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Abstract

This thesis is devoted to the problem of building large-scale models based on Gaussian

Processes (GP). We consider two cases: (1) the data sets in which input points lie on a

multi-dimension grid, and (2) general data sets without any specific structure. For the

first case, we develop a technique for calculating an exact inference for the GP regression

model by applying tensor arithmetic that efficiently handles the structure of the data

set. The proposed approach can also deal with missing values, which are often a problem

in practical applications. For the second case of unstructured data sets, we developed a

kernel approximation technique based on an integral representation of the kernel function

and special quadrature rules. We show that our approach is a generalization of several

prominent papers in this area. The experimental section demonstrates superiority of the

proposed technique compared to other methods. Finally, we develop several methods

based on the proposed large-scale models for three different problems: tensor completion,

density estimate and simultaneous localization and mapping. This very diverse set of

problems demonstrate how our models can be built into different pipelines and show

some advantages of this approach.
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Chapter 1

Introduction

Learning dependencies from data with neural networks has become ubiquitous. However,

when it comes to problems whose inputs lack structure (which is often the case for tabular

data), other techniques can provide accurate results. Of these, Bayesian approaches

are the most appealing. First, they allow us to avoid over-fitting by imposing prior

distribution on the parameters of the model and then marginalizing them out; this acts as

a regularization. Second, Bayesian models are probabilistic models, so they can provide

uncertainty estimate of the predictions. Models based on the Gaussian process (GP)

are few of the most popular bayesian tools, especially for regression tasks, and are often

applied to model physical characteristics, time series forecasting, object tracking, and

many others.

Technology and availability of computational resources allow the generation of a lot of

data for a given problem. So, to succeed in solving the problem, the most crucial role

is the accurate analysis of the obtained data. Generally, in data-driven approaches, the

more data we have, the better model we can construct. The standard approach to build

GP models heavily suffers from the computational complexity that grows cubically with

the data set’s size. Therefore, developing large-scale GP approaches is an important

research direction.

When we need to analyze some object of phenomenon, the data generation process is

one of the initial stages in the analysis. A properly generated data set allows the capture

of all the peculiarities of the characteristics we are interested in. In many engineering

applications, the data is often generated on a grid. This can be encouraged by an

experimental setup. For example, when designing some assembly part, an engineer can

run a computer simulation to measure its characteristics or can create the detail in full-

scale and conduct live experiments. In the former case, there are some parameters that

can be easily changed, such as some external conditions, so it is natural to choose their

1
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values on a grid. The parameters of the detail itself are much harder or expensive to

change. In this case, the data set has a particular structure. Sometimes, there can be

missing points in this structure due to some simulation errors or the infeasibility of some

set of parameters. Nevertheless, possessing a structure in the data set, even with missing

points, can be utilized to build more efficient algorithms. In many cases, however, the

data set is unstructured. To cover such cases, approximate models should be developed.

GP is a simple yet powerful model, which can be used as a part of other complex systems,

such as Bayesian optimization and multi-fidelity modeling. Developing accurate large-

scale GP models allows us to apply such models in other systems. For example, GP

models can be incorporated into deep neural networks, density estimate pipeline, or

simultaneous localization and mapping problems in robotics. Using GP models may not

only result in better accuracy but can also provide an analytical solution, regularize the

final model, etc.

To sum up, the development of large-scale GP models for structured and unstructured

data sets is an actual research direction. Providing examples on how to use different

properties of such GP models in different data-driven systems is essential and is of prac-

tical interest.

The topic of this thesis is large-scale Gaussian Process models and its applications. The

subject of the research is methods to build GP models in case of large structured and

unstructured data sets and the approaches to incorporate such models into different

data-driven systems. The main goal of this work is to develop computationally efficient

methods to fit large-scale GP models for structured and unstructured data sets and to

provide examples of building such models into different systems. To achieve this goal,

the following tasks should be considered:

1. Development of the computationally efficient method for GP inference that takes

into account the special structure of the data set.

2. Development of the computationally efficient approximation for the GP inference

in case of unstructured data sets.

3. Implement the proposed approaches, demonstrate ways to build large-scale GP

methods into different models.

The scientific novelty of this work includes:

• computationally efficient approach for exact GP inference in case of structured data

sets with possible missing points.
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• A new technique for approximation of the kernel function that enables computa-

tionally efficient GP inference.

• Theoretical analysis of the developed kernel function approximation.

• Development of several approaches based on the proposed methods, which achieves

state-of-the-art performance in tensor completion problem, density estimate, and

simultaneous localization and mapping.

The practical significance of the developed methods has beed demonstrated on a set

of real-world engineering problems. The developed approaches for tensor completion

problems, probability density estimate, and simultaneous localization and mapping, all

based on the proposed methods, justifies the broad applicability of the obtained results.

The reliability of the presented results is supported by double-blind reviews of the results

at top international conferences, through presentations and seminars at various academic

venues, and by conducted numerical experiments.

The structure of the thesis is as follows: the rest of this chapter introduces the GP mod-

els. Chapter 2 describes efficient construction for the case of full factorial or incomplete

factorial design of experiments (DoE). In Chapter 3, we develop a general approach for

unstructured data sets based on random features. Chapter 4 is dedicated to applica-

tions of the proposed approaches on several problems, namely, density estimation, tensor

completion, and simultaneous localization and mapping. In this chapter, we give the

necessary background on the kernel methods and GP.

1.1 Gaussian Process Regression

We will mainly consider a regression task. Let f(x) be some unknown smooth function.

Suppose that we are given a data set D = {(xi, yi),xi ∈ Rd, yi ∈ R}Ni=1 of N pairs of

inputs xi and outputs yi. We will also call this set a training set. We would like to

construct an approximation f̂(x) of the function f(x), where outputs yi are assumed to

be noisy with additive independent and identically distributed (i.i.d.) Gaussian noise:

yi = f(xi) + εi, εi ∼ N (0, σ2
noise). (1.1)

The noise level is usually not known.

GP regression (GRP) is a Bayesian approach where a prior distribution over continuous

functions is assumed to be a Gaussian process. This means that any set of function values
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f(x1), . . . , f(xN ) have a joint Gaussian distribution (Rasmussen & Williams, 2006)

f |X ∼ N (µ, Kf ), (1.2)

where f =
(
f(x1) . . . f(xN

)>
is a vector of function values, X =

(
x1 . . . xN

)>
is a matrix of inputs, µ =

(
µ(x1) . . . µ(xN )

)>
is a mean vector for some function

µ(x), Kf = {k(xi,xj)}Ni,j=1 is a covariance matrix. The value of the function k(x,x′) =

E [(f(x)− µ(x))(f(x′)− µ(x)′)] is the covariance between f(x) and f(x′) and is called

the covariance function or the kernel function. We will also write Gaussian process as

f(x) ∼ GP(µ(x), k(x,x′)).

In GPR we assume that f(x) from (1.2) is a Gaussian process. Following a Bayesian

approach, we would like to derive the posterior distribution of a value y∗ at some arbitrary

point x∗ given the observed data (X,y). As the joint distribution of (y∗,y) is Gaussian,

the conditional posterior distribution is also Gaussian

y∗|X,y,x∗ ∼ N (µ̂(x∗), σ̂2(x∗)),

µ̂(x∗) = µ(x∗) + k(x∗)>K−1
y (y − µ),

σ̂2(x∗) = k(x∗,x∗)− k(x∗)>K−1
y k(x∗),

(1.3)

where k(x∗) =
(
k(x∗,x1) . . . k(x∗,xN )

)>
and Ky = Kf +σ2

noiseI. We use the posterior

mean as a prediction and the posterior variance can be used as an uncertainty estimate

of the prediction. It is common practice to use the zero-mean function as it can be

accounted for in the kernel function.

x

f
(x

)

x

Figure 1.1: Illustration of Gaussian process regression in a one-dimensional case.
The shades of blue represent the distribution of function values at each input point
x. The colored lines are random functions sampled from the GP. Left: figure depicts
prior distribution over functions with several random functions drawn from it. Right:
posterior distribution conditioned on several data observations. Here, the noise in the
observations is very small, therefore, all posterior samples pass through the given points.
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The kernel function is central to and the most crucial part of GP models. The type of

kernel specifies which class of functions can be approximated by GP and what peculiar-

ities the model will possess. By specifying a kernel, we can end up with models that are

equivalent to other well known models, such as linear regression or splines. However, in

practice, usually a squared exponential, often called radial basis function (RBF) kernel,

covariance function is usually used

k(xp,xq) = σ2
f exp

(
−

d∑
i=1

θ2
i (x

(i)
p − x(i)

q )2

)
. (1.4)

This kernel is infinitely smooth and is shift-invariant, i.e., k(x,y) = k(x− y), which has

its own advantages and disadvantages. Nevertheless, this kernel is highly popular and is

a universal choice, which works quite well in many applications.

1.1.1 Hyperparameters tuning

One of the appealing property of GP models is that they allow us to carefully tune their

hyper-parameters without over-fitting to the observed data.

Let us denote hyper-parameters of the kernel function and noise variance using θ. To

choose a good θ, we consider the log likelihood as

log p(y |X,θ, σf , σnoise) = − 1

2
yTK−1

y y︸ ︷︷ ︸
data fit term

− 1

2
log |Ky|︸ ︷︷ ︸

complexity term

−N
2

log 2π (1.5)

and maximize it over the hyper-parameters (Rasmussen & Williams, 2006). This objec-

tive is also called marginal log-likelihood, as it implicitly marginalizes out all function

values at other input locations that are not present in the training set. There are es-

sentially two terms in the objective function. One term encourages the data fit and the

other one controls the model’s complexity. It allows the comparison of different models

and a balance between data interpolation and the model’s capacity.

1.2 Features of Gaussian Processes

GP models have certain peculiarities, some of which make them more attractive, while

others limit their applicability.

1. Analytical solution. The predictive posterior distribution is given by a simple

analytical expression. This simplifies the analysis of the model and can make it
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easier to build on top of GP model. Moreover, it is always nice to have a closed-form

solution.

2. Marginalization. Marginalization over all function values at locations that are

not in the training set is actually averaging over a wide range of functions, which

is actually a strong regularization that makes over-fitting less possible.

3. Flexibility. Different peculiarities of the data set and underlying unknown func-

tions can be taken into account by considering specific kernel functions.

4. Uncertainty estimation. Predictive distribution allows us to estimate the un-

certainty of the prediction. It can be required by the application itself as well as

be used to solve other problems, e.g., adaptive DoE and Bayesian optimization.

5. Well-developed theory. GP models have a simple structure and, therefore, have

been well studied and many of their properties have already been discovered. This

makes the models attractive because their behavior can be explained theoretically.

It is also easier to analyze the models that were built on top of GP models. Theo-

retical analysis of the models is essential, as it helps to understand in which cases

the model will work, how to pre-process the data or modify the overall approach

to make it work, and so on.

6. Computational complexity. As it can be seen from (1.5), we need to calculate

the determinant and the inverse of the kernel matrix of size N × N . Therefore,

inference requires O(N3) operations, which makes it extremely difficult to use GP

models in the case of large data sets. Test time evaluation complexity is O(N),

and in some applications, it can also be too high. In Chapter 2, we show a way

to reduce the computational complexity drastically for structured data sets, and

in Chapter 3, we consider general unstructured data sets and develop an efficient

approximation to the kernel function.

7. Kernel choice. Kernel is the most important part of the GP model. It specifies

the behavior of the model and a class of functions that can be well approximated.

However, in most cases, we do not know in advance what type of kernel best suits

the data set at hand and either stick to some universal kernel (such as RBF) or

manually construct an appropriate kernel. Nevertheless, there are some works

that try to select the best kernel automatically, for example, (Duvenaud, 2014;

Abdessalem et al., 2017; Teng et al., 2020). There are also works that bypass the

kernel design by building deep Gaussian processes (Damianou & Lawrence, 2013)

or by combining deep networks with GP (Wilson et al., 2016).

8. Gaussian distribution. In GP, the distribution of output values (i.e., likelihood)

is Gaussian. Sometimes, the actual likelihood is non-Gaussian, for example, when
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we deal with classification tasks. In this case, we need to use approximate solutions.

This direction is well developed, and there are several frameworks that allow us to

work with non-Gaussian likelihoods (De G. Matthews et al., 2017; Gardner et al.,

2018) easily.

In the thesis, we approach the computational complexity issue. There is considerable

amount of work in this direction, for example, (Quiñonero-Candela & Rasmussen, 2005;

Rahimi & Recht, 2008; Titsias, 2009; Cutajar et al., 2017). Nevertheless, we would like

to point out that exact Gaussian Process models generally work better than the exist-

ing approximations (Cutajar et al., 2016; Wang et al., 2019). Also, typically large-scale

approximate methods have a hyper-parameter, which controls the accuracy of the approx-

imation. For example, number of inducing points in (Quiñonero-Candela & Rasmussen,

2005; Titsias, 2009) and number of features in (Rahimi & Recht, 2008; Felix et al., 2016)

and their follow-ups. The analysis of such approaches show that optimal learning rates

requires this parameter to be at least O(
√
N logN) (Rudi & Rosasco, 2017; Rudi et al.,

2017). Therefore, the computational complexity becomes O(N
√
N) in this case. In the

thesis, we prefer to do exact inference when it is possible. In case of large-scale data

sets, this can be done if there is a way to exploit the structure of the problem. We will

develop such an approach in Chapter 2 for data sets on multi-dimensional grids, and

show that its computational complexity is lower than the complexity of the large-scale

approximations.

In the case of unstructured data sets, the way to build a large-scale GP model is to

do approximations. Current state-of-the-art scalable approaches show great effective-

ness in real-world problems. Better performance is usually achieved by data-dependent

approaches, i.e., the approaches that rely on the given data set. On the other hand,

in some applications, data-independent techniques are more attractive, as they do not

require the data set to construct an approximation. For example, applications where

the data changes frequently, so it is more costly or less accurate to use data-dependent

techniques. Simultaneous localization and mapping is an example of such problems, and

we consider it in Chapter 4. For these reasons, we focus on a data-independent approach

in the thesis.



Chapter 2

Gaussian Process Models on

Multi-dimensional Grids

Let us consider the case when the training set has a special structure called factorial

Design of Experiments (DoE) (Montgomery, 2006). In this structure, all the input vari-

ables are grouped into several factors, and the training set consists of the Cartesian

product of the factors. Such experimental designs arise naturally in many applications,

especially in engineering. Imagine we want to model some aerodynamic characteristic

of an airfoil depending on the shape of the airfoil and external conditions, like Mach

number and angle of attack. There are two ways to do it. The first one is conducting

computational fluid dynamic simulation to estimate the desired characteristics. Another

way is building an airfoil and conducting wind tunnel experiments. In the latter case,

though it is expensive to build airfoils, it is easy to change the external conditions so that

we can select the external parameters on a regular grid for each airfoil. As a result, we

have two sets of parameters. One set describes the geometry of the airfoil, the other one

- external conditions. And in our measurements, those parameters have the Cartesian

product structure. In some cases, we can have missing values in such designs of the

experiments. It can either be some errors in measurements, computationally unstable

procedures, or just decrease the data set size. In this case, we have incomplete factorial

Design of Experiments.

The problem with such designs is that the training set size grows exponentially with the

number of factors. The complexity of standard GP models does not allow to work with

such training sets. There are several methods for large-scale GP modeling; although they

are not exact and approximate, either the kernel function or the output of the GP model

itself. These approaches are general and can be applied to any data set. More details

can be found in Chapter 3.

8
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However, in case of full or incomplete factorial DoE, the special structure of the data set

can be exploited to derive computationally efficient and the exact inference procedure.

There aren’t many regression methods that consider the design of experiments. There

are several methods based on splines, which consider this special structure of the given

data (Stone et al., 1997). A disadvantage of these methods is that they work only

with one-dimensional factors and cannot be applied to a more general case when the

factors are multidimensional. Another shortcoming is that such approaches do not have

approximation accuracy evaluation procedure. The missing values cannot be handled as

well.

There is another problem that we are likely to encounter. Factor sizes can vary sig-

nificantly. Engineers usually use large factors sizes if the corresponding input variables

have a significant impact on function values. Otherwise, the factors sizes are likely to be

small, i.e., the factor sizes are often selected using the knowledge from a subject domain

(Rendall & Allen, 2008). For example, if it is known that dependency on some variable

is quadratic, then the size of this factor will be three, as a larger size is redundant. The

difference between factor sizes can lead to the degeneracy of the GP model. We will refer

to this property of data set as anisotropy.

In this chapter, we develop an approach for fast, exact inference of the GP regression

model by considering the factorial nature of the design of experiments in a general case of

multidimensional factors. Both full factorial and incomplete factorial designs are covered.

We also discuss how to choose the initial values of parameters for the GP model and

regularization in order to consider possible anisotropy of the training data set.

The paper (Wilson et al., 2014) considers the same problem statement. To efficiently train

and evaluate a GP model, one needs a fast procedure to calculate K−1y, where K is a

kernel matrix, and an efficient procedure to evaluate the determinant of the kernel matrix.

The authors of (Wilson et al., 2014) exploit the structure in the data set to efficiently

calculate both components in the case of full factorial design of experiments. In the case

of incomplete factorial design of experiments, they apply the preconditioned conjugate

gradient (PCG) method to calculate K−1y. It is based on an efficient approach for the

matrix-vector product Ky, which, however, gives an exact answer only in the limit when

the parameter of the method goes to infinity. Empirically, the PCG in this case requires a

small number of iterations (much smaller than the dataset size). In contrast, this chapter

of the dissertation shows an approach that calculates K−1y in case of incomplete factorial

deign of experiments exactly. We also derive the exact number of iterations required for

conjugate gradients approach to converge. We show that the method is efficient when the

number of missing points is small or very large. Another difference is that we calculate

the determinant of the kernel matrix exactly but in about O(N2) operations, whereas
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Figure 2.1: Example of a multidimensional factor. In the figure, x1 is a usual one-
dimensional factor and (x2, x3) is a two-dimensional factor.

(Wilson et al., 2014) make an approximation to the determinant but in O(N) iterations.

We also introduce a special regularization that allows to reduce degeneration effect.

The main contributions of this chapter are as follows

• We develop a computationally efficient approach for the case of the multi-dimensional

data set.

• For the case of multi-dimensional grid with missing points, we derive a conju-

gate gradient-based approach for matrix inversion, which provably converges in

O(min(R,N)) iterations, where R is the number of missing points.

• We propose a special regularization for the data sets on multi-dimensional grids

that makes the GP model less prone to degeneration.

2.1 Factorial design of experiments

Let us refer to sets of points ωk = {xkik ∈ Xk}nkik=1, Xk ⊂ Rdk , k = 1,K as factors. A set

of points Ω is referred to as a factorial design of experiments if it is a Cartesian product

of factors

Ω = ω1 × ω2 × · · · × ωk = {[x1
i1 , . . . , x

K
iK

], {ik = 1, . . . , nk}Kk=1}. (2.1)

The elements of Ω are vectors of a dimension d =
∑K

i=1 di and the sample size is a

product of sizes of all factors N =
∏K
i=1 ni. If all the factors are one-dimensional, Ω

is a full factorial design. But in a more general case, factors are multidimensional (see

example in Figure 2.1).
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2.2 Tensor and related operations

Let us introduce tensor notation and some related operations that will be used later.

A tensor Y is a K-dimensional matrix of size n1×n2×· · ·×nK (Kolda & Bader, 2009a):

Y = {yi1,i2,...,iK , {ik = 1, . . . , nk}Kk=1}. (2.2)

By Y(j), we will denote a matrix consisting of elements of the tensor Y whose rows are

1 × nj slices of Y with fixed indices ij+1, . . . , iK , i1, . . . , ij−1 and altering index ij =

1, . . . , nj . In case of a 2-dimensional tensor, it holds that Y(1) = YT and Y(2) = Y.

Now let us introduce the multiplication of a tensor by a matrix along the direction i. Let

B be some matrix of size ni × n′i. Then the product of the tensor Y and the matrix B

along the direction i is a tensor Z of size n1×· · ·×ni−1×n′i×ni+1×· · ·×nK such that

Z(i) = Y(i)B. We will denote this operation by Z = Y⊗iB. For a 2-dimensional tensor Y,
multiplication along the first direction is a left multiplication by matrix Y ⊗1 B = BTY,
and along the second direction — is a right multiplication Y ⊗2 B = YB.

Multiplication of a tensor by a matrix along some direction is closely related to the

Kronecker product. Let’s consider an operation vec, which, for every multidimensional

matrix Y returns a vector containing all elements of Y. An inner product of tensors Y
and Z is the inner product of vectors vec(Y) and vec(Z)

〈Y,Z〉 = 〈vec(Y), vec(Z)〉 .

For every multidimensional matrix Y of size n1×n2× · · · ×nK and ni× pi size matrices

Bi, i = 1, . . . ,K the following identity holds (Loan, 2000)

(B1 ⊗B2 · · · ⊗BK)vec(Y) = vec(Y ⊗1 B
T
1 · · · ⊗K BT

K), (2.3)

where symbol ⊗ denotes the Kronecker product.

Let’s compare the complexity of the right and the left hand sides of (2.3). For simplic-

ity, we assume that all the matrices Bi are quadratic of size ni × ni and N =
∏
ni.

Then computation of the left-hand side of (2.3) requires N2 operations (of additions and

multiplications) not considering the complexity of the Kronecker product while the right

hand side requires N
∑

i ni operations.
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2.2.1 Efficient log-likelihood calculation

Now, let us see how the introduced operations can be used for efficient computation of

the predictive distribution and the marginal log-likelihood.

Covariance function (1.4) can be represented as a product of covariance functions each

depending only on the variables from one factor

k(xp,xq) =
K∏
i=1

ki(x
i
p, x

i
q), (2.4)

where xip, xiq ∈ Rdi belong to the same factor ωi. For the squared exponential function, we

have ki(xip, xiq) = ω2
f,i exp

(
−∑di

j

(
θ

(j)
i

)2 (
x

(j),i
p − x(j),i

q

)2), where x(j),i
p is a j-th compo-

nent of xip. Note that in general case covariance functions ki are not necessarily squared

exponential, they can be of different types for different factors. It allows to consider the

special features of factors (knowledge from a subject domain) if they are known. In such

a case, the function defined by (2.4) is still a valid covariance function being the product

of separate covariance functions. From now on, we will denote by θi = (θ
(1)
i , . . . , θ

(di)
i ) the

set of hyperparameters for covariance function of the i-th factor and let θ = (θ1, . . . , θK).

Such form of the covariance function and the factorial DoE allows us to represent the

covariance matrix as the Kronecker product

Kf =
K⊗
i=1

Ki, (2.5)

where Ki is a covariance matrix defined by the ki covariance function computed at points

from the i-th factor ωi.

