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ABSTRACT 

Solid-solid transitions are common in nature and important for basic science and technology. 

Thus, it is crucial to understand these processes at the atomic level. Due to the lack of experimental 

data about kinetics, modeling these processes on an atomic level is a hot topic in computational 

chemistry. The simulation techniques must be used to understand such events. From the chemical 

point of view, such transformations are the transitions between basins on a high-dimensional free 

energy landscape (FES). For this reason, the exploration of the FES requires large computational 

resources for such methods as molecular dynamics and Monte Carlo, which are inefficient for 

studying phase transitions and other activated processes, forcing scientists to develop new approaches 

or upgrade the existing ones. 

Generally, transition state theory (TST) helps one to estimate the reaction rate constants for 

particular transformation and harmonic approximation to TST transforms this problem into another 

one - seeking first-order saddle points on the FES, which are called transition states (TS). If two 

structures are known, the chain-of-states methods help to locate TS and the nudged elastic band 

(NEB) and NEB-based methods are the most common of them. However, these methods have a 

problem — if the initial pathway is not close to the minimum energy pathway (MEP), the NEB 

optimization will highly likely not converge to the correct pathway. Generation of the initial pathway 

transforms to another problem of mapping crystal structures onto each other, which can be done by 

purely geometrical methods or by the recently proposed topological method. Both approaches are 

complementary to each other and generate a diverse set of mappings. When the mappings are defined, 

the initial pathways can be generated and optimized by the chain-of-states method. Among all 

optimized pathways, the MEP should be chosen. All these steps are merged into the workflow 

implemented in the USPEX code. 

The following transitions on an atomic level have been investigated using the proposed 

workflow: from 𝑃𝑛𝑚𝑎-CrN to newly predicted hard 𝑃6&𝑚2-CrN phase, from 𝑃𝑚𝑚𝑛-CaCO3 

(postaragonite) phase to 𝑃2(/𝑐-CaCO3, from 𝐼4(/𝑎𝑚𝑑-WB (𝛼-WB) to newly predicted 𝑃4&2(𝑚-WB 

and andalusite – kyanite – sillimanite transitions in Al2SiO5. 
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THESIS OUTLINE 

The first Chapter of the Thesis introduces the reader to the rare events and phase transitions in 

solids. Mainly, it presents a literature review of the studies dedicated to the calculations and 

experimental investigations of phase transitions. Beside that, it presents different ways to describe 

the physical mechanism of the transition events and their types. 

Next, Chapter 2 provides a complete picture of the mathematical interpretation of the phase 

transitions, particularly describing phase transition on energy landscape and introducing the transition 

state theory that is massively used. At the end of the chapter, I show how these approaches provide 

the basis for phase transitions simulation. 

Then, Chapter 3 familiarizes the reader with the progress in existing simulation techniques, 

appropriate for investigating the phase transitions in solids. The end states the research problem 

addressed in the Thesis. 

Chapter 4 thoroughly depicts all the steps of the developed and adapted methods. The chapter 

describes the general methodology for the minimal energy pathway search, which consists of three 

steps. First, it describes how two crystal structures can be mapped onto each other by the geometrical 

and topological approaches. The first method operates with lattice parameters and atomic positions. 

The second method presents structures as a periodic graph of interatomic contacts and searches for 

the optimal topological transformation of the initial structure into the final one. When the mapping is 

defined, it is presented how to generate the initial pathway. After that, the description goes to the final 

step, which is the pathway optimization performed with the variable cell nudged elastic band 

(VCNEB) method. At the end of the chapter, the workflow that generalizes all presented methods 

and describes the transition mechanism on an atomic level is presented. 

Chapter 5 presents the results of the proposed workflow. This part of the Thesis starts with the 

whole scheme of the developed method. Then, it provides the outcomes of the usage of each step, 

described above, relative to the chosen solid-solid phase transitions: from 𝑃𝑛𝑚𝑎-CrN to newly 

predicted hard 𝑃6&𝑚2-CrN phase, from 𝑃𝑚𝑚𝑛-CaCO3 (postaragonite) phase to 𝑃2(/𝑐-CaCO3, from 

𝐼4(/𝑎𝑚𝑑-WB (𝛼-WB) to newly predicted 𝑃4&2(𝑚-WB and andalusite – kyanite – sillimanite 

transitions in Al2SiO5. After that, all the results are discussed. 

Finally, Chapter 6 sums up the conclusions corroborated by the analysis from the previous parts 

of the Thesis. Besides, this Chapter sheds some light on the existing and emerging problems of 

presented approaches and proposes possible solutions. Based on all of the information above, I derive 

several conclusions and suggest a couple of ideas for further improvement. 
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1 INTRODUCTION 

1.1 Phase transition as a rare event 
By “rare event” we mean any dynamical phenomenon occurring with a very low frequency. 

Interestingly, rare events are seen in many contexts: queue overflow in queuing theory 1, biochemical 

switching 2, extinction of diseases 3, or populations 4, slow chemical reactions 5, first-order phase 

transitions 6 and journeys deep into labyrinths 7. In the fields of condensed matter physics and 

materials science, there are so many activated processes that can be called “rare events” – for 

example, crystallization 8,9, chemical reactions in solution, protein folding, isomerization, enzymatic 

reactions, diffusion in porous media, structural phase transitions and many more processes. The main 

common feature of all these processes is that they happen on a long time scale compared to the 

molecular timescale. Experimental observation of these processes on an atomic level is not possible 

at this moment because the dynamical evolution of a system consists of wandering within a potential 

basin, punctuated by occasional transitions to other potential basins. Furthermore, these transitions 

are infrequent in the sense that the average time between events is many (~1010-1015) atomic vibration 

periods. Knowing the mechanisms and the kinetics of these processes has fundamental importance 

and can provide fruitful insights into practical applications. 

 
Figure 1.1. Timescale gap between atomic vibrations, the activated processes that govern many 
materials properties and what can be simulated directly with molecular dynamics (MD). 

The gap between atomic vibration time and the activated processes of interest for materials is 

schematically shown in Figure 1.1. The central region on figure illustrates the well-known molecular 

dynamics (MD) approach and its timescale. The main problem in activated processes can be described 

by a good illustration depicted in Figure 1.2. The configurational space of a prototypical system has 

two energy basins 𝐴 and 𝐵 and each of these basins corresponds to a specific region of the long-lived 

state on the configurational space. The system blindly wanders, forming the basin 𝐴 and spends the 

majority of its time there. Only when the system acquires kinetic energy that is large enough to cross 

over the energy barrier, it will reach another long-lived region, i.e. basin 𝐵. For equilibrium statistics, 

only regions 𝐴 and 𝐵 are relevant. In the case of 𝐴 → 𝐵 dynamics, the most important becomes the 

buffer region separating 𝐴 from 𝐵. Once the buffer region is crossed, all kinetic energy of the system, 

which is large compared to 𝑘K𝑇, is transferred to different degrees of freedom. As a result, the system 
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will be very fast relaxed into another long-lived region. Therein, the system again fluctuates within 

microstates and forms the basin 𝐵. 

 
Figure 1.2. Schematic representation of a configuration space with two basins of long-lived 
states 𝐴 and 𝐵 (blue regions). The system spends the majority of the time wandering within 
basins 𝐴 and 𝐵. The dynamical trajectory of a system corresponds to the fleeting cross over 
from 𝐴 to 𝐵. Blue, green, yellow, and red colors are ordered in an ascending energy scale 
(Reprinted from Ref 10). 

Energy transfer between different degrees of freedom plays an important role in barrier crossing 

dynamics 11. As shown in Figure 1.3, the periods of time that system wanders within each of basins 

𝐴 and 𝐵, are not equal. Also, these periods are distinctly longer than the period of time needed to 

cross over, so the transitions occur only rarely. In condensed matter physics, the bottlenecks of 

configurational space correspond to the nucleation of a new phase. Another example of a rare event 

in condensed matter physics is the atom hopping between different interstitial sites in a solid. The 

energy required to locally distort the lattice structure fully determines the nature of the bottleneck. 

The distortion of the lattice causes the opening of possible pathways between interstitial sites. 
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Figure 1.3. Time evolution of a dynamical trajectory of system crossing from state A to state 
B. Residence times spent in the states are very long compared to the time needed to switch 
between states. A and B can be distinguished using an order parameter like the coordination 
number of an atom (Reprinted from Ref 10). 

1.2 Solid Phase Transitions 
Phase transitions attract scientists to unravel the essence and nature of these processes. We can 

see the discontinuous change of material properties during phase transitions, such as volume, density, 

elasticity, electric, magnetic, optical, etc. Phase transitions in solids are accompanied by a change of 

its structure, which means a change of atomic coordinates, occupied positions, lattice parameters and, 

as a result, the space group of the structure. Understanding the mechanisms of these transformations 

plays a key role in discovering new phases with new (maybe extraordinary) properties. Thus, solid-

solid phase transition is still one of the most interesting areas for research in materials science and 

condensed matter physics. 

Several theories exist, which allow us to understand and describe the essence of these processes. 

Based on the transition's specific aspects, all approaches for the phase transition investigation can be 

divided into three branches: thermodynamic, structural and kinetic, as illustrated in Figure 1.4. 
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Figure 1.4 Different aspects of classification of phase transitions (reprinted from Ref. 12). 

Thermodynamic approach 

A thermodynamically stable phase can be pushed out of stability by changing one or several 

external parameters, such as temperature, pressure, electric or magnetic fields or even some 

mechanical forces. The resulting stress on the system causes changes in its structure and induces a 

transformation. Herein, we refer to the Ehrenfest study 13, which introduced the order of phase 

transition. 

The order of phase transitions is determined by the lowest derivative of the free energy that is 

discontinuous during the transition. At a first-order phase transition, at least one of the first 

derivatives of the Gibbs free energy G experiences a discontinuous change. At a second-order phase 

transition, the first derivatives of the energy, like volume and entropy, experience a continuous 

variation. At the same time, at least one of Gibbs free energy’s second derivatives exhibits a 

discontinuity. Logically, a discontinuity appears for the first time at the n-th derivative at a phase 

transition of nth order. However, examples of transitions with orders higher than two are unknown). 

For example, as first-order transitions are classified many phase transitions in gases, liquids and 

solids. These transitions involve a discontinuous change in density or volume (the first derivative of 

the free energy with respect to pressure). Another type is continuous in the first derivative but exhibits 

discontinuity in a second derivative of the free energy, thus named second-order phase transitions. 

An example of second order phase transition is the ferromagnetic-paramagnetic phase transitions. 

Here, the magnetization, which is the first derivative of the free energy with respect to the applied 
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magnetic field strength, increases continuously from zero below the Curie temperature, the magnetic 

susceptibility, the second derivative of the free energy with the field, changes discontinuously. 

The approach proposed by Ehrenfest has become very useful for the phase transitions 

classification. However, some limitations were unknown at the time of theory formulation, as in the 

cases of continuous transformations, when the derivative of free energy diverges. For instance, in 

some ferromagnetic transitions, the heat capacity diverges to infinity 14. 

Ehrenfest’s classification is based on macroscopic measured variables and purely 

thermodynamic arguments. It does not take into account consideration of the interatomic interactions 

and structures of the substances and ignores the singularity of the free energy in case of continuous 

(2nd order) transitions, which has been solved by the extension made by Pippard 15,16. Also, Roy has 

reviewed these classifications systematically in 1973 17. He has identified four principal approaches 

to the problem by classifying phase transitions based on kinetic, thermodynamic classification, 

thermochemical, and structural considerations. 

Kinetic approach 

The kinetic approach starts from the early work of Le Chatelier and is focused on the activation 

energy and the transition rate. The kinetic approach can be used only for the consideration of 

transition between polymorphs of a given compound. Herein, phase transitions can be divided into 

two categories. The first – sluggish phase transitions are characterized by very high activation energy. 

A large hysteresis characterizes these transitions and the speed of the transition is very low. The 

second type of transition is called rapid or non-quenchable. According to this, various behaviors are 

possible: if the transition is irreversible and proceeds in only one direction, it is monotropic behavior. 

In case if the transition is reversible, this is enantiotropic behavior. Finally, I refer to the more detailed 

review of kinetics approaches 12. 

However, no real classification scheme can be based on this parameter since it does not treat 

any basic property of either of the two phases. Moreover, as experimental capabilities grow, what is 

regarded as ‘non-quenchable’ today may be established to be quenchable tomorrow. However, some 

recent research on this aspect has pointed out that with the right combination of the structural as well 

as the kinetic aspect an acceptable criterion of classification may emerge. 

Structural approach 

The structural approach can be applied to the polymorphic phases before and after the 

transformation. The experimental evidence of atomic motions or other processes that occur during 

the transition cannot be obtained. This approach has been proposed by Buerger 18 and according to 

his study, phase transitions can be classified as: 

(1) Reconstructive phase transitions: The atoms are rearranged and chemical bonds are 

broken during the transition. Such transformations are always first-order transitions. 
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Thermodynamically, first-order free energy derivatives (entropy and volume) are 

discontinuous as a result of the change in the atomic environment at the transition. The 

activation energies of such kind of transitions are high. Such transitions occur in metals, 

alloys and insulating materials 19. 

(2) Displacive phase transitions: Atoms experience small shifts and without breakage of the 

bond network. Here, symmetry space groups of reactant and product structures have a 

direct group-subgroup relationship and the required activation energy tends to be low. 

Displacive transitions can be first- or second-order phase transitions. Such 

transformations are often found in shape-memory alloys 20–22, giant magnetocaloric 

materials 23,24 and others. 

(3) Order–disorder transitions: Different kinds of atoms that statistically occupy the same 

crystallographic point orbit in a crystal become ordered in different orbits or vice versa. 

Alternatively, molecules that statistically take several orientations become ordered in one 

orientation. 

Frequently, what category of a phase transition must be assigned is a tricky question. However, 

the qualitative kind of the classification does not always permit a clear assignment. There is no 

consensus in the literature, of how exactly displacive transitions should be determined and how they 

should be delimited on the one hand from reconstructive and order-disordered transitions on the other 

hand. For example, martensitic transitions widely occur in alloys, ceramics, minerals and inorganic 

compounds, and related transitions 25,26. Despite their diffusionless and continuous character, all of 

these transitions display coordination changes and significant structural distortions 27. Thus, in the 

literature, they are classified as reconstructive or as displacive 28. The atomistic description does not 

play a key role in understanding the transition type since the distinction between transformation types 

is rather related to a phenomenological understanding. By all means, presented classification is not 

unambiguous. 

The kinetic and structural approaches are not as strict and accurate as the thermodynamic 

approach. The unclear criterion in the two qualitative approaches always raises some discrepancy 

among different studies when defining phase transitions. However, these categorization methods are 

still meaningful as they provide a phenomenological description of the phase transition. 

The approaches described above have a number of limitations that can be avoided by 

considering the latent heat. According to this, all transitions are divided into two categories similar 

to the classification made by Ehrenfest 29–31. The transition is termed first-order, if it involves a 

change in the latent heat 32. During the transition, the system either absorbs or releases a large amount 

of energy without variation in the temperature. In reality, there is no an instantaneous transfer of 

energy between environment and system. First-order phase transition is associated with phase 
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coexistence. It means that part of the system already has completed the transition to the new phase, 

while another part still has not. Such a transformation mechanism is known to involve a nucleation 

and growth process. Pressure-induced phase transitions in the solid-state belong to this category. The 

phase transition is second-order if the continuous model can be used to describe the transformation 

and no latent heat is associated with the transition. 

The thermal vibration of atoms affected by the varying temperature or pressure causes phase 

fluctuations that occur as random rare events. A stand-alone fluctuation may be associated with a free 

energy reduction, but it can only survive and grow if there is an energy reduction. The cost associated 

with the creation of a new phase within another one, the interface energy, is a penalty which becomes 

smaller as the particle surface to volume ratio decreases. In a metastable system, this leads to the 

critical size of fluctuation beyond which growth is favored. If the nucleation is not taking place at an 

impurity or initiated by a foreign element to the system, it is called homogeneous. Homogeneous 

nucleation is described by classical nucleation theory (CNT) 33 and also by non-classical nucleation 

theory 34. 

In experiments, solid-solid phase transitions have been studied by calorimetry 35, acoustic 

emission 36, X-ray scattering 37 and transmission electron microscopy 38,39. The transitions, which 

occur at high pressure (up to ~600 GPa), can be revealed by advanced experimental techniques, like 

shock-wave 40 and the Diamond Anvil Cell (DAC) 41. The shortcoming of these studies is that due to 

the small spatial and temporal scales, these techniques cannot resolve the initial stage of nucleation. 

Indeed, the kinetics of transition pathways and associated atomistic transformation mechanisms 

remain poorly understood. Herein, a main unanswered question about phase transitions in solids 

concerns whether kinetic pathways follow a martensitic or a diffusive nucleation process 37,38,42,43. 

Many experimental studies have been done for phase transitions in colloids, because colloidal 

particles are micron-sized and can be directly imaged by optical microscopy. Additionally, colloids 

thermal motions can be tracked by image processing 44. 

Compared with crystallization 45, melting 46,47 and glass transitions 48, solid-solid phase 

transitions in colloidal systems have been scarcely studied 49–55. To drive a solid-solid transition, the 

considered colloidal crystal must be tunable, which means be representable in both ways. For 

example, an electric-field-induced transition between fcc and bct i colloidal crystals was reported to 

be diffusive for fcc-bct, but martensitic for the reverse bct-fcc transition 55. Solid-solid transitions in 

tunable colloidal crystals have been achieved in electric- or magnetic- field-driven solid-solid 

transitions 51,52,54,55. The rapid displacive martensitic transformations took place in these systems. The 

dynamical processes of the displacive martensitic transformations have not been studied. 

                                                
i fcc- face-centred cubic; bct - body-centred tetragonal 
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Another type of solid-solid phase transition is much harder to study in an experiment. There is 

the study of the transition between square and triangular lattices, which is one of the simplest solid-

solid transitions without a group–subgroup relation 56,57. This transition occurs within large 

crystalline domains, and the dynamics process can be well captured. It was studied how pressure 

gradient enhances energy barrier crossing and promoted the collective motion of particles, thus 

resulting in new kinetic behavior. Phase transitions under pressure gradients represent a simple type 

of non-equilibrium phase transitions, which are poorly understood, yet hugely important for both 

basic science and technological applications 58. 

