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Abstract

In machine learning and optimization tasks, it is common for data to have an un-

derlying geometrical structure, usually realized in the form of a low-dimensional

underlying manifold or specific inductive biases, e.g., presumed hierarchical nature

of data. Utilization of this structure often leads to performance improvement or

allows one to draw new insights and design better algorithms. This thesis is built

upon a series of papers devoted to theoretical and practical results in deep learn-

ing and numerical optimization achieved via the application of ideas from such

fields as algebraic and differential geometry, tensor analysis, and hyperbolic geome-

try. Concretely, we utilize such tools as Riemannian optimization, desingularization

of singular manifolds, topological data analysis, persistent homology, Gromov �-

hyperbolicity, and several others. We start with a new optimization algorithm on

matrix manifolds, allowing one to deal with a challenging problem of singular points

and curvature blow up. Then we move to tensor manifolds and discuss intriguing

connections of the geometry of these manifolds with theoretical properties of recur-

rent neural networks (RNNs). We extend these results to the class of generalized

tensor decompositions and RNNs with rectifier nonlinearity. For practical applica-

tions, we show how universal adversarial perturbations for neural networks can be

designed employing matrix analysis. We propose a new way to estimate the qual-

ity of generative models by comparing the topological properties of the underlying

data manifold and generated manifolds. We introduce hyperbolic geometry to the

computer vision area and evaluate our ideas on the few-shot learning tasks.
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Chapter 1

Introduction

1.1 Theoretical analysis of neural networks

1.1.1 Depth e�ciency of neural networks

One of the biggest challenges in modern deep learning is achieving a better un-

derstanding of the theory underlying many empirically observed phenomena. A

particularly important open problem is achieving a better understanding ofuniver-

sality and expressivityof neural networks. Classical works [Cybenko, 1989, Hornik

et al., 1989] demonstrated that neural networks areuniversal approximators, i.e., in-

formally, they can approximate any given function with arbitrary precision. These

results, however, are not practical, as the constructed networks are shallow � they

have only one hidden layer. On the other hand, there is mounting empirical evidence

that for a given budget of resources (e.g., neurons), the deeper one goes, the better

the eventual performance will be. It is widely believed that recent progress in many

�elds, e.g., Computer Vision (CV) and Natural Language Processing (NLP), in large

part, can be attributed to the increase of the depth of networks [He et al., 2016,

Dai et al., 2019, Vaswani et al., 2017, Simonyan and Zisserman, 2014]. Moreover,

there is evidence that the inde�nite increase of the depth of a network only improves

the test accuracy [Nakkiran et al., 2019], which, at �rst sight, contradicts the stan-

dard bias-variance tradeo� paradigm in classical statistics. Older results such as

[Hastad, 1986, Håstad and Goldmann, 1991, Delalleau and Bengio, 2011, Martens
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Chapter 1. Introduction 1.1. Theoretical analysis of neural networks

and Medabalimi, 2014] only apply to speci�c types of networks, and not common

architectures such as Convolutional Neural Networks (CNNs)[LeCun et al., 1990].

A big step towards a better understanding of depth e�ciency of CNNs was made

in [Cohen et al., 2016] and further extended in [Cohen and Shashua, 2016]. They

addressed the following question: is depth e�ciencytypical in the space of neural

networks? This is formalized as follows: given a neural network, let us consider the

equivalent shallow network(i.e., a neural network of width one, realizing the same

function). We say that the original network is exponentially more expressive than

the obtained shallow network if the latter has an exponentially large width with

respect to the width of the former network. Can we understand how often this is

the case? The authors of [Cohen et al., 2016] demonstrated that this property holds

for CNNs with multiplicative nonlinearities, besides a set of measure zero. Their

analysis is based on the formalism of tensor decompositions, which is one of the key

concepts in this thesis.

1.1.2 Tensor Decompositions

In modern deep learning and numerical analysis it is common to work with data

tensors, i.e., multi-way arrays X 2 RI 1 � I 2 :::� I d . As the number of modesd increases,

the number of parameters grows exponentially. When the number of possible con�g-

urations is huge, much larger than our number of examples, it becomes statistically

di�cult to say something meaningful. This is also known as thecurse of dimen-

sionality. Despite the curse of dimensionality, algorithms may be developed based

on the assumptions that real data will often be con�ned to a region of the space

having lower e�ective dimensionality, in the directions over which important vari-

ations in variables occur. One of the most appealing approaches for this is based

on the apparatus of tensor networks (or tensor decompositions) [Vasilescu and Ter-

zopoulos, 2002, 2003, Cichocki et al., 2016, 2017, Orús, 2014]. Informally, a tensor

network allows one to e�ciently represent a tensor by a network of smaller building

blocks (often) arranged based on a pre-speci�ed tree-like pattern. Some exam-

ples are CANDECOMP/PARAFAC (CP) decomposition [Harshman, 1970, Carroll

and Chang, 1970], Tensor Train (TT) decomposition [Oseledets, 2011], Hierarchi-

10



Chapter 1. Introduction 1.2. Practical applications of geometrical ideas

cal Tucker (HT) decomposition [Grasedyck, 2010], Tensor Ring (TR) decomposition

[Zhao et al., 2016]. Vasilescu and Kim [2019], Vasilescu et al. [2020] compute a part-

based compositional hierarchical data tensor decomposition for arbitrary shapes

and sizes that has an architecture that parallels the CNN architecture. Importantly,

spaces of tensor networks often (in the case of general HT decomposition) formal-

gebraic sets. These are sets that are speci�ed by polynomial equations and can be

well studied using the apparatus of Algebraic Geometry (AG) [Hartshorne, 2013,

Shafarevich and Hirsch, 1994].

In Cohen et al. [2016] the authors found a link between the (binary) HT decom-

position and CNNs, while CP decomposition corresponded to shallow nets. They

showed that such a CNN can only be represented by anexponentially wide shallow

network. This means that a tensor represented in the HT format with probability

one has an exponentially high CP rank. This analysis was also extended to CNNs

with Recti�ed Linear Unit (ReLU) nonlinearities in [Cohen and Shashua, 2016]. In

this case, the expressivity resultnot alwaysholds; there exists an open set of CNN's

equivalent to rank one shallow network.

The �rst part of this thesis is devoted to understanding whether similar results

hold for Recurrent Neural Networks (RNNs)[Rumelhart et al., 1986]. We explore

connections between multiplicative and generalized RNNs and TT decomposition in

Chapter 2 and Chapter 3, respectively.

1.2 Practical applications of geometrical ideas

1.2.1 Riemannian optimization

Suppose that we are given an optimization task, where the variable belongs to a

manifold. In order to capitalize on this knowledge, the apparatus of Riemannian

optimization was developed [Absil et al., 2009, Uschmajew and Vandereycken, 2020]

and recently reintroduced in the area of deep learning [Fonarev et al., 2017, Bécigneul

and Ganea, 2018]. Traditionally, Riemannian optimization is applied to problems

dealing with matrix or tensor variables, such as ordinary or partial di�erential equa-

tions, tensor or matrix completion, tensor, or matrix approximation. In these cases,

11



Chapter 1. Introduction 1.2. Practical applications of geometrical ideas

we assume that the data lies in a subspace that can be approximated by the low-rank

matrix structure or the low-rank TT structure for a tensor. For instance, in the task

of matrix completion, one attempts to reconstruct the missing data based on given

entries, which is an ill-posed task without any assumptions on the data structure.

Riemannian optimization methods have been very successful in dealing with these

problems [Vandereycken, 2013, Kressner et al., 2014, Lubich et al., 2013]. Another

bene�t of the usage of matrix/tensor factorized variables is the great reduction in

the required memory footprint and computational power [Rakhuba and Oseledets,

2016]. For instance, in the case of TT decomposition, the number of parameters falls

down to logarithmic with respect to the number of parameters in the full tensor. In

the common cases of low-rank matrix and tensor manifolds, however, exists a cer-

tain challenging problem related to the nature of these manifolds. Speci�cally, these

manifolds contain singular points, where the tangent space is not de�ned, and the

curvature term, appearing in second-order optimization methods, tends to in�nity.

Traditional methods [Vandereycken, 2013] ignore this issue by setting the curvature

term to zero, which leads to subpar performance. In Chapter 4 we discuss the way

to resolve this issue by utilizing the concept of desingularization from AG.

1.2.2 Generative modeling

In practice, however, the true underlying data manifold is not known. This is the

case, for instance, for visual datasets such as ImageNet [Krizhevsky et al., 2012] or

CIFAR10 [Krizhevsky and Hinton, 2009]. The task of generative modeling is con-

cerned with the following problem. Given a dataset sampled from some unknown

distribution, can we learn a model to generate more samples from the same distri-

bution? Recent progress in this �eld is mostly based on the rapid development of

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014a]. Recent mod-

els, e.g., StyleGAN [Karras et al., 2019] or BigGAN [Brock et al., 2019], are able to

produce samples of excellent quality. Such models are particularly useful when data

is limited, and collecting new samples is costly. E.g., one interesting application of

GANs was found in particle physics [Paganini et al., 2018, Chekalina et al., 2019].

One of the biggest challenges in GAN research is estimating quality of the model.

12



Chapter 1. Introduction 1.2. Practical applications of geometrical ideas

Compared to previous generative models (producing samples of lower visual quality)

such as Variational Autoencoders (VAEs) [Kingma and Welling, 2013], GANs have

no explicit optimization objective. In order to estimate their quality several metrics

were proposed: Inception score [Salimans et al., 2016a], Frechét Inception Distance

[Heusel et al., 2017], Kernel Inception Distance [Bi«kowski et al., 2018], Multiscale

Intrinsic Distance [Tsitsulin et al., 2020]. Typically, such metrics rely on a pre-

trained network, e.g., Inception [Szegedy et al., 2015b]. In Chapter 5, we introduce

an approach to estimate the quality of a generative model, using the apparatus of

Topological Data Analysis (TDA).

