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Abstract 

Despite the maturity of intermolecular interaction theory and the progress in modern 

computational quantum chemistry methods, improvement of ab initio interaction potentials still 

remains challenging, being heated up by constantly growing accuracy demands from various 

fields, ranging from diatomic interactions explored in ultracold atomic physics to modeling huge 

and complex atomistic systems in materials chemistry. In the field of the weak van der Waals 

interactions, two possibilities coexist. The dimeric (molecular) approach targets global potentials, 

but experience inherent limitations at long range. Monomeric (atomic) approach cover specifically 

the latter, using long-range coefficients expressed through the electric properties of the monomers. 

An opportunity to improve the overall theoretical accuracy lies in more thorough bridging and 

balancing of these two alternatives. In this work, the performance of molecular approaches in the 

long-range region is assessed throughout four test cases, which, in turn, represent exemplary 

situations where both the global potential and its long-range wedge should be known consistently. 

More precisely, the cases address 1) the performance of molecular approaches in modelling the 

long-range potential of alkaline-earth atoms and Yb, 2) the possibility of matching atomic and 

molecular approaches for the benchmark description of the interaction potential of the Yb dimer, 

3) combination of molecular and atomic approaches for dispersion interactions of open-shell 

systems, which, exploring the transferability of atomic properties, eventually results in the new 

combining rule for dispersion coefficients, and 4) the performance of molecular approaches in the 

investigation of interactions and gas-phase mobility of heavy ions with rare gases. In all cases, the 

results reveal that the choice of an adequate ab initio method, electron core description and basis 

set customization strongly improves the ability of molecular approaches in dealing with long-range 

interaction terms and, thus, provides a useful means to improve consistency and accuracy of ab 

initio interaction potentials.  
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1. Introduction 

Though writing on intermolecular forces may appear as something technical and far from common 

knowledge, really they are more rooted in common culture than one may think. In a paradoxical 

manner, it may be said that humans knew intermolecular forces before discovering them, or, better, 

that they knew them, but without being conscious of their nature and origin. The first person to write 

on them was also the first historical person interested in nature: Thales, living between the 7th and 

the 6th century b. C. This “naturalist philosopher”, as people interested in science were called at that 

time, wrote on the attraction that amber exerted on small light objects upon scratching it. This is the 

first documented historical mention of intermolecular forces, albeit he thought that it was an intrinsic 

property of amber, rather than a force affecting matter. For more than 1500 years, none dared to 

confute the theses adduced by the Greeks, until Scholastic philosophy left the place to experimental 

method, at the dawn of the so called Scientific Revolution. The first steps were still irresolute and 

still tied to refusing the concept of forces acting from a distance: in 1600, William Gilbert 

hypothesized that electric and magnetic forces should be originated by unperceivable effluvia. 

However, his nowadays obsolescent theories hid even some hints to modern theories on interactions, 

such as the role of temperature in encouraging interactions in matter [1].  A powerful voice in favor 

of the model of forces acting from a distance came from Newton’ and Leibniz’s works, stating that 

forces acting on gas particles should follow an inverse distance-dependence relation [1]. However, 

doubts still arose: how can the inverse distance dependence of forces explain the incompressibility 

of matter?  It was clear that an equilibrium distance should exist, beyond which two bodies can 

hardly be pushed closer to each other: Roger Boscovich (1711-1787) proposed that forces among 

atoms should have an oscillatory nature. Indeed, resembling intermolecular forces to a spring would 

have solved the problem of incompressibility of bodies. However, Boscovich attributed repulsive 

effects to heat, rather than to the finite size of atoms and, like Newton, supposed gas particles to be 

static [1]. It was only with Daniel Bernoulli, in 1738, that the first kinetic theory of gases was 

proposed, where it was clearly stated that particles in gases move and collide [1]. Linking the concept 

of intermolecular force with that of collision and potential repulsion was particularly fruitful for 

further advancements in this study: the electrostatic law by Charles-Augustin de Coulomb, first 

proposed in 1785 [1], was soon extended to atoms and, later, molecules, while, in the next century, 

Jan Diderik van der Waals formulated his famous equation of state, where both the finite size of 
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molecules and the attractive intermolecular forces between them were quantitatively accounted for 

[1].  

The evolution of scientific research throughout history has shed light on the nature of intermolecular 

forces. Nowadays, their ubiquitous role in nature is well known. For instance, they are responsible 

for the state of matter: the definite density of liquid water and its incompressibility to smaller 

volumes witness the existence of intermolecular forces keeping the constituent molecules together 

and the rise of repulsive forces when one tries to push them closer to each other [2]. However, 

intermolecular forces can even lead molecules to arrange into solids: molecular solids are defined as 

a state of matter where a theoretically infinite number of molecules is kept together in a periodic 

lattice by intermolecular forces [3]. Such forces can even drive the displacement of such molecules 

towards different configurations in the lattice, as a phenomenon called polymorphism [4]. 

Interactions between atoms (or molecules) and surfaces represent another scenario where 

intermolecular forces play a determinant role, which, in turn, is commonly exploited by experimental 

techniques such as Electrophoretic Deposition (EPD) [5] and Atomic Force Microscopy (AFM) [6]. 

Furthermore, recently, nanotechnology has focused on those processes where molecular components 

organize themselves into more complex patterns or structures without human intervention: this 

bottom-up supramolecular arrangement, called self-assembly, is mediated by intermolecular forces 

[7] and has been proposed as a mechanism driving the origin of life [8]. 

Accordingly, our knowledge of intermolecular forces is much more complete and systematic than in 

van der Waals’ time: intermolecular interaction is defined as a physical phenomenon responsible for 

the attraction or the repulsion between two charge distributions (atoms, molecules, ions…) [2,9]. In 

particular, intermolecular forces are classified into two branches, depending on the internuclear 

distance at which they are effective: short-range forces and long-range forces. The former accounts 

for “chemical” effects, such as exchange interaction and covalent or ionic bond formation [10]. 

Definition of the long-range forces excludes the latter effects [11]. They are regarded as weak and 

grouped under the name of van der Waals forces [11]. This definition implies that the long-range 

forces can be described perturbatively, by considering interaction of two independent charge 

distributions created by electrons and nuclei of each monomer. Famous intermolecular perturbation 

theory [12-16] provides general and transparent expression of intermolecular potential creating these 
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forces. The potential of interacting monomers A and B has the generic asymptotic form of an inverse 

power series in the internuclear distance R, in the simplest exemplary case,  

𝑈AB(𝑅)
𝑅→∞
→   − ∑

𝐶𝑛
AB

𝑅𝑛𝑛              (1.1) 

with the long-range coefficients 𝐶𝑛
AB [9,10]. The latter depend on the static moments and/or response 

properties that characterize the charge distribution of the free monomers [2,9,10]. In particular, 

interaction potential (1.1) can be split into several contributions, each one creating a different force: 

the electrostatic contribution accounts for the interaction of the permanent multipole moments of the 

monomers and, consequently, is zero for spherically symmetric overall neutral charge distributions 

[10]; the induction contribution, scaling with the fourth inverse power of R or higher, accounts for 

the polarization of the charge cloud of each monomer by the electrostatic field due to each other 

[10]; finally, the dispersion contribution, scaling with inverse power of R equal or larger than six, 

accounts for the interaction due to correlations of the fluctuating multipole moments of the two 

monomers [10].  

The basic equation of intermolecular interaction theory (1.1) delineates two alternative, but 

complementary approaches. Long-range coefficients can be defined from the known (calculated or 

empirically reconstructed) global interaction potential of a dimer. This constitutes a dimeric, or, in 

the context of the Thesis, molecular approach. In principle, it provides the complete description of 

the potential and all related phenomena, and can be realized with the help of sophisticated methods 

of the ab initio electronic structure theory. Understandably, the cost of molecular approach rapidly 

grows with the complexity of the monomers. In addition, precise definition of the long-range 

coefficients from the global potential suffers from numerical errors for very small asymptotic 

energies and poor and ambiguous fitting. Monomeric (or atomic) approach focuses on the 

electrostatic and response properties of the monomers to calculate long-range coefficients directly. 

Offering unambiguous definition of the whole set of the coefficients to a desirable order and their 

(partial) transferability, monomeric approach is especially productive in the simplest cases of atomic 

monomers, when the special non-standard theoretical methods are applicable to account for the 

higher-order relativistic effects, non-Born-Oppenheimer terms, quantum electrodynamic (QED) 

corrections, etc. Its computational cost exhibits slower growths with the monomer complexity than 

that of dimeric approach, but not without accuracy victimizing, as the ab initio methods for response 

pcztgw
Sticky Note
the

pcztgw
Sticky Note
the present

pcztgw
Highlight

pcztgw
Sticky Note
the

pcztgw
Sticky Note
The

pcztgw
Sticky Note
the

pcztgw
Highlight

pcztgw
Sticky Note
suffering



 
 
 

7 

 

property calculations are usually less precise than that available for energy calculations required for 

a dimer. And evidently, monomeric approach cannot provide the global potential; moreover, its 

applicability at any finite distances is formally questionable, both due to the convergence of the series 

(1.1) and omitted forces of the non-Coulomb origin. Coupled Cluster level of theory (CC) [17-19], 

for instance, defines a family of ab initio methods often employed for accurate molecular 

approaches. Among these, in the frame of CC, the Coupled-Cluster Equation of Motion (CC-

EOM) approach [19,20] and, in particular, the Polarization Propagator approach [21,22] were 

devised in order to determine response properties of atoms and molecules. However, in the ambit 

of atomic response properties, atomic approaches, such as that combining Configuration 

Interaction method and Many-Body Perturbation Theory (CI-MBPT) [23] turned out to be more 

flexible and more easily customizable for specific systems, having the possibility even to embody 

empirical corrections (see Ref. [23]). Several ways have been tried in order to overcome this 

dichotomy between the accurate estimation of the global potential and the accurate unambiguous 

knowledge of the long-range coefficients. Symmetry-Adapted Perturbation Theory (SAPT) [24] 

represents the most theoretically consistent compromise between molecular and atomic 

approaches: at this level, antisymmetrized eigenfunctions from molecular ab initio methods are 

used to build up the unperturbed wave function [2,25-27], whereas electron correlation and 

interaction potential are treated as a perturbation [2,25,26]. However, SAPT tends to lose accuracy 

at short ranges and higher-level corrections applied to increase its accuracy may dramatically 

increase the computational demands of the method, while higher accuracy comparable to the 

golden standard CCSD(T) method is not always ensured [27]. The most widely used SAPT 

correction to account for the breakdown in the short-range region, SAPTδMP2, does not 

unambiguously decompose the terms constituting the interaction energy, as δMP2 itself includes 

both dispersion and induction contributions [27]. Moreover, SAPT treatment of interaction is 

hardly transferable to systems consisting of more than two interacting bodies. In the fields of 

molecular dynamics and molecular mechanics, synthetic potentials, also called model potentials, 

have proven to be a successful option. The scope of synthetic potentials is to propose a simplified 

but still effective description of the interaction potential by an approximate functional model 

decomposing the short- and long-range contributions into a set of parameters [2,28,29]. Such 

parameters can be separately achieved and flexibly embodied into the model potential: they are 

usually empirical, retrieved from first-principles ab initio calculations or from experimental data 
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[24,29]. Beside of the lower computational effort, flexibility is another advantage of this approach: 

synthetic potentials can be customized for one system (see, for instance, Ref. [30]) or for a whole 

class of systems. In this latter case, parameters are often achieved from properties of a subset. In 

particular, geometrical or empirical relations are used to retrieve interaction parameters for two 

unlike partners A, B from the analogs for the pure phases [2,9]: such relations are called combining 

rules [31]. Combining rules address the transferability of approaches used to investigate 

intermolecular interactions: while rules for short-range parameters depend on the model potential 

parametrization [31-34], those for long-range coefficients respond to the inverse power series (1.1) 

[31] and are, thus, easily transferable to any kind of potential function. When matched with 

synthetic potentials, such rules are used to decrease the number of parameters employed and, thus, 

plunge the computational effort and increase the transferability of the model potential [28]. 

However, despite of their flexibility and transferability, model potentials do not attain accuracies 

similar to those characterizing molecular and atomic approaches, due to the oversimplified 

formalism of the empirical parameters [35]. The same oversimplification affects many combining 

rules, whose theoretical basis is quite flimsy [2] and the success irregular [36]. 

Accuracy and consistency are particularly important when dealing with gaseous phases; here, long-

range weak forces play a remarkable role and are protagonists in several applications of growing 

interest, where precise estimations are crucial: they govern scattering processes and phenomena 

occurring in the ultracold regime, such as photoassociation [37-43,30,44-46] and Feshbach effect 

[23,24]. Intensive studies were also devoted to the long-range forces affecting ultracold alkaline earth 

atoms, such as Ca [23,47] and Sr [47,48], for several applications, among which the search for new 

frequency standards [23,47,48], that requires accuracy up to the eighteenth decimal place [49,50]. In 

addition, very recently, weak interactions of ytterbium atoms at ultracold temperature have been 

investigated as sensors of short-range gravity-like forces [30,51]. Though counterintuitive in 

appearance, even the study of transport properties of ions in buffer gases offers the chance for the 

investigation of van der Waals forces: the relationship between gas-phase mobility of ions and 

their interaction potential with rare gases is well known and exploited in several experimental 

techniques, such as the so-called Electronic State Chromatography [52-54] or the novel Laser 

Resonance Chromatography, to characterize heavy and superheavy elements [55-57]. Really, at 

the lowest order, intermolecular forces between ions and neutral buffer gases do not directly sense 

the electronic structure of the formers [55] and, therefore, such experimental techniques should be 
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flanked by theoretical investigation of higher-order interactions, in turn depending on response 

properties of the ion. 

Many important and delicate applications to few-body systems, such as mentioned above, require 

the accurate and consistent description of both the short- and long-range regions of the interaction 

potential. The way to address this requirement within the standard implementations of the high-level 

ab initio CC methods is to elucidate 

1. How accurate are the methods approved for molecular approach when applied within the 

atomic approach? Do the recipes for improving molecular ab initio calculation work in the atomic 

limits and are they helpful for balancing the accuracy? 

2. Can molecular and atomic approaches be directly combined at some point to provide really 

global and consistent interaction potential? 

On the other extreme of the current research agenda, approaches to molecular modeling of large and 

complex systems operate with simplified potentials, or additive force fields, containing a limited set 

of general parameters, frequently interconnected with the help of empirical relations, or combining 

rules. For the long-range part, atomic approach is indispensable due to transferability of underlying 

atomic properties. However, it becomes non-trivial for the most general case of dispersion 

interactions, for which the long-range coefficients are represented by convolutions of the response 

properties rather than by the product of the static ones. The questions arise 

3. Can the link between the molecular and atomic approaches be explored to deduce the 

response properties hardly available from direct calculations (e.g., for open-shell systems)? Can it 

give relations between the dispersion coefficients useful as the combining rules?  

Finally, the value of the global interaction potential, or, more generally, the potential energy surfaces, 

is determined by the amount and accuracy of information on the experimentally observable 

quantities to be extracted by solving suitable nuclear motion problem. At this level, the effects of 

short- and long-range forces cannot be strictly disentangled. One can only expect different sensitivity 

and judge the balance and accuracy of their descriptions. Answers to the previous questions aim to 

improve both factors. But it remains to be proven if 
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4. The carefully constructed interaction potentials are capable to interpret and predict the 

experimental results of, say, macroscopic transport properties? 

The goal of the thesis is to address four questions raised above. Towards this goal, four relevant and 

practically interesting examples are considered in the Chapters 3 to 6. Chapter 2 is devoted to 

introduce the reader to the theoretical background behind the methods and approaches used. Finally, 

Chapter 7 summarizes the main conclusions of the work and highlights some prospects. 
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2. Theoretical background 

2.1. The theory of weak intermolecular forces 

2.1.1. Introduction 

The interaction of two atoms or molecules can be roughly compared to a conversation of two people: 

the main driving forces leading two people to sympathize with each other consist of either intrinsic 

factors of each person, such as their more or less marked extroversion, or induced factors, such as 

the interlocutor’s ability of orienting his companion to sympathize with him. In other words, intrinsic 

or induced features may concur to raise a conversation. In a very similar manner, two atoms interact 

either by an intrinsic property or by an induced property. Examples of intrinsic properties in atoms 

and molecules are their electric polarizabilities, while their induced electric multipole moments are 

defined as the system’s induced response to an electric external stimulus. 

In this section the theory behind Van der Waals forces is explored, starting from the pristine model 

of a uniform distribution of charges in an electric field to the model of two atoms with an isotropic 

electron distribution. This model is particularly relevant, as the Thesis will mostly deal with 

interactions of closed-shell atoms, where no anisotropy in the charge distribution arises. 

2.1.2. Electric multipole moments 

Let us take a uniform distribution of charges. The simplest multipole moment is the total charge, 𝑞, 

𝑞 = Σ𝑎𝑒𝑎,               (2.1) 

where 𝑒𝑎 represents the charge owned by each particle composing the system. Upon placing the 

charge distribution into an electrostatic potential field 𝑉(𝒓), the energy of the charge distribution 

will be affected by such a potential field, thus generating a potential energy for the interaction with 

it, 𝑈: 

𝑈 = Σ𝑎𝑒𝑎𝑉(𝒂),              (2.2) 

where 𝒂 defines the position vector of each charge composing the system. Throughout the Thesis, 

we will use equally U and V to refer to the potential energy, except in cases when potential energy 

and electric field are considered simultaneously. In that specific case, such as in the present one, V 

will always refer to the electrostatic potential field. 
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A uniform electric field, 𝑭, generates an electric potential field 𝑉(𝒓) = 𝑉0 − 𝒓 ∙ 𝑭 and thus the 

potential energy becomes 

𝑈 = 𝑞𝑉0 − Σ𝑎𝑒𝑎𝒂 ∙ 𝑭              (2.3) 

In eq. (2.3), 𝑉0 represents the potential in the origin and one can distinguish two contributions: the 

first is the potential energy in the origin, the second is the product of the electric field times an 

intrinsic property of the charge distribution, i.e. its dipole moment  

𝝁 =  Σ𝑎𝑒𝑎𝒂               (2.4) 

Beside of the dipole moment, other higher order multipole moments exist, such as the quadrupole 

moment and the octupole moment; the former is so called since a quadrupolar charge distribution 

using charges of equal magnitude needs four of them, two positive and two negative [1]; the latter is 

so called since eight charges of equal magnitude are needed for an octupolar charge distribution, four 

positive and four negative. In general, any electric multipole moment of rank n can be expressed in 

the following tensor notation [1]: 

𝜁𝛼𝛽
(𝑛)
…𝜈 =

(−1)𝑛

𝑛!
Σ𝑎𝑒𝑎𝑎

2𝑛+1𝜕𝑎𝜈 …𝜕𝑎𝛽𝜕𝑎𝛼(
1

𝒂
),           (2.5) 

where the Greek letters 𝛼, 𝛽,… , 𝜈 indicate the Cartesian components of the multipole moment tensor. 

It is worthy of notice that the number of independent tensor components for the rank n multipole 

moment is equal to 2n+1, corresponding to the number of spherical harmonics of that rank [1]. For 

many applications it is thus much more practical to use a polar coordinate system instead of a 

Cartesian one. In that case, one can describe multipole moments tensors Q by means of regular 

spherical harmonics: 

𝑄𝑙𝑘 = Σ𝑎𝑒𝑎𝑅𝑙𝑘(𝒂) or 𝑄𝑙𝑘 = ∫𝜌(𝒓)𝑅𝑙𝑘(𝒓)𝑑
3𝒓,         (2.6) 

where 𝜌 signifies the continuous charge density.  

An atom or a molecule in a non-uniform electric field feels a potential 𝑉(𝒓). The related electric 

field is expressed as 𝐹𝑎 = 𝜕𝑟𝛼𝑉 = 𝑉𝛼 and its gradient is 𝐹𝛼𝛽 = −∂rα𝜕𝑟𝛽𝑉 = −𝑉𝛼𝛽. Upon choosing 

a proper coordinate origin, we can expand the potential in Taylor Series: 

𝑉(𝒓) = 𝑉(0) + 𝑟𝛼𝑉𝛼|0 +
1

2
𝑟𝛼𝑟𝛽𝑉𝛼𝛽|0 +

1

3!
𝑟𝛼𝑟𝛽𝑟𝛾𝑉𝛼𝛽𝛾|0 +⋯        (2.7) 
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 The Hamiltonian operator describing the energy for the interaction with the field, ℋ̂′, can be 

expressed in terms of all the charges of the atom or molecule in each position a times the potential: 

ℋ̂′ = �̂�(0)Σ𝑎𝑒𝑎 + �̂�𝛼|0Σ𝑎𝑒𝑎 �̂�𝛼 +
1

2
�̂�𝛼𝛽|0Σ𝑎𝑒𝑎 �̂�𝛼 �̂�𝛽 +

1

3!
�̂�𝛼𝛽𝛾|0Σ𝑎𝑒𝑎 �̂�𝛼 �̂�𝛽 �̂�𝛾 +…      (2.8) 

Eq. (2.8), called the Multipole Expansion, leads, after tedious calculations, to the following result, 

ℋ̂′ =  𝑞�̂� + �̂�𝛼�̂�𝛼 +
1

3
Θ̂𝛼𝛽�̂�𝛼𝛽 +

1

3.5
Ω̂𝛼𝛽𝛾�̂�𝛼𝛽𝛾 +⋯+

1

(2𝑛−1)!!
𝜁𝛼𝛽…𝜈
𝑛 �̂�𝛼𝛽…𝜈 ,      (2.9) 

i.e. an expansion in terms of the potential operator and its derivatives, containing the dipole moment 

operator along the 𝛼 component, �̂�𝛼, the quadrupole moment operator along the 𝛼, 𝛽 components, 

Θ̂𝛼𝛽, the octupole moment operator along the 𝛼, 𝛽, 𝛾 components and so forth. According to the 

previous analysis, the multipole moments can be expressed either in the Cartesian coordinate system 

or in the polar coordinate system. 

2.1.3. Static Polarizabilities 

The early result achieved in eq. (2.9) can be worked out with Perturbation Theory. Upon treating 

(2.9) perturbatively, one can get the expectation value for the ground state interaction at the first 

order, 𝐸′ = < 0|ℋ̂′|0 >: 

𝐸′ = < 0|ℋ̂′|0 > = 𝑞𝑉 + 𝜇𝛼𝑉𝛼 +
1

3
Θ𝛼𝛽𝑉𝛼𝛽 +

1

(3)∙(5)
Ω𝛼𝛽𝛾𝑉𝛼𝛽𝛾 +⋯+

1

(2𝑛−1)!!
𝜁𝛼𝛽…𝜈
𝑛 𝑉𝛼𝛽…𝜈 =

Σ𝑙𝑘𝑄𝑙𝑘𝑉𝑙𝑘 ,             (2.10) 

where, for short, we meant for each intrinsic multipole moment its ground state expectation value. 

The second-order term of the interaction yields the Rayleigh-Schrödinger sum over states [1]: 

𝐸′′ = −
Σ𝑛
′ (<0|ℋ̂′|𝑛><𝑛|ℋ̂′|0>)

𝐸𝑛−𝐸0
= −𝑉𝛼𝑉𝛼′Σ𝑛

′ <0|𝜇�̂�|𝑛><𝑛|�̂�𝛼′|0>

𝐸𝑛−𝐸0
−
1

3
𝑉𝛼𝑉𝛼′𝛽′Σ𝑛

′
<0|�̂�𝛼|𝑛><𝑛|Θ̂𝛼′𝛽′|0> 

𝐸𝑛−𝐸0
−

1

3
𝑉𝛼𝛽𝑉𝛼

′Σ′𝑛
<0|Θ̂𝛼𝛽|𝑛><𝑛|�̂�𝛼

′ |0>

𝐸𝑛−𝐸0
−⋯          (2.11) 

The prime upon the summation means that the state |0 > should be omitted. We can rewrite eq. 

(2.11) as follows: 

𝐸′′ = −
1

2
𝛼𝛼𝛽𝑉𝛼𝑉𝛽 −

1

6
𝛼𝛼𝛽𝛾𝑉𝛼𝑉𝛽𝛾 −⋯ ,         (2.12) 
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with 

{
𝛼𝛼𝛽 = 𝛴𝑛

′    
<0|�̂�𝛼|𝑛><𝑛|�̂�𝛽 |0> + <0|�̂�𝛽 |𝑛><𝑛|�̂�𝛼 |0>

𝐸𝑛−𝐸0

𝛼𝛼𝛽𝛾 = Σ𝑛
′ <0|�̂�𝛼|𝑛><𝑛|Θ̂ 𝛽𝛾|0>+<0|Θ̂𝛽𝛾|𝑛><𝑛|�̂�𝛼|0>

𝐸𝑛−𝐸0

 .       (2.13) 

These two tensor quantities characterize, respectively, the dipole moment induced by an electric field 

(𝛼𝛼𝛽) and the quadrupole moment induced by an electric field (𝛼𝛼𝛽𝛾) [1,2].  

Upon replacing the Cartesian tensors in (2.13) with the related spherical tensors, we can write a 

generic polarizability 𝛼𝑙𝑘𝑙′𝑘′: 

𝛼𝑙𝑘𝑙′𝑘′ = Σ𝑛
′ <0|�̂�𝑙𝑘|𝑛><𝑛|�̂�𝑙′𝑘′|0>+<0|�̂�𝑙′𝑘′|𝑛><𝑛|�̂�𝑙𝑘|0>

𝐸𝑛−𝐸0
        (2.14) 

Thus we define 𝛼1𝑘1𝑘′ = 𝛼1 the dipole polarizability, corresponding to the Cartesian 𝛼𝛼𝛽, whereas 

𝛼1𝑘2𝑘′ = 𝛼2 is defined the quadrupole polarizability, corresponding to the Cartesian 𝛼𝛼𝛽𝛾. Given 

the initial conditions, these polarizabilities are the system’s responses to a non-oscillating electric 

field: for this reason, they will be called hereinafter the static polarizabilities. 

As mentioned above, polarizability is a tensor, whose components account for the anisotropy in the 

charge distribution of the species interacting with an external electric field. In facts, for many 

molecules, clusters and some open-shell atoms, the redistribution of charge under application of an 

external electric field depend on the direction of the electric field vector itself. Anisotropy in the 

charge rearrangement, therefore, implies the representation of polarizability as a tensor. This, in turn, 

can be decomposed into a scalar contribution and an anisotropic contribution [2], where the scalar 

part is defined as the trace of the polarizability tensor, whereas the anisotropic contribution is 

proportional to the difference between the triple product of the squared trace of the polarizability 

tensor and the trace of the squared polarizability tensor [2]. However, some molecules and most 

atoms (e.g. closed-shell species) have isotropic charge distributions. This means that, for those 

systems, there is no anisotropic contribution to the polarizability, and the polarizability tensors 

reduces to the scalar part. The Thesis will mostly discuss systems where charge distribution is 

isotropic or, however, anisotropy is negligible. For this reason, scalar polarizability and isotropic 

interactions will be discussed more in detail throughout this work, compared to the anisotropic case.  
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2.1.4. Dynamic Polarizabilities 

When an atom interacts with an oscillating field, then the interaction energy should be investigated 

with the Time-dependent Perturbation Theory. Before applying it, some suppositions should be 

made: 

 The total Hamiltonian ℋ̂ of the interacting system can be written as an unperturbed time-

independent contribution ℋ̂0 and a small time-dependent perturbation due to the interaction with 

the field, ℋ̂′ = �̂�𝑓(𝑡), where �̂�is a time-independent operator, while 𝑓(𝑡) is a function of time. 

The total Hamiltonian is then such that ℋ̂ = ℋ̂0 + ℋ̂′; 

 According to Time-dependent Perturbation Theory, the wave function should be Ψ =

Σ𝑘𝑎𝑘(𝑡)𝜓𝑘exp (−𝑖𝜔𝑘𝑡). As the perturbation is small and the system resides in the initial state 

|𝑛 >, the coefficient 𝑎𝑘(𝑡) should satisfy the equation 

𝜕𝑡𝑎𝑘(𝑡) =  −
𝑖

ℏ
𝑉𝑘𝑛𝑓(𝑡) exp(𝑖𝜔𝑘𝑛𝑡) , 𝑘 ≠ 𝑛;        (2.15) 

 The frequency 𝜔 is high enough to make the field gradient and the higher derivatives negligible. 

According to such conditions, one can start integrating eq. (2.15), 

𝑎𝑘(𝑡) = −
𝑖

ℏ
�̂�𝑘𝑛  ∫ 𝑑𝜏 𝑓(𝜏)exp (𝑖𝜔𝑘𝑛𝜏)

𝑡

0
         (2.16) 

We can now specify the time factor: if the field is supposed to be turned on in a distant past, the 

interaction can be written as ℋ̂′(𝑡) =  2𝑉 ̂ exp[(𝜖 + 𝑖𝜔𝑡)] + exp [(𝜖 − 𝑖𝜔𝑡)], where the factor 𝜖 is 

small and tends to zero when the oscillating field has been on for a long time (steady state 

approximation) [1]. 

Upon replacing this new formulation of the interaction into eq. (2.16), one gets 

𝑎𝑘(𝑡) = −
𝑖

ℏ
�̂�𝑘𝑛  ∫ 𝑑𝜏 exp[(𝜖 + 𝑖𝜔𝑡)] + exp[(𝜖 − 𝑖𝜔𝑡)] =

𝑡

−∞
     

= −
𝑉𝑘𝑛

ℏ
(
exp[(𝜖+𝑖𝜔𝑘𝑛+𝑖𝜔)𝑡] 

𝜔𝑘𝑛+𝜔−𝑖𝜖
+
exp[(𝜖+𝑖𝜔𝑘𝑛−𝑖𝜔)𝑡]

𝜔𝑘𝑛−𝜔−𝑖𝜖
)        (2.17) 

Upon letting 𝜖 go to zero, eq. (2.17) becomes 

𝑎𝑘(𝑡) =  −
𝑉𝑘𝑛

ℏ
(
exp[(𝑖𝜔𝑘𝑛+𝑖𝜔)𝑡] 

𝜔𝑘𝑛+𝜔
+
exp[(𝑖𝜔𝑘𝑛−𝑖𝜔)𝑡]

𝜔𝑘𝑛−𝜔
)        (2.18) 
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We now specify the time-independent function V for an electric field polarized along the 𝛽 direction, 

𝑉(𝑡) =  −𝐹𝛽𝜇𝛽cos (𝜔𝑡). The 𝛼-component of the system’s dipole moment is then the sum of a time-

independent intrinsic contribution and a time-dependent contribution induced by the applied 

oscillating field: 

𝜇𝛼 = < 0|�̂�𝛼|0 >  + Σ𝑘
′ 𝑎𝑘(𝑡) < 0|�̂�𝛼|𝑘 > exp(𝑖𝜔0𝑘𝑡) + 𝑐. 𝑐.,      (2.19) 

where “c.c.” means the complex conjugate of 𝜇𝛼. 𝑎𝑘(𝑡) is known from (2.18), thus (2.19) becomes 

𝜇𝛼 = < 0|�̂�𝛼|0 >  + Σ𝑘
′ (𝑉𝑘0/ℏ) [< 0|�̂�𝛼|𝑘 > (

exp(𝑖𝜔𝑡)

𝜔𝑘0+𝜔
+ 

exp(−𝑖𝜔𝑡)

𝜔𝑘0−𝜔
+  𝑐. 𝑐. )]   

= < 0|�̂�𝛼|0 >  +𝐹𝛽 cos(𝜔𝑡) Σ𝑘
′ 𝜔𝑘0(<0|�̂�𝛼|𝑘><𝑘|𝜇�̂�|0>+<0|�̂�𝛽|𝑘><𝑘|�̂�𝛼|0>)

ℏ(𝜔𝑘0
2 −𝜔2)

−

𝑖𝐹𝛽 sin(𝜔𝑡) Σ𝑘
′ 𝜔(<0|�̂�𝛼|𝑘><𝑘|𝜇�̂�|0>−<0|𝜇�̂�|𝑘><𝑘|�̂�𝛼|0>)

ℏ(𝜔𝑘0
2 −𝜔2)

        (2.20) 

If the system resides in a non-degenerate state, then the products within brackets are real and the out-

of-phase term vanishes. Eq. (2.20) then becomes 

𝜇𝛼 = < 0|�̂�𝛼|0 > +𝛼1(𝜔)𝐹𝛽cos (𝜔𝑡)         (2.21) 

The term 𝛼1(𝜔), that is defined as 

𝛼1(𝜔) =  Σ𝑘
′ 𝜔𝑘0(<0|𝜇�̂�|𝑘><𝑘|�̂�𝛽|0>+<0|�̂�𝛽|𝑘><𝑘|�̂�𝛼|0>)

ℏ(𝜔𝑘0
2 −𝜔2)

,       (2.22) 

and is called the dipole dynamic polarizability of the system at the frequency 𝜔. 𝜔𝑘0 is the angular 

frequency for the transition from the state |0 > to the state |𝑘 >. 

It is evident that (2.22) has a pole for 𝜔 = 𝜔𝑘0. To circumvent such a problem, one can define the 

frequency of the field to be complex, as = 𝑖𝑢 , where u is real. In this way the pole is removed, 

𝛼1(𝑖𝑢) =  Σ𝑘
′ 𝜔𝑘0(<0|𝜇�̂�|𝑘><𝑘|�̂�𝛽|0>+<0|�̂�𝛽|𝑘><𝑘|𝜇�̂�|0>)

ℏ(𝜔𝑘0
2 +𝑢2)

        (2.23) 

Eq. (2.23) can also be more simply expressed as [3]: 

𝛼1(𝑖𝑢) = 2𝑅𝑒 Σ𝑘
′ <0|�̂�|𝑘><𝑘|�̂�|0>

(𝐸𝑘−𝐸0)+𝑖𝑢
          (2.24) 
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Similar approaches can be used to derive higher-order polarizabilities, such as quadrupole 

polarizability, 𝛼2(𝑖𝑢), octupole polarizability, 𝛼3(𝑖𝑢), and so forth. In general, given the n-pole 

moment operator, �̂�(𝑛), the related n-pole polarizability reads as [3] 

𝛼𝑛(𝑖𝑢) = 2𝑅𝑒 Σ𝑘
′
(<0|𝑄(𝑛)̂|𝑘><𝑘|𝑄𝑛

(𝑛)̂
|0>

(𝐸𝑘−𝐸0)+𝑖𝑢
         (2.25) 

2.1.5. Intermolecular forces at long range 

As intermolecular forces are relatively weak, it is natural to describe them by means of perturbation 

theory. The simplest case corresponds to the situation where the interacting species, A and B, are far 

enough, that the overlap can be ignored. In facts, let us consider the interaction of two species A and 

B. Their respective wave functions are ΨA(1,2, … , 𝑛A) and ΨB(1′, 2′, … , 𝑛′B), each one, in turn, 

function of the positions of the electrons localized at the respective species. By hypothesis, there 

exists a region of space associated with ΨA such that ΨA is non-zero only when all its electrons are 

in this region. Likewise, there exists a region of space associated with ΨB, and the two regions do 

not overlap. The wavefunction for the combined system is expressed as the antisymmetrized product 

�̂�ΨAΨB, where �̂� is the antisymmetrization operator. However, the antisymmetrized product 

contains terms like ΨA(1′, 2, … , 𝑛A)Ψ
B(1,2′, … , 𝑛B

′ ), where electron 1 of A has been exchanged 

with electron 1’ of B. The overlap between this and the original product function,   

 < ΨA(1,2, … 𝑛A)Ψ
B(1′, 2′, … , 𝑛B

′ )|ΨA(1′, 2, … , 𝑛A)Ψ
B(1,2′, … , 𝑛′B) >  

is then zero, because ΨA and ΨB are non-zero in different regions of space. This means that the two 

wavefunctions do not mix and, as a consequence, the calculations may be done without 

antisymmetrization [1]. Of course, this is an approximation, as the overlap is never exactly zero, but 

the error made by ignoring it decreases exponentially as the distance between A and B increases [1]. 

However, at the same time, this also means that such an approximation no longer holds when A and 

B are close enough and overlap becomes significant.  

Given these premises, one can associate a set of 𝑛A electrons with the species A and define a 

Hamiltonian ℋ̂Ain terms of these electrons. Analogously, one can associate a set of 𝑛B electrons 

with the species B and define a corresponding Hamiltonian ℋ̂Bin terms of these electrons. Thence, 

the unperturbed Hamiltonian is expressed as the sum of the separate Hamiltonians of A and B, 
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ℋ̂0 = ℋ̂A + ℋ̂B,            (2.26) 

whereas the perturbation, ℋ̂′, consists of the electrostatic interaction between the particles of A and 

those of B [4]: 

ℋ̂′ = ∫𝑑3𝒓 𝑑3𝒓′
�̂�A(𝒓)�̂�B(𝒓′)

4𝜋𝜖0|𝒓−𝒓′|
             (2.27) 

Here the terms �̂�𝑘(𝒓) =  Σ𝑘∈𝐾𝑒𝑘𝛿(𝑟 − 𝑘) define the localized charge density of each atom, while r 

and r’ stand for the positions of the electrons of the species A and B, respectively. 

