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problem, Mr. Ebadi has developed two optimization approaches, which do not rely on a suitable initial 

guess of the solution. i) He has proposed the novel idea of adapting the Particle Swarm Optimization 

(PSO) method, which is a stochastic optimization technique, and has developed a powerful approach for 

solving nonlinear partial differential equations. ii) He has employed an Adaptive Neural Network (AdNN) 

method, which is a machine learning method, to solve governing equations, without the need for prior 

data. Both of these approaches have similar or better computation efficiency than classic approaches.  

Second, Mr. Ebadi has addressed the issue of resolution in pore-scale imaging and image analysis of 

tight rocks. A very significant portion of pores in such rocks have resolutions below the resolution of 

many common imaging techniques. Increasing resolution would require decreasing the size of sample 

that is being imaged, which is often not desirable. Ignoring the sub-resolution pores in pore-scale 

modelling will result in gross errors in the estimation of porosity and permeability of samples. All of this 

has been nicely explained in Mr. Ebadi’s thesis. He has then developed various approaches to account 

for the sub-resolution pores and has shown how using images from standard imaging techniques, it is 

still possible to obtain accurate estimates of porosity and permeability, in agreement with laboratory 

measurements. 
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Abstract 

Even during the period of energy transition, there is no doubt that unconventional oil 

and gas resources will play a significant role in the future energy market. The energy transition 

pushes the exploration and production of oil and gas to be more marginal and minimize the 

carbon footprint. Marginality of production is having the maximum production plateau and the 

minimum cost of the production operation. It requires to have accurate development and 

management scenarios. Latter can be achieved by having an in-depth understanding of fluid 

flow in tight porous media. 

The deviation from Darcy’s law because of various storage and flow mechanism is the 

most challenging aspect of modelling fluid flow in unconventional hydrocarbon resources. 

Therefore, it is highly required to take the effects of Knudsen diffusion, slippage, adsorbed gas 

and solute gas into account. However, it leads to form a second-order highly nonlinear partial 

differential equation. Using the classic derivation-dependent approaches like Newton’s method 

to solve the derived governing equation numerically is challenging due to the requirement of 

making proper initial guesses, forming the Jacobian matrix and its inversion. As a result, the 

current research has put forward great efforts to use soft computing techniques of metaheuristic 

algorithms and machine learning approaches to solve the supposed equation easier and with 

less computational cost.  

Regarding the microscopic scale and applying pore-scale physics, having a large 

portion of pores with a size less than the spatial resolution of micro X-ray computed 

tomography images is the main obstacle required to practically come across. Accordingly, a 

workflow digital image processing including deep learning algorithms and operators has been 

Seyed Hassani
Here andat other places, the importance of non-Darcy behavior of gasses is mentioned. However, Darcy's law is the only formula used throughout the thesis. What is the justification?
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proposed. Typically, the supposed images are suffering from noises, and they are supposed to 

be treated with various filters. But, the parameters of filters are usually expected to be adjusted 

by experienced users. As a result, it has been tried to use deep learning to filter images with 

minor troubles. Then, the clean images have been implemented with classic approaches of 

digital rock physics to observe their credibility in case of being applied to the tight porous 

media. After that, it has been tried to employ a deep learning operator to generate images with 

various synthetic lower resolutions. Having the corresponding porosities versus their synthetic 

resolution, it becomes possible to develop an exponential model capable of predicting the 

porosity for the theoretical spatial resolution of 0-micron meter per voxel. Finally, the 

computed porosity has been taken to predict the permeability free of biases.  

The research shows that using various fields of artificial intelligence can cause 

generating accurate results of simulating fluid flow in unconventional porous media with less 

computational cost and difficulties.     
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1. Introduction  

1.1 The Importance of Developing Unconventional Resources 

Hydrocarbon resources are dwindling, while corpus research has recently indicated that 

unconventional hydrocarbon reservoirs can supply great energy values with minimum adverse 

effects on the environment [1]. Accordingly, providing more natural gas has become a priority 

for authorities and a challenging hot topic for researchers [2]. Besides new technological 

advances in both fields of hydraulic fracturing and horizontal well drilling, being faced up with 

a fast decline in conventional reserves have caused attention to be drawn towards the 

unconventional resources such as tight and ultra-tight plays [3], which have been playing a 

progressively leading role in the energy market during very recent years [4]. For instance, it is 

statistically reported that “The Shale Gas Revolution” caused shale gas to be taken as a reliable 

energy source in the USA [5]. In fact, shale gas comprised just less than 2% of domestic outputs 

within the early years of the current century [6]. Surprisingly, today it accounts for almost a 

third. It has even been estimated that 46% of produced gas in the USA during 2035 will be 

from shale gas plays [7]. 

Before starting relevant discussions, it is critical to understand what an unconventional 

reservoir is. The definition is highly reliable to conventional reservoirs, which are generally 

defined as high permeability, high-quality reservoirs where all it has to be done is drilling a 

vertical well and running a perforation operation at the productive interval that causes the well 

to flow at profitable rates [8]. Conversely, unconventional resources are routinely characterized 

as low-quality reservoirs that have to be stimulated to produce commercial flow rates and 
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recover commercial volumes of hydrocarbon [9]. In more details, high viscosity oil and low 

permeability are the main reasons to label a reservoir as a low-quality resource [10]. However, 

the application of long horizontal well coupling with hydraulic fracturing in case of tight and 

ultra-tight reservoirs and taking advantages of thermal methods to reduce the viscosity of heavy 

oil can effectively stimulate the formations in most cases [8,11]. 