1.2.3 Hyperbolic geometry

In certain cases, it is possible to make assumptions on what is the natural geometry

of data at hand. In particular, this is the case when we deal with hierarchical data,

such as various taxonomies. For instance, the existence of power-law distributions

in datasets can often be traced back to hierarchical structures [Ravasz and Barabási,

2003]. The celebrated work [Krioukov et al., 2010] demonstrated that many prop-

erties of complex networks could be explained under the hypothesis that hyperbolic

space underlies these networks. These networks (graphs) can be characterized by

the following two properties:

1. Power-law degree distribution;

2. Strong clustering properties.

Formally, n-dimensional hyperbolic space denoted asHn is de�ned as the homoge-

neous, simply connectedn-dimensional Riemannian manifold of constant negative

sectional curvature. The property of constant negative curvature makes it anal-

ogous to the ordinary Euclidean sphere (which has constant positive curvature);

however, the geometrical properties of the hyperbolic space are very di�erent. The

authors demonstrated that these two properties emerge as a simple consequence of

the negative curvature of the hyperbolic space.

Hyperbolic geometry was reintroduced to the machine learning community in

Nickel and Kiela [2017]. The authors applied it to learning taxonomies (such as

13



Chapter 1. Introduction 1.3. Summary of papers

WordNet) in the Poincaré ball model of hyperbolic space and demonstrated the

superior quality of hyperbolic embeddings relative to Euclidean ones. This model

was later extended to the Lorentz model of hyperbolic geometry [Nickel and Kiela,

2018b]. Recent developments [Ganea et al., 2018, Skopek et al., 2019] demonstrated

that it is possible to design completely hyperbolic neural networks using the appa-

ratus of gyrovector spaces and even build hyperbolic VAEs, where the latent distri-

bution is supported in the hyperbolic space. Additional applications were found in

Recommender Systems [Tran et al., 2018] and language modeling [Gulcehre et al.,

2019]. The results above, however, are limited to models dealing with discrete data.

In Chapter 6, we discuss our approach on learning hyperbolic embeddings for various

visual tasks.

1.3 Summary of papers

1.3.1 Expressive Power of Recurrent Neural Networks

In this paper, we analyze the expressivity properties of RNNs, capitalizing on the

machinery developed in Cohen et al. [2016]. We consider RNNs with multiplicative

nonlinearity, speci�cally, the hidden state is updated as follows.

hn+1 =
X

ij

Gijk hn
i xn

j ; (1.1)

where hn is the hidden state at time stepn, xn is the current input, and Gijk is

a trainable weight tensor. We show their connection to TT decomposition and

translate analysis of their expressivity to a statement about the manifold of tensors

represented in the TT format. We utilize the fact that this manifold forms an al-

gebraic variety and show that given a randomD-way tensor represented in the TT

format (with arbitrary ranks), with probability 1, this tensor will have a CP-rank

exponential in D. CP-rank of a tensor is de�ned as the number of terms in the CP

decomposition of a tensor. Note that in this case, we consider two di�erent decom-

positions of the same tensor and �nd a connection between their complexities. On

the language of deep learning, this means that RNNs with multiplicative nonlinear-
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Chapter 1. Introduction 1.3. Summary of papers

ities with probability one is equivalent to exponentially wideshallow network, i.e.,

they are exponentially more expressive. We additionally compare the expressivity of

CNNs and RNNs, corresponding to HT and TT decompositions, respectively. Our

numerical experiments with these architectures con�rm our theoretical �ndings and

demonstrate the superiority of RNNs over the shallow networks in the sense of test

accuracy.

1.3.2 Generalized Tensor Models for Recurrent Neural Net-

works

This work is the follow up of our previous paper, �Expressive power of recurrent

neural networks�. Networks considered in the latter utilized multiplication as non-

linearity, which, though used in practice [Wu et al., 2016], is not very popular. We

extend our analysis to more practical ReLU nonlinearities. This makes the analysis

much more intricate since we cannot simply rely on the known results in algebraic ge-

ometry (which only deals with polynomials). We utilize so-calledgeneralized tensor

decompositionswhich introduce an arbitrary commutative and associative operator

� (�; �). For the case of� (x; y) = xy, we get standard tensor decompositions. Fol-

lowing [Cohen and Shashua, 2016] we use the apparatus ofgrid tensors (grid of

values). Rather than comparing two functionsexactly, an RNN and the correspond-

ing shallow network are compared on a large but �nitegrid of points. Our main

results are twofold. Firstly, we show that ReLU RNNs are universal, i.e., that can

represent any possible function (on a �xed grid of points). Secondly, we show that

they are expressive, but only to some extent: even though there exist exponentially

expressive RNNs, there also exists an open set of non-expressive RNNs, equivalent

to thin shallow networks. Our numerical experiments demonstrate that the e�ect of

inexpressiveness becomes negligible as we increase the depth/width of ReLU RNNs.
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1.3.3 Desingularization of Bounded Rank Matrix Sets

The low-rank matrix manifold de�ned as

M � r =
�

A 2 Rn� m : rank(A) � r
	

;

often appears in practical tasks, such as matrix completion or recommender systems

[Vandereycken, 2013]. An appealing tool for solving optimization problems on this

manifold is the framework of Riemannian optimization [Vandereycken, 2013, Absil

et al., 2009], which allows to e�ciently capitalize on the available manifold data,

such as the tangent space. In order to speed up the convergence, it is common to

utilize second-order methods (e.g., Newton method on manifolds). However, when

dealing with the low-rank matrix manifold, second-order Riemannian optimization

methods su�er from the so-called curvature blow up. Speci�cally, the curvature

term of M � r at a point X is proportional to � � 1, where � denotes the truncated

(at rank r ) singular values ofX . When X approaches a matrix of strictly smaller

rank, this term tends to in�nity. To alleviate this problem, we utilize the concept

of desingularization, a well-known technique in algebraic geometry. Informally, we

move the optimization problem from this singular set to a new, smooth manifold,

which, however, is intimately related to an original manifold. Concretely, we use the

following manifold:

cM r =
�

(A; Y ) 2 Rn� m � Gr (m � r; m) : AY = 0
	

;

here Gr denotes theGrassmann manifold. It is easy to see that we can `lift' op-

timization problems from M � r to cM r , which is, as we prove, a smooth manifold.

Using these observations, we build a second-order method oncM r and show how

to implement it e�ciently. We conclude with numerical experiments which demon-

strate the superiority of our method compared to more traditional ones, such as

truncated Newton method [Absil et al., 2009] or Riemannian conjugate gradient

[Smith, 1994].
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1.3.4 Geometry Score: A Method For Comparing Generative

Adversarial Networks

In this work, we attack the problem of evaluation of the quality of generative models,

in particular, GANs. Our analysis is inspired by the Manifold Hypothesis [Good-

fellow et al., 2016]. Informally, it states that any real-life data is supported on a

small dimensional manifold. Thus, if we have some generative model, we expect the

generated manifoldto at least be close to the original manifold in `shape'. However,

how to quantify the di�erence in shapes of two manifolds, to which we do not have

direct access? We use Topological Data Analysis (TDA) in order to achieve this.

On a very high level, we construct an approximation of manifolds usingsimplicial

complexes� primitive spaces built out of simplexes. Note, however, that the task

of reconstruction of a manifold given simples from it is ill-posed: it could have been

a discrete set of points or a single blob. To alleviate this, the reconstruction hap-

pens at all possible scalesat once, tracking the evolution from a discrete set to a

connected space. After simplicial complexes are built, we compute their topological

properties, namelypersistent homology[Ghrist, 2008]. Homology, widely used in

algebraic topology, represents certain properties of a manifold shape, concretely, the

number of holes in it. Persistent homology allows one to �nd an approximation of

this characteristic for a sequence of simplicial complexes, as described above. We

then compare real data and generated data by comparing their topological charac-

teristic, and build a new metric termedGeometry Score. We show that it allows us

to distinguish between spaces of various shapes and compare GANs (even applied

to non-visual data, where such metrics as FID and Inception Distance are not ap-

plicable). We �nd that in cases when Inception Score fails, our metric still allows

distinguishing between two generative models.

1.3.5 Hyperbolic Image Embeddings

Hyperbolic geometry, recently introduced to the Machine Learning community in

[Nickel and Kiela, 2017], was shown to be very successful in tasks of graph/taxonomy

embeddings and several NLP problems. There was, however, no extension to the
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visual domain. In this work, we argue that hyperbolic geometry may be bene�cial

for certain image-based tasks as well. We start by analyzing whether the visual

datasets contain hyperbolic structure. Our primary tool for this is� -Hyperbolicity

introduced in [Gromov, 1987]. It allows us to estimate the `degree' to which the

given dataset is hyperbolic, and we �nd that this degree is quite high in such datasets

as CIFAR10, CUB, and MiniImageNet. We additionally suggest a new data-based

approach for estimation of the hyperparameterc, inversely related to the curvature of

hyperbolic space, which is necessary when building hyperbolic models. We show how

standard pipelines forfew-shot learningand re-identi�cation tasks can be modi�ed

to incorporate hyperbolic geometry and perform extensive numerical experiments.

We �nd that even simple Euclidean models, when modi�ed to hyperbolic geometry,

can perform on the level of state-of-the-art models.
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Chapter 2

Expressive Power of Recurrent

Neural Networks

2.1 Introduction

Deep neural networks solve many practical problems both in computer vision via

Convolutional Neural Networks (CNNs) [LeCun et al., 1995, Szegedy et al., 2015b,

He et al., 2016] and in audio and text processing via Recurrent Neural Networks

(RNNs) [Graves et al., 2013, Mikolov et al., 2011, Gers et al., 1999]. However,

although many works focus on expanding the theoretical explanation of neural net-

works success [Martens and Medabalimi, 2014, Delalleau and Bengio, 2011, Cohen

et al., 2016], the full theory is yet to be developed.

One line of work focuses onexpressive power, i.e. proving that some architec-

tures are more expressive than others. [Cohen et al., 2016] showed the connection

between Hierarchical Tucker (HT) tensor decomposition and CNNs, and used this

connection to prove that deep CNNs are exponentially more expressive than their

shallow counterparts. However, no such result exists for Recurrent Neural Networks.

The contributions of this paper are three-fold.