Reconstructive phase transitions in solids are theoretically difficult because an order parameter 

cannot be defined easily without a group–subgroup relation in lattice symmetries 19,59. Solid-solid 

phase transitions are also difficult to simulate due to the sluggish dynamics 42. To accelerate transition 

dynamics, simulations were usually performed in small systems 60, under pressure gradients or even 

shock waves 61 to overcome the high free-energy barriers. 

All above-mentioned classification methods are still meaningful, because they provide a 

phenomenological description of the phase transition. The understanding of phase transition on an 

atomistic level might avoid contradictions. But still, the mechanisms that govern phase transitions in 

solids present substantial challenges for experiment, theory and simulation. 
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2 THEORETICAL BACKGROUND 

2.1 Theories of phase transitions 
To precisely understand the phase transition mechanism at the atomic scale, a theoretical 

calculation may succeed where the experimental observation fails. The experimental study of such 

processes as solid-solid phase transition is a big problem because these processes are related to “rare 

events”, which appear with very low frequency and cannot be directly investigated at the atomic level. 

On another side, the current powerful theoretical methods can analyze phase transitions. Mainly, these 

methods are developed based on the two theory paradigms: Landau theory and Transition State 

theory, which will be discussed further. 

2.1.1 Landau Theory of Continuous Phase Transitions 

In 1937 L. D. Landau developed a free energy-based theory, in which he phenomenologically 

investigated phase transitions in the solid-state for displacive transformations 62,63. Later, the 

approach was extended to describe the first-order transition, including reconstructive phase 

transitions 59. 

In the Landau approach, an order parameter 𝜂 is introduced for the phase transition description. 

The order parameter 𝜂 is an appropriate, measurable quantity that contains all the information about 

the structure along the transition path and extent of structure evolution during the transition. It meant 

that an order parameter 𝜂 is apt to account for the essential differences of the phases. The free energy 

can be expanded as the Taylor series in terms of 𝜂 and the expansion of the Taylor series is truncated 

at the lowest order. As a result, the terms of expanded series couple 𝜂 with other physical quantities 

(such as temperature, strain or spin direction). Herein, using standard thermodynamic relations, the 

behavior of 𝜂 and coupled quantities can be obtained from the free energy. Landau theory has proven 

to be very robust and effective. As a result, coefficients which were obtained from experimental data 

fitting, characterized a wide range of fundamental relationships 64. 
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Figure 2.1. Landau free energy for temperatures above and below the transition temperature. 
The equilibrium value of the order parameter 𝜂 is given by the minimum of the free energy. At 
high temperatures (𝑇 ≥ 𝑇L), there is a single minimum at 𝜂 = 0. At low temperatures (𝑇 ≪ 𝑇L) 
the free energy has a maximum at 𝜂 = 0 and minima at non-zero values of 𝜂 = ±𝜂M (Reprinted 
from Ref 65). 

Landau theory relies on the appropriate definition of the order parameter. Once 𝜂 is defined, 

the Landau free energy can be presented by following formula: 

𝐺(𝜂) = 𝐺M + 𝐴 ⋅ 𝜂Q + 𝐵 ⋅ 𝜂R +⋯ (2.1) 

where 𝐺M  is system’s free energy for 𝜂 = 0 while 𝐴 and 𝐵 are constants. For a temperature-induced 

phase transition, the shape of Landau free energy changes as a function of temperature and pressure, 

as displayed in Figure 2.1. 

For phase transitions in solids, the form of 𝜂 reflects the system symmetries. In combination 

with representation theory 66, group-subgroup relationships directly affect the form of 𝜂. The concept 

applies to second-order continuous transformations. In the case of first-order phase transitions, it 

requires the Landau free energy consideration in a general form, which includes odd terms: 

𝐺(𝜂) = 𝐺M + 𝐴 ⋅ 𝜂Q + 𝛽 ⋅ 𝜂U + 𝐵 ⋅ 𝜂R +⋯ (2.2) 

As a result, secondary minima appear. Moreover, one of them may become global on lowering 

the critical value of the coupling parameter, e.g., temperature. Considering the phase coexistence, the 

order parameter discontinuously jumps from 0 to some finite, non-zero value. 

While the Landau theory has a mean-field character, it is a significant drawback of this theory. 

As a result, the condition on the vanishing of 𝜂 at the critical point will not be fulfilled, because theory 
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flattens local fluctuations into averages. Due to this, Landau theory does not cover nucleation and 

growth phenomena. 

For the description of the mechanism of first-order phase transitions, there have been presented 

several improved approaches. Generally, they can be divided into following approaches: 

• The adiabatic approximation. These approaches investigate the transitions using periodic 

least-enthalpy calculations 67–69. The method is based on the exploration of the adiabatic 

potential energy hypersurface of the transformation configuration space. The search for 

energetically favored intermediate states is performed assuming conservation of 

translational symmetry. For the kinetics of the transition characterization, activation 

volumes are determined and analyzed with respect to pressure variations. However, the use 

of systems as small as unit cells and the resulting concerted mechanisms is insufficient to 

capture phase coexistence and nucleation and growth processes. 

• The Free energy surface (FES) approaches. This type of methods scan the free energy 

landscape using advanced molecular dynamics simulation or algorithms that perform 

specific optimization. The most popular is the metadynamics method 70, which pioneered 

this type and many other methods have been inspired by it. It explores energy landscape 

using a history-dependent bias potential. The bias potential is constructed as a function of a 

small number of collective variables (CVs) used to distinguish between all the relevant 

states of the system. Provided that a CV can be developed for a certain process, it can be 

studied using metadynamics. Original one uses the system lattice parameter as a CVs. As a 

result, the bias potential fills energy minima and, hence, shorten the waiting time between 

minima-to-minima transitions and this bias potential depends on the low number of CVs, 

so the system evolves to the new state with low efforts. During the metadynamics 

simulation, on each step, the calculated forces are stored in the simulation's track history. 

This method avoids revisiting the same valley on the free energy landscape and preventing 

the fall back to the same minimum. In Figure 2.2, it is shown how the system evolves during 

the metadynamics simulation. The scan proceeds by flooding free energy minima until the 

surface is enough to cross over to another local minimum. Metadynamics has been widely 

used in many scientific fields 71,72 and to calculate the rates of slow processes accurately 73, 

even in complex systems 74. 

Another important algorithm for energy landscape exploration is called the stochastic 

surface walking (SSW) method 75. This method is based on bias-potential-driven dynamics 

and Metropolis MC sampling. Stationary points are perturbed toward a new configuration 

through randomly generated modes of displacement and the subsequent construction of a 

biasing potential 75,76. 
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• The common subgroup paradigm. This approach is helpful in cases when the direct 

group-subgroup correspondence between structures cannot be obtained. The space groups 

of both structures are lowered until the common space group will be found. The resulting 

space groups are then used to generate a common for both structures cell and structures are 

brought to this cell. As a result, one is capable to map structures onto each other. The 

transition is then described using the set of degrees of freedom allowed in the common 

subgroup. The number of possible common space groups that can be used is large and all 

these possible transformations must be considered. The biggest problem of these methods 

is that they can only be used for the system with small number of atoms in the unit cell (at 

maximum – several dozens of atoms), thus nucleation processes are not feasible. The origin 

of this approach is presented in the study made by H. T. Stokes and D. M. Hatch 77. 

• The common lattice complex principle. This approach relies on point configurations 

generated within one type of Wyckoff set forming a lattice complex 78. The transition may 

be described as a deformation of a homogeneous sphere packing with a given number of 

contacts per sphere. Similar to the common subgroup paradigm, the deformation is achieved 

within a lattice complex which allows for lowering the number of contacts per sphere. 

Because of the continuous character of the mechanistic model obtained using this method, 

it suffers from the same limitations as the previous paradigm. 

 

 
Figure 2.2. The dynamic evolution (thin lines) labeled by the number of dynamical iterations 
of free energy minima flooding using the metadynamics method (Reprinted from Ref 79). 
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For a very long time, capturing the first-order character of the transition has been a huge 

problem either in the investigation or classification. However, the mean-field methods mentioned 

above are working well for the continuous transitions and fail to study discontinuous transformations. 

Since the presented methods provide meaningful information about atomic structures mapping before 

and after the transition, they still cannot provide any details of nucleation and growth processes. 

Additionally, it is a not an easy task to choose the representative reaction coordinate that describes 

the transition. Due to a large number of degrees of freedom in the crystals, usually, reaction 

coordinates are unknown from the beginning. 

All methods that scan the free energy landscape helped to understand the most relevant 

transition features of this landscape. This kind of methods does not always find the structures that are 

sought by the simulation because visited minima not always represent the necessary steps of the 

transition. Moreover, the resulting mechanism does not really represent the atomic movement during 

the transition and the nucleation process is out of the scope of these methods. Alternatively, in the 

first-order phase transitions, the atomic motion may have very long trajectories that cannot be traced 

by the free energy scanning algorithms. 

The method for studying first-order phase transitions covering the nucleation and growth 

processes is the most desired by the scientific community. Such method has been proposed by Bolhuis 

and Chandler is called transition path sampling (TPS) 80,81. The presented method performs a Monte 

Carlo sampling of transition pathways and the resulting pathway with high probability represents the 

real transition mechanism. TPS proved its efficiency in the investigation of solid-solid phase 

transitions in A17 ⟶ A7 transition in black phosphorus 82, solid Ar 83, carbons 84 and many more. 
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2.2 Energy Landscapes 
The structure of an atomic system can be specified by the locations of the atoms in this system. 

A system has specific energy for a given structure and electronic state. A potential energy surface 

(PES) describes how the energy of the system in a particular state varies as a function of the atomic 

structure of the system. Under certain circumstances, the characteristic points of the PES can provide 

information about the properties of condensed systems 85,86. Reorganization processes in solids, 

transport in or on solids and chemical bond cleavage and formation belong to this type of processes. 

First, let us consider the system of N atoms of classical mechanical system. Here the structure 

and dynamics are essentially determined by the potential energy 𝑉(𝑟) usually given as a function of 

the coordinates 𝑟 = {𝑟(, 𝑟Q, … 𝑟U\} of all N atoms. Molecular simulations usually use the potential 

energy that is either modeled as an empirical potential or calculated directly from a solution of the 

electronic Schrodinger equation. The latter, usually, is solved in the Born–Oppenheimer 

approximation. This approximation separates the motion of the electrons from the motion of the 

nuclei because the electrons are much lighter and move much faster than the nuclei. The energy of an 

atomic system can be obtained by solving the electronic structure problem, where the nuclei are 

pinned to the fixed positions. This procedure can be repeated for any number of nuclear positions, 

the energy of a system can be described as a function of the position of the nuclei, thereby yielding a 

PES. 

Figure 2.3 illustrates a simple PES as a hilly landscape with peaks, valleys, and mountain 

passes. Even though most atomic systems have many more than two geometric variables (xy-plane), 

most of the important features of a PES, such as minima, transition structures and reaction paths, can 

be represented in such a landscape. 

 
Figure 2.3. Model of potential energy surface, with depicted minima, transition structures, 
reaction paths, and a valley ridge inflection point. (Reprinted from Ref 87) 



 15 

The valleys of a potential energy surface represent reactants, intermediates, and products of a 

reaction. The equilibrium structure is located in the minimum of the valley. The energy of the reaction 

is the energy difference between the reactant and product valleys minima. The vibrational motion of 

the system about the reactant and product equilibrium geometries can be used to compute zero-point 

energy and thermal corrections, which are required for free energy and enthalpy calculation 88. The 

reaction path is the lowest energy pathway between the reactant and the product 89. The transition 

state (TS) of the reaction is the highest point on the minimal energy reaction pathway. The barrier of 

the reaction is the energy difference between the TS energy and the reactant energy. From the 

mathematical perspective, TS is a maximum in the direction along the reaction path that connects 

reactant and product and a minimum in all other perpendicular directions. Thus, from the 

mathematical point of view, TS is the first-order saddle point. In Figure 2.3, TS connects two valleys 

by a mountain pass. 

As shown before, for an activated reaction, for the reaction rate estimation, one needs the TS 

energy and the shape around the TS. The path generated by the steepest descent approach from the 

TS down to the reactants and to the products is termed the minimum energy pathway (MEP). Any 

other reaction path that connects reactants and products through intermediate points (if any) describes 

the reaction mechanism 89. 

Another illustration of the potential energy is depicted in Figure 2.4. The elevation in the  

z-direction corresponds to the potential energy value at a particular configuration 𝑟 represented by a 

point in the xy-plane. Although this simple example may assist our imagination, it is crucial to keep 

in mind that, for typical condensed matter systems, 𝑉(𝑟) is a much more complicated function with 

a vast number of maxima, minima, saddle and singular points. The presented landscape picture is a 

substantial simplification as the high-dimensional configuration space is represented by one or, at 

most, two dimensions. 
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Figure 2.4. Low-dimensional depiction of a complex PES as a landscape with numerous 
minima, maxima, and saddle points. The vertical elevation is given by the value of the potential 
energy and the xy-plane corresponds to the system’s configuration space. At low temperatures, 
transitions between potential energy minima occur via saddle points that coincide with the 
mountain passes in this topographic perspective. 

A local quadratic approximation to the PES can be constructed using the first and second 

derivatives of the energy with respect to geometric parameters. The forces on atoms in the system are 

the negative of the gradient on the PES. Because the forces are zero at energy minima, TSs and higher-

order saddle points, these structures are termed stationary points. The matrix of the second derivatives 

of the energy (Hessian) is known as the force constant matrix. The eigenvectors of the Hessian in 

Cartesian coordinates correspond to the normal vibrational modes (plus five or six modes for 

translation and rotation) 90. For a structure to be characterized as a minimum, the forces (or gradient 

of PES) must be zero, where all of the eigenvalues of the Hessian must be positive; equivalently, the 

vibrational frequencies must be real. For a TS, the PES is a maximum in one direction (along the 

reaction path) and a minimum in all other perpendicular directions. Accordingly, a TS is characterized 

by a zero gradient of PES with only one negative eigenvalue of a Hessian; correspondingly, a TS has 

only one imaginary vibrational frequency. For a TS, the vibrational mode with the imaginary 

frequency is also known as the transition vector. 

If the system has temperature 𝑇 and thermal energy 𝑘K𝑇 is relatively small compared to the 

activation energy barriers that separate neighboring potential energy minima, the system most of the 

time randomly fluctuates in the deep valleys of the PES. Only rarely will the system fluctuate far 

enough from one minimum to cross an activation energy barrier and shift to an adjacent minimum. 
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Because high-energy configurations have small statistical weight, the transition from one minimum 

to another is most likely to happen if it crosses the activation energy barrier at its lowest point. 

Wandering along the minimum, the system can cross the barrier at the lowest possible energetic 

expense. In the presence of thermal noise, the system does not pass precisely through the saddle point 

or transition state (TS) but will cross the potential energy barrier somewhere very close to it. Both 

the equilibrium thermodynamics as well as the dynamics of the system can be deduced from 

knowledge of minima and saddle points and there are exist algorithms for finding these stationary 

points. 

The landscape picture can be extended to systems at non-zero pressure and at higher 

temperatures, where entropic effects may become important, by introducing the concept of a free 

energy landscape. This landscape perspective can be therefore applied also to the free energies and 

such kind of surface depicted in Figure 2.4 as an example of a FES. Minima in the free energy 

landscape then correspond to stable states in which the system is mainly observed. These stable states 

are separated by free energy barriers, which are crossed when the system performs a transition from 

one free energy minimum to another. Thus, the exploration of FES can be very fruitful for the 

pressure-induced solid-solid phase transitions. 
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2.3 Transition State Theory 
Transition state theory (TST) was developed to describe the transition rate of reactions when 

already determined relevant bottlenecks that the system passes through during the transition 91–93. TST 

is the central concept that is a basis for rare event simulation methods and explains the kinetics of 

rare events. The basic idea of TST is to divide the energy landscape between two stable states by the 

surface. 

2.3.1 Reaction rate constant 

 
Figure 2.5. Free energy 𝐹(𝑞) as a function of the reaction coordinate 𝑞. A free energy barrier 
of height Δ𝐹 located at 𝑞∗ separates the stable states 𝐴 and 𝐵. The thin wiggly line represents a 
trajectory going from 𝐴 to 𝐵. 

Consider a system with a bistable free energy 𝐹(𝑞), as shown in Figure 2.5. The presented free 

energy profile is a good illustration of a molecule in solution undergoing isomerizations between two 

stable conformations. Molecules of type 𝐴 can be converted into molecules of type 𝐵 and vice versa. 

The two neighboring local minima represent these two stable states. Lets introduce the indicator 

function ℎK[𝑞(𝑡)] for state 𝐵 which shows whether system is right or left of the barrier and can be 

presented as 

ℎK[𝑞] = b1	𝑖𝑓	𝑞 ≥ 𝑞∗
0	𝑖𝑓	𝑞 < 𝑞∗ 

(2.3) 

The indicator function ℎf(𝑞) for state A is defined analogously. The indicator functions ℎf and 

ℎK simply tell us whether the system resides in A or B. 

Using these indicator functions we can express the conditional probability to find the system in 

state B at time t provided it was in A at time 0, 
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𝐶(𝑡) ≡
〈ℎf[𝑞(0)] ∙ ℎK[𝑞(𝑡)]〉

〈ℎf〉
 

(2.4) 

where angular brackets 〈⋯ 〉 denote an average over equilibrium initial conditions. The averages 〈ℎf〉 

and 〈ℎK〉 are the probability to find the system in state A and B, respectively. 

The time correlation function 𝑪(𝒕) is a description of the transition statistics in the equilibrium system 

described in terms of the microscopic degrees of freedom. To make contact with a macroscopic 

description, appropriate for an experiment, there is considered the time evolution of the 

concentrations 𝑐f(𝑡) =
\m
n

 and 𝑐K(𝑡) =
\o
n

 defined as the number of molecules per volume V.  

For the classical problem, where originally all molecules in the system are of type 𝐴 at 𝑡 = 0, 

in the approximation of the dilute solution of molecules type 𝐴 and type 𝐵 (no interaction between 

molecules), within the linear approximation to the time correlation function 𝐶(𝑡) gives us 

𝐶(𝑡) ≈ 𝑘fK ⋅ 𝑡, (2.5) 

where 𝑘fK is a reaction rate constant. Equivalently, the time derivative of 𝐶(𝑡), is a constant and 

equal to the reaction rate constant 𝑘fK 94, 

𝑘(𝑡) ≡ �̇�(𝑡) ≈ 𝑘fK. (2.6) 

In the equation (2.6), 𝐶(𝑡)̇  is also called the reactive flux. Using this equation, one can estimate the 

reaction rate constants within TST. 