It is also very useful to notice that the potential that A feels at r because of B is 

�̂�B(𝒓) = ∫𝑑3𝒓′ (
�̂�𝐵(𝒓′)

4𝜋𝜖0|𝒓−𝒓′|
) ,           (2.28) 

so that the perturbation ℋ̂′ can be represented as the energy due to the interaction of the charges of 

A with the potential of B: 

ℋ̂′ = ∫𝑑3𝒓 �̂�B(𝒓)�̂�A(𝒓)               (2.29) 

As the premises allow for neglecting antisymmetrization, the unperturbed states of the system are 

simply the product functions Ψ = ΨAΨB , that, for brevity, are to be written as |𝑚𝑛 >. Precisely, 

here, m and n identify the energy states of A and B when they do not interact, therefore, when both 

A and B are in the ground state, then one has |00 >, when A resides in the first excited state, while 

B is still in the ground state, then one has |10 > and so forth. All the |𝑚𝑛 > states are eigenfunctions 

of the unperturbed Hamiltonian ℋ̂0, so that for each state of the pair 𝑚𝑛, The Schrödinger equation 

for the unperturbed Hamiltonian reads as follows: 

ℋ̂0|𝑚𝑛 > = (ℋ̂A + ℋ̂B)|𝑚𝑛 > = (𝐸𝑚
A + 𝐸𝑛

B)|𝑚𝑛 > = 𝐸𝑚𝑛
0 |𝑚𝑛 >     (2.30) 

For closed-shell atoms the non-degenerate Rayleigh-Schrödinger Perturbation Theory yields the 

perturbed energies to second order of the ground state (𝑚 = 𝑛 = 0) [1], 

𝐸00 = 𝐸00
0 + 𝐸00

′ + 𝐸00
′′ +⋯,           (2.31) 

with 

𝐸00
0 = 𝐸0

A + 𝐸0
B            (2.32) 
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𝐸00
′ = < 00|ℋ̂′|00 >            (2.33) 

𝐸00
′′ = −Σ𝑚𝑛

′ <00|ℋ̂′ |𝑚𝑛><𝑚𝑛|ℋ̂′ |00>

𝐸𝑚𝑛
0 −𝐸00

0           (2.34) 

This is called the long-range approximation to the interaction energy [1]: upon writing the first-order 

term (2.33) in the form (2.27), it yields   

𝐸00
′ = ∫𝑑3𝒓 𝑑3𝒓′

𝜌A(𝒓)𝜌B(𝒓′)

4𝜋𝜖0|𝒓−𝒓′|
 ,           (2.35) 

where the integration over the coordinates of the particles in species A and B replaces the charge 

density operators �̂�A(𝒓), �̂�B(𝒓) with their expectation values at the ground state 𝜌A(𝒓), 𝜌B(𝒓), 

respectively. Eq. (2.35) corresponds to the classical electrostatic interaction according to Coulomb’s 

law. Thus, the first-order term (2.33) yields the expectation energy for the electrostatic interaction of 

A and B in the ground state |00 >. 

The second-order term (2.34) accounts for the induction and dispersion energies. To understand this 

term, it is instructive to split it into three contributions: 

𝐸00
′′ = 𝑈𝑖𝑛𝑑

A + 𝑈𝑖𝑛𝑑
B + 𝑈𝑑𝑖𝑠𝑝            (2.36) 

Here, the first contribution refers to the case when A is excited, while B is in its ground state; the 

second contribution to the case when A is in its ground state, while B is excited; the third contribution 

to the case when both A and B are excited. According to this depiction, each contribution can be 

explicitly written as 

𝑈𝑖𝑛𝑑
A = −Σ𝑚≠0

<00|ℋ̂′|𝑚0><𝑚0|ℋ̂′|00>

𝐸𝑚
A−𝐸0

A          (2.37) 

𝑈𝑖𝑛𝑑
B = −Σ𝑛≠0

<00|ℋ̂′|0𝑛><0𝑛|ℋ̂′|00>

𝐸𝑛
B−𝐸0

B           (2.38) 

𝑈𝑑𝑖𝑠𝑝 = −Σ𝑚≠0;𝑛≠0
<00|ℋ̂′|𝑚𝑛><𝑚𝑛|ℋ̂′|00>

(𝐸𝑚
A+𝐸𝑛

B)−(𝐸0
A+𝐸0

B)
         (2.39) 

2.1.6. Induction energy 

In the long-range limit, the most natural way to develop the induction energy relies on using the 

multipole expansion [5]. In particular, eq. (2.9) can be substituted in the interaction Hamiltonian ℋ̂′ 
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in the expression (2.38). Subsequent integration over the coordinates of species A yields the 

expectation values of the multipole moment operators and, thence, the related multipole static 

polarizabilities. The induction energy (2.38) can then be rewritten as 

𝑈𝑖𝑛𝑑
B = −

1

2
𝐹𝛼
A(𝐁)𝐹𝛼′

A (𝐁)𝛼1𝛼𝛼′
B −

1

3
𝐹𝛼
A(𝐁)𝐹𝛼′𝛽′

A (𝐁)𝛼2𝛼𝛼′𝛽′
B −⋯        (2.40) 

When A is a spherical ion placed in the origin (0,0, z), the field in B is 𝐹𝑧 = 𝑞/4𝜋𝜖0𝑧
2  and, 

therefore, the induction energy at the lowest order is 𝐸𝑖𝑛𝑑
B = 𝑞2𝛼1𝑧𝑧

B /(4𝜋𝜖0)
2𝑧4 , thus being 

inversely dependent on the fourth power of the internuclear distance [1]. If both A and B are neutral, 

the lowest-order induction term vanishes. If, instead, only one of them, such as A, is an ion, induction 

depends only on the properties of B. Higher-order contributions to the induction energy are present 

if one of the neutral species bears an electric multipole moment. In this case, induction energy decays 

faster than R-4. For instance, if A is neutral, but has non-zero dipole moment (𝜇A ≠ 0), then induction 

energy is proportional to R-6 [1]. For closed-shell atoms, no induction contributions emerge; 

conversely, for open-shell atoms, the lowest-order induction is associated with the quadrupole 

moment and is proportional to R-7.  

2.1.7. Dispersion energy 

Unlike the induction interaction, the dispersion interaction is a fully non-classical effect. The first 

attempts to give a formulation of it date back to London [6], with a classical model based on the 

harmonic oscillator (Drude’s model). 

 For a quantum mechanical formulation, it is useful to start from eq. (2.39). For simplicity, we 

consider only the dipole-dipole term in ℋ̂′: 

𝑈𝑑𝑖𝑠𝑝
6 = −Σ𝑚A≠0Σ𝑛A≠0 (

<0A0B|�̂�𝛼
A𝑇𝛼𝛽�̂�𝛽

B|𝑚A𝑛B><𝑚A𝑛B|�̂�𝛾
A𝑇𝛾𝛿�̂�𝛿

B|0A0B>

(𝐸𝑚
A+𝐸𝑛

B)−(𝐸0
A+𝐸0

B)
) =

 −𝑇𝛼𝛽𝑇𝛾𝛿Σ𝑚A≠0Σ𝑛A≠0
<0A|�̂�𝛼

A|𝑚A><𝑚A|�̂�𝛾
A|0A><0B|�̂�𝛽

B|𝑛B><𝑛B|�̂�𝛿
B|0B>

Δ0
𝑚𝐸A+Δ0

𝑛𝐸B
  ,     (2.41) 

where  

𝑇𝜆𝜈 =
1

4𝜋𝜖0
∇𝜆∇𝜈 (

1

|𝒓−𝒓′|
)             (2.42) 
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Eq. (2.41) is not easy to handle, as, unlike the numerator, the denominator cannot be factorized 

into terms referring to A and terms referring to B. A way to solve this issue relies on the so called 

average-energy approximation [7]. First, eq. (2.41) is rewritten as 

𝑈𝑑𝑖𝑠𝑝
6 = −𝑇𝛼𝛽𝑇𝛾𝛿Σ𝑚A≠0Σ𝑛A≠0 (

Δ0
𝑚𝐸AΔ0

𝑛𝐸B

Δ0
𝑚𝐸A+Δ0

𝑛𝐸B
) (

<0A|�̂�𝛼
A|𝑚A><𝑚A|�̂�𝛾

A|0A>

Δ0
𝑚𝐸A

)(
<0A|�̂�𝛽

B|𝑛B><𝑛B|�̂�𝛿
B|0A>

Δ0
𝑛𝐸B

).    

              (2.43) 

Then, the approximation applies to 
Δ0
𝑚𝐸AΔ0

𝑛𝐸B

Δ0
𝑚𝐸A+Δ0

𝑛𝐸B
, using average excitations energies UA and UB [1]: 

Δ0
𝑚𝐸AΔ0

𝑛𝐸B

Δ0
𝑚𝐸A+Δ0

𝑛𝐸B
= (

𝑈A𝑈B

𝑈A+𝑈B
) (1 + Δ𝑚𝑛),          (2.44) 

with  

Δ𝑚𝑛 =
(𝑈A)

−1−(Δ0
𝑚𝐸A)

−1
+(𝑈B )

−1
−(Δ0

𝑛𝐸B)
−1

(Δ𝑚
0 𝐸A)

−1
+(Δ𝑛

0𝐸B)
−1          (2.45) 

The average energies UA and UB should be chosen, so that Δ𝑚𝑛 becomes negligible for all m and 

n. This implies that all the states |𝑚A > providing important contributions should have excitation 

energies close to the average UA and likewise for all the states |𝑛A >. Then, eq. (2.41) yields with 

𝑈𝑑𝑖𝑠𝑝
(6) ≈ −(

𝑈A𝑈B

4(𝑈A+𝑈B)
) 𝑇𝛼𝛽𝑇𝛾𝛿𝛼𝛼𝛾

A 𝛼𝛽𝛿
B          (2.46) 

If A and B are atoms with isotropic charge distributions, then their polarizabilities are scalar, and, 

therefore, reduce to 𝛼𝛼𝛾𝛿𝛼𝛾 = 𝛼. As a consequence of that, 𝑇𝛼𝛽 equals 𝑇𝛾𝛿 and one can exploit the 

following relation: 

𝑇𝛼𝛽𝑇𝛼𝛽 = (
(3𝑅𝛼𝑅𝛽−𝑅

2𝛿𝛼𝛽)(3𝑅𝛼𝑅𝛽−𝑅
2𝛿𝛼𝛽)

(4𝜋𝜖0)2𝑅10
) =

6

(4𝜋𝜖0)2𝑅6
 ,       (2.47) 

where 𝑅 = |𝒓 − 𝒓′|. Eq. (2.46), thus, turns into the simpler form 

𝑈𝑑𝑖𝑠𝑝
(6) ≈ −

3

2
(
𝑈A𝑈B

𝑈A+𝑈B
) (

𝛼1
A𝛼1

B

(4𝜋𝜖0)2𝑅6
) = −

𝐶6

𝑅6
           (2.48) 

C6 is termed the dipole-dipole dispersion coefficient. Eq. (2.48) is called the London formula for 

dispersion interaction between atoms. However, UA and UB can only be defined empirically. 
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Casimir and Polder [8] proposed an alternative approach, based on the following identity: 

1

𝒜+ℬ
=
2

𝜋
∫

𝒜ℬ

(𝒜2+𝜔2)(ℬ2+𝜔2)
𝑑𝜔

∞

0
,          (2.49)  

which is valid for positive 𝒜 and ℬ. Applying this formula to the denominator in eq. (2.41), now 

written as ℏ(𝜔𝑚
A + 𝜔𝑛

B), one gets 

𝑈𝑑𝑖𝑠𝑝
(6) = −

2ℏ

𝜋
𝑇𝛼𝛽𝑇𝛾𝛿 ∫ 𝑑𝜔 Σm

′ <0A|�̂�𝛼
A|𝑚A><𝑚A|𝜇 ̂𝛾

A|0A>𝜔𝑚
A

ℏ((𝜔𝑚
A )

2
+𝜔2)

Σ𝑛
′
𝜔𝑛
B<0B|�̂�𝛽

B|𝑛B><𝑛B|�̂�𝛿
B|0B>

ℏ((𝜔𝑛
B)
2
+𝜔2)

∞

0
    (2.50) 

where the prime indicates that the summation excludes 𝑚 = 𝑛 = 0. Eq. (2.50) can be expressed 

in terms of the polarizabilities of A and B at imaginary frequencies (see eqs. (2.23-24)). Here, for 

simplicity, we set 𝜔 = 𝑢 and, thence, eq. (2.50) yields with: 

𝑈𝑑𝑖𝑠𝑝
(6) = −

ℏ

2𝜋
𝑇𝛼𝛽𝑇𝛾𝛿 ∫ 𝑑𝜔 𝛼𝛼𝛾

A (𝑖𝜔)𝛼𝛽𝛿
B (𝑖𝜔)

∞

0
        (2.51) 

For atoms with isotropic charge distributions, 

𝑈𝑑𝑖𝑠𝑝
(6) = −(

3ℏ

(4𝜋𝜖0)2𝜋𝑅6
)∫ 𝑑𝜔𝛼1

A(𝑖𝜔)𝛼1
B(𝑖𝜔)

∞

0
         (2.52) 

Using eq. (2.48) and the atomic unit system, one can represent the dipole-dipole dispersion 

coefficient 𝐶6 as [3] 

𝐶6
AB =

3

 𝜋
∫ 𝛼1

A(𝑖𝜔)𝛼1
B(𝑖𝜔)𝑑𝜔

∞

0
,          (2.53) 

which determines the lowest-order dispersion interaction, coming with the radial dependence on 

the inverse power of six. As the dipole polarizability is non-vanishing for any system having 

electrons, the lowest-order dispersion interaction is always present. Thus, there is no system with 

the long-range interaction growing faster with the distance. 

Following the same procedure as before, the dispersion coefficients for the dipole-quadrupole 

interaction, 𝐶8 can be achieved [3]: 

 𝐶8
AB =

15

𝜋
∫ [𝛼1

A(𝑖𝜔)𝛼2
B(𝑖𝜔) + 𝛼1

B(𝑖𝜔)𝛼2
A(𝑖𝜔)]𝑑𝜔

∞

0
        (2.54) 

𝐶8 coefficient from eq. (2.54) determines the dispersion contribution coming next to the dipole-

dipole term, appearing as 𝐶8
AB/𝑅8.  
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Finally, an analogous derivation permits to determine the coefficient for the dispersion interaction 

between an atom with isotropic charge distribution A, and an ideally conductive surface with no 

irregularities, 𝐶3. Derivations of this parameter were reported by several authors, among which 

Dzyaloshinkii et al. [9], Parsegian [10] and Tikochinsky and Spruch [11]. In atomic units, the 

derivation yields with the integral over the frequency of the dipole polarizability of the atom at 

imaginary frequencies [12]: 

𝐶3 =
1

4𝜋
∫ 𝑑𝜔
∞

0
𝛼1
A(𝑖𝜔)           (2.55) 

2.1.8. Retardation effects 

When the distance between the interacting species A and B is larger than the wavelength λ0, 

corresponding to the characteristic adsorption frequency of the perturbed species under study, the 

correlation between the charge distribution fluctuations in the two species becomes less effective 

[1,13]. This is due to the finite speed of the interaction, propagating at the speed of light, c. As a 

consequence, the charge distribution fluctuations are no longer in phase and, thus, the response of 

A to the instantaneous dipole of B cumulates a retardation, and likewise the response of B to that 

of A. The retardation phenomenon affecting dispersion interaction was deeply studied by Casimir 

and Polder [8]. Based on the approach of Ref. [13], Zhang and Dalgarno [12] proposed a 

particularly relevant consideration of the retardation effect for the lowest dispersion interaction 

terms in a system of two like closed-shell atoms. For the dipole-dipole and dipole-quadrupole 

dispersion terms this yields with: 

𝑈𝑑𝑖𝑠𝑝 = −
𝐶6𝑓6(𝑅)

𝑅6
−
𝐶8𝑓8(𝑅)

𝑅8
           (2.56) 

There, 𝑓6(𝑅) and 𝑓8(𝑅) stand for the dipole-dipole and dipole-quadrupole retardation functions, 

respectively. Those are, in turn, defined as 

𝑓6(𝑅) = 1/(𝜋𝐶6) ∫ 𝑑𝜔 exp(−2𝛼𝐹𝑆𝜔𝑅)𝛼1
2(𝑖𝜔)𝑃11(𝜔𝛼𝐹𝑆𝑅)

∞

0
;      (2.57) 

𝑓8(𝑅) = 1/(3𝜋𝐶6) ∫ 𝑑𝜔 exp(−2𝛼𝐹𝑆𝜔𝑅)𝛼1 (𝑖𝜔)𝛼2(𝑖𝜔)𝑃12(𝜔𝛼𝐹𝑆𝑅)
∞

0
;     (2.58) 

where αFS refers to the fine structure constant, while P11 and P12 are two polynomials, in turn, 

defined as [12,13]: 
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𝑃11(𝑥) = 𝑥
4 + 2𝑥3 + 5𝑥2 + 6𝑥 + 3          (2.59) 

𝑃12(𝑥) =
1

2
𝑥6 + 3𝑥5 +

27

2
𝑥4 + 42𝑥3 + 81𝑥2 + 90𝑥 + 45       (2.60) 

2.2. Computational methods for long-range interactions 

Throughout this section, the approaches most widely used to model long-range interactions are 

exposed. For the description of these approaches, two important assumptions are made: first, the 

validity of the Born-Oppenheimer (BO) approximation, according to which electron and nuclear 

motions do no couple; second, relativistic effects provide a minor contribution to the interaction 

energy and, therefore, can be embodied in the non-relativistic Hamiltonian as corrections.  

2.2.1. Size-consistency and size-extensivity 

Quantum chemical methods used to model systems such as atoms and molecules are often 

described in term of two properties: size-consistency and size-extensivity. The definition of the 

former addresses the capability of a method to describe molecular systems at the dissociation limit: 

let A and B be two species separated by a distance large enough, that no electron exchange occurs 

between them. Knowledge of the global potential requires the choice of a molecular approach. In 

order for this approach to be size-consistent, the energy calculated for the super-system A + B 

should equal the sum of the energies calculated for the two isolated systems A, B [1,14,15]. In 

particular, for long-range interactions size-consistency is a highly desirable property, as it ensures 

the correct behavior of the potential in the limit where all forces vanish. 

On the other hand, size-extensivity is a more mathematically formal feature. First defined by 

Bartlett [16], size-extensivity refers to the capability by a method of linearly scaling as the number 

of electrons of the system, i.e. to scale as the exact energy does [15].  

With respect to size-consistency, size-extensivity is perhaps a more general property, as it affects 

not only dimeric calculations, but even monomeric ones: in facts, size-extensivity is a scaling 

property of the energy [15]. For instance, if a given method is size-extensive, then, for a given 

system, it is possible to reliably compare the results for an all-electron calculation and a calculation 

where only the valence shell is correlated.  
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Size-consistency and size-extensivity are neither mutually exclusive or mutually inclusive 

properties: some methods can be size-extensive, but not size-consistent or vice versa, or even be 

both size-consistent and size-extensive. 

2.3. Hartree-Fock method  

2.3.1. Introduction 

The generic Hamiltonian for a n-electron atom,  

ℋ̂′(𝒓1, 𝒓𝟐, … , 𝒓𝒏) =
ℏ2

2𝑚𝑒
Σ𝑖∇̂𝑖

2 + Σ𝑖�̂�𝑁𝑒(𝒓𝒊) + Σ𝑖≠𝑗�̂�𝑒𝑒(𝒓𝒊𝒋),       (2.61) 

consists of three main terms: a kinetic energy operator, ℏ/2𝑚𝑒Σ𝑖∇𝑖
2, a nuclear-electron potential 

operator, Σ𝑖𝑉𝑁𝑒(𝒓𝒊), and an electron-electron potential operator Σ𝑖≠𝑗𝑉𝑒𝑒(𝒓𝒊𝒋). To solve the related 

Schrödinger equation, a wavefunction is needed, which depends, simultaneously, on all the n 

electrons constituting the system, Ψ(1,2, … , 𝑛). However, the electron-electron repulsion term of 

eq. (2.61) makes the related Schrödinger equation not exactly solvable. 

To circumvent such a problem, several methods providing approximate solutions were proposed 

to numerically solve Schrödinger equation for atoms consisting of many electrons. One of the first 

approximate methods to be developed was Hartree-Fock (HF) method [17], that marked the birth 

of ab initio methods. 

In the following sections, the principles of Hartree-Fock method are discussed, together with the 

self-consistent field solution and the problem of electron correlation. 

2.3.2 Fundamentals of Hartree-Fock method 

Hartree-Fock method approximates the electron-electron potential term in eq. (2.61) by imposing 

it to depend on the position of one electron. The interactions of all the other electrons is then 

accounted for in an average way [18]. In other words, this approximation supposes each electron 

to move throughout the mean field generated by the others. In this way, the wave function Ψ is 

partitioned into n 1-electron wavefunctions (orbitals): 

Ψ(1,2, … , 𝑛) ≈ 𝜓1(1)𝜓2(2)…𝜓𝑛(𝑛),         (2.62) 
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where each 1-electron wave function is the solution of a related 1-electron Schrödinger equation 

of the form: 

−
ℏ2

2𝑚
∇̂2𝜓𝑖(𝒓) + �̂�(𝒓)𝜓𝑖(𝒓) = 𝜖𝑖𝜓𝑖(𝒓),         (2.63) 

where �̂�(𝒓) refers to the potential where the electron moves. This consists of the nucleus-electron 

attraction as written in eq. (2.61) and the potential felt by the electron due to the mean field of the 

other n-1 electrons, 

𝑉𝑒𝑒(𝒓) =  −𝑒 ∫
𝑑𝒓′𝜌(𝒓′)

|𝒓−𝒓′|
,           (2.64) 

with  

𝜌(𝒓′) =  Σ𝑗
𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑|𝜓𝑗(𝒓

′)|
2
 ,          (2.65) 

and the summation running over all the occupied orbitals, except for that of the electron moving 

in the mean field. In eq. (2.63) the operator terms can be grouped to yield the 1-electron Fock 

operator 𝑓𝑖. 

The HF energy for the i-th electron is then the sum of the following contributions [18]: 

𝜖𝑖 = < 𝜙𝑖 |−
ℏ2

2𝑚
∇̂2| 𝜙𝑖 > + < 𝜙𝑖 |−

𝑍𝑒2

|𝒓−𝑹|
| 𝜙𝑖 > + Σ𝑖≠𝑗 < 𝜙𝑖(𝒓)𝜙𝑗(𝒓

′) |
𝑒2

|𝒓−𝒓′|
| 𝜙𝑖(𝒓)𝜙𝑗(𝒓

′) >  

              (2.66) 

Here, the functions 𝜙𝑖, 𝜙𝑗, constitute a first approximation (guess) to the exact partitioned orbitals 

𝜓𝑖 , 𝜓𝑗 (trial functions). The first term is the kinetic energy operator, �̂�; the second term, in turn, 

corresponds to the nuclear-electron potential operator, �̂�𝑁𝑒, depending on the distance between the 

electron position r and the nucleus position R; the third term corresponds to the electron-electron 

potential operator, �̂�𝑒𝑒, depending on the distance between the respective positions of the 

interacting electrons. This latter represents the potential felt by the electron in the mean field of 

the other n-1 electrons. 

For each electron, one equation of the form (2.66) do exist. Solving these equations provides the 

Hartree-Fock eigenvalues 𝜖𝑖. 
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Hartree-Fock equations (2.66) are non-linear and should be solved iteratively. The iterative method 

to solve them is called the self-consistent field (SCF) method. The idea is to solve the Schrödinger 

equation for an electron moving in the potential of the nucleus and of the other electrons [18]. The 

method consists of the following steps: 

1) A first guess (𝜙𝑖) for the trial 1-electron wavefunction (spin-orbital) is proposed. Usually, for 

an atomic orbital calculation, the trial spin-orbital is a spin-orbital of the hydrogen-like atom, 

whose Schrödinger equation can be exactly solved; 

2) The trial wave function is used to solve eq. (2.66) and achieve the trial energy; 

3) The new guess for the wave function is made, until the energy is minimized (for 𝜙𝑖 ≈ 𝜓𝑖). If 

the energy is minimized, then the HF calculation has reached the convergence limit. Otherwise, 

new guesses are tried for a number of iterations set by the user. 

2.3.3. Wavefunctions for Hartree-Fock calculations: Slater determinants 

Factorization of the n-electron wavefunction as defined in eq. (2.62) is a too strong approximation, 

as it does not account for the antisymmetric nature of the wavefunction itself. To explain 

antisymmetry, the following example is very instructive: the ground state of He atom has the 1s2 

electron configuration, with one electron with spin function α and the other with spin function β. 

According to eq. (2.62), this should be written as 

Ψ(𝒓𝟏, 𝒓𝟐) = 𝜓1𝑠𝛼(𝒓𝟏)𝜓1𝑠𝛽(𝒓𝟐)          (2.67) 

However, the configuration (2.62) is arbitrary: the configuration obtained upon permutation of the 

electrons 1 and 2 is possible as well: 

Ψ(𝒓𝟏, 𝒓𝟐) = 𝜓1𝑠𝛼(𝒓𝟐)𝜓1𝑠𝛽(𝒓𝟏)           (2.68) 

Thus, both configurations are possible, but they differ for their spin-orbital functions. It is then 

clear that a simple product of spin-orbitals does not account for electron indistinguishability. To 

account for this feature, the wavefunction should be built up as such, that the permutation of its 

electrons returns the same wavefunction multiplied by -1. A solution to solve this problem relies 

on a normalized linear combination of (2.67) and (2.68): 

Ψ(𝒓𝟏, 𝒓𝟐) =
1

√2
[𝜓1𝑠𝛼(𝒓𝟏)𝜓1𝑠𝛽(𝒓𝟐) − 𝜓1𝑠𝛼(𝒓𝟐)𝜓1𝑠𝛽(𝒓𝟏)]        (2.69) 
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The wavefunction (2.69) may be written in a compact form as a determinant: 

Ψ(𝒓𝟏, 𝒓𝟐) = 1/√2 |
𝜓1𝑠𝛼(𝒓𝟏) 𝜓1𝑠𝛽(𝒓𝟏)

𝜓1𝑠𝛼(𝒓𝟐) 𝜓1𝑠𝛽(𝒓𝟐)
|         (2.70) 

This determinantal form of the wavefunction is called the Slater determinant [18,19] and allows 

for the description of n-electron configurations accounting for the electron indistinguishability and 

antisymmetric feature of the wavefunction. Configuration (2.70) can thus be generalized for an n-

electron atom as follows: 

Ψ(𝒓𝟏, 𝒓2, … , 𝒓𝒏) = 1/√𝑛! | 
𝜓1(𝒓𝟏) … 𝜓𝑛(𝒓𝟏)
⋮ ⋱ ⋮

𝜓1(𝒓𝒏) … 𝜓𝑛(𝒓𝒏)
|        (2.71) 

Wavefunctions such as that of ground-state He and all the closed-shell atoms can be accurately 

described with one Slater determinant. However, for open-shell systems the situation is more 

complex: in facts, such systems may have several degenerate configurations, each one 

corresponding to a different Slater determinant. The most accurate way to describe these systems, 

therefore, relies on representing the related wavefunction as a linear combination of Slater 

determinants, each one accounting for a different degenerate (or quasi-degenerate) electron 

configuration. A wavefunction of this kind is termed multi-determinantal, whereas wavefunctions 

needing only one Slater determinant to be accurately represented are termed single-determinantal. 

HF calculations calculate wavefunctions as single Slater determinants of spin-orbital functions. 

For the HF method, two kinds of mono-determinantal wavefunctions exist: in one case, a single 

set of space-orbital functions is used for both α and β spin states: a wavefunction of this kind is 

called a spin-restricted wavefunction and the HF method using it is defined the restricted HF 

(RHF) method; in another case, two distinct sets of space-orbital functions are used, one for α spin 

states, the other for β spin states: a wavefunction of this kind is termed a spin-unrestricted 

wavefunction and the HF method using it is called the unrestricted HF (UHF) method. 

2.3.4. Limits of Hartree-Fock method 

Standard HF method assumes several approximations that can turn to be inadequate for the 

description of several physico-chemical properties. For instance, each eigenfunction is assumed to 

be describable as a single Slater determinant. This feature makes HF a mono-determinantal 
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method, or single-reference method. Indeed, such a depiction is inadequate for the description of 

many open-shell systems, which, in turn, require multi-determinantal wavefunctions. Moreover, 

the RHF method is size-extensive, but not generally size-consistent [20]: in facts, it fails in 

describing the dissociation limit of several species, such as H2, where the wavefunction should be 

more accurately described as the interaction of several different configurations. In contrast, UHF 

method is both size-extensive and size-consistent [20]. Another too strong approximation is a 

consequence of the mean field approximation: the assumption of the mean field, in facts, imposes 

that the instantaneous position of an electron is not influenced by the presence of neighboring 

electrons and their fluctuations [21]: in reality, the motion of electrons is correlated and their 

probability density is determined by their interactions. This electron-electron interaction is called 

the electron correlation and its contribution to the total energy of the system may be estimated by 

subtracting the HF energy from the exact value for it: this energy difference is called the 

correlation energy [22]. Electron correlation plays an important role in determining the physical 

properties of atoms and molecules: for instance, as it may be noticed from Section 2.1, dispersion 

interaction is wholly a correlation effect [1,21]. Electron correlation splits into two contributions, 

i.e., static correlation and dynamic correlation. The former is typical of open-shell systems and 

occurs when the system presents several degenerate or quasi-degenerate electron configurations 

(i.e. when the related wavefunction is multi-determinantal); the latter, on the other hand, occurs 

both in open- and closed shell systems and account for all electron-electron couplings that are not 

involved in static correlation, such as those interactions between non-degenerate configurations 

[23]; examples of dynamic correlations, therefore, include the interactions between outermost 

electrons (valence-valence correlation), the interactions between innermost electrons (core-core 

correlation) and the interactions between innermost and outermost electrons (core-valence 

correlation). Thus, in order to account for static correlation, an accurate wavefunction should 

consist of the linear combination of all the degenerate or quasi-degenerate configurations (Slater 

determinants); in contrast, in order to account for dynamic correlation, an accurate wavefunction 

should consist of the linear combination of the ground state configuration, having dominant 

weight, and of several non-degenerate configurations (such as excited configurations). 

Thus, in order to encompass these severe limits of HF methods, in particular the description of 

electron correlation, several ab initio levels of theory were devised. These levels of theory take the 
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name of Post-Hartree-Fock (or correlation) methods. Two examples of Post-HF methods are the 

Configuration Interaction method and the Coupled Cluster method. 

2.4. Configuration Interaction method 

2.4.1. Fundamentals of Configuration Interaction method 

The oldest method to solve the issue of electron correlation is the so called Configuration 

Interaction (CI) method [1,14,24]. As its name suggests, the method relies on mixing one or more 

reference configurations (namely, the reference wavefunction, Ψ0) with other “corrective” 

configurations accounting for the missing electron correlation. Basing on the reference 

wavefunction, CI may be multi-reference or single-reference. In the former case, Ψ0 is multi-

determinantal and consists of a linear combination of configuration determinants, whose weight 

coefficients are variationally optimized together with the atomic orbitals in each configuration. 

Thus, the reference wavefunction is said to be constructed with the Multi-Reference Self-

Consistent Field (MCSCF) method [25,26]. In turn, the CI wavefunction constructed on the 

MCSCF reference wavefunction refers to the Multi-Reference CI (MRCI) method [27]. In contrast, 

for single-reference CI a mono-determinantal wavefunction Ψ0 is used, usually corresponding to 

the RHF wavefunction. As the Thesis mostly regards system represented by mono-determinantal 

wavefunctions, only single-reference CI method will be considered. In this method, a number of 

excited Slater determinants is linearly combined to the mono-determinantal reference 

wavefunction Ψ0 [1,14,24]: 

Ψ = |Ψ0 > +Σ𝑖𝑎 𝑐𝑖
𝑎|Ψ𝑖

𝑎 > +
1

4
Σ𝑖𝑗𝑎𝑏𝑐𝑖𝑗

𝑎𝑏|Ψ𝑖𝑗
𝑎𝑏 > +⋯ = |Ψ0 > + Σ𝑖𝑎 𝑐𝑖

𝑎�̂�𝑎
+�̂�𝑖|Ψ0 >

 + Σ𝑖𝑗𝑎𝑏 𝑐𝑖𝑗
𝑎𝑏�̂�𝑎

+�̂�𝑖�̂�𝑏
+�̂�𝑗|Ψ0 > ,           (2.72) 

where the summations run over the occupied spin-orbitals i, j and the virtual (unoccupied) ones a, 

b. The coefficients 𝑐𝑖
𝑎, 𝑐𝑖𝑗

𝑎𝑏are weight coefficients, chosen so to minimize the energy [14], whereas 

�̂�+ and �̂� stand for the creation and annihilation operators, respectively, from Second Quantization. 

In particular, in eq. (2.72), the first summation runs over the singly excited Slater determinant, 

whereas the second one over the doubly excited Slater determinant. In this way, all-order 

excitations can be summed up to the reference wavefunction. The CI method accounting for all 

the n-ply excited functions is called the Full Configuration Interaction (FCI) method [1,14]. 
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However, the huge number of possible excitations makes FCI practical only for few-electron 

systems. For this reason, the expansion (2.72) is truncated to the most significant excited 

configurations [1,14,24]. According to Brillouin theorem, the sole singly excited configurations 

do not contribute to electron correlation [1,24], thus, the first approximation to FCI consists in 

truncating the CI chain (2.72) to the doubly excited determinants (CISD): CISD accounts for most 

of the correlation energy [24]. Further refinements rely on including the triply excited 

configurations (CISDT) and the quadruply excited configurations (CISDTQ) [24], but their 

inclusion is very expensive [1]. Furthermore, in CI method, only the coefficients of the expansion 

(2.72) are optimized to minimize the energy of the system; in contrast, the spin-orbitals filling the 

Slater determinants are generated separately in a preceding HF calculation and are held fixed 

during the optimization of the configuration expansion [14]. Another limit of CI method is its lack 

of size-consistency and the lack of compactness of its description of the electronic system: 

convergence of the CI wavefunction is slow, not only due to the large number of higher-order 

excitations, but also due to the linear parametrization in the CI model [14]. Furthermore, truncation 

of the FCI chain suppresses size-extensivity, so that the method no longer scales linearly with the 

number of electrons of the system [15,16]. 

2.5. Coupled Cluster method 

2.5.1. Introduction 

Coupled Cluster Method (CC) was originally devised by Coester and Kummel in the late 1950s to 

deal with nuclear physics problems [28,29]. In spite of that, the application of such a theory to 

quantum chemical problems was formulated only during the subsequent decade, by Čizek and 

Paldus [29,30]. Nowadays Coupled Cluster Method is very popular to treat atoms and small 

molecules, due to its high accuracy [29], that makes it the golden standard of quantum chemical 

levels of theory. Electric properties of many atomic and molecular systems, for instance, can be 

investigated by means of Coupled Cluster Method, in particular, the static [31] and dynamic [32] 

polarizabilities and the induction [33] and dispersion [31] potentials. In particular, for the 

description of induction and dispersion energies, a key advantage of this level of theory relies on its 

size-consistency and size-extensivity [14]. 
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In the next sections the Coupled Cluster Theory will be exposed in detail, together with three 

methods derived from this theory: Coupled Cluster method including the single and double 

excitations, CCSD, Coupled Cluster method including the single, double and triple excitations, 

CCSDT, and the Coupled Cluster method including single, double and non-iterative triple 

excitations, CCSD(T). A further section will be devoted to expose one of the main applications of 

this theory, i.e. the Coupled Cluster Equation of Motion (CC-EOM) and the derived CCSD-EOM 

method, and the Coupled-Cluster-based Polarization Propagator, that can be used to calculate the 

dynamic polarizabilities of atoms and molecules [32]. It should be pointed out that, for the aims of 

the Thesis, only single-reference restricted Coupled Cluster level of theory built up on RHF 

reference wavefunctions, will be discussed. 

2.5.2. Fundamentals of Coupled Cluster Theory 

In CC the related wave function is given by an exponential ansatz, consisting of an exponential 

operator acting on a zero-order wavefunction Ψ0 and converting it into the exact wave function Ψ 

[34]. 