1. We show the connection between recurrent neural networks and Tensor Train

decomposition (see Sec. 2.4);

2. We formulate and prove the expressive power theorem for the Tensor Train
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decomposition (see Sec. 2.5), which � on the language of RNNs � can be

interpreted as follows: to (exactly) emulate a recurrent neural network, a

shallow (non-recurrent) architecture of exponentially larger width is required;

3. Combining the obtained and known results, we compare the expressive power

of recurrent (TT), convolutional (HT), and shallow (CP) networks with each

other (see table 2.2).

Figure 2-1: Recurrent-type neural architecture that corresponds to the Tensor Train
decomposition. Gray circles are bilinear maps (for details see section 2.4).

2.2 Deep Learning and Tensor Networks

In this section, we review the known connections between tensor decompositions

and deep learning and then show the new connection between Tensor Train decom-

position and recurrent neural networks.

Suppose that we have a classi�cation problem and a dataset of pairs

f (X (b) ; y(b))gN
b=1

. Let us assume that each objectX (b) is represented as a sequence of vectors

X (b) = ( x1; x2; : : : xd); xk 2 Rn ; (2.1)

which is often the case. To �nd this kind of representation for images, several

approaches are possible. The approach that we follow is to split an image into

patches of small size, possibly overlapping, and arrange the vectorized patches in a

certain order. An example of this procedure is presented on �g. 2-2.
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Figure 2-2: Representation of an image in the form of eq. (2.1). A window of size
7 � 7 moves across the image of size28 � 28 extracting image patches, which are
then vectorized and arranged into a matrix of size49� 16.

We use lower-dimensionalrepresentations of f xkgd
k=1 . For this we introduce

a collection of parameter dependent feature mapsf f � ` : Rn ! Rgm
`=1 ; which are

organized into a representation map

f � : Rn ! Rm :

A typical choice for such a map is

f � (x) = � (Ax + b);

that is an a�ne map followed by some nonlinear activation� . In the image case if

X was constructed using the procedure described above, the mapf � resembles the

traditional convolutional maps � each image patch is projected by an a�ne map with

parameters shared across all the patches, which is followed by a pointwise activation

function.

Score functions considered in [Cohen et al., 2016] can be written in the form

ly(X ) = hWy; �( X )i ; (2.2)

where�( X ) is a feature tensor, de�ned as

�( X ) i 1 i 2 :::i d = f � i 1
(x1)f � i 2

(x2) : : : f � i d
(xd); (2.3)

and Wy 2 Rm� m� :::m is a trainable weight tensor. Inner product in eq. (2.2) is
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just a total sum of the entry-wise product of�( X ) and Wy. It is also shown that

the hypothesis space of the form eq. (2.2) has the universal representation property

for m ! 1 . Similar score functions were considered in [Novikov et al., 2016,

Stoudenmire and Schwab, 2016].

Storing the full tensorWy requires an exponential amount of memory, and to re-

duce the number of degrees of freedom one can use atensor decompositions. Various

decompositions lead to speci�c network architectures and in this context, expressive

power of such a network is e�ectively measured byranks of the decomposition, which

determine the complexity and a total number of degrees of freedom. For the Hierar-

chical Tucker (HT) decomposition, [Cohen et al., 2016] proved the expressive power

property, i.e. that for almost any tensorWy its HT-rank is exponentially smaller

than its CP-rank. We analyze Tensor Train-Networks (TT-Networks), which cor-

respond to a recurrent-type architecture. We prove that these networks also have

exponentially larger representation power than shallow networks (which correspond

to the CP-decomposition).

2.3 Tensor formats reminder

In this section we brie�y review all the necessary de�nitions. As ad-dimensional

tensor X we simply understand a multidimensional array:

X 2 Rn1 � n2 � :::� nd :

To work with tensors it is convenient to use theirmatricizations, which are de�ned

as follows. Let us choose some subset of axess = f i 1; i2 : : : ims g of X , and denote

its compliment by t = f j 1; j 2 : : : j d� ms g, e.g. for a4 dimensional tensors could be

f 1; 3g and t is f 2; 4g. Then matricization of X speci�ed by (s; t) is a matrix

X (s;t ) 2 Rn i 1 n i 2 :::n i m s � n j 1 n j 2 :::n j d� m s ;

obtained simply by transposing and reshaping the tensorX into matrix, which in

practice e.g. inPython, is performed usingnumpy.reshape function. Let us now
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introduce tensor decompositions we will use later.

2.3.1 Canonical

Canonical decomposition, known as CANDECOMP/PARAFAC or CP-decomposition

for short [Harshman, 1970, Carroll and Chang, 1970], is de�ned as follows

X i 1 i 2 :::i d =
rX

� =1

v i 1
1;� v i 2

2;� : : : v i d
d;� ; v i;� 2 Rn i : (2.4)

The minimal r such that this decomposition exists is called thecanonical or CP-rank

of X . We will use the following notation

rankCP X = r:

When rankCP X = 1 it can be written simply as

X i 1 i 2 :::i d = v i 1
1 v i 2

2 : : : v i d
d ;

which means that modes ofX are perfectly separated from each other. Note that

storing all entries of a tensorX requiresO(nd) memory, while its canonical decompo-

sition takes onlyO(dnr ). However, the problems of determining the exact CP-rank

of a tensor and �nding its canonical decomposition are NP-hard, and the problem

of approximating a tensor by a tensor of lower CP-rank is ill-posed.

2.3.2 Tensor Train

A tensor X is said to be represented in the Tensor Train (TT) format [Oseledets,

2011] if each element ofX can be computed as follows

X i 1 i 2 :::i d =
r 1X

� 1=1

r 2X

� 2=1

: : :
r d� 1X

� d� 1=1

Gi 1 � 1
1 G� 1 i 2 � 2

2 : : : G� d� 1 i d
d ; (2.5)

where the tensorsGk 2 Rr k � 1 � nk � r k (r0 = rd = 1 by de�nition) are the so-called

TT-cores. The element-wise minimal ranksr = ( r1; : : : rd� 1) such that decomposi-
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tion (2.5) exists are called TT-ranks

rankT T X = r :

Note that for �xed values of i 1; i2 : : : ; id, the right-hand side of eq. (2.5) is just a

product of matrices

G1[1; i1; :]G2[:; i2; :] : : : Gd[:; id; 1]:

Storing X in the TT-format requires O(dnr 2) memory and thus also achieves sig-

ni�cant compression of the data. Given some tensorX , the algorithm for �nding

its TT-decomposition is constructive and is based on a sequence of Singular Value

Decompositions (SVDs), which makes it more numerically stable than CP-format.

We also note that when all the TT-ranks equal to each other

rankT T X = ( r; r; : : : ; r );

we will sometimes write for simplicity

rankT T X = r:

2.3.3 Hierarchical Tucker

A further generalization of the TT-format leads to the so-called Hierarchical Tucker

(HT) format. The de�nition of the HT-format is a bit technical and requires intro-

ducing the dimension tree[Grasedyck, 2010, De�nition 3.1]. In the next section we

will provide an informal introduction into the HT-format, and for more details, we

refer the reader to [Grasedyck, 2010, Grasedyck and Hackbusch, 2011, Hackbusch,

2012].

2.4 Architectures based on Tensor Decompositions

To construct the tensorial networks we introducebilinear and multilinear units,

which perform a bilinear (multilinear) map of their inputs (see �g. 2-3 for an illus-
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(a) Bilinear unit (b) Multilinear unit

Figure 2-3: Nodes performing multilinear map of their inputs. d-linear unit is
speci�ed by a d + 1 dimensional coreG.

tration). Suppose that x 2 Rn ; y 2 Rm and G 2 Rn� m� k . Then a bilinear unit G

performs a bilinear mapG : Rn � Rm ! Rk , de�ned by the formula

G(x; y) = z;

zk =
X

i;j

Gijk x i y j :
(2.6)

Similarly, for x1 2 Rn1 ; : : : xd 2 Rnd , a multilinear unit G 2 Rn1 � n2 � :::� nd � n j de�nes

a multilinear map G :
Q d

k=1 Rnk ! Rn j by the formula

G(x1; x2; : : : ; xd) = z

zj =
X

i 1 ;i 2 ;:::;i d

Gi 1 i 2 :::i d j x i 1
1 x i 2

2 : : : x i d
d :

(2.7)

In the rest of this section, we describe how to compute the score functionsly(X )

(see eq. (2.1)) for each class labely, which then could be fed into the loss function

(such as cross-entropy). The architecture we propose to implement the score func-

tions is illustrated on �g. 2-1. For a vector r = ( r1; r2; : : : rd� 1) of positive integers

(rank hyperparameter) we de�ne bilinear units

Gk 2 Rr k � 1 � m� r k ;

with r0 = rd = 1. Note that becauser0 = 1, the �rst unit G1 is in fact just a linear

map, and becauserd = 1 the output of the network is just a number. On a step

k � 2 the representationf � (xk) and output of the unit Gk� 1 of sizer k are fed into

the unit Gk . Thus we obtain a recurrent-type neural network with multiplicative
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connections and without non-linearities.

To draw a connection with the Tensor Train decomposition we make the following

observation. For each of the class labelsy let us construct the tensorWy using the

de�nition of TT-decomposition (eq. (2.5)) and taking f Gkgd
k=1 used for constructing

ly(X ) as its TT-cores. Using the de�nition of the eq. (2.3) we �nd that the score

functions computed by the network from �g. 2-1 are given by the formula

ly(X ) =
X

i 1 ;i 2 ;:::i d

W i 1 i 2 :::i d
y �( X ) i 1 i 2 :::i d ; (2.8)

which is veri�ed using eq. (2.5) and eq. (2.3). Thus, we can conclude that the

network presented on �g. 2-1 realizes the TT-decomposition of the weight tensor.

We also note that the size of the output of the bilinear unitGk in the TT-Network is

equal to r k , which means that the TT-ranks correspond to thewidth of the network.

Let us now consider other tensor decompositions of the weight tensorsWy, con-

struct corresponding network architectures, and compare their properties with the

original TT-Network.