As shown in Figure 2.5, the transition from reactants to products, as a rare event, needs 

sufficient energy to overcome a potential barrier, also known as activation energy. So when 

investigating the dynamics of the transition with TST, the main task is to find the energy barrier for 

the transition. A good way to tackle this is to describe the free energy of the system as a function of 

a reaction coordinate, which embraces all information about the transition. 

 

2.3.2 TST Reaction rate constant 

The condition 𝑞(𝑟) = 𝑞∗ for collective coordinate 𝑞(𝑟) defines transition state (TS) surface that 

separates states 𝐴 and 𝐵, the so-called dividing surface. Figure 2.6 illustrates a suitable TS surface, 

where only a small part of the TS surface is shown. Moreover, the validity of any TST-based method 

fully relies on the TS surface choice. 

The goal of TST is to define an equilibrium flux through the TS surface and resulting reaction 

rate. In practice, searching for an analytic expression of a TS surface is usually not possible, so 

approximations are necessary.  

The key role in TST plays an assumption that there is no recrossings of the dividing TS surface. 

In other words, this approximation means that each crossing of dividing surface corresponds to 

transition to another state and such transition is only allowed once at a time. Herein, if the trajectory 
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has passed the dividing surface heading into 𝐵, the system will relax into 𝐵. If the dynamics are 

reversible, each crossing point on the TS corresponding to a trajectory 𝐴 → 𝐵, should result into a 

trajectory 𝐵 → 𝐴 on reversing the momenta. Consequently, each point on the TST dividing surface 

has an equal probability of ending in either 𝐴 or 𝐵. Given a TS surface that bounds the initial state, 

the calculated equilibrium flux through the surface presented as 91–93 

𝑘rsr =
1
2 ⋅
〈|�̇�|〉uvu∗ ⋅

𝑒𝑥𝑝(−𝛽 ⋅ 𝐹(𝑞∗))

∫ 𝑒𝑥𝑝(−𝛽 ⋅ 𝐹(𝑞)) ⋅ 𝑑𝑞u∗

|}

 
(2.7) 

where 〈… 〉uvu∗  means an ensemble average. In the rate of escape from the minimum, we are 

considering the outgoing flux through the TS surface, thus the factor of 1/2 is present. The next factor 

is simply the average positive rate of change �̇� of the reaction coordinate and the final factor is totally 

related to the free energy 𝐹(𝑞). The obtained equation is also known as the Arrhenius equation and 

it fully characterizes activated processes. Equation (2.7) is the main result for TST and a simple 

numerical procedure can be devised from it: first, calculate the free energy 𝐹(𝑞) as a function of the 

reaction coordinate 𝑞(𝑟). All the dynamical information needed to describe the transition process can 

be obtained from the free energy 𝐹 as a function of a reaction coordinate to determine 𝑞∗ of the 

dividing surface. Then, calculate the average positive flux 〈|�̇�|〉uvu∗ , which can be either calculated 

analytically or determined by the simulation. And finally, combine them together. TST does not 

require the dynamical trajectories calculation, thus the reaction rate constant evaluation is 

computationally efficient. 
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Figure 2.6. 2D model of potential energy surface, where transition state is drawn as a dashed 
line. There is a set of saddle points on the boundary of the initial state, which can be used to 
estimate escape rates within transition state theory (reprinted from Ref 95). 

In practice, the construction of proper TS surfaces is not an easy task, so that trajectories will 

recross the TS surface and either fail to be reactive or recross before a reaction occurs. The 𝑘rsr  value 

is an upper bound on the real transition rate because TST counts each crossing as reactive and each 

reactive trajectory must have at least once crossing the TS surface. This is a powerful principle 

because it means that the TS surface can be variationally optimized to lower the TST rate to approach 

the real transition rate 96. Additionally, one can compute a transmission coefficient 𝜿 by using short 
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trajectories from the TS and counting the ratio of crossing points to reactive trajectories. The true 

escape rate is then 𝑘 = 𝜿 ⋅ 𝑘rsr 94,97. 

The pioneers of the TST approach were Chandler 94, Anderson 98 and Bennett 99. Since then, 

TST was employed and systematically improved in order to get the best approximation for dynamical 

process statistics. 

 

2.3.3 Harmonic approximation 

The vast majority of calculations in materials science and fields of computational surface 

chemistry cannot provide a reaction rates evaluation according to the equation (2.7). It is because 

sampling is resource consuming and because good TS surface determination is a challenging task, 

especially by using electronic structure methods. The harmonic approximation to TST is most 

commonly used and transforms the kinetics estimation problem into another one. Here, the problem 

of reaction rate constants calculation in TST can be further simplified – on the TS surface, there are 

bottleneck regions that dominate the rate and these bottlenecks, also called “reaction channels”, are 

characterized by saddle points on the FES like it is shown on Figure 2.6. These saddle points are the 

lowest-energy points on the FES that need to be crossed (locally) to escape the minimum. The single 

unstable vibrational mode at each saddle point defines the local normal to the TS surface, and the TS 

surface is approximated as a hyperplane with a harmonic potential given by the N−1 remaining stable 

modes (in Figure 2.6, it is indicated by a purple line at each saddle). As shown in Figure 2.7, the free 

energy barrier is crossed near a point 𝑟rs, which is a saddle point in the FES. The stable states of the 

system correspond to potential energy minima at 𝑟f and 𝑟K. 

 
Figure 2.7. 2D model of FES. Here, 𝐴 and 𝐵 are stable states, which correspond to minima on 
the FES. The transition state TS that needs to be crossed during a transition between the stable 
states is a saddle point on the FES. The thick red arrow indicates the direction of the unstable 
mode and the dashed line is the plane dividing surface orthogonally to this direction. 
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This version of TST requires the precise location of the stationary points. At low temperatures, 

one can approximate the FES near the stable states and the saddle points with a Taylor expansion 

truncated after the quadratic term. First, it needs to carry out a normal mode analysis in the potential 

energy minimum 𝐴 as well as in the TS by diagonalizing the mass weighted Hessian 

𝐻�� =
1

�𝑚�𝑚�
⋅
𝜕Q𝑉(𝑟)
𝜕𝑟�𝜕𝑟�

 
(2.8) 

where 𝑚� is the mass associated with the degree of freedom 𝑟𝒊. In the potential energy minimum 𝐴, 

this normal mode analysis yields eigenvalues 𝜆�f which are all positive and the eigenfrequencies  

𝜔�f = �𝜆�f. In contrast, at the saddle point exactly one of the eigenvalues 𝜆�rs is negative while all 

others are positive. The normal mode corresponding to the negative eigenvalue is the so-called 

unstable mode and it is in this direction that the system is assumed to cross the transition state in the 

harmonic approximation. The direction of the unstable mode is denoted by a red arrow in Figure 2.7. 

Accordingly, the dividing surface is the plane normal to the direction of the unstable mode. The 

frequencies at the transition state in directions orthogonal to that of the unstable mode are given by 

𝜔�rs = �𝜆�rs. 

It is essential to understand that the HTST is used to calculate the escape rate via each transition 

channel characterized by a saddle point. The resulting escape rate from the minimum is approximated 

by summing over all transition channels. In this way, HTST can be viewed as approximating TS 

surface by a set of hyperplanes passing through each saddle on the boundary of the initial state. 

Although it is common to hear the terms saddle point and transition state used interchangeably, this 

association is appropriate only in one dimension. In high-dimensional systems, the harmonic TS is 

the hyperplane that passes through the saddle with a normal along the unstable mode, and more 

generally in TST, the TS surface is an (𝑁 − 1)–dimensional surface that divides the initial state and 

product states. 

The HTST approximation allows the analytic evaluation of equation (2.7): 

𝑘rsr�� =
1
2𝜋 ⋅

∏ ω�
f�

�v(

∏ ω�
rs�|(

�v(
⋅ 𝑒𝑥𝑝(−𝛽 ⋅ Δ𝐹) 

(2.9) 

where 𝑛 is a number of non-vanishing eigenvalues in the minimum, Δ𝐹 = 𝐹(𝑟rs) − 𝐹(𝑟f) is the 

difference between the potential energy of saddle point and potential energy of minimum 100. Similar 

to the Arrhenius formulation, according to the harmonic approximation, the reaction rate constant can 

be represented as the product of two factors: 

𝑘rsr�� = 𝜈 ⋅ 𝑒𝑥𝑝(−𝛽 ⋅ Δ𝐹) (2.10) 
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where the temperature 𝑇 has been included as an argument of 𝑘rsr . This equation emphasizes the 

dependence of the reaction rate constant on the temperature. The vibrational prefactor 𝜈 is related to 

the width of the potential energy well at the minimum and the energy valley at the saddle point and 

is a characteristic atomic vibrational frequency. It can be calculated explicitly to capture entropic 

contributions to the transition rate. The prefactor 𝜈 is small if the passageway at the saddle point is 

narrow and large if it is wide. While this prefactor can play a role in some cases, it is usually the 

exponential dependence of Δ𝐹 which is the dominating factor. 

An assumption that HTST is a zero-temperature approximation, is a widespread misconception 

for this theory. It is because for equation (2.10), there is no need for finite-temperature MD. Clearly, 

HTST will be precise and accurate for reactions that follow an Arrhenius rate dependence, i.e. 

reactions where the entropic contributions to the rate are temperature independent. 

Equation (2.10) is the final result of the HTST and according to this equation, only local 

properties of minima and saddle points characterize the transition. That is why HTST is particularly 

attractive for the simulation. This means, there is no need for the additional sampling of the FES. 

Within the HTST approximation, during the calculation of reaction, the most challenging task is not 

the equation (2.10) evaluating but locating the saddle points that characterize reaction pathways. It 

especially becomes much harder in high-dimensional systems. 

 

2.3.4 Application of HTST to rare events simulation 

Although the HTST and its harmonic approximation have been widely applied for studying 

phase transitions and chemical reactions 101,102, there are still some theoretical limitations. First, TST 

is incomplete to describe some reactions at high temperatures. Thus, HTST always well describes 

reactions occurring at low temperatures and some other cases, where entropic contributions to the 

rate are temperature independent. Otherwise, the complex motion of atoms and collisions between 

them may lead to transition states far away from the lowest energy saddle point. 

Second, we assume that the atomic nuclei behave according to basic mechanisms in TST 91. 

With this assumption, atoms or molecules are required to overcome enough transition energy to form 

the transition structure. In quantum mechanics, there is a non-zero probability that particles tunnel 

across any finite barrier. For molecular reaction, there is a chance that molecules will react even in a 

case when they do not collide with enough energy to overcome the energy barrier 103. The tunneling 

effect can be neglected for the transition with high activation energy, instead, it is essential in the 

low-activation-energy transitions since the probability of tunneling effect increases with decreasing 

barrier height. 

Considering the previously mentioned limitation, here is a scheme for the reaction rate 

evaluations for the system, where energetic effects dominate (as opposed to entropic effects). First, 
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using algorithms that consider gradients of the FES, the TS surface can be constructed. All found 

saddle points are then systematically determined by the enumeration of stationary points on the FES. 

Local minima exemplify attraction basins, while saddle points indicate transition states. Other minima 

can be retrieved by the small fluctuations from saddle points 104,105. 

If the transition surface location is known, one may construct a scheme where the system first 

moves reversibly to the transition state surface. Many fleeting trajectories are then initiated. The first 

step consists of determining the reversible work, thus the probability of reaching the transition state 

surface. Second step consists of the determination of the probability of successful crossing the 

threshold using the set of obtained trajectories. Combination of these steps provides the rare event 

rate constant 106 that can be directly compared to experimental observables. 
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”Solid-solid transitions have been important in technology for thousands of 

years and are also important in geological processes. Moreover, the pattern of 

symmetry breaking that exists in solids means that these transitions are not only 

technologically important, but that there are a lot of them (symmetry breaking 

patterns). The problem in understanding the transitions is that they typically 

happen under extreme conditions (high temperature or pressure), which makes 

them hard to study.”ii 

 

3 SIMULATING PHASE TRANSITIONS 

The last several decades have proven that molecular simulation is a powerful tool for studying 

the activated processes kinetics. It supplies detailed atomistic information that is hard to access from 

experimental studies.  

The direct exploration of the free energy surface (FES) is the main strategy for the mechanisms 

of activated processes understanding and, in particular, phase transitions in solids. There are many 

computational methods for this because there are different classes of energy landscapes and various 

questions that can be asked about kinetic properties. Most of these techniques, such as molecular 

dynamics (MD) 107,108, are based on employing either classical or ab initio-based atomistic force 

fields 107,109 and can generate dynamic trajectories by integrating the equations of motion for all atoms 

in the system. It provides a reasonable realistic model of the process of interest 94. Unfortunately, the 

straightforward application of MD is impractical to the study of rare events such as solid-solid phase 

transitions because of the small system sizes and time scales. Many phenomena that we care about 

occur on the human timescale of seconds or longer. When interatomic interactions must be accurately 

described (electronic structure methods are needed), simulating even nanoseconds of dynamics is a 

huge effort. For example, crystal nucleation simulation can take seconds and even with billions of 

steps, MD simulation cannot overcome the microseconds limit. Moreover, even many billions of 

simulation steps are not guaranteed to yield even a single event occurrence. 

As mentioned above, the picture of rare transitions between two stable states can be described 

in the language of statistical mechanics as two free energy minima separated by a high activation 

barrier 94 and the probability of observing a transition decreases exponentially with the barrier height. 

A good illustration of such kind of transition is shown in Figure 3.1. This figure illustrates the energy 

profile at room temperature with two minima and the energy barrier of 0.5 eV and with a typical pre-

exponential factor such that crossing events happen 1000 times per second, which is very slow on the 

                                                
ii The quotations are taken from an article of G. van Anders et al. in the Proceedings of the National Academy of 

Sciences, 2017. 
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timescale of atomic vibrations. For the direct MD simulation, where each vibration spans a second, 

getting such reactive event as one transition to another well will take more than 100 years, which is 

incredibly slow on the atomic scale. Clearly, this approach is very far beyond what is possible for 

current methods and unlikely will be able to simulate such events in the near future. 

 
Figure 3.1. An example of a system at room temperature with two energy wells. The transition 
occurs when the activation barrier of 0.5 eV is overcome. 

Generally, computer simulation techniques that integrate the equation of motion of the 

underlying dynamics 107,108, whether it is deterministic (Hamiltonian), stochastic (Langevin), or even 

Monte Carlo (MC) dynamics, could provide insight into the reaction coordinate describing the 

progress of the rare transition. Since the times separating successive transitions are very long, the 

straightforward application of conventional simulations makes them impractical. Thus, such 

simulations will likely fail to exhibit the essential dynamics of interest and are far beyond the 

capabilities of modern high-performance computers. Obviously, more advanced (than canonical MD 

or Monte Carlo) techniques that help to overcome the rare event problem must be used. Therein, the 

focus shifted to the rare event simulation while skipping the tedious long waiting times. 

For a condensed material rare events simulation, such as phase transitions in solids, the 

bottlenecks are associated with the nucleation of a new phase. The nature of the bottleneck in the case 

of solid-solid phase transition depends upon the energy required to distort the local structure with 

further opening of the possible pathways for the transition of an atom from one interstitial site to 

another. 
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Herein, solid-solid phase transitions investigations consist in understanding the transition 

details by identifying:  

• Transition mechanism. 

It can be determined from the reorganization of the atomic structure associated with 

nucleation and growth of a new phase. 

• Transition states. 

The consequence of local deformations or the formation of low dimensional structures 

interfacing the coexistence of different phases. 

•  Kinetics of the transition 

In other words, it is the calculation of the rate constants. Here, the relevant degrees of 

freedom, or reaction coordinates, must be identified. 

Below, I will describe several techniques to explore (free) energy landscapes, which relate to 

the first two steps of the presented scheme. 

3.1 Exploring energy landscapes 
All existing theoretical methods for the PES exploration of solids can be generally divided into 

two groups. The first group is represented by methods that are aiming the structure search, while the 

other group of methods are targeting the kinetic information on the phase transition pathway in solids. 

The efficiency and accuracy of the algorithms for the structure search can be assessed by their ability 

to find the most important minima on PES, e.g. global minima (GM) 105,110–119. The results can be 

utilized for the thermodynamic properties of materials understanding. For the transition kinetics 

study, the focus is much less on theoretical modelling because many different pathways exist between 

the minima. Pathway sampling is theoretically much more challenging than minima sampling 85,120. 

Identifying the correct reaction coordinate 121 among many degrees of freedom is the main problem 

in pathway sampling but usually irrelevant in structure search. 

At this moment, structure search theoretical methods are involving structure change in an 

aggressive way. It can be changes of either atomic or lattice degrees of freedom or both 

simultaneously. Such aggressive change of structure parameters helps to pass the transition region of 

PES without trapping in local minima. For example, some GM searching methods, like minima 

hopping 115,116, simulated annealing 122–125, basin hopping 114,126, start from the one predefined 

structure on PES. Originally, these methods were developed for non-periodic systems (e.g. molecules 

or clusters) and then they have been extended to periodic systems, i.e. crystals, although their 

applications are still limited.  

Another group of methods starts from multiple entries (different initial structures on PES), such 

as evolutionary algorithm (EA) as represented by USPEX 117,121 and the algorithms based on particle-

swarm-optimization (PSO) algorithm 111,127. They have shown big success in predicting previously 
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unknown structures. However, a trajectory during PES searching cannot be obtained as a result of the 

simulation. Thus, the pathway information is out of the scope of these methods and cannot give any 

information on how the phases of interest are connected. 

Finding a minimum on PES is comparatively easy because the negative of the gradient always 

points downhill. By contrast, to be able to obtain the kinetics, the information about the transition 

state region (e.g. saddle point on PES) must be taken into account. Thus, a transition structure 

optimization must step uphill in one direction and downhill in all other orthogonal directions. 

Furthermore, the uphill direction is often not known in advance and must be determined during the 

optimization. As a result, numerous methods have been developed for transition structure searching 

and many of them are closely related. Generally, they can be classified as single-ended and double-

ended methods 128. 

