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Abstract

Drone formations started to be actively used for addressing many real-world prob-
lems such as aerial co-manipulation, object detection, and tracking, collection of
spatial data (images, depth data with LIDARs, sound, air composition, etc.). To be
able to fulfill some of these tasks, robotic formations can achieve high complexity.
The swarm consists of many components such as perception, goal or task assignment,
feasible trajectory planning, control, etc.

One of the approaches that can simplify the swarm of aerial robots is to incorpo-
rate the human into the system. A human operator can bring additional intelligence
to the swarm operation, and therefore, the complexity of the system can be reduced.
When the human is integrated into the process, he or she either can extend the pos-
sibilities of the robotic group or take upon oneself some functionality that allows
simplifying the swarm.

Many research laboratories actively work in the Human-Swarm Interaction (HSI)
field. Such kind of interaction systems can be quite complicated. Many challenges
remain open in this field. Environments, where the swarm has to operate, can
be complicated, i.e., being unstructured with many obstacles and different weather
conditions. Individual agents have to react to various internal (neighbor drones)
and external (human and obstacles) conditions, coming from neighbor drones, hu-
man and obstacles. No strategy considers the adaptive behavior of the real fleet
of micro-quadrotors, helping to get a smooth and safe response of the robots in
various conditions. The human operator also needs to receive useful and clear feed-
back about the swarm behavior to generate proper control signals. Unstructured
environments also apply safe takeoff and landing challenges, which have not been
solved for micro-quadrotors. Considering mentioned challenges and technical gaps,
it is essential to integrate the human into the swarm operation properly.

To achieve smooth guidance and deployment of a drone formation by a human
operator, the thesis proposes a novel interaction system for human-swarm communi-
cation. The proposed Human-Swarm Interaction (HSI) system combines impedance
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control and vibrotactile feedback both for the guidance and deployment of the swarm
of small-scale quadrotors.

We first present an approach that takes into account the human hand velocity for
the control input and changes the formation shape and dynamics accordingly using
impedance interlinks simulated between quadrotors, which helps to make swarm
control safe and robust. Each quadrotor relies on the local position information
coming from neighbor vehicles, and, at the same time, the human operator affects
all vehicles globally via impedance models. As a result, such adaptive control could
lead to a natural multi robot-human interaction.

The human operator must be aware of changes in the formation (e.g., extension
and contraction) while performing the control. The importance of this fact increases
with the number of robots. To address this problem, we propose tactile patterns
representing the swarm’s static and dynamic parameters to provide feedback to the
human operator. The user feels the flock state at the fingertips and receives valuable
information to improve the controllability of the complex formation. A user study
revealed the patterns with high recognition rates. A flight experiment demonstrated
the possibility to accurately navigate the formation in a cluttered environment using
only proposed tactile feedback. Subjects stated that tactile sensation allows guiding
the drone formation through obstacles and makes the human-swarm communication
more interactive.

If we consider the overall flight mission, takeoff and landing are the essential
sub-operations of any flight. It is especially crucial in a cluttered environment with
uneven surfaces. While large drones can lift high-performance vision and processing
systems for autonomous navigation and landing, micro-quadrotors cannot process
the visual data autonomously in most cases. We propose that human can supplement
these challenging sub-operations. However, interaction strategies have not yet been
appropriately considered for such cases, especially when more than one drone has
to land simultaneously. Therefore, the thesis proposes a novel interaction strategy
SwarmCloak to deploy (takeoff and land) multiple micro-drones from the human
hands using vibrotactile wearable displays.

The thesis focuses on the interface (control and feedback) between a human
operator (leader) and a robotic swarm, addressing the nascent and dynamic field
of HSI. The proposed HSI system can potentially have a substantial impact on the
human-swarm interaction, providing a higher level of awareness during the swarm
navigation.
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Chapter 1

Introduction

This chapter aims to provide a general introduction to the swarms of aerial robots

and Human-Swarm Interaction (HSI). We will discuss the main challenges of the

HSI and give the scope of the work.

1.1 Swarms of Aerial Robots

Systems of aerial swarm robots can reach high complexity and consist of many

components. Many challenges remain open in this area in order to achieve fully

autonomous operation in various conditions.

Drone formations started to be actively used for addressing real-world issues

in many scopes, such as aerial co-manipulation, mapping, surveillance monitoring,

and target search and tracking. Multiple reasons accomplish this. Due to the vast

spreading of mobile technologies, sensing and computational hardware components

have a low price and small footprint. Members of open source and open hardware

communities actively contribute to the development of the technologies. Many hard-

ware components have become unified and are suitable for many different products,

which decrease prices. Last but not least, many algorithms have been developed in

research laboratories around the globe. Algorithms allow us to plan the necessary

actions and cooperate while maintaining the safety of operation. As a result, we can

build large groups of robots working together in diverse applications.

Chung et al. [2018] reported that many constraints have to be satisfied to fulfill
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Figure 1-1: Major swarm control factors according to Chung et al. [2018].

the formation flight objective (see Fig. 1-1). Some of them include proper state

estimation Montijano et al. [2016], Ledergerber et al. [2015], Teixeira et al. [2018],

dynamically feasible trajectories Paranjape et al. [2013], Hönig et al. [2017], Tang

et al. [2017], communication issues Mastellone et al. [2008], Zhou et al. [2014], and

robust and scalable control Su et al. [2009], Bandyopadhyay et al. [2017], Turpin et al.

[2015]. Being able to solve all of these challenges in an autonomous way represents a

hard problem. Especially when the swarm operates in a changing environment and

has to make a decision ’on the fly’ in response. To be able to operate in different

scenarios, swarm systems can reach high complexity.

There are two conventional paradigms in the swarm operation which are de-

scribed in Tang and Kumar [2018]. The first one is the flight in a formation with

the maintenance of geometric shape. The second one is when each quadrotor within

a swarm individually perform a mission to the predefined goal position with prelim-

inary goal assignment Turpin et al. [2014]. In the scope of my thesis, we consider

only the first paradigm.

1.2 Human-Swarm Interaction

In this section we will discuss why it is necessary to introduce the human into the

swarm operation and highlight the main problems.
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Figure 1-2: Human operator guides the group of robots through the maze.

Researchers across the globe introduce new robotic systems designed for use by

or with humans. Human-Robot Interaction (HRI), especially when humans and

robots are co-located, is one of the latest trends in the field of Robotics Lemaignan

et al. [2017], Goodrich and Schultz [2007].

A human operator can bring additional intelligence to the swarm operation.

When the human is integrated into the process, he ether can extend the possibilities

of the robotic group or take upon oneself some functionality that allows simplifying

the swarm.

For some specific applications in unstructured environments, fully or partially

guided groups of robots are the only possible solution (see Fig. 1-2) when the

attention of the robots has to be shifted by a human operator to specific points of

operation Bashyal and Venayagamoorthy [2008]. Human-controlled robots are also

widely used for safety, security, and rescue purposes, as reported by Birk et al. [2009],

Martins and Ventura [2009]. The possible applications may include deactivating

bombs, monitoring undersea oil pipelines, and cleaning radioactive and toxic waste.

Many research laboratories worldwide are working in the field, which is called

Human-Swarm Interaction (HSI). Human-Swarm Interaction combines many re-

search topics, which are well described by Kolling et al. [2016], and could vary

from communication channels to a level of swarm autonomy.
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The operation of a swarm is a significantly more complicated task as a human has

to simultaneously supervise several agents Dhanaraj et al. [2019]. The human role

can be simplified. Instead of the direct control of the robots, the human can provide

the robotic group with high-level commands. Nevertheless, for the human to work

with the drone formation side by side, robust and natural interaction techniques

must be developed and implemented. Many research laboratories actively work in

the Human-Swarm Interaction (HSI) field. Such kind of interaction systems can

be quite complicated. For example, authors in Cacace et al. [2016] presented a

multimodal interaction strategy between a human and a formation of drones for

search and rescue operations. Gestures and speech recognition, along with a tablet,

allowed the user to control the quadrotors’ fleet.

1.2.1 Challenges for direct guidance and deployment during

HSI

Below we cover some of the challenges that arise during the design of the HSI

systems. In the thesis, we address the discussed challenges.

Complex environment

Environments, where the swarm system operates, can have different properties. The

most simple case is when the operational space is empty, with no external distur-

bances. Unfortunately, it is not valid in most cases. In real life, we often have the

opposite - when the environment is highly unstructured. In that case, we cannot

predict the actual positions of different external objects or strictures, and sensing

and communication capabilities can dramatically reduce during the fly. Static and

dynamic obstacles can be densely distributed in space, which creates narrow pas-

sages for the robotic systems. Besides, different external disturbances, such as strong

wind, can contribute to the changing state of the vehicle formation. As a result,

space, where the swarm operates, can represent a complex environment. Let name

all conditions described above as environmental conditions and refer them to the

external factors.
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To overcome the external factors related to the unstructured environments, the

swarm has to be intelligent enough to withstand external disturbances and perform

the obstacle avoidance with the objective of maintaining the default geometry shape.

Adaptability

While individual agents of the formation react to the environmental conditions,

drone-to-drone interaction has to adapt accordingly. Each drone has to sense the

neighbors to keep the velocity and therefore maintain the default drone-to-drone

distances.

Apart from that, introducing a human into direct swarm control can enter dis-

turbances into the formation flight, as shown by Goodrich et al. [2012], such as

rapid acceleration and deceleration. The desirable trajectory has to be generated

in a compliant manner, to make human-swarm interaction natural and safe. The

formation, from the other side, has to respond to the goal positions in order to main-

tain the dynamic stability. When the target motion velocity of the robotic group

increase, it is reasonable to increase the distance between drones. Any introduced

changes into the formation flight have to be conducted in a smooth manner, avoiding

rapid acceleration and deceleration. For the quadrotors, the smoothness of motions

is measured by the higher derivatives of the position (for example, snap - second

derivatives of the acceleration).

Let name this probity of adapting the robotic group to the external factors and

human control input as adaptability.

Swarm System Feedback

As discussed above, during the HSI, the drone formation interacts with the envi-

ronment, with a human operator, and each vehicle also interacts with neighboring

agents.

As a result, the state of the swarm changes in time. For the human leader to

be able to make the most efficient control decisions, he or she must be aware of the

formation state in real-time. Profitable choices can vary, depending on the mission

type. For example, when needed to cover the area with flying vehicles evenly, with
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no big spacial gaps between the neighbor vehicles, it is reasonable to generate control

commands that can help maintain the default geometry during flight. Although the

visual channel is the most common type of feedback for HSI, it can suffer from poor

quality or be overloaded. On the other side, tactile feedback is actively used in order

to be aware of the robot state. Swarm state can be complicated, containing many

static and dynamic parameters. It represents a hard challenge to promptly deliver

the swarm state information to the human operator using the tactile feedback.

Deployment

Referring back to the complex environments, we demonstrated that it is hard to

efficiently and safely guide vehicles under such conditions. After solving the guidance

problem, we still face the deployment challenge - takeoff and landing. In many

cases, in remote areas, we do not have a well-prepared takeoff and landing surface

for Vertical Takeoff and Landing (VTOL) vehicles. It is usually the case when

the landing spot is uneven and which can lead to crashes. Even if we have the

landing spot, we need to set up a computationally intensive localization system to

land precisely on the proper point. For the small-sized quadrotors, it is almost

impossible to solve the localization problem or carry an adaptive landing gear to

perform a safe deployment. We point out the deployment challenge here as the

unsolved one because takeoff and landing are the essential sub-parts of any flight

mission and we cannot ignore it.

1.3 Scope

Below we will discuss the scope of the developed technology along with its main

components.

While completing a flight mission, the formation is guided in space, receiving the

global high-level commands from the human operator, such as going towards the

north or south. To ensure a safe mission, the formation of drones has to follow a set

of rules during operation Mulgaonkar et al. [2015]. Different flight missions require to

follow different rules. But some objectives are common and shared among the most
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Figure 1-3: Main components of the human-swarm interface.

types of missions. Rules may include obstacle avoidance and the maintenance of the

target state parameters: geometrical shape, feasible global, and relative (drone-to-

drone) velocity/acceleration. Takeoff and landing are also critically important as far

as the most amount of crashes happen during these sub-stages. In order to follow

these objectives, the challenges described above has to be solved.

To summarize, in the doctoral thesis, we propose a new method for Human-

Swarm Interaction. In particular, we focus on the interface between a human op-

erator (leader) and a robotic swarm, as shown in Fig. 1-3, addressing the nascent

and dynamic field of HSI. The interface incorporates two primary information flows:

control and feedback. Control flow provides the swarm with guidance clues coming

from the human. The feedback flow delivers to the human operator information

about the state of the flock at the current time. Based on the received feedback, the

human is supposed to generate a control input to fulfill the mission goals. Under

the swarm state term, we mean geometrical shape and drone-to-drone distance. We

propose to apply the developed method for the guidance and deployment of the for-

mation in the unstructured and dynamically changing environment, such as urban

areas. More generally, my thesis is framed by three-dimensional human-computer in-

teraction (HCI) Card [2018], which is a rich field, and it is under active development

in the robotics and VR/AR communities.
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Figure 1-4: Thesis structure.

1.3.1 Global Goal of the Drone Operation

In this thesis, we target a human-guided operation of a swarm of drones in a clut-

tered and dynamically changing environment, such as urban area Roldan et al.

[2019], Araki et al. [2017], Cooley et al. [2018]. The ultimate goal of the typical

swarm mission may include: quickly collection of spatial (distributed in space) data

(images/video, depth data, sounds, air composition, etc.) Aznar et al. [2014], Saska

et al. [2014], transmission of a signal Shi et al. [2018], Nayyar [2018], co-manipulation

Michael Jassowski [2016], Thapa et al. [2019].

1.4 Thesis Structure

The overall diagram of the thesis which present the structure is shown in Fig. 1-4.

Short overview of each chapter is presented below.

Chapter 1 - Introduction Here’s the general introduction. We discuss the mo-

tivation and the main challenges that are addressed by the thesis. We also

nightlight the scope of the research.

Chapter 2 - Background Here’s the literature review. We provide a comprehen-

sive and critical analysis of the literature related to the interaction strategies
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between the human and a swarm of drones. We highlight the research gaps

that we address in the thesis.

Chapter 3 - Thesis Objectives We address the thesis objectives along with the

research questions and novelty of the work.

Chapter 4 - Control Strategy for the Swarm Guidance We define the con-

trol part of the interaction system. In particular, we describe the relationship

between a control input signal and a swarm motion. We also show the rela-

tionship between the agents and the environment. Besides, we describe the

way we generate the control input commands.

Chapter 5 - Tactile Feedback from the Swarm of Drones We define the feed-

back part of the interaction system. In particular, we discuss the design of

tactile patterns and their evaluation. Finally, we provide the details of the

flight experiment using the tactile display.

Chapter 7 - SwarmCloak: Deployment of Drones from the Human Hands

We define the deployment method. We discuss the wearable tactile interface

that helps to deploy (takeoff and land) multiple drones from the human body.

Chapter 8 - Conclusion In the last chapter, we discuss the results, limitations,

and future work.

1.5 Summary

In this chapter we gave the introduction to the swarms of drones and Human-Swarm

Interaction (HSI) in general. We discussed the main open technical gaps of the HSI

which is addressed in this thesis. Finally we provided the scope of the work and

structure of the document.
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Background

In this chapter, we present a comprehensive and critical review of the literature

related to the topic of this work. We also define the research gaps in the state-of-

the-art. The structure of the information flow is presented in Fig. 2-1. We start

with some of the autonomy principles behind the swarms. Then we consider the

cognitive complexity of the operator and communication approaches. After that, we

investigate common control strategies, control input devices, and tactile feedback.

Finally, we review possible deployment methods for the UAVs and their limitations.

2.1 Autonomy in the Swarm of Drones

Below is the short review of some state-of-the-art research in the field of the au-

tonomous aerial swarms. In the last decades, researchers archived significant results

in the autonomy of the single drone systems Tang and Kumar [2018]. Based on

Figure 2-1: Structure of the chapter.
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these improvements, many scientists started to investigate multi-agent systems. It

is well known that, in many cases, a group of robots can perform much better than

a single robot due to scalability and robustness Lindsey et al. [2011]. The recent

advancements in robot autonomy have made it possible to reduce the number of

scenarios where human intervention is necessary to support the formation flight of

drones Chung et al. [2018]. Testing facilities have been constructed in many research

centers around the globe to enhance the development of aerial robotics, as reported

by Kushleyev et al. [2012], Lupashin et al. [2014]. The academic project with the

biggest micro quadrotor swarm Preiss et al. [2017] counts 49 Crazyflie 2.0 drones

performing the cooperative flight. Many of such testbeds also allow investigating

the cooperation between robots and a human.

Autonomous missions of aerial robots are used in such areas as search and rescue

operations Waharte et al. [2009] and precision agriculture Mogili and Deepak [2018].

Despite significant achievements in this area, many limitations are still present. Most

methods are hardly scalable to a large team of quadrotors operating at high-speed

Tang and Kumar [2018], especially within highly unstructured environments.

Nevertheless, many research teams pay attention to the control of multiple agent

teams, and contributions vary from bio-inspired solutions to advancements of con-

trol theory. A significant portion of the algorithms for control and behavior have

been inspired by biological swarm systems that can be seen in nature Webb [2002].

Sumpter [2006] described common principles of the collective behavior of biological

systems. The author proposes to consider the interaction and information flow be-

tween the agents and the surrounding environment. At the same time, the author

suggests not taking into account each animal as a complex individual.

2.2 HSI: Cognitive Complexity and Communication

In this section we discuss of how the operator resources vary with respect to the size

the controlled system (number of robots).

It is a challenge to integrate a human into such complex multi-agent systems. A

human can be a supervisor or a leader to a group of robots, or he or she can be a
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teammate to other agents. The operator can supervise only one agent at a time or

an unlimited number of robots simultaneously. The human role can change in time,

depending on the objective being addressed.

The complexity of a multi-agent system’s operation is an important parameter

that has to be considered during the design of the HSI systems. The same approach,

when we estimate the computational complexity, is widely used in computer science

to select easily scalable algorithms. Lewis et al. [2006], Lewis [2013] classified the

HSI systems in terms of human cognitive complexity. When the formation of robots

operates in such a way that each individual follows independent objectives, the hu-

man operator has to guide each separate robot one by one or sequentially. Therefore

the cognitive complexity is 𝑂(𝑛), where 𝑛 is the number of robots (see Fig. 2-2).

As a result, we have a linear relationship between human cognitive efforts and the

number of robots. The only way to scale such kind of approach is to use more op-

erators. Another paradigm is when the operator can manage an unlimited number

of robots. The use case can be, for example, when the global direction of motion

is delivered to the formation, and the interaction between agents and their environ-

ment performs autonomously. Mangiat et al. [2013] proposed technology for guiding

a robotic swarm with the help of one-touch or one-click gestures. Therefore, the

number of actions required to be completed by the operator is independent of the

size of the swarm, and cognitive complexity is 𝑂(1). Finally, there is also a case

when the robots’ interactions have to be manually handled by a human operator. In

this case, the complexity is super-linear 𝑂(> 𝑛), because the relationships between

the individuals grow faster than the number of robots. This kind of scenario can

arise when the robots have to coordinate to perform some common actions such

as manipulating an object or pushing a box, as demonstrated by Wang and Lewis

[2007]. All of these concepts are graphically presented in Fig. 2-2.

Most of the guided swarms operate remotely, far from the operators. The reason

is that the main applications involve the collection of data in remote and dan-

gerous areas. Therefore, along with the control signals, the transmission of the

collected data to the Ground Control Station is also critically important Potdar

et al. [2009]. The operator can broadcast the information to multiple agents simul-
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Figure 2-2: Operator cognitive complexity for different control architectures accord-
ing to Kolling et al. [2016].

taneously (global one-to-many in one direction), or he or she can have direct com-

munication with any individual vehicle (one-to-one in both directions). Mclurkin

et al. [2006] proposed a distributed communication network that is managed from

the ground and helps control 112 vehicles. On the other hand, it is also possible

when the operator shares the same environment with the robotic group, and there is

a direct line of sight between the agents and a human. Obvious approaches include

gestures Giusti et al. [2012] and speech recognition Pourmehr et al. [2013] for the

swarm control.

2.3 Control Strategies for the Swarm Operation

In this section we will discuss the way of how the response of the controlled drone

formation is formed.

2.3.1 Control approaches

Here we will cover the methods of how the generic swarm is getting controlled.

Two possible abstractions are commonly used for swarm control in the research

community, as shown in Tang and Kumar [2018]. The first one is when the group

of robots is moving intending to keep a formation Mulgaonkar et al. [2015], and
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Figure 2-3: Two common paradigms of motion of a team of robots. a) Goal as-
signment and trajectory planning is performed for each vehicle. b) Team of robots
moving with an objective of keeping the formation geometrical structure or shape.

the other is when each robot can get to the predefined goal positions independently

Stephan et al. [2017] (with preliminary goal assignment). Both approaches are

presented in Fig. 2-3. When the human is involved in the team guidance, it could

be hard to manage multiple agents if they are acting independently (especially for

large formations). In this case, the cognitive complexity grows super-linear 𝑂(> 𝑛),

where 𝑛 is the number of robots (discussed in the previous section). Partially for

this reason, in the thesis, we mainly consider the abstraction, when the drone group

is supposed to maintain the geometric structure during guidance. Relative distances

between the robots define the geometric structure. In Fig. 2-3(b), for example, the

used geometrical shape is flat triangle located in horizontal plane.

Maintenance of geometric configuration is a useful feature that helps to address

multiple needs. For example, we need to keep the drone-to-drone distance when the

agents perform imaging of an area to stitch all images into a single 2-dimensional or

3-dimensional map Saeedi et al. [2015]. In the case of cooperative aerial mapping,

each neighbor pair of images overlapped at a certain level (typical it is 60% of

overlap) Dro [2020]. By overlap, we mean when two neighbor drones capture the

same surface (see Fig. 2-4 for more details). To achieve certain overlap, drones’

formation has to keep a predefined distance to each other, thus keeping the spatial

geometry.
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Figure 2-4: Overlap of images that is necessary for proper stitching of images into
two-dimensional or three-dimensional map with elevations. According to Dro [2020]
- UAV mapping platform.
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On the other side, when the cooperative aerial manipulation with multiple drones

is achieved (e.g., with suspended payload), we also need to tightly maintain the

drone-to-drone distance to avoid flight instability Thapa et al. [2019]. The team of

robots is guided by a human and manipulate a box in Wang and Lewis [2007]. In the

coordination tasks, which include co-manipulation, for example, in Wang and Lewis

[2007], it is critically important for the human to keep under control of the spacial

relationship between the robots to ensure safe operation and follow cooperation goal.

We discussed that many swarm applications require formation maintenance.

Therefore, we suggest formulating the problem with the objective of preserving

the default geometry as much as possible. But along with the sub-task of default

geometry keeping, every single quadrotor must avoid environmental obstacles (both

moving and static) Chung et al. [2018], Mulgaonkar et al. [2015], Vásárhelyi et al.

[2018]. As a result, every robot will be able to change the relative drone-to-drone

distances to avoid obstacles. Therefore, quadrotors also have to avoid collisions with

each other. Based on that, the control algorithms have to maintain the formation

geometry and, at the same time, have to handle collision avoidance to ensure safety.

2.3.2 Integration of the Human into the Control Loop

The section will highlight the methods of integration of the human operator into

the control loop. The limitations also will be covered.

For cases in which human controls a swarm directly, standard control techniques

have been developed in the last few decades Kolling et al. [2016]. Applications in-

clude the interaction between a human and a single-robot or multi-robot systems.

Multi-robot formations can be controlled through a central station (centralized con-

trol) Morgan et al. [2016] or, each agent can rely only on local information for

making control decisions locally Gazi and Fidan, Alonso-Mora et al. [2015], Zhou

et al. [2017].