(a) CP-Network (b) HT-Network

Figure 2-4: Examples of networks corresponding to various tensor decompositions.

A network corresponding to the CP-decomposition is visualized on �g. 2-4a.

Each multilinear unit G� is given by a summand in the formula eq. (2.4), namely

Gi 1 i 2 :::i d
� = v i 1

1;� v i 2
2;� : : : v i d

d;� ; � 2 f 1; : : : rg:

Note that the output of eachG� in this case is just a number, and in total there are

rankCP Wy multilinear units. Their outputs are then summed up by the� node. As
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before rank of the decomposition corresponds to the width of the network. However,

in this case the network isshallow, meaning that there is only one hidden layer.

On the �g. 2-4b a network of other kind is presented. Tensor decomposition

which underlies it is the Hierarchical Tucker decomposition, and hence we call it

the HT-Network. It is constructed using a binary tree, where each node other than

leaf corresponds to a bilinear unit, and leaves correspond to linear units. Inputs are

fed into leaves, and this data is passed along the tree to the root, which outputs a

number. Ranks, in this case, are just the sizes of the outputs of the intermediate

units. We will denote them byrankHT X . These are networks considered in [Cohen

et al., 2016], where the expressive power of such networks was analyzed and was

argued that they resemble traditional CNNs. In general Hierarchical Tucker decom-

position may be constructed using an arbitrary tree, but not much theory is known

in general case.

Our main theoretical results are related to a comparison of the expressive power

of these kinds of networks. Namely, the question that we ask is as follows. Suppose

that we are given a TT-Network. How complex would be a CP- or HT-Network

realizing the same score function? A natural measure of complexity, in this case,

would be the rank of the corresponding tensor decomposition. To make transitioning

between tensor decompositions and deep learning vocabulary easier, we introduce

the following table.

Table 2.1: Correspondence between languages of Tensor Analysis and Deep Learn-
ing.

Tensor Decompositions Deep Learning
CP-decomposition shallow network
TT-decomposition RNN
HT-decomposition CNN

rank of the decomposition width of the network
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2.5 Theoretical Analysis

In this section we prove the expressive power theorem for the Tensor Train decompo-

sition, that is we prove that given a randomd-dimensional tensor in the TT format

with ranks r and modesn, with probability 1 this tensor will have exponentially

large CP-rank. Note that the reverse result can not hold true since TT-ranks can

not be larger than CP-ranks:rankT T X � rankCP X :

It is known that the problem of determining the exact CP-rank of a tensor is

NP-hard.

To bound CP-rank of a tensor the following lemma is useful.

Lemma 1. Let X i 1 i 2 :::i d and rankCP X = r: Then for any matricization X (s;t ) we

haverank X (s;t ) � r; where the ordinary matrix rank is assumed.

Proof. Proof is based on the following observation. Let

A i 1 i 2 :::i d = v i 1
1 v i 2

2 : : : v i d
d ;

be a CP-rank1 tensor. Note for anys; t

rank A (s;t ) = 1;

becauseA (s;t ) can be written asuw T for someu and w. Then the statement of the

lemma follows from the facts that matricization is a linear operation, and that for

matrices

rank(A + B) � rank A + rank B:

We use this lemma to provide a lower bound on the CP-rank in the theorem

formulated below. For example, suppose that we found some matricization of a

tensor X which has matrix rank r . Then, by using the lemma we can estimate that

rankCP X � r:

Let us denoten = ( n1; n2 : : : nd). Set of all tensorsX with mode sizesn repre-
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sentable in TT-format with

rankT T X � r ;

for some vector of positive integersr (inequality is understood entry-wise) forms an

irreducible algebraic variety([Shafarevich and Hirsch, 1994]), which we denote by

M r . This means thatM r is de�ned by a set of polynomial equations inRn1 � n2 :::n d ,

and that it can not be written as a union (not necessarily disjoint) of two proper non-

empty algebraic subsets. An example where the latter property does not hold would

be the union of axesx = 0 and y = 0 in R2, which is an algebraic set de�ned by the

equation xy = 0. The main fact that we use about irreducible algebraic varieties

is that any proper algebraic subset of them necessarily has measure0 ([Ilyashenko

and Yakovenko, 2008]).

For simplicity let us assume that number of modesd is even, that all mode sizes

are equal ton, and we considerM r with r = ( r; r : : : r ), so for any X 2 M r we

have

rankT T X � (r; r; : : : ; r );

entry-wise.

As the main result we prove the following theorem

Theorem 1. Suppose thatd = 2k is even. De�ne the following set

B = fX 2 M r : rankCP X < q
d
2 g;

whereq = min f n; r g.

Then

� (B) = 0 ;

where� is the standard Lebesgue measure onM r .

Proof. Our proof is based on applying lemma 1 to a particular matricization ofX .

Namely, we would like to show that fors = f 1; 3; : : : d � 1g, t = f 2; 4; : : : dg the

following set

B (s;t ) = fX 2 M r : rank X (s;t ) � q
d
2 � 1g;

29



Chapter 2. Expressive Power of RNNs 2.5. Theoretical Analysis

has measure0. Indeed, by lemma 1 we have

B � B (s;t ) ;

so if � (B (s;t )) = 0 then � (B ) = 0 as well. Note that B (s;t ) is an algebraic subset

of M r given by the conditions that the determinants of allq
d
2 � q

d
2 submatrices of

X (s;t ) are equal to0. Thus to show that � (B (s;t )) = 0 we need to �nd at least one

X such that rank X (s;t ) � q
d
2 . This follows from the fact that becauseB (s;t ) is an

algebraic subset of the irreducible algebraic varietyM r , it is either equal to M r or

has measure0, as was explained before.

One way to construct such tensor is as follows. Let us de�ne the following tensors:

Gi 1 � 1
1 = � i 1 � 1 ; G1 2 R1� n� r

G� k � 1 i k � k
k = � i k � k � 1 ; Gk 2 Rr � n� 1; k = 2; 4; 6; : : : ; d � 2

G� k � 1 i k � k
k = � i k � k ; Gk 2 R1� n� r ; k = 3; 5; 7; : : : ; d � 1

G� d� 1 i d
d = � i d � d� 1 ; Gd 2 Rr � n� 1

(2.9)

where� i� is the Kronecker delta symbol:

� i� =

8
><

>:

1; if i = �;

0; if i 6= �:

The TT-ranks of the tensorX de�ned by the TT-cores (2.9) are equal to

rankT T X = ( r; 1; r; : : : ; r; 1; r ):

Lets consider the following matricization of the tensorX

X (i 1 ;i 3 ;:::;i d� 1 );(i 2 ;i 4 ;:::;i d )

The following identity holds true for any values of indices such that

i k = 1; : : : ; q; k = 1; : : : ; d:
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X (i 1 ;i 3 ;:::;i d� 1 );(i 2 ;i 4 ;:::;i d ) =
X

� 1 ;:::;� d� 1

Gi 1 � 1
1 : : : G� d� 1 i d

d =

X

� 1 ;:::;� d� 1

� i 1 � 1 � i 2 � 1 � i 3 � 3 : : : � i d ;� d� 1 = � i 1 i 2 � i 3 i 4 : : : � i d� 1 i d

(2.10)

The last equality holds because
P r

� k =1 � i k � k � i k +1 � k = � i k i k +1 for any i k = 1; : : : ; q.

We obtain that

X (i 1 ;i 3 ;:::;i d� 1 );(i 2 ;i 4 ;:::;i d ) = � i 1 i 2 � i 3 i 4 : : : � i d� 1 i d = I (i 1 ;i 3 ;:::;i d� 1 );(i 2 ;i 4 ;:::;i d ) ; (2.11)

whereI is the identity matrix of size qd=2 � qd=2 whereq = min f n; r g.

To summarize, we found an example of a tensorX such that rankT T X � r and

the matricization X (i 1 ;i 3 ;:::;i d� 1 );(i 2 ;i 4 ;:::;i d ) has a submatrix being equal to the identity

matrix of size qd=2 � qd=2, and hencerank X (i 1 ;i 3 ;:::;i d� 1 );(i 2 ;i 4 ;:::;i d ) � qd=2.

This means that the canonicalrankCP X � qd=2 which concludes the proof.

In other words, we have proved that for all TT-Networks besides negligible

set, the equivalent CP-Network will have exponentially large width. To compare

the expressive powers of the HT- and TT-Networks we use the following theorem

[Grasedyck, 2010, Section 5.3.2].

Theorem 2. For any tensor X the following estimates hold.

ˆ If rankT T X � r , then rankHT X � r 2:

ˆ If rankHT X � r , then rankT T X � r log 2 ( d)=2:

It is also known that this bounds aresharp (see [Buczy«ska et al., 2015]). Thus,

we can summarize all the results in the following table 2.2.

Example that requires exponential width in a shallow network A partic-

ular example used to prove Theorem 1 is not important per se since the Theorem

states that TT is exponentially more expressive than CP for almost any tensor (for

a set of tensors of measure one). However, to illustrate how the Theorem translates

into neural networks consider the following example.
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Table 2.2: Comparison of the expressive power of various networks. Given a network
of width r , speci�ed in a column, rows correspond to the upper bound on the width
of the equivalent network of other type (we assume that the number of feature maps
m is greater than the width of the networkr ).

TT-Network HT-Network CP-Network
TT-Network r r log 2 ( d)=2 r
HT-Network r 2 r r
CP-Network � r

d
2 � r

d
2 r

Consider the task of gettingd input vectors with n elements each and aiming to

compute the following measure of similarity betweenx1; : : : ; xd=2 and xd=2+1 ; : : : ; xd:

l (X ) = ( x |
1xd=2+1 ) : : : (x |

d=2xd) (2.12)

We argue that it can be done with a TT-Network of width n by using the

TT-tensor X de�ned in the proof of Theorem 1 and feeding the input vectors in the

following order: x1; xd=2+1 ; : : : xd=2; xd. The CP-network representing the same func-

tion will have nd=2 terms (and hencend=2 width) and will correspond to expanding

brackets in the expression (2.12).

