𝐶𝐷𝑊 , 𝜔𝐴𝑚(q𝐶𝐷𝑊 ). We use that observation to estimate

the parameter 𝐽 by matching the amplitudon’s frequency known from experiment

and the first-principle calculations with the high-temperature frequency width of

equilibrium fluctuations in the DGPE model:

√
2𝑑𝐽 ∼ 𝜔𝐴𝑚(q𝐶𝐷𝑊 ), (4.7)

where 𝑑 = 3 is the dimension of the lattice. The direct measurement of the am-

plitudon’s frequency is challenging experimentally at 𝑘 ̸= 0. However, in the first-

principles simulations of Ref. [241], it is shown that the amplitudon’s frequency

decreases for larger wavevectors, and, at the CDW wavevector q𝐶𝐷𝑊 , it reaches

approximately 1/5 of its value at 𝑘 = 0. We assume that such an estimate is also

relevant for the CDW in LaTe3, hence 𝜔𝐴𝑚(q𝐶𝐷𝑊 ) ∼ 𝜔𝐴𝑚(0)/5. In LaTe3, the am-

plitudon’s frequency is 𝜔𝐴𝑚(0) = 2.2 THz [242]. Therefore, our hopping parameter

estimate is:

𝐽 ∼ 𝜔𝐴𝑚(0)

5
√

2𝑑
∼ 1 ps−1, (4.8)

which is consistent with the value obtained from Eq. (4.4).

The typical parameter 𝑛 can be estimated from the fact that at the critical

temperature the hopping energy is of order of the thermal energy 𝐽𝑛 ∼ 𝑘𝐵𝑇𝑐. Thus:

𝑛 ∼ 𝑘𝐵𝑇𝑐
𝐽

∼ ~
𝑇𝑐
𝑇𝐷

𝑙

𝑎
. (4.9)

Here, we used Eq. (4.4) and replaced ~Ω𝐷 with 𝑘𝐵𝑇𝐷, where 𝑇𝐷 ∼ 200𝐾 is the

Debye temperature for LaTe3 [243]. This relation shows that the typical value of

𝑛/~ is a reasonably large number 10 . . . 40, which, in turn, justifies the classical
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character of our modelling.

In order to estimate the nonlinearity parameter 𝑈 , we match the phason velocity

in the DGPE and the real CDW system. Let us first derive the phason velocity for

the 3D DGPE model. In the 3D DGPE (1.14), the excitation spectrum above the

condensate can be extracted by dividing 𝜓𝑗 at each lattice site into the contribution

from the condensate and the perturbation 𝜓𝑗(𝑡) = Ψ0 + 𝜉𝑗(𝑡). This leads to

𝑖Ψ̇0 + 𝑖𝜉𝑗 = −2𝑑𝐽Ψ0 − 𝐽
∑︁

𝑚∈NN(𝑗)

𝜉𝑚 + 𝑈 |Ψ0 + 𝜉𝑗|2 (Ψ0 + 𝜉𝑗) . (4.10)

The solution for the unperturbed condensate 𝑖Ψ̇0 = −2𝑑𝐽Ψ0 + 𝑈 |Ψ0|2 Ψ0 has

the form of Ψ0(𝑡) =
√
𝑛0 exp (−𝑖𝑡𝜇), where we denote the “number of particles” in

the condensate as 𝑛0 = |Ψ0|2 and the chemical potential 𝜇 = −2𝐽𝑑 + 𝑈𝑛0. Next,

we introduce the perturbation in the rotating frame of reference by substituting

𝜉𝑗 = 𝜁𝑗𝑒
−𝑖𝑡𝜇, and rewrite Eq. (4.10):

𝑖𝜁𝑗 = −𝐽
∑︁

𝑚∈NN(𝑗)

𝜁𝑚−𝜇𝜁𝑗+𝑈
(︀
2𝑛0𝜁𝑗 + 𝑛0𝜁

*
𝑗 + 2

√
𝑛0 |𝜁𝑗|2 +

√
𝑛0𝜁

2
𝑗 + |𝜁𝑗|2𝜁𝑗

)︀
. (4.11)