Ψ = exp(�̂�)Ψ0            (2.73) 

In the non-relativistic restricted frame, the zero-order wavefunction is a single Slater Determinant, 

most often (and for the aims of the Thesis) a Hartree-Fock wavefunction [29], whereas the 

exponential operator is called the Cluster Operator [34]. Upon Taylor series expansion, the Cluster 

Operator yields the sum of all the possible excitation operators (or, more simply, excitations) and 

their products (coupling): 

exp(�̂�) = �̂�1 + �̂�2 +… �̂�𝑛 + �̂�1�̂�2 +⋯+ �̂�𝑚�̂�𝑛 +
1

2
�̂�1
2 +

1

2
�̂�𝑛
2 +⋯      (2.74) 

The subscript of each excitation accounts for its order: 𝑇1̂ corresponds to a single excitation, �̂�2 a 

double excitation,…, �̂�m and �̂�n  the m-tuple and n-tuple excitations, respectively. The exponential 

operator (2.74) may be written in a more compact way as follows [30]: 

exp(�̂�) = Σ𝑖=1(𝑇�̂� + �̂�𝑖),           (2.75) 

where the �̂�𝑖 operator is written in terms of the coupled �̂�𝑖 excitation operators. For instance, 
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�̂�1 = 0; �̂�2 =
1

2
�̂�1
2;  �̂�3 = �̂�1�̂�2 + 

1

3!
�̂�1
3;  �̂�4 = �̂�1�̂�3 +

1

2
�̂�1
2�̂�2 +

1

4!
�̂�1
4 + 

1

2
�̂�2
2; …  .    (2.76) 

Thence, the uncoupled 𝑇�̂� operators are termed the connected terms; in contrast, the �̂�𝑖 operators 

are termed the disconnected terms [30]. Disconnected terms represents a key advantage of CC over 

CI method, as those terms ensures size-extensivity and size-consistency [15]. 

 In turn, the excitation operators 𝑇�̂� are written in terms of creation and annihilation operators and 

of Cluster amplitudes t [29]; the first two excitations for instance are defined as follows [34]: 

�̂�1= Σ𝑖𝑎𝑡𝑖
𝑎�̂�+𝑖

�̂�2= 
1

(2!)2
Σ𝑖𝑗𝑎𝑏𝑡𝑖𝑗

𝑎𝑏�̂�+�̂�+𝑗𝑖
           (2.77) 

The amplitudes, parametrizing the exponential ansatz, are unknown and should be determined in 

order to achieve the CC wave function and the corresponding energy. 

The approach to determine the energy and the amplitudes is called the coupled-cluster approach 

[29]. In this approach one has first to rewrite the Schrödinger Equation by inserting the exponential 

ansatz: 

ℋ̂ exp(�̂�) |Ψ0 >= 𝐸 exp(�̂�) |Ψ0 > .         (2.78) 

Then (2.78) is multiplied by exp (−�̂�) on the left, to eliminate the exponential operator on the 

right-hand side. Then the left-hand side should be projected onto the reference wave function and 

onto all the excited determinants Φ generated by the action of �̂� on the reference wave function. 

We thus obtain two equations: 

< Ψ0| exp(−�̂�) ℋ̂ exp (�̂�)|Ψ0 > = 𝐸         (2.79) 

< Φ| exp(−�̂�) ℋ̂exp (�̂�)|Ψ0 > = 0,          (2.80) 

where eq. (2.79) returns the energy of the system, while eq. (2.80) returns the Cluster amplitudes. 

Those two equations are often rewritten as [29] 

< Ψ0|ℋ̂𝑁 exp(�̂�)|Ψ0 > = Δ𝐸          (2.81) 

< Φ|ℋ̂𝑁 exp (�̂�)|Ψ0 > = 0           (2.82) 

where Δ𝐸 refers to the correlation energy, 

pcztgw
Highlight

pcztgw
Sticky Note
, t,



 
 
 

38 

 

Δ𝐸 = 𝐸− < Ψ0|ℋ̂|Ψ0 >           (2.83) 

ℋ̂𝑁 refers to the normal-ordered Hamiltonian (i.e. all the creation operators stand on the right with 

respect to the related annihilation operators) obtained by subtracting the reference energy  <

Ψ0|ℋ̂|Ψ0 > from ℋ̂. We can thus notice a very important feature of Coupled Cluster theory: it 

accounts for dynamic correlation.  

The drawback of this theory relies, again, on the two equations yielding its key-solutions, (2.79) 

and (2.80): the exponential ansatz makes such equations non-linear and hence remarkably complex 

to solve. It is then apparent that truncation should be applied to the excitations, as such as to find 

a compromise between high accuracy of the results and reasonable computational cost.  

2.5.3. CCSD 

Given the HF wave function to be a good zero-order approximation of the true wave function Ψ 

(this is usually the case for ground state closed-shell systems), the contribution of doubles is 

estimated to amount to 94-96% of the correlation energy [30], while singles and triples contribute 

roughly to 1-2% [35]. Furthermore, the truncation of the excitations to the sole singles yields no 

significant improvement to the reference wave function, as a consequence of Brillouin Theorem 

[30,34]. These statements lead to consider the inclusion of the interacting singles and doubles in 

the Cluster operator as the first reasonable approximation of the exact wave function: such a 

method is called CCSD [35,36]. The truncation of the excitations to the singles and doubles is 

physically justified, as the sum of those excitations (operators) spans the space of functions 

interacting with the reference wave function Ψ0 through the two-body Hamiltonian [37]. 

In order to achieve the Cluster equations for the CCSD, it is simply necessary to substitute �̂� =

�̂�1 + �̂�2 into the eqs. (2.81-82). This returns the following equations: 

< Ψ0 |ℋ̂𝑁 (�̂�1 + �̂�2 +
1

2
�̂�1
2)|Ψ0 > = Δ𝐸         (2.84) 

< Φ𝑆 |ℋ̂𝑁 (1 + �̂�1 + �̂�2 +
1

2
�̂�1
2 + �̂�1�̂�2 +

1

3!
�̂�1
3)|Ψ0 > = 0       (2.85) 

< Φ𝐷 |ℋ̂𝑁 (1 + �̂�1 + �̂�2 +
1

2
�̂�1
2 + �̂�1�̂�2 +

1

3!
�̂�1
3 +

1

2
�̂�1
2�̂�2 +

1

4!
�̂�1
4 +

1

2
�̂�2
2)|Ψ0 > = 0     (2.86) 
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Notice that the subscripts S and D mean the singly- and the doubly-excited determinants 

respectively. In order to easily distinguish them, in eqs. (2.84-86) connected operators were 

grouped and likewise the disconnected ones. This distinction is useful to notice a key advantage 

of CCSD, ensuring its accuracy despite of the truncation of the CC chain to the second-order 

excitations: through the disconnected terms, in facts, it is possible to account for higher-order 

excitations, such as triples (�̂�1�̂�2, �̂�1
3)  and quadruples (�̂�1

2�̂�2, �̂�1
4, �̂�2

2) [38]. However, it should also 

be noticed that the higher-order excitation coefficients are simply obtained as products of lower-

order excitations coefficients [38]. For quadruple excitations, this does not represent a serious 

problem, as the disconnected part of these excitations provides a larger contribution to them than 

the connected part [38]. In contrast, accounting for the disconnected part of the triple excitations 

is not sufficient to accurately treat them, as, in this latter case, the connected contribution is 

dominant [30,35,38]. Accurate modelling of triple excitations is particularly crucial when the 

system under study has strong electron correlations (e.g. many-electron atoms, transition metal 

elements) or even when highly accurate results are needed (about 1.6 mhartree “chemical 

accuracy”) [35]. Thus, if high accuracies and adequate treatment of electron correlation are 

required, the connected triple excitation cannot be neglected in the truncated CC chain. 

2.5.4. Higher-order corrections: CCSDT 

The most obvious way to account for the important connected �̂�3 excitation relies on truncating 

expansion (2.74) to the correspondingly higher level [35]. Thence, the CCSDT method is obtained. 

For the former, the equations for the energy and the Cluster amplitudes yield with 

< Ψ0 |ℋ̂𝑁 (�̂�1 + �̂�2 + �̂�3 +
1

2
𝑇1
2̂ + �̂�1�̂�2 +

1

3!
�̂�1
3)|Ψ0 > = Δ𝐸      (2.87) 

< Φ𝑆 |ℋ̂𝑁 (1 + �̂�1 + �̂�2 + �̂�3 +
1

2
𝑇1
2̂ + �̂�1�̂�2 +

1

3!
�̂�1
3)|Ψ0 > = 0      (2.88) 

< Φ𝐷 |ℋ̂𝑁 (1 + �̂�1 + �̂�2 + �̂�3 +
1

2
𝑇1
2̂ + �̂�1�̂�2 +

1

3!
�̂�1
3 + �̂�1�̂�3 +

1

2
�̂�1
2�̂�2 +

1

4
 �̂�1
4 +

1

2
�̂�2
2)|Ψ0 > = 0 

              (2.89) 

< Φ𝑇 |ℋ̂𝑁 (�̂�2 + �̂�3 + �̂�1�̂�2 + �̂�1�̂�3 +
1

2
�̂�1
2�̂�2 +

1

2
�̂�1 �̂�2

2 +
1

2
�̂�2
2 +

1

2
�̂�1
2�̂�3 +

1

3!
�̂�1
3�̂�2)|Ψ0 > = 0 

              (2.90) 
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Here, the subscript T means the triple excitation. As it can be noticed from eqs. (2.87-90), CCSDT 

allows to account for the triple excitations, both connected and disconnected, and for higher-order 

corrections, by means of their disconnected parts. The inclusion of the connected triple has proven 

crucial in ensuring highly accurate description of atoms and molecules [30,35,38], however, it has 

a severe limit: CCSDT is computationally too demanding [29,39]; indeed, while CCSD scales as 

M6 (where M refers to the number of occupied and unoccupied orbitals accounted for in the 

calculation), CCSDT scales as M8 [35] and this increase in computational costs limits its 

applicability to small systems. 

2.5.5. CCSD(T) 

A solution to include the connected contribution to the triples into the CC calculation without the 

high computational costs of CCSDT relies on treating it in a non-iterative way. CCSD(T) method 

successfully addresses this issue. First proposed by Raghavachari et al. [40] in 1989, CCSD(T) 

corrects the converged CCSD wave function with the perturbative treatment of the triple 

excitations [39].  

A “friendly” way to devise the CCSD(T) equations was proposed by Stanton [39] and relies on 

choosing the CCSD energy as the “zero-order” quantity, rather than the HF analog. Then, the 

Cluster equations for CCSD, (2.84-86) are used to build up the matrix representation of 

ℋ̂𝑁 exp(�̂�), here abbreviated as ℋ̂: 

ℋ̂ = [

𝐸𝐶𝐶𝑆𝐷 ℋ0Φ ℋ0Χ

0 ℋΦΦ ℋΦΧ

ℋ0Χ ℋΧΦ ℋΧΧ

],      (2.91) 

where  

ℋ0Φ = < Φ|ℋ̂𝑁 exp (�̂�𝐶𝐶𝑆𝐷)|Ψ0 >,      (2.92) 

in turn, corresponding to the equations for the CCSD Cluster amplitudes (2.85-86): in fact, here, 

Φ ranges the singly and doubly excited wavefunctions, while, analogously to the previous sections, 

Ψ0 refers to the reference function (in Stanton’s approach called the zero-order wavefunction [39]). 

𝛸 (“Chi”), on the other hand, ranges the excited wavefunctions not included in the space spanned 

by the reference function and the singles and doubles, i.e. {Ψ0} ∪ {Φ} ≡ 𝑔. In Stanton’s approach, 
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all ℋ𝑔𝑔 terms are deemed zero-order terms; the remaining terms of eq. (2.91) are, thus, classified 

according to the lowest non-vanishing order in correlation [39]. Notice that, in this convention, the 

single excitation �̂�1 is considered a second-order perturbation, whereas the double excitation �̂�2 is 

considered a first-order perturbation. The CCSD energy is achieved upon diagonalizing (2.91) in 

the g basis. As ℋ̂ instead of ℋ̂ is used, it is convenient to briefly define the Ψ0 and Φ states simply 

as zero-order states |0 >. In this frame, (2.91) can be decomposed into an unperturbed term and 

several perturbed terms: 

ℋ̂ =  ℋ̂
(0)

+ ℋ̂
(1)

+ ℋ̂
(2)

+⋯          (2.93) 

Accordingly, for CCSD(T), the correlation energy can be written as 

Δ𝐸 = Δ𝐸(3) + Δ𝐸(4),            (2.94) 

where the first non-vanishing term is 

Δ𝐸(3) = 
<Χ|ℋ

̂ (1)
|0><Χ|ℋ

̂ (2)
|0>

<Χ|(ℋ̂(𝑜)−<0|ℋ̂(𝑜)|0>)|Χ>
          (2.95)  

Notice that the second-order correction vanishes, as < Χ |ℋ̂| 0 > requires at least a connected 

triple excitation and no such terms are present in the first-order bare electronic Hamiltonian [39]. 

Upon specifying the singly, doubly and triply excited wavefunctions, eq. (2.95) turns into 

Δ𝐸(3) = 
<Φ𝑆|0><Φ𝑆|ℋ

̂ (1)|Φ𝑇><Φ𝑇|ℋ
̂ (2)

|0>

<ΦT|(ℋ̂
(𝑜)−<0|ℋ̂(𝑜)|0>)|ΦT>

+ 
<Φ𝐷|0><Φ𝐷|ℋ

̂ (1)|Φ𝑇><Φ𝑇|ℋ
̂ (2)

|0>

<ΦT|(ℋ̂
(𝑜)−<0|ℋ̂(𝑜)|0>)|ΦT>

     (2.96) 

Eq. (2.96) clearly shows that the third-order correction to the correlation energy accounts for the 

main contribution to the triple excitations, i.e. the connected triples, but, on the other hand, does 

not include the higher-order disconnected terms where �̂�3 couples with the lower-order excitation 

operators. However, the perturbative treatment of the triple excitation allows for achieving results 

that are very close to CCSDT analogs [39], but at a smaller computational cost (M7). This 

capability by CCSD(T) method to ensure accurate results at a reasonable computational cost, has 

made this method the golden standard of quantum chemistry for small-size systems [41].  
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2.6. Coupled Cluster method for electric properties 

2.6.1. Static properties 

The long-range approximation introduced above implies that electrostatic, induction and 

dispersion interaction components (see eqs. (2.35-39)) can be described in terms of the related 

properties of the individual species. Thus, ab initio methods for the calculation of molecular 

properties are an important aspect of the theory of intermolecular forces [1]. In facts, several 

properties, such as multipole moments, can be expressed not only as expectation values, but even 

as energy derivatives [1,42]. The link between the expectation value and the energy derivative 

depiction relies on Hellmann-Feynman theorem [43,44]. The theorem states that if the Hamiltonian 

ℋ̂(𝜆) depends on some parameter 𝜆, and 𝜓(𝜆) is a normalized eigenfunction whose eigenvalue is 

𝐸(𝜆), then 

𝜕𝜆𝐸 = 𝜕𝜆 < 𝜓(𝜆)| ℋ̂|𝜓(𝜆) > = < 𝜓|𝜕𝜆ℋ̂|𝜓 >        (2.97) 

According to the long-range approximation, properties such as polarizabilities arise as the effect 

of a perturbation of the form 𝜆�̂�, where 𝜆 is a parameter, such as the strength of the external electric 

field or of its gradient, whereas �̂� is an operator, such as a multipole moment. Thus, according to 

Hellmann-Feynman theorem, the derivative of the energy with respect to the given parameter 𝜆 

can be expressed as 

𝜕𝜆𝐸 =< 𝜓|𝜕𝜆ℋ̂|𝜓 > = < 𝜓|�̂�|𝜓 > ,         (2.98) 

if 𝜆 → 0 and the property can be expressed either as an expectation value or as an energy 

derivative. 

Hellmann-Feynman theorem can be used to calculate properties such as polarizability [1]: in facts, 

static polarizability tensor 𝛼𝛼𝛽 is defined as the second derivative of energy with respect to the 

external applied uniform electric field 𝑭, 

𝜕2𝐸

𝜕𝐹𝛼𝜕𝐹𝛽
|𝐹=0               (2.99) 

The total Hamiltonian of a system interacting with an external electric field may be written as a 

sum of several perturbations of the kind 𝜆𝑖�̂�𝑖 [1]: 
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ℋ̂ =  ℋ̂(0) + 𝜆1�̂�1 + 𝜆2�̂�2 +⋯        (2.100) 

Thus, using the theorem and upon differentiating eq. (2.98), one may get any second derivative of 

the energy: 

𝜕2𝐸

𝜕𝜆1𝜕𝜆2
 = 𝜕𝜆2 < 𝜓|𝜕𝜆1ℋ̂|𝜓 > = 𝜕𝜆2 < 𝜓|�̂�1|𝜓 >      (2.101) 

This approach is called the finite- field (FF) approach [1,42,45], and provides a practical way to 

calculate polarizabilities: the wavefunction 𝜓 is computed in the presence of the uniform electric 

field 𝐹𝛽, while the expectation value for the dipole moment, < 𝜓|�̂�𝛼|𝜓 > =  𝜇𝛼, is evaluated 

through Hellmann-Feynman theorem. In general, the finite-field approach can be used whenever 

one wants to calculate a property that can be expressed as a derivative of energy or another 

expectation value with respect to a small perturbation. Many quantum chemistry software, such as 

MOLPRO [46], can use specific tensor fields to define higher-order quadrupole and octupole 

polarizabilities. In particular, MOLPRO [46] carries out a single numerical differentiation of the 

multipole moment < 𝜓|�̂�|𝜓 > for several values of the field, in order to achieve the multipole 

polarizabilities. Moreover, more precise results can be attained by computing the extended field 

dependence and making polynomial fitting to it.   

2.6.2. Polarization Propagator 

As seen in Section 2.1, the dispersion interaction depends on the dynamic properties of the system, 

such as dynamic polarizabilities. Thus, when dispersion interaction terms, such as dispersion 

coefficients, are needed, the knowledge of static properties is not sufficient, but, in contrast, 

dynamic response properties such as excitation energies and transition multipole moments (see eq. 

(2.25)) should be known in order to evaluate dynamic polarizabilities and, in turn, dispersion 

coefficients through, e.g., Casimir-Polder integrals by eqs. (2.53-54). In the frame of Coupled 

Cluster method, this can be done by introducing a time-dependent perturbation in the system 

Hamiltonian [47]. Coupled-Cluster-Equation-of-Motion method [34,47,48] addresses this issue to 

calculate excitation energies and, more generally, response properties. 

In this method, two Schrödinger-equation eigenstates are considered at the same time: an initial 

state Ψ𝑖 and a target state Ψ𝑘. 
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ℋ̂Ψ𝑖=𝐸𝑖Ψ𝑖
ℋ̂Ψ𝑘=𝐸𝑘Ψ𝑘

           (2.102) 

The method is targeted to achieve the energy difference between the two states, 𝐸𝑖𝑘 = 𝐸𝑘 − 𝐸𝑖. 

Upon using the normal-ordered Hamiltonian ℋ̂𝑁, eqs. (2.102) become 

ℋ̂𝑁Ψ𝑖 = Δ𝐸𝑖Ψ𝑖          (2.103) 

ℋ̂𝑁Ψ𝑘 = Δ𝐸𝑘Ψ𝑘,          (2.104) 

where Δ𝐸𝑖 and Δ𝐸𝑘 are respectively the correlation energies for the initial and target states. As 

both subtract the same quantity, i.e. the reference energy, then the energy difference between the 

two states corresponds to the difference between the related correlation energies. In this frame, the 

initial state Ψ𝑖 is given by the Cluster operator acting on the reference state Ψ0 (eq. (2.73)), while 

the target state Ψ𝑘 is given by a linear operator �̂�𝑘 acting on the initial state Ψ𝑖. The linear 

excitation operator �̂�𝑘 is, in turn, defined as [34] 

�̂�𝑘 = 𝑟0 + Σ𝑖,𝑎𝑟𝑖
𝑎{�̂�+𝑖} + Σ𝑖<𝑗,𝑎<𝑏𝑟𝑖𝑗

𝑎𝑏{�̂�+𝑖�̂�+𝑗} + ⋯      (2.105) 

The most widespread variant of the CC-EOM method is the CCSD-EOM, where the Cluster 

operator is truncated to the singles and the doubles [49]. The computational cost of CCSD-EOM 

is comparable to CCSD’s [29].  

However, the main issue of the CC-EOM approach arises because of the non-hermiticity of the 

Hamiltonian used. Such a problem paves the way for alternative methods, developed in the frame 

of the abovementioned approach. An alternative method solving the non-hermiticity problem is 

the Polarization Propagator approach by Moszinski et al. [50]. The Polarization Propagator treats 

electric properties involving excitations, such as dynamic polarizabilities, as linear response 

functions [32,50]. The imposition of the hermiticity condition ensures the time reversal symmetry 

for the electric properties to be respected, together with the consequent constraint for them to be 

even function of the frequency [50]. 

Given a non-degenerate n-electron Hamiltonian ℋ̂, the related Polarization Propagator,          

≪ �̂�, �̂� ≫𝜔 , is defined as [32,50] 
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≪ �̂�, �̂� ≫𝜔= − < Ψ𝑖|�̂�  (
�̂�

ℋ̂−𝐸𝑖+𝜔
) �̂�Ψ𝑖 > − < Ψ𝑖|�̂�  (

�̂�

ℋ̂−𝐸𝑖−𝜔
) �̂�Ψ𝑖 >    (2.106) 

For the initial state Ψ𝑖 the Ground State has been taken into account, whereas �̂� represents the 

projection onto the space of all the excited states of the system; 𝐸𝑖 is defined as the eigenvalue of 

the Ground State Ψ𝑖. Eq. (2.106) thus describes the system’s linear response to a perturbation (�̂� 

or �̂�) that oscillates at a frequency 𝜔. The operators �̂� and �̂� can be assumed to be Hermitian. 

In fact, the propagator exhibits the Hermitian symmetry  

≪ �̂�, �̂� ≫𝜔
∗  = ≪ �̂�, �̂� ≫−𝜔∗         (2.107) 

if and only if A and B are Hermitian. If the frequency is a pure complex quantity, then  𝜔∗ = −𝜔 

and thus the Polarization Propagator is real for each A and B. This implies that the second term in 

(2.106) does not need to be separately computed, as it is just the generalized complex conjugate 

(g.c.c.) of the first term. 

In addition, if the frequency is real, then the Polarization Propagator has the time-reversal 

symmetry (≪ �̂�, �̂� ≫𝜔  = ≪ �̂�, �̂� ≫−𝜔 ) and by Schwartz’s Reflection Theorem, such a condition 

can be extended to the case when the frequency is complex. 

For the first-order wave function we consider the function Ψ(1)(𝜔) that satisfies the equation [32]: 

(ℋ̂ − 𝐸𝑖 + 𝜔)Ψ
(1)(𝜔) =  −�̂�Ψ𝑖        (2.108) 

 By means of (2.108) the Polarization Propagator can be expressed as [32,50] 

≪ �̂�, �̂� ≫𝜔= < Ψ𝑖| (�̂� − �̂�)Ψ
(1)(𝜔) >  +𝑔. 𝑐. 𝑐.,      (2.109) 

with �̂� = < Ψ𝑖|�̂�Ψ𝑖 >. 

We now define the Coupled Cluster Ground State wave function in the renormalized form [50] 

Ψ𝑖 =
exp(�̂�)Ψ0

<exp(�̂�)Ψ0| exp(�̂�)Ψ0>
1
2

,         (2.110) 

while the first-order wave function is defined accordingly [32,50], 
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Ψ(1)(𝜔) =
Ω(𝜔)exp(�̂�)Ψ0

<exp(�̂�)Ψ0| exp(�̂�)Ψ0>
1
2

= [Ω0(𝜔) + Ω̂(𝜔)]Ψ𝑖.       (2.111) 

Ω0(𝜔) is a number, while Ω̂(𝜔) is an excitation operator of the same form as �̂�. By specifying the 

wave functions in (2.108), one achieves [32] 

< 𝛿𝑇|[exp(�̂�) ℋ̂ exp(�̂�) , Ω̂(𝜔)] + 𝜔Ω̂ + exp(�̂�) �̂� exp(�̂�) > = 0,   (2.112) 

with 𝛿𝑇 meaning an arbitrary variation of the operator; the terms in the square brackets constitute 

the commutator. In agreement with Refs. [32] and [50] the scalar products have been expressed in 

(2.112) in the short-hand form 

< 𝑋|𝑌 > = < 𝑋Ψ0|Ψ0𝑌 >         (2.113) 

If the time-dependent perturbation is periodic with a period 𝜔𝑡, then the �̂� operator can be written 

in terms of the Ω̂ operator and finding them is thus easier. When such operators are known, the 

Polarization Propagator can be computed from the expression [32,50] 

≪ �̂�; �̂� ≫𝜔= 
<exp (�̂�)|�̂��̂�Ω̂(𝜔)exp(T̂)>

<exp(�̂�)| exp(�̂�)>
+  𝑔. 𝑐. 𝑐.      (2.114) 

Upon expanding the exponential and the denominator, eq. (2.114) generates several terms that are 

not connected (i.e. cannot be constructed from a finite number of multiple commutators containing 

the operators in play). However, if  �̂�,  �̂�, Ω̂ can be expressed in such a way, then the disconnected 

terms vanish. Thus, to enforce the constraint on the connectivity of eq. (2.114), the �̂� excitation 

operator is introduced [32,41,50], 

exp(�̂�)Ψ0 =
exp(�̂�+) exp(�̂�)Ψ0

<exp(�̂�)| exp(�̂�)>
         (2.115) 

The main advantage coming from this new Ansatz relies, in facts, on the connectivity property of 

the �̂� operator: this allows the Polarization Propagator to be size-extensive [41]. 

When only the single and double excitations are taken into account (�̂� = �̂�1 + �̂�2), then �̂� becomes 

[50] 

�̂� = �̂� + �̂�1
̂ ([�̂�1

+, �̂�2]) + 𝑜(�̂�
3),        (2.116) 
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where the superoperator �̂�𝑛
̂ (𝑋) appears, projecting the n-tuple excitation part of the operator X 

[32]. 

By means of eq. (2.115), eq. (2.116) can be rewritten in a form where all the terms are explicitly 

expressed as commutator products of operators [32,50]: 

≪ �̂�; �̂� ≫𝜔= < exp(−�̂�) exp(�̂�
+) �̂� exp(−�̂�+) exp (�̂�)|�̂̂�((exp(�̂�+) Ω̂(𝜔) exp(−�̂�+)) >

+𝑔. 𝑐. 𝑐.            (2.117) 

It should be noticed that the expansion of eq. (2.117), though finite, yields up with multiple 

commutators up to quite high order: for instance, the CCSD polarization propagator may contain 

up to seven excitation operators (�̂� or �̂�). The situation gets even more complicated when higher 

cluster excitations are included (e.g. CCSDT) [32]. This makes CCSD polarization propagator the 

most reasonable compromise between accuracy and computational cost and for this reason we will 

focus on it. 

At the CCSD level, the n-tuple excitation operator �̂�n yields the following solution: 

�̂�𝑛 = �̂�𝑛 −
1

𝑛
Σ𝑚=1
4 1

𝑚!
�̂�𝑛
̂ ([�̂�1 + 2�̂�2, �̂�]𝑚 + [�̂�1

+ + 2�̂�2
+, �̂�]

𝑚
),       (2.118) 

where [�̂�, �̂�]
𝑚

 defines a m-times nested commutator (e.g. [�̂�, �̂�]
𝑚+1

= [[�̂�, �̂�]
𝑚
, �̂�]], whereas �̂� 

is a similarly-transformed de-excitation operator [50], 

�̂� = exp(−�̂�) �̂�+ exp(�̂�) = �̂�+ + Σ𝑚=1
4 1

𝑚!
[�̂�+, �̂�]

𝑚
     (2.119) 

Upon solving eq. (2.118) iteratively, we can obtain �̂�n as an expansion in powers of �̂�. In this case 

the single and double excitations in �̂� read as [32] 

�̂�1=�̂�1+�̂̂�1([�̂�1
+,�̂�2]+[[�̂�2

+,�̂�2],�̂�1]+
1

2
[[�̂�1

+,�̂�1],�̂�1])

�̂�2=�̂�2+�̂̂�2(
1

2
[[�̂�2

+,�̂�2],�̂�2]+[[�̂�1
+,�̂�2],�̂�1])

      (2.120) 

We now have to gauge the importance of the excitation terms �̂�, �̂� and �̂� appearing in eq. (2.117). 

This is actually done by applying Møller-Plesset expansion to them. Upon expanding the operators 

up to the third order in the Møller-Plesset operator, eq. (2.117) for the CCSD polarization 

propagator approximates to [32] 
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≪ �̂�, �̂� ≫𝜔= < �̂�Ω̂1(𝜔) > +< �̂�|[�̂�, Ω̂(𝜔)] > + < [�̂�, �̂�2]|Ω̂1(𝜔) > + < [[�̂�
+, �̂�], �̂�]|Ω̂(𝜔) >

 +𝑔. 𝑐. 𝑐.,           (2.121) 

where  

�̂� = �̂� + �̂�1
̂ ([�̂�1

+, �̂�2]) +
1

2
�̂�2
̂([�̂�2

+, �̂�2], �̂�2])        (2.122) 

This is shortly called the CCSD(3) polarization propagator. We may derive higher-order 

approximations to eq. (2.117), but this would not be very useful: in fact, CCSD theory is correct 

through the second order in Møller-Plesset operator, therefore higher-order corrections beyond the 

third one would not provide significant refinements [32]. 

2.6.3. Alternatives 

Among molecular approaches, Coupled Cluster not only offers the most accurate treatment of 

electron correlation [34], but is also suitable for monomeric calculations of properties usually 

investigated by means of atomic approaches, such as response properties, with high accuracies. 

These features make CC the ideal molecular approach to investigate the long-range tail of the 

interaction potential and, at the same time, the global interaction potential. Thus, when dealing 

with long-range interactions by means of molecular approaches, CC, when applicable, is a method 

of the first choice.  

As an example of cheaper but less accurate approach to investigate long-range interactions, we can 

mention Møller-Plesset perturbation theory [51], MPn (where “n” means the perturbation order). 

At this level of theory, the Hartree-Fock Hamiltonian is taken as the zero-order Hamiltonian, while 

electron correlation is treated as a perturbation. For a closed-shell system, the zero-order 

wavefunction or reference wavefunction is supplied by the Slater Determinant, while the zero-

order energy is the sum of the occupied orbital energies. At the first order, the energy is given by 

the expectation value of the total Hamiltonian for the HF wavefunction. Electron correlations are 

treated from the second order. However, MPn method present several drawbacks: first, accounting 

for higher-order perturbation terms does not ensure a better convergence or more accurate results 

[52]. By contrast, the computational cost increases as the perturbation order increases [1]. Another 

general deficiency, which is common to all MBPT implementations, regards the description of 
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valence-valence interactions, which is usually not accurate [53]. Furthermore, MBPT methods to 

any order are size-extensive, but generally not size-consistent.  

The reason why we paid attention to MPn above is that it can be considered as the simplest 

implementation of Many-Body Perturbation Theory (MBPT), which, in turn, is also widely used 

as a building block for several more complex atomic approaches (see, for instance, Ref. [54]). In 

particular, in the specific case of diatomic systems of interest in the Thesis context, monomeric 

approaches reduce to atomic ones. Techniques for atomic electronic structure calculations are 

much more diverse and, generally, accurate compared to those available for molecular ones, due 

to high symmetry.  

An atomic approach that accurately describes core-core, core-valence and valence-valence 

interactions combines the Configuration-Interaction method [24] CI and Many-Body Perturbation 

theory MBPT (CI-MBPT). The former, in fact, accurately accounts for the valence-valence 

correlation, while the latter provides a relatively accurate description of core-core and core-valence 

correlations [53,54]. The method works by dividing the system electrons in two group: core and 

valence. For the former, the effective Hamiltonian is constructed using the MBPT method for the 

interaction of the valence electrons with the core, while CI is used to treat the valence electrons 

[3,53,54]. Relativistic effects can be explicitly accounted for upon replacing the Hartree-Fock 

Hamiltonian with the Dirac-Fock Hamiltonian [53,55] (see Section 2.7.1): in this latter case, CI-

MBPT has proven to be particularly accurate [3,55]. However, this method presents several limits: 

first, the convergence of MBPT requires the core and valence states to be well separated in energy 

[53]; second, it becomes impracticable when the number of valence electrons becomes larger than 

five [54,55]: in this case, in fact, the CI space becomes too large to saturate the CI part of the 

method, whereas such a large number of valence electrons makes the effective Hamiltonian no 

longer accurately represented by a two-electron operator; three-particle MBPT corrections [53]  

should be included, thus leading to the Hamiltonian that is much less sparse than for the pure CI 

[54]. On the side of intermolecular interactions, as an atomic approach, CI+MBPT performs with 

reasonable accuracy on the calculation of response static (e.g. static polarizabilities) and dynamic 

properties (e.g. dynamic polarizabilities, oscillator strengths) for atoms with a small valence (see, 

for instance, Ref. [3]), such as alkaline earth elements and, generally, divalent atoms [3], due to 
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the optimal treatment of electron correlation. However, being a method based on Perturbation 

theory, it is not suitable for evaluations of the global interaction potentials between two species. 

A key advantage of CI-MBPT method is its flexibility, as it can embody empirical corrections to 

increase accuracy: core-core and core-valence correlations can be corrected upon introducing 

parameters based on experimental data. Such empirical parameters replace the higher-order 

perturbative corrections at a lower computational cost. Moreover, they ensure an accurate 

description of the low-energy levels [3]. Corrections to valence-valence correlations can be 

accounted for by embodying summations of tabulated experimental energy levels [3].  

2.7. Coupled Cluster computational strategies 

2.7.1. Scalar relativistic corrections  

2.7.1.1. Introduction 

A plethora of chemical systems do exist which requires a relativistic treatment, for instance 

transition metals and heavy and super-heavy elements [56-59]. Before starting to consider the 

formalism of relativistic quantum chemistry, it is necessary to understand how relativity affects 

the electronic structure of such elements. 

The relativistic mass increase for a particle is classically expressed as  

𝑚 = 𝑚0/√1 − (
𝑣
𝑐⁄ )
2 ,         (2.123) 

where 𝑚0 and 𝒗 are, respectively, the rest mass and the velocity of the particle. In a relatively 

heavy atom, whose particles in account are indeed the electrons, the large atomic number Z causes 

the electrons to move faster and the related mass increase leads the Bohr radius of the Hydrogen-

like s and p1/2 orbitals to decrease as [60]  

𝑎𝐵 =
ℎ2

𝑚𝑐2
= 𝑎0𝐵√1 − (

𝑣
𝑐⁄ )
2         (2.124) 

This effect is called the direct relativistic effect and affects the s and p valence shell and the 

innermost core electrons [60,61]. The consequence of this effect relies in the contraction of the 

related orbitals, as seen from eq. (2.124). As a result of their contraction, the s and p shells screen 

the nucleus more effectively, thus decreasing the Coulombic attraction on the outer d and f shells. 
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These, in turn, expand, as a consequence of the nucleus screening and destabilize energetically 

[60-61]. This phenomenon, provoked by the direct relativistic effect on the outer s and p electrons, 

is called the indirect relativistic effect [61].  

A full relativistic treatment of atomic systems relies on Dirac Equation [56-58], whose 

corresponding Hamiltonian, ℋ̂𝐷, is a 4x4 matrix, accounting for the Coulombic interaction of the 

electrons with an extended nucleus (V) and the interaction of the particles spin and momenta �̂� ∙ �̂�: 

ℋ̂𝐷 = ‖
𝑉 𝑐�̂� ∙ �̂�

𝑐�̂� ∙ �̂� 𝑉 − 2𝑚𝑐2
‖ = 𝑐�̂� ∙ �̂� + (𝛽 − 1)𝑚𝑐2 + 𝑉,     (2.125) 

where 𝛽 is the 4x4 analog of the Identity matrix I and its terms are ‖
𝐼 0
0 −𝐼

‖. 

As a consequence, the solutions of Dirac equation are 4-component vectors 𝜙 accounting for the 

spin contribution (4-spinor) and taking into account both particles with positive energies 

(fermions) and particles with negative energies (anti-fermions). Among the four components of a 

4-spinor, one can notice two upper components (upper 2-spinor) and two lower components (lower 

2-spinor): the former are larger for the fermionic states, whereas the latter are larger for the anti-

fermionic states [61]. Specifically, as the electrons are fermions, for atoms and molecules the upper 

and lower 2-spinors are usually called the large component 𝜙𝐿 and the small component 𝜙𝑆, 

respectively.  In a vast majority of cases (e.g. light atoms, chemical transformations) accounting 

for anti-fermions provides negligible correction for the description of systems of chemical 

interests, therefore it is necessary to decouple Dirac Hamiltonian, so to split its terms into a positive 

energy term and a negative energy term, where the latter can be easily neglected. The aim is thus 

the transformation of Dirac Hamiltonian (2.125) into a block-diagonal Hamiltonian and such a 

result is achieved by means of unitary transformations of the form [56-58,62]: 

ℋ̂𝑏𝑑 = 𝑈ℋ̂𝐷𝑈
+ = ‖

ℎ+ 0
0 ℎ−

‖        (2.126) 

Attaining the block-diagonal Hamiltonian requires the knowledge of the unitary operator U. Two 

approaches to calculate the unitary operator and decouple Dirac Hamiltonian are the Douglas-

Kroll-Hess Transformation (DKH) [56,57,62] and the eXact-2-Component approach (X2C) [58]. 