3.1.1 One-ended Methods 

This category of methods is focused on the escaping from the initial state 𝐴 without any prior 

knowledge of the final state. The most common approach to do that is the energy pumping of the 

system by pushing it from the energy basin to the nearest pass to the new minimum. The realization 

of this concept lay in the basis of the Laio-Parrinello method 79,129, the enhanced sampling of a given 

reaction coordinate 130 and conformational flooding 131. 

The tools for sampling the PES of crystals, such as metadynamics, involving the constraints 

(bias potential) 79,112,132. Metadynamics 70 is the most popular method, which pioneered and inspired 

many other methods. Related to the crystal structures, metadynamics has been used in many 

applications presented in Ref 133–138 and more recent review extend the list of applications 139. 

Metadynamics and other enhanced sampling methods based on MD techniques 140–142 have shown 

their high efficiency. These methods have a continuous trajectory as required in MD and scarce 

structural perturbation, which can be utilized for the low energy pathways identification. Moreover, 

if the simulation is long enough, it is possible to capture the transition event. A good example is the 

simulation of the phase transition process between graphite and diamond made by the metadynamics 

method that imposes collective variable the lattice degrees of freedom 132. However, metadynamics-

based approaches helped to investigate many other phase transitions in solids such as transitions in 

SiO2 112, CdSe 143, NaCl 137, other transitions in carbon 144, solid nitrogen 145, and many more. In case 

when the minima on PES are known, the barrier height of phase transition and the local density of 

states can also be estimated by random walk using, for example, the threshold method 146. Overall, 

the general concern regarding all these methods is their low efficiency in overcoming the high barrier 

and simulating phase transition. 

Another group of single-ended methods start with an initial structure and displace it toward the 

transition structure. This group of methods is presented by the mode-following methods, such as the 
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dimer method 147 with its extension to the solid-state usage 148, growing string method 149 or the 

crystal stochastic surface walking method 75. Also, they establish paths from minima to transition 

state (saddle point on the PES) by following some chosen direction and usually, this direction is the 

vector aligned with the Hessian eigenvector with the lowest eigenvalues or a combination of such 

vectors. The mode-following methods evolve configurations between saddle points and adjacent 

minima. Additionally, this group of methods deals with an extensive exploration of the PES, which 

requires significant computational resources. Another strategy is based on the exploration of the PES 

by locating as many minima and saddle points. This approach lay on the basis of the Kinetic Monte 

Carlo (KMC) technique 150–152 and the discrete path sampling of Wales 113. 

Finally, a totally different approach consists of procedures that use artificially controlled 

enhancements of rare event probability. The most common is the hyperdynamics method developed 

by Voter et al. 142,153. Conceptually, it is very similar to metadynamics because both methods rely on 

adding a bias potential to the global potential energy surface of the system. In metadynamics, the bias 

potential is used to fill energy minima and, hence, shorten the waiting time between minima-to-

minima transitions. In hyperdynamics, it is ensured that bias potential becomes zero in the transition-

state region, in which case correct relative dynamics is preserved. This approach is based on reducing 

the transition barrier using bias potential that fills the energy landscape in regions other than the 

transition states. Another approach that increases the probability of the rare event on raising the 

temperature is called temperature accelerated dynamics 154. Molecular simulation timescale scope can 

also be extended using parallel processing in parallel replica dynamics 155, where several simulations 

are parallelly performed in different thermodynamic states. While systems with a sufficiently high 

temperature pass over the potential bottlenecks, those at low temperatures mainly probe the local free 

energy minima. A stepwise system swap is used to reproduce the transition event. 

3.1.2 Two-ended methods 

Alternatively to optimizing a single point on the PES toward the transition structure for a 

reaction, there are a set of methods that aims to locate TS connecting two known phases directly. As 

has been mentioned, TS is represented by the first-order saddle point. These kinds of methods 

optimize the entire transition path from reactants to products. Paths created by one of the one-ended 

methods can be used. Typically these methods are based on the representation of the transition path 

by a set of points, that is, a chain-of-states. Different methods of this type differ by what function of 

the points is minimized, how the chain is generated, and what constraints are imposed to control the 

optimization. 

Many pathway optimization methods are based on minimizing the integral of the energy along 

the path, normalized by the path length. A simple linear interpolation scheme is helpful to devise the 

initial pathway by creating a chain of configurations connecting 𝐴 and 𝐵. Although this approach 
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does not produce a steepest descent path 156, it provides only a good approximation to it. Sometimes 

it is essential to use additional potentials to prevent the pathway from kinking or coiling up in 

minima 157. The number of intermediate points needed to describe transition pathways usually 

depends on the nature of the path (e.g., number of intermediates and transition states, the curvature 

of the path, etc.) and can be in a range from less than 10 to more than 50. Then, several hundreds or 

thousands of optimization steps are required to converge the simulation, primarily because of the 

strong coupling of adjacent points motions. 

The most common chain-of-state methods are the Nudged Elastic Band (NEB) 158,159 method 

and the string method 160. At the same time, chain-of-states methods have several different extensions 

to simulate phase transitions in solids 161–163, which helped to simulate phase transitions in 

CdSe 162,163, diamond-lonsdaleite, ice and silica systems 164 and many more. The methods inheriting 

NEB basis are the most common and popular techniques for transition path calculation as they 

perform with a good combination of efficiency and simplicity. In the NEB method 158,159, the points 

are kept equally spaced by adding a spring potential between them. Here, the gradient for a point has 

contributions from the potential energy surface and from the spring potential, which can be projected 

into components parallel and perpendicular to the path. The algorithm uses the gradient of the spring 

potential to displace (nudge) the points along the reaction pathway and uses the gradient of the PES 

for directions perpendicular to the path. The spring potential is used to couple points on the pathway 

and maintain uniform spacing between these points in the chain. 

 
Figure 3.2. Schematic illustration of two types of PES topologies as controlled by (a) energetic 
effects and (b) entropic effects. Color scale distinguishes between low energy (blue) and high 
energy (red) regions. On the right, a more complex representation of PES and the variety of 
pathways are presented (Reprinted from Ref 65). 

Chain-of-state methods presented above are still more costly than one-ended methods for 

transition structures, and there is spacious room for the improvement of these methods. However, 
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they do map out the entire transition path. It can be beneficial if the pathway contains several 

transition states and intermediate minima. Furthermore, chain-of-states methods are more readily 

parallelized than other single-ended methods. Along with that, one major drawback of chain-of-states 

methods is the high dependence of the result on the accuracy of the initial guess of the pathway. If 

the manually generated initial path is not close enough to the real MEP, the algorithm will converge 

to MEP very slowly or, in the worst case, even will provide an unphysical result. 

For the transition pathways in solids, these methods do not include the sampling of transition 

pathways and can miss the lowest energy pathway. For example, the more realistic scheme of PES is 

presented in Figure 3.2, where it is shown how many different pathways can exist and how hard the 

MEP is to find. Also, it is particularly challenging to guess the TS or final state (with the knowledge 

of the initial state) due to the existence of many equivalent choices of the cell in periodic structures 

(“modular invariance”). 

Finally, there are other ways to study the rare event problem that are based on the minimization 

of a suitably defined discretized action 165, or to use modified stochastic equations of motion to drive 

the system from 𝐴 to 𝐵 166,167. However, all these methods work pretty successfully for small systems 

with smooth topography of energy landscape, where the choice of reaction coordinates is not a 

problem. For larger systems, reaction coordinates are not known and are difficult to anticipate. Since 

the energy landscape becomes rougher with the number of atoms (as shown in Figure 3.2b), the TS 

definition is not enough – there are many of them and their enumeration is a colossal task. However, 

one can distinguish those dynamically relevant for the transition process – using an ensemble of 

transition states sampling, which can be done by transitions path sampling (TPS) 106,168,169. 

3.1.3 Limitations 

As has been mentioned before, the study of transitions aims to obtain the transition mechanism 

and precisely locate relevant transition states. The choice of a reaction coordinate plays a key role in 

this problem. If the reaction coordinate is wrongly chosen, then TST and the mentioned methods may 

show unreliable results. Sometimes, the chemical or physical intuition guides the choice of which 

degrees of freedom are relevant and which are not. However, it is not a trivial choice, especially for 

large systems. Moreover, even if the reaction coordinate looks good, some essential phenomena still 

out of the scope of the transition. So, the kinetic information may be obtained using one of the 

methods listed above. 

Unfortunately, the phase transition simulation methodology performs simulations, where all 

unit cells of the constructed lattice evaluate equally and simultaneously. However, phase transitions 

proceed via nucleation and growth, as mentioned before, and the methods mentioned above are a 

rough but crystallographically and intuitively clear model. The complex study of nucleation and 

growth phenomena requires much larger systems (including hundreds and thousands of atoms) and 
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advanced sampling methods such as transition path sampling (TPS) 168. However, this method 

requires a very accurate force field and the simulation takes a very long time. 
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4 METHODOLOGY 

A particularly complicated problem of finding MEP between two structures by any chain-of-

states algorithm is the challenge of generating a good initial pathway that will be refined to the nearest 

MEP. For any kind of aperiodic systems such as molecules or clusters, this task is much easier that 

for periodic iii. For crystals, this problem becomes a big challenge due to the periodicity of the 

structure since the number of possible variants of lattice parameters choice is infinite. Moreover, 

efforts in developing approaches to predict the real MEP and transition states have also been (and 

still are) under development. 

The general workflow of finding phase transition mechanism consists of three steps: 

• Mapping building 
The goal is to identify pairs of corresponding atoms between the initial and final geometrical 

configurations with an equal number of atoms in both.  

• Initial pathway(s) generation 
Based on the previously devised mapping(s) between two structures, we generate a suitable 

interpolation(s) between the initial and final states and consider them as the initial pathway(s). 

• Pathway optimization 
Previously generated initial pathway(s) must be refined by one of the chain-of-states methods.  

The results of the previous step become an input for the next one. And the final result is the set 

of pathways, among which the one with the lowest energy barrier will be chosen. 

Each of these steps has a number of difficulties for solid-solid transformations, which are not 

faced for aperiodic systems. In particular, lattice parameters representing translational symmetry are 

usually adopted to efficiently describe bulk, which works perfectly for equilibrium property 

calculations. During phase transitions, both lattice parameters and atomic coordinates change. These 

two types of variables need to be treated in an unbiased way to correctly represent the reaction 

coordinates of the transitions. Therefore, a generalized configuration space spanned by both cell and 

atomic degrees of freedom is introduced, along with a metric for proper distance measurements. 

 

4.1 Crystal structures mapping algorithms 
Here are presented several algorithms that search for the most compatible representations of 

pair of crystal structures and provide the structural correspondence to represent a diffusionless 

transformation iv. The main challenge for such algorithms is finding a proper mapping of atoms 

considering periodic boundary conditions. The first part is devoted to the purely geometrical iterative 

                                                
iii It depends on the size of the molecule/cluster. The complexity of the problem of proper mapping choice has an 

exponential dependence on the number of atoms. 
iv Diffusionless transformation do not require long-range diffusion during the phase change; only small atomic 

movements over usually less than the interatomic distances are needed. 
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algorithms. The second part is devoted to describing a new topological view of mapping structures 

onto each other. 

4.1.1 Geometrical mapping algorithm 

First, it must be noted that “geometric methods” mean that these methods deal only with cell 

parameters and atomic positions and try to map these parameters onto each other without taking 

energetics into account. The complexity of such methods grows exponentially with the number of 

atoms. Thus, it is highly ineffective for systems with a large number of atoms in the unit cell. The 

mapping algorithm made by Stevanovic and co-workers 170,171 will be described below. This 

algorithm is one that has been used in this Thesis. The goal of this algorithm is to find such mapping 

that represents diffusionless transformation. 

The algorithm is based on the criteria of minimizing the Euclidean distance between 

corresponding atoms in initial and final structures and minimizing the change in the coordination of 

atoms along the transition path. The algorithm consists of two steps. At the first stage, the algorithm 

seeks the most convenient representations of the initial and final structures. It defines the least 

common multiple for the number of atoms N in both cells and then expands two unit cells to the 

previously obtained number of atoms N by constructing all possible symmetrically inequivalent 

supercells. According to the Hart–Forcade theory 172, the symmetry inequivalent supercells can be 

determined and enumerated. Next, the algorithm omits atomic positions and seeks the most 

compatible representations of supercells or, in other words, such pair of supercells that minimizes the 

strain between them. This statement can be interpreted as maximization of spatial (volumetric) 

overlap between generated cells. The algorithm searches for such combination of two unit cells, 

where the weighted sum of the absolute differences in unit cell parameters (lattice vectors 𝑎, 𝑏, 𝑐 and 

lattice angles 𝛼, 𝛽, 𝛾) and the total surface areas (𝑆) of the two cells is minimal. It can be formulated 

as follows: 

𝑑(𝑐𝑒𝑙𝑙(, 𝑐𝑒𝑙𝑙Q) = � 𝐶u ∙ |𝑞( − 𝑞Q|
uv�,�,L,
�,�,�,s

 (4.1) 

where 𝐶u are some positive weights of quantities 𝑞. They are necessary to make the numerical values 

the same order of magnitude. The search for maximum overlap in the generated cell is accomplished 

by transforming the cells to the corresponding (unique) reduced cell according to the formulation of 

Niggli-Santora- Gruber 173,174. This allows one to implicitly explore all isometric transformations of 

the two cells (rigid rotations and reflections) and all permutations of the unit cell vectors. 

At the second stage, atoms of each structure are placed back into two generated supercells. The 

search for the optimal atom-to-atom mapping is performed with special operations on two sets of 

atomic positions 170,175. These operations should satisfy the following conditions: (1) all symmetry 
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operations of parent Bravais lattices should be conserved, (2) the origin of the coordinate system 

should be at an atomic position, and (3) the permutations of indices of chemically identical atoms 

should be independent. Each chosen symmetry operation, the position of atoms, or permutation of 

indices of atoms is considered as a unified mapping between the structures and a pathway in the 

configuration space 170,175. This two-step algorithm is illustrated in Figure 4.1. 

 
Figure 4.1. Schematics of the two-step geometrical structure mapping algorithm (Reprinted 
from Ref 170). 

Out of many possible atom-to-atom mappings, this algorithm selects the optimal mapping 

solution that yields a minimum of the sum of Euclidian distances between the corresponding atoms 

in the structures. In case when more than one solution is found, then the sum of distances between 
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the atoms is used to making comparisons for ranking them in ascending order and narrow down the 

choice. The described operations are performed using Hart-Forcade theory 172. This theory allows 

one to enumerate the symmetry inequivalent atom sites. The Munkres algorithm 176 is used to find 

the optimal atomic permutation indices. Among the set of possible atom-to-atom mapping, taken only 

those where the trajectory mileage of atoms during the transition from the initial structure to the final 

structures is as less as possible 170,175. Finally, it generates several variants of possible pathways and 

returns them as an output. 

This approach is not unique and there is a similar approach developed previously by Goedecker 

and Sadeghi 177. It measures configuration space distances between aperiodic systems, and as a result, 

gives the mapping between structures. Also, a search algorithm for the identification of identical 

(duplicate) periodic structures that helps to map the unit cells that was developed by Lonie and 

Zurek 178. Another class of newly developed approaches is based on the descriptor-, feature-based 

fingerprinting for the similarity of different periodic structures quantifying. These methods compare 

a selected set of features (not atom-by-atom) and good examples of such works are made by Yang et 

al. 179 and by Zhu et al. 180. In addition, several methods are based on the symmetry distortion 

approach for cell parameters matching made by Munro et al. 181 and by Hatch 57. However, atomic 

mapping is still based on the search for optimal transition trajectory lengths. In the algorithm made 

by Stevanovic et al. 170,171, the unit cells mapping algorithm can be viewed as a more generalized of 

the ideas proposed by Lonie and Zurek 178 to the case where the goal is to discover the optimal 

alignment of two input structures and where these structures are presumed to be different. Concerning 

the atom-to-atom mapping, this was made by the extension of the algorithm of Goedecker and 

Sadeghi 177 to periodic systems. 

 

4.1.2 Topological mapping algorithm 

Instead of considering the crystal structures as a set of atoms inside the cell, it can be represented 

as a periodic graph. Initially, this idea was proposed by Wells in 1954 182 and is now the most common 

approach for describing crystal structure topology. Here, the atoms and/or atomic groups in the crystal 

structure are represented as nodes and interatomic contacts or links between atomic groups are 

represented as edges. Considering the periodicity of crystals, we get an infinite periodic graph, which 

is called a net. In some cases, the net connectivity of crystal structure cannot be precisely determined 

on the level of human expertise and it can be done only using specific algorithms to generate the 

net 183. Sometimes, several different topologies correspond to the same structure 184 and, conversely, 

different crystal structures may have the same net connectivity (same topology). 
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Figure 4.2. Different ways of subnet generation. The net A is starting topology and S1, S2, S3 
are subnets of A. (reprinted from Ref 164) 

However, the supernet-subnet concept must be introduced for the whole picture scope. The 

subnet of some specific net is generated by the cutting edges and, vice versa, the supernet is generated 

by creating new edges. As shown in Figure 4.2, topology A has pcu (primitive cubic) topological type 

and, by cutting some edges, it can be transformed into different subnets. The subnet S1 shown in 

Figure 4.2 is the 1-fold subnet of pcu and has cds (cadmium sulfide) topological type. The subnet S2 

shown in Figure 4.2 is the 2-fold subnet of pcu and has ths topological type. The S2 subnet has 2 

topologically equivalent networks that are interpenetrated into each other (colored by blue and red) 

and these networks do not connected to each other. The subnet S3 shown in Figure 4.2 has sql 

topological type and represents low-dimensional subnet, since S1 and S2 are 3-dimensional. In the 

same way, pcu is the supernet with respect to cds, ths and sql nets. All mentioned topological types 

are designated following RCSR 185 or TOPOS 186 nomenclatures. 

 
Figure 4.3. Relations between structure topologies, where A is original topology and B1, B2, B3 
are subnets of A. 
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The relations between supernets and subnets can be represented as a net relation graph (NRG), 

where the vertices of the graph correspond to the nets and edges correspond to a topological 

transformation (connect the subnet-supernet pairs) 187. The NRG is the map with many different 

paths, where we can find many ways how one net can be converted into another one. As shown in 

Figure 4.3, A is a supernet for B1, B2 and B1, B2 are supernets for B3. Also, one can see that topological 

transformation from B1 to B2 can go through the A or B3 topologies.  

