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Abstract 

Data on the thermal properties of sedimentary rocks are necessary for 

thermohydrodynamic modelling of physical processes occurring within a reservoir 

during thermal enhanced oil recovery, for basin and petroleum system modelling, 

temperature log data interpretation, and heat flow determination. The limitations of 

the existing techniques for in situ rock thermal property measurements and 

numerous cases with the absence of core samples require the development of 

methods for rock thermal property determination based on well-logging data. 

Existing approaches for determining rock thermal properties from well-logging data 

are appropriate only for isotropic rocks and do not allow reliable determinations of 

rock volumetric heat capacity. Since many rock types exhibit a considerable degree 

of heterogeneity and anisotropy, advanced approaches for well log-based 

determination of rock thermal properties are necessary. The implementation of a new 

thermal core logging technique, which provides continuous and high-precision 

measurements of the principal components of the thermal conductivity tensor and 

volumetric heat capacity from core samples, enabled the development of a new 

framework for the indirect determination of rock thermal properties. A new 

technique for the simultaneous determination of rock thermal conductivity and 

volumetric heat capacity from well-logging data accounting for thermal anisotropy, 

heterogeneity and in situ thermobaric conditions was developed and tested on vast, 

representative experimental dataset from various hydrocarbon fields, including 

organic-rich shales and heavy oil field. The novelty of the technique includes 

integration of thermal core logging and well logging data and the application of 

theoretical models and regression analysis by means of machine learning techniques. 

The implementation of the novel well-log based technique for determining rock 

thermal properties allowed obtaining new data on vertical variations of rock thermal 

properties and heat flow density that enhanced the quality of the subsequent studies 

of hydrocarbon fields. 
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coring depth intervals. Blue lines (central panel) present the upper estimate of the 
equivalent thermal conductivity within coring depth intervals. Red lines present the 
average estimates of the equivalent thermal conductivity within the intervals with 
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well-log based predictions of rock thermal conductivity. Light-blue and blue lines in 
the right panel of the figure represent the lower and upper estimate of heat flow 
density within coring depth intervals. Red lines in the right panel repre-sent the 
average estimate of the heat flow density within the intervals with well-log based 
predictions of rock thermal conductivity. The empty black box on the right panel 

represent the previously published data on heat flow density (34.0 mW·m-2) for the 
are under study. Black vertical line on the right panel presents the regression trend 
of the increase of heat flow density (with average value of 72.6 mW·m-2 below 2000 
m). Lithology legend was given in Figure 39. ............................................... 154 
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Chapter 1. Existing well-log based approaches for determining rock 

thermal properties: current state-of-the-art 

1.1 Applications of data on rock thermal properties 

Diversification of applied tasks at geological and geophysical investigations of 

hydrocarbon fields during 2000-2020 resulted in the increased necessity of 

representative and reliable data on rock thermal properties. The data on rock thermal 

properties are required for prospecting, exploration and development of hydrocarbon 

fields. 

An essential method for assessing hydrocarbon field potential in the 

prospecting stage is basin and petroleum system modelling (BPSM). The critical 

aspect of BPSM is a reconstruction of thermal basin history that is to a significant 

degree determined by rock thermal properties and heat flow density. Twenty per cent 

uncertainty in data on rock thermal properties or in data on heat flow density in some 

cases leads up to 100% over- or underestimation of hydrocarbon reserves (Hicks et 

al., 2012). 

In the exploration stage, the modern experimental base of thermal petrophysics 

(Popov et al., 2016; Popov E. et al., 2020a) provides an effective solution of the 

following applied tasks: 

1. Identification of peculiarities of geological setting via the data on basic 

physical properties of rocks – thermal conductivity and volumetric heat 

capacity (Popov E. et al., 2020b).  

2. Assessment of rock heterogeneity (Popov E. et al., 2019). 

3. Assessment of rock thermal anisotropy that is a distinguishing characteristic 

for many rock types including organic-rich shales (Popov et al., 2017). 
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4. Registering detailed profiles of total organic carbon content for organic-rich 

shales (Popov E. et al., 2020a). 

5. Interpretation of temperature logging data (Poulsen & Balling, 2012). 

6. Registering and interpreting vertical variations of heat flow density and 

terrestrial heat flow density (Emmermann et al., 1997; Popov et al., 1999; 

Kukkonen et al., 2011; etc.). 

In the development stage, the data on rock thermal properties are required for 

thermohydrodynamic modelling of physical properties that occur when thermal 

enhanced oil recovery (EOR) methods are utilized (Wang et al., 2017). Reliable data 

on rock thermal properties allow determining optimal parameters for EOR and 

avoiding significant errors in the assessment of the economic efficiency of the EOR 

technique.  

Moreover, geothermal investigations and high-level radioactive waste disposal 

in deep underground sites require reliable data on rock thermal properties.  

1.2  Traditional approaches for determining thermal properties of 
sedimentary rock 

The existing approaches for determining rock thermal properties can be 

grouped in the following way: 

1. Laboratory measurements on core samples. 

2. In situ thermal logging. 

3. Theoretical modelling. 

4. Use of databases. 

5. Well-log based approaches. 

Numerous steady-state and transient techniques were developed for measuring 

thermal conductivity and volumetric (or specific) heat capacity of rocks. According 
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to Blackwell et al. (1989) and Clauser et al. (2006), the most prominent methods for 

measuring the thermal conductivity of rocks are considered divided-bar, needle-

probe, and optical scanning. Today, the most commonly used divided-bar tools in 

laboratories base on the same working principle as the instrument described by Birch 

(1950). The most typical and convenient-line source method is a half-space line-

source described by Huenges et al. (1990). The optical scanning method developed 

and suggested by Popov (1983) is currently universally recognized and included in 

the International Society of Rock Mechanics and Rock Engineering (ISRM) 

suggested methods for determining rock thermal properties (Popov et al., 2016). 

Recently, there was also discovered a new opportunity for thermal conductivity 

evaluation on rock cuttings and nonconsolidated rocks by Popov et al. (2018). 

Among the various methods for direct measurements of rock volumetric/specific 

heat capacity, the most widely used methods are heat flux differential scanning 

(DCS) calorimeters and optical scanning. The data on rock thermal properties 

obtained with modern laboratory equipment is considered the most reliable to date. 

The critical problem of this approach for determining rock thermal properties is a 

limited amount of core material. Thus, data on rock thermal properties are often 

confined either to a few wells or to view formations. 

An ideal solution to the difficulties of sampling and measuring rock thermal 

properties in the laboratory on core samples could be in situ measurement of rock 

thermal properties. Much effort was made to develop such a particular technique 

(Beck et al., 1971; Burkhardt et al., 1995; Sanner et al., 2005; Kukkonen et al., 2007; 

Sauer et al., 2017; etc.). However, the suggested techniques are still not implemented 

within the geothermal investigations of wells due to the following reasons: 
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 Significant measurement errors. Sauer et al. (2017) recently described a new 

tool and reported that it provides precision and accuracy of 10% and 7%, 

respectively, that corresponds to an uncertainty of  >12%.  

 Long time required for measurements. Application of some techniques (e.g., 

Sanner et al., 2005) requires several days.  

 Unstable conditions of measurements. Borehole washouts, mud cakes, 

induced convection of drilling fluid, and other technical reasons essentially 

affect and usually decrease measurement quality. In most cases, measurement 

results are unsatisfactory for practical use. 

 Impossibility to assess rock thermal anisotropy and the vertical variation of 

thermal properties (like, e.g., in the thermal response test, see Sanner et al., 

2005). 

Thus, whereas the concept seems sound and some suitable tools are available, these 

techniques require essential enhancement to be widely used. 

Another perspective approach for determining rock thermal properties is an 

application of theoretical modelling. There are currently more than thirty theoretical 

models of rock thermal conductivity (see, e.g., Clauser et al., 2009; Abdulagatova et 

al., 2009; Bayuk et al., 2011; Fuchs et al., 2013). The application of theoretical 

modelling of thermal conductivity requires data on volumetric fractions of rock 

components (minerals and fluids), data on its thermal conductivity, and, for some 

models, data on correction factors. However, there are many cases when the 

application of theoretical modelling does not provide a satisfactory quality of data 

on rock thermal properties. For example, the application of the most popular 

Lichtenecker model (Lichtenecker, 1924) in some cases gives results with 

uncertainties that amount to 40% (Chekhonin et al., 2019). Moreover, the application 

of advanced theoretical models, such as the Lichtenecker-Asaad model (Asaad, 
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1955), requires knowledge on the so-called correction factor that allows accounting 

for structural and textural peculiarities of rocks. However, reliable determinations of 

correction factor can be performed via special experimental investigations as 

described by Popov et al. (2003), and often the data on correction factor is not 

available. Some theoretical models based on effective medium theory concepts 

require data on pore geometry, the shape of cracks and mineral grains. It is a 

promising framework for reliable determination of thermal conductivity as described 

by Bayuk et al. (2011). However, the application of these models requires data on 

many additional parameters determined through calibration on experimental data on 

rock thermal properties, which is not always accessible.  

The weighted arithmetic mean model is used to determine rock volumetric heat 

capacity as it is a scalar property. However, very often, calculating volumetric heat 

capacity via weighted arithmetic mean model results in large errors. This is reasoned 

by uncertainties in data on volume fractions of rock components (minerals and 

fluids) and in data on volumetric heat capacity of rocks and rock components. There 

is limited available published data on rock volumetric heat capacity due to the lack 

of applications in the past. Analysis of these data shows that high uncertainties are 

not rare cases. For example, assessment of volumetric heat capacity via data on rock 

thermal conductivity and thermal diffusivity presented by Eppelbaum (2014) yields 

volumetric heat capacity of 4.42 MJ·m-3·K-1, 5.15 MJ·m-3·K-1, 5.21 MJ·m-3·K-1 for 

shale, marlstone and chalkstone, respectively. At the same time, the volumetric heat 

capacity of water is 4.19 MJ·m-3·K-1. This emphasizes the necessity of accounting 

for the influence of porosity and pore-filling fluids on rocks' volumetric heat 

capacity.  

Simultaneously, many simulators for BPSM and hydrodynamic modelling use 

theoretical models (including the Lichtenecker model) for calculating both rock 
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thermal properties. Results of such modelling in some cases are questionable. 

Therefore, theoretical modelling is a promising framework for determining the 

thermal properties of rocks although requiring enhancement.  

The application of published experimental data or databases (see, e.g. Bär et al., 

2019) on rock thermal properties is not a rare case in today’s geothermal 

investigations. Meanwhile, even small changes in the mineral composition of rocks, 

its porosity, the geometry of pore-crack space, and pore-filling fluids can essentially 

change both rock thermal conductivity and volumetric heat capacity. The existing 

databases on rock thermal properties usually are not satisfying about:  

 data on rock volumetric heat capacity; 

 data on thermal anisotropy of rocks; 

 lithological description of investigated cores; 

 data on the influence of different fluid saturation on rock thermal properties; 

 data on thermal property dependence on porosity; 

 information on the effect of fracturing on rock thermal properties and thermal 

anisotropy. 

Thus, the application of published experimental data or databases can result in 

significant uncertainties. Despite the availability of extensive previous data on rock 

thermal properties, laboratory measurements of rock thermal properties on cores are 

still highly relevant.  

Well-log based approaches are one of the most robust and commonly used 

approaches for determining rock thermal properties. This is because: 

1. Well-logging data is available almost for all industrial wells. It is not a rare 

case when well-logging is conducted from the top to the bottom of the well. 

2. Well-logging tools provide registration of rock properties with a relatively 

high spatial resolution. 
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3. Well-logging provides data on complex of petrophysical properties (porosity, 

shaliness, saturation, etc.). 

1.3 Possibilities and limitations of traditional approaches for well-log based 
determining rock thermal properties 

Analysis of literature data shows that a significant part of publications in 

geothermics that refer to well-log based determining rock thermal properties concern 

thermal conductivity. This is justified by the lack of applications of data on 

volumetric heat capacity in the past and that the data on rock thermal conductivity 

are of a key importance for determining conductive heat flow density at geothermal 

investigations of the Earth crust.  

The main part of approaches for determining rock thermal conductivity from 

well-logging data is based on the analysis of interrelations between thermal and other 

physical properties of rocks. One of the first research results on interrelations 

between thermal conductivity and other physical properties were published in the 

1950s by Dahnov & Djakonov (1952) and Ziefuss & Vliet (1956).  

For the first time, an urgent need for an effective well-log-based approach for 

determining rock thermal conductivity occurred in Germany for superdeep drilling 

well KTB (1990-1994). This need was principally conditioned by drilling without 

coring. Moreover, one of the main objectives of the superdeep drilling project was 

determining vertical variations of heat flow density, which requires reliable data on 

rock thermal conductivity along the well. The accompanying increase in relevance 

of data on rock thermal conductivity for applied geothermics and petroleum 

engineering stimulated many researchers. It resulted in an increased number of 

publications concerning well-log based approaches for determining rock thermal 

properties.  
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Existing approaches for determining rock thermal properties from well-logging 

data can be classified into two main categories: (1) regression-based and (2) 

theoretical model-based. 

The regression model-based approach implies determining dependencies 

between the rock thermal properties and well-logging parameters using standard or 

advanced regression analysis methods. Numerous authors have demonstrated for 

different lithological types the interrelation between thermal conductivity and other 

rock properties (in most cases density or sonic velocity) via statistical analysis 

(Bullard & Day 1961; Cermak et al., 1967; Anand et al., 1973; Poulsen et al., 1981; 

Lovell 1985; Beziat et al., 1992; Griffiths et al., 1992; Zamora et al., 1993; Sahlin & 

Middleton 1997; Kukkonen & Peltoniemi 1998; Sundberg et al., 2009; Popov et al., 

2011; Gegenhuber & Schon 2012). Researchers also applied multiple linear and 

nonlinear regression models to characterize interrelations between thermal 

conductivity and other rock physical properties inferred from well-logging data 

(Goss et al., 1975; Goss & Combs 1976; Evans 1977; Balling et al., 1981; Molnar 

& Hodge 1982; Vacquier et al., 1988; Doveton et al., 1997; Popov et al., 2003; 

Ozkahraman et al., 2004; Hartmann et al., 2005; Fuchs et al., 2014; Fuchs et al., 

2015). Some studies use artificial neural networks for predicting thermal 

conductivity (Goutorbe et al. 2006; Singh et al. 2007; Khandelwal 2010; Singh et al. 

2011; Gasior & Przelaskowska, 2014). For porous rocks, the high contrast between 

the physical properties of the pore-filling fluids and the rock matrix physical 

properties is the primary control of the correlations between thermal properties and 

other physical properties (Popov et al., 2003). Therefore, the application of the 

regression model-based approach might be challenging in the case of low porosity 

and low contrast of physical properties in the rock components. Moreover, the 

established regression equations between rock thermal properties and well-logging 
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data are related to the deposition environment and can be applied only for the 

analogous rock with similar well-logging data (Blackwell et al., 1989). 

Some of the mentioned disadvantages can be resolved via a theoretical 

approach. More than thirty theoretical models (or so-called mixing laws) have been 

developed to determine the effective thermal conductivity of rocks. Some studies are 

focused on determining appropriate mixing law to compute rock thermal 

conductivity from knowledge on mineral content (via XRD analysis) and porosity 

(e.g. Brigaud et al. 1990; Demongodin et al. 1991). Other researchers addressed 

approaches for determining rock thermal conductivity from either lithology or 

mineralogy of rocks inferred from well-logging data, data on rock porosity and 

available data on thermal properties of rock constituents (Merkel et al. 1976; 

Dove&Williams 1989; Vasseur et al. 1995; Midttømme et al. 1997; Hartmann et al. 

2005). The application of mixing laws requires data on the volumetric fractions of 

the rock-forming components, reliable data on their thermal properties, and, 

sometimes, a correction factor, which accounts for structural peculiarities of rocks. 

This approach is not restricted to a specific geological area. It can be applied for well 

log-based prediction of the thermal properties of low-porosity rocks, with 

uncertainties of less than 10% (e.g., Fuchs et al., 2018). However, a weak point of 

this approach is the essential frequent uncertainty of theoretical modelling. 

Calculating the effective thermal conductivity via different thermal conductivity 

models using the same rock matrix thermal conductivity and pore-filling fluid values 

results in considerable variance, sometimes up to 100% (e.g., Hartman et al., 2005).  

In literature, there is a lack of studies concerning well-log based predictions of 

volumetric heat capacity. Fuchs et al. (2015) attempted to develop a universally 

applicable approach for determining rock specific heat capacity. However, the 

reported results correspond to artificially created datasets, and its applicability 
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should be tested on reliable experimental data. A common practice is calculating 

volumetric/specific heat capacity from the volume fractions of rock constituents or 

the relation between thermal conductivity, thermal diffusivity, and volumetric heat 

capacity (see, e.g. Goto & Matsubayashi 2008). 

The suggested solutions for well-log based determining rock thermal properties 

have several disadvantages: 

1. Neglecting thermal anisotropy of rocks, which is a distinguishing characteristic 

for many rock types, especially organic-rich shales and clay-rich rocks (Pribnow 

and Umsonst, 1993). Recent investigations have revealed that the thermal 

anisotropy coefficient of organic-rich shales is typically 1.2-2 and can often 

exceed 2-3 (Popov et al., 2017). One of the few approaches to consider thermal 

anisotropy was suggested by Deming (1994) and implies analysis of an empirical 

relationship that relates the thermal conductivity anisotropy and thermal 

conductivity perpendicular to the bedding (based on measurements on 89 rock 

samples gleaned from the literature). However, testing the suggested approach 

with our experimental data showed high and unsatisfactory uncertainties in well 

log-based predictions of rock thermal conductivity via the Deming correction 

approach. Another approach presented by Pasquale et al. (2011) implies analysis 

of the effect of orientation of the clay and mica platelets during burial on the 

vertical component of thermal conductivity. However, this approach is not 

universally applicable, e.g. in case of organic-rich shales since thermal anisotropy 

of these rocks is conditioned not only by orientation of clay and mica platelets 

but also by the distribution of organic matter. 

2. Neglecting influence of in situ pressure, temperature and saturation of rock 

thermal properties in case of thermal anisotropy. Some studies describe an 

opportunity to account for in situ thermobaric conditions and saturation (see, e.g., 
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Hartamann et al., 2005), but this is applicable only for isotropic rocks. Wang et 

al. (2018) experimentally showed that in case of thermal anisotropy, distinct 

effects of temperature on principal components of thermal conductivity exist. 

Moreover, the effect of imposed fracturing on thermal anisotropy must be 

assessed in case of thermal anisotropy as described by Popov et al. (2017).  

3. Neglecting rock heterogeneity. There are many cases when spatial resolution of 

instruments used for measuring rock thermal properties differs from the spatial 

resolution of considered well-logging tools. This was never accounted for during 

regression analysis or theoretical modelling. For example, the commonly used 

divided bar technique requires core samples of 10-30 mm thick whereas the 

typical vertical resolution of standard well-logging tools is about 0.5 m. 

Obviously, for such cases, the data on rock thermal properties cannot be directly 

related to well-logging data. Thus, in the case of thin layering or high 

heterogeneity of rocks, special operations are required to account for the 

difference in spatial resolution before the regression analysis or theoretical 

modelling.  

4. Lack of implementations of machine learning techniques for problem solution. 

As previously mentioned, there are only a few publications related to the 

application of simple fully connected neural networks for determining rock 

thermal conductivity. However, accounting for modern advances in machine 

learning algorithms, a comparison study of different machine learning algorithms 

for predicting thermal conductivity and volumetric heat capacity is required. 

5. Lack of studies related to organic-rich shales. In the context of increasing demand 

on thermohydrodynamic modelling of thermal EOR, the data on lateral variations 

of thermal properties of organic-rich shales is highly required. Therefore, well-

log based approach for determining rock thermal properties is an effective way 
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for the problem solution. However, typical thermal anisotropy and thermal 

heterogeneity of organic-rich shales, as described by Popov et al. (2017), require 

the development of advanced algorithms to be accounted for.  

6. Poor metrological testing of the suggested approaches. A common practice of 

existing publications is yielding mean average error (MAE) or root mean squared 

error (RMSE). Only in some rare cases, authors also provide standard deviation 

of MAE or RMSE. However, these data do not allow characterizing uncertainty 

of prediction results. Moreover, when characterizing the uncertainty of prediction 

results, the confidential probability level must be reported. Another reason for 

poor metrological testing of the suggested approaches is again related to 

heterogeneity (see point 3) and differences in spatial resolution of instruments 

used to measure rock thermal properties and well-logging tools.  

7. Lack of sensitivity studies of the influence of uncertainties in well-logging data 

on results of well-log based determination of rock thermal properties. Sensitivity 

studies of either regression or theoretical models determine the necessary input 

data quality for predicting rock thermal properties with specified uncertainty. 

Moreover, the sensitivity study of the regression model provides information on 

each well-logs' importance and subsequently allows optimizing the number of 

well-logs.  

8. Lack of well-defined, reproducible workflows for determining rock thermal 

properties accounting for thermal anisotropy and in situ pressure, temperature 

and saturation. To ensure practical implementation of well-log based approaches 

for determining rock thermal properties, well-defined reproducible workflows 

are required. Literature shows that there are only a few publications describing 

all the necessary operations properly for predicting thermal properties of isotropic 

rocks (see, e.g. Hartmann et al., 2005). However, advanced workflows are 
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required for determining rock thermal conductivity and volumetric heat capacity 

accounting for in situ pressure, temperature, saturation, rock heterogeneity and 

thermal anisotropy. 

In summary, the above disadvantages do not allow the exhaustive 

implementation of well-log based approaches for rock thermal properties prediction 

at geothermal investigations of geological profiles.  

1.4  Importance of accounting for rock anisotropy and heterogeneity  

Since many rock types are more or less anisotropic (Pribnow and Umsonst, 

1993; Popov et al., 2017; etc.), neglecting thermal anisotropy (that very often 

amounts to 2 and 3) can negatively affect the results of modelling. Popov et al. 

(2013) performed a comprehensive sensitivity analysis of the effect of uncertainty 

in reservoir thermal property data on heavy oil recovery performance. Four 

technologies (steam flooding, steam-assisted gravity drainage, toe-to-heel air 

injection, and hot water flooding) of thermal enhanced oil recovery were considered 

during sensitivity analysis. The sensitivity study revealed that uncertainties in rock 

thermal properties result in errors in cumulative oil production of about 20-70 %. 

Therefore, reliable data on rock thermal conductivity accounting for thermal 

anisotropy determine the economic efficiency of thermal enhanced oil recovery 

technologies. Moreover, without reliable data on rock thermal properties, largely 

different scenarios for organic matter maturation may result from basin and 

petroleum system modelling affecting results of assessment of hydrocarbon potential 

for a given region (Chekhonin et al., 2019).  

Because of the limitations of traditional instruments for measuring rock thermal 

properties, a very common practice in the previous studies is a joint analysis of well-

logging data and incomparable in terms of spatial resolution data on rock thermal 
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properties (Goss et al., 1975; Vacquier et al., 1988; Fuchs et al., 2014; etc.). 

Neglecting differences in the vertical resolution of analyzing data in case of 

heterogeneous rocks obviously leads to unreliable results. Hence, accounting for 

rock heterogeneity before the regression analysis or theoretical modelling is crucial 

for obtaining reliable models that can be used to predict thermal properties for 

similar rocks.  

The following example demonstrates the problem. Data on rock thermal 

conductivity inferred from continuous thermal core logging (with a spatial resolution 

of 1 mm) were used to assess different scale rock heterogeneity. The data of two 

organic-rich shales and carbonate rocks of heavy oil field were used in this example. 