Both approaches assume that spin-orbit coupling provides a minor contribution to the relativistic 

pcztgw
Sticky Note
the

pcztgw
Highlight

pcztgw
Highlight

pcztgw
Highlight

pcztgw
Sticky Note
should there be 1 her, not I? unclear

pcztgw
Highlight

pcztgw
Highlight

pcztgw
Highlight

pcztgw
Sticky Note
correct word? need to justify?



 
 
 

52 

 

energy and, therefore, neglect it. This approximation is called the scalar relativistic approximation 

[63,64] and the related corrections refer to the scalar relativistic effects. 

2.7.1.2. Douglas-Kroll-Hess Transformation 

The Dirac Hamiltonian can be written as a sum of even and odd terms; the former are block 

diagonal and commute with the matrix 𝛽, whereas the latter are off-diagonal and anticommute 

with the matrix 𝛽. DKH transformation applies a sequence of further unitary transformations as 

that in (2.125) to eliminate the odd terms step by step. The outcome is the final block-diagonal 

Hamiltonian expressed as a series of even terms in the k-th order in U [57,62]: 

ℋ̂𝑏𝑑 = ⋯𝑈2𝑈1ℋ̂𝐷𝑈1
+𝑈2

+… = Σ𝑘=0
∞ ℰ𝑘.       (2.127) 

In DKH formalism the unitary transformations are obtained by a power series expansion in terms 

of a set of an anti-Hermitian operator �̂� [57]: 

𝑈𝑖 = 𝑎𝑖,0𝟏 + Σ𝑘=0
∞ 𝑎𝑖,𝑘�̂�𝑖

𝑘         (2.128) 

Up to the fourth term ℰ𝑘 does not depend on the parametrization of the unitary transformations, 

while the higher-order terms are dependent on the 𝑎𝑖,𝑘 coefficients of the general parametrization 

[56,57]. 

The sum of the even terms (2.127) is infinite. Thus it is necessary to approximate the exact block-

diagonal Hamiltonian by truncation of (2.127) up to the k-th term. This k-th term upon which the 

truncation is carried out gives the order of the approximation to the DKH transformation. This is 

then called DKHk. 

ℋ̂𝐷𝐾𝐻𝑘 = Σ𝑘=0
𝑛 ℰ𝑘.          (2.129) 

Some of the ℰ𝑘 terms are reported below [57]: 

ℰ0 = (𝛽 − 1)𝑚𝑐
2,                   (2.130a) 

ℰ1 = 𝑉 +
𝛽𝒑𝟐

2𝑚
,                    (2.130b) 

ℰ2 = −𝛽
𝒑𝟐

8𝑚3𝑐2
+

ℏ

8(𝑚𝑐)2
∇2𝑉 +

ℏ2

(2𝑚𝑐)2
𝚺 ∙ [(∇ ∙ V) × 𝐩]              (2.130c) 
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In the zeroth term we can easily recognize the rest energy, whereas in the second-order term 

(2.130c) we can recognize the mass-velocity, the Darwin term and the Spin-orbit coupling, where 

𝚺 refers to the Dirac spin matrix. 

The first DKH correction ever implemented was that truncated to the second-order term, DKH2, 

but nowadays corrections to the third (DKH3) up to the sixth term (DKH6) are also available in 

many quantum chemistry software [62]. Recent versions of the MOLPRO package [46] implement 

even higher-order corrections. 

2.7.1.3. eXact-2-Component Approach  

Large and small components, 𝜙𝐿 and 𝜙𝑆, are related by a 2x2 matrix X, so that [57,58] 

𝜙𝑆 = 𝑋𝜙
𝐿           (2.131) 

This matrix can be used to build up the matrix U that decouples Dirac Hamiltonian: 

𝑈(𝑋) =  ‖

1

√1+𝑋+𝑋

𝑋+

√1+𝑋+𝑋

−
𝑋+

√1+𝑋+𝑋

1

√1+𝑋+𝑋

‖        (2.132) 

X is an energy-dependent matrix, depending on the energy of the system and on the Coulombic 

potential [58]. 

The X2C approach determines X in a non-iterative way and uses it to construct the unitary matrix 

U(X) [58]: the coefficients of the large and small components, 𝑐𝐿 , 𝑐𝑆 are determined by solving the 

Fock-Roothaan equations and thence used to calculate X  according to the formula 

𝑋 = 𝑐𝑆(𝑐𝐿)
−1           (2.133) 

Since the exact unitary matrix is directly evaluated from the coefficients 𝑐𝐿 , 𝑐𝑆, there is no need for 

expanding the decoupled Hamiltonian in the series of its even terms as in DKH. Thence, no 

approximation is imposed to the decoupled Hamiltonian. Furthermore, this approach does not 

make use of 4-spinors as solutions of Dirac equation, but instead constructs easier handling 2-

component spinors [58]. For such reasons, the approach is called the eXact 2-Component 

correction, or X2C. 
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2.7.2. Effective Core Potential 

In the previous sections, we analyzed the relativistic methods commonly used to treat all-electron 

(AE) problems, i.e. problems where both valence and core electrons are explicitly treated. 

However, a common intuitive assumption among chemists states that, roughly, the valence shell 

of atoms is the sole responsible for their chemical behavior. From this assumption, the introduction 

of Effective core potentials (ECP) follows. According to this model, the valence electrons move 

in the field of a suitable ECP [66], absorbing the core electrons, that are thus accounted separately. 

In this way, the ECP is supposed to account for much of the relativistic effects due to the core, 

while the valence electrons are treated non-relativistically [66].  

The reason for the popularity of ECPs relies on two advantages: the smaller computational cost 

compared to the AE treatment [67,68] and the relative ease with which major relativistic effects 

can be included [68]. 

Among the wide range of available ECPs, we worked with energy-consistent ECPs, i.e. ECPs 

adjusted to non-relativistic, quasi-relativistic or relativistic energies, such as Hartree-Fock or 

Dirac-Hartree-Fock [69]. In particular, we chose to expose the following two, that will be used in 

the next chapters: 

1) Quasi-relativistic Wood-Boring ECP (ECPMWB); 

2) Relativistic Dirac-Fock ECP (ECPMDF). 

1) ECPMWB describes the core potential with the function [67] 

𝑉(𝑅𝑖) =  −
𝑄

𝑅𝑖
+ Σ𝑙𝐴𝑙 exp(−𝑎𝑙𝑅𝑖

2)𝑃𝑙,       (2.134) 

where Q indicates the charge of the core, i subscript runs over the electrons, while Pl is a projector, 

projecting onto the Hilbert subspace with angular symmetry l. Al and al (l = 0,1,2,3) are empirical 

parameters, each of them being adjusted to the energy of a valence state of the atom [67]. These 

reference valence energies are derived from quasi-relativistic HF calculations, relying on solving 

Dirac-Slater equation approximately. In this approximation, the small component of the 4-spinor 

wave function is neglected, so that the equation reduces to the second-order Cowan-Griffin 

equation [70]: 
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𝑑2𝜙𝐿

𝑑𝑅2
= (�̂� + 𝑓)𝜙𝐿,          (2.135) 

where 𝜙𝐿 denotes the large component of Dirac-Slater solution. The factors g and f are defined, 

respectively, as [70] 

�̂�= −𝜖+
𝑙(𝑙+1)

𝑅2
+𝑉

𝑓=ℋ̂𝑚(𝑅)+ℋ̂𝐷(𝑅)+ℋ̂𝑆𝑂
         (2.136) 

In the definition of those two parameters we can recognize the reference valence energy of the 

given state (𝜖) and the central-field potential (V) for g and the mass-velocity (ℋ̂𝑚), Darwin (ℋ̂𝐷) 

and Spin-Orbit (ℋ̂𝑆𝑂) Hamiltonians. In Wood-Boring approach, this latter Hamiltonian is usually 

dropped from f and treated as a first-order perturbation [70]. 

2) ECPMDF differs from ECPMWB as the effective potential describing the core accounts for 

both large and small components of the 4-spinor wave function. In particular, the empirical 

coefficients are here adjusted to reference valence energies achieved with the multiconfigurational 

Dirac-Coulomb-Hartree-Fock (MCDHF) level [68]. 

2.7.3. Basis set 

2.7.3.1. Introduction 

In quantum chemical calculations, the accurate description of the atomic orbitals requires the 

choice of a set of basis functions: larger basis sets ensure a more accurate description of the 

orbitals, however, computational cost sharply increases with the size of the basis [1]. In particular, 

the major contribution to the computational cost of the basis set is provided by the 2-electron 

integrals, i.e., integrals where two different electron positions r appear. Typically, for M basis 

functions there are 
1

8
𝑀4 2-electron integrals [1], therefore the choice of the basis set is usually a 

compromise between accuracy and computational cost. 

Early calculations employed Slater-type orbitals (STO) as basis functions [1,14], 

𝜒 = 𝑅𝑙𝑘(𝒓) exp(−𝜁𝑟),         (2.137) 

where 𝑅𝑙𝑘 is a solid harmonic, whose argument, 𝒓 ≡ (𝑟, 𝜃, 𝜙), stands for the position of the 

electron relative to the nucleus, while 𝜁 is a parameter. However, nowadays the majority of 
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standard ab initio packages operates with basis sets employing contracted Gaussian functions 

(GTO) of the form 

𝜒 = 𝑅𝑙𝑘(𝒓) Σ𝑖 𝑐𝑖𝑁𝑖 exp(−𝛼𝑖𝑟
2)        (2.138) 

Here, 𝑐𝑖 are a set of expansion coefficients, usually chosen to optimize the energy of the isolated 

atom, but fixed for the dimer calculations [1,14]; 𝑁𝑖 is a normalization factor. The individual terms 

𝑁𝑖 exp(−𝛼𝑖𝑟
2) are called the primitive Gaussian functions (there, 𝛼𝑖 is a parameter, called the 

contraction). 

For a given atom, a minimal basis set employs one primitive for each orbital. At the next level, a 

larger number of primitives can be used to describe each orbital: for instance, the minimal 6-31G 

Gaussian basis set employs one basis function for the core atomic orbitals, given as a linear 

combination of six Gaussian primitives of the form (2.138). For the valence orbitals, two sets of 

basis functions are used, one consisting of three primitives, while the other one consisting of one 

primitive [1]. Since a different number of basis functions is used to describe the atomic core and 

valence, this class of basis sets is called split-valence basis sets. In particular, 6-31G is called a 

split-valence double-zeta basis set. On the side of the valence orbitals description, a significant 

refinement is represented by the TZ (Triple-Zeta) basis set, where three basis functions are used 

for each valence orbital. From there, further improvements may come from adding more basis 

functions to model the valence orbitals [1]. Generally, the number of basis functions employed to 

describe the valence orbitals is indicated by the cardinal number n, where n may be equal to 2 (D), 

3 (T), 4 (Q), 5 and so forth. Thus, a basis set with n = 2 is called DZ, a basis set with n = 3 TZ, 

with n = 4 QZ, with n =5 5Z and so on. At the next level, the description of the orbital is refined 

by the addition of polarization functions, which, in turn, model polarization of the electron density 

due to an external perturbation, such as an applied electric field. For instance, description of 

polarization effects in the Hydrogen atom would requires the addition of a p-function to the 

minimal s-function used to describe the 1s orbital. Likewise, polarization of p orbitals is modelled 

by adding d-functions to the minimal p-function, polarization of d orbitals is modelled by adding 

f-functions, and so forth. 

On the other hand, charge distributions far from the nucleus, such as the case of anions, are 

described by means of diffuse functions. These are additional Gaussian basis functions with a small 
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exponent. Diffuse functions are also used to describe dipole moments and related phenomena, such 

as intermolecular interactions.  

For modern quantum chemistry packages, such as MOLPRO [46], a wide variety of Gaussian basis 

sets is currently available to compromise accuracy and computational demands [71], depending 

on the complexity of the system and its desirable properties. In particular, for the Thesis research, 

a popular branch of so called correlation-consistent basis set was used, for their well-known 

properties, flexibility and systematic extension towards the complete basis set limit. Both concepts 

are explained in detail in the following sections.  

2.7.3.2. Correlation-consistent basis sets: atom- and bond-centered basis functions 

It is well known that the accurate description of atomic polarizabilities and, generally, variables 

depending on electron correlation effects, requires large basis sets [1]. Therefore, the larger the 

basis set, the more accurate the description of long-range interactions and related variables. To 

account for the reliable description of such phenomena, Dunning and coworkers [72-76] devised 

basis sets addressing the accurate calculations of valence-correlated wavefunctions of ground-state 

neutral systems [14]: such basis sets are called correlation-consistent basis sets, usually 

abbreviated as cc-pVnZ, where “cc-p” stands for “correlation-consistent polarized”, while “V” 

indicates that they are valence-only basis sets. Such basis sets include successively larger 

polarization functions, such as d, f, g, h and so forth. On the other hand, “-nZ" stands for the 

number of basis functions used to describe each valence atomic orbital: if n equals 2, then two 

basis functions are used to model each valence atomic orbital and the basis set is called Double-

Zeta (DZ); analogously, one can have Triple-Zeta (TZ) basis sets, Quadruple-Zeta basis sets and 

so forth, up to Sextuple-Zeta basis sets (6Z) [1]. However, such basis sets do not have the flexibility 

required both for the investigation of core correlation and for the study of anions and excited states 

[14]. For such applications, additional atomic orbitals should be added. Core correlation is taken 

into account by cc-pCVnZ, also called correlation-consistent polarized core-valence basis set. 

Core correlation is modelled upon introducing a set of atomic orbitals having radial maxima close 

to the nucleus: such functions are introduced in a correlation-consistent way, i.e., functions with 

similar contributions to correlation energy are introduced simultaneously [14]. For the description 

of core-valence correlation energy correlation-consistent weighted core-valence polarized basis 

set (cc-pWCVnZ) [14,77] are used. There, the core functions are optimized with respect to the 
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core and the valence correlation energy. For the description of anions and excited states, diffuse 

functions can be added. This is indicated by the prefix “aug-” [1,14] (standing for “augmented”). 

Other additions may account for scalar relativistic corrections, signified by the addition of the 

suffix –DK (for Douglas-Kroll-Hess correction) or –X2C (for the eXact-2-component correction). 

Other additions account for the use of effective core potentials to approximate innermost atomic 

shells (-PP). Table 2.1 shows the basis functions composing correlation-consistent cc-pVnZ, cc-

pCVnZ and aug-cc-pVnZ basis sets (n ranging from D to 5) for the first-row elements of the 

Periodic Table. 

Table 2.1. Basis functions composing the cc-pVnZ, cc-pCVnZ and aug-cc-pVnZ basis sets for the 

first-row atoms. For the cc-pCVnZ and aug-cc-pVnZ basis sets, only the core-correlating and 

diffuse orbitals are reported, respectively. NV, NCV, Naug refer to the total number of contracted 

orbitals in the basis sets [14]. 

n cc-pVnZ NV cc-pCVnZ NCV aug-cc-pVnZ Naug 

D [3s2p1d] 14 + 1s1p 18 + 1s1p1d 23 

T [4s3p2d1f] 30 + 2s2p1d 43 + 1s1p1d1f 46 

Q [5s4p3d2f1g] 55 + 3s3p2d1f 84 + 1s1p1d1f1g 80 

5 [6s5p4d3f2g1h] 91 + 4s4p3d2f1g 145 + 1s1p1d1f1g1h 127 

  

Exponents and contraction coefficients are optimized to fit the benchmark atomic properties, such 

as the correlation energy. For instance, in the case of the first-row atoms from Boron to Neon, the 

(sp) sets of primitive Gaussian functions can be obtained from HF calculations, whereas the 

polarization (d, f, g…) sets are determined from correlated atomic calculations [72]. 

Basis sets discussed so far are atom-centered, i.e. the related basis functions are centered on the 

atomic nucleus. When dimer calculations are in need, the atom-centered description may not 

reproduce the dimer interaction potential with the required accuracy, due to the lack of accurate 

description of the region between the atomic charge distributions. To solve this issue, it was 

proposed to add bond-centered functions, i.e. basis functions to be placed midway the internuclear 

distance [78]. Such basis functions are commonly called bond functions [1,78,79] (bf). There is 
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not an exact rule about the basis functions to choose in order to accurately saturate dispersion 

interactions: usually a small set of s- and p-functions may account for about 20% of the dispersion 

energy [1]. In this regard, Cybulski and Toczylowski [79] reported a set of bond functions of the 

form 3s3p2d2f1g, with the following exponents: for sp, 0.94, 0.34, 0.12; for df, 0.64, 0.23; for g, 

0.35. Placed midway several rare gas (He, Ne, Ar) dimers and matched with atom-centered 

augmented correlation-consistent basis sets, these functions allowed for a significant accuracy 

increase for several properties, even reaching for such results a 1% deviation from experimental 

data [79]. 

2.7.3.3. Complete basis set limit 

As another feature, correlation-consistent basis sets form a hierarchical set, suitable for 

extrapolating computed properties to the complete basis set limit [1,14] (CBS). CBS limit is the 

extrapolated estimate of a result using an ideal infinitely large basis set. Several empirical formulae 

exist to carry out the extrapolation: given a generic property X, CBS extrapolation employs 

correlation-consistent basis sets of successively higher order (e.g. D, T, Q or T, Q, 5 series) to 

reach the asymptotic convergence of the result. Two examples of three-point (i.e. extrapolating the 

result from analogs computed at three different cardinal number n of the basis set) CBS 

extrapolation schemes are listed below: 

𝑋(n) = 𝑋(∞) + 𝐵 exp(−(n − 1)) + 𝐶 exp (−(n − 1)2)                        (2.139) 

𝑋(n) = 𝑋(∞) +
𝐵

(n+
1

2
)
4 +

𝐶

(n+
1

2
)
6        (2.140) 

There, 𝑋(n) refers to a generic quantity as a function of the basis set zeta cardinal number n; n =

∞ means the CBS limit. Scheme (2.139) is the three-term mixed exponential CBS formula [80,81], 

whereas scheme (2.140) is the three-point two-term inverse power function first reported by Martin 

and Taylor [82,83]. It should be noticed that a universal extrapolation rule does not exist: each 

formula produces different results and this difference is worthy of tracing out. In particular, a good 

criterion to choose a CBS formula is the property that one wants to extrapolate. In this respect, the 

choice of eqs. (2.139) and (2.140) is motivated by two considerations: first, they are able to 

extrapolate non-energetic properties as well as the energy [84]; second, their linear character 

ensures the convergence of the properties related to correlation energy upon CBS extrapolation 

[84]. 
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2.7.3.4. Basis set superposition error and counterpoise correction 

CBS extrapolation cannot eliminate a spurious consequence of the practical use of incomplete 

basis sets. Given two species, A and B, for each one, its “own” basis set would be used to calculate 

the related energies, EA, EB. Therefore, when switching to the dimer A-B, it would be natural to 

calculate the related energy EAB, in the combined basis set of the two monomers. However, in 

finite basis sets, this approach introduces a systematic error in the interaction energy: the energy 

of A in the “dimer” basis set would be slightly smaller than the energy of A in the “monomer” 

basis set, 

𝐸A(AB) ≤ 𝐸A(A),          (2.141) 

where 𝐸A(AB) stands for the energy of A in the joint basis, whereas 𝐸A(A) stands for the energy 

of A in the monomer basis set. In other words, in the dimer calculation, the basis function on B 

improves the description of A and vice versa. This phenomenon has no physical meaning, it is an 

artifact, and is commonly referred to as the basis set superposition error [1,14] (BSSE). This error 

is due to the finiteness of the basis set employed for the monomer, that is inadequate for a fully 

accurate description of its properties. As a consequence, the interaction potential is spuriously low 

if it is calculated as the difference [1] 

VAB = 𝐸AB(AB) − 𝐸A(A) − 𝐸B(B)        (2.142) 

BSSE is particularly high for Van der Waals complexes [14], as, in that case, it strongly depends 

on the internuclear distance [1]. 

Boys and Bernardi [85] proposed a scheme to circumvent BSSE, simply consisting of using the 

dimer basis (AB) for all the calculations [1,14]: 

𝑉𝐴B
𝑐𝑝 = 𝐸AB(AB) − 𝐸A(AB) − 𝐸B(AB)       (2.143) 

This solution is called the counterpoise correction (CP). CP suppresses the spurious attraction due 

to BSSE, with a relatively simple principle: in the calculation of the monomer A, the presence of 

the ghost basis for monomer B counterbalances the effect that basis B has on monomer A in the 

calculation of the dimer AB, and vice versa [14].  

In the long-range tail of the interaction potential, accounting for counterpoise correction is crucial: 

in this region the interaction energy is often smaller than the BSSE [86]. Calculation of the 

monomer and dimer energies by means of size-consistent methods may also increase the accuracy 
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of the interaction energy, while decreasing the BSSE. However, even when the energies are 

computed in a consistent manner, CP provides a determinant contribution to the elimination of the 

spurious attraction stemming from the finiteness of the basis set. For this reason, counterpoise 

correction was accounted in all calculations presented in the Thesis [86]. 

2.7.4. MOLPRO implementation 

In the thesis all the ab initio calculations are carried out using the MOLPRO quantum chemistry 

package [46]. MOLPRO is a Schrödinger-only code that deals only with ansätze based on one-

component non-relativistic wavefunctions [46]. The package implements different levels of 

theory, both single- and multi-reference. Among single-reference methods, HF, CCSD and 

CCSD(T) [37] are worthy of mention for the aims of the Thesis. Also, CC methods for the 

calculation of excitation energies and response properties like dynamic polarizabilities up to 

quadrupole are available. On this side, in the Thesis, we used the Polarization-Propagator approach 

in the frame of the EOM-CCSD approach [48]. On the other hand, multipole static polarizabilities 

can be calculated with the finite-field approach.  

Also, it is possible to correct the non-relativistic Hamiltonian for scalar-relativistic effects: both 

DKH [56,57,62] and X2C [58] corrections are implemented and can be specified in the input file 

using related keywords. For DKH, the order of expansion terms should be specified in the input 

file, otherwise the program set DKH2 by default [46]. 

In addition, MOLPRO allows for setting several control parameters in the calculation. The 

convergence energy for threshold is particularly worthwhile for the aims of the Thesis: by default, 

the program sets it to 10-6 a.u [46]. However, our calculations required high accuracy and, 

therefore, we always chose much smaller energy thresholds (from 10-10 up to 10-12 a.u.). 

All ab initio calculations were performed on Skoltech Pardus HPC cluster. 
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3. Modeling dispersion interaction: polarizabilities, dispersion coefficients and 

retardation functions at the complete basis set CCSD limit: Be-Ba and Yb 

The present exposition is based on the paper G. Visentin and A.A. Buchachenko, Polarizabilities, 

dispersion coefficients, and retardation functions at the complete basis set CCSD limit: From Be 

to Ba plus Yb, J. Chem. Phys. 151, 214302 (2019); doi: 10.1063/1.5129583, partially reproduced 

with the permission of AIP Publishing.  

The related project was funded by the Russian Science Foundation under Project No. 17-13-01466. 

Summary 

A systematic test on the atomic approach for alkaline earth atoms and Yb is presented. For the static 

polarizabilities, finite field CCSD(T) method matched with correlation-consistent basis sets 

saturated for diffuse augmentation, inner-shell electron correlation and scalar-relativistic effects 

ensure 1-2% accuracy with respect to special state-of-the-art atomic methods. Dynamic 

polarizabilities, computed by the CCSD(3) polarization propagator method are less accurate, but are 

still capable to reproduce the lowest-order dispersion coefficients within the 3% accuracy for alkaline 

earth dimers and, as a worst case, within the 7% accuracy for Yb  dimer. Overall, the Chapter 

demonstrates that atomic long-range calculations with CCSD and CCSD(T) methods should serve 

as a very informative test for designing ab initio schemes for molecular calculations. On the other 

hand, detailed analysis of the long-range interactions for alkaline earth and Yb dimers suggests that 

direct matching of the global potential with its long-range expansion is possible only at internuclear 

distances as long as 40-50 Å, where the interaction energy plunges to 10-3-10-4 wavenumbers. These 

strict requirements justify the use of synthetic potential functions bridging monomeric and dimeric 

approaches for reasonably heavy atoms. 

3.1. Introduction 

Experimental techniques nowadays used in ultracold atomic physics allow one to probe long-range 

interatomic interactions with unprecedented precision. In quantum condensates [1-3], atoms are 

held at long distances and any dynamical process is sensitive to interatomic forces at distances of 

tens to hundreds Angstroms. Measurements of collision properties, such as effective scattering 

lengths [4], Feshbach resonance positions [5] and ultracold reaction rate constants [6], and near-

threshold bound energy levels (investigable by means of photoassociation experiments [4]) mostly 
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sense the long-range interaction tail, which, for a ground-state closed-shell atom, is represented by 

the inverse power series (See Chapter 2). Moreover, on the side of theoretical methods, asymptotic 

theories exist, that permit a full description of the ultracold collision dynamics without knowledge 

of the global potential (see, for instance, Ref. [7]). 

However, knowledge of the interaction energy at short and medium ranges often provides 

improvements with respect to asymptotic theories, allowing one to calculate energy levels and 

phase shifts with remarkable accuracies. 

As was shown in Introductory Chapter 1, the molecular approach is the only one capable to 

produce the global interaction potentials. However, it lacks accuracy at the relevant interatomic 

distances where interaction energy goes down to thousandths of wavenumber and less. Moreover, 

at this energy scale, high-order relativistic and QED effects may not be neglected. At present, they 

can only be accounted with the atomic approach. This dichotomy was recognized long ago, in the 

times when ab initio methods were underdeveloped, while long-range interactions were described 

empirically on a base of scattering, transport or thermochemical measurements. Model concepts 

and potential functions that combine the long-range asymptotic representation with the theoretical 

or empirical description of the short-range were devised and advocated, some of them now in use, 

see e.g. Refs. [8-10].  

Great advance of the ab initio method and availability of precise data from ultracold collision 

experiments call for further research in combining molecular and atomic approaches (i.e. the 

combination of dimeric and monomeric approaches for a diatom). Establishing a connection 

between them at a new level of accuracy is in need for future developments. First, it is important 

to gain a better understanding on the performance of molecular approaches at long range. As was 

mentioned, accuracy assessment of molecular potentials is masked by convergence and fitting 

uncertainties. One possibility to circumvent them is to apply atomic approaches closely emulating 

molecular one. Second, the capability of atomic approaches is rapidly exhausted if one needs to 

describe the higher-order interactions, say, dispersion coefficients of the order above ten. Testing 

molecular approaches for lowest order coefficient provides the hints on how accurately it handles 

higher components. Third, the consistency of the data combined in synthetic potentials always 

requires careful analysis.  
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One way to implement such benchmarking is to employ the molecular approach as an atomic one, 

or, better to say, align atomic calculations as close as possible to molecular ones. Though it cannot 

be done precisely, as the response properties that govern dispersion interaction may not be reduced 

to calculations of energies, useful comparisons are still possible with the calibration data of 

specially designed atomic calculations. What accuracy can one get employing accurate molecular 

approaches and tricks developed to improve molecular quantum chemistry calculations? How 

should molecular calculations be arranged to cover longer interatomic distances?   

In this Chapter, we address these general questions by systematically applying the methods of the 

Coupled Cluster family to static and dynamic polarizabilities, dispersion coefficients and 

retardation corrections. Representing atomic mainstream, these calculations use standard 

approaches to the basis set augmentation and extrapolation, choice of the correlation constraints 

and scalar-relativistic corrections (e.g., those discussed in Chapter 2). As the test systems, the 

alkaline-earth atoms from Be to Ba, and Yb are chosen. Extensive studies of the long-range 

interactions of these atoms do exist, both theoretical and experimental. In fact, such systems are 

relatively easy to investigate by means of experimental ultracold physics techniques, due to their 

electron distribution isotropy at the ground state (for all of them, the ground state is 1S). Among 

the experimental data, one may mention the stimulated emission pumping experiments for Be [11], 

while the alkaline earth elements from Mg to Ba and the lanthanide Yb atoms were investigated 

by means of laser-induced fluorescence spectroscopy [12], laser-excitation spectroscopy [13,14], 

photoassociation spectroscopy [15-18] and Fourier-transform fluorescence spectroscopy [19]. 

From the theoretical side, a wide literature of accurate atomic approaches for these atoms is 

available to benchmark molecular approaches at the long-range: methods such as CI-MBPT [20-

22], CI matched with Coupled Cluster method (CI+ all order) [22-26] or evaluations of accurate 

atomic oscillator strengths (OS) [27] have provided results for the long-range coefficients that are 

nowadays considered the state-of-the-art of atomic physics calculations. Such an abundance of 

accurate experimental and theoretical data for the long-range properties of alkaline earth and Yb 

atoms provided us with a valid benchmark for our molecular results.  

3.2. Computational details 

All calculations were performed with the MOLPRO quantum chemistry package [28], using the 

restricted Coupled Cluster method with singles and doubles (CCSD) and with non-iterative triples 
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CCSD(T) [29] implemented for the restricted Hartree-Fock reference. The energy convergence 

threshold was always set to 10-12 a.u. 

For the basis set, all-electron calculations employed the series of the augmented correlation-

consistent polarized weighted-core n-zeta basis set aug-cc-pwCVnZ [30,31] contracted for the 

X2C scalar relativistic correction [32]. The non-relativistic (NR) calculations for Ca and Sr were 

performed using the same basis set; the correct NR RHF solution could not be attained for Ba. For 

the X2C and NR calculations of Be and Mg atoms, analogous basis sets optimized without scalar 

relativistic correction were used [30-31]. For Yb, the all-electron calculations employed the cc-

pwCVnZ-X2C basis series [33]. One diffuse primitive of each orbital type with the exponent 

continuing the two lowest exponents of the standard basis as an even-tempered sequence was 

added to compensate for the lack of optimized diffuse augmentation. Different core choices were 

used in the CC calculations, abbreviated in Table 3.1 as the number of core electrons Nc. By inner 

shells, Nc = 2 refers to the 1s2 core, 10 to 1s22s22p6, 18 to 1s22s22p63s23p6, 28 to 

1s22s22p63s23p63d10, 36 to 1s22s22p63s23p63d104s24p6, 46 to 1s22s22p63s23p63d104s24p64d10, and 

Nc = 0 means that all electrons were correlated. All abbreviations for the different core descriptions 

will be abbreviated according to Table 3.1. 

Also the small-core effective core potentials of the Dirac-Fock level [31,34,35] were used, 

ECP10MDF for Ca, ECP28MDF for Sr and ECP46MDF for Ba [35], together with the aug-cc-

pWCVnZ basis sets [31]. All the explicit electrons were always correlated; therefore, the acronym 

ECP-Nc in Table 3.1 and hereinafter means that Nc electrons are considered part of the 

pseudopotentials (or, more informally, let us say that Nc electrons are absorbed by the 

pseudopotentials). No systematically converging basis sets are available for ECP28MWB [36] or 

ECP28MDF [37] pseudopotentials for Yb atom to carry out the extrapolation to the CBS limit. 

The results of each series calculations with increasing basis set cardinal number n were 

extrapolated to the CBS limit by means of the three-point mixed exponential-Gaussian formula 

(2.139) [38,39]. This empirical formula was chosen for its linear character, flexibility and ability 

to extrapolate non-energetic properties [40]. 

In addition to the above calculations, featured in Ref. [41], the following ab initio approaches were 

explored: for the scalar relativistic effects, on the atoms from Mg to Ba the Douglas-Kroll-Hess 
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correction was used [42,43] with the DKH Hamiltonian truncation order k depending on the atomic 

number (for Mg k = 2, for Ca k = 3, for Sr k = 4, for Ba k = 5) and the basis set optimized 

accordingly. The related results were extrapolated to the CBS limit by means either of formula 

(2.139) or of the empirical three-point two-term inverse power function reported by Martin and 

Taylor [44,45] (2.140). Also for these additional options, relativistic corrections, core choices and 

basis sets with the related cardinal number n are reported in Table 3.1. 

Table 3.1. Summary of the options used in the ab initio calculations. The CBS entry specifies the 

basis set cardinal numbers used in the CBS extrapolations.  

Atom 

 

Types Nc Basis CBS 

Be NR, X2C 0 aug-cc-pwCVnZ T, Q, 5 

Mg NR, X2C, DKH2 0, 2 aug-cc-pwCVnZ T, Q, 5 

Ca NR, X2C, DKH3 0, 2,10 aug-cc-pwCVnZ-X2C 

aug-cc-pwCVnZ 

T, Q, 5 

ECP 10 aug-cc-pwCVnZ-PP T, Q, 5 

Sr NR, X2C, DKH4 2, 10, 28  aug-cc-pwCVnZ-X2C 

aug-cc-pwCVnZ 

D, T, Q 

ECP 28 aug-cc-pwCVnZ-PP T, Q, 5 

Ba X2C, DKH5 10, 28,46 aug-cc-pwCVnZ-X2C 

aug-cc-pwCVnZ 

D, T, Q 

ECP 46 aug-cc-pwCVnZ-PP T, Q, 5 

Yb X2C 18, 28, 36 cc-pwCVnZ-X2C + aug  D, T, Q 

 

3.3. Static polarizabilities 

Static dipole, quadrupole and octupole polarizabilities, respectively 𝛼1, 𝛼2, 𝛼3, were computed by 

the finite-field (FF) method [46,47] (see Section 2.6.1). For the dipole and quadrupole fields 

standard MOLPRO settings were used; the octupole field was set as the 2𝐹𝑧𝑧𝑧 − 3𝐹𝑥𝑥𝑧 − 3𝐹𝑦𝑦𝑧 

combination of the Cartesian components, equal to the (3,0) component of the third-rank spherical 

tensor operator [47], except for a normalization factor. The settings to other components returned 
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the same results up to normalization factors. The non-uniform symmetric field grids were tested 

in the CCSD(T) calculations with the basis sets having the highest cardinal number. For the dipole 

field a grid of 23 values was constructed, ranging the ±10−3 a.u. field strength interval, with 10−5 

a.u. as the minimum step. For the quadrupole field a grid of the same size was constructed, ranging 

the  ±3 ∙ 10−3 a.u., with 3 ∙ 10−6 a.u. as the minimum step. In contrast, the octupole field was 

represented by a field grid of 13 points within ±5 ∙ 10−5 a.u., with the minimum step of 10−6 a.u. 

Polynomial fits up to the sixth order were used to extract the static polarizabilities. The grid sizes 

and intervals and the order of the fitting polynomial ensured the precision of dipole, quadrupole 

and octupole polarizability values up to 3, 2 and 1 significant digits, respectively. Figure 3.1 

illustrates the convergence of the static polarizabilities to the CBS limit. The latter is taken as zero 

and the percentage deviations |𝛼𝑖[𝑛] − 𝛼𝑖[∞]|/𝛼𝑖[∞] (where “n” and “∞” within square brackets 

refer to the basis set cardinal number and the CBS extrapolation, respectively) are shown for 

consecutive cardinal numbers n. We noticed that the higher is the order of the static polarizability 

i, the slower is the convergence in n. This trend is reflected also by the different axis scales. This 

is due to the saturation of the basis with polarization functions of the angular momenta higher than 

the polarizability order. Octupole polarizabilities always increase with n; quadrupole ones show a 

similar behavior (except for Mg and Yb), while the dipole polarizabilities always decrease upon 

expanding the basis set. The same trends hold for X2C and NR calculations with other core 

choices. 
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Figure 3.1. CBS limit (2.139) convergence patterns for X2C n = T, Q, 5 (Be-Ca) and n = D, T, Q 

(Sr, Ba, Yb) calculations. Percentage deviations from the CBS value in the static dipole, 

quadrupole and octupole polarizabilities are shown along the corresponding axes (reproduced from 

G. Visentin, and A.A. Buchachenko, J. Chem. Phys. 151, 214302 (2019), with the permission of 

AIP Publishing). 

Slower convergence in n, typical of quadrupole and octupole polarizabilities, make their limiting 

CBS values less certain, especially in the case of Sr, Ba and Yb, where the sequence n = D, T, Q 

is used.  