Taking into account that 𝜁𝑗 ≪ √
𝑛0, we neglect higher order terms in 𝜁𝑗 and

obtain

𝑖𝜁𝑗 = −𝐽
∑︁

𝑚∈NN(𝑗)

𝜁𝑚 − 𝜇𝜁𝑗 + 𝑈
(︀
2𝑛0𝜁𝑗 + 𝑛0𝜁

*
𝑗

)︀
. (4.12)

The spatial Fourier transform 𝜁𝑗(𝑡) =
∑︀

k 𝜁k(𝑡) exp(𝑖2𝜋kr𝑗) then gives:

𝑖𝜁k = 𝜀(k)𝜁k + 𝑈𝑛0𝜁
*
k, (4.13)

where 𝜀(k) = 𝜀(k) − 𝜇+ 2𝑈𝑛0, with 𝜀(k) = −2𝐽
∑︀

𝑒∈𝑥,𝑦,𝑧 cos (𝑘𝑒𝑙).

Let us look for the solutions of Eq. (4.13) of the form

𝜁k(𝑡) = 𝑢k𝑒
−𝑖𝜔k𝑡 + 𝑣*k𝑒

𝑖𝜔k𝑡 =
(︁
𝑒−𝑖𝜔k𝑡 𝑒𝑖𝜔k𝑡

)︁⎛⎝𝑢k
𝑣*k

⎞⎠ , (4.14)

Eq. (4.13) then leads to
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(︁
𝑒−𝑖𝜔k𝑡 𝑒𝑖𝜔k𝑡

)︁⎛⎝ 𝜔k𝑢k

−𝜔k𝑣
*
k

⎞⎠ =
(︁
𝑒−𝑖𝜔k𝑡 𝑒𝑖𝜔k𝑡

)︁⎛⎝𝜀(k)𝑢k + 𝑈𝑛0𝑣k

𝜀(k)𝑣*k + 𝑈𝑛0𝑢
*
k

⎞⎠ (4.15)

To find the dispersion relation for the excitations above the condensate, we di-

agonalize the matrix ⎛⎝𝜔k − 𝜀(k) −𝑈𝑛0

−𝑈𝑛0 −𝜔k − 𝜀(k)

⎞⎠ = 0, (4.16)

and thereby obtain the dispersion relation

𝜔k =
√︀
𝜀2(k) − (𝑈𝑛0)2, (4.17)

which, after substituting 𝜀(k), gives

𝜔k =

⎯⎸⎸⎷(︃2𝐽
∑︁

𝑒∈𝑥,𝑦,𝑧

(1 − cos (𝑘𝑒𝑙)) + 𝑈𝑛0

)︃2

− (𝑈𝑛0)2. (4.18)

For the long wavelengths

𝜔k ≈
√︁

(𝐽𝑙2k2)2 + 2𝑙2𝐽𝑈𝑛0k2. (4.19)

Hence, the speed of phasons that follows from the 3D DGPE model is

𝑐𝑝ℎ = 𝑙
√︀

2𝐽𝑈𝑛0. (4.20)

Let us assume that 𝑐𝑝ℎ for the real material is known. We then use Eq. (4.20) to

estimate the DGPE nonlinearity term 𝑔 = 𝑈𝑛/𝐽 as follows:

𝑔 =
𝑈𝑛

𝐽
=

1

2

(︁𝑐𝑝ℎ
𝐽𝑙

)︁2
=

1

2

(︂
𝑐𝑝ℎ

Ω𝐷𝑎

)︂2

=
(6𝜋2)2/3

2

(︂
𝑐𝑝ℎ
𝑐𝑠

)︂2

, (4.21)

where 𝑐𝑠 ∼ (6𝜋2)−1/3Ω𝐷𝑎 is the speed of sound. As a crude estimate, one can use

𝑐𝑝ℎ ∼ 𝑐𝑠, thereby obtaining 𝑔 ∼ 10.

To summarize, our estimates for the 3D DGPE parameters for LaTe3 are: 𝐽 ∼
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1 ps−1, 𝑛 ∼ 10 . . . 40~ and 𝑔 ∼ 10.

