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Abstract

The enormous size of potentially reachable chemical space is a challenge for chemists
who develop new drugs and materials. It was estimated as 1060 and, given such large
numbers, there is no way to analyze chemical space by brute-force search. However,
the extensive development of techniques for data analysis provides a basis to create
methods and tools for the AI-inspired exploration of chemical space.

Deep learning revolutionized many areas of science and technology in recent
years, i.e., computer vision, natural language processing, and machine translation.
However, the potential of application of these methods for solving chemoinformatics
challenges has not been fully realized yet. In this research, we developed several
methods and tools to probe chemical space for predictions of properties of organic
compounds as well as for visualizing regions of chemical space and for the sampling of
new compounds. We explored a new type of 3D spatial descriptors and demonstrated
that one can use these descriptors with 3D Convolutional neural networks for the
bioconcentration factor prediction. In our research, we proved that multitask deep
learning can achieve better performance been compared with single-task learning.
To improve the navigation trough chemical space, we have developed a parametric
t-SNE method for visualization of large chemical datasets. We developed molecular
grammars for the generation of the organic structures and implemented a library
to work with these grammars: Legogram. These methods and tools provide the
environment for the AI-driven exploration of chemical space. We believe that our
findings will accelerate the drug discovery process.
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Chapter 1

Introduction

There is a common opinion that pharmaceutical R & D is in crisis Pammolli et al.

[2011]. Companies have to spend more than ten years and more than a billion dol-

lars on marketing a new drug globally. But the problem is not only about high costs

and risks. The "gold-mines" – scaffolds that produced blockbuster drugs – are dried

out. Investigations of new, unexplored regions of chemical space is a risky business

because the clinical trial failure ratio is high. A possible solution is the intensive

investigation of new areas of chemical space – to find new scaffolds for new drugs.

The researchers should go to terra-incognita of chemical space, because there is a

supreme request for exploration of chemical space for a search of new drug candi-

dates. COVID-19 outbreak stressed the basic fact that humanity does not have an

adequate response to viral diseases, and infection outbreaks are not something that

we thought was a problem of the XIX century. Antibiotics resistance is another

possible pain spot for humankind Ventola [2015]. Antibiotics saved millions of lives,

but now we faced with the rise of resistant bacteria. Horizontal gene transfer allows

bacteria to exchange genes responsible for the deactivation of antibacterial drugs

Barlow [2009], Lerminiaux and Cameron [2019]. On the other hand, the pharma-

ceutical industry requires time for clinical trials, limiting our chances to combat the

next infection crisis. Non-communicable diseases are the leading cause of death all

around the world. Despite the developed treatment strategies, there are no "silver

bullets" for the majority of chronic diseases. Individuals vary in their response to

therapy, which limits the successful treatment abilities. To provide new abilities
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Chapter 1. Introduction

for doctors, one needs to develop a number of different medicines, with different

mechanisms of actions, if possible.

The glaring example of neediness for new treatments is orphan diseases. The

economic reasons restrict the interest of pharmaceutical companies to invest money

in research projects in this field Meekings et al. [2012]. Many countries apply special

laws to motivate drug development (i.e. US Rare Diseases Act of 2002, or EC

Regulation No 141/2000). Under these laws, orphan drugs are eligible to fast track

approval procedure. Computations can provide a theoretical basis to support fast

track.

Computational methods can boost the drug discovery pipeline. But there are

fundamental problems behind the direct application of calculations to drug discovery,

but to reveal them, we should make a short philosophical introduction.

David Deutsch, in his famous book The Fabric of Reality, discussed two possible

views on the world. The first one is a holistic view – when one regards a phe-

nomenon been a result of the highest possible level interactions. Another possible

view is reductionism: the idea that a phenomenon can be explained by reduction

to the simplest essences. These extreme views exist in chemistry, and, maybe in

molecular science, the border between these views is quite sharp. In molecular sci-

ence reductionism is so-called "bottom-up" approaches. Under this idea, we regard

complex systems as reducible to small parts with the defined behavior. The origin

of this approach goes deep into the past from Greek philosophers, who introduced

the first atomistic essence of the matter though classic molecular models until the

quantum mechanical view. Quantum Mechanics gave researchers a unique tool for

the rational calculation of properties of molecules; however, the computational costs

of such calculations are very high, and the application of QM calculations to the

prediction of various macroscopic chemical and biological properties is limited. It

is appropriate here to cite Walter Kohn’s Nobel lecture: "There is an oral tradition

that, shortly after Schroedinger’s equation for the electronic wave-function Ψ had

been put forward and spectacularly validated for simple small systems like 𝐻𝑒 and

𝐻2 P.M. Dirac declared that chemistry had come to an end - its content was entirely

contained in that powerful equation. Too bad, he is said to have added, that in al-
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Chapter 1. Introduction

most all cases, this equation was far too complex to allow a solution." Koch [1999].

The quantum representation of molecules is the most precise one; however, there

are two significant limitations on the way: i) one can obtain an analytical solution

only for the most straightforward cases like Hydrogen atom and Helium ions. ii)

the extreme complexity of traditional (wavefunction-based methods). With modern

computational power, it is hard to model large clusters of molecules by quantum

computing methods. To combat this problem, several approximation methods have

been developed. Semi-empirical methods use some parametric-based approxima-

tions to speed-up the computations. One of the most popular techniques in the

analysis of middle-scale molecular systems is Molecular Mechanics (MM). In Molec-

ular Mechanics, the dynamic of a molecular system is determined by the integration

of kinematic equations. Force fields – parametric models that describe the inter-

actions between atoms are used. If anyone wants to analyze even larger molecular

systems, he/she has to study it by coarse-grained models. At this level, one can

model extensive systems, but in the price of the accuracy of the models and the

narrowing of the applicability domain. We can see a trade-off between the accuracy

of models, the speed of computations, and the applicability domain. In machine

learning the trade-off between the accuracy of models and applicability domain is

well-known as bias-variance trade-off and discussed in detail in Section 2.3.

Indeed, modern QM approaches can model molecular systems up to 103 atoms

in a reasonable time, but that is far from the modeling of complex biological interac-

tions on an organism level. To combat this problem, one can boost the calculations

by approximating some parts of them by parametric models1. It is a holistic or

"top-down" approach. Under this idea, one does not build a reducible model of

the process but approximates the process by statistical or machine learning meth-

ods. These methods are highly parametric so that some researchers regard them as

"black-boxes." The latter means that it is often tricky to analyze and understand

the influence of the input variables on the process (and the model of the process

too). Generally, top-down approaches are quick, but they suffer heavily from bias-
1It is worth mentioning that QM calculations are and parametric too, and a basis defines the

parameterization scheme
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Chapter 1. Introduction

variance trade-off, and it is challenging to build a model with high accuracy and

applicability. This idea lies behind semi-empirical approaches and molecular me-

chanics. Molecular mechanics can be applied to model systems with millions of

atoms; by the price of neglecting the quantum correlations. There are many suc-

cessful applications of Molecular Mechanics in drug discovery, mostly for exploring

drug-target interactions, but the applicability for the complex biological systems is

still unreachable. Another concern of parametric models is the limited applicability

domain. Generally, these models can have good (and guaranteed) performance only

within a local chemical domain. Beyond this domain, the robustness of parametric

models can be unsatisfactory.

But the problem is much more challenging; for drug discovery, one should sam-

ple compounds with desired properties from chemical space. Chemical space is

ultimately large; it is estimated as 1060 of organic compounds that possibly exist

and follow the basic rules for drug-like compounds Kirkpatrick and Ellis [2004]. This

number is so vast that there are no ways to explore chemical space by experimental

or even computational brute-force. Traditional experimental procedures can cover

only a tiny part of the chemical space. Computational approaches that are based on

quantum or molecular modeling are computationally expensive and can not be used

extensively for the exploration of the chemical space. General statistical methods

in chemoinformatics, known as Quantitative Structure–Activity/Property Relation-

ship (QSAR/QSPR), cover separate regions of the chemical space and can be used

only within their applicability domain. However, the distribution of desired and

undesired molecules in chemical space is not uniform. Some parts of chemical space

are filled with molecules with appropriate chemical/biological properties, and the

exploration for these regions makes sense. In contrast, there are regions filled with

"non-drug-like" molecules, and they are of no interest in further exploration. One

can imagine "drug-like" parts of chemical space as full of life archipelagos, among

the lifeless ocean of non-druglike compounds. But if someone wants to cross the

ocean, he needs tools for navigation. It is also right for chemical space. There

is an ultimate need to build tools that can guide chemists in this space to obtain

compounds with desired properties and to avoid undesirable ones. Drug candidates

12
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should, on the one hand, have desired bioactivity profiles, and on the other hand,

should satisfy many additional criteria: be non-toxic, have desired Absorption, Dis-

tribution, Metabolism, and Excretion (ADME) properties, etc. That is not all; these

compounds should follow additional restrictions: be patentable, synthetically acces-

sible, eco-friendly for manufacturing. Since XIX century there is an empirical rule

in organic chemistry that: structure determines properties of organic compounds.

But the formal description of structure-activity relationship became possible only

in the second part of XX century. QSAR/QSPR opened the doors for the rational

design of drugs and chemical compounds, but the potential of these methods has not

been fully revealed yet. The complexity and non-linearity of the relations between

chemical structures and corresponding activities/properties limit the applicability of

these methods to the real problems. However, even in the case of pure computational

experiments, this problem remains changeable. Thus, it is absolutely impossible to

build a computer that will keep in memory 1060 structures. What is the solution?

It is worth remembering that chemists worked before the computational era on the

base of such ephemeral matter as chemical intuition Pedreira et al. [2019], Gomez

[2018]. This intuition navigates chemists though the chemical space but been per-

sonal and unquantified, it limits the abilities for the high-performance exploration of

chemical space. Moreover, comparing chemists and Machine learning-based meth-

ods Kutchukian et al. [2012] found out that "chemists greatly simplified the problem,

typically using only 1–2 of many possible parameters when making their selections."

Machine (and especially deep) learning is a possible way of quantifying chemical

intuition on a universal and reproducible basis Moosavi et al. [2019], Jaeger et al.

[2018]. This challenge motivates us to develop new methods that can materialize

the chemical intuition and use it to AI-inspired molecules discovery.

The doctoral study aims to develop new ways for ML-based exploration of

chemical space to accelerate drug-discovery process.

In Chapter 1 we justify the significance of the development of new AI-based

methods and tools for the exploration of chemical space.

In Chapter 2 we review methods and materials that are used in this research,

briefly describe machine learning and deep learning algorithms, along with ap-
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Chapter 1. Introduction

Figure 1-1: "Bottom-up" vs "Top-down" approaches

proaches for the estimation of the performance of models. Also, we describe 3D

RISM method that is the basis for our 3D spatial descriptors.

In Chapter 3 we discuss a new method for Bioconcentration factor (BCF)

prediction based on 3D Convolutional neural networks. As inputs for CNNs we

use 3D scalar fields that represent the density of solvent sites around solute. We

designed 3D CNN ActiveNet4 and compared the performance of our method with

standard QSPR approaches. We demonstrated that 3D CNNs can successfully be

applied to biological-related problems.

In Chapter 4 we analyze the application of multitask learning to the animal

acute toxicity modeling. We performed a comparative study of multitask toxicity

modeling on a broad chemical space. Our experiments revealed the most efficient

groups of descriptors for the acute toxicity modeling We showed that multitask

learning is outperforming both single-task learning methods and common machine

learning approaches. However, our experiments revealed that multitask learning

can be emulated by attributed learning with similar performance. We discuss the

current situation with regulations of QSAR/QSPR modeling and the neediness for

multitask learning consideration in QSAR/QSPR regulation.

In Chapter 5 we describe a method and a tool for the visualization of broad

chemical space. We propose a parametric t-SNE method, that can project the

chemical compounds from its original descriptors space onto a 2D surface, preserving

14



Chapter 1. Introduction

their local similarity. We demonstrated that the parametric t-SNE method can

generate reasonable projections. On the base of this method, we created a tool for

the generation of molecular maps. The tool can be used by chemists to analyze

large chemical datasets in handily. We experimentally showed the meaningfulness

of our method by training classifies on our 2D representations and comparing their

performance.

In Chapter 6 we describe a Legogram framework we describe a Legogram frame-

work for the construction of molecular structures from "building blocks" preserving

chemical validity. This framework is based on the concept of molecular grammars

– a special type of graph grammars. We experimentally proved the absolute struc-

tural validity of generated molecules and demonstrated that our library could be

used for the sampling of chemical compounds from regions of chemical space by

reinforcement learning.

The novelty of the research is summed up below:

1. We demonstrated that a hybrid method based on 3D RISM and 3D CNNs can

be applied for the Bioconcentration factor prediction

2. We showed the superiority of multitask learning in the prediction of acute

toxicity of organic compounds on a broad chemical domain.

3. We developed a new methodology for the visualization of regions of chemical

space

4. We developed a graph grammar framework for the generation of valid chemical

structures with desired properties. We showed that one can sample compounds

from chemical space using our graph grammar framework and reinforcement

learning.

To support the practical application of this doctoral research we imple-

mented an online platform – Syntelly2. Also, our animal acute toxicity models

are freely accessible in OCHEM: https://ochem.eu//multitox (login required to
2the platform is accessible at app.syntelly.com, is in a very earlier stage and under active

development
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Chapter 1. Introduction

access). Legogram library is published at GitHub https://github.com/sergsb/

LegoGram

16

https://github.com/sergsb/LegoGram
https://github.com/sergsb/LegoGram


Chapter 2

The Literature Review

In this chapter, we propose a review of the approaches and methods used in this

study. First, we provide a brief historical overview of statistics and machine learning

methods in chemistry. Then we discuss common chemical descriptors. After that,

we review machine learning methods and pay special attention to artificial neural

networks and deep learning. We discuss 3D RISM method, which can generate

3D spatial molecular descriptors. Also, we discuss the problems behind the correct

assessment of models quality.

Historical background of statistical modeling in chemistry (QSAR/QSPR)

Quantitative Structure–Activity/Property Relationship (QSAR/QSPR) – is a com-

mon name for many methods based on statistics and machine learning for revealing

correlations between chemical structures of compounds and their chemical/biological

properties. One can track the roots of QSAR/QSPR in Hammet research Hammett

[1937], who carefully studied the effects of substitutes to chemical reactivity. The

concept of predicting the properties of organic compounds by statistical modeling is

originated from works of Hansch and Fujita [1964]. In these papers, they summed up

their findings of correlations between the logarithm of octanol/water partition coeffi-

cient (logP) and the biological activity of chemical compounds. They demonstrated

that there is an optimum in logP for a particular biological response. They proposed

multiple linear regression analysis as a basis for modeling of structure-activity rela-

tions. Nowadays, Hansch and Fujita are commonly considered as pioneers of QSAR

17



Chapter 2. The Literature Review

studies Martin [2011]. The rise of interest in artificial neural networks in the 80th

inspired chemists to apply it to QSAR/QSPR tasks. Prof. Gastaiger, who used neu-

ral networks for the prediction of properties of organic compounds, demonstrated

the feasibility of this idea Zupan and Gasteiger [1993]. Before deep learning era

(which started roughly in 2012) many machine learning methods have been applied

to prediction of properties of organic compounds: Support Vector Machines Ivan-

ciuc [2007], Random Forest Svetnik et al. [2003], k-nearest neighbors Kauffman and

Jurs [2001], and many others Neves et al. [2018]. In 2012 Merck Inc. published on

Kaggle (a popular platform for data analysis competitions) – a dataset of kinase

inhibition activity and launched a competition for predicting these values. Hilton’s

team won this challenge by using a model based on deep neural networks, opening

the door for deep learning applications in chemical information. Further, the expe-

rience of application of deep neural networks to QSAR problems were summarized

in publications of the Merck team Ma et al. [2015a], Xu et al. [2017b].

Basis of QSAR/QSPR

Formally, direct QSAR/QSPR problem can be written as:

𝐹 (𝐺) = 𝑦 (2.1)

where 𝐺 is a molecular graph, 𝐹 – is a QSAR/QSPR model and 𝑦 is a vector

of activities/properties. The problem is that most statistical and machine learning

methods operate with numbers, but not graphs. To struggle with it one can calculate

the invariants of molecular graphs: molecular descriptors. A typical pipeline is to

calculate molecular descriptors first and use it for modeling by any machine learning

method. So, the QSAR/QSPR problem consists of two parts:

• a transformation of chemical structures to numerical representations

• statistical modeling on these representations

The correct evaluation of the performance of ML models is an important part

of QSAR/QSPR pipeline. The statistical nature of QSAR/QSPR models can lead

18



Chapter 2. The Literature Review

Figure 2-1: Common QSAR/QSPR pipeline. Molecular structures are converted to
vectors of molecular descriptors. Stacked molecular descriptors form a matrix 𝑋,
and activity/property vector 𝑦. Given 𝑋 and 𝑦 one can build a model 𝐹 (𝑋) = 𝑦

to overfitting : a situation when a model can successfully predict the values for the

molecules from a training set but fails on a test set. Several validation techniques

can be applied to combat overfitting. A brief review of these methods which have

been used in the study is given in section 2.3

Inverse-QSAR/QSPR is a problem of generating molecules with desired proper-

ties.

𝐹 (𝑦) −→ {𝑀1,𝑀2, ...,𝑀𝑖},

E [{𝐹 (𝑀1), 𝐹 (𝑀2), ..., 𝐹 (𝑀𝑖)}] −→ 𝑦
(2.2)

where 𝑦 is a vector of chemical or biological properties 𝑀 is a molecule, 𝐹 (𝑀) is

a direct QSAR/QSPR function which calculates properties of a molecule, 𝐹 (𝑀) – is

an inverse QSAR/QSPR function which generates a number of molecular structures

which properties are expected to be 𝑦, E [{𝐹 (𝑀1), 𝐹 (𝑀2), ..., 𝐹 (𝑀𝑖)}] – is average

property value over a generated molecular batch. In practice, for chemists solving

the inverse task is more important, because it is a way for the “de-novo” generation

of chemical compounds with desired properties. However, this problem is more

challenging than direct QSAR/QSPR, generally because it requires a method for the

generation of molecular structures. While the transformation of graph structures

into numerical representation is well-studied (see section 2.1), graphs generation is a

challenge. We describe our approach to generative models on the base of molecular

grammars in Chapter 6.
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Chapter 2. The Literature Review 2.1. Molecular Descriptors

2.1 Molecular Descriptors

The most common way how one can represent a molecule is a molecular graph. Un-

der this representation, atoms are regarded as colored (labeled) nodes, and chemical

bonds are considered to be undirected weighted edges of a graph. This way allows

chemists to use all power of graph theory to analyze chemical compounds. It also

simplifies the development of chemoinformatics software by designing it on the top

of graph libraries. Invariants of these graphs are called molecular descriptors or

descriptors. Commonly, molecular descriptors are inputs for machine learning mod-

els. Nowadays, thousands of molecular descriptors exist. Famous chemoinformatic

software Dragon 7 calculates 5,270 molecular descriptors. There are many types of

chemical descriptors: structural descriptors, physicochemical, fragmental, quantum

descriptors, etc. A reader can familiarize with the whole landscape of molecular

descriptors in a comprehensive (but quite outdated) monography Todeschini and

Consonni [2000]. Below we will provide a brief explanation of some types of molec-

ular descriptors. Let’s start with topological descriptors – invariants of molecular

graphs that commonly do not regard chemical features of these graphs. A good ex-

ample of topological descriptors is structural indexes: Wiener index Wiener [1947]

and Randić index Randic [1975]. Wiener index is a sum of the lengths of the shortest

paths between all pairs of vertices:

𝑊 (𝐺) =
∑︁
∀(𝑖,𝑗)

𝑑(𝑣𝑖, 𝑣𝑗) (2.3)

where 𝑑(𝑣𝑖, 𝑣𝑗) – is the shortest path between 𝑣𝑖 and 𝑣𝑗. Randić index is given by

the Equation 2.4

𝑅(𝐺) =
∑︁
∀(𝑖,𝑗)

1√︀
𝑑𝑒𝑔(𝑣𝑖)𝑑𝑒𝑔(𝑣𝑗)

(2.4)

where 𝑑𝑒𝑔(𝑣𝑖) and 𝑑𝑒𝑔(𝑣𝑗) are degrees of a graph. One can see that these indexes do

not concern about chemical features (atoms and bonds types) indeed. That is why

the discrimination ability of topological indexes is low, and they are not used for

QSAR/QSPR solely, but because of their simplicity and low computational costs,
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they can be used as hash functions for molecular graphs.