The coefficient of variation (ratio of the standard deviation to mean value; CV) of 

thermal conductivity is calculated to assess rock heterogeneity. As the average 

vertical resolution of well logging tools is about 0.5 m and assuming an average 

length of full-sized core samples of 0.1 m, the coefficient of variation of thermal 

conductivity was calculated within moving windows of 0.5 m and 0.1 m.  

Figure 1 plots the calculated coefficients of variation of thermal conductivity 

for two organic-rich formations and carbonate rocks of the heavy oil field. There is 

an essential difference between CV calculated on a well-logging scale and CV 

calculated on the scale of laboratory investigations. The difference, in some cases, 

amounts to 100%.  

One can conclude, the data inferred from well-logging cannot be directly 

processed and analysed with data inferred from laboratory investigations of core 

samples. However, due to limitations of traditional instruments for measurements of 

rock thermal properties (special requirements to core sample geometry, a limited 

amount of core samples, etc.), in most cases, there is no possibility to consider and 

to account for rock heterogeneity of rocks before the regression analysis or 
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theoretical modelling. Thus, the application of published regression equations or 

parameters of theoretical models for determining rock thermal properties from well-

logging data should be carefully used.  

 

Figure 1. CV for two organic-rich shales (left and central panel) and carbonate rocks 
of heavy oil field (right panel) within moving windows of 0.1 m (grey colored line) 
and 0.5 m (blue) colored line. Histograms plot relative difference between CV 
calculated within 0.5 m and CV calculated within 0.1 m. 
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1.5 Integration of thermal core logging data with well-logging data – a new 
framework for the improvement of reliability of data on rock thermal 
properties inferred from well-logging data 

Many of traditional instruments for measuring thermal conductivity and 

volumetric heat capacity were firstly developed for measurements on industrial 

materials. Compared to sedimentary rocks, these materials are: 

 mainly isotropic and homogeneous, 

 mechanically well treated when samples are prepared for measurements, 

 stable according to their physical properties, 

 sustainable to high pressure that occurs when measuring surface is put on 

samples. 

Moreover, there is no need for a high rate when measuring thermal properties of 

industrial materials. 

The structure of industrial materials is thus so different from sedimentary rocks, 

especially from highly porous, fractured, anisotropic, heterogeneous samples. As 

described by Popov et al. (2020a), the principal reasons for discordance between the 

required level of a measurement instrument for petroleum engineering and the 

abilities of the traditional instruments are: 

1. Traditional instruments cannot provide measurements on full-sized core samples 

without special mechanical preparation of core samples. This aspect excludes the 

possibility of massive measurements and registering different-scale spatial 

variations of rock thermal properties. 

2. Poor metrological quality of measurement results for highly porous and fractured 

core samples due to the significant influence of interfacial thermal resistance.  

3. The traditional instruments are not appropriate for standard core plugs that are 

the basis for petrophysical laboratory investigations. 
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4. Highly porous and fractured core samples are fragile and, in many cases, are 

easily crushed under high pressure that occurs when measuring surface is put on 

samples. Consequently, it excludes the possibility of repeated measurements of 

rock thermal properties at different fluid saturation.  

5. Impossibility of conducting simultaneous measurements of rock thermal 

conductivity and volumetric heat capacity on the same core samples. Moreover, 

the modern differential scanning calorimeters measure specific heat capacity on 

small rock samples, typically less than 1 cm3. Thus, the data on rock density is 

required to calculate volumetric heat capacity, and this small volume usually does 

not reflect rock heterogeneity. 

6. Absence of possibility for registering detailed vertical variations of thermal 

anisotropy coefficient.  

7. Absence of possibility for assessing thermal heterogeneity of rocks. 

8. Necessity in scrupulous mechanical treatment of flat surface to exclude the 

influence of interfacial thermal resistance on measurement results. 

Concurrently, the optical scanning method was designed especially for 

measurements of rock thermal properties by Popov (1983) and provided an 

opportunity for registering data on rock thermal properties on a qualitatively new 

level. After enhancing the practical and theoretical basis of the suggested method 

(see, e.g. Popov 1984, 1997; Popov et al. 1985) as described by Popov et al. (2016) 

and Popov et al. (2019), the modern thermal core logging technique has the 

following inaccessible previously features: 

1. Simultaneous determination of thermal conductivity and volumetric heat 

capacity during one experiment for the same core sample. 

2. Measurements are conducted on full-sized, split, broken core samples, core plugs, 

and core cuttings without additional mechanical treatment. 
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3. Absence of contact between the instrument sensors and the rock sample. Thus, 

measurements are non-destructive. 

4. Determining both thermal conductivity and thermal diffusivity tensor 

components for every rock sample. 

5. High productivity of measurements due to high measurements speed and wide 

range of permissible lengths of core samples. 

6. The modern optical scanning technique provides measurements accuracy and 

precision for the thermal conductivity of ±1.5% and ±1.5% (confidence level 

0.95), respectively, within the range of 0.2-45 W·m-1·K-1.  

7. The modern optical scanning technique provides measurements accuracy and 

precision for the volumetric heat capacity of ±2.0% and ±2.0% (confidence level 

0.95), respectively, within the range of 0.8-4 MJ·m-3·K-1. 

8. The spatial resolution of thermal property profiling varies according to measuring 

regime parameters. Today, the minimal spatial resolution that can be provided 

with laser optical scanning instrument is 0.2 mm, although the typical spatial 

resolution is 1 mm. 

The effective and vast implementation of the developed experimental basis 

within joint industrial projects of Skoltech and leading Russian oil and gas 

companies during 2015-2021 allowed us to collect extensive experimental database 

on rock thermal properties and well-logging data. It enabled a qualitatively new 

framework for developing an advanced technique for well-log based determining 

rock thermal properties.  

Optical scanning instruments' unique metrological characteristics allowed us to 

obtain reliable experimental data on rocks' thermal properties, including organic-rich 

shales and heavy oil reservoirs. Since the optical scanning instrument has a high 

spatial resolution, the possibilities for considering rock heterogeneity and 
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accounting for spatial resolution of other logging tools were also enabled. Moreover, 

thanks to the possibility of registering coefficient of thermal anisotropy for every 

core sample, the thermal anisotropy of rocks became accessible for thorough 

analysis. The extensive database on rock thermal properties and well-logging data is 

an equally important result of the vast implementation. Thus, qualitatively new 

possibilities opened up to develop the technique for well-log based determining rock 

thermal properties accounting for thermal anisotropy, heterogeneity, and in situ 

pressure, temperature and saturation via integrating thermal core logging technique 

with well-logging data.  

1.6  Conclusions 

1. Enhancement of BPSM, EOR modelling, techniques of terrestrial heat flow 

density determination and geothermal prospecting requires advancement in well-

log based approaches for determining rock thermal properties via integrating 

thermal core logging data and well-logging data. 

2. To satisfy the present-day needs of petroleum engineering and geothermal 

investigations, the advanced technique for well-log based determining rock 

thermal properties should provide reliable data on rocks' thermal conductivity 

and volumetric heat capacity. 

3. The advanced well-log based technique for determining rock thermal properties 

accounting for thermal anisotropy, rock heterogeneity, in situ pressure, 

temperature and saturation is highly required.  

4. A well-defined and reproducible workflow of application of an advanced 

technique for well-log based determining rock thermal properties accounting for 

thermal anisotropy, heterogeneity and in situ pressure, temperature and saturation 

is required. 
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5. Extensive testing and implementation of the advanced technique for determining 

rock thermal properties is a primary concern for enhancing the quality of data on 

rock thermal properties and terrestrial heat flow density for improvement of basin 

and petroleum system modelling and thermal EOR modelling in oil & gas science 

and industry. 
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Chapter 2. Determining thermal conductivity and volumetric heat 

capacity of anisotropic rocks based on regression analysis 

Literature review (presented in Chapter 1) showed that many studies were 

performed concerning interrelations between thermal properties and other physical 

properties. However, the gained results showed that there are no unique correlation 

trends for sedimentary rocks or other rock types. Therefore, an important conclusion 

that can be inferred is that many factors can control both rock thermal conductivity 

and volumetric heat capacity. These factors are mineral composition, porosity, the 

geometry of pore-crack space, type of saturating fluid, degree of compaction, and 

characteristics of intergranular contacts. Hence, there are no universally applicable 

correlations that can be used for predicting rock thermal properties. 

Considering the complex nature of interrelations between rock thermal and 

other physical properties, the studies related to correlation analysis are still highly 

relevant. Moreover, in the light of the modern experimental basis of thermal 

petrophysics, these studies should be performed accounting for thermal anisotropy 

and heterogeneity.  

2.1 Determining thermal properties accounting for thermal anisotropy via 
sonic log data 

For most porous rocks, the relation between thermal conductivity and other 

physical properties (that can be inferred from well-logging data) is principally 

conditioned by the essential contrast of thermal conductivity of rock matrix and 

pore-filling fluid. This contrast is often more than ten times, as it may be seen from 

Figure 2 (upper panel). For low-porous organic-rich shales, the correlations are 

principally conditioned by low thermal conductivity and high organic matter 

content, as Popov et al. (2017) described. If the contrast of thermal conductivity of 

rock matrix and pore-filling fluid is large, a large contrast between volumetric heat 
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capacity of the rock matrix and pore-filling fluid / organic matter also occurs (Figure 

2, bottom panel). 

 

Figure 2. Thermal conductivity and volumetric heat capacity for rock-forming 
minerals and pore fluids. 

The anisotropy of sedimentary rocks can be conditioned by directional 

alignment of clay particles, microcracks, kerogen inclusions, low-aspect ratio pores 

and layering as reported by Sayers (2013). Chekhonin et al. (2018) showed a 

statistically significant correlation between thermal anisotropy coefficient and 

Young’s modulus anisotropy for organic-rich shales that is due to the high content 

of organic matter and the contrast between properties of the rock matrix and organic 

matter. Moreover, Kim et al. (2012) performed a set of laboratory experiments and 

showed for three types of anisotropic rocks (gneiss, shale, and schist) that principal 

axes of thermal conductivity, elastic moduli, and p-wave velocity coincide and have 

the same directions. Thus, assuming a structural nature of thermal anisotropy we can 

conclude that it is in principle possible determining rock thermal conductivity 

accounting for thermal anisotropy from well-logging data. 
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2.1.1 Workflow 

In this Section, we suggest a novel well-log-based approach for determining 

rock thermal conductivity and volumetric heat capacity of sedimentary rocks 

accounting for thermal anisotropy, heterogeneity, in situ pressure, temperature, and 

saturation. The developed approach consists of several principal steps.  

In the first step, lithological differentiation is performed using well-logging 

data via constructing a rock volumetric mineralogical model. A rock volumetric 

mineralogical model can be obtained via inversion of standard logs or via pulsed 

neutron gamma-ray logging (Serra, 1986). Geological differentiation of intervals 

where core samples are available can be performed by a geologist or based on 

petrophysical laboratory investigations.  

In the second step, for each lithological type, the directions of principal axes of 

thermal conductivity are determined. This step is of a special significance since 

directions of principal axes do not always coincide with directions parallel and 

perpendicular directions to the bedding plane that can be determined via visual 

analysis of core samples. The directions of principal axes of thermal conductivity 

can be inferred from results of thermal core logging along several distinct scanning 

lines as described by Popov et al. (2016). Moreover, these directions can be 

determined through a set of geomechanical tests of standard core plugs as it was 

reported by Kim et al. (2012) or through a multilevel ultrasonic sounding as 

described by Tikhotsky et al. (2018). 

In the third step, measurements of rock thermal conductivity along directions 

of principal axes for each lithological type are performed with optical scanning 

technique at atmospheric pressure and temperature. Simultaneously, measurements 

of rock volumetric heat capacity are conducted. Additionally, sonic velocities along 
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these directions are determined from sonic log data. Sonic velocities can be 

determined on core samples also.  

In the fourth step, the dependencies of rock thermal conductivity and 

volumetric heat capacity from porosity, saturation, pressure and temperature are 

determined. This can be performed through laboratory investigations, or some of 

these dependencies can be inferred from literature data. 

Additionally, the regression analysis of “rock thermal conductivity – sonic 

velocity” and “volumetric heat capacity – sonic velocity” is performed for 

corresponding directions of principal axes of the thermal conductivity tensor and 

accounting for rock heterogeneity (in other words, accounting for the difference in 

spatial resolution of optical scanning instrument and, e.g. sonic log tool). For some 

rocks, there are no statistically significant dependencies between volumetric heat 

capacity and sonic velocity. For such cases, another well log data can be involved 

within the workflow for predicting rock volumetric heat capacity. After that, for each 

lithological type, rock thermal properties are determined within non-coring intervals 

from sonic log data at atmospheric pressure and temperature using the established 

regression equations.  

In the fifth step, the predicted thermal property data are corrected for in situ 

temperature, pressure and saturation using the established in the fourth step 

dependencies. The data on in situ temperature can be inferred from temperature 

logging and data on in situ pressure can be inferred from results of the formation 

test. Wang et al. (2018) showed experimentally that there are different dependencies 

of thermal conductivity components from temperature and pressure for parallel and 

perpendicular directions. Thus, these corrections should be included for each 

principal axes of thermal conductivity.  
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2.1.2 Case study: thermal properties of organic-rich shales  

The suggested approach for the sonic log-based determination of rock thermal 

properties was tested on data from three wells (A, B, C) drilled through the Bazhenov 

Formation (West Siberia Basin, Asian part of Russia). 

2.1.2.1 Analysis and processing of the available input data 

The mineral and petrophysical characteristics of the rocks in the case study are 

given in Table 1. The Bazhenov Formation was formed under coastal-marine 

conditions. More detailed information about the geological peculiarities of the 

Bazhenov Formation was provided by Balushkina et al. (2014). The lithological 

profiles of the Bazhenov Formation were inferred from high-definition 

spectroscopy.  

Table 1. Lithological and petrophysical characteristics of the rocks in the case study 
based on XRD analysis results. 

Wells 
Dominant mineral composition Organic matter Reservoir properties 

Mineral 
Mean mass content, 

% (SD) 
Kerogen 

type 
Mean TOC, % 

(SD) 
Porosity, % 

(SD) 
ln(Permeability), 

mD (SD) 

A, B, C 
(Bazhenov 

Formation) 

Silicate minerals 

(SiO2) 
55.1 (22.3) 

II 16.5 (7.0) 1.1 (0.6) -2.8 (2.3) 

Pyrite 4.3 (4.0) 

Albite 7.2 (3.4) 

Illite 9.4 (7.2) 

Calcite 10.1 (15.6) 

Carbonate minerals 78.1 (25.8) 

Clay minerals 1.4 (2.7) 

*SD stands for standard deviation, TOC stands for total organic carbon. Kerogen typing was performed 

according to Tissot and Welte (1984). ln stands for natural logarithm. For specific depth points, the sum of 
mineral content, organic matter and porosity yields 100%. 

 According to Chekhonin et al. (2018), the Bazhenov Formation in the 

investigating region is characterized by negligible 3D thermal anisotropy (that was 

assessed on flat ends of full-size core samples) and can, therefore, be treated as a 

transversely isotropic medium (2D anisotropy) with the vertical axis of symmetry. 
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2.1.2.2 Thermal core logging results for highly anisotropic rocks of the Bazhenov 
Formation 

 Continuous thermal core logging was conducted on 1062 full-sized core 

samples from three wells (42 m in total). Figure 3 plots typical full-sized core 

samples of the Bazhenov Formation.  

 

Figure 3. Photograph of typical unsawed full-sized core samples of the Bazhenov 

Formation. 

Since the principal axes of the thermal conductivity tensor are parallel and 

perpendicular to the bedding plane, scanning lines were chosen parallel and 

perpendicular to the bedding plane on the flat surfaces of the sawed core samples.  

Continuous profiles of the thermal conductivity components parallel and 

perpendicular to the bedding plane directions and the volumetric heat capacity for 

full-diameter core samples of the Bazhenov Formation recovered from three wells 

are plotted in Figure 4. Statistical assessments of the variations in rock thermal 

conductivity parallel and perpendicular to the bedding plane, coefficient of thermal 

anisotropy (KT = λ||·λꞱ
-1), and coefficient of thermal heterogeneity (β = (λmax-λmin) 

·λavr
-1) are summarized in Table 2. 

Table 2. Results of thermal property measurements of the studied core samples. 

Formation Well 

λ| | , 

W·m-1·K-1 

Mean (SD) 
(min – max) 

λꞱ, 
W·m-1·K-1 

Mean (SD) 

(min – max) 

KT 

Mean (SD) 
(min – max) 

β 
Mean (SD) 
(min – max) 

C, 

MJ·m-3·K-1 

Mean (SD) 
(min – max) 

Number 
of core 

samples 

The total length 
of core samples 

under study (m) 

Bazhenov 

Formation 

A 
1.80 (0.44) 
(0.75-4.80) 

1.28 (0.47) 
(0.20-4.78) 

1.50 (0.36) 
(1.00-3.12) 

0.18 (0.20) 
(0.03-2.61) 

2.00 (0.16) 
(1.75-2.70) 

549 19 

B 
1.85 (0.39) 
(0.82-4.46) 

1.36 (0.49) 
(0.37-2.94) 

1.49 (0.36) 
(1.00-3.01 

0.20 (0.15) 
(0.04-2.28) 

1.90 (0.11) 
(1.65-2.31) 

374 17 

C 
1.98 (0.43) 

(1.28-3.26) 

1.55 (0.68) 

(0.71-3.12) 

1.39 (0.28) 

(1.00-2.78) 

0.17 (0.13) 

(0.03-0.78) 

1.95 (0.08) 

(1.77-2.22) 
139 6 
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Systematic thermal anisotropy of the Bazhenov Formation rocks is principally 

conditioned by a specific distribution of organic matter (Balushkina et al., 2014). 

The distribution of kerogen is uniform, and areas with accumulations of kerogen 

within rock samples have elliptical, spotted, and layered-plane horizontal-lenticular 

fibre forms.  

 

Figure 4. Results of rock thermal property measurements for wells A (left), B 

(middle), and C (right). λ stands for rock thermal conductivity; subscripts  and ⊥ 

stand for the thermal conductivity components in the directions parallel and 
perpendicular to the bedding plane, respectively; VHC stands for volumetric heat 
capacity; grey lines represent the original profiles of the rock thermal properties. 
Black, red and blue lines represent averaged thermal property profiles in a moving 
0.6 window. The first two digits for the depths are hidden for confidentiality here 
and elsewhere in the text. 
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2.1.2.3 Regression analysis results and prediction of rock thermal properties 

For the investigating wells, the results of cross-dipole sonic logging were 

available. From these results, sonic velocities for parallel and perpendicular to the 

bedding plane directions were inferred assuming that elastic constants C12 and C13 

are equal and the Thomsen parameters delta is close to zero (see Schoenberg et al., 

1996). The vertical resolution of the sonic scanner was 0.6 m. Thus, before the 

regression analysis, the results of thermal core logging were upscaled (averaged 

within 0.6 m moving window) to account for rock heterogeneity.  

Regression analysis of the data revealed that the dependency between rock 

thermal conductivity and sonic velocity is the same for all lithological types of the 

Bazhenov Formation. It may be reasoned by the relatively stable elastic properties 

of the rock matrix. Therefore, the considering data was not subdivided into smaller 

datasets according to the results of lithological differentiation. During correlation 

analysis, a simple linear regression model was used. The available data were 

subdivided into two random datasets: (1) a training dataset (67% of all the data) and 

(2) a test dataset (comprising 33% of all the data). The training dataset was used to 

fit the regression model to experimental data, while the test dataset was used to 

provide and unbiased evaluation of the regression model fit on the training dataset 

(terms train and test dataset in a more detailed way are described, e.g, by Goodfellow 

et al., 2016). The regression analysis of data on rock volumetric heat capacity and 

sonic velocity revealed no statistically significant dependencies for the considering 

rocks. Nevertheless, a statistically significant dependence was observed between the 

rock volumetric heat capacity and the photoelectric factor (PEF). Therefore, 

subsequent predictions of rock volumetric heat capacity were performed via the data 

on rock photoelectric factor. The results of correlation analysis of rock thermal 

conductivity and sonic velocity accounting for thermal anisotropy and rock 
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volumetric heat capacity and photoelectric factor of rocks for training data are 

plotted in Figure 5. 

 

Figure 5. Results of correlation analysis between thermal conductivity and sonic 
velocity of rocks for parallel (left panel) and perpendicular (central panel) direction 
to the bedding plane and rock volumetric heat capacity and photoelectric factor (right 
panel). Dashed line represents the regression trend.  

The presented correlations coefficients (square root from the determination 

coefficient in case of linear regression model) in Figure 5 are statistically significant 

for a 0.95 confidence level.   

 The established regression equations were used to predict thermal properties 

on a train dataset. There are different ways of evaluating the quality of the 

performance of the proposed approach. To provide a comprehensive evaluation, the 

following set of statistical parameters were used: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑚𝑒𝑎𝑠

𝑖 −𝑋𝑝𝑟𝑒𝑑
𝑖 )

2
𝑁
𝑖=1

𝑁
          (1) 

𝑃 = 𝜎[𝛥] = √
∑ (𝛥𝑖−𝛥)

2𝑁
𝑖=1

𝑁−1
                           (2) 

𝐴 =
1

𝑁
∑ (𝑋𝑚𝑒𝑎𝑠

𝑖 −𝑋𝑝𝑟𝑒𝑑
𝑖 )𝑁

𝑖=1               (3) 

where RMSE is the root mean squared error; P represents the precision; A represents 

the accuracy; Xmeas is a measured value, Xpred is a predicted value; N is the number 
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of points; Δ is the relative divergence between the measured and predicted values; 

and �̅� is the mean relative divergence between the measured and predicted values; σ 

is the standard deviation. In addition, the coefficient of determination (R2) between 

predicted and measured values was calculated. The results of prediction of thermal 

conductivity and volumetric heat capacity on a test dataset are plotted in Figure 6. 

 

Figure 6. Results of prediction of thermal conductivity for parallel (left panel) and 
perpendicular (central panel) direction to the bedding plane from sonic velocity and 

rock volumetric heat capacity from photoelectric factor (right panel). Solid line 
presents a perfect prediction of rock thermal properties (x=y), grey dashed lines 
present the prediction uncertainty intervals. 

2.1.2.4 Corrections for in situ temperature and pressure 

Based on the hydrodynamic well tests results for well A, the approximate 

average formation pressure and temperature for the Bazhenov Formation are 36 MPa 

and 100 °C, respectively. Accurate assessment of in situ saturation for the 

investigated formation is complicated because it exhibits low permeability and 

porosity (Table 1). Moreover, the formation exhibits a high degree of anisotropy. 

Hence, we considered that investigated rocks are saturated only by oil. 

Following the foregoing workflow, the predicted rock thermal properties 

require correction for in situ temperature and pressure. As we did not measure rock 
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thermal properties at high temperature and pressure for the studied core samples, we 

use data available in the literature to account for in situ conditions. 

Recent investigations of rock samples from the Bazhenov Formation performed 

by Gabova et al. (2020) have revealed that the average decrease in thermal 

conductivity (λ‖) s at 100 °C is ~2%. However, there are still no reliable experimental 

data in the literature on the dependencies of thermal conductivity on temperature 

accounting for the thermal anisotropy of the rocks of the Bazhenov Formation. Thus, 

we consider that parallel and perpendicular directions, the necessary temperature 

corrections for the thermal conductivity of core samples from the Bazhenov amounts 

to 2%. 

