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Abstract

In machine learning and optimization tasks, it is common for data to have an un-

derlying geometrical structure, usually realized in the form of a low-dimensional

underlying manifold or specific inductive biases, e.g., presumed hierarchical nature

of data. Utilization of this structure often leads to performance improvement or

allows one to draw new insights and design better algorithms. This thesis is built

upon a series of papers devoted to theoretical and practical results in deep learn-

ing and numerical optimization achieved via the application of ideas from such

fields as algebraic and differential geometry, tensor analysis, and hyperbolic geome-

try. Concretely, we utilize such tools as Riemannian optimization, desingularization

of singular manifolds, topological data analysis, persistent homology, Gromov 𝛿-

hyperbolicity, and several others. We start with a new optimization algorithm on

matrix manifolds, allowing one to deal with a challenging problem of singular points

and curvature blow up. Then we move to tensor manifolds and discuss intriguing

connections of the geometry of these manifolds with theoretical properties of recur-

rent neural networks (RNNs). We extend these results to the class of generalized

tensor decompositions and RNNs with rectifier nonlinearity. For practical applica-

tions, we show how universal adversarial perturbations for neural networks can be

designed employing matrix analysis. We propose a new way to estimate the qual-

ity of generative models by comparing the topological properties of the underlying

data manifold and generated manifolds. We introduce hyperbolic geometry to the

computer vision area and evaluate our ideas on the few-shot learning tasks.
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Chapter 1

Introduction

1.1 Theoretical analysis of neural networks

1.1.1 Depth efficiency of neural networks

One of the biggest challenges in modern deep learning is achieving a better un-

derstanding of the theory underlying many empirically observed phenomena. A

particularly important open problem is achieving a better understanding of univer-

sality and expressivity of neural networks. Classical works [Cybenko, 1989, Hornik

et al., 1989] demonstrated that neural networks are universal approximators, i.e., in-

formally, they can approximate any given function with arbitrary precision. These

results, however, are not practical, as the constructed networks are shallow — they

have only one hidden layer. On the other hand, there is mounting empirical evidence

that for a given budget of resources (e.g., neurons), the deeper one goes, the better

the eventual performance will be. It is widely believed that recent progress in many

fields, e.g., Computer Vision (CV) and Natural Language Processing (NLP), in large

part, can be attributed to the increase of the depth of networks [He et al., 2016,

Dai et al., 2019, Vaswani et al., 2017, Simonyan and Zisserman, 2014]. Moreover,

there is evidence that the indefinite increase of the depth of a network only improves

the test accuracy [Nakkiran et al., 2019], which, at first sight, contradicts the stan-

dard bias-variance tradeoff paradigm in classical statistics. Older results such as

[Hastad, 1986, Håstad and Goldmann, 1991, Delalleau and Bengio, 2011, Martens

9



Chapter 1. Introduction 1.1. Theoretical analysis of neural networks

and Medabalimi, 2014] only apply to specific types of networks, and not common

architectures such as Convolutional Neural Networks (CNNs)[LeCun et al., 1990].

A big step towards a better understanding of depth efficiency of CNNs was made

in [Cohen et al., 2016] and further extended in [Cohen and Shashua, 2016]. They

addressed the following question: is depth efficiency typical in the space of neural

networks? This is formalized as follows: given a neural network, let us consider the

equivalent shallow network (i.e., a neural network of width one, realizing the same

function). We say that the original network is exponentially more expressive than

the obtained shallow network if the latter has an exponentially large width with

respect to the width of the former network. Can we understand how often this is

the case? The authors of [Cohen et al., 2016] demonstrated that this property holds

for CNNs with multiplicative nonlinearities, besides a set of measure zero. Their

analysis is based on the formalism of tensor decompositions, which is one of the key

concepts in this thesis.

1.1.2 Tensor Decompositions

In modern deep learning and numerical analysis it is common to work with data

tensors, i.e., multi-way arrays 𝒳 ∈ R𝐼1×𝐼2...×𝐼𝑑 . As the number of modes 𝑑 increases,

the number of parameters grows exponentially. When the number of possible config-

urations is huge, much larger than our number of examples, it becomes statistically

difficult to say something meaningful. This is also known as the curse of dimen-

sionality. Despite the curse of dimensionality, algorithms may be developed based

on the assumptions that real data will often be confined to a region of the space

having lower effective dimensionality, in the directions over which important vari-

ations in variables occur. One of the most appealing approaches for this is based

on the apparatus of tensor networks (or tensor decompositions) [Vasilescu and Ter-

zopoulos, 2002, 2003, Cichocki et al., 2016, 2017, Orús, 2014]. Informally, a tensor

network allows one to efficiently represent a tensor by a network of smaller building

blocks (often) arranged based on a pre-specified tree-like pattern. Some exam-

ples are CANDECOMP/PARAFAC (CP) decomposition [Harshman, 1970, Carroll

and Chang, 1970], Tensor Train (TT) decomposition [Oseledets, 2011], Hierarchi-

10



Chapter 1. Introduction 1.2. Practical applications of geometrical ideas

cal Tucker (HT) decomposition [Grasedyck, 2010], Tensor Ring (TR) decomposition

[Zhao et al., 2016]. Vasilescu and Kim [2019], Vasilescu et al. [2020] compute a part-

based compositional hierarchical data tensor decomposition for arbitrary shapes

and sizes that has an architecture that parallels the CNN architecture. Importantly,

spaces of tensor networks often (in the case of general HT decomposition) form al-

gebraic sets. These are sets that are specified by polynomial equations and can be

well studied using the apparatus of Algebraic Geometry (AG) [Hartshorne, 2013,

Shafarevich and Hirsch, 1994].

In Cohen et al. [2016] the authors found a link between the (binary) HT decom-

position and CNNs, while CP decomposition corresponded to shallow nets. They

showed that such a CNN can only be represented by an exponentially wide shallow

network. This means that a tensor represented in the HT format with probability

one has an exponentially high CP rank. This analysis was also extended to CNNs

with Rectified Linear Unit (ReLU) nonlinearities in [Cohen and Shashua, 2016]. In

this case, the expressivity result not always holds; there exists an open set of CNN’s

equivalent to rank one shallow network.

The first part of this thesis is devoted to understanding whether similar results

hold for Recurrent Neural Networks (RNNs)[Rumelhart et al., 1986]. We explore

connections between multiplicative and generalized RNNs and TT decomposition in

Chapter 2 and Chapter 3, respectively.

1.2 Practical applications of geometrical ideas

1.2.1 Riemannian optimization

Suppose that we are given an optimization task, where the variable belongs to a

manifold. In order to capitalize on this knowledge, the apparatus of Riemannian

optimization was developed [Absil et al., 2009, Uschmajew and Vandereycken, 2020]

and recently reintroduced in the area of deep learning [Fonarev et al., 2017, Bécigneul

and Ganea, 2018]. Traditionally, Riemannian optimization is applied to problems

dealing with matrix or tensor variables, such as ordinary or partial differential equa-

tions, tensor or matrix completion, tensor, or matrix approximation. In these cases,

11



Chapter 1. Introduction 1.2. Practical applications of geometrical ideas

we assume that the data lies in a subspace that can be approximated by the low-rank

matrix structure or the low-rank TT structure for a tensor. For instance, in the task

of matrix completion, one attempts to reconstruct the missing data based on given

entries, which is an ill-posed task without any assumptions on the data structure.

Riemannian optimization methods have been very successful in dealing with these

problems [Vandereycken, 2013, Kressner et al., 2014, Lubich et al., 2013]. Another

benefit of the usage of matrix/tensor factorized variables is the great reduction in

the required memory footprint and computational power [Rakhuba and Oseledets,

2016]. For instance, in the case of TT decomposition, the number of parameters falls

down to logarithmic with respect to the number of parameters in the full tensor. In

the common cases of low-rank matrix and tensor manifolds, however, exists a cer-

tain challenging problem related to the nature of these manifolds. Specifically, these

manifolds contain singular points, where the tangent space is not defined, and the

curvature term, appearing in second-order optimization methods, tends to infinity.

Traditional methods [Vandereycken, 2013] ignore this issue by setting the curvature

term to zero, which leads to subpar performance. In Chapter 4 we discuss the way

to resolve this issue by utilizing the concept of desingularization from AG.

1.2.2 Generative modeling

In practice, however, the true underlying data manifold is not known. This is the

case, for instance, for visual datasets such as ImageNet [Krizhevsky et al., 2012] or

CIFAR10 [Krizhevsky and Hinton, 2009]. The task of generative modeling is con-

cerned with the following problem. Given a dataset sampled from some unknown

distribution, can we learn a model to generate more samples from the same distri-

bution? Recent progress in this field is mostly based on the rapid development of

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014a]. Recent mod-

els, e.g., StyleGAN [Karras et al., 2019] or BigGAN [Brock et al., 2019], are able to

produce samples of excellent quality. Such models are particularly useful when data

is limited, and collecting new samples is costly. E.g., one interesting application of

GANs was found in particle physics [Paganini et al., 2018, Chekalina et al., 2019].

One of the biggest challenges in GAN research is estimating quality of the model.

12



Chapter 1. Introduction 1.2. Practical applications of geometrical ideas

Compared to previous generative models (producing samples of lower visual quality)

such as Variational Autoencoders (VAEs) [Kingma and Welling, 2013], GANs have

no explicit optimization objective. In order to estimate their quality several metrics

were proposed: Inception score [Salimans et al., 2016a], Frechét Inception Distance

[Heusel et al., 2017], Kernel Inception Distance [Bińkowski et al., 2018], Multiscale

Intrinsic Distance [Tsitsulin et al., 2020]. Typically, such metrics rely on a pre-

trained network, e.g., Inception [Szegedy et al., 2015b]. In Chapter 5, we introduce

an approach to estimate the quality of a generative model, using the apparatus of

Topological Data Analysis (TDA).

1.2.3 Hyperbolic geometry

In certain cases, it is possible to make assumptions on what is the natural geometry

of data at hand. In particular, this is the case when we deal with hierarchical data,

such as various taxonomies. For instance, the existence of power-law distributions

in datasets can often be traced back to hierarchical structures [Ravasz and Barabási,

2003]. The celebrated work [Krioukov et al., 2010] demonstrated that many prop-

erties of complex networks could be explained under the hypothesis that hyperbolic

space underlies these networks. These networks (graphs) can be characterized by

the following two properties:

1. Power-law degree distribution;

2. Strong clustering properties.

Formally, 𝑛-dimensional hyperbolic space denoted as H𝑛 is defined as the homoge-

neous, simply connected 𝑛-dimensional Riemannian manifold of constant negative

sectional curvature. The property of constant negative curvature makes it anal-

ogous to the ordinary Euclidean sphere (which has constant positive curvature);

however, the geometrical properties of the hyperbolic space are very different. The

authors demonstrated that these two properties emerge as a simple consequence of

the negative curvature of the hyperbolic space.

Hyperbolic geometry was reintroduced to the machine learning community in

Nickel and Kiela [2017]. The authors applied it to learning taxonomies (such as

13



Chapter 1. Introduction 1.3. Summary of papers

WordNet) in the Poincaré ball model of hyperbolic space and demonstrated the

superior quality of hyperbolic embeddings relative to Euclidean ones. This model

was later extended to the Lorentz model of hyperbolic geometry [Nickel and Kiela,

2018b]. Recent developments [Ganea et al., 2018, Skopek et al., 2019] demonstrated

that it is possible to design completely hyperbolic neural networks using the appa-

ratus of gyrovector spaces and even build hyperbolic VAEs, where the latent distri-

bution is supported in the hyperbolic space. Additional applications were found in

Recommender Systems [Tran et al., 2018] and language modeling [Gulcehre et al.,

2019]. The results above, however, are limited to models dealing with discrete data.

In Chapter 6, we discuss our approach on learning hyperbolic embeddings for various

visual tasks.

1.3 Summary of papers

1.3.1 Expressive Power of Recurrent Neural Networks

In this paper, we analyze the expressivity properties of RNNs, capitalizing on the

machinery developed in Cohen et al. [2016]. We consider RNNs with multiplicative

nonlinearity, specifically, the hidden state is updated as follows.

h𝑛+1 =
∑︁

𝑖𝑗

𝒢𝑖𝑗𝑘h𝑛
𝑖 x

𝑛
𝑗 , (1.1)

where h𝑛 is the hidden state at time step 𝑛, x𝑛 is the current input, and 𝒢𝑖𝑗𝑘 is

a trainable weight tensor. We show their connection to TT decomposition and

translate analysis of their expressivity to a statement about the manifold of tensors

represented in the TT format. We utilize the fact that this manifold forms an al-

gebraic variety and show that given a random 𝐷-way tensor represented in the TT

format (with arbitrary ranks), with probability 1, this tensor will have a CP-rank

exponential in 𝐷. CP-rank of a tensor is defined as the number of terms in the CP

decomposition of a tensor. Note that in this case, we consider two different decom-

positions of the same tensor and find a connection between their complexities. On

the language of deep learning, this means that RNNs with multiplicative nonlinear-
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Chapter 1. Introduction 1.3. Summary of papers

ities with probability one is equivalent to exponentially wide shallow network, i.e.,

they are exponentially more expressive. We additionally compare the expressivity of

CNNs and RNNs, corresponding to HT and TT decompositions, respectively. Our

numerical experiments with these architectures confirm our theoretical findings and

demonstrate the superiority of RNNs over the shallow networks in the sense of test

accuracy.

1.3.2 Generalized Tensor Models for Recurrent Neural Net-

works

This work is the follow up of our previous paper, “Expressive power of recurrent

neural networks”. Networks considered in the latter utilized multiplication as non-

linearity, which, though used in practice [Wu et al., 2016], is not very popular. We

extend our analysis to more practical ReLU nonlinearities. This makes the analysis

much more intricate since we cannot simply rely on the known results in algebraic ge-

ometry (which only deals with polynomials). We utilize so-called generalized tensor

decompositions which introduce an arbitrary commutative and associative operator

𝜉(·, ·). For the case of 𝜉(𝑥, 𝑦) = 𝑥𝑦, we get standard tensor decompositions. Fol-

lowing [Cohen and Shashua, 2016] we use the apparatus of grid tensors (grid of

values). Rather than comparing two functions exactly, an RNN and the correspond-

ing shallow network are compared on a large but finite grid of points. Our main

results are twofold. Firstly, we show that ReLU RNNs are universal, i.e., that can

represent any possible function (on a fixed grid of points). Secondly, we show that

they are expressive, but only to some extent: even though there exist exponentially

expressive RNNs, there also exists an open set of non-expressive RNNs, equivalent

to thin shallow networks. Our numerical experiments demonstrate that the effect of

inexpressiveness becomes negligible as we increase the depth/width of ReLU RNNs.

15



Chapter 1. Introduction 1.3. Summary of papers

1.3.3 Desingularization of Bounded Rank Matrix Sets

The low-rank matrix manifold defined as

ℳ≤𝑟 =
{︀
𝐴 ∈ R𝑛×𝑚 : rank(𝐴) ≤ 𝑟

}︀
,

often appears in practical tasks, such as matrix completion or recommender systems

[Vandereycken, 2013]. An appealing tool for solving optimization problems on this

manifold is the framework of Riemannian optimization [Vandereycken, 2013, Absil

et al., 2009], which allows to efficiently capitalize on the available manifold data,

such as the tangent space. In order to speed up the convergence, it is common to

utilize second-order methods (e.g., Newton method on manifolds). However, when

dealing with the low-rank matrix manifold, second-order Riemannian optimization

methods suffer from the so-called curvature blow up. Specifically, the curvature

term of ℳ≤𝑟 at a point 𝑋 is proportional to Σ−1, where Σ denotes the truncated

(at rank 𝑟) singular values of 𝑋. When 𝑋 approaches a matrix of strictly smaller

rank, this term tends to infinity. To alleviate this problem, we utilize the concept

of desingularization, a well-known technique in algebraic geometry. Informally, we

move the optimization problem from this singular set to a new, smooth manifold,

which, however, is intimately related to an original manifold. Concretely, we use the

following manifold:

̂︁ℳ𝑟 =
{︀
(𝐴, 𝑌 ) ∈ R𝑛×𝑚 ×𝐺𝑟(𝑚− 𝑟,𝑚) : 𝐴𝑌 = 0

}︀
,

here 𝐺𝑟 denotes the Grassmann manifold. It is easy to see that we can ‘lift’ op-

timization problems from ℳ≤𝑟 to ̂︁ℳ𝑟, which is, as we prove, a smooth manifold.

Using these observations, we build a second-order method on ̂︁ℳ𝑟 and show how

to implement it efficiently. We conclude with numerical experiments which demon-

strate the superiority of our method compared to more traditional ones, such as

truncated Newton method [Absil et al., 2009] or Riemannian conjugate gradient

[Smith, 1994].
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1.3.4 Geometry Score: A Method For Comparing Generative

Adversarial Networks

In this work, we attack the problem of evaluation of the quality of generative models,

in particular, GANs. Our analysis is inspired by the Manifold Hypothesis [Good-

fellow et al., 2016]. Informally, it states that any real-life data is supported on a

small dimensional manifold. Thus, if we have some generative model, we expect the

generated manifold to at least be close to the original manifold in ‘shape’. However,

how to quantify the difference in shapes of two manifolds, to which we do not have

direct access? We use Topological Data Analysis (TDA) in order to achieve this.

On a very high level, we construct an approximation of manifolds using simplicial

complexes — primitive spaces built out of simplexes. Note, however, that the task

of reconstruction of a manifold given simples from it is ill-posed: it could have been

a discrete set of points or a single blob. To alleviate this, the reconstruction hap-

pens at all possible scales at once, tracking the evolution from a discrete set to a

connected space. After simplicial complexes are built, we compute their topological

properties, namely persistent homology [Ghrist, 2008]. Homology, widely used in

algebraic topology, represents certain properties of a manifold shape, concretely, the

number of holes in it. Persistent homology allows one to find an approximation of

this characteristic for a sequence of simplicial complexes, as described above. We

then compare real data and generated data by comparing their topological charac-

teristic, and build a new metric termed Geometry Score. We show that it allows us

to distinguish between spaces of various shapes and compare GANs (even applied

to non-visual data, where such metrics as FID and Inception Distance are not ap-

plicable). We find that in cases when Inception Score fails, our metric still allows

distinguishing between two generative models.

1.3.5 Hyperbolic Image Embeddings

Hyperbolic geometry, recently introduced to the Machine Learning community in

[Nickel and Kiela, 2017], was shown to be very successful in tasks of graph/taxonomy

embeddings and several NLP problems. There was, however, no extension to the
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visual domain. In this work, we argue that hyperbolic geometry may be beneficial

for certain image-based tasks as well. We start by analyzing whether the visual

datasets contain hyperbolic structure. Our primary tool for this is 𝛿-Hyperbolicity

introduced in [Gromov, 1987]. It allows us to estimate the ‘degree’ to which the

given dataset is hyperbolic, and we find that this degree is quite high in such datasets

as CIFAR10, CUB, and MiniImageNet. We additionally suggest a new data-based

approach for estimation of the hyperparameter 𝑐, inversely related to the curvature of

hyperbolic space, which is necessary when building hyperbolic models. We show how

standard pipelines for few-shot learning and re-identification tasks can be modified

to incorporate hyperbolic geometry and perform extensive numerical experiments.

We find that even simple Euclidean models, when modified to hyperbolic geometry,

can perform on the level of state-of-the-art models.
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Chapter 2

Expressive Power of Recurrent

Neural Networks

2.1 Introduction

Deep neural networks solve many practical problems both in computer vision via

Convolutional Neural Networks (CNNs) [LeCun et al., 1995, Szegedy et al., 2015b,

He et al., 2016] and in audio and text processing via Recurrent Neural Networks

(RNNs) [Graves et al., 2013, Mikolov et al., 2011, Gers et al., 1999]. However,

although many works focus on expanding the theoretical explanation of neural net-

works success [Martens and Medabalimi, 2014, Delalleau and Bengio, 2011, Cohen

et al., 2016], the full theory is yet to be developed.

One line of work focuses on expressive power, i.e. proving that some architec-

tures are more expressive than others. [Cohen et al., 2016] showed the connection

between Hierarchical Tucker (HT) tensor decomposition and CNNs, and used this

connection to prove that deep CNNs are exponentially more expressive than their

shallow counterparts. However, no such result exists for Recurrent Neural Networks.

The contributions of this paper are three-fold.

1. We show the connection between recurrent neural networks and Tensor Train

decomposition (see Sec. 2.4);

2. We formulate and prove the expressive power theorem for the Tensor Train
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decomposition (see Sec. 2.5), which – on the language of RNNs – can be

interpreted as follows: to (exactly) emulate a recurrent neural network, a

shallow (non-recurrent) architecture of exponentially larger width is required;

3. Combining the obtained and known results, we compare the expressive power

of recurrent (TT), convolutional (HT), and shallow (CP) networks with each

other (see table 2.2).

G2G1 G3 Gd

f✓(x1) f✓(x2) f✓(x3) f✓(xd)

z1 z2 zd�1 ly(X)

Figure 2-1: Recurrent-type neural architecture that corresponds to the Tensor Train
decomposition. Gray circles are bilinear maps (for details see section 2.4).

2.2 Deep Learning and Tensor Networks

In this section, we review the known connections between tensor decompositions

and deep learning and then show the new connection between Tensor Train decom-

position and recurrent neural networks.

Suppose that we have a classification problem and a dataset of pairs

{(𝑋(𝑏), 𝑦(𝑏))}𝑁𝑏=1

. Let us assume that each object 𝑋(𝑏) is represented as a sequence of vectors

𝑋(𝑏) = (x1,x2, . . .x𝑑), x𝑘 ∈ R𝑛, (2.1)

which is often the case. To find this kind of representation for images, several

approaches are possible. The approach that we follow is to split an image into

patches of small size, possibly overlapping, and arrange the vectorized patches in a

certain order. An example of this procedure is presented on fig. 2-2.

20



Chapter 2. Expressive Power of RNNs 2.2. Deep Learning and Tensor Networks

41 32
5 …6

Figure 2-2: Representation of an image in the form of eq. (2.1). A window of size
7 × 7 moves across the image of size 28 × 28 extracting image patches, which are
then vectorized and arranged into a matrix of size 49× 16.

We use lower-dimensional representations of {x𝑘}𝑑𝑘=1. For this we introduce

a collection of parameter dependent feature maps {𝑓𝜃ℓ : R𝑛 → R}𝑚ℓ=1, which are

organized into a representation map

𝑓𝜃 : R𝑛 → R𝑚.

A typical choice for such a map is

𝑓𝜃(x) = 𝜎(𝐴x + 𝑏),

that is an affine map followed by some nonlinear activation 𝜎. In the image case if

𝑋 was constructed using the procedure described above, the map 𝑓𝜃 resembles the

traditional convolutional maps – each image patch is projected by an affine map with

parameters shared across all the patches, which is followed by a pointwise activation

function.

Score functions considered in [Cohen et al., 2016] can be written in the form

𝑙𝑦(𝑋) = ⟨𝒲𝑦,Φ(𝑋)⟩, (2.2)

where Φ(𝑋) is a feature tensor, defined as

Φ(𝑋)𝑖1𝑖2...𝑖𝑑 = 𝑓𝜃𝑖1 (x1)𝑓𝜃𝑖2 (x2) . . . 𝑓𝜃𝑖𝑑 (x𝑑), (2.3)

and 𝒲𝑦 ∈ R𝑚×𝑚×...𝑚 is a trainable weight tensor. Inner product in eq. (2.2) is
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just a total sum of the entry-wise product of Φ(𝑋) and 𝒲𝑦. It is also shown that

the hypothesis space of the form eq. (2.2) has the universal representation property

for 𝑚 → ∞. Similar score functions were considered in [Novikov et al., 2016,

Stoudenmire and Schwab, 2016].

Storing the full tensor𝒲𝑦 requires an exponential amount of memory, and to re-

duce the number of degrees of freedom one can use a tensor decompositions. Various

decompositions lead to specific network architectures and in this context, expressive

power of such a network is effectively measured by ranks of the decomposition, which

determine the complexity and a total number of degrees of freedom. For the Hierar-

chical Tucker (HT) decomposition, [Cohen et al., 2016] proved the expressive power

property, i.e. that for almost any tensor 𝒲𝑦 its HT-rank is exponentially smaller

than its CP-rank. We analyze Tensor Train-Networks (TT-Networks), which cor-

respond to a recurrent-type architecture. We prove that these networks also have

exponentially larger representation power than shallow networks (which correspond

to the CP-decomposition).

2.3 Tensor formats reminder

In this section we briefly review all the necessary definitions. As a 𝑑-dimensional

tensor 𝒳 we simply understand a multidimensional array:

𝒳 ∈ R𝑛1×𝑛2×...×𝑛𝑑 .

To work with tensors it is convenient to use their matricizations, which are defined

as follows. Let us choose some subset of axes 𝑠 = {𝑖1, 𝑖2 . . . 𝑖𝑚𝑠} of 𝒳 , and denote

its compliment by 𝑡 = {𝑗1, 𝑗2 . . . 𝑗𝑑−𝑚𝑠}, e.g. for a 4 dimensional tensor 𝑠 could be

{1, 3} and 𝑡 is {2, 4}. Then matricization of 𝒳 specified by (𝑠, 𝑡) is a matrix

𝒳 (𝑠,𝑡) ∈ R𝑛𝑖1
𝑛𝑖2

...𝑛𝑖𝑚𝑠
×𝑛𝑗1

𝑛𝑗2
...𝑛𝑗𝑑−𝑚𝑠 ,

obtained simply by transposing and reshaping the tensor 𝒳 into matrix, which in

practice e.g. in Python, is performed using numpy.reshape function. Let us now
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introduce tensor decompositions we will use later.

2.3.1 Canonical

Canonical decomposition, known as CANDECOMP/PARAFAC or CP-decomposition

for short [Harshman, 1970, Carroll and Chang, 1970], is defined as follows

𝒳 𝑖1𝑖2...𝑖𝑑 =
𝑟∑︁

𝛼=1

v𝑖1
1,𝛼v

𝑖2
2,𝛼 . . .v

𝑖𝑑
𝑑,𝛼, v𝑖,𝛼 ∈ R𝑛𝑖 . (2.4)

The minimal 𝑟 such that this decomposition exists is called the canonical or CP-rank

of 𝒳 . We will use the following notation

rank𝐶𝑃 𝒳 = 𝑟.

When rank𝐶𝑃 𝒳 = 1 it can be written simply as

𝒳 𝑖1𝑖2...𝑖𝑑 = v𝑖1
1 v𝑖2

2 . . .v𝑖𝑑
𝑑 ,

which means that modes of 𝒳 are perfectly separated from each other. Note that

storing all entries of a tensor 𝒳 requires 𝑂(𝑛𝑑) memory, while its canonical decompo-

sition takes only 𝑂(𝑑𝑛𝑟). However, the problems of determining the exact CP-rank

of a tensor and finding its canonical decomposition are NP-hard, and the problem

of approximating a tensor by a tensor of lower CP-rank is ill-posed.

2.3.2 Tensor Train

A tensor 𝒳 is said to be represented in the Tensor Train (TT) format [Oseledets,

2011] if each element of 𝒳 can be computed as follows

𝒳 𝑖1𝑖2...𝑖𝑑 =

𝑟1∑︁

𝛼1=1

𝑟2∑︁

𝛼2=1

. . .

𝑟𝑑−1∑︁

𝛼𝑑−1=1

𝐺𝑖1𝛼1
1 𝐺𝛼1𝑖2𝛼2

2 . . . 𝐺
𝛼𝑑−1𝑖𝑑
𝑑 , (2.5)

where the tensors 𝐺𝑘 ∈ R𝑟𝑘−1×𝑛𝑘×𝑟𝑘 (𝑟0 = 𝑟𝑑 = 1 by definition) are the so-called

TT-cores. The element-wise minimal ranks r = (𝑟1, . . . 𝑟𝑑−1) such that decomposi-
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tion (2.5) exists are called TT-ranks

rank𝑇𝑇 𝒳 = r.

Note that for fixed values of 𝑖1, 𝑖2 . . . , 𝑖𝑑, the right-hand side of eq. (2.5) is just a

product of matrices

𝐺1[1, 𝑖1, :]𝐺2[:, 𝑖2, :] . . . 𝐺𝑑[:, 𝑖𝑑, 1].

Storing 𝒳 in the TT-format requires 𝑂(𝑑𝑛𝑟2) memory and thus also achieves sig-

nificant compression of the data. Given some tensor 𝒳 , the algorithm for finding

its TT-decomposition is constructive and is based on a sequence of Singular Value

Decompositions (SVDs), which makes it more numerically stable than CP-format.

We also note that when all the TT-ranks equal to each other

rank𝑇𝑇 𝒳 = (𝑟, 𝑟, . . . , 𝑟),

we will sometimes write for simplicity

rank𝑇𝑇 𝒳 = 𝑟.

2.3.3 Hierarchical Tucker

A further generalization of the TT-format leads to the so-called Hierarchical Tucker

(HT) format. The definition of the HT-format is a bit technical and requires intro-

ducing the dimension tree [Grasedyck, 2010, Definition 3.1]. In the next section we

will provide an informal introduction into the HT-format, and for more details, we

refer the reader to [Grasedyck, 2010, Grasedyck and Hackbusch, 2011, Hackbusch,

2012].

2.4 Architectures based on Tensor Decompositions

To construct the tensorial networks we introduce bilinear and multilinear units,

which perform a bilinear (multilinear) map of their inputs (see fig. 2-3 for an illus-
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G
x y

z

(a) Bilinear unit

G

x1
x2 x3

x4

z

(b) Multilinear unit

Figure 2-3: Nodes performing multilinear map of their inputs. 𝑑-linear unit is
specified by a 𝑑+ 1 dimensional core 𝐺.

tration). Suppose that x ∈ R𝑛,y ∈ R𝑚 and 𝐺 ∈ R𝑛×𝑚×𝑘. Then a bilinear unit 𝐺

performs a bilinear map 𝐺 : R𝑛 × R𝑚 → R𝑘, defined by the formula

𝐺(x,y) = z,

z𝑘 =
∑︁

𝑖,𝑗

𝐺𝑖𝑗𝑘x𝑖y𝑗.
(2.6)

Similarly, for x1 ∈ R𝑛1 , . . .x𝑑 ∈ R𝑛𝑑 , a multilinear unit 𝐺 ∈ R𝑛1×𝑛2×...×𝑛𝑑×𝑛𝑗 defines

a multilinear map 𝐺 :
∏︀𝑑

𝑘=1 R𝑛𝑘 → R𝑛𝑗 by the formula

𝐺(x1,x2, . . . ,x𝑑) = z

z𝑗 =
∑︁

𝑖1,𝑖2,...,𝑖𝑑

𝐺𝑖1𝑖2...𝑖𝑑𝑗x𝑖1
1 x𝑖2

2 . . .x𝑖𝑑
𝑑 .

(2.7)

In the rest of this section, we describe how to compute the score functions 𝑙𝑦(𝑋)

(see eq. (2.1)) for each class label 𝑦, which then could be fed into the loss function

(such as cross-entropy). The architecture we propose to implement the score func-

tions is illustrated on fig. 2-1. For a vector r = (𝑟1, 𝑟2, . . . 𝑟𝑑−1) of positive integers

(rank hyperparameter) we define bilinear units

𝐺𝑘 ∈ R𝑟𝑘−1×𝑚×𝑟𝑘 ,

with 𝑟0 = 𝑟𝑑 = 1. Note that because 𝑟0 = 1, the first unit 𝐺1 is in fact just a linear

map, and because 𝑟𝑑 = 1 the output of the network is just a number. On a step

𝑘 ≥ 2 the representation 𝑓𝜃(x𝑘) and output of the unit 𝐺𝑘−1 of size 𝑟𝑘 are fed into

the unit 𝐺𝑘. Thus we obtain a recurrent-type neural network with multiplicative
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connections and without non-linearities.