Another popular type of descriptor is the fragment-based descriptors. The de-

composition of a molecule in some fragment basis is the main idea of fragment-based

descriptors. Formally, it is a decomposition of a molecular graph into a set of sub-

graphs. The number of occurrences of a certain fragment in a molecule (or just an

indicator of occurrence) is a value of the descriptor. Free and Wilson [1964] ap-

proach was an early attempt to describe structure-activity relationships as a sum

of contributions of individual subfragments in the molecules. One can define this

method by equation:

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝜇 +
∑︁
𝑖

𝑏𝑖𝐹𝑖𝑝𝑖 (2.5)

where 𝐹𝑖 – is a molecular fragment, 𝑝𝑖 – is a position of this fragment in a molecule,

𝑏𝑖 – is a contribution of a fragment 𝐹 into the activity. 𝜇 – is a mean activity

over a dataset. Free-Wilson method is “scaffold-oriented”, which means that it re-

quires a dataset with common structures (scaffolds). To obtain a robust model one

should have a diverse distribution of substitutes. Also, it worth to mention that

Free-Wilson method is linear and can not regard non-linear relations in molecular

structures. Free-Wilson approach was a milestone in QSAR/QSPR history Kubinyi

[1988]. Next important landmark in fragment-based QSAR/QSPR was a method

for algorithmic generation of custom molecular fragments on a dataset Adamson and

Bawden [1975]. Scince that time, Fragment-based descriptors (with some variations)

have been implemented in many software applications: ISIDA (Ruggiu et al. [2010]),

MultiCASE (Klopman [1992]), OCHEM (Sushko et al. [2011]). Fragment-based de-

scriptors demonstrate excellent performance for many tasks, especially for the pre-

diction of the physical-chemical properties of organic compounds. Clear chemical

meaning and interpretability is another advantage of these descriptors. But compu-

tational complexity and redundancy are major drawbacks to analyze large chemical

datasets. Another problem is the non-universality: an applicability domain of a

model is technically limited only to subgraphs that occur in the training set.

Fragment-based descriptors are implemented, among others, in aggregated soft-

ware (programs that calculate many different descriptors of different nature): Dragon,
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PyDescriptors, CDK descriptors.

2D structural features of organic compounds are limited to the prediction of bi-

ological activity. This activity is based on 3D ligand-protein interactions, which are

surely related to 3D conformations of ligands. To overcome this limitation, Cramer

et al. [1988] proposed 3D Comparative Molecular Field Analysis (3D CoMFA). This

method is alignment-dependent and can be applied only to compounds with a com-

mon scaffold. Aligned structures are placed in a 3D grid, and then, the sum of

interactions of each molecule with a probe atom is calculated. After that, Partial

least squares (PLS) method is used for the prediction of biological activity. This

method was widely used for the prognosis of biological activities Melo-Filho et al.

[2014]. Further, many other 3D QSAR methods have been developed. Compara-

tive molecular similarity indices analysis (CoMSIA) that is a modified version of

3D CoMFA was proposed by Klebe and Abraham [1999]. The authors replaced

Lennard-Jones and Colomb potentials used in 3D CoMFA, with five different in-

dexes, responsible for ligand binding. They claimed that this improvement could

help to build easily interpretable models. It was a significant step because the pos-

sible interpretability is the advantage of 3D molecular fields. Baskin and Zhokhova

[2019] proposed a method of Continuous Molecular Fields. This method is based

on the decomposition of interaction pattern into two spatial functions: 𝑋(𝑟) – a

molecular filed constructed from Gaussian functions placed on atoms and a continu-

ous function 𝐶(𝑟) – which plays the role of the regression coefficients. The resulting

biological activity is calculated as an overlap integral between these functions. Con-

tinuous Molecular Fields are easily interpretable and can be nicely visualized, which

helps chemists to understand the nature of activity cliffs in particular targets. In

our research, we used 3D descriptors calculated by Corina software.

Common tools and frameworks for molecular descriptors calculation

For more than 40 years, many programs and tools have been created to calculate

molecular descriptors. Here, we will give links to the most popular chemoinformatic

software with such functionality. This software can be roughly divided into three

categories:

22



Chapter 2. The Literature Review 2.1. Molecular Descriptors

• standalone programs (Dragon, PaDEL)

• descriptor modules implemented in chemoinformatics frameworks (CDK de-

scriptors, RDkit descriptors)

• programming libraries (mordred, e3fp)

Among standalone programs, it is worth to mention Dragon 7. It is one of the

most reputable proprietary software for chemical descriptors calculations. The last

version can calculate 5,270 descriptors and some classes of molecular fingerprints.

E-DRAGON (a special edition of Dragon program) implemented in OCHEM has

been used in our study. PaDEL-Descriptor Yap [2010] – is another program for

calculation molecular descriptors. It is mostly based on Chemistry development kit

descriptors, and somehow can be regarded as GUI and command-line interface for

CDK descriptors. ChemAxon JChem provides several descriptors on the top of pop-

ular chemical platform JChem. Chemistry development kit is a popular Java library

for chemoinformatics Willighagen et al. [2017]. There are many chemical descriptors

of different nature implemented in this library. We utilized CDK descriptors from

OCHEM in our research. We should also mention a popular framework RDkit, that

provides many different molecular descriptors. RDkit implementation of extended

connectivity fingerprints (Morgan fingerprints) is a popular choice for describing

large chemical databases; due to quick calculations.

There are some libraries for the calculation of chemical descriptors. These li-

braries provide Application programming interface (API) for developers. The au-

thors of mordred python package were motivated to create a universal and repro-

ducible framework Moriwaki et al. [2018]. They addressed problems of software

bugs, low update frequencies, licensing issues of the existing solutions. They fo-

cused on the quality and reproducibility of descriptors between different versions of

the library. Since the publication, this library has gained popularity in the commu-

nity rapidly, and now it can be a first-choice option. In our experiments mordred

descriptors often demonstrate better performance than extended connectivity fin-

gerprints; however, the processing speed is much lower, which restricts the ability

to use mordred descriptors for processing large chemical databases.
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2.2 Machine Learning Methods in QSAR/QSPR Stud-

ies

Machine learning methods are a critical thing for QSAR/QSPR modeling. Com-

monly, they are divided into two groups: supervised and unsupervised learning.

Supervised learning is based on the fitting of parameters of a model by demonstrat-

ing a set of training examples – are pair of an object (a molecule) and a supervisory

signal. A supervisory signal can be a class (i.e., toxic/nontoxic) or a continuous

value, for example, a boiling point of a molecule. The supervised learning algorithm

infers hidden relations in the training dataset to "learn" from labeled data. Unsu-

pervised learning is a common name for a group of algorithms, which do not rely

on pre-existing supervisory signals, but extract this information directly from data.

Typical examples of unsupervised learning are clustering algorithms and dimension-

ality reduction methods. Semi-supervised learning is a name for hybrid algorithms;

they have features in common with supervised and unsupervised learning. Below,

we provide a brief overview of ML methods that we used in this research. Because

of importance for our study, artificial neural networks along with deep learning are

described in greater details in a separate section 2.2.

Decision trees

The concept of decision trees is essential for further discussion because they are the

basis for many efficient algorithms and tools. A decision tree can be represented

in a flowchart-like manner, where each node corresponds to a constrain, and a leaf

corresponds to an outcome. The significant advantage of this approach is the clarity:

a decision tree is fully transparent. However, the discrimination ability of a single

decision tree is low, and usually, trees are grouped into ensembles to boost the per-

formance. There is a substantial bias-variance trade-off associated with this method,

and some regularisation techniques are required. The problem is the construction of

decision trees in a fully automatic way. We will discuss it on the example of CART

algorithm. To compute a split, one should understand how to split a node in a tree

onto the right and left branches. There are two criteria for that: entropy-based
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Figure 2-2: An example of a very simple decision tree for the binary classification
of the developmental toxicity of molecules. 𝑋[𝑖] is a binary flag of the presence of
certain functional groups in a molecule. This example was made on the real data,
but only for the demonstration, and does not correspond to any model mentioned
in this thesis.

information gain and Gini index 1. For simplicity, let’s discuss only the last one:

𝐺𝑖𝑛𝑖 = 1 −
𝑁∑︁
𝑖=1

(∆𝑝𝑖)
2 (2.6)

where ∆𝑝𝑖 is the ratio of a class in a set. This index demonstrates the impurity of a

set. Given a set with only one class (a perfect case), the index is 0. If the distribution

over classes is equal (the worst case), the index has its highest possible value of 0.5

Given this metric, one can perform a search over possible splits to maximize the

function:
1

𝐿

𝐿∑︁
𝑖=1

(∆𝑝𝑙𝑒𝑓𝑡𝑖 )2 +
1

𝑅

𝑅∑︁
𝑖=1

(∆𝑝𝑟𝑖𝑔ℎ𝑡𝑖 )2 −→ 𝑚𝑎𝑥 (2.7)

1Despite the similar name, that is not the same Gini index that economists use for the inequality
estimation
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where 𝑅 and 𝐿 are numbers of instances in the left and the right nodes. It is

known that regression trees tend to overfit. To combat this problem pruning is

used. As we mentioned before, decision trees are not a production method, but it is

a basis for many well-established algorithms. We will discuss two of them: Gradient

boosting trees (on the example of XGBoost) and Random forest because we used

these techniques extensively in our research.

Gradient boosting trees

Boosting is a meta-algorithm that demonstrates good performance in many different

problems. The main idea of boosting is a composition of weak classifiers in such a

manner that the next added classifier corrects the mistakes of previous classifiers (or

follow the gradient of a loss function). Adaptive boosting (AdaBoost) was one of

the first implementations of this idea Schapire [1999]. The main idea of AdaBoost is

the increasing weights for the samples that were misclassified on the previous itera-

tions. He et al. [2004] demonstrated that AdaBoost can be applied in chemistry for

the classification of organic compounds by their biological and structural properties.

Friedman [2002] introduced Stochastic Gradient Boosting as an universal framework

for building boosting models over different types of classifiers and regressors, in par-

ticular decision trees. Svetnik et al. [2005] demonstrated that gradient boosting can

be comparable or slightly outperform Random Forest for compounds classification

problems and QSAR/QSPR modeling.

XGboost is one of the most prominent approaches in data mining Chen and

Guestrin [2016]. This algorithm frequently becomes the leader in the Kaggle data

science competition. It was shown that XGBoost could be very efficient for process-

ing large chemical datasets in terms of accuracy and speed of computation Sheridan

et al. [2016]. On each boosting iteration, a new decision tree is constructed to fit the

residuals of the model obtained at the previous stage. It is worth to mention that

XGboost can perform GPU calculations that enhance the performance on several

orders of magnitude.
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K-nearest neighbors

K-nearest neighbors, perhaps, is the simplest possible non-parametric method. Even

more surprising is the unreasonable effectiveness of this method in QSAR/QSPR

modeling Mitchell [2014]. In this method the prediction is calculated as a mean

(or weighted sum) of N compounds that are the closest ones to the compound

under investigation in some descriptor space. For the classification the example is

classified in accordance with the dominant class among k-nearest neighbors. The

idea is close to chemical paradigm that similar compounds have lookalike properties.

This method is frequently used in chemical modeling especially for small datasets

Kauffman and Jurs [2001], Gunturi et al. [2008].

Random Forest

This method uses the set (forest) of the simple classifiers or regressors, namely deci-

sion trees Breiman [2001]. This method has been heavily used in chemoinformatics

for the last decade before the rise of deep learning because it has many advantages,

particularly the performance of modelling, the speed of computation, and the ability

to use default parameters or parameters with minimal tuning. It should be men-

tioned that this method has a long history of usage for toxicity prediction Cao et al..

Svetnik et al. [2003]

Artificial neural networks and Deep Learning

The history of Artificial neural network (ANN)s rooted in early attempts to emulate

the activity of the animal’s neural tissue. McCulloch and Pitts [1943] proposed a

Heaviside step function as a mathematical model of a neuron and did a description

of neural activity as logical computations. In their work, they theoretically demon-

strated that nets which are based on these types of neurons can perform Boolean

operations and can operate as a formal logic machine. Despite the naivety of the

model, their theoretical findings played an important role in further AI researches.

However, there was a gap between theory and implementation. Rosenblatt was the

first researcher who closed this gap by implementing the first neural computer: Mark
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I Perceptron. He designed this machine to demonstrate the feasibility of optical im-

age recognition, and one can regard this computer as a precursor for further neural

optical image recognition engines. The next milestone was the design of the back-

propagation algorithm for the layered update of the coefficients of neural networks

Rumelhart et al. [1986]. Cognitron and Neocognitron are unique neural architectures

that have been designed by Fukushima, especially for optical pattern recognition.

The perceptual elements of Neocognitron (S-cells) emulated the elements from the

cat’s receptive fields Fukushima [1980]. However, these architectures were hard to

implement. Convolutional neural network (CNN) were proposed by Lecun et al.

[1998] as a simple and efficient method for optical image recognition. The real

power of CNNs has been revealed since 2011, within the era of deep learning.

Recurrent neural network (RNN)s are the unique neural architecture to process

time series. However, this type of neural net had a major drawback: vanishing and

exploding gradients. These problems restricted the abilities of RNN. To combat

with these limitations Hochreiter and Schmidhuber [1997] proposed Long Short-

Term Memory (LSTM). This model demonstrated excellent performance in many

tasks: speech recognition, time series forecasting, text generation. But, as for CNNs,

this architecture gained exceptional popularity only in the deep learning era. Be-

fore the last decade, Artificial neural networks’ popularity was comparable to other

machine learning methods. One could hope to obtain just slightly better quality

but at a price of lower explainability and higher complexity. Choosing an architec-

ture for an ANNs was a trickily process without any defined rules and was based

mostly on intuition. All these issues restricted the applicability of ANNs in science

and technology. The situation changed in last decade. First, GPU-based compu-

tations demonstrated the speedup of traditional backpropagation for two orders of

magnitude. It motivated researchers to pay close attention to deep, multilayered

artificial neural networks. The experiments have become feasible in terms of time.

Second, the establishment of automatic differentiation frameworks: Theano, Ten-

sorflow, Chainer, Torch and PyTorch, etc. Given automatic differentiation, one can

describe only forward computations while gradients are calculated automatically.

This feature allowed researchers to spend much less time on the designing of new
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architectures. Interestingly, all ingredients were ready before. But the synergy effect

of these techniques makes something that we know now as deep learning only in the

last decade. Krizhevsky et al. [2012] proposed AlexNet network, and with this archi-

tecture, the team won the ImageNet 2012 challenge with a large margin. This paper

was a milestone in deep learning history; One might even say that deep learning orig-

inated from this research. Since 2012 the solutions based on Deep neural networks

became state-of-the-art in computer vision, speech recognition, natural language

processing, and machine translation. The last notable success (from the author’s

point of view) was Transformer Vaswani et al. [2017]. Google designed it for neural

translation, and this model demonstrated an overwhelming performance. Trans-

former was successfully used to predict the outcomes of chemical reactions in IBM’s

team research Schwaller et al. [2020]. Karpov et al. [2020] proposed Transformer-

CNN – a hybrid model which calculates SMILES-embeddings from the encoder part

of Transformer and uses these embeddings to build QSAR/QSPR models.

An artificial neural network is a function that translates objects from one rep-

resentation to another. Or a function 𝐺 that transfers the input object 𝐼 into the

output object 𝑂. It is worth mentioning that 𝑂 can be of any nature. For example,

Graph U-Net Gao and Ji [2019] maps graphs to graphs. Commonly, most neural

networks operate with tensors; however, there is a branch of machine learning that

studies ANNs on non-euclidean domains – geometric deep learning Bronstein et al.

[2016]. In this case, an artificial neural network is a function that maps points from

the input space to the output space. Still, the majority of neural networks operate

in the traditional euclidean domain.

Deep ANNs commonly consists of several layers where each layer represents linear

vector transformation

𝑜𝑢𝑡𝑝𝑢𝑡𝑖 = 𝜎(𝑊 𝑇𝑥 + 𝑏) (2.8)

where 𝑊 – is a matrix of tunable weights, 𝑏 – is a bias vector, followed by

a non-linear transformation function 𝜎 (i.e. sigmoid, relu). The scheme of layers

connections is a computational graph of a neural network.

Modern frameworks use the idea of automatic differentiation for the computation
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of direct outputs and gradients with respect to each parameter of the network. The

computational graph is a convenient theoretical framework and a practical tool

in some deep learning frameworks, for example, in Theano and Tensorflow. The

computational graph is a directed graph, where the nodes of the graph represent

some computational units. These units can be parametric or non-parametric. There

are two functions inside: forward and backward, where the first one describes how

to calculate the unit’s forward projection. The last one describes how to calculate

gradient with respect to the parameters of the units. If all functions in this graph are

continuous and differentiable, one can calculate a partial derivative of a final value

with respect to any computational unit parameter. A deep learning framework

calculates the derivatives using chain rule:

𝐿 = 𝑓(𝑔(𝑥))

𝑑𝐿

𝑑𝑔
=

𝑑𝐿

𝑑𝑓

𝑑𝑓

𝑑𝑔

(2.9)

Given a loss function 𝐸, one can regard a problem of neural network training as the

problem of minimization of the loss function.

𝐸 =
1

2

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 (2.10)

where 𝑦𝑖 – is a predicted value. To train our network, we need to have partial

derivatives for each weight 𝑤𝑖𝑗 with respect to 𝐸. One can expect that the mini-

mization of 𝐸 on the training set can result in reasonably good predictions on the

test set2. The minimization of 𝐸 corresponds to the optimization of the weights of

a neural network. One can do it by a gradient update:

∆𝑤𝑖 = −𝛾
𝜕𝐸

𝜕𝑤𝑖

(2.11)

where 𝛾 is a learning rate – a small constant determining the size of a step in a

counter-gradient way. In practice, for the optimization of neural networks, stochastic

gradient descent is used, along with methods that regard the adaptive moment for
2And the whole building of machine learning is based on this simple assumption
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the gradient, for example, Adam Kingma and Ba [2014]. Commonly, the training

procedures use several techniques, such batch normalization Ioffe and Szegedy [2015]

and dropout Srivastava et al. [2014], which help to achieve faster convergence and

prevent overfitting. Deep neural networks are also a good choice for Multitask

learning (MTL).

This was a brief historical background of ANNs and deep learning. To those who

want to find out more about the history of artificial neural networks,We recommend

an extended review, written by Jürgen Schmidhuber (Schmidhuber [2015]). It’s

worth mentioning a review prepared by Yann LeCun, Yoshua Bengio, and Geoffrey

Hinton ( LeCun et al. [2015]): three scientists who were among the founders of deep

learning.

2.3 Models Validation and Performance Measure-

ment

Bias-variance trade-off

In machine learning, the bias-variance trade-off is a problem of balancing between a

bias of a model – the generalization ability, and a variance – the ability of the model

to fit fluctuations in the data. We can illustrate this problem seeing bias-variance

decomposition to estimate expected generalization error: let’s assume that we have

a dataset (𝑋𝑖, 𝑦𝑖) where 𝑋𝑖 – are input values, 𝑦𝑖 – are corresponding output values.

A function 𝑦 = 𝐹 (𝑥) + 𝜖 where 𝜖 is the noise with zero mean and variance 𝜎2. 𝐹 (𝑥)

– is our approximation of 𝐹 (𝑥)

E𝑑[𝑦 − 𝐹 (𝑥)] = (𝐵𝑖𝑎𝑠[(𝑦 − 𝐹 (𝑥)])2 + 𝑉 𝑎𝑟[𝐹 (𝑥)] + 𝜎2 (2.12)

The derivation of this equation can be found in Hastie et al. [2009]. There are

three parts of the error: the bias, the variance, and the irreducible error 𝜎2. Because

we can do nothing with the irreducible error, let’s ignore it in further discussion.