The unconventional oil and gas endowment is orders of magnitude greater than the 

conventional resources that have been the principal objectives of production and exploration 

for the past 120 years [12]. To picture the described concept, it is necessary to become familiar 

with the “Hydrocarbon Resource Extraction Risk Triangle” idea shown in Figure 1. The shown 

notion illustrates that the high-quality reservoirs are at the top of the triangle, while going 

deeper into this triangle causes facing up with lower quality reservoirs [13,14]. The “risky” 

undertaking may also be explained by the fact that we are currently on a steep learning curve 

regarding the technologies necessary to create a gas hydrate production [15] financially. 

Technically, unconventional deposits can be grouped into three general categories: 

I. Unconventional resources, which include ultra-tight sandstones and carbonates 

and source rocks. 

II. Unconventional oil and gas fluids, comprising sour/acid gases, bitumen, and 

heavy oil. 

III. Hydrocarbons “locked in rocks” such as oil shale and methane hydrates (an 

immature source rock) 
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Figure 1: Hydrocarbon Resource Extraction Risk Triangle 

The Hydrocarbon Resource Extraction Risk Triangle shows that high-grade deposits 

are small and difficult to find but easy to extract, and more enormous resources can be found 

in deeper levels, but they do need higher product prices and improved technology to be 

extracted [15]. Nevertheless, the world needs more energy under all developing scenarios, 

leading to this issue that unconventional resources play an ever-increasing role in our energy 

supply [16,17]. Due to this fact, the world’s emerging economies will require sustained oil and 

gas use for the foreseeable future, which cannot be prepared with declining conventional oil 

and gas reservoirs. As a result, it can be deduced that developing unconventional resources is 

an inevitable topic, and it is a requirement to do research projects about unconventional 

reservoir studies. 

To put it another way, it can be concluded that tight hydrocarbon reservoirs are 

statistically and practically known as potential options to guarantee a sustainable energy supply 

into future markets [18,19]. The supposed potential can be turned into action only if the 
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technical risks of developing such unconventional oil and gas reservoirs be minimized 

considerably.  

It can be achieved by employing various reservoir management and simulation 

scenarios. However, the inherent complexity and nonlinearity of tight and ultra-tight 

hydrocarbon resources are the main obstacles that make it challenging to use classic approaches 

[20]. Therefore, it is where using modern methods like machine learning techniques can be 

implemented. The current research has made significant attempts to macroscopically and 

microscopically examine how it is possible to take advantage of various machine-learning 

approaches to obtain more accurate and practical characterizations of tight and ultra-tight 

porous media. A second-order nonlinear partial differential equation describing fluid flow in a 

shale gas reservoir has first been developed regarding the macroscopic scale. Then it has been 

tried to solve the equation with soft computing approaches than classic ones.   A tight sandstone 

sample taken from the Achimovskiy formation has been studied based on the classic 

approaches of digital rock physics and machine learning methods on the microscopic scale.  

1.2 Macroscopic Scale  

Fluid flow in porous media can be described by the following transport mechanisms: 

molecular diffusion, Knudsen diffusion, surface diffusion, and viscous flow [21]. The fluid 

transport mechanism in the typical oil and gas reservoir with large pore sizes is the viscous 

flow described by Darcy’s law [22]. Darcy’s law is a phenomenological resulting constitutive 

equation that addresses the fluid flow in porous media [23]. Darcy’s law has been developed 

under certain conditions. The most limiting assumption of Darcy’s law is its development based 
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on the laminar flow governed by viscous forces [24]. However, the fluid flow with high 

velocities in porous media where the inertial forces are more significant than the viscous forces, 

the flow is turbulent [25]. It can be corrected by adding an inertial term to Darcy’s equation, 

known as the Forchheimer term [2]. A series of previous experimental and field research has 

indicated that fluid flow in ultra-tight and tight porous media noticeably deviates from the 

results generated by the implementation of Darcy’s law [26]. It is due to a couple of reasons, 

such as nanoscale pores or even mature or immature organic contents in the main body of the 

studying porous media [27]. The following two sections discuss the phenomena mentioned 

above and how their effects can be taken into account in the form of a governing equation. 

1.2.1 Fluid Flow and Storage Mechanisms in Shale Gas Plays 

The significant differences between shale gas reserves and conventional hydrocarbon 

resources related to natural nanoscale pores and organic content have been briefly examined 

[28]. Darcy’s law and standard continuous flow equations generally underestimate the flow 

rate when applied to the tight and ultra-tight porous medium of shale gas deposits [29]. It is 

mainly related to the zero-velocity boundary condition, which is the deriving assumption. The 

Knudsen number (Kn) is commonly used as an explanatory indicator when attempting to 

understand the notion of multi-mechanism flow in ultra-tight porous media [30,31]. The 

different flow regimes could be recognized by: 

 𝐾𝑛 =
𝜆

𝑑
 (1)  

where λ is technically specified in shale gas reservoirs as the mean distance travelled 

by a gas molecule before the interaction with the other molecule that modifies its track, energy 

Seyed Hassani

Seyed Hassani

Seyed Hassani
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or other features. Also, d stands for the pore diameter. The categorization of flow types based 

on Kn has been introduced in Table 1.  

Table 1: Different flow regimes as a function of Kn  

Kn Flow Type 

Kn < 10-3 Continuum Flow 

10-3 < Kn < 10-1 Slip Flow 

10-1 < Kn < 10 Transition Flow 

10-3 < Kn  Free Molecular Flow 

 

According to detailed investigations on the morphology and pore size distribution of 

shale gas reservoirs, pore diameters in shale gas resources vary from 1 to 200 nm, leading with 

Kn relaying values ranging from 0.0002 to 6, respectively [32]. Overall, flow in shale gas 

reservoirs is a multi-mechanism phenomenon that includes transition flow, slip flow and 

continuum flow [33]. Generally, an apparent permeability (kapp) model taking the effects of all 

the flow regimes into account is usually employed to facilitate the simulation procedure more 

effectively.  