The controller of a single drone usually incorporates multiple nested feedback

loops, as presented by Michael et al. [2010], Tang and Kumar [2018]. The inner

attitude control loop maintains the vehicle’s desired Euler angles by using the infor-

mation from the inertia measurement unit (IMU). The outer control loop, working
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Figure 2-5: Scheme of the traditional hierarchical drone controller according to Tang
and Kumar [2018].

on top of the attitude loop, maintains the trajectory by receiving the vehicle’s po-

sition and velocity. Control loops are presented in Fig. 2-5. Unfortunately, the

equations of motions of the quadrotor are non-linear. Therefore, the motion model

is getting linearized in point where the vehicle is located (when the roll and pitch

angles are close to zero).

Usually, considering the design of the control strategies for the HSI, we take into

account only high-level control, i.e., position or trajectory control. This thesis also

focuses on the high-level control approaches.

For the positional control a traditional proportional-integral–derivative (PID)

controller is used in the majority of cases Tang and Kumar [2018]. The control

input in the case of the PID controller is defined in the following way (for a single

axis)

𝑢𝑑𝑒𝑠 = �̈�𝑡𝑟𝑎𝑐𝑘 +𝐾𝑝(𝑥𝑡𝑟𝑎𝑐𝑘 − 𝑥) +𝐾𝑑(�̇�𝑡𝑟𝑎𝑐𝑘 − �̇�) +𝐾𝑖

∫︁
(𝑥𝑡𝑟𝑎𝑐𝑘 − 𝑥) (2.1)

𝑒 = 𝑥𝑡𝑟𝑎𝑐𝑘 − 𝑥 (2.2)

where 𝑒 is the error in position (used for position controller), 𝑥𝑡𝑟𝑎𝑐𝑘 and 𝑥 are tracked

(that we want to achieve) and actual positions respectively, 𝐾𝑝, 𝐾𝑑, and 𝐾𝑖 are

proportional, derivative, and integral terms respectively. 𝐾𝑝, 𝐾𝑑, and 𝐾𝑖 are usually

estimated theoretically and then fine tuned experimentally.

PID controllers are used in most cases when a single Mellinger and Kumar [2011]

or multiple robot systems Preiss et al. [2017] are controlled. Mulgaonkar et al. [2015]

presented a system with scaled-down micro-quadrotors, which helps increase the

agile flight and swarming abilities. The authors presented a novel Pico quadrotor
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Figure 2-6: △-formation with a leader drone presented by Mulgaonkar et al. [2015].
Where Ψ𝑖 for 𝑖 in [𝑓, 𝐿, 1, 2, 3] are the formation, leader drone and following drones
(1, 2,and 3) heading angles and 𝑙𝑓 is the distance between the leader robot and the
surrounding slave drones.

with the main flight controller board weight of 5 grams. Proportional-derivative

(PD) controller receives the track state from the ground control station and performs

the control input calculation onboard. The authors linearize the vehicle’s dynamical

model around the hover point and finally apply a traditional PD control. They used

PD positional controller in order to perform △-formation flight, presented in Fig.

2-6.

Introducing a human into direct swarm control could enter disturbances into

the formation flight, as shown by Goodrich et al. [2012]. Various types of control

input devices (discussed in the next section) generate track position 𝑥𝑡𝑟𝑎𝑐𝑘(𝑡), or

track velocity �̇�𝑡𝑟𝑎𝑐𝑘(𝑡), or track acceleration �̈�𝑡𝑟𝑎𝑐𝑘(𝑡) of the agents in the fleet.

The example is presented by Aggravi et al. [2018], where the displacement of the

human’s hand position is used to directly define the goal velocity vector of the leader

drone in the simulated fleet (see Fig. 2-8). The problem is that when we have a

direct relationship between the human control input and the 𝑥𝑡𝑟𝑎𝑐𝑘(𝑡), or �̇�𝑡𝑟𝑎𝑐𝑘(𝑡), or

�̈�𝑡𝑟𝑎𝑐𝑘(𝑡), rapid acceleration and deceleration can occur. This is happening because a
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human is not able arbitrary to control his or here inputs commands (hand position in

Aggravi et al. [2018]). The dynamics of the human control signal can be much faster

than the dynamics of the current controlled system. Therefore, track trajectories

are not feasible, and the controller of the robot is not able to follow them. The

example of the goal trajectory generated by a human operator with the position of

his hand is presented in Fig. 2-7. There is no guarantee that the guided vehicle can

follow the set points. Therefore, we take this problem into account in the current

work and consider it a research gap. The desirable trajectory has to be generated in

a compliant manner, to make human-swarm interaction more smooth and safe, i.e.,

limiting rapid acceleration or deceleration. We will discuss in more detail which exact

dynamical parameters we will use to evaluate the motion and how we measure them

in Chapters 3 and 4. To make the current chapter more complete, we mention that

for the smoothness measurement, we use acceleration (second derivative of position),

snap (first derivative of acceleration), and jerk (second derivative of acceleration).

2.3.3 Compliant control

Implementation of the compliant control in the robotics field is discussed in this

section.

According to Newman and Dohring [1991], Peng and Adachi [1993], Chan and

Liaw [1996], the impedance control is widely used to archive a friendly and com-

pliant interaction between the robots (such as robotic arms or manipulators) and

the environment (including physical interaction with humans). The impedance of

the mechanical system represents the relationship between the resistance force and

applied motion. Therefore, by controlling the system’s impedance, we control its re-

sistance concerning the external motion. We discuss the general impedance control

in Section 4.3 in more details.

Hogan [1984] has developed the traditional impedance control, which afterward

was adopted by many researchers Albu-Schäffer et al.. Hogan [1984] declared that

physical interaction requires the manipulator to be coupled with the moving object in

a mechanical sense. The manipulator does not have to be considered as a standalone

system during the interaction. The author demonstrated that the manipulation is
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Figure 2-7: Goal trajectory generated by a human operator with position of his
hand.

Figure 2-8: Human operator guides the simulated fleet of quadrotors with the posi-
tion of a hand by Aggravi et al. [2018]
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a non-linear process and that the position and force has to be controlled along with

dynamic behavior. Hogan presented the feedback control that produces the desired

impedance on the end effector of the robotic arm.

Tsetserukou et al. [2006] proposed to implement local impedance control at every

joint of the humanoid robot (see Fig. 2-9(a)) in order to obtain stable and safe

interaction. The research determined the dynamic relationship between position

and force. The authors performed the impedance control with a torque sensor

connected to every joint of the robotic arms of the controlled robot. The idea of the

local impedance control is presented in Fig. 2-9(b).

Lippiello and Ruggiero [2012] implemented a Cartesian impedance control to

successfully enhance a flight of a simulated UAV with a robotic arm onboard. The

arm is supposed to interact with the environmental objects. The authors also estab-

lished the dynamic relationship between the external force acting on the constriction

and the robot’s motion.

The problem is that traditional impedance control does not apply to facilitate the

remote human operator’s swarm control. In the following sections, we will implement

a new position-based impedance control approach that can be used to enhance the

relationship between the human operator and the guided swarm of robots.

2.4 Control Input from the Human Operator

In this section we will discuss the ways of receiving the control input commands

from the human operator.

In order to deliver the control signals to the formation, a control input device is

needed. A human operator could use a ground station, remote control with sticks,

joystick, wearable devices, smartphones, tablets, and many other devices or even

gestures to control and navigate the robots Cho et al. [2009], Micire et al. [2009],

Matsuda [1998]. Listed approaches have many advantages and disadvantages.

Direct control of teleoperated devices and machines is mainly accomplished by

using joysticks, which help users have straightforward guidance in remote and haz-

ardous areas Funk [2018]. But still, the navigation of quadcopters with a joystick
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Figure 2-9: Local impedance control that was proposed by Tsetserukou et al. [2006],
(a) Controlled robot with humanoid arms, (b) Impedance model. Where 𝜏𝐸𝑋𝑇𝑖 is
the torque that acts on joint 𝑖 which is the result of external force 𝐹𝐸𝑋𝑇 , 𝐽𝑑𝑖 is the
desired inertia, 𝐷𝑑𝑖 is the desired damping, 𝐾𝑑𝑖 is the desired stiffness

39



Chapter 2. Background 2.4. Control Input from the Human Operator

or a remote controller is a challenging task for many users. Authors in Katsumoto

[2016] reproduce virtual anchoring effect in midair, replicating a regular table joy-

stick. However, such an approach still requires holding a device all the time, limiting

hands-free scenarios. Most of the control joysticks of teleoperated robots, such as

quadcopters, are complicated and require additional training for non-expert users.

In addition, a joystick is a handheld device that introduces further inconvenience

for the user between interaction sessions. Within non-spacious environments in

safety-critical scenarios, experiences and trained personnel are needed for guiding

quadcopters through the predetermined flight paths Kosch et al. [2018].

In many applications, it is desirable not to carry any extra equipment by the

operator. Gesture-based interactions could satisfy this requirement. In the gesture-

based interface proposed by Podevijn et al. [2014], a swarm of ground robots receives

commands from a human operator in the form of gestures, which are captured by an

RGB-D Kinect camera. Gesture-based interfaces require a complex infrastructure

setup, such as depth cameras Sanna et al. [2013], which limits the variety of possible

applications and working area. The time spent on image acquisition and processing

should be short to function in real-time.

Wearable devices are widely used to control remote or virtual vehicles. In Yuan

et al. [2019], a human-assisted quadcopter navigation system was proposed where

the user guides the robot through eye-tracker glasses. In order to intuitively operate

a single drone, hand commands were proposed in [Aur, 2019]. Hand gestures were

widely adopted in the research of human-robot interaction, and there is a wide

variety of proposed approaches. For immersive drone control with hand gestures,

Rognon et al. [2018] developed a soft upper body exoskeleton with goggles for the

first-person view. In the gesture-based interface proposed by Podevijn et al. [2013],

a swarm of ground robots receives commands from a human operator in the form of

gestures, which are captured by a Kinect system. Gesture-based interaction requires

a complex infrastructure setup, which narrows down the range of applications where

it could be applied. In scenarios where the system extracts the gestures from an

image, the user’s background should be clear and straightforward so that the camera

could quickly identify gestures. The time spent on image acquisition and processing
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should be short to allow the system to function in real-time Chen et al. [2007].

Another possible option is to directly move one of the robots to control the

others, as shown by Braley et al. [2018] in GridDrones. The authors highlighted

how the swarm of drones could be controlled by directly holding and moving one of

the quadrotors. The problem with this approach is that it is hard for the human to

move the master drone smoothly. In addition, after the drone is released from the

hand, it makes several quick movements to stabilize its position. These motions of

the master could lead to unintended rapid accelerations of the slave robots.

In the current work, to keep the hardware simple and easy to use, we propose

using the same wearable device (SwarmGlove) for both feedback and control input

using a position-based approach. The wearable tactile device provides portability

and, at the same time, addresses multiple purposes.

2.5 Tactile Feedback

Below we will discuss the state-of-the-art approaches of tactile feedback for robot

guidance and control.

The most advanced control methods use closed-loop control. The control input or

action is affected by some variable or state of the controlled process. The information

from the controlled process is delivered to the controller in the way of feedback Doyle

et al. [2013]. In the case of HSI, human plays the role of the high-level controller.

While guiding the robotic group, the human operator must be aware of changes

in the fleet (e.g., extension and contraction) for better control. The importance of

this fact increases with the number of robots. Although visual channels often suffer

from poor quality (it is often overloaded), direct visual feedback or visual information

presented with displays Gioioso et al. [2014] are common ways to deliver information

about the formation to the operator.

On the other hand, haptics has also gained considerable attention in the research

of human-swarm interaction, and various interaction methodologies have been pro-

posed. Researchers started to investigate the sense of touch as a way of information

transfer since the 1960s Geldard [1957, 1960]. Geldard [1957] proposed the first
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tactile language - Vibratese. The area of the skin that can be stimulated is high.

Besides, the tactile sensation can strongly grab human attention Jones and Sarter

[2008]. Sense of touch can work in both directions - we can sense the environment

that we touch, and at the same time, we can act on it Jones and Sarter [2008] (this is

the main difference from vision sensation). One more interesting property of touch

is that we can deliver information to a certain person, while the others are not aware

of this communication. All of these factors contributed to the fast development of

haptic devices. Our skin contains multiple types of receptors that can be activated

by vibrotactile stimulation. In order to provide the proper sensation, researchers

need to carefully select a necessary area of contact and vibration characteristics

(frequency, amplitude, etc.).

Haptic feedback can improve the awareness of drone formation state, as reported

in Il Son et al. [2011] and Stramigioli et al. [2010]. Tactile interfaces deliver infor-

mation about swarm status just right to the skin. Scheggi et al. [2014] proposed

a haptic bracelet with vibrotactile feedback to inform an operator about a feasible

way to guide a group of ground mobile robots in terms of motion constraints. Tac-

tile signals help the human operator to maintain the integrity of the guided team

of mobile robots. An arm-worn tactile display for presentation of the collision of a

single flying robot with walls was proposed in Spiss et al. [2017]. Vibrotactile signals

improved users’ awareness of the presence of obstacles. Aggravi et al. [2018] devel-

oped a wearable haptic display capable of providing a wide range of sensations by

skin stretch, pressure, and vibrotactile stimuli. The authors evaluated the proposed

device for the control of a fleet of ten simulated quadrotors. Haptic feedback deliv-

ered the information about the navigation directions and the connectivity (squeeze)

of the fleet. Additional feedback improved almost all metrics of the experiment. In

the robotic telepresence system developed by Tsetserukou et al. [2011], employing

the laser range finders (LIDARs), the mobile robot precisely recognizes the shape,

boundaries, movement direction, speed, and distance to the obstacles. The tactile

belt delivers detected information to the user who regulates the movement direction

and speed of the robot through the body stance (torso of the operator works as a

joystick). The projects mentioned above demonstrate that kinesthetic Wang et al.
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Figure 2-10: Guidance of mobile robots using tactile and visual feedback presented
by Scheggi et al. [2014].

[2018] and tactile feedback Pacchierotti et al. [2017] can be effectively applied for

the control and interaction with drones.

Haptic feedback also can be provided by drones and used to control other robots,

as shown by Evgeny Tsykunov and Tsetserukou [2019]. Along with that, there

are several research projects related to providing encountered-type kinesthetic and

tactile feedback in VR via drones. As a result, drone technology is used to improve

the human operator’s immersion into different interaction scenarios. In Hoppe et al.

[2018], an object or surface is connected to the drone, which is supposed to be

touched by a human to deliver passive or active tactile feedback. Authors in Knierim

et al. [2017] also propose to hit the user with some object connected to a small drone

to provide a haptic sensation. Abdullah et al. [2018] also offered to push or pull

the drone in 𝑍 − 𝑎𝑥𝑖𝑠 direction to simulate force feedback for direct interaction.

Abtahi et al. [2019] developed a more complicated scenario that incorporates rich

interactions, including passive force feedback and texture mapping. The main limi-

tations of the proposed solutions include low sensation resolution, instability during

an interaction, low impact force, and a drone’s big size. In particular, authors in

Abdullah et al. [2018], Abtahi et al. [2019] selected bigger size drones. Usually, the

spacial motion of human hands is fast. Although more powerful quadrotors could
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provide more noticeable force feedback, they could be slow for certain applications.

It is also hard to combine different types of feedback at the same time because there

is not enough space for drones near the fingers.

Although there might be some advantages of haptics devices, such as getting

extra information in addition to the visual channel, they have several limitations.

Haptics usually requires additional equipment to set up Yang et al. [2004], which

in turn makes it hard to implement in particular applications. In comparison with

visual and audio feedback, low bandwidth channel for information transfer makes

tactile feedback less informative Cruz-Hernandez [2011]. For example, the user

might want to get altitude status and obstacle warning at the same time. In some

highly demanding cases, when a person cannot focus on his/her sensory input, the

stimulus might not be felt well Spirkovska [2005]. To address these issues, the design

of haptics devices have to be simple and robust. The tactile stimulus has to be as

clear for the user as possible. It is possible to successfully overcome the limitations

by designing tailored and optimized haptic displays.

Although using the vibration motors is a common way to provide cutaneous

feedback Pacchierotti et al. [2017], in contrast to state of the art, in the current work,

we propose a tactile display SwarmGlove that was tailored-made for the specific

application of swarm control. Vibration motors were located at each fingertip to

achieve a higher recognition rate of the patterns. Positioning was provided with the

integration of infrared reflective markers, which is used to generate control input.

Reliable communication between the SwarmGlove and the ground control station

for the distance up to 1.2 km was achieved through radio module XBee Pro s2b.

Communication is needed to make a glove a wearable interface for convenient swarm

control.

2.6 Deployment of Swarm of Drones

The current section will explain the challenges of takeoff and landing sub-operations

along with state-of-the-art approaches to these problems.

If we consider the overall flight mission, takeoff and landing always come before
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and after the actual flight. In other words, takeoff and landing are the essential

sub-operations of any flight. That is true for piloted air crafts and autonomous

or guided flying robots of any size. As reported by Attaccalite et al. [2012], many

crashes of airplanes happen during takeoff and landing operations. Vertical takeoff

and landing (VTOL) flying robots also likely to perform poorly because of their

inability to land in a specific environment with unusual conditions. For example, a

landing of the helicopter on the unstable ship deck in the rough sea can lead to the

dynamic rollover. The strong wind blowing over rough terrain is another dangerous

factor, which can result in the same consequences during landing. Also, it is almost

impossible and hazardous to land on the steep slope in the mountains, even for

modern helicopters. Indeed, takeoff and landing imply physical interaction with the

ground, which increases the risks, especially for autonomous air crafts.

Small size quadrotors have a limited set of options to address the takeoff and

landing challenge. To solve the problem, we propose a novel interaction strategy

SwarmCloak to land multiple micro quadrotors on the human hands using vibrotac-

tile feedback. Human can significantly reduce the complexity of the aerial platform,

proving a cheaper way (both in terms of hardware design and computational com-

plexity) to perform a safe landing in any environmental conditions where the human

is able to get himself or herself.

While large drones Augugliaro et al. [2014], Loianno and Kumar [2018] are capa-

ble of lifting high-performance vision and processing systems for autonomous takeoff

and landing, the swarm of micro-quadrotors cannot process the visual data au-

tonomously at the same level. In many cases, the actual flight of drones often does

not require a precision perception system, and, therefore, an autonomous flight can

be easily accomplished with limited sensing capabilities, such as GPS or Ultra Wide

Band (UWB) radios Nithya and Rashmi [2019]. However, takeoff and landing op-

erations often require an accurate localization García-Pulido et al. [2017], Olivares-

Mendez et al. [2013], and mapping, which could be a problem for micro-quadrotors

due to limited payload and therefore small computational capabilities.

Special landing gears are used to ensure a safe landing for VTOLs, as reported by

Mason [1974]. Fig. 2-11 shows the example of a robotic landing gear for a helicopter
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Figure 2-11: Robotic landing gear by Kiefer et al. [2016].

developed by Kiefer et al. [2016]. Fig. 2-11 demonstrates how the helicopter per-

forms landing with the usage of an adaptive landing gear. Landing gear represents

a mechanical system with moving joints, which contributes to the additional weight

of the system. Simulation and control strategy for robotic landing gear is described

in Goh et al. [2016]. Amazon patented adjustable landing gear with telescoping legs

for UAV Gentry [2017]. The main limitation of the application of landing gears for

small UAVs is limited payload capabilities. The Crazyflie 2.0 quadrotor can lift just

several grams of additional payload. This is a significant constrain when we want

to reach the landing on the uneven unprepared surface.

Hence, the human could supplement these challenging swarm operations (takeoff

and landing) for small flying robots. However, interaction strategies for such cases

have not yet been appropriately considered, especially when more than one drone

has to be landed at the same time. For the human operator, it is often easier and

faster to catch a small size quadrotor right in the midair instead of landing it on

a surface in autonomous mode. The reasons for this could be multiple. For the

outdoor applications, the landing surface is usually uneven and dusty, which could

lead to a crash of the swarm. Even when the landing spots (helipads) are provided,

autonomous landing is not always the best solution due to position estimation errors,

robustness, or high cost of a positioning system. On the other hand, the human can

try to catch the drones from the formation while the fleet is descending. Neverthe-

less, this scenario could be dangerous both for the human and robots if the number

of robots is more than one.

Although the HSI is well developed, as reported in Kolling et al. [2016], to my

knowledge, up until now, there are no technologies and research on how to promptly
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deploy and land the swarm of drones using the human body. Hence, a robust

interaction strategy has to be developed.

Tactile feedback for interaction with robots has been widely investigated, as dis-

cussed in the above section 2.5. Based on that, we propose a SwarmCloak technology

that helps deploy multiple drones from the human body using a wearable tactile dis-

play. In particular, we define the role of tactile feedback in such a way, that it helps

to localize the position of the deploying drones with respect to the landing pads.

2.7 Summary

In this chapter, we presented an existing research related to the topic of this work.

We also defined the research gaps.

We covered the existing control methods which is topically used for the swarm of

drones operation. The literature review revealed that generation of control signals

and the swarm response to the control commands are crucial parts of the control

strategy. The state of the art control strategy for drones is the PID controller

(when the drones strictly following the corresponding goal positions). It works

well until the human is involved in the direct control of the robotic formation.

Various disturbances can happen in this case because the human is not able to

generate dynamically feasible control signals. Reviewing state-of-the art, no strategy

considers the adaptive behavior of the guided fleet of micro-quadrotors, helping to

get a smooth and safe response of the robots in various conditions. Along with that,

we showed that impedance control is widely used in industrial manipulators and

humanoid robotics to ensure safe interaction between the robot and the environment.

Apart from that we considered the haptic feedback that is used for the interaction

of a human with robotic systems. To enhance the interaction with the robotics

group, the operator has to be aware of the current state of the controlled system. For

example, the operator needs to know if the fleet is split into two groups while avoiding

obstacle or if the team is squeezed and drone-to-drone distances is decreasing. This

is hard to achieve when the number of robots is high or when the visual feedback

is poor due to the significant distance or communication problems. We hypothesize
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that the tactile feedback can enhance or even sometimes fully replace the visual

feedback.

Finally we discussed the deployment challenges and existing solutions along with

its limitations. To complete a flight mission, the swarm of drones has to take off in

the beginning and land in the end. Many crashes happening during these stages that

is why we consider it as an important part of HSI. Adaptive landing gears substitute

the landing and takeoff operations on the uneven surfaces. The problem is that, due

to the lack of payload abilities of micro-quadrotors, it is almost impossible to carry

the adaptive landing gear or significant computational power that can help to land.

Up until now, no technology safely lands multiple micro-quadrotors on the uneven

surface in the unprepared environment.
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Thesis Objectives

In the Introduction chapter, we provided the context to the modern Human-Swarm

Interaction. In the previous chapter, we discussed the background and related work

and the research gaps definition. In the current chapter, we define the main objec-

tives of this work and provide the research questions.

3.1 Thesis Goal

This thesis aims to advance the field of human-swarm interaction in terms of guid-

ance and deployment in complex environments by using impedance control and

tactile feedback.

An example of such an environment can be dense and quickly changing urban

areas or remote locations with a lack of infrastructure. We discussed the challenges

related to the environmental conditions in the Introduction Chapter.

The thesis contributes to the HSI by ensuring safe, smooth, and scalable guid-

ance with full awareness of the swarm state. Besides, the thesis presents a novel

deployment method that fulfills the guidance and makes HSI more complete. The

details are presented in the below Section 3.2.

By the deployment, we mean takeoff and landing. We intentionally outline two

sub-stages of the drone operation: deployment and guidance. On one side, these

sub-stages look different. But, in practice, they address the same goal and share

some universal principles of operation. Besides, deployment and guidance overlap
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in time. For example, while the drones take off, the transition to the guidance mode

is already in progress.