4.3 Model system

For simulating the phase-ordering kinetics of the CDW, we use the dimensionless

Hamiltonian (1.20) and the dimensionless DGPE (1.21) with the parameters consis-

tent with the mapping to the real CDW material from Section 4.2: 𝐽 = 1, 𝑈 = 10,

𝑛 = 1, 𝑔 = 𝑈𝑛/𝐽 = 10. All 𝜓𝑗 are normalized so that 𝑛 = 𝑛𝑗 = 1. Time is also

rescaled as in Section 1.5.

Before simulating non-equilibrium quenches from the high-energy non-ordered

phase to the low-energy ordered phase, we study the equilibrium statistical prop-

erties of the 3D DGPE lattice including the ordering transition. The 3D DGPE

lattice exhibits a transition to the low-temperature ordered phase characterized by

a non-zero order parameter:

Ψ ≡ 1

𝑉

𝑉∑︁
𝑗=1

𝜓𝑗. (4.22)

Below, for comparison with the CDW experiment, we also use the parameter

∆ ≡ |Ψ|2 . (4.23)

Using the recipe from Section 1.4 for calculating the microcanonical temperature,

we identify the critical temperature of the ordering transition. The procedure is the

following. First, we initialize the state with uniform particle density |𝜓𝑗|2 = 1 for

all 𝑗 and assign random phases to each 𝜓𝑗. Such an initial condition corresponds

to energy density 𝜀 ∼ 1. Then, we bring our system to the microcanonical energy

shell with a given value of 𝜀. We do this by adding to the DGPE a special norm-

conserving, non-energy-conserving term as follows:

𝑖
𝑑𝜓𝑗

𝑑𝑡
= −

∑︁
𝑘∈NN(𝑗)

𝜓𝑘 + 𝑔 |𝜓𝑗|2 𝜓𝑗 − 𝑖𝐾(𝑡)𝜓𝑗

∑︁
𝑘∈NN(𝑗)

(︀
𝜓*
𝑘𝜓𝑗 − 𝜓𝑘𝜓

*
𝑗

)︀
, (4.24)
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where 𝐾(𝑡) is a time-dependent parameter. The last term is increasing the total

energy for 𝐾(𝑡) > 0, while lowering it for 𝐾(𝑡) < 0. We run the non-conservative

dynamics of Eq. (4.24) with relatively small 𝐾 equal to 0.01 or −0.01 in order

to increase or decrease the energy of the system respectively. When we reach the

required energy, we switch off the non-conservative term by putting 𝐾 equal to 0,

and allow the system to thermalize on the energy shell for a sufficiently long time.

Once the system has thermalized, we determine the temperature for the energy shell

using the procedure described in Section 1.4. Namely, we perform the averaging of

Φ defined by Eq. (1.10). By spanning the energy range of interest, we acquire the

dependence 𝑇 (𝜀), from which we extract the specific heat:

𝑐𝑣 ≡
𝜕𝜀

𝜕𝑇
=

(︂
𝜕𝑇

𝜕𝜀

)︂−1

. (4.25)

The phase transition is indicated by the peak of 𝑐𝑣(𝑇 ). Simultaneously, we

follow the emergence of order by computing the value of the order parameter ∆ as

a function of energy and temperature.

In Fig. 4-3, we plot 𝜀(𝑇 ), 𝑐𝑣(𝑇 ) and ∆(𝑇 ). Due to the singular dependence of

𝑇 (𝜀), the transition is rather sharp: both the symmetry breaking and the specific

heat singularity occur close to 𝑇𝑐 ≈ 1.9. In Fig. 4-4, we also demonstrate the

dependencies 𝑇 (𝜀), 𝑐𝑣(𝜀) and ∆(𝜀).

(a) (b) (c)

Figure 4-3: Signatures of the spontaneous symmetry breaking in the 3D DGPE
lattice: (a) energy density, 𝜀(𝑇 ), (b) specific heat 𝑐𝑣(𝑇 ) and (c) the order parameter,
∆(𝑇 ) as functions of temperature 𝑇 .
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(a) (b) (c)

Figure 4-4: Signatures of the spontaneous symmetry breaking in the 3D DGPE
lattice: (a) temperature, 𝑇 (𝜀), (b) specific heat 𝑐𝑣(𝜀) and (c) the order parameter,
∆(𝜀) as functions of the energy density 𝜀.