The Kronecker product of matrices can be efficiently inverted due to the following prop-

erty

(A⊗B)−1 = A−1 ⊗B−1

if A and B are invertible matrices. If A has size na × na and B has size nb × nb then

the left side of the above equation requires O(n3
an

3
b) operations while the right hand side

requires only O(n3
a + n3

b) operations and this is much less. However, we have to invert

the matrix Ky = Kf +σ2
noiseI. For this, we use the Singular Value Decomposition (SVD)

Ki = UiDiU
T
i ,

where Ui is an orthogonal matrix of eigenvectors of matrix Ki and Di is a diagonal

matrix of eigenvalues. Using the properties of the Kronecker product and representing
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an identity matrix as Idi = UiU
T
i we obtain

K−1
y =

(
K⊗
i=1

Ui

)([
K⊗
i=1

Di

]
+ σ2

noiseI

)−1( K⊗
i=1

UT
i

)
. (2.6)

Computing SVD for all Ki requires O(
∑

k n
3
k) operations. Calculation of the Kronecker

product in (2.6) has complexity O(N2). So, this gives us overall complexity O(N2) for

calculation of expressions for the log-likelihood, the predictive mean, and the covariance.

It is faster than the straightforward calculations; however, it can be improved.

Equations (1.3) and (1.5) for GP regression do not require explicit inversion of Ky. In

each equation, it is multiplied by vector y (or k∗). So, we will compute K−1
y y instead of

explicitly inverting Ky and then multiplying it by the vector y.

Let Y be a tensor containing values of the vector y such that vec(Y) = y. Now using

identities (2.3) and (2.6) we can write K−1
y y as

K−1
y y =

(
K⊗
i=1

Ui

)([
K⊗
i=1

Di

]
+ σ2

noiseI

)−1

× vec(Y ⊗1 U1 · · · ⊗K UK) =

= vec
[(

(Y ⊗1 U1 · · · ⊗K UK) ∗ D−1
)
⊗1 UT

1 · · · ⊗K UT
K

]
, (2.7)

where D is a tensor constructed by transforming the diagonal of matrix
[⊗

k Dk

]
+σ2

noiseI

into a tensor.

The elements of the tensor D are eigenvalues of the matrix Ky, therefore, its determinant

can be calculated as

|Ky| =
∏

i1,...,iK

Di1,...,iK . (2.8)

Proposition 2.1. The computational complexity of the log likelihood (1.5), where K−1
y y

and |Ky| are calculated using (2.7) and (2.8), is

O
(

K∑
i=1

n3
i +N

K∑
i=1

ni

)
. (2.9)

Proof. Let’s calculate the complexity of computing K−1
y y using (2.7). Computation of

the matrices Ui and Di requires O(
∑

i n
3
i ) operations. Multiplication of the tensor Y by

the matrices Ui requires O(N
∑

i ni) operations. Further, a component-wise product of

the obtained tensor and the tensor D−1 requires O(N) operations. And the complexity

of multiplication of the result by the matrices Ui is again O(N
∑

i ni). The determinant,

calculated by equation (2.8), requires O(N) operations. Thus, the overall complexity of

computing (2.7) is O(
∑K

i=1 n
3
i +N

∑K
i=1 ni).
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For more illustrative estimate of the computational complexity, suppose that ni �
N (number of factors is large and their sizes are close). In this case, it holds that

O(N
∑

i ni) = O(N1+ 1
K ) and this is much less than O(N3).

To optimize the log-likelihood over the hyperparameters, we use a gradient-based method.

The derivatives of the log likelihood with respect to the hyperparameters take the form

∂

∂θ
(log p(y|X, σf , σnoise)) = −1

2
Tr(K−1

y K′) +
1

2
yTK−1

y K′K−1
y y, (2.10)

where θ is one of the hyperparameters θi, σnoise or ωf,i, i = 1, . . . , d and K′ =
∂K

∂θ
. K′

is also the Kronecker product

K′ = K1 ⊗ · · · ⊗Ki−1 ⊗
∂Ki

∂θ
⊗Ki+1 ⊗ · · · ⊗KK ,

where θ is a parameter of the i-th covariance function. Denoting by A, a tensor such that

vec(A) = K−1
y y the second term in equation (2.10) can be efficiently computed using

the same technique as in (2.7):

1

2
yTK−1

y K′K−1
y y =

〈
A,A ⊗1 KT

1 ⊗2 · · · ⊗i−1 KT
i−1 ⊗i

∂KT
i

∂θ
⊗i+1

⊗i+1 KT
i+1 ⊗i+2 · · · ⊗K KT

K

〉
. (2.11)

The complexity of calculating this term of derivative is the same as the complexity of

equation (2.7).

Now, let us compute the first term

Tr(K−1
y K′) = Tr

((
K⊗
i=1

Ui

)
D−1

(
K⊗
i=1

UT
i

)
K′

)
=

= Tr

(
D−1

(
K⊗
i=1

UT
i K′iUi

))
=

=

〈
diag

(
D−1

)
,diag

(
K⊗
i=1

UiK
′
iUi

)〉
=

=

〈
diag

(
D−1

)
,

K⊗
i=1

diag
(
UiK

′
iUi

)〉
,

(2.12)

where diag
(
A
)
is a vector of diagonal elements of a matrix A, D =

⊗
i Di + σ2

noiseI.

The computational complexity of this derivative term is the same as the computational

complexity of equation (2.11).

Thus, we obtain



15

Table 2.1: Runtime (in seconds) of tensored GP and original GP algorithms.

original GP tensored GP
64 0.8 0.16

160 2.69 0.16
432 14.31 0.74

1000 120.38 1.02
2000 970.21 1.11

10240 — 33.18
64000 — 74.9
160000 — 175.15
400000 — 480.14

Proposition 2.2. The computational complexity of calculating derivatives of the log

likelihood is O
(
K∑
i=1

n3
i +N

K∑
i=1

ni

)
.

Table 2.1 contains training times for original GP and proposed GP regression for different

sample sizes. The experiments were conducted on a PC with Intel i7 2.8 GHz proces-

sor and 4 GB RAM. For the original GP, we used GPML Matlab code (Rasmussen &

Nickisch, 2010). We also adopted the GPML code to use tensor operations. The results

illustrate that the proposed approach is much faster than the original GP and allows

making approximations using extremely large data sets.

2.2.2 Anisotropy

In this section, we will consider an anisotropy problem. As it was mentioned in an

engineering practice, factorial designs are often anisotropic, i.e., the sizes of factors differ

significantly. It is a common case for the GP regression to become degenerate in such a

situation. Suppose the given DoE consists of two one-dimensional factors with sizes n1

and n2. Assume that n1 � n2. Then one could expect the length-scale for the first factor

to be much greater than the length-scale for the second factor (or θ1 � θ2). However, in

practice, we often observe the opposite θ1 � θ2. This happens because the optimization

algorithm stacks in a local maximum during maximization over the hyperparameters

as the objective function (the log-likelihood) is non-convex with lots of local maxima.

We get an undesired effect of degeneracy: in the region without training points, the

approximation is constant, and it has sharp peaks at training points. This situation is

illustrated in Figure 2.3a (compare with the true function in Figure 2.3c).
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Let us denote length-scales as l(i)k =
[
θ

(i)
k

]−1. To incorporate our prior knowledge about

factor sizes into regression model we introduce prior distribution on the hyperparame-

ters θ:
θ

(i)
k − a

(i)
k

b
(i)
k − a

(i)
k

∼ Be(α, β), {i = 1, . . . , dk}Kk=1, (2.13)

i.e., prior on hyperparameter θ(i)
k is a beta distribution with parameters α and β scaled

to some interval
[
a

(i)
k , b

(i)
k

]
.

The log likelihood then has the form

log p(y |X,θ, σf , σnoise) = −1

2
yTK−1

y y − 1

2
log |Ky|−

−N
2

log 2π+
∑
k,i

(
(α− 1) log(θ

(i)
k )+

+(β − 1) log(1− θ(i)
k )
)
− d log(B(α, β)),

(2.14)

where B(α, β) is a beta function.

By introducing such prior, we restrict parameters θ(i)
k to belong to some interval

[
a

(i)
k , b

(i)
k

]
(or length-scales l(i)k to belong to the interval

[(
b
(i)
k

)−1
,
(
a

(i)
k

)−1
]
). It seems reasonable

that for an approximation to fit the training points the length-scale is not needed to be

much less than the distance between points. That’s why we choose the lower bound for

the length-scale l(i)k to be ck ∗ min
x,y∈ωk,x(i) 6=y(i)

||x(i) − y(i)|| and the upper bound for the

length-scale to be Ck ∗ max
x,y∈ωk

||x(i) − y(i)||. The value ck should be close to 1. If it is

too small, we are taking risks to overfit the data by allowing small length-scales. If ck is

too large, we will underfit the data by allowing only large length-scales and forbidding

small ones. Constants Ck must be much greater than ck to permit large length-scales

and preserve flexibility. In this work, we used ck = 0.5 and Ck = 100. Such values of ck
and Ck worked rather well in our test cases.

Parameters of beta distribution was set to α = β = 2 to get symmetrical probability

distribution function (see Figure 2.2) because we do not know a priori if the values of GP

parameters should be large or small. The chosen prior distribution penalizes too large

and too small values of parameters θk as they are undesirable.

Figure 2.3b illustrates the approximation of the GP regression with introduced prior

distribution (and initialization described in Section 2.2.3). The hyperparameters were

chosen such that the approximation is nondegenerate.
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Figure 2.2: Logarithm of Beta distribution probability density function, rescaled to
[0.01, 2] interval, with parameters α = β = 2.

2.2.3 Initialization

It is also important to choose reasonable initial values of hyperparameters in order to

converge to a good solution during parameter optimization. The kernel-widths for differ-

ent factors should have different scales because corresponding factor sizes have different

numbers of levels. Hence, it seems reasonable to use the average distance between points

in a factor as an initial value

θ
(i)
k =

[
1

nk

(
max
x∈ωk

(x(i))− min
x∈ωk

(x(i))

)]−1

. (2.15)

2.3 Experiments

The proposed algorithm was tested on a set of test functions (Evoluationary computation

pages — the function testbed; System optimization — testroblems). The functions have

different input dimensions from 2 to 6 and the sample sizes N varied from 100 to about

200000. For each function, several factorial anisotropic training sets were generated. We

will test the following algorithms: GP with tensor computations (tensorGP), GP with

tensor computations and prior distribution (tensorGP-reg), the sparse pseudo-point in-

put GP (FITC) (Snelson & Ghahramani, 2005). For the FITC method, we used GPML

Matlab code (Rasmussen & Nickisch, 2010). The number of inducing points of FITC

algorithm varied fromM = 500 for small samples (up to 5000 points) toM = 70 for large

samples (about 105 points) in order to obtain approximation in reasonable time (com-

plexity of FITC algorithm is O(M2N)). For tensorGP and tensorGP-reg, we adopted

GPML code to use tensor operations, proposed prior distribution and initialization.

To assess the quality of approximation, a mean squared error was used

MSE =
1

Ntest

Ntest∑
i=1

(f̂(xi)− f(xi))
2. (2.16)
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(b) The GP regression with proposed prior
distribution and initialization.
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(c) True function.

To compare different algorithms, Dolan-Moré curves are used (Dolan & Moré, 2002).

The idea of Dolan-Moré curves is as follows. Let tp,a be an error of an a-th algorithm on

a p-th problem and rp,a be a performance ratio

rp,a =
tp,a

min
s

(tp,s)
.

Then Dolan-Moré curve is a graph of ρa(τ) function where

ρa(τ) =
1

np
size{p : rp,a ≤ τ},

which can be thought of as a probability for the a-th algorithm to have performance ratio

within factor τ ∈ R+. The higher the curve ρa(τ) is located, the better the corresponding

algorithm works. ρa(1) is the number of problems on which the a-th algorithm showed

the best performance.

As expected, tensorGP performs better than FITC, as it uses all the information con-

tained in the training sample. The introduced prior distribution is more suited for
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(b) Run-times.

Figure 2.4: Dolan-Moré curves for tensorGP, tensorGP-reg and FITC algorithms in
logarithmic scale. The higher the curve lies, the better the corresponding algorithm

performs.

anisotropic data and hence, GP with such prior (tensorGP-reg) performs even better

(see Figure 2.4a).

To compare the run-time performances of the algorithms, we plotted Dolan-Mor’e curves

where instead of approximation error, the training time was used (see Figure 2.4b). Here,

we see that tensorGP and tensorGP-reg outperform FITC algorithm.

2.3.1 Rotating disc problem

In this section, we will consider a real-world problem of rotating disc shape design.

Such kind of problems often arise during aircraft engine design and in turbomachinery

(Armand, 1995).

In this problem, a disc of an impeller is considered. It is rotated around the shaft.

The geometrical shape of the disc considered here is parameterized by 6 variables x =

(h1, h2, h3, h4, r2, r3) (r1 and r4 are fixed), see Figures 2.5 and 2.6. The task of an engineer

is to find such geometrical shape of the disc that minimizes the disc’s weight and the

contact pressure p1 between the disc and the shaft while constraining the maximum

radial stress Srmax to be less than some threshold. The physical model of a rotating

disc is described in (Armand, 1995) and it was adopted to the disc shape presented in

Figures 2.5, 2.6 in order to calculate the contact pressure p1 and the maximum radial

stress Srmax.

It is a common practice to build approximations of objective functions in order to analyze

them and perform optimization (Forrester et al., 2008). So, we applied the tensorGP-reg

algorithm and FITC developed in this work to this problem. The DoE was full factorial;

the number of points in each dimension was [1, 8, 8, 3, 15, 5], i.e., x1 was fixed. The
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Figure 2.5: Rotating disc parametrization.

Figure 2.6: Rotating disc objectives.
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(a) FITC.
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(b) The proposed approach.

Figure 2.7: 2D slice along x5 and x6 variables (other variables are fixed) of tensorGP-
reg approximation.

number of points in factors differs significantly and the generated data set is anisotropic.

The overall number of points in the training sample was 14 400.

Figures 2.7a and 2.7b depict 2D slices of contact pressure approximations along x5, x6

variables. As you can see, FITC model degenerates while tensorGP-reg provides a smooth

and accurate approximation.

2.4 Incomplete Factorial Design of Experiments

A subset Ω̃ ⊆ Ω of size Ñ of the full factorial DoE is referred to as incomplete factorial

design of experiments. In general, taking a subset of Ω breaks the structure of the dataset,
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so we cannot apply the same techniques described in the previous section. However, the

partial structure that is preserved can be of use, though at a higher computational cost.

We use the same notation for the training set in this section D = {(xi, yi)}Ñi=1.

2.4.1 Log-likelihood and posterior distribution calculation

To calculate the log-likelihood and the posterior mean, we need to calculate K−1
y y and

the determinant |Ky|.

Let W be a diagonal matrix of size N ×N , where N is the size of the full factorial DoE

Ω̃ ⊇ Ω. Denote R = N − Ñ . Let X = {xi : xi ∈ Ω}Ni=1. Then

Wii =

1, if xi ∈ Ω,

0, if xi /∈ Ω.

We construct the vector ỹ as follows: if xi ∈ Ω̃, then ỹi is filled with elements from y

corresponding to xi. We fill the rest of the elements of ỹ arbitrarily. Now the matrix K̃

is the covariance matrix between points from the set Ω. Let us consider the following

system of equations (
WK̃ + σ2

noiseI
)

z = Wỹ. (2.17)

Notice that equations that correspond to missing values have the form σ2
noisezj = 0.

Therefore, the elements of z that correspond to missing values are equal to zero. The

other elements are solutions of the equation Kyz
′ = y, which gives us K−1

y y. To solve

(2.17), we use conjugate gradients (CG) approach. For CG, the matrix should be sym-

metric, so let’s multiply the left hand side and the right hand side by K̃:(
K̃WK̃ + σ2

noiseK̃
)

z = K̃Wỹ.

By substituting z̃ =
√

Kz we obtain a system with lower condition number:(√
K̃W

√
K̃ + σ2

noiseI
)

z̃ =
√

K̃Wỹ,

where
√

K̃ = U
√

DU
T
, U — is a matrix of eigenvectors of K̃, D — is a diagonal matrix

with eigenvalues of K̃. Note that fast matrix-vector products can be calculated using

the results of the section 2.2.1.

It is well known that CG converges at most in r iterations, where r is a number of

different eigenvalues of the system matrix Nocedal & Wright (2006). In the system

that we obtained, we can do such changes of variables, so that the number of different

eigenvalues is equal to either R+ 1 or Ñ + 1:
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1. Change of variables 1:

z1 =
√

D̂UT z̃,

where D̂ = D + σ2
noiseI. The system of equations in this case looks like(√

D̂−1DUT (W − I)U

√
DD̂

−1
+ I

)
z1 =

√
D̂−1DUTWỹ. (2.18)

2. Change of variables 2:

z2 = UT z̃.

In this case we obtain,(√
DUTWU

√
D + σ2

noiseI
)

z2 =
√

DUTWỹ. (2.19)

Proposition 2.3. The matrix of the system of equations (2.18) has no more than R+ 1

different eigenvalues, while the matrix (2.19) has no more than Ñ + 1.

Proof. Let us show the proof for (2.19). The statement for (2.18) can be proved similarly.

The rank of matrix W is equal to Ñ . As the rank of the product of matrices is not greater

than the rank of the factors, the rank of the matrix A =
√

DUTWU
√

D is not greater

than Ñ . Now, the matrix A is symmetric and has N real eigenvalues λi, i = 1, . . . , N .

Moreover, as the rank is not greater than Ñ , the number of different eigenvalues is not

greater than Ñ either. The eigenvalues of the matrix in (2.19) are equal to λi + σ2
noise.

Hence, the matrix has no more than Ñ + 1 different eigenvalues.

The computational complexity of one iteration of CG is the same as the complexity of

computing K̃yx, therefore, the overall complexity of computing K−1
y y is

O
(

min{R+ 1, Ñ + 1}N
K∑
i=1

ni

)
.

Assuming that ni � N (i.e., the number of factors is large, and their sizes are equal),

we obtain O(min{R + 1, Ñ + 1}N1+ 1
K ). So, if less than half of the points are missing,

the complexity is linear in the number of missing points. O((R+ 1)N1+ 1
K ). In the limit,

when there are no missing points, the complexity is the same as the complexity for full

factorial DoE.
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2.4.2 Calculation of the determinant

Let A be a covariance matrix of size N ×R between training points and missing points,

and B be a covariance matrix of size R × R between missing points. Then matrix K̃y

can be represented as a block matrix

K̃y =

(
Ky A

AT B

)
.

The determinant of the block matrix can be calculated as follows |K̃y| = |Ky||B −
ATK−1

y A|, therefore, the determinant of interest is given by

|Ky| =
|K̃y|

|B−ATK−1
y A|

. (2.20)

The computational complexity of this expression is O(min{R + 1, Ñ + 1}RN∑K
i=1 ni),

because we need to calculate matrix-vector multiplication K−1
y Ai R times, where Ai is

an i-th column of matrix A. The memory complexity equals O(RÑ +N +
∑K

i=1 n
2
i ).

However, we can reduce memory to O(Ñ) and improve the constant in the complexity

of (2.20). For this, notice that the approach to calculate K−1
y y also allows to calculate

C−1v, where C is an arbitrary principal submatrix of size m×m of the matrix K̃y, and

v is any vector of length m. The computational complexity of the operation in this case

is O
(

min{m+ 1, Ñ −m+ 1}Ñ∑K
i=1 ni

)
.

Denote

K̃y =

(
K1 a1

aT1 b1

)
,

where K1 is of size (Ñ − 1)× (Ñ − 1), a1 is a vector of length Ñ − 1, b1 is a scalar. Then

|K̃y| = |K1|(b1 − aT1 K−1
1 a1).

Similarly, splitting K1 into blocks

(
K2 a2

a2 b2

)
, and splitting matrix K2 into

(
K3 a3

a3 b3

)
,

and so on, we obtain

|K̃y| = |Ky|
R∏
i=1

(bi − aTi K−1
i ai),

or

|Ky| =
|K̃y|∏R

i=1(bi − aTi K−1
i ai)

. (2.21)

Here, to calculate the right hand side, we need to store only K−1
i ai, therefore, the total

memory complexity is O(N +
∑K

i=1 n
2
i ).
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Experimental results
Theoretical complexity

Figure 2.8: Comparison of the training time of the proposed approach (iTensorGP)
and standard approach (GP).

The complexity of the calculation of each K−1
i ai is lower than the complexity of the cal-

culation of K−1
y Ai, thus, the expression (2.21) is more efficient, although asymptotically,

it is the same.

2.4.3 Experiments

To compare the classical approach for GP regression against the proposed approach, we

generated several datasets with incomplete factorial DoE. The dimensionality of input

is 5, factor sizes are equal to [5, 4, 4, 4, 4], the number of missing points varies from 100

to 320. In Figure 2.8, you can see the ratio of the computation time of the standard

approach (GP) and the training time of the proposed approach (iTensorGP) for different

number of missing values. Theory shows that the ratio should be (N−R)3

R2N(
∑K
i=1 ni)

. Then the

number of missing points increases, and so does the training time of iTensorGP. At some

points, iTensorGP becomes less efficient than the standard GP approach. However, in

case of a small amount of missing points, iTensorGP is much faster.



Chapter 3

Large-Scale Kernel Methods for

Unstructured Datasets

In the vast majority of real-world problems data sets do not have the factorial structure.

In this case, there are several approaches to scale up the GP model. One is to aggregate

several smaller models into a big one, e.g., Mixture GPs or Bayesian machine committee

(Rasmussen & Williams, 2006; Rasmussen & Ghahramani, 2001). The idea here is to

split data set into several small subsets Di, i = 1, . . . ,M , build on each data set GP

model and then combine them. For instance, in the Bayesian committee machine, the

final distribution is given by

p(y∗|D) ∼
∏M
i=1 p(y

∗|Di)
p(y∗)

,

assuming that the correlation between the subsets is small.

Another class of methods builds a lightweight approximation of the kernel function.

There are also data-dependent approaches that follow Nyström’s method for kernel ap-

proximation (Rasmussen & Williams, 2006). The idea of approximation is based on the

numerical approximation of the eigenfunctions and eigenvalues of the kernel function. A

function φ(·) that satisfies the following equation∫
k(x,x′)φ(x)dµ(x) = λφ(x′)

is called the eigenfunction of kernel k, where λ is a corresponding eigenvalue with re-

spect to measure µ. If we let consider dµ(x) = p(x)dx, we can write the numerical

25
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approximation to the equation

λiφi(x) ' 1

M

M∑
k=1

k(xk,x)φi(xk), (3.1)

where points xk, generated from distribution p(x), are called inducing points. By plug-

ging xi from the training set into equation above we obtain

Kfui = λ̂iui, φi(xj) =

√
λ̂i (ui)j .

Then from (3.1), we obtain the Nyström approximation of the i-th eigenfunction φ(x) =
M
λ̂i

k>ui, and, therefore, the approximation of the kernel matrix:

Kf ' K̂f = KNMK−1
MMKMN , (3.2)

where KMN is a covariance matrix between training points and inducing points while

KMM is a covariance matrix between inducing points. More details can be found in

(Rasmussen & Williams, 2006).

In (Williams & Seeger, 2001), the authors first proposed to use the (3.2) approximation

in the posterior distribution of the GP regression model. The computational complexity

is reduced to O(NM2 +M3) operations, which is beneficial ifM � N . There are several

works that build on the Nyström approximation, trying to refine the approximation of

the covariance matrix and thus improve the quality of the model while preserving low

computational complexity (Quiñonero-Candela & Rasmussen, 2005; Rossi et al., 2020).