In Table 3.2 the static polarizabilities values of alkaline-earth atoms at the CBS limits (2.139) and 

(2.140) are reported, the latter being indicated within parentheses. Our results are compared to 

selected literature data, among which the results of the CI+MBPT calculations by Porsev and 

Derevianko (PD, Ref. [20]) are included. These ones, together with the results from Ref. [48], 

provide our main reference for alkaline-earth atoms. In particular, for PD two result sets are shown: 

the “final” results from their best calculations and the “recommended” ones, in turn corresponding 

to the final results with the empirical corrections from experimentally known contributions from 

the lowest dipole-allowed s2 1S0 → sp 1P1 transition; details can be found in Ref. [20]. Beside of 

these “main” reference results, we also quote the results from the compilation [27], which gives 

polarizability values obtained by accurate oscillator strengths (OS) evaluations.  
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Table 3.3 reports the static polarizabilities calculated for Yb. There final CI+MBPT results are 

taken from Refs. [49] and [50]. Several other theoretical data have been recently reviewed 

[27,51,52].   
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Table 3.2. Static dipole, quadrupole and octupole polarizabilities of Be-Ba atoms (a.u.). Values in parentheses among the reference data indicate the 

uncertainties of the last significant digit(s). For our results, values out of parentheses indicate the results achieved with CBS formula (2.139), while values 

in parentheses indicate the results achieved with CBS formula (2.140). 

 Method        1         2         3 

Be X2C-0/NR-0 37.69/37.71 301.3/301.7 3740/3754 

 CI-MBPT final/recommended [20] 37.76/37.76(22)  300.6(3)/-  3781/- 

 OS [27] 37.73 300.4 3955 

 Other theoretical results 37.73 [53]; 37.80 [54]   

Mg X2C-2/NR-2 71.02 (71.07)/71.01  807.5 (802.869)/813.4  12461 (12864)/12561  

 X2C-0/NR-0 71.15/71.63 (71.71) 807.9/814.1 (809.8) 12471/12571 (12989) 

 DKH2-2 71.14 (71.08) 807.5 (802.9) 12396 (12685) 

 DKH2-0 71.03 (71.00) 806.9 (803.7) 12472 (12876) 

 CI-MBPT final/recommended [20] 71.33/71.3(7) 812(6)/- 13510/- 

 OS [27] 71.37 811.4 14010 

 Experiment 59(16) [55]; 71.5(3.1) [56]   

 Other theoretical results 71.22 [57]; 73.41 [54] 814(3) [58]  

Ca ECP-10 156.10 (156.14) 3002.1 (3006.0) 66052 (72358) 

 X2C-10/NR-10 157.61 (157.79)/ 

159.81 (159.94) 

3060.8(3070.1)/ 

3134.7 (3145.3) 

63498(63199)/ 

64911 (64507) 

 X2C-2/NR-2 157.54/159.76 3060.8/3133.8 63353/64838 

 X2C-0/NR-0 156.92/159.78 3060.2/3134.8 63339/65008 
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Table 3.2 (continued) 

 Method        1         2         3 

 DKH3-10 157.66 (157.84) 3062.2 (3071.5) 63489 (63137) 

 DKH3-2 157.59 (157.77) 3059.9 (3067.9) 63388 (63037) 

 CI-MBPT final/recommended [20] 159.0/157.1(1.3) 3081(23)/- 61620/- 

 OS [27] 159.4 3082 65240 

 Experiment 169(17) [59]   

 Other theoretical results 157.9 [57]; 158.00 [60];  

154.58 [54]; 155.3/157.7 [61] 

  

Sr ECP-28 198.62 (198.92) 4582.6 (4595.9) 112062 (120662) 

 X2C-28 198.93 (197.99) 4600.2 (4603.3) 118682 (128377) 

 X2C-10/NR-10 198.36(197.74) / 

209.81 (208.04) 

4601.6 (4604.2) / 

5137.1(4983.8) 

118149(148254) / 

134638 (172353) 

 X2C-2/NR-2 198.36(197.74) / 

210.09 (204.70) 

4599.5 (4603.3) / 

5120.2(4986.3) 

118155(147631) / 

131371 (164836) 

 DKH4-10 197.05 (196.36) 4601.2 (4603.0) 145158 (165288) 

 DKH4-2 198.39 (196.90) 4600.7 (4604.7) 118180 (147631) 

 CI-MBPT final/recommended [20] 202.0/197.2(2) 4630(8)/- 106400/- 

 OS [27] 197.9 4643 108700 
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Table 3.2 (continued) 

 Method        1         2         3 

 Experiment 186(15) [62]   

 Other theoretical results 198.85 [60]; 199.7 [63];  

199.71 [54]; 197.14(20) [64] 

4688 [63]; 4545(120) [65]  

     

Ba ECP-46 273.90 (273.73) 8579.3 (8634.3) 190047 (197224) 

 X2C-46 276.98 (276.73) 8772.8 (8781.8) 188621 (181443) 

 X2C-28 273.34 (260.42) 8548.9 (8560.2) 184403 (179156) 

 X2C-10 273.34 (273.73) 8541.9 (8552.8) 184306 (179054) 

 X2C-2 273.38 (272.98) 8531.0 (8562.2) 184302 (160669) 

 DKH5-10 273.38 (272.93) 8541.5 (8551.9) 184259 (178970) 

 CI-MBPT final/recommended [20] 272.1/273.5(2.0) 8900(650)/- 206000/- 

 OS [27] 278.1 8789 207600 

 Experiment 268(22) [59]   

 Other theoretical results 273.85 [60]; 274.92 [66];  

268.19 [54] 

9100 [66]  
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The results for different choices of the core demonstrate that the correlation of the inner shells 

generally decreases atomic polarizabilities (except for Mg, the lightest atom for which such a 

test is feasible, and the heaviest, Yb). However, the basis set saturation towards the CBS limit 

plays a more important role compared to the core correlation. Accuracy far below 1% is attained 

for Ca and Sr at the same core choices as accepted for the corresponding ECPs, Nc = 10 and Nc 

= 28 respectively. In contrast, the convergence for the Ba results at Nc = 46 reaches 1%-3%. The 

correlation of the innermost 28 electrons is required, in analogy with the case of Yb. All ECPs 

perform quite accurately on the dipole and quadrupole polarizabilities, which agree better with 

the converged X2C results than with the X2C results obtained with the same core choice. On 

one hand, this reflects the ECP adjustment, while, on the other, it indicates that the scalar 

relativistic corrections provided by the two approaches are comparable.  

Comparison with the CI-MBPT calculations [20,49,50] shows that our dipole polarizabilities 

for Be-Sr underestimates the final CI-MBPT results by less than 2% and are even closer to the 

recommended CI-MBPT results, empirically corrected to the dominant dipole-allowed 

contribution [20]. The case of Ba, where our result bounds the final CI-MPBT value from 

above, demonstrates that such an agreement is not fortuitous.  

The results for the higher-order polarizabilities are also in reasonable agreement with the final 

CI-MBPT values: our quadrupole polarizabilities for Be-Sr deviate from the CI-MBPT analogs 

by ca. 1%, while the error for Ba amounts to 4%. Deviations for octupole polarizabilities 

approach 11% for Sr and Ba. 

Our results are also corroborated by previous calculations on the alkaline-earth metals within 

the CC framework: deviations of our dipole polarizability values from the analogs reported for 

CCSD(T) calculations with the DKH scalar relativistic correction for Mg, Ca, Sr and Ba in 

Refs. [57,60] fall well below 1%. Such a deviation should be mostly attributed to the CBS 

extrapolation. A similar reasonable agreement is achieved with the relativistic CCSD 

calculations by Sahoo and Das corrected to triples [54], though the latter may not be highly 

accurate. For Sr atom, an extensive study was carried out by Yu et al. [63], who recommended 

dipole and quadrupole polarizability values based on the error balance of the basis set 

saturation, core contributions and cluster expansion in the relativistic CC calculations up to the 

CCSDT level. Our dipole polarizability values deviate from this benchmark by -0.7%, while a 

larger deviation, amounting to -1.8%, occurs for the quadrupole polarizability and may indicate 

the increasing importance of the higher-order cluster corrections. 

pcztgw
Sticky Note
Should there only be on final recommended value?How do values converge DZ -> 5Z?

pcztgw
Highlight

pcztgw
Sticky Note
limits(how known?)

pcztgw
Sticky Note
ing

pcztgw
Sticky Note
why this order?

pcztgw
Sticky Note
why not?



 
 
 

81 

 

Correlation of the inner shells has little effect on the DKH values for the polarizabilities, 

regardless of the CBS extrapolation used to achieve them. These results are always less accurate 

compared to X2C ones, albeit the deviation decreases for the atoms with larger polarizabilities: 

in the case of the dipole polarizability of Sr, for instance, DKH4-2 agrees with X2C-2 and -10 

up to the first digit; the same is valid for the comparison between DKH5-10 and X2C-10 and -

28 for Ba. In this latter case, the DKH result is in better agreement with X2C-2, as those results 

for dipole polarizability coincide up to the second decimal digit. 

The comparison of the performances of the CBS extrapolations (2.139) and (2.140) is usually 

in favor of the former: in fact, the latter shows a poorer and less regular convergence pattern 

and does not keep a uniform trend in bounding the results achieved with formula (2.139). In 

particular, for lighter atoms (Mg, Ca) and X2C correction, the result is generally slightly 

overestimated compared to analogs extrapolated with the mixed-exponential formula (2.139), 

whereas the trend is reversed when DKH correction is in play (though for Ca such reversal does 

not occur). For the Sr and Ba atoms such a trend is generally reversed, though even here formula 

(2.140) bounds DKH5-10 achieved with (2.139) from above, except for the octupole 

polarizability value. 

Our estimation of the Yb dipole polarizability falls within the error bars of the conservative 

evaluation by Beloy [52] and the CI-MBPT calculations [49,50]. A good agreement also does 

exist with the all-electron CCSD(T) calculations by Thierfelder and Schwerdtfeger [67]: with 

the DKH scalar relativistic correction they found 1 = 141.52 a.u., whereas with the four-

component Dirac-Coulomb calculations the dipole polarizability value decreased to 140.44 a.u.; 

the authors thus recommended 140.7 a.u., accounting for the Gaunt correction.  An extensive 

study of the Yb dipole polarizability was carried out by Zhang and Dalgarno [68,69] at the 

CCSD and CCSD(T) levels: with respect to their result for the highly saturated basis set, Nc = 

18 and DKH relativistic correction, ours is 2% underestimated. A like accuracy is provided by 

the results available from Ref. [37], where CCSD calculations within the propagator approaches 

exploited the Dirac-Fock effective potential ECP28MDF, while the Wood-Boring 

parametrization ECP28MWB [36] tends to overestimate 1, as also followed from Refs. 

[70,71]. 

Overall, present CCSD(T) CBS results for static dipole polarizabilities are in very good 

agreement with the best previous estimates and, in particular, with the results from empirically-

corrected CI-MBPT calculations. The Sr atom represents the only case where the error is larger 
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than 0.1% (0.6%). Static quadrupole polarizabilities are generally slightly lower than those 

available from alternative high-level calculations.  

In the best cases, DKH results slightly deviate from the related X2C results and in one case (Ba) 

the deviation is zero up to the second decimal digit.  

On the side of CBS extrapolations, the comparison of the two result sets showed that the three-

point two-term inverse power rule (2.140) performs less accurately compared to the three-point 

mixed exponential rule (2.139), while its convergence trend is less regular. For this reason, rule 

(2.139) was chosen to achieve all the subsequent results. 

Table 3.3. Static dipole, quadrupole, and octupole polarizabilities of the Yb atom (a.u.). Values 

in parentheses indicate the uncertainties of the last significant digit(s). 

 Method 1 2 3 

Yb X2C-36 140.54 2644.4 55209 

X2C-28 140.80 2653.3 55239 

X2C-18 140.74 2656.5 55174 

CI-MBPT final [49,50]  141(2) 2560(80)  

Experiment 139.3(5.9) [52]; 

147(20) [55] 

  

Other theoretical results 151.0 [70],  

142.6 [71],  

143.1 [68], 

140.44 [67], 

144.59 [54]  

2680 [69]  

 

3.4. Dynamic polarizabilities 

The dipole and quadrupole dynamic polarizabilities as functions of imaginary frequency were 

computed using the CCSD polarization propagator approach [72-76] implemented in the 

MOLPRO package within the CCSD equation-of-motion procedure [77]. In particular, the 

CCSD(3) model evaluating the expansion terms of the Møller-Plesset perturbation operator up 

to the third order (see Chapter 2, Section 2.6.2) was employed. The calculations were performed 

with the basis sets introduced in Table 3.1 and with the optimal core choices. The static 

polarizabilities achieved with each basis set were extrapolated to the CBS limit by means of eq. 
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(2.139) at each point of the large non-uniform imaginary frequency 𝑖𝜔 grid. The full tabulation 

of the dynamic polarizabilities computed for each imaginary frequency of the grid can be found 

as the supplementary material of our paper on this topic (Ref. [41]). It is worthy of mention that 

the X2C calculations for Yb were characterized by severe convergence problems upon solving 

the system of linear equations for the excitation operator. In order to solve this issue, different 

MOLPRO options were tried for all the imaginary frequencies of the grid, except zero. The 

zero-frequency dynamic polarizability was thus evaluated by cubic extrapolation of the 

polarizabilities at the two smallest frequencies. 

Figure 3.2 illustrates the percentage deviations of the CCSD-FF and CCSD(3) static dipole and 

quadrupole polarizabilities from the CCSD(T)-FF values. The contribution of the non-iterative 

triple excitations is always positive and increases with the atomic number Z. In contrast, 

CCSD(3) method always underestimates the corresponding CCSD-FF values.  

Figure 3.3 exemplifies the 𝛼1(𝑖𝜔) dependencies for Sr: extension of the basis towards the CBS 

limit decreases the dynamic polarizabilities at low imaginary frequency, but increases them at 

high frequencies. In both cases, present results are smaller compared to the recommended CI-

MBPT [48] and OS [27] data. However, in the interval between 0.05 and 1 a.u. this trend 

reverses. This behavior persists in the majority of the calculations on the other atoms. 
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Figure 3.2. Percentage deviations of the CCSD static dipole (bottom panel) and quadrupole (top 

panel) polarizabilities from their CCSD(T) finite field values. The CBS extrapolations are 

shown for the X2C-0 (Be, Mg, and Ca), X2C-10 (Sr), and X2C-28 (Ba, Yb) calculations 
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(reproduced from G. Visentin, and A.A. Buchachenko, J. Chem. Phys. 151, 214302 (2019), with 

the permission of AIP Publishing). 
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Figure 3.3. Double-logarithmic plot of the dynamic dipole polarizability α1 (iω) for Sr. Lines 

show the present X2C-10 calculations and symbols—recommended CI+MBPT [48] and OS 

[27] data. The inset gives an expanded view of the iω → 0 region (reproduced from G. Visentin, 

and A.A. Buchachenko, J. Chem. Phys. 151, 214302 (2019), with the permission of AIP 

Publishing). 

3.5. Dispersion coefficients 

3.5.1. Introduction 

For all atoms we calculated the atom-wall 𝐶3 and the dipole-dipole and dipole-quadrupole 

dispersion coefficients, 𝐶6 and 𝐶8, respectively, both for the homonuclear and the heteronuclear 

case, according to eqs. (2.53-55).  

For all imaginary frequency integrals we used cubic spline interpolation of the computed 

polarizabilities and the classical Simpson formula for a uniform mesh, allowing for a better 

convergence analysis. The results were checked against the Gauss-Legendre quadrature 

integration suggested by Amos et al. [78]: negligible difference in the dispersion coefficients 

were found, whereas the results for the atom-wall coefficient showed inconsistency up to a few 

percent. The integration made use of the dynamic polarizabilities extrapolated according to the 

CBS formula (2.139) and no extrapolation of the coefficients themselves was attempted. 
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3.5.2. Homonuclear case 

Table 3.4 shows the results for the homonuclear interactions. The coefficients obtained with the 

best basis set available and those at the CBS limit (2.139) are presented together, to illustrate 

the effect of the basis set saturation. As before, our main reference for alkaline-earth metal 

atoms are the CI-MBPT calculations by Porsev and Derevianko (PD) from Refs. [20,48] and 

the OS results [27]. In particular, the atom-wall coefficient 𝐶3 and the dipole-dipole dispersion 

coefficient 𝐶6 are compared to the recommended results, whereas the dipole-quadrupole one 𝐶8 

takes the corresponding “final” result as its reference term. Beside of these reference results, 

other recent theoretical data are provided [65,79,80]. Under the label “experimental” we refer 

to the available data coming from photoassociation spectroscopy probing the rovibrational 

states near the dissociation limit or from the scattering length determination in ultracold samples 

[11-14,16,17,19].  

Figure 3.4 illustrates the percentage deviations of the selected 𝐶6 coefficients from the 

recommended PD reference values [20]. Our CBS results fall within the error bars for lighter 

members of the series, but are out of 3% for Sr and Ba. demonstrating the level of accuracy 

similar to the oscillator strength summation [27]. 

In order to have a better comparison of the theoretical methods, we used dynamic 

polarizabilities tabulated in Ref. [48] and parameters of the lowest dipole-allowed s2 1S0 → sp 

1P1 transitions listed in Ref. [20], to recalculate back the analogs of the final PD data (also 

shown in Fig.3.4). Ba atom represents the only case where the current CBS approach deviates 

from the “final” CI-MBPT results by more than 1%. On the other hand, available results for Sr 

indicate that the error bars suggested by Porsev and Derevianko basing on experimental 

uncertainty in the transition dipole moment are likely too narrow. In addition, with the CCSD-

EOM approach [77] we computed the excitation energies and the transition dipole moments of 

the lowest allowed s2 1S0 → sp 1P1 transitions and their best values from Ref. [20]; then we 

applied this same correction to our dynamic polarizabilities: in contrast to the CI-MBPT case, 

our results for the 𝐶6 coefficients worsen when such a correction is applied. 
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Figure 3.4. Percentage deviations of the 𝐶6 coefficients for homonuclear dimers of the alkaline-

earth metal atoms represented by their respective static dipole polarizabilities (see Table 3.2) 

from the reference recommended results by Porsev and Derevianko [20]. Down triangles 

represent CBS results (X2C-0 for Be, Mg, and Ca, X2C-10 for Sr, and X2C-28 for Ba), up 

triangles—the results of Ref. [27]. Circles correspond to the analogs of the final PD results 

recalculated here. Gray bars show experimental data from Ref. [14] for Ca and Refs. [17] and 

[19] for Sr. The cross marks another experimental result for Ca [16]. Absolute 𝐶6 values are 

given in Table 3.4 (reproduced from G. Visentin, and A.A. Buchachenko, J. Chem. Phys. 151, 

214302 (2019), with the permission of AIP Publishing). 

Table 3.4 also assesses the performance of the ECP calculations for Ca, Sr and Ba as very 

reasonable: resulting 𝐶6 coefficients fortuitously turn out to be closer to the reference.  

It is noteworthy that in the majority of the previous dimer calculations the long-range behavior 

is not quantified. However, for light alkaline-metal atoms it was analyzed in the frame of 

symmetry-adapted perturbation theory (SAPT) [79,80]. Resulting 𝐶6 coefficients are 

systematically larger than both present and reference data. Better results were obtained by 

applying the coupled Kohn-Sham method for response properties [79]. 
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Table 3.4. Dispersion coefficients for the homonuclear dimers of the alkaline-earth atoms 

(a.u.). In addition to the CBS data, the results for the highest n available (5 for Be-Ca and Q for 

Sr, Ba) are given in italics. Values in round parentheses indicate the uncertainties of the last 

significant digit(s). 

 Method 𝐶3 𝐶6  𝐶8 (104) 

Be X2C-0 1.01 

1.01 

214.07 

214.02  

1.01  

1.01 

 CI-MBPT [20,48] 1.01 214(3)  1.023(6)  

 OS [27] 1.01 213.41 1.021 

 Other theoretical results  279 [79]  

 Experiment  214 [11] 1.023 [11] 

Mg X2C-0 1.68 

1.68 

632.65 

633.34  

4.12 4.13 

 CI-MBPT [20,48] 1.666 627(12)  4.15(5)  

 OS [27] 1.704 629.59 4.1514 

 Other theoretical results  721 [79]  

Ca ECP-10 2.75 

2.75 

2111.6 

2113.1 

21.33 

21.36 

 X2C-10 2.78 

2.78 

2144.1 

2144.2 

21.79 

21.83 

 X2C-2 2.82 

2.82 

2147.7 

2148.6  

21.79 

21.83 

 X2C-0 2.83 

2.82 

2146.3 

2149.6  

21.79 

21.83 

 CI-MBPT [20,48] 2.744 2121(35) 22.3(3) 

 OS [27] 2.881 2188.2 22.674 

 Other theoretical results  2237 [80]; 

2318 [79]; 

2151 [61]  

23.8433 [80] 
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Table 3.4 (continued) 

 Method 𝐶3 𝐶6  𝐶8 (104) 

 Experiment  2179 [12] 

2080(7) [13] 

2141(41) [14] 

2147 [16]  

28.5(5.0) [13]  

22.21 [16] 

Sr ECP-28 3.36 

3.36 

3174.3 

3175.0  

37.32 

37.32 

 X2C-28 3.36 

3.36 

3186.6 

3200.2  

37.75  

37.77 

 X2C-10  3.48 

3.45 

3190.8 

 3205.1  

37.63  

37.71 

 CI-MBPT [20,48] 3.382 3103(7) 37.92(8) 

 OS [27] 3.643 3149.3 38.352 

 Other theoretical results  3142 [81]  37(1) [65] 

 Experiment  3164(10) [19] 

3130(20) [17] 

38.23 [19]  

Ba ECP-46 4.21 

4.21 

5302.5  

5309.5 

75.71  

76.00 

 X2C-46 4.21 

4.22 

5393.4  

5421.6 

77.88  

78.30 

 X2C-28 4.47 

4.47 

5317.1  

5348.5 

75.71  

76.27 

 X2C-10 4.50 

4.49 

5319.6  

5350.4 

75.72  

76.27  

 CI-MBPT [20,48] 4.294 5160(74) 77.2(4.6) 

 OS [27] 4.554 5379.6 78.975 

 

Results for Yb are shown in Table 3.5. Two accurate experimental results [15,18] are in full 

agreement with the uncorrected CI-MBPT  𝐶6 coefficients [49,50]. Our best calculation 

deviates from these reference values by almost 7%. More favorable agreement with 

experimental derivations should be noted for the 𝐶8 coefficients. The results attained with the 

CCSD-based methods employing effective core potentials [69,82] logically indicate that the 
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energy-consistent pseudopotentials based on Dirac-Fock adjustment (ECPMDF) perform better 

than those based on Wood-Boring parametrization (ECPMWB). 

Table 3.5. Dispersion coefficients for the Yb dimer (a.u.). In addition to the present CBS data, 

the results for the augmented cc-pwCVQZ basis are given in italics. Values in round 

parentheses indicate the uncertainties of the last significant digit(s). 

 Method C3 C6  C8 (104) 

Yb X2C-36 3.41 3.41 2048.1 2056.0 19.75 19.79 

 X2C-28 3.60 3.60 2065.4 2069.4 19.82 19.85 

 X2C-18 3.52 3.52 2060.1 2065.1 19.78 19.81 

 CI+MBPT final [49,50]  1929(39) 18.8(6) 

 Other theoretical results 3.4 [69] 2085 [69]  

2568 [82] 

20.23 [69] 

 Experiment   1933.5(2.2) [15],  

1932(30) [18] 

21.72(65) [15], 

19(5) [18] 

 

3.5.3. Heteronuclear case 

Table 3.6 reports the results for the heteronuclear dispersion coefficients. Comparison with the 

CI-MBPT data for the heteronuclear dipole-dipole dispersion coefficients (recommended for 

alkaline-earth dimers [48], original for the dimers of Yb [49]) is in line with   the above analysis, 

with the increase of the dipole dispersion interaction as the atomic number Z increases. The 

heteronuclear dipole-quadrupole dispersion coefficients present an opposite trend (see Table 

3.6).  
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Table 3.6. Dispersion coefficients for the heteronuclear dimers of the Be-Ba and Yb atoms 

(a.u.). The present CBS data for 𝐶6 and 𝐶8 coefficients are given in the upper-right and lower-

left triangles, respectively. The recommended CI-MBPT results from Refs. [48] and [49] (final, 

for dimers involving Yb) are shown in italic with values in round parentheses indicating the 

uncertainties of the last significant digit(s).  

 C6 

C8 (104) 

Be X2C0 Mg X2C0 Ca X2C2 Sr X2C10 Ba X2C28 Yb X2C28 

Be X2C0 … 366 

364(4) 

654 

652(7) 

798 

782(6) 

1018 

992(9) 

656 

 

Mg X2C0 1.20 

 

… 1145 

1138(14) 

1395 

1369(13) 

1789 

1742(21) 

1138 

1092 

Ca X2C2 3.36 

 

5.91 

 

… 2600 

2564(21) 

3346 

3294(36) 

2077 

2024 

Sr X2C10 4.75 8.31 15.38 … 4114 

3994(29) 

2549 

2435 

Ba X2C28 7.21 12.71 23.93 29.36 … 3272 

Yb X2C28 1.52 3.67 10.68 15.07 23.24 … 

 

3.6. Retardation functions 

Retardation functions for the homonuclear dispersion interaction were calculated for the dipole-

dipole ((see eq. (2.57)) and the dipole-quadrupole interaction (see eq. (2.58)) [69]. The results, 

computed with the selected sets of dynamic polarizabilities are shown in Figure 3.5. The 

complete tabulations of these functions are available as a supplementary material of our paper 

(Ref. [41]). The larger is the static polarizability, the softer is the crossover to the retarded 

asymptotic behavior. The figure also compares the present results for the Yb dimer with the 

calculations by Zhang and Dalgarno [69]. Up to 104 a0 the deviations of the former from the 

latter is smaller than 1%. Conversely, at longer distances the divergence reaches 20%. The 

retardation effect on the dipole-dipole dispersion interaction in the Ca dimer was also 

considered in the frame of the Cowan-Griffin correction [61,80]. Our results perfectly agree 

with these calculations: the mismatch increases with the distance up to 0.5% at 1000 a0. 
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Figure 3.5. Retardation functions for dipole (top panel) and quadrupole (bottom panel) 

dispersion interactions. Lines correspond to the present calculations, circles and crosses – to the 

results of Moszynski et al. [61] for Ca2 and Zhang and Dalgarno [69] for Yb2, respectively 

(reproduced from G. Visentin, and A.A. Buchachenko, J. Chem. Phys. 151, 214302 (2019), with 

the permission of AIP Publishing). 

Given the non-retarded long-range interaction potential truncated to the dipole-quadrupole 

term, 

𝑈𝐿𝑅 ≈ −
𝐶6

𝑅6
−
𝐶8

𝑅8
 ,               (3.1) 

and its retarded analog from eq, (2.56), 

𝑈𝐿𝑅 ≈ −
𝐶6𝑓6(𝑅)

𝑅6
−
𝐶8𝑓8(𝑅)

𝑅8
,              (3.2) 

the ratios of the latter to the leading term of the former, −𝐶6/𝑅
6, are plotted as functions of the 

internuclear distance in Figure 3.6. Two approximations to the long-range interaction are close 

to each other in a relatively narrow range of distances, 80-140 a0. At shorter internuclear 

separations the effect of the dipole-quadrupole dispersion term may not be neglected; by 

contrast, at longer distances the retardation of the dipole-dipole interaction is preponderant. The 

inset in Figure 3.6 provides an enlarged view of the region of apparent validity of the pure 

dipole dispersion approximation. Evidently the characteristic dispersion interaction lengths 

(2𝑚𝐶6)
1/4 (the standard atomic weights were taken into account here to evaluate the reduced 

mass m) marked by the vertical lines quite accurately (better than 3%) define the separations 
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where the simple 𝐶6/𝑅
6 representation of the long-range potential (the “molecular approach” 

representation) works well. 
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Figure 3.6. The ratios of retarded long-range interaction to the leading nonretarded 𝐶6/𝑅
6 term 

as functions of the internuclear distance. The inset expands the region of close similarity 

between the two long-range expansions (reproduced from G. Visentin, and A.A. Buchachenko, 

J. Chem. Phys. 151, 214302 (2019), with the permission of AIP Publishing). 

3.7. Conclusions 

A systematic study of the electric properties controlling the long-range interactions within 

conventional restricted Coupled Cluster framework, namely, CCSD, CCSD(T) and related 

polarization propagator CCSD(3) methods, is performed for the first time at the limit of 

saturated basis set, converged core correlation and exact two-component approximation for 

relativistic effects. Comparison between different computational schemes, as well as with 

special methods for atomic calculations, provides useful conclusions and recommendations.  

Static polarizabilities computed by the finite-field method provide a rigorous test on the validity 

of the CCSD(T) method. Our best results for the dipole polarizability lie between the original 

and the empirically corrected CI-MBPT results and are in excellent agreement with the 

oscillator strength summations and critical evaluations of experimental data. A 1% deviation is 

likely due to higher-order cluster contributions, X2C approximation for the relativistic effects 

and uncertainty of the complete basis set extrapolation. Static polarizability calculations 

indicate that, at zero frequency, the CCSD(3) polarization propagator approach 
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overcompensates the correction to triple excitations, thus underestimating not only CCSD, but 

also CCSD(T)-FF results. Comparisons with the literature data demonstrates that this same 

relation does not hold uniformly for finite imaginary frequencies. As a consequence, the lowest-

order dimer dispersion coefficients 𝐶6 derived from the CCSD(3) dynamic polarizabilities turn 

out to be larger compared to the reference CI-MBPT values [20]. The deviation increases along 

the Be-Ba sequence up to 3%, although experimental estimations available for Ca [14,16] and 

Sr [17,19] are in better accord with our results. In particular, the lightest members of the series 

(Be-Ca) fall within the error bars of the recommended state-of-the-art atomic calculations; 

conversely, for Sr and Ba the percentage deviation is larger than 3% and approaches 7% for 

Yb. The trend reverses for the 𝐶8 coefficients, with the underestimation of the same reference 

by up to 2% (Ba). For Yb, the present C8 coefficient is in better agreement with respect to the 

experimental derivations.  

It is worthy of mention that the present results for the heaviest atoms, Sr, Ba and Yb, are 

subjected to an extra uncertainty in the CBS extrapolations, that cover the cardinal numbers 

from 2 to 4. In addition, the results for Yb may be affected by non-optimal diffuse augmentation. 

Usually, the basis set cardinal numbers n = 4 or 5 are enough to converge dipole and quadrupole 

polarizabilities within 2% and 1%, respectively, while the octupole polarizability is 

characterized by worse convergence. 

The comparison between extrapolations (2.139) and (2.140) for the static polarizabilities, shows 

that the two CBS formulae provides similar deviations from the “final” atomic results [20]. 

Usually, for the lighter elements of the series, eq. (2.140) provides a slightly smaller deviation 

compared to eq. (2.139). However, the trend is reversed when the comparison is carried out 

with respect to the recommended results. For the heaviest alkaline-earth atoms Sr and Ba, eq. 

(2.139) performs better both with respect to the “final” and the recommended atomic values, 

not only with regard to the percentage deviation, but even for the convergence pattern. 

Regarding the former, the case of Ba is particularly striking: there, for the X2C-28 dipole static 

polarizability (see Table 3.2), the result achieved with eq. (2.139) is affected by ca. 0.5% 

deviation with respect to the reference “final” results [20], while for the analog achieved with 

eq. (2.140) the percentage deviation amounts to ca. 4.3%. With respect to the “recommended” 

reference results [20], percentage deviation due to eq. (2.139) decreases to ca. 0.1%, whereas 

deviation due to eq. (2.140) grows to ca. 4.8%. 

Assessment of the inner-shell correlation of the (𝑚 − 1) and 𝑚 shells (where 𝑚 stands for the 

principal quantum number of the outer s2 shell) provides good accuracy, with the exception of 
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Ba, where also the (𝑚 − 2) should be correlated. The same level is recommended for atomic 

Yb, albeit keeping the 4s24p6 orbitals in the core space is tolerable. The small-core Dirac-Fock 

based ECPs (ECPMDF) perform accurately even in the case of Ba if all explicit electrons are 

correlated. These conclusions are generally confirmed by the calculations of other properties. 

Estimates of the percentage deviation on the 𝐶6 and 𝐶8 values for the finite basis set at n = 5 

show that, for the former, these are usually close to the CBS analogs up to the first significant 

digit, though larger. This proves the crucial role of basis set saturation in ensuring the accurate 

performance of the molecular approach on the long-range coefficients of these atomic systems.  

The level of accuracy for retardation functions computed with the CCSD(3) dynamic 

polarizabilities should be more or less the same as for dispersion coefficients. At least, 

comparison with the literature data available for Ca2 and Yb2 confirms such a supposition. Our 

analysis of the retarded dispersion interactions shows that the pure non-retarded dipole 

dispersion approximation, 𝐶6/𝑅
6, holds in a quite narrow range of internuclear distances, that 

becomes as narrower as the atomic number Z increases. Extraction of the 𝐶6 coefficient from 

the dimer calculations makes sense at the distances close to the characteristic length of 

(2𝑚𝐶6)
1/4.  

In summary, the overall accuracy of the ab initio approaches tested here for the long-range 

interactions of alkaline-earth metals can be estimated at most to 5%, from a very conservative 

viewpoint. At this level our results could be useful as an extra reference for the evaluation of 

experimental and theoretical data. From a theoretical point of view, they are also useful for 

selecting improved ab initio schemes for molecular calculations aiming to cover long-range 

regions of the global potential or potential energy surface.  
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4. Global interaction potential for dispersion-bound systems: Yb dimer 

The present exposition is based on the manuscript G. Visentin, A.A. Buchachenko and Paweł 

Tecmer, Ab intio Yb2 ground state potential revisited (submitted to J. Chem. Phys., 

arXiv:2107.10353 preprint available at https://arxiv.org/abs/2107.10353). 

The related project was funded by the Russian Science Foundation under prolonged Project No. 

17-13-01466. 

Summary 

The methods assessed in Chapter 3 for long-range atomic calculations are used for molecular 

calculations of Yb dimer. Extrapolation to the complete basis set limit and exploration of atom- 

and bond-centered diffuse function augmentations ensure basis set saturation, whereas core 

correlation is accounted up to convergence and X2C correction is used to correct for scalar-

relativistic effects. The results achieved represent the state-of-the-art of CCSD(T) calculations, 

stressing on the importance of the diffuse basis component and insufficient accuracy of the 

standard large-core effective core potential. In accordance with the conclusions from the previous 

Chapter, accuracy loss of molecular approaches beyond 25 Å makes direct matching of atomic and 

molecular approaches not feasible. Thus, reconciliation of two approaches is achieved by means 

of a semi-analytical potential function, scaling the global potential semiclassically to the known 

number of vibrational bound states. Scaling this global potential to the known number of bound 

vibrational levels with ab initio data from slightly different molecular calculations bounds the 

dimer binding energy within the narrow 758  4 cm-1 range. The difference between original and 

scaled binding energies exceeds 10%, showing that for a heavy dispersion-bound dimer the state-

of-the-art ab initio potentials are still far from accuracy required in ultracold atomic physics, and, 

therefore, the need in their further empirical adjustment.  

4.1. Introduction 

In the previous chapter, we showed that standard ab initio methods for molecular approaches are 

competitive with the state-of-the-art atomic approaches for the long-range dispersion interactions, 

providing that special care is taken on the basis set and correlation saturation and proper account 

of the scalar relativistic effects. This conclusion indicates the prospects of using the same methods 

to characterize global interaction potential at short and medium internuclear range and at long 

pcztgw
Highlight

pcztgw
Sticky Note
rephrase

pcztgw
Highlight

pcztgw
Highlight

pcztgw
Sticky Note
many words repeated

pcztgw
Sticky Note
true for all such types of dimers?

pcztgw
Highlight

pcztgw
Sticky Note
rephrase

pcztgw
Highlight

pcztgw
Sticky Note
suggests

pcztgw
Highlight



 
 
 

103 

 

range, through dispersion coefficients. The ground state Yb dimer, Yb2, provides an ideal system 

for such a benchmark: it consists of two closed-shell atoms, for which the performance of accurate 

ab initio scheme has already been assessed in Chapter 3, exhibits non-negligible relativistic effects 

and attracted significant research attention in the past.  