3.2 Research Questions

3.2.1 Control of Drones

The literature review demonstrated in subsections 2.3 and 4.16 revealed that the

generation of control signals and the swarm response to the control commands are

crucial parts of the control strategy. When the human is involved in the direct, high-

level control of the robotic formation, various disturbances can happen. Considering

the state-of-the-art, no strategy considers the adaptive behavior of the real fleet of

micro-quadrotors, helping to get a smooth and safe response of the robots in vari-

ous conditions. Along with that, we showed that impedance control and potential

fields are widely used in industrial manipulators and humanoid robotics to ensure

safe interaction between the robot and the environment. We hypothesize that the

impedance control will help to generate and follow dynamically feasible trajectories

that adapt to the human control input, ensuring safe interaction. For the obstacle

avoidance strategy, we consider using the potential fields.

Based on the above statements, we formulate the first research question as fol-

lows.

Research Question 1: How to achieve smooth, safe, and scalable control of a

group of drones by a human operator using impedance control and artificial potential

fields?

As discussed by Flash and Hogan [1985], who investigated the human hand

movement, the smoothest hand motion is achieved under a particular objective.

The authors demonstrated that the most optimal trajectory is obtained when the

jerk (first derivative of acceleration) is minimal over the entire motion. On the

other hand, Mellinger and Kumar [2011] shown that in order to minimize different

constraints, such as velocity, acceleration, and control input, it is necessary to use
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higher-order derivatives of the position for the objective function (such as snap

or the second derivative of the acceleration). Therefore, to measure the flight’s

smoothness, we propose to measure such dynamic parameters as acceleration, jerk,

and snap. We will discuss it in details through the thesis and in section 4.1 in

particular. The proposed control method does not have to introduce limitations

when we scale the number of robots in the team to hundreds of agents.

By the safety, we mean the generation of dynamically feasible trajectories and

the lack of collision. Smooth paths contribute to the safety of the mission since

optimal trajectory limits control inputs and, therefore, increases flight stability. On

the other side, safety also achieved via adaptive distances between the agents (the

higher velocity, the more distance). In addition, the drone-to-drone range also has to

change smoothly following the human control commands. Finally, a robust obstacle

avoidance algorithm has to be implemented on the top of the smooth trajectory

generation.

Contribution and Novelty

It represents a hard problem to propose a continuous control method that can ad-

dress all issues described above at the same time. To enhance scalability and robust-

ness, we do not consider applying the combination of control methods of different

properties to meet all the above objectives. Instead, to answer the research ques-

tion, we developed a new control paradigm where we propose a novel impedance

control approach. The aim of application of the impedance control is to establish

the dynamic relationship between the controlled object and the human control in-

put. Traditional impedance control presented by Hogan [1984], used to enhance the

physical interaction between the robotic arms and the environment. But when the

operator guides the formation of aerial robots in space, there is no point of contact,

and therefore, we cannot calculate the force that can be applied to the mass of the

impedance model. To solve the problem, we introduce a new impedance control

approach where force is calculated with respect to the human control input. The

impedance model generates the desirable and feasible trajectory which reacts to the

human hand motion in a compliant manner, avoiding rapid acceleration and de-
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celeration. The comparison with the state-of-the-art PID controller demonstrated

that we improved the dynamical parameters of the motion. The architecture of

impedance models helps to get adaptive geometry changing, which contributes to

the safe flight. The potential field helps to avoid collision with other agents and

external obstacles.

3.2.2 Tactile Feedback about the State of the Swarm

As discussed above in the subsection 2.5, to enhance the interaction with the robotics

group, the operator has to be aware of the current state of the controlled system.

This is hard to achieve when the number of robots is high or when the visual

feedback is poor due to the significant distance or communication problems. We

hypothesize that the tactile feedback can enhance or even sometimes fully replace

the visual feedback. In subsection 2.5, we demonstrate that haptic sensation plays

a vital role in the perception of the human. Based on that, haptics is actively used

for Human-Robot interaction. But haptic displays have several limitations, such

as low information bandwidth. In order to overcome the barriers, haptic hardware

devices have to be carefully designed. Considering state-of-the-art, there is no tactile

wearable interface finely tuned for prompt swarm sensing during operation in a

cluttered environment.

Hence, we formulate the second research question as follows.

Research Question 2: How to provide a human operator with static and dynamic

parameters of the swarm using wearable display and tactile feedback?

The human has to be aware of the critical parameters of the swarm state, and it

has to help him to make control decisions. Tactile patterns have to be intuitive, and

it has to be recognizable in 80% of the cases. The tactile device has to be tailored

for the swarm guidance in real-time and do not inconvenience the operator or limit

his or her motions. Tactile feedback has to provide enough information to complete

the guidance on a cluttered environment without visual feedback. The proposed

tactile feedback does not have to introduce limitations when we scale the number of
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robots in the team to hundreds of agents.

Contribution and Novelty

In contrast to state of the art, we propose to design a tailored vibrotactile wearable

display SwarmGlove for the interaction of the human with a real swarm of aerial

robots by providing an intuitive mapping of the formation state to the human finger

pads. Human palm have flat and wide contact area with rich tactile resolution

which helps to deliver relevant information Weinstein and Weinstein [1964]. It is

often easier to estimate the parameters of the whole robotic group (e.g., dimensions,

velocity) rather than map all the drones’ environments. The main novelty is that

we propose to deliver tactile feedback about the state of the swarm rather than

about the distance to obstacles or the desired direction of motion. We designed

tactile feedback to convey information about the formation parameters that are hard

to estimate from the visual feedback, i.e., formation state (extension, contraction,

and displacement) and state propagation direction (increasing or decreasing drone-

to-drone distance). Therefore, tactile cues could effectively supplement the visual

channel, making the swarm control more immersive. Cutaneous feedback could

play a key role in enhancing the swarm navigation performance in the unstructured

environment, such as cities.

3.2.3 Fusion of the Control and Feedback into the Interface

To validate the developed approaches, we fused both control and feedback in the

final flight experiments to come up with the interface. We implemented a small-scale

unstructured environment to test the real flight of a fleet of three drones guided by

a human. The results demonstrated that the tactile feedback allows us to guide the

formation of drones thought the set of obstacles maintaining the desired formation

parameters.

Both control and feedback parts fulfill each other. In the control part, we pro-

pose the algorithm, which is changing the swarm static and dynamic parameters

to maintain smoothness and safe formation flight. These changes have to be under

control - that is another reason (in addition to the obstacles avoidance) why we need
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to provide feedback to the human.

3.2.4 Deployment of Drones from the Human Hands

We discussed in section 2.6 that to complete a flight mission, the swarm of drones has

to take off in the beginning and land in the end. Due to the lack of computational

abilities, the problem is that it is almost impossible to land safely for the micro-

quadrotors. Until now, no technology safely lands multiple micro-quadrotors in the

uneven surface in the unstructured environment.

Thus, we formulate the third research question as follows.

Research Question 3: How to use a human body to supplement a deployment of

a fleet of micro-quadrotors in any environment by using tactile feedback?

Tactile feedback has to enhance the visual channel. As a result, the positional

error during the deployment has to be decreased. The landing with pure tactile

feedback has to be achieved.

Contribution and Novelty

To solve the problem, we propose that the human operator supplement the takeoff

and landing operation using a novel vibrotactile wearable display SwarmCloak. The

user will use his/her arms to deploy drones. Proposed technology allows us to launch

drones in any remote area without any infrastructure. Human-Swarm Interaction

field is well developed, but, to our knowledge, up until now, there are no technologies

and research on how to promptly take off and land the swarm of micro-drones in

any location using the human body.

We also consider the strengths of the SwarmCloak compared to the autonomous

landing platforms, where the robust controller incorporating the accurate position

information could accomplish a precision landing. Autonomous landing requires a

complex infrastructure that should include a position estimation system, e.g., motion

capture system with infrared (IR) markers or regular cameras with visible markers,

which has to track all landing pads with centimeter accuracy. Such positioning
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systems can be expensive or not reliable. Additionally, ground-based positioning

systems are bulky and require additional communication channel with the drones.

On the other hand, in the proposed approach, the formation only has to roughly

estimate the human’s position within the reachable area by the human hands to

land vertically. We applied a Vicon motion capture system to provide sub-millimeter

accuracy of drone and hand position detection during the experiment.

3.3 Summary

In the current chapter, we defined three research questions related to adaptive con-

trol, clear feedback and deployment in any environment. In order to do that we

highlighted the technical gaps revealed in the previous chapter. Finally after every

research question we explained our contribution and its novelty.
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Control Strategy for the Swarm

Guidance

In this chapter, we overview the set of proposed control methods for the HSI. We

describe the way we define the control objectives and generate the control input

commands. We discuss the relationship between a control input signal and a swarm

motion. We evaluated the proposed approaches both from the theoretical and ex-

perimental perspectives.

4.1 Control Objectives

First of all, we have to define the objectives that we want to achieve by developing

control methods. The objectives suppose to help to generate more smooth and safe

trajectories. The requirement to the objectives is that it has to be valid for any

quadrotor, with any size or component selection. In this section, we will derive

the equations of motion of the quadrotor. Then we discuss the typical controller

design. Finally, based on the dynamic model and controller, we highlight the desired

objectives.

4.1.1 Quadrotor Equations of Motion

We define two coordinate systems: world coordinate system 𝑊 and body coordinate

system 𝐵. The body coordinate system 𝐵 is rigidly connected to the quadrotor
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Figure 4-1: World 𝑊 and body 𝐵 coordinate frames.

center of mass. Euler angles (roll, pitch, and yaw) are utilized to formulate the

orientation of the robot in the 𝑊 coordinate frame. The coordinate frames are

presented in Fig. 4-1.

The relative rotation from body to world coordinate system 𝑊𝑅𝐵 is obtained

sequentially. In order to do that we introduce intermediate coordinate system 𝐶

(shown in blue in Fig. 4-1). Therefore, the rotation from 𝐵 to 𝑊 frame can be

expressed as
𝑊𝑅𝐵 = 𝑊𝑅𝐶

𝐶𝑅𝐵 (4.1)

We first rotate around z𝑊 by yaw angle (𝜓), then rotate around intermediate axis

x𝐶 by roll angle (𝜑), and finally by rotation about y𝐵 axis by the pitch angle (𝜃).

We do not provide intermediate rotation matrices. The final rotation matrix from

body to world coordinate frame is expressed as

𝑊𝑅𝐵 =

⎡⎢⎢⎢⎣
𝑐𝜓𝑐𝜃 − 𝑠𝜑𝑠𝜓𝑠𝜃 −𝑐𝜑𝑠𝜓 𝑐𝜓𝑠𝜃 + 𝑐𝜃𝑠𝜑𝑠𝜓

𝑐𝜃𝑠𝜓 + 𝑐𝜓𝑠𝜑𝑠𝜃 𝑐𝜑𝑐𝜓 𝑠𝜓𝑠𝜃 − 𝑐𝜓𝑐𝜃𝑠𝜑

−𝑐𝜑𝑠𝜃 𝑠𝜑 𝑐𝜑𝑐𝜃

⎤⎥⎥⎥⎦ , (4.2)

where 𝑐𝜓 and 𝑠𝜓 is defined as 𝑐𝑜𝑠(𝜓) and 𝑠𝑖𝑛(𝜓) respectively. The same is true for

𝜃 and 𝜑.

Angular speed of the quadrotor body with respect to the world coordinate frame

𝑊 is defined as

𝜔𝐵𝑊 = 𝑝x𝐵 + 𝑞y𝐵 + 𝑟z𝐵, (4.3)
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where 𝑝, 𝑞, and 𝑟 are the angular velocity components in 𝐵 frame.

Angular velocities of the robot in the 𝐵 frame have a direct relationships with

the first derivatives of roll, pitch, and yaw angles⎡⎢⎢⎢⎣
𝑝

𝑞

𝑟

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑐𝜃 0 −𝑐𝜑𝑠𝜃

0 1 𝑠𝜑

𝑠𝜃 0 𝑐𝜑𝑐𝜃

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
�̇�

𝜃

�̇�

⎤⎥⎥⎥⎦ (4.4)

Propellers of the quadrotor rotate with angular velocity 𝜔𝑖. As a result, each

propeller produces force 𝐹𝑖 and moment 𝑀𝑖 which can be described as

𝐹𝑖 = 𝑘𝐹𝜔
2
𝑖 ,𝑀𝑖 = 𝑘𝑀𝜔

2
𝑖 , (4.5)

where force 𝐹𝑖 is pointed upwards along 𝑧𝐵 direction and moment 𝑀𝑖 is also applied

about 𝑧𝐵 axis.

Typical quadrotor dynamics is relatively slow comparing to the propeller dynam-

ics. Therefore, for the simplicity, it is usually assumed that desired forces 𝐹𝑖 and

moments 𝑀𝑖 can be reached instantly. As a result, control inputs generated by four

rotors can be described as

u =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑢1

𝑢2

𝑢3

𝑢4

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑘𝐹 𝑘𝐹 𝑘𝐹 𝑘𝐹

0 𝑘𝐹 𝑙2 0 −𝑘𝐹 𝑙4
−𝑘𝐹 𝑙1 0 𝑘𝐹 𝑙3 0

𝑘𝑀 −𝑘𝑀 𝑘𝑀 −𝑘𝑀

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝜔2
1

𝜔2
2

𝜔2
3

𝜔2
4

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.6)

where 𝑙𝑖 is the distance between the center of mass of the robot and the corresponding

motor, 𝑢1 is the thrust acting along the z𝐵, and 𝑢2, 𝑢3, 𝑢4 are the robot moments

acting along the x𝐵,y𝐵, and z𝐵 axis respectively.

We also defined the 𝑢1 as a net force acting on the body of quadrotor along the

direction of 𝑧𝐵 axis

𝐹 = 𝑢1 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 (4.7)

Net moment acting on the body of quadrotor also can be defined with the fol-
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lowing equations

𝑀 = 𝑟1 × 𝐹1 + 𝑟2 × 𝐹2 + 𝑟3 × 𝐹3 + 𝑟4 × 𝐹4 +𝑀1 +𝑀2 +𝑀3 +𝑀4 (4.8)

Assuming that 𝑟 is the vector of the position of the robot center of mass in the

𝑊 frame we use (4.7) and Newton’s equations to get linear accelerations

𝑚r̈ =

⎡⎢⎢⎢⎣
0

0

−𝑚𝑔

⎤⎥⎥⎥⎦ + 𝑊𝑅𝐵

⎡⎢⎢⎢⎣
0

0

𝑢1

⎤⎥⎥⎥⎦ (4.9)

We obtained the result based on the assumption that only gravity force and motor

forces are acting on the body of the robot.

We use (4.8) and Euler equations to obtain the angular acceleration of the

quadrotor in the following way

𝐼

⎡⎢⎢⎢⎣
�̇�

𝑞

�̇�

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑢2

𝑢3

𝑢4

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
𝑝

𝑞

𝑟

⎤⎥⎥⎥⎦× 𝐼

⎡⎢⎢⎢⎣
𝑝

𝑞

𝑟

⎤⎥⎥⎥⎦ , (4.10)

where 𝐼 is the matrix of the moment of the body inertia, 𝑢2 = 𝑟2 × 𝐹2 − 𝑟4 × 𝐹4,

𝑢3 = 𝑟3 × 𝐹3 − 𝑟1 × 𝐹1, and 𝑢4 = 𝑀1 − 𝑀2 + 𝑀3 − 𝑀4. Robot body moments

𝑢2, 𝑢3, 𝑢4 act along the x𝐵,y𝐵, and z𝐵 axis respectively.

4.1.2 Control Loops

The dynamics of the quadrotor is non-linear. Typically, the equations of motion are

linearized near the hovel point, i.e., when the roll and pitch angles are close to zero.

As a result, the controllers are obtained using a linearized dynamic model. Such

kind of approach is the most common one, both in academia and in the industry.

We also notice that near the linearization point we get �̇� ≈ 𝑝, 𝜃 ≈ 𝑞, �̇� ≈ 𝑟.

We already discussed in the Chapter 2 that the controllers are typically designed

using the nested control loops, as shown in Fig. 4-11.
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Attitude Controller

Considering (4.10) we can assume that the products of inertia are close to zero and

due to symmetry we have 𝐼𝑥𝑥 ≈ 𝐼𝑦𝑦. Then we can derive

𝐼𝑥𝑥�̇� = 𝑢2 − 𝑞𝑟(𝐼𝑧𝑧 − 𝐼𝑦𝑦) (4.11a)

𝐼𝑦𝑦𝑞 = 𝑢3 − 𝑞𝑟(𝐼𝑥𝑥 − 𝐼𝑧𝑧) (4.11b)

𝐼𝑧𝑧 �̇� = 𝑢4 (4.11c)

The other typical assumption is that 𝑟, which is angular velocity along the 𝑧𝐵

axis, in (4.11a) and (4.11b) is relatively small, compared to other angular speed

components. This assumption is made based on the fact that, during quadrotor

motion, the rate of change of yaw angle is typically much smaller compared to the

roll and pitch angle changes.

Attitude controller represent an inner loop (Fig. 4-11), which accepts data from

position controller and from the onboard inertia-measurement unit (IMU). As an

output, attitude controller generates the desired moments 𝑢2𝑑𝑒𝑠, 𝑢3𝑑𝑒𝑠, 𝑢4𝑑𝑒𝑠.

Taking all being said into consideration we apply PD controller to calculate the

desired moments

𝑢2𝑑𝑒𝑠 = 𝐾𝑝,𝜑(𝜑𝑑𝑒𝑠 − 𝜑) +𝐾𝑑,𝜑(𝑝𝑑𝑒𝑠 − 𝑝) (4.12a)

𝑢3𝑑𝑒𝑠 = 𝐾𝑝,𝜃(𝜃𝑑𝑒𝑠 − 𝜃) +𝐾𝑑,𝜃(𝑞𝑑𝑒𝑠 − 𝑞) (4.12b)

𝑢4𝑑𝑒𝑠 = 𝐾𝑝,𝜓(𝜓𝑑𝑒𝑠 − 𝜓) +𝐾𝑑,𝜓(𝑟𝑑𝑒𝑠 − 𝑟) (4.12c)

Position Controller

In order to supply the attitude controller with the desires angles we use position

controller. Position controller is used to calculate the command linear accelerations

𝑟𝑖𝑑𝑒𝑠 in the following way

𝑟𝑖𝑑𝑒𝑠 = 𝑟𝑖𝑡𝑟𝑎𝑐𝑘 +𝐾𝑖
𝑝(𝑟

𝑖
𝑡𝑟𝑎𝑐𝑘 − 𝑟𝑖) +𝐾𝑖

𝑑(�̇�
𝑖
𝑡𝑟𝑎𝑐𝑘 − �̇�𝑖) +𝐾𝑖

𝑖

∫︁
(𝑟𝑖𝑡𝑟𝑎𝑐𝑘 − 𝑟𝑖)𝑑𝑡, (4.13)

60



Chapter 4. Control 4.1. Control Objectives

where 𝑟𝑖𝑡𝑟𝑎𝑐𝑘 is the desired position that we want to track, 𝑟𝑖 is the current actual

position. The desired position forms a trajectory 𝑟𝑖𝑡𝑟𝑎𝑐𝑘(𝑡). For the slow motion 𝑟𝑖𝑡𝑟𝑎𝑐𝑘
can be small or even equal to zero.

In order to obtain the relationship between the desired acceleration and the Euler

angles we linearize (4.9)

𝑟1𝑑𝑒𝑠 = 𝑔(𝜃𝑑𝑒𝑠𝑐𝑜𝑠(𝜓𝑡𝑟𝑎𝑐𝑘) + 𝜑𝑑𝑒𝑠𝑠𝑖𝑛(𝜓𝑡𝑟𝑎𝑐𝑘)) (4.14a)

𝑟2𝑑𝑒𝑠 = 𝑔(𝜃𝑑𝑒𝑠𝑠𝑖𝑛(𝜓𝑡𝑟𝑎𝑐𝑘) − 𝜑𝑑𝑒𝑠𝑐𝑜𝑠(𝜓𝑡𝑟𝑎𝑐𝑘)) (4.14b)

𝑟3𝑑𝑒𝑠 =
𝑢1𝑑𝑒𝑠
𝑚

, (4.14c)

where 𝜓𝑡𝑟𝑎𝑐𝑘 is the yaw angle that we want to track.

In order to obtain the desired Euler angle for the (4.12) we invert (4.14)

𝜑𝑑𝑒𝑠 =
𝑟1𝑑𝑒𝑠𝑠𝑖𝑛(𝜓𝑡𝑟𝑎𝑐𝑘) − 𝑟2𝑑𝑒𝑠𝑐𝑜𝑠(𝜓𝑡𝑟𝑎𝑐𝑘)

𝑔
(4.15a)

𝜃𝑑𝑒𝑠 =
𝑟1𝑑𝑒𝑠𝑐𝑜𝑠(𝜓𝑡𝑟𝑎𝑐𝑘) + 𝑟2𝑑𝑒𝑠𝑠𝑖𝑛(𝜓𝑡𝑟𝑎𝑐𝑘)

𝑔
(4.15b)

𝑢1𝑑𝑒𝑠 = 𝑚𝑟3𝑑𝑒𝑠 (4.15c)

4.1.3 Objectives

Our ultimate goal is to achieve smooth behaviour of the controlled quadrotors. In

order to have smooth motion of the quadrotor we want the control input to be

minimized.

To derive the control objective, we investigate the relationships between the

control inputs and the goal positions.

Considering (4.15), we can see that the 𝑢1𝑑𝑒𝑠 can be calculated as a second-order

derivative of the position. On the other hand, we can observe that the control

inputs 𝑢2𝑑𝑒𝑠 and 𝑢3𝑑𝑒𝑠 are functions of the fourth derivatives of the positions. As a

result, the objective is to obtain the motion trajectories that minimize the second

(acceleration) and fourth (snap) derivatives of the positions.

As discussed by Flash and Hogan [1985], who investigated the human hand
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movement, the smoothest hand motion is achieved under a particular objective.

The authors demonstrated that the most optimal trajectory is obtained when the

jerk (first derivative of acceleration) is minimal over the entire motion of a hand.

Although the optimal movement is impossible to achieve in real-life experiments, we

also propose considering the minimization of the jerk or third derivative of position

as the objective for the proposed control method.

In conclusion, we will calculate the acceleration, jerk, and snap of the posi-

tion over the entire duration of motion for the comparison of the proposed control

methods with state-of-the-art control strategies. We demonstrated that the cur-

rent objectives are valid for any type or quadrotor of any size or component set.

Selected objectives help to generate more smooth and safe trajectories for the for-

mation flight. In the following sections, we will present our novel impedance control

approach that allows us to satisfy the proposed objectives.

4.2 Control Input

For the control input generation coming from the operator, we propose to use a

human hand. We refer to Chapter 5, where the human hand will be used to deliver

tactile feedback. Based on that, we intend to use it also to define a control input

signal. To keep the experimental part simple (held indoors), we use the displacement

of the hand with respect to its initial position for the control signal calculation. The

leading drone repeats the glove trajectory with a spatial 𝑠𝑐𝑎𝑙𝑒 coefficient while being

guided by a human operator.

X𝑔 = 𝑠𝑐𝑎𝑙𝑒 · H, (4.16)

where X𝑔 ∈ R3 represent the position of the center of mass of the leading quadrotor

that it has to track, H ∈ R3 represent the human hand position. Both X𝑔 and H

are in world coordinate frame.

The details of the control signal generation will be disclosed in the current Chap-

ter below. We will also discuss alternative methods that allow us to exclude the hand

position estimation (can be applied to various applications, including outdoor).
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Figure 4-2: Second-order impedance model with mass-spring-damper elements.