In this thesis, we consider different types of approximations based on so-called random

features. The idea of the approach is to construct an approximation of the kernel func-

tion that enables a low-rank approximation of the kernel matrix. To construct such an

approximation, we need to consider the kernel function from a different perspective. It

turns out that every positive definite kernel k uniquely defines some space of functions

and vice versa. Moreover, it can be seen as an inner product in an appropriate Hilbert

space.

Definition 3.1 (Positive definite kernels). Let X be a nonempty set. A symmetric

function k : X × X → R is called a positive definite kernel, if for any set x1, . . . ,xN ,

∀N ∈ N and for any (c1, . . . , cN ) ⊂ R it holds

N∑
i=1

N∑
j=1

cicjk(xi,xj) ≥ 0.

Note that the covariance functions that we use in GP are also positive definite kernels.
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Definition 3.2 (RKHS, (Aronszajn, 1950)). Let X be a nonempty set and k be a positive

definite kernel on X . A Hilbert space H of function on X with an inner-product 〈·, ·〉H
is called a reproducing kernel Hilbert space (RKHS) with reproducing kernel k, if the

following is satisfied:

1. For all x ∈ X we have k(·,x) ∈ H;

2. for all x ∈ X and for all f ∈ H

f(x) = 〈f, k(·,x)〉. Reproducing property

In the reproducing property, we used k(·,x), which is actually a real-valued function such

that y→ k(y,x) for ∀y ∈ X . So, the kernel function satisfies

k(x,y) = 〈k(·,x), k(·,y)〉, x,y ∈ X .

where k(·,x) is the canonical feature map of x. There can be a lot of different features

maps ψ : X → H, such that their inner product is defined by the kernel function k(x,y) =

〈ψ(x), ψ(y).

The idea for kernel approximation using randomized feature maps is based on finding

finite-dimensional maps that approximate the inner product associated with the kernel

function.

The main contributions of this chapter are as follows:

• Introducing a technique for kernel approximation based on randomized feature

maps and special quadrature rules.

• Deriving error bounds for the developed approach.

• Showing that (Rahimi & Recht, 2008; Felix et al., 2016) are special cases of the

proposed method.

3.1 Quadrature-based Features for Kernel Approximation

3.1.1 Random Fourier Features

One of the most well-known approach is called Random Fourier Features (RFF). It was

first proposed by (Rahimi & Recht, 2008), and it is based on Bochner’s theorem.
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Theorem 3.3 (Bochner). A continuous kernel k(x,x′) = k(r), r = x− x′ on Rd is

positive definite if and only if k(r) is a Fourier transform of a non-negative measure

p(w)

k(r) =

∫
Ω
p(w)ejw

>(x−x′)dw. (3.3)

By applying Monte-Carlo sampling to approximate integral in (3.3) RFF introduces a

low-dimensional randomized approximation to feature maps:

k(x,y) ≈ Ψ̂(x)>Ψ̂(y), (3.4)

Ψ̂(x) =
1√
D



cos(w>1 x)

sin(w>1 x)

· · ·
cos(w>Dx)

sin(w>Dx)


, wi ∼ p(w),

where D is a number of generated samples. Exploiting the idea with an integral repre-

sentation of the dot product

k(x,y) =

∫
Ω
ψ(w,x)ψ(w,y)p(w)dw,

we can construct low-rank approximations to a wider class of kernel functions (not only

shift-invariant kernels). In this case the feature map Ψ̂(x) looks like

Ψ̂(x) =
1√
D


ψ(w1,x)

· · ·
ψ(wD,x)

 , w ∼ p(w).

A randomized D-dimensional mapping Ψ̂(·) applied to the original data input allows

employing standard linear methods, i.e. reverting the kernel trick. In doing so one

reduces the complexity to that of linear methods, e.g. D-dimensional approximation

admits O(ND2) training time, O(ND) memory and O(N) prediction time.

It is well known from the theory on Monte Carlo based estimates that as D → ∞, the

randomized feature maps based approximations converge to the exact kernel k(x,y).

Recent research (Yang et al., 2014; Felix et al., 2016; Choromanski & Sindhwani, 2016)

aims to improve the convergence of approximation so that a smaller D can be used to

obtain the same quality of approximation.
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Here we will consider the class of kernels admitting the following integral representation

k(x,y) = Ep(w)fxy(w) = I(fxy), p(w) =
1

(2π)d/2
e−
‖w‖2

2 ,

fxy = φ(w>x)φ(w>y).

(3.5)

It includes the class of shift-invariant kernels, e.g. the popular Gaussian kernel with

fxy(w) = φ(w>x)>φ(w>y), where φ(·) =
[
cos(·) sin(·)

]>
. It also contains Pointwise

Nonlinear Gaussian (PNG) kernels. They are widely used in practice and have interesting

connections with neural networks (Cho & Saul, 2009; Williams, 1997).

The main challenge for the construction of low-dimensional feature maps is the approxi-

mation of the expectation in (3.5) which is d-dimensional integral with Gaussian weight.

To improve the approximation we introduce quarature rules to approximate the integral

and then show that they generalize several prominent papers in this topic.

3.2 Quadrature Rules

We start with rewriting the expectation in Equation (3.5) as integral of fxy with respect

to p(w):

I(fxy) = (2π)−
d
2

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−
w>w

2 fxy(w)dw.

Integration can be performed by means of quadrature rules. The rules usually take a

form of interpolating function that is easy to integrate. Given such a rule, one may

sample points from the domain of integration and calculate the value of the rule at these

points. Then, the sample average of the rule values would yield the approximation of

the integral.

The connection between integral approximation and mapping ψ is straightforward. In

what follows we show a brief derivation of the quadrature rules that allow for an explicit

mapping of the form: ψ(x) = [ a0φ(0) a1φ(w>1 x) . . . aDφ(w>Dx) ], where the choice

of the weights ai and the points wi is dictated by the quadrature.

We use the average of sampled quadrature rules developed by (Genz & Monahan, 1998)

to yield unbiased estimates of I(fxy). A change of coordinates is the first step to facilitate

stochastic spherical-radial rules. Now, let w = rz, with z>z = 1, so that w>w = r2 for

r ∈ [0,∞], leaving us with (to ease the notation we substitute fxy with f)

I(f) = (2π)−
d
2

∫
Ud

∫ ∞
0

e−
r2

2 rd−1f(rz)drdz =
(2π)−

d
2

2

∫
Ud

∫ ∞
−∞

e−
r2

2 |r|d−1f(rz)drdz,

(3.6)
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I(f) is now a double integral over the unit d-sphere Ud = {z : z>z = 1, z ∈ Rd} and over

the radius. To account for both integration regions we apply a combination of spherical

(S) and radial (R) rules known as spherical-radial (SR) rules. To provide an intuition

how the rules work, here we briefly state and discuss their form.

Stochastic radial rules of degree 2l + 1 R(h) =
l∑

i=0
ŵi

h(ρi)+h(−ρi)
2 have the form

of the weighted symmetric sums and approximate the infinite range integral T (h) =∫∞
−∞ e

− r
2

2 |r|d−1h(r)dr. Note that when h is set to the function f of interest, T (f) corre-

sponds to the inner integral in (3.6). To get an unbiased estimate for T (h), points ρi are

sampled from specific distributions. The weights ŵi are derived so that the rule is exact

for polynomials of degree 2l + 1 and give unbiased estimate for other functions.

Stochastic spherical rules SQ(s) =
p∑
j=1

w̃js(Qzj), where Q is a random orthogonal

matrix, approximate an integral of a function s(z) over the surface of unit d-sphere Ud,

where zj are points on Ud, i.e. z>j zj = 1. Remember that the outer integral in (3.6)

has Ud as its integration region. The weights w̃j are stochastic with distribution such

that the rule is exact for polynomials of degree p and gives unbiased estimate for other

functions.

Stochastic spherical-radial rules SR of degree (2l + 1, p) are given by the following

expression1

SR
(2l+2,p)
Q,ρ =

p∑
j=1

w̃j

l∑
i=1

ŵi
f(ρQzi) + f(−ρQzi)

2
,

where the distributions of weights are such that if degrees of radial rules and spherical

rules coincide, i.e. 2l+ 1 = p, then the rule is exact for polynomials of degree 2l+ 1 and

gives unbiased estimate of the integral for other functions.

3.2.1 Spherical-radial rules of degree (1, 1)

Proposition 3.4. Random Fourier Features for RBF kernel are SR rules of degree (1, 1).

Proof. If we take radial rule of degree 1 and spherical rule of degree 1, we obtain

the following rule SR(1,1)
Q,ρ = f(ρQz)+f(−ρQz)

2 , where ρ ∼ χ(d). It is easy to see that

ρQz ∼ N (0, I), and for shift invariant kernel f(w) = f(−w), thus, the rule reduces to

SR
(1,1)
Q,ρ = f(w), where w ∼ N (0, I). Now, RFF (Rahimi & Recht, 2008) makes approx-

imation of the RBF kernel in exactly the same way: it generates random vector from

Gaussian distribution and calculates the corresponding feature map.
1Please see (Genz & Monahan, 1998) for detailed derivation of SR rules.
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3.2.2 Spherical-radial rules of degree (1, 3)

Proposition 3.5. Orthogonal Random Features for RBF kernel are SR rules of de-

gree (1, 3).

Proof. Let us take radial rule of degree 1 and spherical rule of degree 3. In this case we

get the following spherical-radial rule SR1,3
Q,ρ =

∑d
i=1

f(ρQei)+f(−ρQei)
2 , where ρ ∼ χ(d),

ei = (0, . . . , 0, 1, 0, . . . , 0)> is an i-th column of the identity matrix.

Let us compare SR1,3 rules with Orthogonal Random Features (Felix et al., 2016) for

the RBF kernel. In the ORF approach, the weight matrix W = SQ is generated, where

S is a diagonal matrix with the entries drawn independently from χ(d) distribution and

Q is a random orthogonal matrix. The approximation of the kernel is then given by

kORF(x,y) =
∑d

i=1 f(wi), where wi is the i-th row of the matrix W. As the rows of Q

are orthonormal, they can be represented as Qei.

3.2.3 Spherical-radial rules of degree (3, 3)

We go further and take both spherical and radial rules of degree 3, where we use original

and reflected vertices vj of randomly rotated unit vertex regular d-simplex V as the

points on the unit sphere

SR3,3
Q,ρ(f) =

(
1− d

ρ2

)
f(0) +

d

d+ 1

d+1∑
j=1

[
f(−ρQvj) + f(ρQvj)

2ρ2

]
, (3.7)

where ρ ∼ χ(d+ 2). We apply (3.7) to the approximation of (3.6) by averaging the

samples of SR3,3
Q,ρ:

I(f) = EQ,ρ[SR
3,3
Q,ρ(f)] ≈ Î(f) =

1

n

n∑
i=1

SR3,3
Qi,ρi

(f), (3.8)

where n is the number of sampled SR rules. Speaking in terms of the approximate feature

maps, the new feature dimension D in case of the quadrature based approximation equals

2n(d+ 1) + 1 as we sample n rules and evaluate each of them at 2(d+ 1) random points

and 1 zero point.

We propose to modify the quadrature rule by generating ρj ∼ χ(d+ 2) for each vj , i.e.

SR3,3
Q,ρ(f) =

(
1−∑d+1

j=1
d

(d+1)ρ2j

)
f(0) + d

d+1

d+1∑
j=1

[
f(−ρjQvj)+f(ρjQvj)

2ρ2j

]
. It doesn’t affect

the quality of approximation while simplifies an analysis of the quadrature-based random

features.
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Explicit mapping We finally arrive at the map ψ(x) =
[
a0φ(0) a1φ(w>1 x) . . . aDφ(w>Dx)

]
,

where a0 =

√
1−

j=1∑
d+1

d
ρ2

2, aj = 1
ρj

√
d

2(d+1) , wj is the j-th row in the matrix W = ρ⊗
[

(QV)>

− (QV)>

]
,

ρ = [ρ1 . . . ρD]>. To get D features one simply stacks n = D
2(d+1)+1 such matrices

Wk = ρk
[

(QkV)>

− (QkV)>

]
so that W ∈ RD×d, where only Qk ∈ Rd×d and ρk are gener-

ated randomly (k = 1, . . . , n). For Gaussian kernel, φ(·) =
[
cos(·) sin(·)

]>
. For the

0-order arc-cosine kernel, φ(·) = Θ(·), where Θ(·) is the Heaviside function. For the

1-order arc-cosine kernel, φ(·) = max(0, ·).

3.2.4 Generating uniformly random orthogonal matrices

The SR rules require a random orthogonal matrix Q. If Q follows Haar distribution,

the averaged samples of SR3,3
Q,ρ rules provide an unbiased estimate for (3.6). Essentially,

Haar distribution means that all orthogonal matrices in the group are equiprobable,

i.e. uniformly random. Methods for sampling such matrices vary in their complexity of

generation and multiplication.

We test two algorithms for obtaining Q. The first uses a QR decomposition of a random

matrix to obtain a product of a sequence of reflectors/rotators Q = H1 . . .Hn−1D, where

Hi is a random Householder/Givens matrix and a diagonal matrix D has entries such

that P(dii = ±1) = 1
2 . It implicates no fast matrix multiplication. We test both methods

for random orthogonal matrix generation and, since their performance coincides, we leave

this one out for cleaner figures in the Experiments section.

The other choice for Q are so-called butterfly matrices (Genz, 1998). For d = 4

B(4) =


c1 −s1 0 0

s1 c1 0 0

0 0 c3 −s3

0 0 s3 c3




c2 0 −s2 0

0 c2 0 −s2

s2 0 c2 0

0 s2 0 c2

 =


c1c2 −s1c2 −c1s2 s1s2

s1c2 c1c2 −s1s2 −c1s2

c3s2 −s3s2 c3c2 −s3c2

s3s2 c3s2 s3c2 c3c2

,

where si, ci is sine and cosine of some angle θi, i = 1, . . . , d− 1. For definition and

discussion please see Appendix. The factors of B(d) are structured and allow fast matrix

multiplication. The method using butterfly matrices is denoted by B in the Experiments

section.
2To get a20 ≥ 0, you need to sample ρj two times on average (see Appendix for details).
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3.3 Error bounds

Proposition 3.6. Let l be a diameter of the compact set X and p(w) = N (0, σ2
pI)

be the probability density corresponding to the kernel. Let us suppose that |φ(w>x)| ≤
κ, |φ′(w>x)| ≤ µ for all w ∈ Ω, x ∈ X and

∣∣∣1−fxy(ρz)
ρ2

∣∣∣ ≤ M for all ρ ∈ [0,∞),

where z>z = 1. Then for Quadrature-based Features approximation k̂(x,y) of the kernel

function k(x,y) and any ε > 0 it holds

P

(
sup

x,y∈X
|k̂(x,y)− k(x,y)| ≥ ε

)
≤ βd

(
σplκµ

ε

) 2d
d+1

exp

(
− Dε2

8M2(d+ 1)

)
,

where βd =
(
d
−d
d+1 + d

1
d+1

)
2

6d+1
d+1

(
d
d+1

) d
d+1 . Thus we can construct approximation with

error no more than ε with probability at least 1− δ as long as

D ≥ 8M2(d+ 1)

ε2

[
2

1 + 1
d

log
σplκµ

ε
+ log

βd
δ

]
.

The proof of this proposition closely follows (Sutherland & Schneider, 2015), details can

be found in the Appendix.

Term βd depends on dimension d, its maximum is β86 ≈ 64.7 < 65, and limd→∞ βd =

64, though it is lower for small d. Let us compare this probability bound with the

similar result for RFF in (Sutherland & Schneider, 2015). Under the same conditions

the required number of samples to achieve error no more than ε with probability at least

1− δ for RFF is the following

D ≥ 8(d+ 1)

ε2

[
2

1 + 1
d

log
σpl

ε
+ log

βd
δ

+
d

d+ 1
log

3d+ 3

2d

]
.

For Quadrature-based Features for RBF kernel M = 1
2 , κ = µ = 1, therefore, we obtain

D ≥ 2(d+ 1)

ε2

[
2

1 + 1
d

log
σpl

ε
+ log

βd
δ

]
.

The asymptotics is the same, however, the constants are smaller for our approach. See

Section 3.4 for empirical justification of the obtained result.

Proposition 3.7 ((Sutherland & Schneider, 2015)). Given a training set {(xi, yi)}ni=1,

with xi ∈ Rd and yi ∈ R, let h(x) denote the result of kernel ridge regression using the

positive semi-definite training kernel matrix K, test kernel values kx and regularization

parameter λ. Let ĥ(x) be the same using a PSD approximation to the training kernel

matrix K̂ and test kernel values k̂x. Further, assume that the training labels are centered,
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∑n
i=1 yi = 0, and let σ2

y = 1
n

∑n
i=1 y

2
i . Also suppose ‖kx‖∞ ≤ κ. Then

|ĥ(x)− h(x)| ≤ σy
√
n

λ
‖k̂x − kx‖2 +

κσyn

λ2
‖K̂−K‖2.

Suppose that sup |k(x,x′)− k̂(x,x′)| ≤ ε for all x,x′ ∈ Rd. Then ‖k̂x−kx‖2 ≤
√
nε and

‖K̂−K‖2 ≤ ‖K̂−K‖F ≤ nε. By denoting λ = nλ0 we obtain |ĥ(x)− h(x)| ≤ λ0+1
λ20

σyε.

Therefore,

P
(
|ĥ(x)− h(x)| ≥ ε

)
≤ P

(
‖k̂(x,x′)− k(x,x′)‖∞ ≥

λ2
0ε

σy(λ0 + 1)

)
.

So, for the quadrature rules we can guarantee |ĥ(x)−h(x)| ≤ ε with probability at least

1− δ as long as

D ≥ 8M2(d+ 1)σ2
y

(
λ0 + 1

λ2
0ε

)2
[

2

1 + 1
d

log
σyσplκµ(λ0 + 1)

λ2
0ε

+ log
βd
δ

]
.

3.4 Experiments

We extensively study the proposed method on several established benchmarking datasets:

Powerplant, LETTER, USPS, MNIST, CIFAR100 (Krizhevsky & Hinton, 2009), LEUKEMIA

(Golub et al., 1999). We compare kernel approximation error across different kernels and

number of features with several other approaches. We also estimate the quality of SVM

models with approximate kernels on the same data sets.

3.4.1 Methods

We present a comparison of our method (B) with estimators based on a simple Monte

Carlo, quasi-Monte Carlo (Yang et al., 2014) and Gaussian quadratures (Dao et al., 2017).

The Monte Carlo approach has a variety of ways to generate samples: unstructured

Gaussian (Rahimi & Recht, 2008), structured Gaussian (Felix et al., 2016), random

orthogonal matrices (ROM) (Choromanski et al., 2017).

Monte Carlo integration (G, Gort, ROM). The kernel is estimated as k̂(x,y) =
1
Dφ(Mx)φ(My), where M ∈ RD×d is a random weight matrix. For unstructured

Gaussian based approximation M = G, where Gij ∼ N (0, 1). Structured Gaussian

has M = Gort, where Gort = DQ, Q is obtained from QR decomposition of G, D

is a diagonal matrix with diagonal elements sampled from the χ(d) distribution. In
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Figure 3.1: Kernel approximation error across three kernels and 6 datasets. Lower is
better. The x-axis represents the factor to which we extend the original feature space,
n = D

2(d+1)+1 , where d is the dimensionality of the original feature space, D is the
dimensionality of the new feature space.

compliance with the previous work on ROM we use S-Rademacher with three blocks:

M =
√
d

3∏
i=1

SDi, where S is a normalized Hadamard matrix and P(Dii = ±1) = 1/2.

Quasi-Monte Carlo integration (QMC). Quasi-Monte Carlo integration boasts im-

proved rate of convergence 1/D compared to 1/
√
D of Monte Carlo, however, as empirical

results illustrate its performance is poorer than that of orthogonal random features (Felix

et al., 2016). It has larger constant factor hidden under O notation in computational

complexity. For QMC the weight matrix M is generated as a transformation of quasi-

random sequences. We run our experiments with Halton sequences in compliance with

the previous work.

Gaussian quadratures (GQ). We included subsampled dense grid method from (Dao

et al., 2017) into our comparison as it is the only data-independent approach from the

paper that is shown to work well. We reimplemented code for the paper to the best of

our knowledge as it is not open sourced.

3.4.2 Kernel approximation

To measure kernel approximation quality we use relative error in Frobenius norm ‖K−K̂‖F
‖K‖F ,

where K and K̂ denote exact kernel matrix and its approximation. In line with other

works we run experiments for the kernel approximation on a random subset of a dataset.

Table 3.2 displays the settings for the experiments across the datasets.

Approximation was constructed for different number of SR samples n = D
2(d+1)+1 , where

d is an original feature space dimensionality and D is the new one. For the Gaussian
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Table 3.1: Space and time complexity.

Method Space Time
ORF O(Dd) O(Dd)
QMC O(Dd) O(Dd)
ROM O(d) O(d log d)

Quadrature based O(d) O(d log d)

Table 3.2: Experimental settings for the datasets.

Dataset N d #samples #runs
Powerplant 9568 4 550 500
LETTER 20000 16 550 500
USPS 9298 256 550 500
MNIST 70000 784 550 100

CIFAR100 60000 3072 50 50
LEUKEMIA 72 7129 10 10

kernel we set hyperparameter γ = 1
2σ2 to the default value of 1

d for all the approximants,

while the arc-cosine kernels (see definition of arc-cosine kernel in the Appendix) have no

hyperparameters.

We run experiments for each [kernel, dataset, n] tuple and plot 95% confidence interval

around the mean value line. Figure 3.1 shows the results for kernel approximation error

on LETTER, MNIST, CIFAR100 and LEUKEMIA datasets.

QMC method almost always coincides with RFF except for arc-cosine 0 kernel. It par-

ticularly enjoys Powerplant dataset with d = 4, i.e. small number of features. Possible

explanation for such behaviour can be due to the connection with QMC quadratures.

The worst case error for QMC quadratures scales with n−1(log n)d, where d is the di-

mensionality and n is the number of sample points (Owen, 1998). It is worth mentioning

that for large d it is also a problem to construct a proper QMC point set. Thus, in higher

dimensions QMC may bring little practical advantage over MC. While recent random-

ized QMC techniques indeed in some cases have no dependence on d, our approach is

still computationally more efficient thanks to the structured matrices. GQ method as

well matches the performance of RFF. We omit both QMC and GQ from experiments

on datasets with large d = [3072, 7129] (CIFAR100, LEUKEMIA).

The empirical results in Figure 3.1 support our hypothesis about the advantages of SR

quadratures applied to kernel approximation compared to SOTA methods. With an

exception of a couple of cases: (Arc-cosine 0, Powerplant) and (Gaussian, USPS), our

method displays clear exceeding performance.

We also study the derived error bounds, Proposition 3.6, empirically. While we do not

know the values of the constants in the proposition, the asymptotic for the number
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Figure 3.2: Empirical and theoretical kernel approximation error for different number
of features.

of features required to obtain ε-accuracy of the kernel approximation is O(1/ε2). To

establish this rate of convergence empirically, we calculated the approximation error

ε̂ = max(K− K̂) for different number of features D. Then, we fitted the linear model to

the obtained data using 1√
D

as input features and ε̂ as target values. This experiment was

conducted on different datasets and different kernels. The results are given in Figure 3.2.