The case of equal TT-cores In analogy to the traditional RNNs we can consider

a special class of Tensor Trains with the property that all the intermediate TT-cores

are equal to each other: G2 = G3 = � � � = Gd� 1, which allows for processing

sequences of varied length. We hypothesize that for this class exactly the same

result as in Theorem 1 holds i.e. if we denote the variety of Tensor Trains with

equal TT-cores byM eq
r , we believe that the following hypothesis holds true:

Hypothesis 1. Theorem 1 is also valid ifM r is replaced byM eq
r .

To prove it we can follow the same route as in the proof of Theorem 1. While

we leave �nding an analytical example of a tensor with the desired property of rank

maximality to a future work, we have veri�ed numerically that randomly generated

tensorsX from M eq
r with d = 6, n ranging from 2 to 10 and r ranging from 2 to

20 (we have checked1000 examples for each possible combination) indeed satisfy
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Figure 2-5: Decision boundaries of the TT-Network on toy2-D datasets.

rankCP X � q
d
2 .

2.6 Experiments

In this section, we experimentally check if indeed � as suggested by theorem 1 �

the CP-Networks require exponentially larger width compared to the TT-Networks

to �t a dataset to the same level of accuracy. This is not clear from the theorem

since for natural data, functions that �t this data may lay in the neglectable set

where the ranks of the TT- and CP-networks are related via a polynomial function

(in contrast to the exponential relationship for all function outside the neglectable

set). Other possible reasons why the theory may be disconnected with practice are

optimization issues (although a certain low-rank tensor exists, we may fail to �nd it

with SGD) and the existence of the feature maps, which were not taken into account

in the theory.

To train the TT- and CP-Networks, we implemented them inTensorFlow ([Abadi

et al., 2015]) and used Adam optimizer with batch size32and learning rate sweeping

acrossf 4e-3, 2e-3, 1e-3, 5e-4g values. Since we are focused on assessing the expres-

sivity of the format (in contrast to its sensitivity to hyperparameters), we always

choose the best performing run according to the training loss.

For the �rst experiment, we generate two-dimensional datasets withSklearn

tools `moons` and `circles` [Pedregosa et al., 2011] and for each training example feed

the two features as two patches into the TT-Network (see �g. 2-5). This example

shows that the TT-Networks can implement nontrivial decision boundaries.

For the next experiments, we use computer vision datasets MNIST [LeCun et al.,
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Figure 2-6: Train accuracy on CIFAR-10 for the TT- and CP-Networks wrt rank
of the decomposition and total number of parameters (feature size4 was used).
Note that with rank increase the CP-Networks sometimes perform worse due to
optimization issues.

1990] and CIFAR-10 [Krizhevsky and Hinton, 2009]. MNIST is a collection of70000

handwritten digits, CIFAR-10 is a dataset of60000natural images which are to be

classi�ed into 10classes such as bird or cat. We feed raw pixel data into the TT- and

CP-Networks (which extract patches and apply a trainable feature map to them,

see section 2.2). In our experiments we choose patch size to be8� 8, feature maps to

be a�ne maps followed by the ReLU activation and we set number of such feature

maps to 4. For MNIST, both TT- and CP-Networks show reasonable performance

(1:0 train accuracy, 0:95 test accuracy without regularizers, and0:98 test accuracy

with dropout 0:8 applied to each patch) even with ranks less than5, which may

indicate that the dataset is too simple to draw any conclusion, but serves as a sanity

check.

We report the training accuracy for CIFAR-10 on �g. 2-6. Note that we did not

use regularizers of any sort for this experiment since we wanted to compare expressive

power of networks (the best test accuracy we achieved this way on CIFAR-10 is0:45

for the TT-Network and 0:2 for the CP-Network). On practice, the expressive power

of the TT-Network is only polynomially better than that of the CP-network (�g. 2-

6), probably because of the reasons discussed above.
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2.7 Related work

A large body of work is devoted to analyzing the theoretical properties of neural

networks [Cybenko, 1989, Hornik et al., 1989, Shwartz-Ziv and Tishby, 2017]. Re-

cent studies focus on depth e�ciency [Raghu et al., 2017, Montufar et al., 2014,

Eldan and Shamir, 2016, Sutskever et al., 2013], in most cases providing worst-case

guaranties such as bounds between deep and shallow networks width. Two works are

especially relevant since they analyze depth e�ciency from the viewpoint of tensor

decompositions: expressive power of the Hierarchical Tucker decomposition [Cohen

et al., 2016] and its generalization to handle activation functions such as ReLU [Co-

hen and Shashua, 2016]. However, all of the works above focus on feedforward

networks, while we tackle recurrent architectures. The only other work that tackles

expressivity of RNNs is the concurrent work that applies the TT-decomposition to

explicitly modeling high-order interactions of the previous hidden states and analy-

ses the expressive power of the resulting architecture [Yu et al., 2017]. This work,

although very related to ours, analyses a di�erent class of recurrent models.

Models similar to the TT-Network were proposed in the literature but were con-

sidered from the practical point of view in contrast to the theoretical analyses pro-

vided in this paper. [Novikov et al., 2016, Stoudenmire and Schwab, 2016] proposed

a model that implements eq. (2.2), but with a prede�ned (not learnable) feature

map � . [Wu et al., 2016] explored recurrent neural networks with multiplicative

connections, which can be interpreted as the TT-Networks with bilinear maps that

are sharedGk = G and have low-rank structure imposed on them.

2.8 Conclusion

In this paper, we explored the connection between recurrent neural networks and

Tensor Train decomposition and used it to prove the expressive power theorem,

which states that a shallow network of exponentially large width is required to

mimic a recurrent neural network. The downsides of this approach is that it provides

worst-case analysis and do not take optimization issues into account. In the future

work, we would like to address the optimization issues by exploiting the Riemannian
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geometry properties of the set of TT-tensors of �xed rank and extend the analysis

to networks with non-linearity functions inside the recurrent connections (as was

done for CNNs in [Cohen and Shashua, 2016]).
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Chapter 3

Generalized Tensor Models For

Recurrent Neural Networks

3.1 Introduction

Recurrent Neural Networks are �rmly established to be one of the best deep learning

techniques when the task at hand requires processing sequential data, such as text,

audio, or video [Graves et al., 2013, Mikolov et al., 2011, Gers et al., 1999]. The

ability of these neural networks to e�ciently represent a rich class of functions with

a relatively small number of parameters is often referred to asdepth e�ciency , and

the theory behind this phenomenon is not yet fully understood. A recent line of

work [Cohen and Shashua, 2016, Cohen et al., 2016, Khrulkov et al., 2018, Cohen

et al., 2018] focuses on comparing various deep learning architectures in terms of

their expressive power.

It was shown in [Cohen et al., 2016] that ConvNets with product pooling are

exponentially more expressive than shallow networks, that is there exist functions

realized by ConvNets which require an exponentially large number of parameters in

order to be realized by shallow nets. A similar result also holds for RNNs with mul-

tiplicative recurrent cells [Khrulkov et al., 2018]. We aim to extend this analysis to

RNNs with recti�er nonlinearities which are often used in practice. The main chal-

lenge of such analysis is that the tools used for analyzing multiplicative networks,

namely, properties of standardtensor decompositionsand ideas from algebraic ge-
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ometry, can not be applied in this case, and thus some other approach is required.

Our objective is to apply the machinery ofgeneralized tensor decompositions, and

show universality and existence of depth e�ciency in such RNNs.

3.2 Related work

Tensor methods have a rich history of successful application in machine learning.

[Vasilescu and Terzopoulos, 2002], in their framework of TensorFaces, proposed to

treat facial image data as multidimensional arrays and analyze them with tensor

decompositions, which led to signi�cant boost in face recognition accuracy. [Bailey

and Aeron, 2017] employed higher-order co-occurence data and tensor factorization

techniques to improve on word embeddings models. Tensor methods also allow to

produce more accurate and robust recommender systems by taking into account a

multifaceted nature of real environments [Frolov and Oseledets, 2017].

In recent years a great deal of work was done in applications of tensor calculus to

both theoretical and practical aspects of deep learning algorithms. [Lebedev et al.,

2014] represented �lters in a convolutional network with CP decomposition [Harsh-

man, 1970, Carroll and Chang, 1970] which allowed for much faster inference at the

cost of a negligible drop in performance. [Novikov et al., 2015] proposed to use Ten-

sor Train (TT) decomposition [Oseledets, 2011] to compress fully�connected layers

of large neural networks while preserving their expressive power. Later on, TT was

exploited to reduce the number of parameters and improve the performance of recur-

rent networks in long�term forecasting [Yu et al., 2017] and video classi�cation [Yang

et al., 2017] problems.

In addition to the practical bene�ts, tensor decompositions were used to an-

alyze theoretical aspects of deep neural nets. [Cohen et al., 2016] investigated a

connection between various network architectures and tensor decompositions, which

made possible to compare their expressive power. Speci�cally, it was shown that CP

and Hierarchial Tucker [Grasedyck, 2010] decompositions correspond to shallow net-

works and convolutional networks respectively. Recently, this analysis was extended

by [Khrulkov et al., 2018] who showed that TT decomposition can be represented as
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a recurrent network with multiplicative connections. This speci�c form of RNNs was

also empirically proved to provide a substantial performance boost over standard

RNN models [Wu et al., 2016].

First results on the connection between tensor decompositions and neural net-

works were obtained for rather simple architectures, however, later on, they were

extended in order to analyze more practical deep neural nets. It was shown that

theoretical results can be generalized to a large class of CNNs with ReLU nonlin-

earities [Cohen and Shashua, 2016] and dilated convolutions [Cohen et al., 2018],

providing valuable insights on how they can be improved. However, there is a miss-

ing piece in the whole picture as theoretical properties of more complex nonlinear

RNNs have yet to be analyzed. In this paper, we elaborate on this problem and

present new tools for conducting a theoretical analysis of such RNNs, speci�cally

when recti�er nonlinearities are used.

3.3 Architectures inspired by tensor decompositions

Let us now recall the known results about the connection of tensor decompositions

and multiplicative architectures, and then show how they are generalized in order

to include networks with ReLU nonlinearities.