To draw a connection with the Tensor Train decomposition we make the following

observation. For each of the class labels 𝑦 let us construct the tensor 𝒲𝑦 using the

definition of TT-decomposition (eq. (2.5)) and taking {𝐺𝑘}𝑑𝑘=1 used for constructing

𝑙𝑦(𝑋) as its TT-cores. Using the definition of the eq. (2.3) we find that the score

functions computed by the network from fig. 2-1 are given by the formula

𝑙𝑦(𝑋) =
∑︁

𝑖1,𝑖2,...𝑖𝑑

𝑊 𝑖1𝑖2...𝑖𝑑
𝑦 Φ(𝑋)𝑖1𝑖2...𝑖𝑑 , (2.8)

which is verified using eq. (2.5) and eq. (2.3). Thus, we can conclude that the

network presented on fig. 2-1 realizes the TT-decomposition of the weight tensor.

We also note that the size of the output of the bilinear unit 𝐺𝑘 in the TT-Network is

equal to 𝑟𝑘, which means that the TT-ranks correspond to the width of the network.

Let us now consider other tensor decompositions of the weight tensors 𝒲𝑦, con-

struct corresponding network architectures, and compare their properties with the

original TT-Network.

X

G1

G2

G3

Gr

f✓(x1)

f✓(x2)

f✓(xd)

ly(X)

(a) CP-Network

ly(X)

G1

G2

G3

G4

G6

G7

G8

f✓(x1)

f✓(x2)

f✓(x3)

f✓(x4)

(b) HT-Network

Figure 2-4: Examples of networks corresponding to various tensor decompositions.

A network corresponding to the CP-decomposition is visualized on fig. 2-4a.

Each multilinear unit 𝐺𝛼 is given by a summand in the formula eq. (2.4), namely

𝐺𝑖1𝑖2...𝑖𝑑
𝛼 = v𝑖1

1,𝛼v
𝑖2
2,𝛼 . . .v

𝑖𝑑
𝑑,𝛼, 𝛼 ∈ {1, . . . 𝑟}.

Note that the output of each 𝐺𝛼 in this case is just a number, and in total there are

rank𝐶𝑃 𝒲𝑦 multilinear units. Their outputs are then summed up by the Σ node. As
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before rank of the decomposition corresponds to the width of the network. However,

in this case the network is shallow, meaning that there is only one hidden layer.

On the fig. 2-4b a network of other kind is presented. Tensor decomposition

which underlies it is the Hierarchical Tucker decomposition, and hence we call it

the HT-Network. It is constructed using a binary tree, where each node other than

leaf corresponds to a bilinear unit, and leaves correspond to linear units. Inputs are

fed into leaves, and this data is passed along the tree to the root, which outputs a

number. Ranks, in this case, are just the sizes of the outputs of the intermediate

units. We will denote them by rank𝐻𝑇 𝒳 . These are networks considered in [Cohen

et al., 2016], where the expressive power of such networks was analyzed and was

argued that they resemble traditional CNNs. In general Hierarchical Tucker decom-

position may be constructed using an arbitrary tree, but not much theory is known

in general case.

Our main theoretical results are related to a comparison of the expressive power

of these kinds of networks. Namely, the question that we ask is as follows. Suppose

that we are given a TT-Network. How complex would be a CP- or HT-Network

realizing the same score function? A natural measure of complexity, in this case,

would be the rank of the corresponding tensor decomposition. To make transitioning

between tensor decompositions and deep learning vocabulary easier, we introduce

the following table.

Table 2.1: Correspondence between languages of Tensor Analysis and Deep Learn-
ing.

Tensor Decompositions Deep Learning
CP-decomposition shallow network
TT-decomposition RNN
HT-decomposition CNN

rank of the decomposition width of the network
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2.5 Theoretical Analysis

In this section we prove the expressive power theorem for the Tensor Train decompo-

sition, that is we prove that given a random 𝑑-dimensional tensor in the TT format

with ranks r and modes 𝑛, with probability 1 this tensor will have exponentially

large CP-rank. Note that the reverse result can not hold true since TT-ranks can

not be larger than CP-ranks: rank𝑇𝑇 𝒳 ≤ rank𝐶𝑃 𝒳 .
It is known that the problem of determining the exact CP-rank of a tensor is

NP-hard.

To bound CP-rank of a tensor the following lemma is useful.

Lemma 1. Let 𝒳 𝑖1𝑖2...𝑖𝑑 and rank𝐶𝑃 𝒳 = 𝑟. Then for any matricization 𝒳 (𝑠,𝑡) we

have rank𝒳 (𝑠,𝑡) ≤ 𝑟, where the ordinary matrix rank is assumed.

Proof. Proof is based on the following observation. Let

𝒜𝑖1𝑖2...𝑖𝑑 = v𝑖1
1 v𝑖2

2 . . .v𝑖𝑑
𝑑 ,

be a CP-rank 1 tensor. Note for any 𝑠, 𝑡

rank𝒜(𝑠,𝑡) = 1,

because 𝒜(𝑠,𝑡) can be written as uw𝑇 for some u and w. Then the statement of the

lemma follows from the facts that matricization is a linear operation, and that for

matrices

rank(𝐴+𝐵) ≤ rank𝐴+ rank𝐵.

We use this lemma to provide a lower bound on the CP-rank in the theorem

formulated below. For example, suppose that we found some matricization of a

tensor 𝒳 which has matrix rank 𝑟. Then, by using the lemma we can estimate that

rank𝐶𝑃 𝒳 ≥ 𝑟.

Let us denote n = (𝑛1, 𝑛2 . . . 𝑛𝑑). Set of all tensors 𝒳 with mode sizes n repre-
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sentable in TT-format with

rank𝑇𝑇 𝒳 ≤ r,

for some vector of positive integers r (inequality is understood entry-wise) forms an

irreducible algebraic variety ([Shafarevich and Hirsch, 1994]), which we denote by

ℳr. This means thatℳr is defined by a set of polynomial equations in R𝑛1×𝑛2...𝑛𝑑 ,

and that it can not be written as a union (not necessarily disjoint) of two proper non-

empty algebraic subsets. An example where the latter property does not hold would

be the union of axes 𝑥 = 0 and 𝑦 = 0 in R2, which is an algebraic set defined by the

equation 𝑥𝑦 = 0. The main fact that we use about irreducible algebraic varieties

is that any proper algebraic subset of them necessarily has measure 0 ([Ilyashenko

and Yakovenko, 2008]).

For simplicity let us assume that number of modes 𝑑 is even, that all mode sizes

are equal to 𝑛, and we consider ℳr with r = (𝑟, 𝑟 . . . 𝑟), so for any 𝒳 ∈ ℳr we

have

rank𝑇𝑇 𝒳 ≤ (𝑟, 𝑟, . . . , 𝑟),

entry-wise.

As the main result we prove the following theorem

Theorem 1. Suppose that 𝑑 = 2𝑘 is even. Define the following set

𝐵 = {𝒳 ∈ ℳr : rank𝐶𝑃 𝒳 < 𝑞
𝑑
2},

where 𝑞 = min{𝑛, 𝑟}.
Then

𝜇(𝐵) = 0,

where 𝜇 is the standard Lebesgue measure on ℳr.

Proof. Our proof is based on applying lemma 1 to a particular matricization of 𝒳 .

Namely, we would like to show that for 𝑠 = {1, 3, . . . 𝑑 − 1}, 𝑡 = {2, 4, . . . 𝑑} the

following set

𝐵(𝑠,𝑡) = {𝒳 ∈ ℳr : rank𝒳 (𝑠,𝑡) ≤ 𝑞
𝑑
2 − 1},
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has measure 0. Indeed, by lemma 1 we have

𝐵 ⊂ 𝐵(𝑠,𝑡),

so if 𝜇(𝐵(𝑠,𝑡)) = 0 then 𝜇(𝐵) = 0 as well. Note that 𝐵(𝑠,𝑡) is an algebraic subset

of ℳr given by the conditions that the determinants of all 𝑞
𝑑
2 × 𝑞

𝑑
2 submatrices of

𝒳 (𝑠,𝑡) are equal to 0. Thus to show that 𝜇(𝐵(𝑠,𝑡)) = 0 we need to find at least one

𝒳 such that rank𝒳 (𝑠,𝑡) ≥ 𝑞
𝑑
2 . This follows from the fact that because 𝐵(𝑠,𝑡) is an

algebraic subset of the irreducible algebraic varietyℳr, it is either equal toℳr or

has measure 0, as was explained before.

One way to construct such tensor is as follows. Let us define the following tensors:

𝐺𝑖1𝛼1
1 = 𝛿𝑖1𝛼1 , 𝐺1 ∈ R1×𝑛×𝑟

𝐺
𝛼𝑘−1𝑖𝑘𝛼𝑘

𝑘 = 𝛿𝑖𝑘𝛼𝑘−1
, 𝐺𝑘 ∈ R𝑟×𝑛×1, 𝑘 = 2, 4, 6, . . . , 𝑑− 2

𝐺
𝛼𝑘−1𝑖𝑘𝛼𝑘

𝑘 = 𝛿𝑖𝑘𝛼𝑘
, 𝐺𝑘 ∈ R1×𝑛×𝑟, 𝑘 = 3, 5, 7, . . . , 𝑑− 1

𝐺
𝛼𝑑−1𝑖𝑑
𝑑 = 𝛿𝑖𝑑𝛼𝑑−1

, 𝐺𝑑 ∈ R𝑟×𝑛×1

(2.9)

where 𝛿𝑖𝛼 is the Kronecker delta symbol:

𝛿𝑖𝛼 =

⎧
⎪⎨
⎪⎩
1, if 𝑖 = 𝛼,

0, if 𝑖 ̸= 𝛼.

The TT-ranks of the tensor 𝒳 defined by the TT-cores (2.9) are equal to

rank𝑇𝑇 𝒳 = (𝑟, 1, 𝑟, . . . , 𝑟, 1, 𝑟).

Lets consider the following matricization of the tensor 𝒳

𝒳 (𝑖1,𝑖3,...,𝑖𝑑−1),(𝑖2,𝑖4,...,𝑖𝑑)

The following identity holds true for any values of indices such that

𝑖𝑘 = 1, . . . , 𝑞, 𝑘 = 1, . . . , 𝑑.
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𝒳 (𝑖1,𝑖3,...,𝑖𝑑−1),(𝑖2,𝑖4,...,𝑖𝑑) =
∑︁

𝛼1,...,𝛼𝑑−1

𝐺𝑖1𝛼1
1 . . . 𝐺

𝛼𝑑−1𝑖𝑑
𝑑 =

∑︁

𝛼1,...,𝛼𝑑−1

𝛿𝑖1𝛼1𝛿𝑖2𝛼1𝛿𝑖3𝛼3 . . . 𝛿𝑖𝑑,𝛼𝑑−1
= 𝛿𝑖1𝑖2𝛿𝑖3𝑖4 . . . 𝛿𝑖𝑑−1𝑖𝑑

(2.10)

The last equality holds because
∑︀𝑟

𝛼𝑘=1 𝛿𝑖𝑘𝛼𝑘
𝛿𝑖𝑘+1𝛼𝑘

= 𝛿𝑖𝑘𝑖𝑘+1
for any 𝑖𝑘 = 1, . . . , 𝑞.

We obtain that

𝒳 (𝑖1,𝑖3,...,𝑖𝑑−1),(𝑖2,𝑖4,...,𝑖𝑑) = 𝛿𝑖1𝑖2𝛿𝑖3𝑖4 . . . 𝛿𝑖𝑑−1𝑖𝑑 = 𝐼(𝑖1,𝑖3,...,𝑖𝑑−1),(𝑖2,𝑖4,...,𝑖𝑑), (2.11)

where 𝐼 is the identity matrix of size 𝑞𝑑/2 × 𝑞𝑑/2 where 𝑞 = min{𝑛, 𝑟}.
To summarize, we found an example of a tensor 𝒳 such that rank𝑇𝑇 𝒳 ≤ r and

the matricization 𝒳 (𝑖1,𝑖3,...,𝑖𝑑−1),(𝑖2,𝑖4,...,𝑖𝑑) has a submatrix being equal to the identity

matrix of size 𝑞𝑑/2 × 𝑞𝑑/2, and hence rank𝒳 (𝑖1,𝑖3,...,𝑖𝑑−1),(𝑖2,𝑖4,...,𝑖𝑑) ≥ 𝑞𝑑/2.

This means that the canonical rank𝐶𝑃 𝒳 ≥ 𝑞𝑑/2 which concludes the proof.

In other words, we have proved that for all TT-Networks besides negligible

set, the equivalent CP-Network will have exponentially large width. To compare

the expressive powers of the HT- and TT-Networks we use the following theorem

[Grasedyck, 2010, Section 5.3.2].

Theorem 2. For any tensor 𝒳 the following estimates hold.

• If rank𝑇𝑇 𝒳 ≤ 𝑟, then rank𝐻𝑇 𝒳 ≤ 𝑟2.

• If rank𝐻𝑇 𝒳 ≤ 𝑟, then rank𝑇𝑇 𝒳 ≤ 𝑟 log2(𝑑)/2.

It is also known that this bounds are sharp (see [Buczyńska et al., 2015]). Thus,

we can summarize all the results in the following table 2.2.

Example that requires exponential width in a shallow network A partic-

ular example used to prove Theorem 1 is not important per se since the Theorem

states that TT is exponentially more expressive than CP for almost any tensor (for

a set of tensors of measure one). However, to illustrate how the Theorem translates

into neural networks consider the following example.
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Table 2.2: Comparison of the expressive power of various networks. Given a network
of width 𝑟, specified in a column, rows correspond to the upper bound on the width
of the equivalent network of other type (we assume that the number of feature maps
𝑚 is greater than the width of the network 𝑟).

TT-Network HT-Network CP-Network
TT-Network 𝑟 𝑟 log2(𝑑)/2 𝑟
HT-Network 𝑟2 𝑟 𝑟

CP-Network ≥ 𝑟
𝑑
2 ≥ 𝑟

𝑑
2 𝑟

Consider the task of getting 𝑑 input vectors with 𝑛 elements each and aiming to

compute the following measure of similarity between x1, . . . ,x𝑑/2 and x𝑑/2+1, . . . ,x𝑑:

𝑙(𝑋) = (xᵀ
1x𝑑/2+1) . . . (x

ᵀ
𝑑/2x𝑑) (2.12)

We argue that it can be done with a TT-Network of width 𝑛 by using the

TT-tensor 𝒳 defined in the proof of Theorem 1 and feeding the input vectors in the

following order: x1,x𝑑/2+1, . . .x𝑑/2,x𝑑. The CP-network representing the same func-

tion will have 𝑛𝑑/2 terms (and hence 𝑛𝑑/2 width) and will correspond to expanding

brackets in the expression (2.12).

The case of equal TT-cores In analogy to the traditional RNNs we can consider

a special class of Tensor Trains with the property that all the intermediate TT-cores

are equal to each other: 𝐺2 = 𝐺3 = · · · = 𝐺𝑑−1, which allows for processing

sequences of varied length. We hypothesize that for this class exactly the same

result as in Theorem 1 holds i.e. if we denote the variety of Tensor Trains with

equal TT-cores byℳ𝑒𝑞
r , we believe that the following hypothesis holds true:

Hypothesis 1. Theorem 1 is also valid if ℳr is replaced by ℳ𝑒𝑞
r .

To prove it we can follow the same route as in the proof of Theorem 1. While

we leave finding an analytical example of a tensor with the desired property of rank

maximality to a future work, we have verified numerically that randomly generated

tensors 𝒳 from ℳ𝑒𝑞
r with 𝑑 = 6, 𝑛 ranging from 2 to 10 and 𝑟 ranging from 2 to

20 (we have checked 1000 examples for each possible combination) indeed satisfy
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Figure 2-5: Decision boundaries of the TT-Network on toy 2-D datasets.

rank𝐶𝑃 𝒳 ≥ 𝑞
𝑑
2 .

2.6 Experiments

In this section, we experimentally check if indeed – as suggested by theorem 1 –

the CP-Networks require exponentially larger width compared to the TT-Networks

to fit a dataset to the same level of accuracy. This is not clear from the theorem

since for natural data, functions that fit this data may lay in the neglectable set

where the ranks of the TT- and CP-networks are related via a polynomial function

(in contrast to the exponential relationship for all function outside the neglectable

set). Other possible reasons why the theory may be disconnected with practice are

optimization issues (although a certain low-rank tensor exists, we may fail to find it

with SGD) and the existence of the feature maps, which were not taken into account

in the theory.

To train the TT- and CP-Networks, we implemented them in TensorFlow ([Abadi

et al., 2015]) and used Adam optimizer with batch size 32 and learning rate sweeping

across {4e-3, 2e-3, 1e-3, 5e-4} values. Since we are focused on assessing the expres-

sivity of the format (in contrast to its sensitivity to hyperparameters), we always

choose the best performing run according to the training loss.

For the first experiment, we generate two-dimensional datasets with Sklearn

tools ‘moons‘ and ‘circles‘ [Pedregosa et al., 2011] and for each training example feed

the two features as two patches into the TT-Network (see fig. 2-5). This example

shows that the TT-Networks can implement nontrivial decision boundaries.

For the next experiments, we use computer vision datasets MNIST [LeCun et al.,
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Figure 2-6: Train accuracy on CIFAR-10 for the TT- and CP-Networks wrt rank
of the decomposition and total number of parameters (feature size 4 was used).
Note that with rank increase the CP-Networks sometimes perform worse due to
optimization issues.

1990] and CIFAR-10 [Krizhevsky and Hinton, 2009]. MNIST is a collection of 70000

handwritten digits, CIFAR-10 is a dataset of 60000 natural images which are to be

classified into 10 classes such as bird or cat. We feed raw pixel data into the TT- and

CP-Networks (which extract patches and apply a trainable feature map to them,

see section 2.2). In our experiments we choose patch size to be 8×8, feature maps to

be affine maps followed by the ReLU activation and we set number of such feature

maps to 4. For MNIST, both TT- and CP-Networks show reasonable performance

(1.0 train accuracy, 0.95 test accuracy without regularizers, and 0.98 test accuracy

with dropout 0.8 applied to each patch) even with ranks less than 5, which may

indicate that the dataset is too simple to draw any conclusion, but serves as a sanity

check.

We report the training accuracy for CIFAR-10 on fig. 2-6. Note that we did not

use regularizers of any sort for this experiment since we wanted to compare expressive

power of networks (the best test accuracy we achieved this way on CIFAR-10 is 0.45

for the TT-Network and 0.2 for the CP-Network). On practice, the expressive power

of the TT-Network is only polynomially better than that of the CP-network (fig. 2-

6), probably because of the reasons discussed above.
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2.7 Related work

A large body of work is devoted to analyzing the theoretical properties of neural

networks [Cybenko, 1989, Hornik et al., 1989, Shwartz-Ziv and Tishby, 2017]. Re-

cent studies focus on depth efficiency [Raghu et al., 2017, Montufar et al., 2014,

Eldan and Shamir, 2016, Sutskever et al., 2013], in most cases providing worst-case

guaranties such as bounds between deep and shallow networks width. Two works are

especially relevant since they analyze depth efficiency from the viewpoint of tensor

decompositions: expressive power of the Hierarchical Tucker decomposition [Cohen

et al., 2016] and its generalization to handle activation functions such as ReLU [Co-

hen and Shashua, 2016]. However, all of the works above focus on feedforward

networks, while we tackle recurrent architectures. The only other work that tackles

expressivity of RNNs is the concurrent work that applies the TT-decomposition to

explicitly modeling high-order interactions of the previous hidden states and analy-

ses the expressive power of the resulting architecture [Yu et al., 2017]. This work,

although very related to ours, analyses a different class of recurrent models.

Models similar to the TT-Network were proposed in the literature but were con-

sidered from the practical point of view in contrast to the theoretical analyses pro-

vided in this paper. [Novikov et al., 2016, Stoudenmire and Schwab, 2016] proposed

a model that implements eq. (2.2), but with a predefined (not learnable) feature

map Φ. [Wu et al., 2016] explored recurrent neural networks with multiplicative

connections, which can be interpreted as the TT-Networks with bilinear maps that

are shared 𝐺𝑘 = 𝐺 and have low-rank structure imposed on them.

2.8 Conclusion

In this paper, we explored the connection between recurrent neural networks and

Tensor Train decomposition and used it to prove the expressive power theorem,

which states that a shallow network of exponentially large width is required to

mimic a recurrent neural network. The downsides of this approach is that it provides

worst-case analysis and do not take optimization issues into account. In the future

work, we would like to address the optimization issues by exploiting the Riemannian
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geometry properties of the set of TT-tensors of fixed rank and extend the analysis

to networks with non-linearity functions inside the recurrent connections (as was

done for CNNs in [Cohen and Shashua, 2016]).

36



Chapter 3

Generalized Tensor Models For

Recurrent Neural Networks

3.1 Introduction

Recurrent Neural Networks are firmly established to be one of the best deep learning

techniques when the task at hand requires processing sequential data, such as text,

audio, or video [Graves et al., 2013, Mikolov et al., 2011, Gers et al., 1999]. The

ability of these neural networks to efficiently represent a rich class of functions with

a relatively small number of parameters is often referred to as depth efficiency, and

the theory behind this phenomenon is not yet fully understood. A recent line of

work [Cohen and Shashua, 2016, Cohen et al., 2016, Khrulkov et al., 2018, Cohen

et al., 2018] focuses on comparing various deep learning architectures in terms of

their expressive power.

It was shown in [Cohen et al., 2016] that ConvNets with product pooling are

exponentially more expressive than shallow networks, that is there exist functions

realized by ConvNets which require an exponentially large number of parameters in

order to be realized by shallow nets. A similar result also holds for RNNs with mul-

tiplicative recurrent cells [Khrulkov et al., 2018]. We aim to extend this analysis to

RNNs with rectifier nonlinearities which are often used in practice. The main chal-

lenge of such analysis is that the tools used for analyzing multiplicative networks,

namely, properties of standard tensor decompositions and ideas from algebraic ge-
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ometry, can not be applied in this case, and thus some other approach is required.

Our objective is to apply the machinery of generalized tensor decompositions, and

show universality and existence of depth efficiency in such RNNs.

3.2 Related work

Tensor methods have a rich history of successful application in machine learning.

[Vasilescu and Terzopoulos, 2002], in their framework of TensorFaces, proposed to

treat facial image data as multidimensional arrays and analyze them with tensor

decompositions, which led to significant boost in face recognition accuracy. [Bailey

and Aeron, 2017] employed higher-order co-occurence data and tensor factorization

techniques to improve on word embeddings models. Tensor methods also allow to

produce more accurate and robust recommender systems by taking into account a

multifaceted nature of real environments [Frolov and Oseledets, 2017].

In recent years a great deal of work was done in applications of tensor calculus to

both theoretical and practical aspects of deep learning algorithms. [Lebedev et al.,

2014] represented filters in a convolutional network with CP decomposition [Harsh-

man, 1970, Carroll and Chang, 1970] which allowed for much faster inference at the

cost of a negligible drop in performance. [Novikov et al., 2015] proposed to use Ten-

sor Train (TT) decomposition [Oseledets, 2011] to compress fully–connected layers

of large neural networks while preserving their expressive power. Later on, TT was

exploited to reduce the number of parameters and improve the performance of recur-

rent networks in long–term forecasting [Yu et al., 2017] and video classification [Yang

et al., 2017] problems.

In addition to the practical benefits, tensor decompositions were used to an-

alyze theoretical aspects of deep neural nets. [Cohen et al., 2016] investigated a

connection between various network architectures and tensor decompositions, which

made possible to compare their expressive power. Specifically, it was shown that CP

and Hierarchial Tucker [Grasedyck, 2010] decompositions correspond to shallow net-

works and convolutional networks respectively. Recently, this analysis was extended

by [Khrulkov et al., 2018] who showed that TT decomposition can be represented as
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a recurrent network with multiplicative connections. This specific form of RNNs was

also empirically proved to provide a substantial performance boost over standard

RNN models [Wu et al., 2016].

First results on the connection between tensor decompositions and neural net-

works were obtained for rather simple architectures, however, later on, they were

extended in order to analyze more practical deep neural nets. It was shown that

theoretical results can be generalized to a large class of CNNs with ReLU nonlin-

earities [Cohen and Shashua, 2016] and dilated convolutions [Cohen et al., 2018],

providing valuable insights on how they can be improved. However, there is a miss-

ing piece in the whole picture as theoretical properties of more complex nonlinear

RNNs have yet to be analyzed. In this paper, we elaborate on this problem and

present new tools for conducting a theoretical analysis of such RNNs, specifically

when rectifier nonlinearities are used.

3.3 Architectures inspired by tensor decompositions

Let us now recall the known results about the connection of tensor decompositions

and multiplicative architectures, and then show how they are generalized in order

to include networks with ReLU nonlinearities.

3.3.1 Score functions and feature tensor

Suppose that we are given a dataset of objects with a sequential structure, i.e. every

object in the dataset can be written as

𝑋 =
(︀
x(1),x(2), . . . ,x(𝑇 )

)︀
, x(𝑡) ∈ R𝑁 . (3.1)

We also introduce a parametric feature map 𝑓𝜃 : R𝑁 → R𝑀 which essentially pre-

processes the data before it is fed into the network. Assumption 3.1 holds for many

types of data, e.g. in the case of natural images we can cut them into rectangular

patches which are then arranged into vectors x(𝑡). A typical choice for the feature

map 𝑓𝜃 in this particular case is an affine map followed by a nonlinear activation:
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𝑓𝜃(x) = 𝜎(Ax+ b). To draw the connection between tensor decompositions and

feature tensors we consider the following score functions (logits1):

ℓ(𝑋) = ⟨𝒲 ,Φ(𝑋)⟩ = (vec𝒲)⊤ vecΦ(𝑋), (3.2)

where 𝒲 ∈ R𝑀×𝑀×...×𝑀 is a trainable 𝑇–way weight tensor and Φ(𝑋) ∈ R𝑀×𝑀×...×𝑀

is a rank 1 feature tensor, defined as

Φ(𝑋) = 𝑓𝜃(x
(1))⊗ 𝑓𝜃(x

(2)) . . .⊗ 𝑓𝜃(x
(𝑇 )), (3.3)

where we have used the operation of outer product ⊗, which is important in tensor

calculus. For a tensor 𝒜 of order 𝑁 and a tensor ℬ of order 𝑀 their outer product

𝒞 = 𝒜⊗ℬ is a tensor of order 𝑁 +𝑀 defined as:

𝒞𝑖1𝑖2...𝑖𝑁 𝑗1𝑗2...𝑗𝑀 = 𝒜𝑖1𝑖2···𝑖𝑁ℬ𝑗1𝑗2···𝑗𝑀 . (3.4)

It is known that (3.2) possesses the universal approximation property (it can

approximate any function with any prescribed precision given sufficiently large 𝑀)

under mild assumptions on 𝑓𝜃 [Cohen et al., 2016, Poggio and Girosi, 1990].

3.3.2 Tensor Decompositions

Working the entire weight tensor 𝒲 in eq. (3.2) is impractical for large 𝑀 and

𝑇 , since it requires exponential in 𝑇 number of parameters. Thus, we compactly

represent it using tensor decompositions, which will further lead to different neural

network architectures, referred to as tensor networks [Cichocki et al., 2017].

CP-decomposition The most basic decomposition is the so-called Canonical

(CP) decomposition [Harshman, 1970, Carroll and Chang, 1970] which is defined
1By logits we mean immediate outputs of the last hidden layer before applying nonlinearity.

This term is adopted from classification tasks where neural network usually outputs logits and
following softmax nonlinearity transforms them into valid probabilities.
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as follows

𝒲 =
𝑅∑︁

𝑟=1

𝜆𝑟v
(1)
𝑟 ⊗ v(2)

𝑟 ⊗ . . .⊗ v(𝑇 )
𝑟 (3.5)

where v
(𝑡)
𝑟 ∈ R𝑀 and minimal value of 𝑅 such that decomposition (3.3.2) exists

is called canonical rank of a tensor (CP–rank). By substituting section 3.3.2 into

eq. (3.2) we find that

ℓ(𝑋) =
𝑅∑︁

𝑟=1

𝜆𝑟

[︀
⟨𝑓𝜃(x(1)),v(1)

𝑟 ⟩ ⊗ . . .⊗ ⟨𝑓𝜃(x(𝑇 )),v(𝑇 )
𝑟 ⟩

]︀
=

𝑅∑︁

𝑟=1

𝜆𝑟

𝑇∏︁

𝑡=1

⟨𝑓𝜃(x(𝑡)),v(𝑡)
𝑟 ⟩.

(3.6)

In the equation above, outer products ⊗ are taken between scalars and coincide with

the ordinary products between two numbers. However, we would like to keep this

notation as it will come in handy later, when we generalize tensor decompositions

to include various nonlinearities.

TT-decomposition Another tensor decomposition is Tensor Train (TT) decom-

position [Oseledets, 2011] which is defined as follows

𝒲 =

𝑅1∑︁

𝑟1=1

. . .

𝑅𝑇−1∑︁

𝑟𝑇−1=1

g(1)
𝑟0𝑟1
⊗ g(2)

𝑟1𝑟2
⊗ . . .⊗ g(𝑇 )

𝑟𝑇−1𝑟𝑇
, (3.7)

where g
(𝑡)
𝑟𝑡−1𝑟𝑡 ∈ R𝑀 and 𝑟0 = 𝑟𝑇 = 1 by definition. If we gather vectors g(𝑡)

𝑟𝑡−1𝑟𝑡 for all

corresponding indices 𝑟𝑡−1 ∈ {1, . . . , 𝑅𝑡−1} and 𝑟𝑡 ∈ {1, . . . , 𝑅𝑡} we will obtain three–

dimensional tensors 𝒢(𝑡) ∈ R𝑀×𝑅𝑡−1×𝑅𝑡 (for 𝑡 = 1 and 𝑡 = 𝑇 we will get matrices

𝒢(1) ∈ R𝑀×1×𝑅1 and 𝒢(𝑇 ) ∈ R𝑀×𝑅𝑇−1×1). The set of all such tensors {𝒢(𝑡)}𝑇𝑡=1 is

called TT–cores and minimal values of {𝑅𝑡}𝑇−1
𝑡=1 such that decomposition (3.7) exists

are called TT–ranks. In the case of TT decomposition, the score function has the

following form:

ℓ(𝑋) =

𝑅1∑︁

𝑟1=1

. . .

𝑅𝑇−1∑︁

𝑟𝑇−1=1

𝑇∏︁

𝑡=1

⟨𝑓𝜃(x(𝑡)),g(𝑡)
𝑟𝑡−1𝑟𝑡

⟩. (3.8)
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3.3.3 Connection between TT and RNN

Now we want to show that the score function for Tensor Train decomposition exhibits

particular recurrent structure similar to that of RNN. We define the following hidden

states :
h(1) ∈ R𝑅1 : h(1)

𝑟1
= ⟨𝑓𝜃(x(1)),g(1)

𝑟0𝑟1
⟩,

h(𝑡) ∈ R𝑅𝑡 : h(𝑡)
𝑟𝑡 =

𝑅𝑡−1∑︁

𝑟𝑡−1=1

⟨𝑓𝜃(x(𝑡)),g(𝑡)
𝑟𝑡−1𝑟𝑡

⟩h(𝑡−1)
𝑟𝑡−1

𝑡 = 2, . . . , 𝑇.
(3.9)

Such definition of hidden states allows for more compact form of the score function.