The economics of shale gas plays is technically the critical factor in evaluating the 

quality of shale gas resources. The storage mechanisms in shale gas plays are the free 

compressed gas and the adsorbed layer on the surface of kerogens already full of solute gas 

[34]. The mode of gas storage is influenced by surface area and the size of pores. Typically, 

Seyed Hassani

Seyed Hassani

Seyed Hassani
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because the macropores do not play a leading role in surface area, they are assumed to be the 

main path for the transportation of free compressed gas [35]. Following the same logic, 

mesopores and micropores are the essential sites for gas adsorption. Moreover, geological 

conditions like reservoir temperature, temperature, moisture content and reservoir pressure 

could impact the amount of free, adsorbed, and dissolved gas [36]. 

In other words, not taking the adsorbed gas that has a semi-liquid physical state with a 

greater density than the free compressed gas into account leads to some significant 

underestimation [37]. The impacts of adsorbed gas could become more prominent when 

combined with a substantial quantity of surface area in shale gas reservoirs that is tenfold more 

than in conventional reservoirs. The standard Langmuir isotherm is the most often used 

adsorption isotherm because it considers a dynamic instantaneous equilibrium at constant 

temperature and pressure between adsorbed and non-adsorbed gas [38]. Furthermore, the 

adsorbed layer, which consists of gas molecules that adhere to pore surfaces, limits the possible 

conductance for the passage of free and previously desorbed gas [39]. As a result, because the 

methane molecule radius is similar to the pore diameters, the adsorbed gas has a detrimental 

influence on permeability. However, below a threshold pressure, the adsorbed molecules begin 

to be desorbed. The gas molecule desorption caused by pressure reduction reduces the 

thickness of the adsorbed layer, increasing permeability [40].  

Regarding the organic contents in the shale plays, kerogen is an organic substance 

similar to bitumen in that it may store hydrocarbons in a dissolved form [41]. Recent theoretical 

and practical studies have revealed that a significant portion of the gas-in-place in shale 

reservoirs is in the form of a solute contained in the kerogen [42]. Furthermore, it has been 

Seyed Hassani

Seyed Hassani
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From the presentation given in this section, I understand you consider three sources of gas: free (compressed gas), gas dissolved in kreogene, and gas adsorbed on pore walls. I suggest you explicity make such a statement. Also, when you say adsrobed gas, is it adsrobed to the bare pore walls or to the kregoenen surface. I ask this question because in Fig. 3 of next chapter, you show gas molecules to be adsorbed to (and then get desrobed from) the  surface of kreogene and nothing is shown to be adsorbed to the clay surface!
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demonstrated that gas generation from kerogen is a slow process, with Fickian flow serving as 

the primary transport mechanism [43]. Therefore, it is advised to use Fick’s second law in 

Cartesian coordinates and the z-direction. 

1.2.2 Modelling and Simulation 

Based on the previous discussion, it can be concluded that the flow and storage in shale 

gas resources, as one of the essential types of unconventional resources, are following multi-

mechanism regimes. As a result, it is much-needed to implement numerical methods with 

maximum accuracy, which means minimum mass loss. Also, the model should have the 

capability to be tuned with all the required storage and flow mechanisms occurring in shale gas 

resources. Technically, it is possible to have a sequential logic for the production scenario. It 

starts with pressure reduction due to the production of free compressed gas molecules. It results 

in the disjoining of stuck gas molecules (adsorbed gas) from the surface of kerogens. The 

desorption causes thermodynamical disturbances on the surfaces of kerogens generating 

concentration gradients between bodies of kerogens and their surfaces. That is the primary 

reason why solute gas is transferred from the bulk of kerogen to its surfaces.  

A one-dimensional (1D) model for a conventional porous media can be developed 

based on mass conservational as below [44]:  

 −((𝜌𝑓𝑣𝐴)
𝑥+𝑑𝑥

Δ𝑡 − (𝜌𝑓𝑣𝐴)
𝑥
Δ𝑡) = 𝑉𝑏𝜙 ((𝜌𝑓)𝑡+𝑑𝑡

− (𝜌𝑓)𝑡
)  (2)  

where  

Seyed Hassani

Seyed Hassani

Seyed Hassani
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In this equation, you show the prosoity term phi to be independent of time. However, in the previous paragraphs, you argued that the adsorbed gas has the same molecular dimensions as the pore radius; so, adsorption and desorption will affect permeability but also porosity. So, porosity should be different at time steps t and t+del t. It also means that you need a governing equation for porosity!
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 𝑣 = −(5.615)(0.001127)
𝑘

𝜇

𝜕𝑝

𝜕𝑥
 (3)  

The insertion of Equation 3 into Equation 2 results in:  

 
𝜕

𝜕𝑥
(0.00633𝑘𝐴

𝜌𝑓

𝜇

𝜕𝑝

𝜕𝑥
)Δ𝑥 =

𝜕

𝜕𝑡
𝑉𝑏(𝜌𝑓𝜙) (4)  

where k is permeability (md), A is the surface area (ft2), μ is viscosity (cp), 𝜌𝑓 is the density of 

free or compressed gas (𝑙𝑏𝑚 𝑓𝑡3⁄ ), ϕ is porosity, Vb is the bulk volume (ft3), and Δ𝑥 is the 

length of each grid (ft) after the discretization. 