There is a lack of reliable experimental data on the dependencies of thermal 

conductivity of organic-rich shales on pressure. For oil shale samples from the Green 

River formation, an increase of 2% in thermal conductivity was observed at 12 MPa 

(Prats and O’Brien, 1975). However, for the Bazhenov Formation, the approximate 

in situ pressure exceeds 30 MPa. Research results reported by DuBow et al. (1976) 

show that the pressure effect on the thermal conductivity of oil shales becomes 

significant only at high temperatures (400-600 °C). Thus, we can assume that the 

necessary pressure correction for thermal conductivity is less than 5%. 

Waples D. & Waples S. (2004) noted that pressure effects on volumetric heat 

capacity are negligible because the changes in the specific heat capacity and density 

of rocks are minor (for the in situ pressure of the Bazhenov Formation, the increase 

in pressure is less than approximately 1%). Thus, the effects of pressure on 

volumetric heat capacity are not considered in our research. The temperature 

correction for rock volumetric heat capacity can be inferred from the research results 

presented by Savest & Oja (2013). According to the given experimental data, the 
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increase in volumetric heat capacity for oil-bearing shales at temperature 104 °C is 

approximately 10%. 

2.1.3 Conclusions 

An approach for determining the thermal properties of rocks accounting for 

thermal anisotropy from sonic log data was suggested and tested. The approach 

enables simultaneous determination of the rock thermal conductivity and volumetric 

heat capacity. Moreover, this approach accounts for the influence of in situ 

thermobaric conditions on thermal properties with differentiation of the effect on 

distinct thermal conductivity tensor components. It was shown that the approach 

could be successfully applied based on thermal core logging.  

The experimental dataset of rock thermal properties inferred from continuous 

thermal core logging and reliable sonic-logging data from three wells drilled through 

anisotropic organic-rich shales were used to develop this approach. The results show 

that rock thermal conductivity components can be predicted from well-logging data 

with uncertainties of less than ±16 % for thermal conductivity parallel to the bedding 

plane and less than ±17 % for thermal conductivity perpendicular to the bedding 

plane (for a 0.95 confidence level). Volumetric heat capacity can be predicted from 

well-logging data with an uncertainty of less than ±10 % (for a 0.95 confidence 

level). 

The effectiveness of the new approach is  supported by: 

 determination of principal axes of thermal conductivity,  

 determination of key components of thermal conductivity along its principal 

axes, 

 accounting for rock heterogeneity, 

 regression analysis applied to the components of the thermal conductivity. 
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2.2 Machine learning for determining rock thermal properties from well-
logging data 

Many studies related to well-log based predictions of rock thermal properties 

were focused on multiple regression analysis and establishing regression equations 

that will provide the most precise predictions of rock thermal properties. Some of 

them used linear regression models (Goss et al., 1975; Goss and Combs, 1976; 

Hartmann et al., 2005; etc.) when others concentrated on non-linear dependencies 

(Evans, 1977; Vacquier et al., 1988; etc.).  

However, considering traditional theoretical models of rock thermal 

conductivity (see, e.g. Clauser 2009), I can conclude that there are non-linear and 

implicit dependencies between rock thermal properties and other physical properties 

in high-dimensional space. Considering the recent advances in machine-learning 

methods, the application of such techniques is a promising framework for well-log 

based determination of rock thermal properties. 

As it was mentioned in Section 1.3, there were only several attempts to apply 

neural network algorithms for predicting rock thermal conductivity (Goutorbe et al. 

2006; Gasior and Przelaskowska 2014). Therefore, the applicability of diverse 

machine learning methods for well-log based determination of rock thermal 

conductivity should be assessed. 

Extending the approach described in Section 2.1 for predicting rock thermal 

properties from sonic log data, we involve additional logs and multiple regression 

analysis for predictions. The assessment of the effectiveness of diverse machine 

learning methods for determining rock thermal properties was performed. The 

objects of investigations are (1) a conventional reservoir of a heavy oil field that 

mainly consists of carbonate rocks and (2) an unconventional hydrocarbon reservoir 

consisting of organic-rich shales, described in Section 2.1.2. 
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2.2.1 Effectiveness of distinct machine learning algorithms for predicting rock 
thermal properties: case studies from conventional and unconventional 
hydrocarbon reservoirs 

For the task at hand, supervised machine learning algorithms were considered 

to reconstruct thermal properties from well-logging data. Well-logging data were 

used as input data, while experimental data on rock thermal properties were used as 

an output. The following set of algorithms conceptually distinct from each other 

were tested for the indirect determination of rock thermal properties: k-Nearest 

Neighbours (Larose 2014), Neural Network (Hinton 1989), Gaussian Process 

(Rasmussen & Williams 2006), Random Forest (Breiman 2001), AdaBoost (Freund 

& Schapire 1997), Gradient Boosting (Friedman 1999), Extra Trees (Pierre et al. 

2006) and support vector regression (Platt 1999). 

2.2.1.1 Geological settings and field data 

The first case study is the heavy oil field located in the Timan- Pechora Basin 

(the northeastern part of the East European Craton). Target intervals are mainly 

composed of limestones of the Carboniferous-Lower Permian age. According to 

petrophysical data, rock porosity within the target interval varies from 0.7 to 26.5 

per cent; mean rock porosity is 10.1 per cent (the standard deviation is 7.6 per cent), 

rock permeability varies from 0.01 up to 1151.18 mD, mean rock permeability is 

33.7 mD (standard deviation is 127.96 mD). Pore space is composed of fractures and 

intergranular space. Reservoir oil is highly viscous (mean value of oil viscosity is 

710 mPa·s). Experimental data from the two wells (D and E) were involved in our 

research. The total length of the investigated interval is 307 and 134 m for wells D 

and E, respectively. 

The thermal properties of rocks were measured using the thermal core logging 

technique. The total measurement uncertainty was not more than ±2.5 per cent (for 
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0.95 confidence level). The results of thermal core logging for considering wells D 

and E are plotted in Figure 7.  

According to the results of thermal core logging, we can conclude that the 

investigated carbonate rocks are characterized by negligible thermal anisotropy and, 

therefore, can be treated as isotropic rocks. 

The second case study is the same described in Section 2.1.2 (see Tables 1 and 

2). The results of thermal core logging are presented in Figure 4. Wells A, B and C 

are also considered in this Section. 

The following set of well-logging methods for wells D and E was available: 

spectral gamma-ray log, density log, sonic log, induction log, calliper and 

compensated neutron porosity log. Well logging data available for wells A, B and C 

include the same set of logs and, additionally, cross-dipole sonic log and nuclear 

magnetic resonance log data. The vertical resolution and depth of investigation 

depend on the measurement method (see, e.g., Flaum and Theys, 1991), tool 

specifications, logging speed, etc. Nevertheless, in Table 3, some specifications of 

the logging tools are summarized to underline (1) the difference in the vertical 

resolution of thermal core-logging and well-logging data (and the necessity of 

thermal property upscaling before a joint analysis of the input data in reference 

intervals) and (2) the vertical resolution of the results obtained via the suggested 

approach for determining the rock thermal properties from the well-logging data. 

Well logging data for wells A and E are presented in Figure 8.  
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Figure 7. Results of thermal core logging for wells D and E. λ stands for thermal 
conductivity, C stands for volumetric heat capacity and KT stands for coefficient of 
thermal anisotropy. 1 - pelitomorphic with irregular silicification and pyritized, 
weakly clayey limestones, 2 - argillaceous-terrigenous, pyritized, fissured 
formations, 3 - organogenic-detrital limestones, 4 – siliceous organogenic-detrital 

limestones, 5 - interbedding of organogenous-detrital, with silicification, clayey 
limestone and highly clayey dolomite, 6 - organogenous-detrital, irregularly 
dolomitized, highly clayey limestones, 7 - organogenous detrital, with silicification, 
clayey limestones.. Measurement results for each core sample are shown in grey; 
corresponding results modified to the logging scale are shown in black. 
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Figure 8. Results well logging for wells A (left panel) and E (right panel).  

 

 

 

 

 



58 
 

Table 3. Key specifications of the well-logging tools used. 

Parameters Well-logging tool 
Vertical 

resolution, cm 
Depth of 

investigation, cm 
Precision* 

Natural radioactivity 
(γ) 

Gamma-ray spectrometry 
(NGS) 

30 25 ±2% 

Neutron porosity 
(NPHI) 

Compensated neutron 
logging (CNL) tool 

30 23 ±6% 

Bulk density (ρ) 
Three-Detector Lithology 

Density (TLD) tool 
45 12 

±0.01 g·cm-3 
Photoelectric factor 

(PEF) 
±0.8 b/e 

Sonic velocity** 
(VP and VS) 

Sonic scanner 60 7 borehole radii ±2% 

Elemental fractions LithoScanner 45 20 
Depends on logging speed 

(usually ±2%) 
Total porosity, volume 

of bound water 
MR Scanner 45 3-10 

Total porosity: ±1%; 

free fluid porosity: ±0.5%. 

Electrical resistivity 
Array induction tool 

(AT10, AT90) 
0.3-1.22 25-228 ±2% 

*Precision of the used tools are given according to the tool documentation and can vary depending on logging speed, 

absolute values of the physical properties, borehole size, etc. 
**For estimation of the Thomsen’s anisotropy parameters, the data from a full set of receivers are usually used, so the 
vertical resolution becomes worse. 
 

2.2.1.2 Calibrating and testing of regression models 

The available data both for wells A, B, C and for wells E and D were subdivided 

into two subsets: (1) a training dataset (comprising 67% of all the data) and (2) a test 

dataset (comprising 33% of all the data). The training dataset was used to fit the 

regression model to experimental data, while the test dataset was used to provide an 

unbiased evaluation of the regression model fit on the training dataset.  

For carbonate rocks of the heavy oil field, we used all well logs for input. For 

organic-rich shales of the Bazhenov Formation, the following set of input parameters 

was used: neutron porosity (NPHI), bulk density (ρ), photoelectric factor (PEF), 

radioactivity inferred from gamma-ray logging (GR), total porosity inferred from 

NMR logging (PHINMR), sonic velocities parallel and perpendicular to the bedding 

plane directions (VP
‖, VP

Ʇ, VS
‖, and VS

Ʇ), P- and S-wave acoustic impedances (VP
Ʇ·ρ 

and VS
Ʇ·ρ), and electrical resistivity inferred from array induction tool application 

(RT
AT10 and RT

AT90). The sonic velocities parallel and perpendicular to the bedding 
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plane directions were inferred from the standard interpretation of the cross-dipole 

sonic log data. The available electrical log data did not allow assessing the in situ 

electrical resistivity while accounting for anisotropy. 

In our research, we have tuned hyperparameters of regression models using k-

fold cross-validation method (Stone, 1974) on a train data set. The cross-validation 

was performed over the predefined grid of parameters. Cross-validation principally 

consists of the following steps: 

 Firstly, we specify the grid of hyperparameters for regression models. 

Simultaneously, the configuration of k-folds is specified. We subdivided our 

train data into three k-folds. 

 Secondly, on k–1 folds, optimal hyperparameters are found within the 

predefined ranges and intervals (grid-search) to fit the regression model. The 

resulting model is validated on the remaining fold. After that, another set of 

k–1 folds is used for regression model training. This procedure cyclically 

repeats k times. Mean squared error (MSE) was used as a performance 

measure to evaluate the model fit. On every iteration, found hyperparameters 

and evaluation scores are retained.  

 The obtained results are summarized in the third step, and the retained 

hyperparameters are averaged to select the most optimal regression model. 

The tuned hyperparameters for considering machine-learning algorithms are 

summarized in Table 4. 

The determined optimal hyperparameters for regression models on the training 

data set were used for well-log based determination of rock thermal properties on 

the test dataset. As well as in Section 2.1.2.3, the performance of each algorithm was 

assessed via accuracy, precision, RMSE and R2 between measured and predicted 
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values on a test dataset. Accuracy and precision are reported for a 0.95 confidence 

level. 

Table 4. The tuned hyperparameters of the considered algorithms 

Machine learning algorithm Tuned hyperparameters 

K-Nearest Neighbours N – neighbors, metric, p order. 

Fully-connected neural 

network 
Hidden layer size, activation, learning rate, solver, alpha. 

Gaussian Precess Regressor Alpha, length scale, variance. 

Random Forest Max depth, n estimators, min samples split, min samples leaf. 
AdaBoost learning rate, n estimators, max depth. 

Gradient Boosting 
learning rate, n estimators, max depth, max features, min samples 

split, min samples leaf 

Support vector regression kernel, gamma, epsilon 

Extra trees 
max features, n estimators, max depth, min samples split, min 

samples leaf 

 

The results of predicted rock thermal conductivity and volumetric heat capacity 

from well-logging data for carbonate rocks of a heavy oil field are summarized in 

Table 5. The predicted rock thermal conductivity for parallel and perpendicular 

directions to the bedding plane and the volumetric heat capacity of organic-rich 

shales are presented in Table 6. 

Table 5. The results of prediction thermal conductivity and volumetric heat capacity 
on a test dataset for carbonate rocks of heavy oil field. 

Machine learning algorithm 

λ C 

R2 
RMSE P A 

R2 
RMSE P A 

W·m-1·K-1 % % MJ·m-3·K-1 % % 

Random Forest 0.88 0.12 9.6 0.5 0.29 0.09 8.5 -0.3 

Gradient Boosting 0.86 0.12 10.4 0.6 0.30 0.08 8.1 -0.1 

Extra trees 0.85 0.12 10.7 0.7 0.28 0.10 8.6 -0.5 

Support vector regression 0.84 0.13 10.9 0.3 0.26 0.11 9.1 -0.1 

Gaussian Precess Regressor 0.78 0.14 11.5 0.0 0.25 0.12 9.8 0.1 

Fully-connected neural network 0.77 0.14 12.8 -0.1 0.25 0.12 9.7 0.0 

AdaBoost 0.66 0.18 12.4 -0.9 0.24 0.13 10.2 0.1 

K-Nearest Neighbours 0.62 0.19 12.9 -1.0 0.25 0.12 10.1 0.6 
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Table 6. The results of prediction thermal conductivity and volumetric heat capacity 
on a test dataset for organic-rich shales. 

Machine learning 
algorithm 

λ || λꞱ C 

R2 
RMSE P A 

R2 
RMSE P A 

R2 
RMSE P A 

W·m-1·K-1 % % W·m-1·K-1 % % MJ·m-3·K-1 % % 

Gradient Boosting 0.81 0.12 7.7 0.0 0.75 0.19 15.4 0.1 0.51 0.09 8.8 0.2 

Random Forest 0.80 0.13 7.8 -0.1 0.74 0.20 15.8 0.6 0.54 0.08 8.4 0.1 

Extra trees 0.80 0.13 7.9 -0.1 0.73 0.20 15.7 0.5 0.49 0.11 8.9 -0.2 

Support vector 
regression 

0.74 0.13 8.7 -0.1 0.69 0.21 16.2 0.8 0.48 0.12 9.0 -0.3 

K-Nearest Neighbours 0.73 0.14 8.8 0.0 0.65 0.22 16.9 0.6 0.44 0.13 9.6 0.4 

Fully-connected neural 

network 
0.68 0.15 8.9 -0.2 0.70 0.20 16.0 0.4 0.49 0.15 8.9 0.1 

Gaussian Precess 

Regressor 
0.61 0.18 9.0 0.1 0.61 0.23 16.9 0.3 0.40 0.18 10.2 0.6 

AdaBoost 0.58 0.22 10.1 -0.2 0.55 0.25 17.5 0.2 0.42 0.15 9.9 0.1 

 

The presented results in Tables 5 and 6 show that among considered machine 

learning algorithms, the ensemble tree-based algorithms (gradient boosting, random 

forest, and extra trees methods) provided the lowest values on uncertainties when 

predicting thermal conductivity and volumetric heat capacity of rocks. AdaBoost 

and K-Nearest Neighbors algorithms, in most cases yielded the lowest performance 

according to calculated metrics.  

Tables 6 demonstrates that thermal conductivity parallel to the bedding plane 

can be predicted with a precision of 7.7 % that is approximately twice less than 

prediction precision for thermal conductivity perpendicular to the bedding plane. 

This can be due to the more significant influence on the thermal properties 

perpendicular to the bedding plane of micro-cracking from core unloading. Another 

reason is rock heterogeneity. Since during thermal core logging along the 

perpendicular directions to the bedding plane we conduct only several measurements 

on one core sample, the obtaining values of thermal conductivity perpendicular to 

the bedding plane can be biased due to rock heterogeneity.   
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Compared to ensemble tree-based algorithms, the fully connected neural 

network architecture provided higher uncertainties on a test dataset for carbonates 

and organic-rich shales. Therefore, the application of ensemble tree-based 

algorithms seems preferable. However, other neural networks architectures (such as 

convolutional or recurrent neural networks) should also be considered.  

2.2.2 Conclusions 

The novel approach described in Section 2.1.1 for predicting rock thermal 

properties from sonic log data was extended by involving additional logs and 

multiple regression analysis using machine learning. The assessment of the 

effectiveness of diverse machine learning methods for determining rock thermal 

properties was performed. The vast experimental data from five wells from 

conventional and unconventional hydrocarbon reservoirs were considered within the 

cases study.  

Testing diverse machine learning algorithms for predicting rock thermal 

properties revealed that ensemble tree-based algorithms tend to yield lower accuracy 

and precision values when predicting rock thermal conductivity and volumetric heat 

capacity. Thermal conductivity for perpendicular direction to the bedding can be less 

accurate predicted from well-logging data. 

From a comparison of thermal property profiles predicted from well-logging 

data with experimental data, it can be concluded that volumetric heat capacity, 

thermal conductivity parallel and perpendicular to the bedding plane can be 

predicted with uncertainties of less than 9 %, 10 % and 16 %, respectively. Thus, the 

application of ensemble tree-based algorithms for predicting rock thermal properties 

accounting for thermal anisotropy is preferable. 
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2.3 Sensitivity study of regression models for predicting rock thermal 
properties 

The sensitivity analysis of a regression model allows describing the severity of 

change of the model’s output caused by the change of a given input. It is a highly 

effective instrument for analyzing interrelations between model parameters and 

model outputs. Moreover, sensitivity analysis is necessary to understand the 

tolerance of a given model to noise and the acceptable quality of input data.  

The regression models established for well-log based determining rock thermal 

properties are constrained by the deposition environment and can be applied only 

for the analogous rock with similar well-logging data (Blackwell et al., 1989). A key 

aspect of predicting rock thermal properties is assessing prediction quality. 

However, there are many cases when the same well-logging was conducted with 

different logging tools that provide distinct measurement quality. Table 7 

summarizes the technical specifications of four logging tools made by different 

producers.  

There are cases when measurement precision is two (or even three) times lower 

for specific logging methods when different logging tools are used. Evidently, when 

the quality of logging data varies, the quality of well-log based predictions of rock 

thermal properties also varies. Therefore, the assessment of the quality of predicting 

thermal properties should consider the variations in the quality of well-logging data. 

Thus, the sensitivity analysis of regression models should be performed to 

understand the model behaviour when the quality of input data changes. 
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Table 7. The technical specifications of logging tools suggested by two producers.  

Logging method Producer Precision* Measurement range  

Gamma ray logging  

 

Schlumberger 

 

 

 

±5% 0 – 2000 API 

Density logging ±0.01 g·cm-3 1.04-3.05g·cm-3 

Neutron porosity 

logging 

0-20 p.u.: ±1 p.u. 

30 p.u.: ±2 p.u. 

45 p.u.: ±6 p.u. 

0-60 p.u. 

Sonic velocity logging ±6.6 us/m 131.0 – 1312.0 us/m 

Gamma ray logging 

NefteGasGeophysica 

±15% 0-2500 API 

Density logging ±0.03 g·cm-3 1.7 – 3.0 g·cm-3 

Neutron porosity 

logging 
±4 p.u. 0 – 40 pu 

Sonic velocity logging ±15.0 us/m 120.0 – 500.0 us/m 

*Confidence level was not given within the technical specifications and therefore is not reported 
here. The data on metrological characteristics of tools were inferred from service catalogs of 

the corresponding producer. 

 

 Due to the high predictive advantages of the neural network, a major part of 

publications related to sensitivity study of regression models developed using 

machine learning methods concern neural network models (Maosen et al., 2016). 

Among the variety of suggested methods, the partial derivative (Dimopoulos et al., 

1995) and the input perturbation (Zeng and Yeung, 2003) algorithms have superior 

effectiveness than other sensitivity analysis methods. However, the partial derivative 

method of sensitivity study can be applied to neural network-based models, whereas 

the input perturbation method is universally applicable. Moreover, the input 

perturbation method technically models the actual situation that we can face when 

predicting rock thermal properties from well-logging data. 
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2.3.1 Workflow of the input perturbation method 

The input perturbation method principally models the effect of random error on 

model behaviour. The workflow of the input perturbation method that was applied 

for sensitivity analysis of regression models used for determining rock thermal 

properties (Section 2.2.1) consisted of several steps. 

In the first step, we assume that the regression model is already trained, and the 

prediction uncertainty was assessed on a test data. The sensitivity study is performed 

on the test dataset. Therefore, in the first step we specify the value of imposed 

uncertainty on our input data.  

In the second step, we select one input feature and add so-called “white” 

random noise to it. All the rest input features are fixed. The absolute value of random 

noise is constrained by the specified in the first step uncertainty. The variance of the 

selected input feature can be represented as xi = xi+Δxi, where xi is the currently 

selected input variable, and Δxi is the perturbation. 

In the third step, we predict rock thermal property using the perturbated input 

data and assess the change of prediction quality via selected metrics. Within the case 

study, we assessed changes in prediction precision. 

Steps two and three are cyclically repeated for all input features. The imposed 

uncertainty varied from 0 to 15% by 1% step. 

2.3.2 Sensitivity study of the gradient boosting regression model for predicting 
rock thermal properties 

To understand the tolerance of regression models of the gradient boosting 

algorithm established within Section 2.2.1 to noise and the acceptable quality of 

input well-log data sensitivity study was performed based on the input perturbation 

method.  
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The results of the sensitivity study of regression models of gradient boosting 

for determining thermal conductivity and volumetric heat capacity of carbonate 

rocks of a heavy oil field are presented in Figure 9.  

 

Figure 9. Results of sensitivity study of regression models of gradient boosting for 
determining thermal conductivity (left panel) and volumetric heat capacity (right 
panel) of carbonate rocks of the heavy oil field. The input well-logs are presented on 
the left panel. ΔP stands for relative change of prediction precision. ΔLogs stands for 
input well-log with imposed uncertainty. 

As it may be seen from Figure 9, the perturbations in sonic and density logs cause 

the greatest relative changes in accuracy when predicting both thermal conductivity 

and volumetric heat capacity of carbonate rocks. Increase of uncertainty in sonic and 

density log data by 20% results in a relative change of prediction accuracy by more 

than 40% for thermal conductivity. Whereas for volumetric heat capacity, an 

increase of uncertainty in sonic velocity data by 20% leads to an increase of 

prediction accuracy by 12%. The perturbations in data on photoelectric factor, 

gamma-ray, neutron porosity and electrical resistivity less significantly affect 

prediction accuracy both for thermal conductivity and volumetric heat capacity. 