As it can be seen, the linear model accurately explains the data, therefore, confirming

the derived error bounds.

3.4.3 Classification/regression with new features

We estimate accuracy and R2 scores for the classification/regression tasks on some of

the datasets (Figure 3.3). We examine the performance with the same setting as in

experiments for kernel approximation error, except now we map the whole dataset. We

use Support Vector Machines to obtain predictions.

Kernel approximation error does not fully define the final prediction accuracy – the best

performing kernel matrix approximant not necessarily yields the best accuracy or R2

score. However, the empirical results illustrate that our method delivers comparable and

often superior quality on the downstream tasks.

3.4.4 Walltime experiment

We measure time spent on explicit mapping of features by running each experiment 50

times and averaging the measurements. Indeed, Figure 3.4 demonstrates that the method
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Figure 3.3: Accuracy/R2 score using embeddings with three kernels on 3 datasets.
Higher is better. The x-axis represents the factor to which we extend the original

feature space, n = D
2(d+1)+1 .

scales as theoretically predicted with larger dimensions thanks to the structured nature

of the mapping.
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Figure 3.4: Time spent on explicit mapping. The x-axis represents the 5 datasets
with increasing input number of features: LETTER, USPS, MNIST, CIFAR100 and

LEUKEMIA.

3.5 Related work

In this section we provide brief review of the existing approaches connected to the low-

rank approximation of the kernel function.

The most popular methods for scaling up kernel methods are based on a low-rank ap-

proximation of the kernel using either data-dependent or independent basis functions.

The first one includes Nyström method (Drineas & Mahoney, 2005), greedy basis selec-

tion techniques (Smola & Schölkopf, 2000), incomplete Cholesky decomposition (Fine &

Scheinberg, 2001).
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The construction of basis functions in these techniques utilizes the given training set

making them more attractive for some problems compared to Random Fourier Features

approach. In general, data-dependent approaches perform better than data-independent

approaches when there is a gap in the eigen-spectrum of the kernel matrix. The rigorous

study of generalization performance of both approaches can be found in (Yang et al.,

2012).

In data-independent techniques, the kernel function is approximated directly. Most of the

methods (including the proposed approach) that follow this idea are based on Random

Fourier Features (Rahimi & Recht, 2008). They require so-called weight matrix that can

be generated in a number of ways. (Le et al., 2013) form the weight matrix as a product

of structured matrices. It enables fast computation of matrix-vector products and speeds

up generation of random features.

Another work (Felix et al., 2016) orthogonalizes the features by means of orthogonal

weight matrix. This leads to less correlated and more informative features increasing the

quality of approximation. They support this result both analytically and empirically.

The authors also introduce matrices with some special structure for fast computations.

(Choromanski et al., 2017) propose a generalization of the ideas from (Le et al., 2013)

and (Felix et al., 2016), delivering an analytical estimate for the mean squared error

(MSE) of approximation.

All these works use simple Monte Carlo sampling. However, the convergence can be

improved by changing Monte Carlo sampling to Quasi-Monte Carlo sampling. Following

this idea (Yang et al., 2014) apply quasi-Monte Carlo to Random Fourier Features. In

(Yu et al., 2015) the authors make attempt to improve quality of the approximation of

Random Fourier Features by optimizing sequences conditioning on a given dataset.

Among the recent papers there are works that, similar to our approach, use the numerical

integration methods to approximate kernels. While (Bach, 2017) carefully inspects the

connection between random features and quadratures, they did not provide any practi-

cally useful explicit mappings for kernels. Leveraging the connection (Dao et al., 2017)

propose several methods with Gaussian quadratures. Among them three schemes are

data-independent and one is data-dependent. The authors do not compare them with

the approaches for random feature generation other than random Fourier features. The

data-dependent scheme optimizes the weights for the quadrature points to yield better

performance.



Chapter 4

Applications

This chapter is dedicated to the applications of the developed techniques in several

different problems. We demonstrate how the described approaches for GP regression

and kernel approximation can be used in a tensor completion problem, density estimate,

and simultaneous localization and mapping (SLAM). This is a diverse set of problems:

density estimation is a key problem in statistics, SLAM is one of the main problems in

robotics, while tensor completion is a very general problem, which can be encountered

in computer vision, signal processing, machine learning and many others. All of them

require large-scale or online methods and can benefit from using GP- or kernel-based

approaches. In this chapter, we show how large-scale GP methods can be incorporated

into existing approaches. The resulting techniques provide state-of-the-art results in

terms of both accuracy and computational complexity.

Section 4.1 describes our approach for tensor completion using Gaussian Processes. Our

contributions here are the following:

• We consider the case when the tensor is generated by some smooth function. Using

this assumption, we propose an initialization approach that can be used with a wide

range of tensor completion techniques.

• We demonstrate empirically on real-world problems that different optimization

methods for tensor completion benefit from using the proposed initialization. It

considers assumption about tensor generating function and, therefore, allows to

increase generalization power.

In section 4.2 we develop randomized feature maps-based approach for density estimation.

We seek our solution in kernel exponential family of distributions with the denoising score

matching loss function. Our main results are as follows:

40
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• We derived an analytical solution for the described setup.

• We show that our solution has implicit regularization in contrast to other ap-

proaches that usually add special regularization term based on higher order deriva-

tives of the probability density function.

• Finally, we demonstrate the benefits of the proposed approach on a set of different

benchmarks and compare it with other techniques.

The last section 4.3 is devoted to GP models with random feature approximations in

SLAM problem. The GP model is used here to model state of the robot depending on

time. We contribute to this field by

• Developing an approach based on random features for time-continuous SLAM.

• Compared to other state-of-the-art approaches, our method is more accurate in

case of noisy observations because we do not assume the sparse structure of the

inverse covariance matrix. We demonstrate it on a set of synthetic benchmarks as

well as real-world problems.

4.1 Tensor Completion using Gaussian Processes

In this section, we consider the tensor completion problem. We suppose that values of

tensor X are generated by some smooth function, i.e.

Xi1,...,id = f(xi1 , . . . , xid),

where (xi1 , . . . , xid) is a point on some multi-dimensional grid and f(·) is some unknown

smooth function. However, the tensor values are known only at some small subset of

the grid. The task is to complete the tensor, i.e., to reconstruct the tensor values at all

points on the grid considering the properties of the data generating process f(·).

This problem statement differs from the traditional problem statement, which does not

use any assumptions about the function f(·). Knowing some properties of the data

generating function provides insights about how the tensor values relate to each other,

and this, in turn, allows us to improve the results. In this work, we assume that function

f(·) is smooth.

There are a lot of practical applications that suit the statement. For example, modeling of

physical processes, solutions of differential equations, modeling probability distributions.
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Here, we propose to model the smoothness of the data generating process using GP

Regression (GPR). In GPR, the assumptions about the function that we approximate

are controlled via the kernel function. The GPR model is then used to construct the

initial solution to the tensor completion problem.

In principle, such initialization can improve any other tensor completion technique. It

means that using the proposed initialization state-of-the-art results can be obtained by

employing some simple optimization procedure like the Stochastic Gradient Descent.

When the tensor order is high, the problem should be solved in some low-rank format be-

cause the number of elements of the tensor grows exponentially. The proposed approach

is based on the tensor train (TT) format for its computational efficiency and ability to

handle large dimensions (Oseledets & Tyrtyshnikov, 2010).

4.1.1 Tensor completion

The formal problem statement is as follows. Suppose Y is a d-way tensor, Y ∈ Rn1×n2×···×nd

(by tensor here we mean a multi-dimensional array). Tensor values are known only at

some subset of indices Ω ⊂ {1, . . . , n1}×· · ·×{1, . . . , nd}. By PΩ we denote the projection

onto the set Ω, i.e.

PΩX = Z, Z(i1, i2, . . . , id) =

X (i1, i2, . . . , id) if (i1, . . . , id) ∈ Ω,

0 otherwise.

We formulate the tensor completion as an optimization problem

min
X

f(X ) = ‖PΩX − PΩY‖2F

subject to X ∈Mr = {X ∈ Rn1×···nd | rankTT (X ) = r},
(4.1)

where rankTT (X ) is a tensor train rank of X (Oseledets, 2011), which is a generalization

of the matrix rank, and ‖ · ‖F is the Frobenius norm. A tensor X is said to be in tensor

train format if its elements are represented as

X (i1, . . . , id) =
∑

j1,j2,...jd

G(1)
1,i1,j1

G(2)
j1,i2,j2

· · · G(d)
jd−1,id,1

,

where G(i) is a three-way tensor core with size ri−1 × ni × ri, r0 = rd = 1. Vector

rTT = (r0, . . . , rd) is called TT-rank.
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Tensor train format assumes that the full tensor can be approximated by a set of 3-

way core tensors, the total number of elements in core tensors is O(dnr2), where r =

max
i=0,...,d

{ri}, n = max
i=1,...,d

{ni}, which is much smaller than nd.

In problem (4.1), we optimize the objective function straightforwardly with respect to

tensor cores G(1), . . .G(d) while having their sizes fixed. Problem (4.1) is non-convex, so

optimization methods can converge to a local minimum. To get an efficient solution, we

impose two requirements:

1. Initial tensor X0 in tensor train format should be as close to the optimum as

possible.

2. Availability of an efficient optimization procedure that will be launched from the

obtained initial tensor.

These steps are independent, and one can apply any desired algorithm in each of them.

In this section, we develop the initialization algorithm, which allows obtaining accurate

initial tensor for the case when the tensor of interest is generated by some smooth func-

tion. The experimental section below demonstrates that our initialization can improve

the results of many optimization procedures and shows the potential of our approach to

be adapted to a large number of different tensor completion techniques.

4.1.2 Initialization

We consider tensors that are generated by some function, i.e., tensor values are computed

as follows

Yi1,...,id = f(xi1 , . . . , xid),

where f(·) is some unknown smooth function and (xi1 , . . . , xid)
> ∈ Rd, ik = 1, . . . , nk,

n1, . . . , nd are tensor sizes. The set of points {(xi1 , . . . xid) : ik = 1, . . . , nk; k = 1, . . . , d}
is a full factorial DoE, i.e., a multi-dimensional grid, and we also assume that the grid is

uniform.

In this setting, the tensor completion can be considered a regression problem and can

be solved by any regression technique that guarantees the smoothness of the solution.

However, in the tensor completion problem, we are interested in a tensor of values of

f(·) at a predefined finite grid of points. The tensor should be in a low-rank format to

be able to perform various operations with the tensor efficiently (e.g., calculation of the

norm of the tensor, dot product and other).
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These observations give us the solution: build regression model f̂ using the observed

values of the tensor, then use the obtained approximation as a black-box for the TT-

cross approximation algorithm (Oseledets & Tyrtyshnikov, 2010). The last step results

in a tensor X̂ in TT format, which is a low-rank format and allows efficient computations.

The next step (which is optional) is to improve the obtained solution X̂ by using it as

initialization for any other tensor completion technique.

Let us write down the set of observed tensor values into a vector y and the corresponding

indices into a matrix X (each row is a vector of indices (i1, i2, . . . , id)). Then, the

approach for tensor completion (in TT format) can be written as follows

1. Construct initial tensor X0 in TT format:

(a) Apply some regression technique using the given data set (X,y) to construct

approximation of the function that generates tensor values.

(b) Apply TT-cross method (see Section 4.1.2.2, (Oseledets & Tyrtyshnikov, 2010))

to the constructed approximation to obtain X0.

2. Apply some tensor completion technique using X0 as an initial value.

At step 1(a), the choice of the regression technique affects the result of the initialization,

although it can be arbitrary. It is required to choose the regression algorithm such that it

will capture the peculiarities of the tensor we would like to restore. As we stated above, we

suppose that the tensor generating function is smooth (which is a common situation when

modeling physical processes). Therefore, we choose a regression technique that is good

at approximating smooth functions. A reasonable choice, in this case, is to use Gaussian

Process Regression. GP models is a favorite tool in many engineering applications as

they have proved to be efficient, especially for problems where it is required to model

some smooth function (Belyaev et al., 2016). The points (xi1 , . . . , xid) are not given; all

we know is that at the point with multi-index (i1, . . . , id) on the grid the function value is

equal to Xi1,...,id . To make the problem statement reasonable we assume that the indices

are connected with the points as follows: xik = akik + bk, where ak, bk ∈ R. So, as an

input for the approximation, we set ak and bk such that xik ∈ [0, 1].

At step 1(b), we use TT-cross because it allows to efficiently approximate black-box

function by a low-rank tensor in TT format. Moreover, this approach can automatically

select TT-rank, making it more desirable. More details on the technique are given in

Section 4.1.2.2.

The described approach has the following benefits:
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1. Initial tensor X0, which is close to the optimal value in terms of the reconstruction

error at observed values. It will push the optimization to faster convergence.

2. Better generalization ability: there are many degrees of freedom. A lot of different

tensor train factors can give low reconstruction error at observed positions but can

give a large error at other locations. Accurate approximation model will push the

initial tensor to be closer to the original tensor in both the observed positions and

unobserved ones.

3. TT-cross technique chooses rank automatically, so there is no need to tune the

rank of the tensor manually.

The described approach leads to the Algorithm 1. Steps 3 and 4 of the algorithm are

described in Sections 1.1 and 4.1.2.2, respectively.

Algorithm 1 Initialization
Input: y,Ω
Output: Y0 in tensor train format

1: Construct the training set (X,y) from y,Ω
2: Rescale inputs X to [0, 1] interval
3: Using (X,y) build GP model f̂(x) . see Section 1.1 for details
4: Apply TT-cross to f̂(x) and obtain Y0 . see Section 4.1.2.2 for details
5: return Y0

4.1.2.1 Kernel choice and smoothness assumption

We approximate function f using the GP model. The GP model is a function from some

reproducing kernel Hilbert space (RKHS) H which is fully defined by the kernel function.

Ideally, the function f should be from the Hilbert space H. However, for a given kernel

function, it can be difficult to identify what functions lie in the corresponding RKHS.

In practice, GP models with popular kernels (RBF kernel, Matérn kernel) provide good

results, when f ∈ Ck, k ≥ 1. So, in the experiments section, we assume that the functions

are from this class of functions and use RBF kernel.

4.1.2.2 Tensor-Train cross-approximation

To approximate tensor X̂ generated by f̂ , we use Tensor-Train cross-approximation.

First, let us consider the matrix case. Suppose we are given a rank-r matrix A of size

m× n. A cross-approximation for the matrix is represented as

A = CÂ−1R,
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where C = A(:, J),R = A(I, :) are some r columns and rows of the matrix A and

Â = A(I, J) is the submatrix on the intersection of these rows and columns. To construct

accurate approximation, it is required to find submatrix Â of large volume. It can be

done in O(nr2) operations (Tyrtyshnikov, 2000).

Now for tensor X̂ ∈ Rn1×···×nd the procedure is the following. At the first step, let

us consider unfolding X1 of size n1 × n2n3 · · · · · nd and rank r1. Using row-column

alternating algorithm from (Tyrtyshnikov, 2000), we can find r1 linearly independent

columns of matrix X1, these columns form matrix C. After that, by applying maxvol

procedure (Tyrtyshnikov, 2000) to the matrix C, we can find a set of row indices I1 =[
iα1
1

]
, α1 = 1, . . . , r1, matrix R and matrix Â1 that will give the cross-approximation of

unfolding X1:

X1 = CÂ−1
1 R.

We set

G1 = CÂ−1
1 ,

where G1 is of size n1 × r1. Next, let us form tensor R from r1 rows of X1:

R(α1, i2, . . . , id) = X̂ (iα1
1 , i2, . . . , id),

and reshape it into a tensor of size r1n2 × n3 × · · · × nd. The next step is to apply the

same procedure to the unfolding R1 of the tensor R and obtain the matrices C, Â2 and

G2 = CÂ−1
2

of size r1n2 × r2.

Repeating the described procedure d times, we will end up with matrices G1,G2, . . . ,Gd

of sizes n1 × r1, r1n2 × r2, . . . , rd−1nd × 1. Then, each matrix can be reshaped to the

3-way tensor of size rd−1 × nd × rd, r0 = rd = 1 and can be used as core tensors for TT

format. It turns out that such representation is a TT decomposition of the initial tensor

X̂ .

The exact ranks r1, . . . , rd are not known to us in general. They can only be estimated

from the above (e.g., by the maximum rank of the corresponding unfolding). If the rank

is overestimated, then the calculation of matrices Gi is an unstable operation (because

we obtain almost rank-deficient unfolding matrices). However, in (Oseledets & Tyrtysh-

nikov, 2010), the authors suggest some simple modifications that overcome this issue.

Therefore, we need to estimate the ranks from the above, but the estimate should not

be much larger than the real rank. So, the approach is to start from some small rank,

construct the tensor in TT format and then apply recompression (see (Oseledets, 2011)).
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If there is a rank that is not reduced, then we underestimated that rank and should then

increase it and repeat the procedure.

4.1.2.3 Computational complexity

The computational complexity of TT cross-approximation method is as follows. To per-

form the procedure, we need to evaluate the GP model O(dnr2) times at some subset of

grid points and then perform O(dnr3) operations to find all maximum volume submatri-

ces. The complexity of evaluating the GP model at one point is O(Nd), where N is the

number of observed tensor elements. The total complexity is thus O(Nd2nr2 + dnr3).

4.1.3 Experimental results

In this section, we present the results of the application of our approach to two engineering

problems and also test it on some artificial problems to investigate how its properties

depend on smoothness.

The experimental setup is the following. We try the following optimization algorithms

1. SGD – stochastic gradient descent (Zhao et al., 2018),

2. Ropt – Riemannian optimization (Steinlechner, 2016),

3. TTWopt – weighted tensor train optimization (Zhao et al., 2018),

4. ALS – alternating least squares (Grasedyck et al., 2013).

We run each algorithm with random initialization and with the proposed GP-based

initialization and then compare the results.

4.1.3.1 Functions generated from GP prior

In order to study the dependence of the solution on the smoothness of the generating

function, we applied the proposed approach to the toy functions generated from GP

prior with different kernels. The smoothness of the generated functions is the same as

the kernel that we used to generate them. Thus, we can investigate the performance

of the approach for different smoothness. We considered shift-invariant kernels, i.e.

k(x,y) = k(r), where r = ‖x− y‖. The list of kernels is as follows:
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• Exponential kernel

k(r) = exp
(
− r
σ

)
.

The kernel is not differentiable at x = y = 0, thus the functions generated with

this kernel are from C0.

• Matern3/2

k3/2(r) =

(
1 +

√
3r

σ

)
exp

(
−
√

3r

σ

)
.

This kernel is 1-time differentiable.

• Matern5/2

k5/2(r) =

(
1 +

√
5r

σ
+

5r2

3σ2

)
exp

(
−
√

5r

σ

)
.

This kernel is 2-times differentiable.

• Radial Basis Function (RBF) kernel

k(r) = exp

(
− r2

2σ2

)
.

This kernel is infinitely differentiable.

Note that despite the fact that the functions were generated using different kernel func-

tions in the proposed approach, we used RBF kernel.

To compare how much one approach is better than the other, we calculate the relative

MSE error

MSErel =
1

|Ωtest|

∥∥∥∥∥PΩtestŶ − PΩtestY
σ̂

∥∥∥∥∥
2

F

,

where Ωtest is some set of indices independent from the given observed set of indices

Ω, |Ωtest| is a size of the set Ωtest and Ŷ is an obtained approximation of the actual

tensor Y, σ̂ is a standard deviation of PΩtestY. Such error can be interpreted as the ratio

of unexplained variance. For each optimization technique, we calculate the difference

between the error obtained using random initialization and the error obtained using GP

based initialization.

For each kernel function, we generated several data sets with different number of ob-

served points (N ∈ {100, 500, 1000, 2000, 5000}) and different dimensionalities (d ∈
{2, 3, . . . , 10, 11, 13, . . . , 19}). The quantity is illustrated in Figure 4.1 (note that we

clamp the values to [−1, 1] interval to make the figures more illustrative). It shows the

improvement of one initialization over another. We can see from the figure that in most

cases, GP-based initialization gives high improvement in the relative error. The only
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Figure 4.1: Improvement of GP based initialization over random initialization for
different tensors and optimization methods. We clamp the improvement value to [−1, 1]

interval to make plots more illustrative.

exception is TTWopt method for which the benefit of the proposed initialization scheme

takes place only in about half of the cases. You can also note white squares for TTWopt;

they mean that the implementation of TTWopt crashed for the given data set (for some

unknown reason).

4.1.4 Real world functions

We compared the approaches on two real-world problems: CMOS oscillator model and

Cookie problem (see Sections 4.1.4.2 and 4.1.4.1 correspondingly). In CMOS oscillator

problem, we run each optimization 10 times with different random training sets and

then calculate the average reconstruction error as well as standard deviation. Cookie

problem is more computationally intensive because each evaluation of the tensor value

takes more resources and time. Therefore, for Cookie problem, we performed 10 runs,

and the training set was the same during all runs.

The quality of the methods is measured using mean squared error (MSE)

MSE =
1

|Ωtest|
‖PΩtestŶ − PΩtestY‖2F .

We also report the error of the initial tensor for random and the proposed initializations

for each problem.

Note that when we use GP based initialization, the TT-rank rTT of the tensor is selected

automatically by the TT-cross algorithm and max value of rTT can be larger than n.
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The optimization algorithms with random initialization do not have a procedure for

automatic rank selection, so we ran them with different ranks (from 1 to mink nk) and

then chose the best one.

TTWopt implementation1 does not support high-dimensional problems. For higher

dimensional problems, the authors of TTWopt propose to use SGD. The authors of

TTWopt also propose truncated SVD-based initialization. The idea is to fill missing

values using the mean value of the observed part of the tensor and then apply truncated

SVD to obtain TT cores. However, such approach is only applicable to low-dimensional

tensors, as it requires to calculate full matrices of large size.

For Ropt and ALS, we used publically available MATLAB codes 2.

4.1.4.1 Cookie problem

Let us consider parameter-dependent PDE (Ballani & Grasedyck, 2015; Tobler, 2012):

−div(a(x, p)∇u(x, p)) = 1, x ∈ D = [0, 1]2,

u(x, p) = 0, x ∈ ∂D,

where

a(x, p) =

pµ, if x ∈ Ds,t, µ = mt+ s,

1, otherwise,

Ds,t is a disk of radius ρ = 1
4m+2 and m2 is a number of disks which form m ×m grid.

This is a heat equation where heat conductivity a(x, p) depends on x (see illustration in

Figure 4.2) and p is an m2-dimensional.

We are interested in average temperature over D: u(p) =
∫

[0,1]2 u(x, p)dx. If p takes 10

possible values, then there are 10m2 possible values of u(p).

In this work, we used the following setup for the Cookie problem: each parameter p lies

in the interval [0.01, 1], number of levels for each p is 10, number of cookies ism2 = 9 and

16, size of the observed set is N = 5000, for the test set, we used 10000 independently

generated points.