As mentioned earlier, the fluid flow in a shale gas play is a multi-mechanism 

phenomenon. To have the effects of all the mechanisms as a single parameter, substituting the 

k with kapp in Equation 4 can make the model representing the complexity of a multi-

mechanism flow more accurately and adequately. The next step to make Equation 4 

representing the shale gas plays more practically is the effects of adsorbed gas into account. It 

becomes possible by adjusting the accumulation term as:  

 
𝜕

𝜕𝑥
(0.00633𝑘𝑎𝑝𝑝𝐴

𝜌𝑓

𝜇

𝜕𝑝

𝜕𝑥
)Δ𝑥 =

𝜕

𝜕𝑡
𝑉𝑏(𝜌𝑓𝜙 + (1 − 𝜙)𝜌𝑎) (5)  

where 𝜌𝑎 represents the mass of adsorbed gas per volume of solid rock. Having the definition 

for the concepts of gas compressibility (Cg), Langmuir isotherm and chain rule, it is possible 

to reformulate Equation 5 as:  

 
𝜕

𝜕𝑥
(0.00633𝑘𝑎𝑝𝑝𝐴

𝜌𝑓

𝜇

𝜕𝑝

𝜕𝑥
)Δ𝑥 =

𝜕𝑃

𝜕𝑡
𝐶𝑔𝜌𝑓𝑉𝑏(𝜙 + (1 − 𝜙)𝐾𝑎) (6)  

Seyed Hassani
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where 𝐾𝑎 = 𝜕𝜌𝑎 𝜕𝜌𝑓⁄ . The solute gas and its quantity in kerogen can be calculated with the 

help of Henry’s law, where the solute gas in kerogen is proportional to the pressure. The effects 

of solute gas can be added to Equation 6 as a source term. The idea has been taken from the 

concepts implemented in fractured reservoirs [45]. It leads to the development of a second-

order nonlinear partial differential equation governing the multi-mechanism flow and storage 

in shale gas plays as: 

 
𝜕

𝜕𝑥
(0.00633𝑘𝑎𝑝𝑝𝐴

𝜌𝑓

𝜇

𝜕𝑝

𝜕𝑥
)Δ𝑥 + 𝑞𝑘

∗ =
𝜕𝑃

𝜕𝑡
𝐶𝑔𝜌𝑓𝑉𝑏(𝜙 + (1 − 𝜙)𝐾𝑎) (7)  

where 𝑞𝑘
∗  is the mass flux from kerogen to matrix (𝑙𝑏𝑚 𝑑𝑎𝑦⁄ ), and it is represented as:   

 𝑞𝑘
∗ = 𝐷𝑘𝐴𝑘

𝜕𝑐

𝜕𝑧
 (8)  

The kerogen diffusion coefficient is represented as Dk (𝑓𝑡2 𝑑𝑎𝑦⁄ ) and Ak is the kerogen surface 

area (𝑓𝑡2). Also, the concentration gradient in the z-direction is represented as 𝜕𝑐 𝜕𝑧⁄ . 

1.2.3 Solvers 

The discretization based on the finite difference method is supposed to be employed to 

solve Equation 7 numerically. The result is a set of simultaneous algebraic equations stated as: 

 𝐶1𝑌 + 𝐶2 = 0 (9)  

Y represents the vectors of unknowns (pressures), and C1 and C2 represent the matrixes of 

coefficients and dependencies, respectively [46]. Going through the compressibility of gases 

and their dependency on the pressure, the subsequence of discretization (Equation 9) results 
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in a set of nonlinear simultaneous algebraic equations [1]. Thus, finding a suit of pressures that 

satisfies Equation 9 at each time step is the main target of applying nonlinear solvers.   

1.2.3.1 Classic Approach  

Using a classic approach like Newton’s method that takes the advantages of the 

Jacobian matrix is traditionally recommended to solve nonlinear simultaneous algebraic 

equations [47]. Technically, Newton’s method is stated as:  

 [𝑝𝑛𝑒𝑤] = [𝑝𝑜𝑙𝑑] − 𝐽−1[𝑓(𝑝𝑜𝑙𝑑)] (10)  

within each time step, 𝑝𝑜𝑙𝑑 shows the pressures of the last iteration, 𝐽−1 represents the inversion 

of the Jacobian matrix, and 𝑓(𝑝𝑜𝑙𝑑) indicates the outputs of nonlinear simultaneous algebraic 

equations. Equation 10 generates 𝑝𝑛𝑒𝑤 which is expected to be inserted into Equation 9 and 

causes the generation of outputs with a magnitude of error less than what has been produced 

by 𝑝𝑜𝑙𝑑. The Jacobian matrix is developed based on all first-order partial derivation of a vector-

valued function. Technically, the Jacobian matrix is defined as:  

 𝐽 =
𝑑𝑓

𝑑𝑥
= [

𝜕𝑓

𝜕𝑥1
⋯

𝜕𝑓

𝜕𝑥𝑛
] =

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛]

 
 
 
 

 (11)  

Using Newton’s method can have real challenges and difficulties. For instance, the 

quality of convergence in Newton’s method is strongly dependent on the quality of initial 

guesses [48]. Also, for some problems, the arrangement of the Jacobian matrix is somehow 

unmanageable. Moreover, forming all the arrays based on derivations can be time-consuming 

and difficult. Finally, it is necessary to add this point that the computational cost of Newton’s 
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method is notably high because of making an inversion of the Jacobian matrix for a certain 

number of iterations [49]. 

1.2.3.2 Particle Swarm Optimization (PSO)  

In order to overcome the addressed challenges of making proper initial guesses and 

forming the Jacobian matrix, the application of Particle Swarm Optimization (PSO) is 

recommended. PSO is a free-derivation optimization method [50]. It does not need proper 

initial guesses to find the most optimized suite of pressures that their production by C1 in 

Equation 9 results in a close-to-zero matrix. Inspired by social systems among organisms such 

as fish schooling and birds flocking, PSO has been represented as a stochastic optimization 

technique [51]. PSO is a metaheuristic optimization algorithm that can practically be employed 

to solve multidimensional optimization problems. 