 Assuming that the acceptable prediction accuracy for thermal conductivity is 

12% and for volumetric heat capacity is 10%, we can determine the acceptable 
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quality of input well-logging data. As reported in Table 5, the prediction accuracy 

on the test dataset for rock thermal conductivity and volumetric heat capacity were 

10.4% and 8.1%, respectively. Thus, the limits for relative change of prediction 

accuracy for thermal conductivity and volumetric heat capacity are 15% 

(1.6/10.4·100% ≈ 15%) and 23% (1.9/8.1·100% ≈ 23%), respectively. Therefore, 

the admissible imposed uncertainty in sonic and density log data is about 12% when 

predicting rocks' thermal conductivity. The acceptable imposed uncertainty in the 

density log is about 13% when predicting rock volumetric heat capacity. 

 The sensitivity analysis is also helpful for understanding the importance of 

input features for determining rock thermal properties. The higher the relative 

change in prediction precision, the higher is the input feature's importance. The 

obtained results prove that porosity is the main factor conditioning dependencies 

between well-logging data and rock thermal properties. High contrast in the physical 

properties of the rock matrix and pore-filling fluids significantly changes the density, 

neutron and sonic log responses, and rock thermal conductivity (Popov et al. 2003). 

For this reason, density and sonic logs are the most important features at well-log 

based determination of rock thermal properties. 

The results of the sensitivity study of regression models of gradient boosting 

for determining thermal conductivity and volumetric heat capacity of organic-rich 

shales are presented in Figure 10.  
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Figure 10. Results of sensitivity study of regression models of gradient boosting for 
determining thermal conductivity parallel (left panel) and perpendicular (right panel) 
to bedding plane and volumetric heat capacity (bottom panel) of carbonate rocks of 

heavy oil field. 

The perturbations in the sonic log and data on the acoustic impedance of rocks cause 

the most remarkable relative changes in precision when predicting thermal 

conductivity for parallel and perpendicular directions to the bedding plane. For 

volumetric heat capacity of organic-rich shales, the most significant changes of 

prediction precision are observed when sonic and density log data are perturbated. 

The lowest effects on prediction precision are observed when perturbations are made 

in electrical log data and photoelectric factor both for thermal conductivity and 

volumetric heat capacity. According to the obtained results in Figure 10, it can be 
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concluded that the perturbations of neutron porosity and nuclear magnetic resonance 

porosity do not significantly affect prediction precision for thermal properties. It may 

be reasoned by the collinearity of these logs with sonic and density log data.  

Increase of uncertainty in sonic log data and data on the acoustic impedance of 

rocks data by 20% results in a relative change of prediction precision by more than 

60% for thermal conductivity parallel to the bedding plane. For thermal conductivity 

perpendicular to the bedding plane, a relative change of prediction precision by more 

than 60% is observed when uncertainty in sonic and density log data is about 7%. If 

uncertainty in sonic and density log data reaches 20%, the relative change of 

prediction precision is two times higher compared to the original one presented in 

Table 6. Therefore, the higher effect of input data perturbation on prediction 

precision is observed for thermal conductivity perpendicular to the bedding plane. 

For volumetric heat capacity, the increase of uncertainty in data on the acoustic 

impedance of rocks and sonic log data results in a relative change of prediction 

precision by more than 100%. 

Following the same workflow for calculating the acceptable quality of 

predictions of thermal properties that was demonstrated for carbonate rocks, we 

could determine the limit values of uncertainty in input features.  

The obtained results show that the acoustic impedance, density and sonic 

velocities have the highest relative importance values. The main reason for the 

strong correlation between the rock thermal properties and so-called porosity log 

data (neutron, sonic, and density logs) is a high contrast (exceeding 10:1 in some 

cases) between the corresponding physical properties of the rock matrix and organic 

matter, similar to the contrast in porous rocks between physical properties of the 

rock matrix and pore-filling fluid.  
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2.3.3 Conclusions 

The sensitivity study of regression models of gradient boosting algorithm for 

predicting rock thermal properties was conducted using the input perturbations 

method. The obtained results revealed that the highest relative importance for 

predicting rock thermal properties have so-called porosity log data (sonic, density 

and neutron log).  

For organic-rich shales, an essentially higher effect of input data perturbation 

on prediction precision is observed for thermal conductivity perpendicular to the 

bedding plane compared to thermal conductivity parallel to the bedding plane. 

Increase of uncertainty in sonic and density log by 20 % results in doubled prediction 

precision (30.8%) for thermal conductivity perpendicular to the bedding plane.  

Increase of uncertainty in sonic log data and data on the acoustic impedance of rocks 

data by 20% results in a relative change of prediction precision by more than 60% 

(which is about 12.3%) for thermal conductivity parallel to the bedding plane. 

The obtained results are the basis for determining the acceptable quality of 

logging data for predicting rock thermal properties. The admissible prediction 

precision can vary depending on the applications. Therefore, imaginary threshold 

values for prediction uncertainties were specified, and corresponding calculations 

were performed to assess the acceptable quality of logging data. 
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Chapter 3. Determining thermal conductivity and volumetric heat 

capacity of anisotropic rocks based on theoretical modelling 

 In most cases, the methods described in Chapter 2 are applicable only for the 

analogous rock with similar lithological features and with providing same well-

logging data. A theoretical model-based approach was implemented to predict rock 

thermal properties from well-logging data to overcome this limitation. For 

conventional theoretical thermal conductivity models, the data on volumetric 

fractions of rock-forming components and their thermal conductivities are required 

to calculate thermal conductivity. Concurrently, the well-logging suite used for 

constructing volumetric mineralogical models of rocks can vary from well to well.  

Another possibility of the theoretical model-based approach is the ability to 

reconstruct rock thermal properties with different saturation degrees.  

In this Chapter, I will describe a novel approach to predict thermal properties 

by combining well-logging data and theoretical modelling.  

3.1. Approach for determining thermal properties accounting for thermal 
anisotropy via theoretical modelling  

To account for the effect of the rock structure on rock thermal conductivity, 

some theoretical models include specific parameters known as a correction factor 

(see, e.g. Asaad, 1955). It was shown that the absolute values of the correction factor 

could depend on the degree of compactness and cementation of rocks (see, e.g., 

Schoen 2015). Thus, if thermal anisotropy of rocks has a structural nature, we 

assume that the correction factor can encompass the effect of rock structure along 

directions of principal axes of thermal conductivity and, therefore, predictions of 

thermal conductivity accounting for thermal anisotropy from well-logging data 

combined with theoretical modelling are accessible.  
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3.1.1 Workflow 

The novel approach for determining rock thermal conductivity and volumetric 

heat capacity of sedimentary rocks consists of several principal steps.  

In the first step, lithological differentiation of geological profile and volumetric 

mineralogical model of rocks within the reference (interval where core samples are 

available) and target (interval where rock samples are not available and rock thermal 

properties are inferred from well-logging data) intervals  is constructed. Volumetric 

mineralogical model of a rock can be obtained via inversion o standard logs or via 

pulsed neutron gamma-ray logging (Serra, 1986).  

In the second step, for each lithological type of rock the directions of principal 

axes of thermal conductivity are determined. As described in Section 2.1.1, they can 

be inferred from results of thermal core logging along several distinct scanning lines 

(Popov et al., 2016). Moreover, these directions can be determined through a set of 

geomechanical tests of standard core plugs (Kim et al., 2012).  

In the third step, measurements of rock thermal conductivity along directions 

of principal axes for each lithological type are performed with optical scanning 

technique at atmospheric pressure and temperature. Simultaneously, measurements 

of rock volumetric heat capacity are conducted.  

In the fourth step, the thermal conductivity of rock-forming minerals and fluids 

and correction factors for the appropriate theoretical model are determined by 

minimising the divergence between the measured and predicted rock thermal 

conductivity. The theoretical thermal conductivity model is calibrated separately for 

each lithological type and principal axes direction of thermal conductivity. 

Additionally, the volumetric heat capacity of rock-forming components are 

determined via minimization of the divergence between the measured and predicted 

volumetric heat capacity. 
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After that, rock thermal properties are determined within non-coring intervals 

using the volumetric mineralogical model of a target interval, established correction 

factors along directions of principal axes of thermal conductivity and data on thermal 

properties of rock-forming components.  

Additionally, the dependencies of rock thermal conductivity and volumetric 

heat capacity pressure and temperature are determined. It can be performed through 

a set of laboratory investigations, or some of these dependencies can be inferred 

from literature data. 

In the fifth step, thermal property predictions are corrected for in situ 

temperature and pressure using the dependencies established in the fourth step. The 

data on in situ temperature can be inferred from temperature logging, and data on in 

situ pressure can be inferred from the results of the formation test. As well as in 

Section 2.1, these corrections are distinct for each principal axes of thermal 

conductivity. 

3.1.2 Case study: thermal properties of organic-rich shales of the Bazhenov 
Formation accounting for thermal anisotropy from well-logging and 
theoretical modelling 

The suggested approach for determining rock thermal properties on the basis 

of theoretical modelling was tested on data from three wells (A, B, C) drilled through 

the Bazhenov Formation (Chapter 2). The volumetric mineralogical model for the 

investigating wells was inferred from high-definition spectroscopy and nuclear 

magnetic resonance log data. The Bazhenov Formation rocks include nine rock-

forming components: illite, kaolinite, bound water, chalcedony, albite, calcite, 

dolomite, kerogen, and oil. 
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3.1.2.1 Theoretical models of thermal properties  

As it was mentioned, the suggested approach implies the use of theoretical 

models that contain so-called correction factors and, therefore, enable the 

determination of the rock thermal conductivity while accounting for structural 

thermal anisotropy. We investigated three theoretical models of effective thermal 

conductivity for specific to organic-rich shales: 

1. The Lichtenecker-Asaad model (Asaad, 1955), which was adopted in this 

study for organic-rich shales: 

λeff = λm
1−f∙(VKer+Vfl) ∙ (λKer

VKer ∙ λfl
Vfl)

f
           (4) 

2. The Krischer and Esdorn model (Krischer and Esdorn, 1956): 

𝜆𝑒𝑓𝑓 = (
1−𝑏

∑ 𝑉𝑖𝜆𝑖
𝑁
𝑖=1

+
𝑏

(∑
𝑉𝑖
𝜆𝑖

𝑁
𝑖=1 )−1

)

−1

            (5) 

3. The Lichtenecker-Rother model (Lichtenecker and Rother, 1931): 

𝜆𝑒𝑓𝑓 = (∑ 𝑉𝑖𝜆𝑖
𝛼𝑁

𝑖=1 )
1

𝛼              (6) 

where λeff, ker, fl, and s represent the effective rock thermal conductivity, kerogen 

thermal conductivity, fluid thermal conductivity, and rock matrix thermal 

conductivity, respectively; Vker, Vfl, and Vi represent the kerogen volume fraction, 

fluid volume fraction, and volume fraction of the ith component, respectively; and 

f, b (varies from 0 to 1), and α (varies from -1 to 1) are correction factors in the 

corresponding theoretical models. The thermal conductivity of fluid is calculated via 

the weighted geometric mean model. 

It is worth noting that the abovementioned models with different values of the 

correction factors can cover a wide range of theoretical models of thermal 

conductivity. For instance, the Lichtenecker-Asaad model transforms into the 
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weighted geometric-mean model if the correction factor “f” equals 1. The 

Lichtenecker-Rother model transforms into the weighted geometric-mean model if 

“α” equals 0. The Lichtenecker-Rother model and the Krischer-Esdorn model turn 

into the weighted arithmetic mean model when the correction factors equal 1. The 

Lichtenecker-Rother and Krisher-Esdorn models can also turn into harmonic mean 

models (if b = 0 and α = -1). When “α” equals 0.5, the Lichtenecker-Rother model 

transforms into a root mean square (Roy et al., 1981). In the study, we do not fix a 

correction factor in advance; it is an unknown variable that is defined during the 

calibration stage. 

Since volumetric heat capacity is a scalar physical property, the weighted 

arithmetic mean model is applied to determine the volumetric heat capacity from 

well-logging data: 

𝐶 =  ∑ 𝑉𝑖𝐶𝑖
𝑁
𝑖=1                 (7) 

where C is the rock volumetric heat capacity, Vi is the volume fraction of component 

i, and Ci is the volumetric heat capacity of component i. 

3.1.2.2 Calibrating theoretical models of thermal properties 

The available data were subdivided into two random datasets: (1) a training 

dataset (comprising 66% of all the data) and (2) a test dataset (comprising 34% of 

all the data). Theoretical model calibration requires data on rock thermal properties, 

volumetric fractions of rock-forming mineralogical components, and thermal 

properties of rock-forming mineralogical components. The data on the rock thermal 

properties were inferred from the results of thermal core logging, and the data on the 

volumetric fractions were inferred from the well-logging data. The data on the 

thermal properties of rock-forming minerals are inferred from data available in the 
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literature. Table 8 summarizes the available data on the thermal properties of 

minerals and fluids used in the volumetric models of rocks. 

Table 8. Literature data on the thermal properties of minerals and fluids (at 
atmospheric pressure and temperature). 

Mineral/fluid eff, W·m-1·K-1 ρ, g·cm-3 c, kJ·kg-1·K-1 
C, MJ·m-3·K-1 

min max 

Calcite 3.13a, 3.59b 
2.71d, 2.72b, 
2.72-2.94e 

0.815 b 
0.79f 

2.14 2.44 

Dolomite 
5.66-6.28a, 

5.51b 
2.87d, 2.86b, 
2.86-2.93e 

0.870 b 
0.93f 

2.46 2.72 

Chalcedony 3.17a, 3.25b 2.65d 
0.735 b 

0.94 
1.85 1.98 

Albite 
1.63-2.32a, 

1.94-2.35b 

2.62 d, 2.61b, 

2.63e 

0.70 b 

0.71f 
1.83 1.87 

Illite 1.80c 
2.90 d 

2.60-2.90e 
0.79h 2.05 2.29 

Kaolinite 2.69c 
2.66 d 

2.61-2.68e 
0.97i 2.53 2.60 

Oil 0.11-0.15g 0.88-0.97j 1.73-1.81 j 1.52 1.75 
Water 0.59-0.61j 1.00j 4.19j  4.19 4.19 

aPopov et al. 1987; bHorai, 1971; cBrigaud and Vasseur (1989); dDeer et al., 1992; eFertl and Frost, 1980; f Cermak and 

Rybach, 1982; gSchoen, 2015; hSkauge et al. (1983); i
Waples and Waples (2004); jClauser (2006). Rock volumetric 

heat capacity was calculated as a product of density and specific heat capacity. 

 

The model calibration implies the (1) application of reliable data to the thermal 

properties of rock-forming mineral components, (2) determination of correction 

factors for theoretical models in the directions parallel and perpendicular to the 

bedding plane, and (3) minimization of the mean relative discrepancy between 

measured and calculated rock thermal properties. Unfortunately, experimental data 

on the thermal properties of kerogen vary with kerogen porosity and differ for 

different oil fields. Therefore, the thermal properties of the kerogen were determined 

by optimization and not experimentally. To solve this problem, we applied a 

constrained genetic minimization algorithm (Storn and Price, 1997). Since 

volumetric fractions of minerals were available for the Bazhenov Formation, the 

possible range of mineral thermal properties was taken directly from Table 8. 
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The results of the theoretical model calibration accounting for thermal 

anisotropy (Table 9) indicated that: 

 For the Bazhenov Formation, the rock thermal conductivity component 

parallel to the bedding plane can be predicted via the theoretical model more 

accurately than the component perpendicular to the bedding plane. This can 

be due to the more significant influence on the thermal properties 

perpendicular to the bedding plane of micro-cracking from core unloading. 

 Among the considered theoretical models of rock thermal conductivity, the 

Lichtenecker-Rother model yields the lowest prediction uncertainty and the 

highest values of R2 between measured and predicted values. 

 The Lichtenecker-Rother model yields the most physically adequate values 

of thermal properties of the rock components (especially for kerogen and 

lithological components of the Domanic Formation). For example, through 

optimization of the Lichtenecker-Asaad and Krischer and Esdorn models 

with Bazhenov Formation data, we obtained kerogen thermal conductivities 

of 0.13 and 0.14, respectively, which are more typical for movable oil than 

that suggested by the Lichtenecker-Rother model. 

Based on these points, we can conclude that the Lichtenecker-Rother model for 

predicting rock thermal conductivity from the well-logging data is preferable. 

3.1.2.3 Predicting rock thermal properties from well-logging data based on 
theoretical modelling 

Rock thermal properties were predicted on a test dataset via the Lichtenecker-

Rother model, the established values of the correction factor for parallel and 

perpendicular direction to the bedding plane and thermal properties of rock-forming 
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components (Table 10).   For comparison, the predictions of thermal properties using 

the gradient boosting method are also included and analyzed within this Section.  
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Table 9. Calculated values of the thermal properties of the rock-forming components for the training dataset of the 
Bazhenov Formation. 

Theoretical model 
Thermal conductivity of minerals/fluids parallel to the bedding plane (N = 326), W·m-1·K-1 

Calcite Dolomite Kerogen Chalcedony Illite Kaolinite Albite Oil Correction factor R2 
RMSE, 

W·m-1·K-1 
P,% A,% 

Lichtenecker-Asaad 3.13 5.51 0.13 3.25 1.80 2.65 2.2 0.11 0.17 0.62 0.23 12.8 -4.1 
Lichtenecker-Rother 3.13 5.51 0.29 3.25 1.80 2.65 2.2 0.14 0.39 0.59 0.24 12.7 -0.6 
Krischer and Esdorn 3.13 5.51 0.14 3.25 1.80 2.65 2.2 0.11 0.95 0.56 0.25 13.1 -0.8 

 Thermal conductivity of minerals/fluids perpendicular to the bedding plane (N = 296), W·m-1·K-1 

Lichtenecker-Asaad 3.13 5.51 0.13 3.25 1.80 2.65 2.2 0.11 0.44 0.57 0.29 21.7 -4.1 
Lichtenecker-Rother 3.13 5.51 0.29 3.25 1.80 2.65 2.2 0.14 -0.27 0.58 0.27 19.1 -0.4 

Krischer and Esdorn 3.13 5.51 0.14 3.25 1.80 2.65 2.2 0.11 0.79 0.55 0.28 19.9 0.05 
 Volumetric heat capacity of minerals/fluids (N = 326), MJ·m-3·K-1 

Weighted arithmetic 

mean 
2.40 2.46 1.61 1.85 2.01 2.20 1.83 1.52 - 0.05 0.13 12.3 1.6 

 

 
 
Table 10. Prediction results of the rock thermal properties on the test datasets. 

Thermal conductivity 
Volumetric heat capacity 

Model* 

λ| | λꞱ 

R2 
RMSE P A 

R2 
RMSE P A 

Model R2 
RMSE P A 

W·m-1·K-1 % % W·m-1·K-1 % % MJ·m-3·K-1 % % 

GB 
0.7

9 
0.14 7. 7 0.8 0.79 0.19 15.4 1.1 GB 0.52 0.09 8.8 0.2 

LR 
0.6

2 
0.18 10.4 0.1 0.50 0.30 19.9 1.5 AM 0.10 0.13 11.4 2.3 

*GB stands for the gradient boosting method, LR stands for the Lichtenecker-Rother model, AM stands for the weighted arithmetic 
mean model. 
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Figure 11 plots the thermal property predictions and experimental values of the 

rock thermal properties for the test datasets. 

 

Figure 11. Experimental data of the rock thermal properties compared to the thermal 
properties predicted from well-logging data of training datasets for the Bazhenov 
Formation. Black dots present results with the gradient boosting method, red dots 

results via theoretical model. The dashed black line (y=x) shows a perfect prediction. 

The results obtained for the case studies show that theoretical models provide 

a less accurate prediction of rock thermal properties from well-logging data than the 

machine-learning algorithm for organic-rich shales. There are several sources of 

uncertainties that cause relatively high errors when dealing with theoretical models 

of rock thermal properties. First, the volumetric mineralogical models resulting from 

the initial geophysical data processing are constructed within a set of assumptions, 

such as vertical and lateral continuity, a constant ratio of bound water to dry clay, 

etc. Moreover, the models are interpretative, implying their subjective nature. 

Consequently, volumetric mineralogical models increase the uncertainties of the 

data on the volume fractions of rock-forming components that are used for predicting 

thermal properties based on the theoretical model of thermal properties. 

Another aspect refers to the imperfections of theoretical models of thermal 

conductivity. As already mentioned, the rocks thermal conductivity depends on 

many factors, such as mineralogical composition, porosity, saturation, intergranular 

contacts, and the shape of minerals. Therefore, the implementation of only one, the 
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so-called correction factor, can be insufficient, at least in some cases. Thus, the 

improvement in theoretical models of thermal conductivity is important. 

For a detailed uncertainty analysis, boxplots of the relative discrepancies 

between the measured and predicted values are plotted in Figure 12. 

 

Figure 12. Boxplots of the relative discrepancies between the measured and 
predicted values of rock thermal properties for the Bazhenov Formation. Above, 
predictions based on the theoretical models; below, predictions based on the gradient 

boosting algorithm. Histograms of thermal properties from the test dataset are also 
shown. 

It may be deduced that systematic underestimation is observed when predicting 

rock thermal conductivity on the basis of a theoretical model for low thermal 

conductivities (0.8-1.2 W·m-1·K-1) for the Bazhenov Formation. In most cases, the 

gradient boosting algorithm provides less biased predictions of thermal properties 
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compared to the predictions on the basis of the theoretical models. There is a 

systematic overestimation in the prediction of thermal conductivity for the Bazhenov 

Formation for high thermal conductivities (2.4–2.8 W·m-1·K-1 for the parallel 

thermal conductivity component and 2.0–2.4 W·m-1·K-1 for the perpendicular 

thermal conductivity component). Analysis of the data showed that this bias is 

caused by the silicification of some intervals resulting in the occurrence of highly 

high-conductive quartz.  

Based on results presented in Figures 11 and 12, we can conclude that the 

gradient boosting method is more effective for predicting rock thermal properties 

than the theoretical models because of its high sensitivity to the non-linear and 

implicit dependencies of the rock thermal properties and well-logging data. 

However, in case of rocks that are low porous or have low organic matter content, 

the correlations between thermal and other physical properties can diminish and the 

quality of predictions will be unacceptable. Moreover, the application of gradient 

boosting requires training datasets, which are not always available. Therefore, for 

cases when core samples are absent and only well-logging data are available or the 

rocks are low porous (or which have low organic matter content), predictions of rock 

thermal properties can be performed with sufficient precision based on theoretical 

models. Another benefit of the application of the theoretical modelling approach is 

an opportunity of transition from one saturation state to another. In case of lateral 

variations of rock saturation, the regression model-based approach requires 

determining corrections to rock thermal properties for different saturations on the 

basis of special experimental investigations (see, e.g., Popov et al., 2017), whereas 

the theoretical model-based approach does not.  

Applied theoretical thermal conductivity models contain correction factors that 

encompass the effect of structural peculiarities on rock thermal conductivity. The 

possible way to enhance theoretical models in application to organic-rich shales 

includes an arrangement of comprehensive experimental study and analysis of 
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results to understand how the correction factor depends on geological features of 

source rocks and the implementation of additional correction parameter that will 

account for textural peculiarities. 

3.1.3 Conclusions 

An approach for determining the thermal properties of rocks accounting for 

thermal anisotropy via theoretical modelling was suggested and tested. The approach 

provides simultaneous determination of the rock thermal conductivity and 

volumetric heat capacity. Predictions of thermal conductivity accounting for thermal 

anisotropy are accessible due to applications of theoretical models of thermal 

conductivity that contain correction factors encompassing the effect of rock 

structure. Like the approach suggested in Section 2.1, this approach also accounts 

for the influence of in situ thermobaric conditions on thermal properties, 

differentiating the effect on distinct thermal conductivity tensor components.  