Lemma 2. Under the notation introduced in eq. (3.9), the score function can be

written as

ℓ(𝑋) = h(𝑇 ) ∈ R1.

Proof of Lemma 2 as well as the proofs of our main results from Section 3.5 were

moved to Section 3.8 due to limited space.

Note that with a help of TT–cores we can rewrite eq. (3.9) in a more convenient

index form:

h
(𝑡)
𝑘 =

∑︁

𝑖,𝑗

𝒢(𝑡)
𝑖𝑗𝑘 𝑓𝜃(x

(𝑡))𝑖 h
(𝑡−1)
𝑗 =

∑︁

𝑖,𝑗

𝒢(𝑡)
𝑖𝑗𝑘

[︀
𝑓𝜃(x

(𝑡))⊗ h(𝑡−1)
]︀
𝑖𝑗
, 𝑘 = 1, . . . , 𝑅𝑡,

(3.10)

where the operation of tensor contraction is used. Combining all weights from 𝒢(𝑡)

and 𝑓𝜃(·) into a single variable Θ
(𝑡)
𝒢 and denoting the composition of feature map,

outer product, and contraction as 𝑔 : R𝑅𝑡−1 ×R𝑁 ×R𝑁×𝑅𝑡−1×𝑅𝑡 → R𝑅𝑡 we arrive at

the following vector form:

h(𝑡) = 𝑔(h(𝑡−1),x(𝑡); Θ
(𝑡)
𝒢 ), h(𝑡) ∈ R𝑅𝑡 . (3.11)

This equation can be considered as a generalization of hidden state equation for

Recurrent Neural Networks as here all hidden states h(𝑡) may in general have different

dimensionalities and weight tensors Θ
(𝑡)
𝒢 depend on the time step. However, if we

set 𝑅 = 𝑅1 = · · · = 𝑅𝑇−1 and 𝒢 = 𝒢(2) = · · · = 𝒢(𝑇−1) we will get simplified hidden
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state equation used in standard recurrent architectures:

h(𝑡) = 𝑔(h(𝑡−1),x(𝑡); Θ𝒢), h(𝑡) ∈ R𝑅, 𝑡 = 2, . . . , 𝑇 − 1. (3.12)

Note that this equation is applicable to all hidden states except for the first h(1) =

𝒢(1)𝑓𝜃(x
(1)) and for the last h(𝑇 ) = 𝑓⊤

𝜃 (x
(𝑇 ))𝒢(𝑇 )h(𝑇−1), due to two–dimensional na-

ture of the corresponding TT–cores. However, we can always pad the input sequence

with two auxiliary vectors x(0) and x(𝑇+1) to get full compliance with the standard

RNN structure. Figure 3-1 depicts tensor network induced by TT decomposition

with cores {𝒢(𝑡)}𝑇𝑡=1.

Figure 3-1: Neural network architecture which corresponds to recurrent TT–
Network.

3.4 Generalized tensor networks

3.4.1 Generalized outer product

In the previous section we showed that tensor decompositions correspond to neural

networks of specific structure, which are simplified versions of those used in practice

as they contain multiplicative nonlinearities only. One possible way to introduce

more practical nonlinearities is to replace outer product ⊗ in eq. (3.6) and eq. (3.10)

with a generalized operator ⊗𝜉 in analogy to kernel methods when scalar product

is replaced by nonlinear kernel function. Let 𝜉 : R × R → R be an associative

and commutative binary operator (∀𝑥, 𝑦, 𝑧 ∈ R : 𝜉(𝜉(𝑥, 𝑦), 𝑧) = 𝜉(𝑥, 𝜉(𝑦, 𝑧)) and

∀𝑥, 𝑦 ∈ R : 𝜉(𝑥, 𝑦) = 𝜉(𝑦, 𝑥)). Note that this operator easily generalizes to the

arbitrary number of operands due to associativity. For a tensor 𝒜 of order 𝑁 and

a tensor ℬ of order 𝑀 we define their generalized outer product 𝒞 = 𝒜⊗𝜉 ℬ as an
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(𝑁 +𝑀) order tensor with entries given by:

𝒞𝑖1...𝑖𝑁 𝑗1...𝑗𝑀 = 𝜉 (𝒜𝑖1...𝑖𝑁 ,ℬ𝑗1...𝑗𝑀 ) . (3.13)

Now we can replace ⊗ in eqs. (3.6) and (3.10) with ⊗𝜉 and get networks with various

nonlinearities. For example, if we take 𝜉(𝑥, 𝑦) = max(𝑥, 𝑦, 0) we will get an RNN

with rectifier nonlinearities; if we take 𝜉(𝑥, 𝑦) = ln(𝑒𝑥+ 𝑒𝑦) we will get an RNN with

softplus nonlinearities; if we take 𝜉(𝑥, 𝑦) = 𝑥𝑦 we will get a simple RNN defined in

the previous section. Concretely, we will analyze the following networks.
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Generalized shallow network with 𝜉–nonlinearity

• Score function:

ℓ(𝑋) =
𝑅∑︁

𝑟=1

𝜆𝑟

[︀
⟨𝑓𝜃(x(1)),v(1)

𝑟 ⟩ ⊗𝜉 . . .⊗𝜉 ⟨𝑓𝜃(x(𝑇 )),v(𝑇 )
𝑟 ⟩

]︀

=
𝑅∑︁

𝑟=1

𝜆𝑟𝜉
(︀
⟨𝑓𝜃(x(1)),v(1)

𝑟 ⟩, . . . , ⟨𝑓𝜃(x(𝑇 )),v(𝑇 )
𝑟 ⟩

)︀
(3.14)

• Parameters of the network:

Θ =
(︁
{𝜆𝑟}𝑅𝑟=1 ∈ R, {v(𝑡)

𝑟 }𝑅,𝑇
𝑟=1,𝑡=1 ∈ R𝑀

)︁
(3.15)

Generalized RNN with 𝜉–nonlinearity

• Score function:

h
(𝑡)
𝑘 =

∑︁

𝑖,𝑗

𝒢(𝑡)
𝑖𝑗𝑘

[︀
C(𝑡)𝑓𝜃(x

(𝑡))⊗𝜉 h
(𝑡−1)

]︀
𝑖𝑗
=

∑︁

𝑖,𝑗

𝒢(𝑡)
𝑖𝑗𝑘 𝜉

(︁
[C(𝑡)𝑓𝜃(x

(𝑡))]𝑖 ,h
(𝑡−1)
𝑗

)︁

ℓ(𝑋) = h(𝑇 )

(3.16)

• Parameters of the network:

Θ =
(︁
{C(𝑡)}𝑇𝑡=1 ∈ R𝐿×𝑀 , {𝒢(𝑡)}𝑇𝑡=1 ∈ R𝐿×𝑅𝑡−1×𝑅𝑡

)︁
(3.17)

Note that in eq. (3.16) we have introduced the matrices C(𝑡) acting on the input

states. The purpose of this modification is to obtain the plausible property of

generalized shallow networks being able to be represented as generalized RNNs of

width 1 (i.e., with all 𝑅𝑖 = 1) for an arbitrary nonlinearity 𝜉. In the case of 𝜉(𝑥, 𝑦) =

𝑥𝑦, the matrices C(𝑡) were not necessary, since they can be simply absorbed by 𝒢(𝑡)

via tensor contraction (see Section 3.8 for further clarification on these points).

Initial hidden state Note that generalized RNNs require some choice of the

initial hidden state h(0). We find that it is convenient both for theoretical analysis

and in practice to initialize h(0) as unit of the operator 𝜉, i.e. such an element 𝑢
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that 𝜉(𝑥, 𝑦, 𝑢) = 𝜉(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ R. Henceforth, we will assume that such an element

exists (e.g., for 𝜉(𝑥, 𝑦) = max(𝑥, 𝑦, 0) we take 𝑢 = 0, for 𝜉(𝑥, 𝑦) = 𝑥𝑦 we take 𝑢 = 1),

and set h(0) = 𝑢. For example, in eq. (3.9) it was implicitly assumed that h(0) = 1.

3.4.2 Grid tensors

Introduction of generalized outer product allows us to investigate RNNs with wide

class of nonlinear activation functions, especially ReLU. While this change looks

appealing from the practical viewpoint, it complicates following theoretical analysis,

as the transition from obtained networks back to tensors is not straightforward.

In the discussion above, every tensor network had corresponding weight tensor

𝒲 and we could compare expressivity of associated score functions by compar-

ing some properties of this tensors, such as ranks [Khrulkov et al., 2018, Cohen

et al., 2016]. This method enabled comprehensive analysis of score functions, as

it allows us to calculate and compare their values for all possible input sequences

𝑋 =
(︀
x(1), . . . ,x(𝑇 )

)︀
. Unfortunately, we can not apply it in case of generalized tensor

networks, as the replacement of standard outer product ⊗ with its generalized ver-

sion ⊗𝜉 leads to the loss of conformity between tensor networks and weight tensors.

Specifically, not for every generalized tensor network with corresponding score func-

tion ℓ(𝑋) now exists a weight tensor 𝒲 such that ℓ(𝑋) = ⟨𝒲 ,Φ(𝑋)⟩. Also, such

properties as universality no longer hold automatically and we have to prove them

separately. Indeed as it was noticed in [Cohen and Shashua, 2016] shallow networks

with 𝜉(𝑥, 𝑦) = max(𝑥, 0) + max(𝑦, 0) no longer have the universal approximation

property. In order to conduct proper theoretical analysis, we adopt the apparatus

of so-called grid tensors, first introduced in [Cohen and Shashua, 2016].

Given a set of fixed vectors X =
{︀
x(1), . . . ,x(𝑀)

}︀
referred to as templates, the

grid tensor of X is defined to be the tensor of order 𝑇 and dimension 𝑀 in each

mode, with entries given by:

Γℓ(X)𝑖1𝑖2...𝑖𝑇 = ℓ (𝑋) , 𝑋 =
(︀
x(𝑖1),x(𝑖2), . . . ,x(𝑖𝑇 )

)︀
, (3.18)

where each index 𝑖𝑡 can take values from {1, . . . ,𝑀}, i.e. we evaluate the score
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function on every possible input assembled from the template vectors {x(𝑖)}𝑀𝑖=1. To

put it simply, we previously considered the equality of score functions represented

by tensor decomposition and tensor network on set of all possible input sequences

𝑋 =
(︀
x(1), . . . ,x(𝑇 )

)︀
, x(𝑡) ∈ R𝑁 , and now we restricted this set to exponentially

large but finite grid of sequences consisting of template vectors only.

Define the matrix F ∈ R𝑀×𝑀 which holds the values taken by the representation

function 𝑓𝜃 : R𝑁 → R𝑀 on the selected templates X:

F ,
[︁
𝑓𝜃(x

(1)) 𝑓𝜃(x
(2)) . . . 𝑓𝜃(x

(𝑀))
]︁⊤

. (3.19)

Using the matrix F we note that the grid tensor of generalized shallow network has

the following form (see Section 3.8 for derivation):

Γℓ(X) =
𝑅∑︁

𝑟=1

𝜆𝑟

(︀
Fv(1)

𝑟

)︀
⊗𝜉

(︀
Fv(2)

𝑟

)︀
⊗𝜉 . . .⊗𝜉

(︀
Fv(𝑇 )

𝑟

)︀
. (3.20)

Construction of the grid tensor for generalized RNN is a bit more involved. We find

that its grid tensor Γℓ(X) can be computed recursively, similar to the hidden state

in the case of a single input sequence. The exact formulas turned out to be rather

cumbersome and we moved them to Section 3.8.

3.5 Main results

With grid tensors at hand we are ready to compare the expressive power of gen-

eralized RNNs and generalized shallow networks. In the further analysis, we will

assume that 𝜉(𝑥, 𝑦) = max(𝑥, 𝑦, 0), i.e., we analyze RNNs and shallow networks

with rectifier nonlinearity. However, we need to make two additional assumptions.

First of all, similarly to [Cohen and Shashua, 2016] we fix some templates X such

that values of the score function outside of the grid generated by X are irrelevant

for classification and call them covering templates. It was argued that for image

data values of 𝑀 of order 100 are sufficient (corresponding covering template vec-

tors may represent Gabor filters). Secondly, we assume that the feature matrix F is
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invertible, which is a reasonable assumption and in the case of 𝑓𝜃(x) = 𝜎(Ax + b)

for any distinct template vectors X the parameters A and b can be chosen in such

a way that the matrix F is invertible.

3.5.1 Universality

As was discussed in section 3.4.2 we can no longer use standard algebraic techniques

to verify universality of tensor based networks. Thus, our first result states that

generalized RNNs with 𝜉(𝑥, 𝑦) = max(𝑥, 𝑦, 0) are universal in a sense that any

tensor of order 𝑇 and size of each mode being 𝑚 can be realized as a grid tensor of

such RNN (and similarly of a generalized shallow network).

Theorem 3 (Universality). Let ℋ ∈ R𝑀×𝑀×···×𝑀 be an arbitrary tensor of order

𝑇 . Then there exist a generalized shallow network and a generalized RNN

with rectifier nonlinearity 𝜉(𝑥, 𝑦) = max(𝑥, 𝑦, 0) such that grid tensor of each of the

networks coincides with ℋ.

Part of Theorem 3 which corresponds to generalized shallow networks readily

follows from [Cohen and Shashua, 2016, Claim 4]. In order to prove the statement

for the RNNs the following two lemmas are used.

Lemma 3. Given two generalized RNNs with grid tensors Γℓ𝐴(X), Γℓ𝐵(X), and

arbitrary 𝜉-nonlinearity, there exists a generalized RNN with grid tensor Γℓ𝐶 (X)

satisfying

Γℓ𝐶 (X) = 𝑎Γℓ𝐴(X) + 𝑏Γℓ𝐵(X), ∀𝑎, 𝑏 ∈ R.

This lemma essentially states that the collection of grid tensors of generalized

RNNs with any nonlinearity is closed under taking arbitrary linear combinations.

Note that the same result clearly holds for generalized shallow networks because

they are linear combinations of rank 1 shallow networks by definition.

Lemma 4. Let ℰ (𝑗1𝑗2...𝑗𝑇 ) be an arbitrary one–hot tensor, defined as

ℰ (𝑗1𝑗2...𝑗𝑇 )
𝑖1𝑖2...𝑖𝑇

=

⎧
⎪⎨
⎪⎩
1, 𝑗𝑡 = 𝑖𝑡 ∀𝑡 ∈ {1, . . . , 𝑇},

0, otherwise.
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Then there exists a generalized RNN with rectifier nonlinearities such that its grid

tensor satisfies

Γℓ(X) = ℰ (𝑗1𝑗2...𝑗𝑇 ).

This lemma states that in the special case of rectifier nonlinearity 𝜉(𝑥, 𝑦) =

max(𝑥, 𝑦, 0) any basis tensor can be realized by some generalized RNN.

Proof of Theorem 3. By Lemma 4 for each one–hot tensor ℰ (𝑖1𝑖2...𝑖𝑇 ) there exists

a generalized RNN with rectifier nonlinearities, such that its grid tensor coincides

with this tensor. Thus, by Lemma 3 we can construct an RNN with

Γℓ(X) =
∑︁

𝑖1,𝑖2,...,𝑖𝑇

ℋ𝑖1𝑖2...𝑖𝑑ℰ
(𝑖1𝑖2...𝑖𝑇 ) = ℋ.

For generalized shallow networks with rectifier nonlinearities see the proof of [Cohen

and Shashua, 2016, Claim 4].

The same result regarding networks with product nonlinearities considered in

[Khrulkov et al., 2018] directly follows from the well–known properties of tensor

decompositions (see Section 3.8).

We see that at least with such nonlinearities as 𝜉(𝑥, 𝑦) = max(𝑥, 𝑦, 0) and

𝜉(𝑥, 𝑦) = 𝑥𝑦 all the networks under consideration are universal and can represent

any possible grid tensor. Now let us head to a discussion of expressivity of these

networks.

3.5.2 Expressivity

As was discussed in the introduction, expressivity refers to the ability of some class of

networks to represent the same functions as some other class much more compactly.

In our case the parameters defining size of networks are ranks of the decomposition,

i.e. in the case of generalized RNNs ranks determine the size of the hidden state,

and in the case of generalized shallow networks rank determines the width of a net-

work. It was proven in [Cohen et al., 2016, Khrulkov et al., 2018] that ConvNets

and RNNs with multiplicative nonlinearities are exponentially more expressive than

the equivalent shallow networks: shallow networks of exponentially large width are
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required to realize the same score functions as computed by these deep architec-

tures. Similarly to the case of ConvNets [Cohen and Shashua, 2016], we find that

expressivity of generalized RNNs with rectifier nonlinearity holds only partially, as

discussed in the following two theorems. For simplicity, we assume that 𝑇 is even.

Theorem 4 (Expressivity I). For every value of 𝑅 there exists a generalized RNN

with ranks ≤ 𝑅 and rectifier nonlinearity which is exponentially more efficient than

shallow networks, i.e., the corresponding grid tensor may be realized only by a shallow

network with rectifier nonlinearity of width at least 2
𝑀𝑇

min(𝑀,𝑅)𝑇/2.

This result states that at least for some subset of generalized RNNs expressivity

holds: exponentially wide shallow networks are required to realize the same grid

tensor. Proof of the theorem is rather straightforward: we explicitly construct an

example of such RNN which satisfies the following description. Given an arbitrary

input sequence 𝑋 =
(︀
x(1), . . .x(𝑇 )

)︀
assembled from the templates, these networks (if

𝑀 = 𝑅) produce 0 if 𝑋 has the property that x(1) = x(2),x(3) = x(4), . . . ,x(𝑇−1) =

x(𝑇 ), and 1 in every other case, i.e. they measure pairwise similarity of the input

vectors. A precise proof is given in Section 3.8.

In the case of multiplicative RNNs [Khrulkov et al., 2018] almost every network

possessed this property. This is not the case, however, for generalized RNNs with

rectifier nonlinearities.

Theorem 5 (Expressivity II). For every value of 𝑅 there exists an open set (which

thus has positive measure) of generalized RNNs with rectifier nonlinearity 𝜉(𝑥, 𝑦) =

max(𝑥, 𝑦, 0), such that for each RNN in this open set the corresponding grid tensor

can be realized by a rank 1 shallow network with rectifier nonlinearity.

In other words, for every rank 𝑅 we can find a set of generalized RNNs of positive

measure such that the property of expressivity does not hold. In the numerical

experiments in Section 6.5 and Section 3.8 we validate whether this can be observed

in practice, and find that the probability of obtaining CP–ranks of polynomial size

becomes negligible with large 𝑇 and 𝑅. Proof of Theorem 5 is provided in Section 3.8.
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Shared case Note that all the RNNs used in practice have shared weights, which

allows them to process sequences of arbitrary length. So far in the analysis we

have not made such assumptions about RNNs (i.e., 𝒢(2) = · · · = 𝒢(𝑇−1)). By

imposing this constraint, we lose the property of universality; however, we believe

that the statements of Theorems 4 and 5 still hold (without requiring that shallow

networks also have shared weights). Note that the example constructed in the proof

of Theorem 5 already has this property, and for Theorem 4 we provide numerical

evidence in Section 3.8.

3.6 Experiments

In this section, we study if our theoretical findings are supported by experimental

data. In particular, we investigate whether generalized tensor networks can be

used in practical settings, especially in problems typically solved by RNNs (such as

natural language processing problems). Secondly, according to Theorem 5 for some

subset of RNNs the equivalent shallow network may have a low rank. To get a grasp

of how strong this effect might be in practice we numerically compute an estimate

for this rank in various settings.

Performance For the first experiment, we use two computer vision datasets MNIST [Le-

Cun et al., 1990] and CIFAR–10 [Krizhevsky and Hinton, 2009], and natural lan-

guage processing dataset for sentiment analysis IMDB [Maas et al., 2011]. For the

first two datasets, we cut natural images into rectangular patches which are then

arranged into vectors x(𝑡) (similar to [Khrulkov et al., 2018]) and for IMDB dataset

the input data already has the desired sequential structure.

Figure 3-2 depicts test accuracy on IMDB dataset for generalized shallow net-

works and RNNs with rectifier nonlinearity. We see that generalized shallow network

of much higher rank is required to get the level of performance close to that achiev-

able by generalized RNN. Due to limited space, we have moved the results of the

experiments on the visual datasets to Section 3.9.
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Figure 3-2: Test accuracy on IMDB
dataset for generalized RNNs and gener-
alized shallow networks with respect to
the total number of parameters (𝑀 =
50, 𝑇 = 100, 𝜉(𝑥, 𝑦) = max(𝑥, 𝑦, 0)).

Figure 3-3: Distribution of lower bounds
on the rank of generalized shallow net-
works equivalent to randomly gener-
ated generalized RNNs of ranks 1, 2, 4, 8
(𝑀 = 10, 𝑇 = 6).

Expressivity For the second experiment we generate a number of generalized

RNNs with different values of TT-rank 𝑟 and calculate a lower bound on the rank

of shallow network necessary to realize the same grid tensor (to estimate the rank

we use the same technique as in the proof of Theorem 4). Figure 3-3 shows that for

different values of 𝑅 and generalized RNNs of the corresponding rank there exist

shallow networks of rank 1 realizing the same grid tensor, which agrees well with The-

orem 5. This result looks discouraging, however, there is also a positive observation.

While increasing rank of generalized RNNs, more and more corresponding shallow

networks will necessarily have exponentially higher rank. In practice we usually deal

with RNNs of 𝑅 = 102− 103 (dimension of hidden states), thus we may expect that

effectively any function besides negligible set realized by generalized RNNs can be

implemented only by exponentially wider shallow networks. The numerical results

for the case of shared cores and other nonlinearities are given in Section 3.9.

3.7 Conclusion

In this paper, we sought a more complete picture of the connection between Re-

current Neural Networks and Tensor Train decomposition, one that involves various

nonlinearities applied to hidden states. We showed how these nonlinearities could be

incorporated into network architectures and provided complete theoretical analysis
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on the particular case of rectifier nonlinearity, elaborating on points of generality

and expressive power. We believe our results will be useful to advance theoretical

understanding of RNNs. In future work, we would like to extend the theoretical

analysis to most competitive in practice architectures for processing sequential data

such as LSTMs and attention mechanisms.

3.8 Proofs

Lemma 2. Under the notation introduced in eq. (3.9), the score function can be

written as

ℓ(𝑋) = h(𝑇 ) ∈ R1.

Proof.

𝑙(𝑋) =

𝑅1∑︁

𝑟1=1

. . .

𝑅𝑇−1∑︁

𝑟𝑇−1=1

𝑇∏︁

𝑡=1

⟨𝑓𝜃(x(𝑡)),g(𝑡)
𝑟𝑡−1𝑟𝑡

⟩

=

𝑅1∑︁

𝑟1=1

. . .

𝑅𝑇−1∑︁

𝑟𝑇−1=1

𝑇∏︁

𝑡=2

⟨𝑓𝜃(x(𝑡)),g(𝑡)
𝑟𝑡−1𝑟𝑡

⟩ ⟨𝑓𝜃(x(1)),g(1)
𝑟0𝑟1
⟩⏟  ⏞  

h
(1)
𝑟1

=

𝑅𝑇−1∑︁

𝑟𝑇−1=1

. . .

𝑅1∑︁

𝑟1=1

𝑇∏︁

𝑡=2

⟨𝑓𝜃(x(𝑡)),g(𝑡)
𝑟𝑡−1𝑟𝑡

⟩h(1)
𝑟1

=

𝑅𝑇−1∑︁

𝑟𝑇−1=1

. . .

𝑅2∑︁

𝑟2=1

𝑇∏︁

𝑡=3

⟨𝑓𝜃(x(𝑡)),g(𝑡)
𝑟𝑡−1𝑟𝑡

⟩
𝑟1∑︁

𝑟1=1

⟨𝑓𝜃(x(2)),g(2)
𝑟1𝑟2
⟩h(1)

𝑟1

⏟  ⏞  
h
(2)
𝑟2

=

𝑅𝑇−1∑︁

𝑟𝑇−1=1

. . .

𝑅2∑︁

𝑟2=1

𝑇∏︁

𝑡=3

⟨𝑓𝜃(x(𝑡)),g(𝑡)
𝑟𝑡−1𝑟𝑡

⟩h(2)
𝑟2

= . . .

=

𝑅𝑇−1∑︁

𝑟𝑇−1=1

⟨𝑓𝜃(x(𝑇 )),g(𝑇 )
𝑟𝑇−1𝑟𝑇

⟩h(𝑇−1)
𝑟𝑇−1

= h(𝑇 )
𝑟𝑇

= h(𝑇 ).

Proposition 3.8.1. If we replace the generalized outer product ⊗𝜉 in eq. (3.16)

with the standard outer product ⊗, we can subsume matrices C(𝑡) into tensors 𝒢(𝑡)
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without loss of generality.

Proof. Let us rewrite hidden state equation eq. (3.16) after transition from ⊗𝜉 to

⊗:
h
(𝑡)
𝑘 =

∑︁

𝑖,𝑗

𝒢(𝑡)
𝑖𝑗𝑘

[︀
C(𝑡)𝑓𝜃(x

(𝑡))⊗ h(𝑡−1)
]︀
𝑖𝑗

=
∑︁

𝑖,𝑗

𝒢(𝑡)
𝑖𝑗𝑘

∑︁

𝑙

C
(𝑡)
𝑖𝑙 𝑓𝜃(x

(𝑡))𝑙h
(𝑡−1)
𝑗

{︃
�̃�(𝑡)

𝑙𝑗𝑘 =
∑︁

𝑖

𝒢(𝑡)
𝑖𝑗𝑘C

(𝑡)
𝑖𝑙

}︃

=
∑︁

𝑙,𝑗

�̃�(𝑡)

𝑙𝑗𝑘𝑓𝜃(x
(𝑡))𝑙h

(𝑡−1)
𝑗

=
∑︁

𝑙,𝑗

�̃�(𝑡)

𝑙𝑗𝑘

[︀
𝑓𝜃(x

(𝑡))⊗ h(𝑡−1)
]︀
𝑙𝑗
.

We see that the obtained expression resembles those presented in eq. (3.10) with

TT-cores 𝒢(𝑡) replaced by �̃�(𝑡)
and thus all the reasoning applied in the absence of

matrices C(𝑡) holds valid.

Proposition 3.8.2. Grid tensor of generalized shallow network has the following

form (eq. (3.20)):

Γℓ(X) =
𝑅∑︁

𝑟=1

𝜆𝑟

(︀
Fv(1)

𝑟

)︀
⊗𝜉

(︀
Fv(2)

𝑟

)︀
⊗𝜉 . . .⊗𝜉

(︀
Fv(𝑇 )

𝑟

)︀
.

Proof. Let 𝑋 =
(︀
x(𝑖1),x(𝑖2), . . . ,x(𝑖𝑇 )

)︀
denote an arbitrary sequence of templates.

Corresponding element of the grid tensor defined in eq. (3.20) has the following form:

Γℓ(X)𝑖1𝑖2...𝑖𝑇 =
𝑅∑︁

𝑟=1

𝜆𝑟

[︀(︀
Fv(1)

𝑟

)︀
⊗𝜉

(︀
Fv(2)

𝑟

)︀
⊗𝜉 . . .⊗𝜉

(︀
Fv(𝑇 )

𝑟

)︀]︀
𝑖1𝑖2...𝑖𝑇

=
𝑅∑︁

𝑟=1

𝜆𝑟

(︀
Fv(1)

𝑟

)︀
𝑖1
⊗𝜉

(︀
Fv(2)

𝑟

)︀
𝑖2
⊗𝜉 . . .⊗𝜉

(︀
Fv(𝑇 )

𝑟

)︀
𝑖𝑇

=
𝑅∑︁

𝑟=1

𝜆𝑟𝜉
(︀
⟨𝑓𝜃(x(𝑖1)),v(1)

𝑟 ⟩, . . . , ⟨𝑓𝜃(x(𝑖𝑇 )),v(𝑇 )
𝑟 ⟩

)︀
= ℓ(𝑋).
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Proposition 3.8.3. Grid tensor of a generalized RNN has the following form:

Γℓ,0(X) = h(0) ∈ R1,

Γℓ,1(X)𝑘𝑚1 =
∑︁

𝑖,𝑗

𝒢(1)
𝑖𝑗𝑘

(︀
C(1)F⊤ ⊗𝜉 Γ

ℓ,0
)︀
𝑖𝑚1𝑗
∈ R𝑅1×𝑀 ,

Γℓ,2(X)𝑘𝑚1𝑚2 =
∑︁

𝑖,𝑗

𝒢(2)
𝑖𝑗𝑘

(︀
C(2)F⊤ ⊗𝜉 Γ

ℓ,1
)︀
𝑖𝑚2𝑗𝑚1

∈ R𝑅2×𝑀×𝑀 ,

· · ·

Γℓ,𝑇 (X)𝑘𝑚1𝑚2...𝑚𝑇
=

∑︁

𝑖,𝑗

𝒢(𝑇 )
𝑖𝑗𝑘

(︀
C(𝑇 )F⊤ ⊗𝜉 Γ

ℓ,𝑇−1
)︀
𝑖𝑚𝑇 𝑗𝑚1...𝑚𝑇−1

∈ R1×𝑀×𝑀×···×𝑀 ,

Γℓ(X) = Γℓ,𝑇 (X)1,:,:,...,:
(3.21)

Proof. Proof is similar to that of Proposition 3.8.2 and uses eq. (3.16) to compute

the elements of the grid tensor.

Lemma 3. Given two generalized RNNs with grid tensors Γℓ𝐴(X), Γℓ𝐵(X), and

arbitrary 𝜉-nonlinearity, there exists a generalized RNN with grid tensor Γℓ𝐶 (X)

satisfying

Γℓ𝐶 (X) = 𝑎Γℓ𝐴(X) + 𝑏Γℓ𝐵(X), ∀𝑎, 𝑏 ∈ R.

Proof. Let these RNNs be defined by the weight parameters

Θ𝐴 =
(︁
{C(𝑡)

𝐴 }𝑇𝑡=1 ∈ R𝐿𝐴×𝑀 , {𝒢(𝑡)
𝐴 }𝑇𝑡=1 ∈ R𝐿𝐴×𝑅𝑡−1,𝐴×𝑅𝑡,𝐴

)︁
,

and

Θ𝐵 =
(︁
{C(𝑡)

𝐵 }𝑇𝑡=1 ∈ R𝐿𝐵×𝑀 , {𝒢(𝑡)
𝐵 }𝑇𝑡=1 ∈ R𝐿𝐵×𝑅𝑡−1,𝐵×𝑅𝑡,𝐵

)︁
.

We claim that the desired grid tensor is given by the RNN with the following weight

55



Chapter 3. Generalized Tensor Models For RNNs 3.8. Proofs

settings.