This form can be regarded as a lower bound of the expected error. So, one can see

that the expected error for unseen examples consists of the bias term: that describes
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"a price" of simplifying a model regarding the proper process, and the variance term:

that indicates the deviation of a model around the mean. High bias low variance

cases are associated with underfitting – a model is not trained enough (or has a small

number of parameters). Conversely, when a model has low bias and high variance

– it is overfitting – model predicts well for samples in the training set but fails on

the test set. It is easy to demonstrate the bias-variance trade-off on the example of

k-nearest neighbors regression:

E𝑑[𝑦 − 𝐹 (𝑥)] = (𝑓(𝑥) − 1

𝑘

∑︁
𝑓(𝑁𝑖(𝑥)))2 +

𝜎2

𝑘
+ 𝜎2 (2.13)

Here, the bias increases with 𝑘 but the variance decreases. Thus, one can not

improve the quality of a model only by increasing the number of neighbors. It is a

common problem for other machine learning algorithms too. Increase the number

of parameters leads to a drop in performance due to overfitting. However, it does

not mean that it is impossible to improve the quality of models. One can reduce

the bias and variance simultaneously by regularization techniques, fitting the hy-

perparameters of an algorithm, using meta-algorithms on the top of ordinary ML

algorithms. In Hastie et al. [2009] book there is a demonstration that overfitting

leads to the overestimation of the quality of a model, which is evidently undesirable

for production. Overfitting is a current problem in chemoinformatics. Chemistry

is an experimental science and obtaining and collecting experimental data is an

expensive procedure. That is the reason why the size of datasets in chemistry so

far was remarkably low. It is easy to overestimate if the model is built on a small

dataset and the number of parameters is somehow comparable to the size of the

dataset. That is why the studies about the correct estimation of the performance

of modeling get attention. It is worth to mention that one of the most cited paper

in chemoinformatics ("beware of 𝑞2" Golbraikh and Tropsha [2002] was cited more

than 3000 times ) is devoted to assessing model quality correctly.
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Regression and Classification Model Accuracy Metrics

Typical metrics used for evaluating the performance of a regression model are Root

Mean Square Error (RMSE):

𝑅𝑀𝑆𝐸 =

√︃∑︀𝑇
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑇
(2.14)

Mean Absolute Error (MAE):

𝑀𝐴𝐸 =

∑︀𝑇
𝑖=1 |𝑦𝑖 − 𝑦𝑖|

𝑇
(2.15)

and 𝑅2:

𝑅2 = 1 −
∑︀𝑇

𝑖=1(𝑦𝑖 − 𝑦𝑖)
2∑︀𝑇

𝑖=1(𝑦𝑖 − 𝑦)2
(2.16)

where 𝑦𝑖 is a predicted value, 𝑦𝑖 is a real value, 𝑦 is a mean value over all samples,

and 𝑇 is the number of samples. 𝑅2 – indicates the variance correctly described by a

model. A simple explanation is how well the model relative to the most straightfor-

ward model – mean over 𝑦𝑖. Commonly, in chemoinformatics, researchers are used

to 𝑞2 – is a cross-validated 𝑅2. Golbraikh and Tropsha [2002] reported that 𝑞2 itself

is a poor measure of the quality of models and additional conditions should be sat-

isfied for honestly assessment of models. There are many ways of estimation of the

performance of binary classifiers. The binary classification problem is common in

medical diagnosis to estimate whether a person has a disease or not. There are four

types of outcomes in binary classifying: True positive (TP) – the true samples that

were correctly classified, True negative (TN) – the false samples that were correctly

classified, False positive (FP) – the false samples that were incorrectly classified as

true, and False negative (FN) – the true samples that were incorrectly classified as

false. In statistics, there are two types of errors: type I and type II. Type I error is

the rejection of a correct null hypothesis, and Type II error is the acceptance of a

false null hypothesis. One can see that a type I error is equivalent to a false positive,

and a type II error is equal to a false negative.

A number of classification metrics are used for the estimation of performance of
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classifiers:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 = 𝐹𝑁
(2.17)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸), 𝑟𝑒𝑐𝑎𝑙𝑙, 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.18)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑃 ), 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.19)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.20)

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐵𝐴) =
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
(2.21)

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(2.22)

Commonly, a binary classifier returns not a predicted class, but a probability distri-

bution over two classes (True/False). The particular problem is to set a threshold.

It depends on the technical requirements for the classifier and user’s preferences.

Fitting the cut-off value, one can increase one parameter, but decrease others. For

example, in medicine, there is a sensitivity-specificity trade-off.

For the exploration of classifier behavior, one can use dependency curves. The

Receiver operation curve (ROC) is one of the most used tools for this. Sensitivity

(TPR) is plotted on the Y-axis and 1-specificity (FPR) on the X-axis. Given the

ROC curve, one can set a cut-off value following the desired balance. Commonly

Area under ROC curve (AUC ROC) is regarded as a measure of the performance of

a binary classifier.

Despite the popularity of this metric, the usage of AUC ROC values for imbal-

anced datasets requites caution. In the prevalence of negative samples, AUC ROC

can overestimate the performance of a classifier. Researchers proposed a number

of other metrics: concentrated ROC (CROC) Swamidass et al. [2010], Cost Curves
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Figure 2-3: The scheme of 5-fold cross-validation procedure. On each fold 4
5

of a
dataset becomes a training set and 1

5
becomes a test set, sliding over folds. The

cross-validation is done based on molecules and thus all toxicity values for the same
molecules are within the same set always.

Drummond and Holte [2000], and Precision-Recall Curves. Saito and Rehmsmeier

[2015] reviewed alternatives to ROC analysis and concluded that for imbalanced

datasets Precision-Recall analysis is strongly recommended. Davis and Goadrich

[2006] prepared a theoretical explanation to support Precision-Recall analysis over

ROC analysis.

Cross-validation

Overfitting is a well-known problem resulting in inadequate performance estimations

Golbraikh and Tropsha [2002] of ML models. Cross-validation routines are used to

combat this problem and estimate the statistical performance of models in a robust

way. A graphical explanation of a cross-validation procedure is given in Figure 2-

3. A reader can find out the historical background of validation protocols used in

QSAR/QSPR studies in the editorial note Gramatica and Sangion [2016].

A 5-fold cross-validation has been carried out for all models in this thesis unless

otherwise specified.
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2.4 3D Reference Interaction Site Model (3D-RISM)

Calculation of an equilibrium distribution of solvent around an arbitrary molecule is

a challenging problem in computational molecular science Ratkova et al. [2015]. It

can be done by molecular dynamics simulations, but extremely long simulation times

are needed to obtain smooth solvent distributions Luchko et al. [2010]. Theoretical

methods of statistical mechanics like MDFT method can be applied to this problem

as well as the 3D-RISM theory Chandler et al. [1986], Ratkova et al. [2015], Ko-

valenko and Hirata [1999, 2000b], Beglov and Roux [1997], Kovalenko [2003] which

is used in this research.

As a result of the 3D-RISM calculation, one obtains density distribution functions

(local densities) 𝜌𝛾(𝑟) of every of the solvent sites 𝛾 around the solute molecule.

These density distributions can be regarded as a variant of molecular fields. Notice

that the densities obtained from RISM calculations are not exact Hirata [2003],

Misin [2017], but can be successfully used to predict a variety of physical properties

using either empirical or semi-empirical corrections Truchon et al. [2014], Misin et al.

[2015, 2016a,b,a] or QSPR approaches Palmer et al. [2015].

The 3D-RISM main equation can be written as Hirata [2003], Misin [2017]:

ℎ𝛾(𝑟) =
𝑛𝑠∑︁
𝛼=1

(𝜒𝛼𝛾 * 𝑐𝛼)(𝑟) (2.23)

where * denotes convolution, 𝑛𝑠 stands for the number of solvent sites, 𝜌𝛾(𝑟)

is a density of site 𝛾 at point 𝑟, 𝜌𝛾 is a bulk density, and ℎ𝛾(𝑟) = 𝜌𝛾(𝑟)/𝜌𝛾 − 1

is usually referred to as the total correlation function. One should note that 𝜒𝛾,𝛼

is obtained from a homogeneous solvent, while ℎ𝛾, 𝑐𝛼 are solute-solvent correlation

functions that describe a system with a fixed solute molecule, surrounded by solvent.

𝑐(𝑟) is a direct correlation function Kovalenko [2003]. Finally, 𝜒𝛼𝛾(𝑟) is a site-site

susceptibility function that can be obtained from a bulk solvent radial distribution

functions. More conveniently, 𝜒𝛼𝛾 can be calculated from a separate 1D-RISM

calculation Perkyns and Pettitt [1992], Ratkova et al. [2015].

The above equation is coupled with a separate closure relation that provides
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another connection between ℎ𝛾(𝑟) and 𝑐𝛼(𝑟). One of the most popular and compu-

tationally robust is Kovalenko-Hirata (KH) Kovalenko and Hirata [2000a] closure:

ℎ𝛾(𝑟) + 1 =

⎧⎪⎨⎪⎩exp [−𝛽𝑢𝛾(𝑟) + ℎ𝛾(𝑟) − 𝑐𝛾(𝑟)] , if ℎ(𝑟) ≤ 0

1 − 𝛽𝑢𝛾(𝑟) + ℎ𝛾(𝑟) − 𝑐𝛾(𝑟), if ℎ(𝑟) > 0

(2.24)

where 𝛽 = 1/(𝑘𝑇 ) and 𝑢𝛾(𝑟) is a potential energy between the solvent site 𝛾 and

the solute molecule. Together the above systems of equations are usually iteratively

solved until both ℎ𝛾(𝑟) and 𝑐𝛼(𝑟) achieve a predefined convergence criteria.

2.5 Multitask Learning for Chemical Data Analysis

In the modern era, the number of chemical data generated is increasing exponen-

tially Tetko et al. [2016b]. New data requires new techniques for processing. Machine

learning and especially deep learning play an important role in handling the chemical

and biological data, providing predictive models for various properties. Even more,

several years ago, there was a question whether "Big Data" really exists in chemistry

Tetko et al. [2016a]. Nowadays, there is a consensus opinion about the necessity of

new methods for processing such amounts of data. However, data management is

a difficult task, requires much time and effort, and one should find a way of the

best usage of all available data. But it is known that biological information is often

interrelated, which can be used to increase the quality of modeling. For example,

there are known empirical relations between the melting point of an organic com-

pound and the logarithm of solubility of the compound in water Ran and Yalkowsky

[2001]. Thus learning several ADME-Tox properties together can result in better

models. The measurement’s costs for different properties vary notably. For exam-

ple, kinetic water solubility, which is the concentration of a compound in solution

when an induced precipitate first appears, can be measured in High Throughput

Screening (HTS) settings. Combining much “cheap” data with a few “expensive”

ones is a promising way for improving the quality of multitask models.

These multi-learning approaches belong to so-called transfer learning, Pan and
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Yang [2009] a technique where knowledge gained in one or several (source) tasks

is used to improve the target task. The transfer learning approaches differ with

respect to whether the source and/or target tasks have labelled data. Thus, they

can be classified as semi-supervised or “self-taught” learning (no labelled data in the

source domain), transductive learning (labelled data are only in the source domain),

unsupervised transfer learning (no labelled data are available) Pan and Yang [2009]

as well as methods which use labelled data for both source and target tasks, which

include multi-learning approaches.

The ability to infer relevant knowledge is very important for intelligence. For

example, humans, who can draw on vast amounts of previously-learned information,

can be trained on a new task with a relatively tiny number of examples. In contrast,

traditional machine learning algorithms, which usually learn from scratch, and re-

quire large example sets to do so. Therefore, there is active development and interest

in machine learning to design new methods having the same speed and accuracy as

humans. Early examples of such types of learning have been successfully reported

since the mid-1990s, e. g. the use of neural network weights trained with one task

as a starting point for new ones to increase the development speed and the accuracy

of models Caruana [1998]. Associative Neural Networks Tetko [2008] are another

example, which applied on-the fly correction of predictions for new data by using

the errors of the nearest neighbours of the target sample Tetko and Poda [2004].

Transfer of information was also done by developing models for individual proper-

ties, and then using those model predictions as additional descriptors for the target

property, known as the feature net approach Varnek et al. [2009]. In the case that

the target and source properties are very similar or identical (e. g., measured for

different species or at different conditions), one can encode different targets by us-

ing additional descriptors (e. g., conditions of experiments) and model all properties

simultaneously.

Multitask learning (MTL) is a technique which aims to improve Machine learn-

ing (ML) efficacy by simultaneously co-modelling multiple properties within a single

model. A lot of developments in this field were done in in 1990s by Rich Caru-

ana [1998] who investigated how to improve related task performance by leveraging
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domain-specific information, and inductively transferring it between the tasks. In

comparison to the other transfer learning approaches, which use labelled data for

both source and target tasks, the aim of MTL is to improve the performance of all

tasks with no task prioritised.

MTL trains tasks in parallel, sharing their representation internally. As a result,

the training data from the extra tasks serve as an inductive bias, acting in effect

as constraints for the others, improving general accuracy and the speed of learning.

Caruana [1998] noted how MTL may show improvement over Single-task learning

(STL):

• amplification of statistical data;

• attention focusing (finding a better signal in noisy data)

• eavesdropping (learning “hints” from simpler tasks)

• representation bias and feature selection

• regularisation (less overfitting)

As MTL implies sharing information between all tasks, it is possible to define

three main types of MTL based on the type of data sharing: feature, instance and

parameter-based. Zhang and Yang [2017] Feature-based MTL models learn a com-

mon feature representation among all the tasks by assuming that such a representa-

tion can increase the performance of the algorithm vs. single-tasks. Parameter-based

approaches explore the similarity between target properties and include task clus-

tering, learning of task relationships, as well as multilevel hierarchical approaches.

Feature Based Approaches

Neural networks are the primary platform for multi-learning. Rich Caruana was one

of the first to develop multi-task learning using backpropagated neural networks. He

found that four separate neural networks performing only one task can be reduced

to one network with multiple outputs that performs the tasks simultaneously. As

a result, he created a multi-task neural network to perform parallel learning. One
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should also mention the earlier work of Suddarth and Kergosien Suddarth and Ker-

gosien [1990] who used an additional layer to inject rule hints and to guide the neural

network as to what should be learned.

The network forms a set of features on the hidden layer(s), which can fit several

tasks simultaneously. Moreover, the activation patterns of neurons in neural net-

works with several hidden layers contribute to the formation of features, which are

known to be important for the analysed type of properties, e.g. toxicophores for the

prediction of toxicological end-points Mayr et al. [2016].

One of the first successful applications of MTL in chemoinformatics was done by

Varnek et al. [2009] who demonstrated that learning several tissue/air partitioning

coefficients by using Associative Neural Networks provided models with statistically-

significantly higher accuracy compared to the respective single task models. The

neural network models analysed by this team were examples of so-called “shallow”

neural networks since they included only one hidden layer. The appearance of new

training algorithms and in particular GPU-accelerated computing has brought the

renaissance of Deep Neural Networks Baskin et al. [2016] which incorporate multiple

hidden layers with much larger numbers of neurons. This greater flexibility of DNN

networks allows them to learn more complex relationships and patterns in the data.

Regarding multi-learning one can distinguish two primary architectures with

respect to the sharing of parameters: hard and soft. “Hard” parameter sharing

is similar to that of shallow neural networks and implies the sharing of hidden

layers between all tasks, except some task-specific output layers. “Soft” parameter

sharing gives each task its own model with its own parameters, where these model

parameters have a regularized distance to facilitate the sharing of learning Ruder

[2017].

Ma et al. [2015a] performed several experiments on STL and MTL neural net-

works. They found out that in some cases multi-task learning deep neural networks

(MTL DNNs) are better than single task learning deep neural networks (STL DNNs).

The authors suggested that better performance of MTL is based mainly on the size

of data sets: STLs are useful for small and mixed (small and large) datasets and.

MTLs are good for large data sets.
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MTL provided the best model according to the ROC AUC metric for the Tox21

challenge Mayr et al. [2016]. The authors showed that such networks learned on

their hidden layers chemical features resembling toxicophores identified by human

experts. The networks used these features to classify active and inactive (toxic and

nontoxic) compounds. It is also of note that the second best approach was based on

“shallow” STL associative neural networks Abdelaziz et al. [2016].

Xu et al. [2017b] investigated why an MTL DNN can outperform separate STL

DNNs and under what scenarios the multi-task approach is advantageous. The

result of this study lead to two main findings regarding the efficacy of multi-task

deep neural networks:

• Similar molecules may have correlated properties which will boost the predic-

tive performance of the DNN, and likewise uncorrelated properties will degrade

performance.

• Structurally dissimilar molecules have no influence on the predictive perfor-

mance of the MTL DNN, regardless of whether or not tasks are correlated.

Their conclusions are important for strategies for designing datasets for MTL

learning.

MTL can be used to simultaneously learn both regression and classification in

one model, as was demonstrated by Xu et al. [2017a] for the prediction of acute oral

toxicity. The authors used convolutional neural networks and reported that their

model provided higher accuracy compared to conventional methods.

Human cytochrome P450 inhibition for 5 kinases were predicted using a pre-

trained autoencoder-based DNN Li et al. [2018]. On the pre-training stage, the first

layers were trained to reconstruct the original input layer on the whole database.

The authors proved that an autoencoder-based DNN can achieve better quality

than other popular methods of machine learning for cytochrome P450 inhibition

prediction, and a multi-target DNN approach can significantly outperform single-

target DNNs. The flexibility of neural networks allows to use them not only with

descriptors derived from chemical structures in the traditional way, but to directly
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analyse chemical structures represented as SMILES or chemical graphs Karpov et al.

[2020].

Other approaches to Multi-task feature learning

The problem of feature selection has an exact mathematical formulation and an

analytical solution for linear methods. For example, Varnek et al. [2009] compared

the performance of neural networks with Partial least squares (PLS). PLS could

also provide multi-task learning by identifying common internal representations, so

called latent variables, for several analysed properties simultaneously. In addition

to the PLS method, there are other approaches for identifying sparse features or

to perform multi-feature selection as comprehensively analysed in a recent review

Zhang and Yang [2017]. These methods can be used directly with linear or kernel

methods, or to provide features for training other methods.

One such method is Macau Simm et al. [2015]. It is based on Bayesian Proba-

bilistic Matrix Factorisation (BPMF). BPMF was used to win the Netflix prize for

predicting film recommendation, the interest in this method notably increased. One

of the problems during multi-learning are missing values; frequently not all measure-

ments are available for all targets. For some other tasks the matrix of responses can

be extremely sparse, for example only 1.2% of all users-combinations were available

for the Netflix competition. Some methods, such as neural networks, can naturally

work with missing values by ignoring the error contribution from missing values

when calculating the loss for backpropagation. The BPMF allows imputing missing

values in the matrix thus enabling the application of standard techniques, such as

singular value decomposition and principal component analysis. In contrast to clas-

sical algorithms of matrix factorization, Macau is able to handle side relations i.e.

fingerprints of chemical compounds or phylogenetic distance between protein targets.

Another useful feature of Macau is the ability to work with multi-dimensional data

and perform tensor decomposition. The capacity to deal with multi-dimensional

biological sparse data was studied by de la Vega de León et al. [2018] who applied

this technique to inhibition activities of 15073 compounds for 346 targets extracted

from ChEMBL. The authors showed that Macau provided performance similar to
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that of neural networks methods but did not require GPU-accelerated computing.
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Chapter 3

A hybrid 3D method for the

prediction of bioconcentration of

organic compounds

As we mentioned in the previous chapter, there is an ultimate interest in developing

new 3D based descriptors. These descriptors, on the one hand, should be accurate

enough to provide the possibility for building the predictive models, and on the

other hand, should be universal to cover more extensive parts of chemical space.

One possible way is to use molecular theories of liquids for the generation of nu-

merical description of solvation, and the usage of this description as 3D molecular

descriptors.

Molecular theories such as three-dimensional reference interaction site model

(3D-RISM) Beglov and Roux [1997], Hirata [2003], Ratkova et al. [2015], ER-theory

Matubayasi and Nakahara [2000] or Molecular density functional theory (MDFT)

Jeanmairet et al. [2013], Ramirez and Borgis [2005], Gendre et al. [2009] rely on

approximations derived from rigorous statistical mechanics to estimate the equilib-

rium distribution of solvent around solvated molecules. In turn, these distributions

can be related to many physical-chemical properties of a solvated molecular system

Hansen and McDonald [2013], Ben-Naim [2006]. Examples of such properties in-

clude solvation free energy Du et al. [2000], Palmer et al. [2010], Misin et al. [2015],

partial molar volume Ratkova et al. [2015], Misin [2017], salting-out constants Misin
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et al. [2016b] and binding free energies Genheden et al. [2010], Güssregen et al.

[2017], Sugita and Hirata [2016]. However, using a purely theoretical approach, it is

difficult to relate these distributions to the substance’s biological effects which are

a result of a large number of complex interrelated phenomena, such as toxicity or

bioaccumulation.

The above does not mean that the solvation structure is not useful for the un-

derstanding of the influence of chemical compounds on living organisms. On the

contrary, the information encoded in the solvation shell can be used to understand

whether a given compound is hydrophobic or hydrophilic Lum et al. [1999] which in

turn can provide a reasonable guess whether it will be able to pass certain membrane

channels Roux and Karplus [1991]. In the case of a solution that contains ions, the

solvation structure can provide an estimation for the solute affinity towards them

Misin et al. [2016b]. All this information is directly related to the compound’s bi-

ological effects but can not be expressed explicitly using equations. On the other

hand, machine learning methods are usually quite good at finding and quantifying

such ’hidden’ relations Myint et al. [2012], Ajmani and Viswanadhan [2013], Ma

et al. [2015b].

We utilize a 3D Convolutional neural networks to develop a prediction model

that can estimate the bioaccumulation propensity of a compound characterized by

the Bioconcentration factor (BCF) for a number of different organic molecules. As

an input, we use three-dimensional distributions of water around these molecules,

obtained by 3D-RISM with Kovalenko-Hirata closure (KH) Kovalenko and Hirata

[1999]. Artificial neural network (ANN)s have been previously used for predicting the

biological effects of organic molecules Myint et al. [2012], Ajmani and Viswanadhan

[2013], Ma et al. [2015b]. However, they were combined with a very broad set of

descriptors that have diverse physical meanings. Here we focus on a single descriptor;

solvation shell structure in an attempt to show that this can be a universal descriptor

for the prediction of properties of molecules that are difficult to formalize by a theory.