Within the case study the experimental dataset on rock thermal properties 

inferred from continuous thermal core logging and volumetric mineralogical models 

inferred from high definition spectroscopy and nuclear magnetic resonance log  from 

three wells drilled through anisotropic organic-rich shales were the basis for the 

approach development and testing. The results obtained during the case study show 

that rock thermal conductivity components can be predicted from well-logging data 

with uncertainties of less than ±11% for thermal conductivity parallel to the bedding 

plane and less than ±20% for thermal conductivity perpendicular to the bedding 

plane (for a 0.95 confidence level). Volumetric heat capacity can be predicted from 

well-logging data with an uncertainty of less than ±12% (for a 0.95 confidence 

level). 

 From comparison study of prediction results obtained with gradient boosting 

method and Lichtenecker-Rother model, it can be concluded that the gradient 

boosting method is more effective for predicting rock thermal properties than the 
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theoretical models because of its high sensitivity to the non-linear and implicit 

relations between the rock thermal properties and well-logging data. 

3.2.  Approach for assessing uncertainty in a correction factor of Krischer-
Esdorn model 

An essential aspect of theoretical modelling of rock thermal conductivity is 

assessing the prediction quality of a model. The prediction quality of the theoretical 

model is principally determined by uncertainties in input parameters (thermal 

conductivity of rock matrix and pore fluid, structural parameters, and volume 

fraction of rock-forming components). One of the most commonly used ways to 

assess the theoretical model's prediction quality is a comparison of measured and 

predicted values of rock thermal conductivity. However, the assessment results are 

true only for considered data (that have given uncertainties) and can vary if 

uncertainties in input parameters change.  

Therefore, when predicting rock thermal conductivity from well-logging data 

on the basis of theoretical modelling, particular calculations are required to assess 

the prediction quality accounting for uncertainties in input parameters. A key for the 

problem solution is the sensitivity study of the theoretical model. It allows 

understanding the influence of uncertainties in input parameters on prediction 

uncertainty. However, very often, there is a lack of data (or the data is absent) on 

uncertainty in the correction factor of the theoretical model of rock thermal 

conductivity. The uncertainty in correction factor can be determined via special 

experimental investigations on the collection of core samples provided that the 

uncertainty in thermal conductivity of matrix, pore fluid, and porosity are known 

(Stolyarov et al., 2007). Concurrently, not always there is an opportunity to conduct 

such investigations and, thus, an effective approach for assessing uncertainties in 

data on correction factor is required. 
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A new effective approach was developed and suggested to assess the 

uncertainty in the correction factor of theoretical models. An example is given for 

the Krischer-Esdorn model. 

3.2.1 Workflow 

The workflow of assessment of the correction factor uncertainty implies that 

the thermal conductivity of rock-forming components and correction factor are 

known. The approach consists of several principal steps.  

In the first step, the prediction uncertainty of the theoretical thermal 

conductivity model is assessed via a comparison of predicted and measured thermal 

conductivity values. Prediction accuracy and precision are calculated (using 

formulas 2 and 3, Section 2.1.2) to evaluate the prediction uncertainty. 

In the second step, based on the partial derivative method, the sensitivity study 

of the theoretical model is performed. The result of the sensitivity study are 

determined sensitivity coefficients of dependency of prediction uncertainty from 

uncertainties in input parameters. 

In the third step, using the prediction uncertainty evaluated in the first step and 

evaluated coefficients of dependency of prediction uncertainty from uncertainties in 

input parameters, the uncertainty in correction factor is determined with: 

𝛿𝜆𝑒𝑓𝑓 = 𝐾1 · 𝛿𝜆𝑚𝑎𝑡𝑟𝑖𝑥 +𝐾2 · 𝛿𝜆𝑓𝑙𝑢𝑖𝑑+𝐾3 · 𝛿𝜙 +𝐾4 · 𝛿𝑎    (8) 

𝛿𝑎 = 
𝛿𝜆𝑒𝑓𝑓−𝐾1·𝛿𝜆𝑚𝑎𝑡𝑟𝑖𝑥−𝐾2·𝛿𝜆𝑓𝑙𝑢𝑖𝑑−𝐾3·𝛿𝜙

𝐾4
     (9) 

where 𝛿λeff is prediction uncertainty that is calculated in the first step; K1, K2, K3, K4 

are coefficients of dependency of prediction uncertainty from uncertainties in 

corresponding input parameters that are inferred from sensitivity study of a model; 

𝛿λmatrix is uncertainty in data on thermal conductivity of rock matrix; 𝛿λfluid is 

uncertainty in data on thermal conductivity of pore-filling fluid; 𝛿𝜙 is uncertainty in 

porosity; 𝛿a is uncertainty in correction factor.  
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3.2.2 Case study: assessing the uncertainty in correction factor of Krischer-
Esdorn model established for clayey rocks of the Tumen Formation 

The suggested approach for assessing the uncertainty in correction factor of 

theoretical model of thermal conductivity suggested by Krisher and Esdorn 

(Krischer and Esdorn, 1956) was tested on data from two wells (A and C, Section 

2.1.2). 

3.2.2.1 Geological setting and field data 

The Tumen Formation is of the Jurassic age and was formed under coastal-

marine conditions. From high-definition spectroscopy data and NMR data, the 

investigating clayey rocks are principally composed of illite, kaolinite, albite, 

orthoclase, siderite, siliceous minerals (mainly chalcedony), bound and free water 

(Figure 13).  

 

Figure 13. Pie chart of average volume fractions of rock-forming components of the 
investigating rocks inferred from high definition spectroscopy and NMR log data.  

According to NMR log data, the porosity varies from 1% to 10%, with mean 

value of 4.5% and a standard deviation of 3%. The clayey minerals due to oriented 

alignment condition the stratified structure. Thus, the considering clayey rocks can 

be treated as transversely isotropic medium with a vertical axis of symmetry. 
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3.2.2.2 Thermal core logging results for the clayey rocks of the Tumen Formation 

The continuous thermal core logging was conducted on 507 full-sized core 

samples from wells A and C (57 m in total). Scanning lines were chosen parallel and 

perpendicular to the bedding plane on the flat surfaces of the sawed core samples. 

The continuous profiles of the thermal conductivity components parallel and 

perpendicular to the bedding plane directions are plotted in Figure 14. 

 

Figure 14. Results of rock thermal property measurements for wells A (left) and C 

(right). λ stands for rock thermal conductivity; subscripts ‖ and ⊥ stand for the 

thermal conductivity components in the directions parallel and perpendicular to the 
bedding plane, respectively; grey lines represent the original profiles of the rock 
thermal properties; black, red and blue lines represent averaged thermal property 
profiles in a moving 0.5 window. 
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A high content of clayey minerals (especially illite) conditions a systematic 

thermal anisotropy of the investigating rocks (Figure 15). 

 

Figure 15. Histogram of thermal anisotropy coefficient inferred from thermal core 
logging for wells A and C.  

3.2.2.3 Results of predicting rock thermal conductivity from well-logging data 
based on Krischer-Esdorn model 

The available data on rock thermal properties and volumetric fractions of rock-

forming components were subdivided into two random datasets: (1) a training 

dataset (comprising 66% of all the data) and (2) a test dataset (comprising 34% of 

all the data). Following the workflow described in Section 3.1.1 for determining rock 

thermal conductivity from well-logging data based on theoretical modelling, we 

performed calibration of the Krischer-Esdorn model on the training dataset and 

predicted rock thermal conductivity on the test dataset. During model calibration, 

the data on thermal conductivity of rock minerals were inferred from Table 8. 

Additionally, the data on thermal conductivity of orthoclase and siderite were 

inferred from Popov et al. (1987). Since investigating rocks exhibit a high degree of 

thermal anisotropy (Figure 15), the correction factor of the Krischer-Esdorn model 

was determined both for parallel and perpendicular directions to the bedding plane. 

According to laboratory investigations, considering clayey rocks are characterized 

by negligible permeability and, thus, during model calibrating, 100% water 

saturation of pore space was implied.  
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The results of model calibration for parallel and perpendicular directions to the 

bedding plane are presented in Table 11. The results of predicting thermal 

conductivity on the test dataset are presented in Table 12. 

Table 11. Calculated values of the thermal properties of the rock-forming 
components for the training dataset of the clayey rocks. 

Thermal conductivity of minerals/fluids parallel to the bedding plane (N = 110), W·m-1·K-1 

Siderite Orthoclase Chalcedony Illite Kaolinite Albite 
Correction 

factor 
R2 

RMSE, 

W·m-1·K-1 
P,% A,% 

3.08 2.17 3.25 1.80 2.65 2.2 0.38 0.78 0.09 7.4 0.2 

Thermal conductivity of minerals/fluids perpendicular to the bedding plane (N = 79), W·m-1·K-1 

3.08 2.17 3.25 1.80 2.65 2.2 0.66 0.68 0.13 14.2 0.9 

Table 12. Prediction results of the rock thermal properties on the test datasets. 

λ||, (N = 132) λꞱ, (N = 53) 

R2 RMSE, W·m-1·K-1 A, % P, % R2 RMSE, W·m-1·K-1 P, % A, % 

0.73 0.09 8.0 0.0 0.64 0.15 15.0 1.2 

 

The prediction uncertainty is assessed for a 0.95 confidece level. Figure 16 

plots the experimental data on rock thermal conductivity and predicted thermal 

conductivities for the test dataset.  

 

Figure 16. Experimental data of the rock thermal conductivity compared to the 

predicted thermal conductivity from well-logging data on test datasets. The dashed 
black line (y=x) shows perfect prediction. N stands for number of points. 
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3.2.2.4 Sensitivity study of Krischer-Esdorn model and assessment of 
uncertainty in the correction factor 

The partial derivative method of the sensitivity analysis uses the Taylor 

expansion to approximate the uncertainty of the function output with respect to the 

uncertainties in input parameters. The Taylor expansion for input perturbations of a 

function can be written as: 

𝑓(𝑥 +𝛥𝑥) − 𝑓(𝑥) = 
𝜕𝑓(𝑥)

𝜕𝑥
𝛥𝑥 +

1

2
·
𝜕2𝑓(𝑥)

𝜕𝑥2
(𝛥𝑥)2+

1

6
·
𝜕3𝑓(𝑥)

𝜕𝑥3
(𝛥𝑥)3+ ⋯ ≈

𝜕𝑓(𝑥)

𝜕𝑥
𝛥𝑥  (10) 

where Δx is a very small non-zero positive number. Because the Δx is very small, 

the second and subsequent terms are negligible and as a result, the uncertainty of the 

function's output is approximated by the first term of the Taylor expansion.  

To assess the influence of relative uncertainties in input parameters on relative 

uncertainty of the output, the equation 10 is rewritten as: 

𝛿𝑓 =  
𝛥𝑓(𝑥)

𝑓(𝑥)
=

𝜕𝑓(𝑥)

𝜕𝑥
 ·

1

𝑓(𝑥)
 ·
1

𝑥
· 𝛿𝑥      (11) 

where 𝛿f is relative uncertainty in the output of the function, Δf stands for f(x+Δx) – 

f(x), 𝛿x is relative uncertainty in the input parameter. The ratio of derivative of 

the function with respect to the input parameter to the product of x and 

function output f(x) is denoted as a sensitivity coefficient.  

The Krischer-Esdron model for a two-component system is written the 

following way: 

𝜆𝑒𝑓𝑓 = (
1−𝑎

(1−𝑝ℎ𝑖)·𝜆𝑚𝑎𝑡𝑟𝑖𝑥+𝑝ℎ𝑖·𝜆𝑓𝑙𝑢𝑖𝑑
+

𝑎

(
1−𝑝ℎ𝑖

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
+

𝑝ℎ𝑖

𝜆𝑓𝑙𝑢𝑖𝑑
)

−1)

−1

   (12) 

where phi is porosity, λ stands for thermal conductivity, a is a correction factor. 

Partial derivatives of the Krisher-Esdorn model with respect to the thermal 

conductivity of rock matrix, pore-filling fluid, porosity and correction factor a are: 
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𝜕𝜆𝑒𝑓𝑓

𝜕𝜆𝑚𝑎𝑡𝑟𝑖𝑥
= −

(1−𝑎)·(1−𝜙)

(𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙))
2+

𝑎·(1−𝜙)

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
2

(
1−𝑎

𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙)
+𝑎·(

𝜙

𝜆𝑓𝑙𝑢𝑖𝑑
+

1−𝜙

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
))

2    (13) 

𝜕𝜆𝑒𝑓𝑓

𝜕𝜆𝑓𝑙𝑢𝑖𝑑
= −

𝑎·𝜙

(𝜆𝑓𝑙𝑢𝑖𝑑)
2+

𝜙·(1−𝑎)

(𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙))
2

(
1−𝑎

𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙)
+𝑎·(

𝜙

𝜆𝑓𝑙𝑢𝑖𝑑
+

1−𝜙

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
))

2    (14) 

𝜕𝜆𝑒𝑓𝑓

𝜕𝜙
= −

𝑎·(
1

𝜆𝑓𝑙𝑢𝑖𝑑
−

1

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
)−

(1−𝑎)·(𝜆𝑓𝑙𝑢𝑖𝑑−𝜆𝑚𝑎𝑡𝑟𝑖𝑥)

(𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙))
2

(
1−𝑎

𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙)
+𝑎·(

𝜙

𝜆𝑓𝑙𝑢𝑖𝑑
+

1−𝜙

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
))

2    (15) 

𝜕𝜆𝑒𝑓𝑓

𝜕𝑎
= −

−
1

𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙) 
+

𝜙

 𝜆𝑓𝑙𝑢𝑖𝑑
 + 

1−𝜙

𝜆𝑚𝑎𝑡𝑟𝑖𝑥

(
1−𝑎

𝜆𝑓𝑙𝑢𝑖𝑑·𝜙+ 𝜆𝑚𝑎𝑡𝑟𝑖𝑥·(1−𝜙)
+𝑎·(

𝜙

𝜆𝑓𝑙𝑢𝑖𝑑
+

1−𝜙

𝜆𝑚𝑎𝑡𝑟𝑖𝑥
))

2    (16) 

According to Chorpa et al. (2018) and Fuchs et al. (2018), the high effectiveness 

of the Lichtenecker model is observed in the calculation of effective thermal 

conductivity of low-porous rocks with minerals, which have low thermal 

conductivity contrast. Thus, the thermal conductivity of rock matrix for the 

investigating clayey rocks is calculated using the Lichtenecker model using data on 

average volumetric composition that was inferred from high-definition spectroscopy 

and thermal conductivities of minerals. The Lichtenecker model is written as: 

𝜆𝑒𝑓𝑓 = ∏ 𝜆𝑖
𝑉𝑖𝑁

𝑖=1       (17) 

where λi is thermal conductivity of i-th component and Vi is volume fraction of the 

i-th component.  

To assess the uncertainty of the determined correction coefficients for parallel 

and perpendicular directions to the bedding plane, data on uncertainty in thermal 

conductivity of rock matrix, pore-filling fluid, and porosity are required.  

The uncertainty in data on porosity and pore-filling fluid is taken from technical 

specifications of the utilized measurement tools. Data on porosity is inferred from 
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nuclear magnetic resonance log data, and according to technical specifications of the 

applied logging tool, the uncertainty on porosity is ±2.0%. The uncertainty on 

thermal conductivity of water is ±2.5%.  

To assess the uncertainty in the thermal conductivity of the rock matrix, the 

sensitivity study of the Lichtenecker model was performed. The partial derivatives 

of the Lichtenecker model with respect to the thermal conductivity of i-th component 

and its volume fractions are calculated as: 

𝜕𝜆𝑒𝑓𝑓

𝜕𝜆𝑖
= 𝑉𝑖 · 𝜆𝑖

𝑉𝑖−1 · ∏ 𝜆
𝑗

𝑉𝑗  (𝑖 ≠ 𝑗)𝑁
𝑗=1      (18) 

𝜕𝜆𝑒𝑓𝑓

𝜕𝑉𝑖
=  𝑙𝑛(𝑉𝑖) · ∏ 𝜆𝑖

𝑉𝑖𝑁
𝑖=1       (19) 

As reported by Popov et al. (1987), the uncertainty in data on rock-forming 

minerals that are involved in this study can be ±2.5%. According to technical 

specifications of the high-definition spectroscopy tool, the uncertainty in data on 

volume fractions of minerals is ±3.0%. The uncertainty in thermal conductivity of 

rock matrix is calculated as: 

𝛿𝜆𝑚𝑎𝑡𝑟𝑖𝑥 = 𝐾𝜆𝐼𝑙𝑙𝑖𝑡𝑒 · 𝛿𝜆𝐼𝑙𝑙𝑖𝑡𝑒+𝐾𝜆𝑂𝑟𝑡ℎ𝑜𝑐𝑙𝑎𝑠𝑒 · 𝛿𝜆𝑂𝑟𝑡ℎ𝑜𝑐𝑙𝑎𝑠𝑒+ 𝐾𝜆𝐾𝑎𝑜𝑙𝑖𝑛𝑖𝑡𝑒 · 𝛿𝜆𝐾𝑎𝑜𝑙𝑖𝑛𝑖𝑡𝑒 +

 𝐾𝜆𝐴𝑙𝑏𝑖𝑡𝑒 · 𝛿𝜆𝐴𝑙𝑏𝑖𝑡𝑒+ 𝐾𝜆𝐶ℎ𝑎𝑙𝑐𝑒𝑑𝑜𝑛𝑦 · 𝛿𝜆𝐶ℎ𝑎𝑙𝑐𝑒𝑑𝑜𝑛𝑦+𝐾𝜆𝑆𝑖𝑑𝑒𝑟𝑖𝑡𝑒 · 𝛿𝜆𝑆𝑖𝑑𝑒𝑟𝑖𝑡𝑒+ 𝐾𝑉𝐼𝑙𝑙𝑖𝑡𝑒 · 𝛿𝑉𝐼𝑙𝑙𝑖𝑡𝑒+

𝐾𝑉𝑂𝑟𝑡ℎ𝑜𝑐𝑙𝑎𝑠𝑒 · 𝛿𝑉𝑂𝑟𝑡ℎ𝑜𝑐𝑙𝑎𝑠𝑒+ 𝐾𝑉𝐾𝑎𝑜𝑙𝑖𝑛𝑖𝑡𝑒 · 𝛿𝑉𝐾𝑎𝑜𝑙𝑖𝑛𝑖𝑡𝑒+ 𝐾𝑉𝐴𝑙𝑏𝑖𝑡𝑒 · 𝛿𝑉𝐴𝑙𝑏𝑖𝑡𝑒+ 𝐾𝑉𝐶ℎ𝑎𝑙𝑐𝑒𝑑𝑜𝑛𝑦 ·

𝛿𝑉𝐶ℎ𝑎𝑙𝑐𝑒𝑑𝑜𝑛𝑦+ 𝐾𝑉𝑆𝑖𝑑𝑒𝑟𝑖𝑡𝑒 · 𝛿𝑉𝑆𝑖𝑑𝑒𝑟𝑖𝑡𝑒         (20) 

where K is the sensitivity coefficient for the corresponding input parameter of the 

Lichtenecker model. The calculated uncertainty in data on matrix thermal 

conductivity from equation 20 for investigated clayey rocks is 6.1% for a 0.95 

confidence level.  

 In the calculations of the sensitivity coefficients, the average values of rock 

porosity and thermal conductivity of rock matrix in equations 13 – 16 are assigned 

within the case study. Correction factors were determined in Section 3.2.2.3 and are 

taken from Table 11.  Figure 17 shows the influence of uncertainties in input 

parameters of the Krisher-Esdorn model on thermal conductivity components for 
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parallel and perpendicular directions to the bedding plane and the importance of 

input parameters within the case study is ranked both for parallel and perpendicular 

directions to the bedding plane the following way.  

 

 

Figure 17. Results of assessing influence of uncertainty in thermal conductivity of 
rock matrix (red lines), porosity (green line), thermal conductivity of pore fluid (blue 
line), and correction factor (black line) on rock thermal conductivity for parallel (left 
panel) and perpendicular (right panel) directions to the bedding plane. 

Following the workflow (Section 3.2.1), the assessment of uncertainty in data 

on correction factors by means of equation 9. For assessment of uncertainty in data 

on correction factor were involved (1) the sensitivity coefficients for each input 

parameter obtained during sensitivity study of Krisher-Esdorn model, (2) the data 

on uncertainty in thermal conductivity of rock matrix, porosity, the thermal 

conductivity of pore fluid, and (3) the prediction uncertainty of Krischer-Esdorn 

model (Table 12). The calculated uncertainties in correction factors (via equation 9) 

for parallel and perpendicular directions to the bedding plane are 15% and 37%, 

respectively.  

3.2.3 Conclusions. 

A new approach for assessing uncertainty in the correction factor of the 

Krischer-Esdorn model was suggested and tested. The approach relies on the 
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application of the partial-derivative method, and requires integrating results of 

predicted rock thermal conductivity from well-logging data on the basis of 

theoretical modelling of thermal conductivity.  

The approach was tested on data from the Tumen Formation that is composed 

of clayey rocks. From the sensitivity study, it can be concluded that for investigated 

rock the uncertainty in correction factor has the lowest influence on uncertainty in 

effective thermal conductivity compared to the influence of uncertainties in other 

input parameters (thermal conductivity of rock matrix, porosity, thermal 

conductivity of pore-fluid). The calculated uncertainties in correction factors for 

parallel and perpendicular directions to the bedding plane are 15% and 37%, 

respectively. The obtained results enable accounting for variations in the quality of 

input data from well to well while assessing the quality of predicting rock thermal 

conductivity from well-logging data. 

The developed approach is not applicable only to the Krischer-Esdorn model, 

but it can be used for assessing uncertainty in correction factors of Lichtenecker-

Rother and Lichtenecker-Asaad models.  
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Chapter 4. Well-log based technique (WLBT) for determining rock 
thermal properties accounting for thermal anisotropy at in situ 

pressure, temperature and saturation 

An important aspect of well-log based predictions of rock thermal properties 

accounting for thermal anisotropy is the development of a well-defined and clear 

workflow that could encompass a variety of conditions. Moreover, the integration of 

opportunities that were disclosed due to the implementation of modern experimental 

bases for problem solution is very often not a trivial task. 

In this Chapter, by integrating regression and theoretical model-based 

approaches described in Chapters 2 and 3, we propose an enhanced technique for the 

well log-based determination of rock thermal properties accounting for rock thermal 

anisotropy. The technique's novelty, which allows us to account for the pressure, 

temperature and saturation effects, is supported and evidenced by a Russian patent 

(Popov et al., 2019a). 

4.1. Workflow of WLBT for thermal property prediction 

The developed enhanced technique for determining rock thermal properties 

accounting for thermal anisotropy from well-logging data consists of the following 

principal steps: 

1. Analysing and processing of the available input data. 

2. Determining directions ij of the principal axes of anisotropy (2D 

anisotropy is considered for sedimentary rocks). 

3. Selecting regression or theoretical models of the rock thermal properties 

and determining model parameters. 

4. Determining the rock thermal properties in a target depth interval from 

well-logging data at atmospheric pressure and temperature. 

5. Determining the rock thermal properties in the target depth interval at in 

situ temperature and pressure. 