Beginning with an arbitrary collection of particles or prospective solutions containing 

pressure numbers, the workflow tries to enhance solutions depending on their properties, 

hopefully generating a certain quantity of zeros. The main target of PSO is to reach the 

supposed goal iteratively [52]. Accordingly, the velocity of particles is changed by means of 

velocity vectors that are functions of random factors. 

 𝑥𝑖,𝑗
𝑘+1 = 𝑥𝑖,𝑗

𝑘 + 𝑣𝑖,𝑗
𝑘+1 (12)  

where  

 𝑣𝑖,𝑗
𝑘+1 = 𝑣𝑖,𝑗

𝑘 + 𝑐1𝑟1(𝑥𝑙𝑏𝑒𝑠𝑡 𝑖,𝑗
𝑘 − 𝑥𝑖,𝑗

𝑘 ) + 𝑐2𝑟2(𝑥𝑔𝑏𝑒𝑠𝑡 𝑖,𝑗
𝑘 − 𝑥𝑖,𝑗

𝑘 ) (13)  
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During the kth iteration, 𝑥𝑖,𝑗
𝑘  and 𝑣𝑖,𝑗

𝑘  are the position and velocity of the jth element of 

the ith particle. Also, 𝑟1 and 𝑟2 are two numbers uniformly and randomly distributed with the 

range of 0 and 1. The 𝑥𝑔𝑏𝑒𝑠𝑡 and 𝑥𝑙𝑏𝑒𝑠𝑡 indicate the best positions experienced so far by the 

whole population and the ith particle. Furthermore, the confidence of each particle in itself and 

the population are represented by 𝑐1 and 𝑐2, respectively. Regarding a 1D geological model, 

the comparison between using Newton’s method and the PSO approach has been shown in 

Figure 2. The results indicate that the PSO can generate results as accurate as using Newton’s 

method but with fewer challenges. It must be highlighted that the implemented approach is 

slightly faster than the usage of Newton’s method when the number of grids is increased. 
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(a) 

 

(b) 

Figure 2: (a) The validation of Newton’s method and PSO approach versus the analytical 

solution for 300 grids (b) Performance of the PSO versus Newton’s method to solve 

corresponding simultaneous equations 
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1.2.3.3 Adaptive Neural Network (AdNN) 

Using various machine learning approaches like Artificial Neural Networks (ANNs) to 

solve partial differential equations has been a topic of various outstanding research. However, 

going through the literature shows that using ANNs to solve partial differential equations is 

either with the help of already gathered data or by the use of various simulation outputs. 

Therefore, it can be deduced that although using ANNs can solve problems like Equation 9 

easier without the traditional difficulties of using Newton’s method, there is still a data 

collection problem. 

Adaptive Neural Network (AdNN) is technically recognized as a subset of machine 

learning methods that can adjust its randomly distributed weights and minimize its loss function 

with no help of previously collected data [52]. Regarding Equation 9, an AdNN tries to find a 

suite of pressures that their employment generates a matrix of relative zeros. Figure 3 shows 

the proposed algorithm based on the papers presented in 3. The proposed workflow takes 

advantages of adaptive laws to modify the weights of AdNN, which is supposed to generate 

the corrections to the initial set of pressures [53]. Then, the corrected pressures are inserted into 

the nonlinear simultaneous algebraic equations [54]. Eventually, comparing the output matrix 

of answers with the preset criteria determines if the procedure should keep iterating until 

finding the most proper set of pressures or stop the computations.  
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Figure 3: The proposed nonlinear solver based on using AdNN 

The success of the implemented algorithm has been illustrated in Figure 4. It is 

shown that the produced outputs are as close as possible to those generated by Newton’s 

method.  
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Figure 4: The results of using AdNN versus results of applying Newton’s method 

One of the most important aspects of using such a methodology is its computational 

efficiency. The examination of computational efficiency can be done based on the observations 

of RAM usage and CPU Time. The results of the analysis have been indicated in Figure 5. 

Because the proposed workflow is a derivation-free method, the RAM usage is less than 

Newton’s method. It becomes even more important for the larger number of grids. The CPU 

Time measurement shows that using the represented workflow has almost the same 

performance as Newton’s method although it is observed that Newton’s method is faster for 

the larger number of grids. 
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(a) 

 

(b) 

Figure 5: The computational efficiency of the AdNN-solver 
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1.3 Microscopic Scale 

The production from unconventional resources like tight and ultratight hydrocarbon 

reservoirs can be guaranteed if the prior reservoir studies are undertaken precisely [55]. As a 

result, carrying out experimental investigations such as Routine Core AnaLysis (RCAL) and 

Special Core AnaLysis (SCAL) to reveal the petrophysical parameters as accurate as possible 

has always been recommended as the most promising plan. However, using classic laboratory 

methods to determine the parameters like the permeability of tight porous media is time-

consuming, expensive and inaccurate [56]. Therefore, having a detailed experimental plan for 

a large number of samples taken from an unconventional resource is impractical.   

Accordingly, Digital Rock Physics (DRP) has been introduced as a state-of-the-art 

technology that takes advantage of microtomographic imaging and advanced numerical 

simulations to complement laboratory investigations to understand relevant physical processes 

[57]. It is evident that in recent years, pore-scale modelling has been recognized as a standard 

and precious approach to estimate and predict the properties of porous media. Pore-scale 

modelling can effectively be employed to study flow simulation in porous media by modelling 

the void spaces and pore throats. Also, it results in the observation and understanding of various 

phenomena at the microscopic scale to accurately determine favourite properties, such as 

permeability, capillary pressure, and relative permeability curves  [58]. 