Indeed, our interest in the global potential of ground state Yb2 is not solely “technical”: recently, 

weakly bound ytterbium dimer has marked a new frontier for ultracold atomic physics. The energy 

level scheme of Yb atom convenient for laser confinement, cooling and narrow band excitation 

were explored in development of the ultraprecise Yb frequency standard [1] for applications to 

quantum metrology and relativistic geodesy [1]. However, the path is still long for the development 

of an Yb2-based atomic clock, which, theoretically, promises further significant improvements of 

the precision [2]. Related studies of ultracold Yb ensembles stipulated significant progresses in 

ultracold collision dynamics and photoassociation spectroscopy (PAS) [4-14], which, in turn, 

provided unique experimental data on atomic states and interatomic interactions (dispersion 

coefficients derived from these studies have already been quoted in the previous Chapter). Another 

feature making Yb dimer a perfect test case for ultracold physics is the natural abundance of a 

variety of Yb isotopes. This allows one to study mass-dependent non-Born-Oppenheimer effects 

[11,15]. In recent years, a 500 Hz accuracy of the PAS data on the near-threshold rovibrational 

levels of the Yb dimer was reported [16]. Such a level of precision, never achieved before, can be 

used to challenge the constraints on the non-Newtonian gravity forces. It has been shown [16] that 

the constraint could be improved by two order of magnitude with the refinement of the underlying 

theoretical spectroscopic model. The model suggested relies on the reference Born-Oppenheimer 

(BO) and correction terms featuring beyond-BO effects with a few adjustable parameters. One 

way to improve the model is to accurately assess the non-Born-Oppenheimer effects arising due 

to non-adiabatic interactions with excited states. Recently, Tecmer et al. [17] moved in this 

direction and improved the ab initio description of the lowest-lying excited states of Yb dimer. 

However, the better characterization of the reference ground-state 1Σ+
g BO potential is not less 

important. As follows from Chapter 3, its long-range part is well represented by accurate ab initio 

calculations [18-21] and can be further improved by fitting to PAS data and scattering length 

measurements [6,11,22]. In contrast, no experimental data exist for probing the repulsive wall or 

the well depth of Yb dimer directly. The model can only rely on the ab initio calculations and, 

therefore, inevitably inherits their inaccuracies. 
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Up to date, the BO interaction potentials calculated at the CCSD(T) level with small-core effective 

core potentials [23] have been considered as the best reference. Borkowski et al. [11] showed that 

the ab initio binding energy De should only be corrected by 3% to reach the best fit to PAS data. 

Yet, the sensitivity of the long-range data to the potential well parameters is quite weak. Indeed, 

other model potentials, completely different from the ab initio ones, were previously tried in the 

similar models [6,22]. Though the fits were made for less accurate data, they lead to binding 

energies almost twice as large as the ab initio value. By contrast, all-electron scalar relativistic 

CCSD(T) calculations [17] gave 20% smaller binding energy. All these results question the 

uniqueness of the models developed to fit PAS data and assessing non-Newtonian gravity forces 

in Refs. [11,16] and call for further refinement of the reference ground-state dimer potential. 

The lessons learnt from the dispersion coefficient calculations are used to arrange dimer 

calculations. In any case, one cannot expect the present level of ab initio theory to match sub-

kiloHertz accuracy for such a heavy system as Yb dimer. At best, it should provide the realistic 

shape of the global interaction potential, leaving only few parameters for refinement by fitting of 

experimental data. We therefore invoked in this study the semi-analytical potential model from 

Ref. [11] to combine the data of atomic and molecular calculations and then used the 

experimentally known number of bound vibrational levels of 174Yb2 [6,11] to scale the binding 

energy value. Trying different modifications of the computational scheme, we were able to 

constrain this parameter in a range of 0.3%.  

4.2. Computational details 

As introduced in the previous section, the ab initio approaches used correspond to those 

successfully assessed in Chapter 3 for Yb polarizabilities and dispersion coefficients. In particular, 

for the basis set, we implemented the sequence of the correlation-consistent polarized valence cc-

pVnZ basis set with n = D, T, Q (hereinafter for brevity VnZ) contracted for use with the X2C 

scalar-relativistic approximation [24]. The basis set chosen for the current dimer calculations 

differs from that used for the monomeric calculations of Yb in Chapter 3. This choice is motivated 

by the similar atomic results attained by extrapolating these two basis sets at the CBS limit and by 

the lower computational cost of VnZ compared to the weighted core-valence analog. As this basis 

set lacks the optimized diffuse augmentation, one or two primitives were added for each symmetry 

type with the exponents continuing the sequence of basis exponents in an even- tempered manner 
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with the default parameters of the MOLPRO program package [25]. Whenever specifying these 

options, we will call them e1 or e2 respectively. It should be noticed that the e1 option had already 

been used to supply for the lack of augmentation in the cc-pWCVnZ basis set for atomic Yb in 

Chapter 3.  Alternatively, the diffuse component of the basis set was saturated by placing the 

3s3p2d2f1g set of of bond-centered functions (bf) [26] midway the Yb-Yb distance. Two sets of 

CCSD(T) calculations were performed, hereinafter indicated in terms of the electrons included 

into the core, Nc = 46 and 28: for the former, the inner orbitals with principal quantum numbers 

from 1 to 4 were kept uncorrelated, except for 4f, whereas, for the latter, only the inner orbitals 

with principal quantum number from 1 to 3 were kept uncorrelated. From the previous chapter and 

Refs. [17,21] we know that the correlation of deeper shells does not affect the dimer potential well 

parameters and dispersion coefficients significantly. Energy convergence threshold was set to 10-

10 hartree in all calculations and counterpoise correction proposed by Boys and Bernardi [27] was 

used. The restricted HF reference functions were calculated in the D2h symmetry group for the 

dimer and in the C2v symmetry group for the Yb atom in the full dimer basis set with the X2C 

correction to molecular integrals.   

In continuity with the approach tested in the previous chapter, the CCSD(T) energies computed at 

the three n-levels of the basis set were extrapolated to the CBS limits by use of the two points 

formulae (2.139) and (2.140). Beside of being successfully assessed before, these formulae have 

also the advantage due to their compatibility with the CP correction [28], in turn, ensured by the 

linearity of the parameters used. 

4.3. Results 

The CCSD(T) energies were calculated on a non-uniform grid of 57 internuclear distances R, 

ranging from 2 to 50 Å. At distances larger than 25 Å (interaction energies below 0.05 cm-1), 

counterpoised potentials show erratic non-smooth variations. This illustrates the difficulties of a 

molecular approach at long range: even the dominant 𝐶6 dispersion coefficients cannot be 

determined by fitting. However, the variations are still small in comparison to dissociation energy 

and do not prevent to tie the potential to the proper dissociation limit. Table 4.1 lists the inflection 

points at zero kinetic energy, R0, Re, De, dissociation energy D0 and the vibrational constants ωe, 

ωexe achieved for the CBS potentials.  In particular, R0 refers to the internuclear distance where 

the potential is zero, Re to the equilibrium distance, De to the binding energy (i.e. the potential well 
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depth at Re) and D0 to the difference between the binding energy De and the energy of the first 

vibrational level. The vibrational constants were attained from the cubic fits of the ten lowest 

vibrational level energies computed numerically for the dimer of two 174Yb isotopes. The 

variations of all parameters agree with the trends found for equilibrium properties: diffuse 

augmentation is necessary to better retrieve attractive interactions, the effect of 4s4p4d shell 

correlation on interaction potential is negligible, and uncertainty in the CBS extrapolation falls 

within a 2% error bar. The table also reports the result for the VnZ+e2 Nc = 46 series: this 

demonstrates that addition of the single atom-centered diffuse function set is sufficient to reach 

the convergence. In addition to that, the same potential parameters achieved for both core and basis 

set augmentation choices at each VnZ basis set (n = D, T, Q) are reported in the Appendix to the 

present Chapter. 
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Table 4.1. Parameters of the CCSD(T) ab initio Yb2 interaction potentials from the present CBS 

calculations and literature. Inflection points at zero kinetic energy R0 and equilibrium distances Re 

are expressed in Å; binding energies De, dissociation energies D0 and vibrational constants ωe, 

ωexe are expressed in cm-1. First and second lines for the present results respectively refer to the 

extrapolations (2.139) and (2.140). 

Potential R0 Re De D0 ωe ωexe 𝜈 N 

VnZ c46 3.916 4.593 617.5 606.5 22.25 0.225 67.97 68 

3.911 4.583 621.2 610.1 22.48 0.230 68.18 68 

VnZ+e1 c46 3.907 4.596 646.1 635.0 22.27 0.210 69.15 69 

3.900 4.587 653.8 642.6 22.44 0.212 69.53 69 

VnZ+e2 c46 3.907 4.598 646.9 635.8 22.21 0.206 69.20 69 

3.901 4.590 654.1 643.0 22.35 0.207 69.56 69 

VnZ+bf c46 3.906 4.594 654.6 643.4 22.45 0.201 69.34 69 

3.905 4.592 655.0 643.9 22.45 0.199 69.45 69 

VnZ c28 3.915 4.590 615.0 604.0 22.21 0.226 67.88 67 

3.908 4.578 619.6 608.4 22.46 0.231 68.12 68 

VnZ+e1 c28  3.906 4.596 643.6 632.5 22.19 0.205 69.12 69 

3.898 4.587 652.0 641.0 22.29 0.206 69.54 69 

VnZ+bf c28 3.896 4.585 657.5 646.4 22.20 0.171 69.53 69 

3.893 4.580 659.5 648.4 22.19 0.167 69.71 69 

ECP28MWB Refs. 

[11,23] 

3.870 4.522 723.8 711.3 25.26 0.348 71.65 71 

ECP28MWB Ref. [29]   4.549 742  25    

28e GRECP+OC Ref. [30]  4.683 642 631 21.5 0.19   

28e GRECP +OC+iTQ 

Ref. [30] 

 4.615 767 756 23.5 0.19   

28e GRECP 

+OC+iTQ+SO Ref. [30] 

 4.582 787 774 24.1 0.21   

ANO c28 Ref. [17]  4.665 580  21    
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The model potential taken from Ref. [11] is a semi-analytical function of a short-range contribution 

𝑉𝑆𝑅(𝑅) and a long-range contribution 𝑉𝐿𝑅(𝑅): 

𝑉(𝑅) = [1 − 𝑓(𝑅)]𝑠𝑉𝑆𝑅(𝑅) + 𝑓(𝑅)𝑉𝐿𝑅(𝑅).           (4.1) 

The former denotes the ab initio points interpolated by cubic splines, whereas the latter accounts 

for the long-range part of the potential, in the standard dispersion series (1.1), suitably truncated 

to the dipole-quadrupole contribution.  

Beside of these two contributions, the switching function 𝑓(𝑅) appears, defined as follows: 

𝑓(𝑅) =  {

0,   𝑅 ≤ 𝑎
1

2
+
1

4
sin (

𝜋𝑥

2
) [3 − sin2(

𝜋𝑥

2
)], 𝑎 < 𝑅 < 𝑏

1,   𝑏 ≤ 𝑅

.         (4.2) 

In eq. 4.2 𝑥 =
[(𝑅−𝑎)+(𝑅−𝑏)]

𝑏−𝑎
, with a = 10 a0 (5.292 Å) and b = 19 a0 (10.054 Å) [11]. 

Finally, an empirical scaling factor s appears in eq. 4.1 and is responsible for the constraint on the 

number of bound vibrational levels: when s is set to one, the model potential describes the 

interpolation of original ab initio points. 

Figure 4.1 depicts the convergence of the equilibrium distance Re and well depth De to the CBS 

limit for the VnZ, VnZ+e1 and VnZ+bf series. For the two former approaches, dependence on the 

core choice is weak. The convergence of these is slow but monotonic, thence demonstrating the 

necessity of the diffuse function augmentation. In contrast, the addition of bond-centered functions 

for the basis set augmentation (VnZ+bf) ensures a faster, though not regular, convergence, which, 

in addition, is strongly dependent on the core choice. The inset in the figure indicates that the 

results of two extrapolations are slightly different and bound Re as 4.59  0.01 Å and De as 650  

10 cm-1. 
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Figure 4.1. Convergence of the equilibrium distance Re and binding energy De to the CBS limit by 

use of the extrapolation formula (2.139). Colors distinguish basis set augmentation, symbol shapes 

define basis cardinal numbers n. Solid symbols with solid lines denote Nc = 28 calculation with 

the small core, open symbols and dashed lines the Nc = 46 calculations with the large core. Inset 

enlarges the CBS limit region and shows the results of the CBS extrapolation (2.140) as well. 

Several other literature results are reported, achieved, as well as ours, within the frame of CCSD(T) 

method. The potential from Refs. [11,23] derives from the combination of the small-core effective 

core potential ECP28MWB [31] with atomic natural orbital (ANO) basis [32] augmented by the 

specially devised diffuse function set [33] and the bf set [26] simultaneously. Its results describe a 

more strongly bonded Yb dimer compared to our description: the binding energy is about 11% 

larger and the equilibrium distance is 1.5% shorter. This overestimated result is a consequence of 

the deficiency of the effective core potential and the results by Wang and Dolg, whose calculations 

used the same basis but different diffuse augmentation [29], support this explanation. 

Other reference results come from the work by Mosyagin and coworkers [30]: these derive from 

calculations with the 28-electron generalized relativistic ECP (GRECP) and a series of the 

supplementary basis sets. Their reference CCSD(T) calculations with the largest basis set 

correlated only four outer electrons, but, however, correction to outer core correlation (OC, 

equivalent to the present c46 option) was evaluated with a smaller basis. Contributions of the 
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iterative triple and quadruple cluster excitations (iTQ) and the spin-orbit (SO) coupling were 

estimated by means of full configuration interaction and relativistic density functional methods. 

The CCSD(T)+OC and CCSD(T)+OC+iTQ are reported in Table 4.1. The former reasonably 

approaches our VnZ+e1 c46 CBS results, signifying high accuracy of the GRECP and appreciable 

saturation of the basis set. The latter estimates the contribution of the higher-order cluster 

correction as 20%. SO correction applied to the latter approach gives a further contribution to the 

bonding enhancement in Yb dimer. 

Finally, the results from the all-electron calculations by Tecmer et al. [17] are reported among the 

reference data. In this case, the binding energy is 10% smaller, while Re is overestimated by 0.07 

Å. As the difference between scalar relativistic approximations (X2C vs. DKH2) should be very 

small (See Chapter 3, Section 3.3), This mismatch is due for most part to the deficiency of the 

relativistic correlation consistent ANO basis: in particular, the lack of diffuse functions in the ANO 

basis dominates the deviation from our results. The best results are included between the present 

VTZ+e1 and VQZ results, despite the ANO basis was fully uncontracted. 

The only experimental datum available, the estimation of the dissociation energy as 1400  1400 

cm-1 [34] by mass spectrometry, does not help to assess the ab initio results. As well, the 

estimations of harmonic frequency, empirical 21 cm-1 [35] and upper bound for excited state in 

inert matrices of 48 cm-1 [36], are not useful in this sense. Instead, the fact that ultracold PAS and 

scattering length data can be fitted reasonably well only with the potential supporting 72 bound 

vibrational levels for 174Yb2 at zero rotational momentum [6,11] is very helpful. Thus this 

constraint is explored to bound the true binding energy of Yb dimer with the help of the scaling 

parameter s from the model potential (4.1). 

For the newly computed CBS potentials, the long-range contribution to the potential 𝑉𝐿𝑅(𝑅) was 

taken with the compatible ab initio parameters 𝐶6 = 2065.4, 𝐶8 = 198200 a.u. from Ref. [21], while 

the potential from Ref. [23] was matched with the fitted dispersion coefficients coefficients 𝐶6 = 

1937.27, 𝐶8 = 226517 a.u. [11]. We then used the model potential (4.1) with s = 1 to evaluate the 

semiclassical phase at zero kinetic energy [37] 

Φ =
1

ℏ
∫ √2𝜇[−𝑉(𝑅)]𝑑𝑅 
∞

𝑅0
,             (4.3) 
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where  is the nuclear reduced mass of the 174Yb dimer. As the model potential depends on a short- 

and a long-range contribution, one can split eq. 4.3 into an integral of the short-range contribution 

(for 𝑅0 ≤ 𝑅 ≤ 𝑏) and an integral of the long-range contribution (for 𝑏 < 𝑅 < ∞). In particular, 

the long-range contribution to Φ, Φ>, 

Φ> = ∫ √2𝜇(
𝐶6

𝑅6
+
𝐶8

𝑅8
)

∞

𝑏
 𝑑𝑅,             (4.4) 

can be analytically integrated, yielding with 

Φ> = √2𝜇  [
(𝐶8+𝑏

2𝐶6)
3
2

3𝑏3𝐶8
−

𝐶6

3
2

3𝐶8
]            (4.5) 

This greatly facilitates accurate numerical evaluation of the semiclassical phase. The effective 

number of the bound vibrational levels is defined as INT (ν =
Φ

𝜋
+
3

8
) [37]. In Table 4.1 the values 

of 𝜈 thus defined are compared with the number of levels N obtained by numerically solving the 

vibrational Schrödinger equation. In all cases but one semiclassical values agree with the quantum 

ones. The most accurate present potentials support three states less than needed. 

Subsequently, we take the fitted dispersion coefficients 𝐶6 = 1937.27, 𝐶8 = 226517 a.u. for all 

potentials as the most accurate ones [11] and tune s until 𝜈 is constrained to be equal or greater 

than 72. The results for s and the binding energies of the scaled potentials are listed in Table 4.2. 

The table shows that the constraint on the bound levels restricts the error bar of the binding energies 

for each potential from 45 cm-1 to the much narrower 8 cm-1 interval, with a mean value of 758 

cm-1, approaching the best estimations obtained with the bond functions. On one hand, this reflects 

similar shapes of all potentials; on the other hand, it provides quite conservative estimation of the 

dissociation energy. Notice that this new result is only slightly larger compared to the value fitted 

to PAS data within BO approximation [11]. Moreover, it falls above the 28e GRECP+OC+iTQ 

result of 767 cm-1 and the same result corrected for SO coupling, 786 cm-1 (28e GRECP 

+OC+iTQ+SO from Ref. [30] in Table 4.1). However, it should also be mentioned that the 

corrections implemented by Mosyagin et al. [30] may be overestimated, as they are not consistent 

with each other. Moreover, another overestimation factor can derive from the higher-order cluster 

excitations and SO coupling: these also distort the shape of the CCSD(T) potential and shift its 
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scaling towards larger binding energies. Perhaps, it would be more prudent to consider the present 

estimate of 758  4 cm-1 as bounding the BO binding energy of 174Yb2 dimer from above. 

Table 4.2. Scaling factor s and scaled binding energies (cm-1) of the potentials obtained with 

extrapolation formula (2.139) for 174Yb2. Results for the potentials obtained with extrapolation 

formula (2.140) are written within parentheses.  

Potential s sDe 

VnZ c46 1.233 (1.226) 761.2 (761.8) 

VnZ+e1 c46 1.172 (1.157) 757.2 (756.7) 

VnZ+e2 c46 1.169 (1.156) 756.5 (755.8) 

VnZ+bf c46 1.162 (1.161) 760.7 (760.1) 

VnZ c28 1.237 (1.229) 761.0 (761.8) 

VnZ+e1 c28 1.173 (1.157) 755.2 (754.3) 

VnZ+bf c28 1.153 (1.148) 757.9 (757.0) 

Ref. [11] 1.027 743.02.4 

 

Unfortunately, the existing data cannot assess the uncertainty on the equilibrium distance. We thus 

should consider that the best ab initio data suggest 4.59  0.01 Å estimate. 

4.4. Conclusions 

With the present calculations we set the scalar relativistic CCSD(T) benchmark for interaction 

potential of the ground state Yb2 dimer. For the equilibrium distance Re and the unscaled binding 

energy De the molecular approach successfully assessed in Chapter 3, consisting of all-electron 

description with the X2C scalar relativistic correction, systematic correlation-consistent basis set 

of double-, triple- and quadrupole-zeta quality and the CBS extrapolations, two types of the diffuse 

function augmentation and extensive correlation treatments, respectively bounds them within 4.58-

4.60 Å and 640-660 cm-1. This uncertainty is due to the difference between the use of atom- and 

bond-centered diffuse functions and to the ambiguity of the CBS extrapolations. This result refines 

previous estimations achieved with the small-core effective core potential [23,29] and all-electron 

ANO basis set [17]. Corrected scalar- relativistic results by Mosyagin et al. [30] are in line with 

our results. 
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However, present calculations turned out to be quite demanding, due to the extended basis sets, 

correlation treatment and strong convergence thresholds. Still, they lack proper convergence at 

long distances, hindering the direct evaluation of the dispersion coefficients. In the present 

example, molecular calculations are unreliable beyond 25 Å, while the distance where the dipole-

dipole dispersion interaction, −𝐶6𝑅
−6, dominates was determined, in the previous chapter, as ca. 

75  Å. Thus, direct comparison of molecular and atomic approaches is hardly possible. 

The performance of atom-centered and bond-centered basis functions to improve our results was 

also assessed. From molecular calculations, bond functions turn out to ensure a faster convergence, 

compared to the case when only atom-centered diffuse functions are in use. However, for VnZ and 

VnZ+e1, convergence pattern is more regular, though slower, than for VnZ+bf. At CBS limit, 

within the uncertainty of extrapolation, these two approaches seem to be equivalent in the well 

region, where, for the equilibrium parameters, they return results with like accuracy. 

Unfortunately, present results cannot assess the performance at long-range.  

A further refinement of the results came from implementing the semi-analytical potential function 

first proposed by Borkowski et al. [11] to fit the data of ultracold photoassociation and scattering 

experiments and from constraining the number of bound vibrational levels supported by Yb2 

potential. These bound the binding energy within the narrow 758  4 cm-1 interval, slightly below 

the Born-Oppenheimer value of 743.0  2.4 cm-1 fitted using the previous potential [11].  

The difference between the CCSD(T) and the scaled binding energies is comparable to the 

estimated corrections to the iterative triple and quadrupole cluster excitations and spin-orbit 

interaction proposed by Mosyagin and coworkers [30]. The difference amounts to ca. 15%. This 

relatively large spread reflects, on one hand, the contribution of scalar relativistic corrections, 

while, on the other, the improvements due to the iterative triples and higher-order cluster 

corrections. These latter, in particular, are estimated to contribute up to 90% [30]. 

 Future perspectives for the refinement of our present approach and results may come from 

extending the new Yb2 potentials to non-Born-Oppenheimer models [11,16], with the aim of 

improving the description of the mass-dependent effects. 
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Appendix: summary of ab initio calculations 

Table A1. 174Yb2
 ab initio potential parameters for 46 cc-pVnZ-X2C (n = D, T, Q) potential. 

 R0 Re De 𝐶6 D0 ωe ωexe 

Nc = 46; cc-pVnZ-X2C no bf no augmentation 

VDZ 4.080 4.740 475.73 1857(65) 465.67 20.23 0.231 

0.199 

0.215 

0.224 

0.230 

VTZ 3.985 4.683 570.87 1946(28) 560.58 20.69 

VQZ 3.943 4.628 599.63 2088(141) 588.89 21.62 

CBS (2.139) 3.916 4.593 617.54 2201(253) 606.44 22.29 

CBS (2.140)  3.911 

 

 4.583 

 

621.24  610.10 22.48 

Nc = 46; cc-pVnZ-X2C + e1 no bf single augmentation 

VDZ 4.042 4.737 548.12 2056(14) 537.97 20.40 0.205 

0.201 

0.206 

0.211 

0.212 

VTZ 3.976 4.673 584.36 2056(181) 573.90 21.02 

VQZ 3.934 4.626 621.17 2003(45) 610.33 21.79 

CBS (2.139) 3.907 4.596 646.08 1966(148) 634.97 22.32 

CBS (2.140)  3.907 

 

 4.587 

 

653.77  642.6 22.44 

Nc = 46; cc-pVnZ-X2C + e2 no bf double augmentation 

VDZ 4.042 4.737 548.12 2056(14) 537.97 20.40 0.205 

0.202 

0.206 

0.207 

0.207 

VTZ 3.974 4.670 587.30 1958(38) 576.80 21.09 

VQZ 3.933 4.626 623.01 1952(37) 612.17 21.79 

CBS (2.139) 3.907 4.598 646.88 1950(50) 635.79 22.26 

CBS (2.140)  3.901 

 

 4.590 

 

654.09  643.0 22.35 

Nc = 46 cc-pVnZ-X2C + bf no augmentation 

VDZ 3.931 4.612 632.75  621.57 22.47 0.219 

0.213 

0.206 

0.202 

0.199 

VTZ 3.919 4.609 648.06  636.88 22.48 

VQZ 3.911 4.601 652.25  641.05 22.50 

CBS (2.139) 3.906 4.594 654.62  643.41 22.51 

CBS (2.140)  3.905 

 

 4.592 

 

655.03  643.9 22.45 
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Table A2. 174Yb2
 ab initio potential parameters for 28 cc-pVnZ-X2C (n = D, T, Q) potential. 

 R0 Re De 𝐶6 D0 ωe ωexe 

Nc = 28; cc-pVnZ-X2C no bf no augmentation 

VDZ  4.087 4.746 469.35 1859(35) 459.35 20.11 0.231 

VTZ 3.992 4.690 563.67 1729(243) 553.43 20.57 0.119 

VQZ 3.944 4.629 594.97  584.26 21.54 0.215 

CBS (2.139) 3.915 4.590 615.04  603.98 22.26 0.227 

CBS (2.140)  3.908 

 

 4.578 

 

619.59  608.4 22.46 0.231 

Nc = 28; cc-pVnZ-X2C + e1 no bf single augmentation 

VDZ 4.049 4.743 540.31  530.23 20.27 0.205 

VTZ 3.982 4.679 576.57  566.17 20.88 0.202 

VQZ 3.935 4.628 616.42  605.65 21.64 0.203 

CBS (2.139) 3.906 4.596 643.55  632.52 22.17 0.206 

CBS (2.140) 3.898  4.587 

 

 652.04           641.0 22.29    0.206 

Nc = 28; cc-pVnZ-X2C + e2 no bf double augmentation 

VDZ 4.030 4.723 551.75  541.54 20.51 0.205 

VTZ 3.981 4.677 578.54  568.13 20.93 0.202 

VQZ        

CBS (2.139)       

CBS (2.140)       

Nc = 28 cc-pVnZ-X2C + bf no augmentation 

VDZ 3.929 4.606 631.44  620.25 22.50 0.221 

VTZ 3.923 4.616 641.62  630.49 22.37 0.208 

VQZ 3.907 4.597 651.13  640.03 22.29 0.185 

CBS (2.139) 3.896 4.585 657.46  646.37 22.25 0.172 

CBS (2.140) 3.893  4.580 

 

659.46  648.4 22.19 0.167 
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5. Dispersion interaction in Open-Shell systems: extended combination rule for 

homonuclear dipole dispersion coefficients 

The present exposition is based on the paper G. Visentin, I.S. Kalinina and A.A. Buchachenko, 

Extended combination rule for like-atom dipole dispersion coefficients, J. Chem. Phys. 153, 064110 

(2020); doi: 10.1063/5.0019010, partially reproduced with the permission of AIP Publishing.  

The related project was funded by the Russian Science Foundation under Project No. 17-13-

01466. 

Summary 

Reconciliation of atomic and molecular approaches is assessed for dispersion interactions of open-

shell species, for which technical limitations hinder the ab initio calculation of dynamic properties. 

To explore the transferability of the monomer dynamic polarizabilities, a novel combination rule 

is devised. The rule defines the dispersion coefficients of the homonuclear dimer through the set 

of dispersion coefficients between the monomer and auxiliary species and across the same 

auxiliary species. Discretization of the Casimir-Polder integrals for dispersion coefficients reduces 

the rule to the straightforward solution of a system of linear equations. The test examples indicate 

reasonable accuracy of the proposed rule for dispersion coefficients of the target dimers. On the 

other hand, retrieval of the related dynamic polarizabilities should require larger and more accurate 

datasets and additional conditions to improve their transferability.  

5.1. Introduction 

Chapters 3 and 4 demonstrated that ab initio methods, approaches and dodges in use for achieving 

accurate description of a dimer can be applied to monomers as well. For the latter, compatible 

accuracy is attained even for dispersion coefficients, thus allowing one, in principle, to retrieve 

consistent global interaction potential upon combining molecular (dimeric) and atomic 

(monomeric) approaches. Both approaches have their own validity range in internuclear distance, 

determined by the number of the coefficients retained in the long-range expansion and by 

numerical limitations for very small energy differences, in the latter and former cases, respectively. 

In case of Yb dimer (see Chapter 4), these ranges do not overlap. Furthermore, Figure 3.6 in 

Chapter 3 hints that overlapping can likely be attained only for light atoms. Therefore, the use of 

synthetic potential functions that bridge the gap is still necessary. Still, even the fully converged 
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golden standard Coupled Cluster method has an error by about 12% for dissociation energy and 

7% for the leading dispersion coefficient of Yb atom, which, indeed, are neither small or balanced. 

Yet, this system is heavy, precision of the existing experimental data is unique and there is still 

room for (expensive) improvements accounting for higher cluster excitations (see Chapter 2, 

Section 2.5.4) [1-4]. 

More severe limitations arise when moving to more complex systems. In case of atomic 

monomers, these mostly concern open-shell systems. If interacting atoms are in states that are 

degenerate in projections of the orbital or spin electronic angular momenta, the degeneracy is lifted 

by interatomic interactions and the dimer can be formed in a number of molecular states. In the 

scalar relativistic frame, atoms in states with non-zero orbital momentum are said to interact 

anisotropically, as the coupling of molecular axis with non-spherical atomic distribution can be 

described not only in terms of projections, but also in terms of effective angles [5,6]. For atoms in 

the states with non-zero spin momentum, one refers to exchange interactions. In contrast to 

anisotropy, they exhibit exponential decay with the distance and, normally, do not contribute to 

long-range potential. However, if both momenta are non-zero, spin-orbit interaction engages the 

spin and creates the interaction anisotropy in the total angular momentum. 

Theoretical concepts can be straightforwardly extended to the open-shell interactions. 

Intermolecular perturbation theory presented in Chapter 2 can be reformulated for the tensor 

polarizabilities and electric moments [7,8], while the symmetry of the dimer states is dictated by 

the addition of angular momenta and Pauli principles for electron and nuclear permutations 

implemented in the concept of correlation diagram [9]. It is mostly the technical capability that 

matters. 

Generally, electronic wavefunctions of the dimer states have multi-reference structure. This 

completely or partially forbids the use of the single-reference Coupled Cluster framework. The 

same problem, further complicated by the difficulties in realization of the propagator methods, 

affect the atomic approaches. Of course, alternative ab initio methods can be used to deal with 

these situations, usually not without losses in generality, consistency and accuracy. 

On the other hand, the power of the atomic approach for long-range interaction roots in the 

transferability of atomic parameters. In Chapter 2 it was shown that knowledge of the moments 
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and polarizabilities of a given atom allows one to evaluate the long-range coefficients for its 

interaction with any other atom for which the same parameters are available. Thus, conceptually, 

knowledge of the long-range coefficients for the atom interacting with a series of other atomic 

partners implies the possibility to retrieve atomic moments and polarizabilities. This statement 

(somehow oversimplified, due to the presence of resonant long-range terms for excited states of a 

homonuclear dimer [7,10,11]) is obvious for electrostatic and induction contributions when the 

long-range coefficients are the products of the properties. It is less trivial for dispersion coefficients 

that convolute dynamic polarizabilities, see, e.g., eqs. (2.53-54), and was essentially overlooked 

before. 

If the atom of interest has an open-shell structure, one can try to solve a series of simplified 

problems deducing long-range coefficients for its interactions with the closed-shell partners and 

restore the same parameters for the open-shell dimer. 

In fact, this reasoning is very similar to the concept of combination rules, whose empirical 

implementations are deeply rooted in the history of intermolecular interaction theory [12] and are 

currently in use in some modern molecular modeling techniques. It is, therefore, more logical and 

convenient to present the above reasoning as a foundation of a new generalized combination rule. 

5.2. Meaning of “Combination Rule” 

In the field of intermolecular interactions, the term Combination Rule (CR) defines a relation 

connecting some potential parameter a for a pair of unlike interacting species i,j with the same 

parameter for the interaction of two like species [7,13]: 

𝑎𝑖𝑗 = 𝑓(𝑎𝑖𝑖, 𝑎𝑗𝑗)              (5.1) 

Originally devised for the Lennard-Jones potential model [7,14-16], the most famous CRs establish 

the geometric relation 

𝑎𝑖𝑗 = (𝑎𝑖𝑖𝑎𝑗𝑗)
1/2

,              (5.2) 

for the interaction energy and the arithmetic mean relation 

𝑎𝑖𝑗 =
1

2
(𝑎𝑖𝑖 + 𝑎𝑗𝑗),              (5.3) 
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for the equilibrium distance. 

Generally, CRs depend on the specific potential parametrization [17-19]. An exception is provided 

by the long-range interaction, universally represented by the inverse power series (eq. (1.1)). This 

power series consists of dispersion coefficients, in turn depending on the related dynamic electric 

properties.  

Eq. (2.53) provides a definition for the dispersion coefficient 𝐶6 for two interacting species A and 

B. Here, we rather express the 𝐶6coefficient for the interaction of two partners i and j. The reason 

for this change will become evident a little later.   

𝐶6
𝑖𝑗
=
3

𝜋
∫ 𝑑𝜔𝛼𝑖(𝑖𝜔)𝛼𝑗(𝑖𝜔)
∞

0
,            (5.4) 

where 𝛼𝑘(𝑖𝜔) is the dynamic dipole polarizability of the k-th species. Since the dipole 

polarizability will be the only polarizability treated in this chapter, we set, for short, 𝛼𝑘(𝑖𝜔) ≡

 𝛼1
𝑘(𝑖𝜔). 

We may think of eq. (5.4) as the “fundamental combination rule” [20]. However, simpler 

approaches are needed when the dynamic polarizability of the dispersion coefficients cannot be 

evaluated theoretically or empirically. For instance, Hirschfelder [14] describes a geometric mean 

CR analogous to eq. (5.2), 

𝐶6
𝑖𝑗
= (𝐶6

𝑖𝑖𝐶6
𝑗𝑗
)
1/2

              (5.5) 

Eq. (5.5) provides the rigorous upper bound to the true dispersion coefficient for unlike species 

[21,22] and can be regarded as the “pure” combination rule, as it connects dispersion coefficients 

only without a need of any other information on interacting species. This is the only pure CR 

previously known for dispersion coefficients. 

Another popular CR appears in the classical textbook by Moelwin-Hughes [12]: 

𝐶6
𝑖𝑗
= 2

𝐶6
𝑖𝑖𝐶6

𝑗𝑗

[(𝛼𝑗/𝛼𝑖)𝐶6
𝑖𝑖+(𝛼𝑖/𝛼𝑗)𝐶6

𝑗𝑗
] 
             (5.6) 

Here and hereinafter 𝛼𝑘 ≔ 𝛼𝑘 (0) stands for the static dipole polarizability.  

This CR was then mentioned by Wilson [23] in relation to the Slater-Kirkwood formula and should 

hold for any kind of London-like approximation (see Chapter 2, Section 2.1.7 and Ref. [24]). The 
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most popular derivation and first rigorous analysis of eq. (5.6) were exposed by Kramer and 

Herschbach [25]. Some years later, a family of related combination rules were devised by means 

of the effective transition frequency expressed in terms of the momenta of the dipole oscillator 

strength density [26]. Zeiss and Meath [27], and later Thakkar [20], reported that for representative 

datasets the root-mean-square accuracy of eq. (5.6) falls below 1%. Many authors considered its 

extensions to higher-order and three-body dispersion coefficients (see e.g. Refs. [18,26,28-31]). 

Albeit eq. (5.6) is not a pure CR, it consists of additional parameters, such as the static 

polarizabilities, which are easily available. 

Nowadays, many ambits of Computational Chemistry do exist where CRs for dispersion terms 

play an important role: first of all, general molecular force fields and dispersion-corrected density 

functionals. Regarding the former, for instance, the early versions of the CHARMM and 

GROMOS force fields employ the Slater-Kirkwood formula for dispersion coefficients [32]; 

conversely, the Merck Molecular Force Field (MMFF) [33] implements the CR (5.6) in order to 

determine the dipole-dipole dispersion coefficient and even to estimate the strength of unlike 

species interactions. Regarding the latter, corrections based on the dumped inverse power series 

are derived in order to account for the dispersion interactions in the exchange-correlation density 

functionals [34-37]: they can be either empirical or computed from scratch and often employ 

combination rules analogous to (5.6) to determine dispersion coefficients [34,35,37]. 

Obtaining interaction parameters for unlike species from two like-species ones is a common 

practice in empirical contexts, as the interaction parameters are easier to deduce experimentally, 

and, as mentioned above, suit the purpose of molecular mechanics. Yet, in the realm of ab initio 

calculations, the opposite combination is important as well, in all those cases when the direct 

calculation of the homonuclear interaction parameter is difficult due to the complex structure of 

the species of interest (e.g. open-shell systems). However, the prediction of such inverse CRs 

depends on the choice of the partner and, thence, may be ambiguous. 