4.3 Impedance Control for Trajectory Generation

The typical impedance control applications include the physical interaction of robotic

systems, such as manipulators, with the environment. The impedance of the me-

chanical system represents the relationship between the resistance force and applied

motion. Therefore, by controlling the system’s impedance, we control its resistance

with respect to the external motion. On the other hand, admittance is the inverse

of impedance - it describes the motions that are the output from a force input.

The graphical presentation of the typical impedance model used for control is

given in Fig. 4-2. Where 𝑀𝑑 is the desired mass of the virtual body, 𝐷𝑑 is the

desired damping, and 𝐾𝑑 is the desired stiffness, ∆𝑥 is the difference between the

current 𝑥𝑐𝑖𝑚𝑝 and default 𝑥𝑑𝑖𝑚𝑝 position, and 𝐹𝑒𝑥𝑡(𝑡) is an external force, applied to

the mass. Considering the Fig. 4-2 the impedance can be defined as a relationship

between the force and velocity. When we consider the physical interaction of the

robot with the environment, we usually estimate the 𝐹𝑒𝑥𝑡(𝑡) with a force sensor.

New Impedance Control Approach

The impedance control application aims to establish the dynamic relationship be-

tween the position of the controlled object and the human control input. In the case

of aerial robot guidance, we do not have a point of contact with the environment.

As a result, there is no real force that can be applied to the virtual mass of the

impedance model (highlighted in Fig. 4-2). Therefore, we have to change the tra-

ditional impedance control approach. We establish the virtual relationship between

the human control input and the force.

To allow the human operator to change the formation shape and dynamics while
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Figure 4-3: Relationship between the human hand velocity 𝑣ℎ(𝑡) and the virtual
force F𝑒𝑥𝑡(𝑡).

navigating, we propose to calculate the external force term F𝑒𝑥𝑡(𝑡) (shown in Fig. 4-

3) as a function of some human state parameter. In the thesis, for the control input,

we use a human hand. Therefore, we calculate the external force as a function

of the human hand’s velocity 𝑣ℎ(𝑡). This new relationship helps to obtain a novel

impedance model that we propose.

F𝑒𝑥𝑡(𝑡) = 𝐾𝑣
dH
𝑑𝑡

= 𝐾𝑣𝑣ℎ(𝑡), (4.17)

where 𝐾𝑣 is a scaling coefficient, which determines the effect of the human hand

velocity 𝑣ℎ(𝑡) on the controlled system. To estimate the human hand’s velocity, we

assume that it is possible to track the hand motion with some positioning system.

During the experimental evaluation, we used the Vicon motion capture system for

localization.

To calculate the resulting setpoint, we integrate the goal position coming from

the human with calculated displacement of the impedance model ∆𝑥. After that,

we feed the setpoint (based on the human input with impedance correction) to the

PID controller and ask it to generate the control signal for the robots, which helps

us maintain the target position of the drone. The hand of the human operator

controling a drone via an impedance model are shown in Fig. 4-3.

Mathematical Approach to Impedance Control

In order to calculate the impedance correction term for the robots’ goal positions,

we solve a second-order differential equation (4.18) that represents the impedance

model. To move in three-dimensional space, we have to solve one differential equa-

tion for every axis. Here we present the solution for the 𝑋 axis
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𝑀𝑑∆�̈�+𝐷𝑑∆�̇�+𝐾𝑑∆𝑥 = 𝐹 𝑥
𝑒𝑥𝑡(𝑡), (4.18)

where 𝑀𝑑 is the desired mass of the virtual body, 𝐷𝑑 is the desired damping, and 𝐾𝑑

is the desired stiffness, ∆𝑥 is the difference between the current 𝑥𝑐𝑖𝑚𝑝 and desired 𝑥𝑑𝑖𝑚𝑝
position, and 𝐹𝑒𝑥𝑡(𝑡) is an external force, applied to the mass. It is well known that by

selecting the desired dynamics parameters for the impedance model, we can achieve

various behavior of the oscillator, described by (4.18), undamped, underdamped,

critically damped, and overdamped.

We introduce two state variables: position 𝑥(𝑡) = ∆𝑥 and velocity 𝑣(𝑡) = ∆�̇�.

Based on that, state space representation of (4.18) has the form:

𝑣(𝑡) = 0 · 𝑥(𝑡) + 1 · 𝑣(𝑡) + 0 · 𝐹𝑒𝑥𝑡(𝑡)

˙𝑣(𝑡) = (−𝐾𝑑

𝑀𝑑

)𝑥(𝑡) + (−𝐷𝑑

𝑀𝑑

)𝑣(𝑡) + (
1

𝑀𝑑

)𝐹𝑒𝑥𝑡(𝑡)
(4.19)

The matrix form of (4.19) has the form:

⎡⎣𝑣(𝑡)

˙𝑣(𝑡)

⎤⎦ = 𝐴

⎡⎣𝑥(𝑡)

𝑣(𝑡)

⎤⎦ +𝐵𝐹𝑒𝑥𝑡(𝑡), (4.20)

where 𝐴 =

⎡⎣ 0 1

−𝐾𝑑

𝑀𝑑
−𝐷𝑑

𝑀𝑑

⎤⎦, 𝐵 =

⎡⎣ 0

1
𝑀𝑑

⎤⎦. In discrete time-space, after integration, we

write the impedance equation in the following way:⎡⎣𝑥𝑘+1

𝑣𝑘+1

⎤⎦ = 𝐴𝑑

⎡⎣𝑥𝑘
𝑣𝑘

⎤⎦ +𝐵𝑑𝐹
𝑘
𝑒𝑥𝑡, (4.21)

where 𝐴𝑑 = 𝑒𝐴𝑇 , 𝐵𝑑 = (𝑒𝐴𝑇 − 𝐼)𝐴−1𝐵, 𝑇 is the sampling time, 𝐼 is the identity

matrix, and 𝑒𝐴𝑇 is the state transition matrix.

The impedance model, as a second order differential equation, can be classified

by the shape of the step response. Assuming that the input variable 𝑢(𝑡) is a

step of amplitude 𝑈 , with Laplace transformation 𝑢(𝑠) = 𝑈/𝑠. Then the Laplace
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transformed time-response becomes

𝑥(𝑠) = 𝐻(𝑠)𝑢(𝑠) =
𝐾𝑑𝜔

2
𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠+ 𝜔2
𝑛

𝑈

𝑠
(4.22)

𝜔𝑛 =

√︂
𝐾𝑑

𝑀𝑑

, 𝜁 =
𝐷𝑑

2
√
𝑀𝑑𝐾𝑑

. (4.23)

The shape of the time-response 𝑥(𝑡), which is calculated as inverse Laplace transform

of 𝑥(𝑠), depends on the poles. The poles are the roots of the characteristic equation:

𝑠2 + 2𝜁𝜔𝑛𝑠+ 𝜔2
𝑛 = 0, (4.24)

In order to have a critically damped response, 𝜁 must equal 1. Then we have equal

and real poles

𝑝1 = 𝑝2 = −𝜁𝜔𝑛 = − 𝐷𝑑

2𝑀𝑑

, 𝐷𝑑
2 − 4𝐾𝑑𝑀𝑑 = 0 (4.25)

Poles 𝑝1, 𝑝2 of (4.24) and the eigenvalues 𝜆1, 𝜆2 of matrix 𝐴 must be equal, real, and

positive 𝜆1 = 𝜆2 = 𝑝1 = 𝑝2. The most challenging part in (4.21) is to compute the

term 𝑒𝐴𝑇 . The matrix exponential is fined form Cayley-Hamilton theorem, according

to which every matrix satisfies its characteristic polynomial. For the case when the

poles are real and multiple (critically damped response), it is possible to find

𝐴𝑑 = 𝑒𝜆𝑇

⎡⎣(1 − 𝜆𝑇 ) 𝑇

−𝑏𝑇 (1 − 𝜆𝑇 − 𝑎𝑇 )

⎤⎦ , (4.26)

𝐵𝑑 = −𝑐
𝑏

⎡⎣𝑒𝜆𝑇 (1 − 𝜆𝑇 ) − 1

−𝑏𝑇𝑒𝜆𝑇

⎤⎦ , (4.27)

where 𝜆 is the eigenvalue variable of the matrix 𝐴, 𝑎 = −𝐷𝑑

𝑀𝑑
, 𝑏 = −𝐾𝑑

𝑀𝑑
, 𝑐 = 1

𝑀𝑑
. 𝐴𝑑

and 𝐵𝑑 matrices can be used to calculate the current 𝑥𝑖𝑚𝑝 position of the impedance

model using equation (4.21).
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Figure 4-4: Dynamic model of the simplified system.

4.3.1 Simplified Control Problem

In this section we demonstrate the performance of the developed impedance control

on the simplified system - point of mass moving in one dimension.

Dynamics

For the simplified system, we examine a point of mass that moves in a vertical

direction along with the gravity force. The vertically moving point can represent a

1-dimensional quadrotor that restricted to move only upwards or downwards. We

simulate the thrust with force pointed upwards, and we also add a drag force. We

present the dynamic model in Fig. 4-4. Motion model can be represented as follows

�̈� = 𝑔 +
𝑐𝑡
𝑚
𝑢− 𝐶𝑑

𝑚
�̇�2, (4.28)

where 𝑔 is the gravity, 𝑐 is the electro-mechanical transmission constant, 𝑚 is the

mass of the simulated point, 𝑢 is the control input pointed upwards (actuator thrust).

The drag force is proportional to the squared velocity with 𝐶𝑑 coefficient 𝐹𝑑 = 𝐶𝑑�̇�
2.

The coefficient incorporates all parameters that refer to the drag force: area, shape,

density, Reynolds number, etc. We set the parameters of the dynamic model to be

the following, 𝑐𝑡=10, 𝑚 = 1.5 𝑘𝑔, 𝐶𝑑 = 0.15 𝑘𝑔𝑠2/𝑚.

Raw trajectory provided to PID controller

We first feed the goal position of the point of mass from the human to the PID

controller directly, without impedance correction. This will help us to see the per-

formance of the controlled point of mass under the simple PID controller. We will

67



Chapter 4. Control 4.3. Impedance Control for Trajectory Generation

Figure 4-5: Step response.

Figure 4-6: Point of mass follows a human hand with PID controller.

use it as a baseline. Our aim here is not to design the best PID controller but to use

it as a tool. Therefore, we do not focus on the PID controller design itself. We set

the PID coefficients in order to minimize overshoot of the system (𝑘𝑝=2.6, 𝑘𝑑=1.4,

𝑘𝑖=1.4) and make the system critically damped. The step response of the described

above system, governed by a traditional PID controller, is presented in Fig. 4-5.

After demonstrating the performance of the PID controller on step control input,

we ask the simulated point of mass to follow a prerecorded position of the human

hand. We recorded beforehand the position of the human hand with a Vicon motion

capture system (shown in orange line in Fig. 4-6). For this experiment we took the

motion in one dimension (the simulated point of mass can move in one dimension).
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We then sequentially supplied the set positions from the human into the PID con-

troller defined in the previous paragraph. The state of the point of mass calculated

based on the (4.28). The resulting trajectory of the position of the simulated object

path is presented in Fig. 4-6 in the blue line.

It is possible to see that the PID controller can perform its task, even for more

complex human control input.

Impedance trajectory provided to PID control

In order to obtain the compliant behavior of the controlled system, we will update

the goal position with the impedance correction or displacement term ∆𝑥 calculated

based on (4.18). We will discuss the stability of the impedance model later in the

thesis. For now we disclose that we selected the parameters of the impedance model

to be critically damped. The desired dynamic coefficients of the impedance model

are the same for toy problem and for the real drone control that we will present

below (𝑀𝑑 = 1.9, 𝐷𝑑 = 12.6, 𝐾𝑑 = 21.0). Meanwhile, the force will be obtained

using (4.17). We selected the scaling coefficient 𝐾𝑣 in (4.17) empirically (𝐾𝑣 = 12).

Regarding the possible limits of 𝐾𝑣, the small values of 𝐾𝑣 will leads to negligible

update of the trajectory and large value of 𝐾𝑣 will lead to the unstable trajectory.

The relationship between the human velocity (as the input to the impedance model)

and the impedance correction term (as the output of the impedance model, basically

it is the displacement of the impedance model) are demonstrated in Fig. 4-7. It is

possible to observe in Fig. 4-7 that the impedance model displacement is smoothed

and slightly delayed in comparison to the human velocity.

We update the goal position (that we have to track) coming from the human

with the impedance displacement term in the following way.

𝑥𝑔 = 𝑥ℎ𝑢𝑚 + 𝑥𝑖𝑚𝑝, (4.29)

where 𝑥ℎ𝑢𝑚 is the recorded human position.

The integrated set points are demonstrated in Fig. 4-8. In the green color

there is the trajectory obtained with the impedance displacement of the model.
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Figure 4-7: Relationship between the human hand velocity and the impedance model
displacement.

Figure 4-8: Set points coming from the human. Raw goal trajectory recorded from
the position of the human hand, shown in blue. Goal trajectory obtained when the
raw trajectory is updated with the impedance displacement, shown in green.
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Table 4.1: Standard Deviations of the Dynamic Parameters.

Mean standard deviation values
Acceleration Jerk Snap

Without impedance 0.82 7.89 95.1
With impedance 0.74 (↓10%) 7.75 (↓2%) 86.5 (↓9%)

In comparison to the raw set points coming from the human hand (blue line), it

is possible to observe that the trajectory with the impedance correction is more

smooth and slightly delayed.

After the update of the goal position, we feed the new setpoint to the PID

controller and ask it to generate the control input, which is getting applied to the

model.

The goal of the proposed control method is to achieve the smooth guidance of

the controlled system. Based on that, to evaluate the approach, we proposed to

investigate the dynamic parameters of the model motion (as discussed in section

4.1). For the parameters, we take the second, the third, and the fourth derivatives

of the position or altitude. We calculated the standard deviations (SD) for each

parameter over the control session and present them in Table 4.1.

It can be seen that the proposed impedance control helped to reduce the dynamic

parameters, which leads to more smooth behavior of the controlled system.

4.3.2 Proposed Impedance Control Approach for Swarm Guid-

ance

To implement adaptive manipulation of a robotic group by a human operator, such

as when the inter-robot distances and formation dynamics change following the

operator state, we propose a position-based impedance control, which is described

above for the single agent.

In the proposed impedance model approach, we introduce mass-spring-damper

links (shown in Fig. 4-2) between each pair of agents and between the human and

agent formation, as shown in Fig. 4-9(a). Basically this is the virtual impedance

model which is inserted between the pairs of agents of the formation. We use this

impedance model state (in particular the displacement of the mass) to update the
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Figure 4-9: (a) Position based impedance control, (b) PID position controller with
no impedance models. Subscription "h" is referred to human.

goal position of the corresponding agents. We call such impedance models impedance

links or interlinks, because they simulate the link between the drones.

The target impedance trajectory is processed by PID control, which allows high

precision positioning and maintains the default predefined shape (in my case, it is

a rhombic shape) and orientation of the formation.

While the operator is guiding the formation in space, impedance models update

the goal positions for each flying robot, which changes the default drone-to-drone

distances 𝐿𝑖𝑗, for (i,j=1,2,3,4) in our case. As a result, the operator "pushes" or

"pulls" virtual masses of inter-robot impedance models, which allows the shape

and dynamics of the robotic group to be changed by the human hand movement.

Virtual "pushing" or "pulling" of the impedance model mass is achieved with the

relationship between the human hand movements and force, which is defined in

(4.17). Basically "pushing" or "pulling" is defined with the application of the force

in different directions in (4.17). Each robot relies on the local position information

coming from neighbor vehicles, and, at the same time, the human operator affects

all vehicles globally via impedance models. Such an adaptive control could lead

to a natural multi robot-human interaction, although all the impedance models’

parameters remain unchanged during the flight.

The method described above is used to calculate the impedance correction vector
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[︁
𝑥𝑖𝑚𝑝, 𝑦𝑖𝑚𝑝, 𝑧𝑖𝑚𝑝

]︁𝑇
or the current position of the virtual body of each impedance

model. Impedance correction vectors are used to update the goal positions of each

vehicle in the team.

The goal positions along 𝑋, 𝑌 , and 𝑍-axis of each quadrotor (that we have to

track) are determined as follows (see the structure presented in Fig. 4-9(a)):

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1_𝑔

𝑥2_𝑔

𝑥3_𝑔

𝑥4_𝑔

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝑠𝑐𝑎𝑙𝑒

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥ℎ

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
−𝐿ℎ1

𝑥1 − 𝐿12

𝑥1 − 𝐿13

𝑥2+𝑥3
2

− 𝐿34

⎤⎥⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎢⎣
|𝑥𝑖𝑚𝑝_ℎ1|

|𝑥𝑖𝑚𝑝_12|

|𝑥𝑖𝑚𝑝_13|

|𝑥𝑖𝑚𝑝_24 + 𝑥𝑖𝑚𝑝_34|

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.30)

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦1_𝑔

𝑦2_𝑔

𝑦3_𝑔

𝑦4_𝑔

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝑠𝑐𝑎𝑙𝑒

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦ℎ

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
0

𝑦1 +𝐻12

𝑦1 −𝐻13

𝑦2+𝑦3
2

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦𝑖𝑚𝑝_ℎ1

𝑦𝑖𝑚𝑝_12

𝑦𝑖𝑚𝑝_13

𝑦𝑖𝑚𝑝_24 + 𝑦𝑖𝑚𝑝_34

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.31)

⎡⎢⎢⎢⎢⎢⎢⎣
𝑧1_𝑔

𝑧2_𝑔

𝑧3_𝑔

𝑧4_𝑔

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝑠𝑐𝑎𝑙𝑒

⎡⎢⎢⎢⎢⎢⎢⎣
𝑧ℎ

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
0

𝑧1

𝑧1

𝑧2+𝑧3
2

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
𝑧𝑖𝑚𝑝_ℎ1

𝑧𝑖𝑚𝑝_12

𝑧𝑖𝑚𝑝_13

𝑧𝑖𝑚𝑝_24 + 𝑧𝑖𝑚𝑝_34

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.32)

where 𝑥𝑖𝑚𝑝_𝑖𝑗, 𝑦𝑖𝑚𝑝_𝑖𝑗, and 𝑧𝑖𝑚𝑝_𝑖𝑗 for 𝑖, 𝑗 = ℎ, 1, 2, 3, 4 are corresponding impedance

correction terms, 𝐿𝑖𝑗 and 𝐻𝑖𝑗 for 𝑖, 𝑗 = ℎ, 1, 2, 3, 4 are displacements for the quadro-

tors, as could be seen in Fig. 4-9(b), 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 for 𝑖 = 1, 2, 3, 4 are the actual positions

of UAVs, 𝑥ℎ, 𝑦ℎ, 𝑧ℎ are the position coordinates of the human hand, and 𝑠𝑐𝑎𝑙𝑒 is a

mapping coefficient.

4.3.3 Boundedness of External Conditions

The impedance model is supposed to be critically damped (as we will show further),

which prevent from unexpected inputs. On the other side, the human hand velocity

is also limited with human capabilities of moving hand in space. Nevertheless,
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to exclude any risks and to demonstrate the performance under assumption on

the boundedness of the external inputs, the impedance terms are limited with the

maximum values: ⎡⎢⎢⎢⎣
𝑥𝑖𝑚𝑝

𝑦𝑖𝑚𝑝

𝑧𝑖𝑚𝑝

⎤⎥⎥⎥⎦ ≤

⎡⎢⎢⎢⎣
𝑥𝑖𝑚𝑝_𝑙𝑖𝑚𝑖𝑡

𝑦𝑖𝑚𝑝_𝑙𝑖𝑚𝑖𝑡

𝑧𝑖𝑚𝑝_𝑙𝑖𝑚𝑖𝑡

⎤⎥⎥⎥⎦ , (4.33)

where the right side represents the safety thresholds that prevent an overrun of the

impedance model.

4.3.4 Graph Representation

One of the ideas behind the proposed impedance control is safer operation when

the agents’ distances are increasing with increasing velocity. In particular, when the

formation is moving fast, we want the drones to always split apart in the negative

direction of the 𝑋 axis (from the human), that is why we subtract the absolute

values of impedance terms in (4.30). On the other hand, considering motion in

the 𝑌 and 𝑍 axes, the formation has to be shifted in different directions, with

respect to the human motion. If the human starts to move in the left direction,

the robotic swarm, following the human, has to shift to the right, demonstrating

a "tail" behavior, as shown in Fig. 4-17. Based on the presented discussion, we

conclude that the developed impedance control introduces a directional behavior -

from the human to the last quadrotor. Thus, the set of impedance links represents

a connected directional graph.

4.3.5 Generalization of the Proposed Approach

To make the above equations more general, we introduce several terms. Let X𝑖 ∈ R3

represent the actual position of the center of mass of 𝑖𝑡ℎ quadrotor, X𝑔𝑖 ∈ R3 repre-

sent the goal position (that we have to track) of the center of mass of 𝑖𝑡ℎ quadrotor,

H ∈ R3 represent the human hand position, G ∈ R𝑛2 is a two-dimensional array and

represent the default geometry configuration for the vehicles (where 𝑛 is the number

of agents), and Imp ∈ R𝑛2 is a two-dimensional array and represent the impedance
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Figure 4-10: Control diagram of the proposed HSI with impedance control.

correction terms (which is the displacements of the impedance models). Geometry

configuration G and impedance corrections Imp express the relationships between

the agents within the group. In the most general case we can have some unique

relationship between every pair of drones. That is why we propose to represent G

and Imp as square matrices with 𝑛-by-𝑛 size where 𝑛 is the number of agents. In

the less general cases G and Imp can be not full rank matrices with some level of

sparsity. Finally, we can define the agent goal positions in the following generalized

way

X𝑔 = 𝑓1(H) + 𝑓2(X,G) + 𝑓3(Imp). (4.34)

The overall control diagram is presented in Fig. 4-10. Feedback line with tactile

display and tactile patterns will be discussed in the Chapter 5. To ensure safe

operation, obstacle avoidance module corrects the goal positions and works on top

of the block described by (4.34). We will disclose more detailed about the obstacle

avoidance in the following sections.

Equations (4.30) to (4.34) consist of three parts. The first part 𝑓1(H) is the

spacial mapping function with the coefficient 𝑠𝑐𝑎𝑙𝑒 between the human position and

the formation leader (drone 1) motion, where the vector H denote, how far the

human moved his/her hand from an initial position along each Cartesian axis. The

hand’s initial position is determined when the current control session started (at that

moment, we initialized the frame with respect to which we estimate the H). Units

of 𝑓1(H) is meters. The second part 𝑓2(X,G) determines the default geometrical
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shape of the formation (rhombus, which is located in the 𝑋𝑌 plane in our case).

Basically this can be distances between the agents. The units of 𝑓2(X,G) is meters.

The third part 𝑓3(Imp) describes the displacement of impedance models which we

inserted (virtually) between the agents. The units of the displacements are meters.

All three parts of the equations are independent and could be designed separately,

following the specific application needs. Although in this work, we consider the

rhombic shape, the formation could have an arbitrary geometry, which is defined in

the second part of (4.30) to (4.34). The number of UAVs also could be arbitrary.

Given some shape, the impedance connections could be designed in such a way that

they do not have to replicate the geometry. We select the impedance links based

on the behavior we want to achieve. For example, if we want the distance between

Drone 2 and Drone 3 to increase when the formation is moving in the 𝑌 direction

(to make it wider for safety or any other concerns), then we could introduce an

additional impedance interlink between Drone 2 and 3, see Fig. 4-9.

4.3.6 Communication

Computational complexity coming from (4.18) increases linearly with the number

of impedance links. As can be seen in (4.30) to (4.32), each agent relies on local

information about the distances to neighbor vehicles (geometric part of the equa-

tions), and at the same time on the state of local impedance models. The human

affects all impedance interlinks globally. Based on that, it is possible to implement

computation on board or on the ground station with corresponding advantages and

disadvantages of both approaches.