Micro x-ray Computed Tomography (μxCT) is the most widely accessible and non-

destructive method among various imaging techniques [59]. Technically, the object is placed 

between the stationary source and the detector of the μxCT setup, and by its rotation, images 

are collected from different angles [60]. After generating sinograms applied by back-
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projection, 2D cross-sections are created using superimposition [61]. Routinely, μxCT images 

suffer from noises and artifacts such as roundoff errors, electronic, statistical, and random 

noises [62]. After filtering, the images need to be binarized. Following the thresholding 

method, the black voxels are labelled to void space, and white ones to grains lead to 

reconstructing the 3D sample used in further flow simulations [63]. 

Accordingly, the general procedure of Digital Image Processing (DIP)can be illustrated 

in Figure 6. It starts with imaging the rock sample. Then, the generated sinograms are 

undertaken with the computed tomography to create the supposed μxCT images. As mentioned 

before, image filters are employed to reduce noise levels and increase the quality of images. 

The procedure continues with the application of the segmentation algorithm. The resultant 

binary cube is subjected to the various Pore-Scale Simulation (PSS) methods.   

 

Figure 6: The primary trend of DIP 

Direct Numerical Simulation (DNS) and Pore Network Modeling (PNM) are two 

general PSS methods that simultaneously find the pressure and velocity profile [64]. Although 

the PNM is a suitable method for modelling multiphase flow, its application causes losing 
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details of pore structures [65]. It leads to the increasing of numerical errors due to the imposed 

idealization of porous spaces. In contrast, the DNS method is typically recommended as an 

appropriate method for modelling single-phase flow because of its better computational 

efficiency [66]. The DNS method is implemented directly on the captured images so that the 

void spaces are detected, discretized, and then the relevant fluid flow equations are solved. The 

basis of DNS is solving Navier-Stokes Equations (NSE) on grids directly coming from μxCT 

images. It causes studying the effects of pores structure and their effects on flow simulation. 

Following the Computational Fluid Dynamics (CFD), finite-volume, finite-difference, and 

finite-element are well-known methods that can be employed to solve the NSE with high 

computational power [67]. In more detail, the CFD method is a top-to-bottom solution method 

in which the first step is considering NSE. The second one is constructing a computational 

domain then meshing it. After that, in various calculations such as pressure gradients, accuracy 

is determined, and finally, the boundary conditions are applied, and the equations are solved. 

The main dynamic parameter of single-phase flow is permeability, which highly depends on 

the structures and connectivities among pores.  

Although μxCT images can be generated at different resolutions and Fields of View 

(FOV), there are restrictions in choosing the resolution [68]. When the resolution is low, parts 

of pores with minimal dimensions are not recognizable and lead to porosity calculation errors. 

It is also impossible to properly segment throats by Digital Image Processing (DIP). As a result, 

the permeability calculations are severely suffering from a high level of uncertainty. On the 

other hand, more details about pore structures can be obtained at higher resolutions even though 

it equals a narrow FOV and a failure to achieve a representative physical volume where the 

porosity changes are negligible [69]. In other words, the major challenge restricting the 
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accuracy of rock properties calculations is the appropriate choice of resolution and the FOV. It 

is due to the fact that there is an inverse relationship between them so that with increasing 

resolution, FOV decreases and vice versa. 

The discussed trade-off can become even more challenging when DRP technology is 

supposed to be implemented in a tight and ultra-tight rock sample. To picture the situation more 

understandable, it is highly required to consider the two concepts of spatial image resolution 

and Pore Size Distribution (PSD) [70]. The value of spatial resolution indicates the physical 

dimension that represents a voxel of the image. For instance, the spatial resolution of 1.2 

micrometres per voxel (1.2 μm/vox) reveals the fact that the elements of the object with a size 

less than 1.2 μm/vox cannot be seen in the reconstructed cross-sections. On the other hand, one 

of the most important petrophysical characteristics for each core sample is its PSD. 

Technically, the PSD is a histogram that represents information about the relative abundance 

of each pore sizes in a represented core sample [71].   

In the case of overlapping the PSD with the spatial resolution of μxCT images taken 

from a tight sandstone sample from Achimovskiy formation, a large portion of pores cannot be 

seen in the reconstructed images (Figure 7). Consequently, the computation results of PSS can 

be questionable.  It must be reminded that increasing the spatial resolution of μxCT images is 

not a practical solution because of losing the representativeness of the images [72]. Therefore, 

the question that needs to be answered is how to take the effects of “sub-resolved” pores into 

account [73].  
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Figure 7: Comparing the results of PSD and the spatial resolution of μxCT images   

To answer the raised question, a series of samples have firstly been taken from the 

Achimovskiy formation. Then, they have first been undertaken with the DIP tuned with the 

deep learning method. After having all the quality-increased images of DRP, it has been tried 

to check how much the classic approaches can be employed. Next, with the help of DIP and an 

operator named downsampling mainly used in deep learning, the effects of sub-resolved pores 

have implicitly been taken into account for the porosity and permeability calculations. 
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1.3.1 Digital Image Processing 

As depicted in Figure 6, noise suppression is among the most vital elements of DIP. 

Typically, image denoising is defined as finding a clean image from a noisy image. In other 

words, a noisy image is the summation of a noise component and an original image. The most 

important step of noise reduction is the minimization of feature loss in the cleaned image. The 

various image filters can be classified into two main types of spatial and transform domain 

filters. Within the spatial domain filters, the relevant mathematical operations are directly 

applied to original noisy images [74]. 