4.4 Quenching protocol

(a) (b) (c)

Figure 4-5: The non-equilibrium quench protocol. (a) energy density, 𝜀(𝑡), (b)
temperature, 𝑇 (𝑡), (c) the order parameter normalized to its equilibrium value
∆(𝑡)/∆𝑒𝑞— all as a function of time after the quench. Color represents the value of
the quenching rate 𝜅.

We choose a quenching protocol aimed at mimicking the experiment on laser-

induced melting of the CDW order [231]. In the experiment, the system is initially

at equilibrium at 𝑇 ∼ 𝑇𝑐/2. The laser pulse deposits the energy to the system and,

as a result, the temperature of the electronic subsystem initially increases but then,

once the laser pulse terminates, it starts decreasing because the energy is transferred

from electrons to phonons, which have much higher specific heat [232]. Likewise,

in our quenching protocol, we start with temperature 𝑇 ∼ 𝑇𝑐/2; the DGPE lattice

is initially heated and then cooled by using the time-dependent parameter 𝐾(𝑡) in
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Eq. (4.24). The time-dependence of 𝐾(𝑡) is chosen as a bell-shaped function which

initially increases and then decreases on the characteristic hopping timescale of the

3D DGPE. Our specific choice is:

𝐾(𝑡) = 𝜅
𝛾2𝑒

−𝛾2𝑡 − 𝛾1𝑒
−𝛾1𝑡

𝛾2 − 𝛾1
− 𝛾

(︀
1 − 𝑒−𝛾2(𝑡−𝑡*)

)︀ 𝐸(𝑡) − 𝐸0

𝐸* − 𝐸0

, (4.26)

where 𝜅 is the parameter controlling the quench strength; 𝛾 = 0.01, 𝛾1 = 1 and 𝛾2 =

0.3 are the parameters controlling the temporal profile of 𝐾(𝑡), 𝑡* = log(𝛾1/𝛾2)/(𝛾1−

𝛾2) is the time of the maximum for the first term in Eq. (4.26), 𝐸0 is the initial

energy of the system, 𝐸(𝑡) is the energy at time 𝑡, and 𝐸* = 𝐸(𝑡*). The quenching

procedure conserves ⟨|𝜓𝑗|2⟩ corresponding to 𝑛 = 1. For further details one can refer

to the source code published in a GitHub repository1.

In Fig. 4-5, we illustrate how the typical quenching protocol is implemented.

By tuning the controlling parameter 𝜅, we change the amount of energy pumped

into the system during the quench. In Fig. 4-5a, the time-dependent energy density

profile is shown. In Fig. 4-5b, we plot the temperature that would correspond to

the monitored energy dependence if, at each moment of time, the system were at

equilibrium. For this purpose we use the function 𝑇 (𝜀) plotted in Fig. 4-4a. For

𝜅 > 0.5, there is a time range, where the energy and temperature of the system are

above the critical values associated with the ordering phase transition. In Fig. 4-5c,

it can be seen how the monitored order-parameter disappears and then reappears

in the course of the quench.

We expect that the dynamics of the DGPE lattice in the quenching protocol

described above corresponds to the dynamics of the real CDW material only in the

regime where the DGPE is exiting the quench, i.e. at times 𝑡 > 3.

4.5 Simulation of non-equilibrium quenches

In Fig. 4-6, we show the behavior of the order parameter relaxation back to equilib-

rium for the 3D DGPE cubic lattices of sizes 𝑉 = 20 × 20 × 20, 𝑉 = 30 × 30 × 30,
1The code used for the analysis in the present Thesis is published in a GitHub repository at

https://github.com/TarkhovAndrei/DGPE
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(a) (b) (c)

(d) (e) (f)

Figure 4-6: System size scaling of the order parameter recovery after the quench:
∆(𝑡)/∆𝑒𝑞 for almost identical quenching protocol 𝑇 (𝑡). Upper panel: 𝑇 (𝑡). Lower
panel: ∆(𝑡)/∆𝑒𝑞. The system sizes: (a,d) 𝑉 = 203, (b,e) 𝑉 = 303, (c,f) 𝑉 = 403.
Color represents the value of the quenching rate 𝜅.