C
(𝑡)
𝐶 ∈ R(𝐿𝐴+𝐿𝐵)×𝑀

C
(𝑡)
𝐶 =

⎡
⎣C

(𝑡)
𝐴

C
(𝑡)
𝐵

⎤
⎦

𝒢(1)
𝐶 ∈ R(𝐿𝐴+𝐿𝐵)×1×(𝑅𝑡,𝐴+𝑅𝑡,𝐵)

[𝒢(1)
𝐶 ]𝑖,:,: =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[︂
[𝒢(1)

𝐴 ]𝑖,:,: 0

]︂
, 𝑖 ∈ {1, . . . , 𝐿𝐴}

[︂
0 [𝒢(1)

𝐵 ](𝑖−𝐿𝐴),:,:

]︂
, 𝑖 ∈ {𝐿𝐴 + 1, . . . , 𝐿𝐴 + 𝐿𝐵}

𝒢(𝑡)
𝐶 ∈ R(𝐿𝐴+𝐿𝐵)×(𝑅𝑡−1,𝐴+𝑅𝑡−1,𝐵)×(𝑅𝑡,𝐴+𝑅𝑡,𝐵), 1 < 𝑡 < 𝑇

[𝒢(𝑡)
𝐶 ]𝑖,:,: =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣
[𝒢(𝑡)

𝐴 ]𝑖,:,: 0

0 0

⎤
⎥⎦ , 𝑖 ∈ {1, . . . , 𝐿𝐴}

⎡
⎢⎣
0 0

0 [𝒢(𝑡)
𝐵 ](𝑖−𝐿𝐴),:,:

⎤
⎥⎦ , 𝑖 ∈ {𝐿𝐴 + 1, . . . , 𝐿𝐴 + 𝐿𝐵}

𝒢(𝑇 )
𝐶 ∈ R(𝐿𝐴+𝐿𝐵)×(𝑅𝑡−1,𝐴+𝑅𝑡−1,𝐵)×1

[𝒢(𝑇 )
𝐶 ]𝑖,:,: =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣
𝑎[𝒢(𝑇 )

𝐴 ]𝑖,:,:

0

⎤
⎥⎦ , 𝑖 ∈ {1, . . . , 𝐿𝐴}

⎡
⎢⎣

0

𝑏[𝒢(𝑇 )
𝐵 ](𝑖−𝐿𝐴),:,:

⎤
⎥⎦ , 𝑖 ∈ {𝐿𝐴 + 1, . . . , 𝐿𝐴 + 𝐿𝐵}.

It is straightforward to verify that the network defined by these weights possesses

the following property:

h
(𝑡)
𝐶 =

⎡
⎣h

(𝑡)
𝐴

h
(𝑡)
𝐵

⎤
⎦ , 0 < 𝑡 < 𝑇,
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and

h
(𝑇 )
𝐶 = 𝑎h

(𝑇 )
𝐴 + 𝑏h

(𝑇 )
𝐵 ,

concluding the proof. We also note that these formulas generalize the well–known

formulas for addition of two tensors in the Tensor Train format [Oseledets, 2011].

Proposition 3.8.4. For any associative and commutative binary operator 𝜉, an

arbitrary generalized rank 1 shallow network with 𝜉–nonlinearity can be represented

in a form of generalized RNN with unit ranks (𝑅1 = · · · = 𝑅𝑇−1 = 1) and 𝜉–

nonlinearity.

Proof. Let Θ =
(︀
𝜆, {v(𝑡)}𝑇𝑡=1

)︀
be the parameters specifying the given generalized

shallow network. Then the following weight settings provide the equivalent general-

ized RNN (with h(0) being the unity of the operator 𝜉).

C(𝑡) =
(︀
v(𝑡)

)︀⊤ ∈ R1×𝑀 ,

𝒢(𝑡) = 1, 𝑡 < 𝑇,

𝒢(𝑇 ) = 𝜆.

Indeed, in the notation defined above, hidden states of generalized RNN have

the following form:

h(𝑡) = 𝒢(𝑡)𝜉
(︀
[C(𝑡)𝑓𝜃(x

(𝑡))],h(𝑡−1)
)︀

= 𝜉
(︀
⟨𝑓𝜃(x(𝑡)),v(𝑡)⟩,h(𝑡−1)

)︀
, 𝑡 = 1, . . . , 𝑇 − 1

h(𝑇 ) = 𝜆𝜉
(︀
⟨𝑓𝜃(x(𝑇 )),v(𝑇 )⟩,h(𝑇−1)

)︀
.

The score function of generalized RNN is given by eq. (3.16):

ℓ(𝑋) = h(𝑇 ) = 𝜆𝜉
(︀
⟨𝑓𝜃(x(𝑇 )),v(𝑇 )⟩,h(𝑇−1)

)︀

= 𝜆𝜉
(︀
⟨𝑓𝜃(x(𝑇 )),v(𝑇 )⟩, ⟨𝑓𝜃(x(𝑇−1)),v(𝑇−1)⟩,h(𝑇−2)

)︀

. . .

= 𝜆𝜉
(︀
⟨𝑓𝜃(x(𝑇 )),v(𝑇 )⟩, . . . , ⟨𝑓𝜃(x(1)),v(1)⟩

)︀
,

which coincides with the score function of rank 1 shallow network defined by

parameters Θ.
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Lemma 4. Let ℰ (𝑗1𝑗2...𝑗𝑇 ) be an arbitrary one–hot tensor, defined as

ℰ (𝑗1𝑗2...𝑗𝑇 )
𝑖1𝑖2...𝑖𝑇

=

⎧
⎪⎨
⎪⎩
1, 𝑗𝑡 = 𝑖𝑡 ∀𝑡 ∈ {1, . . . , 𝑇},

0, otherwise.

Then there exists a generalized RNN with rectifier nonlinearities such that its grid

tensor satisfies

Γℓ(X) = ℰ (𝑗1𝑗2...𝑗𝑇 ).

Proof. It is known that the statement of the lemma holds for generalized shallow

networks with rectifier nonlinearities (see [Cohen and Shashua, 2016, Claim 4]).

Based on Proposition 3.8.4 and Lemma 3 we can conclude that it also holds for

generalized RNNs with rectifier nonlinearities.

Proposition 3.8.5. Statement of Theorem 3 holds with 𝜉(𝑥, 𝑦) = 𝑥𝑦.

Proof. By assumption the matrix F is invertible. Consider the following tensor ̂︀ℋ
:

̂︀ℋ𝑖1𝑖2...𝑖𝑇 =
∑︁

𝑗1,...,𝑗𝑇

ℋ𝑗1,...,𝑗𝑇F
−1
𝑗1𝑖1

. . .F−1
𝑗𝑇 𝑖𝑇

,

and the score function in the form of eq. (3.2):

ℓ(𝑋) = ⟨ ̂︀ℋ,Φ(𝑋)⟩.

Note that by construction for any input assembled from the template vectors we

obtain ℓ
(︀
(x(𝑖1), . . . ,x(𝑖𝑇 ))

)︀
= ℋ𝑖1...𝑖𝑇 . By taking the standard TT and CP decompo-

sitions of ̂︀ℋ which always exist [Oseledets, 2011], and using Lemma 2 and eq. (3.6)

we conclude that universality holds.

Theorem 4 (Expressivity I). For every value of 𝑅 there exists a generalized RNN

with ranks ≤ 𝑅 and rectifier nonlinearity which is exponentially more efficient than

shallow networks, i.e., the corresponding grid tensor may be realized only by a shallow

network with rectifier nonlinearity of width at least 2
𝑀𝑇

min(𝑀,𝑅)𝑇/2.
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In order to prove the theorem we will use the standard technique of matriciza-

tions. Simply put, by matricizing a tensor we reshape it into a matrix by splitting

the indices of a tensor into two collections, and converting each one of them into

one long index. I.e., for a tensor 𝒜 of order 𝑇 with mode sizes being 𝑚, we split

the set {1, . . . , 𝑇} into two non–overlapping ordered subsets 𝑠 and 𝑡, and define

the matricization A(𝑠,𝑡) ∈ R𝑀 |𝑠|×𝑀 |𝑡| by simply reshaping (and possibly transposing)

the tensor 𝒜 according to 𝑠 and 𝑡. We will consider the matricization obtained by

taking 𝑠𝑜𝑑𝑑 = (1, 3, . . . , 𝑇 − 1), 𝑡𝑒𝑣𝑒𝑛 = (2, 4, . . . , 𝑇 ), i.e., we split out even and odd

modes. A typical application of matricization is the following: suppose that we can

upper and lower bound the ordinary matrix rank of a certain matricization using

the parameters specifying each of the architectures being analyzed. Then under the

assumption that both architectures realize the same grid tensor (and thus ranks of

the matricization coincide) we can compare the sizes of corresponding architectures.

In the case of generalized shallow networks with rectifier nonlinearity we will use

the following result [Cohen and Shashua, 2016, Claim 9].

Lemma 5. Let Γℓ(X) be a grid tensor generated by a generalized shallow network

of rank 𝑅 and 𝜉(𝑥, 𝑦) = max(𝑥, 𝑦, 0). Then

rank
[︀
Γℓ(X)

]︀(𝑠𝑜𝑑𝑑,𝑡𝑒𝑣𝑒𝑛) ≤ 𝑅
𝑇𝑀

2
,

where the ordinary matrix rank is assumed.

This result is a generalization of a well–known property of the standard CP-

decomposition (i.e. if 𝜉(𝑥, 𝑦) = 𝑥𝑦), which states that for a rank 𝑅 decomposition,

the matrix rank of every matricization is bounded by 𝑅.

In order to prove Theorem 4 we will construct an example of a generalized RNN

with exponentially large matrix rank of the matricization of grid tensor, from which

and Lemma 5 the statement of the theorem will follow.

Lemma 6. Without loss of generality assume that x𝑖 = e𝑖 (which can be achieved

since F is invertible). Let 1(𝑝,𝑞) denote the matrix of size 𝑝 × 𝑞 with each entry

being 1, I(𝑝,𝑞) denote the matrix of size 𝑝× 𝑞 with I
(𝑝,𝑞)
𝑖𝑗 = 𝛿𝑖𝑗 (𝛿 being the Kronecker
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symbol), and b = [1 − min(𝑀,𝑅),0⊤
𝑅−1] ∈ R1×𝑅. Consider the following weight

setting for a generalized RNN with 𝜉(𝑥, 𝑦) = max(𝑥, 𝑦, 0).

C(𝑡) =

⎧
⎪⎨
⎪⎩
1𝑀,𝑀 − I𝑀,𝑀 , 𝑡 odd,

1𝑀+1,𝑀 − I𝑀+1,𝑀 , 𝑡 even.

𝒢(𝑡) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I𝑀,𝑅 ∈ R𝑀×1×𝑅, 𝑡 odd,⎡
⎢⎣
I𝑀,𝑅

b

⎤
⎥⎦ ∈ R(𝑀+1)×𝑅×1, 𝑡 even.

Then grid tensor Γℓ(X) of this RNN satisfies

rank
[︀
Γℓ(X)

]︀(𝑠𝑜𝑑𝑑,𝑡𝑒𝑣𝑒𝑛) ≥ min(𝑀,𝑅)
𝑇/2,

where the ordinary matrix rank is assumed.

Proof. Informal description of the network defined by weights in the statement in

the lemma is the following. Given some input vector e𝑖 it is first transformed into its

bitwise negative e𝑖, and its first 𝑅 components are saved into the hidden state. The

next block then measures whether the first min(𝑅,𝑀) components of the current

input coincide with the hidden state (after again taking bitwise negative). If this is

the case, the hidden state is set 0 and the process continues. Otherwise, the hidden

state is set to 1 which then flows to the output independently of the other inputs.

In other words, for all the inputs of the form 𝑋 = (x𝑖1 ,x𝑖1 , . . . ,x𝑖𝑇/2
,x𝑖𝑇/2

) with

𝑖1 ≤ 𝑅, . . . , 𝑖𝑇/2 ≤ 𝑅 we obtain that ℓ(𝑋) = 0, and in every other case ℓ(𝑋) = 1.

Thus, we obtain that
[︀
Γℓ(X)

]︀(𝑠𝑜𝑑𝑑,𝑡𝑒𝑣𝑒𝑛) is a matrix with all the entries equal to 1,

except for min(𝑀,𝑅)𝑇/2 entries on the diagonal, which are equal to 0. Rank of such

a matrix is 𝑅𝑇/2 + 1 if 𝑅 < 𝑀 and 𝑀𝑇/2 otherwise, and the statement of the lemma

follows.

Based on these two lemmas we immediately obtain Theorem 4.

Proof of Theorem 4. Consider the example constructed in the proof of Lemma 6.

By Lemma 5 the rank of the shallow network with rectifier nonlinearity which is able
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to represent the same grid tensor is at least 2
𝑇𝑀

min(𝑀,𝑅)𝑇/2.

Theorem 5 (Expressivity II). For every value of 𝑅 there exists an open set (which

thus has positive measure) of generalized RNNs with rectifier nonlinearity 𝜉(𝑥, 𝑦) =

max(𝑥, 𝑦, 0), such that for each RNN in this open set the corresponding grid tensor

can be realized by a rank 1 shallow network with rectifier nonlinearity.

Proof. As before, let us denote by I(𝑝,𝑞) a matrix of size 𝑝× 𝑞 such that I(𝑝,𝑞)𝑖𝑗 = 𝛿𝑖𝑗,

and by a(𝑝1,𝑝2,...𝑝𝑑) we denote a tensor of size 𝑝1 × . . . × 𝑝𝑑 with each entry being 𝑎

(sometimes we will omit the dimensions when they can be inferred from the context).

Consider the following weight settings for a generalized RNN.

C(𝑡) =
(︀
F⊤)︀−1

,

𝒢(𝑡) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2(𝑀,1,𝑅), 𝑡 = 1

1(𝑀,𝑅,𝑅), 𝑡 = 2, . . . , 𝑇 − 1

1(𝑀,𝑅,1), 𝑡 = 𝑇

The RNN defined by these weights has the property that Γℓ(X) is a constant tensor

with each entry being 2(𝑀𝑅)𝑇−1, which can be trivially represented by a rank 1

generalized shallow network. We will show that this property holds under a small

perturbation of C(𝑡),𝒢(𝑡) and F. Let us denote each of these perturbation (and every

tensor appearing size of which can be assumed indefinitely small) collectively by 𝜀.

Applying eq. (3.21) we obtain (with 𝜉(𝑥, 𝑦) = max(𝑥, 𝑦, 0)).

Γℓ,0(X) = 0 ∈ R1,

Γℓ,1(X)𝑘𝑚1 =
∑︁

𝑖,𝑗

𝒢(1)
𝑖𝑗𝑘

(︀
(I(𝑀,𝑀) + 𝜀)⊗𝜉 0

)︀
𝑖𝑚1𝑗

= 1⊗ (2+ 𝜀),

Γℓ,2(X)𝑘𝑚1𝑚2 =
∑︁

𝑖,𝑗

𝒢(2)
𝑖𝑗𝑘

(︀
(I(𝑀,𝑀) + 𝜀)⊗𝜉 Γ

ℓ,1(X)
)︀
𝑖𝑚2𝑗𝑚1

= 1⊗ (2MR+ 𝜀)⊗ 1,

· · ·

Γℓ,𝑇 (X)𝑘𝑚1𝑚2...𝑚𝑇
= 1⊗ (2(MR)T−1 + 𝜀)⊗ 1 . . .⊗ 1,

Γℓ(X) = Γℓ,𝑇 (X)1,:,:,...,: = (2(MR)T−1 + 𝜀)⊗ 1 . . .⊗ 1,
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where we have used a simple property connecting ⊗𝜉 with 𝜉(𝑥, 𝑦) = max(𝑥, 𝑦, 0)

and ordinary ⊗: if for tensors 𝒜 and ℬ each entry of 𝒜 is greater than each entry

of ℬ, 𝒜⊗𝜉 ℬ = 𝒜⊗ 1. The obtained grid tensors can be represented using rank 1

generalized shallow networks with the following weight settings.

𝜆 = 1,

v𝑡 =

⎧
⎪⎨
⎪⎩
F−1

𝜀 (2(MR)T−1 + 𝜀), 𝑡 = 1,

0, 𝑡 > 1,

where F𝜀 is the feature matrix of the corresponding perturbed network.

3.9 Additional experiments

In this section we provide the results additional computational experiments, aimed

to provide more thorough and complete analysis of generalized RNNs.

Different 𝜉-nonlinearities In this paper we presented theoretical analysis of rec-

tifier nonlinearity which corresponds to 𝜉(𝑥, 𝑦) = max(𝑥, 𝑦, 0). However, there is a

number of other associative binary operators 𝜉 which can be incorporated in gen-

eralized tensor networks. Strictly speaking, every one of them has to be carefully

explored theoretically in order to speak about their generality and expressive power,

but for now we can compare them empirically.

𝜉(𝑥, 𝑦) 𝑥𝑦 max(𝑥, 𝑦, 0) ln (𝑒𝑥 + 𝑒𝑦) 𝑥+ 𝑦
√︀

𝑥2 + 𝑦2

MNIST 97.39 97.45 97.68 96.28 96.44
CIFAR-10 43.08 48.09 55.37 57.18 49.04

IMDB 83.33 84.35 82.25 81.28 79.76

Table 3.1: Performance of generalized RNN with various nonlinearities.

Table 3.1 shows the performance (accuracy on test data) of different nonlineari-

ties on MNIST, CIFAR—10, and IMDB datasets for classification. Although these

problems are not considered hard to solve, we see that the right choice of nonlin-

earity can lead to a significant boost in performance. For the experiments on the
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visual datasets we used 𝑇 = 16,𝑚 = 32, 𝑅 = 64 and for the experiments on the

IMDB dataset we had 𝑇 = 100,𝑚 = 50, 𝑅 = 50. Parameters of all networks were

optimized using Adam (learning rate 𝛼 = 10−4) and batch size 250.

Expressivity in the case of shared cores We repeat the expressivity experi-

ments from Section 6.5 in the case of equal TT–cores (𝒢(2) = · · · = 𝒢(𝑇−1)). We

observe that similar to the case of different cores, there always exist rank 1 general-

ized shallow networks which realize the same score function as generalized RNN of

higher rank, however, this situation seems too unlikely for big values of 𝑅.

Figure 3-4: Distribution of lower bounds
on the rank of generalized shallow net-
works equivalent to randomly generated
generalized RNNs of ranks (𝑀 = 6,
𝑇 = 6, 𝜉(𝑥, 𝑦) = max(𝑥, 𝑦, 0)).

Figure 3-5: Distribution of lower bounds
on the rank of generalized shallow net-
works equivalent to randomly generated
generalized RNNs of ranks (𝑀 = 6,
𝑇 = 6, 𝜉(𝑥, 𝑦) =

√︀
𝑥2 + 𝑦2).
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Chapter 4

Desingularization of bounded-rank

matrix sets

4.1 Introduction

Although low-rank matrices appear in many applications, the structure of the cor-

responding matrix variety (real algebraic) is not fully utilized in the computations,

and the theoretical investigation is complicated because of the existence of singu-

lar points [Lakshmibai and Brown, 2015] on such a variety, which correspond to

matrices of smaller rank. We tackle this problem by utilizing the modified Room-

Kempf desingularization [Naldi, 2015] of determinantal varieties that is classical in

algebraic geometry, but has never been applied in the context of optimization over

matrix varieties. Briefly, it can be summarized as follows. Idea of the the Room-

Kempf procedure is to consider a set of tuples of matrices (𝐴, 𝑌 ) satisfying equations

𝐴𝑌 = 0 and 𝐵𝑌 = 0 for some fixed matrix 𝐵. These equations imply that the rank

of 𝐴 is bounded and moreover a set of such tuples is a smooth manifold (for rea-

sonable matrices 𝐵). However, conditions of the form 𝐵𝑌 = 0 can be numerically

unstable, so we modify it by imposing the condition 𝑌 𝑇𝑌 = 𝐼 instead. The precise

definition of the manifold we work with is given in terms of Grassmannians and then

we transition to the formulas given above. We also show that the dimension of this

manifold is the same as of the original matrix variety. Our main contributions are:
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• We propose and analyze a modified Room-Kempf desingularization technique

for the variety of matrices of shape 𝑛 × 𝑚 with rank bounded by 𝑟 (sec-

tion 4.2.2).

• We prove smoothness and obtain bounds on the curvature of the desingularized

variety in section 4.2.2 and section 4.2.3. The latter is performed by estimating

singular values of the operator of the orthogonal projection onto the tangent

space of the desingularized variety.

• We find an effective low-dimensional parametrization of the tangent space

(section 4.2.4). Even though the desingularized variety is a subset of a space

of much bigger dimension, this allows us to construct robust second order

method with 𝑂((𝑛+𝑚)𝑟) complexity.

• We implement an effective realization of a reduced Hessian method for the

optimization over the desingularized variety (section 4.3). We start with the

Lagrange multipliers method for which we derive a formula for the Newton

method for the corresponding optimization problem. The latter takes the

saddle point form which we solve using the null space method found in [Benzi

et al., 2005]. In section 4.3.6 we show how to reduce the total complexity of

the algorithm to 𝑂((𝑛+𝑚)𝑟) per iteration.

• We also briefly discuss a few technical details in the implementation of the

algorithm (section 4.4)

• We present results of numerical experiments and compare them with some

other methods found in section 4.5.

The manifolds that we work with in this paper will always be 𝐶∞ and in fact

smooth algebraic varieties.

4.1.1 Idea of desingularization

Before we define desingularization of bounded rank matrix sets, we will introduce

its basic idea. The low-rank matrix case will be described in next section. Let 𝑉 be
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a variety (not necessarily smooth) and 𝑓 be a function

𝑓 : 𝑉 → R,

which is smooth in an open neighborhood of 𝑉 (which is assumed to be embedded

in R𝑘). To solve

𝑓(𝑥)→ min, 𝑥 ∈ 𝑉,

we often use methods involving the tangent bundle of 𝑉 . However, due to the

existence of the singular points where the tangent space is not well-defined, it is

hard to prove correctness and convergence using those methods. To avoid this

problem we construct a smooth variety ̂︀𝑉 and a surjective smooth map 𝜋

𝜋 : ̂︀𝑉 → 𝑉.

Let ̂︀𝑓 be a pullback of 𝑓 via map 𝜋 i.e.

̂︀𝑓 : ̂︀𝑉 → R,

̂︀𝑓 = 𝑓 ∘ 𝜋.

It is obvious that

min
𝑥∈𝑉

𝑓(𝑥) = min
𝑦∈̂︀𝑉 ̂︀𝑓(𝑦),

so we reduced our non-smooth minimization problem to a smooth one. Typically
̂︀𝑉 is a variety in a space of bigger dimension and is constructed to be of the same

dimension as the smooth part of 𝑉 . To have some geometrical idea one can think

about the following example (see fig. 4-1). Let 𝑉 be a cubic curve given by the

following equation

𝑦2 = 𝑥2(𝑥+ 1),

and parametrized as

(𝑥(𝑡), 𝑦(𝑡)) = (𝑡2 − 1, 𝑡(𝑡2 − 1)).

It is easy to see that (0, 0) is a singular point of 𝑉 . Then its desingularization is
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given by
̂︀𝑉 = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = (𝑡2 − 1, 𝑡(𝑡2 − 1), 𝑡) ⊂ R3,

which is clearly smooth. Projection is then just

𝜋 : (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = (𝑥(𝑡), 𝑦(𝑡)).

-1 1 2 3

-2

-1

1

2

(a) Singular cubic (b) Desingularized cubic

Figure 4-1: Desingularization of the cubic.

4.2 Desingularization of low-rank matrix varieties

via kernel

4.2.1 2× 2 matrices

Let 𝑉 be a variety of 2× 2 matrices with the rank ≤ 1. We have

𝑉 = {(𝑥11, 𝑥21, 𝑥12, 𝑥22) ∈ R4 : 𝑥11𝑥22 − 𝑥12𝑥21 = 0}, (4.1)

so it is indeed an algebraic variety. In order to analyze its smoothness and compute

the tangent space we recall the following result.

Let ℎ𝑖 𝑖 ∈ {1 . . . 𝑘} be some smooth functions

ℎ𝑖 : R𝑙 → R,
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with 𝑘 ≤ 𝑙. Define the set 𝑀 as

𝑀 = {𝑥 ∈ R𝑙 : ℎ1(𝑥) = 0, ℎ2(𝑥) = 0 . . . ℎ𝑘(𝑥) = 0}.

Then for a point 𝑝 ∈𝑀 we construct the matrix 𝑁(𝑝),

𝑁(𝑝) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∇ℎ1(𝑝)

∇ℎ2(𝑝)
...

∇ℎ𝑘(𝑝)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where ∇ℎ𝑖(𝑝) is understood as the row vector

∇ℎ𝑖(𝑝) =

(︂
𝜕ℎ𝑖

𝜕𝑥1

, . . . ,
𝜕ℎ𝑖

𝜕𝑥𝑙

)︂
.

A point 𝑝 is called nonsingular if 𝑁(𝑝) has maximal row rank at 𝑝. In this case, by

implicit function theorem, 𝑀 is locally a manifold (see [Lee, 2013, Theorem 5.22])

and tangent space at 𝑝 is defined as

𝑇𝑝𝑀 = {𝑣 ∈ R𝑙 : 𝑁(𝑝)𝑣 = 0}.

Applying this to 𝑉 defined in eq. (4.1) we obtain

𝑁(𝑥11, 𝑥21, 𝑥12, 𝑥22) =
[︁
𝑥22 −𝑥12 −𝑥21 𝑥11

]︁
,

and then (0, 0, 0, 0) is a singular point of 𝑉 .

We desingularize it by considering ̂︀𝑉 which is defined as the set of pairs (𝐴, 𝑌 ) ∈
R2×2 × R2 with coordinates

𝐴 =

⎡
⎣𝑥11 𝑥12

𝑥21 𝑥22

⎤
⎦ ,

and

𝑌 =

⎡
⎣𝑦1
𝑦2

⎤
⎦ ,
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satisfying

𝐴𝑌 = 0,

and

𝑌 ⊤𝑌 = 1.

Such choice of equations for 𝑌 is based on the Room-Kempf procedure described in

[Naldi, 2015], which suggests the following equations:

𝐴𝑌 = 0, 𝐵𝑌 = 0,

with some fixed matrix 𝐵. Since the latter equation is numerically unstable, using

an orthogonality condition instead allows us to maintain the manifold property while

making computations more robust.

More explicitly we have

̂︀𝑉 = {𝑝 : (𝑥11𝑦1 + 𝑥12𝑦2 = 0, 𝑥21𝑦1 + 𝑥22𝑦2 = 0, 𝑦21 + 𝑦22 = 1)},

𝑝 = (𝑥11, 𝑥21, 𝑥12, 𝑥22, 𝑦1, 𝑦2) ∈ R6.

We find that the normal space at 𝑝 is spanned by rows of the following matrix 𝑁(𝑝):

𝑁(𝑝) =

⎡
⎢⎢⎢⎣

𝑦1 0 𝑦2 0 𝑥11 𝑥12

0 𝑦1 0 𝑦2 𝑥21 𝑥22

0 0 0 0 2𝑦1 2𝑦2

⎤
⎥⎥⎥⎦ . (4.2)

Since 𝑦21 + 𝑦22 = 1 the matrix eq. (4.2) clearly has rank 3 at any point of ̂︀𝑉 which

proves that ̂︀𝑉 is smooth. The projection 𝜋 is just

𝜋 : (𝑥11, 𝑥21, 𝑥12, 𝑥22, 𝑦1, 𝑦2)→ (𝑥11, 𝑥21, 𝑥12, 𝑥22),

whose image is the entire 𝑉 . However, we would also like to estimate how close

the tangent spaces are at close points. Recall that by definition of the Grassmanian
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metric the distance between subspaces 𝐶 and 𝐷 is given by

𝑑𝐺𝑟(𝐶,𝐷) := ‖𝑃𝐶 − 𝑃𝐷‖𝐹 ,

where 𝑃𝐶 and 𝑃𝐷 are the orthogonal projectors on the corresponding planes. Since

𝑃𝐶⊥ = 𝐼 − 𝑃𝐶 the distance between any two subspaces is equal to the distance

between their orthogonal complements.

It is well known that the projection on the subspace spanned by the rows of a matrix

𝑀 is given by 𝑀 †𝑀 , where 𝑀 † is a pseudoinverse which for matrices of maximal

row rank is defined as

𝑀 † = 𝑀⊤(𝑀𝑀⊤)−1.

Hence, for two different points 𝑝 and 𝑝′ on the desingularized manifold we obtain

‖𝑃𝑁(𝑝) − 𝑃𝑁(𝑝′)‖𝐹= ‖𝑁(𝑝)†𝑁(𝑝)−𝑁(𝑝′)†𝑁(𝑝′)‖𝐹 .

We will use the following classical result to estimate ‖𝑃𝑁(𝑝) − 𝑃𝑁(𝑝′)‖𝐹 (we use it in

the form appearing in [Dutta and Li, 2017, Lemma 3.4] which is based on the [Davis

and Kahan, 1970, The sin 𝜃 Theorem]):

‖𝑁(𝑝)†𝑁(𝑝)−𝑁(𝑝′)†𝑁(𝑝′)‖𝐹≤ 2max{‖𝑁(𝑝)†‖2, ‖𝑁(𝑝′)†‖2}‖𝑁(𝑝)−𝑁(𝑝′)‖𝐹 . (4.3)

In order to estimate the smoothness we need to estimate how 𝑃𝑁(𝑝) changes under

small changes of 𝑝. It is sufficient to estimate the gradient of 𝑃 . Thus, we have to

uniformly bound ‖𝑁 †‖2 from above, which is equivalent to bounding the minimal

singular value of 𝑁 from below. Denote the latter by 𝜎min(𝑁). By taking the

defining equations of the desingularized manifold into account, we find that

𝑁(𝑝)𝑁(𝑝)⊤ =

⎡
⎢⎢⎢⎣

1 + 𝑥2
11 + 𝑥2

12 𝑥11𝑥21 + 𝑥12𝑥22 0

𝑥11𝑥21 + 𝑥12𝑥22 1 + 𝑥2
21 + 𝑥2

22 0

0 0 4

⎤
⎥⎥⎥⎦ . (4.4)

Hence 𝜎2
min(𝑁(𝑎)) ≥ 1 and ‖𝑁(𝑎)†‖2≤ 1. From the definition of 𝑁(𝑝) it follows that
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for 𝑝 = (𝐴, 𝑌 ) and 𝑝′ = (𝐴′, 𝑌 ′):

‖𝑁(𝑝)−𝑁(𝑝′)‖𝐹≤
√
6‖𝑌 − 𝑌 ′‖𝐹+‖𝐴− 𝐴′‖𝐹 .

and from eq. (4.3) we obtain

𝑑𝐺𝑟(𝑇𝑝
̂︀𝑉 , 𝑇𝑝′

̂︀𝑉 ) ≤ 2
√
6(‖𝐴− 𝐴′‖𝐹+‖𝑌 − 𝑌 ′‖𝐹 ).

We will derive and prove similar estimates for the general case in the next section.

4.2.2 General construction and estimation of curvature

Remark. We will often use vectorization of matrices which is a linear operator

vec : R𝑚×𝑛 → R𝑚𝑛×1,

which acts by stacking columns of the matrix into a single column vector. To further

simplify notation, variables denoted by uppercase and lowercase variables are under-

stood as a matrix and vectorization of the corresponding matrix, e.g. 𝑝 = vec(𝑃 ).

We will also define the transposition operator 𝑇𝑚,𝑛:

𝑇𝑚,𝑛 : vec(𝑋)→ vec(𝑋⊤),

for 𝑋 ∈ R𝑚×𝑛.

Consider a varietyℳ≤𝑟 of 𝑛×𝑚 of matrices of rank not higher than 𝑟,

ℳ≤𝑟 = {𝐴 ∈ R𝑛×𝑚 : rank(𝐴) ≤ 𝑟}.

We recall the following classical result [Lakshmibai and Brown, 2015, Theorem

10.3.3].

Lemma 7. 𝐴 ∈ℳ≤𝑟 is a singular point if and only if 𝐴 has rank smaller than 𝑟.