The results of tensor completion are presented in Table 4.1 (the variance of the initial-

ization error for GP-based init is not presented as it is negligible in this case). One can

see that GP-based initialization gives lower reconstruction errors both on the training

set and test set except for ALS technique. ALS method with the proposed initialization
1https://github.com/yuanlonghao/T3C_tensor_completion
2https://anchp.epfl.ch/index-html/software/ttemps/

https://github.com/yuanlonghao/T3C_tensor_completion
https://anchp.epfl.ch/index-html/software/ttemps/
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Figure 4.2: Illustration of Cookie problem with m = 3 (9 cookies).

overfits: the error on the training set is close to 0, whereas the test error is much more

significant. The error on the training set is about 10−29, which means that the training

set was approximated with machine precision. It is not surprising if we recall that there

are only 5000 observed values, while the number of free parameters that are used to

construct TT is much higher.

4.1.4.2 CMOS ring oscillator

Let us consider the CMOS ring oscillator (Zhang et al., 2017). It is an electric circuit

which consists of 7 stages of CMOS inverters. We are interested in the oscillation fre-

quency of the oscillator. The characteristics of the electric circuit are described by 57

parameters. Each parameter can take one of 3 values, so the total size of the tensor is

357 ≈ 1.57×1027. The number of observed values that were used during the experiments

is N = 5000. For the test set, we used 10000 independently generated points.

The results of the experiments are given in Table 4.2. The table demonstrates that

utilizing GP based initialization improves the results for all algorithms except ALS.

ALS, in this case, overfits again: training error is extremely small, whereas the test error

is much larger, though it is rather small compared to other techniques and ALS with

random initialization.

All in all, the obtained results prove that GP-based initialization improves the tensor

completion results in general. At least, it provides better training error. As for the error

on the test set, one should be more careful as the number of degrees of freedom is large

and there are many solutions that give a small error for the observed values but large

errors for other values.
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Table 4.1: MSE errors for Cookie problem

Training set
m = 3

Random init GP init

error average
N iters error average

N iters
SGD (1.66± 0.067)× 10−2 1500 (2.86± 0.18)× 10−5 150
Ropt (4.13± 2.20)× 10−8 1000 (5.48± 1.10)× 10−10 1000

TTWopt (2.73± 0.19)× 10−4 100 (9.21± 2.17)× 10−7 100
ALS (1.07± 1.07)× 10−4 100 (2.39± 0.60)× 10−30 100

Init error (1.15± 0.24)× 108 2.66× 10−4

m = 4
SGD (3.14± 1.08)× 10−2 1500 (1.65± 0.13)× 10−5 150
Ropt (1.42± 0.01)× 10−2 1000 (3.42± 0.50)× 10−4 1000

TTWopt (1.31± 0.00)× 10−4 100 (1.80± 0.16)× 10−6 100
ALS (6.59± 3.30)× 10−5 100 (1.33± 0.46)× 10−29 100

Init error (8.32± 2.52)× 1014 3.14× 10−4

Test set
m = 3

SGD (2.06± 2.31)× 10−1 — (9.97± 0.40)× 10−5 —
Ropt (1.48± 0.90)× 10−7 — (3.45± 0.0165)× 10−4 —

TTWopt (4.52± 0.50)× 10−4 — (5.27± 0.74)× 10−6 —
ALS (4.37± 7.73)× 10−2) — (3.78± 1.08)× 100 —

Init error (1.12± 0.23)× 108 4.12× 10−4

m = 4
SGD (2.40± 2.76)× 101 — (1.15± 0.05)× 10−4 —
Ropt (1.47± 0.003× 10−2 — (5.38± 0.07)× 10−4 —

TTWopt (2.42± 0.00)× 10−4 — (3.02± 0.17)× 10−5 —
ALS (3.57± 5.65)× 10−1 — (1.85± 60.5)× 100 —

Init error (8.33± 2.46)× 1014 5.37× 10−4

Table 4.2: MSE errors for CMOS oscillator

Training set
Random init GP init
error N iters error N iters

SGD (7.77± 15.25)× 105 1500 (3.11± 4.87)× 10−4 150
Ropt (6.22± 0.01)× 103 1000 (9.50± 4.28)× 10−5 1000
ALS (9.95± 0.26)× 10−2 300 (3.57± 0.45)× 10−26 300

Init error (1.67± 3.19)× 1012 (3.95± 2.19)× 10−4

Test set
SGD (3.45± 9.68)× 108 — (4.65± 5.01)× 10−4 —
Ropt (6.23± 0.0)× 103 — (9.68± 4.16)× 10−5 —
ALS (1.03± 0.01)× 10−1 — (4.09± 3.10)× 10−4 —

Init error (1.04± 2.53)× 1015 (3.90± 2.15)× 10−4
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4.1.5 Related work

One set of approaches to tensor completion is based on nuclear norm minimization. The

nuclear norm of a matrix is defined as a sum of all singular values of the matrix. This

objective function is a convex envelope of the rank function. For a tensor, the nuclear

norm is defined as a sum of singular values of matricizations of the tensor.

There are efficient off-the-shelf techniques for such types of problems that apply interior-

point methods. However, they are second-order methods and scale poorly with the

dimensionality of the problem. Special optimization technique was derived for nuclear

norm minimization (Gandy et al., 2011; Liu et al., 2013; Recht et al., 2010; Yuan &

Zhang, 2016). However, calculation of the nuclear norm for tensors is a difficult task

(Hillar & Lim, 2013)

Some of the approaches involve solving large semi-definite programs (Barak & Moitra,

2016; Potechin & Steurer, 2017), so they are infeasible when the dimensionality is high.

More often, such techniques are applied to matrices or low-dimensional tensors as their

straightforward formulation allows finding the full tensor. It becomes infeasible when we

come to high-dimensional problems.

The second type of approaches is based on low-rank tensor decomposition (Acar et al.,

2011; Chen et al., 2013; Kressner et al., 2014; Steinlechner, 2016; Yuan et al., 2017).

There are several tensor decompositions, and all these papers derive some optimization

procedure for one of them, namely, CP decomposition, Tucker decomposition (Kolda &

Bader, 2009b), or TT/MPS decomposition. The simplest technique is the alternating

least squares (Grasedyck et al., 2015a). It finds the solution iteratively at each iteration,

minimizing the objective function w.r.t. one core while other cores are fixed.

Another approach is based on Riemannian optimization, which tries to find the optimal

solution on the manifold of low-rank tensors of the given structure (Steinlechner, 2016).

The same can be done using Stochastic Gradient Descent (Yuan et al., 2017). Riemannian

optimization, TTWopt, ALS, and its modifications (e.g., ADF, alternating directions

fitting (Grasedyck et al., 2013)), try to find the TT representation of the actual tensor

iteratively (Phien et al., 2016; Grasedyck et al., 2015b). At each iteration, it optimizes

TT cores such that the resulting tensor approximates well the tensor, which coincides

with the real tensor at observed indices and with the result of the previous iteration at

other indices. All these approaches need to specify rank manually. In (Suzuki, 2015;

Zhao et al., 2015) the authors apply the Bayesian framework for CP decomposition,

which allows them to select the rank of the decomposition automatically. The work

(Yokota et al., 2016) introduces smoothness constraints on PARAFAC decomposition to

improve the results.
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In some papers, the objective is modified by introducing special regularizers to suit the

problem better (Yokota et al., 2016). For example, in (Chen et al., 2013; Zhao et al.,

2015) to obtain better results for visual data, a special prior regularizer was utilized.

(Chen et al., 2017) proposes a regularizer based on some specific matrix norm. Many

papers use total variation regularizer (Li et al., 2017) for low-rank tensor completion.

The paper Qin et al. (2020) employs Shannon total variation as a regularization.

Our proposed algorithm is an initialization technique for the tensor completion problems

in TT format and can be used with most of the algorithms solving such problems. If

the assumptions from Section 4.1.2 (the tensor values are values of some rather smooth

function of tensor indices) are satisfied, the initial value will be close to the optimal,

providing better results. The question of a good initialization is rarely considered. In

paper (Ko et al., 2018), a special initialization is proposed for visual data. The idea is

to use some crude technique (like bilinear interpolation) to fill missing values and after

that, apply SVD-based tensor train decomposition. The drawback of the approach is

that it can be applied only in case of small-dimensional tensors, as we need to fill all

missing values. In (Grasedyck et al., 2013), they propose special initialization for the

Alternating Direction Fitting (ADF) method. This is a general technique for the tensor

completion, and it does not consider the assumptions on the data generating function.

4.2 Score Matching based on Random Features

One of the core problems in statistics is density estimation. The most well-known ap-

proach used to resolve this issue is maximum likelihood estimation (MLE). However,

MLE and all other approaches based on MLE require a normalizing constant to be known

or computed efficiently, which is not the case with many real-world problems. The in-

tractability of the normalizing constant makes the approach infeasible. In contrast, an

unsupervised score-matching estimator, Hyvärinen (2005) based on Fisher divergence

minimization, does not depend on the normalizing constant. The resulting estimate

is proved to be asymptotically normal and consistent when data and model distribu-

tions supports coincide. There have been numerous developments of the idea Hyvärinen

(2007); Lyu (2012); Gutmann & Hirayama (2012); Mardia et al. (2016); Dai et al. (2019).

Another important part of density estimation is the class of models in which the solution

can be sought. Here, a special interest is paid to an exponential family of distributions

that leads to the closed-form solution Hyvärinen (2007); Forbes & Lauritzen (2015); Lin

et al. (2016); Yu et al. (2018); Monti & Hyvärinen (2018). A generalization of the finite-

dimensional exponential families is the kernel exponential family (KEF). In this case,

the natural parameter is treated as a function from some reproducing kernel Hilbert
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space (RKHS) and can be seen as the infinite-dimensional generalization of the expo-

nential family. The KEF contains all well-known exponential family densities such as

exponential, Gaussian, gamma and so on. In addition, RKHS reveals a sufficiently rich

class of estimators with convergence guarantees w.r.t. different metrics Sriperumbudur

et al. (2013); Strathmann et al. (2015). However, the main disadvantage is the compu-

tational cost for the sample matrix inversion, making this method inapplicable even for

a moderate amount of training data.

To approach the computational complexity issue Sutherland et al. (2018); Wenliang et al.

(2018), we propose to use the Nyström-type approximation of the kernel function. Here,

we propose to use randomized feature maps as considered in Chapter 3. Employing the

special structure discussed in Section 3.2.4, we come up with a faster model than the

Nyströ-type approximation. There are a lot of papers that explore the convergence of

RFF models for the regression problem. The optimal learning rate with O(
√
n log n)

features is the same as for the full kernel Rudi & Rosasco (2017), which increases speed

substantially. The theoretical properties of using RFF models for score matching is less

studied, although there are some general theoretical results on RFF and higher-order

kernel derivatives Chamakh et al. (2020); Brault et al. (2016).

The naive approach to score matching using random features causes several issues. The

first is oscillating behavior in the tails of the distribution Strathmann et al. (2015). The

second is poor convergence in the case of disjoint support (consistency could not be

guaranteed) or in areas where the density value is close to zero Wenliang et al. (2018).

Inconsistency explains low approximation accuracy in regions of almost zero density.

It was shown that convolution with small Gaussian noise (equivalent to the noisy data

perturbation) improves learning behavior and approximation quality, e.g. Song & Ermon

(2019); Arjovsky & Bottou (2017); Roth et al. (2017), makes the support of both densi-

ties (distribution of the data and model distribution) the same, and allows to overcome

the aforementioned issue. For most of the models, convolution cannot be calculated an-

alytically, so authors usually stick to the second-order Taylor series expansion Kingma

& Cun (2010); Reehorst & Schniter (2019); Roth et al. (2017), which results in a special

regularization term in the loss function. It turns out that the noise level is an important

parameter. With a large noise level, we have better convergence, but lower accuracy.

With a smaller noise level, the convergence is less stable, but the solution is more ac-

curate. This means that the noise level must be tuned. Recently, it was proposed that

several noise levels be used for optimizing the cumulative objective Song & Ermon (2019).

In this section, we introduce methods to estimate the unknown distribution using denois-

ing score matching, combined with random features. To tackle the convergence issues,

we analytically convolve the loss function with symmetric noise. This allows to avoid
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additional regularization terms as they are naturally embedded into the loss function.

Further, the derived expression of the loss function explicitly contains the noise param-

eters that allow us to use simple gradient-based approaches to tune these parameters.

In the experimental section, we demonstrate the performance of our approach both in

terms of accuracy and training time. While the quality is comparable to Nyström-type

approximations, the training speed is much faster.

4.2.1 Score matching

Let D = {xa}da=1,xa ∈ Rd be a set of observations drawn from an unknown distribution

with a probability density function p0(x). Let p(x,θ) be a model density parameterized

by θ ∈ Θ ⊂ Rm. The task is to find θ∗ such that the model density is close to the

real one: p(x,θ∗) ≈ p0(x). In the score matching approach, we minimize the Fisher

divergence:

J(p0‖pθ) =
1

2

∫
p0(x)‖∇ log p(x,θ)−∇ log p0(x)‖22dx. (4.2)

Under sufficiently weak regularity conditions (see Hyvärinen (2005)) the minimization of

the Fisher divergence is equivalent to the minimization of

J(p0‖pθ) ∼ Ep0
[
∆ log p(x,θ) +

1

2
‖∇ log p(x,θ)‖2

]
. (4.3)

Note that the normalizing constant does not depend on x, therefore, p(x,θ) in (4.3) could

be replaced with an unnormalized one p̃(x,θ) = p(x,θ)Z(θ). In an abuse of notation,

from now on, we will use p(x,θ) to denote the unnormalized density if it is not stated

explicitly. Objective (4.3) now does not depend on unknown density p0 and provides

an opportunity to estimate p0 up to the normalizing constant using only samples drawn

from p0:

Ĵ(p0‖pθ) =
1

n

n∑
a=1

[
∆ log p(xa,θ) +

1

2
‖∇ log p(xa,θ)‖2

]
→ min

θ
. (4.4)

This loss introduces several issues. First, the expression (4.2) assumes that the model

and data distributions have the same support. However, in the real world, the real

distribution lies on a low-dimensional manifold, embedded in Rd Song & Ermon (2019),

while the support of the model density is usually the whole space. Second, score matching

convergence is guaranteed only in the case of supp p0 = Rd (see Hyvärinen (2005)).
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To tackle the issue, we use denoising score matching (DSM) Vincent (2011). In this

approach, we add noise to the data. The score matching loss in this case is given by

DSM(pθ) = EpεEp0
[
∆ log p(x + ε,θ) +

1

2
‖∇ log p(x + ε,θ)‖2

]
, (4.5)

, where pε(x) is a distribution of noise. Now both densities have the same support, so

the solution converges. The optimal model satisfies ∇pθ = ∇ [p0 ∗ pε] (x), where ∗ is the
convolution operator. However, ∇ [p0 ∗ pε] (x) is close to the true density ∇p0(x) only

when the noise is small enough.

To estimate the loss in the general case, we can generate a finite set of noisy samples

and use them to estimate expectation in the loss function. Another option is to use

the Taylor series expansion, assuming that the noise level is small. In both cases, we

get an approximate value of the loss function. Moreover, when we use the Taylor se-

ries expansion, we need to calculate higher-order derivatives of the model that can be

computationally complex (like in the case of neural networks). However, for the kernel

exponential family, the DSM loss can be computed exactly.

4.2.1.1 Kernel exponential family

The kernel exponential family is a set of distributions where unnormalized probability

density functions pf (x) satisfy log pf (x) = f(x) + log q0(x), f ∈ H, H is some RKHS

with kernel k and q0 is some generating density. The normalizing constant is usually not

known and cannot be computed analytically. The class of such densities is rich enough.

In fact, it is dense in a set of continuous probability density functions that decay at the

same rate as q0.

In a well-specified case, i.e. when p0 belongs to the kernel exponential family with RKHS

H, the score matching loss (4.3) can be expressed as (see Sriperumbudur et al. (2013))

J(p0‖pf ) =
1

2
〈f, Cf〉H + 〈f, ξ〉H + J(p0‖q0) (4.6)

where ∂α,βi,j+dk(x,y) = ∂α+β

∂xαi ∂y
β
j

k(x,y) and

C = Ep0

[
d∑
i=1

∂ik(x, ·)⊗ ∂ik(x, ·)
]
, C : H → H

ξ = Ep0

[
d∑
i=1

∂ik(x, ·)∂i log q0(x) + ∂2
i k(x, ·)

]
∈ H.
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Using the general representer theorem, the optimal f(x) can be found as the weighted

sum of the kernel derivatives located in the training samples. To find the weights, we

need to invert the nd × nd matrix and the computational complexity, which therefore

becomes O(n3d3). While the convergence in the RKHS of this estimator implies the

convergence in Lr, in terms of the Kullback–Leibler divergence and Hellinger distance,

the density estimator in the misspecified case remains the same, but with convergence,

the guarantee is only for Fisher divergence.

To reduce the complexity, the authors of Sutherland et al. (2018) proposed to find so-

lutions in a span over a randomly selected subset of training samples (inducing points).

The computational cost of this approach is O(m3d3), where m is a number of inducing

points. Additional sub-sampling of md basis functions enables an even more computa-

tionally efficient approach. In this extreme case, the complexity is O(m2nd + m3). As

in the case of full data usage, the obtained estimator is consistent when p0 lies in the

kernel exponential family, but the rate of convergence is slower (under the assumptions

presented in Sutherland et al. (2018)). The misspecified case was not studied.

To obtain a consistent estimator from the kernel exponential family, the authors of

Wenliang et al. (2018) used DSM with the Taylor series expansion. This results in an

additional regularization term in the loss function that penalizes second derivatives of

the model. However, the need to calculate second derivatives restricts the approach only

to relatively low-dimensional cases.

Random Features Random features-based approaches were discussed in Chapter 3.

The difference in score matching problems is that we work with the derivatives of the

kernel function. However, the same idea can be applied to the kernel derivatives

∂p,qk(x− y) =

∫
p(w)∂p

[
ejw

>x
]
∂q
[
e−jw

>y
]
dw (4.7)

where p,q ∈ Rd denote multi-indices, ∂pf = ∂|p1+p2+···+pd|

∂x
p1
1 ...∂x

pd
d

f and p and q act on the first

and second arguments of the kernel correspondingly. The theoretical properties of using

random features are well studied only for the kernel ridge regression Rudi & Rosasco

(2017); Li et al. (2019).

4.2.2 Kernel Denoising Score Matching

This section provides the optimal solution for kernel DSM, its RFF approximation, and

some error bounds of the resulting model. Here, we assume that the noise distribution

is symmetric, i.e., pε(x) = pε(−x).
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4.2.3 Denoising Score Matching in RKHS

We start by rewriting the expression for the DSM objective (4.5) and follow the same

logic in derivation as in paper Sriperumbudur et al. (2013), with the difference that our

objective function is the convolution of the usual score matching objective with noise

distribution.

Let V : Rm → R be a convex and differentiable function. Assume that the objective

function takes the form

J(f) = V (〈φ1, f〉H, 〈φ2, f〉H, . . . , 〈φm, f〉H) +
λ

2
‖f‖2H,

for any set {φi(·)}mi=1, φi ∈ H.

In our case, we define the set of functions {φi(·)} as follows:

φ(a−1)d+i(·) = ∂ik(xa + y, ·),

φnd+1(·) =
1

n

n,d∑
a,i=1

∂2
i k(xa + y, ·) + ∂ik(xa + y, ·)∂i log q0(xa + y),

and for simplicity, let us denote it as {φi(y, ·)}mi=1, m = nd + 1. Now, let us define a

linear operator A(y) : H → Rm, f → {〈φi(y, ·), f〉H}mi=1. Then, the objective (4.5) can

be written as

f∗ = arg min
f∈H

∫
pε(y)V (A(y)f)dy +

λ

2
‖f‖2, (4.8)

with V (θ1, . . . , θnd+1) = 1
2n

n∑
a=1

d∑
i=1

θ2
(a−1)d+i + θnd+1.

Using the first-order optimality condition, we can see that the solution takes the form

f =

∫
pε(y)A∗(y)α(y)dy, α(y) = − 1

λ
∇V (A(y)f),

where A∗(y) : Rm → H is an adjoint to A(y). Now, we are ready to formulate the

proposition.

Proposition 4.1. The solution to (4.8) has the following form:

f∗ = B

[
− 1

nλ
C(β∗) +

1

nλ2
b

]
,

where Â(y) : H → Rm−1,
(
Â(y)f

)
i

= (A(y)f)i , i = 1, . . . ,m− 1,

B =
∫
pε(y)Â∗(y)Â(y)dy, b =

∫
pε(y)φm(y, ·)dy, C(β) =

∫
pε(x)Â(y)β(y)dy and
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β∗(y) is the solution to

β(y) = − 1

nλ

∫
pε(z)Â(y)Â(z)∗β(z)dz +

1

nλ2

∫
pε(z)Â(y)φm(z, ·)dz. (4.9)

See the details on derivation in B.1.1.

The optimal model requires the operator equation’s solution; in general, this is a difficult

task. In order to avoid this, let us consider the Monte Carlo approximation of (4.9).

Suppose we sampled K noise vectors {zk}Kk=1, zk ∼ pε. In this case, the approximation

to the optimal β∗ can be found by solving the system of equations

βK(y) = − 1

nKλ

K∑
k=1

Â(y)Â(zk)
∗βK(zk) +

1

nλ2

∫
pε(z)Â(y)φm(z, ·)dz. (4.10)

The obtained result can then be used to derive an approximation of f∗, but the com-

putational complexity is O(n3d3K3 + n2d2K). Moreover, the convolution in the second

term of (4.10) could be directly computed only for a limited set of kernels, e.g., the radial

basis function kernel (RBF).

In order to improve the computational complexity, we employ the RFF approach in the

kernel function approximation.

4.2.3.1 RFF for Denoising Score Matching

For the RFF (3.3), we introduce the following matrix of RFF derivatives ∂Φy, cor-

rupted by noise y. The ((a− 1)d+ i)-th row of matrix ∂Φy is given by [∂Φy](a−1)d+i =

∂iφ
>(W (xa + y) + b), where ∂iφ>(W (xa + y) + b) is an element-wise partial deriva-

tive of the feature vector at point xa. Similarly, for the second derivatives, we have

[∂2Φy](a−1)d+i = ∂2
i φ
>(W (xa + y) + b). The finite sample solution to (4.10) is given by

fK =
1

nλ2
φ(·)>H

[
− 1

K

(
1

K
∂Φ>K∂ΦK + nλI

)−1

∂Φ>K∂ΦK � h+ h

]
− 1

λ
φ(·)>h.

Here, the operator � denotes the Hadamard product. Let us denote

H =

∫
pε(y)∂Φ>y ∂Φydy, h =

1

n
(∂2Φz ∗ p(z))>1. (4.11)

Then, by taking limit over K →∞, we obtain the final RFF solution

f∗m = lim
K→∞

fK =
1

λ
φ(·)>(H + nλI)−1Hh− 1

λ
φ(·)>h. (4.12)

The detailed derivation can be found in B.1.2.
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A similar result can be derived for the Nyström-type approximation (see B.1.7). The

disadvantage in this case is that we need to calculate the convolution of the first and

second-order derivatives with the noise distribution for each kernel. Conversely, for RFF,

all the terms remain the same for any shift-invariant kernel except for the distribution

of weights W, which is much more convenient.