𝑉 = 40 × 40 × 40.

Although, the quenching protocol is the same for all three lattices, the recovery

time of the order parameter is strongly affected by the system size for the quenches

crossing the phase transition. As argued in the next section, this is the result of the

influence of topological defects on the recovery of the order parameter, in conceptual

agreement with the Kibble-Zurek mechanism [125–128].

Overall, the quench response of the 3D DGPE lattice presented in Fig. 4-6 is

strongly reminiscent of the experimental behavior shown in Fig. 4-1.
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4.6 Topological defects induced by the quench

4.6.1 Definition of vorticity for the 3D DGPE lattice

Figure 4-7: Example of a DGPE plaquette with vorticity 𝑄0 = 1 according to
Eq. (4.30).

The discrete Gross-Pitaevskii equation (1.21) can be considered as a finite-

difference approximation to the continuous Gross-Pitaevskii equation:

𝑖
𝜕𝜓(r, 𝑡)

𝜕𝑡
= −∇2𝜓(r, 𝑡) + 𝑔 |𝜓(r, 𝑡)|2 𝜓(r, 𝑡), (4.27)

where 𝜓(r, 𝑡) =
√︀
𝑛(r, 𝑡) exp (𝑖𝜃(r, 𝑡)). One can introduce the current density:

j(r, t) ≡ −𝑖 (𝜓*(r, 𝑡)∇𝜓(r, 𝑡) − 𝜓(r, 𝑡)∇𝜓*(r, 𝑡)) = 2𝑛∇𝜃(r, 𝑡), (4.28)

and the velocity of the condensate flow vs(r, 𝑡) ≡ ∇𝜃(r, 𝑡). The system is irrotational

in the absence of vortices, that is ∇× vs(r, 𝑡) = 0 [244]. When a vortex is present,

∇× vs(r, 𝑡) ̸= 0 in the core of the vortex. The flux of ∇× vs(r, 𝑡) through a chosen
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surface is quantized:

∫︁∫︁
(∇× vs, 𝑑S) =

∮︁
(vs, 𝑑l) =

∮︁
∇𝜃𝑑l = 2𝜋𝑄, (4.29)

where 𝑄 is the topological charge.

Figure 4-8: A non-contractible loop percolation as the reason for the symmetry
breaking in the 3D DGPE lattice. Black line—the order parameter, ∆(𝜀), as func-
tions of the energy density, red line—the presence of a non-contractible closed-loop
vortex in the system (0—no such loop, 1—the loop has percolated). The system’s
volume 𝑉 = 303.

In the discrete case, we define the vorticity using the topological charge of each

square plaquette formed by 4 adjacent sites. As an example, a cubic unit cell with

8 lattice sites as its vertices contains 6 differently oriented plaquettes, which are the

faces of this cube. Thus, each lattice site on a 3D cubic lattice contributes to 8 thus

defined plaquettes.

We define the topological charge (vorticity) of a plaquette such that it can have

values 0, 1,−1. This definition is implemented as follows. Recalling that for each

lattice site 𝜓𝑗 =
√
𝑛𝑗 exp (𝑖𝜃𝑗), we obtain the vorticity for a chosen plaquette by
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enumerating its vertices as 1, 2, 3, 4, then defining the vorticity 𝑄0 of the plaquette

as:

𝑄0 =
1

2𝜋
[ (𝜃2 − 𝜃1)|mod 𝜋 + (𝜃3 − 𝜃2)|mod 𝜋 +

+ (𝜃4 − 𝜃3)|mod 𝜋 + (𝜃1 − 𝜃4)|mod 𝜋].

(4.30)

In Fig. 4-7, we demonstrate an example of a plaquette with vorticity 𝑄0 = 1.

In order to analyze the spatial configurations of vorticity, we define the dual

lattice, which is obtained by translating the original lattice by vector (1/2, 1/2, 1/2).