To determine whether the CNN-based machine learning setup is necessary, we also

tested linear and Extreme Gradient Boosting (XGBoost) models and compared them

with the 3D CNN approach.
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3.1 Materials and Methods

Bioconcentration factor

This factor is the ratio between the concentration of an organic compound in biota

and in water: Arnot and Gobas [2003]

𝐵𝐶𝐹 =
𝐶𝑏𝑖𝑜𝑡𝑎(compound)

𝐶𝑤𝑎𝑡𝑒𝑟(compound)
, (3.1)

This factor is an important parameter for estimating the potential danger of

an organic compound. It is one of the parameters that determine the labeling

of the compound under Registration, Evaluation, Authorisation and Restriction of

Chemicals (REACH) program. The ability of a compound to penetrate and remain

in an organism may influence the toxicity and mutagenicity, and so may reveal

potential environmental risks. Generally, if a chemical has BCF value of more than

5000 (or log10 BCF > 3.67), it is regarded as potentially dangerous. There are

several methods to measure and estimate the confidence of the BCF data, described

in details in Arnot and Gobas [2006]. It should be emphasized that determining of

BCF in in-vivo experiments is a very expensive procedure.

where 𝐶 represents concentration. It should be noted that BCF is regarded as a

consolidated property of a chemical compound; thus, the definition involves some

common concepts like “biota” and “stationary concentration in vivo”. However, there

is OECD 305 guideline OECD [2012], which provides the basic requirements for the

methods that should be used for Bioconcentration factor estimation to obtain high

quality and comparable data. The typical way to estimate BCF is a measurement

of the concentration of a compound in fishes and water after reaching of stationarity

of concentrations, usually by exposing the chemical during the pre-defined long

period. Strictly speaking, there are many types of BCF which definitions depends

on the concentrations of compounds, species of animals, times of expositions, and

other factors of the experiments. However, OECD 305 guideline (Bioaccumulation

in Fish: Aqueous and Dietary Exposure) allows comparing measurements even for

different fish spices under certain circumstances.
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Over the years, several models for the BCF prediction have been published.

Arnot and Gobas have proposed a linear model that predicted BCF as a function of

the uptake and elimination of an organic compound by an aquatic organism. Since

BCF is related to logP and water solubility Arnot and Gobas [2006], some authors

proposed models that utilised these descriptors Papa et al. [2007]. These linear

models work satisfactory only for moderately hydrophobic compounds, but fail to

address strongly hydrophobic chemicals Gramatica and Papa [2005]. Additionally,

LogP and solubility must be measured separately and this may be problematic. An-

other notable model has been produced by Zhao et al. [2008] using a hybrid of a

number of machine learning methods. Their model managed to produce an impres-

sive accuracy (𝑅2 = 0.8,RMSE = 0.59), albeit on a somewhat curated dataset.

We used the dataset collected by USA Environmental Protection Agency (EPA)

for their Toxicity Estimation Software Tool (TEST) QSPR platform for risk esti-

mation EPA [2016]. US EPA collected the database from several sources Dimitrov

et al. [2005], Database, Zhao et al. [2008]. This dataset contains BCF measured val-

ues for several fish species: european carp and salmonids. As it has been discussed

above combination of BCF values from cross-species experiments is allowable. We

did not do any changes (modifications, additions, filtration) in the dataset. This

dataset has been split into training and test subsets in the same manner as it was

done by US EPA, and statistical values on the test set are published. We used them

as a baseline for our model. There are 541 molecules in the training set and 135

molecules in the test set. We used RDKit to perform basic molecular routines and

to estimate the geometries of molecules.

Conformers Generations: We regard conformers generation as a part of the

data augmentation process. For that point, we need conformers that, on the one

hand, have low energy (to assure physical meaning for such conformations); on the

other hand, these conformers should be diverse to provide more information for our

3D CNN. For deep neural networks, a high amount of diverse data is a key factor

to success. Our approach to conformer generation and selection is similar to the

article Jean-Paul et al. [2012] and is briefly described below. At the first stage of

the algorithm, we generate a number of conformers by rotating a molecule’s bonds
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in a stochastic manner. This is followed by an energy minimization step, consisting

of 5000 iterations and performed using the universal force field (UFF) Rappe et al.

[1992]. Because after the optimization, some molecules fall into very similar con-

formations, we have somehow to restrict the number of "valuable" conformers. To

achieve that, we do Butina clustering. Then, on each iteration, we select one com-

pound from each cluster until we reach the number of conformers we need. But when

we select a candidate, we calculate a set of RMSD values overall non-hydrogen atoms

(heavy atoms) between the candidate and all conformers we have already chosen. If

there is a low RMSD value, we exclude this candidate and continue iteration. This

procedure prevents the final conformers from being similar to each other. Although

we use RDKit machinery for the conformers generation, the process of conformer

selection is not a part of the standard RDKit pipeline. Our experiments, and exper-

iments of other researchers Hemmerich et al. [2020], demonstrated that the number

of conformers directly affects the performance of modeling; however, we believe that

similar conformers bring no useful information for the neural network. We note

that the prediction output for every molecule is an average over the whole ensem-

ble of corresponding conformers. We believe that this procedure can also mitigate

potential issues related to rotations of molecules.

3D-RISM Calculations: We used AmberTools16 Case et al. [2016] package to

calculate the partial charges of each molecule using AM1-BCC Jakalian et al. [2002]

semi-empirical model. At this stage, for some molecules the calculations have not

converged, and these molecules were eliminated. These partial charges were used

for further 3D-RISM calculations. All 3D-RISM computations were performed us-

ing rism3d.snglpnt program Kovalenko and Hirata [1999, 2000b], Kovalenko [2003],

Luchko et al. [2010] from AmberTools16 Case et al. [2016] package. Site-site sus-

ceptibility functions of bulk water 𝜒𝛼𝛾(𝑟) were calculated using DRISM method by

drism program from the same package. The water temperature was set to 298 K.

For 3D-RISM we used a 35 Å × 35 Å × 35 Å grid with 0.5 Å step size. The resulting

oxygen and hydrogen density distributions were saved as HDF5 binary files. We ran

a separate 3D-RISM calculation for each conformer. If more than 50% of 3D-RISM

calculations did not converge, such molecule was eliminated from the dataset.
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Figure 3-1: An example of the visualization of the scalar fields for a molecule as 2D
slices taken by the principal axis (Left – a visualization of hydrogens density. Right
– a visualization of oxygen density. Light yellow color – lower values, pale green
color – bulk values, blue color – higher values))

Figure 3-2: A general representation of ActiveNet4 3D Convolutional ANN

3D Convolutional Neural Networks Modeling Procedure: We used frame-

work Chainer Tokui et al. [2015a] to build networks for processing 3D data. The

architecture of the network is schematically presented in Supplementary Informa-

tion in Figure 3-3. This architecture was optimal in terms of speed and the quality

of the training models. This model has been called ActivNet4, with four indicating

the number of convolutional layers used. A pooling layer is introduced in the struc-

ture of the CNNs which reduces to a minimum the potential effects of translation,

rotation and shifting of molecules on the final output of the algorithm. We trained

this network using both oxygen and hydrogen density distributions, obtained from

3D-RISM calculations.

Parametric Rectified Linear Units He et al. [2015] were used as activation func-
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Figure 3-3: A schematic representation of ActivNet4 architecture with visualized
2D slices of feature maps on a trained network. Feature maps are colored using the
same color scheme as in Figure 3-1. Blue arrows labeled conv N × N × N denote a
3D convolution layer, green arrows labeled pool N × N × N denote 3D max-pulling
layer, and red arrow labeled "connected" denotes a fully-connected layer. The figure
is based on Figure 4 from Ref. 59
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tions for the model since they showed small improvement in the prediction quality,

although, it is possible to replace them with the commonly used ReLu activation

function without a noticeable lack of performance. To train ActivNet4, we experi-

mented with several optimizers: Stochastic gradient descent with momentum, Adam

Kingma and Ba [2014], RMSprop Tieleman and Hinton [2012], and SMORMS3 Funk

[2015]. The best and the most stable convergence has been provided by SMORMS3

method. RMSprop and Adam have a good convergence ability, but the training

process was less stable. Stochastic gradient descent has converged noticeably more

slowly for the network. To train our networks we used the parameters of optimizers:

for Adam optimizer 𝛼 = 0.001, 𝛽1 = 0.9 , 𝛽2 = 0.999 𝜖 = 𝑒−8. For RMSProp we used

learning rate = 0.01, 𝛼 = 0.001, 𝜖 = 𝑒−8. For Stochastic gradient descent we used

learning rate = 0.01, momentum = 0.9. All other parameters were set to default.

The training and test procedures slightly differed. At the training stage, each con-

former of the molecule has been regarded independently from the other conformers.

At the test stage, the prediction value for each conformer of the molecule has been

calculated and the final result was the mean value for all conformers of the molecule.

The performance of the model was estimated on the same test set that has been

used in the original work to compare our model with the baseline. Additionally, we

used a 5-fold cross-validation technique for the whole dataset to measure the quality

of the model in a more reliable way. The Neural networks have been trained using

Nvidia K80 graphics cards and Nvidia GTX 1080 cards. Training of one model

requires approximately 5 hours on Nvidia GTX 1080 and up to 4 times longer on

Nvidia K80 graphics cards.

Extreme Gradient Boosting modeling (3D Fields): To compare our 3D con-

volutional network with other machine learning approaches we built a model using

Extreme Gradient Boosting (XGBoost implementation Chen and Guestrin [2016])

algorithm. This method has been proposed for use in cheminformatics Sheridan

et al. [2016] and can process very large datasets. In this experiment, initially, we

had to decrease the volume of each 3D cube from 70x70x70 to 17x17x17 by per-

forming the average pooling operation with a kernel (4,4,4). Then, both oxygen and

hydrogen channels have been flattened and stacked forming a vector of 9826 values.
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These vectors served as the inputs for XGBoost algorithm. The application of the

method to the test set has been performed in the same manner as in the neural

network experiment. We used the maximal number of trees = 100 and maximal

depth of each tree = 6 to train the models, the other parameters have been set to

default.

Graph Convolution modeling: It was shown recently that in some cases graph

convolution methods can overperform traditional QSAR/QSPR approaches which

are based on the molecular descriptors Kearnes et al. [2016], Duvenaud et al. [2015].

We used DeepChem Ramsundar et al. [2019] framework included in Online Chemical

Modeling Environment Sushko et al. [2011] to build graph convolutions models. For

graph convolution model we used the hyperparamethers: epochs 100, learning rate

0.001, dropout rate 0.25, dense layer size 128 neurons, the size of convolution layers

was (64,64) the other parameters have been set to default.

Linear model: Finally, we also built a linear model for BCF prediction using the

following relation:

log10 BCF = 𝑎1∆𝐺 + 𝑎2𝑉 + 𝑎3, (3.2)

where ∆𝐺 is molecule’s hydration free energy, obtained with 3D-RISM PC+ method

Sergiievskyi et al. [2015], Misin [2017], 𝑉 is partial molar volume, and 𝑎𝑖 are param-

eters adjusted in the process of regression. The optimal results were obtained with

𝑎1 = 0.10634 𝑚𝑜𝑙
𝑘𝑘𝑎𝑙

, 𝑎2 = 0.003 57 Å−3, and 𝑎3 = 1.64677.

3.2 Results and Discussion

Our main goal was to predict biological property using a combination of solva-

tion structure and machine learning. For this, we used EPA database which has

676 molecules with known BCF. 670 molecules were successfully processed, while 6

molecules failed at the partial charges calculations stage or at the 3D RISM stage.

The database were split into a training (537 molecules) and test (133 molecules) sets.

For each molecule we then generated a diverse set of conformers, using a procedure

described earlier. The distribution of a number of conformers for both training and

test sets is shown in Figure 3-4. As one can see, about a quarter of the molecules in

52



Chapter 3. 3D RISM and 3D CNNs for bioconcentration prediction 3.2. Results and Discussion

Figure 3-4: The distributions of the number of conformers for each molecule in the
training and test sets

the training and test sets have less than 10 conformers (quite inflexible), while the

remaining molecules are highly flexible with 90-100 conformers. The distribution of

the conformers is similar in both sets.

The main results are summarized in Table 3.1. ActivNet4 model is achieving ac-

curacy comparable to the “consensus” model provided by the US EPA EPA [2016].

This result is noteworthy due to the fact that our model was based only on the 3D

distribution of water molecules while the EPA’s models used a large set of different

descriptors . The comparison of the two models demonstrates that the analysis of

the solvent density distribution using neural networks may be useful for predict-

ing biological properties. Surprisingly, graph convolution model showed notably

worse result than baseline model, this effect can be explained by the relatively small

dataset.

To validate the necessity of using 3D convolutional neural networks we created

Extreme Gradient Boosting (XGBoost) and linear models on the basis of 3D-RISM

results. Both alternatives demonstrated poorer accuracy compared to the original

method, highlighting that deep learning is more appropriate to achieve accurate

results.

To explore the correlation between the hydrophobicity of compounds and the ab-

solute error of predictions we calculated Wildman-Crippen LogP (n-octanol/water)

values for the test set. The results is presented on Figure 3-5b. One can see that

there is no strict correlation between these factors. Our approach was designed to
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Table 3.1: Accuracies of log10 BCF predictions by different models. RMSE stands
for root mean square error, MAE stands for mean absolute error and R denotes Pear-
son’s correlation coefficient. For cross-validadated models the standard deviations
have been calculated.

Model RMSE MAE R2

US EPA (baseline) consensus model 0.66 0.51 0.76
single model 0.68 0.64 0.74

ActivNet4 (3D data) training/test 0.66 0.48 0.77
5-fold CV 0.65 ±0.04 0.48 ±0.01 0.77 ±0.03

XGBoost (3D data) training/test 0.85 0.70 0.61
5-fold CV 0.91 ±0.02 0.72 ±0.02 0.54 ±0.04

Graph Convolution training/test 0.85 0.67 0.61
5-fold CV 0.84 ±0.03 0.66 ±0.02 0.62 ±0.02

Linear Regression (∆𝐺 and 𝑉 ) training/test 1.11 0.92 0.32

(a) Correlation between observed and
predicted values of log10BCF. The size
of the marker depends on the number of
conformers of the molecule.

(b) The correlation between the
Wildman-Crippen LogP and the abso-
lute error of predictions
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provide a full computational pipeline from only structural information to BCF pre-

dictions. Despite we use the 3D fields that have physical meaning, we do not believe

that the usage of experimental data is feasible. First, this data is sparse and hard

to standardise to provide a bias for joining values of different experiments. Second,

experimental methods for the determination of solvation are expensive, and if one

has the compounds physically the direct measurement of BCF is preferable.

3.3 Conclusions

The aim of this part of my research was to predict the bioaccumulation factor us-

ing an approximate solvent density obtained using 3D-RISM method of integral

equation theories. After training, the ActivNet4 (4-layer convolutional neural net-

work) predicted log10BCF from water density distribution with RMSE=0.66. We

demonstrate that average solvent distribution in the neighbourhood of solutes can

be combined with machine learning algorithms to predict biological properties. Al-

though the model used relatively simple 3D descriptors, it was enough to achieve

prediction accuracies comparable to the state of the art models.

55



Chapter 4

Multitask learning for acute toxicity

modelling

Reprinted (adapted) with permission from Sosnin et al. [2018a]. Copyright 2018

American Chemical Society.

Toxicity is defined as the potential for a chemical compound to cause injury

Katzung and Trevor [2014]. Accurate prediction of toxicity of organic compounds is

one of the most challenging tasks in medicinal chemistry and pharmacology. Accord-

ing to a study Wong et al. [2018], nearly 30% of drug candidates fail in the first stage

of clinical trials due to a presence of non-desired side effects, which results in a cost

increase for pharmaceutical industry. This fact emphasizes that current methods

for ‘in-silico‘ toxicity estimation have serious shortcomings and that development of

the new methods is of the utmost interest.

Toxicity estimation can be performed in two main ways: in-vivo using rodent

models and in-vitro using cell-based bioassays. The former approach allows for the

estimation of the toxic effect, at organism level, producing comprehensive results,

and is widely used in preclinical tests. It should be noted that rodent models are

not fully representative of humans and their use can thus result in unexpected side

effects, which can be observed during clinical trials or even after drug approval

Alden et al. [2011]. The fact that in-vitro tests are relatively inexpensive facilitates

automation and makes their use possible in high-throughput screening (HTS) Inglese

et al. [2006]. The different types of toxicity mechanisms can be detected by using
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different assay types. Currently, there is great demand for development of new

reliable relevant assays for, e.g., nephrotoxicity. Huang et al. [2014] However, the

in vitro tests do not also always consistent with the in vivo toxicity because human

cell-based data used in in vivo testing may not take into account the general systemic

toxicity for the whole organism. At the same time, the in-vivo based rodent models

do not always correctly represent human toxicity. Thus there is a great interest in

the development of computational techniques to reliably predict toxicity Thomas

et al. [2018] .

Currently, a large amount of information has been accumulated and kept in com-

mercial and open source databases. Some examples of the open source databases

are the TOXNET database Institute of Medicine (US) Committee on Internet Ac-

cess to the National Library of Medicine’s Toxicology and Environmental Health

Databases [1998] and DSSTox, Richard and Williams [2002] which includes Tox21

high throughput data and ChEMBL Bento et al. [2014] database containing approx-

imately 15 million of bioactivities. Among the proprietary databases, the Registry

of Toxic Effects of Chemical Substances (RTECS) database is the most valuable,

and it contains information about 187 000 chemical substances. It has in-vivo data

for acute toxicity, skin irritation, tumorogenic properties and other effects measured

for different organisms such as rodents, rabbits, and many others.

The open access to bioactivity data in these and other databases prompted the

development of high quality prognostic models created using various machine learn-

ing methods. For example, the PASS software (and web-service) Pogodin et al. [2015]

based on the Naive Bayes approach and trained using ChEMBL, demonstrates good

reliability when performing the classification task on a set of more than 2500 pro-

tein targets. The EMolTox web-service Ji et al. predicts different types of toxicity

using random forests and conformational prediction as measure of confidence and

simultaneously visualizes the ToxAlert substructures on the molecular graph. The

ProTox web-server is another tool for prediction of acute toxicity and other types

of toxicity Drwal et al. [2014], which utilizes a nearest neighbor approach combined

with fingerprint similarity assessment. There is a number of models constructed

for a narrow class of chemical compound Asadollahi-Baboli [2012], Auerbach et al.
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[2010], Liu et al. [2013] or the certain model organism Wang et al. [2010], Li et al.

[2017], however, the applicability domain of such models is limited. The toxicity

of chemical compounds is estimated using different types of biological assays which

describe various toxic effects (neurotoxicity, cardiotoxicity, etc), model organisms

(rodents, dogs, monkeys), or the toxicity outcome (LD50, LD100). Only a few com-

pounds are investigated in several assays and unavailability of experimental data

in all assays may prevent detection of their toxicity. However, since the toxicity

datasets are correlated, we can expect that such correlations can be used to develop

models with higher predictivity for each datapoint by modeling such datasets simul-

taneously (multi-task learning). The previously mentioned RTECS dataset, which

contains data for different species and endpoints, is more suitable for such a study.

This dataset was not widely used for the development of predictive models. We are

only aware that part of it was used for mapping and chemical space visualization of

the IDDB dataset von Korff and Sander [2006]. In this study we have addressed this

question by using multi-task learning Unterthiner et al. [2015], Dahl et al. [2014],

Sosnin et al. [2018c] with state of the art machine learning methods

4.1 Materials and Methods

RTECS dataset

We extracted acute toxicity data from Registry of Toxic Effects of Chemical Sub-

stances (RTECS) – is a database which collect the information about various toxic

effects of chemical substances. We used RTECS database version 2018.1 to extract

organic compounds with acute toxicity records available. Since the structures of

organic compounds are not presented in the database, we extracted them from Pub-

Chem Kim et al. [2016] using Chemical Abstracts Service (CAS) Registry Number.

The non-organic compounds, plant extracts, parts of biological compounds, and

compounds containing elements other than (C, H, O, N, P, S, F, Cl, Br, I) were

ignored.

The goal of this study was to examinate the toxic effects of the organic com-

pounds. However, many compounds were reported in the database as salts or as
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Figure 4-1: Ions considered to be nontoxic

mixtures, and some of the counterions are toxic themselves, e.g. methylsulphate ion

(CH3OSO –
4 ). Their toxicity could interfere with the interpretation of the toxicity

of the organic part. Therefore, only compounds with non-toxic counterions listed

in Figure 4-1 were kept in the database. The compounds with other counterions

and compounds with mixtures were eliminated. We also eliminated all polymeric

substances. For the salts which were kept in the database, only the organic part

was used to generate descriptors.