To solve this ambiguity and thus provide the estimation of the interactions for like species with a 

solid rule, an extended combination rule for the homonuclear dispersion coefficient 𝐶6 was devised 

in the form,    

𝐶6 = Σ𝑖=1
n 𝜆𝑖𝐶6

𝑖 ,             (5.7) 
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where the summation runs over the partner species i and the coefficient 𝐶6
𝑖  for the interaction of 

the target and partner species is supposed to be known, while the linear coefficients 𝜆𝑖 are 

unknowns. 

Eq. (5.7) to some extent is inspired by the work by Weinhold [22], who introduced the matrix of  

𝐶6 coefficients for a set of species. Proving this matrix to be positive (semi-) definite, Weinhold 

demonstrated that the geometric mean CR (5.5) is an upper bound to the true 𝐶6
𝑖𝑗

 coefficient and 

that its inverse formulation represents the lower bound to the true 𝐶6
𝑖𝑖 or 𝐶6

𝑗𝑗
 coefficient. This 

concept suggests that considering many partner species, it is possible to make more accurate 

predictions of the dispersion coefficients.  

5.3. Extended combination rule 

The combination rule (5.7) can be derived algebraically upon approximating and discretizing the 

Casimir-Polder integrals (5.4). In devising our CR, we follow Weinhold [22] and thus introduce 

matrix C of the  𝐶6 coefficients describing the interactions between partner species i,j = 1, 2,…,n. 

We also define the “species vector” |𝑥 > of the length n, so that for 𝑥 = 𝑘, 𝑥𝑖 = 𝛿𝑖𝑘. In summary, 

𝐶6
𝑖𝑗
= < 𝑖|𝑪|𝑗 >             (5.8) 

Let us suppose that the matrix elements can be uniformly represented as the factorized sum 

𝐶6
𝑖𝑗
= Σ𝑙=1

𝑛 𝜉𝑙𝐴𝑖𝑙𝐴𝑙𝑗 ,              (5.9) 

where the two factors A refer to the first and second species and the number of terms is equal to 

the number of partner species. Eq. (5.9) can be considered the discrete representation of Casimir-

Polder integral (5.4): in fact, upon a proper choice of 𝜉 coefficients, 𝐴𝑖𝑙 and 𝐴𝑙𝑗 become equal to 

the dynamic polarizabilities of the species i and j respectively, defined on a grid of imaginary 

frequencies. Eq. (5.9) can be rewritten in the matrix form  

𝐶6
𝑖𝑗
= 𝐶6

𝑗𝑖
= Σ𝑙=1

𝑛 < 𝑗|𝐴𝑙|𝑗 > 𝜉𝑙 < 𝑖|𝐴𝑙|𝑖 > = 𝒂𝒋Ξ𝒂𝒊       (5.10) 

Here, Ξ is the diagonal matrix of the 𝜉 coefficients, while 𝒂𝒌 is the discretized dynamic 

polarizability of the species k represented in the vector form. The interaction between the target 

and the i-th partner species, 𝐶6
𝑖  follows a similar expression: 
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𝐶6
𝑖 = 𝒂0Ξ𝒂𝑖,             (5.11) 

where the vector 𝒂0 refers to the dynamic polarizability of the target species. Upon combining 

(5.10) and (5.11), one gets 

𝐶6
𝑖 = 𝒂0𝒂𝑗𝐶6

𝑖𝑗
 ≡  𝜆𝑗𝐶6

𝑖𝑗
           (5.12) 

Eq. (5.12) is a linear system of equation, that should be solved for 𝜆𝑗 provided all dispersion 

coefficients are known. Applying the same procedure to exclude 𝒂0, one arrives to the equation 

𝐶6 = Σ𝑖=1
𝑛 Σ𝑗=1

𝑛 𝜆𝑖𝜆𝑗𝐶6
𝑖𝑗

,           (5.13) 

analogous to eq. (5.7).  

Looking at eq. (5.13), one can easily understand that the dispersion coefficient matrix is the only 

information required in order to implement our extended CR. 

To approach the solution of eq. (5.13), one can think of it as the quadrature representation of the 

integral. Gauss-Legendre (GL) quadrature has found wide applications in the field (see for instance 

Refs. [38-40]): 

𝐶6
𝑖𝑗
=
3

𝜋
∫ 𝛼𝑖(𝑖𝜔)𝛼𝑗(𝑖𝜔)𝑑𝜔 =

3

𝜋
∫ 𝛼𝑖[𝑖𝜔(𝑡)]𝛼𝑗[𝑖𝜔(𝑡)] (

𝑑𝜔

𝑑𝑡
)𝑑𝑡 ≈

1

−1

∞

0

3

𝜋
Σ𝑙=1
𝑛 𝑤𝑙

𝑑𝜔

𝑑𝑡
(𝑡𝑙)𝛼

𝑖[𝑖𝜔(𝑡𝑙)]𝛼
𝑗[𝑖𝜔(𝑡𝑙)]          (5.14) 

The proper transformation 𝑖𝜔(𝑡) reduces the integration to a finite interval, while 𝑤𝑙 indicates the 

quadrature weight. It is worthy of mention that the accuracy of the CR (5.13) constructed in this 

way is only limited by the accuracy of GL integration. For a given quadrature type, the latter is 

limited by the order n or by the number of partner species considered. 

To evaluate eq. (5.14), three specific types of the GL quadrature were tested: 

1) GL1, available from the paper by Amos et al. [38] and defined as 

𝑖𝜔 = 0.3 (1 − 𝑡)/(1 + 𝑡);        

2) GL2, available from the paper by Jiang et al. [39] and defined as 

𝑖𝜔 = 𝑡/(1 − 𝑡);     

3) GL3, available from the paper by Derevianko et al. [40] and defined as 
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𝑖𝜔 = 2tan (
𝜋𝑡

2
)       

While GL1 is defined within the −1 ≤ 𝑡 ≤ 1 integration range, GL2 and GL3 are defined for the 

0 ≤ 𝑡 ≤ 1 integration range. 

Beside of the GL quadrature approach, we tested another way to derive eq. (5.13), based on 

assuming that the dynamic polarizability of the target species can be expanded over the dynamic 

polarizabilities of the partner species: 

𝛼(𝑖𝜔) =  Σ𝑗=1
𝑛 𝜆𝑗𝛼𝑗(𝑖𝜔)           (5.15) 

Substitution of eq. (5.15) into the 𝐶6
𝑖  Casimir-Polder integral immediately leads to the    linear 

system for 𝜆𝑗 (5.12), while the second substitution for 𝐶6 yields eq. (5.13). Hereinafter we refer to 

this method simply as Expansion, EXP. 

5.4. Test cases 

5.4.1. First impression: dispersion coefficients of the alkaline ions and the alkaline-earth metals 

A preliminary test on the performance of the GL1-3 and EXP implementations was carried out. 

We took the data for the dynamic polarizabilities from the paper by Jiang et al. [39], that tabulates 

the dynamic polarizabilities of the rare gases, singly charged alkaline cations and alkaline-earth 

metals, evaluated by the oscillator strength summation, and their dispersion coefficients for the 

like and unlike interaction, calculated with the 40-point GL2 quadrature. We then considered the 

rare gases from He to Xe as the partner species and the alkaline ions and the alkaline-earth metals 

as the target species. The related 𝐶6
𝑖𝑗
, 𝐶6
𝑖  coefficients were computed by Casimir-Polder integration, 

using either the same quadrature or by classical Simpson rule for the large uniform mesh. The 

difference between two methods emerges at worst in the third significant digit and is therefore 

negligible for the present comparison. The coefficients thus achieved were used to evaluate the 

solution of eq. (5.13) within the GL1-3 and EXP implementations of the rule. The resulting 

dispersion coefficients for the like interaction of the target species are reported in Tables 5.1-3, 

together with the percentage deviation S from the like-species dispersion coefficients tabulated by 

Ref. [39]. For GL-based methods we also provide the percentage deviation 𝑆𝐺𝐿 from the Casimir-

Polder integral of the reference target species dynamic polarizabilities evaluated with a specific 
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quadrature and five points. In addition, a comparison is also made with the inverse CR (5.6), in 

our notation, 

𝐶6 = 
(𝛼/𝛼𝑖)𝐶6

𝑖𝑖𝐶6
𝑖  

[2𝐶6
𝑖𝑖−(𝛼𝑖/𝛼)𝐶6

𝑖]
           (5.16)  

The tables include the arithmetic means of eq. (5.16) over the rare gas partners and the deviations 

from the reference coefficient for the like interaction of the targets. 

Table 5.1.  Dispersion coefficients for the like interaction of the alkaline atom target species (from 

Li to Rb), obtained with the combination rules (a.u.). S (%) are the deviations from the reference 

value, 𝑆𝐺𝐿 (% relevant to the GL methods) are the deviations from Casimir-Polder integration with 

5-point quadratures.  

 𝐶6  𝑆𝐺𝐿 S 

Li, 𝐶6 = 1395.80, 𝛼 (0)= 164.30 

EXP 1065.86  23.6 

GL1 1165.33 15.2 16.5 

GL2 1323.78 11.4 5.2 

GL3 321.90 0.1 76.9 

Eq. (5.16) 1421.61  1.8 

Na, 𝐶6 = 1561.61, 𝛼 (0)= 162.80 

EXP 1258.30  19.4 

GL1 1365.18 11.1 12.6 

GL2 1555.41 10.5 0.4 

GL3 473.68 0.2 69.7 

Eq. (5.16) 1619.39  3.7 

K, 𝐶6 = 3906.28, 𝛼 (0)= 290.00 

EXP 2850.41  27.0 

GL1 3118.19 19.7 20.2 

GL2 3467.87 11.2 11.2 

GL3 766.02 0.1 80.4 
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Table 5.1 (continued) 

 𝐶6  𝑆𝐺𝐿 S 

Eq. (5.16) 4329.14  10.8 

Rb, 𝐶6 = 4666.91, 𝛼 (0)= 317.00 

EXP 3420.00  26.7 

GL1 3735.75 19.7 20.0 

GL2 4113.24 10.9 11.9 

GL3 968.72 0.1 79.2 

Eq. (5.16) 5357.36  14.8 

 

Table 5.2. Dispersion coefficients for the like interaction of the alkaline-earth ion target species 

(from Be+ to Ba+), obtained with the combination rules (a.u.). S (%) are the deviations from the 

reference value, 𝑆𝐺𝐿 (% relevant to the GL methods) are the deviations from Casimir-Polder 

integration with 5-point quadratures. 

 𝐶6  𝑆𝐺𝐿 S 

Be+, C6 = 68.79, 𝛼 (0)= 24.50 

EXP 65.96  7.7 

GL1 68.13 1.3 2.9 

GL2 68.52 4.8 2.0 

GL3 57.04 0.1 17.1 

Eq. (5.16) 70.62  2.7 

Mg+, 𝐶6 = 154.59, 𝛼 (0)= 34.99 

EXP 150.04  2.9 

GL1 153.34 1.1 0.8 

GL2 152.32 3.8 1.5 

GL3 139.60 0.1 9.7 

Eq. (5.16) 159.50  3.2 
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Table 5.2 (continued) 

 𝐶6  𝑆𝐺𝐿 S 

Ca+, 𝐶6 = 541.03,  𝛼 (0)= 75.46 

EXP 501.12  7.4 

GL1 524.63 3.1 3.0 

GL2 550.10 6.9 1.7 

GL3 355.77 0.1 34.2 

Eq. (5.16) 597.62  10.5 

Sr+, 𝐶6 = 775.72, 𝛼 (0)= 90.19 

EXP 716.11  7.7 

GL1 753.37 2.8 2.9 

GL2 791.11 6.6 2.0 

GL3 505.35 0.1 34.9 

Eq. (5.16) 883.27  13.9 

Ba+, 𝐶6 = 1293.19, 𝛼 (0)= 121.25 

EXP 1174.69  9.2 

GL1 1239.30 3.7 4.2 

GL2 1327.54 6.6 2.7 

GL3 764.02 0.1 40.9 

Eq. (5.16) 1518.60  17.43 
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Table 5.3.  Dispersion coefficients for the like interaction of the alkaline-earth atom target species 

(from Be to Ba), obtained with the combination rules (a.u.). S (%) are the deviations from the 

reference value, 𝑆𝐺𝐿 (% relevant to the GL methods) are the deviations from Casimir-Polder 

integration with 5-point quadratures. 

 𝐶6  𝑆𝐺𝐿     S 

Be, 𝐶6 = 213.40, 𝛼 (0)= 37.73 

EXP 210.62  1.3 

GL1 206.03 4.8 3.5 

GL2 207.88 2.2 2.6 

GL3 216.06 0.0 1.2 

Eq. (5.16) 214.35  0.4 

Mg, 𝐶6 = 629.58, 𝛼 (0)= 71.37 

EXP 610.11  3.1 

GL1 626.86 0.7 0.4 

GL2 620.04 4.1 1.5 

GL3 566.81 0.2 10.0 

Eq. (5.16) 638.50  1.4 

Ca, 𝐶6 = 2188.19, 𝛼 (0)= 159.40 

EXP 1989.40  9.1 

GL1 2109.59 3.4 3.6 

GL2 2236.57 7.7 2.2 

GL3 1333.96 2.8 39.0 

Eq. (5.16) 2324.65  6.2 

Sr, 𝐶6 = 3149.29, 𝛼 (0)= 197.90 

EXP 2809.06  10.8 

GL1 2979.58 4.9 5.4 

GL2 3508.50 0.1 11.4 

GL3 1691.28 0.1 46.3 

Eq. (5.16) 3427.45  8.8 
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Table 5.3 (continued) 

 𝐶6  𝑆𝐺𝐿     S 

Ba, 𝐶6 = 5379.59, 𝛼 (0)= 278.10 

EXP 4621.82  14.1 

GL1 5338.81 0.4 0.8 

GL2 5486.66 8.1 2.0 

GL3 2347.54 0.1 56.3 

Eq. (5.16) 6027.06  12.0 

 

With the five-fold set of the rare gas partners, all the methods tend to perform better for those 

target atoms having smaller polarizabilities, as demonstrated by the increasing deviation from the 

alkaline cations and the alkaline-earth metal to the alkaline metal atoms. The small polarizabilities 

of the rare gases (static values range from 1.4 a.u. to 27 a.u.) fit the alkaline ions and the alkaline-

earth metals better than the alkaline metals. Eq. (5.16) also performs better on less polarizable 

targets and, for the alkaline-earth atoms, retrieves dispersion coefficients more accurately 

compared to our method. In contrast, generally the expansion and GL1 and GL2 methods exceed 

eq. (5.16) in accuracy for the alkaline ions and the alkaline-earth atoms.  

GL3 method always returns strongly underestimated dispersion coefficients and shows the largest 

deviation among all the different implementations of eq. (5.13). In agreement with the deviation 

from the reference data, the deviation of the CR with respect to the results of the five-point 

integration 𝑆𝐺𝐿 decreases as target polarizability decreases. As before, this trend is due to the better 

fitting of the less polarizable atoms by the rare gas small polarizabilities. Only GL3 always shows 

the same deviation from its crude integration counterpart. 

Overall, this preliminary test using a minimal set of partners reveals promising results: the 

dispersion coefficients of those target having small polarizabilities are quite competitive at this 

level with respect to both the reference values and the results of eq. (5.13). We can thus suppose 

that the use of partner species with larger polarizabilities or the extension of the partner set to a 

larger number of species may further refine the results for the least polarizable targets and make 

the results for the most polarizable targets competitive. 
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5.4.2. Interaction of the ground-state Yb atoms 

More pristine test was thus considered, with accurately known atomic dynamic polarizabilities. 

The dynamic polarizabilities of the Yb atom were taken from Ref. [41] (complete basis set limit 

of the X2C-28 CCSD(3) polarization propagator calculations [42], as it is implemented in the 

MOLPRO package, see Chapter 2). As in the previous test, the polarizabilities of the partner 

species were taken from Ref. [39], while the 𝐶6
𝑖  and 𝐶6

𝑖𝑗
 coefficients were computed by integrating 

the Yb polarizabilities from Ref. [41] and the partner polarizabilities from Ref. [39] by the usual 

classical Simpson rule for the large uniform mesh, with the natural cubic spline interpolation of 

the polarizabilities. 

The EXP and GL1-GL3 methods were checked with the already used set of partner rare gas atoms 

from He to Xe (Set I), in addition to which Set II, consisting of five alkaline-earth metal atoms 

from Be to Ba, and Set III, matching the previous two sets, were also employed. The 𝐶6  

coefficients for the Yb dimer thus obtained are reported in Table 5.4, together with their percentage 

deviations S from 2065.40 a.u., the exact value for the given dynamic polarizability [41]. As 

before, for the GL-based methods the percentage deviation 𝑆𝐺𝐿 from the Casimir-Polder integral 

of the reference Yb dynamic polarizability evaluated with a particular quadrature and number of 

points (5 for sets I and II, 10 for set III) is also given, together with a comparison with the CR 

(5.16).  

Table 5.4. Dispersion coefficients for the Yb dimer obtained using the combination rules (a.u.). S 

(%) are the deviations from reference value, SGL (%, relevant to GL methods) are the deviations 

from Casimir-Polder integration with 5- or 10-point quadratures. 

CR Set I Set II Set III 

𝐶6 SGL S 𝐶6 SGL S 𝐶6 SGL S 

EXP 1919.1  7.1 2026.2  1.9 2030.8  1.7 

GL1 2064.1 1.1 0.1 2086.2 0.0 1.0 2067.8 0.0 0.1 

GL2 2063.9 6.5 0.1 2207.3 0.0 6.9 2055.7 0.5 0.5 

GL3 1536.0 0.0 25.6 1533.8 0.2 25.7 2134.0 0.0 3.3 

Eq.(5.16) 2227.1  7.8 1928.3  6.6 2077.7  0.6 
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The expansion method works much better for sets II and III, compared to set I. The higher 

polarizabilities of the alkaline-earth metal atoms fit Yb polarizability better than the polarizabilities 

of the rare gases. Also Eq. (5.16) improves from set I to set III. In contrast, S decreases from set I 

to set II for all quadrature methods. In fact, for few points Eq. (5.14) better approximates compact 

integrals for less polarizable partners. Together with S, also SGL degrades from set I to set II.  

It is noteworthy that, for a given set, different quadrature types perform with different accuracies, 

due to their distinct convergence with increasing number of points. 

In Figure 5.1 the convergence of the 𝐶6  coefficient for three GL quadratures is illustrated; GL1 

[38] has the fastest convergence: the related deviation from the reference falls within 1% already 

at n = 5 points. GL2 and GL3 attain the same accuracy only when n exceeds 7 and 12 respectively. 

The slower convergence of GL2 and GL3 explains the larger deviations shown by these methods 

for the targets treated in the previous section. Albeit the convergence patterns are also partner-

dependent, the case of Yb 𝐶6  is quite representative and explains the results of Table 5.4. 

 

Figure 5.1.  Convergence of the Casimir-Polder integration for Yb 𝐶6 coefficient with the number 

of quadrature points n (reproduced from G. Visentin, I.S. Kalinina, and A.A. Buchachenko, J. 

Chem. Phys. 153, 064110 (2020), with the permission of AIP Publishing). 
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According to the derivation of CR (5.13), knowledge of the λ𝑖 coefficients should allow one to 

retrieve the dynamic polarizability of the target species, beside of the related dispersion 

coefficients. The extracted Yb dynamic polarizabilities are depicted in Figure 5.2 and compared 

with the reference ones [41]: the agreement is quite reasonable at imaginary frequencies below 3 

a.u. for all methods, except GL3. The limiting zero-frequency values returned by EXP, GL1 and 

GL2 methods, amounting to 138.2 a.u., 140.4 a.u. and 139.1 a.u. respectively, fall within a 2% 

deviation from the reference static polarizability (140.6 a.u.). On the other hand, tendencies to 

break the monotonic behavior together with increasing deviations arise at higher frequencies. From 

Figure 5.2 the performance of each quadrature formula is also evident:  the GL1 transformation 

provides the widest frequency coverage and the closest approach to zero; GL2 tends to 

overestimate the dynamic polarizabilities; in contrast, the GL3 points spread within the narrow-

medium frequency range. If few points are available, one can take this ranking as an empirical 

rule. In fact, when a larger number of nodes is taken (from 15-20 nodes) all three quadratures 

converge more or less to identical accuracies. 

In summary, the Yb case assesses that the extended combination rule (5.13) extracts accurate 

dispersion coefficients and overall reasonable approximations to dynamic polarizability. In 

particular, for the former a proper choice of the partners, based, for instance, on their static 

polarizabilities, ensures a 1-2% accuracy with a set of 5-10 partner species. 
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Figure 5.2. Double-logarithmic plot of the Yb dynamic polarizabilities extracted by the 

combination rule for set III in comparison with the reference. Inset emphasizes the low-frequency 

region (reproduced from G. Visentin, I.S. Kalinina, and A.A. Buchachenko, J. Chem. Phys. 153, 

064110 (2020), with the permission of AIP Publishing). 

5.4.3. Interaction of the ground-state pnictogen atoms 

For the third test case, we chose the dispersion coefficients of the atoms belonging to group 15 of 

the periodic table, the so called pnictogens, from N to Bi, at the electronic ground 4So state. In 

contrast to the previous test, these atoms have non-zero spin. However, the total orbital momentum 

is zero and, therefore, interaction anisotropy and spin-orbit coupling do not affect these systems. 

Furthermore, here the dynamic polarizabilities are not known. This situation  simulates a practical 

implementation of the rule (5.13) for extracting the dispersion coefficients 𝐶6 for like interactions 

from the unlike-partner 𝐶6
𝑖  dispersion coefficients computed ab initio.  

For the N and P atoms all electrons were explicitly treated; for As, Sb and Bi, instead, small-core 

relativistic effective core potentials ECP10MDF [43], ECP28MDF and ECP60MDF [44], 

respectively, were used. For the basis set, the augmented correlation-consistent polarized weighted 

core valence quintuple-zeta basis set (aug-cc-pwCV5Z) [45,46] was used. For the partner species, 

we considered set III from the previous test, consisting of the rare gas atoms from He to Xe and of 

the alkaline-earth metal atoms from Be to Ba. For those atoms we chose a description consistent 

with that of the target atoms N-Bi: the all-electron augmented correlation-consistent polarized 

valence quintuple-zeta sets aug-cc-pV5Z was used to describe He [47], the all-electron aug-cc-
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pwCV5Z basis set for Ne, Ar [45], Be and Mg [48] and the aug-cc-pwCV5Z basis sets [49] 

supplementing the ECPs (ECP10MDF for Kr and Ca, ECP28MDF for Xe and Sr, and ECP46MDF 

Ba [50,51]). The interaction energies were computed by means of the restricted Coupled Cluster 

method with singles, doubles and non-iterative triples [52] based on the restricted Hartree-Fock 

reference. The interaction energies for atom-partner atom pairs were corrected with the 

counterpoise method by Boys and Bernardi [53] and calculated on the irregular grids of 15-25 

points ranging the internuclear distances R from 20 to 65 a0. All explicit electrons were correlated. 

The electronic energies were converged up to 10-12 Hartree.  

We first tested the validity of this scheme by calculating the static polarizabilities at the CCSD(T)-

FF level. The results reported in Table 5.5 exhibit a reasonable agreement with the time-dependent 

density functional (TD-DFT) calculations by Chu and Dalgarno [54] and by Gould and Bučko 

[55], almost coincide with the similar CCSD(T) calculations from Refs. [56-58] and fit the error 

bars recommended by Schwerdtfeger and Nagle [59].  

Table 5.5. Static dipole polarizabilities of the Group 15 atoms (a.u.). Uncertainties to the last 

significant digit are given in parentheses. 

Source N P As Sb Bi 

This work 7.2 25.0 29.6 42.8 48.8 

TD-DFT [54]  7.4 25 29 44  

TD-DFT [55] 7.25 24.8 29.6 44.0 43.2 

CCSD(T) [56] 7.26 25.1 29.8 42.8 48.8 

CCSD(T) [57] 7.26     

CCSD(T) [58]  24.93    

Recommended [59] 7.4(2) 25(1) 30(1) 43(2) 48(4) 

 

For the computed interaction energies, the 𝐶6
𝑖  coefficients were determined by the linear least-

square fits to the R-6 energy dependence after removing the outlier points at largest distances and 

those at shorter distances. Table 5.6 presents the results thus obtained, which, in turn, provided the 

input to our combination rule together with the 𝐶6
𝑖𝑗

 coefficients for partner-partner interactions, 

calculated, as before, by integrating the dynamic polarizabilities tabulated by Jiang et al.[39]. 
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Table 5.6. Dispersion coefficients for interactions of the Group 15 atoms (N-Bi) with the rare 

gases (He-Xe) and the alkaline-earth metal atoms (Be-Ba) (a.u.). Uncertainties to the last 

significant digit are given in parentheses. 

Partners N P As Sb Bi 

He 5.7(2) 15.2(2) 17.26(4) 24.2(1) 26.7(1) 

Ne 11.82(1) 30.3(1) 35.0(1) 47(2) 53.8(1) 

Ar 40.0(3) 105.5(2) 122.8(3) 169(1) 190.2(1) 

Kr 55.91(5) 154.2(2) 176.5(1) 246.04(4) 278.0(3) 

Xe 83.4(1) 233.9(3) 267.2(1) 377(7) 417.6(3) 

Be 49.1(2) 185.6(6) 212(1) 303(4) 342.9(4) 

Mg 100.4(2) 311.4(6) 361.6(8) 520(2) 569.4(6) 

Ca 172.3(3) 542(1) 611.3(7) 904(2) 998(1) 

Sr 211.3(5) 663(2) 749.5(7) 1106(2) 1209(1) 

Ba 259(1) 844(3) 944.5(8) 1334(6) 1530(9) 

 

The 𝐶6 coefficients for the like interaction of the group 15 atoms obtained from the CRs (5.13) 

and (5.16) are reported in Table 5.7. All the implementations of eq. (5.13) show a similar trend to 

the one noticed in the Yb test case. The most accurate quadrature-based method, GL1, aligns in 

accuracy with the EXP method, whereas GL2 and GL3 returns increasing deviations. The 

conservative estimates of the CR accuracy do not exceed 15% (excluding the Bi case, where the 

dispersion coefficient can be underestimated as the static polarizability [55], see Table 5.5). 
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Table 5.7. Dispersion coefficients for like interactions of Group 15 atoms obtained by combination 

rules and from literature (a.u.).  

Atom EXP GL1 GL2 GL3 Eq.(5.16) Literature 

N 26.4 26.4 26.4 20.7 30.1  22.0
a
; 25.7

b
; 24.0

c
  

P 186.6 186.6 182.7 195.4 198.9 193
a
; 187

b
 

As 252.6 252.6 237.9 215.4 253.8 268
a
; 260

b
 

Sb 460.9 460.9 484.6 355.1 514.7 526
a
; 504

b
 

Bi 638.0 638.0 633.2 562.4 638.8 513
b
 

               a,b TD-DFT, Refs. [54]  and [55], respectively. 

              c CCSDT, Ref. [60].   

Figure 5.3 depicts the dynamic polarizabilities of the N and Bi atoms extracted with CR (5.13). 

From this figure the contrast between the accuracy of the dispersion coefficients and that of the 

related polarizabilities emerges: in facts, while our CR was able to restore the former reasonably 

well, it fails in restoring the latter ones as accurately as in the Yb case. The resulting functions of 

the dynamic polarizabilities can be non-monotonic and not necessarily converge to the static 

polarizability at the zero-frequency limit. In addition, we noticed that the extracted dynamic 

polarizabilities are sensitive to the uncertainties of input dispersion coefficients, even when they 

are as small as those given in Table 5.6.  
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Figure 5.3. Double-logarithmic plot of the N and Bi dynamic polarizabilities extracted by the 

combination rule (5.13). Horizontal lines mark the respective static polarizabilities (reproduced 

from G. Visentin, I.S. Kalinina, and A.A. Buchachenko, J. Chem. Phys. 153, 064110 (2020), with 

the permission of AIP Publishing). 

5.5. Conclusions 

An extended pure combination rule (5.13) was proposed. The rule relates the dispersion coefficient 

for the interaction of the like target species to the same coefficients for interactions between the 

target and a set of partner species, as well as the interactions of the partners, following the bounding 

approach described by Weinhold [22]. Our rule can be derived either by expanding the dynamic 

polarizability of the target species over that of the partners or by uniform discretization of the 

Casimir-Polder integral over a quadrature, e.g. with the Gauss-Legendre quadrature, and implies 

the solution of a linear system of equations. Its prediction should be as accurate as the number of 

partners is increased.  

The test cases show that implementations based on the dynamic polarizability expansion (5.15) 

and the Gauss-Legendre quadrature by Amos et al. [38] give very reasonable results for dispersion 

coefficients when a set of 10 partners is chosen (here, the rare gases from He to Xe and the alkaline-

earth metal atoms from Be to Ba). In this way, the rule can be used to retrieve the dispersion 
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coefficients of complex species dimers, such as open-shell systems and large molecules, when the 

interactions with closed-shell partners are much easier to attain than the self-interaction or the 

dynamic polarizabilities. In contrast, CR (5.13) does not ensure the monotonic behavior of the 

approximated dynamic polarizabilities of the target species. Of course, this does not exclude the 

possibility to improve the rule: enforcing the correct behavior of the dynamic polarizability [61] 

may help to achieve more prominent results. Generalization to higher-order long-range 

coefficients is straightforward. However, a severe limit to our CR is represented by the strong 

sensitivity of the retrieved dynamic polarizabilities to the accuracy (and transferability) of the 

atom-partner dispersion coefficients. This limit turned out to be well evident when fitted atom-

partner coefficients from dimer calculations were used to determine the polarizabilities and 

demonstrate that the sole knowledge of the formers may not be sufficient to retrieve the latter. 
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6. Modeling induction interaction in heavy cations: mobility of the singly-

charged Lanthanide and Actinide cations 

The present exposition is based on the paper G. Visentin, M. Laatiaoui, L.A. Viehland, and A.A. 

Buchachenko, Mobility of the Singly-Charged Lanthanide and Actinide Cations: Trends and 

Perspectives, Front. Chem. 8, 438 (2020); doi: 10.3389/fchem.2020.00438; under the CC-BY 

Creative Commons attribution license (CC-BY, version 4.0). 

The related project was funded by the Russian Foundation for Basic Research under the project 

No. 19-03-00144.  

Summary 

Using the lessons learned in the previous Chapters on accurate customization of ab initio 

approaches to long-range properties, exploratory scalar-relativistic small-core effective-core 

potential CCSD(T) calculations are performed on the ground-state interaction potentials of 

selected singly-charged actinide cations with He and Ar. Special attention is paid to saturation of 

the atom-centered diffuse basis set component. The calculated interaction potentials are then used 

to compute the related gas-phase ion mobilities. The results show that the obtained trends for 

mobility of actinide ions are similar to those found for lanthanides and reveal test cases for 

exploration of novel experimental techniques, such as Laser Resonance Chromatography. Further 

improvements of the results would require more sophisticated account for relativistic effects, as it 

was concluded for ytterbium dimer. 

6.1. Introduction 

The past century may be considered the era of heavy and superheavy elements: most of them were 

discovered in that period, with an upsurge between the period immediately preceding the Second 

World War and the dawn of atomic era (e.g. Fr, Z = 87, discovered in 1939 [1]). Since that time, 

the physics and chemistry of heavy and superheavy elements have received a growing interest 

from the scientific community. As a peculiar feature of such elements, many of them are synthetic, 

such as those heavier than Z = 99. The way to isolate and characterize the physical and chemical 

properties of superheavy elements consists of sophisticate techniques of production, isolation and 

characterization of simple chemical compounds either in gas or in liquid phases [2-7]. However, 

information on the electronic structure and properties of heavy atoms and ions is also of great 
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momentum. Spectroscopic data, in particular, allow for accurate characterization of ground state 

configuration, regardless of the chemical behavior. Moreover, they provide spectral lines that, in 

turn, can be essential in the search for heavy and superheavy elements in the universe, in particular, 

in stars [8] and benchmark data for ab initio methods of atomic and nuclear structure theory [9-

14]. 

Devising a technique for detecting and characterizing heavy elements is indeed challenging, 

mostly because of the decreasing production yield with increasing atomic number. Standard 

methods based on fluorescence detection are affected by low sensitivity, making them 

incompatible with one-atom-at-a-time experiments [15]. For this reason, studies of the gaseous 

transport properties are currently considered as prospective means for characterizing superheavy 

ions [16]: in fact, these studies are compatible with in-flight separators that provide recoil ions 

[17].  

First mobility measurements showing that gas-phase ion mobility is sensitive to the electronic 

configurations of atomic ions date back to the early 1990s [18-24]. In particular, this sensitivity 

was confirmed for almost all transition metal ions as well as for some main-group ions [25,26]. 

Gas-phase ion mobility is a fundamental transport property, that defines, macroscopically, steady-

state drift velocity of an ion in a neutral buffer gas under the action of a permanent electric field. 

Steady state, in turn, is defined by the equality of the field-induced dragging force and friction 

force of the media. The friction reflects interaction. Thus, in some sense, we may consider 

characterization of an ion by means of its gas-phase interactions with other gaseous species as a 

kind of chromatographic chemical characterization. The most obvious option relies on choosing 

monoatomic inert gases, to avoid chemical reactions, suppress energy pooling to internal degrees 

of freedom of the buffer species and reduce the whole range of interatomic forces to the relatively 

simple ion-atom interactions. 

Theory of Intermolecular forces (see Chapter 2) states that intermolecular interaction potential 

consists of short- and long-range contributions. In particular, among the latter ones, when one of 

the interacting partners is an ion, induction contribution arises, scaling with the inverse fourth 

power of the distance [27-29] and assumes the role of the leading term in the long-range interaction 

series, followed by the dispersion terms [27,28]. At the lowest order, induction interaction is 
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sensitive only to the charge of the ion and does not depend on its chemical nature or state (see 

Chapter 2). Such a dependence emerges only in dispersion forces.  

At the macroscopic scale, ion mobility measurements were able to discriminate the ions in the 

ground state and in a metastable state originating from different electronic configurations [18-24]: 

the so called electronic state chromatographic effect, is a direct consequence of the mobility 

variation with electronic configuration. A recent study [30] has proposed to exploit this effect for 

spectroscopic characterization of heavy and superheavy ions. According to the proposed method, 

ions should be collected and pumped from the ground state to the bright state, which, in turn, 

rapidly relaxes to metastable. So, prepared ions are released to the drift tube. In other words, ions 

are first bunched, then drift measurements take place. Detection gives the signal that contains 

ground-state ions (not pumped or relaxed from the metastable state by collisions) and, eventually, 

metastable ions. If metastable ions are detected, then the resonance of the pumping is achieved. 

This novel technique, called Laser Resonance Chromatography (LRC) [30], was initially 

conceived for the investigation of Lr, the last heavy element not characterized spectroscopically. 

Indeed, measurements of ion mobility are compatible with the separation and buffer gas trapping 

techniques, that, in turn, can be well controlled by setting external physical conditions, such as 

operating temperature, pressure and external field strength. These techniques have thus the 

potentialities to successfully investigate the electronic structure of ions produced in one-atom-at-

a-time-mode. 

While ion mobility in rare gases has been studied using accurate ab initio potentials for selected 

lanthanide ions in the ground state [31,32] and for Lu+ in excited metastable states [30], very little 

is known on the transport properties of actinide ions, except a few absolute and relative 

measurements for U+, Fm+, Cf+ and Am+-Pu+ ions [33-35] and qualitative calculations for U+ [36]. 

In view of the interest in heavy and superheavy ion transport, it is straightforward to explore it 

using the scalar-relativistic ab initio frame used before for the lanthanide family. Such an 

exploratory study was performed for the S-state actinide ions Ac+, Am+, Cm+, No+ and Lr+ ions, 

which permit the use of the accurate CCSD(T) method. As almost no experimental data are 

available to make the quantitative assessment of the new theoretical results, the major emphasis is 

given to the qualitative trends and their comparison with those observed for lanthanide ions. It 

should be noted that theoretical results for lanthanides are borrowed from previous works [30-32] 
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and, thus, do not contribute to the Thesis research. However, their analysis and comparison with 

the new actinide data do. Also, all the transport calculations presented here were performed by 

Prof. Larry A. Viehland (Chatham University, Pittsburgh, USA). 

Accurate calculations of the ion transport properties imply the knowledge of the global ion-atom 

interaction potential, thus making the molecular approach the only option to choose. However, 

designing it, we followed the lessons learned in the previous Chapters. In particular, a common 

strategy is imparted from the previous cases, relying on three key-points: 1) the choice of saturated 

atom-centered diffuse basis sets calibrated through the atomic calculations, 2) the accurate 

description of the electron core and 3) the effectiveness of CCSD(T) method corrected for scalar-

relativistic effects. Here, the efficacy of this strategy is checked in the investigation of the 

relationship of intermolecular interaction and ion-mobility. In fact, due to the interrelationship of 

these two properties, reliable results for the former necessarily imply reliable results for the latter.  