The detailed schema of the proposed algorithm is presented in Figure 18. 
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Figure 18. Workflow for well log-based determination of rock thermal properties 
accounting for rock thermal anisotropy (Shakirov et al., 2021). Red and blue arrows 

indicate cases when “core samples are available” and “core samples are absent”, 
respectively. λij is the thermal conductivity in the ij directions; C is the volumetric 
heat capacity. Vk is a volumetric fraction of the k-th rock-forming component, λk

ij is 
the thermal conductivity of the k-th component for the ij direction, and Ck is the 
volumetric heat capacity of the k-th component. “a” is a correction factor. P and T 
stand for pressure and temperature, respectively. 
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Preliminary, target intervals for predicting rock thermal properties are defined. 

In step I, the available geological and geophysical data are analysed. The main 

characteristics of the target intervals to be evaluated are the (1) lithological 

composition of the rocks composing the target interval, (2) formation peculiarities 

(porosity type, shaliness type, physical properties of the rock-forming mineral, 

cementation degree, etc.), (3) in situ pressure and temperature, (4) in situ saturation, 

and (5) quality of the available well-logging data. If there are reference intervals for 

predicting the rock thermal properties, the same characteristics of the reference 

intervals are evaluated from the geological and geophysical data. Requirements for 

the “reference interval” are as follows: (1) drilled with coring, (2) composed of 

similar (to the target interval) rocks, and (3) is investigated with the same well log 

suite. 

In step II, the directions ij of the principal axes of the rock thermal conductivity 

are determined. If core samples of the reference interval are available and the 

orientation of these samples are known relative to in-situ formations (Figure 18, step 

II, red arrow), the directions ij are determined experimentally via a special 

procedure: the optical scanning measurements are performed on selected core 

samples with sequential rotation of scanning line directions, as described by Popov 

et al. (2016). Since the directions ij are considered to be the same for the thermal 

conductivity, sonic velocity and geomechanical characteristics of the same rocks 

(Kim et al., 2012), the ij directions can be determined via a set of geomechanical 

tests. If core samples are not available (Figure 18, step II, blue arrow), the directions 

ij are determined via analysis of sonic log data (see, e.g., Hornby et al., 2003) or 

electric log data (Faivre et al., 2002; via a high-definition resistivity formation micro 

imager). The directions ij are determined for each lithology presented in the target 

interval. 
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After that, when core samples are available, continuous thermal logging of core 

samples extracted from the reference interval is performed to obtain the principal 

components of thermal conductivity and volumetric heat capacity in the ij directions. 

There are two possible variants of step III. If the available geological and 

geophysical data allow constructing a volumetric mineralogical model (VMM) of 

both the reference and the target intervals, then the enhanced theoretical model-

based approach can be realized. Otherwise, the enhanced regression model-based 

approach can be utilized. The adopted variant depends on the available data and 

prediction precision, which vary in each case. Moreover, these approaches can be 

combined: for some part of the target interval, the rock thermal properties are 

determined via a theoretical model-based approach, while those of the other part are 

determined via a regression model-based approach. 

The approach based on the regression model starts by evaluating the transport 

physical properties (sonic velocity and electrical resistivity) inferred from well-

logging data along the principal axis directions ij of thermal conductivity (Figure 18, 

step III, block A1). After that, the regression models, their parameters for the ij 

directions and the corresponding fluid saturation of rocks are determined. If core 

samples recovered from the reference interval were available in the previous steps 

and continuous thermal core logging was conducted, then a regression models and 

their parameters are determined using experimental data via minimization of the 

misfit between the measured and calculated rock thermal properties (Figure 18, step 

III, A2). If core samples were not available, then the regression model and its 

parameters are selected from the database (Figure 18, step III, A2*). For database, 

we imply local or published representative databases that contain among other things 

information for assessing the similarity of being investigated and previously 

investigated rocks (such as mineralogical composition, petrophysical characteristics, 

pore fluid, anisotropy, etc.), data on rock thermal properties, other rock properties 

and/or well-logging data, and regression models (regression equations, machine 
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learning models, etc.) between thermal properties and well-logging data. The 

regression models for predicting rock thermal properties are developed on an 

individual basis within stratigraphic units and / or for each rock type. The regression 

models can be simple (linear or multiple regressions) and advanced (decision tree-

based, neural network-based, etc.). 

The approach based on the theoretical model starts with constructing a VMM 

that can be inferred from special well-logging methods (such as high-definition 

spectroscopy) or standard well-logging data (Serra, 1986). If core samples and core 

logging were available from the previous steps, then a VMM of the reference interval 

is also constructed. After that, a theoretical model (selection of the theoretical model 

of thermal conductivity is discussed in Section 2.2) of the rock thermal conductivity 

is selected, and its parameters are determined. Also, the volumetric heat capacity of 

the rock-forming components (pore fluids, minerals, etc.) is determined. If core 

samples extracted from the reference interval and thermal core logging were 

available, then the theoretical model of the rock thermal conductivity, thermal 

properties of the rock-forming components, and correction factors are determined 

via minimization of the divergence between the measured and predicted rock 

thermal properties (Figure 18, step III, B2). The theoretical model of thermal 

conductivity is calibrated separately for each principal axis direction ij of thermal 

conductivity. If core samples were not available, the theoretical model of thermal 

conductivity, thermal properties of the rock-forming components and correction 

factors are selected from the database (Figure 18, step III, B2*). 

In step IV, the rock thermal properties are determined by accounting for the in 

situ saturation without corrections of the pressure and temperature from well-logging 

data (Figure 18) using established parameters of the regression or theoretical model 

for the predetermined directions ij. 

In step V (Figure 18), the thermal properties of the rocks composing the target 

interval are determined at in situ pressure and pressure using data on the formation 
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conditions and the dependencies of rock thermal properties on temperature and 

pressure. If core samples recovered from the reference interval are available, the 

pressure and temperature dependencies can be determined experimentally by taking 

into account the principal axis directions ij of thermal conductivity (Popov et al., 

2012; Wang et al., 2018). Otherwise, the dependencies of the rock thermal properties 

on the temperature and pressure can be inferred from data available in the literature. 

As the basis of the developed WLBT for determining rock thermal properties 

from well-logging data, the high effective thermal core logging technique is 

suggested based on the application of an optical scanning instrument (Popov Е. et 

al., 2019). Popov et al. (2016) gave a comprehensive description of the theoretical 

background, the specimen requirements and the measurement procedure. 

4.2. Testing of WLBT for determining thermal properties of organic-rich shales 
of the Domanic Formation accounting for thermal anisotropy from well-
logging data  

To demonstrate evidence that the developed technique can be universally 

applied for predicting thermal properties of sedimentary rocks from well-logging 

data accounting for thermal anisotropy, a test was performed on data from organic-

rich shales of the Domanic formation. 

4.2.1. Analysis and processing of the available input data 

The suggested technique was tested on data from two wells (F and G) drilled 

through the Domanic formation. The lithological and petrophysical characteristics 

of the rocks are given in Table 13. The Domanic Formation sedimented under 

relatively deep shelf conditions. More detailed information about the geological 

peculiarities of the Domanic Formations was given by Liang et al. (2015). 
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Table 13. Lithological and petrophysical characteristics of the rocks in the case 
study. 

Dominant mineral composition Organic matter Reservoir properties 

Mineral 
Mean mass 

content, % (SD) 
Kerogen 

type 
Mean TOC, % 

(SD) 
Porosity, % 

(SD) 
ln(Permeability), 

mD (SD) 

Silicate minerals (SiO2) 16.4 (22.1) 

II-III 7.5 (3.4) 1.5 (0.6) -3.1 (2.4) Carbonate minerals 78.1 (25.8) 

Clayey minerals 1.4 (2.7) 

*SD stands for standard deviation, TOC stands for total organic carbon. Kerogen typing was 
performed according to Tissot and Welte (1984). ln stands for natural logarithm. For specific depth 
points, sum of mineral content, organic matter and porosity yields 100%.  
 

For the investigated wells only a standard well logging suite was available that 

included data on bulk density (ρ), neutron porosity (NPHI), P- and S-wave 

velocities, photoelectric factor (PEF), and gamma-ray spectrometry data (uranium, 

thorium, and potassium). Figures 19 and 20 present results of well-logging.  
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Figure 19. Well logs for well F. Log symbols were defined in the text above.  
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Figure 20. Well logs for well G.  

The presented volumetric-mineralogical models in Figures 19 and 20 were 

inferred by inversion of standard well-logging data (Serra, 1986). There were no 

available hydrodynamic tests for the wells F and G. Therefore, we need to assume 

in situ pressure and temperature conditions for the Domanic Formation data from 

neighbouring wells. The approximate average in situ pressure and temperature of the 

Domanic Formation are 32 MPa and 60 °C, respectively. Accurate assessment of in 
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situ saturation for the investigated formation is complicated because it exhibits low 

permeability and porosity (Table 13). Hence, we assumed that the Domanic 

Formation is fully saturated by oil. 

A set of editing steps was applied before using the well-logging data. Logging 

data from different tools were shifted to common depth points, the data from 

cavernous intervals were eliminated, and environmental corrections were applied. 

The core depths were shifted to the logging depths. 

4.2.2. Thermal core logging results for highly heterogeneous rocks of the 
Domanic Formation 

Thermal core logging was conducted on full-sized core samples recovered from 

both investigated wells. Figure 21 plots the typical full-sized core samples of the 

Domanic Formation. The total length of the core samples under study was 61 m. 

Due to the stratified structure of core samples, scanning lines were chosen parallel 

and perpendicular to the bedding plane on the flat surfaces of the sawed core 

samples. 

 

Figure 21. Photographs of typical core samples of the Domanic Formation.  

 

The full-sized core samples from well G were not sawed and, therefore, only 

the parallel component of thermal conductivity was measured. Statistical 

assessments of the variations in rock thermal conductivity for parallel and 

perpendicular to the bedding plane directions, coefficient of thermal anisotropy (KT 

= λ||·λꞱ
-1), and coefficient of thermal heterogeneity (β = (λmax-λmin) ·λavr

-1) are 

summarized in Table 14. The Domanic Formation rocks exhibit a high degree of 

thermal anisotropy and heterogeneity. For the Domanic Formation, the kerogen 

distribution is not uniform, with patches of thin kerogen layers. 
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Table 14. Results of thermal property measurements ащк the studied core samples. 

Well 

λ| |, 
W·m-1·K-1 

Mean (SD) 

(min-max) 

λꞱ, 
W·m-1·K-1 

Mean (SD) 

(min-max) 

KT 

Mean (SD) 

(min-max) 

β 
Mean (SD) 

(min-max) 

C, 
MJ·m-3·K-1 

Mean (SD) 

(min-max) 

Number 

of core 
samples 

The total length 

of core samples 
under study (m) 

F 
2.17 (0.39) 
(0.83-4.49) 

1.90 (0.39) 
(0.34-3.64) 

1.29 (0.58) 
(0.61-5.62) 

0.38 (0.27) 
(0.06-2.04) 

2.01 (0.11) 
(1.76-2.33) 

266 24 

G 
2.30 (0.37) 

(1.17-3.57) - - 
0.51 (0.36) 
(0.06-1.82) 

1.94 (0.12) 
(1.65-2.25) 

302 37 

 

Continuous profiles of the thermal conductivity components parallel and 

perpendicular to the bedding plane directions and the volumetric heat capacity of 

full-diameter core samples recovered from two wells are presented in Figure 22. For 

general trend analysis, the original profiles of thermal properties were averaged in a 

0.5 m moving window to obtain a vertical resolution comparable with the vertical 

resolution of the well-logging tools. 
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Figure 22. Results of rock thermal property measurements for wells F (left) and G 

(right). λ stands for rock thermal conductivity, subscripts  and ⊥ stand for the 
thermal conductivity components in the directions parallel and perpendicular to the 
bedding plane, respectively; grey lines represent the original profiles of the rock 
thermal properties. Black, red and blue lines represent averaged thermal property 

profiles in a moving 0.5 window.  

Thin layering is a distinguishing characteristic of the Domanic Formation, 

which results in significant vertical variations of rock thermal conductivity. For this 

reason, the implementation of the thermal core logging technique is the best way to 

detect the detailed variations in rock thermal properties. We consider the 

determination of rock thermal properties from well-logging data based on regression 

analysis and theoretical modelling for the investigated geological formation. 
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4.2.3. Calibrating gradient boosting regression model 

The well-logging data were used as input data, while the rock thermal 

properties were used as the variables to predict. For the multiple regression analysis, 

we used a gradient boosting method (Friedman, 1999). The available data were 

subdivided into two random datasets: (1) a training dataset (comprising 66% of all 

the data) and (2) a test dataset (comprising 34% of all the data). The training dataset 

was used to fit a regression model to experimental data, while the test dataset was 

used to provide an unbiased evaluation of the regression model fit on the training 

dataset. 

The input parameters were the neutron porosity (NPHI), bulk density (ρ), 

photoelectric factor (PEF), P- and S-wave sonic velocities (VP and VS), gamma-ray 

spectra inferred from K, Th, and U, and P and S-wave acoustic impedances (VP·ρ 

and VS·ρ). 

Before the gradient boosting training, we assessed the relative importance of 

each log in predicting rock thermal properties on the training data by means of the 

ranking method proposed by Chen et al. (2007), known as the noise-based 

perturbation. The results of the importance ranking for the Domanic Formation are 

presented in Figure 23. 

The results show that the neutron porosity, acoustic impedance, and sonic 

velocities have the highest relative importance. The main reason for the strong 

correlation between the rock thermal properties and so-called porosity logs data 

(neutron, sonic, and density logs) is the high contrast (exceeding 10:1 in some cases) 

between the physical properties of the rock matrix and organic matter. This is  similar 

to the contrast in porous rocks between the physical properties of the rock matrix 

and pore-filling fluid. In most cases, the relation between thermal properties and 

photoelectric factor is weak because it is mainly determined by mineralogical 

composition. The relation between thermal properties and natural radioactivity is 
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generally indirect. Uranium is adsorbed by kerogen (Balushkina et al., 2014), and 

many factors control the quantitative accumulation of uranium in organic-rich shales 

(e.g., Khaustova et al., 2019). 

 

Figure 23. Well log importance during predicting rock thermal properties assessed 
via noise-based perturbation importance ranking method for the Domanic 
Formations. Black corresponds to thermal conductivity parallel to the bedding plane, 
red coloured diagram corresponds to thermal conductivity perpendicular to the 

bedding plane, and blue coloured diagram corresponds to rock volumetric heat 
capacity. 

After the analysis of the importance of the well-logging parameters, we 

performed a regression analysis of the thermal properties and well-logging data 

using the gradient boosting method. We performed several iterations of regression 

model training, eliminating the worst (according to relative feature importance) 

input parameter on each iteration. Assessing the results of thermal property 

prediction on the training dataset, we established that the optimal threshold limit 

value for relative importance for predicting the thermal properties is 5%.  

The gradient boosting algorithm was applied using the k-fold cross-validation 

method (Stone 1974). We used five k-folds. In the regression of the training dataset, 

we tuned the following set of hyperparameters: (1) learning rate, (2) number of 

boosting stages (number of estimators), and (3) maximum depth of the individual 
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regression estimators (max depth). The cross-validation was performed over the 

predefined grid of hyperparameters. The mean squared error was used to evaluate 

the model fit. The results of the hyperparameter tuning for gradient boosting of the 

training datasets of the Bazhenov and Domanic Formations are presented in Table 

15. 

Table 15. Results of hyperparameter tuning for gradient boosting of the training 
datasets. 

Thermal property Optimal parameters RMSE R2 P,% A,% N 

λ| |, W·m-1·K-1 
learning rate = 0.17 

number of estimators = 115 
max depth = 6 

0.10 0.80 -0.1 5.1 313 

λꞱ, W·m-1·K-1 
learning rate = 0.15 

number of estimators = 109 
max depth = 3 

0.19 0.56 2.1 10.9 137 

C, MJ·m-3·K-1 

learning rate = 0.17 

number of estimators = 105 
max depth = 5 

0.06 0.78 -0.5 2.9 313 

 

The obtained correlation coefficients (r = (R2)0.5) between the measured and 

predicted values of the rock thermal properties are statistically significant according 

to Student’s t-test for the 0.95 confidence level (rcritical = 0.16 for N = 137, rcritical = 

0.13 for N = 296, rcritical = 0.12 for N = 313, and rcritical = 0.11 for N = 326). For test 

data, statistically significant correlation coefficients indicate the satisfactory quality 

of model fit.  

4.2.4. Calibrating theoretical models of thermal properties 

The same training and testing datasets were used for calibrating and assessing 

theoretical models of rock thermal properties. As well as for the Bazhenov 

Formation (Section 3.1.2), we investigated the effectiveness of three theoretical 

models for predicting the thermal conductivity of the Domanic Formation: 

Lichtenecker-Asaad model (equation 4), Krischer-Esdorn model (equation 5), and 

Lichtenecker-Rother model (equation 6).  
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The Domanic Formation present six components: shale, siliceous rock, 

limestone, dolostone, kerogen, and oil. For lithological components, we assumed 

that they consist of one main and secondary minerals and that physical properties 

are mainly determined by the physical properties of the dominant mineral. The 

dominant mineral in shale, siliceous rock, limestone and dolostone are illite, silicates 

(mainly chalcedony), calcite and dolomite, respectively. 

Theoretical model calibration requires data on rock thermal properties, 

volumetric fractions of rock-forming mineralogical components, and thermal 

properties of rock-forming mineralogical components. The data on the rock thermal 

properties were inferred from the results of thermal core logging, and the data on the 

volumetric fractions were inferred from the well-logging data. The data on the 

thermal properties of rock-forming minerals were inferred from Table 8. 

The model calibration implies the (1) application of reliable data to the thermal 

properties of rock-forming mineral components, (2) determination of correction 

factors to theoretical models in the directions parallel and perpendicular to the 

bedding plane, and (3) minimization of the mean relative discrepancy between 

measured and calculated rock thermal properties. 

For the Domanic Formation rocks, the data on the volumetric fractions of the 

lithological rock-forming components were available. Thus, we assigned the upper 

constraint of the possible range for a given thermal property that was assumed equal 

to the value of the dominant mineral. The results of the model (Table 16) reveal that: 

 The rock thermal conductivity parallel to the bedding plane can be predicted 

by the theoretical models more accurately than thermal conductivity 

perpendicular to the bedding plane.  

 Among the considered theoretical models of rock thermal conductivity, the 

Lichtenecker-Rother model yields the lowest prediction uncertainty and the 

highest values of R2 between measured and predicted values. 
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 The rock components have different values of thermal conductivity along 

different directions. This can be observed at the lithological scale. 

Table 16. Calculated values of thermal properties for rock-forming components for 

the training dataset of the Domanic Formation. 

Theoretical model 

Thermal conductivity of lithological components parallel to the bedding plane (N = 313), W·m-1·K-1 

Limestone Dolostone 
Organic 
matter 

Siliceous rock 
component 

Shale Oil 
Correction 

factor 
R2 

RMSE, 
W·m-1·K-1 

P,% A,% 

Lichtenecker-Asaad 2.42 2.58 0.60 2.43 1.90 0.13 0.05 0.54 0.16 8.1 -0.3 
Lichtenecker-Rother 2.44 3.33 0.53 3.08 1.80 0.14 0.48 0.64 0.14 6.9 0.3 

Krischer-Esdorn 2.49 3.50 0.31 3.22 1.87 0.11 0.95 0.61 0.14 6.9 0.1 

 Thermal conductivity of minerals/fluids perpendicular to the bedding plane (N = 137), W·m-1·K-1 

Lichtenecker-Asaad 2.09 2.58 0.15 2.38 1.51 0.13 0.36 0.26 0.25 12.9 0.6 
Lichtenecker-Rother 2.06 3.25 0.18 2.37 1.46 0.13 0.35 0.31 0.24 12.3 0.2 

Krischer-Esdorn 2.07 3.15 0.10 2.53 1.10 0.11 0.90 0.33 0.23 12.1 0.3 

  Volumetric heat capacity of lithological components (N = 313), MJ·m-3·K-1 

Weighted arithmetic 

mean 
2.09 2.20 1.64 1.98 1.80 1.53 - 0.42 0.09 4.4 -1.2 

 

The obtained results coincide with results that were obtained for the Bazhenov 

formation (Section 3.1.2). Based on these points, the Lichtenecker-Rother model 

was used for predicting rock thermal conductivity from well-logging data. 

4.2.5. Predicting rock thermal properties from well logging data on a test dataset 

Rock thermal properties were predicted on a test dataset with both the gradient 

boosting and theoretical models of rock thermal properties. We assessed the 

prediction uncertainty from the comparison of predicted values and experimental 

data of the rock thermal properties (Table 17). Figure 24 plots the thermal property 

predictions and experimental values of the rock thermal properties for the test 

datasets. 
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Table 17. Prediction results of the rock thermal properties on the test dataset. 

Thermal conductivity 
Volumetric heat capacity 

Model* 

λ| | λꞱ 

R2 
RMSE P A 

R2 
RMSE P A 

Model R2 
RMSE P A 

W·m-1·K-1 % % W·m-1·K-1 % % MJ·m-3·K-1 % % 

GB 0.80 0.10 5.1 0.1 0.56 0.19 10.9 2.1 GB 0.78 0.06 2.9 0.5 

LR 0.59 0.15 6.6 1.8 0.25 0.24 12.8 0.7 AM 0.44 0.10 4.8 0.6 

*GB stands for the gradient boosting method, LR stands for the Lichtenecker-Rother model, AM 
stands for the weighted arithmetic mean model. 

 

 

Figure 24. Experimental data of the rock thermal properties compared to the thermal 
properties predicted from well-logging data of training datasets for the Domanic 
Formation. Black dots present results with the gradient boosting method, red dots 

results via theoretical model. The dashed black line (y=x) shows a perfect prediction. 

Compared to theoretical models, the gradient boosting algorithm provides more 

precise predictions of thermal conductivity and volumetric heat capacity from well-

logging data. This is evidenced by the higher values of R2 between the measured and 

predicted values and lower values of RMSE and P. 

As well as for the Bazhenov Formation, the results presented in Table 17 and 

Figure 24 revealed that theoretical models of thermal properties provide less 

accurate predictions from well-logging data than the gradient boosting algorithm for 

organic-rich shales.  

Boxplots of the relative discrepancies between the measured and predicted 

values for a detailed uncertainty analysis are plotted in Figure 25. 
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Figure 25. Boxplots of the relative discrepancies between the measured and 
predicted values of rock thermal properties for the Domanic Formation. Above, 
predictions based on the theoretical models; below, predictions based on the gradient 
boosting algorithm. Histograms of thermal properties from the test dataset are also 
shown. 

As well as for the Bazhenov Formation, there is a systematic underestimation of rock 

thermal conductivity when predicting via the Lichtenecker-Rother model for within 

the range of low thermal conductivities (1.4-1.6 W·m-1·K-1) of the Domanic 

Formation rocks. In general, the gradient boosting algorithm yields less biased 

thermal properties predictions than the theoretical models of thermal properties. A 

high level of bias is observed in the prediction of the thermal conductivity 

perpendicular to the bedding plane with both the Lichtenecker-Rother model and the 

gradient boosting algorithm. This bias can be conditioned by the effect of the 

imposed fracturing that occurred due to the unloading of core samples.  
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4.2.6. Corrections for in situ temperature and pressure 

Following the workflow (Figure 18), the predicted rock thermal properties 

require correction for in situ temperature and pressure. As we did not measure rock 

thermal properties at high temperature and pressure in this study, we use data 

available in the literature to account for in situ conditions. 

Recent investigations of rock samples from the Domanic Formations (Gabova 

et al., 2020) have revealed that the average decrease in thermal conductivity (λ‖) for 

Domanic Formation rocks at 60 °C is ~4%. 