After the preprocessing stage, all compounds were grouped for the same toxicity

type by two parameters: the route of administration and the animal species used

for the experiment. We removed all records that had less than 300 reported mea-

surements for each group to reduce the dimensionality of the output. As the result,

a database with 129,142 toxicity measurements was created. It consists of 87,064

unique molecular structures and 29 unique endpoints. The sparsity (the percentage

of the filled values) of the data matrix is 5.12%. The information on the endpoints

is summarized in Table 8.5 in Supplementary Material.

Molecular descriptors

Different descriptor sets may have different performance in the modelling of toxic-

ityFeng et al. [2003], Baskin [2018]. The testing of different sets of descriptors for

the performance of single and multi-task models could help to better understand

whether the performance of models depends on the used descriptor sets. There-
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Figure 4-2: Representation of endpoints as outputs of a deep neural network.

fore, we calculated a number of molecular descriptor sets which are provided by the

OCHEM platform. A short description of the descriptors used is given in Table 4.1.

It should be noted that OCHEM developed a new model on each validation step

without using any information about the test compounds, which are only predicted

following model developments. This provides correct validation (identical to the use

of so-called “external sets”) since no information about the test molecules is used to

guide model development.

We implemented our DNN in Chainer Tokui et al. [2015b] framework and in-

cluded it into the OCHEM Sushko et al. [2011] platform.

4.2 The description of RTECS chemical space

For the description of the whole dataset, we took the highest value across all end-

points for each molecule. For the generation of the 2D chemical space representation

the calculated RDKit circular fingerprints (4096 bit vectors) based on the standard-
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Table 4.1: The descriptors used in our experiment. Several descriptor blocks that are
indicated by “(3D)” required 3D representation of molecules, which was calculated
by using 2D to 3D structure conversion using Corina program.

Descriptor Short description
PyDescriptor (3D) [129] A PyMOL-based plugin for calculations dif-

ferent groups of descriptors
Dragon6 (3D) [208] Descriptors provided by Dragon 6 program
SIRMS [116] Calculates simplexes, which are n-atoms

fragments of a xed composition, structure,
chirality and symmetry

StructuralAlerts [192] Presence of certain sub-fragments in molec-
ular graphs which are believed to be related
to toxicity of organic compounds

QNPR [205] Uses substrings of SMILES as a representa-
tion of molecules

Spectrophores (3D) [203] Spectrophores are one-dimensional descrip-
tors that describe the three-dimensional
molecular fields surrounding a molecule

Adriana (3D) The descriptors provided by Adriana.CODE
program

Inductive (3D) [30] Descriptors based on inductive and steric ef-
fects of atoms

Chemaxon (3D) A subset of descriptors calculated by
Chemaxon (www.chemaxon.com) module in
OCHEM

Mera and Mesry (3D) [159] 3D descriptors of molecules
GSFrag [159] Descriptors calculated by GSFRAG program

(the occurrence numbers of certain special
fragments on k=2,...,10 vertices in a molecu-
lar graph)

Fragmentor [215] Molecular fragments which contains from 2
to 4 atoms genereted by ISIDA module in
OCHEM

ALogPS [200, 196], OEstate [67] Prediction of logP by ALogPS2.1 program in
combination with OEstate descriptors which
are based on electrostatic properties of atoms
and bonds

CDK2 (3D) [188] Chemistry development kit descriptors, ver-
sion 2.0

Morgan fingerprints [168] Morgan (circular) fingerprints of radius two
(which corresponds to ECFP4 [168]) calcu-
lated by RDKit
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Figure 4-3: The RTECS chemical space visualization. Each point stands for the one
molecular structure and its color indicates the acute toxicity values in log(mol/kg).
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Table 4.2: The architecture of dense7 neural network

Hidden Layer Neurons Batch Normalization Dropout ratio
1 512 Yes 0.5
2 256 Yes 0.5
3 128 Yes 0.5
4 64 Yes 0.5
5 32 Yes 0.25
6 32 No 0.1

ized SMILES molecular representation (molvs python package) were embedded into

the 2D space using the t-SNE method van der Maaten and Hinton [2008]. A pairwise

distance matrix was calculated using the Dice metric, and the default values were

chosen for parameters of the algorithm. Figure 4-3 shows the results of the chemical

space embedded in the 2D space. Each point corresponds to a chemical structure

and the color denotes the toxicity values according to the palette. Some of the toxic

clusters are highlighted by the rectangular shapes and their representative members

are visualized in Figure 4-3. We provide the description of several clusters com-

posed from the relatively toxic molecules. The enlarged image of cluster K is given

for clarity and demonstrates its composition from the hydroxytriptamine deriva-

tives. Arylcarbamate (neostigmine derivative is shown as a representative cluster

member) derivatives are embedded into cluster A and their toxic effects may be

explained by the cholinesterase inhibition. Cluster B is composed of possible nico-

tinic acetylcholine receptor ligands. The derivatives of the 3-quinuclidinyl benzilate

which is a potent muscarinic anticholinergic agent are the major members of cluster

C. Cluster D, similarly to cluster B, is composed of compounds based on the two

quarternary amine groups connected by a linker. Phenotiazine derivatives acting on

a number of different targets and widely used as antipsychotic agents earlier are the

major components of cluster E. Phencyclidine derivatives (NMDA-receptor channel

blocker) are included in cluster F. Possible alkylating agents and organophosphorus

compounds were grouped in clusters G and H, respectively. Cluster I is composed

of the adrenoreceptor ligands and the propranolol structure is shown for example in

Figure 4-3. And isoquinoline derivatives belong to cluster J. This result shows that

toxic compounds are grouped by similar structural features and neighbor compounds
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tend to have similar toxicity.

4.3 Correlation Analysis of Endpoints

Previous studies Xu et al. [2017b] pointed out that the efficiency of multi-task mod-

elling depends on correlations between targets. To examine it, a correlation analysis

of endpoints was performed. Pearson correlation coefficients between each pair of

endpoints were calculated. Mutual correlations as heatmaps are presented on Figure

4-4. For the objective evaluation of correlations, we set a number of thresholds. If

the corresponding endpoints have the number of simultaneous measurements less

then a threshold, the color on the heatmap is absent. The successful application

of multi-task modelling can be seen from the high correlations between endpoints.

The high correlations between endpoints also reflect the good quality of the data

presented in RTECS on the assumption that the provided measurements were inde-

pendent.

4.4 Comparison of Models

Our main goal was to compare models of toxicity prediction built for different end-

points. In this study we defined each endpoint according to the conditions of the

experiments. For example the LD50 toxicities measured when using intraperitoneal

administration to mouse belong to the same endpoint. As a counterexample LD50

records with oral and intraperitoneal admission belong to different endpoints. How-

ever, due to hidden relations between endpoints we can expect that the multi-task

(multi-endpoint) models should achieve better quality than single-task models. To

prove the hypothesis we built multi-task DNN models (MT_DNN), single target

DNN models (ST_DNN), and several models with other aforementioned machine

learning algorithms, namely: XGBoost, Random Forest, k nearest neighbors . In

order to show that the observed relationships are not specific to a single set of de-

scriptors, we used all sets of descriptors reported in Table 4.1. The performance of

different models is given in Figure 4-5.
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Figure 4-4: Matrices of correlations for endpoints with various thresholds
(min_samples) values. The toxicity endpoints demonstrate their correlation
notwithstanding the number of compared samples.
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The MT_DNN models outperformed both ST_DNN models and all other meth-

ods used for all analyzed sets of descriptors. Models, which are based on ALogPS

combined with OEstate descriptors achieved the best average performances across

all studied methods. The red dashed line on Figure 4-5 corresponds to average

RMSE = 0.71 ± 0.01, which was calculated using MT_DNN for several sets of

descriptors, namely Fragmenter, CDK, Dragon and ALogPS, OEstate. The perfor-

mances of ST_DNN models were comparable with XGBoost and Random Forest

models. This result is not surprising, and consistent with previous studies Sheridan

et al. [2016], Zhang et al. [2017] where the efficiency of these methods was similar.

The Random Forest method achieved a better average performance compared to

the XGBoost method. This can be related to the robustness of this method in com-

parison to that of XGBoost. One should carefully select the XGBoost parameters

to achieve close to optimal solution, while Random Forest usually provides high

quality results for the models “out-of-the-box”. We also experimented with other

ANN types. Associative neural networks (ASNN)s Tetko [2002 May-Jun] required

long computational time, because they used CPU and not GPU computing. This

algorithm, which was based on a so-called “shallow neural network” with one hidden

layer, provided a lower accuracy presumably due to the absence of latent represen-

tation of the molecules (in deep neural networks latent representation is commonly

regarded as the outputs of second-to-last layer).

Endpoints modelling

We also compared the quality of models for each individual endpoint. To do that,

a consensus model which averages of the outcomes of the top 5 descriptor models

was created. There were 29 endpoints which represent 4 animal species: mouse, rat,

rabbit, guinea pig, one unspecified class, and two classes of human based on gen-

der: man and woman, several types of administration and 3 outcomes: Lethal Dose

Fifty (LD50), Toxic Dose Low (TDLo), Lethal Dose Low (LDLo). The numbers

of records for each endpoint are given in Table 4.1. Our automatic data extraction

procedure keeps the extracted endpoints unchanged, that is why the human toxi-

city is reported separately for man and woman and an “unspecified” animal class
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Figure 4-5: Average RMSE of predictions of toxicity for all endpoints in -log(mol/kg)
units by different methods and descriptor sets. Descriptors were arranged in accor-
dance with mean values of predictions by all methods (the best are on the left).
Methods are ordered by the mean RMSE over all descriptors (MT_DNN and KNN
demonstrated highest and lowest overall performances, respectively).

is also present. There is the significant gap in the quality of prediction of toxicity

for different endpoints. LD50 values were predicted with relatively good quality

for several species and several types of administration: for mouse intravenous,

oral, subcutaneous The LD50 type of toxicity gave the value of 𝑅2 ≥ 0.65 for

corresponding models. The same model quality is observed for rat and rabbit in-

travenous LD50 toxicity. It should be noted that LDLo was predicted with lower

accuracy than LD50 toxicity for all species and administration types. For TDLo

the prediction accuracy is inferior: 𝑅2 values for those targets are in the range 0.26-

0.43 which is fairly low. The low accuracy of the prediction of these endpoints can

be explained by the limited amount of data for these types of toxicity. Moreover,

TDLo and LDLo measurements are less reliable due to disproportionately inaccu-

rate experimental conditions (e.g. could be contributed by other sources of toxicity

not directly related to the analyzed compounds) the instrumental errors during mea-

surements were higher for these endpoints, since both of these toxicities have lower

values compared to LD50. The target with the lowest error is rat, intravenous,

LD50 with 𝑅2 = 0.71 and 𝑅𝑀𝑆𝐸 = 0.54. Toxicity for humans is represented

only by TDLo values and the quality of prediction of models for this target is un-

satisfactory. This is related to the factors mentioned above and it should inspire

new developments because of the extreme importance of such modelling to drug
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Figure 4-6: Prediction charts for a number of selected endpoints

development. On Figure 4-6 we demonstrate some representative prediction charts,

a full set of prediction charts (for each endpoint) can be found in Supplementary

Information.

4.5 Attributed Modeling

Multi-task modeling can be approximated as single-task where the endpoint tags

are provided to the input of the model as attributes. For example in our case ani-

mal species as soon as a type of administration and type of toxicity can be encoded

by one-hot encoding and concatenated with a vector of chemical descriptors. The

scheme of the attributed modeling is given in Figure 4-7. The advantage of the

attributed modeling is the possibility to use any machine-learning algorithm with-

out additional modifications of a loss function. We compared the performance of

consensus XGBoost attributed model with consensus multi-task DNN model and

consensus single-target DNN model. XGBoost method has been chosen due to both

quickness and its ability to achieve the good quality among single-target models.

Our experiments revealed that there is no significant discrepancy between the per-

formance of the multi-task DNN and the attributed XGBoost model. The statistical

performance of different modelling schemes is given in Table 4.3.

Feature Net approach

The Feature Net approach has been proposed as a variant of multi-task learning.

The main idea of this approach is to use a predictions of one (or a group) model as

additional descriptors for the resulting ST models. It was shown that the Feature
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Figure 4-7: Representation of endpoints as attributes in STL modelling. The en-
coding of endpoints as input descriptors allows their simultaneous prediction using
neural network with one output neuron.

Table 4.3: The comparison of quality of two consensus attributed models with con-
sensus multi-task model (averaged over all endpoints)

Model MAE 𝑅2 RMSE

DNN
(attributed) 0.49 0.54 0.69

XGBoost
(attributed) 0.49 0.55 0.68

DNN
(multi-task) 0.49 0.55 0.68
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Table 4.4: The comparison of RMSE for models based on Feature Net approach
with multi and single task models (averaged over all endpoints)

Descriptors Feature Net ST DNN MT DNN

Dragon 6 0.77 0.85 0.74

ALogPS, OEstate 0.75 0.86 0.74

Fragmentor 0.77 0.88 0.74

PyDescriptor 0.76 0.85 0.74

Net approach can achieve better accuracy than single-task learning Varnek et al.

[2009] and can provide models with similar accuracy to MT models. We used re-

sults of ST_DNN as the feature nets to train the models and after that we used

these predictions as additional descriptors to develop final models. The statistical

performance of these models are given in Table 4.4.

We observed that for all descriptors the general trend remains the same. The ac-

curacy of Feature Net models is between that of single-task models and multi-task

models. We believe that Feature Net models partially regard latent correlations

in the data; however, the multi-task models have significantly better performance.

Taking into account that fact that the Feature Net approach requires significantly

more time compared to MT models the feasibility of usage of this approach is ques-

tionable.

Censored data modeling

Toxicity datasets frequently include a significant number of records reported as

intervals e.g., “>” (greater than), in cases where the exact value of toxicity has

not been measured. This frequently refers for non or low toxic compounds or for

compounds for which high concentrations can not be achieved due to solubility or

availability. This problem is known in literature as censored data modelling. To

solve this problem a number of statistically-based approaches were proposedGijbels

[2010]. This large number of the records without exact toxicity values is a special

problem in automatic data analysis. The most common approach in this case is

to set the maximal toxicity dose observed in the whole dataset for these types of
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records, considering them to be nontoxic. But in case of particularly heterogeneous

data this approach is not optimal due to the large variations in the toxicity values

for different endpoints. We propose a modification of a loss function which allows

the correct processing of such records; the formula for a RMSE loss function over a

batch which regards intervals is given below:

𝐿(𝑦, 𝑦) =

⎧⎨⎩ 1
𝑛

∑︀𝑛
𝑖=1(𝑦𝑖 −𝑚𝑎𝑥(𝑦𝑖, 𝑦𝑖))

2 𝑖𝑓 >

1
𝑛

∑︀𝑛
𝑖=1(𝑦𝑖 −𝑚𝑖𝑛(𝑦𝑖, 𝑦𝑖))

2 𝑖𝑓 <

where 𝑦𝑖 – is a predicted value, 𝑦𝑖 – is a real value, 𝑛 – total number of samples in

a batch.

To estimate if the training on ranged data can improve the quality of models or

we trained two models: one with modified loss function and one with the standard

RMSE loss and applied them to compounds with exact values of toxicity. No signifi-

cant difference between models trained with modified loss functions and with RMSE

loss was observed . This experiment demonstrated this method is not efficient for

the dataset under study and the standard loss function i.e. RMSE or MAE during

training is preferable. Nonetheless, the correct and efficient processing of ranged

data, especially for large diverse datasets, might be crucial for other applications

and should be kept in mind.

Latent representation of compounds

Neural networks generate a hidden representation of data on their hidden layers by

processing the data. We visualized this process directly by performing projection

of the latent representations of the compounds onto the 2D plane by the t-SNE

method. The neuron’s activation on the last-to-last ANN layer for the molecule was

used as their hidden representations. The visualization of this latent space on Fig-

ure 4-8 shows that ANN on the last hidden layer achieves good separation of toxic

and non-toxic compounds but generally does not group structurally similar com-

pounds together. One can notice three areas containing the most toxic compounds

and each of these groups are composed of different compounds: organophosphorus

compounds, sterane derivatives, etc.
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Figure 4-8: The results of the application of the t-SNE method to deep features
generated by the multitask DNN, values are minus logarithms of maximal endpoint
(greater values correspond to larger toxicity). Several clusters with high toxicity are
observed.
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Regulations in the light of multi-task learning

Recent progress in QSAR/QSPR modelling raises questions about the correspon-

dence of newer methods to guidelines established and approved by authorities. In

this section we would like to put forward for discussion the OECD principles for

the validation, for regulatory purposes of QSAR models. "Guidance Document on

the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Model"

summarized the collective opinion of OECD specialists to QSAR modelling. In this

document a peculiar attention is given to the Principe N 1 – a defined endpoint. De-

spite of an uncertainly of formalizing defined endpoint, the authors of the guideline

warned researchers from usage of endpoints which are not clearly defined. We agreed

with the authors that for a QSAR model the endpoint should be clearly defined, but

we believe that the current description of the defined endpoint is insufficient. For

example Item 68. states that “4. The chemical endpoint of the (Q)SAR should be

contained within the chemical endpoint of the test protocol. 5. The endpoint being

predicted by a (Q)SAR should be the same as the endpoint measured by a defined

test protocol that is relevant for the purposes of the chemical assessment.” The in-

terpretation of this formulation may prohibit the usage of multi-task learning. In

the same time, we are at the beginning of a “big data” time Tetko et al. [2016b]

in chemistry and biology The appearance of these data promotes development of

powerful multi-task models that could significantly increase quality of models for

individual end-points. But these methods can break the paradigm “one accurate

dataset" −→ “one model for narrow endpoint”. It should be mentioned that the

Feature Net approach, in principle, can still allow us to use the OECD principles by

treating predictions of STL models as additional descriptors. However, as we have

shown in our studies this approach many not allow us to use the full advantages of

multi-task modeling.

4.6 Conclusions

In this study the efficiency of several methods of machine learning and several types

of descriptors was estimated on a large multi-task dataset. The statistical analysis
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of the data extracted from the largest toxicity dataset the Registry of Toxic Effects

of Chemical Substances (RTECS) was performed. We demonstrate that multi-task

deep neural networks can significantly improve prediction of toxicity by comparing

them to investigated single-output types of models including: single-task deep neural

network, XGBoost, Random Forest, K-nearest neighbors. The models with highest

prediction abilities were obtained for rabbit and rat species.

Interestingly, the attributed models (target endpoints are encoded with addi-

tional descriptors), and multi-task models (each endpoint corresponded to one out-

put) demonstrated similar accuracy. While the Feature Net approach contributed

better models than single-task models, it performed worse than the multi-task mod-

els. Our results demonstrate that multi-task approach can be beneficial for toxicity

prediction due to its ability to process a heterogeneous dataset containing different

endpoints.
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Chapter 5

Chemical space visualization guided

by deep learning

Visual representation of the chemical space is growing in popularity and medicinal

chemists use it to have the better understanding of chemical data Osolodkin et al.

[2015]. Technically, it is an information-losing projection from multi-dimensional

molecular space (commonly described by molecular descriptors, so-called descriptor

space) into two- or three-dimensional space, in which humans can operate easily.

The majority of chemical space visualization methods use two discrete procedures:

• calculation of molecular descriptors

• performing a projection from descriptor space into a 2D plane or 3D volume

by one of several known techniques Sorzano et al. [2014]

There is the option to combine different descriptors with different dimensionality re-

duction algorithms, however, sometimes authors of a visualization method propose

a suitable combination of molecular descriptors and algorithms for better perfor-

mance, e.g. GTM Bishop et al. [1998] may be successfully combined with ISIDA

descriptors Baskin et al. [2017].

The type and the length of the descriptor vector influences the details of the

chemical representation, and the choice of the feature set is driven by the expected

depth of description. Molecular quantum number (MQN) Reymond et al. [2010]

is an example of a simple molecular descriptor set consisting of atomic and bond
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counts and some other topological descriptors. Despite the fact that the size of the

descriptor set is relatively short (42 descriptors), this method performed very well

in the identification of the novel nAChR allosteric modulators Bürgi et al. [2014].

Alternatively one can use a fingerprint description of the molecular structure, which

is a bit string where each bit indicates the existence of predefined substructure

(MACCS Structural Keys; Symyx Software: San Ramon, CA, 2002.) or the certain

atom types in the predefined atomic environment (ECFP fingerprints) Glen et al.

[2006].