3.3.1 Score functions and feature tensor

Suppose that we are given a dataset of objects with a sequential structure, i.e. every

object in the dataset can be written as

X =
�
x (1) ; x (2) ; : : : ; x (T )

�
; x (t ) 2 RN : (3.1)

We also introduce a parametricfeature map f � : RN ! RM which essentially pre-

processes the data before it is fed into the network. Assumption 3.1 holds for many

types of data, e.g. in the case of natural images we can cut them into rectangular

patches which are then arranged into vectorsx (t ) . A typical choice for the feature

map f � in this particular case is an a�ne map followed by a nonlinear activation:
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f � (x) = � (Ax + b). To draw the connection between tensor decompositions and

feature tensors we consider the followingscore functions(logits1):

`(X ) = hW ; � (X )i = (vec W )> vec� (X ); (3.2)

whereW 2 RM � M � :::� M is a trainableT�way weight tensor and� (X ) 2 RM � M � :::� M

is a rank 1feature tensor, de�ned as

� (X ) = f � (x (1) ) 
 f � (x (2) ) : : : 
 f � (x (T )); (3.3)

where we have used the operation of outer product
 , which is important in tensor

calculus. For a tensorA of order N and a tensorB of order M their outer product

C = A 
 B is a tensor of orderN + M de�ned as:

Ci 1 i 2 :::i N j 1 j 2 :::j M = A i 1 i 2 ��� i N B j 1 j 2 ��� j M : (3.4)

It is known that (3.2) possesses theuniversal approximation property (it can

approximate any function with any prescribed precision given su�ciently largeM )

under mild assumptions onf � [Cohen et al., 2016, Poggio and Girosi, 1990].

3.3.2 Tensor Decompositions

Working the entire weight tensor W in eq. (3.2) is impractical for largeM and

T, since it requires exponential inT number of parameters. Thus, we compactly

represent it usingtensor decompositions, which will further lead to di�erent neural

network architectures, referred to astensor networks[Cichocki et al., 2017].

CP-decomposition The most basic decomposition is the so-called Canonical

(CP) decomposition [Harshman, 1970, Carroll and Chang, 1970] which is de�ned

1By logits we mean immediate outputs of the last hidden layer before applying nonlinearity.
This term is adopted from classi�cation tasks where neural network usually outputs logits and
following softmax nonlinearity transforms them into valid probabilities.
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as follows

W =
RX

r =1

� r v (1)
r 
 v (2)

r 
 : : : 
 v (T )
r (3.5)

where v (t )
r 2 RM and minimal value of R such that decomposition (3.3.2) exists

is called canonical rank of a tensor (CP�rank). By substituting section 3.3.2 into

eq. (3.2) we �nd that

`(X ) =
RX

r =1

� r
�
hf � (x (1) ); v (1)

r i 
 : : : 
 h f � (x (T )); v (T )
r i

�
=

RX

r =1

� r

TY

t=1

hf � (x (t )); v (t )
r i :

(3.6)

In the equation above, outer products
 are taken between scalars and coincide with

the ordinary products between two numbers. However, we would like to keep this

notation as it will come in handy later, when we generalize tensor decompositions

to include various nonlinearities.

TT-decomposition Another tensor decomposition is Tensor Train (TT) decom-

position [Oseledets, 2011] which is de�ned as follows

W =
R1X

r 1=1

: : :
RT � 1X

r T � 1=1

g(1)
r 0 r 1


 g(2)
r 1 r 2


 : : : 
 g(T )
r T � 1 r T

; (3.7)

whereg(t )
r t � 1 r t 2 RM and r0 = rT = 1 by de�nition. If we gather vectors g(t )

r t � 1 r t for all

corresponding indicesr t � 1 2 f 1; : : : ; Rt � 1g and r t 2 f 1; : : : ; Rtg we will obtain three�

dimensional tensorsG(t ) 2 RM � R t � 1 � R t (for t = 1 and t = T we will get matrices

G(1) 2 RM � 1� R1 and G(T ) 2 RM � RT � 1 � 1). The set of all such tensorsf G(t )gT
t=1 is

calledTT�cores and minimal values off RtgT � 1
t=1 such that decomposition (3.7) exists

are calledTT�ranks . In the case of TT decomposition, the score function has the

following form:

`(X ) =
R1X

r 1=1

: : :
RT � 1X

r T � 1=1

TY

t=1

hf � (x (t )); g(t )
r t � 1 r t

i : (3.8)
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3.3.3 Connection between TT and RNN

Now we want to show that the score function for Tensor Train decomposition exhibits

particular recurrent structure similar to that of RNN. We de�ne the following hidden

states:
h (1) 2 RR1 : h (1)

r 1
= hf � (x (1) ); g(1)

r 0 r 1
i ;

h (t ) 2 RR t : h (t )
r t

=
R t � 1X

r t � 1=1

hf � (x (t )); g(t )
r t � 1 r t

i h (t � 1)
r t � 1

t = 2; : : : ; T:
(3.9)

Such de�nition of hidden states allows for more compact form of the score function.

Lemma 2. Under the notation introduced in eq.(3.9), the score function can be

written as

`(X ) = h (T ) 2 R1:

Proof of Lemma 2 as well as the proofs of our main results from Section 3.5 were

moved to Section 3.8 due to limited space.

Note that with a help of TT�cores we can rewrite eq. (3.9) in a more convenient

index form:

h (t )
k =

X

i;j

G(t )
ijk f � (x (t )) i h (t � 1)

j =
X

i;j

G(t )
ijk

�
f � (x (t )) 
 h (t � 1)

�
ij

; k = 1; : : : ; Rt ;

(3.10)

where the operation of tensor contraction is used. Combining all weights fromG(t )

and f � (�) into a single variable� (t )
G and denoting the composition of feature map,

outer product, and contraction asg : RR t � 1 � RN � RN � R t � 1 � R t ! RR t we arrive at

the following vector form:

h (t ) = g(h (t � 1); x (t ) ; � (t )
G ); h (t ) 2 RR t : (3.11)

This equation can be considered as a generalization of hidden state equation for

Recurrent Neural Networks as here all hidden statesh (t ) may in general have di�erent

dimensionalities and weight tensors� (t )
G depend on the time step. However, if we

set R = R1 = � � � = RT � 1 and G = G(2) = � � � = G(T � 1) we will get simpli�ed hidden
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state equation used in standard recurrent architectures:

h (t ) = g(h (t � 1); x (t ) ; � G); h (t ) 2 RR ; t = 2; : : : ; T � 1: (3.12)

Note that this equation is applicable to all hidden states except for the �rsth (1) =

G(1) f � (x (1) ) and for the last h (T ) = f >
� (x (T ))G(T )h (T � 1), due to two�dimensional na-

ture of the corresponding TT�cores. However, we can always pad the input sequence

with two auxiliary vectors x (0) and x (T +1) to get full compliance with the standard

RNN structure. Figure 3-1 depicts tensor network induced by TT decomposition

with cores f G(t )gT
t=1 .

Figure 3-1: Neural network architecture which corresponds to recurrent TT�
Network.

3.4 Generalized tensor networks

3.4.1 Generalized outer product

In the previous section we showed that tensor decompositions correspond to neural

networks of speci�c structure, which are simpli�ed versions of those used in practice

as they contain multiplicative nonlinearities only. One possible way to introduce

more practical nonlinearities is to replace outer product
 in eq. (3.6) and eq. (3.10)

with a generalized operator
 � in analogy to kernel methods when scalar product

is replaced by nonlinear kernel function. Let� : R � R ! R be an associative

and commutative binary operator (8x; y; z 2 R : � (� (x; y); z) = � (x; � (y; z)) and

8x; y 2 R : � (x; y) = � (y; x)). Note that this operator easily generalizes to the

arbitrary number of operands due to associativity. For a tensorA of order N and

a tensorB of order M we de�ne their generalized outer productC = A 
 � B as an
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(N + M ) order tensor with entries given by:

Ci 1 :::i N j 1 :::j M = � (A i 1 :::i N ; B j 1 :::j M ) : (3.13)

Now we can replace
 in eqs. (3.6) and (3.10) with
 � and get networks with various

nonlinearities. For example, if we take� (x; y) = max( x; y; 0) we will get an RNN

with recti�er nonlinearities; if we take � (x; y) = ln( ex + ey) we will get an RNN with

softplus nonlinearities; if we take� (x; y) = xy we will get a simple RNN de�ned in

the previous section. Concretely, we will analyze the following networks.
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Generalized shallow network with � �nonlinearity

ˆ Score function:

`(X ) =
RX

r =1

� r
�
hf � (x (1) ); v (1)

r i 
 � : : : 
 � hf � (x (T )); v (T )
r i

�

=
RX

r =1

� r �
�
hf � (x (1) ); v (1)

r i ; : : : ; hf � (x (T )); v (T )
r i

�
(3.14)

ˆ Parameters of the network:

� =
�

f � r gR
r =1 2 R; f v (t )

r gR;T
r =1 ;t=1 2 RM

�
(3.15)

Generalized RNN with � �nonlinearity

ˆ Score function:

h (t )
k =

X

i;j

G(t )
ijk

�
C (t ) f � (x (t )) 
 � h (t � 1)

�
ij

=
X

i;j

G(t )
ijk �

�
[C (t ) f � (x (t ))]i ; h (t � 1)

j

�

`(X ) = h (T )

(3.16)

ˆ Parameters of the network:

� =
�

f C (t )gT
t=1 2 RL � M ; f G(t )gT

t=1 2 RL � R t � 1 � R t

�
(3.17)

Note that in eq. (3.16) we have introduced the matricesC (t ) acting on the input

states. The purpose of this modi�cation is to obtain the plausible property of

generalized shallow networks being able to be represented as generalized RNNs of

width 1 (i.e., with all Ri = 1) for an arbitrary nonlinearity � . In the case of� (x; y) =

xy, the matricesC (t ) were not necessary, since they can be simply absorbed byG(t )

via tensor contraction (see Section 3.8 for further clari�cation on these points).