By definition, the dimension of a variety 𝑋 is equal to the dimension of the

manifold 𝑋 ∖𝑋𝑠𝑖𝑛𝑔 where 𝑋𝑠𝑖𝑛𝑔 is the set of all singular points of 𝑋 [Griffiths and

71



Chapter 4. Desingularization 4.2. Desingularization of low-rank matrix varieties via kernel

Harris, 2014]. In the case ofℳ≤𝑟 we find that

dimℳ≤𝑟 = dimℳ=𝑟,

where

ℳ=𝑟 = {𝐴 ∈ R𝑛×𝑚 : rank(𝐴) = 𝑟},

is known to be of dimension (𝑛 +𝑚)𝑟 − 𝑟2 (e.g. [Vandereycken, 2013, Proposition

2.1]).

Now we return to the main topic of the paper.

Let 𝐺𝑟(𝑚− 𝑟,𝑚) be the Grassmann manifold:

𝐺𝑟(𝑚− 𝑟,𝑚) = R𝑚,𝑚−𝑟
* /𝐺𝐿𝑚−𝑟,

where R𝑚,𝑚−𝑟
* is the noncompact Stiefel manifold

R𝑚,𝑚−𝑟
* = {𝑌 ∈ R𝑚×(𝑚−𝑟) : 𝑌 full rank},

and 𝐺𝐿𝑚−𝑟 is the group of invertible 𝑚− 𝑟 ×𝑚− 𝑟 matrices.

It is known [Lee, 2013] that

dim𝐺𝑟(𝑚− 𝑟,𝑚) = 𝑟(𝑚− 𝑟).

We propose the following desingularization for ̂︁ℳ𝑟:

̂︁ℳ𝑟 = {(𝐴, 𝑌 ) ∈ R𝑛×𝑚 ×𝐺𝑟(𝑚− 𝑟,𝑚) : 𝐴𝑌 = 0}, (4.5)

and prove the following theorem.

Theorem 6. ̂︁ℳ𝑟 as defined by eq. (4.5) is a smooth manifold of dimension (𝑛 +

𝑚)𝑟 − 𝑟2.

Proof. Let 𝑈𝛼 be a local chart of 𝐺𝑟(𝑚 − 𝑟,𝑚). To prove the theorem it suffices

to show that ̂︁ℳ𝑟 ∩ (R𝑛×𝑚 × 𝑈𝛼) is a smooth manifold for all 𝛼. Without loss of
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generality let us assume that the coordinates of 𝑌 ∈ 𝐺𝑟(𝑚− 𝑟,𝑚)∩𝑈𝛼 are given by

𝑌 =

⎡
⎣𝐼𝑚−𝑟

𝑌𝛼

⎤
⎦ ,

where

𝑌𝛼 =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝛼1,1 𝛼1,2 . . . 𝛼1,𝑚−𝑟

𝛼2,1 𝛼2,2 . . . 𝛼2,𝑚−𝑟

. . . . . . . . . . . .

𝛼𝑟,1 𝛼2,2 . . . 𝛼𝑟,𝑚−𝑟

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In this chart equation eq. (4.5) reads

𝐴

⎡
⎣𝐼𝑚−𝑟

𝑌𝛼

⎤
⎦ = 0. (4.6)

Splitting 𝐴 as

𝐴 =
[︁
𝐴1 𝐴2

]︁
,

where

𝐴1 ∈ R𝑛×(𝑚−𝑟), 𝐴2 ∈ R𝑛×𝑟,

and by using properties of the Kronecker product ⊗ we obtain that the Jacobian

matrix of eq. (4.6) is equal to

[︁
𝐼𝑛(𝑚−𝑟) 𝑌 ⊤

𝛼 ⊗ 𝐼𝑛 𝐼𝑚−𝑟 ⊗ 𝐴2

]︁
,

which is clearly of full rank, since it contains identity matrix. To conclude the proof

we note that

dim ̂︁ℳ𝑟 = 𝑛𝑚+ (𝑚− 𝑟)𝑟⏟  ⏞  
number of variables

− 𝑛(𝑚− 𝑟)⏟  ⏞  
number of equations

= (𝑛+𝑚)𝑟 − 𝑟2,

as desired.

The use of ̂︁ℳ𝑟 is justified by the simple lemma
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Lemma 8. The following statements hold:

• If (𝐴, 𝑌 ) ∈ ̂︁ℳ𝑟 then 𝐴 ∈ℳ≤𝑟,

• If 𝐴 ∈ℳ≤𝑟 then there exists 𝑌 such that (𝐴, 𝑌 ) ∈ ̂︁ℳ𝑟.

Proof. These statements obviously follow from the equation

𝐴𝑌 = 0,

which implies that the dimension of the nullspace of 𝐴 is at least 𝑚− 𝑟.

We would like to construct Newton method on the manifold ̂︁ℳ𝑟. In order to

work with quotient manifolds such as 𝐺𝑟(𝑚 − 𝑟,𝑚) the conventional approach is

to use the total space of the quotient. The tangent space is then dealt with using

the concept of horizontal space (sometimes this is referred to as gauge condition)

which is isomorphic to the tangent space of the quotient manifold. This approach

is explained in great detail in [Absil et al., 2009]. Although we will not go into the

details of these concepts, we will apply them to ̂︁ℳ𝑟 in the next section.

4.2.3 Tangent space of ̂︁ℳ𝑟

For our analysis, it is more convenient to employ the following representation of the

Grassmanian:

𝐺𝑟(𝑚− 𝑟,𝑚) = 𝑆𝑡(𝑚− 𝑟,𝑚)/𝑂𝑚−𝑟, (4.7)

where 𝑆𝑡(𝑚− 𝑟,𝑚) is the orthogonal Stiefel manifold

𝑆𝑡(𝑚− 𝑟,𝑚) = {𝑌 ∈ R𝑚,𝑚−𝑟
* : 𝑌 ⊤𝑌 = 𝐼𝑚−𝑟},

and 𝑂𝑚−𝑟 is the orthogonal group.

Let 𝜋 be the quotient map eq. (4.7) and id× 𝜋 is the obvious map

R𝑛×𝑚 × 𝑆𝑡(𝑚− 𝑟,𝑚)→ R𝑛×𝑚 ×𝐺𝑟(𝑚− 𝑟,𝑚).
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It is easy to see that ̂︁ℳtot
𝑟 := (id× 𝜋)−1(̂︁ℳ𝑟) is the following manifold:

̂︁ℳtot
𝑟 = {(𝐴, 𝑌 ) ∈ R𝑛×𝑚 × R𝑚,𝑚−𝑟

* : 𝐴𝑌 = 0, 𝑌 ⊤𝑌 = 𝐼𝑚−𝑟}. (4.8)

Let us now compute the horizontal distribution on ̂︁ℳtot
𝑟 . As described in [Absil

et al., 2009, Example 3.6.4] in the case of the projection

𝜋 : R𝑚,𝑚−𝑟
* → 𝐺𝑟(𝑚− 𝑟,𝑚),

𝑌 → span(𝑌 ),

the horizontal space at 𝑌 is defined as the following subspace of 𝑇𝑌R𝑚,𝑚−𝑟
* :

{𝛿𝑌 ∈ 𝑇𝑌R𝑚,𝑚−𝑟
* : (𝛿𝑌 )⊤𝑌 = 0}. (4.9)

It immediately follows that in the case eq. (4.8) the horizontal space at (𝐴, 𝑌 ) is

equal to

ℋ(𝐴, 𝑌 ) = 𝑇(𝐴,𝑌 )(̂︁ℳtot
𝑟 ) ∩ℋGr(𝐴, 𝑌 ),

where ℋGr(𝐴, 𝑌 ) is similarly to eq. (4.9) defined as:

ℋGr(𝐴, 𝑌 ) = {(𝛿𝐴, 𝛿𝑌 ) ∈ 𝑇(𝐴,𝑌 )(R𝑛×𝑚 × R𝑚,𝑚−𝑟
* ) : (𝛿𝑌 )⊤𝑌 = 0}. (4.10)

Note that the dimension of ℋ is equal to the dimension of ̂︁ℳ𝑟 since it is, by con-

struction, isomorphic to the 𝑇 ̂︁ℳ𝑟. We now proceed to one of the main results of

the paper

Theorem 7. The orthogonal projection on ℋ(𝐴, 𝑌 ) is Lipschitz continuous with

respect to (𝐴, 𝑌 ) and its Lipschitz constant is no greater than 2(
√
𝑛 +
√
𝑚− 𝑟) in

the Frobenius norm.

Proof. In order to prove the theorem, first we need to find the equations ofℋ(𝐴, 𝑌 ).

Recall the defining equations of ̂︁ℳtot
𝑟 eq. (4.8) and that for a given 𝑝 = (𝐴, 𝑌 ) the

tangent space is the nullspace of the gradient of the constraints. By taking into
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account the gauge condition eq. (4.10) we find that

ℋ(𝐴, 𝑌 ) = {𝑣 : 𝑁(𝑝)𝑣 = 0},

where the matrix 𝑁(𝑝) has the following block structure:

𝑁(𝑝) =

⎡
⎣𝑌

⊤ ⊗ 𝐼𝑛 𝐼𝑚−𝑟 ⊗ 𝐴

0 𝐼𝑚−𝑟 ⊗ 𝑌 ⊤

⎤
⎦ . (4.11)

For simplicity of notation we will omit 𝑝 in 𝑁(𝑝). The projection onto the horizontal

space of a given vector 𝑧 is given by the following formula

𝑣 = (𝐼 −𝑁⊤(𝑁𝑁⊤)−1𝑁)𝑧 = 𝑃𝑁𝑧, (4.12)

where

𝑃𝑁 = (𝐼 −𝑁 †𝑁),

is the orthogonal projector onto the row range of 𝑁 . Using exactly the same idea

as in previous section we estimate 𝜎min(𝑁) from below. Consider the Gram matrix

𝑍 = 𝑁𝑁⊤ =

⎡
⎣𝑌

⊤ ⊗ 𝐼𝑛 𝐼𝑚−𝑟 ⊗ 𝐴

0 𝐼𝑚−𝑟 ⊗ 𝑌 ⊤

⎤
⎦
⎡
⎣ 𝑌 ⊗ 𝐼𝑛 0

𝐼𝑚−𝑟 ⊗ 𝐴⊤ 𝐼𝑚−𝑟 ⊗ 𝑌

⎤
⎦ =

=

⎡
⎣𝑌

⊤𝑌 ⊗ 𝐼𝑛 + 𝐼𝑚−𝑟 ⊗ 𝐴𝐴⊤ 𝐼𝑚−𝑟 ⊗ 𝐴𝑌

𝐼𝑚−𝑟 ⊗ 𝑌 ⊤𝐴⊤ 𝐼𝑚−𝑟 ⊗ 𝑌 ⊤𝑌

⎤
⎦ .

Now we recall that for each point at the manifold ̂︁ℳtot
𝑟 eq. (4.8) holds, therefore

𝑍 =

⎡
⎣𝐼 + 𝐼𝑚−𝑟 ⊗ 𝐴𝐴⊤ 0

0 𝐼

⎤
⎦ . (4.13)

It is obvious that 𝜎min(𝑍) ≥ 1 since it has the form 𝐼 +𝐷𝐷⊤. Finally, 𝜎2
min(𝑁) =

𝜎min(𝑍) ≥ 1, therefore

𝜎min(𝑁) = 𝜎min(𝑁
⊤) ≥ 1, ‖(𝑁⊤)†‖2≤ 1. (4.14)
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Putting eq. (4.14) into eq. (4.3) we get

‖𝑃𝑁 − 𝑃𝑁 ′‖𝐹≤ 2‖𝑁 −𝑁 ′‖𝐹 ,

with 𝑁 = 𝑁(𝐴, 𝑌 ), 𝑁 ′ = 𝑁(𝐴′, 𝑌 ′). Finally, we need to estimate how 𝑁 changes

under the change of 𝐴 and 𝑌 . We have

𝑁 −𝑁 ′ =

⎡
⎣(𝑌 − 𝑌 ′)⊗ 𝐼𝑛 𝐼𝑚−𝑟 ⊗ (𝐴− (𝐴′))

0 𝐼𝑚−𝑟 ⊗ (𝑌 ⊤ − (𝑌 ′)⊤)

⎤
⎦ ,

therefore

‖𝑁 −𝑁 ′‖𝐹≤ (
√
𝑛+
√
𝑚− 𝑟)‖𝑌 − 𝑌 ′‖𝐹+

√
𝑚− 𝑟‖𝐴− 𝐴′‖𝐹 .

Thus

(4.15)
𝑑𝐺𝑟(ℋ(𝐴′, 𝑌 ′),ℋ(𝐴, 𝑌 )) = ‖𝑃𝑁 − 𝑃𝑁 ′‖𝐹

≤ 2‖𝑁 −𝑁 ′‖𝐹
≤ 2(
√
𝑛+
√
𝑚− 𝑟)(‖𝑌 − 𝑌 ′‖𝐹 + ‖𝐴− 𝐴′‖𝐹 ).

For small 𝑟

(𝑚+ 𝑛)𝑟 − 𝑟2 ≪ 𝑛𝑚,

so to fully utilize the properties of ̂︁ℳ𝑟 in computations we first have to find an

explicit basis in the horizontal space. This will be done in the next section.

4.2.4 Parametrization of the tangent space

To work with low rank matrices it is very convenient to represent them using the

truncated singular value decomposition (SVD). Namely for 𝐴 ∈ℳ≤𝑟 we have

𝐴 = 𝑈𝑆𝑉 ⊤,

with 𝑈 and 𝑉 having 𝑟 orthonormal columns and 𝑆 being a diagonal matrix. Using

this notation we find that the following result holds:
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Theorem 8. The orthogonal basis in the kernel of 𝑁 from eq. (4.11) is given by

columns of the following matrix 𝑄

𝑄 =

⎡
⎣𝑉 ⊗ 𝐼𝑛 −𝑌 ⊗ (𝑈𝑆1)

0 𝐼𝑚−𝑟 ⊗ (𝑉 𝑆2)

⎤
⎦ ,

where

𝑆1 and 𝑆2 are diagonal matrices defined as

𝑆1 = 𝑆(𝑆2 + 𝐼𝑟)
− 1

2 , 𝑆2 = (𝑆2 + 𝐼𝑟)
− 1

2

Proof. It suffices to verify that 𝑄⊤𝑄 = 𝐼 and 𝑁𝑄 = 0 which is performed by direct

multiplication. The number of columns in 𝑄 is 𝑛𝑟 + (𝑚 − 𝑟)𝑟 which is exactly the

dimension of the ℋ(𝐴, 𝑌 ).

Now we will use smoothness of ̂︁ℳ𝑟 to develop an optimization algorithm over

ℳ≤𝑟. The idea of using kernel of a matrix in optimization problems has appeared be-

fore [Markovsky and Usevich, 2012, 2013]. Algorithm constructed there is a variable–

projection—like method with 𝑂(𝑚3) per iteration complexity, where 𝑚 is number

of columns in the matrix. We explain this approach in more detail in section 5.6.

4.3 Newton method

4.3.1 Basic Newton method

Consider the optimization problem

𝐹 (𝐴)→ min, s.t. 𝐴 ∈ℳ≤𝑟,

where 𝐹 is twice differentiable. Using the idea described in section 4.1.1 this problem

is equivalent to
̂︀𝐹 (𝐴, 𝑌 )→ min, s.t. (𝐴, 𝑌 ) ∈ ̂︁ℳ𝑟,

and
̂︀𝐹 (𝐴, 𝑌 ) = 𝐹 (𝐴).
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Following the approach described in e.g. [Absil et al., 2009, Section 4.9] we solve this

problem by lifting it to the total space ̂︁ℳtot
𝑟 defined by eq. (4.8) with the additional

condition that the search direction lies in the horizontal bundle ℋ, that is

̃︀𝐹 (𝐴, 𝑌 )→ min, s.t. (𝐴, 𝑌 ) ∈ ̂︁ℳtot
𝑟 ,

̃︀𝐹 (𝐴, 𝑌 ) = 𝐹 (𝐴),

(𝛿𝐴, 𝛿𝑌 ) ∈ ℋ(𝐴, 𝑌 ). (4.16)

To solve it we will rewrite it using the Lagrange multipliers method, with the

additional constraint eq. (4.16). Taking into account the defining equations of ̂︁ℳtot
𝑟

eq. (4.8) the Lagrangian for the constrained optimization problem reads

ℒ(𝐴, 𝑌,Λ,𝑀) = 𝐹 (𝐴) + ⟨𝐴𝑌,Λ⟩+ 1

2
⟨𝑀,𝑌 ⊤𝑌 − 𝐼⟩,

where Λ ∈ R𝑛×𝑚−𝑟 and 𝑀 ∈ R(𝑚−𝑟)×(𝑚−𝑟), 𝑀⊤ = 𝑀 are the Lagrange multipliers.

We now find the first-order optimality conditions.

4.3.2 First order optimality conditions

By differentiating ℒ we find the following equations

∇𝐹 + Λ𝑌 ⊤ = 0, 𝑌 𝑀 + 𝐴⊤Λ = 0, 𝐴𝑌 = 0, 𝑌 ⊤𝑌 = 𝐼.

Multiplying second equation by 𝑌 ⊤ from the left and using equations 𝐴𝑌 = 0 and

𝑌 ⊤𝑌 = 𝐼 we find that 𝑀 = 0. Thus, the first-order optimality conditions reduce to

∇𝐹 + Λ𝑌 ⊤ = 0, 𝐴⊤Λ = 0, 𝐴𝑌 = 0, 𝑌 ⊤𝑌 = 𝐼. (4.17)
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4.3.3 Newton method and the reduced Hessian system

Now we can write down the Newton method for the system eq. (4.17), which can be

written in the saddle point form

⎡
⎣
̂︀𝐺 𝑁⊤

𝑁 0

⎤
⎦
⎡
⎣𝛿𝑧
𝛿𝜆

⎤
⎦ =

⎡
⎣𝑓
0

⎤
⎦ , (4.18)

and

𝑓 = −vec(∇𝐹 + Λ𝑌 ⊤).

where we assumed that the initial point satisfies the constraints (𝐴𝑌 = 0, 𝑌 ⊤𝑌 =

𝐼𝑚−𝑟), the vectors 𝛿𝑧 and 𝛿𝜆 are

𝛿𝑧 =

⎡
⎣vec(𝛿𝐴)
vec(𝛿𝑌 )

⎤
⎦ , 𝛿𝜆 =

⎡
⎣ vec(𝛿Λ)

vec(𝛿𝑀)

⎤
⎦ ,

and the matrix ̂︀𝐺 in turn has a saddle-point structure:

̂︀𝐺 =

⎡
⎣𝐻 𝐶

𝐶⊤ 0

⎤
⎦ ,

where 𝐻 = ∇2𝐹 is the ordinary Hessian, and 𝐶 comes from differentiating the term

Λ𝑌 ⊤ with respect to 𝑌 and will be derived later in the text. The constraints on the

search direction 𝛿𝑧 are written as

𝑁𝛿𝑧 = 0,

and

𝑁 =

⎡
⎣𝑌

⊤ ⊗ 𝐼𝑛 𝐼𝑚−𝑟 ⊗ 𝐴

0 𝐼𝑚−𝑟 ⊗ 𝑌 ⊤

⎤
⎦ ,

which means that 𝛿𝑧 is in the ℋ(𝐴, 𝑌 ) as desired. In what follows our approach is

similar to the null space methods described in [Benzi et al., 2005, Section 6]. Using

a parametrization via the matrix 𝑄 defined in theorem 8 we obtain that 𝛿𝑧 = 𝑄𝛿𝑤.
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The first block row of system eq. (4.18) reads

̂︀𝐺𝑄𝛿𝑤 +𝑁⊤𝛿𝜆 = 𝑓.

Multiplying by 𝑄⊤ we can eliminate 𝛿𝜆, which leads to the reduced Hessian equation

𝑄⊤ ̂︀𝐺𝑄𝛿𝑤 = 𝑄⊤𝑓. (4.19)

Note that 𝑄⊤ ̂︀𝐺𝑄 is a small (𝑛+𝑚)𝑟−𝑟2×(𝑛+𝑚)𝑟−𝑟2 matrix as claimed. We now

would like to simplify equation eq. (4.19). Using the transposition operator defined

in section 4.2.2 we find that matrix 𝐶 is written as

𝐶 = (𝐼𝑚 ⊗ Λ)𝑇𝑚,𝑚−𝑟.

An important property of the matrix 𝐶 is that if 𝑄12 = −𝑌 ⊗ (𝑈𝑆1) is the (1, 2)

block of the matrix 𝑄, then

𝑄12𝐶 = 0,

if

𝐴⊤Λ = 0,

which is again verified by direct multiplication using the properties of the Kronecker

product. The direct evaluation of the product

̂︀𝐺𝑙𝑜𝑐 = 𝑄⊤ ̂︀𝐺𝑄,

(together with the property above) gives

̂︀𝐺𝑙𝑜𝑐 =

⎡
⎣ 𝑄⊤

11𝐻𝑄11 𝑄⊤
11𝐻𝑄12 +𝑄⊤

11𝐶𝑄22

𝑄⊤
12𝐻𝑄11 +𝑄⊤

22𝐶
⊤𝑄11 𝑄⊤

12𝐻𝑄12

⎤
⎦ , (4.20)
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and the system we need to solve has the form

⎡
⎣ 𝑄⊤

11𝐻𝑄11 𝑄⊤
11𝐻𝑄12 +𝑄⊤

11𝐶𝑄22

𝑄⊤
12𝐻𝑄11 +𝑄⊤

22𝐶
⊤𝑄11 𝑄⊤

12𝐻𝑄12

⎤
⎦
⎡
⎣𝛿𝑢
𝛿𝑝

⎤
⎦ =

⎡
⎣𝑄

⊤
11𝑓

𝑄⊤
12𝑓

⎤
⎦ , (4.21)

with

𝛿𝑈 ∈ R𝑛×𝑟, 𝛿𝑃 ∈ R𝑟×(𝑚−𝑟).

We also need to estimate Λ. Recall that to get 𝑄12𝐶 = 0 we have to require that

𝐴⊤Λ = 0 exactly, thus

Λ = 𝑍Φ,

where 𝑍 is the orthonormal basis for the left nullspace of 𝐴, and Φ is defined from

the minimization of

‖∇𝐹 + 𝑍Φ𝑌 ⊤‖→ min,

i.e.

Φ = −𝑍⊤∇𝐹𝑌,

and

Λ = −𝑍𝑍⊤∇𝐹𝑌.

Note that 𝑓 then is just a standard projection of ∇𝐹 on the tangent space:

𝑓 = −vec(∇𝐹 − 𝑍𝑍⊤∇𝐹𝑌 𝑌 ⊤) = −vec(∇𝐹 − (𝐼 − 𝑈𝑈⊤)∇𝐹 (𝐼 − 𝑉 𝑉 ⊤)),

which is always a vectorization of a matrix with a rank not larger than 2𝑟. Moreover,

𝑔1 = 𝑄⊤
11𝑓 = (𝑉 ⊤ ⊗ 𝐼)𝑓 = (4.22)

−vec((∇𝐹 − (𝐼 − 𝑈𝑈⊤)∇𝐹 (𝐼 − 𝑉 𝑉 ⊤))𝑉 ) = vec(−∇𝐹𝑉 ),

and the second component

𝑔2 = 𝑄⊤
12𝑓 = −(𝑌 ⊤ ⊗ (𝑈𝑆1)

⊤)𝑓 = (4.23)
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vec((𝑈𝑆1)
⊤(∇𝐹 − (𝐼 − 𝑈𝑈⊤)∇𝐹 (𝐼 − 𝑉 𝑉 ⊤))𝑌 ) = vec(𝑆⊤

1 𝑈
⊤∇𝐹𝑌 ).

The solution is recovered from 𝛿𝑢, 𝛿𝑝 as

𝛿𝑎 = (𝑉 ⊗ 𝐼𝑛)𝛿𝑢− (𝑌 ⊗ (𝑈𝑆1))𝛿𝑝,

or in the matrix form,

𝛿𝐴 = 𝛿𝑈𝑉 ⊤ − 𝑈𝑆1𝛿𝑃𝑌 ⊤,

and the error in 𝐴 (which we are interested in) is given by

‖𝛿𝐴‖2𝐹= ‖𝛿𝑈‖2𝐹+‖𝑆1𝛿𝑃‖2𝐹 .

We can further simplify the off-diagonal block. Consider

̂︀𝐶 = 𝑄⊤
11𝐶𝑄22 = (𝑉 ⊤ ⊗ 𝐼)(𝐼 ⊗ Λ)𝑇 (𝐼 ⊗ 𝑉 )(𝐼 ⊗ 𝑆2).

Then multiplication of this matrix by a vector takes the form:

mat( ̂︀𝐶vec(Φ)) = Λ(𝑉 𝑆2Φ)
⊤𝑉 = ΛΦ⊤𝑆⊤

2 𝑉
⊤𝑉 = ΛΦ⊤𝑆⊤

2 ,

thus
̂︀𝐶 = (𝑆2 ⊗ Λ)𝑇𝑟,𝑛−𝑟.

4.3.4 Retraction

Note that since we assumed that the initial points satisfy the constraints

𝐴𝑌 = 0, 𝑌 ⊤𝑌 = 𝐼𝑚−𝑟, (4.24)

after doing each step of the Newton algorithm we have to perform the retraction

back to the manifold ̂︁ℳ𝑡𝑜𝑡
𝑟 . One such possible retraction is the following. Define a

map

𝑅 : ̂︁ℳ𝑡𝑜𝑡
𝑟 ⊕ℋ → ̂︁ℳ𝑡𝑜𝑡

𝑟 ,
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𝑅((𝐴, 𝑌 ), (𝛿𝑌, 𝛿𝐴)) = (𝑅1(𝐴, 𝛿𝐴), 𝑅2(𝑌, 𝛿𝑌 ))

𝑅2(𝑌, 𝛿𝑌 ) = qf(𝑌 + 𝛿𝑌 ) = 𝑌1,

𝑅1(𝐴, 𝛿𝐴) = 𝐴(𝐼 − 𝑌1𝑌
⊤
1 )

where qf(𝜉) denotes the Q factor of the QR-decomposition of 𝜉, which is a standard

second-order retraction on the Stiefel manifold [Absil et al., 2009, Example 4.1.3].

In the fast version of the Newton method which will be derived later, we will also

use the standard SVD-based retraction which acts on the matrix 𝐴+ 𝛿𝐴 simply by

truncating it’s SVD to the rank 𝑟. It is also known that given the SVD of the matrix

𝐴 then for certain small corrections 𝛿𝐴, the SVD of 𝐴+ 𝛿𝐴 can be recomputed with

low computational cost as described in [Vandereycken, 2013, §3 ]. It is also known

to be a second order retraction [Absil and Malick, 2012]. We denote this operation

by 𝑅SVD(𝐴, 𝛿𝐴).

4.3.5 Basic Algorithm

The basic Newton method on the manifold ̂︁ℳ𝑟 is summarized in the following al-

gorithm

Algorithm 1 Newton method
1: Initial conditions 𝐴0, 𝑌0, functional 𝐹 (𝐴) and tolerance 𝜀

2: Result: minimum of 𝐹 onℳ≤𝑟

3: while ‖𝛿𝑈 𝑖‖2𝐹+‖(𝑆1)
𝑖𝛿𝑃 𝑖‖2𝐹> 𝜀 do

4: 𝑈 𝑖, 𝑆𝑖, 𝑉 𝑖 = svd(𝐴𝑖)

5: Solve ̂︀𝐺𝑙𝑜𝑐

⎡
⎣𝛿𝑢

𝑖

𝛿𝑝𝑖

⎤
⎦ =

⎡
⎣𝑔1
𝑔2

⎤
⎦ where ̂︀𝐺𝑙𝑜𝑐, 𝑔1, 𝑔2 are defined by formulas eqs. (4.20),

(4.22) and (4.23)

6: 𝛿𝐴𝑖 = 𝛿𝑈 𝑖𝑉 𝑖⊤ − 𝑈 𝑖(𝑆1)
𝑖𝛿𝑃 𝑖𝑌 𝑖⊤ 𝛿𝑌 𝑖 = 𝑉 𝑖(𝑆2)

𝑖𝛿𝑃 𝑖

7: 𝐴𝑖+1, 𝑌 𝑖+1 = 𝑅((𝐴𝑖, 𝛿𝐴𝑖), (𝑌 𝑖, 𝛿𝑌 𝑖))

8: 𝑖 = 𝑖+ 1

9: end while

10: return 𝐴𝑖

84



Chapter 4. Desingularization 4.3. Newton method

Even though this algorithm demonstrates that our approach is rather inefficient

in terms of memory and complexity – storing and doing multiplications by 𝑌 are of

order 𝑂(𝑚2) instead of desired 𝑂((𝑛+𝑚)𝑟). We resolve this issue in the next section.

Analysis of the convergence and behavior of the algorithm near the points (𝐴, 𝑌 )

corresponding to matrices of strictly smaller rank is performed in section 4.5.2.

4.3.6 Semi-implicit parametrization of the tangent space

Let us introduce a new variable

𝛿Φ⊤ = 𝑌 𝛿𝑃⊤,

𝛿Φ ∈ R𝑟×𝑚.

This results in an implicit constraint on 𝛿Φ

𝛿Φ𝑉 = 0.

In order to make an arbitrary Φ satisfy it, we first multiply it by the projection

operator 𝐼 − 𝑉 𝑉 ⊤,

Φ′ = Φ(𝐼 − 𝑉 𝑉 ⊤),

or in the matrix form

⎡
⎣𝛿𝑢

𝛿𝜑′

⎤
⎦ =

⎡
⎣𝐼 0

0 𝐼 − 𝑉 𝑉 ⊤ ⊗ 𝐼

⎤
⎦
⎡
⎣𝛿𝑢
𝛿𝜑

⎤
⎦ .

Notice also that

𝛿𝑃 = 𝛿Φ𝑌,

and again using the properties of the Kronecker product we obtain

⎡
⎣𝛿𝑢
𝛿𝑝

⎤
⎦ =

⎡
⎣𝐼 0

0 𝑌 ⊤ ⊗ 𝐼

⎤
⎦
⎡
⎣𝛿𝑢
𝛿𝜑

⎤
⎦ .
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Denote

Π =

⎡
⎣𝐼 0

0 𝐼 − 𝑉 𝑉 ⊤ ⊗ 𝐼

⎤
⎦ ,

𝑊 =

⎡
⎣𝐼 0

0 𝑌 ⊤ ⊗ 𝐼

⎤
⎦ .

The equations for the Newton method in the new variables take the following form:

Π⊤𝑊⊤ ̂︀𝐺𝑙𝑜𝑐𝑊Π

⎡
⎣𝛿𝑢
𝛿𝜑

⎤
⎦ = Π⊤𝑊⊤

⎡
⎣𝑔1
𝑔2

⎤
⎦ , (4.25)

where 𝑔1, 𝑔2, ̂︀𝐺𝑙𝑜𝑐 are as in eqs. (4.20), (4.22) and (4.23) and the linear system in

eq. (4.25) is of size (𝑛+𝑚)𝑟.

4.3.7 Iterative method

For a large 𝑛 and 𝑚 forming the full matrix eq. (4.25) is computationally expensive,

so we switch to iterative methods. To implement the matvec operation we need to

simplify ⎡
⎣𝑙1
𝑙2

⎤
⎦ = Π⊤𝑊⊤ ̂︀𝑄𝑙𝑜𝑐𝑊Π

⎡
⎣𝛿𝑢
𝛿𝜑

⎤
⎦ ,

first.