Here we describe an application of deep feed-forward neural networks as a t-

SNE mapper to the bioactivity data taken from A Database of Useful Decoys

(DUDe)Mysinger et al. [2012] and the Trace Amine Associated Receptor 1 (TAAR1)

ligands visualization task. The workflow consists of three main stages. First, we

trained a set of the mapper functions varying the perplexity level in the loss function

with the overfitting controlled by the external test set (Figure 5-1). Second, since

the dimensionality reduction techniques lead to information loss, we trained a set of

classifiers on the mapped 2D data and compared the resulting accuracy. Third, we

provide the visualization and analysis of the TAAR1 data set taken from PubChem.

5.1 Materials and Methods

A number of dimensionality reduction techniques were utilized for the processing of

molecular databases and here we will briefly review the most important of them,

commenting on their relative strengths and drawbacks.

The algorithm of Principal component analysis (PCA) performs an iterative

search of directions with the highest variation in a multidimensional data space.

Usually the first two components are easily interpretable and explain 60-80% of the

whole variation in the data Osolodkin et al. [2015]. PCA-based mapping is fast,

deterministic, and new compounds may be easily mapped using the principal com-

ponents of an existing data set, but this method omits non-linear feature interactions

Rose et al. [1991] and some map regions become overloaded with data Blum et al.

[2011]. The method of Self-Organizing Maps (SOM) Kohonen [1982], Awale and Rey-
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mond [2016] usually treats non-linearities in a better way, mapping the feature space

to the low dimensional visualizable space. The Generative Topographic Mapping

Bishop et al. [1998] approach represents a probabilistic alternative to SOM Kireeva

et al. [2012]. This approach was applied to large data set collections identifying desir-

able chemical space regions for drug design Gaspar et al. [2015] and was successfully

used for large-scale Structure–Activity Relationship (SAR) exploration Kayastha

et al. [2017]. It is worth mentioning non-coordinate based approaches developed by

the group of Jürgen Bajorath, which transform multidimensional chemical space to

a graph with nodes representing chemical compounds, and edges connecting com-

pounds within a specified similarity cut-off de la Vega de León and Bajorath [2016].

The other approach, so-called Scaffold Trees, treat the chemical space as a tree

where leaves represents individual chemical compounds and the intermediate nodes

represents scaffolds and subscaffolds Schuffenhauer et al. [2007].

A number of useful tools combining a variety of visualization approaches were cre-

ated in the recent years. Stardrop (Optibrium Ltd., Cambridge, UK) and DataWar-

rior (openmolecules.org) combine a variety of visualization approaches with chemoin-

formatic data analysis. The CheS-Mapper Gütlein et al. [2012] tool, which is used

for the visualization of chemical data sets in 3D space, provides both a number of

chemical descriptors and several projection algorithms i.e. PCA, t-SNE, and also

gives users the possibility to combine them.

5.1.1 Datasets

ChEMBL: Molecular structures for training were extracted from ChEMBL Gaulton

et al. [2017] v.23. Only SMILES strings with lengths between 10 and 150 characters

have been selected, yielding a data set containing 1564049 unlabeled items. Obtained

SMILES representations were standardized using the molvs Python package and

subsequently used for the computation of ECFP6 fingerprints comprising 2048 bit

length. Then the data set was randomly split into training (90 %) and test (10 %)

samples which were subsequently used for training and mapper quality estimation.

DUDe: In order to assess visualization performance we used data sets collected

from DUDe Mysinger et al. [2012] which is successfully used for the assessment of
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molecular docking performance. Two subsets containing GPCR and nuclear recep-

tors’ ligands and having relatively high similarity inside each group were selected for

analysis. It should be noted that GPCR (contains 5 classes) and nuclear receptors’

(contains 11 classes) data sets contain information about 1480 and 2995 chemical

compounds, respectively.

TAAR1 ligands: 415 Trace Amine Associated Receptor 1 agonists with annotated

EC50 values were taken from PubChem Kim et al. [2016]

5.1.2 Parametric t-SNE

Stochastic Neighborhood Embedding initially was proposed by Geoffrey Hinton as

a method for the dimensionality reduction. The t-SNE approach, proposed by L.

van der Maaten, has gained tremendous popularity in data visualization, however,

it has two notable drawbacks:

• it can not be directly applied to new data (in other words when a new portion

of data is obtained the whole data set must be reevaluated again)

• the computational complexity of the distance calculation is quadratic which re-

quires the usage of approximations (i.e. Barnes-Hut approach) for the analysis

of large databases

In practice, even with the Barnes-Hut approximation, applying t-SNE to more

than 105 compounds on modern computers is computationally unfeasible. To over-

come these problems we focused on the Parametric t-SNE algorithm that was pro-

posed by the same author van der Maaten [2009]. In Parametric t-SNE, a function

which performs a mapping from the high-dimensional descriptor space to a low-

dimensional space (2D or 3D) 𝑓 : 𝑋− > 𝑌 is a normal feed-forward neural network

with trainable weights. It should be noted that in the original paper the authors used

Restricted Boltzmann Machines as their mapping function because they provide a

good speed of computation, however, nowadays feed-forward neural networks trained

on GPUs can be feasibly used as an alternative. At the first stage of the algorithm

a distance matrix should be computed using a task-relevant distance metric. Then

each row of the distance matrix is transformed into the probability distribution:
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Figure 5-1: The schematic workflow of the pT-SNE mapping procedure

𝑝𝑖𝑗 =
𝑒−𝛽𝑖𝑑

2
𝑖𝑗∑︀

𝑘 ̸=𝑖 𝑒
−𝛽𝑖𝑑2𝑖𝑘

(5.1)

Where the parameter 𝛽𝑖 = 1
2𝜎2

𝑖
. 𝜎2

𝑖 is the bandwidth of the Gaussian kernels,

𝛽𝑖 – is a tunable parameter, and it is tuned over batches to follow the pre-defined

perplexity of data. The perplexity is:

𝑃𝑒𝑟𝑝(𝑃𝑖) = 2𝐻(𝑃𝑖) (5.2)

where 𝐻(𝑃𝑖) – is Shannon entropy:

𝐻(𝑃𝑖) = −
𝑁∑︁
𝑗=1

𝑝𝑗𝑖𝑙𝑜𝑔2(𝑝𝑗𝑖) (5.3)

Perplexily is a predefined parameter of the algorithm. The parameter 𝛽𝑖 is found

by binary search to satisfy the predefined perplexity. When the described transfor-

mation is applied to each i row of the distance matrix we can observe that almost

all elements of each row become zeros except some neighboring items to i item in

terms of the used distance metric. This distribution defines the probability to pick

j item (where 𝑗 ̸= 𝑖, 0 < 𝑗 ≤ batch size) as a neighbor of i item among the whole

batch. Our implementation allows us to perform this task on a GPU, increasing
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the speed of training. The pairwise similarities in the latent space are computed

using Student t-distribution to overcome the “crowding” problem van der Maaten

and Hinton [2008] in the same way as in the high-dimensional descriptor space ex-

cept the euclidean distances were chosen as a distance metric (2). The cost function

is defined as Kullback-Leibler divergence Kullback and Leibler [1951] between joint

probability distributions in high-dimensional space P and in low-dimensional space

Q (3). 𝛼 is the number of degrees of freedom, used in the definition of t-distribution.

𝑞𝑖𝑗 =
(1 + ||𝑦𝑖 − 𝑦𝑗||2/𝛼)−(𝛼+1)/2∑︀
𝑗 ̸=𝑘 (1 + ||𝑦𝑖 − 𝑦𝑘||2/𝛼)−(𝛼+1)/2

(5.4)

𝐿 = 𝐾𝐿(𝑃 ||𝑄) =
∑︁
𝑖 ̸=𝑗

𝑝𝑖𝑗𝑙𝑜𝑔
𝑝𝑖𝑗
𝑞𝑖𝑗

(5.5)

Where 𝐿 is a loss function used for optimization of the weights of the neural

network. Choosing of an optimal 𝛼 value is an open problem, however L. van der

Maaten in his original work van der Maaten [2009] defined some possible approaches.

In our research, we start with 𝛼 equal to one and along with updating weights in

the mapping function we compute gradient and update alpha similarly.

Figure 5-2: The learning curves obtained for different perplexity values

Artificial neural networks: We used deep artificial neural networks as a mapping

function in our variant of Parametric t-SNE which projects the input space into 2D
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Figure 5-3: The results of the neural network mapping for a set of GPCR (A)
ligands. A contains ligands of adenosine A2 (aa2ar), adrenoreceptors 𝛽1 (adrb1)
and 𝛽2 (adrb2), chemokine CXCR4 (cxcr4) and dopamine DR3 (drd3). B, C, D,
contains zoomed area from A. (Perplexity 100)

space. The architecture of the network and parameters of optimization are given

in Supplementary Information. In our experiments we tested ECFP6 fingerprints

(2048 bits). All fully-connected layers except the last one are followed with a batch

normalization layer Ioffe and Szegedy [2015]. Rectified linear units (ReLU) were

used as activation functions on the first three layers and the appropriate weight

initialization was performed. Different perplexity values (10, 30, 100, 300, 1000)

which can be understood as a mean number of neighbours taken into consideration

were also tried at the training step. It should be noted that the resulting basis

vectors of the output 2D space can not be easily interpreted in comparison with the

results of PCA analysis.
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We tried two different distance metrics: Euclidean and Jaccard distances. Due to

the fingerprints’ sparsity the common approach of cosine distance is inconvenient for

this task and in our experiments Euclidean distance tended to overestimate similarity

among small molecules. Because of the possibility of performing the training process

in batch mode it is not necessary to compute the distance matrix for the whole data

set, which reduced computational time and memory consumption and allows the

processing of very large data sets.

5.1.3 Dimensionality Reduction Methods

Principal component analysis (PCA): is an orthogonal linear transformation

which transforms the data into a new coordinate system where the first direction of

the greatest variance become the new coordinate axis Bishop [2006]. This iterative

approach allows the creation of new orthogonal basis sets and gives 2-3 components

which usually explain the majority of data variance.

Multidimensional scaling (MDS): seeks the low-dimensional representation of

high-dimensional data where distances in both representations are maximally close

to each other Kruskal [1964].

5.1.4 Validation protocols

To control overfitting during training our mapper ANN we used 10% of the data

as test set. Stratified Five-fold cross-validation was carried out to prevent overfit-

ting and to compare the performance of the classification methods trained on the

mapped data. For our multiclass classification models we calculated the accuracy

of classification among all classes.

5.2 Results and Discussion

The main goal of visualization is to generate insight for the next step of the research.

This is especially important for SAR exploration due to the fact that even small

modifications of a scaffold may require additional synthetic efforts and one may
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Figure 5-4: The dependence of the the resulting distance on the initial molecular
similarity for the TAAR1 data set (Perplexity 100). Points’ colors were set according
to the density level: yellow means the highest density while magenta indicate the
lowest one.

want to correctly prioritize further modifications to explore interesting regions of the

chemical space Vogt [2018]. Let us clarify which regions of the chemical space are

interesting. First, we should mention the areas of chemical space where the activity

changed only slightly upon gradual structural changes which may be considered as

activity plateaus and are useful for ADME tuning in the course of lead optimization.

Second, the regions where small structural changes lead to strong changes in activity

are called activity cliffs are associated with large SAR information content. The

straightforward visualization and identification of such regions requires similarity

preservation while mapping from high-dimensional descriptor space. Thus, the t-

SNE objective perfectly meets this requirement. The learning curves are shown

in Figure 5-2. The lowest and the highest loss values were obtained for perplexity

values equal to 1000 and 10, respectively, as one may expect. Interestingly, the same

trend was found for the loss decay during training: perplexity values of 1000 leads

to a larger decrease in loss in comparison to perplexity values of 10. Also we tried to

optimize the 𝛼 value in the loss formulation which lead to significant loss decay as

compared to the fixed 𝛼 = 1.0. Unfortunately, this parameter tended to zero during

optimization on the ChEMBL data set. The decrease in this parameter means that

the span of the map will increase allowing the map to occupy more area.
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Figure 5-5: The mapping results for TAAR1 agonists data set (Perplexity 100).
Points’ colors were set according to the pEC50: yellow means the highest activity
density while magenta indicate the lowest one

In order to assess visualization performance we used data sets collected from

DUDe Mysinger et al. [2012] which has been successfully used for assessment of

molecular docking performance. Two subsets containing GPCR and nuclear recep-

tors’ ligands and having relatively high similarity inside each group were selected for

analysis. It should be noted that GPCR and nuclear receptors’ data sets are highly

balanced in terms of class composition and contain information about 1480 and 2995

chemical compounds, respectively. Figure 5-3 demonstrates the results of the neural

network mapping for the GPCR ligand subset. The subgraph in the upper-left cor-

ner shows the overall view of the 2D representation. It should be noted that GPCR

ligands used for analysis turned out to be highly separable and the overlap between

classes is observed for highly similar receptors: 𝛽1 and 𝛽2 adrenergic receptors.

Unfortunately, DUDe does not contain any information about the promiscuity of

the active compounds but the cluster overlap may indicate such properties. Figure

5-3 (B) demonstrates the separation of the two clusters of 𝛽 adrenergic receptors

ligands: agonists and antagonists. Figure 5-3 (A) demonstrates the existence of the

of the 𝛽2 adrenergic ligand (green) in adenosine A2 ligand cluster. Interestingly,

all these ligands contain an adenosine moiety which explains the mapping results.
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Table 5.1: The results of application of the machine learning methods to the initial
ECFP6 fingerprints and to the 2D mapped space (multiclass classification)

Descriptor ML method Accuracy
GPCR ligands NR ligands

ECFP6 descriptors kNN 0.829 0.526
SVM 0.821 0.549

XGBoost 0.821 0.540
Random forest 0.788 0.537

pTSNE mapping (2D space) kNN 0.763 0.383
SVM 0.704 0.336

XGBoost 0.764 0.394
Random forest 0.745 0.360

PCA mapping (2 components) kNN 0.739 0.296
SVM 0.735 0.345

XGBoost 0.743 0.360
Random forest 0.735 0.349

MDS mapping (2D space) kNN 0.725 0.326
SVM 0.543 0.250

XGBoost 0.712 0.333
Random forest 0.707 0.328

Area C (Figure 5-3 (C)) shows the mixture of promiscuous ligands based on piper-

azine and piperidine scaffolds which can be found in different GPCR ligands (opioid,

dopamine, serotonin receptors, etc.)

All dimensionality reduction techniques are often performed to get rid of noise in

data but at the same time some information loss should be expected. Thus, we car-

ried out the estimation of classification accuracy for two DUDe subsets containing

GPCR and nuclear receptor ligands using widely known machine learning methods.

The dimensionality of the data sets was reduced with PCA, MDS (Jaccard dissimi-

larity was used to construct the distance matrix) and pT-SNE trained as discussed

above. The results of the performance estimation are shown in Table 5.1. First, it

should be noted that the best achieved accuracy differs between the used data sets

probably due to the fact that the GPCR subset contains fewer classes. For all con-

structed models the best accuracy was achieved for the initial descriptors (ECFP6

fingerprints) as was expected, and the pT-SNE dimensionality reduction technique

significantly outperformed the other ones. The search for the optimal parameter

set resulted in highly converged accuracies for methods on untransformed finger-
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prints. For example, the difference in accuracy is observed only in the third decimal

place when applying kNN, SVM and XGBoost on the GPCR data set, implying

near-optimal models prior to mapping. The parameter sets yielding the highest ac-

curacies were relatively similar for different dimensionality reduction techniques and

appeared to be quite different for the both data sets. For example, the number of

neighbours to achieve the highest accuracy for kNN was 24 for the GPCR and 9 for

NR data sets. Interestingly, the SVM method demonstrated good performance for

the initial fingerprints and the results of PCA, while the application of non-linear

dimensionality reduction techniques (pT-SNE and MDS) yielded relatively worse

performance. The XGBoost hyperparameter optimization resulted in a relatively

similar set with variation only in the L2 regularization term, while the tree depth

and the learning rate practically did not differ. It was found that the best value of

the perplexity parameter is data set specific: 30 resulted in highest accuracy for the

GPCR set after pT-SNE dimensionality reduction while 100 was the best for nuclear

receptor ligands. These results are consistent with the fact that a perplexity value

of 30 is a good starting point for visualization and usually recommended.

In order to assess the performance of the trained neural network to analyze the

activity landscapes we used the TAAR1 receptor agonists’ database collected from

ChEMBL with measured activity in pEC50 and containing information about 376

chemical compounds. Let us compare the distance distribution in this data set in

the original space and in the 2D mapped space (Figure 5-4). First, the distribution

practically does not depend on the perplexity level. Second, similar compounds

(Jaccard distances within 0.1 - 0.5) are very close together and dissimilar compounds

(Jaccard distances more than 0.6) can be at any distance on the map. We estimated

the uncertainty of the mapping performing the forward pass of the network using

weights obtained during the last 100 epochs of training and found that in average the

point position remained within 0.5 for both axes. As one can notice from Figure 5-5

(left) the typical cluster size lies within 2.0 - 3.0 and the compounds’ distributions

within the clusters remain relatively stable upon small perturbations in network

weights near the local minimum. This is why one can easily analyze the activity

landscapes. Unfortunately, the mapping does not guarantee that "very-very" similar
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compounds will be closer together than just "very" similar compounds as one can

notice from Figure 5-5 (right).

5.3 Conclusions

Understanding the internal relations in the chemical database is a key feature for

the exploration of the chemical space to develop new substances with predefined

properties. Visualization of the target chemical space by mapping from multidimen-

sional descriptor space into space convenient to perceive is still a challenging task

for chemoinformatics and computational medicinal chemistry. Stochastic Neighbour

Embedding (SNE) and its modification t-SNE which preserves the points’ positions

in the target space to be t-distributed are not widely used for chemoinformatics

tasks due to a number of problems: the high dimensionality of the initial descrip-

tor space required to correctly describe chemical structure, computational cost, and

non-deterministic results due to the stochastic nature of mapping etc. We show

that parametric t-SNE approach can yield a neural-network-based function to map

new portions of data. The speed of computation is comparable with other fast and

widely used methods (PCA, MDS, etc.) while it preserves more information. This

approach could be further explored for the interpretation of structurally-conditioned

biological properties of chemical compounds.
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Chapter 6

Legogram: Optimized molecular

grammars for structures generation

Exploration of chemical space by a direct generation of molecules with desired prop-

erties is a challenging task. The main problem is the lack of a method for the direct

production of molecular structures. Until recently, there was no simple and efficient

way for machine learning-aided molecules generation. The breakthrough research of

Gómez-Bombarelli et al. [2018] demonstrated the possibility of automatic chemical

design using Recurrent variational autoencoder (RVAE). The authors applied lin-

ear SMILES notation to represent structures of molecules and use generative RNN

similar to that have been used in Natural language processing (NLP). SMILES

strings were tokenized at the character level. This approach is now known as a

Character-based variational autoencoder (CVAE). Generation of molecules using

SMILES notation was also used for the prediction of outcomes of organic reactions

Lee et al. [2019], Schwaller et al. [2017].

However, there is a fundamental problem with SMILES notation that molecules

generated can be incorrect not only chemically but syntactically. Due to this reason

the percentage of sampled SMILES by Character-based variational autoencoder was

below 1%. To tackle this problem Kusner et al. [2017] proposed the Grammar vari-

ational autoencoder (GVAE) . This model is based on formal grammar of SMILES

language and allows researchers to generate only SMILES sequences that satisfy

the grammar. This approach notably reduces the number of invalid molecules up
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Figure 6-1: Different layers of SMILES invalidity * – graph grammar can solve the
chemical invalidity partially due to the restriction of possible rules

to around 7%, however many chemically incorrect molecules occur and common

patterns are mismatched rings numbers and wrong valency of atoms. To solve

this problem several approaches were proposed. Dai et al. [2018] proposed Syntax-

directed variational autoencoder (SD-VAE): with is based on Grammar variational

autoencoder adding stochastic lazy attributes. This approach allows checking the

syntax validity of a molecule during the generation process. Jin et al. [2018] proposed

Junction-tree variational autoencoder (JT-VAE) an approach under which only the

junction tree of a molecule is constructed, and the molecule is generated from the

nodes of the junction tree by another neural network. The main advantage of this

approach is the possibility to generate 100% of valid molecules; however, it possesses

quite complicated architecture. Kajino [2018] proposed a Hyperegde replacement

grammars (HRG), which are based on hypergraphs, for molecular generation. His

implementation demonstrated 100% validity of generated molecules, however, the

concepts of hypergraphs and hyperedge replacement grammars are hard to work

with.

A fresh idea was proposed in the work OBoyle and Dalke [2018]. The authors of

DeepSMILES revised the SMILES notation and implemented two features. First,

they are excluded open parentheses to solve the problem of unbalanced parentheses.