In the next section, ion-mobility theory is briefly outlined. Then, the ab initio approaches used for 

ion-atom potentials involving lanthanide ions and their accuracy in mobility calculations are 

presented. The ab initio approaches used for actinide calculations are presented together with the 

resulting interaction potential and mobility calculations, followed by the comparison with 

lanthanide results and assessment of the relationship between mobility and effective ionic radii. 

Concluding remarks follow. 

6.2. Ion mobility and interaction potential  

The macroscopic definition of the mobility K for trace amounts of drifting ions is provided by the 

equation 

𝒗𝑑 = 𝐾𝑬,               (6.1) 

where the vector quantities 𝒗𝑑 and E represent the ion drift velocity and the electric field vector, 

respectively.  

The ion mobility can be deduced in a reasonably accurate way from the measurable arrival time 

distribution of the ions drifting through the tube of length l. The mean drift time 𝑡𝑑 is defined as  

𝑡𝑑 = 𝑙/𝐾𝐸               (6.2) 
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The standard mobility, 𝐾0, is in turn defined as  

𝐾0 = 𝑛0𝐾/𝑁0                (6.3) 

Here, 𝑛0 and 𝑁0 =  2.6867805 ∙ 10
25 m-3 represent the buffer gas number density and the 

Loschmidts number, respectively. 𝐾0 depends on the reduced electric field strength, 𝐹/𝑛0 and the 

temperature of the gas 𝑇0. 

From the macroscopic viewpoint, the ion mobility is a transport coefficient determined by the 

solution of the Boltzmann equation. This fundamental equation accounts for anisotropic diffusion 

and equilibration of the dragging electrostatic force by the forces emerging from the collisions 

with buffer gas atoms. If equilibrium is achieved, then the velocity of an ion through the buffer 

gas is constant. Boltzmann equation is parametrized by collision integrals, in turn expressed 

through the binary collision cross sections [37,38]. In case of single-atom potential, the cross 

sections are fully determined by the ion-atom interaction potential. Vice versa, from the knowledge 

of the zero-field mobility over a reasonably wide range of reduced electric field strengths or gas 

temperature, one can achieve the interaction potential [37,39,40]. 

The most sophisticated approach to solve the Boltzmann equation for atomic ions drifting in 

atomic gases is provided by the Gram-Charlier expansion of the ion distribution function [38,41], 

whose accuracy is limited only by the accuracy of the underlying ion-atom potential [42,43]. This 

method was used to obtain all mobility results quoted in this Chapter. 

The physical situation considered here corresponds to so called low-field limit: in this frame 𝐾0 

depends on the gas temperature very weakly. Nonetheless, this dependence is highlighted by 

writing the standard mobility as 𝐾0(𝑇0). When this condition holds, the Gram-Charlier theory 

reduces to the one temperature theory [37,38] and 𝐾0(𝑇0) obeys the fundamental low-field ion 

mobility equation [38]. This equation is expressed as [37,38] 

𝐾0(𝑇0) = (
2𝜋

𝜇0𝑘𝐵𝑇0
)

1

2 3𝑞

16𝑁0

1+𝛼𝑐(𝑇0)

Ω̅1,1(𝑇0)
             (6.4) 

Here, 𝜇0 is the reduced mass of the ion-atom system, 𝑘𝐵 is the Boltzmann constant, q is the ion 

charge (here always +1 in electron charge units) and 𝛼𝑐(𝑇0) is the temperature-dependent 

correction term, small enough to be neglected for heavy ions [38]. Ω̅1,1(𝑇0) is referred as the 
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momentum transfer collision integral and is defined as the temperature average of the energy-

dependent momentum transfer cross section [44]. This term is straightforwardly related to the 

interaction potential. It should be noted that eq. (6.4) permits one to evaluate mobility analytically 

for simple specific potential models and, therefore, here was used for this sole purpose. 

Accurate mobility measurements provide a stringent test on the quality of interaction potentials. 

Viehland et al. [43] made extensive comparisons for ions lighter than Caesium Z = 55, showing 

that the potentials calculated with an accurate single-reference method, such as CCSD(T), 

normally provides zero-field mobilities accurate within 0.05%. Previous results achieved for 

lanthanide ions [30-32] confirmed these conclusions. For actinides, one should recall that this 

family is characterized by strong relativistic effects, which may limit the accuracy of the proposed 

scalar-relativistic approach. However, ion-atom interactions are mostly governed by the density of 

the outermost electrons, thus, relativity may play here a less crucial role than it plays in the 

energetics of the electronic levels or in chemical bonding. 

6.3. Overview of lanthanide results 

In previous studies [31,32] lanthanide ions were described with the small-core (28 electrons) 

effective core potentials adjusted at the quasi-relativistic Wood-Boring Hartree-Fock level of 

theory, ECP28MWB [45]. For the basis set, the supplementary atomic natural orbital basis set with 

segmented basis contraction [46] was used, with addition of the optimized s2pdfg diffuse functions 

[47] to supply for the augmentation. Partner He and Ar atoms, on the other hand, were described 

using the augmented correlation-consistent polarized basis sets aug-cc-pV5Z [48]. The 

3s3p2d2f1g bond function set [49] was placed midway the ion-atom distance. The CCSD(T) 

calculations with the restricted Hartree-Fock references were carried out, including the 4s24p64d10 

shells of the ion and the 1s22s22p6 shells of the Ar atom into the core. The CCSD(T) potentials 

were calculated on fine grids of internuclear distances ranging the 25-40 Å interval and corrected 

for the basis set superposition error with the counterpoise procedure proposed by Boys and 

Bernardi [50]. 

Results for the potential parameters of the lanthanide ions, i.e. potential minima, equilibrium 

distances Re and dissociation energies De, revealed an overall attractive depiction, with the 

equilibrium distance generally decreasing with the atomic number Z for ions with the same 
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electronic configuration. In particular, it was found that the occupancy of the 5d shell plays a 

significant role in strengthening the interaction energy and shrinking the equilibrium distance.  

Calculated zero-field mobilities in a wide temperature range turned out to follow well defined lines 

and to be sensitive to the outer electronic configuration of the ion. In particular, electronic state 

chromatographic effect [18-24] was well evident for Lu+, whose mobilities at the ground (1S) and 

metastable excited states (3D) showed significant differences. On the other hand, the trends with 

atomic number were found to differ for the two distinct cases of the ion mobilities in He and Ar: 

in the former case, the mobility of the 4fm6s ions generally increases with Z, whereas in the latter 

case it remains overall constant. The two cases also show opposite mobility variations as the 

electronic configuration changes. 

6.4. Interaction potentials of actinide ions 

The approach described in Section 6.3 for the lanthanide ions was adapted to the actinide ions. 

Thus, in this case, the scalar relativistic small core 60-electron ECP60MWB effective core 

potential [51] replaced the ECP28MWB one, whereas analogous segmented atomic natural basis 

sets are used [52]. Lack of diffuse augmentation was, here, supplied by adding a spdfg set of the 

diffuse primitives, whose exponents (0.01, 0.008, 0.03, 0.07 and 0.05 respectively) were optimized 

for the polarizabilities of neutral Am, No and Lr atoms. The interested reader may find a more 

detailed description of the procedure used to attain the optimized exponents in the Appendix to the 

present chapter. Analogously to the lanthanide case, He and Ar were described by means of the 

same CCSD(T) all-electron approach correlating all the electrons for the former, while, for the 

latter, leaving the 1s22s22p6 shells uncorrelated. As the basis set, the augmented core-correlated 

polarized-valence basis set aug-cc-pV5Z [48] was used. The 3s3p2d2f1g bond function set [49] 

was placed midway the ion-atom distance. All the calculations were performed with the MOLPRO 

quantum chemistry package (see Chapter 2). Due to the single-reference restriction imposed by 

CCSD(T), the application of this approach is limited to the ground states of the Ac+ (7s2, 1S), Am+ 

(5f77s, 9So), Cm+  (5f77s2, 8So), No+  (5f147s, 2S) and Lr+ (5f147s2, 1S) ions.  

 An alternative single-reference approach for the calculation of those heavy ions was proposed by 

Lee et al. [53] and relies on the use of large-core ECPs [36] to include the 5f shell and the innermost 

orbitals into the electron core. This approach, called the 5f-in-core approach, conceals the related 

momenta and static correlation effects in the ECPs and the ground state of all the ions thence 

pcztgw
Sticky Note
reducing

pcztgw
Sticky Note
over

pcztgw
Highlight

pcztgw
Sticky Note
unclear

pcztgw
Sticky Note
the

pcztgw
Highlight

pcztgw
Sticky Note
clearly

pcztgw
Highlight

pcztgw
Highlight

pcztgw
Sticky Note
approximately

pcztgw
Highlight

pcztgw
Sticky Note
As to

pcztgw
Sticky Note
at the midpoint of

pcztgw
Sticky Note
is this the best position for an asymmetric system?



 
 
 

154 

 

corresponds to 1S or 2S, the only exception being Th+ (6d27s). In order to assess the difference with 

the small-core approach in a systematic way, we also computed the CCSD(T) interaction potentials 

for the ground state Ac+, U+, Cm+ and Lr+ ions with He and Ar using the same large-core ECPs. 

In contrast to Lee et al. [53], the supplementary basis sets of aug-cc-pVQZ quality [36] were used 

without further modification, but augmented by the 3s3p2d2f1g bond function set [49] placed 

midway the ion-atom distance. Tables 6.1-2 report the potential parameters, Re and De, obtained 

for several actinide ions interacting with He and Ar, respectively. Both results achieved with our 

small-core scalar relativistic approach and the analogs achieved with the large-core 5f-in-core 

option are showed. In addition, our results are compared to the large-core 5f-in-core potential 

parameters by Lee et al. [53] and to small-core results for selected lanthanide ions [31]. 

For Ac+, that has the 5f shell empty, the comparison shows that the large-core description gives 

slightly stronger ion-atom interactions. In contrast, the trend reverses for Cm+ and Lr+ ions, 

characterized by 5f7 and 5f14 configurations. The binding energies, De, differ by 4-5% for He and 

by 5-6% for Ar, while the difference amounts to 0.03-0.06 Å for the equilibrium distances, Re. 

Moreover, the large-core approach exhibits poor accuracy for mobility calculations of U+ in He, 

as reported by Lee et al. [53], and for Eu+ in He with analogous “4f-in-core” ECP), as reported by 

Buchachenko and Viehland [31]. Overall, the large-core approach underestimates the room-

temperature zero-field mobilities by 8 and 4% respectively with respect to the experimental data. 

Therefore, the comparison above validates the small-core approach, that, in turn, will be 

considered in the following analyses.  
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Table 6.1. Equilibrium parameters for the ion-He potentials for actinide and lanthanide ions Re, 

(Å) and De (cm-1). 

Ion He 

 Re De 

Ac+ 7s2 1S 4.82 30 

Ac+ 7s2 1S [a] 4.80 30 

U+ [5f3]7s2 [53] 4.62 33 

U+ [5f3]7s2 [a] 4.59 34 

Am+  5f77s 9So 4.27 39 

Cm+   5f77s2 8So 4.36 42 

Cm+ [5f7]7s2 [a]           4.39 40 

No+  5f147s 2S 4.03 48 

Lr+  5f147s2 1S 4.08 52 

Lr+  [5f14]7s2 [a]          4.11 50 

Eu+ 4f76s 9So  [31] 4.45 33 

Yb+ 4f146s 2So  [31] 4.23 38 

Lu+  4f146s2 1S [31] 4.17 47 

   [a] Large-core calculations, this work. 
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Table 6.2. Equilibrium parameters for the ion-Ar potentials for actinide and lanthanide ions, Re 

(Å) and De (cm-1). 

Ion Ar 

 Re De 

Ac+ 7s2 1S  4.07 426 

Ac+ 7s2 1S [a] 4.04 434 

U+ [5f3]7s2 [53] 3.96 454 

U+  [5f3]7s2 [a] 3.96 470 

Am+ 5f77s 9So 3.45 698 

Cm+  5f77s2 8So 3.82 538 

Cm+  [5f7]7s2 [a] 3.88 509 

No+ 5f147s 2S 3.38 763 

Lr+ 5f147s2 1S 3.71 598 

Lr+ [5f14]7s2 [a] 3.78 565 

Eu+ 4f76s 9So [31] 3.31 732 

Yb+ 4f146s 2So [31] 3.25 789 

Lu+ 4f146s2 1S [31] 3.62 620 

  [a] Large-core calculations, this work. 

In order to facilitate the comparison of the different potentials, it is instructive to analyze the 

reduced potential functions 𝑉(
𝑅

𝑅𝑒
)/𝐷𝑒, which are shown in the right column of Figure 6.1. There, 

it can be noticed that the actinide ion-atom potentials are sensitive to the outermost filled s orbital. 

This feature is also common to the lanthanide ion-atom potentials [54]. Interactions of the actinide 

ions with 7s and 7s2 outer shells are significantly different from each other. Their bonding is 

weaker and repulsion is stronger with He, while smoothens with Ar. Actinide ions with the 7s 

configuration interact with He more strongly than their lanthanide counterparts, as shown by the 

significant shrinkage of the equilibrium internuclear distance Re (almost 0.2 Å) and by the increase 

of the dissociation energy De, which exceeds 20%. Also, it is noteworthy that the occupancy of 

inner f-shell here plays a more important role in the interaction compared to the lanthanide ion 

case. For the ns2 ions the trend is almost the opposite: Re increases when switching from Lu+ to 

Lr+, whereas De undergoes a marginal 2% increase. Regardless of the outer configuration, actinide 
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ions interact more weakly with Ar compared to the lanthanide ones. Overall, the two ion families 

show impressive similarity in their interaction potentials, as shown in Figure 6.2, which represents 

the potentials for each analog. The reduced potentials clearly show that the sensitivity of the curve 

to the occupancy of the outermost ns orbital decreases from the lanthanides to the actinides. A 

further demonstration of the similarity statement arises from the observation of the reduced 

potentials for the No+ and Yb+ pair, which are indistinguishable from the Am+ and Eu+ one.   
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Figure 6.1. Interaction potentials of the actinide ions with He (top panels) and Ar (bottom panels). 

True and reduced potentials are shown on the left and on the right respectively (reproduced under 

the CC-BY Creative Commons attribution license).  

 

 

Figure 6.2. Interaction potentials of the analogous actinide and lanthanide ions with He (top panel) 

and Ar (bottom panel). True and reduced potentials are shown on the left and on the right 

respectively (reproduced under the CC-BY Creative Commons attribution license). 
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6.5. Mobility of the actinide ions 

Sensitivity of ion mobility to different electronic configurations and atomic number can be checked 

by means of the ion drift time in eq. (6.2). Given a pair of ions A, B in different electronic 

configurations, their absolute drift time can be written as 

Δ𝑡𝑑 = 𝑡𝑑
𝐴 − 𝑡𝑑

𝐵 =
1

(𝐸/𝑛0)

𝑙

𝑁0

𝐾0
𝐴−𝐾0

𝐵

𝐾0
𝐴𝐾0

𝐵  ,            (6.5) 

while the relative drift time difference can be written as  

Δ𝑡𝑑

𝑡𝑑
𝐵 =

𝐾0
𝐴−𝐾0

𝐵

𝐾0
𝐴 = −Δ𝐾0/𝐾0             (6.6) 

There, K0 stands for the standard ion mobility for the ion A: in fact, notice that, for short, the 

superscript A was omitted. The ratio Δ𝐾0/𝐾0 represents the relative deviation of the mobility of 

the ion A from the analog for the ion B. This quantity depends on temperature and on (𝐸/𝑛0) 

through the individual mobilities.  

The interaction potentials reported in the previous section were used to compute the mobilities of 

Ac+ (7s2, 1S), Am+ (5f77s, 9So), Cm+ (5f77s2, 8So), No+ (5f147s, 2S) and Lr+ (5f147s2, 1S) in He and 

Ar. Figure 6.3 shows their standard ion mobility over a wide temperature range. As already stated, 

unfortunately no such measurements have been performed so far, so only theoretical dependences 

are available. The low-temperature trend towards the polarization limit reflects the dominant 

interaction term, Vind (see Chapter 2, Section 2.1.6). The mobility minimum is characterized by an 

intermediate interaction range where attractive Van der Waals forces are also operative, while the 

maximum mostly reflects the potential well. Finally, the decreasing high-temperature branch 

signals the repulsive interactions. Standard mobility exhibits a marked sensitivity to ion species: 

K0 increases as Z increases along the 7s and 7s2 ion families. Experimental data by Johnsen and 

Biondi [33] for the U+-He interaction, though somewhat uncertain, do not agree with the latter 

trend, but fits the theoretical results for 7s2 family. In Ar the trend for the mobility of the 7s2 ions 

reverses, decreasing as Z increases, while the difference in Am+ and No+ becomes negligible. This 

behavior had been previously observed for the lanthanide ions with 6d6s electronic configurations 

[31,32] and, likewise, reflects the short-range behavior of ion-atom interaction potentials. 
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In Figure 6.4 the relative mobility differences Δ𝐾0/𝐾0 are plotted for the Cm+-Am+ and the Lr+-

No+ ion pairs, differing for their 7s occupancies, and compared to the lanthanide analog Lu+-Yb+. 

In He all three pairs behave similarly, with the room-temperature drift time difference amounting 

to 10-15%. It should be noticed that the difference in the mobility of 7s and 7s2 ions in Ar has the 

opposite sign. It is noteworthy that the deviation due to 5f shell occupancy between Cm+-Am+ and 

Lr+-No+ exceeds that between the lanthanide and actinide families. Overall, actinide ion mobilities 

in both buffer gases are less sensitive to the outer ns shell occupancy than the lanthanide ion 

analogs to the 5d occupancy (see Refs. [31,32]). This consideration is in line with the analysis of 

the reduced potentials in the previous Section. The ground-state calculations do not allow for 

estimating the sensitivity of actinide mobility to the 5d configuration responsible for the electronic-

state chromatography effect for the metastable states. An investigation of this effect would require 

interaction potential calculations for the excited metastable states. Experience with the lanthanide 

ions suggests that the present ab initio methods may be applicable only for Ac+ and Lr+ ions in 

their 6d7s metastable states. 
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Figure 6.3. Zero-field mobilities of some actinide ions in He (top panel) and Ar (bottom panel) 

calculated as functions of temperature. For comparison, mobilities of the lanthanide analogs are 

also reported; crosses indicate experimental data [33] for U+ in He (reproduced under the CC-BY 

Creative Commons attribution license).  

 

 

Figure 6.4. Relative changes in the ion mobilities between 7s2 and 7s ions Cm+-Am+ and Lr+-No+. 

The lanthanide analog of the latter pair, Lu+-Yb+, is also reported. Solid and dashed lines refer to 

He and Ar gases respectively. The experimental room-temperature value is taken from the work 

by Manard and Kemper (reproduced under the CC-BY Creative Commons attribution license). 
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6.6. Correlations to the ionic radii 

Ionic radii were calculated in order to check their dependence on Z. Investigation of this 

dependence would reveal the effect of relativistic contraction in actinides and, in addition, is 

important to understand whether the transport measurements can provide a systematic means to 

probe the ionic radii, accounting for the exploratory experiments for actinides [34,35] and 

speculating to the superheavy ions. 

Here, we use for the ionic radii the empirical definition provided by Wright and Breckenridge [26] 

(WB): 

𝑅𝑖𝑜𝑛(𝑅) = 𝑅𝑒 − 𝑅𝑅𝐺,              (6.7) 

where 𝑅𝑒 refers to the equilibrium distance of the ion-atom interaction potential, whereas 𝑅𝑅𝐺 

stands for the Van der Waals radius of the atom. Wright and Breckenridge [26] recommended the 

systematics based on He interactions (with the Van der Waals radius of 1.49 Å) and noticed that 

eq. (6.7) does not work for Ar (whose Van der Waals radius equals 1.88 Å), because of the 

distortion exerted on the ion electron density. One may achieve 𝑅𝑖𝑜𝑛 (or, equivalently, 𝑅𝑒) from 

the zero-field mobility through the momentum transfer collision integral Ω̅(1,1)(𝑇0), in the frame 

of the hard-sphere (HS) model [38]: 

Ω̅(1,1)(𝑇0) = 𝜋𝑅𝑒
2              (6.8) 

Combination of eqs. (6.4) and (6.8) yields with 

𝑅𝑒 = (
2

𝜋𝜇0𝑘𝐵𝑇0
)

1

4
(

3𝑞

16𝑁0𝐾0(𝑇0)
)

1

2
,            (6.9) 

and, thence, 𝑅𝑖𝑜𝑛 can be obtained from eq. (6.7). 

In Figures 6.5, 6.6 the radii thus obtained for the lanthanide [31,32] and actinide ions, respectively, 

are compared with the parameters of the radial electron distribution calculated by Indelicato et al. 

[55] for bare ions, namely, the mean radii of the outer 7s orbitals, < 𝑟𝑠 >, and (if any) the 6d 

orbitals, < 𝑟𝑑 >, and the maximum of the density of the outermost orbital, 𝑟𝑚𝑎𝑥.  Reference 

parameters of the electron distributions of the bare ions form two parallel trend lines depending on 

the 7s2 (lower line) and 7s (upper line) outer shell configurations. The WB radii for ion-He 

interactions available from the present calculations follow the opposite order, due to the 
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enhancement of electron repulsion for the filled outer s-shell. Trends for actinides exhibit 

qualitative similarities with those achieved for the lanthanide counterparts [31,32], albeit the 7s 

and 7s2 trends are less evident for the parameters derived from interaction potentials and mobilities, 

except for the radii extracted from the mobility analysis in the frame of the HS model. It should be 

noticed that for HS model mobility should not depend on temperature. However, as it is evident 

from Figure 6.3, it does. Thus, we analyzed two choices, room temperature and the temperature at 

mobility maximum. The latter results are in good agreement with their lanthanide analogs. 

However, while HS model provides reliable results for mobilities at their maxima, it returns 

unphysical results for mobilities close to room temperature. HS results, in fact, make a wrong 

prediction, showing a general increase in the ionic radii with Z. The relative measurements of the 

drift times for the Pu+-Am+ and Cf+-Fm+ ion pairs in Ar may serve as a good term of comparison 

to prove our statement. Furthermore, the results of the HS model are evidently much less 

informative and consistent in the case of Ar, mirroring the same results for lanthanide-Ar 

interactions [31,32]. In fact, in analogy with the lanthanide case, the mismatch between the 

electronic parameters and models based on ion-atom interactions and transport is much more 

significant compared to the interaction with He.  The effective ionic radii achieved from the 

interaction potentials are too small in comparison to < 𝑟𝑠 > and even 𝑟𝑚𝑎𝑥, while the Z-

dependence is less marked. The inconsistency of eq. (6.7) for Ar is in agreement with the analysis 

by Wright and Breckenridge [26]. In contrast, the case of He provides a more consistent picture: 

the WB radii correlate well (within 15%) with the electronic parameters, being 1 and 0.8% larger 

than 𝑟𝑚𝑎𝑥 and < 𝑟𝑠 > respectively, due to the presence of the He atom. Through the HS model, the 

relative shrinkage of the ionic radii in these pairs is estimated as 3.1 ± 1.3 and 2% respectively. 

These variations had already been discussed in the work by Indelicato et al.[55] in terms of 

electronic structure parameters of the bare ions. The present analysis indicates that the drift times 

in Ar at room temperature correspond to the mobility minimum and may not be sensitive to the 

effective ionic size. Therefore, one should be cautious in interpreting such data within the 

oversimplified HS model, as already noticed by Backe et al. [17]. 

pcztgw
Highlight

pcztgw
Sticky Note
define?

pcztgw
Highlight

pcztgw
Highlight

pcztgw
Highlight



 
 
 

164 

 

 

Figure 6.5. The radii of the lanthanide ions determined with He (left panel) and Ar (right panel) 

data from Refs. [31,32]. The WB radii from ab initio calculations and the results of the HS model 

applied to experimental and calculated room-temperature mobilities “HS exptl.” and “HS calc.”, 

respectively, are presented, together with the results of the HS model applied to the calculated 

mobility at its maximum (“HS calc. max”). Blue color is used for Lu+ (4f145d6s). Parameters of 

the ion electron distribution calculated by Indelicato et al. [55] are also reported (see text for 

explanation). Reproduced under the CC-BY Creative Commons attribution license.  
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Figure 6.6. The radii of the actinide ions determined from He (left panel) and Ar (right panel). The 

WB radii from ab initio calculations are presented and compared to the results of the HS model 

applied to experimental and calculated room-temperature mobilities “HS exptl” and “HS calc.”, 

respectively, and to the calculated mobility at the maximum (“HS calc max”). Parameters of the 

ion electron distribution calculated by Indelicato et al. [55] are also shown (reproduced under the 

CC-BY Creative Commons attribution license).  

6.7. Conclusions 

Previous investigations of ion-atom interaction potentials and ion mobilities for lanthanides by 

means of scalar relativistic small-core CCSD(T) approaches [31,32] indicated that mobility is very 

sensitive to the electronic configuration of the ion. Both room-temperature measurements and ab 

initio theoretical calculations for the lanthanide ions showed that the mobilities of the 5d6s and 6s2 

ions are significantly different from the mobility of the 6s ions and slowly varying changes with 

the 4f occupancy, or, equivalently, with Z, can occur to determine these mobility differences 

[31,32]. From the comparison of experiment and theory, it is evident that the latter can presently 

predict the mobility differences for lanthanide ions in the ground and metastable electronic states 

and determine the conditions (buffer gas temperature, reduced electric field strength, pressure, etc.) 

ensuring the best discrimination of the ions by their drift times.  

Here, this approach was extended to the actinide ions, for which experimental data are very scarce. 

For the ion-atom interaction potentials, equilibrium parameters (the equilibrium distance Re and 

the dissociation energy De) obtained with small-core approaches were compared to their large-core 
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analogs, either available from literature [53] or calculated for the present comparison. This 

comparison checked the significant role of the 5f shell in strengthening the interaction (with 4-5% 

stabilization for He and 5-6% for Ar) and validated the small-core approach over the large-core 

one for investigation of the actinide ion-atom interaction. Calculation of the reduced potential 

functions revealed the sensitivity of the actinide ion-atom potentials to the outermost filled s 

orbital, with significant differences in bonding depending on the 7s or 7s2 configurations. Further 

comparisons with small-core results for lanthanide ions showed that interaction with He is much 

stronger in the case of actinides with 7s configuration compared to their lanthanide counterparts 

(with a 20% increase in the dissociation energy) and the more momentous role played for the 

formers by the inner f shell. For the 7s2 actinide ions, in contrast, the trend is reversed. For Ar, 

actinide interaction is weaker compared to lanthanide. However, overall the two ion families show 

striking similarities in their interaction potentials. 

Significant differences in the mobility of the 7s and 7s2 ions were found, which are qualitatively 

confirmed by the spatial electron density distribution of the bare ions [55]. However, actinide ion 

mobilities were found to be less sensitive to the outer ns occupancy than the lanthanide analogs to 

the 5d occupancy. In contrast, 5f shell occupancy plays a significant role in shaping mobility 

spreads of actinide ions. Mobility was also observed to be sensitive to the ion atomic number Z: 

in He, it increases as Z increases along the 7s and 7s2 ion families, whereas the trend reverses in 

Ar. This behavior, previously observed for the lanthanide ions with 6d6s configurations [31,32], 

reflects the short-range behavior of ion-atom interaction potentials. Mobility sensitivity to different 

occupancies of the outer ns shell paves the way to the investigation of the electronic state 

chromatographic effects, already observed for the 𝑚𝑑𝑛 ↔ 𝑚𝑑𝑛−1(𝑚 + 1)𝑠 electron promotion in 

transition metal ions [18-24], also for actinides and encourages the extension of these studies to 

superheavy ions with Z = 104-112. For the former, the present scalar relativistic approach may be 

applicable only for Ac+ and Lr+ ions in their 6d7s metastable states. Another important application 

relies on the so-called Laser Resonance Chromatography, proposed as a technique for the indirect 

detection of the spectroscopic transitions by discrimination of the ions in metastable states [30], 

which is being explored for Lu+ and Lr+. 

Ionic radii were calculated with the empirical formula proposed by Wright and Breckenridge [26] 

and in the frame of the HS model, and compared with the parameters of the radial electron 

pcztgw
Sticky Note
significant

pcztgw
Highlight

pcztgw
Highlight

pcztgw
Highlight

pcztgw
Highlight



 
 
 

167 

 

distribution by Indelicato et al. [55]. Actinide ions exhibit similar trends to those of their lanthanide 

counterparts. However, while the HS model provides qualitatively accountable results for 

mobilities at their maxima, it turns out to be misleading when used to evaluate mobilities around 

the room temperature. 

Appendix: basis set augmentation for actinide ions 

In Section 6.4 we illustrated the basis set used to investigate the actinide ions. The segmented 

atomic natural orbital basis set compatible with the small-core ECP ECP60MWB [52] suffers from 

the lack of diffuse functions and, thus, is not sufficient to accurately account for the polarizability 

of actinide ions. It is then necessary to optimize the basis set for augmentation: this optimization 

process consists in adding diffuse exponents 𝜉 to the s, p, d, f, g primitives, such that ensure the 

basis set saturation for a calculated property of the given ion. Each primitive is optimized 

separately starting from s in a step-by-step procedure: first s is optimized, while the other 

primitives are kept frozen, second p is optimized, while s is set to its optimized value and the other 

primitives are still frozen, third d is optimized, while s and p are set to their optimized values and 

the remaining primitives are kept frozen, and so forth. 

For our treatment, we chose dipole static polarizability as a property to check the basis set 

saturation. Polarizability was calculated in the frame of the CCSD(T)-FF approach (see Chapter 

2) as the second-order numerical derivative of the ion energy in the applied electric field. Two 

field steps were chosen for the calculation of the related energies and of the polarizability: Δ𝐹1 =

1 ∙ 10−4 a.u. and Δ𝐹2 = 2 ∙ 10
−4 a.u. Following the step-by-step procedure for the basis set 

augmentation, at each step we let the exponent 𝜉 of the given primitive decrease from 1 to a 

minimum number. These intervals were chosen as follows: 

 Step 1: for the s primitive 𝜉 is allowed to vary by 0.020, 0.015, 0.010, 0.005, 0.001, 0.0005 

and 0.0001; 

 Step 2: the exponent for s is kept at its optimized value; for the p primitive 𝜉 is allowed to vary 

by 0.015, 0.01, 0.008, 0.005, 0.003, 0.002, 0.001, 0.0008; 

 Step 3: the exponents for s and p are kept at their optimized values. For the d primitive 𝜉 is 

allowed to vary by 0.05, 0.04, 0.02, 0.01, 0.008, 0.005, 0.002, 0.001, 0.0005; 
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 Step 4: the exponents for s, p and d are kept at their optimized values. For the f primitive 𝜉 is 

allowed to vary by 0.15, 0.12, 0.11, 0.1, 0.09, 0.07, 0.06, 0.05, 0.04, 0.025, 0.01; 

 Step 5: the exponents for s, p, d and f are kept at their optimized values. For the g primitive 𝜉 

is allowed to vary by 1.85, 1.8, 1.75, 1.7, 1.65, 1.6, 1.5, 1.45, 1.35, 1.2, 1.1, 1.0, 0.7, 0.45, 0.4, 

0.2, 0.15, 0.1, 0.05, 0.02, 0.01. 

As an example of this procedure Figure A1 shows the dipole static polarizability of Am atom 

calculated with two different field steps (1 ∙ 10−4, 2 ∙ 10−4) as a function of the increment Δ𝜉𝑓 of 

the f primitive. The trend line for the polarizability overall does not change with the field step, 

except for very few points, where usually the polarizability for the second field step is smaller. 

The increment of 𝜉 increases polarizability along a sigmoidal trend from Δ𝜉𝑓 = 0 to Δ𝜉𝑓 = 0.6. 

At 0.7 the curve stabilizes into a plateau and then decreases for higher increments. The decrease 

of the curve indicates the saturation of the basis set for that primitive and the abscissa 

corresponding to the plateau is the saturation point of the basis set for the chosen primitive. Thus, 

in the case of the f primitive the basis set saturates at Δ𝜉𝑓 = 0.07, that is then chosen as the diffuse 

exponent of the optimized augmented primitive.   

Table A1 lists the optimized exponents. These are recommended for all actinide ANO basis sets. 

 

Figure A1. Am dipole static polarizability calculated with two field steps as a function of the 

increment  Δ𝜉𝑓 of the f primitive exponent. 
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Table A1. Optimized values for the exponents used to augment the primitives of the segmented 

actinide ANO basis set. In the left-hand column the primitives to be augmented are listed; in the 

right-hand column the related optimized augmenting exponents are listed. 

Primitive Optimized exponent 

s 0.01 

p 0.008 

d 0.03 

f 0.07 

g 0.05 
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7. Summary 

The main goal of the thesis was to reconcile and assess the dichotomy of the atomic (monomeric) 

and molecular (dimeric) approaches to the long-range intermolecular (interatomic) interactions 

within the accurate and practically convenient ab initio methods of the single-reference Coupled 

Cluster family. Both approaches have their own pro and contra. Atomic one directly provides the 

long-range coefficients of different origins up to (in principle) infinite order and connects them to 

transferrable electric properties of the atoms. On the other hand, it is obviously unable to produce 

the global interaction potential. Molecular approach, designed for the latter task, is limited at long 

range by intrinsic convergence tolerances and usually provides only the leading long-range 

coefficients subjected to fitting errors. Moreover, both suffer from technical limitations inherent 

to the particular ab initio methodology. 

Toward this goal, computational strategies based on the single-reference CCSD and CCSD(T) 

methods were customized to accurate modeling of dispersion interaction. Customization was 

achieved by ensuring the convergence with respect to core correlation and basis set saturation, as 

well as by accounting the scalar-relativistic effects at exact two-component level. The performance 

of the scalar-relativistic approach was then assessed across four tasks, representing typical cases 

where accurate description of long-range interatomic interactions is required. The strategies 

employed for the accomplishment of these tasks yielded with several useful conclusions, that are 

summarized in the following points: 

1) Atomic calculations using scalar-relativistic Coupled Cluster approaches ensure accurate 

results for the polarizabilities and the dispersion coefficients of alkaline earth atoms and Yb, 

being always in reasonable agreement with the state-of-the-art atomic calculations. Detailed 

analysis of the long-range interactions of the dimers indicates that, for reasonably heavy atoms, 

strict accuracy limits hinder direct matching of atomic and molecular approaches to model the 

global interaction potential and, thus, synthetic potentials implementing ad hoc combinations 

of two approaches are still needed; 

2) Atomic and molecular calculations using scalar-relativistic approaches can be reconciled by 

means of a synthetic potential function, that combine them to build up the global potential of 

the ground-state Yb dimer. This dodge provides a new state-of-the-art potential, that may be 
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useful for interpretation of measurements from photoassociation spectroscopy, search for new 

frequency standards and investigation of non-Newtonian gravity-like forces; 

3) Scalar relativistic approaches can be matched with our novel combination rule to explore 

transferability of dynamic properties, in order to achieve dispersion coefficients and dynamic 

polarizabilities for open-shell dimers from the known analogs for a set of closed-shell partners. 

For dispersion coefficients, a set of ten partners is sufficient to ensure transferability, while for 

dynamic polarizabilities transferability may be ensured by increasing the partner set or 

improving accuracy of molecular calculations; 

4) Scalar-relativistic approaches can predict and interpret trends in ion mobility. In this regard, 

Chapter 6 shows that such approaches are reliable for modeling the interactions of actinide 

ions. Customization to accurate description of dispersion interaction is found to be important 

even for modeling the systems where dispersion plays a minor role compared to other 

interaction terms, such as induction. 

The lessons imparted by these four test cases find a wide range of applications, ranging both 

refinement of ab initio modeling of intermolecular interactions and support of related experimental 

results. For instance, in the former ambit, future tasks may target the description of larger systems 

being of interest in the field of ultracold physics, such as small molecules. In addition, the 

conclusions collected from our novel combination rule and its limits (see Chapter 5) call for further 

research in the field of interaction of open-shell species. In this latter regard, these lessons suggest 

a parallel strategy as well, more focused on modeling the global potential, rather than dynamic 

properties. This relies on using our scalar-relativistic CC approach to correct the potentials 

achieved from multi-reference Configuration Interaction (MRCI) calculations (see Chapter 2 for 

information on this latter level of theory). The most helpful application of this latter approach 

targets the investigation of the gas-phase mobility of transition metal singly-charged cations and 

their interrelationship with the interaction potential, following the path delineated in Chapter 6. On 

the other hand, our results may also be very useful as benchmarks for ultracold physics 

experiments, such as in the case of the state-of-the-art global potential achieved for Yb dimer (see 

Chapter 4). Moreover, ion mobility results for actinide ions (see Chapter 6) are fully reliable to 

support the investigation of novel experimental techniques, such as Laser Resonance 

Chromatography. 
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