Direct computation shows that

⎡
⎣𝑙1
𝑙2

⎤
⎦ = Π⊤𝑊⊤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(𝑉 ⊤ ⊗ 𝐼)𝐻(𝑉 ⊗ 𝐼)𝛿𝑢−
(𝑉 ⊤ ⊗ 𝐼)𝐻(𝐼 ⊗ 𝑈)vec(𝑆1𝛿Φ(𝐼 − 𝑉 𝑉 ⊤))−
vec((𝐼 − 𝑈𝑈⊤)∇𝐹 (𝐼 − 𝑉 𝑉 ⊤)𝛿Φ⊤𝑆2)

−(𝑌 ⊤ ⊗ 𝐼)(𝐼 ⊗ 𝑆1)(𝐼 ⊗ 𝑈⊤)𝐻(𝑉 ⊗ 𝐼)𝛿𝑢+

(𝑌 ⊤ ⊗ 𝐼)vec(𝑆2(𝛿𝑈)⊤(−(𝐼 − 𝑈𝑈⊤)∇𝐹 ))+

(𝑌 ⊤ ⊗ 𝐼)(𝐼 ⊗ 𝑆1)(𝐼 ⊗ 𝑈⊤)𝐻(𝐼 ⊗ 𝑈)vec(𝑆1𝛿Φ(𝐼 − 𝑉 𝑉 ⊤))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and the right hand side has the following form:

⎡
⎣𝑔

′
1

𝑔′2

⎤
⎦ = Π⊤𝑊⊤

⎡
⎣ −vec∇𝐹𝑉

(𝑌 ⊤ ⊗ 𝐼)vec(𝑆1𝑈
⊤∇𝐹 )

⎤
⎦ .

Since both Π and 𝑊 only act on the second block it is easy to derive the final

formulas:

(4.26)𝑙1 = (𝑉 ⊤ ⊗ 𝐼)𝐻(𝑉 ⊗ 𝐼)𝛿𝑢− (𝑉 ⊤ ⊗ 𝐼)𝐻(𝐼 ⊗ 𝑈)vec(𝑆1𝛿Φ(𝐼 − 𝑉 𝑉 ⊤))

− vec((𝐼 − 𝑈𝑈⊤)∇𝐹 (𝐼 − 𝑉 𝑉 ⊤)𝛿Φ⊤𝑆2),

(4.27)
𝑙2 = −(𝐼 − 𝑉 𝑉 ⊤ ⊗ 𝐼)(𝐼 ⊗ 𝑆1)(𝐼 ⊗ 𝑈⊤)𝐻(𝑉 ⊗ 𝐼)𝛿𝑢

+ vec(𝑆2(𝛿𝑈)⊤(−(𝐼 − 𝑈𝑈⊤)∇𝐹 (𝐼 − 𝑉 𝑉 ⊤))

+ (𝐼 − 𝑉 𝑉 ⊤ ⊗ 𝐼)(𝐼 ⊗ 𝑆1)(𝐼 ⊗ 𝑈⊤)𝐻(𝐼 ⊗ 𝑈)vec(𝑆1𝛿Φ(𝐼 − 𝑉 𝑉 ⊤)),

𝑔′1 = −vec∇𝐹𝑉, (4.28)

𝑔′2 = vec(𝑆1𝑈
⊤∇𝐹 (𝐼 − 𝑉 𝑉 ⊤)). (4.29)

Note that in new variables we obtain

𝛿𝐴 = 𝛿𝑈𝑉 ⊤ − 𝑈𝑆1𝛿Φ,

and

𝐴+ 𝛿𝐴 = 𝑈(𝑆𝑉 ⊤ − 𝑆1𝛿Φ) + 𝛿𝑈𝑉 ⊤.

Using this representation of 𝐴+ 𝛿𝐴 we can recompute its SVD without forming the

full matrix as described in section 4.3.4. This allows us not to store the matrix 𝐴

itself but only the 𝑈 , 𝑆 and 𝑉 that we get from the SVD. We obtain the following

algorithm

87



Chapter 4. Desingularization 4.4. Technical aspects of the implementation

Algorithm 2 Fast Newton method
1: Initial conditions 𝑈0, 𝑆0, 𝑉0, functional 𝐹 (𝐴) and tolerance 𝜀

2: Result: minimum of 𝐹 onℳ≤𝑟

3: while ‖𝛿𝑈 𝑖‖2+‖(𝑆1)
𝑖𝛿Φ𝑖‖2𝐹> 𝜀 do

4: Solve linear system with matvec defined by formulas (4.26),(4.27) and right

hand side defined by formulas eqs. (4.28) and (4.29) using GMRES, obtaining

𝛿𝑢𝑖, 𝛿𝜑𝑖.

5: 𝛿𝐴𝑖 = 𝛿𝑈 𝑖𝑉 𝑖⊤ − 𝑈 𝑖(𝑆1)
𝑖𝛿Φ𝑖

6: 𝑈 𝑖+1, 𝑆𝑖+1, 𝑉 𝑖+1 = 𝑅SVD(𝐴
𝑖, 𝛿𝐴𝑖)

7: 𝑖 = 𝑖+ 1

8: end while

9: return 𝑈 𝑖, 𝑆𝑖, 𝑉 𝑖

4.4 Technical aspects of the implementation

4.4.1 Computation of the matvec and complexity

To efficiently compute the matvec for a given functional 𝐹 one has to be able to

evaluate the following expressions of the first order:

∇𝐹𝑉, (∇𝐹 )⊤𝑈,∇𝐹𝛿𝑋, 𝛿𝑋∇𝐹, (4.30)

and of the second order:

(𝑉 ⊤ ⊗ 𝐼)𝐻(𝑉 ⊗ 𝐼)𝛿𝑥, (𝑉 ⊤ ⊗ 𝐼)𝐻(𝐼 ⊗ 𝑈)𝛿𝑥 (4.31)

(𝐼 ⊗ 𝑈⊤)𝐻(𝑉 ⊗ 𝐼)𝛿𝑥, (𝐼 ⊗ 𝑈⊤)𝐻(𝐼 ⊗ 𝑈)𝛿𝑥.

The computational complexity of algorithm 2 depends heavily on whether we can

effectively evaluate eqs. (4.30) and (4.31), which, however, any similar algorithm

requires. Let us now consider two examples.
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4.4.2 Matrix completion

Given some matrix 𝐵 and a set of indices Γ define

𝐹 (𝑥) =
1

2

∑︁

(𝑖,𝑗)∈Γ
(𝑥𝑖,𝑗 −𝐵𝑖,𝑗)

2 → min, 𝑥 ∈ℳ≤𝑟.

Then

∇𝐹𝑖𝑗 = 𝑥𝑖𝑗 −𝐵𝑖𝑗, (𝑖, 𝑗) ∈ Γ,

∇𝐹𝑖𝑗 = 0, (𝑖, 𝑗) /∈ Γ.

Then 𝐻 in this case is a diagonal matrix with ones and zeroes on the diagonal,

the exact position of which are determined by Γ. Assuming that the cardinality

of Γ is small, the matrix products from eq. (4.30) can be performed efficiently by

doing sparse matrix multiplication. Note that multiplication by 𝐻 in eq. (4.31)

acts as a mask, turning the first factor into a sparse matrix, allowing for effective

multiplication by the second factor.

4.4.3 Approximation of a sparse matrix

Consider the approximation functional

𝐹 (𝑥) =
1

2
‖𝑥−𝐵‖2𝐹→ min, 𝑥 ∈ℳ≤𝑟,

and 𝐵 is a sparse matrix. Then

∇𝐹 = 𝑥−𝐵,

and expressions eq. (4.31), can be heavily simplified by noticing that 𝐻 in this case

is the identity matrix and the sparseness of 𝐵 is used to evaluate eq. (4.30).
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4.5 Numerical results

4.5.1 Convergence analysis

algorithm 2 was implemented in Python using numpy and scipy libraries. We tested

it on the functional described in section 4.4.3 for 𝐵 being the matrix constructed from

the MovieLens 100K Dataset [Harper and Konstan, 2015], so 𝑛 = 1000,𝑚 = 1700

and 𝐵 has 100000 non-zero elements. Since the pure Newton method is only local,

for a first test we choose small random perturbation (in the form 0.1𝒩 (0, 1)) of

the solution obtained via SVD as initial condition. We got the following results for

various 𝑟 (see fig. 4-2a). This shows the quadratic convergence of our method.
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Figure 4-2: Sparse matrix approximation: test of local convergence.

Now we fix the rank and test whether the method converges to the exact answer

for a perturbation of the form 𝛼𝒩 (0, 1) for various 𝛼 and plot a number of convergent

iterations vs 𝛼 ∈ [0.1, 2.5] (see fig. 4-2b). We see that for a sufficiently distant initial

condition the method does not converge to the desired answer. To fix this we

introduce a simple version of the trust-region algorithms described in [Yuan, 2000]

(to produce initial condition we perform a few steps of the power method). Results

are summarized in fig. 4-3. We also test our algorithm for the matrix completion

problem. As an initial data we choose first 15000 entries in the database described

above. Using the same trust-region algorithm we obtained the following results (see

fig. 4-4a).

As a final test we show quadratic convergence even in a case when the exact

solution is of rank smaller than 𝑟 for which the method is constructed. To do
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Figure 4-3: Sparse matrix approximation: trust-region method.

this we take first 𝑘 elements of the dataset for various 𝑘, find the rank 𝑟0 of the

matrix constructed from these elements, and run the trust-region Newton method

for 𝑟 = 𝑟0 + 10. The results are presented in fig. 4-4b.
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Figure 4-4: Matrix completion tests.
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4.5.2 Behavior of the algorithm in cases of rank deficiency

and underestimation

In the Newton equation of algorithm 1, one has to solve a linear system with

̂︀𝐺𝑙𝑜𝑐 =

⎡
⎣ 𝑄⊤

11𝐻𝑄11 𝑄⊤
11𝐻𝑄12 +𝑄⊤

11𝐶𝑄22

𝑄⊤
12𝐻𝑄11 +𝑄⊤

22𝐶𝑄11 𝑄⊤
12𝐻𝑄12

⎤
⎦ ,

with 𝐻 the Hessian of the objective function 𝐹 : R𝑛×𝑚 → R, which we can assume

to be positive definite. Suppose that a matrix of rank < 𝑟 is the global minimum

of 𝐹 . Then 𝑆1 is singular and Λ = 0, which in turn imply that 𝑄12 = −𝑌 ⊗ (𝑈𝑆1)

is singular and 𝐶 = 0. Hence, the matrix ̂︀𝐺𝑙𝑜𝑐 is singular. It is easy to understand

the reason of this behavior. The function ̂︀𝐹 defined on ̂︁ℳ𝑟 now has non-unique

critical point, — the set of critical points is now in fact a submanifold of ̂︁ℳ𝑟. Thus

any vector tangent to this submanifold will be a solution of the Newton system.

An analysis of the behavior of the Newton method for such functions is studied in

e.g. [Decker and Kelley, 1980]. While we plan to analyze it and prove quadratic

convergence in our future work, now we note that Krylov iterative methods handle

singular systems if we choose initial condition to be the zero vector, and quadratic

convergence has been observed in all the numerical experiments.

We will now compare our method (desN) with the reduced Riemannian Newton

(rRN) (which is also known as constrained Gauss-Newton method [Kressner et al.,

2016]) and CG methods on the fixed-rank matrix manifolds for the approximation

problem. The former is obtained by neglecting the curvature term involving 𝑆−1 in

the Hessian (see [Vandereycken, 2013, Proposition 2.3]) and for the latter we use the

Pymanopt [Townsend et al., 2016] implementation. We choose 𝑛 = 𝑚 = 30, 𝑟 = 10

and for the first test we compare the behavior of these algorithms in the case of the

exact solution being of rank 𝑟0 < 𝑟 with 𝑟0 = 5. In the second test, we study the

converse situation when the rank is underestimated — the exact solution has rank

𝑟0 > 𝑟 with 𝑟0 = 15. As before, for the reference solution we choose a truncated SVD

of the approximated matrix. The results are summarized in the figs. 4-5a and 4-5b.

Note that the case of rank underestimation was also studied in fig. 4-4b. We observe
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that the proposed algorithm maintains quadratic convergence in both cases. Even

though the reduced Riemannian Newton method is quadratic in the case of rank

deficiency, it becomes linear in the case of rank underestimation. This phenomenon

is well-known and explained e.g. in [Kressner et al., 2016, Section 5.3] and is related

to the fact that when exact minimum is on the variety this approximate model in

fact becomes exact second order model. CG is linear in both cases.
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Figure 4-5: Comparison of the convergence behaviour of various optimization algo-
rithms.

4.5.3 Comparison with the regularized Newton method

In this subsection we will compare behavior of our method and of the full Rieman-

nian Newton method on the low-rank matrix variety. To avoid problems with zero

or very small singular values we choose some small parameter 𝜀, and in the sum-

mands involving 𝑆−1 in the formulas for the Hessian matrix [Vandereycken, 2013,

Proposition 2.3] we use the regularized singular values

𝜎𝜀
𝑖 = max{𝜎𝑖, 𝜀},

thus obtaining regularized Newton method (regN). As a test problem we choose

a matrix completion problem where the exact answer is known (given sufficiently

many elements in the matrix) and of a small rank. To construct such a matrix 𝐴

we take the uniform grid of size 𝑁 = 40 in the square [−1, 1]2 and sample values of

the function

𝑓(𝑥, 𝑦) = 𝑒−𝑥2−𝑦2 ,
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on this grid. It is easy to check that this matrix has rank exactly 1. We choose

𝑟0 = 5 and compare relative error with respect to the exact solution 𝐴, value of

the functional as defined in section 4.4.2 and value of the second singular value 𝜎2.

Results are given in fig. 4-6. We see that even though in all the cases value of the
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Figure 4-6: Matrix completion tests in the case of strong rank deficiency.

functional goes to 0, regularized Newton method fails to recover that 𝜎2 of the exact

answer is in fact 0 and it’s behavior depends on the value of 𝜀.

4.6 Related work

Partly similar approach using so-called parametrization via kernel is described in

[Markovsky and Usevich, 2012, 2013]. However, optimization algorithm proposed

there is not considered as an optimization problem on a manifold of tuples (𝐴, 𝑌 ) and

is based on two separate optimization procedures (with respect to 𝐴 and to 𝑌 , where

the latter belongs to the orthogonal Stiefel manifold), thus separating the variables.

As stated in [Markovsky and Usevich, 2013] in general it has 𝑂(𝑚3) complexity
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per iteration. An overview of Riemannian optimization is presented in [Qi, 2011].

An example of the traditional approach to bounded-rank matrix sets using Stiefel

manifolds is given in [Koch and Lubich, 2007] where explicit formulas for projection

onto the tangent space are presented. An application of Riemannian optimization to

low-rank matrix completion whereℳ≤𝑟 is considered as a subvariety in the set of all

matrices is given in [Vandereycken, 2013]. The case of 𝐹 being non-smooth but only

Lipschitz is studied in [Hosseini and Uschmajew, 2017]. Theoretical properties of

matrix completion such as when exact recovering of the matrix is possible are studied

in [Candès and Tao, 2010]. Standard references for introductory algebraic geometry

are [Hartshorne, 2013] and [Shafarevich and Hirsch, 1994]. For more computational

aspects see [Grayson and Stillman, 2002].
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Chapter 5

Geometry Score: A Method For

Comparing Generative Adversarial

Networks

5.1 Introduction

Generative adversarial networks (GANs) [Goodfellow et al., 2014b] are a class of

methods for training generative models, which have been recently shown to be very

successful in producing image samples of excellent quality. They have been applied

in numerous areas [Radford et al., 2015, Salimans et al., 2016b, Ho and Ermon,

2016]. Briefly, this framework can be described as follows. We attempt to mimic

a given target distribution 𝑝data(x) by constructing two networks 𝐺(z;𝜃(𝐺)) and

𝐷(x;𝜃(𝐷)) called the generator and the discriminator. The generator learns to sam-

ple from the target distribution by transforming a random input vector z to a vector

x = 𝐺(z;𝜃(𝐺)), and the discriminator learns to distinguish the model distribution

𝑝model(x) from 𝑝data(x). The training procedure for GANs is typically based on ap-

plying gradient descent in turn to the discriminator and the generator in order to

minimize a loss function. Finding a good loss function is a topic of ongoing research,

and several options were proposed in [Mao et al., 2016, Arjovsky et al., 2017].

One of the main challenges [Lucic et al., 2017, Barratt and Sharma, 2018] in the

GANs framework is estimating the quality of the generated samples. In traditional
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GAN models, the discriminator loss cannot be used as a metric and does not nec-

essarily decrease during training. In more involved architectures such as WGAN

[Arjovsky et al., 2017] the discriminator (critic) loss is argued to be in correlation

with the image quality, however, using this loss as a measure of quality is nontriv-

ial. Training GANs is known to be difficult in general and presents such issues as

mode collapse when 𝑝model(x) fails to capture a multimodal nature of 𝑝data(x) and

in extreme cases all the generated samples might be identical. Several techniques to

improve the training procedure were proposed in [Salimans et al., 2016b, Gulrajani

et al., 2017].

In this work, we attack the problem of estimating the quality and diversity of

the generated images by using the machinery of topology. The well-known Manifold

Hypothesis [Goodfellow et al., 2016] states that in many cases such as the case of

natural images the support of the distribution 𝑝data(x) is concentrated on a low

dimensional manifold ℳdata in a Euclidean space. This manifold is assumed to

have a very complex non-linear structure and is hard to define explicitly. It can

be argued that interesting features and patterns of the images from 𝑝data(x) can

be analyzed in terms of topological properties of ℳdata, namely in terms of loops

and higher dimensional holes in ℳdata. Similarly, we can assume that 𝑝model(x) is

supported on a manifold ℳmodel (under mild conditions on the architecture of the

generator this statement can be made precise [Shao et al., 2017]), and for sufficiently

good GANs this manifold can be argued to be quite similar toℳdata (see fig. 5-1).

This intuitive claim will be later supported by numerical experiments. Based on

this hypothesis we develop an approach which allows for comparing the topology of

the underlying manifolds for two point clouds in a stochastic manner providing us

with a visual way to detect mode collapse and a score which allows for comparing

the quality of various trained models. Informally, since the task of computing the

precise topological properties of the underlying manifolds based only on samples is

ill-posed by nature, we estimate them using a certain probability distribution (see

section 5.4).

We test our approach on several real–life datasets and popular GAN models

(DCGAN, WGAN, WGAN-GP) and show that the obtained results agree well with
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the intuition and allow for comparison of various models (see section 5.5).

pdata(x) pmodel(x)

Mdata Mmodel

Figure 5-1: The Manifold Hypothesis suggests that in the case of natural images
the data is supported on a low dimensional data manifold ℳdata. Similarly, GANs
sample images from an immersed manifoldℳmodel. By comparing topological prop-
erties of the manifolds ℳdata and ℳmodel we can get insight in how strongly GAN
captured intricacies in the data distribution 𝑝data(x), and quantitatively estimate
the difference.

5.2 Main idea

Let us briefly discuss our approach before dwelling into technical details. As de-

scribed in the introduction we would like to compare topological properties ofℳdata

andℳmodel in some way. This task is complicated by the fact that we do not have

access to the manifolds themselves but merely to samples from them. A natural

approach in this case is to approximate these manifolds using some simpler spaces

in such a way that topological properties of these spaces resemble those of ℳdata

and ℳmodel. The main example of such spaces are simplicial complexes (fig. 5-

2), which are build from intervals, triangles and other higher dimensional simplices.

In order to reconstruct the underlying manifold using a simplicial complex several
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Figure 5-2: Simplicial complex. Topological space 𝑋 is constructed from several
edges (𝜎1, 𝜎3, 𝜎4) and a two dimensional face 𝜎2.

methods exist. In all such approaches proximity information of the data is used,

such as pairwise distances between samples. Typically one chooses some threshold

parameter 𝜀 and based on the value of this parameter one decides which simplices

are added into the approximation (see fig. 5-3). However a single value 𝜀 is not

"

X R"

Figure 5-3: A simplicial complex constructed on a sample 𝑋. First, we fix the
proximity parameter 𝜀. Then we take balls of the radius 𝜀 centered at each point, and
if for some subset of 𝑋 of size 𝑘+1 all the pairwise intersections of the corresponding
balls are non-empty, we add the 𝑘-dimensional simplex spanning this subset to the
simplicial complex ℛ𝜀.

enough — for very small values the reconstructed space will be just a disjoint union

of points and for very large 𝜀 it will be a single connected blob, while the correct

approximation is somewhere in between. This issue is resolved by considering a

family (fig. 5-4, a) of simplicial complexes, parametrized by the (‘persistence’) pa-

rameter 𝜀. It is also convenient to refer to the parameter 𝜀 as time, with the idea

that we gradually throw more simplices into our simplicial complex as time goes

by. For each value of 𝜀 we can compute topological properties of the corresponding
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Figure 5-4: Using different values of the proximity parameter 𝜀 we obtain different
simplicial complexes (a). For 𝜀 = 𝜀1 the balls do not intersect and there are just 10
isolated components (b, [left]). For 𝜀 = 𝜀2 several components have merged and one
loop appeared (b, [middle]). The filled triangle corresponding to the triple pairwise
intersection is topologically trivial and does not affect the topology (and similarly
darker tetrahedron on the right). For 𝜀 = 𝜀3 all the components merged into one
and the same hole still exists (b, [right]). In the interval [𝜀2, 𝜀3] one smaller hole as
on fig. 5-3 appeared and quickly disappeared. This information can be conveniently
summarized in the persistence barcode (c). The number of connected components
(holes) in the simplicial complex for some value 𝜀0 is given by the number of intervals
in 𝐻0 (𝐻1) intersecting the vertical line 𝜀 = 𝜀0.

simplicial complex, namely homology which encodes the number of holes of various

dimensions in a space. Controlling the value of 𝜀 allows us to decide holes of which

size are meaningful and should not be discarded as a noise. For simplicial complex

presented on fig. 5-3 there are two one-dimensional holes, and for slightly bigger

value of 𝜀 the lower hole disappeared (fig. 5-4, b), while the top one remained intact,

which suggests that the top hole is more important topological feature. Information

about how homology is changing with respect to 𝜀 can be conveniently encoded in

the so-called persistence barcodes [Ghrist, 2008, Zomorodian and Carlsson, 2005].
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An example of such barcode is given on (fig. 5-4, c). In general, to find the rank of

𝑘-homology (delivering the number of 𝑘-dimensional holes) at some fixed value 𝜀0

one has to count intersections of the vertical line 𝜀 = 𝜀0 with the intervals at the

desired block 𝐻𝑘.

These barcodes provide a way to compare topological properties of the underly-

ing manifolds. In principle, we could obtain a metric of similarity of two datasets

by comparing the barcodes of the simplicial complexes constructed based on each

dataset (as described on fig. 5-3), but there are disadvantages of this approach, such

as a huge number of simplices for large datasets. Moreover, in order to extract in-

teresting topological properties from such large simplicial complexes various tricks

are required [Ghrist, 2008]. To remedy these issues we can note that we are in fact

interested in topological approximations rather than geometrical. The difference is

that to obtain a correct estimate of the topological properties much smaller num-

ber of simplices is often sufficient, e.g., for any number of points sampled from a

circle the correct answer could be obtained by taking just three points (thus ob-

taining a triangle which is topologically equivalent to the circle). Based on these

ideas the so-called witness complex is introduced [De Silva and Carlsson, 2004],

which provides a topological approximation with a small number of simplices. In

order to achieve this a small subset of landmark points is chosen and a simplicial

complex is constructed using these points as vertices (while also taking into account

the proximity information about all the remaining points called witnesses).

To construct a numerical measure which could be compared across datasets we

would like to estimate the correct values of homology. Comparing the computed bar-

codes is a challenging task since they are non-trivial mathematical objects (though

some metrics exist they are hard to compute). We take the simpler route and to

extract meaningful topological data from the barcode we propose computing Rel-

ative Living Times (RLT) of each number of holes that was observed. They are

defined as the ratio of the total time when this number was present and of the value

𝜀max when points connect into a single blob. These relative living times could be

interpreted as a confidence in our approximation — if say for 50% of all period of

topological activity we have observed that there is at least 1 one-dimensional hole (as
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M = {x 2 R784 : Ax = 0}

Figure 5-5: Estimation of the topology of a dataset sampled from the 32-dimensional
hyperplane in 784-dimensional space. With high confidence, we can say that there
are no 1-dimensional holes. For details see section 5.4.

on fig. 5-4), then it is probably an accurate estimation of topology of the underlying

space.

Choosing the correct landmarks is a nontrivial task. We follow the discussion in

[De Silva and Carlsson, 2004] which advises doing it randomly. To account for this

randomness, we compute the RLT stochastically by repeating the experiment a large

number of times. By averaging the obtained RLT we compute the Mean Relative

Living Times (MRLT). By construction, they add up to 1 and employing Bayesian

point of view we can interpret them as a probability distribution reflecting our confi-

dence about the correct number of holes on average. An example of such distribution

is given on fig. 5-5, where we run our method for a simple planar dataset (in a high

dimensional space). To quantitatively evaluate the topological difference between

two datasets we propose computing the 𝐿2–error between these distributions. Note

that in practice (when activation functions such as ReLU are used) the resulting

spaceℳmodel may fail to be a manifold in precise mathematical sense, however, the

analysis is still applicable since it deals with arbitrary topological spaces. Now let

us introduce all the technical details.

5.3 Homology to the rescue

In this section we briefly discuss the important concepts of simplicial complexes and

homology. For thorough introduction we refer the reader to the classical texts such
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as [Hatcher, 2002, May, 1999].

Simplicial complexes Simplicial complex is a classical concept widely used in

topology. Formally it is defined as follows.

Definition 1. A simplicial complex 𝒮 (more precisely an abstract simplicial com-

plex) is specified by the following data:

• The vertex set 𝑍 = {𝑧1, 𝑧2, . . . , 𝑧𝑛}

• A collection of simplices Σ, where 𝑝-dimensional simplex 𝜎𝑝 is defined just as

a 𝑝+ 1 element subset of 𝑍:

𝜎𝑝 = {𝑧𝑖1 , 𝑧𝑖2 , . . . , 𝑧𝑖𝑝+1}

• We require that the collection Σ is closed under taking faces, that is for each

𝑝-dimensional simplex 𝜎𝑝 all the (𝑝 − 1)-dimensional simplices obtained by

deleting one of the vertices 𝑧𝑖1 , . . . , 𝑧𝑖𝑝 are also elements of Σ.

An example of a simplicial complex 𝒮 is presented on fig. 5-2. It contains 5

vertices {𝑧1, 𝑧2 . . . , 𝑧5} and several edges and faces: two-dimensional face 𝜎2 and

one-dimensional edges 𝜎1, 𝜎3, 𝜎4. Note that these are maximal simplices, since by

the third property all the edges of 𝜎2 are also elements of 𝒮. Important topological

properties of 𝒮 (such as connectedness, existence of one-dimensional loop) do not

depend on in which Euclidean space 𝒮 is embedded or on precise positions of vertices,

but merely on the combinatorial data — the number of points and which vertices

together span a simplex.

As was described in section 5.2 given a dataset 𝑋 sampled from a manifoldℳ we

would like to compute a family of simplicial complexes topologically approximating

ℳ on various scales, namely witness complexes. This family is defined as follows.

First we choose some subset 𝐿 ⊂ 𝑋 of points called landmarks (whereas points in 𝑋

are called witnesses) and some distance function 𝑑(𝑥, 𝑥′), e.g., the ordinary Euclidean

distance. There is not much theory about how to choose the best landmarks, but

several strategies were proposed in [De Silva and Carlsson, 2004]. The first one is to
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choose landmarks sequentially by solving a certain minimax problem, and the second

one is to just pick landmarks at random (by uniformly selecting a fixed number of

points from 𝑋). We follow the second approach since the minimax strategy is known

to have some flaws such as the tendency to pick up outliers. The selected landmarks

will serve as the vertices of the simplicial complex and witnesses will help to decide

on which simplices are inserted via a predicate “is witnessed”:

𝜎 ⊂ 𝐿 is witnessed by 𝑤 ∈ 𝑋 if ∀𝑙 ∈ 𝜎, ∀𝑙′ ∈ 𝐿 ∖ 𝜎

𝑑(𝑤, 𝑙)2 ≤ 𝑑(𝑤, 𝑙′)2 + 𝛼,
(5.1)

with 𝛼 being a relaxation parameter which provides us with a sequence of simplicial

complexes. The maximal value of 𝛼 for the analysis is typically chosen to be pro-

portional to the maximal pairwise distance between points in 𝐿. Witness complexes

even for small values of 𝛼 are good topological approximations to ℳ. The main

advantage of a witness complex is that it allows constructing a reliable approxima-

tion using a relatively small number of simplices and makes the problem tractable

even for large datasets. Even though it is known that in some cases it may fail to

recover the correct topology [Boissonnat et al., 2009], it still can be used to compare

topological properties of datasets, and if any better method is devised, we can easily

replace the witness complex by this new more reliable simplicial complex.

Homology The precise definition of the homology is technical, and we have to

omit it due to the limited space. We refer the reader to [Chapter 2] [Hatcher,

2002] for a thorough discussion. The most important properties of homology can

be summarized as follows. For any topological space 𝑋 the so-called 𝑖𝑡ℎ homology

groups 𝐻𝑖 are introduced. The actual number of 𝑖-dimensional holes in 𝑋 is given

the rank of 𝐻𝑖, the concept which is quite similar to the dimension of a vector space.

These ranks are called the Betti numbers 𝛽𝑖 and serve as a coarse numerical measure

of homology.

Homology is known to be one of the most easily computable topological invari-

ants. In the case of 𝑋 being a simplicial complex 𝐻𝑖 can be computed by pretty much

linear algebra, namely by analyzing kernels and images of certain linear maps. Di-
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mensions of matrices appearing in this task are equal to the numbers 𝑑𝑘 of simplices

of specific dimension 𝑘 in 𝑋, e.g. in the case of fig. 5-2 we have 𝑑0 = 5, 𝑑1 = 6, 𝑑2 = 1

and matrices will be of sizes 6× 1 and 5× 6. Existent algorithms [Kaczynski et al.,

2006] can handle extremely large simplicial complexes (with millions of simplices)

and are available in numerous software packages. An important property of homol-

ogy is that 𝑘𝑡ℎ homology depends only on simplices of dimension at most 𝑘 + 1,

which significantly speeds up computations.

Persistent homology In section 5.2 we discussed that to find a proxy of the

correct topology of ℳ it is insufficient to use single simplicial complex but rather

a family of simplicial complexes is required. As we transition from one simplicial

complex to another, some holes may appear, and some disappear. To distinguish

between which are essential and which should be considered noise the concept of

persistence was introduced [Edelsbrunner et al., 2000, Zomorodian and Carlsson,

2005]. The formal Structure Theorem [Zomorodian and Carlsson, 2005] states that

for each generator of homology (“hole” in our notation) one could provide the time

of its “birth” and “death”. This data is pictorially represented as (fig. 5-4, [bottom]),

with the horizontal axis representing the parameter and the vertical axis representing

various homology generators. To perform the computation of these barcodes, an

efficient algorithm was proposed in [Zomorodian and Carlsson, 2005]. As an input

to this algorithm one has to supply a sequence of (𝜎𝑖, 𝜀𝑖), with 𝜎𝑖 being a simplex

and 𝜀𝑖 being its time of appearance in a family. This algorithm is implemented in

several software packages such as Dionysus and GUDHI [Maria et al., 2014], but the

witness complex is supported only in the latter.