Second, they use only one number to denote rings. These differences solve the typical

syntax SMILES generation problems: unbalanced parentheses and mismatching ring

numbers.1.
1Everyone who ran the training of a model on SMILES knows that, when the model is under-
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Motivation

Above, we discussed the problems for graph generation by neural networks. Mostly

it is related to the fact that the NLP approaches are not convenient in the chem-

ical domain. Formulas of organic compounds are more structured than text, but

Recurrent neural networks do not have a mechanism to implement these structural

restrictions. From our perspective, other approaches that we mentioned before ei-

ther provide low performance or over-engineered and extremely hard to follow. A

convenient and straightforward process is required to make a step towards the ef-

ficient sampling of chemical compounds. The similar approaches are in Natural

language processing. There are two types of language models – character-level lan-

guage models – that generate text char by char and word-level models that produce

text from a pre-defined dictionary. Character-level language models can create any

word, even unknown. Still, the training of these models is a challenge because they

have to learn the vocabulary and syntax of a language implicitly. Word-level lan-

guage models provide better results but are not able to generate words that are

out of a dictionary2. SMILES language is similar to character-level notation. Our

graph grammar approach resembles word-level modeling, where "words" are chem-

ical subgraphs. But, in contrast to Natural language processing models, our model

guarantees the syntactic validity of molecules.

6.1 Formal Definition of Molecular Grammars

In chemoinformatics, organic molecules can be represented as colored weighted undi-

rected graphs. The color of a node represents a set of chemical properties of the

node (atom symbol, hybridization state, valency, etc.), and the weights of the edges

correspond to chemical bonds. Given this formalism, one can regard the process

of generating a molecule as a sequential application of graph rewriting operations.

Graph rewriting (or graph transformations) are commonly used in computer sci-

trained, it generates a long list of unbalanced parentheses. DeepSMILES notation looks quite the
same! From the author’s view, DeepSMILES ideally fit the well-known paradigm if you can’t beat
them, join them!

2We consider only vanilla character-level and word-level language models. In practice, there are
hybrid alternatives that solve this issue
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Figure 6-2: Here is the representation of a production rule. Each rule consists of
two parts: Left-hand side (LHS) part with only one non-terminal and Left-hand
side (LHS) with only one external node. In RHS a non-terminal also can occur, and
even more, it can be an external node.

ence. Heckel [2006]. A graph grammar is a generalization of grammar from formal

language theory. Commonly, graph grammars are divided into two categories: Hy-

peregde replacement grammars (HRG), which operate on hypergraphs instead of

graphs, and Node-label controlled graph grammars (NLC grammars). In HRG rules

define how one can replace a hyperedge by a graph. NLC grammars provide a

formalism for replacing nodes by graphs. Because of the ambiguousness of the re-

placement procedure, there is more than one variant of node replacement grammars.

Rewriting rules in these grammars are represented as 𝑁 −→ 𝑆/𝐸 where 𝑁 is a non-

terminal 𝑆 is a subgraph to replace and 𝐸 is an embedding rule. The necessity of

embedding rules occurs because, contrary to strings, there are many possible ways

of connecting the subgraph 𝑆 to the rest of the graph. These rules are, in fact, the

instructions on how to perform these operations. NLC grammars are the simplest

case of graph grammars. In NLC grammars, the replacement process is completely

local, and the embedding rules describe only the mechanism of connecting a specific

node in a 𝑆 graph to the neighborhood of the non-terminal 𝑁 . Our definition of

molecular grammar is given below. A molecular grammar is a tuple (𝑁,Σ, 𝑃, 𝑆𝑔)

where are:

• a finite set 𝑁𝑠 of non-terminals, defined as Non-terminal label with a signature

∈ 𝑆𝑔

• a finite set Σ of terminal graphs, with one and only one external node. An
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external node has a signature ∈ 𝑆𝑔

• a finite set 𝑃 of production rules

• a finite set 𝑆𝑔 of signatures.

We do not define embedding rules explicitly. Our embedding rule is just a replace-

ment of a non-terminal by an external node from another rule (gluing two rules

together). 𝑆𝑔 solely determines which non-terminal can be replaced. A signature

𝑆𝑔 is a set of chemical bonds. This set provides the possibility of replacing a non-

terminal with an external node without losing the chemical valency and violating

the chemical laws. Using the analogy from formal language theory, our grammar is

a "context-free" grammar, which means that there is one and only one non-terminal

on the left-hand side of a rule.

6.2 Implementation of Molecular Grammars

In section 6.1, we gave a formal definition of our molecular grammar and infer-

ence process. However, our technical implementation of molecular grammar uses

a simplified representation of rules. Because LHS of any rule consists of only one

non-terminal, we can ignore this part in our implementation. We represent rules as

graphs (we use igraph python package), where a node can be either terminal (atom)

or Non-terminal (a node that can be replaced). A rule without non-terminals rep-

resents a molecule and can be converted into a RDkit molecule or SMILES string.

Two compatible rules can be combined, forming a new rule. We have three node

types in our framework:

– an external node

– a non-terminal node

– a common node

The replacement process can be explained as a key-lock analogy. Each rule has

one and only one external node (a key). A singature 𝑆𝑔 of a rule is a set of incoming

connected bonds.
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Figure 6-3: The scheme of inference process: (-,=) – is a common signature of non-
terminal (NT,rule A) and external node, (carbon atom, rule B). (-) – is a common
signature for Rules C and D, respectively.

– is an external node, – is a non-terminal node, – is an ordinary node

For example: a signature (=,-) means that an external atom can replace a non-

terminal (a lock) with the same signature. The combination of rules (A + B) gives a

new rule (C) Figure 6-3. Further combination of rules C and D results in a molecular

graph without non-terminals. At this stage, the inference is finished and we have a

valid molecular structure. Given a set of rules, one can decompose a molecule in a

sequence of rules i.e.: [Rule A, Rule B, Rule C, Rule D]. It can be regarded as

a linear notation for molecules. One obtains a molecule at the final stage of folding

rules.

Dataset

Gómez-Bombarelli et al. [2018] collected a dataset for training and validation of

generative models Kusner et al. [2017], Dai et al. [2018], Jin et al. [2018]. Because

it consist about 250 000 molecules we refer it as 250k dataset for short. We used

this dataset for the experiments with Legogram.

Molecules encoding

First, a molecule is decomposed into a sequence of rules. This operation is determin-

istic and can be done for each molecule individually (the result of initial decomposi-

tion does not depend on any other molecules). Using the analogy of fragment-based

methods, this stage resembles the decomposition of a molecule to fragments. At
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this stage the algorithm transforms a molecule from rkdit object to igraph object,

where nodes are atoms and edges are bonds. Then we rank atoms by RDkit atom

ranking. One can use any ranking scheme, but it is convenient to utilize canonical

RDkit ranking. The algorithm traverse atoms in order from low-rank to high. In

the beginning, a stack 𝐸 is initialized, and one puts the first atom into the stack.

The algorithm loops until the stack is not empty. There are two possible process-

ing routes: working with trees and processing of cycles. We denote an atom that

is currently been processed as 𝐴𝑐𝑢𝑟𝑟, the atom that was processed at the previous

stage as 𝐴𝑝𝑟𝑒𝑣 and the neighbor lowest-rank atom which would be processed at the

next step as 𝐴𝑛𝑒𝑥𝑡. Processing the 𝐴𝑐𝑢𝑟𝑟, the algorithm forms a new rule 𝑅𝑐𝑢𝑟𝑟,

adds 𝐴𝑐𝑢𝑟𝑟 to 𝑅𝑐𝑢𝑟𝑟, and denotes this atom as "external" with the signature3 𝑆𝐴
𝑝𝑟𝑒𝑣

of a non-terminal node from a rule 𝑅𝑝𝑟𝑒𝑣. After that, the algorithm pushes into the

stack 𝐸 all neighbor atoms, goes to 𝐴𝑛𝑒𝑥𝑡, and adds to the rule 𝑅𝑐𝑢𝑟𝑟 a non-terminal

node with the signature 𝑆𝐴
𝑛𝑒𝑥𝑡. So, the rule 𝑅𝑐𝑢𝑟𝑟 has one external atom with the

signature that matches with the non-terminal from 𝑅𝑝𝑟𝑒𝑣 and a non-terminal node

which matches with the external atom 𝐴𝑛𝑒𝑥𝑡 from the rule 𝑅𝑛𝑒𝑥𝑡. The algorithm will

create 𝑅𝑛𝑒𝑥𝑡 at the next stage. One can regard this process as Breadth-First Search

(BFS) which cut molecules atomic-wise but keeping chemical bonds as signatures in

non-terminal and external nodes. This process repeats until the algorithm reaches

a cycle. Then, the algorithm creates a rule with a maximal ring representing this

cycle (for example in the naphthalene system the algorithm takes the largest 10-

atomic cycle), and processes this cycle scaffold as a new rule. In this rule, atoms

are replaced with non-terminals. Then, the algorithm for the trees processing runs

on the cycle skeleton. This procedure provides the ability to encode any organic

structure. After encoding of all molecules in a dataset, a folding operation runs.

The same rules grouped together and obtain an ID in the rules database. So the

list of IDs represent a molecule in Legogram representation. At this stage, one can

optionally perform the grammar compression procedure (described in the paragraph

"Grammar Compression").
3We remind that a signature is a connectivity pattern. For example, an atom with one single

and one double bond has the signature (-,=), an atom with two single bonds: (-,-), etc.
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Molecules decoding

Decoding is a transformation of a list of rules into a molecular graph. First, we put

the first rule in a variable 𝐺 which corresponds to the growing molecular graph.

Then we match the signature of the external node in the following rule (𝐺𝑖) with

one of the non-terminals in the 𝐺. If there are more than one non-terminals in 𝐺

we do it in accordance with the order (as we mentioned in subsection 6.2 our non-

terminals are ordered). After that, we add rule 𝐺𝑖 into 𝐺 and replace corresponding

non-terminal with the external node of former 𝐺𝑖 After that we recalculate 𝑆 for a

new 𝐺 and process to the rest of the list. After processing the last rule 𝐺𝑛 we will

have a graph 𝐺 without non-terminals, thus it can be regarded as a molecule (and

converted back to an internal RDKit object or to a SMILES string). The process

can be regarded as folding over a list of rules. Figure 6-3 gives an idea of how the

inference process works for a simple case (if we assume that "rule C" is 𝐺).

Restricted Stochastic decoding

In Subsection "Molecules decoding" we explained the basic decoding procedure.

However, with neural networks, we use a restricted stochastic decoding technique.

The basic idea of our approach is based on the fact that neural networks provide

probabilities for each grammar rule at 𝑡 generation step – 𝑝𝑡. Because we know in

advance which rules are compatible, we can mask invalid rules using the multiplica-

tion of the logits to the mask. The masks restrict the generation of invalid molecules.

One can see the Algorithm 1. The algorithm requires a function 𝐹 (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑟𝑢𝑙𝑒).

Typically, this function is an RNN network that obtains a previous token and gener-

ates logits for the next one. We use multidimensional sampling to sample rules in a

batch. calc_mask is a function that calculates which rules from a set are comparable
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Figure 6-4: A scheme of restricted stochastic decoding
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with the rule under consideration.
Algorithm 1: Restricted stochastic decoding
Result: a sampled molecule

Input : a function 𝐹 (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑟𝑢𝑙𝑒) that returns logits for the next stage,

𝐺 – is a molecular grammar, 𝑇 is a temperature for sampling

Output: a molecular graph 𝑀

M = Graph(∅) //𝐼𝑛𝑖𝑡. 𝐸𝑚𝑝𝑡𝑦 𝑔𝑟𝑎𝑝ℎ

logits𝑡0 = 𝐹 (∅)

first_rule = sample(logits𝑡0, 𝑇 )

M.add(first_rule);

while (get_nonterminals(M) /∈ ∅) do
mask = calc_mask(M,∀ 𝐺.𝑟𝑢𝑙𝑒𝑠)

masked_logits = logits𝑡𝑖 *𝑚𝑎𝑠𝑘

next_rule = sample(masked_logits, T) ;

M.add(next_rule) ;

logits𝑡+1 = 𝐹 (𝑛𝑒𝑥𝑡_𝑟𝑢𝑙𝑒)

end while

return M

6.3 Validation of the Algorithm

We used a dataset of organic compounds from Gómez-Bombarelli et al. [2018] that

consist of about 250k of structures extracted from ZINC database. Authors of this

dataset choose compounds only with organic atoms, the second condition was been

correctly processed by RDkit. The following rule should be satisfied for all molecules

in a dataset to check the correctness of the implementation:

𝑚 = 𝐷𝑒𝑐𝑜𝑑𝑒𝐺(𝐸𝑛𝑐𝑜𝑑𝑒𝐺(𝑚)) (6.1)

where 𝑀 is a set of molecules been used for the construction of the grammar 𝐺. 𝑚

– is a molecule (or molecular graph). 𝐸𝑛𝑐𝑜𝑑𝑒 – is the encoding function, 𝐷𝑒𝑐𝑜𝑑𝑒

– is the decoding function. This formula represents a simple idea that each struc-
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ture, after encoding and decoding, should be the same. We performed this test

for our dataset, and it has successfully passed for all molecules in the dataset. It

should be noted here that the current version of Legogram can not guarantee the

correct reconstruction of stereoisomers (however the generation of stereo-compounds

is possible).

6.4 Grammar Compression

As it was mentioned before, one of our motivations was to create a molecular rep-

resentation with the reduced mean length. SMILES notation was designed as a

balance between computational processing and humans readability. That is why

SMILES notation is redundant. To compress the molecular representation more, we

implemented an optimization algorithm. The idea of the algorithm is based on the

fact that one can combine rules to form new rules. At the preparation step, our

algorithm searches the frequent substrings in encoded representations of molecules

and groups them into new rules. On encoding stage, the algorithm searches these

substrings and replace them into additional rules. This idea resembles popular text

compression algorithms, but regards the compatibility of rules. Because, not every

linear rule sequence can be grouped due to possible violations, the algorithm anal-

yse these sequences before grouping. This analysis is time costly, and we put the

sequences that have already been analysed in a cache.

Commonly Legogram uses a substantially larger dictionary, so the grammar rules

describe more general chemical fragments, rather than atomic symbols in SMILES.

Due to this fact, Legogram notations one can expect for Legogram notations to be

more compressed. To explore it, we performed an experiment. We calculated the

distributions of lengths for two types of SMILES notations, for the unoptimized

Legogram grammar and for the optimized Legogram grammar. One should mention

that there are two possible types of SMILES tokenization: character based and

regular expression based. In character-based tokenization each character in SMILES

string is represented as a token. It is the simplest way, however, it leads to chemically

related issuers: for example, a chlorine atom Cl is represented by two tokens: C
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Figure 6-5: The distribution of different molecular representations. One can see
that even unoptimized grammars can notably reduce the mean length of the dataset.
Optimization of the grammar leads to better results.

and l, where the first one means carbon atom in SMILES and the second one has no

meaning. To overcome this issue the regular expression tokenization can be used.

A SMILES string is parsed by a regular expression. In this case, atoms like chlorine

and common groups like [NH2+] are processed as one token.

In Figure 6-5 one can see that even unoptimized grammars can notably reduce

the mean length of the dataset. Further optimization of this grammar can improve

the compression substantially. As we discussed earlier, the smaller length can com-

bat a "one symbol failure". The probability of the correct generation of the entire

compound is a multiplication of probabilities for each symbol. Let’s assume that

the probability for 1 token is 0.99 The median for SMILES is around 40 tokens, for

optimized grammar is around 19. The probability of the correct generation of the

entire sequence would be: for SMILES 0.9940 = 0.66 and for grammars 0.9919 = 0.82

This simple example demonstrates the importance of proper representation for the

quality of structure generation. We can also speculate, that molecular grammars can

be a feasible tool for storing extra-large chemical databases. General lossless com-

pression algorithms, such as Lempel–Ziv–Welch (LZW) Welch [1984] operate with

byte strings and do not regard the internal structure of compressed objects. In con-
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Figure 6-6: Frequent representative rules from the optimized grammar.
– is an external node (a signature is on the top of atom symbol) , – is a

non-terminal node (a number is the rank), – is an ordinary node

trast, our algorithm provides compression with respect to the chemical structures.

We hope that the co-use of lossless compression algorithms to structures encoded

by molecular grammars can strongly compress chemical data. But additional exper-

iments are needed to support this statement.

We analyzed rules generated after grammar optimization and draw some repre-

sentative ones in Figure 6-6. One can note that these rules have chemical meaning.

For example, some groups correspond to precursors for well-known chemical groups,

i.e., amino-group, cyclo-aldehyde derivatives, heterocyclic compounds. It is worth

mentioning that original non-cyclic rules can have only one atom. That means that

the algorithm can successfully combine several rules to derive a chemically valid

(and well-known for chemists) fragment as a new rule. So, we can speculate that

this algorithm can infer chemical knowledge directly from the data.

We would like to stress that molecular grammars provide the considerable re-

duction of representation of structures; theoretically, it can help to achieve better

performance in structure generation problems.

6.5 Generative Models

One of the most important applications for Legogram is the de-novo generation

of chemical compounds with desired properties. We followed the approach to gen-

erative Reinforcement learning models from Olivecrona et al. [2017]. Under this

approach, two neural networks with the same architecture are used. The first one is

a policy network. This network is trained to generate structures that resembles the

training set (Prior network). The second one is the Agent network. This network
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generates molecular structures biased towards the desired properties. A used-defined

scoring function 𝑆(𝐴) is used to control the generation. Following the traditional

Reinforcement learning notation, a sequence of grammar rules (in original parer a set

of SMILES tokens) is a sequence of actions 𝐴 = 𝑎0𝑎1... The likelihood of a generated

sequence is represented by the Equation 6.2.

𝑃 (𝐴) =
𝑇∏︁
𝑡=1

𝜋(𝑎𝑡|𝑠𝑡) (6.2)

The authors of REINVENT proposed an augmented likelihood:

LogP(𝐴)𝑈 = LogP(𝐴)𝑃𝑟𝑖𝑜𝑟 + 𝜎𝑆(𝐴) (6.3)

Where 𝜎 is a scalar coefficient. This coefficient allows to balance between the quality

of molecular structures and 𝑆(𝐴). In REINVENT the loss function is:

𝐺(𝐴) = −[LogP(𝐴)𝑈 − LogP(𝐴)𝐴]2 (6.4)

where LogP(𝐴)𝐴]2 is a Agent likelihood. Optimizing of Agent network with this loss

function leads to generating compounds with desired properties, as it was showed

by Olivecrona et al. [2017].

6.5.1 Legogram-based Generative Modeling

To validate our idea of an faultless generation of chemical compounds, we trained a

classical Recurrent neural network model and compared the ratio of correct molecules

for grammar and SMILES models. The architecture and training parameters of the

grammar model were the same as Prior model from REINVENT. We regarded a

molecule to be valid if RDKit can process it. We sampled 128 structures, every 10

iterations. The result of this experiment is given in Figure 6-7. One can see that

our grammar model can produce valid molecules after the first 20 iterations. For

SMILES model, we used the original REINVENT implementation from GitHub.

The quality of the SMILES model at the same iterations is much lower. Even to the
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Figure 6-7: The comparison of grammar and SMILES models on the generation of
chemical structures

end of the first epoch, the SMILES model is capable of generating only 50 % of valid

structures. However, we believe that the performance of SMILES generative models

can be notably higher. The authors of ReLeaSE (Reinforcement Learning for Struc-

tural Evolution) Popova et al. [2018] claimed that about 95% of generated molecules

are valid. The authors of REINVENT Olivecrona et al. [2017] noted that the Prior

network can generate 94% of correct molecules. Both ReLeaSE and REINVENT

networks were trained on the significantly large ChEMBL dataset, and, for exam-

ple, for REINVENT, it requires several hours to finish Prior training. Nevertheless,

the ability of Legogram to produce absolutely correct molecules, that looks quite

"chemically" just after a few seconds of training is quite impressive.