Temperature corrections for thermal conductivity should be performed to 

account for thermal anisotropy since there are different dependencies of thermal 

conductivity on pressure and temperature for components parallel and perpendicular 

to the bedding plane directions (as shown by Wang et al., 2018). In literature, there 

are still no reliable experimental data on the dependencies of thermal conductivity 

on temperature accounting for the thermal anisotropy of the rocks from the Domanic 

Formation. Thus, we assumed that the temperature corrections for thermal 

conductivity parallel and perpendicular to the bedding plane are both 4%. 

There is no data in the literature on dependencies of thermal conductivity of the 

Domanic Formation rocks from pressure. Therefore, we can only assume that for 

Domanic Formation rocks and the Bazhenov Formation rocks (Section 2.1.2.4), the 

necessary pressure correction does not exceed 5%.  

Following Waples D. and Waples S. (2004) research results, we imply a 

negligible effect of pressure volumetric heat capacity (for the in situ pressure of the 

Domanic Formations, the increase in pressure is less than approximately 1%). The 

temperature effect on volumetric heat capacity can be inferred from Savest and Oja 

(2013). According to their results, the correction to volumetric heat capacity for oil 

shales at temperature 60 °C amounts approximately to 5%. 
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4.3. Comparison of the WBLT for determining rock thermal properties and 
Deming approach 

Among the few approaches so far proposed to account for the thermal 

anisotropy, one of the most commonly used was suggested by Deming (1994). There 

are many studies that apply this approach for the investigations of basin thermal 

structures and variations of heat flow density (see, e.g.  Corry and Brown, 1998; 

Tanikawa et al., 2016). A comparison of the technique proposed in this study and 

the Deming correction approach was performed to assess their effectiveness. 

4.3.1. Workflow of the Deming correction approach 

The Deming approach relies on the application of the theoretical model of 

Lichtenecker. The thermal anisotropy of a certain component is assumed as a main 

factor resulting in thermal anisotropy of a rock. For a two-component porous rock 

thermal conductivity for parallel and perpendicular directions to the bedding plane 

are given by: 

𝜆‖ = 𝜆𝑚𝑎𝑡𝑟𝑖𝑥 ‖
1−𝜙

· 𝜆𝑓𝑙𝑢𝑖𝑑
𝜙

     (21) 

𝜆⊥ = 𝜆𝑚𝑎𝑡𝑟𝑖𝑥 ⊥
1−𝜙

· 𝜆𝑓𝑙𝑢𝑖𝑑
𝜙

     (22) 

where λ|| is effective thermal conductivity of a rock for parallel direction to the 

bedding plane, λꞱ is effective thermal conductivity of a rock for perpendicular 

direction to the bedding plane, λmatrix|| and λmatrixꞱ  are thermal conductivity of a rock 

matrix for parallel and perpendicular directions, respectively, λfluid is thermal 

conductivity of a fluid and 𝜙 stands for porosity.  

Thermal conductivity of rock matrix for parallel and perpendicular directions 

can be determined from minimization of the discrepancy between measured and 

predicted thermal conductivity for corresponding directions.  
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4.3.2. Case study: predicting rock thermal conductivity accounting for thermal 
anisotropy based on the Deming approach and the novel WLBT for 
determining rock thermal properties 

The object of investigation is the same that was described within Section 3.2. 

The data for clayey rocks is considered in the case study. The results of determining 

rock thermal conductivity on the basis of the Krischer-Esdorn model are presented 

in Section 3.2.2.3.  

4.3.2.1 Calibrating the Lichtenecker model via the Deming approach 

From correlation analysis of high-definition spectroscopy data and the thermal 

anisotropy coefficients inferred from thermal core logging, we established that there 

are statistically significant correlations between the coefficient of thermal anisotropy 

and the volume fraction of illite and kaolinite (Figure 26). 

 

 

Figure 26. Cross-plots between thermal anisotropy coefficient and illite volume 

fraction (left panel) and thermal anisotropy coefficient and kaolinite volume fraction 
(right panel). The dashed lines represent the regression trend. 

 

Thus, we assumed three-component media composed of isotropic rock matrix, 

anisotropic clayey minerals and pore-filling fluid. The rock matrix is composed of 
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orthoclase, albite, siliceous minerals, and siderite and its thermal conductivity of was 

calculated using data on volume fractions of minerals (inferred from high-definition 

spectroscopy) and data on thermal conductivity of those minerals (Section 3.1.2.2, 

Table 8) with the Lichtenecker model. Due to extremely low permeability, the pore 

space of the investigating rocks was considered fully water-saturated. The 

Lichtenecker model can be rewritten the following way: 

𝜆‖ = 𝜆𝑚𝑎𝑡𝑟𝑖𝑥 
𝑉𝑚𝑎𝑡𝑟𝑖𝑥 · 𝜆

𝑐𝑙𝑎𝑦‖ 

𝑉𝑐𝑙𝑎𝑦 · 𝜆𝑓𝑙𝑢𝑖𝑑
𝜙

     (23) 

𝜆⊥ = 𝜆𝑚𝑎𝑡𝑟𝑖𝑥 
1−𝜙

· 𝜆
𝑐𝑙𝑎𝑦⊥ 

𝑉𝑐𝑙𝑎𝑦
· 𝜆𝑓𝑙𝑢𝑖𝑑
𝜙

     (24) 

To determine the thermal conductivity of clayey component, the constrained 

genetic minimization algorithm (Storn and Price, 1997) was applied. The available 

data were subdivided into the same random training (66% of all data) and test 

datasets (34% of all dataset) that were presented in Section 3.2. From minimization 

of  the discrepancy between predicted and measured values of thermal conductivity 

on a training dataset it was established that thermal conductivity of clayey 

component for parallel and perpendicular directions to the bedding plane is 2.57 

W·m-1·K-1 and 1.21 W·m-1·K-1, respectively. The calculated values of R2, RMSE, 

accuracy and precision for the training dataset are summarized in Table 18. 

Table 18. Prediction results of the rock thermal properties on the training datasets. 

λ|| λꞱ 

R2 RMSE, W·m-1·K-1 P, % A,% R2 RMSE, W·m-1·K-1 P, % A, % 

0.25 0.15 12.4 0.9 0.56 0.18 20.1 -0.1 

4.3.2.2 Training gradient boosting regression models for determining rock 
thermal conductivity accounting for thermal anisotropy 

The well-logging data were used as input data, while the data on rock thermal 

conductivity for parallel and perpendicular directions to the bedding plane were used 

as the variables to predict. The available well-logging data include radioactivity, 

density, photoelectric factor, neutron porosity, P-wave and S-wave velocities for 
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parallel and perpendicular directions to the bedding plane (that were inferred from 

cross-dipole sonic log data). Additionally, as input data, the calculated acoustic 

impedances (VP·ρ, VS·ρ) were used. The initial dataset was subdivided the same way 

(exactly the same depth points) as it was done in Section 4.3.2.1. 

 For the multiple regression analysis, we used a gradient boosting method 

(Friedman, 1999). The training dataset was used to fit the regression model to 

experimental data, while the test dataset was used to provide an unbiased evaluation 

of the regression model fit on the training dataset. 

The gradient boosting algorithm was applied using the k-fold cross-validation 

method (Stone 1974). We used three k-folds. In the regression of the training dataset, 

we tuned the following set of hyperparameters: (1) learning rate, (2) number of 

boosting stages (number of estimators), (3) maximum depth of the individual 

regression estimators (max depth), and the fraction of samples to be used for fitting 

the individual base learners (subsample). The cross-validation was performed over 

the predefined grid of hyperparameters. A mean squared error was used to evaluate 

the model fit.  

The results of the hyperparameter tuning for gradient boosting on the training 

datasets are presented in Table 19. The obtained correlation coefficients (r = (R2)0.5) 

are statistically significant according to Student’s t-test for the 0.95 confidence level 

(rcritical = 0.17 for N = 128, rcritical = 0.21 for N = 92).  

Table 19. Results of hyperparameter tuning for gradient boosting of the training 
datasets. 

Thermal conductivity Optimal parameters RMSE R2 P,% A,% N 

λ| |, W·m-1·K-1 

learning rate = 0.1 
number of estimators = 60 

max depth = 3 
subsample = 0.2 

0.04 0.92 5.1 0.1 128 

λꞱ, W·m-1·K-1 

learning rate = 0.13 
number of estimators = 30 

max depth = 3 
subsample =5 

0.06 0.96 11.6 0.1 92 
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4.3.2.3 Predicting rock thermal conductivity based on the Deming approach 
and the gradient boosting regression models 

The values of thermal conductivity of the clayey component for parallel and 

perpendicular directions to the bedding plane were used to predict rock thermal 

conductivity on a test dataset. As well as for the training dataset, the matrix thermal 

conductivity for the test dataset was calculated using data on volume fractions of 

minerals (inferred from high-definition spectroscopy) and data on thermal 

conductivity of that minerals via the Lichtenecker model (equations 23 and 24). The 

trained gradient boosting regression models were used for predicting thermal 

conductivity for parallel and perpendicular directions to the bedding plane on a test 

dataset. The results of thermal conductivity predictions based on the Deming 

approach and the novel WLBT technique are presented in Table 20.  

Table 20. Prediction results of the rock thermal properties on the test dataset. 

Model* 

λ|| λꞱ 

R2 
RMSE P A 

R2 
RMSE P A 

W·m-1·K-1 % % W·m-1·K-1 % % 

Deming 0.1 0.15 12.7 -0.9 0.56 0.18 20.8 0.1 

GB 0.93 0.07 6.06 0.2 0.73 0.14 15.4 0.3 

*GB stands for the gradient boosting method; Deming stands for predictions that are based on the Deming approach. 

 Figure 27 shows measured and predicted values of rock thermal conductivity 

for parallel and perpendicular directions to the bedding plane.  
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Figure 27. Experimental data of the rock thermal conductivity compared to the 

thermal conductivity predicted from well-logging data of test datasets for the 
investigating clayous rocks. Black dots present results with the gradient boosting 
method, red dots results via the Deming approach. The dashed black line (y=x) 
shows perfect prediction. 

The Deming correction approach provided less precise predictions of rock 

thermal conductivity both for parallel and perpendicular directions. WBLT provided 

essentially more accurate predictions based on both theoretical model-based 

approach (see Table 20) and regression model-based approach (the gradient boosting 

regression models in our case) according to higher values of R2 between the 

measured and predicted values and lower values of RMSE and precision. 

Concurrently, comparing Table 20 and Table 17 it can be concluded that, thermal 

conductivity predictions for both parallel and perpendicular directions that were 

made based on the Krischer-Esdorn model and the gradient boosting regression 

models are of relatively similar quality (according to the obtained metrics).  

For a detailed uncertainty analysis, the boxplot of the relative discrepancies 

between the measured and predicted values is depicted in Figure 28. From the 

analysis of the obtained boxplots it can be concluded that the Deming correction 

approach yields systematic errors for low and high thermal conductivities both for 

parallel and perpendicular directions. The gradient boosting regression models yield 

systematic errors within the range of 2-2.2 W·m-1·K-1 for thermal conductivity 
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parallel to the bedding plane and within the range of 1.2-1.6 W·m-1·K-1 for thermal 

conductivity perpendicular to the bedding plane. 

The obtained results demonstrate that WBLT is significantly more effective 

compared to the approach suggested by Deming. The higher effectiveness of the 

WLBT is conditioned by the application of enhanced theoretical models of thermal 

conductivity, advanced machine-learning techniques, and integration of thermal 

core logging data.  

 

Figure 28. Boxplots of the relative discrepancies between the measured and 
predicted values of rock thermal conductivity for the investigating clayous rocks. 
The upper panel represents the boxplots for predictions that are made via the Deming 
correction approach. The lower panel represents the boxplots for predictions that are 
made via the gradient boosting regression models. Histograms of thermal 
conductivities for the test dataset are also shown. 
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4.4. Conclusions 

The developed approaches (Chapters 2 and 3) for predicting rock thermal 

properties accounting for thermal anisotropy, rock heterogeneity and in situ 

thermobaric conditions were unified and presented within the novel, well-defined 

technique, referred to as WLBT. This technique's workflow relies on the application 

of advanced thermal core logging technique that provides continuous non-contact 

non-destructive profiling of thermal conductivity (principal components of thermal 

conductivity) and volumetric heat capacity on full-diameter cores, core plugs, and 

broken cores. WLBT implies the application of advanced machine-learning 

techniques or enhanced theoretical modelling depending on the available input data.  

WLBT was tested for organic-rich shales of the Domanic Formation. From the 

comparison of the experimental and predicted data on rock thermal properties, it can 

be concluded that novel WLBT provided uncertainties in data on thermal 

conductivity for parallel direction less than 7%, for perpendicular direction – less 

than 13% and uncertainties in data on volumetric heat capacity is less than 5%.  

A comparison study between WLBT and the commonly used Deming approach 

was conducted within the case study on rocks of the Tumen Formation. The 

prediction results revealed that WLBT provides more precise predictions of thermal 

conductivity for both parallel and perpendicular directions to the bedding plane. The 

higher effectiveness of WLBT is conditioned by application of enhanced theoretical 

models of thermal conductivity, of advanced machine-learning techniques and 

integration of the thermal core logging data. Thus, testing of the WLBT technique 

indicated its universal applicability. 



Chapter 5. Results of implementing WLBT for determining rock 

thermal properties during investigations of oil fields 

Information about the actual heat flow and rock thermal properties is necessary 

for modelling sedimentary basins and oil- and gas-bearing systems (Hantschel & 

Kauerauf, 2009). It was shown that uncertainties in these data lead to a severe 

reduction of modelling (Chekhonin et al., 2020). There are many biases of the 

previously used methods that lead to unreliable data on heat flow density (Popov et 

al., 2019b).  

In this Chapter I present two case studies of geothermal investigations of 

prospecting and appraisal wells located in Russia. The performed investigations 

were conducted by means of the modern methodological and experimental basis of 

thermal petrophysics. The performed geothermal investigations demonstrated that 

the WLBT for determining rock thermal properties is a critical component for 

reliable determining vertical variations of heat flow density. 

5.1 Determining vertical variations of rock thermal properties and heat flow 
density along Bazhenovskaya 1 well 

In this Section, I describe the results of implementing WLBT for predicting 

rock thermal conductivity in a geothermal study of the southwest part of Lyaminsk 

oil and gas region, West Siberian basin. 

5.1.1. Object of study 

The investigated well is located in the southwest part of the Lyaminsk oil and 

gas region of the West Siberian basin near the Khanty-Mansyisk city, Russia (Figure 

29). The area understudy occurs in the Elisarov downfold. According to the results 

of structural-facial zoning, the investigated area is classified as a transitional zone of 

the Bazhenov Formation into the Tutleim Formation. 

Well drilling was started and completed in 2018. The well is almost vertical. 

The maximum well inclination does not exceed 1⁰ 80'.  The final depth of the well 

is 3202.8 m. The geological profile of the investigating well includes the Vikulov, 

Frolov, Tutleim, Abalak, and Tymen formations as well as pre-Jurassic deposits 
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(Table 21). The total length of cored intervals is 643.8 m with 89.3% core recovery 

(574.98 m). 

 

Figure 29. Geographic location of the Bazhenovskaya well №1 (retrieved from 
https://www.crru.ru). The large yellow point indicates the location of well. 

 

Table 21. Characteristics of the rocks from the investigating well based on the 
analysis of the recovered cores.  

№ Rock type Age Logging depth, m N* 

1 Interbedding of siltstones, argillites and quartz sandstones. K1vk 1735-1786.9 310 

2 Argillites with rare thin layers of marl. K1fr 

2131.6-2196.6 626 

2416.6-2462.6 247 

2720.1-2770 376 

3 

Bituminous argillites with pyritization and fractures in the upper 

part. Bituminous clayey rocks with pyritization in the lower part. 
K1tt2 2770-2791.33 147 

Bituminous clayey carbonate thin bedded rocks with pyritization. 

In some cases with siliceous components. 
J3 - K1tt1 2802.12-2827.92 157 

4 

In the upper part – thin bedded argillites with rare layers lenses of 

sandstone and siltstone. In the lower part – interbedding of siltstone 

and argillite. 

J2-3ab 2828-2846.6 147 

6 

Inhomogeneous interbedding of argillite and siltstone with rare 

layers of coal and sandstones in the upper part. Inhomogeneous 

interbedding of argillite, siltstone and sandstone with thin layers of 

coal and marl in the middle part. In the lower part – interbedding 

of sandstone, conglomerate and sandy gravelstone with thin layers 

of argillite and coal. 

J2tm 2847-3030 1324 

7 

3030-3032.5 – crust of weathering composed of gravelstone, 

argillite, coal and siliceous-clayey rocks. 3032.5-3202.8 – pre-

Jurassic formation composed of (1) in the upper part - rhyolite, 

rhyolite-rhyodacite tuffs, (2) in the middle part – siltstone, argillite, 

and sandstone, and (3) in the lower part – rhyolite and rhyolite-
rhyodacite tuffs. 

P-T 3030-3202.8 768 

*N – number of recovered core samples.  
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5.1.2. Results of measuring rock thermal properties and temperature logging 

The following set of experimental investigations was conducted: 

• Continuous thermal core logging with optical scanning technique of all 

recovered full-sized cores. 

• Additional measurements of rock thermal properties on a representative 

collection of standard core plug at different saturations with the optical 

scanning laser setup. 

• Measurements of rock thermal properties at elevated temperatures on a 

representative collection of standard plugs with the optical scanning laser 

device, DTC-300 instrument and DCS 214 Polyma (NETZSCH). 

Representative collections of core samples for additional measurements were 

selected based on results of the continuous thermal core logging of full-sized cores 

and its lithological description. 

During thermal core logging, the total relative measurement uncertainty did not 

exceed ±2.5% for thermal conductivity (with measurement precision not exceeding 

±1.5%), ±4% for thermal diffusivity, and ±5% for the volumetric heat capacity 

(measurement uncertainties are reported for 0.95 confidence level). Figure 30 shows 

the distributions of the average rock thermal conductivity components for parallel 

and perpendicular directions to the bedding plane, rock volumetric heat capacity, 

thermal anisotropy coefficient, and heterogeneity factor for the investigated depth 

intervals of the Vikulov Formation (1753-2055 m depth) and the Frolov Formation 

(2105-2770 m depth). 
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Figure 30. Results of continuous thermal core logging for depth intervals of the 
Vikulov (upper panel) and Frolov formations (lower panel). Black coloured dots 
represents thermal conductivity parallel to the bedding plane, red coloured dots 
represent thermal conductivity perpendicular to the bedding plane, green colored 
dots represent volumetric heat capacity, blue coloured dots represent thermal 
heterogeneity factor, and purple coloured dots represent thermal anisotropy 
coefficient. Grey coloured dots represent high-resolution profiles (with 1-mm spatial 
resolution) of thermal conductivity and volumetric heat capacity. 
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To correct the continuous thermal core logging results for in situ saturation, 

measurements of rock thermal properties (with the optical scanning laser setup) and 

porosity on 40 core plugs were conducted. Measurements on standard core plugs 

were conducted at “as received” dried and saturated states. These measurements 

enabled establishing the dependence of the relative increase of thermal properties 

after full water saturation from rock porosity. An example of the assessment of 

relative increase of thermal conductivity after saturating core samples is presented 

in Figure 31.  

 

Figure 31. The dependency of relative increase of thermal conductivity after water 
saturation from porosity for the Vikulov and Frolov formations (left panel) and for 
the Abalak and Tyumen formations (right panel). Red colored dots and regression 
trend represent data for thermal conductivity perpendicular to the bedding plane. 
Black colored dots and regression trend represent data for thermal conductivity 

parallel to the bedding plane.   
 

The results of temperature logging are given in Figure 32. The precision of 

temperature measurements did not exceed ±0.007 °С. The industrial partner 

conducted the temperature logging. Since drilling was suspended for at least six 

months, the registered temperature gradient can be considered as in equilibrium. 

Figure 32 (right panel) plots the results of the temperature gradient calculations for 

each 50 m depth interval with a 10 cm step. 
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Figure 32. The temperature and temperature gradient along the well.   

5.1.3. Results of application of WLBT for determining rock thermal conductivity 
within non-coring intervals 

The target intervals for predicting rock thermal properties from well-logging 

data within non-coring intervals were the Vikulov and Frolov formations. According 

to the results of thermal core logging, these formations exhibit a considerable degree 

of thermal anisotropy (Figure 33). 
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Figure 33. The histogram of thermal anisotropy coefficient for the Vikulov (black 
colour) and the Frolov (blue colour) formations.  
 

The oriented bedded texture of argillites in the Frolov Formation condition higher 

degree of thermal anisotropy than the Vikulov Formation rocks. The rocks from the 

Vikulov and Frolov Formations at in situ conditions are water-saturated according 

to results of interpreting well-logging data and analysis of recovered core samples. 

The directions of principal axes of thermal conductivity tensor for the investigating 

rocks coincide with parallel and perpendicular directions to the bedding plane 

according to results of thermal core logging of full-sized cores and standard core 

plugs. Hence, during thermal core logging, the scanning lines were parallel and 

perpendicular to the bedding plane.  

The rock thermal properties for the Vikulov Formation were determined using 

theoretical modelling.  

The Lichtenecker-Rother model was used for predicting rock thermal 

conductivity. A two-component medium (rock matrix and pore-filling fluid) was 

considered for the Vikulov Formation rocks. The application of the Lichtenecker-

Rother model requires data on thermal conductivity of rock matrix, thermal 

conductivity of the pore-filling fluid, porosity, and the correction factor “α” (see 

formula 6, Seciton 3.2.2.). The thermal conductivity of water was assumed 0.6 W·m-

1·K-1 and data on rock porosity was inferred by standard processing and interpreting 
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the density log data. The data on thermal conductivity of matrix and the correction 

factor were inferred with a procedure that is articulated in the following steps. 

In the first step, we used the results of measurements of rock thermal properties 

on standard core plugs. Since results of measurements were available for dried and 

water-saturated states, we solved for each core sample the system of equations: 

{
𝜆𝑒𝑓𝑓
𝑑𝑟𝑦 = ((1 − 𝜙) · 𝜆𝑚𝑎𝑡𝑟𝑖𝑥

𝛼 +𝜙 · 𝜆𝑎𝑖𝑟
𝛼 )

1

𝛼

𝜆𝑒𝑓𝑓
𝑤𝑎𝑡𝑒𝑟 = ((1 − 𝜙) · 𝜆𝑚𝑎𝑡𝑟𝑖𝑥

𝛼 +𝜙 · 𝜆𝑤𝑎𝑡𝑒𝑟
𝛼 )

1

𝛼

   (25) 

where λeff dry is effective thermal conductivity for dried core plug, λeff water is effective 

thermal conductivity for water-saturated core plug, 𝜙 is porosity, λmatrix is the thermal 

conductivity of rock matrix, λair is the thermal conductivity of air, λwater is thermal 

conductivity of water and α is a correction factor. The modelling implies several 

assumptions: 

 rock matrix is isotropic; 

 anisotropy of rocks is conditioned by the oriented laminated texture of rocks 

(structural nature of anisotropy). 

 the correction factor α encompasses the effect structural and textural 

peculiarities of rocks on rock thermal conductivity; 

 the correction factor α does not depend on saturation type. 