5.4 Algorithm

Let us now explain how we apply these concepts to construct a metric to compare

the topological properties of two datasets. First let us define the key part of the

algorithm – the relative living times (RLT) of homology. Suppose that for a dataset

𝑋 and some choice of landmarks 𝐿 we have obtained a persistence barcode with
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the persistence parameter 𝛼 spanning the range [0, 𝛼max]. Let us fix the dimension

𝑘 in which we study the homology, and let ℐ𝑘 = {[𝑏𝑖, 𝑑𝑖]}𝑛𝑖=1 be the collection of

persistence intervals in this dimension. Then in order to find the 𝑘𝑡ℎ Betti number

for a fixed value 𝛼 one has to count the number of persistence intervals containing

𝛼, and we obtain the integer valued function

𝛽𝑘(𝛼) , |{[𝑏𝑖, 𝑑𝑖] ∈ ℐ𝑘:𝛼 ∈ [𝑏𝑖, 𝑑𝑖]}|. (5.2)

Then the RLT are defined as follows (for non-negative integers 𝑖):

RLT(𝑖, 𝑘,𝑋, 𝐿) ,
𝜇({𝛼 ∈ [0, 𝛼max]: 𝛽𝑘(𝛼) = 𝑖})

𝛼max

, (5.3)

that it is for each possible value of 𝛽𝑘(𝛼) we find how long it existed relatively to

the whole period of topological activity. Note that in our analysis we use witness

complexes which depend on the choice of landmarks, which is random. Thus it is

reasonable to consider the distribution of RLT(𝑖, 𝑘,𝑋, 𝐿) on the set of landmarks

(tuples of points), in other words, we repeatedly sample the landmarks and compute

the RLT of the obtained persistence barcode. After sufficiently many experiments

we can approximate the Mean Relative Living Times (MRLT):

MRLT(𝑖, 𝑘,𝑋) , E𝐿[RLT(𝑖, 𝑘,𝑋, 𝐿)]. (5.4)

We hypothesize that these quantities provide us with a good way to compare the

topological properties of datasets, as they serve as measures of confidence in the

estimation of the topology of the underlying manifolds. From eq. (5.3) it follows

that
∑︁

𝑖

MRLT(𝑖, 𝑘,𝑋) = 1,

which suggest that for a fixed value of 𝑘 we could interpret MRLT(𝑖, 𝑘,𝑋) as a

probability distribution (over integers). This distribution defines our certainty about

the number of 𝑘-dimensional holes in the underlying manifold of 𝑋 on average. In

this work we consider the case 𝑘 = 1, i.e. we study the first homology of datasets.
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We motivate this by drawing an analogy with the Taylor series: we can get a good

understanding of behavior of a function by looking at the first term of the series

(see also [Ghrist, 2008] for discussion). Based on the probabilistic understanding

given two datasets 𝑋1 and 𝑋2 we define a measure of their topological similarity

(Geometry Score) in the following way:

GeomScore(𝑋1, 𝑋2) ,

𝑖max−1∑︁

𝑖=0

(MRLT(𝑖, 1, 𝑋1)−MRLT(𝑖, 1, 𝑋2))
2 ,

(5.5)

with 𝑖max being an upper bound on 𝛽1(𝛼) for 𝑋1 and 𝑋2 (for typical datasets we

found that 𝑖max = 100 suffices).

To construct the witness complex given the sets of landmarks 𝐿 and witnesses

𝑋 one has to provide the matrix of pairwise distances between 𝐿 and 𝑋 and the

maximal value of persistence parameter 𝛼 (see eq. (5.1)). In our experiments, we

have chosen 𝛼max to be proportional to the maximal pairwise distance between

points in 𝐿 with some coefficient 𝛾. Since we only compute 𝛽1(𝛼) the simplices of

dimension at most 2 are needed. In principle to compare two datasets any value of 𝛾

suffices, however in our experiments we found that to get a reasonable distribution

for datasets of size ∼ 5000 the value 1
128

yields good results (for large 𝛾 a lot of

time is spend in the regime of a single connected blob which shifts the distributions

towards 0). We summarize our approach in algorithm 3 and algorithm 4. We also

suggest that to obtain accurate results datasets of the same size should be used for

comparison

Complexity Let us briefly discuss the complexity of each step in the main loop

of algorithm 3. Suppose that we have a dataset 𝑋 ∈ R𝑁×𝐷. Computing the matrix

of pairwise distances between all points in the dataset and the landmarks points re-

quires 𝑂(𝑁𝐷𝐿0) operations. The complexity of the next piece involving computing

the persistence barcode is hard to estimate, however we can note that it does not

depend on the dimensionality 𝐷 of the data. In practice this computation is done

faster than computing the matrix in the previous step (for datasets of significant
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Algorithm 3 The algorithm to compute RLT of a dataset. See section 5.4 for
details. Suggested default values of the parameters for a dataset 𝑋 ∈ R𝑁×𝐷 are
𝐿0 = 64, 𝛾 = 1

128
/ 𝑁
5000

, 𝑖max = 100, 𝑛 = 10000.

Require: 𝑋: 2𝐷 array representing the dataset
Require: 𝐿0: Number of landmarks to use
Require: 𝛾: Coefficient determining 𝛼max

Require: 𝑖max: Upper bound on 𝑖 in RLT(𝑖, 1, 𝑋, 𝐿)
Require: 𝑛: Number of experiments
Require: dist(𝐴, 𝐵): Function computing the matrix of pairwise (Euclidean)
distances between samples from 𝐴 and 𝐵
Require: witness(𝑑, 𝛼, 𝑘): Function computing the family of witness complexes
using the matrix of pairwise distances 𝑑, maximal value of persistence parameter
𝛼 and maximal dimension of simplices 𝑘
Require: persistence(𝑤, 𝑘): Function computing the persistence intervals of a
family 𝑤 in dimension 𝑘
Returns: An array of size 𝑛× 𝑖max of the obtained RLT for each experiment
Initialize: rlt = zeros(𝑛, 𝑖max)
for 𝑖 = 0 to 𝑛− 1 do

𝐿(𝑖) ← random_choice(𝑋, size=𝐿0)
𝑑(𝑖) ← dist(𝐿(𝑖), 𝑋)

𝛼
(𝑖)
max ← 𝛾 · max(dist(𝐿(𝑖), 𝐿(𝑖)))

𝑊 (𝑖) ← witness(𝑑(𝑖), 𝛼
(𝑖)
max, 2)

ℐ(𝑖) ← persistence(𝑊 (𝑖), 1)
for 𝑗 = 0 to 𝑖max − 1 do

Compute RLT(𝑗, 1, 𝑋, 𝐿(𝑖)) using eqs. (5.2) and (5.3)
rlt[𝑖, 𝑗]← RLT(𝑗, 1, 𝑋, 𝐿(𝑖))

end for
end for

Algorithm 4 Geometry Score, the proposed algorithm to compute topological sim-
ilarity between datasets

Require: 𝑋1, 𝑋2: arrays representing the datasets
Returns: 𝑠: a number representing the topological similarity of 𝑋1 and 𝑋2

Initialize: 𝑠 = 0
For 𝑋1 and 𝑋2 run algorithm 3 with the same collection of parameters, obtaining
arrays rlt1 and rlt2
mrlt1 ← mean(rlt1, axis=0)
mrlt2 ← mean(rlt2, axis=0)
𝑠← sum((mrlt1 −mrlt2)

2)

dimensionality). All the remaining pieces of the algorithm take negligible amount of

time. This linear scaling of the complexity w.r.t dimensionality of the data allows

us to apply our method even for high–dimensional datasets. On a typical laptop
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(3.1 GHz Intel Core i5 processor) one iteration of the inner loop of algorithm 3 for

one class of the MNIST dataset takes approximately 900 ms.

5.5 Experiments

Experimental setup We have implemented algorithms 3 and 4 in Python using

GUDHI1 for computing witness complexes and persistence barcodes. Our code is

available on Github2. Default values of parameters in algorithm 3 were used for

experiments unless otherwise specified. We test our method on several datasets and

GAN models:

• Synthetic data — on synthetic datasets we demonstrate that our method

allows for distinguishing the datasets based on their topological properties.

• MNIST — as the next experiment we test our approach on the MNIST

dataset of handwritten digits. We compare two recently proposed models:

WGAN [Arjovsky et al., 2017] and WGAN-GP [Gulrajani et al., 2017] in order

to verify if the improved model WGAN-GP indeed produces better images.

• CelebA — to demonstrate that our method can be applied to datasets of large

dimensionality we analyze the CelebA dataset [Liu et al., 2015] and check if

we can detect mode collapse in a GAN using MRLT.

• CaloGAN — as the final experiment we apply our algorithm to a dataset

of a non-visual origin and evaluate the specific generative model CaloGAN

[Paganini et al., 2017].

Synthetic data For this experiment we have generated a collection of simple

2𝐷 datasets {𝑋𝑗}5𝑗=1 (see fig. 5-6) each containing 5000 points. As a test prob-

lem we would like to evaluate which of the datasets {𝑋𝑗}5𝑗=2 is the best approx-

imation to the ground truth 𝑋1. For each of {𝑋𝑗}5𝑗=1 we ran algorithm 3 using

𝐿0 = 32, 𝑛 = 2000, 𝑖max = 3, 𝛾 = 1
8

and compute MRLT using eq. (5.4). The

1http://gudhi.gforge.inria.fr/
2https://github.com/KhrulkovV/geometry-score
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resulting distributions are visualized on fig. 5-6, [bottom]. We observe that we can

correctly identify the number of 1-dimensional holes in each space 𝑋𝑗 using the MAP

estimate

𝛽*
1(𝑋𝑗) = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝑖
MRLT(𝑖, 1, 𝑋𝑗). (5.6)

It is clear that 𝑋4 is the most similar dataset to 𝑋1, which is supported by the fact

that their MRLT are almost identical. Note that on such simple datasets we were

able to recover the correct homology with almost 100% confidence and this will not

be the case for more complicated manifolds in the next experiment.

MNIST In this experiment we compare topological properties of the MNIST

dataset and samples generated by the WGAN and WGAN-GP models trained on

MNIST. It was claimed that the WGAN-GP model produces better images and we

would like to verify if we can detect it using topology. For the GAN implemen-

tations we used the code3 provided by the authors of [Gulrajani et al., 2017]. We

have trained each model for 25 epochs and generated 60000 samples. To compare

topology of each class individually we trained a CNN classifier on MNIST (with

99.5% test accuracy) and split generated datasest into classes (containing roughly

6000 images each). For every class and each of the 3 corresponding datasets (‘base’,

‘wgan’, ‘wgan–gp’) we run algorithm 3 and compute MRLT with 𝛾 = 1
128

. Similarly

we evaluate MRLT for the entire datasets without splitting them into classes using

𝛾 = 1
1000

. The obtained MRLT are presented on fig. 5-7 and the corresponding Ge-

ometry Scores for each model are given in table 5.1. We observe that both models

produce distributions which are very close to the ground truth, but for almost all

classes WGAN-GP shows better scores. We can also note that for the entire datasets

(fig. 5-7, [right]) the predicted values of homology does not seem to be much bigger

than for each individual digit. One possible explanation is that some samples (like

say of class ‘7’) fill the holes in the underlying manifolds of other classes (like class

‘1’ in this case) since they look quite similar.
3https://github.com/igul222/improved_wgan_training
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Figure 5-6: Mean Relative Living Times (MRLT) for various 2𝐷 datasets. The
number of one-dimensional holes is correctly identified in all the cases. By comparing
MRLT we find that the second dataset from the left is the most similar to the ‘ground
truth’ (noisy circle on the left).

Figure 5-7: Comparison of MRLT of the MNIST dataset and of samples generated by
WGAN and WGAN-GP trained on MNIST. MRLT match almost perfectly, however,
WGAN-GP shows slightly better performance on most of the classes.

Table 5.1: Geometry Scores ×103 of WGAN and WGAN-GP trained on the MNIST
dataset (see also fig. 5-7). Each class contained roughly 6000 images, except for ‘All’
which corresponds to the total datasets of 60000 images.

Label 0 1 2 3 4 5 6 7 8 9 all

WGAN 0.85 21.4 0.60 7.04 1.52 0.47 22.8 2.20 0.76 1.27 26.1
WGAN-GP 5.19 1.44 0.54 0.27 2.16 0.03 13.5 1.38 0.14 5.00 2.04

CelebA We now analyze the popular CelebA dataset consisting of photos of var-

ious celebrities. In this experiment we would like to study if we can detect mode

collapse using our method. To achieve this we train two GAN models — a good

model with the generator having high capacity and a second model with the genera-

tor much weaker than the discriminator. In this experiment we utilize the DCGAN
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model and use the implementation provided4 by the authors [Radford et al., 2015].

For the first model (‘dcgan’) we use the default settings, and for the second (‘bad-

dcgan’) we set the latent dimension to 8 and reduce the size of the fully connected

layer in the generator to 128 and number of filters in convolutional layers to 4. Im-

ages in the dataset are of size 108× 108 and to obtain faces we perform the central

crop which reduces the size to 64 × 64. We trained both models for 25 epochs

and produced 10000 images for our analysis. Similarly, we randomly picked 10000

(cropped) images from the original dataset. We report the obtained results on fig. 5-

8. MRLT obtained using the good model matches the ground truth almost perfectly

and Geometry Score of the generated dataset is equal to 14× 10−3, confirming the

good visual quality of the samples [Radford et al., 2015]. MRLT obtained using the

weak model are maximized for 𝑖 = 0, which suggests that the samples are either

identical or present very little topological diversity (compare with fig. 5-5), which

we confirmed visually. On fig. 5-8, [right] we report the behavior of the Geometry

Score and Inception Score [Salimans et al., 2016b] w.r.t the iteration number. The

Inception Score introduced uses the pretrained Inception network [Szegedy et al.,

2015a] and is defined as

𝐼({𝑥𝑛}𝑁𝑛=1) , expEx(DKL(𝑝(𝑦|x)||𝑝(𝑦))),

where 𝑝(𝑦|x) is approximated by the Inception network and 𝑝(𝑦) is computed as

𝑝(𝑦) = 1
𝑁

∑︀
𝑖 𝑝(𝑦|x𝑖). Note that the Geometry Score of the better model rapidly

decreases and of the mode collapsed model stagnates at high values. Such behavior

could not be observed in the Inception Score.

CaloGAN In this experiment, we will apply our technique to the dataset ap-

pearing in the experimental particle physics. This dataset5 represents a collection

of a calorimeter (an experimental apparatus measuring the energy of particles) re-

sponses, and it was used to create a generative model [Paganini et al., 2017] in order

to help physicists working at the LHC. Evaluating the obtained model6 is a non-
4https://github.com/carpedm20/DCGAN-tensorflow
5https://data.mendeley.com/datasets/pvn3xc3wy5/1
6https://github.com/hep-lbdl/CaloGAN
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Figure 5-8: MRLT of the (cropped) CelebA dataset and samples generated using
DCGAN and DCGAN with forced mode collapse. Plots on the right present the
behavior of the Geometry Score and Inception Score for these two models during
the training. Mode collapse in ‘bad-dcgan’ is easily observable using the Geometry
Score.

trivial task and was performed by comparing physical properties of the obtained and

the real data. Since our method is not limited to visual datasets we can apply it in

order to confirm the quality of this model. For the analysis we used ‘eplus’ dataset

which is split into 3 parts (‘layer 0’, ‘layer 1’, ‘layer 2’) containing matrices of sizes

3× 96, 12× 12, 12× 6 correspondingly. We train the CaloGAN model with default

settings for 50 epochs and generate 10000 samples (each sample combines data for

all 3 layers). We then randomly pick 10000 samples from the original dataset and

compare MRLT of the data and generated samples for each layer. Results are pre-

sented on fig. 5-9. It appears that topological properties of this dataset are rather

trivial, however, they are correctly identified by CaloGAN. Slight dissimilarities be-

tween the distributions could be connected to the fact that the physical properties of

the generated samples do not exactly match those of the real ones, as was analyzed

by the authors of [Paganini et al., 2017].
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Figure 5-9: MRLT of the dataset used in experimental particle physics and of the
samples generated using the corresponding CaloGAN model.

5.6 Related work and discussion

Several performance measures have been introduced to assess the performance of

GANs used for natural images. Inception Score [Salimans et al., 2016b] uses the

outputs of the pretrained Inception network, and a modification called Fréchet In-

ception Distance (FID) [Heusel et al., 2017] also takes into account second order

information of the final layer of this model. Contrary to these methods, our ap-

proach does not use auxiliary networks and is not limited to visual data. We note,

however, that since we only take topological properties into account (which do not

change if we say shift the entire dataset by 1) assessing the visual quality of samples

may be difficult based only on our algorithm, thus in the case of natural images we

propose to use our method in conjunction with other metrics such as FID. We also

hypothesize that in the case of the large dimensionality of data Geometry Score of

the features extracted using some network will adequately assess the performance

of a GAN.

5.7 Conclusion

We have introduced a new algorithm for evaluating a generative model. We show

that the topology of the underlying manifold of generated samples may be different

from the topology of the original data manifold, which provides insight into proper-

ties of GANs and can be used for hyperparameter tuning. We do not claim however

that the obtained metric correlates with the visual quality as estimated by humans
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and leave the analysis to future work. We hope that our research will be useful to

further theoretical understanding of GANs.
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Chapter 6

Hyperbolic Image Embeddings

6.1 Introduction

Figure 6-1: An example of two–dimensional Poincaré embeddings computed by a
hyperbolic neural network trained on MNIST, and evaluated additionally on Om-
niglot. Ambiguous and unclear images from MNIST, as well as most of the images
from Omniglot, are embedded near the center, while samples with clear class labels
(or characters from Omniglot similar to one of the digits) lie near the boundary. *For
inference, Omniglot was normalized to have the same background color as MNIST.
Omniglot images are marked with black crosses, MNIST images with colored dots.

Learned high-dimensional embeddings are ubiquitous in modern computer vi-

sion. Learning aims to group together semantically-similar images and to separate

semantically-different images. When the learning process is successful, simple clas-

sifiers can be used to assign an image to classes, and simple distance measures can
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be used to assess the similarity between images or image fragments. The operations

at the end of deep networks imply a certain type of geometry of the embedding

spaces. For example, image classification networks [Krizhevsky et al., 2012, LeCun

et al., 1989] use linear operators (matrix multiplication) to map embeddings in the

penultimate layer to class logits. The class boundaries in the embedding space are

thus piecewise-linear, and pairs of classes are separated by Euclidean hyperplanes.

The embeddings learned by the model in the penultimate layer, therefore, live in the

Euclidean space. The same can be said about systems where Euclidean distances are

used to perform image retrieval [Oh Song et al., 2016, Sohn, 2016, Wu et al., 2017],

face recognition [Parkhi et al., 2015, Wen et al., 2016] or one-shot learning [Snell

et al., 2017].

Alternatively, some few-shot learning [Vinyals et al., 2016], face recognition [Schroff

et al., 2015], and person re-identification methods [Ustinova and Lempitsky, 2016,

Yi et al., 2014] learn spherical embeddings, so that sphere projection operator is

applied at the end of a network that computes the embeddings. Cosine similarity

(closely associated with sphere geodesic distance) is then used by such architectures

to match images.

Euclidean spaces with their zero curvature and spherical spaces with their posi-

tive curvature have certain profound implications on the nature of embeddings that

existing computer vision systems can learn. In this work, we argue that hyper-

bolic spaces with negative curvature might often be more appropriate for learning

embedding of images. Towards this end, we add the recently-proposed hyperbolic

network layers [Ganea et al., 2018] to the end of several computer vision networks,

and present a number of experiments corresponding to image classification, one-shot,

and few-shot learning and person re-identification. We show that in many cases, the

use of hyperbolic geometry improves the performance over Euclidean or spherical

embeddings.

Our work is inspired by the recent body of works that demonstrate the advan-

tage of learning hyperbolic embeddings for language entities such as taxonomy en-

tries [Nickel and Kiela, 2017], common words [Tifrea et al., 2018], phrases [Dhingra

et al., 2018] and for other NLP tasks, such as neural machine translation [Gul-
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Figure 6-2: In many computer vision tasks, we want to learn image embeddings that
obey the hierarchical constraints. E.g., in image retrieval (left), the hierarchy may
arise from whole-fragment relation. In recognition tasks (right), the hierarchy can
arise from image degradation, when degraded images are inherently ambiguous and
may correspond to various identities/classes. Hyperbolic spaces are more suitable
for embedding data with such hierarchical structure.

cehre et al., 2019]. Our results imply that hyperbolic spaces may be as valuable for

improving the performance of computer vision systems.

Motivation for hyperbolic image embeddings. The use of hyperbolic spaces

in natural language processing [Nickel and Kiela, 2017, Tifrea et al., 2018, Dhingra

et al., 2018] is motivated by the ubiquity of hierarchies in NLP tasks. Hyperbolic

spaces are naturally suited to embed hierarchies (e.g., tree graphs) with low dis-

tortion [Sarkar, 2011, Sala et al., 2018]. Here, we argue that hierarchical relations

between images are common in computer vision tasks (Figure 6-2):

• In image retrieval, an overview photograph is related to many images that

correspond to the close-ups of different distinct details. Likewise, for classifi-

cation tasks in-the-wild, an image containing the representatives of multiple

classes is related to images that contain representatives of the classes in iso-

lation. Embedding a dataset that contains composite images into continuous
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space is, therefore, similar to embedding a hierarchy.

• In some tasks, more generic images may correspond to images that contain

less information and are therefore more ambiguous. E.g., in face recognition,

a blurry and/or low-resolution face image taken from afar can be related to

many high-resolution images of faces that clearly belong to distinct people.

Again natural embeddings for image datasets that have widely varying image

quality/ambiguity calls for retaining such hierarchical structure.

• Many of the natural hierarchies investigated in natural language processing

transcend to the visual domain. E.g., the visual concepts of different animal

species may be amenable for hierarchical grouping (e.g. most felines share

visual similarity while being visually distinct from pinnipeds).

Hierarchical relations between images call for the use of Hyperbolic spaces. In-

deed, as the volume of hyperbolic spaces expands exponentially, it makes them

continuous analogues of trees, in contrast to Euclidean spaces, where the expan-

sion is polynomial. It therefore seems plausible that the exponentially expanding

hyperbolic space will be able to capture the underlying hierarchy of visual data.

In order to build deep learning models which operate on the embeddings to hy-

perbolic spaces, we capitalize on recent developments [Ganea et al., 2018], which

construct the analogues of familiar layers (such as a feed–forward layer, or a multi-

nomial regression layer) in hyperbolic spaces. We show that many standard ar-

chitectures used for tasks of image classification, and in particular in the few–shot

learning setting can be easily modified to operate on hyperbolic embeddings, which

in many cases also leads to their improvement.

The main contributions of our paper are twofold:

• First, we apply the machinery of hyperbolic neural networks to computer vi-

sion tasks. Our experiments with various few-shot learning and person re-

identification models and datasets demonstrate that hyperbolic embeddings

are beneficial for visual data.

• Second, we propose an approach to evaluate the hyperbolicity of a dataset
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based on the concept of Gromov 𝛿-hyperbolicity. It further allows estimating

the radius of Poincaré disk for an embedding of a specific dataset and thus

can serve as a handy tool for practitioners.

6.2 Related work

Hyperbolic language embeddings. Hyperbolic embeddings in the natural lan-

guage processing field have recently been very successful [Nickel and Kiela, 2017,

2018a]. They are motivated by the innate ability of hyperbolic spaces to embed

hierarchies (e.g., tree graphs) with low distortion [Sala et al., 2018, Sarkar, 2011].

However, due to the discrete nature of data in NLP, such works typically employ Rie-

mannian optimization algorithms in order to learn embeddings of individual words

to hyperbolic space. This approach is difficult to extend to visual data, where image

representations are typically computed using CNNs.

Another direction of research, more relevant to the present work, is based on

imposing hyperbolic structure on activations of neural networks [Ganea et al., 2018,

Gulcehre et al., 2019]. However, the proposed architectures were mostly evaluated

on various NLP tasks, with correspondingly modified traditional models such as

RNNs or Transformers. We find that certain computer vision problems that heav-

ily use image embeddings can benefit from such hyperbolic architectures as well.

Concretely, we analyze the following tasks.

Few–shot learning. The task of few–shot learning is concerned with the over-

all ability of the model to generalize to unseen data during training. Most of the

existing state-of-the-art few–shot learning models are based on metric learning ap-

proaches, utilizing the distance between image representations computed by deep

neural networks as a measure of similarity [Vinyals et al., 2016, Snell et al., 2017,

Sung et al., 2018, Nichol and Schulman, 2018, Chen et al., 2019a, Chu et al., 2019,

Li et al., 2019, Bauer et al., 2017, Rusu et al., 2019, Chen et al., 2019b]. In contrast,

other models apply meta-learning to few-shot learning: e.g., MAML by [Finn et al.,

2017], Meta-Learner LSTM by [Ravi and Larochelle, 2016], SNAIL by [Mishra

et al., 2017]. While these methods employ either Euclidean or spherical geometries
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(like in [Vinyals et al., 2016]), there was no extension to hyperbolic spaces.

Person re-identification. The task of person re-identification is to match pedes-

trian images captured by possibly non-overlapping surveillance cameras. Papers

[Ahmed et al., 2015, Guo and Cheung, 2018, Wang et al., 2018] adopt the pair-

wise models that accept pairs of images and output their similarity scores. The

resulting similarity scores are used to classify the input pairs as being matching

or non-matching. Another popular direction of work includes approaches that aim

at learning a mapping of the pedestrian images to the Euclidean descriptor space.

Several papers, e.g., [Suh et al., 2018, Yi et al., 2014] use verification loss functions

based on the Euclidean distance or cosine similarity. A number of methods utilize

a simple classification approach for training [Chang et al., 2018, Su et al., 2017,

Kalayeh et al., 2018, Zhao et al., 2017], and Euclidean distance is used in test time.

6.3 Reminder on hyperbolic spaces and hyperbolic-

ity estimation.

Formally, 𝑛-dimensional hyperbolic space denoted as H𝑛 is defined as the homoge-

neous, simply connected 𝑛-dimensional Riemannian manifold of constant negative

sectional curvature. The property of constant negative curvature makes it analogous

to the ordinary Euclidean sphere (which has constant positive curvature); however,

the geometrical properties of the hyperbolic space are very different. It is known

that hyperbolic space cannot be isometrically embedded into Euclidean space [Kri-

oukov et al., 2010, Linial et al., 1998], but there exist several well–studied models of

hyperbolic geometry. In every model, a certain subset of Euclidean space is endowed

with a hyperbolic metric; however, all these models are isomorphic to each other,

and we may easily move from one to another base on where the formulas of interest

are easier. We follow the majority of NLP works and use the Poincaré ball model.

The Poincaré ball model (D𝑛, 𝑔D) is defined by the manifold D𝑛 = {x ∈ R𝑛: ‖x‖<
1} endowed with the Riemannian metric 𝑔D(x) = 𝜆2

x𝑔
𝐸, where 𝜆x = 2

1−‖x‖2 is the

conformal factor and 𝑔𝐸 is the Euclidean metric tensor 𝑔𝐸 = I𝑛. In this model the
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geodesic distance between two points is given by the following expression:

𝑑D(x,y) = arccosh
(︁
1 + 2

‖x− y‖2
(1− ‖x‖2)(1− ‖y‖2)

)︁
. (6.1)

Figure 6-3: Visualization of the two–dimensional Poincaré ball. Point z represents
the Möbius sum of points x and y. HypAve stands for hyperbolic averaging. Gray
lines represent geodesics, curves of shortest length connecting two points. In order to
specify the hyperbolic hyperplanes (bottom), used for multiclass logistic regression,
one has to provide an origin point p and a normal vector a ∈ 𝑇pD2 ∖ {0}. For more
details on hyperbolic operations see Section 6.4.

In order to define the hyperbolic average, we will make use of the Klein model

of hyperbolic space. Similarly to the Poincaré model, it is defined on the set

K𝑛 = {x ∈ R𝑛 : ‖x‖< 1}, however, with a different metric, not relevant for further

discussion. In Klein coordinates, the hyperbolic average (generalizing the usual Eu-

clidean mean) takes the most simple form, and we present the necessary formulas

in Section 6.4.
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From the viewpoint of hyperbolic geometry, all points of Poincaré ball are equiv-

alent. The models that we consider below are, however, hybrid in the sense that

most layers use Euclidean operators, such as standard generalized convolutions,

while only the final layers operate within the hyperbolic geometry framework. The

hybrid nature of our setups makes the origin a special point, since, from the Eu-

clidean viewpoint, the local volumes in Poincare ball expand exponentially from the

origin to the boundary. This leads to the useful tendency of the learned embeddings

to place more generic/ambiguous objects closer to the origin while moving more

specific objects towards the boundary. The distance to the origin in our models,

therefore, provides a natural estimate of uncertainty, that can be used in several

ways, as we show below.

This choice is justified for the following reasons. First, many existing vision

architectures are designed to output embeddings in the vicinity of zero (e.g., in the

unit ball). Another appealing property of hyperbolic space (assuming the standard

Poincare ball model) is the existence of a reference point – the center of the ball. We

show that in image classification which construct embeddings in the Poincare model

of hyperbolic spaces the distance to the center can serve as a measure of confidence

of the model — the input images which are more familiar to the model get mapped

closer to the boundary, and images which confuse the model (e.g., blurry or noisy

images, instances of a previously unseen class) are mapped closer to the center. The

geometrical properties of hyperbolic spaces are quite different from the properties of

the Euclidean space. For instance, the sum of angles of a geodesic triangle is always

less than 𝜋. These interesting geometrical properties make it possible to construct

a “score” which for an arbitrary metric space provides a degree of similarity of this

metric space to a hyperbolic space. This score is called 𝛿-hyperbolicity, and we now

discuss it in detail.

6.3.1 𝛿-Hyperbolicity

Let us start with an illustrative example. The simplest discrete metric space pos-

sessing hyperbolic properties is a tree (in the sense of graph theory) endowed with

the natural shortest path distance. Note the following property: for any three ver-
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Figure 6-4: Visualization of a geodesic triangle in a tree. Such a tree endowed with
a natural shortest path metric is a 0–Hyperbolic space.

tices 𝑎, 𝑏, 𝑐, the geodesic triangle (consisting of geodesics — paths of shortest length

connecting each pair) spanned by these vertices (see Figure 6-4) is slim, which infor-

mally means that it has a center (vertex 𝑑) which is contained in every side of the

triangle. By relaxing this condition to allow for some slack value 𝛿 and considering

so-called 𝛿-slim triangles, we arrive at the following general definition.

Table 6.1: Comparison of the theoretical degree of hyperbolicity with the relative
delta 𝛿𝑟𝑒𝑙 values estimated using Equations (6.2) and (6.4). The numbers are given
for the two-dimensional Poincaré ball D2, the 2D sphere 𝑆2, the upper hemisphere
𝑆+
2 , and a (random) tree graph.

D2 𝑆+
2 𝑆2 Tree

Theory 0 1 1 0
𝛿𝑟𝑒𝑙 0.18± 0.08 0.86± 0.11 0.97± 0.13 0.0

Table 6.2: The relative delta 𝛿𝑟𝑒𝑙 values calculated for different datasets. For image
datasets we measured the Euclidean distance between the features produced by
various standard feature extractors pretrained on ImageNet. Values of 𝛿𝑟𝑒𝑙 closer
to 0 indicate a stronger hyperbolicity of a dataset. Results are averaged across 10
subsamples of size 1000. The standard deviation for all the experiments did not
exceed 0.02.