The investigation of the net relations between topologies of crystal structures made a real 

breakthrough in the question of the solid-solid phase transition description. The original idea of this 

approach is presented in the study of Blatov et al. and called the topological network model of solid-

state transformations (TNMST) 164. This approach explains how a phase transition can be analyzed 

in the new configurational space — that of topological networks. In other words, the focus is shifted 

from the geometric aspects (lattice parameters and atomic positions) of structures to the more physical 

and chemical aspects of chemical bonds and the relations between topologies of the structures. 

 
Figure 4.4. Part of configuration space with four stable network regions (A–D): a simplified 
representation with a linear boundary that is formed by two narrow metastable network regions 
(S1 is the supernet, S2 is the subnet) (reprinted from Ref 164) 

Here, the crystal system is considered in terms of the network configuration space (CS) and a 

particular topology corresponds to each point on CS. Surely, there are network regions on CS, where 

the topology can be precisely determined and they are called stable network regions. Although, the 

boundaries between stable regions are representing intermediate regions, where several topologies 

can coexist (Error! Reference source not found.). For the particular structure, several topologies 

can be defined depending on the bond length cutoff parameter. For example, some interatomic 

contacts can be treated as additional bonds and opposite, some bonds can be skipped. The results of 

both representations are supernet and subnet, respectively. These configurations are metastable 

network regions and correspond to the subnets or supernets of the nets from stable network regions. 
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The determination of net edges is not a strict and precise procedure, thus in this model, the CS has 

been simplified and metastable network regions are represented as narrow lines between the stable 

regions (Error! Reference source not found.). 

As a result, the authors proposed the description of the CS 164, where the crystal structure within 

the region on configurational space of local minimum (LM) or TS can be represented as a periodic 

graph (net) and the adjacency of these regions can be described as the subnet-supernet relations 187,188. 

The model provides a list of formulations that govern phase transitions in solids in specific CS. So, 

the most important aspects of the TNMST for the structure mapping algorithm are: 

1. Any region around local minima (LM) on the configurational space is presented by a unique 

topology and can be considered as a topologically stable region. And the topologically stable 

regions with different topologies do not cross each other. Transition state (TS) is located on 

the border of several topologically stable regions. 

2. Any transition path crosses at least one boundary between topologically stable regions. 

Transition 𝑇f → 𝑇K with a direct supernet-subnet relation corresponds immediately to the 

transformation of nets into each other on the boundary. In the case without direct supernet-

subnet relation, the transition will go through the transition state 𝑇s (i.e., 𝑇f → 𝑇s → 𝑇K phase 

transition). 𝑇s represents the boundary and the path crossing point. From the topological point 

of view, 𝑇s is the supernet-subnet pair and each of them equally describes the transition. 

3. Any common subnet/supernet of 𝑇f and 𝑇K bears all information common to both nets; 

different common subnets reflect different properties common to 𝐴 and 𝐵. 

4. We assume energetically more favorable are those paths, which cross the least number of 

boundaries on the CS. 

5. The symmetry of the transition state G should be as large as possible and be a common 

subgroup of the space groups of 𝑇f(𝐺f) and 𝑇K(𝐺K); the index of 𝐺 in 𝐺f and 𝐺K should be as 

small as possible. Consequently, the number of non-equivalent nodes/atoms (or nodality) in 

the subnet/supernet should not be too high. 

6. The minimal supernets and maximal subnets can be considered as the most promising 

candidates for the transition. 

The net has an infinite number of different subnets/supernets, but for a given nodality, this 

number is finite and there is a restriction for nodality. The total number of different subnets/supernets 

that must be considered for both structures is finite, but only several nets are common 

subnets/supernets for both structures. Most promising is the transition through a maximal subnet (or 

minimal supernet) with low nodality and high symmetry. 

As was mentioned, for the interpretation of reconstructive phase transitions, it is necessary to 

understand the relations of supernets and subnets between structures 187. In general, the subnet of a 
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net is formed by subsets of nodes and subsets of edges of the supernet and the subnet can be 

considered part of the supernet. During the transition, the chemical composition of structures is 

unchanged, the subnets that contain the same number of nodes are considered. From a chemical point 

of view, during the transition, some bonds are broken from the supernet to the subnet or bonds are 

created from the subnet or the supernet – both variants are equivalent. 

It is easy to intuitively understand that the path is more energetically favorable when the number 

of broken and newly created bonds is as small as possible. This model can easily describe many phase 

transitions in solids because structures are in direct supernet-subnet relations. A good example of 

such transition is the transition from the rock salt topological type (pcu-b, CN = 6) to zinc blende 

type (dia-b; CN = 4) corresponding to the relation pcu-b − dia-b in the net relation graph. However, 

not every transition structure has a direct supernet-subnet relation, though the transition can always 

be represented in the net relation graph as a set of edges. Thus, each transition between crystal 

structures passes through a TS, which is described by a common subnet or supernet of both structures. 

The transition pathway with the lowest activation energy of the transition state is expected to represent 

a minimal number of bonds that should be broken and created from the topological side. And when 

the common subnet and supernet for both structures are defined, it can be obtained which bonds 

undergo changes during phase transitions. 

Unfortunately, any topology can be geometrically realized in an infinite number of structures 

(called embeddings into Euclidean space), but luckily not all of these realizations fit the network 

symmetry. The network symmetry is described by an automorphism group, which is isomorphic to 

the space group 𝐺 of the most symmetrical embedding of the network 189. Different geometrical 

embeddings can have symmetry, which is a subgroup of 𝐺 or coincide with 𝐺. This imposes additional 

conditions: the subnet and supernet embeddings in the transition state must be in a group-subgroup 

relation or, in other words, belong to the same Barnighausen tree 190. The symmetry of the transition 

state 𝐺(𝑆) between the 𝐴 and 𝐵 nets cannot be higher than 𝐺(𝐴) or 𝐺(𝐵); 𝐺(𝑆) must be a common 

subgroup of 𝐺(𝐴) and 𝐺(𝐵). Thus, the corresponding common subnet/supernet 𝑆 of 𝐴 and 𝐵 exists 

in the transition state in an embedding of the 𝐺(𝑆) symmetry; the maximal symmetry of 𝑆 can be 

higher but must be a supergroup of 𝐺(𝑆). 

The principles of TNMST, including the determination of the supernet-subnet relations, are 

implemented in the ToposPro code 191 and it has been used for the topological analysis of some phase 

transformations in the Thesis. But it provides only topological mapping data, which contains the edge-

to-edge mapping between structures. Thus, a self-written code has been developed to interpret the 

topological mapping data and convert it into a geometrical pathway. 

According to previously defined rules of the phase transition topological description, the 

following algorithm has been used for structures mapping and consists of the following steps: 
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1. The topology networks of both structures A and B are defined and denoted as TA and TB. 

2. Both networks have been decomposed by symmetry. Next, in the resulting datasets, we search 

for items of common space group and the number of atoms. All other networks in both datasets 

we leave aside and do not consider anymore. As a result, we have two datasets 𝐷f and 𝐷K. 

3. For all networks left in both datasets 𝐷f and 𝐷K we produce new datasets by cutting all possible 

combinations of inequivalent bonds. The number of bonds in the set varies from 1 to N 

symmetrical, where N is the maximal coordination number of atoms. Such an approach 

produces a plethora of new networks for both datasets, and among them, we must find common 

networks. At this step, when such networks are found, we classify them as common subnets of 

TA and TB and all other networks in both datasets we leave aside and do not consider anymore. 

The resulting datasets are denoted as 𝐷f′ and 𝐷K′. Subnets in 𝐷f′ and 𝐷K′ may have different 

number of nodes, symmetries. 

4. As a rule, while common subnets are found, there must be common supernets for such 

transition. Thus, for all structures in both datasets 𝐷f′ and 𝐷K′, we generate new datasets by 

forming new edges from second and further coordination shells. Indeed, edges from the second 

coordination shell are more preferable because they correspond to the lowest displacements 

for all atoms during the transition. When these two datasets are formed, we denote them as 

𝐷f′′ and 𝐷K′′, respectively, and next we search for items which correspond to TB in 𝐷f�� dataset 

and items which correspond to TA in 𝐷K��. Found items stay in datasets 𝐷f�� and 𝐷K�� and all others 

we leave aside. Next, in both datasets, we restore bonds cut on step 3 and get the candidates to 

the parents of the supernet. 

5. At this step, in both datasets, we seek items with equal nodality and equal space group. When 

we find such matched structures, we group them for further topological mapping analysis. Each 

group corresponds to the unique pair of parameters – nodality +spacegroup. 

Finally, after all manipulations with topological networks, we have a bunch of groups, each 

group strictly contains at least one network made from TA (let us denote it as 𝑇f�) and at least one made 

from TB (let us denote it as 𝑇K� ) and for each possible pair nets like (𝑇f�, 𝑇K� ) the results next will be 

converted into the atom-to-atom mapping. 

Since we already matched both structures in terms of topological nets (edge-to-edge 

correspondence) with equal supernet, nodality and spacegroup, the matched nets are represented on 

the structures with an equal number of atoms in the cell; thus, we can interpret this data into the 

geometrical (atom-to-atom) mapping. 

Each group generated by the previous part of the algorithm will be considered separately from 

others. In the selected group for each net 𝑇f�-type we map with other nets of 𝑇K� -type and if we match 
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topologies, we get strict correspondence between interatomic connections in the initial structure and 

final. Such topological mapping is written in a format: 

ID Xi ri – Xf rf b1,b2,… 

where ID is the identifier of the selected mapping line, X is a chemical symbol of the initial 

atom, r is the fractional coordinate of the atom, b1,b2… are ids of end atoms of the bonds for this 

particular atom. Indices i and f mean the initial and the final structures. When the mapping between 

interatomic connections is defined, it is easy to get the atom-to-atom correspondence. And as a result, 

after this step, we get a number of possible mappings, each of them contains three things: a geometric 

representation of both structures, atomic mapping and topological mapping. 

 

Figure 4.5. Types of transitions generated by ToposPro. ’+’ is the initial position, ’⬢’ is the 
final position in scaled coordinates. 

The results obtained from the topological analysis need to be examined. The goal of this 

examination is to find mappings that can describe the transition in infinite crystals. In other words, 

such mappings will lead to the initial pathway without intersections of atoms trajectories during the 

transition. For all atom-to-atom mapping, the atom in position ’+’ always goes into the position ’⬢’ 

as presumed. It was found that the topological mapping algorithm generates transitions with several 

different schemes and some of them are shown in Figure 4.5. The illustration in the upper left corner 

corresponds to a transition that happens fully periodically and atom trajectories do not intersect. 

However, such condition will not always be satisfied and generated initial pathway will have atoms 
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trajectories intersection as illustrated in Figure 4.5b-d. Thus, such cases must be skipped for further 

consideration. As a result, only fully periodic atom-to-atom mappings will be considered for the initial 

pathways generation. 

4.2 Initial path generation 
Still, the result, as well as the computing time of any chain-of-states algorithm, are highly 

dependent on whether the proposed initial guess of the pathway is close to real MEP. Hence, 

generated initial pathways give us hints on how particles are moving during the phase transition, 

leading to an intuitive understanding of whether this transition is realistic or not. By default, the initial 

pathway is generated by the linear interpolation (LI) approach, artificially perverting the trajectories 

and often lowering the quality of the initial guess. This is because for some intermediate images, 

atoms inside the structure will come too close to each other and optimization of this pathway will 

take a much longer time. 

The chain-of-states methods involve finding a discrete representation of the MEP. The starting 

point for the initial path generation of the phase transition of crystal structures consists of vectors 

𝒓𝒊𝒏𝒊𝒕 and 𝒓𝒇𝒊𝒏𝒂𝒍, which are representing initial and final states. Here, 𝒓 will denote the vector of 3N+3 

coordinates of the lattice vectors {𝑎, 𝑏, 𝑐} and atomic positions {𝑟(, 𝑟Q …𝑟\} in a given configuration,  

𝒓 = {𝑎, 𝑏, 𝑐, 𝑟(, 𝑟Q … 𝑟\}, where N is a number of atoms in the cell and a linear interpolation of these 

coordinates of the two endpoint configurations is most commonly used as an initial path in NEB 

calculations and can be written in the following way: 

𝑟¢ = 𝑟���£ +
𝑘
𝑄 ⋅

¥𝑟¦���§ − 𝑟���£¨ (4.2) 

where index 𝑘 denotes the image number in the path and runs from 1 to 𝑄 and the path will have  

𝑄 − 1 intermediate images. 

After applying the LI approach for each previously obtained atom-to-atom mapping, an 

abundance of initial pathways have been obtained and each of them must be refined by the chain-of-

states optimization algorithm. 

 

4.3 Pathway(s) optimization 
Since the set of initial pathways have been generated, the pathway optimization has been made 

by the Variable Cell Nudged Elastic Band (VCNEB) method. 

4.3.1 Variable Cell Nudged Elastic Band 

A set of images {𝑋(, 𝑋Q, … , 𝑋�, …𝑋\} connecting the two endpoints 𝑋( and 𝑋\ represent the 

discrete version of the transition pathway in the VCNEB method, like in the original NEB method. 

Here, 𝑋�-th is a vector that contains the i-th image coordinates in a special configuration space. The 
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transition path is adjusted according to the initial one by the “virtual” springs that connect neighboring 

images and employing the force orthogonal to the pathway. After the convergence, the resulting chain 

of images tends to be MEP. 

Contrary to the original NEB method, in the VCNEB method, the configuration space and the 

force vectors form an expanded vector that has components from the cell and atomic positions. Both 

parameters are transformed to have the same dimensionality. 

The unit cell of a crystal is presented as a variable matrix of lattice vectors 𝒉 = «�⃗�, 𝑏⃗ , 𝑐®, with 

a volume of Ω = det	(𝒉). In the variable cell NEB technique 192–194, the finite strain tensor 𝜖 as a free 

variable is always chosen, instead of the lattice vector ℎ, for the sake of convenience. Thus we can 

replace 𝒉𝟎 as a reference configuration by 𝒉 = 𝒉𝟎(1 + 𝜖), where 𝜖 includes nine components 

𝜖�� 	(𝑖, 𝑗 = 1,2,3). 

The atomic fractional coordinates 𝑟·	(𝑣 = 1,2,… , 𝑁) represent positions of all 𝑣-th atoms. The 

full configuration space is described by the vector 𝑋 = (𝜖(�, 𝜖Q� , 𝜖U� ; 𝑟(, 𝑟Q, … , 𝑟\) (𝑖, 𝑗 = 1,2,3), with 

9 + 3𝑁 components. 

Under the applied pressure 𝑃, the enthalpy 𝐻 = 𝐸 + 𝑃𝑉 is determined by the 9 + 3𝑁-

dimensional energy surface — the “enthalpy surface” 

𝐻 = 𝐻(𝜖(�, 𝜖Q�, 𝜖U�; 𝑟(, 𝑟Q, … , 𝑟\) (4.3) 

where E is the energy of this structure. The expanded “force vector” in a 9 + 3𝑁 configuration space 

can be defined by the derivative of the enthalpy with respect to 𝑋 as follows 

𝐹 = −¼
𝜕𝐻
𝜕𝑋½¾

 (4.4) 

The strain components of 𝐹 on the lattice are the derivatives of 𝐻 with respect to 𝜖 

𝑓(𝜖) = −(𝜎 + 𝑃)𝑉 ∙ (1 + 𝜎r)|( (4.5) 

where 𝜎 is the quantum-mechanical stress tensor 195 at a given configuration 𝑋. The forces on atoms, 

𝑓(, 𝑓Q, … , 𝑓\ can be obtained from the Hellmann–Feynman theorem 196. Finally, the generalized force 

𝐹 can be written as 192 

𝐹 = (𝑓À, 𝑔𝑓(, 𝑔𝑓Q,… , 𝑔𝑓\) (4.6) 

where the metric tensor 𝑔 = 𝒉r ∙ 𝒉 is introduced to keep the symmetry during structure 

relaxation 192,193. 
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Figure 4.6. The minimum energy path (line with gray cycle) and initial path are described on 
the enthalpy surface. The forces in the VCNEB method on Image i are shown in the inset. 𝑭�∇ 
is the potential force in the gradient direction. 𝑭�∇Â and 𝑭�

Ã∥ are the transverse component of 𝑭�∇ 
and the spring force, respectively (Reprinted from Ref 163). 

The tangent vector 𝜏 represents the unit vector to neighboring images and is directed along the 

path 158,197,198. The transverse components of the potential forces acting on the lattice are denoted as 

𝑓À∇Â and forces acting on atoms are denoted as 𝑓·∇Â. 𝑓ÀÃ∥ and 𝑓·Ã∥ represent the nudging spring forces 

acting on lattice and atoms, respectively. They keep the image spacings in the pathway. Now one can 

define the VCNEB force 𝐹nÅ\ÆK , the cell force 𝑭ÀnÅ\ÆK acting to reshape the new image of the cell, 

and the atom force 𝑭·nÅ\ÆK  shifting the atoms 

𝑓ÀnÅ\ÆK = 𝑓À∇Â + 𝑓ÀÃ∥ (4.7) 

𝑓·nÅ\ÆK = 𝑓·∇Â + 𝑓·Ã∥ (4.8) 

𝑭nÅ\ÆK = (𝑓ÀnÅ\ÆK, 𝑔𝑓(nÅ\ÆK, 𝑔𝑓QnÅ\ÆK,… , 𝑔𝑓\nÅ\ÆK) (4.9) 

In the VCNEB method, the basic idea is to search the MEPs by studying the ‘‘enthalpy surface’’ 

instead of the “potential energy surface” 199 in the traditional NEB method. When applying the VC-

NEB method to reconstructive phase transitions, the transition path is determined by finding the 

MEPs on the enthalpy surface in a larger (9+3N)-dimensional configuration space, combining the 

unit cell and atomic variables. The images along the path are relaxed to MEPs through 𝑭nÅ\ÆK , which 
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contain the transverse components of the potential forces 𝑭∇Â and the spring forces 𝑭Ã∥ (Fig. 1). 