Another important thing that should be stressed is that in the resulting solution, each

feature has a weight proportional to exp
(
−σ2

2 ‖wi‖
)
(see B.1.2 for details). This means

that the high-frequency features have weight that is close to zero. Such behavior can be

interpreted as a regularization that penalizes oscillating terms.

There are several hyper-parameters in the approach that affects the resulting quality,

namely, the kernel hyper-parameters θ, the regularization parameter λ and, assuming

that the noise is zero-mean Gaussian, the noise variance σ. To tune these parameters, we

use the loss on the hold-out (validation) set. The loss in this case is ordinary score match-

ing (no denoising) loss as we would like to estimate how well our model approximates

the original data, not the noisy one.

Another important part of the algorithm is the base density q0. From a theoretical

point of view, base density is responsible for the tails of the distribution and does not

affect the estimator in areas with high density. Therefore, in this section, we consider

three different options for q0: uniform distribution with support bounded by particular

training samples, multivariate Gaussian distribution, and the mixture of Gaussians. In

the case of the mixture of Gaussians, q0 is fitted before the training using the Bayesian

Mixture Model Bishop (2007).

At the end of the training, we estimate the normalizing constant via importance sampling

as proposed in Wenliang et al. (2018). It should be noted that in the case of uniform

base density, normalization could not be estimated properly due to the unknown data

support measure. The whole method is summarized in Algorithm 2.

The total complexity of the proposed approach is O(m3 + nm2 + nmd), where O(nmd)

operations are required to generate random features, O(nm2) is required to compute

feature matrix H and O(m3) corresponds to the matrix inversion, which can be reduced

to O(m2) in some cases by using iterative methods for solving systems of linear equations.

Now, let us provide the error bounds of the approximation in the proposed approach.

Let us introduce the derivatives of the exact kernel matrix as

∂p∂qK(a−1)d+i,(b−1)d+j = ∂pi ∂
q
d+jk(xa,xb), p, q ∈ N+.
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Algorithm 2 Kernel denoising score matching.
Require: Training set D, m — number of Fourier features, nz — number of samples to

estimate the normalization constant, initial regularization parameter λ
1: Fit q0(x) to the given data set.
2: while not stopping condition do
3: for mini-batches Dt,Dv ∈ D do
4: Compute random Fourier approximation f∗m using equation (4.12) on Dt.
5: Compute ordinary score matching loss on validation

Ĵval(λ, σ,pk) =
1

|Dv|

[
1>∂2Φvbt +

1

2
b>t ∂Φ>v ∂Φvbt + b>t ∂Φ>v ∇ log q0(x)

]
6: Do gradient step over hyper-parameters (λ, σ, pk)
7: end for
8: end while
9: Compute f∗m = φ(·)>bD using the full dataset D

10: Compute the normalization constant approximation Ẑ via importance sampling

Ẑ =
1

nz

nz∑
i=1

f∗m(xi)

q0(xi)
, xi ∼ q0(x)

return log pf = f∗m − Ẑ

We also denote the derivatives of the random feature vector as

∂pφ =
(
∂p1φ(w>x1 + b) · · · ∂pdφ(w>xn + b)

)>
.

The error bounds for score matching using RFF is given by the following theorem.

Theorem 4.2. Let δ ∈ (0, 1), ε > 0, then for n ≥ 8
3ε2

log m
δ and assuming that D1 =

Ewtr[∂φ∂φ>]∂φ∂φ> < ∞, D2 = Ewtr[∂2φ∂2φ>]∂φ∂φ> < ∞, with probability of at

least (1 − δ) the following upper bound on the distance between an averaged RFF score

matching solution f∗n,m and exact kernel solution f∗n holds

Ex,w(f∗n,m(x)− f∗n(x))2 ≤ 2

λ2n2m2

[
m‖∂∂K 1

2 (∂∂K + λnI)−1∂∂2K1‖2+

m1>∂2∂2K1 + (1 + εm)‖D
1
2
2 1‖2+

(1 + εm)‖D
1
2
1 (∂∂K + λnI)−1∂∂2K1‖2

]
.

The proof of the theorem is given in B.1.3.
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4.2.3.2 Discussion

While the RFF kernel approximation admits the computationally efficient solution of

score matching, the convergence properties remain an open question. Using the results

from Sriperumbudur et al. (2013), the convergence can be established only in the RKHS

that corresponds to the approximate kernel. So, we have the following relation

J(p0‖pλ,n,m)→ inf
p∈P̃

J(p0‖p) λ→ 0, λn→∞, n→∞,

where pλ,n,m is the density obtained using m features and P̃ is an exponential family

with sufficient statistic φ(Wx + b). To upper bound the error of approximation, we can

consider the following inequality,

‖fλ,n,m − f0‖ ≤ ‖fλ,n,m − fλ,m‖+ ‖fλ,m − fλ‖+ ‖fλ − f0‖,

where fλ minimizes (4.6), fλ,n is the solution of a finite sample version of (4.6), and ‖·‖ is
a norm in L2(Rd, p0). ‖fλ,n,m−fλ,m‖ includes the term ‖ξ̂m− ξ̂‖ = O(m−

1
2 ) that can be

obtained using concentration lemma from Sutherland et al. (2018) under the additional

assumption on the boundness of the derivatives of the approximate kernel. This implies

that we should potentially use O(n) features to obtain the same convergence rates as in

the case of the exact solution. To reduce the lower bounds on the number of features, we

need to perform a refined analysis in a way similar to Rudi & Rosasco (2017); Li et al.

(2019) in the future study.

In the case of DSM, the estimated density will converge to the p∗ ∗ pε, where p∗ =

infp∈P̃ J(p0‖p) is the density from P̃ closest to p0. So, on the one hand, the noise

variance should be as small as possible. On the other, the Wasserstein distance between

the approximation and the true density for DSM can be upper bounded as follows:

W (p0, p) ≤ E[‖ε‖2]
1
2 + C̃

√
J(p0 ∗ pε, pλ,n,m ∗ pε),

where E[‖ε‖2] = nσ2. The second term takes large values for small noise levels (due to

different supports of the approximate density and true density) and smaller values for

large noise values. So, the choice of σ is a trade-off between estimator stability and how

close it is to the unknown density function p0.
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4.2.4 Results

4.2.4.1 Experimental Setup

In all our experiments, we used the RBF kernel with diagonal covariance matrix; the

noise was assumed to be isotropic Gaussian (though in general, we can use arbitrary

noise covariance matrix).

We compare the proposed approach (DSM-RFF), ordinary score matching with RFF

(SM-RFF), exact kernel solution (4.6) (exact) and its Nyström version with sub-sampled

basis Sutherland et al. (2018) (Nyström). We used original implementations of this model

from Gre.

The comparison is conducted on two types of data: artificially generated 2D densities

and datasets from the UCI repository Dua & Graff (2017) (the particular choice of data

is motivated by previous research on kernel exponential family Sutherland et al. (2018);

Strathmann et al. (2015); Wenliang et al. (2018)):

1. Synthetic data generated from the following densities: a mixture of Gaussians,

uniform, mixture of uniforms, cosine, funnel, banana, ring, and mixture of rings.

2. RedWine, WhiteWine, and MiniBoone.

The exact kernel model was not compared to the MiniBoone dataset since it was too

computationally expensive.

To estimate the quality of models, the following metrics were used:

1. Log-likelihood (higher is better). It requires the normalization constant that can

only be approximated, so the log-likelihood tends to be overestimated Wenliang

et al. (2018).

2. Fisher divergence (lower is better). It requires the true log-density gradient to be

known and hence can be estimated only for artificial data; moreover, for uniform

settings, it can be computed only with the support of true density. Alternatively,

score matching could be used, but scores for different models are not generally

comparable.

3. Finite-Set Stein Discrepancy (FSSD) goodness of fit test Jitkrittum et al. (2017);

GOF with 0.05 significance level. We used the Gaussian kernel with its length-

scale chosen to be the median over pairwise distances between samples in order to

avoid optimization over test points for the particular model. Otherwise, we cannot
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compare the models. FSSD statistic almost surely equals zero if the model density

and p0 coincide.

4. Wasserstein distance. In order to estimate this quantity, we used Metropolis-

adjusted Langevin algorithm (MALA) Roberts & Rosenthal (2001) to draw samples

from the model densities. We used a step-size of 0.1 and chain length of 104 with

a 5 · 103 burn-in.

4.2.5 Results

We started by considering an approximate denoising approach (see B.1.6 for derivation)

to figure out if there is a benefit from the convolution with noise. To accomplish this, we

constructed an illustrative experiment with 300 RFF features for Gaussian mixture. We

then used a multivariate Gaussian distribution for q0 and the training set size was fixed

at 103. From the results presented in Fig. 4.3, it is clear that the ’noisy’ approach better

estimates the ground truth in between the components’ region even with the presence

of small noise. Also note the that there are fewer oscillations when we add noise to the

data.

(a) Ground truth (b) RFF, no noise,
SM = −0.68

(c) RFF+noise,
SM = −0.99

(d) RFF, no noise, wide
kernel, SM = −0.49

(e) RFF+noise, wide kernel,
SM = −0.67

Figure 4.3: Comparison of score-matching with and without noise, noise variance is
σ = 5 · 10−4. We clip values of log-density that less then −10.
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The next step was to compare the proposed algorithm with other approaches on synthetic

2D data and data sets from UCI. In this case, we used 512 random Fourier features. As

the base density q0, we used a mixture of Gaussians. As in the previous example, a

relatively small sample size was used. Our models were trained for 60 iterations using

an Adam optimizer with a 0.1 learning rate and 512 features were also used.

For cosine data, the form of distribution estimated via DSM-RFF was much closer to the

real one. However, for the mixture of uniforms, it failed to correctly estimate the weights

of the components. In both of these densities, we observed the model misspecification in

the case of SM-RFF because all other 2D densities had full space support. For the rest

of the distributions, there was no significant visual difference.

(a) Cosine

(b) Mixture of uniforms

Figure 4.4: Density estimates using DSM RFF (middle column) and SM RFF (right
column). The ground truth density is in the first column.

These experiments showed that DSM with RFF generally works better for distributions

with bounded support. However, for multi-modal distributions, it can fail to correctly

estimate the weights of components or over-smooth the areas between components. An-

other observation about the approach is that it tends to choose a large noise variance

in some cases. In Fig. 4.5, we have visualized the dependence of the loss on the regu-

larization parameter and noise variance for several 2D distributions. Interestingly, for

"good" distributions such as Funnel, which have full space support and one mode, the

loss surface has a wide minimum w.r.t regularization and noise variance. Whereas for



67

(a) Uniform (b) Funnel (c) Two Rings

Figure 4.5: Dependence of loss on the regularization parameter λ (y axis) and noise
σ (x axis).

multi-modal distributions, the loss surface has a narrower minimum. For uniform distri-

bution (which differs from the other in that it has bounded support), the minimum w.r.t

noise variance is narrow, but it is also separated from zero. This indicates the need for

noise in such cases.

In Figure 4.6, we have plotted all the metrics for all data sets. For each data set, each

metric was normalized across methods to have a unit norm. This was done only for

better visualization. The original values are given in B.2. The figure illustrates the mean

value of the metrics and corresponding variance calculated across 10 runs. From the

figure, we can see that w.r.t. almost all metrics (except the log-likelihood), the proposed

approach shows better or comparable results in many cases. Actually, the Wasserstein

distance is smaller for DSM-RFF for all data sets. We can also see that SM-RFF tends

to have a larger variance than that of its noisy version.

In Table 4.3, we provide the results for the datasets from the UCI repository, as well as the

training time. The MiniBoone data set was large and the Nyström-based implementation

could not fit into the memory, so we had to train the model using only a subset of 15000

samples. Other methods were also trained using the whole data set. To fairly compare

the training time, the experiments were conducted on Intel(R) Core(TM) i7-7820X CPU

@ 3.60GHz with 64Gb RAM. Finally, we can see that the proposed approach is much

faster than the implementation of the Nyström-based approach.

4.3 Simultaneous Localization and Mapping with Random

Features

Since the last century, probabilistic state estimation has been a core topic in mobile

robotics, often as part of the problem of simultaneous localization and mapping Bailey &

Durrant-Whyte (2006); Durrant-Whyte & Bailey (2006). Recovery of a robot’s position
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Figure 4.6: Metrics on different datasets for different methods. For each dataset each
metric was normalized across methods to have unit norm. We did it only for better

visualization.

Table 4.3: Metrics for the data sets from UCI repository.

Data set Model Log-likelihood FSSD
Wasserstein
distance time, s

RedWine DSM RFF -11.64 0.38 0.24 62
SM RFF -11.72 0.43 0.25 61
Nyström -17.23 0.11 0.73 0.2× 104

WhiteWine DSM RFF -12.81 0.57 0.33 180
SM RFF -12.22 0.53 0.11 180
Nyström -17.79 0.23 0.67 1× 104

MiniBoone DSM RFF -93.11 307.67 0.49 0.5× 104

SM RFF -4580.20 2× 108 0.48 0.5× 104

Nyström -46.06 0.02 0.75 0.6× 104

and a map of its environment from sensor data is a complicated problem due to both

map and trajectory are unknown as well as the correspondences between observations

and landmarks Thrun et al. (2005).

Well-known approaches to this problem, such as square root smoothing and mapping

(SAM)Dellaert & Kaess (2006), relied on regression-based techniques that leverage the

problem’s sparse structure to calculate a solution effectively. However, this technique

had a great disadvantage, i.e., we may need to collect all the data before trajectory

estimation (batch updates)Kaess et al. (2007). This method was improved in Kaess

et al. (2008), where incremental smoothing and mapping (iSAM) was introduced. iSAM
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requires expensive periodic batch steps to keep re-linearization and sparsity. This method

has been further improved in iSAM 2.0 Kaess et al. (2012). In iSAM 2.0 an effective graph

structure, the Bayes tree Kaess et al. (2010), is used to accomplish incremental variable

reordering and just-in-time reordering, thus reducing the bottleneck caused by batch

variable reordering and re-linearization. This method is widely used as state-of-the-art,

and this work has gained several sequels, such as Wang et al. (2018); Cunningham et al.

(2013); Strömberg (2017); Dong & Lv (2019).

Most trajectory estimation and mapping methods, including SAM-based ones, have con-

sidered the problem in a discrete-time fashion. However, discrete-time representations

are constrained because they are not easily adapted to irregularly distributed poses or

asynchronous measurements over trajectories. Such limitations would be well addressed

by a continuous-time version of the SAM problem where measurements regulate the tra-

jectory at any time step. The robot trajectory, seen from this perspective, is a function

x(t), which corresponds to a robot state at every time t. Simultaneous trajectory esti-

mation and mapping (STEAM) presents the problem of estimating this function along

with landmark positions Barfoot et al. (2014a); Barfoot (2017). In the work Furgale

et al. (2012) they formally derive a continuous-time SLAM problem and demonstrates

the use of a parametric solution for atypical SLAM calibration problems. The use of

cubic splines to parameterize the robot trajectory can also be seen in the estimation

schemes in Bibby & Reid (2010); Fleps et al. (2011); Droeschel & Behnke (2018). In

the work Tong et al. (2013) the parametric state representation was proposed due to

practicality and effectiveness. The advantages of this method are that they can precisely

model and interpolate asynchronous data to recover a trajectory and estimate landmark

positions. The disadvantages of that algorithm are that it requires batch updates and

considerable computational problems that are natural for regression.

In the work Yan et al. (2017), the critical update to increase the efficiency of existing GP

approach to solve the STEAM problem was introduced. It combines benefits of iSAM

2.0 and Barfoot’s work Barfoot et al. (2014b) and provide the GP-based solution to the

STEAM problem that computationally efficiently even for large datasets. However, in

this work GP have several constraints to be able to deal with sparse measurements and

provide robot position at any point of interest.

The main drawback of the paper is that the proposed GP prior impose constraints

on the kernel function and thus limits the number of possible functions that GP can

model. They use state-space formulation to conduct computationally efficient inference

for GP. However, the efficiency is achieved by the means of using kernel functions that

impose Markovian structure on the trajectory: it is supposed that two points on the

trajectory are conditionally independent given all other points if these two points are
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not neighboring. However, in some cases the accuracy of the trajectory estimate can be

increased by adjusting the estimate at the current point using all previous points in the

trajectory, especially when the observations contain a considerable amount of noise.

In recent years a lot of effort has been put to develop large-scale GP models without any

constraints on the kernel function Rudi et al. (2017); Wang et al. (2019); Munkhoeva

et al. (2018). There are two main approaches to scale up the GP model. The first

one is based on Nyström approximation Quiñonero-Candela & Rasmussen (2005). The

idea is to approximate the kernel function using a finite set of basis functions that are

based on eigenvectors of the kernel matrix. This approach is data-dependent and needs

updating the basis function when new observations arrive. Another set of methods is

based on Random Fourier Features Rahimi & Recht (2008). In these approaches the basis

functions (features) are constructed based solely on the kernel function and independent

of the data set. It provides additional computational benefits and is more attractive for

SLAM problems.

In this section we develop random features based SLAM approach. It is constructed solely

based solely on the kernel function and independent of the data set. It provides additional

computational benefits compared to other approaches and, therefore, is more attractive

for SLAM problems. We build a low-rank approximation of the kernel matrix. It is dense,

so we do not assume the conditional independence of the points on the trajectory. At

the same time we maintain reasonable computational complexity by limiting the number

of random features. We conduct several experiments and discuss the results of running

the method on synthetic data and well-known real-world benchmarks.

4.3.1 SLAM

From a probabilistic point of view, there are two main forms of the problem: online-

SLAM and FULL-SLAM. Online SLAM (4.13) involves estimating the posterior over

the current pose along the map:

p (xt, l|z,u) , (4.13)

where xt is the pose at time t, l is the map (in this work, we consider l to be the

map of landmarks), and z =
[
z(t1) · · · z(tN )

]
and u =

[
u(t1) · · ·u(tN )

]
are the

measurements and controls, respectively. In full SLAM (4.14), we seek to calculate a

posterior over the entire path x =
[
x(t0) · · ·x(tN )

]
along with the map, instead of just

the current pose xt:

p (x, l|z,u) . (4.14)
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4.3.2 RFF-SLAM

We use GP regression with RFF to estimate the state variables corresponding to trajec-

tory and map (landmarks). Our model is as follows

x(t) ∼ GP(µx(t),k(t, t′)),

l ∼ N (µl,L),

zi = h

([
x(ti)

l

])
+ ni,

(4.15)

where x(t) is a state of the robot at timestamp t, l is a vector of M landmarks, h(·)
is a non-linear measurement model, ni ∼ N (0,Ri) is measurement noise, t1, . . . , tN is

a sequence of measurement times and (µl,L) are prior mean and the covariance of the

landmarks positions.

The paper Tong et al. (2013) uses GP for SLAM and provides the main equations to

solve the problem. We follow their approach with the difference that we utilize RFF

approximation (see Section 3.1.1) of the RBF kernel given by

k(t, t′) = σ2 exp

(
−‖t− t

′‖22
2σ2

l

)
.

For the RBF kernel its Fourier transform is defined by p(w) being a Gaussian distribution

N
(

0, 1
σ2
l
I
)
. Explicit mapping (3.4) allows working in weight-space view

x(t) = µx(t) +


φ1(t)b

(1)
x

· · ·
φd(t)b

(d)
x

+ ε, b(i)
x ∼ N (µ

(i)
b ,Ki), i = 1, d,

where d is a state size, b(i)
x ∈ Rd, φi(x) is a feature map for the i-th state variable and Ki

is a prior covariance matrix of the random variable b(i)
x . In principle, the same feature

map can be used for all variables, however, it can be reasonable to use different features

(corresponding to different kernels) to model different types of variables (for example,

coordinates on the map and angles).
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Let us denote

b =


b

(1)
x

· · ·
b

(d)
x

l

 ,µ =


µ

(1)
b

· · ·
µ

(d)
b

µl

 ,K =


K1

. . .

Kd

 ,

P =

[
K

L

]
,Φi =


φ1(ti)

· · ·
φd(ti)

I2M

 , (4.16)

R =


R1

. . .

RN

 .
Now to obtain both the robot states and landmarks position b we employ maximum a

posteriori (MAP) estimate

p(b|z) =
p(z|b)p(b)
p(z)

∝ −1

2

(
N∑
i=1

‖zi − h(Φib)‖2Ri
+ ‖b− µ‖2P

)
→ max

b
. (4.17)

To solve the problem we do the following. Suppose, that we have an initial guess b̄. We

update the estimate iteratively by finding the optimal perturbation vector δb∗ for the

linearized measurement model. Namely, we apply the first order Taylor expansion to the

measurements model

h(Φib) ≈ h(Φib̄) + Hiδb, Hi =
∂h(y

∂y

∣∣∣∣
y=Φib̄

.

Plugging linearized measurement into (4.17) we obtain the following optimization prob-

lem

δb∗ = arg min
δb

1

2

(
N∑
i=1

‖zi − h(Φb̄)−HiΦiδb‖2Ri
+ ‖b̄+ δb− µ‖2P

)
.
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The solution is given by

δb∗ = A−1g,

A =

N∑
i=1

Φ>i H>i R−1
i HiΦi + P−1, (4.18)

g =

N∑
i=1

Φ>i H>i R−1
i

(
zi − h(Φib̄)

)
+ P−1

(
b̄− µb

)
.

We update the model parameters b̄← b̄+ δb∗, then update all the matrices and vectors

in (4.16) and repeat the procedure predefined number of iterations or until convergence.

The described approach is known as Gauss-Newton method to solve non-linear least

squares problems, and it is used in Tong et al. (2013); Barfoot et al. (2014a). It does

not guarantee convergence, so in this work we apply Levenberg-Marquardt approach. It

modifies the system

δb∗ = (A + λdiag (A))−1 g (4.19)

where λ is a dampening parameter. The overall update procedure is summarized in

Algorithm 3.

The size of the system matrix A is (Dd+2M)×(Dd+2M) for two-dimensional landmarks.

The top-left block of size Dd × Dd of the matrix corresponds to the weights b and is

typically dense. The bottom-right block of size 2M × 2M corresponds to landmarks and

it is usually diagonal (because we assume that landmarks are independent). Therefore,

the cost of solving (4.18) is O(D3d3 + MDd) using Schur complement. However, we

use iterative solver and in practice it converges much faster. The cost of construction

of the matrices in (4.18) is O(N(D2d2 +M). The total complexity is O(max(ND2d2 +

NM), (D3d3 +MDd)).

When we use the iterative solver that utilizes only matrix-vector products, we can also

rearrange operations to obtain different computational complexity. Instead of calculating

the matrix A explicitly we can multiply each term of the sum in (4.18) by a vector

and then take the sum. Taking into account that matrices Ri are (usually) diagonal,

the part of the Jacobi matrix Hi that corresponds to derivatives of w.r.t landmarks

is block-diagonal, the complexity of matrix-vector product for one term in the sum is

O((M +D)d). The overall complexity of solving the system is O(N(M +D)dk), where

k is the number of iterations.
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4.3.2.1 State prior

In GP regression it is common make zero-mean assumption, i.e. µ(t) = 0. However,

having good prior µ(t) is essential when modeling trajectory with GP, because usu-

ally shift-invariant kernel functions are used. Therefore, GP with such kernels is most

suited to model stationary functions. This does not always apply to trajectories. Non-

stationarity can be accounted by non-zero mean function µ(t). Here we use one of two

prior mean functions.