Thus, each of the sites of the dual lattice finds itself surrounded by 8 sites of the

original lattice, which form 6 plaquettes. We further introduce a binary measure of

vorticity 𝑄𝑗 for the dual lattice defined such that 𝑄𝑗 = 0 if all adjacent plaquettes

have zero vorticity, and 𝑄𝑗 = 1 otherwise. Finally, we introduce the average vorticity

𝑄𝑎𝑣 for the entire dual lattice as

𝑄𝑎𝑣 =

∑︀𝑉
𝑗 𝑄𝑗

𝑉
. (4.31)

In addition, in the pictorial representation, we use variable u𝑗, which is the finite

difference analog of the curl ∇× vs(r, 𝑡) for each dual lattice site.

In Fig. 4-8, we demonstrate that the spontaneous symmetry breaking coincides

with the percolation of a non-contractible closed-loop vortex through the whole

system. The vortex is called non-contractible, when it crosses the whole system and

closes via the periodic boundary conditions.

In Fig. 4-9, we illustrate how the mapping of Eq. (4.3) from the CDW order

parameter to the DGPE lattice transforms the topological defects of the CDW,

dislocations, to the DGPE topological defects, vortices.

4.6.2 Monitoring the vorticity in the course of the quench

In Fig. 4-10, we present the evidence that the emergence of vortices is responsible

for the slowing down of the order parameter recovery after a strong quench for
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(a) (b)

Figure 4-9: Mapping of the topological defects of the CDW to the DGPE lattice: (a)
a dislocation of the CDW order, 𝑢(r) exp (𝑖𝜑(r)), plotted as a 2D map of the elec-
tronic density modulation defined by Eq. (4.1)—white and black represent the CDW
regions with the increased and decreased electronic density respectively, (b) a vortex
of the DGPE lattice corresponding to the CDW dislocation after the mapping—each
arrow represents 𝜓𝑗.

(a) (b)

Figure 4-10: Illustration of the role of topological defects in the slowing down of
the order parameter recovery for 𝑉 = 503: (a) order parameter normalized to its
equilibrium value ∆(𝑡)/∆𝑒𝑞 as a function of time; (b) the average vorticity 𝑄𝑎𝑣(𝑡)
for the same system. Color represents the value of the quenching control parameter
𝜅 as indicated in the plot legend. The states corresponding to the three points (red,
pink, blue) in each of the plots are to be analyzed below in more detail.
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(a) Snapshot for the blue dot in Fig. 4-10

(b) Snapshot for the pink dot in Fig. 4-10

(c) Snapshot for the red dot in Fig. 4-10

Figure 4-11: Snapshots of vorticity for three individual quenches at time 𝑡 = 28[𝐽−1]
and 𝑉 = 503, marked in Fig. 4-10 by (a) blue dot, 𝜅 = 0.7, (b) pink dot, 𝜅 = 1.14,
(c) red dot, 𝜅 = 1.44. Each row contains three 2D projections of the same 3D lattice.
Yellow color is used to depict the core of closed-loop vortices. As a guide-to-eye, we
plot u𝑗, the finite difference approximation of the vorticity, as black arrows. The
full video for the pink dot is available by the link https://youtu.be/0amCQ_QDqN0.

the DGPE lattice with size 𝑉 = 50 × 50 × 50. The time-dependence of the order

parameter for a range of quenching strengths is presented in Fig. 4-10a. In Fig. 4-

10b, one can see that the quenches with the pronounced slowing down of the recovery

are accompanied by the high value of the average vorticity 𝑄𝑎𝑣(𝑡).

In Fig. 4-11, we provide a space-resolved view of the vorticity generated in the
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course of the above quenches. Specifically, we present three 2D projections of the 3D

snapshots of the vorticity for three different states marked in Fig. 4-10 by blue, pink

and red dots. Fig. 4-11a illustrates a weak quench, for which the order parameter

recovers quickly. One can see that the system does have regions of non-zero vorticity,

but these regions are small and disconnected. On the contrary, Figs. 4-11b and 4-11c

present snapshots for strong quenches, in which one can see much stronger vorticity

percolating through large volumes of the system and forming clearly identifiable

large vortex loops.

Fig. 4-12 illustrates the full time-evolution of the system presented in Fig. 4-11c

and marked in Fig. 4-10 by the red dot. It shows that the vortex loops indeed evolve

very slowly, which is consistent with the slow recovery of the order parameter. For

comparison, in Fig. 4-13, we illustrate the time-evolution of the system of the small

vorticity case pictured in Fig. 4-11a and marked in Fig. 4-10 by the blue dot. In

this case, there are no large vortices, while all smaller vortices already disappeared

by 𝑡 = 18.