On the contrary, transform domain filters are those in which the target image is first 

supposed to be decomposed into different frequency components. Then, the treatment is done 

on the resultant components, and the outcomes finally form a clean image. Regarding all the 

types of filters and their corresponding domains, the trial-and-error attempts have shown that 

the sequential implementation of the bandpass and bilateral can noticeably improve the quality 

of images without much amount of feature loss. The bandpass filter removes the background 

variations and the noise. It attenuates very high and very low frequencies but keeps the 

midrange ones. In other words, the bandpass filter can simultaneously enhance edges and 

reduce the noises [62].  

Also, the bilateral filter has been used because of its edge-preservation, nonlinearity 

and smoothness. However, the usage of classic DIP needs to know about the optimum values 

of filter parameters which can only be obtained by testing various sets of numbers. Also, the 

implementation of both filters on more than 1400 sequential images is time-consuming and 



37 

 

computationally expensive [75]. They have been taken as the main incentive to use deep 

learning for image denoising.  

1.3.1.1 Deep Learning for Noise Reduction  

After finishing the images acquisition, the tomographically computed images have been 

stacked on each other. Then, a cube with the size of 14003 has been cropped from the central 

part of the stacked images. As described earlier, the cropped cube has been undertaken with 

the bandpass and bilateral filters to generate clean images, Figure 8.  

  

(a) (b) 

Figure 8: The effects of the implemented DIP (a) The original image (b) The clean image 

The noisy images and the clean ones have been used as the training data for a supervised 

image denoising method based on deep learning. In more details, a Residual Encoder-Decoder 

Net (RED-Net) has been employed. The applied RED-Net is formed based on a stack of 

convolutional layers (encoder) and deconvolutional layers (decoder) [76]. The employed RED-

Net has schematically been shown in Figure 9. All the used convolutional and deconvolutional 

layers have 64 kernels with the size of 3 by 3. Also, the padding is one, and the implemented 
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activation function is ReLU. The results show that the applied noise reduction method has 

successfully generated clean images and has been performed faster than the classic approaches.   

 

Figure 9: The schematic of the implemented RED-Net 

1.3.2 Pore-Scale Simulation 

The most important parameters that are expected to be computed correctly based on 

DRP are porosity (ϕ) and permeability (k). According to the generated black and white model, 

due to the implementation of a segmentation algorithm, the total porosity can be known as the 

ratio of black voxels over all voxels [77]. However, there are several methods for k 

computation. Basically, k is defined as:  

 𝑘 = −
𝜇�̅�

Δ𝑝
𝐿

 (14)  

where 
Δ𝑝

𝐿
 is the pressure gradient, 𝜇 is viscosity and �̅� shows the average flow velocity in the 

entire flow domain. Computation of �̅� is the leading interest for various researches. It can be 

computed based on one of the following methods:  

 Direct Simulation 

 Lattice Boltzmann Method 
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 Pore Network Modelling 

Regarding the tight formations, the basic idea is that how much using these methods is 

reliable when a large portion of pores cannot literally be seen in the images. The idea has wholly 

been discussed in the next part. Also, it has been figured out that how it is possible to use the 

classic approaches to consider the effects of sub-resolved pores. 

1.3.2.1 Implementation of the Classic Approaches  

As discussed earlier, the most important concern of applying DRP methods to tight 

formation is that a large portion of pores cannot be seen in the μxCT images. As a result, using 

classic DRP methods is questionable. In terms of DIP, the filtered images are supposed to be 

binarized in order to form a digital rock sample. In spite of using many conventional global 

segmentation algorithms, it has been observed that implementing a double-threshold method 

like Random Walker (RW) algorithm can generate segmented images that their post-processing 

with some morphological operators results in a binary model with the minimum loss of 

information, Figure 10. 
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Figure 10: The implemented DIP in a glance 

The next step is the employment of the already mentioned PSS methods. Accordingly, 

the permeability of 5 samples has been computed based on what has been described in Pore-
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Scale Simulation. Based on the generated results illustrated in Figure 11, it can be interpreted 

that there are no steady trends among the generated results. 

 

Figure 11: The results of permeability computations based on the variety of methods 

Next, the dependency of the overall procedure to the implemented DIP has been 

observed. It needs to be highlighted that the supposed sensitivity analysis has been done based 

on the method of the Direct Simulation method. The Manual DIP is the first workflow 

implemented for all the gathered images. The method is based on using a typical Personal 

Computer (PC). Therefore, the resultant binarized cubes have the size of 4003 after running 

Otsu’s algorithm. After that, the same procedure of PSS has been repeated for the 6003 cubes 

generated by Schlumberger through carrying the Cross-Laboratory Control DIP out.  

Eventually, the third type of DIP has been employed by taking advantage of a High-

Performance Computer (HPC) unit. The implemented Automated DIP can produce not only a 

binary cube with the size of 14003 but also uses the RW algorithm, which is remarked as an 
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advanced double-threshold algorithm. The anisotropic permeability analysis of using various 

DIP has been indicated in Figure 12. 

  

  

 

Figure 12: Effects of image processing on the permeability anisotropy analysis 
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 In conclusion, it is believed that the complexity of pore geometry existing in tight 

sandstones is the main reason that why there is a kind of deviation in calculated permeability 

values.  

1.3.2.2 Effects of Sub-Resolved Pores  

The image-based computations of petrophysical properties are typically suffering from 

biases. In other words, there are several important considerations when comparing DRP results 

with lab measurements. One of the most significant factors that affect the quality of DRP results 

is the degree of resolved rock components. Moreover, the DRP results are impacted by each 

step shown in Figure 10. Besides, it should be considered that the computed results are based 

on a micron-scale while the measurements have been made at the core scale. 