Along with the VCNEB method there exists a generalized solid-state NEB (G-SSNEB) method 

proposed by Sheppard et al. 162. G-SSNEB method investigates the solid–solid transformations 

involving the unit-cell and atomic degrees of freedom, using scaled stress with a Jacobian term along 

the steepest-descent direction and the atomic forces. The VCNEB and G-SSNEB methods treat the 

problem in different metric spaces 200 and have a significant technical difference. In the VCNEB 

method, all the components of the general forces are along the gradient direction on the enthalpy 

surface, whereas in the G-SSNEB method, they are replaced by the true lattice force (the derivative 

of energy). For the latter, the computation is implemented under the assumption of an isotropic elastic 

medium with a Poisson ratio of zero, while this unjustified assumption is not needed in our VCNEB 

method. 

 

4.3.2 Implementation of VCNEB 

To perform a VCNEB calculation for the description of phase transition between two structures, 

the initial pathway represented by a set of intermediate images must be defined. As has been shown 

before, usually, it is the linear interpolation between two given endpoint images. However, it can be 

the user-provided specific configurations. 

By starting from the initial path, the images are relaxed to the MEP through the VCNEB force 

𝑭nÅ\ÆK  derived from the force and stress tensors calculated by the popular empirical (GULP 201) and 

ab initio (Quantum ESPRESSO 202,203 and VASP 204) codes. The variable-elastic-constant, improved-

tangent-estimate and climbing-image NEB schemes 197,198,205 are also implemented in VCNEB code 

for accurate saddle point determination. The VCNEB calculation will stop when the user-defined 

convergence conditions on force and enthalpy have been satisfied. 
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Figure 4.7. The basic procedure of the VCNEB technique (Reprinted from Ref 163). 

For the previously obtained initial pathway, the basic procedure of the VCNEB technique is as 

follows, as shown in Figure 4.7: 

1. Calculate the stress on the lattice and the forces on the atoms in the intermediate images 

from first principles. 

2. Calculate the VCNEB forces based on the stress on the lattice and the forces on the 

atoms by determining the tangent vector τ with the vector  

𝑋 = (𝜖(�, 𝜖Q� , 𝜖U� ; 𝑟(, 𝑟Q,… , 𝑟\) (i = 1, 2, 3) for intermediate images. 

3. Calculate the displacement of atoms and the transformation strain for the cell based on 

the calculated VCNEB forces by using the optimization algorithm. As a result, a new 

set of images will be generated. 

4. Repeat steps (1)–(3) until the halting criteria are satisfied. 

As a result, the set of optimized pathways are obtained with a lot of meaningful data, including 

the transition energy profile, structure evolution, cell parameters change of the investigated transition 

and much more. The main focus here is the TS – its energy, height of the barrier and geometry. 

Finally, among all optimized pathways, the best (with the lowest energy barrier) is chosen. 

In conclusion, two important remarks must be made concerning all phase transition 

mechanisms. First, the transition mechanism, which will further be discussed, is the best mechanism 

among those tested; i.e., it has the lowest activation barrier. However, other mechanisms with a lower 

transition barrier are not excluded since the global optimization of phase transition paths was not 

performed and robust methods for doing so still do not exist. Second, the phase transition mechanisms 
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are based on the mean-field approximation, where all unit cells behave identically and 

simultaneously. As has been mentioned before, phase transitions are proceeding via nucleation and 

growth and the presented methodology is a rough but crystallographically and intuitively clear model. 

 
4.4 Workflow 
All steps described above in this section are combined in the unique workflow for the phase 

transition simulation in solids. The developed workflow is illustrated in Figure 4.8. 

 
Figure 4.8. The workflow for the Minimal energy pathway search.   
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4.5 Computational methods 

4.5.1 Geometry optimization 

For every single simulation, in the beginning, structure relaxation of the studied system should 

be carried out. So, the atomic forces, cell stresses and total energy calculations were performed using 

density functional theory (DFT) 206,207 within the generalized gradient approximation (Perdew-Burke-

Ernzerhof functional) 208, and the projector augmented wave method 209,210 as implemented in the 

VASP 204,211,212 package. The Monkhorst–Pack scheme 213 was used to sample the Brillouin zone. 

The details of other parameters will be noted for each particular system in Results section. 

4.5.2 Mapping 

A geometric mapping algorithm made by Stevanovic and co-workers 170,171 has been used to 

generate a set of mappings. Topological mapping has been performed using TOPOS crystal-

chemistry package 191. Translation of the mapping data into chain-of-states pathway and validation 

of obtained pathways have been performed by the hand-written code. 

4.5.3 Pathway optimization 

Each of the produced initial pathways has been optimized and to reveal the mechanism of 

structural phase transition, we performed variable-cell nudged-elastic-band (VCNEB) 163 

simulations, as implemented in the USPEX code 117,121. Besides the energy estimation, VCNEB 

calculations require atomic forces and cell stresses calculation, all of them were computed with 

projector-augmented wave pseudopotentials (PAW) on the Vienna Ab initio Simulation Package 

(VASP) developed by Kresse and Furthmüller 204 at the Perdew-Burke-Ernzerhof generalized 

gradient approximation (PBE-GGA) level of theory 208. The climbing image – descending image 

technique 197 was used to precisely locate transition states (TSs). The FIRE optimizer 214 has been 

chosen. The halting criteria of the calculation are met when the maximum magnitude VCNEB-force 

among all images is less than some predefined value. For each particular system, this value will be 

specified in Results section. The time step, maximum number of steps, number of images in the 

pathway and value of the spring constants will also be specified for each particular system in Results 

section.  

Crystal structures of predicted phases were generated using VESTA software 215. 
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5 RESULTS AND DISCUSSIONS 

The main result of this Thesis is the development of the topology-based approach for the initial 

path generation and the adaptation of the geometrical mapping approach with its further application 

for MEP search. The summary of all steps for the MEP search is presented as a unified workflow 

presented in Workflow section in Methodology chapter. 

I describe below how the proposed unified workflow has been used to investigate phase 

transitions in superhard chromium nitrides, calcites, tungsten borides and between andalusite, 

sillimanite and kyanite phases of Al2SiO5. 

 

5.1 Mechanism of the phase transition in CrN: from NaCl-type to WC-type 

structure.  
Generally, the hardest and most popular superhard materials belong to two groups – (1) some 

B-C-N compounds and their derivatives (e.g., Refs. 216,217), and (2) nitrides, carbides and borides of 

some transition metals. Compounds of the first class are semiconducting and brittle and the best 

known superhard phases (i.e., with Vickers hardness > 40 GPa) belong to it, whereas those of the 

second class are metallic and more ductile. A recent study made by Kvashnin et al. 218 has been 

devoted to search for the material with the best hardness (computed using the Lyakhov-Oganov 

model 219), where the list of new promising hard and superhard Cr-B, Cr-C and Cr-N systems has 

been studied. Several theoretical studies of chromium nitrides and borides reported that CrB4 and 

hypothetical metastable CrN2 have to be superhard 218,220–222. 

Usually, chromium metal and its compounds are used in a wide range of applications mainly 

related to cutting tools 223,224 and wear-resistant coatings 225–228. Chromium nitride, CrN, is often used 

on medical implants and tools as a coating material due to its good wear, oxidation and corrosion 

resistance 225–227. CrN is also a valuable component in advanced multicomponent coating systems, 

such as CrAlN, for hard, wear-resistant applications on cutting tools 229. 

Several experimental works devoted to chromium nitrides reported the existence of a cubic 

paramagnetic B1-phase (NaCl-type) with chemical formula CrN and 𝐹𝑚3&𝑚 space group 230,231. 

However, at temperatures below the Néel temperature (200-287 K) 231–234 B1-CrN phase transforms 

to an orthorhombic antiferromagnetic phase with 𝑃𝑛𝑚𝑎 space group 231,233 and this transition was 

studied theoretically 235. Today, electronic and magnetic properties of chromium nitride at low 

temperatures are actively studied 231,235–238. 

In addition to CrN, there is another stable compound Cr2N, which appears together with CrN 

during the fabrication of Cr-N films and displays comparable wear resistance, but worse oxidation 

resistance 239–242. Theoretically predicted crystal structure of Cr2N 243 was based on experimental data 
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obtained by Eriksson 244, who reported about hexagonal close-packed structure with 𝑃3&1𝑚 space 

group with lattice parameters a=4.752 Å, c=4.429 Å. Comprehensive first-principles calculations of 

atomic structure and physical properties of different Cr2N phases 245 were provided. However, the 

only work on the global optimization of Cr-N systems was done by Kvashnin et al. 218. A convex hull 

diagram was constructed based on the calculated enthalpies of formation of predicted phases at zero 

pressure for different compositions, as shown in Figure 5.1a. Red and white points in the convex hull 

diagram correspond to thermodynamically stable and metastable phases, respectively. The results of 

Pareto optimization v shown in Figure 5.1b. All points, which belong to a certain Pareto front, are 

connected by black line. The first Pareto front contains phases with simultaneously optimal high 

hardness (estimated using Lyakhov-Oganov model 219) and maximum stability (measured as vertical 

distance from the convex hull). The phases located in the first Pareto fronts, shown by red circles, lie 

on the convex hull or close to it (see Figure 5.1b). 

                                                
v Pareto optimization is the method for the multiobjective optimization problem, where more than one objective, 

which have to be optimized simultaneously. 
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Figure 5.1. a) Convex hull diagram of Cr-N system and b) results of Pareto optimization in 
terms of formation enthalpies and Vickers hardness, computed using the Lyakhov-Oganov 
model 219 for Cr-N system. Numbers in circles denote the number of Pareto front. Full and open 
circles are stable and metastable phases, full triangles – one-component phases (reprinted from 
Ref. 218) 

Results of Pareto optimization of the Cr-N system show that thermodynamically stable CrN 

and Cr2N phases display hardness up to 30 GPa. The ideal strength of 𝑃𝑛𝑚𝑎-CrN, 𝑃6&𝑚2-CrN, 

𝑃𝑛𝑛𝑚-Cr2N and 𝑅3𝑐-CrN4 phases, to be equal to 38.2, 41.7, 37.3 and 24.2 GPa, respectively. At the 

same time, new 𝑃6&𝑚2	phase has been predicted. From this perspective, the structural phase transition 

from the previously known 𝑃𝑛𝑚𝑎-CrN phase to 𝑃6&𝑚2-CrN attracted our attention. 𝑃𝑛𝑚𝑎-CrN 

phase has a NaCl-type structure with an orthorhombic distortion due to antiferromagnetic ordering, 

while predicted 𝑃6&𝑚2-CrN is isostructural to tungsten carbide (WC) as shown in Figure 5.2. The 

structural similarity suggests that 𝑃6&𝑚2-CrN may have outstanding mechanical properties similar to 

those of WC. 
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Figure 5.2. Crystal structures of CrN phases. Green spheres – Cr atoms, blue – N atoms 

 

 
Figure 5.3. a) Energy per stoichiometry unit as a function of volume for both of considered 
CrN phases, b) Phase diagram of CrN (reprinted from Ref. 218) 

The dependences of the total energy on the volume of 𝑃𝑛𝑚𝑎 and 𝑃6&𝑚2 phases are shown in 

Figure 5.3a. Conditions for the experimental synthesis of CrN phases were estimated by computing 
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phase diagrams, shown in Figure 5.3b, where 𝑃𝑛𝑚𝑎 → 𝑃6&𝑚2 phase transition pressure at 0 K equals 

to 19.9 GPa, which is readily achievable in experiments. 

The convex hull diagrams of Cr-N phases were calculated at the pressures of 0, 10, 20 and 30 

GPa as shown in Figure 5.4. We see the same stable compositions as at zero pressure and at 30 GPa 

𝑃6&𝑚2-CrN phase becomes more stable than 𝑃𝑛𝑚𝑎-CrN. 

 
Figure 5.4. Convex hull diagrams for Cr-N system at a) 0 GPa, b) 10 GPa, c) 20 GPa, d) 30 GPa 
(reprinted from Ref. 218) 

My contribution to this work was investigating the phase transition mechanism from 𝑃𝑛𝑚𝑎-

CrN to newly predicted 𝑃6&𝑚2-CrN. 

5.1.1 Calculation details 

The structural phase transition from 𝑃𝑛𝑚𝑎-CrN to newly predicted 𝑃6&𝑚2-CrN was calculated 

at 0 GPa. As has been mentioned in Geometry optimization section of Methodology chapter, first 

of all, both structures have to be well optimized. It is important to note that for CrN phases has been 

used the Hubbard U-term correction – detailed information on the choice of U-J parameter described 

below. The plane–wave energy cutoff of 600 eV was used, ensuring excellent convergence of total 

energies, forces and stresses. The mappings were generated by the topological mapping approach (see 

Topological mapping paragraph). The initial pathways were generated using the linear interpolation 

approach as described in Initial pathway section from the obtained mappings. Each of all generated 
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initial pathways was subsequently refined by VCNEB method as discussed in Pathway optimization 

section. VCNEB calculations started with 10 intermediate images (structures), and this number was 

automatically increased whenever the path became longer. Spring constants varied from 3 to 6 eV/Å2. 

The halting criterion for the calculation was set as RMS (Root Mean Square forces) on images that 

are less than 0.01 eV/Å. 

5.1.1.1 Details of U-J calculations 

For different properties of interest, very different values of U-J are optimal. For our purposes 

of finding thermodynamically stable compounds, the most important quantity is the enthalpy of 

formation: we calculated the enthalpy of formation of CrN at different values of the U-J parameter 

from 0 to 5 eV and compared them with experimental data taken from Ref. 246 (Δ𝐻= 0.64 eV/atom). 

We found that U-J = 1 eV gives the enthalpy of formation of 0.53 eV/atom, which is in good 

agreement with reference data 246. We also found that the GGA+U approach with U- J = 1 eV predicts 

the structural parameters of considered CrN system accurately: 𝑎L�§L = 4.189 Å, 𝑎ÈÉÊ = 4.148 Å 

(Ref 247), 𝑉L�§L  = 73.35 Å3, 𝑉ËÈ¦  = 73.28 Å3 (Ref 248). Thus, we believe that value U-J=1 eV is suitable 

for correct description of stability and structural parameters of AFM orthorhombic CrN phase and 

the same U-J parameter was used for calculations of other phases in the Cr-N system. 

5.1.2 Results 

After optimization of the initial structures, the topological mapping has been created. Initially, 

the coordination of Cr and N atoms in both structures are six-coordinated. Cr and N atoms are 

topologically equivalent in both structures, which means that topology of both structures can be 

presented by uninodal (with one inequivalent atom) net. The topological type of 𝑃6&𝑚2-CrN is acs 

and pcu for 𝑃𝑛𝑚𝑎-CrN. These topologies are not in direct relation between each other, thus a net 

relation graph needs to be built (see Topological mapping paragraph). The trees of topologies 

generated from acs and pcu have several common topologies. Figure 5.5 presents the net relation 

graph, where common subnets for acs and pcu topologies were listed. All of mentioned common 

subnets, i.e. sqp, vma and wlj, are 5-coordinated (highest possible) and all other topologies with 

lower coordination have been skipped. As one can see, the list of common symmetry subgroups is 

not complete but represented by only a few possible subgroups. That is because each topology can 

only be presented by a geometrical embedding of a limited number of symmetries. 
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Figure 5.5. Piece of net relation graph for acs and pcu topologies with the highest coordination. 

When the common subnet and common symmetry subgroups are found, the supernet of the 

transition needs to be found. For both vma and wlj topologies, the common supernet has not been 

found (acs or pcu cannot be found as subnets of generated supernets) and only for sqp topology the 

supernet bcu-7 contains both acs and pcu. Geometric representation of bcu-7 supernet on the 

geometries of 𝑃6&𝑚2-CrN and 𝑃𝑛𝑚𝑎-CrN structures helped to create an atom-to-atom mapping, 

which is truly periodic. As a result, only one mapping has been used for further initial pathway 

generation, as shown in Figure 5.6. 

 
Figure 5.6. The geometrical representation of 𝑃6&𝑚2 → 𝑃𝑛𝑚𝑎 (topologically: acs → pcu) 
transition. Black interatomic contacts represent constant chemical bonds. Red and blue dashed 
lines represent chemical bonds cut and created during the transition, respectively. Black+blue 
interatomic contacts represent acs topology, black+red interatomic contacts represent pcu 
topology, black+red+blue interatomic contacts represent bcu-7 topology. 

As a result, we found that 𝑃6&𝑚2-CrN phase, which has WC-type crystal structure is less stable 

at zero pressure than 𝑃𝑛𝑚𝑎-CrN phase by 0.21 eV per formula unit with U-J=1 eV (see Figure 5.7). 

Details of the calculations can be found in related publication 218. The optimized transition path is 

shown on the top panel of Figure 5.7. Two transition states denoted as TS1 and TS2 were found along 

with an intermediate structure (IS) with 𝑃𝑚 space group. Direct transition barrier from 𝑃𝑛𝑚𝑎 to IS 
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structure is 0.47 eV per formula unit. Transition state TS2 is located 0.28 eV/unit higher than IS. The 

reverse transition from 𝑃6&𝑚2 phase is accompanied by the barrier of 0.31 eV/unit. 

 
Figure 5.7. The 𝑃𝑛𝑚𝑎 → 𝑃6&𝑚2 transition of CrN at 0 GPa and 0 K. Structures of initial 𝑃𝑛𝑚𝑎 
phase, transition states TS1 and TS2, intermediate structure (IS) and final 𝑃6&𝑚2 phase of CrN 
are shown on the bottom. 

It should be noted that intermediate structure consists of alternation of layers of 𝑃𝑛𝑚𝑎 and 

𝑃6&𝑚2 structures with the energy higher than 𝑃𝑛𝑚𝑎 phase by 0.24 eV/unit and than 𝑃6&𝑚2 by 

0.03 eV/unit. High barrier indicates that high temperatures are necessary to kinetically enable this 

transition. 
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5.2 Mechanism of the sp2-sp3 transition in CaCO3 
The exceptional ability of carbon to form sp2 and sp3 bonding states leads to a great structural 

and chemical diversity of carbon-bearing phases at nonambient conditions and carbonates are not an 

exception. Graphite is the ground state of carbon at ambient conditions with a triangular bonding 

pattern (sp2 hybridization). At high pressure (P), carbon tends to be tetrahedrally bonded (sp3), and 

diamond is stable at P > 1.7GPa (0 K) 249. These different bonding patterns result in very different 

mechanical, optical, electric, and thermal properties 250, making carbon a truly remarkable element. 