6.5.2 Optimization of Drug-likeness

Because the generation of chemical structures, even with absolute validity, is not

useful itself, we experimented the optimization of a molecular property. We decided

to generate drug-like molecules. To achieve it, we used a well-known Quantitative

Estimate of Druglikeness (QED) index, developed by Bickerton et al. [2012]. We
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Iteration 20

Iteration 50

Iteration 100

Iteration 500

Figure 6-8: Examples of compounds that are generated at the first iterations.

utilized a QED implementation from RDKit. Prior network was trained on 250k

kekulized dataset for 5 epochs. We trained Agent network for 1000 iterations, gener-

ating 64 molecules for each iteration. We calculated statistical parameters: median

and standard deviation of the distribution. We also built histograms of the distri-

butions for each iteration. The number of unique generated structures during Agent

training was: 99.98% The top-9 generated structures with maximal QED value are

given on Figure 6-9. Our model reached the highest QED value of 0.95 One can see

on Figure 6-10 that the QED distribution is biased towards high QED values at the

end of the training, so the optimized Agent produces compounds with higher QED

index.
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Figure 6-9: Top-9 QED molecules generated by Agent with Legogram 250k kekulized
model

6.5.3 Synthetic Accessibility

Compounds must be synthetically accessible to provide interest for chemists. There

are some machine-learning methods for the quantitative assessment of synthetic com-

plexity: SAscore Ertl and Schuffenhauer [2009], SCSCore Coley et al. [2018], and

SYBA Voršilák et al. [2020]. To estimate the synthetic accessibility of the compounds

generated by Agent network, we decided to use SYBA method. This approach pre-

dicts a compound to be either easy-to-synthesize (ES) or hard-to-synthesize (HS). If

SYBA score is positive, a compound regarded as been easy-to-synthesize; otherwise,
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Figure 6-10: Generation performance for drug-like compounds by reinforcement
learning and Legogram. Top: QED median and standard deviation during Agent
training, Bottom: the shift of the distribution of generated molecules towards higher
QED values after training.
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Figure 6-11: SYBA scores for the compounds generated during QED optimization

if the score is negative, a compound regarded as been hard-to-synthesize. This score

varies from −∞ to ∞; however, as the authors mentioned, it is within (−100, 100)

range for the majority of compounds. The authors consider the score as the con-

fidence of prognosis. We calculated SYBA scores for all compounds generated by

Agent network during QED optimization. This histogram is provided in Figure 6-

11. One can see that the majority of compounds were considered easy-to-synthesize

with a median value of 59.

6.6 Sampling Compounds from Chemical Space

Systematic exploration of some regions of chemical space is a typical problem in

drug discovery. In Chapter 5, we proposed a method for the projecting of chemical

compounds to 2D coordinates for the visualization of chemical space. Now, when we

have a technique and a tool for the visual analysis of the chemical space, it’s worth

focusing on the sampling of chemical compounds directly from the desired regions

of chemical space. The pipeline of our method is based on REINVENT approach,

which we described above. Our solution allows generating both compounds that are

drug-like and lies close to the regions of interest in the chemical space.
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The scoring function definition

We use a scoring function 𝑆(𝑚) ∈ [0, 1] that describes the alignment of a molecule

to our pre-defined conditions:

𝑆(𝑚) =
𝑀(𝑚) + 𝑤𝐺(𝑚)

𝑁𝑚 + 𝑤
(6.5)

The scoring function 𝑆(𝑚) consists of two parts: drug-likeness 𝑀(𝑚) and a

distance function 𝐺(𝑚). In this formula, 𝑁𝑚 is several parameters of the drug-

likeness function, and 𝑤 is a weight of the distance function. In our case 𝑁𝑚 = 8.

The denominator of this equation is a normalizing factor. Fitting 𝑤, one can balance

the drug-likeness of generating compounds versus and the proximity to the desired

region of chemical space. The list of parameters of the drug-likeness function is

given in Table 8.4.

Choosing a distance function 𝐺(𝑚) is quite tricky because there are many types

of distances4. We propose two types of distance functions: a boxcar function and

a flat-top Gaussian function. The idea of a boxcar function is to indicate whether

the generated compound is inside a region surrounding a molecule (or point). It is

the most straightforward way; however, this function is not smooth. The authors

of REINVENT proved that this approach could potentially work with indicator

functions. They showed the example of sampling new compounds avoiding sulfur

successfully. But our preliminary experiments revealed that sometimes the training

is unstable. To combat this problem, we proposed a flat-top Gaussian function:

a boxcar function merged with Gaussian function at a distance 𝑅𝑐𝑢𝑡 The formal

definition of boxcar function 𝐺𝐵 is:

𝐺𝐵 =

⎧⎪⎨⎪⎩1 if 𝑑(𝑝𝑖, 𝑝𝑠) < 𝑅𝑐𝑢𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6.6)

4strictly speaking, the functions that we will discuss are not distances in the mathematical sense
because they do not satisfy three laws of distance functions. Still, it is convenient to take it in
common sense
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(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 6-12: Reference structures: 1-8

A flat-top Gaussian (𝐺𝐹𝑇 ) function is defined as:

𝐺𝐹𝑇 (𝑟, 𝑒𝑝𝑠) =

⎧⎪⎨⎪⎩1 if 𝑑(𝑝𝑖, 𝑝𝑠) < 𝑅𝑐𝑢𝑡

𝑒−(𝑑(𝑝𝑖,𝑝𝑠)/𝑒𝑝𝑠)
2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6.7)

In these equations 𝑑 is the euclidean distance between a point 𝑝𝑖 and the starting

point 𝑝𝑠.

Sampling of compounds with different distance functions

We selected 8 reference molecules from 250k dataset to cover the local chemical

space. Besides, we manually chose 3 points that do not correspond to molecules

from the dataset (points 9-11).

We trained Agent models with different 𝐺(𝑚) and the corresponding parameters.

Using these models, we sampled 64 molecules from each point and calculated the

mean values of 𝑆(𝑚). The results of these experiments are given in Table 6.1. One

can see that for all points, Flat-top Gaussian models provide good quality. It is not

the case for a Boxcar model; for example, for points (5) and (6), the mean score of

generated molecules is much lower than for the original structure. It is noteworthy

that for point (2), the score of the original molecule is relatively low because the
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molecule is small, polar, and do not have rings. Moreover, this point is far away

from the main distribution. Nevertheless, the scores of generated compounds are

higher than for the original molecule. The distribution of generated molecules is

given in Figure 8-2. There is an unusual behavior of a model; when it is hard for the

model to generate the compounds, it samples ones from the most drug-like region

(see, points (5,6,9,10,11) at the first column). We named this type of failure as

breakdown. As we will show later, breakdowns are common if the point is located in

an uninhabited region of chemical space.

Grid search over the whole chemical space of 250k dataset

To analyze the behavior of our models and their robustness on the full dataset, we

performed a grid search over the whole space of 250k dataset. We iterated over

each dimension from point -45 to 45 by step=10. We used a Flat-top Gaussian with

parameters: 𝑅𝑐𝑢𝑡 = 3, 𝑒𝑝𝑠 = 20, 𝑤 = 10. The results are given in Table 6.2. From

this data, it is clear that the quality of sampling is much better in the inhabited

region of chemical space, that is located (in our case ) close to the geometrical center

of the space. The visualization of sampled compounds for each point is given in a

voluminous Figure 6-14. Sampling from uninhabited regions at the edges of the

space results in breakdowns. Models either sample from the drug-like regions, or

sample from the nearest cluster. A possible explanation is based on the fact that

t-SNE method, which is used as the back-end for our Agent does not perceive the

global relations in the chemical space.

We should raise a question here: does our model follow a global chemical space?

t-SNE is a method that keeps the local distances between points5 and there are

no chances for it to follow the global space. However, the parametric t-SNE uses

Artificial neural network to map compounds, and one can expect that the global

chemical space would be learned during the optimization of local chemical regions.

Unfortunately, it was tricky to prove (or reject) this hypothesis without generative

modeling, and due to this reason, we have not discussed this problem before. After

the systematic study of this dataset, we can prove that our parametric t-SNE model
5It is evident even from the name of the method: t-distributed Stochastic Neighbor Embedding
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does not follow the global chemical space. This fact restricts the ability for para-

metric t-SNE based generative models to create principally new compounds. The

search for new methods for the projection of chemical space preserving its global

structure would be the topic of our further research. At the same time, the current

method demonstrates the feasibility of our approach, and one can create a useful

tool for chemists for the exploration of local regions of chemical space on the base

of this approach.

6.7 Conclusions

In the course of our work, we developed a molecular grammar framework that is

based on graph grammars. We have shown experimentally that chemical structures

can be encoded as graph grammars and decoded back (with exceptions to stereo-

chemistry). We demonstrated that this representation is capable of reducing the

mean length of structures in comparison to SMILES up to 35%. We designed a

grammar compression algorithm that allows one to additionally decrease the mean

size of compound representations up to 2 times from the original SMILES repre-

sentation. Our main goal was to develop a method for the error-free generation

of chemical structures, and we have shown that using the procedure of restricted

stochastic decoding and molecular grammars, a recurrent neural network can reach

100% correctly generated molecules. As a showcase, we used Legogram to sam-

ple compounds from chemical space. On the base of our parametric t-SNE model,

described in the previous chapter, we have illustrated that using Reinforcement

Learning and Legogram one can generate molecular structures from local regions

of chemical space. We demonstrated the possibility of a focused generation of or-

ganic compounds only for some specific cases; however, we believe that it can be

used for many other applications, including the generation of compounds with the

desired bioactivity. Our confidence is based on the fact that the original REIN-

VENT approach was successfully used to generate DRD2 inhibitors. We think that

our approach would also be effective in it. We believe that our Legogram library

became a useful tool for generative modeling. The library is available on GitHub:
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Table 6.1: Mean scores of 64 sampled compounds for each model. Agent network
was trained with different functions 𝐺(𝑚). 𝑅𝑐𝑢𝑡 for all models is 3

Point Compound Score
Boxcar (𝐺𝐵) Flat-top (𝐺𝐹𝑇 )

𝑤 = 5 𝑒𝑝𝑠 = 10, 𝑤 = 5 𝑒𝑝𝑠 = 20, 𝑤 = 8 𝑒𝑝𝑠 = 20, 𝑤 = 10

1 1 0.87 0.86 0.93 0.92 0.94
2 2 0.62 0.58 0.78 0.82 0.85
3 3 0.87 0.95 0.96 0.98 0.89
4 4 0.62 0.79 0.88 0.91 0.88
5 5 1.0 0.56 0.83 0.81 0.94
6 6 1.0 0.59 0.91 0.94 0.93
7 7 1.0 0.80 0.93 0.92 0.94
8 8 0.87 0.62 0.85 0.92 0.91
9 – – 0.60 0.58 0.87 0.91
10 – – 0.59 0.59 0.84 0.93
11 – – 0.58 0.89 0.94 0.93

Table 6.2: Grid search over full 250k dataset chemical space with step 10. The
values that are > 0.85 are bold

Flat-top Gaussian, eps=20, w=5
y -45 -35 -25 -15 -5 5 15 25 35 45
x

-45 0.43 0.58 0.77 0.88 0.84 0.79 0.83 0.84 0.73 0.43
-35 0.44 0.69 0.90 0.95 0.93 0.88 0.87 0.87 0.76 0.41
-25 0.53 0.77 0.93 0.91 0.95 0.86 0.88 0.80 0.68 0.42
-15 0.51 0.74 0.9 0.95 0.91 0.81 0.89 0.83 0.67 0.40
-5 0.75 0.82 0.9 0.88 0.84 0.92 0.94 0.9 0.86 0.35
5 0.67 0.79 0.87 0.93 0.94 0.97 0.94 0.96 0.90 0.42
15 0.61 0.64 0.82 0.91 0.91 0.92 0.94 0.92 0.84 0.4
25 0.43 0.52 0.67 0.82 0.85 0.88 0.89 0.91 0.77 0.41
35 0.41 0.42 0.44 0.80 0.82 0.89 0.72 0.71 0.41 0.40
45 0.41 0.38 0.41 0.40 0.42 0.40 0.42 0.42 0.42 0.40

https://github.com/sergsb/LegoGram
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Figure 6-13: Modelling with different distance functions (One can zoom this
picture to see the details)
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Figure 6-14: Visualisation of the grid search (One can zoom this picture to see
the details)
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Chapter 7

Conclusions

Been extremely large, the chemical space requires special methods and tools for

analysis. In this research we developed a number of methods and tools for the ex-

ploration of chemical space. We showed that one can calculate the density of solvent

sites surrounding a solute by 3D RISM method and use it as spatial descriptors. We

proved the possibility of using 3D spatial descriptors and 3D Convolution neural

networks for the prediction of properties of molecular structures on the example of

Bioconcentration factor (BCF).

We studied the feasibility of Multitask learning (MTL) for the activity mod-

elling on the example of acute toxicity on a broad chemical space. Our experiments

revealed that Multitask learning (MTL) learning provides better performance in

comparison with Single-task learning (STL) and other machine learning methods.

We demonstrated that in the latent space of our models the distribution of com-

pounds in the light of toxicity is not uniform, and there are clusters of toxic and

non-toxic compounds.

Been motivated by the potential of visual analysis of chemical space, we studied

the methods for visualization of chemical space. We have developed a technique for

chemical space visualization guided by neural networks. Our visualization method

highlights the well-known chemical rule that the structure of compounds related to

their activities, and one can study chemical space for the search for new drugs by

our tool. We proved that the distribution of chemical compounds on the 2D space

is meaningful by building machine learning models on the top of this distribution
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and comparing their performance.

The problem of direct sampling of compounds from chemical space was com-

pounded by the lack of chemical notations suited to use with Recurrent neural net-

works (RNNs). We addressed this problem by creating a chemical-oriented graph

grammar library Legogram. We experimentally proved that this library can rep-

resent chemical structures in a compressed way (comparing to SMILES) represen-

tation) and can guarantee the generation of correct chemical structures by RNN.

We demonstrated that one could sample compounds directly from 2D projections

of chemical space, and the generated structures are similar to typical ones in the

regions of interest.

We believe that our methods and tools would be useful to speedup the drug-

discovery process.
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Table 8.1: The architecture of our encoding ANN for parametric t-SNE projection

Layer Neurons Batch Normalization
Input 2048 Yes
1 1024 Yes
2 1024 Yes
3 1024 Yes
Output 2 No

Figure 8-2: Chemical space of 1000 random points from 250k dataset (gray). Points
1-8 are the reference structures. Points 9-11 do not correspond to any molecules.

The architecture of our encoding ANN for parametric t-SNE projection

The structure of our neural network is presented in Table 8.1. To train our network

we used Adam optimizer with 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 10−5 Neural networks training was

performed using PyTorch 0.4 [https://pytorch.org/] with NVIDIA GeForce GTX

1080 Ti (Driver Version 390.42, CUDA V8.0.61). The parameters provided the best

performance are listed in Table 5.1. The grid search space are given in Table 8.3.
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Table 8.2: The optimal hyperparameters of classifires both found by grid search
optimization and default

Descriptor
set

ML
method

Parameters
GPCR ligands NR ligands

ECFP6
descriptors

kNN n_neighbours = 24
weights = all_equal

n_neighbours = 9
weights = all_equal

SVM C = 0.015625
kernel = linear

C = 0.01562
kernel = linear

XGBoost
learning_rate = 0.05

l2 = 0.01
max_depth = 3

learning_rate = 0.05
l2 = 1.

max_depth = 3

Random forest
n_estimators = 10
max_features = all

min_sample_leaf = 10

n_estimators = 100
max_features = sqrt(all)
min_sample_leaf = 100

pTSNE
mapping

kNN n_neighbours = 24
weights = all_equal

n_neighbours = 9
weights = all_equal

SVM
C = 64

kernel = polynomial
gamma = 0.001

C = 0.25
Kernel = rbf

gamma = 0.003

XGBoost
learning_rate = 0.05

l2 = 0.001
max_depth = 3

learning_rate = 0.05
l2 = 0.01

max_depth = 3

Random forest
n_estimators = 10
max_features = all

min_sample_leaf = 10

n_estimators = 300
max_features = auto

min_sample_leaf = 10

PCA
mapping

kNN n_neighbours = 24
weights = all_equal

n_neighbours =9
weights = all_equal

SVM l2 = 0.015625
kernel = linear

l2 = 0.015625
kernel = linear

XGBoost
learning_rate = 0.05

l2 = 0.1
max_depth = 3

learning_rate = 0.05
l2 = 1.

max_depth = 3

Random forest
n_estimators = 10
max_features = all

min_sample_leaf = 10

n_estimators = 13
max_features = sqrt(all)
min_sample_leaf = 100

MDS
mapping

kNN n_neighbours = 24
weights = all_equal

n_neighbours =9
weights = all_equal

SVM l2 = 0.015625
kernel = linear

l2 = 0.015625
kernel = linear

XGBoost
learning_rate = 0.05

l2 = 1.
max_depth = 4

learning_rate = 0.05
l2 = 1.

max_depth = 3

Random forest
n_estimators = 3000
max_features = log2(all)
min_sample_leaf = 100

n_estimators = 300
max_features = all
min_sample_leaf = 30
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Table 8.3: Sets of parameters for grid search procedure

Method Parameter Values

kNN
Number of neigbors to consider 1, 3, 9, 12, 15, 18, 21, 24,

27, 30
Distance metric manhattan
weights for neghbours all equal, inverse distance

RF
Number of estimators 10, 30, 100, 300, 1000, 3000
maximum number of features all, sqrt(all), log2(all)
minimum number of samples in leafs 10, 30, 100, 300

SVM
constant at L2 penalty 0.015625, 0.0625, 0.25, 1, 4,

16, 64, 256, 1024
kernel type linear, rbf, polynomial of

degree 3
kernel coefficient (rbf, polinomial) 0.01, 0.003, 0.001, 0.0003,

0.0001, 0.00003, 0.00001

XGBoost

booster gbtree
learning rate 0.05, 0.1, 0.15, 0.2, 0.25, 0.3
max depth 3, 4, 5, 6, 7, 8, 9
L2 penalty 0.001, 0.01, 0.1, 1, 10

Table 8.4: Parameters of the drug-likeness scoring function 𝑀(𝑚). If a compound
satisfies a parameter the value of 𝑀(𝑚) increases to one, so the score for the com-
pound lies between 0 (total mismatch) and 8 (ideal fit)

Parameter Range
Molecular weight ≥ 160 and ≤ 480
LogP ≥ -0.4 and ≤ 5.6
Atom count ≥ 20 and ≤ 70
Molar refractivity ≥ 40 and ≤ 130
Rings number >0
Number of rotatable bonds <5
Number of Hydrogen Bond Acceptors ≤ 10
Number of Hydrogen Bond Donors ≤ 5
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Table 8.5: Endpoints extracted from RTECS dataset

Species Administration Type of Toxicity No. of records

Guinea pig Oral Lethal Dose Fifty 799

Mammal, species unid. Unreported Lethal Dose Fifty 1121

Man Oral Toxic Dose Low 512

Mouse Intraperitoneal Lethal Dose Fifty 37202

Mouse Intraperitoneal Lethal Dose Low 2965

Mouse Intraperitoneal Toxic Dose Low 1057

Mouse Intravenous Lethal Dose Fifty 17742

Mouse Oral Lethal Dose Fifty 24355

Mouse Oral Lethal Dose Low 1565

Mouse Oral Toxic Dose Low 646

Mouse Subcutaneous Lethal Dose Fifty 7221

Mouse Subcutaneous Lethal Dose Low 921

Mouse Unreported Lethal Dose Fifty 1804

Rat Intraperitoneal Lethal Dose Fifty 5041

Rat Intraperitoneal Lethal Dose Low 1029

Rat Intraperitoneal Toxic Dose Low 1117

Rat Intravenous Lethal Dose Fifty 2538

Rat Intravenous Toxic Dose Low 608

Rat Oral Lethal Dose Fifty 10743

Rat Oral Lethal Dose Low 966

Rat Oral Toxic Dose Low 955

Rat Subcutaneous Lethal Dose Fifty 2014

Rat Subcutaneous Toxic Dose Low 555

Rat Skin Lethal Dose Fifty 930

Rat Unreported Lethal Dose Fifty 838

Rabbit Intravenous Lethal Dose Fifty 764

Rabbit Oral Lethal Dose Fifty 910

Continued on next page
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Table 8.5 – Endpoints extracted from RTECS dataset (continued from previous page)

Species Administration Type of Toxicity No. of records

Rabbit Skin Lethal Dose Fifty 1734

Woman Oral Toxic Dose Low 490

154


	Introduction
	The Literature Review
	Molecular Descriptors
	Machine Learning Methods in QSAR/QSPR Studies
	Models Validation and Performance Measurement
	3D Reference Interaction Site Model (3D-RISM)
	Multitask Learning for Chemical Data Analysis

	3D RISM and 3D CNNs for bioconcentration prediction
	Materials and Methods
	Results and Discussion
	Conclusions

	Multitask learning for acute toxicity modelling
	Materials and Methods
	RTECS Chemical Space
	Correlation Analysis of Endpoints
	Comparison of Models
	Attributed Modeling
	Conclusions

	Chemical space visualization guided by deep learning
	Materials and Methods
	Datasets
	Parametric t-SNE
	Dimensionality Reduction Methods
	Validation protocols

	Results and Discussion
	Conclusions

	Legogram: Molecular grammars
	Formal Definition of Molecular Grammars
	Implementation of Molecular Grammars
	Validation of the Algorithm
	Grammar Compression
	Generative Models
	Legogram-based Generative Modeling
	Optimization of Drug-likeness
	Synthetic Accessibility

	Sampling Compounds from Chemical Space
	Conclusions

	Conclusions
	Glossary
	Bibliography
	Supplementary Material