Centralized Approach

For the experiment, we utilized a centralized approach by using a Ground Control

Station (GCS). On one side, this approach simplifies the implementation of the HSI

system. Each drone does not need to measure the distances to the neighbors and

communicate with them. But on the other hand, we introduce a single point of

failure - GCS, which reduces the system’s reliability. We used the ground-based

Linux-based computer to accumulate all current positions (from the localization
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system) and compute desired drone trajectories in real-time. We used a Vicon

motion capture system for human positioning. Alternative approaches to tracking

the human hand position, which allows for more varied applications, are discussed in

future work. For the communication between the GCS and drones, we used a duplex

radio channel. Each drone received its current position and next waypoint through

the radio link (communication bandwidth increases linearly with the number of

robots). The details of implementation are discussed in Section 4.3.8.

Decentralized Approach

Decentralized onboard computation is also an option, which can reduce the load of

the single point of failure - GCS. On the other side, this approach requires addi-

tional setup, which is a weak point. Similar to the centralized approach, we also

need a communication channel. It can be a simplex radio channel for this case.

Human control input has to be delivered to the leader drone via the radio channel.

The human hand velocity also has to be measured and broadcasted to each drone.

Therefore, calculation regarding impedance models (4.18) can be done on board of

each quadrotor. In addition to the position of the human hand, each agent has

to know the distances to the neighbors, according to (4.30-4.31). The experimen-

tal setup in this thesis does not support measuring relative distances with onboard

sensors. However, it is possible to achieve this with vision-based methods, for ex-

ample, as shown by Petráček and Saska [2018]. Another option is to set up the

communication channels between the closest neighbors.

4.3.7 Generalization to Other Types of Robotic Systems

The initial intention was to developed methods for quadrotor vehicles. It is well

known that the control scheme of the typical quadrotor (or mostly any VTOL vehi-

cle) consists of multiple control loops. Generalized and simplified control loops are

presented in Fig. 4-11.

In section 4.1, we demonstrated that the proposed objectives are valid for any

quadrotor and do not limit the specific implementation of our hardware validation

that we will present in the following sections.

77



Chapter 4. Control 4.3. Impedance Control for Trajectory Generation

Figure 4-11: Control loops of the typical quadrotor controller, according to Sturm
and Cremers [2015].

But we also want to discuss the generalization to other types of hardware plat-

forms. Considering the control diagram in Fig. 4-10 and the way we propose to

calculate the goal positions (4.34), we can make the following conclusions. The op-

erator directly influences the desired trajectory of the flight with the help of the

impedance control. Also, the human received feedback about the velocity and po-

sitions of the swarm. Therefore, it is possible to conclude that developed methods

focus on the vehicle’s high-level control. High-level control does not consider plant

dynamics directly. Plant dynamics is addressed by the attitude controllers, which

is unique for different types of aerial robots. The human is not able to control the

attitude of the vehicles in the swarm, and he is not able to control the rotational

speed of every motor of every drone.

High-level control approaches do not strongly depend on the dynamics of the

vehicle. In a more general sense, we can consider the vehicles that can hover in

space (maintain the same position X ∈ R3) and at the same time can translate

along any direction. The vehicles can be ether under-actuated, such as quadrotors,

or fully actuated. We can limit the proposed approach from three-dimensional to

two-dimensional case and apply it to the control of the swarm of ground mobile
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robots with omnidirectional motion ability.

Therefore we can conclude that the proposed control diagram, presented in Fig.

4-10, can be scaled to most types of VTOL vehicles without modification. Regarding

the correction term 𝑓3(Imp) coming from impedance control and the objectives that

it helps to follow, we have to provide the analysis similar to the one presented in

Section 4.1 in order to prove the applicability to the particular vehicle type.

4.3.8 Experimental Validation

Hardware Setup

We used a formation of four Crazyflie 2.0 quadrotors to perform the validation

flight tests. The Crazyflie 2.0 quadrotor is one of the smallest commercially avail-

able drones that can fit in the palm of a hand. Small size (9 cm2) and weight (27

grams) provide safety, which is required for applications that involve human par-

ticipation. The small size also leads to small inertia parameters that help to react

to control inputs fast enough. The low weight contributes to withstand crashes be-

tween quadrotors and collisions with walls. The maximum takeoff weight is just 42

grams, but it allows us to carry expansion boards and infrared (IR) markers. Four

IR reflective markers lead to a total weight of 31 grams, which reduces the flight

time to 5 minutes. Honig et al. [2015] has well-described dynamics of the Crazyflie

2.0. The Crazyflie 2.0 is supplied with two controllers. The first one is 32 bits

ARM Cortex-M4 (STM32F405) for the main applications; the second one is ARM

CortexM0 (nRF51822) for power and communication purposes.

To get the high-quality tracking of the quadrotors and human glove during the

experiments, we used a Vicon motion capture system with 12 cameras (Vantage

V5) covering a 5 m × 5 m × 5 m space. Vicon software package Vicon Tracker

3.6 is running on a separate server with Windows OS. All other computations are

performed on a separate Linux-based machine with Ubuntu 16.04 LTS. We used the

Robot Operating System (ROS) Kinetic framework to run the development software

and ROS stack Honig et al. [2015] for Crazyflie 2.0. The position and attitude update

rate was 100 Hz for all drones. To extract the coordinates from the Vicon Tracker
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Figure 4-12: Overall control system architecture.

3.6, we used a ROS package Vicon Bridge. Both Windows and Linux computers

were connected to the same network via a wired connection to ensure reliable data

transfer from Vicon Tracker to ROS.

Communication between a Linux computer and drones has been established via

2.4 GHz Crazyflie PA radio module (with controller nRF24LU1+ by Nordic Semi-

conductor and 20dBm power amplifier). The range of Crazyradio reaches 1 km

(between the drone and the radio module) with the direct line of sight. Typically

we used one radio module to maintain a link with up to 5 drones.

The overall system architecture is shown in Fig. 4-12. We added an obstacle

avoidance module that corrects the goal positions. We will describe more details

about obstacle avoidance in the following sections.

During the validation of the control approaches, we provide only direct visual

feedback to the operator.

Default Flight

Before conducting any type of experiment, we ensured that we could perform a sta-

ble and smooth flight, following the desired trajectory. In order to do so, all PID

coefficients for position controller were set to default values for Crazyflie 2.0, ac-

cording to Honig et al. [2015] (for x,y-axis 𝑘𝑝=40, 𝑘𝑑=20, 𝑘𝑖=2; for z-axis 𝑘𝑝=5000,

𝑘𝑑=6000, 𝑘𝑖=3500). For testing purposes, we first completed an autonomous flight:

takeoff and horizontal flight in line. After that, we also make sure that the drone

can smoothly follow the setpoints coming as a control input from the human op-
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erator (without impedance correction). If both tests accomplished, we started the

experiment.

Dynamical Stability of the Impedance Models

In this section we consider the selection of the impedance model dynamic parameters

𝑀𝑑, 𝐷𝑑, and 𝐾𝑑 to obtain a critically damped response of the system, which we

assume to be the most comfortable for the human.

As a preliminary setup, the selection of the impedance parameters was carried

out. Second-order systems (such as our impedance model) are classified by the shape

of the step response. The type of step response is determined by a value of 𝜁 in (4.24),

as shown in Fig. 4-13. 𝑀𝑑, 𝐷𝑑, and 𝐾𝑑 coefficients of the impedance model were

set in order to get a critically damped response, which would be smooth and most

comfortable for a human operator. To archive this, 𝜁 must equal 1 in (4.24), which

produce real and equal poles (Fig. 4-13). Therefore, based on (4.23), the following

condition has to be satisfied𝐷2
𝑑−4𝐾𝑑𝑀𝑑 = 0 or𝐷2

𝑑 = 4𝐾𝑑𝑀𝑑. Making sure that it is

true, we selected the desired dynamic coefficients (𝑀𝑑 = 1.9, 𝐷𝑑 = 12.6, 𝐾𝑑 = 21.0).

To maintain the stability of the systems, we also carefully selected the human

velocity coefficient 𝐾𝑣, used for force calculation in (4.17). We assume that the

impedance correction of the goal position has to be no more than 30-50% of the

distances to the neighbors 𝐿𝑖𝑗 and 𝐻𝑖𝑗 (which is 0.5 meters in this case). We also

estimated that the average human hand velocity, which was estimated from a set

of consecutively measured positions provided by a motion capture system, does not

go over 1.5𝑚/𝑠𝑒𝑐 while manipulating the formation. Based on this, we selected 𝐾𝑣

to be −7𝑁𝑠𝑒𝑐/𝑚. A negative 𝐾𝑣 value is used because when the human is moving

in one direction, drones retreat towards the opposite direction (see Section 4.3).

Finally, we set the threshold limit of impedance correction term 𝑥𝑖𝑚𝑝_𝑙𝑖𝑚𝑖𝑡 to be 0.25

meters for the experiments for safety reasons. For simplification purposes, we used

the same dynamic parameters for all impedance models in the experiment.
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Figure 4-13: Classification of second order systems by the value of damping ratio 𝜁,
according to Nise [1995].

Single Drone Behaviour

After the selection of all impedance parameters, we checked the single drone be-

havior, while being guided by the human operator with the proposed impedance

controller. To do so, we took Drone 1 and the human wearing a glove, as seen

in Fig. 4-9. For simplicity, we present the values along 𝑌 -axis. Human hand ve-

locity 𝑣ℎ(𝑡) used in (4.17) and the impedance correction term 𝑦𝑖𝑚𝑝_ℎ1 used in 4.31

are shown in Fig. 4-14. From Fig. 4-14 it can be seen that the impedance model

changes its state smoothly following the human hand movement. Due to the neg-

ative velocity coefficient, 𝐾𝑣, human velocity, and impedance term are moving in

opposite directions. It is also possible to notice (for the time range 8.5-9 seconds in

Fig. 4-14) that the safety threshold 𝑦𝑖𝑚𝑝_𝑙𝑖𝑚𝑖𝑡 helps to prevent dangerous behavior
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Figure 4-14: Human hand velocity (blue) and impedance correction term (orange)
versus time. Movement is along 𝑌 -axis.

Figure 4-15: Human hand position while guiding the drone (blue), drone goal posi-
tion while following the human (orange), drone actual position (gray) versus time.
Along 𝑌 -axis.

due to high values of the input parameter (human velocity 𝑣ℎ(𝑡)).

Fig. 4-15 shows the actual position of the human hand along with the goal and

actual positions of Drone 1 (along 𝑌 -axis). According to Fig. 4-9(b), 𝑌 -coordinates

of the human and Drone 1 goal position have to be equal, in the case of a simple

PID controller. However, due to the impedance correction of the goal position in

(4.31), in Fig. 4-15 it can be seen that the Drone 1 goal position is slightly behind

the human position (this difference is equal to the impedance term 𝑦𝑖𝑚𝑝_ℎ1). The

result could be represented as a sort of filtering of the robot goal position, which

leads to smoother drone guidance, especially in the case of extreme external inputs.

Afterward, the Drone 1 goal position is provided to the positional PID controller.
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Figure 4-16: Guidance of four drones.

Figure 4-17: Formation of four drones (red arrows) following a human hand (yellow
arrow). The beginning of the yellow arrow represents the human’s actual position,
and the beginning of red arrows represents the quadrotor goal positions. The orien-
tation of the arrows represents the orientation of drones and the human hand. The
magnitude of the arrows has no significance.

A delay occurs between a human command and a drone reaction, which is expected

due to the impedance controller’s nature as the second-order system.

Behaviour of the Formation of Drones

The next step is to demonstrate the performance of the proposed algorithm for the

guidance of the formation of four drones.

We firstly refer to Fig. 4-17, where a human guides four quadrotors with the

control structure presented in Fig. 4-9(a). An operator moves their hand towards

the negative 𝑌 and the positive 𝑋 direction. This figure presents an interesting
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feature of the impedance control, which was mentioned before in Section 4.3. When

the human starts to move fast enough, the formation immediately spreads along the

direction, which is opposite to the human motion. When the human hand velocity

starts to decrease, the formation contracts back to its initial shape. The axis, along

which the formation changes its shape, coincides with the human velocity vector.

Fig. 4-18 shows the distance along the 𝑌 -axis between Drone 1 and Drone 4,

which are placed in accordance with Fig. 4-9(a). The formation is guided along

the 𝑌 -axis in this case. Zero human hand velocity generates no control input and

the default distance between drones is zero. It is possible to see that the distance

between Drone 1 and Drone 4 changes in accordance with the human hand velocity,

when the human guides the formation in one or another direction along 𝑌 -axis.

The bigger gap between drones corresponds to the higher velocity of the control

signal, which produces more safe guidance. Fig. 4-18 also present the area of

the formation in projection to the horizontal plane. It is possible to see that the

whole area adapts to the control input signals in a compliant manner. It is possible

to change the dynamic behaviour of the controlled swarm system by changing the

default dynamic parameters of the impedance models and by changing the structure

of the impedance links.

The actual drone positions are presented in Fig. 4-19. It is possible to notice that

the more the velocity of the human control input the more distance between neighbor

drones in the controlled formation. The plots also demonstrate that, despite agile

human movements, the drones are able to adjust accordingly in a compliant manner,

and the area is changing in response.

4.4 Collision Avoidance with Potential Fields

Apart from internal factors that affect the swarm state, such as mass-spring-damper

links between the drones, there could also be external factors that could cause the

formation to change, e.g., obstacles. We assume that, within the swarm, every agent

decides where to go next using both the local information about surroundings and

the global goal (direction and velocity of motion). In this scenario, each quadrotor
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can plan its obstacle avoidance while considering the position of the nearest obstacles

and neighbor agents. The planning algorithm is described below.

The location of drones and obstacles is defined by a Vicon motion capture system,

as described in Section 4.3.8. Each quadrotor is aware of the position of local

obstacles. Additionally, each obstacle has a safety zone around its center, which is

defined as a cylinder (a circle for planar motion) with a predefined radius.

Every controlled robot in the swarm should not only be aware of static obstacles

on the map but also take into account moving obstacles, such as humans and other

agents in the formation. The collision avoidance method based on the artificial

potential field method, Khatib [1986], was applied in this work to ensure safe real-

time robots swarm navigation in a dynamic environment. Many other related works

have been carried out on inter-robot collision avoidance, such as using fast marching

square and virtual potential fields to influence the location of each robot during

movement in prescribed formations Gomez et al. [2013] or in very populated groups

Leonard and Fiorelli [2001]. Other techniques are based on the inclusion of springs

and dampers Kokubo et al. [2017] to create virtual forces that are transformed into

velocity commands. For each agent in formation, other robots are treated as moving

obstacles that affect each robot’s motion. We first consider the collision avoidance

problem of a single robot in a plane and assume further, that obstacles map is known.

Fig. 4-20 shows 2-dimensional Cartesian space with obstacles. The environment is

represented as a grid, each cell of which could be free or occupied (it is assigned

with 0 or 1 values respectively).

The obstacle avoidance algorithm’s basic idea is to construct a smooth function

over the extent of the robot’s configuration space with high values when the robot

is near an obstacle and lower values when it is further away. This function should

have the lowest value at the desired location of the robot. If such a function is

constructed, its gradient can be used to guide the drone to the goal configuration.

Typically this function consists of two components, attractive and repelling.

In our case, the artificial potential affects a robot’s motion in 𝑋- and 𝑌 - direc-

tions. An attractive potential function, 𝑈𝑎(𝑥, 𝑦), can be constructed by considering

the distance between the current position of the robot, 𝑝 = [𝑥, 𝑦]𝑇 , and the desired
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Figure 4-18: The blue line represents human hand velocity versus time, the orange
line represents distance between Drone 1 and Drone 4. Along 𝑌 -axis. The gray line
represent the area of the formation on the Horizontal plane.

Figure 4-19: Actual positions of Drone 1 (blue), Drone 4 (orange), human hand
(gray) versus time. Along 𝑌 -axis.
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Figure 4-20: Operational environment 400 × 600 grid representation. Obstacles are
depicted in black, collision free area is drawn in white. Robot’s desired destination
is a red dot on the grid.

goal location, 𝑝𝑔 = [𝑥𝑔, 𝑦𝑔]
𝑇 , as follows:

𝑈𝑎(𝑥, 𝑦) = 𝜉||𝑝− 𝑝𝑔||2. (4.35)

Here 𝜉 is the constant scaling parameter. For a 2-dimensional map, potential func-

tions could be visualized as a surface.

A repulsive potential function in the plane, 𝑈𝑟(𝑥, 𝑦), can be constructed based on

the distance, 𝜌(𝑥, 𝑦), to the closest obstacle from a given point, [𝑥, 𝑦], in configuration

space.

𝑈𝑟(𝑥, 𝑦) =

⎧⎪⎨⎪⎩𝜂( 1
𝜌(𝑥,𝑦)

− 1
𝑑0

)2 if 𝜌(𝑥, 𝑦) < 𝑑0,

0 if 𝜌(𝑥, 𝑦) ≥ 𝑑0.

(4.36)

Here 𝜂 is simply the constant scaling parameter, and 𝑑0 is a parameter that defines

the influence radius of the repulsive potential.

Once the combined potential, 𝑈(𝑥, 𝑦) = 𝑈𝑎(𝑥, 𝑦) + 𝑈𝑟(𝑥, 𝑦) is constructed as

shown in Fig. 4-21(c), a robot’s desired velocity can be estimated as 𝑣 ∝ −∇𝑈(𝑥, 𝑦).
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Figure 4-21: Artificial potential functions (400 × 600 grid).

Figure 4-22: Gradient of the combined potential function (400 × 600 grid).
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Figure 4-23: Inter-agent collision avoidance strategy, based on potential-field
method. Quiver plot represents, how the green robot sees the other 3 drones (de-
picted in blue color) in the gradient map.

Fig. 4-22 represents the gradients plot, where each arrow defines local movement

direction and velocity magnitude.

Swarm of drones is much more challenging to control than one drone for a single

operator. However, local motion planner based on artificial potential fields allows

formation agents positions correction, preventing collisions. The algorithm tracks

static as well as dynamic obstacles. In our case of the human-guided swarm, a point

of attraction, 𝑝𝑑𝑔, (goal location) is assigned to every drone, 𝑑, relative to the leader-

drone position with a prescribed geometrical shape. Each robot possesses its local

potential, which contributes to the global field. These artificial potentials define

interaction forces between neighboring robots.

Fig. 4-23 represents these forces inside the formation of four drones, depicted as

connected circles. This gradient plot is visualized for the robot depicted with the

green circle. It recognizes other drones in the swarm as obstacles, while its desired

position (one of the vertices of the rhomboid formation) is an attractive point for

itself.
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In such a way, a drone swarm can adapt its shape according to local obstacle po-

sitions. Fig. 4-24 represents the simulation of four drone formation (blue connected

circles) guided by a human near the static obstacles (red circles), closely located to

each other. Obstacles map is depicted in red, while small black arrows represent

here the gradient map for the left-most robot. The algorithm tracks static as well as

dynamic obstacles (other drones in the formation). The prescribed diamond-shaped

formation is getting deformed as drones come closer to obstacles (Fig. 4-24(b-c)),

due to the repulsive forces affecting the robots. After passing the narrow gate, the

formation stretches back to its default shape.

The guidance of Four drones swarm through a passage between two static ob-

stacles is depicted in Fig. 4-25. It can be noticed that formation adopts its shape

to avoid collisions, and drones do not fly too close to the obstacles.

4.5 Summary

We developed a new control paradigm, where we propose a novel impedance control

approach. We aimed to make a controlled multi-agent system to adapt to the human

operator’s control input dynamically. The main novelty of the control method is

that we calculate the virtual external force applied to the impedance model to be

proportional to the operator’s hand velocity. We combine the impedance trajectory

with the goal trajectory coming from the human control input. As a result, we

decreased the dynamic parameters of the controlled system (snap standard deviation

is decreased by 9% compared with the traditional PID control). We demonstrated

the generalized way of how to apply the proposed method to the teams of robots.

Stability and communication issues have been discussed. Using the real experimental

validation, we showed that the formation dynamics and geometrical shape adapts to

the human control signals, helping to achieve smooth and safe guidance. Finally, we

proposed to use artificial potential fields approach to prevent any collisions between

agents and with any external objects. We presented how the swarm adapts when

passing through the narrow gap.

The nature of the formation’s geometry changes can be different: impedance
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(a) before entering the obstacle gate (b) entering the obstacle gate

(c) exiting the obstacle gate (d) after passing the obstacle gate

Figure 4-24: Formation of simulated drones adapts its geometrical shape in two
dimensional case.
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Figure 4-25: The formation of four drones is guided through the passage with arti-
ficial potential fields.

control, obstacle avoidance, and external disturbances. Despite the reason for the

change of the swarm state, it is critically important to keep such a formation changes

under control to ensure a safe flight mission. The next chapter considers the feedback

design that helps the human be aware of the controlled system’s changes.
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Tactile Feedback from the Swarm of

Drones

HSI could significantly benefit if we couple the described control methods with

tactile feedback, forming an interface (control and feedback) between a human and

a formation. The initial hypothesis was that informing a human operator about the

dynamic formation state (extension or contraction, for example) at the current time

could potentially improve controllability. In this chapter, we overview the proposed

wearable tactile display and its evaluation through the user study experiment.

5.1 SwarmGlove: Vibrotactile Wearable Glove

5.1.1 Technology

The wearable tactile displays, e.g., LinkTouch, represent multimodal information at

the fingertips, i.e., a force vector, vibration, and contact state Tsetserukou et al.

[2014]. However, vibration motors, which are easy to control, are widely applied

in Virtual Reality Martinez et al. [2016], Maereg et al. [2017]. We used eccentric

rotating mass (ERM) vibration motors that deliver the dynamic state of the swarm

in the form of tactile patterns.

We have designed a tactile display prototype with five ERM vibrotactile actua-

tors attached to the fingertips, as shown in Fig. 5-1(a). The vibration motors receive
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Figure 5-1: (a) - wearable tactile display, (b) - tactile device diagram.

control signals from an Arduino UNO controller. The unit with Arduino UNO and

battery is worn on the wrist as a portable device. Infrared reflective markers are

located on the top of the unit. The frequency of vibration motors is changed ac-

cording to the applied voltage. The haptic device diagram is shown in Fig. 5-1(b).

The glove microcontroller receives values of the formation state parameters from

the PC. The Bluetooth and USB communications between the computer and hap-

tic device were presented in the previous research Tsetserukou et al. [2014]. The

approach in Tsetserukou et al. [2014] is limited in working distance and mobility.

We implemented a radio frequency connection through XBee Pro s2b radio modules

due to its robustness and high speed of data exchange. After the Arduino UNO gets

the information about the current swarm state, it applies an appropriate vibration

pattern.

5.1.2 Tactile Patterns Design

We designed eight tactile patterns for presenting the feeling of the swarm behav-

ior at the operator’s fingertips. My motivation for the selection of the particular

tactile pattern was to bring valuable information that potentially can improve the

quality (speed, safety, precision) of operation of the swarm in a complex outdoor

environment.

During swarm manipulation by the operator, the formation can change its shape,

becoming contracted or extended (Fig. 5-2(a, b, c). Therefore, the operator should

consider this information since it contributes to better swarm operation in a cluttered

environment. For instance, if the swarm gets too contracted, there is a risk of
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a collision between the drones. On the other hand, while guiding the formation

through the obstacles, the extended state of the swarm can also lead to the collision

or a separation of the swarm to two groups. However, in many cases, the formation

state is changing dynamically. In such a scenario, additional real-time information on

state propagation direction could be provided to the human operator. In particular,

it is important to know whether the drones are flying away from each other (distance

between agents is increasing) or the drones are flying toward each other (distance is

decreasing).