4.7 Ergodization time estimates

In this Section, we illustrate that the slowing down of the order parameter recovery

is not related to an anomalously long local ergodization time in the underlying

equilibrium states. For this purpose, we apply the results of Chapters 2 and 3.

Namely, we implement the Loschmidt echoes for a 3D DGPE lattice with volume

𝑉 = 103, from which we extract the largest Lyapunov exponent 𝜆max from Eq. (2.2)

and the OTOC parameter Λ from Eq. (3.3). In Fig. 4-14, we plot the values of 𝜆max

and Λ as functions of the energy density in the range 𝜀 ∈ (−6, 4). We observe that

the difference between them is insensitive to the phase transition, and, overall, does

not indicate an anomalously long local ergodization time according to Eq. (3.22),

𝜏𝑒𝑟𝑔 = Λ−𝜆max

𝜆2
max

𝑑2. The value of 𝜏𝑒𝑟𝑔 in all cases is smaller than 0.4.[𝐽−1] for the whole

energy range, thus it is much shorter than the typical post-quench order-parameter

recovery times. This finding is consistent with the remark made in Section 3.1.1

that the ergodization time characterizes the dynamics of the system on the spatial
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scale of a few lattice sites. Thus, it is not sensitive to the very slow relaxation of

large-scale topological objects.

4.8 Discussion

In the preceding sections, a hypothesis that topological defects slow down the es-

tablishing of phase-coherence of CDW in the experiment on the laser-induced melt-

ing [231] was tested by direct simulations of the 3D DGPE lattice. Although, the

DGPE is an over-simplified model for the CDW phase dynamics, our simulations

have captured the important physics of the experiment.

Among the main limitations of applying the 3D DGPE lattices for studying the

establishing CDW phase coherence is that the DGPE is isolated from the environ-

ment and there is no external environmental noise in the system. Moreover, the ionic

lattice is incorporated into the simulations artificially by modulating the quenching

rate 𝐾(𝑡) so that the system after quench equilibrates back to its initial energy.

The CDW amplitude relaxation is also missed in the DGPE model, hence, strictly

speaking, the DGPE is applicable only after the CDW amplitude has recovered.

The simulations support the hypothesis that after photo-excitation of the CDW,

topological defects are excited, and their slow annihilation dominates the process of

establishing long-range phase coherence. The recovery rate of the 3D DGPE lattice

is affected by the creation of topological defects in the form of closed-loop vortices,

whose lifetime grows with increase of their length.

Finally, we would like to emphasize the conceptual difference between the present

setting of strong photo-excitation quenches from the theoretical setting associated

with the Kibble-Zurek mechanism. In the setting for the Kibble-Zurek mechanism,

the system starts from a high-temperature equilibrium state. In contast, in our

setting the high-energy state reached in the course of the quench is strongly out-

of-equilibrium. Whether this circumstance leads to the differences of the generated

defects requires further investigation.
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(a) Snapshot at time 𝑡 = 8[𝐽−1]

(b) Snapshot at time 𝑡 = 18[𝐽−1]

(c) Snapshot at time 𝑡 = 28[𝐽−1]

(d) Snapshot at time 𝑡 = 38[𝐽−1]

Figure 4-12: Snapshots for the post-quench time evolution of vortices in Fig. 4-10
for 𝜅 = 1.44 (the red dot), 𝑉 = 503 for (a) 𝑡 = 8[𝐽−1], (b) 18[𝐽−1], (c) 28[𝐽−1],
(d) 38[𝐽−1]. Each row contains three 2D projections of the same 3D lattice. Yellow
color depicts the core of closed-loop vortices. As a guide-to-eye, we plot u𝑗, the
finite difference approximation of the vorticity, as black arrows. The full video is
available by the link https://youtu.be/xCP1F8gYDtk.
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(a) Snapshot at time 𝑡 = 8[𝐽−1]

(b) Snapshot at time 𝑡 = 18[𝐽−1]

(c) Snapshot at time 𝑡 = 28[𝐽−1]