Along with that, carbon forms very strong bonds, leading to high melting temperatures and high 

activation energies for the solid-state phase transitions 249. As a result, a number of carbon-based 

metastable phases with mixed sp2 and sp3 bonding patterns exist that combine unique physical 

properties of both graphite and diamond 251,252. The synthesis of such novel carbon-based 

technological materials requires navigating in the carbon energy landscape as well as insights into 

the trajectories and mechanisms of its phase transitions 253. 

Theoretical computations predict that sp3 carbonates become thermodynamically stable at 

P > ∼80–130GPa 254–258. Lobanov et al. 259 investigated the high-P behavior of CaCO3, one of the 

most abundant carbonates near the Earth’s surface and a good proxy for carbonate chemical 

composition in the mantle 260,261. It is an sp2 carbonate at normal pressure. Previous high-P studies 

have revealed a number of pressure-induced transformations in CaCO3. At P < ∼40GPa, (meta)stable 

phases of CaCO3 exist that include calcite, aragonite, CaCO3 II, CaCO3 III, CaCO3 IIIB, and CaCO3 

VI (e.g., Refs 255,262–264). At P > 40GPa, CaCO3 transforms into postaragonite, which has been 

reported as a stable phase up to 137 GPa 255,265,266. Importantly, all these structures contain sp2-

hybridized carbon forming triangular CO3 groups. 

Pyroxene-like 𝐶222(–CaCO3, which has been predicted to be stable at P > 137GPa, has a 

different bonding pattern, with sp3-hybridized carbon forming polymerized CO4 chains 255. This 

prediction gained some experimental support in that the major Bragg peaks of the 𝐶222( CaCO3 were 

observed in experiment at P > 140GPa 266. The high synthesis pressure implied that sp3 CaCO3 is not 

present in the Earth’s mantle (135 GPa is the core-mantle boundary pressure), and further 

experimental studies of sp3 carbonates were shifted to other compositions. More recently, the sp2-sp3 

transition in CaCO3 was revisited by Pickard and Needs 258, who predicted a new sp3 CaCO3 phase 

(𝑃2(/𝑐) at P > 76GPa, calling for a new synthesis study.  

In the study made by Lobanov et al. 259, the phase transitions in CaCO3 at P > 40GPa via 

synchrotron X-ray diffraction, Raman spectroscopy, and first-principles calculations have been 

explored. It has been found from X-ray diffraction that at pressure of 40–102 GPa, the 𝑃𝑚𝑚𝑛-CaCO3 

(postaragonite phase) is stable, which is in a good agreement with previous studies 255,265. Also, has 

been predicted the transformation of postaragonite CaCO3 phase to the previously predicted 𝑃2(/𝑐 
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CaCO3 with sp3-hybridized carbon at 105 GPa (∼30GPa higher than the theoretically predicted 

crossover pressure). Also, the stability field of sp3-bonded 𝑃2(/𝑐 CaCO3 has been established and it 

was shown that this phase has a strong Raman band characteristic of fourfold carbon in its crystal 

structure. Raman spectra of 𝑃2(/𝑐 CaCO3 show an intense band at 1025 cm−1, which we assign to 

the symmetric C-O stretching vibration based on empirical and first-principles calculations. This 

Raman band has a frequency that is ∼20% lower than the symmetric C-O stretching in sp2 CaCO3 

due to the increasing of C-O bond length during the sp2-sp3 transition and can be used as a fingerprint 

for tetrahedrally coordinated carbon in other carbonates. 

My contribution to this work was the investigation of the phase transition mechanism from 

𝑃𝑚𝑚𝑛-CaCO3 to 𝑃2(/𝑐-CaCO3. The sp2-sp3 phase-transition mechanism in CaCO3 appears to be a 

complex multistage process. The lowest-enthalpy transition path includes reoccurring sp2 and sp3 

CaCO3 intermediate phases and transition states. 

5.2.1 Calculation details 

The structural phase transition from 𝑃2(/𝑐-CaCO3 to 𝑃𝑚𝑚𝑛-CaCO3 (postaragonite) was 

performed at 100 GPa. As has been mentioned in Geometry optimization section of Methodology 

chapter, first of all, both structures have to be well optimized. The plane–wave energy cutoff of 

600 eV was used, ensuring excellent convergence of total energies, forces and stresses. Among all 

possible mappings for	transition generated by geometrical mapping approach (see Geometric 

mapping paragraph), we chose top 10 results. Because mapping algorithm is not commutative, two 

sets of mappings have been generated (𝑃2(/𝑐-CaCO3 → 𝑃𝑚𝑚𝑛-CaCO3 and 𝑃𝑚𝑚𝑛-

CaCO3 → 𝑃2(/𝑐-CaCO3). From the obtained mappings, the initial pathways were generated using 

linear interpolation approach as described in Initial pathway section. Each of all generated initial 

pathways was subsequently refined by VCNEB method as presented in Pathway optimization 

section. VCNEB calculations started with 10 intermediate images (structures), and this number was 

automatically increased whenever the path became longer. Spring constants varied from 3 to 6 eV/Å2. 

The halting criterion for the calculation was set as RMS (Root Mean Square forces) on images that 

are less than 0.01 eV/Å. 

5.2.2 Results 

At a pressure of 100 GPa, the 𝑃2(/𝑐 CaCO3 phase is more stable by 0.02 eV/atom than 

postaragonite. The barrier height from postaragonite side is quite large, 0.14 eV/atom (or 0.70 

eV/f.u.), implying that this transition is kinetically feasible only at high temperatures. One crucial 

distinction between the crystal structures of sp2 and sp3 CaCO3 is that CO3 groups in postaragonite 

are isolated, while CO4 groups in 𝑃2(/𝑐 CaCO3 are corner linked into pyroxenelike chains. 

Accordingly, the transformation mechanism from 𝑃2(/𝑐 - CaCO3 to postaragonite at 100GPa is quite 

complex and can be divided into four stages (see Figure 5.8): each stage corresponds to an energy 
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minimum, and boundaries between them correspond to TSs. In the first stage of the transformation, 

the postaragonite structure distorts gradually, with all CO3-triangles becoming nonplanar. This 

distortion becomes critical at transition state 1 (TS1), triggering the second stage of the transition 

with all carbon atoms forming additional bonds with oxygen atoms of the next layer, stitching isolated 

CO3 groups into infinite chains of CO4 tetrahedra. This topology corresponds to a local enthalpy 

minimum and has a 𝑃2( symmetry (intermediate phase 1, IP1). However, the enthalpy minimum of 

IP1 is very shallow (see Figure 5.8). Towards transition state TS2, one of the C-O bonds of the 

original CO3 triangle gradually elongates and eventually breaks. In the third stage, between transition 

states TS2 and TS3, yet another metastable structure with a 𝑃2( symmetry appears, featuring flat and 

noncoplanar CO3 triangles and a shallow enthalpy minimum. As this structure distorts towards 

transition state TS3, carbonate triangles reorient, nearby oxygens displace towards them, and 

eventually, one obtains infinite chains of CO4 tetrahedra in the same topology as in the 𝑃2(/𝑐 

structure. The final fourth stage of the transformation is just a relaxation towards the theoretically 

predicted 𝑃2(/𝑐 CaCO3 structure 258. Transition states define the crossover between different 

topologies, i.e., the point at which chemical bonds are formed or broken. It is very tempting to think 

of some maximum bond lengths characteristic of a given pair of atoms (e.g., C-O), beyond which 

bonds break. However, this is not to be the case for 𝑃𝑚𝑚𝑛 → 𝑃2(/𝑐 transition, as the values of 

critical C-O bond lengths vary for different transitions. This suggests that the phase transitions are 

driven not just by the nearest-neighbor interactions but also by longer-range interactions while 

cooperative effects are essential. 

One fundamental comment is necessary regarding the mechanism of this phase transition. The 

intermediate minima (IP1 and IP2) in this case are so shallow that they are unlikely to be quenched 

in the experiment: these minima are not strongly kinetically protected and will rapidly decay into 

postaragonite and 𝑃2(/𝑐, respectively. The role of these intermediate minima is to be “stepping-

stones” on the transition pathway, lowering the overall barrier. This is in contrast to the case of BH, 

a newly predicted compound, where the phase transition involves a very deep and most likely 

experimentally obtainable, intermediate phase 267. 
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Figure 5.8. Mechanism of the 𝑃𝑚𝑚𝑛 (postaragonite) → 𝑃2(/𝑐 transition of CaCO3 at 100 GPa. 
Structures of initial postaragonite phase; transition states TS1, TS2, and TS3; intermediate phases 
IP1 and IP2; and final 𝑃2(/𝑐 of CaCO3 are shown (for clarity, we highlighted CO4 tetrahedra). 
The evolution of the five shortest C-O distances is shown across the proposed transition path. 
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5.3 Mechanism of the phase transition in tungsten monoborides 
Transition metal borides are important materials for many industrial applications and the most 

common are boron-rich phases, which are superhard 268–274. However, not only the boron-rich phases 

could have potential interest from fundamental points of view. It is known experimentally that there 

are two tungsten monoborides with 𝐼4(/𝑎𝑚𝑑 and 𝐶𝑚𝑐𝑚 space groups, respectively 275,276. Initially, 

tungsten monoboride was reported to crystallize in a tetragonal α-MoB-type structure in the space 

group 𝐼4(/𝑎𝑚𝑑 275 and was later named α-WB. It was found from the X-ray patterns of hot-pressed 

W–B alloys with W:B = 1:1 composition after annealing treatments at temperatures between 1473 

and 1673 K that it consists of the low-temperature α-WB and the high-temperature orthorhombic 

CrB-type structure, recognized as β-WB (𝐶𝑚𝑐𝑚 space group). Its detailed crystallographic 

characteristics were measured and its isostructurality with the CrB phase was confirmed 

experimentally 277. These tungsten monoborides have a difference in the enthalpy formation of about 

13 meV/atom 273,278. 

 
Figure 5.9. a) Total energy as a function of generation number as a result of the fixed-
composition evolutionary search for WB phases; b) total energy per stoichiometry unit as a 
function of the volume for considered WB phases; c-e) crystal structures of 𝐼4(/𝑎𝑚𝑑, 𝐶𝑚𝑐𝑚 
and 𝑃4&2(𝑚 phases. Boron atoms are located in the vertexes of polyhedra. Green and red colors 
of W atoms demonstrate symmetrically nonequivalent atoms. Crystal structures of WB phases 
were generated using VESTA 215 (reprinted from Ref 279). 

A recent computational study made by Kvashnin et al. 274 indicates the potential existence of a 

new low-temperature phase of WB with 𝑃4&2(𝑚 space group, stable in the temperature range from 0 

to 300 K at ambient pressure 274. 𝑃4&2(𝑚-WB was found to be thermodynamically more stable than 

α-WB with the enthalpy difference of 12 meV/atom 274. Thus there is an issue why such low-enthalpy 

phase has not been found experimentally, yet. In recent study 279, we predicted all three 

thermodynamically stable tungsten monoborides using the fixed-composition USPEX evolutionary 
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algorithm. The dependence of the total energy of various tungsten monoboride phases on the number 

of the generation during the evolutionary search is shown in Figure 5.9а. The calculated dependences 

of the total energy on the volume of three lowest-energy tungsten monoborides shown in Figure 5.9b. 

Calculated curves make it possible to obtain information about the pressure required for the 

𝑃4&2(𝑚 → 𝐼4(/𝑎𝑚𝑑 phase transition, which is equal to 12.9 GPa; this value is in good agreement 

with 11.8 GPa from Ref 280. The volumes of the unit cells of β-WB and α-WB are almost the same, 

but the energy of the equilibrium state of β-WB is higher than that for α-WB (see Figure 5.9b). 

Physically, this means that the 𝐼4(/𝑎𝑚𝑑 phase cannot undergo a phase transition to the 𝐶𝑚𝑐𝑚-WB 

phase under the action of a finite external pressure. The only way for the phase transition from the α 

phase to the β phase is to increase the temperature. These conditions are used in experimental 

synthesis of these materials 275,276. 

The crystal structures of the studied tungsten monoborides are shown in Figure 5.9с-e. Boron 

atoms are located at the vertices of polygons and are not shown explicitly. Blue polyhedra correspond 

to the boron atomic environment of a tungsten atom. The α- and β-WB phases differ in mutual 

arrangement of layers in their crystal structures. The α-WB structure consists of WB layers with the 

AB stacking. Each layer is turned with respect to the neighboring layer by 90°, whereas the β-WB 

phase has the AA' stacking, where each layer is shifted with respect to the neighboring layer by half 

the lattice parameter a. A W atom in both phases is coordinated with six boron atoms and seven 

tungsten atoms; i.e., it has a coordination number of 13. The new 𝑃4&2(𝑚 -WB phase can also be 

represented as a layered structure, but each layer is obtained by the fusion of A and B layers of the α-

WB structure. Each layer consists of two tungsten atoms at the Wyckoff positions 2b (0.000, 0.000, 

0.500) and 4e (0.754, 0.254, 0.131). The tungsten atom at the 2b position is coordinated with six 

boron atoms and ten tungsten atoms, whereas the second tungsten atom is coordinated with eight 

boron atoms and eight tungsten atoms. 

 
Figure 5.10. The pressure-temperature phase diagrams of tungsten monoborides calculated 
using both a) quasiharmonic and b) anharmonic approximations (reprinted from Ref 279). 
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As has been shown before 274, 𝑃4&2(𝑚-WB is stable up to 250 K, after which the α-WB becomes 

more stable until the 2100 K, where the β-WB possesses higher stability. The study of possible phase 

transition from the only temperature contribution to the energy is not complete, herein, the pressure-

temperature phase diagram has been constructed for the whole stability field in our study. The Gibbs 

free energy was calculated, including zero-point and vibrational energy contributions in both 

quasiharmonic and anharmonic approximations (for details, please refer to Ref 279) and the phase 

diagrams are illustrated in Figure 5.10. As one can see from Figure 5.10 the phase boundary between 

𝑃4&2(𝑚 and 𝐼4(/𝑎𝑚𝑑 phases starts from 11.8 GPa (0 K) and decreases to zero as temperature 

increases to 200 K according to both quasiharmonic (QHA) and anharmonic (AHA) calculations. The 

anharmonic contribution does not influence significantly the phase boundary because of the low 

temperature. 

At higher temperatures ~1600 K, the α phase undergoes a phase transition to β phase according 

to QHA (see Figure 5.10a). However, AHA gives much higher temperature of phase transition at zero 

pressure of ~2100 K, which perfectly agrees with the experimental value of the transition temperature 

of 2110 K 281. It is also can be found that the α phase can be transformed into β phase at lower 

temperatures ~1800 K by applying pressure of 15 GPa (see Figure 5.10b). It can also be noted that β-

WB cannot be synthesized at low temperatures by using only pressure. Thus, the newly predicted 

𝑃4&2(𝑚-WB phase can be obtained only at very high temperature. 

Along with the analysis of the phase diagram, the transition pathways during the 

𝑃4&2(𝑚 → 𝐼4(/𝑎𝑚𝑑 phase transition has been investigated and details of this part are provided 

below. 

5.3.1 Calculation details 

The structural phase transition from 𝑃4&2(𝑚 to 𝐼4(/𝑎𝑚𝑑-WB (α phase) was performed at 0 

GPa. As has been mentioned in Geometry optimization section of Methodology chapter, first of all, 

both structures (𝑃4&2(𝑚 and 𝐼4(/𝑎𝑚𝑑) have to be well optimized. The plane–wave energy cutoff of 

600 eV was used, ensuring excellent convergence of total energies, forces and stresses. Among all 

possible mappings for the transition generated by geometrical mapping approach (see Geometrical 

mapping paragraph), we chose top 10 results. Because of mapping algorithm is not commutative, 

there have been generated two sets of mappings (𝑃4&2(𝑚-WB → 𝐼4(/𝑎𝑚𝑑-WB and 𝐼4(/𝑎𝑚𝑑-

WB → 𝑃4&2(𝑚-WB). From the obtained mappings, the initial pathways were generated using linear 

interpolation approach as described in Initial path generation section. Each of all generated initial 

pathways was subsequently refined by VCNEB method as presented in Pathway optimization 

section. VCNEB calculations started with 21 intermediate images (structures), and this number was 

automatically increased whenever the path became longer. Spring constants varied from 7 to 10 



 66 

eV/Å2. The halting criterion for the calculation was set as RMS (Root Mean Square forces) on images 

that are less than 0.01 eV/Å. 

5.3.2 Results 

At a pressure of 0 GPa, the 𝑃4&2(𝑚 -WB is more stable by 12 meV/atom than 𝐼4(/𝑎𝑚𝑑-WB. 

The total number of atoms in the simulated unit cell was set to 48 (considered cells are W24B24) which 

is the least common multiple number of atoms in the primitive cells of both phases (12 and 16 for 

𝑃4&2(𝑚 and 𝐼4(/𝑎𝑚𝑑, respectively). This leads to a simulation of the phase transition in large 

dimensionality of configurational space. Because of these two reasons, the transformation mechanism 

appeared to be quite complex. The considered unitcells are presented in Figure 5.11b-d. 

 
Figure 5.11. a) The 𝑃4&2(𝑚 → 𝐼4(/𝑎𝑚𝑑 phase transition pathway for studied tungsten 
monoborides at 0 K and 0 GPa. Crystal structures of the b) initial 𝑃4&2(𝑚-WB, c) transition 
state and d) final 𝐼4(/𝑎𝑚𝑑-WB. Tungsten atoms are white; boron atoms are dark grey 
(reprinted from Ref 279). 
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Canonical approaches, which usually consider only the movement of atoms in the crystal 

structure, are not the best way to describe such complex transitions. To describe it from the physical 

point of view, the change in crystal structure connectivity was considered 164. This approach shows 

which interatomic contacts are broken and which new contacts are created during the transition. Here, 

in the 𝑃4&2(𝑚 → 𝐼4(/𝑎𝑚𝑑 phase transformation, boron atoms are moving more chaotically than 

tungsten atoms (tungsten is much heavier than boron), and thus only the evolution of tungsten 

sublattice was studied. Each tungsten atom in the W-sublattice of 𝐼4(/𝑎𝑚𝑑-WB is 10-coordinated, 

while 𝑃4&2(𝑚-WB phase has 8 and 10-coordinated tungsten atoms. During the transition, the 

coordination number of tungsten varies in the range between 8 and 12.  