Figure 5-2: The information to be presented with the wearable tactile interface.
Contracted (a), regular (b), extended (c) state of the formation, and displacement
of the formation (d).

The tactile flow propagation presents the dynamic change of distance, e.g., if the

distance is increasing, the flow goes from the middle finger to the outer fingers (Fig.

5-3(a, c, e)). Otherwise, the flow goes from the outer fingers to the middle one (Fig.

5-3(b, d, f)).
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Figure 5-3: Tactile patterns for representing the state of the formation in terms of
drone-to-drone distance and swarm displacement. Each circle represents finger of a
right hand (view from the dorsal side of the hand). The gray scale color represents
the intensity of tactor vibration.

The distance between drones is presented by the gradient of the tactor vibration

intensity. If the formation is extended, then side vibration motors have a higher

intensity than the middle one, see Fig. 5-3(a, b).

The other swarm state that we propose to present to the operator is the displace-

ment of the center of mass of the swarm to the right or the left with respect to the

direction of motion (Fig. 5-2(d)). Due to external factors as obstacles or wind, the

swarm could move from the desired direction of motion. The swarm could separate

into two groups while avoiding obstacles, which would also lead to the displacement

of the center of mass. The direction of displacement is presented with the direction

of tactile flow propagation, e.g., when the center of mass is moved to the right with
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respect to the overall direction of motion, the tactile flow moves from the left finger

to the right as shown in Fig. 5-3(g).

5.2 Experiment for Recognition of Tactile Patterns

Twenty-two right-handed volunteers (18 males and four females, aged 17-36) partic-

ipated in the experiment. They were given a period for training (5-10 minutes) so

that they could get used to the sensations and learn to recognize the signals. All

participants positively responded to the device’s convenience and level of perception.

5.2.1 Experimental Conditions

Optimal sensitivity of the skin is achieved at frequencies between 150 and 300 Hz

Jones and Sarter [2008]. Therefore, for three vibration levels, we assigned average

frequency values: 150 Hz, 200 Hz, 250 Hz (refer to three grayscale colors shown in

Fig. 5-3). Tactile pulses lasted for 200 or 300 ms depending on the pattern since

distinguishing tactile patterns is more comfortable with stimulus duration of 80 to

320 ms Jones and Sarter [2008].

5.2.2 Experimental Methodology for Recognition of Multi-

modal Patterns

The experiment was devoted to the detection of multi-modal patterns. The change

of distance between drones was modulated by the vector of propagation of tactile

stimuli (e.g., if the swarm is extending, firstly the third finger is activated, then,

after shut down of the motor on the third finger, the second and fourth fingers are

activated, and finally only the first and the fifth ones are vibrating, see Fig. 5-

3(a) for reference). The gradient of the vibration intensity mapped the state of the

formation (e.g., if the swarm is extended, side fingers have a higher intensity, see Fig.

5-3(a,b) for reference). To emphasize the direction of the gradient, we introduced

a different duration of the tactile stimulus. The duration of the tactile pulse in

the case of low (150 Hz) and middle (200 Hz) intensity was 200 ms; meanwhile, the
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duration of the tactile pulses with high (250 Hz) intensity was 300 ms. There was no

time interval between the tactile pulses within the same pattern. The total duration

of tactile patterns is presented in Fig. 5-3 and ranged from 600 ms up to 1000 ms.

During the experiment, each pattern was repeated once, and the subject was

asked to enter the number of experienced stimuli. Each of the subjects experienced

64 stimuli (8 patterns were repeated eight times in random order). The time of

user response was also recorded. The results of the user study for the experiment

are listed in Table 5.1. The name of the patterns goes as follows: Extended state,

Increasing distance (EI) Fig. 5-3(a); Extended state, Decreasing distance (ED) Fig.

5-3(b); Regular state, Increasing distance (RI) Fig. 5-3(c); Regular state, Decreasing

distance (RD) Fig. 5-3(d); Contracted state, Increasing distance (CI) Fig. 5-3(e);

Contracted state, Decreasing distance (CD) Fig. 5-3(f); Right displacement (R)

Fig. 5-3(g); Left displacement (L) Fig. 5-3(h). The diagonal term of the confusion

matrix indicates the percentage of the correct responses of participants.

5.2.3 Experimental Results

The experiment results revealed that users detected all designed tactile patterns

with an average recognition rate of 76.8%. Table 5.1 shows that the distinctive

patterns EI, ED, RI, R, and L have higher percentages of recognition and therefore

are recommended for the flight experiment’s usage. On the other hand, patterns RD,

CI, and CD have lower recognition rates. One common feature of CI and CD patterns

is that they have low vibration intensity of the side fingers. Therefore, the intensity

of the vibration of the fingers number 1 and number 5 (Fig. 5-1) (side fingers) plays

a vital role in the higher recognition rate. It can be seen that participants mostly

confused pattern CD with RD and pattern CI with RI, and pattern RD with ED,

while other patterns are distinguished in majority cases. Therefore, it is required

to design more distinctive tactile stimuli to improve the recognition rate in some

cases. It is essential to notice that the direction of tactile flow propagating was

distinguished in most cases both in cases middle-side/side-middle (EI, ED, RI, RD,

CI, CD) or left-right/right-left (R, L) direction. Patterns R and L demonstrated the

best recognition rates. One reason is that the direction of the tactile flow propagation
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Table 5.1: Confusion Matrix

EI ED RI RD CI CD R L
EI 89.8 1.1 4.0 0.0 1.7 1.1 0.0 2.3
ED 1.1 93.2 0.0 1.7 0.0 2.3 0.6 1.1
RI 14.8 0.0 76.1 1.1 5.1 1.1 0.6 1.1
RD 0.0 21.6 1.1 68.8 1.1 4.5 0.6 2.3
CI 3.4 0.6 38.1 1.7 53.4 1.7 0.0 0.0
CD 1.7 1.7 2.8 48.3 0.6 40.3 1.1 0.0
R 0.6 0.0 2.8 0.6 0.0 0.0 95.5 0.6
L 0.0 0.6 0.6 0.6 0.0 0.0 0.6 97.7

Table 5.2: Average Time of Recognition Response

EI ED RI RD CI CD R L
Time, s 3.55 3.47 3.56 4.58 3.81 4.58 3.12 2.92

is easy to recognize. Another potential reason is that patterns R and L have the most

prolonged duration. Finally, patterns R and L have a completely different structure

- propagation from side to side, apart from all other patterns. Therefore, having six

patterns, that have a similar structure (propagation in the middle-side/side-middle

direction) could reduce the recognition rate.

In order to evaluate the statistical significance of the differences between pat-

terns, we analyzed the results of the user study using single-factor repeated measures

ANOVA, with a chosen significance level of 𝑝 < 0.05. According to the ANOVA re-

sults, there is a statistically significant difference in the recognition rates for the

different patterns, 𝐹 (7, 168) = 22.2, 𝑝 = 4.3 · 10−21 < 0.05. The ANOVA showed

that the type of patterns significantly influences the percentage of correct responses.

The paired t-tests showed statistically significant differences between most pat-

terns. For example, there are significant differences between patterns EI and RI

(𝑝 = 0.023625 < 0.05), EI and RD (𝑝 = 0.000643 < 0.05), EI and CI (𝑝 =

7.53 ·10−5 < 0.05), EI and CD (1.05 ·10−6 < 0.05), EI and R (𝑝 = 0.029266 < 0.05),

EI and L (𝑝 = 0.003584 < 0.05), ED and RI (𝑝 = 0.007042 < 0.05) and others. How-

ever, the results of paired t-tests between patterns EI and ED, ED and R, ED and

L, RI and RD, R and L did not reveal any significant differences, so these patterns

have nearly the same recognition rate.

The average time of response, which is the time between the end of pattern exe-
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cution and the moment when the key is pressed on the keyboard, is slightly different

for each participant. From Table 5.2, we can conclude that participants have spent

less time to guess pattern R and pattern L. Based on average recognition time, we

could conclude that patterns R and L could contribute to more fast and intuitive

immersion into the control process, which makes them good candidates for the veri-

fication during the flight experiment. The longest time was 8.92 seconds for Pattern

EI. On the other hand, 1.72 seconds is the shortest time period for Pattern R. On

average, 3.53 seconds have been spent to respond for pattern recognition. Important

notice here is that time presented in Table 5.2 also include the time interval between

the moment when the user understand the patter and the moment when the user

pressed the button on the keyboard. Therefore, it is not clear recognition time.

5.3 Generalization to Other Types of Robotic Sys-

tems

Tactile feedback do not consider the plant dynamics directly. Instead, the developed

tactile feedback delivers the information about the high-level swarm state dynamics:

drone-to-drone distance and global displacement. Therefore can conclude that the

generalization of the control method discussed in Section 4.3.7 is applicable to the

tactile feedback as well. Although, the relaxation point is that the controlled system

do not have to follow the same dynamics rule as discussed in Section 4.3.7 (e.f. being

able to translate in any direction). The extended or contracted state and increasing

or decreasing agent-to-agent distance can occur with most types of adaptive swarm

systems. therefore, the developed SwarmGlove and tactile patterns can be applied

for example to the swarm of fixed wing air crafts without any modification.

The important limitation here is the rate of the information we are able to deliver

thought the tactile sensation. As can be seen in Table 5.2, it takes seconds to

recognize the pattern. As a result, the change rate of the dynamics of the controlled

system can not be faster than the information flow rate through the tactile channel.
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5.4 Summary

We presented the developed wearable display SwarmGlove that is used to deliver the

information about the swarm state to the human operator. SwarmGlove provides

tactile sensation right to the human fingertips. We distinguish eight swarm states

that the human operator has to be aware of. We designed a set of tactile patters

representing a language that reports to the human about the dynamic and static

swarm parameters during operation. To evaluate the device, we conducted a user

study with 22 volunteers. We demonstrated statistically significant difference in the

recognition rate for different patterns (𝐹 (7, 168) = 22.2, 𝑝 = 4.3 · 10−21 < 0.05).

The user study revealed the average recognition rate of 76.8% for patterns. Some

patterns were recognized in a better way, while the other has to be improved in

order to be used in real flight experiments.
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Chapter 6

Guidance of the Formation with

Impedance Control and Tactile

Feedback

In the previous Chapters 4 and 5, we developed the control methods and wearable

tactile display for the swarm state feedback. Both control and feedback form the

communication interface between the human operator and the swarm system. In

the current chapter, we present the evaluation methodology and the experimental

results of the guidance methods presented in the previous chapters.

We already presented a general overview of the interface in Fig. 1-3. In Fig.

6-1 we show a more detailed picture of the interface that we developed with all

the components (impedance control, obstacle avoidance, tactile display, and tactile

feedback). The information flow is the following. Formation of drones flies in the

environment. State of the fleet can be changed due to control signals from the human

or based on local control laws (drone-to-drone or drone-to-obstacle avoidance). The

human is becoming aware about the state of the formation with the help of tactile

feedback. Based on the information about the guided fleet of robots the operator

generates the control signal with a glove, which is it turn changes the formation

state. This is general overview of the interaction loop.

In the current chapter, we integrate the control and feedback part.

To estimate the performance of the proposed control methods and SwarmGlove
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Figure 6-1: General diagram of the proposed guidance method.

during the guidance, we set up the real flight experiment in the indoor environ-

ment. During the experimental validation the user has to navigate the fleet of three

Crazyflie 2.0 drones through the set of obstacles with different feedback conditions.

The flying test bed represent a space (5 m × 5 m × 5 m) with a Vicon motion

capture system and other infrastructure described in the previous chapters. We use

the same facilities to validate the joint control and feedback.

6.1 Role of the Tactile Feedback

As discussed above, the proposed tactile interface could be helpful when the fleet

operator’s visual feedback has poor quality or overloaded with information. On the

one hand, communication problems or limited field of view of onboard sensors could

lead to the degradation of the visual channel. Additionally, the human operator’s

limited cognitive abilities prevent the user from fully understanding the state of

the fleet, especially when the number of drones is high. In such cases, the tactile

interface could supplement or even replace the visual feedback.

Considering small-sized drones, such as Crazyflie 2.0, which can move fast, and

a limited flight space that we have in the laboratory (5 m × 5 m × 5 m), the

state of the fleet could be changed in a fraction of a second during the experiment.

To operate the formation in such an environment, the visual feedback is sufficient,

because it is fast and can cover all flight space. Supplementing the visual feedback
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with the tactile feedback is inefficient in the experimental conditions since it takes up

to one second to execute a tactile pattern. We conducted several preliminary flights,

providing both visual and tactile feedback to the subjects, but the users relied only

on the visual channel. The other option is to replace the visual channel with a

tactile sensation completely. It could be useful when the fleet flies through the areas

where it is impossible to acquire or transfer high-quality visual information. For this

reason, we conducted a flight experiment with only visual feedback and with only

tactile feedback. Our hypothesis is based on the assumption that the developed

tactile interface could help to navigate the fleet through the blind zones with no

visual feedback.

Due to the reasons discussed above, current experimental conditions do not allow

to supplement the visual channel with tactile. However, in real-life applications, the

size of the operational area could be big enough to prevent direct visual observation

of the whole space. The size of the robots and the size of the formation could lead to

a relatively slow change in the fleet state. In such a case, developed tactile feedback

could effectively contribute to the visual feedback, by not only replacing but also by

supplementing it.

6.2 Information to be Presented to the Operator

The next decision we made was about the parameters of the fleet that have to be

reported to the human operator through the tactile interface. As discussed before,

for the flight experiment, we use small quadrotors and limited flight space. In such

an operational condition, change of the formation shape (increasing or decreasing

drone-to-drone distance) could happen quickly. Therefore, it is inefficient to provide

slow tactile feedback (see Table 5.2) about it.

On the other hand, contracted (Fig. 6-2(a)) or extended (Fig. 6-2(b)) state

of fleet could last for seconds, which makes them applicable candidates for the

flight verification. For the experiment, we assume that the formation has a default

configuration of the equilateral triangle. We decided that if the area of triangle

or distance between any drone pair is more than 10% bigger or 10% less than the
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default value, then the formation is considered to be in the extended or contracted

state, respectively.

Along with the contracted or extended state, it is reasonable to provide the

direction of the fleet center of mass (CoM) displacement. CoM displacement could

happen in both extended or contracted state. For example, in the contracted state

shown in Fig. 6-2(a), CoM moves to the left with respect to the direction of motion,

as far as drone1 and drone2 move to the left from their default positions. Considering

the extended state, as shown in Fig. 6-2(b), CoM moves to the right as far as drone2

avoiding the obstacle over the right side.

The displacement direction in the contracted state (Fig. 6-2(a)) is straightfor-

ward from the operator point of view, as all drones move collinear with CoM dis-

placement (in Fig. 6-2(a) drone1 and drone2 move to the left and the CM displaces

to the left as well). On the other hand, the displacement direction in the extended

state is more complicated to understand, see Fig. 6-2(b), since the CoM moves on

the right, but the majority of the drones go around the left side of the obstacle

(the overall goal is to keep the default shape to be able to complete a successful

flight mission, formation division is not allowed). To address this complication, we

designed tactile feedback patterns to be more intuitive for the operator. To avoid

misunderstanding from the user, for the experiment we designed the patterns to

inform the user about the recommended direction of hand motion to minimize CoM

displacement rather than the displacement of the CoM itself.

6.3 Simplified Patterns for the Flight Experiment

For the next step, we selected which patterns to use to represent contraction, exten-

sion, and displacement. Initially, we designed the system to be applied for outdoor

operation in unstructured environments such as cities, where the fleet moves slowly,

and the distances are much bigger than indoors. Considering the small flight facili-

ties that were available for this research (5 m x 5 m x 5 m size room), the state of

the fleet of three Crazyflies could change rapidly. Therefore, we decided to upgrade

the high-quality patterns (EI, ED, R, and L from Chapter 5) and design faster and
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Figure 6-2: Information to be presented to the human operator. Drones avoid
obstacles.

simpler versions of them for indoor flight test.

Our goal was to create patterns that will present two types of information: exten-

sion/contraction and the direction of motion to prevent the center of mass displace-

ment. Developed multi-modal patterns are presented in Fig. 6-3 (CR – Contracted

state, Right Direction; CL – Contracted state, Left Direction; ER – Extended state,

Right Direction; EL – Extended state, Left Direction;). For the contracted state,

we use three middle fingers (2, 3, 4), and for the extended state, we use side fingers

(1 and 5). For the contraction, the direction of the displacement is shown with

the tactile flow propagation. For the extension, the direction of the displacement is

shown with the right or left finger. Presented patterns are easier to recognize and

several times faster than the patterns shown in Fig. 5-3. The recognition rate is

100% (based on 160 trials among 8 participants).

In the case of CR or CL pattern, the best decision is to move the fleet towards

the direction of the pattern. For the ER or EL patterns, the best strategy is to

move a little bit back (to prevent separation of the fleet) and then move towards

the vibrating finger. All of these strategies were presented to the subjects during
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Figure 6-3: Simplified tactile patterns for representing the state of the formation
in terms of drone-to-drone distance and fleet displacement. Designed for the flight
experiment.

the training of the user study experiment. As discussed at the end of Section 6.2,

the center of mass displacement correlates differently with the proper direction of

the safety movement. That is why for the patterns CR or CL, the direction of

displacement is collinear with the displacement of the center of mass, while for the

ER or EL patterns, it is the opposite.

6.4 Experimental Methodology

Six right-handed male users (22 to 28 years old) took part in the flight experi-

ment where they were asked to navigate the formation of three Crazyflie 2.0 drones

through a labyrinth with obstacles (Fig. 6-4) using either only visual or only tactile

feedback. The state of the formation could be changed due to obstacle avoidance or

impedance interlinks, as described in the upper sections. The motion is constrained

to be two-dimensional on the same height. In order to remove the sound of the

drone motors, subjects wore noise-canceling headphones playing white noise. Each

participant wore safety glasses. The protocol of the experiment was approved by

a Skolkovo Institute of Science and Technology review board, and all participants

gave informed consent.

In the beginning, the swarm takes off near the starting point of the labyrinth.
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Figure 6-4: Human operator manipulates the formation of three quadrotors.

After takeoff, the recording of data about the position of all objects (drones, human,

obstacles) starts. The obstacles that we used were vertical columns with unlimited

height. Participants were not aware of the configuration of the labyrinth beforehand.

The participants’ main goal was to avoid the non-default states of the formation,

such as contraction or extension. The default shape of the triangle has to be main-

tained. The default value for the area was 0.0693 𝑚2. The default drone-to-drone

distance was 0.4 𝑚. To make the visual trial more complicated, the physical ob-

stacles (cubes on the table) were placed below the drones’ flying altitude and were

virtually extended to an unlimited height. Thus it is becoming more difficult to

approximate the distance between a drone and an obstacle visually.

Before the flight experiments, we did not provide the users with certain values

of the area or target drone-to-drone distance. We just asked them to keep the right

triangle formed by three drones while going through the set of obstacles, receiving

either visual or tactile feedback. The right triangle was demonstrated to users before

the experiment when the drones were hovering with no obstacles nearby.

The trial of the experiment with pure tactile feedback is shown in Fig. 6-5. In

Fig. 6-5 the user is receiving the ’Contracted Right’ CR tactile pattern (shown in

the down right corner). The obstacles are shown with the green columns on the

simulation on the right.
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Figure 6-5: Human operator guides the group of robots using tactile feedback.

Training included learning patterns presented in Fig. 6-3. All possible decision

strategies regarding different tactile patterns were presented to the users during the

training period. Training also included guiding the formation through the maze

with only tactile feedback first, and with only visual feedback after. SwarmGlove

provided tactile patterns when the state parameters of the formation overcame the

threshold values (e.g., becoming contracted). Regarding the tactile trial, in the

default state, no tactile patterns were provided, which meant that it was possible to

move forward.

After training, for the experiment, users overcame two different unknown con-

figurations of obstacles, first with tactile and then with visual feedback (two trials

with tactile and two with visual feedback in total). Configurations of obstacles were

selected randomly for every user.

6.5 Flight Experiment Results

The initial hypothesis was confirmed. It is possible to navigate the fleet of drones

in a cluttered environment using only tactile feedback about the state of the fleet.

Users completed the labyrinth in 12 trials.

As discussed in Section 6.1, for the current experimental conditions ((when the

controlled system right in front of the human and the operation space is small),

performance with visual feedback is better than with tactile feedback. Which is

110



Chapter 6. Guidance of the Formation 6.5. Flight Experiment Results

obvious result because the vast majority of information that the human receives from

the environment comes with vision and as a result it is the most convenient feedback

type, especially when the controlled drones are right in front of the operator. We

compare some of the parameters to understand the behavior of participants better

in both cases. The mean values of parameters for all participants are presented in

Table 6.1.

Regarding the question of the acceptable parameter values - it can vary based on

application. We actually did not couple the tactile or visual feedback with certain

maximum thresholds of parameters. Therefore it is unfair to judge the swarm be-

havior from the experiment in terms of certain values. SwarmTouch technology was

developed as a general approach to a guidance problem. The SwarmTouch technol-

ogy can be fine tuned to meet specific target parameters of a certain application.

Moreover, the actual values of errors can vary for the different experimental

setup. What is more important in our research, is the comparison of visual (which

is considered as a state of the art or default solution to the feedback problem in the

current experiment) and tactile feedback. You can see this comparison in the Table

6.1. The analysis is presented below.

The mean path length of the formation centroid is almost two times longer for

the tactile feedback, which indicates that with tactile feedback subjects explore

the space more actively. The mean velocity with tactile feedback is 65% slower.

Considering the acceleration and jerk of the centroid, it could be concluded that

with tactile feedback, the fleet is guided more smoothly by 47%.

One of the primary metrics is the area of the triangle (formed with actual drone

positions) while going through the labyrinth. We picked the area as a high-level

parameter because it is intuitive in some cases. For example, we want to collect the

imagery data with a swarm over some agricultural field - we want to make sure that

we cover the target area with images at every time step, therefore the swarm has to

maintain the default area of its own.

But it is also true that it can be the case when the area is equal to the default

one but the drone-to-drone distance is non-default. In addition, during image col-

lection with a swarm of drones, it is critically important to maintain the distance
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between neighbor drones to keep certain overlap between neighbor images. Based

on these statements, we conclude that drone-to-drone distances also represent de-

tailed information about the swarm behavior. Area error metrics are averaged over

all participants. Drone-to-drone distance error metrics are averaged over all drone

pairs and all participants.

Interestingly, tactile and visual performance does not differ much in case of

area and distance metrics. Therefore, the developed tactile interface allows the

possibility to navigate the fleet through cluttered environments and, in a precise

manner, maintains the desired geometry of the formation. Although, there is no big

difference in metrics for the area and drone-to-drone distances (if we compare visual

and tactile case).

The mean drone-to-drone distance error was 5.7% and 8.5% from the default 0.4

𝑚 value, for Visual and Tactile feedback type respectively. The max drone-to-drone

distance error was 50% and 63% from the default 0.4 𝑚 value, for Visual and Tactile

feedback type respectively. The mean area error was 10% and 14% from the default

0.0693 𝑚2 value, for Visual and Tactile feedback type respectively. The max area

error was 49% and 56% from the default 0.0693 𝑚2 value, for Visual and Tactile

feedback type respectively.

Considering more closely the behavior of the users with respect to the executed

patterns, we investigated the fleet behavior right after the patterns were performed

(see Fig. 6-6). In the example of state change shown in Fig. 6-2(a) for example

(contraction and displacement to the left), the user receives a CL pattern (Fig. 6-

3). Then, as the formation is guided to the left, the fleet centroid should move

to the left, and the area should increase back to the default value. We compared

the area and centroid displacement at the current time (for the time interval 0-

3300 ms after the start of each pattern execution) with the corresponding values

at the time when the pattern started. Creating such comparisons for all patterns

helped us to evaluate the correctness and duration of human operator response.