1. Motion model

µx(ti) = F(ti)x̂(ti−1) + B(ti)u(ti),

where F(t),B(t) are time-dependent system matrices. We use this model if we

have odometry measurements.

2. Smoothing splines applied to the estimated trajectory with smoothing parameter

0.98 (we used De Boor’s formulation, see De Boor (2001)). We also use weights

that are inverse proportional to the data fit error ‖zi−h(Φib)‖Ri . The motivation

behind this prior mean model is the following: in case of some non-stationarity the

GP can produce inaccurate predictions (for example, there can be oscillations in

regions where the function quickly changes its value). Smoothing the trajectory

reduces such effects.

With a non-zero prior mean for the trajectory we can set all mean vectors µ(i)
b to zero,

thus, the GP will only correct the errors of the mean µ(t). The whole trajectory estimate

is updated with every new measurement, so we also update the prior µx(ti) for all

i = 1, . . . , N for each new observation.

Algorithm 3 Update state at measurement times

1: Initial values b̄, measurement times t1, . . . , tN , measurements z, ε, maximum number
of iterations K

2: n← 0
3: repeat
4: Using b̄ update vectors and matrices in (4.16)
5: Calculate update δb∗ by applying (4.19) to solve (4.18)
6: b̄← b̄+ δb∗

7: n← n+ 1
8: until relative error is less than ε or n = K

4.3.3 Experiments

In this section, we evaluate our approach on several synthetic 2D trajectories as well as

real-world benchmarks. In all our experiments, we consider the state vector to be a 2D
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pose:

x(t) =


x(t)

y(t)

α(t)

 .
We use the range/bearing observation model which takes the form

h

([
x(ti)

lj

])
=

[ √
(xj − x(ti))2 + (yj − y(ti)2

atan2(yj − y(ti), xj − x(ti))− α(ti)

]
, (4.20)

where lj =

[
xj

yj

]
is a vector of coordinates of j-th landmark. The covariance matrices

Rj are given and typically determined by the precision of the sensor. In some of the

experiments we consider only range measurements (the first row in measurement model),

in some of the experiments we have only bearing measurements (the second row in

the measurement model) and in other experiments we have both range and bearing

measurements. The proposed approach is compared against model based on linear time-

variant stochastic differential equation (LTV SDE) Barfoot et al. (2014a)3.

To evaluate the quality of the estimated trajectories, we calculate two metrics.

• Absolute Pose Error (APE). This metric estimates global consistency of the tra-

jectory. It is based on the relative pose on the estimated trajectory and ground

truth trajectory:

eabsi = P̂i 	Pi = (Pi)
−1 P̂i, Pi, P̂i ∈ SE(3),

where Pi, P̂i are ground truth pose and estimated pose at time step ti represented

by an element from SE(3) group of rigid body transformations (translation and

rotation). We represent 2D points as 3D point by adding zero z-coordinate and

zero roll and pitch angles. Then we can calculate the translational error

APEtrans =

√
1

N
‖trans(eabsi )‖22,

where trans(e) is a translational part of e. And we can calculate the rotational

error

APErot =

√
1

N
‖rot(eabsi )‖22,

where rot(e) is a rotational part of e.
3The implementation was taken from https://github.com/gtrll/gpslam

https://github.com/gtrll/gpslam
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• Relative Pose Error (RPE). This metric estimates the local consistency of the tra-

jectory. It is invariant to drifts, i.e., if we translate and rotate the whole trajectory

the RPE error will remain the same. RPE is based on the relative difference of the

poses on the estimated trajectory and ground truth trajectory:

ereli = δ̂i 	 δi =
(

(Pi−1)−1 Pi

)−1
((

P̂i−1

)−1
P̂i

)
Pi, P̂i ∈ SE(3),

where Pi, P̂i are as in APE. Similarly to APE, we calculate translational and

rotational errors

RPEtrans =

√
1

N
‖trans(ereli )‖22,

RPErot =

√
1

N
‖rot(ereli )‖22.

4.3.3.1 Synthetic trajectories

We generated 10 different random trajectories, for each trajectory we conducted several

experiments with different noise level in observations, different number of landmarks

(from 5 to 100) and different measurement types (range, bearing, range/bearing). The

noise was generated from Gaussian distribution with standard deviation varying in [1, 5]

interval for range measurements and bearing varying in [1◦, 10◦] interval.

Number of features D For the synthetic dataset we conducted experiments with

different number of features. We observed that for a small number of features (D ∼ 10)

the trajectory starts diverging when its length increases (at about 100 observations).

Increasing the number of features increases the length of the trajectory for which the

estimate does not diverge. For the trajectories that we used in our experiments D = 100

was enough to obtain good state estimates.

Kernel parameters. The main kernel parameter is its lengthscale σl. Typically, in the

GP regression model the lengthscale is one of the most important parameters affecting

the quality of the model. It controls the smoothness of the obtained approximation.

Larger lengthscale should be used for smooth trajectories and smaller values for less

smooth trajectories.

In our experiments a rather wide kernel worked well, we set σl = 3.0. The qualitative

results can be found in Table 4.4. We can see that in the case of range and range-bearing

measurements the proposed approach looks more accurate.
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Table 4.4: Relative Errors for synthetic trajectories

Pos. Rot. Landmarks

RangeBearing RFF 0.022 0.154 6e-4
LTV SDE 0.025 5.602 0.110

Range RFF 0.016 0.320 1e-6
LTV SDE 0.025 5.580 0.003

Bearing RFF 0.035 0.152 8e-6
LTV SDE 0.025 1.200 0.016

We also study the dependency of the estimation error on the noise level and the number

of landmarks. In Figure 4.7 you can see the APE translation errors for different noise

levels, the number of landmarks and measurement types. We make several observations

based on these results.

• Our approach does not estimate bearing in the range-only measurements because

there is no information about bearing in the data. In this case we calculate head-

ing by calculating the movement direction of the estimated trajectory. Barfoot’s

method handle this situation due to their mean prior based on the differential

equation.

• The proposed approach provides better rotation errors in all cases.

• The translation errors in range only setting and rotation errors of RFF approach

in bearing only measurements increase slower with noise level compared to LTV

SDE errors. For range-bearing case the difference is less significant.

4.3.3.2 Autonomous Lawn-Mower

In this experiment we evaluate our approach on a Plaza data set collected from an

autonomous lawn-mower Djugash (2010). The data set contains range measurements

recorded using time-of-flight and odometry measurements. Odometry measurements

come more frequently than range measurements. The ground truth data was collected

from GPS measurements and according to Djugash (2010) its accuracy is 2cm.

The resulting trajectory is given in Figure 4.8. In this experiment we did batch updates,

i.e. we updated the trajectory after each new 5 range measurements. The motion model

based prior was used as we have odometry measurements. We can see slight oscillations

of the estimated trajectory. They can be explained by the nature of the Fourier features.

However, the errors are comparable as can be seen from Table 4.5. The estimated

trajectories are depicted in Figure 4.8.
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Figure 4.7: Average APE errors for synthetic trajectories at different noise levels and
number of landmarks

4.3.3.3 KITTI-projected dataset

To evaluate our approach, we proceed with the world-famous dataset KITTI odome-

tryGeiger et al. (2013). We chose the dataset part that contains stereo sequences – a

sequence of stereo images taken while moving along a specific trajectory. The dataset

includes stereo images, ground truth trajectory and camera information. For our ap-

proach, we need a dataset in 2D with observations and bearing. To extract observations

in the form (4.20) we do visual SLAM from ORB-SLAM2 Mur-Artal & Tardós (2017).

For each keypoint we find its coordinates in the local frameHartley & Zisserman (2003).

Therefore, we can calculate bearing observations for each keypoint. Thus, the keypoints

in this case play the role of landmarks and we have bearing measurements. The pipeline

to project KITTI into a 2D dataset is following:

• Input: KITTI-odometry dataset (e.g. sequence 08);
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Figure 4.8: Distribution of APE errors along the trajecotry for Autonomous Lawn-
Mower benchmark

• Run ORB-SLAM2 to get observations (keypoints, timestamps);

• Correct camera pose and keypoints by a transformation term that aligns with the

vertical axis to make them independent of their original camera pose

Rt ·Rcorrection = Exp([0, 0, α]>); (4.21)

• Calculate weights for each observations based on how much time this point was

observed/visited;

• Filter observations;

• Do orthonormal projection for each observation;

• Calculate bearing.

The number of landmarks (keypoints) is 80771. With such a big number of landmarks,

the experiments are very slow, so we reduced the number of landmarks to 3975. We

selected the landmarks randomly with probabilities proportional to their weights, but for

each keyframe we left not less than 10 landmarks. Also, to speed up the calculations we

split the trajectory into 10 consecutive slices, do estimation on each slice independently

and then average the estimation errors.

The extracted data we then use in our approach to estimate the trajectory. To check

our assumption that kernels with dense precision matrices should work better in case of
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noisy observations, we also generated a noisy version of the KITTI-projected dataset.

To do so, we added Gaussian noise with standard deviation σ.

The results are given in Table 4.5. We can see that without additional noise the results

are comparable (with RFF based approach being slightly better). When we increase the

amount of noise, absolute errors of our approach remains the same while errors for LTV

SDE increase.

Table 4.5: Real-world benchmark errors.

Autonomous Lawn-Mower

APE (trans) APE (rot) RPE (trans) RPE (rot)
LTV SDE 0.48 1.44 0.021 0.10

RFF 0.42 2.25 0.026 0.54

KITTI-projected

LTV SDE 5.130 1.059 0.068 0.113
RFF 5.070 0.489 0.040 0.048

KITTI-projected + noise, σ = 1◦

LTV SDE 5.126 1.086 0.068 0.133
RFF 5.070 0.544 0.0454 0.052

KITTI-projected + noise, σ = 3◦

LTV SDE 5.491 3.136 0.139 0.259
RFF 5.075 1.027 0.073 0.115

KITTI-projected + noise, σ = 5◦

LTV SDE 12.915 5.114 0.242 0.358
RFF 5.077 1.304 0.084 0.119



Chapter 5

Conclusion

This thesis contributes to the Gaussian process models and kernel methods as well as

different machine learning techniques.

In Chapter 2, we considered regression problems where the data set has either the full

or incomplete factorial design of experiments. Using the special data set’s structure,

we developed a computationally efficient technique for drawing the exact inference of

the GP model. We also provided a special regularization for such cases that allows the

avoidance of the degeneration of the model and improves the overall quality. Lastly, the

experimental section in this chapter demonstrated the good performance of the approach

and justified low computational complexity.

Chapter 3 developed a general method for approximating the kernel function based

on randomized feature maps. For this, we proposed a quadrature-based approach to

build such feature maps, which allowed us to obtain a low approximation error with a

small number of features thus reducing the computational complexity. In addition, the

theoretical analysis provided error bounds for the developed technique. The subsequent

experiments showed the superiority of the method compared with other random feature-

based approaches.

Chapter 4 is dedicated to applications of the developed methods, which considered three

different problems: tensor completion, probability density estimate, and simultaneous

localization and mapping. For the tensor completion problem, we developed an initial-

ization scheme based on the GP model. We supposed that the function that generates

tensor values is smooth and hence modelled it by combining the GP model with the

tensor-train-based approximation method. As a result, we developed a general tensor

completion approach. The subsequent experiments showed that the proposed initializa-

tion improves the overall quality.

81
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We also applied the random features approach to the density estimate problem. In

this case, we derived an analytical solution for the denoising score matching loss, which

was impossible to derive using the exact GP model or Nyström-type approximations.

Therefore, the resulting model has natural additional regularization. The performance

also improved compared with the Nyström-based models.

Finally, the developed large-scale GP models allowed to re-utilize it in simultaneous lo-

calization and mapping problems. In robotics, the state-space formulation of the GP

model and a restricted class of kernel functions that give a high computational perfor-

mance are used. With the proposed approach, we not only kept a low computational

complexity but also enjoyed the advantages of a broader class of kernel that we can could

apply. Moreover, we demonstrated that it can improve the quality of the estimates in

some cases, especially when there is a considerable amount of noise in observations.

Currently, deep neural networks outperform other techniques in many problems. In-

terestingly, there is a connection between neural networks and kernel methods. One of

the first works in this direction was (Williams, 1996), which showed that a single-layer

network with infinite neurons is equivalent to the Gaussian process. More modern works

(Lee et al., 2017; Jacot et al., 2018) show the connection between deeper neural net-

works, Gaussian processes and kernels. The work (Daniely, 2017) studies the behaviour

of neural networks with all the weight randomized except the last one, which is learnt

using SGD. This can be seen as a random feature model.

In light of the mentioned works, it is interesting to study how the properties of random

feature models (and kernels) can be transferred to deep neural networks in practice. For

example, the double descent phenomenon is encountered in over-parameterized neural

networks; although in some architectures, it is impossible to observe it (Ba et al., 2019), in

random feature models, it seems to be more robust (Mei & Montanari, 2019). Therefore,

the question is whether the random features idea could help develop over-parameterized

architectures with better double-descent guarantees.

It is also interesting to study whether random feature models can be helpful in neural

network compression. In the paper (Frankle & Carbin, 2018), the authors introduce the

Lottery Ticket Hypothesis, which states that a network contains a smaller sub-network,

which can achieve the same performance as a whole network when trained in isolation. In

context of the hypothesis, shallow neural sub-networks are equivalent to random feature

models (Malach et al., 2020). Thus, further studying this connection and finding a way

to apply the random features idea to compress neural networks might be a promising

research direction.
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Finally, I believe that in the existing pipelines, there are parts that can be efficiently

approximated using randomized maps. For example, in the recent work (Choromanski

et al., 2020), they applied the random features approach to approximate an attention

mechanism. Also, replacing some traditional layers or computations with a more compli-

cated kernel version and then reducing the complexity using some kind of approximation

could yield results.



Appendix A

Additional results for

quadrature-based features

A.1 Proof of Proposition 3.6

A.1.1 Variance of the degree (3, 3) quadrature rule

Let us denote q =

(
x

y

)
∈ X 2, k(q) = k(x,y), hj(q) = d

fxy(−ρjQvj)+fxy(ρjQvj)

2ρ2j
−k(q) =

sj(q)− k(q). Then, it is easy to see that Ehj(q) = 0.

Let us denote I(q) = SR3,3
Q1,ρ1

(fxy), g(q) = I(q) − k(x,y). Using the above definitions

we obtain

Vg(q) = V

1−
d+1∑
j=1

d

(d+ 1)ρ2
j

+ E

(
1

d+ 1

d+1∑
i=1

hi(q)

)2

+2cov

1−
d+1∑
j=1

d

(d+ 1)ρ2
j

,
1

d+ 1

d+1∑
i=1

hi(q)

 .

(A.1)

Variance of the first term

V

1−
d+1∑
j=1

d

(d+ 1)ρ2
j

 = E

1−
d+1∑
j=1

d

(d+ 1)ρ2
j

2

= E

1−
d+1∑
j=1

2d

(d+ 1)ρ2
j

+

d+1∑
j=1

d

(d+ 1)ρ2
j

2
= 1− 2 +

d

(d+ 1)(d− 2)
+

d

d+ 1
=

2

(d+ 1)(d− 2)
. (A.2)
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Variance of the second term (using independence of hi(q) and hj(q) for i 6= j)

E

(
1

d+ 1

d+1∑
i=1

hi(q)

)2

= E

 1

(d+ 1)2
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i,j=1

hi(q)hj(q)

 =
1

(d+ 1)2

∑
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Ehi(q)2 =
Eh1(q)2

d+ 1
.

(A.3)

Variance of the last term (using the Cauchy-Schwarz inequality)

cov

1−
d+1∑
j=1

d

(d+ 1)ρ2
j

,
1

d+ 1

d+1∑
i=1

hi(q)

 = E

1−
d+1∑
j=1

d

(d+ 1)ρ2
j

1

d+ 1

 d+1∑
i=1

hi(q)


= −E d

d+ 1

d+1∑
i,j=1

hi(q)

ρ2
j

≤ 1

d+ 1

d+1∑
i=1

√
E

1

ρ4
i

√
Ehi(q)2

=

√
Eh1(q)2
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. (A.4)

Now, let us upper bound term Eh1(q)2

Eh1(q)2 = E
(
dφ(w>x)φ(w>y)

ρ2

)2

− k(q)2 ≤ dκ4

d− 2
.

Using this expression and plugging (A.2), (A.3), (A.4) into (A.1), we obtain

V

[
1

n

n∑
i=1

SR3,3
Qi,ρi

(fxy)

]
≤ 2

n(d+ 1)(d− 2)
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dκ4
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+
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dκ4
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+

κ2

n(d− 2)
≤ 2 + κ4 + κ2

n(d− 2)
,

(A.5)

thereby concluding the proof.

A.1.2 Error probability

The proof strategy closely follows that of (Sutherland & Schneider, 2015); we use the

Chebyshev-Cantelli inequality instead of Hoeffding’s and Bernstein inequalities and then

calculate all the expectations according to our quadrature rules.

Let q =

(
x

y

)
∈ X 2, where X 2 is a compact set in R2d with diameter

√
2l, so we can

cover it with an ε-net using T = (2
√

2l/r)2d balls of radius r at most. Let {qi}Ti=1 denote
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their centers, and Lg be the Lipschitz constant of g(q) : R2d → R. If |g(qi)| < ε/2 for

all i and Lg < ε/(2r), then g(q) < ε for all q ∈ X 2.

A.1.2.1 Regularity condition

Similar to (Sutherland & Schneider, 2015) (regularity condition section in appendix), it

can be proven that E∇g(q) = ∇Eg(q).

A.1.2.2 Lipschitz constant

Since g is differentiable, Lg = ‖∇g(q∗)‖, where q∗ = arg maxq∈X 2 ‖∇g(q)‖. Via Jensen’s

inequality, E‖∇h(q)‖ ≥ ‖E∇h(q)‖. Then, using the independence of hi(q) and hj(q) for

i 6= j
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where |φ′(·)| ≤ µ. Then, using Markov’s inequality, we obtain

P(Lg ≥
ε

2r
) ≤ 8

d
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(σprκµ
ε

)2

A.1.2.3 Anchor points

Let us upper bound the following probability as

P

(
T⋃
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1

2
ε

)
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2
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)
.

Now, let us rewrite the function g(q) as

g(q) = 1− 1
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where φq(ρizi) =
fxy(−ρjQvj)+fxy(ρjQvj)

2ρ2j
. Next, let us suppose that

∣∣∣1−φq(ρz)
ρ2

∣∣∣ ≤ M . so

that we can apply Hoeffding’s inequality

P(|g(q)| ≥ 1

2
ε) ≤ 2 exp
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− 2D 1

4ε
2

(M − (−M))2

)
= 2 exp

(
−Dε

2

8M2

)

A.1.2.4 Optimizing over r

Now, the probability of supq∈X 2 |g(q)| ≤ ε takes the form

p = P

(
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q∈X 2
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2,
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)
and κ2 = 8d
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(κµσp
ε

)2. Maximizing this probability

over r gives us the following bound:
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For the RBF kernel, κ = µ = 1 and M = 1
2 , so we obtain the following bound:
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Now, let us compare it with the bound for RFF:
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A.2 Butterfly matrices

For orthogonal matrix Q in the quadrature rules, the so-called butterfly matrix is used.

As it happens to be a product of the butterfly-structured factors, a matrix of this type

conveniently possesses the property of fast multiplication. An example of the butterfly

orthogonal matrix with d = 4 is

B(4) =


c1 −s1 0 0

s1 c1 0 0

0 0 c3 −s3

0 0 s3 c3




c2 0 −s2 0

0 c2 0 −s2

s2 0 c2 0

0 s2 0 c2

 =


c1c2 −s1c2 −c1s2 s1s2

s1c2 c1c2 −s1s2 −c1s2

c3s2 −s3s2 c3c2 −s3c2

s3s2 c3s2 s3c2 c3c2

.
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Definition A.1. Let ci = cos θi, si = sin θi for i = 1, . . . , d− 1 be given. Assume d = 2k

with k > 0. Then, an orthogonal matrix B(d) ∈ Rd×d is defined recursively as follows:

B(2d) =

[
B(d)cd −B(d)sd

B̂(d)sd B̂(d)cd

]
, B(1) = 1,

where B̂(d) is the same as B(d) with indexes i shifted by d, e.g.,

B(2) =

[
c1 −s1

s1 c1

]
, B̂(2) =

[
c3 −s3

s3 c3

]
.

Matrix B(d) by the vector product has computational complexity O(d log d) since B(d)

has dlog de factors and each factor requires O(d) operations. Another advantage is space

complexity; B(d) is fully determined by d−1 angles θi, yielding O(d) memory complexity.

The randomization is based on the sampling of angles θ. We follow the(Fang & Li, 1997)

algorithm that first computes a uniform random point u from Ud. It then calculates

the angles by taking the ratios of the appropriate u coordinates θi = ui
ui+1

, followed by

computing cosines and sines of the θ’s. Consequently, one can easily define the butterfly

matrix B(d) for the cases when d is not a power of two.

A.2.1 Not a power of two

Here, we discuss the procedure to generate butterfly matrices of size d× d when d is not

a power of 2.

Let the number of butterfly factors k = dlog de. Then, B(d) is constructed as a product

of k-factor matrices of size d×d, obtained from the k matrices used for generating B(2k).

For each matrix in the product for B(2k), we delete the last 2k − d rows and columns.

Next, we replace with 1 every ci in the remaining d×d matrix that is in the same column

as the deleted si.

For the cases when d is not a power of two, the resulting B has deficient columns

with zeros (Figure A.1b, right), which introduces a bias to the integral estimate. To

correct for this bias, one may apply additional randomization using a product BP, where

P ∈ {0, 1}d×d is a permutation matrix. It is even better to use a product of several BP’s:

B̃ = (BP)1(BP)2 . . . (BP)t. We then set t = 3 in the experiments.
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(a) (b)

Figure A.1: (a) Butterfly orthogonal matrix factors for d = 16. (b) Sparsity pattern
for BPBPBP (left) and B (right), where d = 15.

A.3 Remarks on quadrature rules

Even functions. We note here that for specific functions fxy(w), we can derive better

versions of the SR rule by using the knowledge about the integrand to our advantage.

For example, the Gaussian kernel has fxy(w) = cos(w>(x− y)). Note that f here is

even, so we can discard an excessive term in the summation in the degree (3, 3) rule,

since f(w) = f(−w), i.e., the SR3,3 rule reduces to

SR3,3
Q,ρ(f) =

1−
d+1∑
j=1

d

(d+ 1)ρ2
j

 f(0) +
d

d+ 1

d+1∑
j=1

f(ρjQvj)

ρ2
j

. (A.6)

Obtaining a proper ρ It may be the case while sampling ρ that 1−∑d+1
j=1

d
(d+1)ρ2j

< 0,

which results in a complex a0 term. In that case, the simple solution is just to resample

ρj to satisfy the non-negativity of the expression. According to the central limit theorem,∑d+1
j=1

d
(d+1)ρ2j

tends to a normal random variable with mean 1 and variance 1
d+1

2
d−2 . The

probability that these values are non-negative equals p = P(1−∑j=1
d

(d+1)ρ2
≥ 0) 1

2 .