Consequently, the biases are created in the computed results, even for those perfectly 

homogeneous samples. To put it in another way, a systematic offset has been observed when 

comparing the computed porosity and permeability with those coming from the laboratory 

measurements. In some details, it has been noticed that the image-based porosities are 50% less 

than the expected values [78], and also, the computed permeabilities are 10-times greater than 

the experimental values [61]. Further analyses show that applying a deep-learning operator 

known as downsampling can synthetically reduce the spatial while not changing the physical 

size. Running the downsampling allows the researchers to have a set of computed porosities 

versus the synthetic spatial resolution. For instance, the images of the sample can have a spatial 

resolution of 1.2 μm/vox. The sequential applying of the downsampling operator can generate 

the synthetic resolution of 2.4, 4.8, 9.6 and 19.2 μm/vox.  
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Then, there is a possibility of computing the porosity for each one of the mentioned 

resolutions. The analyses made to the Achimovskiy formation show that the scatter can 

accurately be modelled with an exponential trendline. The generated model provides the 

opportunity to estimate the porosity for the spatial resolution of 0 μm/vox, which is 

theoretically possible but physically not. The procedure has graphically been illustrated in 

Figure 13. The implementation of the method to 5 samples taken from Achimovskiy formation 

has been performed in Figure 14. 

 

Figure 13: The effect of downsampling on the measured porosities.  
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Figure 14: Estimation of ϕA by using the introduced procedure 

The whole procedure results in the estimation of Actual porosity (ϕA). Regarding the 

porosity coming from Images (ϕI), it is possible to estimate the bias between both types of 

porosities as: 

 𝛽 = (
𝜙𝐴

𝜙𝐼
)
3

(
1 − 𝜙𝐼

1 − 𝜙𝐴
)
2

 (15)  
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where ꞵ shows the bias. Then, ꞵ can be employed to compute the Actual permeability (kA) 

based on Image permeability (kI) as:  

 
𝑘𝐼

𝑘𝐴
= 𝛽 (16)  

It has been observed that using the discussed procedure to find the kA has been 

successful enough so that the ratios of kA over the experimental permeability values are closer 

to unity than other approaches, Figure 15.  

 

Figure 15: Estimation of kA with the help of computed ꞵ 

 

Seyed Hassani
Where are equations mentioned in the legend of this figure?



47 

 

2. A novel approach for solving nonlinear flow equations: The 

next step towards an accurate assessment of shale gas resources 

Summary: Fluid flow in shale gas plays is a complex multi-mechanism phenomenon. 

The governing equation is a second-order nonlinear partial differential equation. The derived 

equation can numerically be solved by means of Newton’s method. However, using Newton’s 

method needs making proper initial guesses. Also, it is supposed to form the Jacobian matrix 

and its inversion, which are computationally expensive. The paper put forward a new 

application of PSO as a nonlinear solver. The results indicate that the implementation of PSO 

not only causes the generation of results as accurate as using Newton’s method but also it is 

much easier to apply. 
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3. A nonlinear solver based on an adaptive neural network, 

introduction and application to porous media flow 

Summary: Using machine learning methods like ANNs to numerically solve partial 

differential equations has been discussed in a wide range of previous studies. However, the 

success of ANN applications is guaranteed if there would be proper access to a database. The 

paper introduces a nonlinear solver based on AdNN. The procedure shows that using the 

represented workflow makes it possible to get rid of making proper initial guesses, forming the 

Jacobian matrix and also its inversion. Moreover, the results show that using the proposed 

workflow can generate the results accurately as Newton’s method.  
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4. Deep learning in denoising of micro-computed tomography 

images of rock samples 

Summary: The noise suppression of μxCT images is a time-consuming and user-

dependent procedure. In more details, there are various sorts of parameters that are required to 

be determined by an experienced user. To overcome such a difficulty, an algorithm based on 

deep learning has been suggested. The Residual Encoder-Decoder net (RES-net) based on 

convolutional and deconvolutional layers has been employed. The training has been done based 

on a set of noisy and denoised μxCT images. Each of the embedded layers is working based on 

64 kernels with the size of 3 by 3. The results show that the applied method has performed 

efficiently.    
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5. Different methods of permeability calculation in digital 

twins of tight sandstones 

Summary: The application of classic DRP approaches to tight porous media is 

questionable. It is due to the fact that the spatial resolution of images is technically larger than 

the size of a large portion of pores. Therefore, they cannot be seen in the μxCT images. The 

research has tried to figure out how much the classic DRP approaches can successfully describe 

the image-based petrophysical properties as close as possible to the experimental values. The 

research has approached the target based on two separate sensitivity analyses of various PSS 

and DIP methods. The results show that the Direct Simulation and Automated DIP methods 

are the best types of PSS and DIP approaches, respectively. Also, it has been understood that 

the classic DRP approaches cannot take the effects of sub-resolved pores into account 

effectively. 
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6. Strengthening the digital rock physics, using downsampling 

for sub-resolved pores in tight sandstones 

Summary: Downsampling is known as one of the most fundamental operators of deep 

learning. It has been applied to estimate the porosity and permeability at the spatial resolution 

of 0 μm/vox, which is technically impossible but theoretically possible. The proposed 

workflow has been implemented to 5 samples taken from the Achimovskiy formation. With 

the help of inserting an exponential trendline into the scatter data, it has become possible to 

estimate the porosity at the resolution of 0 μm/vox. Then, the bias between the two sets of 

porosities has been computed. The resultant biases have been employed to correct the image-

based permeability. The outcomes prove that the proposed workflow performs efficiently.   
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