The evaluation was performed for all participants. It is possible to see from Fig.

6-6 that, in general, the correctness of operator decisions reaches 75-80% after 2-3

seconds after pattern execution. CR/CL patterns work better for the displacement,
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Table 6.1: Parameters of the Fleet Performance

Feedback type

Parameters Visual Tactile

Difference of
tactile
with respect to
visual feedback

Centroid trajectory
Mean centroid length of a path, 𝑚 3.76 6.00 ↑60%
Mean centroid velocity, 𝑚/𝑠 0.23 0.08 ↓65%
Mean centroid acceleration, 𝑚/𝑠2 0.31 0.16 ↓48%
Mean centroid jerk, 𝑚/𝑠3 1.92 1.03 ↓46%

Drone-to-drone distance error (default distance is 0.4 𝑚),
averaged over all drone pairs and all participants

Mean, 𝑚
𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑑𝑟𝑜𝑛𝑒𝑖 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑑𝑟𝑜𝑛𝑒𝑗))

0.023 0.034 ↑48%

Standard deviation, 𝑚
𝑠𝑡𝑑(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑑𝑟𝑜𝑛𝑒𝑖 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑑𝑟𝑜𝑛𝑒𝑗)

0.03 0.05 ↑67%

Maximun, 𝑚
𝑚𝑎𝑥(𝑎𝑏𝑠(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑑𝑟𝑜𝑛𝑒𝑖 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑑𝑟𝑜𝑛𝑒𝑗))

0.20 0.25 ↑25%

Swarm area error parameters (default area is 0.0693 𝑚2),
averaged over all participants

Mean, 𝑚2

𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝐴𝑟𝑒𝑎− 𝐴𝑟𝑒𝑎𝑑𝑒𝑓𝑎𝑢𝑙𝑡))
0.007 0.01 ↑42%

Standard deviation, 𝑚2

𝑠𝑡𝑑(𝐴𝑟𝑒𝑎− 𝐴𝑟𝑒𝑎𝑑𝑒𝑓𝑎𝑢𝑙𝑡)
0.008 0.012 ↑50%

Maximum, 𝑚2

𝑚𝑎𝑥(𝑎𝑏𝑠(𝐴𝑟𝑒𝑎− 𝐴𝑟𝑒𝑎𝑑𝑒𝑓𝑎𝑢𝑙𝑡))
0.028 0.039 ↑39%
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Figure 6-6: Percentage of proper correction (returning area to the default value and
decrease of displacement) of fleet state after the start of pattern execution.

and the overall performance of CR/CL is higher than ER/EL. It might be because

of a more simple behavior strategy for CR/Cl patterns (discussed in Section 6.3).

Examples of trajectories during the experiment are shown in Fig. 6-7. Drones

trajectories (dashed lines) are represented in 𝑋𝑌 -plane (from the top view). The

fleet flies among obstacles (small red squares). The yellow cylindrical safety zone

surrounds each of the obstacles. The union of all these cylindrical obstacles vicinity

defines the area where drones cannot fly. The solid blue line represents the fleet

central point path.

It could be noticed in the left column of Fig. 6-7 (tactile trial) that the centroid

trajectory has several turns near the obstacle vicinities. At these moments, a human

operator receives tactile patterns that help him understand that the fleet is located

near the obstacles and provides information on how to control drones to avoid colli-

sions and reach the finish point. It can be seen that visual feedback allows a human

operator to guide the fleet among obstacles (although with visual feedback, users do

not pay much attention to the formation state, just going to the finish point).
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Figure 6-7: A top view of trajectories of drones and centroid while being manipulated
thought the maze. Left column of two pictures (a-b) represents formation of three
drones navigation with the help of pure tactile feedback. Two pictures on the right
(c-d) - navigation with pure visual feedback. Solid line is the trajectory of the fleet
centroid. Dashed lines are actual drones trajectories. Red squares represent real
obstacles with yellow safety zones. Formation shape is depicted with blue triangle.
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6.6 Limiting Factors

6.6.1 Control

The limitation that is rising from the proposed control approach is that each agent

has to receive information regarding the human control input to be able to update

the nearest impedance links. There are two way to accomplish it: establish direct

communication with the ground control station or distribute the information via the

swarm. As a result, the main constrain is that we are not able to implement the

scenario when each agent relies purely on the local information.

6.6.2 Feedback

The swarm system is a complex structure which can have multiple state parameters,

as shown in Fig. 5-2. Formation state changes dynamically during the operation.

Therefore it is necessary to use multimodal patterns in order to represents the swarm

behaviour to the operator. We proposed a set of intuitive tactile patterns in Section

5.1.2.

The performance of the multimodal tactile patterns is limited by the masking

factor as reported in the literature by Evans [1987] and by Tan et al. [2003]. The

problem of masking is revealed when the one tactile stimulus is immediately followed

by the other without any time gap. It turns out that the human is not able to

distinguish and recognize any of them. That is the reason why we introduced time

delays between the tactile patterns and separate tactile stimulus.

As an outcome, the main limitation is that we are not able to increase the density

or rate of the information provided with the tactile feedback. Information flow rate

is asymptotically limited with the masking factor. Therefore, the awareness of the

human operator about the swarm dynamics is also limited.

6.7 Summary

In this chapter, we coupled the control methods and the tactile feedback into a

single interface. We considered the flight facilities and proposed the methods to
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deliver feedback to the human during the experimental guidance. We extracted the

most helpful information for the operator and proposed simplified tactile patters

based on the user study experiment from the previous Chapter 5. We asked six

right-handed users to participate in the research where they guided the group of

three Crazyflie 2.0 drones troughs the maze with an unknown set of obstacles. We

rearranged the obstacles for each separate trial. The volunteer received either tactile

or visual feedback. The objective for the users was to maintain the default triangle

shape of the robotic group during guidance.

It was demonstrated that it is possible to navigate robots in complex unknown

environments with pure tactile feedback. It was an unfair comparison between visual

and tactile in some sense because the visual channel provided extensive information

in our limited flight space. Anyway, we compared some of the flight parameters and

received noticeable results. With tactile feedback, users explore the environment

more densely. Visual feedback led to three times faster guidance. Simultaneously,

the tactile feedback’s dynamical parameters are lower, which led to more smooth mo-

tion. The main objective (maintenance of the default geometry) was accomplished

in a similar way for tactile and visual feedback.

We showed how the robotic team reacts to each tactile pattern. A human op-

erator controls the formation behavior. Therefore we revealed the quality of user

response to each tactile pattern. On average, the operator performed the correct

action during 2-3 seconds after the start of tactile pattern execution.
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Chapter 7

SwarmCloak: Deployment of Drones

from the Human Hands

Guiding a swarm of quadrotors, which is discussed in the above Chapters, has a lot

of challenges. Partially, these challenges are addressed in Chapter 4 and Chapter 5.

Apart from that, takeoff and landing operations are the necessary sub-operations

prior and after any flight.

In the current chapter, we propose a novel system SwarmCloak for multiple

drones deployment in midair. Wearable tactile display with a light sensor makes it

possible to land the fleet of nano-quadrotors on the human hands. The developed

technology is based on a hypothesis that tactile feedback could improve the accuracy

of landing, and human convenience, especially when several drones are landing on

the human limbs simultaneously.

7.1 Design of Wearable Tactile Interface

The purpose of the designed tactile interface is to deliver the information about the

drone’s position relevant to the landing pads to the operator. The vibration, which

is activated by light, is proportional to the light intensity. If the drone is far away,

no vibration occurs. While the drone is approaching the human hand, the vibration

intensity is gradually increasing. The tactile stimulus’s location reveals the drone’s

position in a horizontal plane, and stimulus intensity shows the distance to the robot
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Figure 7-1: Deployment of four drones with wearable tactile display SwarmCloak.

in the vertical direction. The higher the intensity, the closer drone to the user’s skin.

The overall system consists of landing pads (with light sensors and vibration

motors) and drones with LEDs on the bottom, as shown in Fig. 7-1. The single

sensor-vibrator unit (SVU), shown in Fig. 7-2, is based on HALUX technology

Uematsu et al. [2016] and comprises a linear resonant actuator (LRA) (LD14-002,

Nidec Copal Corporation), a photo-transistor (PT19-21C, Everlight Electronics CO.,

Ltd.), and an oscillation circuit for LRA. LRA was selected for its fast response of

less than 20 ms. Optimal sensitivity of the skin is achieved at frequencies between

150 and 300 Hz, according to research findings Jones and Sarter [2008]. Meanwhile,

the resonance frequency of the oscillation circuit with LRA is 150Hz. Therefore, the

vibration frequency is set to 150Hz.

The amplitude of vibrations is modulated by the photo-transistor. During the

landing stage, the distance D between the drone and the landing pad is reducing.

At the same time, the illuminance of the photo-transistor PT19-21C is increasing

along with decreasing the illuminated area (LED viewing angle is fixed). Therefore,

the illuminance is inversely proportional to the D2. As a result, when the drone

is getting closer to the landing pad, the user experiences more intensive vibration.

We keep the discussed vibration settings for all experiments which involve tactile
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Figure 7-2: a) Sensor-vibrator unit (SVU), b) SVU operation.

feedback.

The models of the developed device with the main components are shown in

Fig. 7-3. The electronic circuit of each sensor-vibrator unit is placed in the plastic

cover, which has a hole above photo-transistor with a diameter of 3 mm for the

light penetration (Fig. 7-3). The hole is of 10 mm deep, to protect the sensor

from undesirable environmental lights and infrared emission of the motion capture

system. The photo-transistors are pointed upwards to detect the light emitted from

the array of LEDs at the drone’s belly. The landing plates (Fig. 7-3) is made of

transparent acrylic material (diameter and thickness of each plate are 160 mm and

3 mm, respectively).

Since human palm has a flat and wide contact area with high tactile resolution

Weinstein and Weinstein [1964], for the hand-based landing pad, Fig. 7-3(b), eleven

SVUs were integrated directly into the glove’s palm and finger pad areas. Five of the

SVU units were placed on the finger pads and the rest on the palm so that the user

can easily distinguish single stimuli. For the hand based display, the vibromotor is

directly attached to the circuit of the SVU unit. A cylinder with a height of 40 mm,

a diameter of 75mm, and a thickness of 4.5 mm keeps the circular landing plate

attached to the palm area of the glove. The landing pad, which has a diameter of

160 mm and a thickness of 3 mm, is made of transparent acrylic material so that

IR light easily could pass through.

In the same manner, for the forearm-based landing pad shown in Fig. 7-3(c),

seven LRAs were attached to a thin sponge rubber pad that is then placed directly

120



Chapter 7. Deployment of Drones 7.1. Design of Wearable Tactile Interface

Figure 7-3: a) Landing pads, b) hand-based, c) forearm-based.

on the forearm, whereas the same number of sensor units were firmly attached to

the ventral side of the landing pad. Such an arrangement helps to provide uniform

sensing and tactile stimulation in case of a curved forearm surface. One unit is

placed in the center, and the equal distribution of the rest units make a circle of

radius 40 mm around the center in order to have a robust reaction on the IR light

emitted by the nano-quadrotor. Moreover, the positional arrangement of the LRAs

replicates the position of the sensors. It helps to have an explicit sensation of the

drone position above the arm by avoiding position-sensation mapping. The circular

landing plate has the same dimensions and material type as the hand-based one. It

is noteworthy to mention that the operational mode of each unit is the same.

Airflow from the landing quadrotor could provide strong tactile cues, which may

actually be used as a source of additional information about the position of drones.

As far as in the experiments we aimed to investigate only vibrotactile feedback, the

effect of tactile cues to the hand, which is caused by the airflow, was canceled by the

increased size of landing plate with additional cardboard. The size of the cardboard
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was 300 x 300 mm. It was employed only for the experiments, and in the case of

real-life applications, the cardboard is not needed.

7.2 Aerial platform

For the experiments, we used Crazyflie 2.0 quadrotors, as shown in Fig. 7-4. Small

size (9 cm2) and lightweight (27 grams) secure safety, which is crucial for applica-

tions involving human-robot physical interaction. Subjects have worn safety glasses

during the experiment to protect the user’s eyes from drones’ sudden movement.

Vicon motion capture system with 12 IR cameras covering 5 m × 5 m × 5 m space

tracked the quadrotors, landing pads, and the human hands. We decreased the

intensity of IR strobe of motion capture cameras to diminish the sensitivity of the

photo-transistors of the landing pad to the infrared spectrum. We used the Robot

Operating System (ROS) Kinetic framework to run the custom software and ROS

stack for Crazyflie 2.0. Sensors of the landing pad are sensitive to the infrared spec-

trum; for that reason, we have decreased the intensity of IR strobe from the motion

capture cameras.

The prototyping deck, which was modified with three IR LEDs and three 39

Ohm resistors, was directly attached to the micro-quadrotor’s bottom side. Tactile

display is sensitive to the visual and infra-red (IR) light spectrum. Therefore, to

avoid any additional visual clues for the human operator, we used IR LEDs (IR333-

A, Everlight Electronics Co Ltd) with peak wavelength 940nm and viewing angle of

20∘. A small angle of view of LEDs allows for activating the part of tactile display,

which is strictly below the drone, which helps to provide precise feedback. The

IR LEDs and resistors were soldered onto the deck, as indicated by the schematic

in Fig 7-5. As seen from the schematic, three IO pins were used to control each

LED’s state individually. The polarity to turn the LEDs on is reserved as they

are connected between VCC and MCU pins. We modified the Crazyflie firmware

to add a new parameter for controlling IO pins using the software code. The new

firmware was flashed into each nano-quadrotor by the wireless bootloader. During

the experiments, all the LEDs on the deck were switched on to create maximum
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Figure 7-4: a) - Crazyflie 2.0, b) - prototyping deck with LEDs and resistors.

Figure 7-5: Electrical circuit of the Crazyflie 2.0 prototyping deck.

vibrotactile feedback.

7.3 Experiment with Landing of Two Drones

Seven right-handed users (six males and one female, 24 to 41 years old) took part in

the experiments in which they landed one or two drones on the palms. The landing

of two drones is shown in Fig. 7-6. In particular, the subjects were asked to adjust

the landing pads’ position so that each descending drone could land in the middle of

the corresponding pad. There were three feedback conditions: only visual feedback,

only tactile feedback, and tactile-visual feedback. The protocol of the experiment

was approved by the Skolkovo Institute of Science and Technology review board,

and all participants gave informed consent.
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Figure 7-6: Landing of two drones using SwarmCloak (visual + tactile feedback
condition).

7.3.1 Experimental methods

For the user study, we used two landing pads, placed on the human palms. Two

types of experiments were conducted. Seven people participated in the study, and

all seven subjects performed both experiments. During the experiment, the drones

descended vertically, keeping the same position in the XY plane. The goal for the

subject was to adjust the position of the landing pads, in a way that the drones land

on the center of the landing pads. In Experiment 1, subjects were asked to land one

drone on the right hand. Experiment 2 was more complicated, as two drones were

descending on both palms at the same time (distance between drones was 1 meter;

therefore, it was possible to observe visually only one of them at a time) This fact

forced subjects to move the head from side to side.

The basic guidance policy was proposed to the users. In each experiment, users

were asked to adjust the position of the palm to land one or two drones as close

to the center of the landing plate as possible. If the user feels that the drone is

above the right side of the palm (with the help of vision or vibromotor activation

placed on the right side of the palm), then he/she was supposed to move the hand

to the right. After the experiments, users were asked about the applied strategy for
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a combination of different feedback types and the results are discussed below.

In both experiments, users were asked to land drones using one of three feedback

conditions: only visual feedback (V), only tactile feedback (T) with closed eyes, or

both visual and tactile feedback (VT). Users experienced the same tactile sensation

for T and VT cases. Each feedback condition repeated ten times in a random

order (10 times for each of three conditions: V, T, and VT). As a result, in each

experiment, one subject had 30 trials of landing. For specific feedback condition,

landing speed varied in a random order, so that five times landing speed was slow

(0.1 m/s), and five times it was fast (0.15 m/s). As a result, all users experienced

six conditions (set of 3 feedback types and two landing speeds) with five trials for

each condition.

Before the experiments, users were asked to stand in the predefined spot and

lower their hands. Users were not allowed to take steps while the drones were

landing. Drones were placed in front of the users on the floor. They took off to the 2-

meter height above the floor, then moved to the predefined position (approximately

0.5 meters in front of the human). Predefined positions were randomly selected

within a range of 0.12 meters to prevent the learning of hand positioning. After

that, the LED rings on the bottom of the quadrotors started to flash with constant

light intensity in a visible spectrum, and the drones started to descend vertically.

Subjects were told that they were allowed to start adjusting the landing pad position

when the LED ring was on. When the difference between the height of the drone legs

and the landing plate was less than 5 mm, the motors of the corresponding drone

shut down. Turning off the motors also helped to prevent the drone drifting due to

the aerodynamics of the ground effect. The ground effect was quite noticeable in

tactile feedback when users were not able to visually maintain the horizontal position

of the landing plate. Slightly tilted plate led to the drone drifting and jumping in

the direction of tilt during the last 5 mm of landing. The subjects can select the

height of the contact point (when the drone is landed) without any constraints. For

Experiment 2, users were restricted to land both drones approximately at the same

time, preventing sequential landing. After landing, drones were placed back on the

floor, and the process was repeated.
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For both experiments, the training involved one fast and one slow landing for

each feedback condition. During learning, users were able to get feedback about

the distance between the center of the drone and the center of the landing plate by

closely observing after landing. Each participant was wearing safety glasses.

Drones and landing plates were tracked by a Vicon motion capture system, which

recorded the position and orientation. For Experiment 2, we also asked participants

to wear a cap which was tracked as well, for the analysis of the human head motion

while catching both drones at the same time. Recording started after the drones

initiated descending (after the LED ring started to flash) and stopped after the

contact of a drone with a landing plate.

7.3.2 Results: Trajectory Analysis (of the landing pads and

the user’s head) During the Landing Stage

We analyzed the kinematic parameters and shape of the trajectories of human hands

and human’s head movement while landing drones. The landing stage begins when

the drones start to descend and last until the drone actually touches the surface of

the landing pad. For the analysis, we propose to consider the first four derivatives of

the human position. Changes in the motion of parts of the human body could have a

significant effect on the human experience. In general, humans are trying to minimize

the changes in motion and the motion itself while doing different operations. Higher

derivatives could have a strong effect on the human, although human tolerance to

snap and jerk are not well investigated. However, many designers of elevators and

roller coaster rides prefer to limit these parameters Eager et al. [2016]. The results

are shown in Table 7.1 and Fig. 7-7.

Landing velocity affects the hand motion with V feedback for two drones (Ex-

periment 2). When the drones descended faster, the human adjusted hand in a

more aggressive way, as can be seen in Table 7.1, last column, Experiment 2, V rows

(snap increased by multiple times for fast landing speed). Although this effect did

not occur when we added tactile sensation to vision in the VT case (see Table 7.1,

last column, Experiment 2, VT rows). This finding tells that tactile feedback helps
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Table 7.1: Parameters of Hand Motion. During landing.

Feed-
back
type

Kinematic parameters, mean values,
Slow / Fast landing

Velocity,
m/s

Acceleration,
m/s2

Jerk,
m/s3

Snap,
m/s4

Experiment 1. One drone. Right hand
V 0.026/0.025 0.20/0.22 12.9/12.7 1353/1306
T 0.029/0.043 0.21/0.30 11.8/15.0 1195/1570

VT 0.028/0.034 0.25/0.28 13.9/14.5 1488/1473
Experiment 2. Two drones. Left hand

V 0.025/0.027 0.22/0.25 10.4/18.2 984/3816
T 0.031/0.038 0.27/0.30 13.9/12.3 1702/1182

VT 0.023/0.032 0.22/0.26 10.3/12.4 935/1167
Experiment 2. Two drones. Right hand

V 0.028/0.027 0.23/0.27 11.8/21.5 1133/4712
T 0.033/0.044 0.28/0.37 12.4/14.9 1207/1415

VT 0.024/0.028 0.22/0.26 11.3/12.3 1061/1124

to make human motion more smooth when we try to land multiple drones.

For one drone case (Experiment 1), with T feedback, participants demonstrated

more active landing plate adjustment for a fast landing. This shows that the pro-

posed device design could inform the users about the rate of change of the distance

between the drone and the landing plate.

Most users in Experiment 2 demonstrated slightly more dynamic work with

the right hand than with left hand having V feedback (snap is 20% higher). All

participants are right-handed and could control the right hand faster and more

precisely. Again, this effect became negligible compared with the VT case for the

right and the left hand.

Fig. 7-7 presents the landing pad trajectories of the right hand of all users in

Experiment 2 (in XY plane) during the landing stage. The intersection of black

lines is the position of the landing drone, which is moving vertically. It is easy

to notice that in V case, the average position of the landing pad (showed with a

blue circle) has an offset towards the location of human standing in the left upper

corner. In contrast to that, in T case, the landing plate is moving below the drone

without a noticeable offset. We averaged the distance in XY plane between the

drone and the landing plate during the landing stage (measured before the drone
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Figure 7-7: Trajectories of all participant’s right hand in Experiment 2 for slow
drone landing in XY plane (for the right hand). Drone is landing on the intersection
of black lines. Average position of the landing pad is shown with blue circle.

touches the landing pad, for the slow landing on the right hand in Experiment 2):

V: 24.2 mm, T: 8.6 mm, VT: 10.1 mm. Based on this evidence, we suggest that the

tactile feedback helps align the position of the landing pad in such a way that the

drone is located above the center of the pad during the landing.

One more finding is related to the motion pattern of the hand. Most subjects

stated that it was easier to estimate the position of the drone based on the gradient

of tactile sensation rather than when the vibration is always in the same palm spot.

As a result, participants having T feedback always moved their palms from side to

side (while landing). With V feedback, participants also adjusted the hand position

all the time, trying to catch the drone with a smaller error. Trajectory analysis

reveals that when visual feedback is presented (Fig. 7.1(a)), human mostly moves

his/her hand along the line, which connects human and the drone. However, in trials

with only tactile feedback (Fig. 7.1(b)), we see that hand motion is omnidirectional,

which tells us that the users are exploring all space in a more uniform manner.

In Experiment 2, participants had to rotate its head fast to observe landing

drones one by one (distance between drones is 1 meter). That is why we conducted

the same trajectory analysis for the human head movement for the second experi-

ment. The results are presented in Table 7.2 for V and VT conditions. Comparing

V and VT cases in Table 7.2, it is easy to notice that VT feedback minimizes and

smooths the human head motion. That means that VT requires to perform less
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Table 7.2: Human Head Motion Parameters, During landing.

Feedback
type

Average kinematic parameters,
Slow/Fast landing

Vel., m/s Accel., m/s2 Jerk, m/s3 Snap, m/s4

Experiment 2. Two drones.
V 0.085/0.11 0.72/1.24 27.4/121 2676/35947

VT 0.080/0.087 0.60/0.69 22.1/26.5 2129/2543

locomotion.

Users reported that they switched their attention from one drone to the other

when landing both. That is true for V, T and VT case, therefore, tactile feedback

also requires individual attention, the same as vision. The most popular strategy

for VT and two drones was to set one landing pad position with vision and then

use tactile sensation to update the position of it, while the second landing pad was

positioned with vision mainly.

7.3.3 Results: Landing Position Analysis after the Landing

is Completed

An important metric for the experiments was the distance between the center of the

drone and the center of the landing plate after landing. In the current research, this

distance is called displacement. The landing plate diameter was selected to be big

enough so that in most experiment trials, participants were able to land a drone on

its surface.