Encoder Dataset
CIFAR10 CIFAR100 CUB MiniImageNet

Inception v3 [Szegedy et al., 2015b] 0.25 0.23 0.23 0.21
ResNet34 [He et al., 2016] 0.26 0.25 0.25 0.21
VGG19 [Simonyan and Zisserman, 2014] 0.23 0.22 0.23 0.17
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Let 𝑋 be an arbitrary (metric) space endowed with the distance function 𝑑. Its

𝛿-hyperbolicity value then may be computed as follows. We start with the so-called

Gromov product for points 𝑥, 𝑦, 𝑧 ∈ 𝑋:

(𝑦, 𝑧)𝑥 =
1

2
(𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑧)− 𝑑(𝑦, 𝑧)). (6.2)

Then, 𝛿 is defined as the minimal value such that the following four-point condition

holds for all points 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋:

(𝑥, 𝑧)𝑤 ≥ min((𝑥, 𝑦)𝑤, (𝑦, 𝑧)𝑤)− 𝛿. (6.3)

The definition of hyperbolic space in terms of the Gromov product can be seen

as saying that the metric relations between any four points are the same as they

would be in a tree, up to the additive constant 𝛿. 𝛿-Hyperbolicity captures the basic

common features of “negatively curved” spaces like the classical real-hyperbolic space

D𝑛 and of discrete spaces like trees.

For practical computations, it suffices to find the 𝛿 value for some fixed point

𝑤 = 𝑤0 as it is independent of 𝑤. An efficient way to compute 𝛿 is presented

in [Fournier et al., 2015]. Having a set of points, we first compute the matrix 𝐴 of

pairwise Gromov products using Equation (6.2). After that, the 𝛿 value is simply

the largest coefficient in the matrix (𝐴 ⊗ 𝐴) − 𝐴, where ⊗ denotes the min-max

matrix product

𝐴⊗𝐵 = max
𝑘

min{𝐴𝑖𝑘, 𝐵𝑘𝑗}. (6.4)

Results. In order to verify our hypothesis on hyperbolicity of visual datasets we

compute the scale-invariant metric, defined as 𝛿𝑟𝑒𝑙(𝑋) = 2𝛿(𝑋)
diam(𝑋)

, where diam(𝑋) de-

notes the set diameter (maximal pairwise distance). By construction, 𝛿𝑟𝑒𝑙(𝑋) ∈ [0, 1]

and specifies how close is a dataset to a hyperbolic space. Due to computational

complexities of Equations (6.2) and (6.4) we employ the batched version of the algo-

rithm, simply sampling 𝑁 points from a dataset, and finding the corresponding 𝛿𝑟𝑒𝑙.

Results are averaged across multiple runs, and we provide resulting mean and stan-

dard deviation. We experiment on a number of toy datasets (such as samples from

125



Chapter 6. Hyperbolic Image Embeddings 6.3. Reminder

the standard two–dimensional unit sphere), as well as on a number of popular com-

puter vision datasets. As a natural distance between images, we used the standard

Euclidean distance between feature vectors extracted by various CNNs pretrained

on the ImageNet (ILSVRC) dataset [Deng et al., 2009]. Specifically, we consider

VGG19 [Simonyan and Zisserman, 2014], ResNet34 [He et al., 2016] and Inception

v3 [Szegedy et al., 2015b] networks for distance evaluation. While other metrics

are possible, we hypothesize that the underlying hierarchical structure (useful for

computer vision tasks) of image datasets can be well understood in terms of their

deep feature similarity.

Our results are summarized in Table 6.2. We observe that the degree of hyper-

bolicity in image datasets is quite high, as the obtained 𝛿𝑟𝑒𝑙 are significantly closer

to 0 than to 1 (which would indicate complete non-hyperbolicity). This observation

suggests that visual tasks can benefit from hyperbolic representations of images.

Relation between 𝛿-hyperbolicity and Poincaré disk radius. It is known

[Tifrea et al., 2018] that the standard Poincaré ball is 𝛿-hyperbolic with 𝛿𝑃 = log(1+
√
2) ≈ 0.88. Formally, the diameter of the Poincaré ball is infinite, which yields the

𝛿𝑟𝑒𝑙 value of 0. However, from computational point of view we cannot approach the

boundary infinitely close. Thus, we can compute the effective value of 𝛿𝑟𝑒𝑙 for the

Poincaré ball. For the clipping value of 10−5, i.e., when we consider only the subset

of points with the (Euclidean) norm not exceeding 1− 10−5, the resulting diameter

is equal to ∼ 12.204. This provides the effective 𝛿𝑟𝑒𝑙 ≈ 0.144. Using this constant

we can estimate the radius of Poincaré disk suitable for an embedding of a specific

dataset. Suppose that for some dataset 𝑋 we have found that its 𝛿𝑟𝑒𝑙 is equal to 𝛿𝑋 .

Then we can estimate 𝑐(𝑋) as follows.

𝑐(𝑋) =
(︁0.144

𝛿𝑋

)︁2

. (6.5)

For the previously studied datasets, this formula provides an estimate of 𝑐 ∼ 0.33.

In our experiments, we found that this value works quite well; however, we found

that sometimes adjusting this value (e.g., to 0.05) provides better results, probably

because the image representations computed by deep CNNs pretrained on ImageNet
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may not have been entirely accurate.

6.4 Hyperbolic operations

Hyperbolic spaces are not vector spaces in a traditional sense; one cannot use stan-

dard operations as summation, multiplication, etc. To remedy this problem, one

can utilize the formalism of Möbius gyrovector spaces allowing to generalize many

standard operations to hyperbolic spaces. Recently proposed hyperbolic neural net-

works adopt this formalism to define the hyperbolic versions of feed-forward net-

works, multinomial logistic regression, and recurrent neural networks [Ganea et al.,

2018]. In Appendix 6.7, we discuss these networks and layers in detail, and in

this section, we briefly summarize various operations available in the hyperbolic

space. Similarly to the paper [Ganea et al., 2018], we use an additional hyper-

parameter 𝑐 which modifies the curvature of Poincaré ball; it is then defined as

D𝑛
𝑐 = {x ∈ R𝑛 : 𝑐‖x‖2< 1, 𝑐 ≥ 0}. The corresponding conformal factor now takes

the form 𝜆𝑐
x = 2

1−𝑐‖x‖2 . In practice, the choice of 𝑐 allows one to balance between

hyperbolic and Euclidean geometries, which is made precise by noting that with

𝑐 → 0, all the formulas discussed below take their usual Euclidean form. The fol-

lowing operations are the main building blocks of hyperbolic networks.

Möbius addition. For a pair x,y ∈ D𝑛
𝑐 , the Möbius addition is defined as follows:

x⊕𝑐 y :=
(1 + 2𝑐⟨x,y⟩+ 𝑐‖y‖2)x+ (1− 𝑐‖x‖2)y

1 + 2𝑐⟨x,y⟩+ 𝑐2‖x‖2‖y‖2 . (6.6)

Distance. The induced distance function is defined as

𝑑𝑐(x,y) :=
2√
𝑐
arctanh(

√
𝑐‖−x⊕𝑐 y‖). (6.7)

Note that with 𝑐 = 1 one recovers the geodesic distance (6.1), while with 𝑐→ 0 we

obtain the Euclidean distance lim𝑐→0 𝑑𝑐(x,y) = 2‖x− y‖.
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Exponential and logarithmic maps. To perform operations in the hyperbolic

space, one first needs to define a bijective map from R𝑛 to D𝑛
𝑐 in order to map

Euclidean vectors to the hyperbolic space, and vice versa. The so-called exponential

and (inverse to it) logarithmic map serves as such a bijection.

The exponential map exp𝑐
x is a function from 𝑇xD𝑛

𝑐
∼= R𝑛 to D𝑛

𝑐 , which is given

by

exp𝑐
x(v) := x⊕𝑐

(︂
tanh

(︂√
𝑐
𝜆𝑐
x‖v‖
2

)︂
v√
𝑐‖v‖

)︂
. (6.8)

The inverse logarithmic map is defined as

logx𝑐(y) :=
2√
𝑐𝜆𝑐

x

arctanh(
√
𝑐‖−x⊕𝑐 y‖)

−x⊕𝑐 y

‖−x⊕𝑐 y‖
. (6.9)

Hyperbolic averaging. One important operation common in image processing

is averaging of feature vectors, used, e.g., in prototypical networks for few–shot

learning [Snell et al., 2017]. In the Euclidean setting this operation takes the form

(x1, . . . ,x𝑁) → 1
𝑁

∑︀
𝑖 x𝑖. Extension of this operation to hyperbolic spaces is called

the Einstein midpoint and takes the most simple form in Klein coordinates:

HypAve(x1, . . . ,x𝑁) =
𝑁∑︁

𝑖=1

𝛾𝑖x𝑖/
𝑁∑︁

𝑖=1

𝛾𝑖, (6.10)

where 𝛾𝑖 =
1√

1−𝑐‖x𝑖‖2
are the Lorentz factors. Recall from the discussion in Section

6.3 that the Klein model is supported on the same space as the Poincaré ball;

however, the same point has different coordinate representations in these models.

Let xD and xK denote the coordinates of the same point in the Poincaré and Klein

models correspondingly. Then the following transition formulas hold.

xD =
xK

1 +
√︀

1− 𝑐‖xK‖2
, (6.11)

xK =
2xD

1 + 𝑐‖xD‖2
. (6.12)

Thus, given points in the Poincaré ball, we can first map them to the Klein model,

compute the average using Equation (6.10), and then move it back to the Poincaré

model.
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Numerical stability. While implementing most of the formulas described above

is straightforward, we employ some tricks to make the training more stable. In

particular, to ensure numerical stability, we perform clipping by norm after applying

the exponential map, which constrains the norm not to exceed 1√
𝑐
(1− 10−3).

6.5 Experiments

Figure 6-5: Distributions of the hyperbolic distance to the origin of the MNIST
(red) and Omniglot (blue) datasets embedded into the Poincaré ball; parameter 𝑛
denotes embedding dimension of the model trained for MNIST classification. Most
Omniglot instances can be easily identified as out-of-domain based on their distance
to the origin.

Experimental setup. We start with a toy experiment supporting our hypothesis

that the distance to the center in Poincaré ball indicates a model uncertainty. To

do so, we first train a classifier in hyperbolic space on the MNIST dataset [LeCun

et al., 1998] and evaluate it on the Omniglot dataset [Lake et al., 2013]. We then

investigate and compare the obtained distributions of distances to the origin of

hyperbolic embeddings of the MNIST and Omniglot test sets.

In our further experiments, we concentrate on the few-shot classification and

person re-identification tasks. The experiments on the Omniglot dataset serve as

a starting point, and then we move towards more complex datasets. Afterwards,

we consider two datasets, namely: MiniImageNet [Ravi and Larochelle, 2016] and

Caltech-UCSD Birds-200-2011 (CUB) [Wah et al., 2011b]. Finally, we provide the

re-identification results for the two popular datasets: Market-1501 [Zheng et al.,

2015] and DukeMTMD [Ristani et al., 2016, Zheng et al., 2017]. Further in this

section, we provide a thorough description of each experiment. Our code is available

at github1.
1https://github.com/leymir/hyperbolic-image-embeddings
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Table 6.3: Kolmogorov-Smirnov distances between the distributions of distance to
the origin of the MNIST and Omniglot datasets embedded into the Poincaré ball
with the hyperbolic classifier trained on MNIST, and between the distributions of
𝑝max (maximum probablity predicted for a class) for the Euclidean classifier trained
on MNIST and evaluated on the same sets.

𝑛 = 2 𝑛 = 8 𝑛 = 16 𝑛 = 32

𝑑D(x,0) 0.868 0.832 0.853 0.859
𝑝max(x) 0.834 0.835 0.840 0.846

6.5.1 Distance to the origin as the measure of uncertainty

In this subsection, we validate our hypothesis, which claims that if one trains a

hyperbolic classifier, then the distance of the Poincaré ball embedding of an image

to the origin can serve as a good measure of confidence of a model. We start by

training a simple hyperbolic convolutional neural network on the MNIST dataset

(we hypothesized that such a simple dataset contains a very basic hierarchy, roughly

corresponding to visual ambiguity of images, as demonstrated by a trained network

on Figure 6-1). The output of the last hidden layer was mapped to the Poincaré

ball using the exponential map (6.8) and was followed by the hyperbolic multi-linear

regression (MLR) layer [Ganea et al., 2018].

After training the model to ∼ 99% test accuracy, we evaluate it on the Omniglot

dataset (by resizing its images to 28 × 28 and normalizing them to have the same

background color as MNIST). We then evaluated the hyperbolic distance to the ori-

gin of embeddings produced by the network on both datasets. The closest Euclidean

analogue to this approach would be comparing distributions of 𝑝max, maximum class

probability predicted by the network. For the same range of dimensions, we train

ordinary Euclidean classifiers on MNIST and compare these distributions for the

same sets. Our findings are summarized in Figure 6-5 and Table 6.3. We observe

that distances to the origin represent a better indicator of the dataset dissimilarity

in three out of four cases.

We have visualized the learned MNIST and Omniglot embeddings in Figure 6-1.

We observe that more “unclear” images are located near the center, while the images

that are easy to classify are located closer to the boundary.
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6.5.2 Few–shot classification

We hypothesize that a certain class of problems — namely the few-shot classifica-

tion task can benefit from hyperbolic embeddings, due to the ability of hyperbolic

space to accurately reflect even very complex hierarchical relations between data

points. In principle, any metric learning approach can be modified to incorporate

the hyperbolic embeddings. We decided to focus on the classical approach called

prototypical networks (ProtoNets) introduced in [Snell et al., 2017]. This approach

was picked because it is simple in general and simple to convert to hyperbolic geome-

try. ProtoNets use the so-called prototype representation of a class, which is defined

as a mean of the embedded support set of a class. Generalizing this concept to

hyperbolic space, we substitute the Euclidean mean operation by HypAve, defined

earlier in (6.10). We show that Hyperbolic ProtoNets can achieve results competitive

with many recent state-of-the-art models. Our main experiments are conducted on

MiniImageNet and Caltech-UCSD Birds-200-2011 (CUB). Additional experiments

on the Omniglot dataset, as well as the implementation details and hyperparam-

eters, are provided in Section 6.8. For a visualization of learned embeddings see

Section 6.9.

MiniImageNet. MiniImageNet dataset is the subset of ImageNet dataset [Rus-

sakovsky et al., 2015] that contains 100 classes represented by 600 examples per

class. We use the following split provided in the paper [Ravi and Larochelle, 2016]:

the training dataset consists of 64 classes, the validation dataset is represented by 16

classes, and the remaining 20 classes serve as the test dataset. We test the models

on tasks for 1-shot and 5-shot classifications; the number of query points in each

batch always equals to 15. Similarly to [Snell et al., 2017], the model is trained in

the 30-shot regime for the 1-shot task and the 20-shot regime for the 1-shot task.

We test our approach with two different backbone CNN models: a commonly used

four-block CNN [Snell et al., 2017, Chen et al., 2019a] (denoted ‘4 Conv’ in the

table) and ResNet18 [He et al., 2016]. To find the best values of hyperparameters,

we used the grid search; see Section 6.8 for the complete list of values.

Table 6.4 illustrates the obtained results on the MiniImageNet dataset (alongside
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Table 6.4: Few-shot classification accuracy results on MiniImageNet on 1-shot 5-
way and 5-shot 5-way tasks. All accuracy results are reported with 95% confidence
intervals.

Baselines Embedding Net 1-Shot 5-Way 5-Shot 5-Way
MatchingNet [Vinyals et al., 2016] 4 Conv 43.56 ± 0.84% 55.31 ± 0.73%
MAML [Finn et al., 2017] 4 Conv 48.70 ± 1.84% 63.11 ± 0.92%
RelationNet [Sung et al., 2018] 4 Conv 50.44 ± 0.82% 65.32 ± 0.70%
REPTILE [Nichol and Schulman, 2018] 4 Conv 49.97 ± 0.32% 65.99 ± 0.58%
ProtoNet [Snell et al., 2017] 4 Conv 49.42 ± 0.78% 68.20 ± 0.66%
Baseline* [Chen et al., 2019a] 4 Conv 41.08 ± 0.70% 54.50 ± 0.66%
Spot&learn [Chu et al., 2019] 4 Conv 51.03 ± 0.78% 67.96 ± 0.71%
DN4 [Li et al., 2019] 4 Conv 51.24 ± 0.74% 71.02 ± 0.64%
Hyperbolic ProtoNet 4 Conv 54.43 ± 0.20% 72.67 ± 0.15%
SNAIL [Mishra et al., 2017] ResNet12 55.71 ± 0.99% 68.88 ± 0.92%
ProtoNet+ [Snell et al., 2017] ResNet12 56.50 ± 0.40% 74.2 ± 0.20%
CAML [Jiang et al., 2019] ResNet12 59.23 ± 0.99% 72.35 ± 0.71%
TPN [Liu et al., 2019] ResNet12 59.46% 75.65%
MTL [Sun et al., 2019] ResNet12 61.20 ± 1.8% 75.50 ± 0.8%
DN4 [Li et al., 2019] ResNet12 54.37 ± 0.36% 74.44 ± 0.29%
TADAM [Oreshkin et al., 2018] ResNet12 58.50% 76.70%
Qiao-WRN [Qiao et al., 2018] Wide-ResNet28 59.60 ± 0.41% 73.74 ± 0.19%
LEO [Rusu et al., 2019] Wide-ResNet28 61.76 ± 0.08% 77.59 ± 0.12%
Dis. k-shot [Bauer et al., 2017] ResNet34 56.30 ± 0.40% 73.90 ± 0.30%
Self-Jig(SVM) [Chen et al., 2019b] ResNet50 58.80 ± 1.36% 76.71 ± 0.72%
Hyperbolic ProtoNet ResNet18 59.47 ± 0.20% 76.84 ± 0.14%

other results in the literature). Interestingly, Hyperbolic ProtoNet significantly

improves accuracy as compared to the standard ProtoNet, especially in the one-

shot setting. We observe that the obtained accuracy values, in many cases, exceed

the results obtained by more advanced methods, sometimes even in the case of

architecture of larger capacity. This partly confirms our hypothesis that hyperbolic

geometry indeed allows for more accurate embeddings in the few–shot setting.

Caltech-UCSD Birds. The CUB dataset consists of 11, 788 images of 200 bird

species and was designed for fine-grained classification. We use the split introduced

in [Triantafillou et al., 2017]: 100 classes out of 200 were used for training, 50

for validation and 50 for testing. Due to the relative simplicity of the dataset, we

consider only the 4-Conv backbone and do not modify the training shot values as

was done for the MiniImageNet case. The full list of hyperparameters is provided

in Section 6.8.

Our findings are summarized in Table 6.5. Interestingly, for this dataset, the

hyperbolic version of ProtoNet significantly outperforms its Euclidean counterpart

(by more than 10% in both settings), and outperforms many other algorithms.
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Table 6.5: Few-shot classification accuracy results on CUB dataset [Wah et al.,
2011a] on 1-shot 5-way task, 5-shot 5-way task. All accuracy results are reported
with 95% confidence intervals. For each task, the best-performing method is high-
lighted.

Baselines Embedding Net 1-Shot 5-Way 5-Shot 5-Way
MatchingNet [Vinyals et al., 2016] 4 Conv 61.16 ± 0.89 72.86 ± 0.70
MAML [Finn et al., 2017] 4 Conv 55.92 ± 0.95% 72.09 ± 0.76%
ProtoNet [Snell et al., 2017] 4 Conv 51.31 ± 0.91% 70.77 ± 0.69%
MACO [Hilliard et al., 2018] 4 Conv 60.76% 74.96%
RelationNet [Sung et al., 2018] 4 Conv 62.45 ± 0.98% 76.11 ± 0.69%
Baseline++ [Chen et al., 2019a] 4 Conv 60.53 ± 0.83% 79.34 ± 0.61%
DN4-DA [Li et al., 2019] 4 Conv 53.15 ± 0.84% 81.90 ± 0.60%
Hyperbolic ProtoNet 4 Conv 64.02 ± 0.24% 82.53 ± 0.14%

Table 6.6: Person re-identification results for Market-1501 and DukeMTMC-reID for
the classification baseline (Euclidean) and its hyperbolic counterpart (Hyperbolic).
(See 6.5.3 for the details). The results are shown for the three embedding dimen-
sionalities and for two different learning rate schedules. For each dataset and each
embedding dimensionality value, the best results are bold, they are all given by the
hyperbolic version of classification (either by the schedule sch#1 or sch#2 ). The
second-best results are underlined.

Market-1501 DukeMTMC-reID

Euclidean Hyperbolic Euclidean Hyperbolic
dim, lr schedule r1 mAP r1 mAP r1 mAP r1 mAP

32, sch#1 71.4 49.7 69.8 45.9 56.1 35.6 56.5 34.9
32, sch#2 68.0 43.4 75.9 51.9 57.2 35.7 62.2 39.1

64, sch#1 80.3 60.3 83.1 60.1 69.9 48.5 70.8 48.6
64, sch#2 80.5 57.8 84.4 62.7 68.3 45.5 70.7 48.6

128, sch#1 86.0 67.3 87.8 68.4 74.1 53.3 76.5 55.4
128, sch#2 86.5 68.5 86.4 66.2 71.5 51.5 74.0 52.2

6.5.3 Person re-identification

The DukeMTMC-reID dataset [Ristani et al., 2016, Zheng et al., 2017] contains

16, 522 training images of 702 identities, 2, 228 query images of 702 identities and

17, 661 gallery images. The Market1501 dataset [Zheng et al., 2015] contains 12, 936

training images of 751 identities, 3, 368 queries of 750 identities and 15, 913 gallery

images respectively. We report Rank1 of the Cumulative matching Characteristic

Curve and Mean Average Precision for both datasets. The results (Table 6.6) are

reported after the 300 training epochs. The experiments were performed with the

ResNet50 backbone, and two different learning rate schedulers (see Appendix 6.8 for

more details). The hyperbolic version generally performs better than the Euclidean

baseline, with the advantage being bigger for smaller dimensionality.
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6.6 Discussion and conclusion

We have investigated the use of hyperbolic spaces for image embeddings. The mod-

els that we have considered use Euclidean operations in most layers, and use the

exponential map to move from the Euclidean to hyperbolic spaces at the end of

the network (akin to the normalization layers that are used to map from the Eu-

clidean space to Euclidean spheres). The approach that we investigate here is thus

compatible with existing backbone networks trained in Euclidean geometry.

At the same time, we have shown that across a number of tasks, in particular

in the few-shot image classification, learning hyperbolic embeddings can result in

a substantial boost in accuracy. We speculate that the negative curvature of the

hyperbolic spaces allows for embeddings that are better conforming to the intrinsic

geometry of at least some image manifolds with their hierarchical structure.

Future work may include several potential modifications of the approach. We

have observed that the benefit of hyperbolic embeddings may be substantially bigger

in some tasks and datasets than in others. A better understanding of when and

why the use of hyperbolic geometry is warranted is therefore needed. Finally, we

note that while all hyperbolic geometry models are equivalent in the continuous

setting, fixed-precision arithmetic used in real computers breaks this equivalence.

In practice, we observed that care should be taken about numeric precision effects.

Using other models of hyperbolic geometry may result in a more favourable floating

point performance.

6.7 Hyperbolic Neural Networks

Linear layer. Assume we have a standard (Euclidean) linear layer x→ Mx+ b.

In order to generalize it, one needs to define the Möbius matrix by vector product:

M⊗𝑐(x) :=
1√
𝑐
tanh

(︂‖Mx‖
‖x‖ arctanh(

√
𝑐‖x‖)

)︂
Mx

‖Mx‖ , (6.13)

if Mx ̸= 0, and M⊗𝑐(x) := 0 otherwise. Finally, for a bias vector b ∈ D𝑛
𝑐 the

operation underlying the hyperbolic linear layer is then given by M⊗𝑐(x)⊕𝑐 b.
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Concatenation of input vectors. In several architectures (e.g., in siamese net-

works), it is needed to concatenate two vectors; such operation is obvious in Eu-

clidean space. However, straightforward concatenation of two vectors from hy-

perbolic space does not necessarily remain in hyperbolic space. Thus, we have

to use a generalized version of the concatenation operation, which is then de-

fined in the following manner. For x ∈ D𝑛1
𝑐 , y ∈ D𝑛2

𝑐 we define the mapping

Concat : D𝑛1
𝑐 × D𝑛2

𝑐 → D𝑛3
𝑐 as follows.

Concat(x,y) = M⊗𝑐
1 x⊕𝑐 M

⊗𝑐
2 y, (6.14)

where M1 and M2 are trainable matrices of sizes 𝑛3×𝑛1 and 𝑛3×𝑛2 correspondingly.

The motivation for this definition is simple: usually, the Euclidean concatenation

layer is followed by a linear map, which when written explicitly takes the (Euclidean)

form of Equation (6.14).

Multiclass logistic regression (MLR). In our experiments, to perform the

multiclass classification, we take advantage of the generalization of multiclass logistic

regression to hyperbolic spaces. The idea of this generalization is based on the

observation that in Euclidean space logits can be represented as the distances to

certain hyperplanes, where each hyperplane can be specified with a point of origin

and a normal vector. The same construction can be used in the Poincaré ball

after a suitable analogue for hyperplanes is introduced. Given p ∈ D𝑛
𝑐 and a ∈

𝑇pD𝑛
𝑐 ∖ {0}, such an analogue would be the union of all geodesics passing through

p and orthogonal to a.

The resulting formula for hyperbolic MLR for 𝐾 classes is written below; here

p𝑘 ∈ D𝑛
𝑐 and a𝑘 ∈ 𝑇p𝑘

D𝑛
𝑐 ∖ {0} are learnable parameters.

𝑝(𝑦 = 𝑘|x) ∝

exp

(︂
𝜆𝑐
p𝑘
‖a𝑘‖√
𝑐

arcsinh

(︂
2
√
𝑐⟨−p𝑘 ⊕𝑐 x, a𝑘⟩

(1− 𝑐‖−p𝑘 ⊕𝑐 x‖2)‖a𝑘‖

)︂)︂
.

For a more thorough discussion of hyperbolic neural networks, we refer the reader
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to the paper [Ganea et al., 2018].

6.8 Experiment details

Omniglot. As a baseline model, we consider the prototype network (ProtoNet).

Each convolutional block consists of 3 × 3 convolutional layer followed by batch

normalization, ReLU nonlinearity and 2×2 max-pooling layer. The number of filters

in the last convolutional layer corresponds to the value of the embedding dimension,

for which we choose 64. The hyperbolic model differs from the baseline in the

following aspects. First, the output of the last convolutional block is embedded into

the Poincaré ball of dimension 64 using the exponential map. Results are presented

in Table 6.7. We can see that in some scenarios, in particular for one-shot learning,

hyperbolic embeddings are more beneficial, while in other cases, results are slightly

worse. The relative simplicity of this dataset may explain why we have not observed

a significant benefit of hyperbolic embeddings. We further test our approach on

more advanced datasets.

Table 6.7: Few-shot classification accuracies on Omniglot. In order to obtain Hyper-
bolic ProtoNet, we augment the standard ProtoNet with a mapping to the Poincaré
ball, use hyperbolic distance as the distance function, and as the averaging operator
we use the HypAve operator defined by Equation (6.10).

ProtoNet Hyperbolic ProtoNet

1-shot 5-way 98.2 99.0
5-shot 5-way 99.4 99.4
1-shot 20-way 95.8 95.9
5-shot 20-way 98.6 98.15

miniImageNet. We performed the experiments with two different backbones,

namely the previously discussed 4-Conv model and ResNet18. For the former, em-

bedding dim was set to 1024 and for the latter to 512. For the one-shot setting both

models were trained for 200 epochs with Adam optimizer, learning rate being 5·10−3

and step learning rate decay with the factor of 0.5 and step size being 80 epochs. For

the 4-Conv model we used 𝑐 = 0.01 and for ResNet18 we used 𝑐 = 0.001. For 4-Conv
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in the five-shot setting we used the same hyperparameters except for 𝑐 = 0.005 and

learning rate decay step being 60 epochs. For ResNet18 we additionally changed

learning rate to 10−3 and step size to 40.

Caltech-UCSD Birds. For these experiments we used the same 4-Conv architec-

ture with the embedding dimensionality being 512. For the one-shot task, we used

learning rate 10−3, 𝑐 = 0.05, learning rate step being 50 epochs and decay rate of

0.8. For the five-shot task, we used learning rate 10−3, 𝑐 = 0.01, learning rate step

of 40 and decay rate of 0.8.

Person re-identification. We use ResNet50 [He et al., 2016] architecture with

one fully connected embedding layer following the global average pooling. Three

embedding dimensionalities are used in our experiments: 32, 64 and 128. For the

baseline experiments, we add the additional classification linear layer, followed by

the cross-entropy loss. For the hyperbolic version of the experiments, we map the

descriptors to the Poincaré ball and apply multiclass logistic regression as described

in Section 6.4. We found that in both cases the results are very sensitive to the

learning rate schedules. We tried four schedules for learning 32-dimensional descrip-

tors for both baseline and hyperbolic versions. The two best performing schedules

were applied for the 64 and 128-dimensional descriptors. In these experiments, we

also found that smaller 𝑐 values give better results. We therefore have set 𝑐 to 10−5.

Based on the discussion in 6.4, our hyperbolic setting is quite close to Euclidean.

The results are compiled in Table 6.6. We set starting learning rates to 3 · 10−4 and

6 · 10−4 for 𝑠𝑐ℎ#1 and 𝑠𝑐ℎ#2 correspondingly and multiply them by 0.1 after each

of the epochs 200 and 270.

6.9 Visualizations

For the visual inspection of embeddings we computed projections of high dimensional

embeddings obtained from the trained few–shot models with the (hyperbolic) UMAP

algorithm [McInnes et al., 2018] (see Figure 6-6). We observe that different classes

are neatly positioned near the boundary of the circle and are well separated.

137



Chapter 6. Hyperbolic Image Embeddings 6.9. Visualizations

Figure 6-6: A visualization of the hyperbolic embeddings learned for the few–shot
task. Left: 5-shot task on CUB. Right: 5-shot task on MiniImageNet. The two-
dimensional projection was computed with the UMAP algorithm [McInnes et al.,
2018].
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"If you optimize everything, you will

always be unhappy."

Donald Knuth

Chapter 7

Conclusion

In this thesis we explored how geometrical ideas can be applied to further out un-

derstanding of deep learning and develop new practical algorithms. Ultimately, our

goal is to produce learning algorithms that utilize the geometrical structure of un-

derlying data manifolds in an automatic, unsupervised manner. We anticipate one

of the main directions towards this goal to be a utilization of powerful generative

models, which infer a solid model of the data manifold. Another area where similar

ideas could be explored is reinforcement learning. In Srinivas et al. [2020], it was

shown that even simple image-based augmentations allow one to achieve state-of-

the-art sample efficiency on a large number of tasks where the inputs are represented

as images. However, in many RL tasks, the state space has some non-trivial man-

ifold structure. An additional complication is that actions have to be transformed

as well as states — as an example, we can think about the state reflection in the

Snake game. We believe that an automatic discovery of state-action symmetries is

a crucial step towards truly intelligent RL agents.
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AG Algebraic Geometry. 11, 12

CNNs Convolutional Neural Networks. 10, 11

CP CANDECOMP/PARAFAC. 10, 11

CV Computer Vision. 9

GANs Generative Adversarial Networks. 12, 17

HT Hierarchical Tucker. 10, 11, 15

NLP Natural Language Processing. 9

ReLU Rectified Linear Unit. 11, 15

RNNs Recurrent Neural Networks. 11, 14

TDA Topological Data Analysis. 13, 17

TR Tensor Ring. 11

TT Tensor Train. 10, 14, 15

VAEs Variational Autoencoders. 13, 14
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