For each tungsten atom, we chose specific surroundings representing W-W bonds that will be 

formed and bonds that will be broken during the transition. According to this criterion, all tungsten 

atoms can be divided into four groups corresponding to different types of bond evolutions shown in 

Table 5.1. The first number shows the coordination number (CN) of the selected tungsten atom at the 

starting point and the second shows the number of additional interatomic contacts that will be created 

during the transition. For example, the first line shows that in the 𝑃4&2(𝑚-WB selected tungsten atom 

has 8 bonds (coordination number is 8) in the shell in the starting point, 4 additional interatomic 

contacts will be created and then 2 interatomic contacts will be broken during the transition to 

𝐼4(/𝑎𝑚𝑑-WB. Thus, this tungsten atom will have 10 W-W bonds in its coordination sphere. Such 

description helps us to represent the moving of tungsten atoms in terms of changing their coordination 

number, i.e. creating and breaking interatomic contacts (see Figure 5.12). 

Table 5.1. Four types of tungsten atoms in the W-sublattice of both phases according to bond 
evolution 

𝑃4&2(𝑚-WB 𝐼4(/𝑎𝑚𝑑-WB 

8+4 10+2 

8+3 10+1 

10+2 10+2 

10+1 10+1 
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Figure 5.12. Changing in the coordination of specific tungsten atom (red color). Tungsten atoms 
that have no interatomic contact in the P4&2(m-WB is highlighted by green color, blue color is 
for atoms that have interatomic contact in P4&2(m-WB, but it will be cut during the transition 
to 𝐼4(/𝑎𝑚𝑑-WB. 

Transition states define the crossover between different topologies, i.e., the point at which 

chemical bonds are formed or broken. In Figure 5.11a, one can see the energy profile of the lowest-

energy phase transition mechanism with a large number of local minima, which shows the logic of 

nucleation-and-growth process in real solid-solid phase transformation. These intermediate minima 

are so shallow that they are unlikely to be quenched in the experiment: these minima are not strongly 

kinetically protected and will rapidly decay into 𝑃4&2(𝑚-WB or 𝐼4(/𝑎𝑚𝑑-WB, respectively. The 

transition state with the highest energy has symmetry P1 and its energy is 255 meV/atom higher than 

that of 𝑃4&2(𝑚-WB and 273 meV/atom higher than for 𝐼4(/𝑎𝑚𝑑-WB (α-WB).  
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5.4 Mechanism of the phase transition in Al2SiO5 phases 
Andalusite, kyanite and sillimanite are three minerals that are polymorphic modifications of 

Al2SiO5 282,283. Important for Earth’s sciences, they also have wide practical usage as ceramic and 

refractory materials 284 and they are used to produce lightweight aluminum-silicon alloys to fabricate 

metallic fiber, which is used in supersonic aircraft and spaceships, etc. 285–288. A closely related 

material, mullite, a component of porcelain, has recently become a promising candidate for structural 

and functional ceramics due to its low thermal expansion, low thermal capacity, and excellent creep 

resistance along with high-temperature strength and stability under severe chemical 

environments 289,290. 

All three structures have some common features: all Si atoms are tetrahedrally coordinated and 

half of all Al atoms are in the octahedral coordination and form chains of edge-sharing AlO6 

octahedra 291,292. The other half of Al atoms are in the tetrahedral coordination in sillimanite, 5-fold 

coordination in andalusite, and in the octahedral coordination in kyanite. Kyanite crystallizes in the 

triclinic system with space group 𝑃1& 293, while sillimanite and andalusite crystallize in the 

orthorhombic structures with space groups Pnnm and Pbnm, respectively 293,294. All three polymorphs 

of Al2SiO5 are found commonly in metamorphic rocks and are geologically important markers since 

they provide information about pressure and temperature at their time of formation and the type of 

metamorphism 295–297. 

Andalusite is formed as a low-pressure and low-temperature phase, while kyanite is formed at 

high pressure and low temperature, and sillimanite is formed at medium or low pressure and high 

temperature 295,298. The entropy and Gibbs free energy of the three minerals are very similar 295,299. 

In nature, often two or three polymorphs of Al2SiO5 are found coexisting in the same rock. 

There are numerous examples with each of two-polymorph assemblages, i.e. andalusite + kyanite, 

kyanite + sillimanite and andalusite + sillimanite 300–302 and in many cases all three Al2SiO5 

polymorphs coexist in a rock 296,303–318. Such coexistence indicates conditions of formation at a rock, 

corresponding to two- or three-phase equilibrium. Coexistence at normal conditions is due to high 

barriers of transitions, leading to metastable persistence of phases.  

Here, we have studied in detail the mechanisms of structural transitions between all three phases 

of Al2SiO5 – kyanite-andalusite, andalusite-sillimanite and kyanite-sillimanite at the pressures of 0 

and 10 GPa. The obtained results have provided insights into the nature of structural changes of 

Al2SiO5 polymorphs, their coexistence with each other and their transformation pathways. 

5.4.1 Calculation details 

The lattice parameters and atomic positions of Al2SiO5 polymorphs used in our calculations 

were taken from experimental studies of Ralph et al. 319 for andalusite and from Yang et al. 293,294 for 

kyanite and sillimanite. Then, these structures were relaxed. Structure relaxations and total energy 



 70 

calculations were performed as presented in Geometry optimization paragraph. The plane–wave 

energy cutoff of 600 eV was used, ensuring excellent convergence of total energies, forces and 

stresses. Crystal structures were relaxed until the maximum net force on atoms became less than 

0.01 eV/Å. The Monkhorst–Pack scheme 213 was used to sample the Brillouin zone, using 4´3´3 for 

all three Al2SiO5 phases. For each of andalusite-kyanite, kyanite-sillimanite and andalusite-

sillimanite transitions, we used the geometrical mapping approach (see Geometrical mapping 

paragraph) and among all possible mappings, we chose the top 10 results. Because of the 

noncommutativity of the mapping algorithm, it was used to generate two sets of pathways - forth and 

back (structure A → structure B and structure B → structure A). 

From the obtained mappings, the initial pathways were generated using linear interpolation 

approach as described in Initial path generation section. To find the optimal solution, we generated 

a large number of initial paths for each of andalusite-kyanite, kyanite-sillimanite and andalusite-

sillimanite transitions. Each of all generated initial pathways was subsequently refined by VCNEB 

method as presented in Pathway optimization section. The VCNEB calculation began with an initial 

path transition consisting of 20 intermediate structures (“images”). All these cells have 32 atoms in 

the unit cell, and in all trajectories we considered all intermediate structures also had 32 atoms/cell. 

The spring constants for the VCNEB method were varied from 3 to 6 eV/Å2. The halting criterion for 

the calculation was set as RMS (Root Mean Square forces) on images that are less than 0.003 eV/Å. 

Crystal structures of predicted phases and were generated using VESTA software 215. 

5.4.2 Results 

Crystal structures of the Al2SiO5 phases are shown in Figure 5.13a-c. Gray, orange and green 

polyhedra shown in Figure 5.13e-f correspond to 6-,5- and 4-coordinate Al atoms. Blue polyhedra in 

Figure 5.13g corresponds to silicon atoms, which are 4-fold coordinated.  
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Figure 5.13. Crystal structures of a) sillimanite, b) kyanite and c) andalusite phases of Al2SiO5. 
Oxygen atoms are located in the vertices of polyhedra; polyhedra of Al atoms in different 
structures and correspond to the d) 6-, e) 5- and f) 4-coordinate atoms; g) tetrahedral 
coordination of Si atom. 

First, we relaxed structures of all three Al2SiO5 phases at the pressures of 0 and 10 GPa. The 

lowest-enthalpy phase is andalusite at 0 GPa and kyanite at 10 GPa, which is in agreement with 

experiments and previous calculations 320. As one can see in Figure 5.14, all three phases are 

energetically close to each other. At 0 GPa, sillimanite is 10 meV/atom higher in energy than 

andalusite, and kyanite is 12 meV/atom above sillimanite. At 10 GPa, sillimanite is 60 meV/atom 

higher in enthalpy than kyanite and andalusite is 8 meV/atom above sillimanite. 

 
Figure 5.14. Enthalpy differences between Al2SiO5 phases at 0 GPa and 10 GPa. 
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First, let us consider the transition from sillimanite to andalusite at pressures of 0 and 10 GPa. 

Both structures have relatively similar orthorhombic cell parameters listed in Table 5.2. Given the 

similarity of unit cells and even of crystal structures, one might think that it is trivial to construct the 

optimal phase transition pathway and that it should be within the orthorhombic cell. We did this both 

at 0 GPa and 10 GPa, at each pressure constructing the initial pathways by using smooth variation of 

orthorhombic cell parameters and choosing such mapping of atomic coordinates that minimizes the 

total distance traveled by all the atoms. Then, we optimized these paths by the VCNEB method. The 

resulting pathways are presented in Figures 5.15 and 5.16. As one can see, the energy barrier equals 

0.389 eV/atom at 0 GPa and 0.353 eV/atom at 10 GPa. It is instructive that these are not the lowest-

barrier paths. Considering non-trivial cell mappings, we found lower-barrier paths. 

Table 5.2. Lattice parameters for orthorhombic structures of andalusite and sillimanite at the 
pressure of 0 and 10 GPa: theoretical results and experimental data 293,319 

 VASP, 0GPa Experiment, 0 GPa VASP, 10 GPa 

andalusite 

𝑎 = 5.610 Å 

𝑏 = 7.868 Å 

𝑐 = 7.973 Å 

𝑎 = 5.557 Å 

𝑏 = 7.798 Å 

𝑐 = 7.903 Å 

𝑎 = 5.534 Å 

𝑏 = 7.647 Å 

𝑐 = 7.821 Å 

sillimanite 

𝑎 = 5.816 Å 

𝑏 = 7.568 Å 

𝑐 = 7.772 Å 

𝑎 = 5.777 Å 

𝑏 = 7.488 Å 

𝑐 = 7.681 Å 

𝑎 = 5.754 Å 

𝑏 = 7.415 Å 

𝑐 = 7.559 Å 
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Figure 5.15. Enthalpy profile of andalusite-sillimanite transition at 0 GPa generated with fixed-
cell mapping. 

 
Figure 5.16. Enthalpy profile of andalusite-sillimanite transition at 10 GPa generated with 
fixed-cell mapping. 
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Thus, to describe phase transitions we generated six sets of initial pathways for the optimized 

structures at each pressure (kyanite → sillimanite, sillimanite → kyanite, kyanite → andalusite, 

andalusite → kyanite, andalusite → sillimanite and sillimanite → andalusite). The structure mapping 

for the initial pathway generation considers the mapping of cell parameters and atomic positions. 

Each set consists of 10 initial pathways. The lowest-barrier transition profiles for each transformation 

at 0 and 10 GPa are shown in Figures 5.17 and 5.18, respectively. For all transitions the symmetry of 

intermediate states is P1. These are all reconstructive phase transitions; energy barriers for each 

transition at both pressures are very high and the schemes of transitions with barrier values are 

presented in Figure 5.19. Such high barriers imply that these transitions are kinetically feasible only 

at high temperatures (the lowest energy barrier of 0.255 eV/atoms). 

 
Figure 5.17. Enthalpy profile of kyanite-sillimanite, sillimanite-andalusite and andalusite – 
kyanite transitions at 0 GPa. 
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Figure 5.18. Enthalpy profile of kyanite-sillimanite, sillimanite-andalusite and andalusite – 
kyanite transitions at 10 GPa. 

 

 
Figure 5.19. Calculated energy barriers for transitions at 0 and 10 GPa 

The canonical approach, which usually involves only the movement of atoms in the crystal 

structure, is well-known and intuitive, but it is not the best description of such complex transitions.  

Further insight can be obtained by looking at changes of a bond network in crystal structures. 

For the determination of interatomic contacts, we use a Voronoi–Dirichlet partition of crystal space. 

Since all intermediate structures along the transition path are distorted, the coordination of the 

polyhedra approach can be supplemented by the “effective” coordination number (ECoN) 

approach 321,322, which describe the surrounding of the atom with a weighting scheme, where the 

atoms are not counted as full atoms but as fractional atoms with numbers between 0 and 1. These two 

approaches allow us to understand how many interatomic contacts are broken and which new ones 

are formed during the transition. 
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We find that SiO4 tetrahedra are present during all transitions and there are no changes in the 

coordination number of silicon. Indeed, Si-O bonds are the strongest here and, naturally, they are 

perturbed the least. The change of coordination of Al atoms is much more complex and informative 

– it provides more insights into the transition nature. Figures 5.20 and 5.21 show the change of 

average connectivity of Al atoms during all transitions at 0 GPa and 10 GPa, respectively. In 

Figures 5.22 and 5.23 we present the change of average ECoN of Al atoms during all transitions at 

0 GPa and 10 GPa, respectively. Note that the averaging involves all Al atoms (including those which 

are 6-coordinate in three polymorphs – during transitions their coordination number also change). 

Transition states have the lowest average coordination number (CN) of Al atoms along the pathway, 

which is easy to understand – a large number of all Al-O bonds have been broken, while the new ones 

have not yet been formed. 

 
Figure 5.20. The average coordination number of Al atoms for all three transitions at 0 GPa 
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Figure 5.21. The average coordination number of Al atoms for all three transitions at 10 GPa 
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Figure 5.22. Average effective coordination number (ECoN) of Al atoms for all three transitions 
at 0 GPa 

 

 
Figure 5.23. Average effective coordination number (ECoN) of Al atoms for all three transitions 
at 10 GPa 
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The combination of topological, geometrical and energetic descriptions is a tool, which allows 

us to compare transitions at 0 and 10 GPa and state that these transitions differ significantly. For 

andalusite-sillimanite transition at 0 GPa, the changes of coordination are more complex than at 

10 GPa. In general, at high pressure, the drops of average coordination numbers are smaller. 

  



 80 

6 CONCLUSIONS AND FUTURE PERSPECTIVES 

This Thesis proposes a number of improvements to the canonical workflow to investigate solid-

solid phase transitions by two-ended methods. These improvements help investigate free energy 

landscapes of solids and locate MEP for more complex phase transitions. The workflow contains the 

following major steps: 

1. Optimization of the chosen end structures. 

2. Build the atom-to-atom mapping between initial and final structures. 

3. Generate an initial pathway(s) based on the generated mapping(s). 

4. Refine generated initial pathways by a two-ended method and the selection of MEP. 

Step 2 can be done in two variants based on two different ideas. The first one is based on the 

purely geometrical compliance of two structures, i.e., cell parameters and coordinates of atoms. The 

second one is based on the relation of periodic graphs of interatomic contacts (topological nets) and 

the atom-to-atom mapping comes from the compatibility of nets. The topological approach is more 

advanced than the geometric one since it provides mapping(s), which leads to transition with the 

optimal number of broken and created interatomic contacts. In other words, the topological approach 

considers the physical and chemical aspects of both structures and their change during the transition. 

The geometrical approach allows for the calculations of the transition with any atoms in a cell, 

but the complexity of such approach grows exponentially with the number of atoms and it can be 

called straightforward. The algorithm brings both structures to the same number of atoms in the cell, 

which is the least common multiple of the number of atoms in primitive cells. Also, the geometrical 

consideration is not a time-efficient procedure since it creates a list of cells with maximized spatial 

(volumetric) overlap and for each pair of cells, it checks all possible variants of atomic matching for 

the generated cells. Thus, the phase transition investigation for structures where the least common 

multiple of the number of atoms in primitive cells is a huge number takes much time and can be done 

only with the help of high-performance computers (HPC). As a result, it provides a list of atom-to-

atom mappings that yield a minimum of the sum of the Euclidian distances between the corresponding 

atoms in the two structures. 

The topological approach allows for the consideration of solid-solid phase transitions in another 

way and has broadened the range of investigation. The central point of the algorithm is to build such 

a net relation graph that transforms one net into another by breaking and creating the least interatomic 

contacts and, at the same, by lowering the symmetries of both nets as small as possible. The net 

relation graph can be easily converted into the atom-to-atom mapping of both structures. However, 

such an approach has several important restrictions. For instance, the topological analysis can fail 

when the considered transition happens between structures with different low symmetries. Another 

case is the exponential explosion that can happen when atoms in both structures have high 
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coordination and a highly symmetrical environment. As a result, a vast number of combinations of 

interatomic contacts may be cut and create a new one. Nevertheless, such an approach shows its high 

efficiency and versatility of usage. 

In general, the geometrical and topological approaches complement each other. The 

geometrical approach is straightforward and effective in the study transition pathways located in a 

narrow area of FES. In contrast, the topological approach provides more versatile pathways that cover 

a broader area of FES and can be helpful for global pathway optimization. 

In this work, the geometrical approach made by Stevanovic et al. has been used for structure 

mapping in a brute-force way. In contrast, mapping crystal structures onto each other can be made by 

the newly developed topological approach, which is another application of the topological network 

model of solid-state transformations (TNMST). Both presented approaches have been integrated into 

the VCNEB method, which is a part of the USPEX code. 

The presented workflow gave fruitful results in the investigation of solid-solid phase transitions. 

It has been used for the simulation of the transition from 𝑃𝑛𝑚𝑎-CrN to newly predicted 𝑃6&𝑚2-CrN, 

which is another hard phase of chromium nitride. Using the presented workflow, it has been shown 

that the mechanism of the sp2-sp3 crossover in CaCO3 involves several intermediate phases with sp2 

and sp3 bonding motifs and it helped to investigate the phase transition from 𝐼4(/𝑎𝑚𝑑 to newly 

predicted 𝑃4&2(𝑚 phase in tungsten monoborides. Also, to investigate phase transitions between the 

Al2SiO5 polymorphs (andalusite, sillimanite and kyanite). Analysis of the evolution of the chemical 

bond network during transitions has shed light on the origin of high barriers responsible for the 

metastable coexistence of these phases in nature. The experimentalists can use the obtained results to 

understand how (external parameters) the newly predicted phases, like 𝑃6&𝑚2-CrN or 𝑃4&2(𝑚-WB 

could be synthesized. 

The presented approach helps to analyze the finite number of generated variants of transition 

pathways and select the MEP among them. Also, it is a good starting point for exploring the transition 

pathways in the solids, but the global search algorithm must be created. Since the complexity of such 

a search grows exponentially with the system size, it is the next big challenge for scientists. 
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