First of all, to compare the effects of each condition (the combination of feedback

type and landing speed) on the displacement, we used a within-subject statistical

comparison. We performed a two-way ANOVA with repeated measures, in which the

dependent variable is displacement error, while drone number and feedback/speed

conditions are two factors. The level of significance was set to 𝛼=0.05. The analysis

revealed statistically significant difference in all conditions (F(5, 170) = 9.459, p =

5.653 ·10−8). A number of drones do not affect the results significantly (F(5, 170) =

1.027, p = 0.404), thus, we can conclude that technology works similarly for landing

one or two drones.
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For the further displacement analysis, we used mean values of displacements and

standard deviations, presented in Table 7.3 and paired t-test for different conditions.

All displacement values of the drone after landing (with histogram), are plotted in

Fig. 7-8.

The statistics of drone displacement changes drastically when the number of

drones to land is changed from one to two (Table 7.3). V and VT cases revealed that

the increase in the number of agents decreased the accuracy 2-3 times, although T

condition performance remained the same. It can be concluded that the performance

gap between visual (V) and tactile (T) feedback is becoming smaller while increasing

the number of drones; meanwhile, the relation between the T and V performance is

increasing with an increasing number of drones.

Comparing V and VT in Table 7.3, it is possible to conclude that VT, in general,

showed slightly better average results than V. The best mean and absolute displace-

ments for both experiments (best mean values: Experiment 1 – 9.5 mm, Experiment

2 – 18.3 mm) was also achieved with VT feedback and slow speed. Paired t-test

showed no significant differences between V and VT in one drone landing, except

V (slow landing case) and VT (fast landing case) case (t = 2.654, p = 0.012). Tac-

tile feedback brings better performance to the right hand in the second experiment

(comparing V and VT parameters in Table 7.3). For the right hand, visual plus tac-

tile feedback is statistically better than only visual (V (fast landing case) and VT

(slow landing case): t = 2.825, p = 0.008; V (fast landing case) and VT (fast landing

case): t = 2.46, p = 0.019). As a conclusion, we could state that the combination

of visual and tactile feedback showed a synergetic effect.

Based on Fig. 7-8, in T condition of Experiment 2, the right hand demonstrated

higher accuracy but low precision. However, the left hand was more precise and

less accurate. Surprisingly, in terms of mean displacement and standard deviation,

the left hand worked out better for most participants. Left and right hands also

performed in a different way with V feedback. Only in for VT, hands showed the

same landing error parameters.

In general, performance with slow landing is better, which is obvious. Landing

speed could strongly affect maximum error values, but on mean displacement and
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Figure 7-8: Drone positions on the landing pad after landing. XY axis are crossing
in the center of the landing plate. Histograms represent the distribution of the
displacements. Circles represents the area that fits 90% of landings. Lines represent
predictions of drone landing spot, based on linear regression model.
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Table 7.3: Drone Displacement, After Landing.

Feedback
type

Displacement statistics
in XY plane, mm

Mean,
mm

Std. Deviation,
mm

Maximum,
mm

Experiment 1. One drone. Right hand
(Slow / fast landing)

V 11.1/9.9 6.9/4.3 29.7/20.1
T 29.2/25.2 12.8/21.4 65.8/133

VT 9.5/8.1 5.3/4.9 22.7/23.0
Experiment 2. Two drones. Left hand

(Slow / fast landing)
V 18.7/25.3 8.4/17.4 41.9/95.3
T 24.7/30.8 13.7/18.9 60.9/86.1

VT 20.7/22.2 11.5/13.4 45.5/57.3
Experiment 2. Two drones. Right hand

(Slow / fast landing)
V 31.4/19.2 23.1/14.5 116/58.8
T 28.7/51.1 14.6/113 63.5/143

VT 18.3/20.9 11.0/14.4 47.1/63.6

standard deviation it has a smaller effect in most cases.

Hand motion patterns have been discussed previously in the trajectories analysis

section. Using Fig. 7-8 we could support previous findings. For each feedback

condition and each hand (for both experiments) we build a linear regression model

with the least-squares approach, that predicts the position of drone landing. The

results are presented with color lines in Fig. 7-8. The lines are always tilted from

the center of the landing plate toward the human.

One of the most practical outcomes from the analysis of the positions after

landing is the selection of a landing plate diameter. Diameter is the most important

decision variable in the landing pad design. For the experiments, we selected such a

size, that almost all landings were successful. As a result, now we could choose the

percentage of successful landing that we want, and select the appropriate diameter.

For example, for 90% of successful landings, the diameters are shown in Table 7.4

(shown in Fig. 7-8 as circles). If the drone lands not on the central part but on its

legs, then the value has to be increased by the length of the leg.
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Table 7.4: Selection of the Landing Plate Diameter.

Feedback
type

Diameter with 90%
of successful landings, meters

Experiment 1,
Right hand

Experiment 2,
Left hand

Experiment 2,
Right hand

V 0.018 0.038 0.048
T 0.047 0.051 0.056

VT 0.017 0.039 0.039

7.4 Experiment with Landing of Four Drones

Due to the small number of participants in the user study, the results do not have

statistical significance. Therefore we consider this experiment as preliminary. we

present this Section in order to frame the experimental methods to be accomplished

in future work.

Four male right-handed users (21 to 29 years old) took part in the experiments

in which they landed one or four drones on the palms and forearms. The landing of

four drones is shown in Fig. 7-1. In particular, the subjects were asked to adjust the

position of the landing pads so that each descending drone could land in the middle

of the corresponding pad (the same as in the experiment with two drones). There

were three experimental settings where subjects experienced: only visual feedback,

only tactile feedback, and tactile-visual feedback. The protocol of the experiment

was approved by a Skolkovo Institute of Science and Technology review board, and

all participants gave informed consent.

7.4.1 Experimental methods

For the user study, we employed four landing pads, two hand-worn Fig. 7-3b and

two forearm-worn 7-3c. Two types of experiments were conducted. Firstly, in Ex-

periment 1, subjects were asked to land one drone on the random landing pad.

Experiment 2 was more challenging to the users, as four drones were descending

on four pads at the same time. The angle between arms was approximately 80∘;

therefore, subjects could observe visually only one arm at the same time. This fact

forced users to turn the head from side to side if visual feedback was involved.
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In both experiments, users were asked to land drones using one of three feedback

conditions: only visual feedback (V), only tactile feedback (T) with closed eyes, or

both visual and tactile feedback (VT). Users experienced the same tactile sensation

for T and VT case (we kept the settings for the sensor-vibration motor units). In

contrast to the experiment with two drones, we eliminated the condition on land-

ing speed to make the experiment more simple (otherwise the experiment with four

landing drones becomes too complicated). In experiment 1 each feedback condi-

tion repeated ten times in random order. In experiment 2 each feedback condition

repeated three times in random order.

Before the experiments, users were asked to stand in the predefined spot. Drones

were placed in front of the users on the floor. Drones took off to the 2-meter height

above the floor, then moved towards the predefined positions, which was determined

to take into account human anatomy (e.g., arm length, body width). Then, the

LEDs at the bottom of the quadrotors started to flash, and the drones began to

descend vertically. Subjects were told that they are allowed to begin adjusting the

landing pads’ position right after the drones start to descend. When the difference

in height between the drone legs and the landing plate was less than 10 mm, the

motors of the corresponding drone shut down. Turning off the motors also helped

to prevent drone drifting due to the aerodynamics of the ground effect. The ground

effect was quite noticeable in tactile feedback when users were not able to visually

maintain the horizontal position of the landing plate. Slightly tilted plate led to the

drone drifting and jumping in the direction of tilt during the last 5 mm of landing.

In Experiment 2, users were restricted to land both drones approximately on the

same height (to avoid sequential landing). After landing, drones were placed back

on the floor, and the process was repeated.

For both experiments, the training involved only two landings for each feedback

condition: V, T, and VT. In order to remove the sound of the drone motors, sub-

jects wore noise-canceling headphones playing white noise. Each participant wore

safety glasses. All objects, including drones and landing plates, were tracked by a

Vicon motion capture system, with position and orientation recording. Recording

started right after the drones began to descent and stopped when the drone’s motors
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Table 7.5: Displacement During Landing. Experiment 1

Feedback
type

Displacement statistics,
XY plane

Mean, mm STD, mm Max, mm
Visual 33 12 60
Tactile 36 13 61

Visual+Tactile 25 9 47

Table 7.6: Displacement During Landing. Experiment 2

Feedback
type

Displacement statistics,
XY plane

Mean, mm STD, mm Max, mm
Visual 38 16 78
Tactile 48 36 174

Visual+Tactile 32 10 56

switched off.

7.4.2 Experimental results

An important metric is a displacement between the drone and the landing pad during

landing (in XY plane). Statistics for the displacement during landing is presented in

Tables 7.5 and 7.6 for the Experiment 1 (one drone) and Experiment 2 (four drones)

correspondingly (uniformed for all landing pads).

Another important metric for the experiments was the displacement between

the center of the drone and the center of the landing plate after landing (in XY

plane). Statistics for the displacement after landing is presented in Table 7.7 and 7.8

for the Experiment 1 (one drone) and Experiment 2 (four drones) correspondingly

(uniformed for all landing pads).

The difference between T and V for all cases is noticeable with the advantage

of V. While comparing V and VT, it is possible to say that VT, in general, showed

slightly better average results than V. The best mean displacement after landing

was achieved with VT feedback (Experiment 1 - 12 mm, Experiment 2 - 22 mm).
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Table 7.7: Displacement After Landing. Experiment 1

Feedback
type

Displacement statistics,
XY plane

Mean, mm STD, mm Max, mm
Visual 16 10 46
Tactile 29 14 57

Visual+Tactile 12 7 33

Table 7.8: Displacement After Landing. Experiment 2

Feedback
type

Displacement statistics,
XY plane

Mean, mm STD, mm Max, mm
Visual 23 19 67
Tactile 37 24 11

Visual+Tactile 22 13 55

7.5 Voronoi Regions for Navigation during Deploy-

ment

Considering that 𝑃 is a set of landing pads positions in R2, projected to the hori-

zontal plane

𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} (7.1)

we can calculate Voronoi cell 𝑉𝑝(𝑖) for each 𝑝𝑖 ∈ 𝑃 , for 𝑖 = 1, 2, 3, 4

𝑉𝑝(𝑖) := {𝑞 ∈ R2
⃒⃒⃒
‖𝑞 − 𝑝𝑖‖ 6‖𝑞 − 𝑝‖ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝 ∈ 𝑃} (7.2)

As a result, Voronoi diagram is created for two-dimensional case using the positions

of landing pads and presented in Fig. 7-9. The distance is calculated using the

Euclidean distance. The blue points represent the positions of the landing pads

with drones. The green point represents the positions of the human operator.

When the position and orientation of human are known, the Voronoi diagram

could be used to define the potential landing pad regions.

It could be seen from Fig. 7-9 that there is the point (orange) from which the

distance is the same to all landing pads. This point is moving further from the hu-

man (green) when the angle between the arms is becoming more significant. That
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Figure 7-9: Example of Voronoi regions layout for the landing pads and the human
operator. Orange point of equal distances can be used for navigation of the swarm
before the takeoff.

property could be used, for example, for the navigation of the formation during

deployment (before takeoff). The orange point could represent the global goal po-

sition for the swarm. Before takeoff, the human operator, having all the drones on

landing pads, changes the angle between the arms, defining the orange point posi-

tion. Right after the takeoff, the formation flies to the predefined set point. The

properties of Voronoi regions guarantees that all drones will reach the formation set

point approximately at the same time and without collisions.

7.6 Summary

In order to facilitate the guidance presented in Chapters 4 - 6 we designed and val-

idated the SwarmCloak - a novel method for deployment multiple drones using the

human body. Wearable tactile displays driven by light intensity help the user to lo-

calize the drones with respect to landing pads and therefore helps to precisely deploy

the robots. We validated the SwarmCloak with the user study, where seven volun-

teers were asked to land multiple drones at the same time under different conditions.

Two-way Anova revealed a statistically significant difference for all conditions. The
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combination of visual and tactile feedback helped to reduce the positioning error.

During the landing of drones, the combination of visual and tactile feedback reduced

the motion dynamics of the human head (snap is decreased by 14 times). When

we add the second drone, in case of visual feedback, the positioning error increases

significantly. But for the tactile feedback, additional drones do not cause noticeable

error increase.
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Chapter 8

Conclusion

In this last chapter, we demonstrate the outcomes along with potential applications

of the developed technologies. We also highlight the limitations of our work and

discuss the perspectives of future work.

8.1 Discussion

With this work, we contributed to the Human-Swarm Interaction field. In partic-

ular, we developed a set of methods to facilitate the human-swarm interface for

the formation guidance and deployment in cluttered environments using impedance

control and tactile feedback.

All developed methods improve different parts of HSI, and, at the same time,

all of them help achieve the same global objective. The developed technologies are

connected with each other. Impedance control, integrated with wearable tactile

display SwarmGlove, form an interface for effective guidance. SwarmCloak helps to

deploy drones in any location, which is the essential sub-operation before any guided

flight.

To be more explicit here, we recover the research questions mentioned at the

beginning of this thesis in Chapter 3. This will help us to show how all research

questions have been answered.
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Research Question 1: How to achieve smooth, safe, and scalable control of a

group of drones by a human operator using impedance control and artificial potential

fields?

To reply to this question, we proposed a new position-based impedance control

that helps to implement smooth and adaptive manipulation of a robotic group by

a human operator, such as when the inter-robot distances and formation dynamics

change following the operator state. The overall architecture is formed by mass-

spring-damper inter-links located between pairs of agents, representing a connected

directional graph. We established the relationship between the control input (human

hand velocity) and the virtual external force applied to the mass of each impedance

model. Therefore the human can affect the behavior of all drones globally while each

agent relies on local information about the distances to neighbor vehicles. Impedance

links change the formation geometry. To avoid drone-to-drone collisions and crashes

with the environmental objects, we used an artificial potential field approach. That

helps us not only to generate a safe trajectory but also to perform a smooth motion.

We started with the demonstration of how the proposed control method works

on the simplified control problem, when we have to control a simulated point of mass

(second order dynamical system) moving under the gravity force. We demonstrated

the reduction of the dynamical parameters (snap standard deviation is decreased

by 9% compared with the traditional PID control). As a result, we are able to

obtain more smooth behaviour, following the control objectives. For the validation

of the proposed method, we first selected all parameters of impedance models used

for drones. Then we demonstrated the performance of the impedance model for

the manipulation of a single quadrotor. Finally, we demonstrated the smooth and

dynamically feasible behavior of the fleet of four drones while being guided by a

human.

Research Question 2: How to provide a human operator with static and dynamic

parameters of the swarm using wearable display and tactile feedback?

In response to this question we developed and evaluated a wearable tactile display

SwarmGlove. We designed eight tactile patterns to represent different parameters of
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the state of the swarm to the operator. The user study with 22 volunteers revealed

the average recognition rate of 76.8 %. We were able to select the patterns with

higher and lower recognition rate. According to the ANOVA statistical analysis,

there is a statistically significant difference in the recognition rates for the different

patterns, 𝐹 (7, 168) = 22.2, 𝑝 = 4.3 · 10−21 < 0.05. The ANOVA showed that

the type of patterns significantly influences the percentage of correct responses.

The flight experiments demonstrated accurate guidance of the swarm using the

proposed control methods and tactile sensation integrated together. Guidance with

pure tactile feedback is close to visual feedback navigation in terms of geometry

maintenance (mean of default area error decreased just by 30% when we uses visual

feedback with respect to the tactile feedback). The experimental data are available

at http://doi.org/10.5281/zenodo.3256614. We point out that the proposed

methods for control and tactile feedback are applicable to different types and sizes

of Vertical Takeoff and Landing (VTOL) vehicles.

Research Question 3: How to use a human body to deploy a fleet of micro-

quadrotors in any environment with the help of wearable display and tactile feed-

back?

To enhance the takeoff and landing operations, which are the essential parts of

any flight mission, we proposed a novel method for deploying the swarm of micro-

quadrotors and developed tactile interactive landing pads. During the experimental

study, SwarmCloak demonstrated several significant advantages over pure visual

feedback. It was shown that tactile feedback allows the increasing accuracy of the

landing pad positioning. It was also demonstrated that during the landing of two

drones, tactile-visual feedback helped to considerably reduce the motion dynamics

of the human head (snap is decreased by 14 times). Therefore, we can conclude that

potentially the tactile channel minimizes the stress of the operator. SwarmCloak is

applicable when the vison feedback is not available, such as when users wear HMDs.

Two-way ANOVA of drone positions showed a statistically significant difference for

all feedback/speed conditions (F(5, 170) = 9.459, p = 5.653 ·10−8). In contrast to

the visual feedback, the number of drones does not significantly affect the tactile
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feedback’s performance. The best landing positions were achieved with the combi-

nation of visual and tactile feedback. The paired t-test showed that for right-hand

visual-tactile feedback is statistically better than only visual. During the landing of

drones, the combination of visual and tactile feedback reduced the motion dynamics

of the human head (snap is decreased by 14 times). SwarmCloak provides a strong

relaxation on the micro-quadrotors complexity due to the fact that it is not required

to perform high-precision localization during landing.

8.2 Applications

Due to its mobility and spatial distribution, the fleet of quadrotors could be the first

responder for different emergencies, such as fire, earthquake, or flood. There are no

requirements for the unique landing spots since the human operator supplements

deployment using SwarmCloak. To gather information about a suffering area is a

crucial task for first responders. Monitoring of the progress of disaster recovery is

also necessary because an emergency can have a dynamically changing environment.

Navigation of a swarm in a city environment, with multi-story buildings or even

skyscrapers, could be a challenging task. Maintaining the default geometry of the

formation is a reasonable requirement for real-life applications when data must be

gathered evenly, or communication within the formation is necessary. As a result,

the developed interaction methods could contribute to a quicker response to high risk

and uncontrolled situations and a higher level of awareness of a swarm’s surroundings

for the operator.

8.3 Limitations and Future Work

Scalability of Guidance Methods

For future work, we want to consider the scalability of the proposed guidance meth-

ods to a bigger number of drones more closely. The impedance links represent the

connected graph. Each node, or impedance link, is a self-sustained stricture with no

parents or child. Therefore, all of the impedance models are on the same hierarchy
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level and connected sequentially (see Fig. 4-9). Each impedance model requires only

information about the human control input and nothing else, i.e., it is independent

of neighbor impedance models or vehicles. The number of impedance links increases

in a quadratic manner with the number of robots in a team (in the worst case, when

each drone is connected to every other agent). If we have a formation of 𝑛 agents,

and each robot has a connection with 𝑘 neighbors, we have 𝑛𝑘 impedance connec-

tions total. As a result, computational complexity increase with the quadratic rate

in the worst case, which is manageable. In the case of a decentralized approach

(discussed in Section 4.3.6), each impedance model can be calculated onboard of

the corresponding drone, which will not require significant efforts due to distributed

computation. Also, we did not experience any limiting factors when we scale the

approach from single to four vehicles during the experiments.

The tactile feedback performance also does not affect by the number of agents in

the team directly. With the SwarmGlove, we do not deliver the information about

the certain agents or subgroups, but we provide the parameters of the state of the

formation. The issue here is that in order to evaluate the swarm state parameters,

the algorithms need information about the positions of the robots in space at every

time frame. Therefore the possible limitation can be regarding the communication

channels between the robots and the ground control station.

Human operator resources required to guide the swarm using the proposed con-

trol and feedback methods is limited for arbitrary number of robots. In other words,

the single operator can control unlimited number of robots. The interactions be-

tween robots and their environment are implemented to be perform automatically.

As a result, according to Fig. 2-2, the cognitive complexity of the human operator

is 𝑂(1) and do not grow with the number of agents in a team.

We can conclude that there are no theoretical bottlenecks for the scalability in the

proposed guidance methods. If we want to scale to hundreds or thousands of units,

we will face the limitation which will have a different nature, such as robustness

of the radio communication channels between the agents and the ground control

station, for example.

Impedance models integrated have many parameters to tune, which represent
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an intensive problem to set them all before flight or even update them during the

mission. In the case of hundreds of agents, it is impossible to tune all parameters,

the number of which increases linearly with the number of graph connections, which

can have a quadratic growth with the number of drones (depending on the connec-

tivity level). For future work, we propose to train a Deep Reinforcement Learning

(DRL) model to set all of the parameters on the fly. That is reasonable because

the environmental conditions tend to change during missions, and the swarm needs

to adapt accordingly. We believe that a deep architecture will be able to learn all

possible behavior patterns for the flock. The training of the model will be performed

in the simulator.

For the experimental verification of the guidance, we implemented a laboratory

setup. Basically, we implemented a downsampled version of the real-life operation

in the outdoor environment. But when we developed the laboratory experiment,

we have been motivated the technical challenges from the real-life applications, dis-

cussed in the Introduction Chapter. The limited flight facilities even limited the

performance of the tactile feedback with respect to visual feedback (we discussed

it in Section 6.2). Based on that, we are sure that the proposed guidance methods

will work outdoor. It can be easily shown by investigating the tool-set that we

used during the experiments. The motion capture system can be replaced by the

Global Navigation Satellite System (GNSS). Crazyflie radio modules actually can

work outdoor with a range of up to 1 kilometer. But for the outdoor applications,

there are a lot of well-designed radio communication systems working with a range

of dozens of kilometers. Small Crazyflie drones, which can be affected outdoor by

the wind, can be replaced with middle-size drones, based on the DJI F450 frame

type, for example. Anyway, the application of the developed technology for the

outdoor environment represents an interesting engineering challenge, which can be

considered future work.

To track positions of quadrotors with Global Navigation Satellite System (GNSS)

is accurate enough in most cases. However, it could be hard to track small hand

motions with GPS. Therefore, the current work could be extended towards the

development of the local positioning system for hand tracking. The other option is
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Figure 8-1: Landing of three quadrotors on one arm.

to replace the hand position and velocity as a control input with something else.

The alternative method could be to use an inclination of hand (standard inertial-

measurement unit (IMU) could measure all necessary information) instead of the

hand position for the control input. It is also possible to use a joystick, rather than

a glove, as a control input device.

Extension, Limitation and Application of SwarmCloak

Although SwarmCloak considers landing of up to four drones, a possible extension

could be to arrange more landing pads on the upper arms to be able to land up to

six drones on the operator body, which may require additional design development

(the case of landing three drones on a hand is shown in Fig. 8-1). It is obviously

impossible to use the SwarmCloak for the instantaneous deployment of hundred or

even dozen of vehicles. The only solution is to imply the sequential deployment,

e.g. when we land a small groups of six drones one by one. The queue or landing

management algorithm has to be developed in order to facilitate such a big group

deployment from the human body.
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Figure 8-2: Interaction with flying objects in VR.

Regarding the other limitation of the SwarmCloak, it could be hard to use the

technology outdoors during the day time due to the not proper lighting conditions.

To address the lightning issue, it is possible to consider working in the optical

spectrum, which is less sensitive to the environmental conditions. Drones also have

to estimate the human position with an error no more than a meter, which could be

hard to do in some cases.

Apart from standalone takeoff or landing of quadrotors, the SwarmCloak could

be used in various applications. The proposed device can also significantly augment

the perception of flying objects in VR applications, as shown in Fig. 8-2. Such tactile

sensations as birds landing or taking off from the human hands can be simulated

with SwarmCloak. Additionally, interaction with real or fictitious bioluminescence

creatures, such as jellyfish or woodsprites of Tree of Souls from Avatar movie becomes

possible. The gentle multi-contact touch by tentacles, and contact with hood can be

simulated by activations of a set of vibration motors triggered by LED array and by

landing the drone on the user’s arm, respectively. The impact force can be adjusted

through control of the drone acceleration or height of drop simulating dynamics of

the virtual object.
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A unique telecommunication system can be developed based on SwarmCloak

technology. The partners can communicate through the distance by their avatars

represented in VR and augmented by the swarm of drones. This swarm represents

the skeleton structure of the human body flying in the air and capable of tactile

interaction with VR user. This will bring a new level of immersion and interactivity

of VR communication and teleconferencing.
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