Initial hidden state Note that generalized RNNs require some choice of the

initial hidden state h (0) . We �nd that it is convenient both for theoretical analysis

and in practice to initialize h (0) as unit of the operator � , i.e. such an elementu
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that � (x; y; u) = � (x; y) 8x; y 2 R. Henceforth, we will assume that such an element

exists (e.g., for� (x; y) = max( x; y; 0) we takeu = 0, for � (x; y) = xy we takeu = 1),

and seth (0) = u. For example, in eq. (3.9) it was implicitly assumed thath (0) = 1.

3.4.2 Grid tensors

Introduction of generalized outer product allows us to investigate RNNs with wide

class of nonlinear activation functions, especially ReLU. While this change looks

appealing from the practical viewpoint, it complicates following theoretical analysis,

as the transition from obtained networks back to tensors is not straightforward.

In the discussion above, every tensor network had corresponding weight tensor

W and we could compare expressivity of associated score functions by compar-

ing some properties of this tensors, such as ranks [Khrulkov et al., 2018, Cohen

et al., 2016]. This method enabled comprehensive analysis of score functions, as

it allows us to calculate and compare their values for all possible input sequences

X =
�
x (1) ; : : : ; x (T )

�
. Unfortunately, we can not apply it in case of generalized tensor

networks, as the replacement of standard outer product
 with its generalized ver-

sion 
 � leads to the loss of conformity between tensor networks and weight tensors.

Speci�cally, not for every generalized tensor network with corresponding score func-

tion `(X ) now exists a weight tensorW such that `(X ) = hW ; � (X )i . Also, such

properties asuniversality no longer hold automatically and we have to prove them

separately. Indeed as it was noticed in [Cohen and Shashua, 2016] shallow networks

with � (x; y) = max( x; 0) + max( y;0) no longer have the universal approximation

property. In order to conduct proper theoretical analysis, we adopt the apparatus

of so-calledgrid tensors, �rst introduced in [Cohen and Shashua, 2016].

Given a set of �xed vectorsX =
�

x (1) ; : : : ; x (M )
	

referred to astemplates, the

grid tensor of X is de�ned to be the tensor of orderT and dimensionM in each

mode, with entries given by:

� ` (X) i 1 i 2 :::i T = ` (X ) ; X =
�
x (i 1 ) ; x (i 2 ) ; : : : ; x (i T )

�
; (3.18)

where each indexi t can take values fromf 1; : : : ; M g, i.e. we evaluate the score
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function on every possible input assembled from the template vectorsf x (i )gM
i =1 . To

put it simply, we previously considered the equality of score functions represented

by tensor decomposition and tensor network on set of all possible input sequences

X =
�
x (1) ; : : : ; x (T )

�
; x (t ) 2 RN , and now we restricted this set to exponentially

large but �nite grid of sequences consisting of template vectors only.

De�ne the matrix F 2 RM � M which holds the values taken by the representation

function f � : RN ! RM on the selected templatesX:

F ,
h
f � (x (1) ) f � (x (2) ) : : : f � (x (M ))

i >
: (3.19)

Using the matrix F we note that the grid tensor of generalized shallow network has

the following form (see Section 3.8 for derivation):

� ` (X) =
RX

r =1

� r
�
Fv (1)

r

�

 �

�
Fv (2)

r

�

 � : : : 
 �

�
Fv (T )

r

�
: (3.20)

Construction of the grid tensor for generalized RNN is a bit more involved. We �nd

that its grid tensor � ` (X) can be computed recursively, similar to the hidden state

in the case of a single input sequence. The exact formulas turned out to be rather

cumbersome and we moved them to Section 3.8.

3.5 Main results

With grid tensors at hand we are ready to compare the expressive power of gen-

eralized RNNs and generalized shallow networks. In the further analysis, we will

assume that � (x; y) = max( x; y; 0), i.e., we analyze RNNs and shallow networks

with recti�er nonlinearity . However, we need to make two additional assumptions.

First of all, similarly to [Cohen and Shashua, 2016] we �x some templatesX such

that values of the score function outside of the grid generated byX are irrelevant

for classi�cation and call them covering templates. It was argued that for image

data values ofM of order 100 are su�cient (corresponding covering template vec-

tors may represent Gabor �lters). Secondly, we assume that the feature matrixF is
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invertible, which is a reasonable assumption and in the case off � (x) = � (Ax + b)

for any distinct template vectorsX the parametersA and b can be chosen in such

a way that the matrix F is invertible.

3.5.1 Universality

As was discussed in section 3.4.2 we can no longer use standard algebraic techniques

to verify universality of tensor based networks. Thus, our �rst result states that

generalized RNNs with� (x; y) = max( x; y; 0) are universal in a sense that any

tensor of orderT and size of each mode beingm can be realized as a grid tensor of

such RNN (and similarly of a generalized shallow network).

Theorem 3 (Universality) . Let H 2 RM � M ����� M be an arbitrary tensor of order

T. Then there exist ageneralized shallow network and a generalized RNN

with recti�er nonlinearity � (x; y) = max( x; y; 0) such that grid tensor of each of the

networks coincides withH .

Part of Theorem 3 which corresponds to generalized shallow networks readily

follows from [Cohen and Shashua, 2016, Claim 4]. In order to prove the statement

for the RNNs the following two lemmas are used.

Lemma 3. Given two generalized RNNs with grid tensors� `A (X), � `B (X), and

arbitrary � -nonlinearity, there exists a generalized RNN with grid tensor� `C (X)

satisfying

� `C (X) = a� `A (X) + b� `B (X); 8a; b2 R:

This lemma essentially states that the collection of grid tensors of generalized

RNNs with any nonlinearity is closed under taking arbitrary linear combinations.

Note that the same result clearly holds for generalized shallow networks because

they are linear combinations of rank1 shallow networks by de�nition.

Lemma 4. Let E(j 1 j 2 :::j T ) be an arbitrary one�hot tensor, de�ned as

E(j 1 j 2 :::j T )
i 1 i 2 :::i T

=

8
><

>:

1; j t = i t 8t 2 f 1; : : : ; Tg;

0; otherwise:
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Then there exists a generalized RNN with recti�er nonlinearities such that its grid

tensor satis�es

� ` (X) = E(j 1 j 2 :::j T ) :

This lemma states that in the special case of recti�er nonlinearity� (x; y) =

max(x; y; 0) any basis tensor can be realized by some generalized RNN.

Proof of Theorem 3. By Lemma 4 for each one�hot tensorE(i 1 i 2 :::i T ) there exists

a generalized RNN with recti�er nonlinearities, such that its grid tensor coincides

with this tensor. Thus, by Lemma 3 we can construct an RNN with

� ` (X) =
X

i 1 ;i 2 ;:::;i T

H i 1 i 2 :::i d E(i 1 i 2 :::i T ) = H :

For generalized shallow networks with recti�er nonlinearities see the proof of [Cohen

and Shashua, 2016, Claim 4].

The same result regarding networks with product nonlinearities considered in

[Khrulkov et al., 2018] directly follows from the well�known properties of tensor

decompositions (see Section 3.8).

We see that at least with such nonlinearities as� (x; y) = max( x; y; 0) and

� (x; y) = xy all the networks under consideration are universal and can represent

any possible grid tensor. Now let us head to a discussion ofexpressivity of these

networks.

3.5.2 Expressivity

As was discussed in the introduction, expressivity refers to the ability of some class of

networks to represent the same functions as some other class much more compactly.

In our case the parameters de�ningsizeof networks areranks of the decomposition,

i.e. in the case of generalized RNNs ranks determine the size of the hidden state,

and in the case of generalized shallow networks rank determines the width of a net-

work. It was proven in [Cohen et al., 2016, Khrulkov et al., 2018] that ConvNets

and RNNs with multiplicative nonlinearities areexponentiallymore expressive than

the equivalent shallow networks: shallow networks of exponentially large width are
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required to realize the same score functions as computed by these deep architec-

tures. Similarly to the case of ConvNets [Cohen and Shashua, 2016], we �nd that

expressivity of generalized RNNs with recti�er nonlinearity holds only partially, as

discussed in the following two theorems. For simplicity, we assume thatT is even.

Theorem 4 (Expressivity I) . For every value ofR there exists a generalized RNN

with ranks � R and recti�er nonlinearity which is exponentially more e�cient than

shallow networks, i.e., the corresponding grid tensor may be realized only by a shallow

network with recti�er nonlinearity of width at least 2
MT min(M; R )T =2.

This result states that at least for some subset of generalized RNNs expressivity

holds: exponentially wide shallow networks are required to realize the same grid

tensor. Proof of the theorem is rather straightforward: we explicitly construct an

example of such RNN which satis�es the following description. Given an arbitrary

input sequenceX =
�
x (1) ; : : : x (T )

�
assembled from the templates, these networks (if

M = R) produce 0 if X has the property that x (1) = x (2) ; x (3) = x (4) ; : : : ; x (T � 1) =

x (T ) , and 1 in every other case, i.e. they measurepairwise similarity of the input

vectors. A precise proof is given in Section 3.8.

In the case of multiplicative RNNs [Khrulkov et al., 2018]almost every network

possessed this property. This is not the case, however, for generalized RNNs with

recti�er nonlinearities.

Theorem 5 (Expressivity II) . For every value ofR there exists an open set (which

thus has positive measure) of generalized RNNs with recti�er nonlinearity� (x; y) =

max(x; y; 0), such that for each RNN in this open set the corresponding grid tensor

can be realized by a rank1 shallow network with recti�er nonlinearity.

In other words, for every rankR we can �nd a set of generalized RNNs of positive

measure such that the property of expressivity does not hold. In the numerical

experiments in Section 6.5 and Section 3.8 we validate whether this can be observed

in practice, and �nd that the probability of obtaining CP�ranks of polynomial size

becomes negligible with largeT andR. Proof of Theorem 5 is provided in Section 3.8.
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Shared case Note that all the RNNs used in practice haveshared weights, which

allows them to process sequences of arbitrary length. So far in the analysis we

have not made such assumptions about RNNs (i.e.,G(2) = � � � = G(T � 1)). By

imposing this constraint, we lose the property of universality; however, we believe

that the statements of Theorems 4 and 5 still hold (without requiring that shallow

networks also have shared weights). Note that the example constructed in the proof

of Theorem 5 already has this property, and for Theorem 4 we provide numerical

evidence in Section 3.8.