(d) Snapshot at time 𝑡 = 38[𝐽−1]

Figure 4-13: Snapshots for the post-quench time evolution of vortices in Fig. 4-10
for 𝜅 = 0.7 (the blue dot), 𝑉 = 503 for (a) 𝑡 = 8[𝐽−1], (b) 18[𝐽−1], (c) 28[𝐽−1],
(d) 38[𝐽−1]. Each row contains three 2D projections of the same 3D lattice. Yellow
color depicts the core of closed-loop vortices. As a guide-to-eye, we plot u𝑗, the
finite difference approximation of the vorticity, as black arrows. The full video is
available by the link https://youtu.be/YVyuQi2KCmw.
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Figure 4-14: Estimating the ergodization time of the 3D DGPE lattice for the energy
range containing a spontaneous symmetry breaking. The results of Loschmidt echoes
simulations: (red line) the largest Lyapunov exponent 𝜆max from Eq. (2.2), and
(green line) Λ from Eq. (3.3) as functions of the energy density, 𝜀. The difference
Λ − 𝜆max is proportional to the ergodization time according to Eq. (3.22).
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A first draft, made in pencil, filled several blue cahiers of the kind used

in schools, and upon reaching the saturation point of revision presented

a chaos of smudges and scriggles. To this corresponded the disorder of

the text which followed a regular sequence only for a few pages, being

then interrupted by some chunky passage that belonged to a later, or

earlier, part of the story.

—Vladimir Nabokov,

Look at the Harlequins!Chapter 5

Conclusions and outlook

In the present Thesis, we studied the ergodization dynamics of the discrete Gross-

Pitaevskii equation on a lattice. The main results reported in the Thesis are:

1. We proposed an experimentally realizable method to demonstrate Lyapunov

instability and extract the largest Lyapunov exponent by monitoring equilib-

rium noise of virtually any observable quantity before and after time reversal

of dynamics (Loschmidt echo). The method was validated numerically for the

one-, two- and three-dimensional DGPE lattices. We discussed its possible

experimental implementation with ultracold bosonic atoms in optical lattices.

A successful realization of our proposal may produce the long-sought direct

experimental evidence that the dynamics of a typical many-particle system

is chaotic. This would put the theory of dynamic thermalization on a firmer

foundation.

2. We introduced a new characteristic time of ergodization as the time required to

detect the largest Lyapunov exponent of the system. The quantity that needs

to be monitored in order to extract the above ergodization time is the classical

counterpart of the so-called quantum out-of-time-order correlators (OTOCs).

We demonstrated that the exponential growth rate of an OTOC systemati-

cally exceeds the largest Lyapunov exponent of the system and showed that

this difference becomes smaller with the increase of the dimensionality of the

lattice. We put forward a practical criterion of whether the dynamics of the
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system ergodizes over the times accessible by Loschmidt echoes.

3. We numerically investigated the dynamic thermalization of the 3D DGPE after

fast thermal quenches across the second-order phase transition associated with

a spontaneous symmetry breaking. We showed that topological defects emerge

in this process and significantly slow down the phase relaxation of the system.

At the same time, we showed that the dynamics of the system remains locally

ergodic. The results of our simulations explain the recent experiment on laser-

induced melting of a charge-density wave in LaTe3. We thus demonstrate that

the 3D DGPE can be used to simulate the dynamic thermalization in CDW

materials.

Overall, the ergodization process in a many-particle system cannot be charac-

terized by a single timescale. The findings of this Thesis support the view that the

ergodization dynamics of many-particle systems is hierarchical in terms of timescales.

At faster timescales, the Lyapunov process is dominant: it can be used to quantify

the ergodization timescale relevant to establishing the local quasi-equilibrium. Our

findings further indicate that on very long timescales, the appearance and disappear-

ance of large topological objects are one of the factors determining the approach to

the true equilibrium.

In the future, we plan a more detailed investigation of the microcanonical ther-

modynamics of the DGPE lattices. Specifically, we will study the thermodynamic

regimes, where the assumptions of additivity and extensivity in the DGPE lattices

are broken. Further investigations of non-equilibrium quenches in the presence of

disorder are also planned.
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