The expectation of the number of resamples needed to satisfy the non-negativity con-

straint is 1
p tending to 2.

A.4 Arc-cosine kernels

Arc-cosine kernels were originally introduced by (Cho & Saul, 2009) upon studying the

connections between deep learning and kernel methods. The integral representation of

the bth-order arc-cosine kernel is

kb(x,y) = 2

∫
Rn

Θ(w>x)Θ(w>y)(w>x)b(w>y)bp(w)dw,

kb(x,y) = 2

∫
Rd
φb(w

>x)φb(w
>y)p(w)dw,
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where φb(w>x) = Θ(w>x)(w>x)b, Θ(·) is the Heaviside function and p is the density

of the standard Gaussian distribution. Such kernels can be seen as an inner product

of the representation produced by an infinitely wide single-layer neural network with

random Gaussian weights. They also have closed-form expressions in terms of the angle

θ = cos−1
(

x>y
‖x‖‖y‖

)
between x and y.

The arc-cosine kernel of the 0th-order shares the property of mapping the input on the

unit hypersphere with RBF kernels, while the order 1 arc-cosine kernel preserves the

norm as the linear kernel (Gram matrix on original features):

These expressions for 0th-order and 1st-order arc-cosine kernels are given by

k0(x,y) = 1− θ

π
, k1(x,y) =

‖x‖‖y‖
π

(sin θ + (π − θ) cos θ).

The 0-order arc-cosine kernel is given by k0(x,y) = 1− θ
π ; the 1-order kernel is given by

k1(x,y) = ‖x‖‖y‖
π (sin θ + (π − θ) cos θ).

Let φ0(w>x) = Θ(w>x) and φ1(w>x) = max(0,w>x). We can now rewrite the integral

representation as follows:

kb(x,y) = 2

∫
Rd

φb(w
>x)φb(w

>y)p(w)dw ≈ 2

n

n∑
i=1

SR3,3
Qi,ρi

.

For an arc-cosine kernel of the order 0, the value of the function φ0(0) = Θ(0) = 0.5

results in

SR3,3
Q,ρ(f) =0.25

1−
d+1∑
j=1

d

(d+ 1)ρ2
j

+
d

d+ 1

d+1∑
j=1

f(ρjQvj) + f(−ρjQvj)

2ρ2
.

Whereas in the case of an arc-cosine kernel of the order 1, the value of φ1(0) is 0, so the

SR3,3 rule reduces to

SR3,3
Q,ρ(f) =

d

d+ 1

d+1∑
j=1

f(|ρQvj |)
2ρ2

j

.



Appendix B

Additional results for score

matching

B.1 Technical results

B.1.1 Exact solution for the kernel denoising score matching with RFF

We start with the first-order optimality condition:∫
pε(y)A∗(y)∇V (A(y)f)dy + λf = 0,

where A∗(y) : Rm → H is an adjoint to A(y) and A∗(y)α =
∑m

i=1 αiφi(y, ·). Denoting

α(y) = − 1

λ
∇V (A(y)f), f =

∫
pε(y)A∗(y)α(y)dy,

the first-order optimality condition could be rewritten as an integral equation on α(y):

α(y) = − 1

λ
∇V

(∫
pε(z)A(y)A∗(z)α(z)dz

)
, (B.1)

where A(y)A∗(z)α(z) =
m∑
i=1

αi(z){〈φj(y, ·), φi(z, ·)〉}mj=1 = K(y, z)α(z).

The gradient of V is given by∇V = ( 1
n ,

1
n , . . . ,

1
n , 1)>. Then, we haveα(y) = (β>(y), δ)>,

where δ = − 1
λ . Therefore, the integral equation on β(y) can be expressed as

β(y) = − 1

nλ

∫
pε(z)Â(y)Â(z)∗β(z)dz +

1

nλ2

∫
pε(z)Â(y)φm(z, ·)dz, (B.2)
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where (Â(y)f)i = (A(y)f)i, i = 1, . . . ,m − 1. Let b =
∫
pε(y)φm(y, ·)dy and C =∫

pε(y)Â∗(y)β(y)dy. Next, we search for the solution of (4.9) in the form β(y) =

− 1
nλÂ(y)C + 1

nλ2
Â(y)b. In this case, we have

Â(y)

[
C +

1

nλ
BC − 1

nλ2
Bb

]
= 0,

where B =
∫
pε(y)Â∗(y)Â(y)dy and b ∈ H is a convolution of φm and noise density pε.

Solution C∗ of the above equation provides β∗(y) and, as a result, the solution to the

initial problem. Let us show that the obtained estimator belongs to H. In fact, since

C +
1

nλ
BC − 1

nλ2
Bb ∈ KerÂ(y) ⊆ H

and B + nλI is continuously invertible, we have that C∗ ∈ H. Finally, we have

f∗ = B

[
− 1

nλ
C∗ +

1

nλ2
b

]
= C∗ − 1

λ
b− γ ∈ H,

where we assume γ ∈ KerÂ(y).

B.1.2 RFF solution derivation

Let us use the expressions for the solution without noise (for simplicity, the term with

∂i log q0(xa) is omitted here):[
Â(0)Â(0)∗

]
(a−1)d+i,(b−1)d+j

= ∂i∂j+dk(xa,xb), a, b ∈ [n], i, j ∈ [d],

[
Â(0)φm(0, ·)

]
(a−1)d+i

=
1

n

n,d∑
b,j=1

∂i∂
2
j+dk(xa,xb), a ∈ [n], i ∈ [d].

Then we have Â(y)Â(z)∗ ≈ ∂Φy∂Φ>z and Â(y)φm(z, ·)∗pε(z) ≈ 1
n∂Φy(∂

2Φz ∗pε(z))>1.

Now, we can obtain the RFF approximation of (4.10):

βK = − 1

nKλ
∂ΦK∂Φ>KβK +

1

n2λ2
∂ΦK � (∂2Φz ∗ p(z))>1,

where

∂ΦK =


Φz1
...

ΦzK

 , ∂ΦK � (∂2Φz ∗ p(z))>1 =


∂Φz1(∂2Φz ∗ p(z))>1

...

∂ΦzK (∂2Φz ∗ p(z))>1

 .
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Denoting

h =
1

n
(∂2Φz ∗ p(z))>1, H =

∫
pε(y)∂Φ>y ∂Φydy

we obtain the following expression for the descretized solution fK :

fK =
1

nλ2
φ(·)>H

[
− 1

K
∂Φ>K

(
1

K
∂ΦK∂Φ>K + nλI

)−1

∂ΦK � h+ h

]
− 1

λ
φ(·)>h

=
1

nλ2
φ(·)>H

[
− 1

K

(
1

K
∂Φ>K∂ΦK + nλI

)−1

∂Φ>K∂ΦK � h+ h

]
− 1

λ
φ(·)>h.

By taking a limit over K →∞, and using H = lim
K→∞

1
K ∂Φ>K∂ΦK along with

lim
K→∞

(nλI +
1

K
∂Φ>K∂ΦK) lim

K→∞

1

K
∂Φ>KβK = lim

K→∞

1

Kλ
∂Φ>K∂ΦKh,

the solution f∗ is given as

f∗m = lim
K→∞

fK = − 1

nλ2
φ(·)>H(H + nλI)−1Hh+

1

nλ2
φ(·)>Hh− 1

λ
φ(·)>h

=
1

λ
φ(·)>(H + nλI)−1Hh− 1

λ
φ(·)>h,

where index m refers to the number of RFF features.

B.1.3 Proof for the error bounds of score matching with RFF

The idea of this proof is to upper bound the expected square difference between solutions:

Ex,w(f∗n,m(x)− f∗n(x))2, (B.3)

where the difference between RFF and exact kernel solutions (f∗n,m, f∗n) is expressed as

follows:

f∗n,m − f∗n = − 1

λn
∂2k(·)>1 +

1

λn
φ>(·)∂2Φ>1

+
1

λn
∂k(·)>(∂∂K + λnI)−1∂∂2K1− 1

λn
φ>(·)∂Φ>(∂Φ∂Φ> + λnI)−1∂Φ∂2Φ>1

=
1

λn
(∂2Φφ(·)− ∂2k(·))>1 +

1

λn
(∂k(·)− ∂Φφ(·))>(∂∂K + λnI)−1∂∂2K1

+
1

λn
φ>(·)∂Φ>

[
(∂∂K + λnI)−1 − (∂Φ∂Φ> + λnI)−1

]
∂∂2K1

+
1

λn
φ>(·)∂Φ>(∂Φ∂Φ> + λnI)−1(∂∂2K − ∂Φ∂2Φ>)1.

The above expectation is taken jointly over random Fourier weights and given points

x ∼ p0. It can then be written as Ex,w[f ] = EwEx[f |w]. The first term in the above
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expression is the difference between ξ̂ and its RFF approximation ξ̂m, so, we have:

Ew1>(∂2Φφ(·)− ∂2k(·))(∂2Φφ(·)− ∂2k(·))>1

= 1>
[
Ew[∂2Φφ(·)φ(·)>∂2Φ>]− ∂2k(·)∂2k(·)>

]
1

≤ m− 1

m
1>∂2k(·)∂2k>(·)1 +

1

m
1>∂2∂2K1− 1>∂2k(·)∂2k(·)>1

≤ 1

m
1>∂2∂2K1,

where the first inequality is obtained using supx |φi(Wx + b)| ≤ 1. As this expression

does not depend on x, the joint expectation will be the same.

For the second term in f∗n,m(x)− f∗n(x), derivation of the upper bound is technically the

same, but with lower-order derivatives, so

Ew

[
(∂k(·)− ∂Φφ(·))>(∂∂K + λnI)−1∂∂2K1

]2
≤

1

m
‖∂∂K 1

2 (∂∂K + λnI)−1∂∂2K1‖2.

The third them is

Ex,w

[
φ>(·)∂Φ>

[
(∂∂K + λnI)−1 − (∂Φ∂Φ> + λnI)−1

]
∂∂2K1

]2

= Ex,w

[
φ>(·)∂Φ>(∂Φ∂Φ> + λnI)−1(∂∂K − ∂Φ∂Φ>)(∂∂K + λnI)−1∂∂2K1

]2

≤ EwEx

[
‖R‖2‖(∂∂K − ∂Φ∂Φ>)(∂∂K + λnI)−1∂∂2K1‖2|w

]
,

where only R depends on x.

ExR = (∂Φ∂Φ> + λnI)−1∂ΦEx

[
φ(·)φ>(·)

]
∂Φ>(∂Φ∂Φ> + λnI)−1

=
1

n
(∂Φ∂Φ> + λnI)−1∂Φ(Φ>Φ + εnI)∂Φ>(∂Φ∂Φ> + λnI)−1

This inequality holds with the probability 1 − δ for n ≥ 8
3ε2

log m
δ and is obtained from

the Bernstein inequality assuming that the weights are fixed Tropp (2015).

λmax(R) =
1

n
λmax

[
(∂Φ∂Φ> + λnI)−1∂Φ(Φ>Φ + nεI)∂Φ>(∂Φ∂Φ> + λnI)−1

]
≤ 1

n
λmax

[
(Φ>Φ + nεI)∂Φ>(∂Φ∂Φ> + λnI)−1∂Φ

]
≤ 1

n
λmax

[
(Φ>Φ + nεI)

]
≤ 1

n
tr
[
(Φ>Φ + nεI)

]
≤
(

1

m
max
i

sup
x
‖φi(Wx + b)‖2 + ε

)
≤ 1

m
+ ε
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Ew‖(∂∂K − ∂Φ∂Φ>)(∂∂K + λnI)−1∂∂2K1‖2

= 1>∂∂2K>(∂∂K + λnI)−1(Ew∂Φ∂Φ>∂Φ∂Φ> − ∂∂K2)(∂∂K + λnI)−1∂∂2K1

Ew∂Φ∂Φ>∂Φ∂Φ> =
m− 1

m
∂∂K2 +

1

m
D1.

The latter term here is obtained under the assumption that D1 does not depend on x.

This assumption holds for sufficiently smooth kernels and we can rewrite the expression

under an expectation as the polynomial of weights times the trigonometric function.

Ew‖(∂∂K − ∂Φ∂Φ>)(∂∂K + λnI)−1∂∂2K1‖2 ≤ 1

m
‖D

1
2
1 (∂∂K + λnI)−1∂∂2K1‖2

Analogously, for the last term, using the assumption that D2 <∞, we have

Ex,w∂Φ∂2Φ>∂Φ∂2Φ> ≤ 1

m
‖D

1
2
2 1‖2.

Finally, combining all the above, we have

Ex,w(f∗n,m(x)− f∗n(x))2 ≤ 2

λ2n2m2

[
m1>∂2∂2K1 +m‖∂∂K 1

2 (∂∂K + λnI)−1∂∂2K1‖2

+(1 + εm)‖D
1
2
2 1‖2 + (1 + εm)‖D

1
2
1 (∂∂K + λnI)−1∂∂2K1‖2

]
.

B.1.4 Derivation of H and h for Gaussian noise

H = ∂Φ>∂Φ ∗ pε

=
n∑
a=1

d∑
i=1

∂iφ(Wxa + b)∂iφ
>(Wxa + b) ∗ pε

=
n∑
a=1

d∑
i=1

W:,iW
>
:,i � φ′(Wxa + b)φ′>(Wxa + b) ∗ pε

=
1

M
WW> �

n∑
a=1

sin(Wxa + b) sin>(Wxa + b) ∗ pε

Assuming that pε = N (0, σ2I) and using

cos(w>x) ∗ N (0, σ2I) = e−
σ2

2
‖w‖22 cos(w>x),
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we will obtain

sin(w>x + b) sin(v>x + c) ∗ pε =
1

2

[
cos((w − v)>x + b− c)− cos((w + v + b+ c)>x)

]
∗ pε

=
1

2
e−

σ2

2
‖w−v‖22 cos((w − v)>x + b− c)

− 1

2
e−

σ2

2
‖w+v‖22 cos((w + v)>x + b+ c)

H =
1

2M
WW> �

n∑
a=1

[
e−

σ2

2
‖wi−wj‖22 cos((wi −wj)

>xa + bi − bj)

−e−σ
2

2
‖wi+wj‖22 cos((wi + wj)

>xa + bi + bj).

]
(B.4)

Next, firstly assume that q0 is uniform:

h =
1

n

n∑
a=1

d∑
i=1

∂2
i φ(Wxa + b) ∗ pε

= − 1

n
√
M

n∑
a=1

d∑
i=1

W 2
:,i � cos(Wxa + b) ∗ pε

= − 1

n
√
M

n∑
a=1

diag(WW>)� e−σ
2

2
diag(WW>) � cos(Wxa + b)

For a multivariate normal q0(x) = N (µandΣ), ∇ log q0(x) = −Σ−1(x − µ), there will

be additional term to h:

h =
1

n

n∑
a=1

d∑
i=1

∂iφ(Wxa + b)∂i log q0(xa) ∗ pε

= − 1

n
√
M

n∑
a=1

d∑
i=1

W:,i sin(Wxa + b)∂i log q0(xa) ∗ pε

= − 1

n
√
M

n∑
a=1

sin(Wxa + b)�W∇ log q0(xa) ∗ pε.

Using

w>Σ−1(x− µ) sin(w>x) ∗ pε = e−
σ2‖w‖2

2 w>Σ−1
[
(x− µ) sin(w>x) + σ2w cos(w>x)

]
,

we obtain

h =
1

n
√
M
e−

σ2

2
diag(WW>) �

n∑
a=1

[
sin(Wxa + b)�WΣ−1(xa − µ)

+σ2 cos(Wxa + b)� diag(WΣ−1W>)
]

(B.5)
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In the case of arbitrary q0, we use the Taylor expansion:

∇ log q0(x + ε) ≈ ∇ log q0(x) +∇2 log q0(x)ε

In the vicinity of x, it is equivalent to the previous case and the additional term

is obtained with a simple replacement: −Σ−1 → ∇2 log q0(x) and −Σ−1(x − µ) →
∇ log q0(x).

B.1.5 Derivation of H and h for arc-cosine kernels

H = ∂Φ>∂Φ ∗ pε

=

n∑
a=1

d∑
i=1

∂iφ(Wxa)∂iφ
>(Wxa) ∗ pε

=
n∑
a=1

d∑
i=1

W:,iW
>
:,i � 1(Wxa)� p2(Wxa)

p−1
(
(Wxa)

p−1
)> ∗ pε

Considering p = 2, with uniform base density q0 and isotropic Gaussian noise, we will

obtain:

Wxax
>
aW

> ∗ pε = WEpε(xa + ε)(xa + ε)>W> ∗ pε = W (xax
>
a + σ2I)W>

The same holds for any symmetric noise distribution with covariance Σ and correspond-

ing substitution to the above equation.

H = 4WW> �
n∑
a=1

1(Wxa)�W (xax
>
a + σ2I)W> (B.6)

Moving to the computation of h, we have:

h =
1

n

n∑
a=1

d∑
i=1

∂2
i φ(Wxa) ∗ pε

=
2

n

n∑
a=1

d∑
i=1

W 2
:,i � 1(Wxa)� (Wxa) ∗ pε

=
2

n
diag(WW>)�

n∑
a=1

1(Wxa)� (Wxa),

where the last line holds for any symmetric zero-mean density.
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B.1.6 The Taylor approximation of denoising score-matching

Considering the data corrupted by a small Gaussian noise x̂ = x + ε, ε ∼ N (0, σ2I) and

by applying the Taylor expansion to the model density pm, we obtain

log pm(x + ε,θ) = log pm(x,θ) +∇ log pm(x,θ)>ε+
1

2
ε>∇2 log pm(x,θ)>ε+O(‖ε‖32),

where θ denotes a vector of model parameters, E[ε] = 0, E[εε>] = σ2I.

Eε[∆x log pm(x + ε,θ)] ≈ ∆x log pm(x,θ) +
σ2

2
∆2
x log pm(x,θ)

‖∇x log pm(x + ε,θ)‖22 = ‖∇x log pm(x,θ)‖22 + 2∇x log pm(x,θ)>∇2
x log pm(x,θ)ε

+ ε>∇2
x log pm(x,θ)>∇2

x log pm(x,θ)ε

+∇x log pm(x,θ)>∇xε>∇2
x log pm(x,θ)ε+O(‖ε‖32)

Eε‖∇x log pm(x + ε,θ)‖22 ≈ ‖∇x log pm(x,θ)‖22 + σ2tr
[
∇2
x log pm(x,θ)>∇2

xlogpm(x,θ)
]

+ σ2∇x log pm(x,θ)>∇x∆x log pm(x,θ)

Finally, we have

Jε(θ) = J(θ) +
σ2

2
Ep0

[
(∆x)2 log pm(x,θ)

]
+ Ep0tr

[
∇2
x log pm(x,θ)>∇2

x log pm(x,θ)
]

+ Ep0
[
∇x log pm(x,θ)>∇x∆x log pm(x,θ)

]
where p0 corresponds to an unknown data distribution.

B.1.7 The Nyström kernel approximation

LetK be a sample Gram matrix, then for the Nyström kernel approximation Chen et al.

(2016), we have:

K =

[
K11 K12

K>12 K22

]
K ≈

[
K11

K>12

]
K−1

11

[
K11 K12

]
φ(x) = K

− 1
2

11 k(x)
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where k(x) =
[
k(x,x1) . . . k(xandxM )

]>
, M is the amount of subsampled points.

∂K =



∂1k
>(x1)

· · ·
∂dk

>(x1)

∂1k
>(x2)

· · ·
∂dk

>(xN )


, ∂Φ = ∂KK

− 1
2

11 ∂2K =



∂2
1k
>(x1)

· · ·
∂2
dk
>(x1)

∂2
1k
>(x2)

· · ·
∂2
dk
>(xN )


, ∂2Φ = ∂2KK

− 1
2

11

G = ∂K>∂K ∗ pε, g =
1

n
(∂2K ∗ pε)>1

f =
k>(·)
λ

K
− 1

2
11

[
K
− 1

2
11 g + (K

− 1
2

11 GK
− 1

2
11 + nλI)−1K

− 1
2

11 GK−1
11 g

]
=
k>(·)
λ

[
K−1

11 g + (G+ nλK11)−1GK−1
11 g

]

B.2 Tables and Figures

Table B.1: Results of score-matching algorithms; 100 features and 1000 sample size
for cosine, uniform, banana and funnel distributions.

Distribution Cosine Uniform Banana Funnel
Model KDSM RFFSM KDSM RFFSM KDSM RFFSM KDSM RFFSM

Ftrain 2.197 5.331 1.365 1.785 0.301 0.28 0.34 0.288
Ftest 1.858 5.102 1.584 1.901 0.291 0.319 0.339 0.307
LLtrain -5.53 -5.008 -3.66 -3.649 -3.529 -3.528 -2.867 -2.846
LLp train -3.528 -3.528 -3.584 -3.584 -2.83 -2.83 -2.868 -2.868
LLtest -5.648 -5.056 -3.689 -3.692 -3.659 -3.697 -2.821 -2.783
LLp test -3.503 -3.503 -3.584 -3.584 -2.894 -2.894 -2.796 -2.796
FSSD -0.128 0.059 0.212 0.189 -0.085 -0.045 0.058 -0.041
p-value 0.425 0.308 0.093 0.131 0.604 0.452 0.299 0.392
W1 0.251 0.372 0.06 0.055 0.047 0.052 0.06 0.084
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Table B.2: Results of score-matching algorithms; 100 features and 1000 sample size
for ring, mixture of rings and mixture of uniforms.

Distribution Ring Rings Uniforms

Model KDSM RFFSM KDSM RFFSM KDSM RFFSM

Ftrain 0.862 0.635 3.664 3.528 3.705 4.97

Ftest 0.803 0.562 3.298 3.293 3.582 4.82

LLtrain -2.35 -2.328 -3.668 -4.221 -3.046 -27.879

LLp train -3.949 -3.949 -4.68 -4.68 -2.89 -2.89

LLtest -2.338 -2.346 -3.591 -4.13 -3.08 -27.904

LLp test -3.929 -3.929 -4.633 -4.633 -2.89 -2.89

FSSD -1.316 -1.219 -0.759 -0.851 0.057 -0.367

p-value 0.775 0.694 0.985 0.859 0.347 0.673

W1 0.063 0.086 0.212 0.15 0.26 0.327

(a) Cosine (b) Banana (c) Ring

(d) MiniBoone (e) Red Wine (f) White Wine

Figure B.1: Loss surface w.r.t. the regularization parameter λ (y axis) and noise
parameter σ (x axis).
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(a) Ring

(b) Banana

(c) Funnel

(d) Mixture of rings

(e) Uniform

Figure B.2: Score-matching density estimation using 1000 samples. The left column
is a ground truth, middle is DSM RFf, and the right is SM RFF.
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Barfoot, T. D., Tong, C. H., and Särkkä, S. Batch continuous-time trajectory estima-

tion as exactly sparse gaussian process regression. In Robotics: Science and Systems,

volume 10. Citeseer, 2014a.
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