3.6 Experiments

In this section, we study if our theoretical �ndings are supported by experimental

data. In particular, we investigate whether generalized tensor networks can be

used in practical settings, especially in problems typically solved by RNNs (such as

natural language processing problems). Secondly, according to Theorem 5 for some

subset of RNNs the equivalent shallow network may have a low rank. To get a grasp

of how strong this e�ect might be in practice we numerically compute an estimate

for this rank in various settings.

Performance For the �rst experiment, we use two computer vision datasets MNIST [Le-

Cun et al., 1990] and CIFAR�10 [Krizhevsky and Hinton, 2009], and natural lan-

guage processing dataset for sentiment analysis IMDB [Maas et al., 2011]. For the

�rst two datasets, we cut natural images into rectangular patches which are then

arranged into vectorsx (t ) (similar to [Khrulkov et al., 2018]) and for IMDB dataset

the input data already has the desired sequential structure.

Figure 3-2 depicts test accuracy on IMDB dataset for generalized shallow net-

works and RNNs with recti�er nonlinearity. We see that generalized shallow network

of much higher rank is required to get the level of performance close to that achiev-

able by generalized RNN. Due to limited space, we have moved the results of the

experiments on the visual datasets to Section 3.9.
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Figure 3-2: Test accuracy on IMDB
dataset for generalized RNNs and gener-
alized shallow networks with respect to
the total number of parameters (M =
50, T = 100, � (x; y) = max( x; y; 0)).

Figure 3-3: Distribution of lower bounds
on the rank of generalized shallow net-
works equivalent to randomly gener-
ated generalized RNNs of ranks1; 2; 4; 8
(M = 10, T = 6).

Expressivity For the second experiment we generate a number of generalized

RNNs with di�erent values of TT-rank r and calculate a lower bound on the rank

of shallow network necessary to realize the same grid tensor (to estimate the rank

we use the same technique as in the proof of Theorem 4). Figure 3-3 shows that for

di�erent values of R and generalized RNNs of the corresponding rank there exist

shallow networks of rank1 realizing the same grid tensor, which agrees well with The-

orem 5. This result looks discouraging, however, there is also a positive observation.

While increasing rank of generalized RNNs, more and more corresponding shallow

networks will necessarily have exponentially higher rank. In practice we usually deal

with RNNs of R = 102 � 103 (dimension of hidden states), thus we may expect that

e�ectively any function besides negligible set realized by generalized RNNs can be

implemented only by exponentially wider shallow networks. The numerical results

for the case of shared cores and other nonlinearities are given in Section 3.9.

3.7 Conclusion

In this paper, we sought a more complete picture of the connection between Re-

current Neural Networks and Tensor Train decomposition, one that involves various

nonlinearities applied to hidden states. We showed how these nonlinearities could be

incorporated into network architectures and provided complete theoretical analysis
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on the particular case of recti�er nonlinearity, elaborating on points of generality

and expressive power. We believe our results will be useful to advance theoretical

understanding of RNNs. In future work, we would like to extend the theoretical

analysis to most competitive in practice architectures for processing sequential data

such as LSTMs and attention mechanisms.

3.8 Proofs

Lemma 2. Under the notation introduced in eq.(3.9), the score function can be

written as

`(X ) = h (T ) 2 R1:

Proof.

l(X ) =
R1X

r 1=1

: : :
RT � 1X

r T � 1=1

TY

t=1

hf � (x (t )); g(t )
r t � 1 r t

i

=
R1X

r 1=1

: : :
RT � 1X

r T � 1=1

TY

t=2

hf � (x (t )); g(t )
r t � 1 r t

i hf � (x (1) ); g(1)
r 0 r 1

i
| {z }

h (1)
r 1

=
RT � 1X

r T � 1=1

: : :
R1X

r 1=1

TY

t=2

hf � (x (t )); g(t )
r t � 1 r t

i h (1)
r 1

=
RT � 1X

r T � 1=1

: : :
R2X

r 2=1

TY

t=3

hf � (x (t )); g(t )
r t � 1 r t

i
r 1X

r 1=1

hf � (x (2) ); g(2)
r 1 r 2

i h (1)
r 1

| {z }
h (2)

r 2

=
RT � 1X

r T � 1=1

: : :
R2X

r 2=1

TY

t=3

hf � (x (t )); g(t )
r t � 1 r t

i h (2)
r 2

= : : :

=
RT � 1X

r T � 1=1

hf � (x (T )); g(T )
r T � 1 r T

i h (T � 1)
r T � 1

= h (T )
r T

= h (T ) :

Proposition 3.8.1. If we replace the generalized outer product
 � in eq. (3.16)

with the standard outer product
 , we can subsume matricesC (t ) into tensors G(t )
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without loss of generality.

Proof. Let us rewrite hidden state equation eq. (3.16) after transition from
 � to


 :
h (t )

k =
X

i;j

G(t )
ijk

�
C (t ) f � (x (t )) 
 h (t � 1)

�
ij

=
X

i;j

G(t )
ijk

X

l

C (t )
il f � (x (t )) l h

(t � 1)
j

(

~G
(t )
ljk =

X

i

G(t )
ijk C (t )

il

)

=
X

l;j

~G
(t )
ljk f � (x (t )) l h

(t � 1)
j

=
X

l;j

~G
(t )
ljk

�
f � (x (t )) 
 h (t � 1)

�
lj

:

We see that the obtained expression resembles those presented in eq. (3.10) with

TT-cores G(t ) replaced by ~G
(t )

and thus all the reasoning applied in the absence of

matrices C (t ) holds valid.

Proposition 3.8.2. Grid tensor of generalized shallow network has the following

form (eq. (3.20)):

� ` (X) =
RX

r =1

� r
�
Fv (1)

r

�

 �

�
Fv (2)

r

�

 � : : : 
 �

�
Fv (T )

r

�
:

Proof. Let X =
�
x (i 1 ) ; x (i 2 ) ; : : : ; x (i T )

�
denote an arbitrary sequence oftemplates.

Corresponding element of the grid tensor de�ned in eq. (3.20) has the following form:

� ` (X) i 1 i 2 :::i T =
RX

r =1

� r
��

Fv (1)
r

�

 �

�
Fv (2)

r

�

 � : : : 
 �

�
Fv (T )

r

��
i 1 i 2 :::i T

=
RX

r =1

� r
�
Fv (1)

r

�
i 1


 �
�
Fv (2)

r

�
i 2


 � : : : 
 �
�
Fv (T )

r

�
i T

=
RX

r =1

� r �
�
hf � (x (i 1 )); v (1)

r i ; : : : ; hf � (x (i T )); v (T )
r i

�
= `(X ):

54



Chapter 3. Generalized Tensor Models For RNNs 3.8. Proofs

Proposition 3.8.3. Grid tensor of a generalized RNN has the following form:

� `;0(X) = h (0) 2 R1;

� `;1(X)km 1 =
X

i;j

G(1)
ijk

�
C (1) F> 
 � � `;0

�
im 1 j

2 RR1 � M ;

� `;2(X)km 1m2 =
X

i;j

G(2)
ijk

�
C (2) F> 
 � � `;1

�
im 2 jm 1

2 RR2 � M � M ;

� � �

� `;T (X)km 1m2 :::m T =
X

i;j

G(T )
ijk

�
C (T )F> 
 � � `;T � 1

�
im T jm 1 :::m T � 1

2 R1� M � M ����� M ;

� ` (X) = � `;T (X)1;:;:;:::; :

(3.21)

Proof. Proof is similar to that of Proposition 3.8.2 and uses eq. (3.16) to compute

the elements of the grid tensor.

Lemma 3. Given two generalized RNNs with grid tensors� `A (X), � `B (X), and

arbitrary � -nonlinearity, there exists a generalized RNN with grid tensor� `C (X)

satisfying

� `C (X) = a� `A (X) + b� `B (X); 8a; b2 R:

Proof. Let these RNNs be de�ned by the weight parameters

� A =
�

f C (t )
A gT

t=1 2 RL A � M ; f G(t )
A gT

t=1 2 RL A � R t � 1;A � R t;A

�
;

and

� B =
�

f C (t )
B gT

t=1 2 RL B � M ; f G(t )
B gT

t=1 2 RL B � R t � 1;B � R t;B

�
:

We claim that the desired grid tensor is given by the RNN with the following weight
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settings.

C (t )
C 2 R(L A + L B )� M

C (t )
C =

2

4
C (t )

A

C (t )
B

3

5

G(1)
C 2 R(L A + L B )� 1� (R t;A + R t;B )

[G(1)
C ]i; :;: =

8
>>>>>><

>>>>>>:

�

[G(1)
A ]i; :;: 0

�
; i 2 f 1; : : : ; LA g

�

0 [G(1)
B ](i � L A );:;:

�
; i 2 f LA + 1; : : : ; LA + LB g

G(t )
C 2 R(L A + L B )� (R t � 1;A + R t � 1;B )� (R t;A + R t;B ) ; 1 < t < T

[G(t )
C ]i; :;: =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

2

6
4

[G(t )
A ]i; :;: 0

0 0

3

7
5 ; i 2 f 1; : : : ; LA g

2

6
4

0 0

0 [G(t )
B ](i � L A );:;:

3

7
5 ; i 2 f LA + 1; : : : ; LA + LB g

G(T )
C 2 R(L A + L B )� (R t � 1;A + R t � 1;B )� 1

[G(T )
C ]i; :;: =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

2

6
4

a[G(T )
A ]i; :;:

0

3

7
5 ; i 2 f 1; : : : ; LA g

2

6
4

0

b[G(T )
B ](i � L A );:;:

3

7
5 ; i 2 f LA + 1; : : : ; LA + LB g:

It is straightforward to verify that the network de�ned by these weights possesses

the following property:

h (t )
C =

2

4
h (t )

A

h (t )
B

3

5 ; 0 < t < T;
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