Firstly, this system of equations was solved for the parallel component of thermal 

conductivity. Secondly, this system of equations was solved for the perpendicular 

component of thermal conductivity but with already known values of matrix thermal 

conductivity. This is justified by the more significant influence of micro fracturing 

of rocks on the perpendicular component of thermal conductivity. Figure 34 

illustrates the distribution of matrix thermal conductivity and correction factor for 

parallel and perpendicular directions. 
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Figure 34. The histogram of the determined correction factors for parallel (black 
colour) and perpendicular (red colour) directions to the bedding plane and thermal 
conductivity of rock matrix (right panel). 
 

As a result, the possible ranges for matrix thermal conductivity and the correction 

factors (for parallel and perpendicular directions to the bedding plane) were 

established.  

In the second step, the average values of matrix thermal conductivity and 

correction factors were determined for the investigating rocks by solving the system 

of equations: 

{
 
 

 
 
λ‖ = ((1 −𝜙)𝜆𝑚𝑎𝑡𝑟𝑖𝑥

α‖ +𝜙𝜆
𝑓𝑙𝑢𝑖𝑑

α‖ )

1

α‖

λ⊥ = ((1 −𝜙)𝜆𝑚𝑎𝑡𝑟𝑖𝑥
α⊥ +𝜙𝜆𝑓𝑙𝑢𝑖𝑑

α⊥ )
1

α⊥

    (26) 

where λ|| and λ⊥ are thermal conductivity parallel and perpendicular to the bedding 

plane, respectively, that were inferred from continuous thermal core logging. The 

matrix thermal conductivity and correction factors are determined by means of 

constrained minimization of the mean discrepancy between measured and predicted 

thermal conductivity values simultaneously for parallel and perpendicular 

directions. The constraints for matrix thermal conductivity and correction factors 

(for parallel and perpendicular directions) are taken from the previous step (see 

Figure 35). The possible range for thermal conductivity of pore-filling fluid was set 

from 0.0024 to 0.6 W·m-1·K-1 since at the time of thermal core logging of full-sized 
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cores, the pore-filling fluid was a mixture of air and water. According to 

minimization results, the average matrix thermal conductivity is 3.11 W·m-1·K-1, the 

average values of α|| and α⊥ are 0.08 and -0.06, respectively, and thermal 

conductivity of pore-filling fluid is 0.12 W·m-1·K-1. The results of predicted 

thermal conductivity of rocks within the reference interval and assessment of 

prediction quality are presented in Figure 35. 

 

Figure 35. The results of predicting the thermal conductivity of rocks and 
assessment of prediction quality for the Vikulov Formation. Black and red curves 
(left panel) represent measured values of thermal conductivity for parallel and 
perpendicular directions to the bedding plane, respectively. Green dots represent the 
predicted thermal conductivity. Prediction quality is reported for a 0.95 confidence 

level. 
 

The rock thermal properties for the Frolov formation were determined using 

gradient boosting. The density and gamma-ray logs were used to predict the thermal 

conductivity of non-cored depth intervals.  
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In the first step, the initial 1-mm profiles of thermal conductivity were averaged 

within a 0.5 m moving window to obtain a vertical resolution comparable with the 

vertical resolution of the logging tools. In addition, the core depths were matched 

with logging depths using the results of gamma-spectrometry. The available dataset 

(that is composed of data on rock thermal conductivity and well-logging data) was 

subdivided into the random train (80% of the whole dataset) and test subsets (20% 

of the entire dataset). The optimal hyperparameters of the gradient boosting 

regression model were determined via the cross-validation method (three folds were 

used). The results of the assessment of prediction quality for thermal conductivity 

parallel to the bedding plane are summarized in Table 22.  

Table 22. Results of the gradient boosting regression model training and testing. 

Subset R2 P, % A, % 

train 0.25 6.7 0.7 

test 0.4 6.5 0.2 

 

Figure 36 plots predicted and measured values of thermal conductivity for training 

and test subsets. 

 

Figure 36. The cross-plot of measured and predicted values of thermal conductivity 
parallel to the bedding plane.  
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Due to the fracturing of core samples from the Frolov Formation did not allow 

to correctly upscale the initial data on thermal conductivity perpendicular to the 

bedding plane to logging scale. Thus, the relation between thermal conductivity 

parallel to the bedding plane and perpendicular to the bedding plane was analyzed. 

Figure 37 plots the dependency of thermal anisotropy coefficient from thermal 

conductivity perpendicular to the bedding plane. 

 

Figure 37. The cross-plot of thermal anisotropy coefficient and thermal conductivity 
perpendicular to the bedding plane.  
 

The obtained determination coefficient for the regression equation in Figure 37 is 

statistically significant (at 0.95 confidence level) and, therefore, can be used to 

determine thermal conductivity perpendicular to the bedding plane from data on 

thermal conductivity parallel to the bedding plane.  

Figure 38 plots the results of well-log based prediction of rock thermal 

conductivity for parallel and perpendicular directions at normal temperature and 

pressure. 
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Figure 38. Results of well-log based prediction of rock thermal conductivity for 
parallel and perpendicular directions to the bedding plane at atmospheric conditions 
(Popov et al., 2021a). Green coloured dots represent experimental data and black 
coloured dots represent the predicted data on rock thermal conductivity. Lithology: 
1 – interbedding of argillites and siltstone, 2 – marl, 3 – sandstone, 4 – bituminous 

argillite, 5 – argillites, 6 – limy sandstone, 7 – metarhyolites, 8 – metaplagiogranite, 
9 – rhyolite, 10 – tuff, 11 – sandy gravelite, 12 – argillite with coals.  
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5.1.4. Determining vertical variations of heat flow density 

Determining the heat flow density with the Fourier equation requires data on 

equivalent thermal conductivity of rocks along perpendicular direction provided that 

the vertical component of the temperature gradient is registered (Popov and Mandel, 

1998). 

The equivalent thermal conductivity of rocks was determined considering the 

following factors: 

• results of thermal core logging measurements of thermal conductivity 

components for parallel and perpendicular to the bedding plane directions 

for 4102 full-sized core samples; 

• results of additional measurements of the rock thermal properties on 40 

standard core plugs drilled out full-size core samples and selected using the 

results of thermal core logging; 

• results of well-log based predictions of rock thermal conductivity; 

• experimental data on micro- and macro-anisotropy of rocks obtained from 

the thermal property measurements on 4102 full-size core samples and 40 

core plugs; 

• results of thermal property measurements on selected full-sized core 

samples and core plugs saturated with formation fluid model; 

• ageing of core samples during core storage due to decompression effect; 

• effects of in situ temperature and pressure separately for thermal 

conductivity tensor components. 

Figure 39 plots the results of determining temperature gradient, equivalent 

thermal conductivity of rocks and the heat flow density within 14 depth intervals 

that were recognized from the analysis of vertical variations of thermal conductivity 

and the temperature gradient. 
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Figure 39. Results of determining temperature gradient, equivalent thermal 
conductivity of rocks and the heat flow density within 14 depth intervals. Lithology 
legend was given in Figure 38 (Popov et al., 2021a). 

 

The obtained results manifest the significant vertical variations of heat flow 

density along the investigated well. Within the 1736-2821 m interval, the average 

heat flow density is 56.3 mW·m-2, and within 2828-3121 m interval, the average heat 

flow density is 87.1 mW·m-2, i.e. it increases by 55%.  

The terrestrial heat flow that was registered in the investigated well is in 

agreement with the data determined in the nearly located super-deep well SG6 and 

in the En-Yahinskaya super-deep well SG-7 (Popov et al., 2008, 2012). Based on 
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the comparison of the previous data on heat flow density in the investigated are 

(Duchkov et al., 1987; Kurchikov et al., 1987) with the new data, the relative 

difference amounts to 45% (previously the heat flow density was 55-65 mW·m-2).  

5.2 Determining vertical variations of rock thermal properties and heat flow 
density along Baleikinskaya 10 well 

In this Section I described the results of implementing the WLBT for predicting 

rock thermal conductivity of the Baleikinskoye oil field. 

5.2.1. Object of study 

The studied well belongs to the group of wells drilled in the framework of the 

development of the unconventional Domanik resources in the Volga-Urals region 

(Peterson et al., 1983; Bazhenova, 2017; Ulimshek, 2003; Vashkevich et al., 2018). 

The well was drilled on the territory of the Baleikinskoye field that had been 

discovered in 2006 in the Orenburg region of the Russian Federation (Figure 40). 

Drilling was started on 6 December 2013 and finished on 22 April 2014. The drilling 

depth was 3827 m. The maximum tilt angle of the well is 1⁰ 80' at a depth of 1360 

m. The structural casing, the conductor, and the production strings are cemented up 

to the wellhead, eliminating the possibility of vertical inter-string flows that can 

distort the temperature field of rocks. 

 

Figure 40. Geographic location of the Baleikinskaya well on the heat flow map 
(Popov et al., 2021b). The large red point indicates the well’s location. 
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The borehole was drilled through Quaternary, Paleozoic, and Upper 

Proterozoic sediments (Table 23). The Quaternary sediments are represented by 

clay, argillaceous sand, and conglomerate. The Paleozoic group is represented by 

the deposits of Permian, Carboniferous, and Devonian systems. the Upper 

Proterozoic by the Vendian-Riphean formations. The Upper-Middle Permian 

sedimentary rocks are characterized by alternating shales, siltstone, and sandstones 

with subordinate interlayers of carbonate rocks. The Lower Permian and 

Carboniferous formations are represented by carbonate rocks (irregularly sulfated 

dolomite and limestone). There is a powerful sulfate-halogen formation in the upper 

part of the Lower Permian sediments (743.0-1192.0 m), which forms a regional seal. 

Limestones prevail in the Upper-Middle Devonian series. Sandstones and 

gravelstone represent the Lower Devonian series of the Paleozoic group and the 

Upper Proterozoic sediments. In the depth interval of 3371.9 to 3452.0 m, the 

borehole crossed the Domanik Formation. 

5.2.2. Results of measuring rock thermal properties and temperature logging 

The temperature logging was conducted in December 2017. The precision of 

temperature measurements did not exceed ±0.007 °С. Industrial partner conducted 

the temperature logging. Drilling was finished 12.5 months before temperature 

logging. At the time of temperature logging, the current well bottom was 3610 m. 

Spacing of temperature measurements was 0.1 m. There was a cement plug below 

the current bottom at a depth of 3610 m, thus being unavailable for the survey. The 

quality of the temperature logs throughout the investigating well can be evaluated as 

good. 

The results of temperature logging are given in Figure 41. The results of 

temperature logging merge in one curve for three different measurements. For the 

general characterization of vertical variations of the temperature gradient, Figure 41 
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(right panel) plots the results of the temperature gradient calculations for each 50 m 

depth interval with a 10 cm step. 

Table 23. Characteristics of the rocks from the investigating well based on the 
analysis of the recovered cores.  

№  Rock type Age Logging depth, m                    N* 

1 In the upper part anhydrite-dolomite rock, in the 
middle and lower parts - limestone 

Р1ar 1348.50 - 1366.10 135 

2 Biclastic limestones with rare inclusions of 

anhydrite and porous intervals  

С1t 

 

2612.29 - 2629.20 145 

2657.00 - 2665.74 73 

3 Biclastic limestones that are (1) with rare 
dolomitized intervals, (2) porous, (3) cavernous, (4) 

oil-saturated in some intervals, (5) with a rare 
interbedding of argillites. 

D3zv 
 

2737.30 - 2746.02 78 

2754.90 - 2763.60 65 

2794.90 - 2812.50 143 

4 Biclastic limestones that are porous, fractured, with 
rare interbedding of argillites. 

D3fm 2916.90 - 2934.34 143 

6 In the upper part – quartz sandstones and argillites; 
in the middle part – limestones and argillites; and in 

the lower part – marlstones. 

D3p-D2ml 3506.40 - 3539.30 272 

7 Interbedding of quartz sandstones and shally 
siltstone. 

D2ar 3585.38 - 3597.40 92 

8 Biclastic limestones with oil saturated intervals and 
thin layers of sandstones.  

D2vb-D2af 3619.20 - 3630.68 89 

9 Biclastic limestones that are unevenly oil-saturated. D2af 3650.00 - 3667.08 93 

10 In the upper part – organogenic limestone; in the 

middle and lower parts – quartz sandstones and 
argillites.  

D2bs-D1kv 3756.70 - 3776.31 148 

11 Argillites, sandstones and gravelites.  V-R 3782.64 - 3812.12 223 
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Figure 41. Temperature (black curve) and temperature gradient (blue curve) 
distributions along the well (Popov et al., 2021b). Black dots on the left panel 
represent intervals of drilling with coring. Red dots on the right panel represent bad-
hole quality intervals (cavernous intervals; diameters of caverns exceed 10 cm). A 

dashed black line on the right panel represents the regression trend for temperature 
gradient with depth (the correlation coefficient and the standard deviation are given 
below the regression equation). Lithology legend: 1 – sandstone, 2 – carbonate-rich 
sandstone, 3 – bituminous argillite, 4 – clayey sand-stone, 5 – silty argillite, 6 – 
limestone, 7 – dolomite, 8 – dolomite limestone, 9 – limy dolomite, 10 – anhydrite. 

Measurements of rock thermal properties on full-sized cores, sawed along their 

vertical axis, were conducted using a field lamp device of optical scanning (Popov 

et al., 2016). The total relative measurement uncertainty did not exceed ±2.5% for 

the thermal conductivity (with a measurement precision not exceeding 1.5%), ±4% 

for the thermal diffusivity, ±5% for the volumetric heat capacity (measurement 

uncertainties are reported for 0.95 confidence level). 

For each of 1699 full-sized core samples recovered from the well, a series of 

measurements of the thermal properties were conducted in the core storage via the 
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continuous thermal core logging by scanning for two mutually perpendicular 

directions (Popov E. et al., 2020). The core sample lengths ranged from 31 to 404 

mm with an average length of 99 mm (Figure 42). 

 

Figure 42. Distribution histogram for the length of full-sized cores under study 
(Popov et al., 2021b). 

 

The measurements were performed on a flat surface of core samples, sawed 

along their vertical axis (volumetric ratio of the sawed parts was 1:2). The core 

samples have been stored at normal pressure and temperature for about a year after 

being recovered from the borehole. Figure 43 presents the distributions of the 

average rock thermal conductivity components for parallel and perpendicular 

directions, rock volumetric heat capacity, thermal anisotropy coefficient, and 

heterogeneity factor for the investigated depth intervals. 
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Figure 43. Results of continuous thermal core logging for depth intervals 1348.5-
1366.1 m (upper panel) and 2612.29-2629.2 m (lower panel) (Popov et al., 2021b). 
Black coloured dots represents thermal conductivity parallel to the bedding plane, 
red colored dots represent thermal conductivity perpendicular to the bedding plane, 

green coloured dots represent volumetric heat capacity, blue coloured dots represent 
thermal heterogeneity factor, and purple coloured dots represent thermal anisotropy 
coefficient. Grey coloured dots represent high-resolution profiles (with 1-mm spatial 
resolution) of thermal conductivity and volumetric heat capacity. 



144 
 

 

Additional measurements of thermal properties that were conducted on 19 

cylindrical core plugs having the size of 30x30 mm at different saturations ("as 

received", dry and water-saturated) included the following stages: 

• measurements on core samples at atmospheric conditions immediately after 

drilling them out of the full-sized core samples; 

• drying samples following the standard procedure in the drying box; 

• measurements on the dried core samples at normal pressure and temperature; 

• vacuum saturating of core samples with mineralized water following the 

standard procedure; 

• measurements on the water-saturated samples at normal pressure and 

temperature; 

• measurements of rock thermal conductivity, volumetric heat capacity, and 

thermal anisotropy coefficient on water-saturated samples at in situ 

temperature (the temperature of measurements corresponds to the in situ 

temperature of the corresponding core sample). 

Figure 44 plots the estimates of the relative variations of thermal conductivity 

(1) after drying and (2) after the saturation with synthetic brine under vacuum. The 

results of the measurements (Figure 44) show that: 

• The thermal conductivity change after both drying and water saturation 

depends on the core sample porosity. 

• Drying the samples resulted in a very small thermal conductivity decrease. 

The thermal conductivity reduction depends on the porosity and does not 

exceed 13%. 

• After water saturation of the dried core samples, a substantial thermal 

conductivity increase is observed (from 7 to 62%). 
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There was no dependence established of the anisotropy degree of core samples on 

thermal conductivity variations by changing the pore-filling fluid. 

 

Figure 44. Thermal conductivity variations with porosity after drying core samples 

(green-coloured line) and after water saturation under vacuum (blue-coloured line) 

(Popov et al., 2021b). The red-coloured line characterizes the thermal conductivity 

change from «as received» state to «water-saturated». 

 

Data in Figure 44 indicate that by the time of thermal core logging in the core 

storage, the samples were dried substantially and lost the majority of their pore fluid. 

Therefore, to correct the data on rock thermal conductivity for in situ saturation, it 

was necessary to adjust the results of thermal core logging depending on rock 

porosity via the regression trend that is presented by the red-colored curve in Figure 

44. 

Variations of the rock thermal conductivity perpendicular to the bedding plane, 

related to porosity and changes of the sample saturation degree are described by 

regression equations that are similar to those for the thermal conductivity parallel to 

the bedding plane and are the following:  

• from "as received" state to dried: 𝛿λ = −3.5·ln(𝜙)−4.4 with R² = 0.79,  
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• from dried to water-saturated state: 𝛿λ = 19.2·𝜙 0.53 with R² = 0.88,  

• from "as received" state to the water-saturated: 𝛿λ = 16.7·𝜙 0.34 with R² = 

0.85. 

The corrections for data on rock thermal conductivity (inferred from the 

continuous thermal core logging) were determined using the data within coring 

intervals on rock porosity that was obtained via interpreting density log data and 

results of laboratory investigations of core plugs, for each depth interval and specific 

depth intervals that have significant porosity variations, using the regression 

equation (the red curve in Figure 44). 

The thermal conductivity at the formation temperature was measured on 10 

cylindrical 50x20 mm core samples that were saturated with synthetic brine under 

vacuum and selected based on results of continuous thermal core logging of full-

sized cores. Thermal conductivity measurements on water-saturated samples were 

conducted at the temperature corresponding to the temperature of the corresponding 

depth interval. Pressure corrections for thermal conductivity were inferred from the 

literature data (Yakovlev, 1996; Kurbanov, 2007) for the rocks similar to those 

presented in the investigating geological profile.  

5.2.3. Determining the equivalent thermal conductivity necessary for estimating 
the heat flow within non-coring intervals from standard well-logging data 

Rock thermal conductivity was determined from well-logging data for the 

limestones in depth intervals of 1992.4–2090.1 m, 2629.16–2720.9 m, 2721.16–

2916.36 m, and 2935.16–3249.36 m with WLBT. In addition to that, the rock 

thermal conductivity was determined for dolomites in the 2145.36–2359.56 m depth 

interval based on the results of regression analysis of well-logging data and data on 

thermal conductivity from an adjacent well that has a similar lithology.  

Before regression analysis between well-logging data and rocks thermal 

conductivity data, the data preprocessing was conducted. The data preprocessing 
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included (1) matching depths of logging curves, (2) eliminating data from cavernous 

intervals, (3) averaging the continuous thermal conductivity profile in 0.5 m moving 

window (window size is equal to the average vertical resolution of well-logging 

tools), and (4) shifting core depth to match well-logging data using results of core 

gamma spectrometry. In addition to that, the Z-scaling (dividing the difference 

between a variable and its average value by its standard deviation) of neutron gamma 

logging and gamma-ray log data was performed to account for differences in 

technical conditions of well-logging (drilling agent properties, well diameter, etc.) 

and logging tools when predicting thermal conductivity of the dolomites in 2145.36–

2359.56 m depth interval. 

The well-logging suite used to predict rock thermal conductivity includes 

gamma-ray log, neutron gamma log, gamma-gamma density log, and sonic log. 

Rock thermal conductivity was determined within non-coring intervals based on 

multiple regression analysis of well-logging data and data on rock thermal 

conductivity. An outlier-resistant linear regression model (also known as Huber 

regression; Huber et al., 2009) was used during the regression analysis. The initial 

dataset of rocks thermal conductivity data and wells logging data was divided into 

the training dataset (67% of the entire data set) and the test dataset (33% of the data 

set) to estimate the generalization ability of the determined regression equations. 

Optimal hyperparameters of regression models were selected via the cross-

validation method. 

The results of training and testing regression models for determining rock 

thermal conductivity presented in Table 24. 
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Table 24. The results of training and testing regression models for determining rock 
thermal conductivity from well-logging. 

Lithology 

(depth interval) 
Regression equation* 

Quality of prediction results 

on the test dataset 

R2 
RMSE,  

W·m-1·K-1 
P,% A,% N 

Limestones 

(2611.76-2665.76) 

λ = -2.6·10-4·ΔtP+0.25·ρ+0.26·γ+ 

+0.34·NGR+0.08 
0.70 0.10 9.48 -0.2 43 

Limestones 

 (2736.96-2812.16) 

λ = -3.7·10-4·ΔtP+0.12·ρ+0.05·γ+ 

+0.21·NGR+2.15 
0.19 0.10 8.06 -0.4 67 

Limestones 

 (2916.56-2934.16) 

λ = -1.8·10-4·ΔtP-0.25·γ+ 

+0.32·NGR+2.44 
0.64 0.10 8.74 0.5 29 

Dolomites 

(regression 

equation from the 

adjacent well) 

λ = -0.004·γnormilized+ 

+0.42·NGRnormilized+4.34 
0.87 0.17 8.18 0.2 133 

 

Figure 45 shows the predicted rock thermal conductivity in depth intervals 

without cores from well-logging data. Based on Table 24, it can be concluded that 

the established regression equations between well-logging data and data of thermal 

conductivity provide the predictions of rock thermal conductivity with total 

uncertainty of less than 10% for a 0.95 confidence level. 
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Figure 45. Thermal conductivity within not cored depth intervals predicted from 
well-logging data by means of the established regression equations. 

The total length of the intervals with predictions of rock thermal conductivity 

from well-logging data is 860 m. 

5.2.4. Determining vertical variations of heat flow density 

To calculate the heat flow density for a vertical well using data on the 

temperature gradient and the thermal conductivity, the data on equivalent thermal 

conductivity for the vertical direction are required. Concurrently, it requires 

accounting for the textural anisotropy caused by the layered texture of rocks and the 

micro-anisotropy, which may be due to oriented cracks (technogenic or natural) or 

crystals or flakes of minerals that can be anisotropic themselves. 
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The results of experimental instigations of rock thermal conductivity have 

revealed that, with substantial k thermal conductivity variations along the well and 

significant anisotropy of core samples, two factors causing thermal anisotropy have 

to be considered: 

• presence of thermal macro-anisotropy due to the ordered heterogeneity of 

rocks on core sample scale (Figure 46) - a layered texture at the whole profile 

scale conditioned by the alternation of subparallel layers with various thermal 

conductivity; 

• presence of micro-anisotropy inherent even for homogeneous rocks and 

caused either by oriented anisotropic mineral grains or oriented microcracks. 

 

Figure 46. The reasons causing anisotropy of rocks that were accounted during 
determining equivalent thermal conductivity required for calculating heat flow 
density. λeq. – macroanisotropy, λiꞱ - microanisotropy (Popov et al., 2021b). 

Analysis of the micro-anisotropy evaluation results for investigating rocks 

based on continuous thermal core logging data reveals the absence of significant 

anisotropy of limestones and dolomites from the investigated stratigraphic units. 
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Since the well understudy was drilled almost vertically, and stratigraphic 

borders may be considered horizontal, the principal axes of thermal conductivity are 

oriented parallel and perpendicular to the bedding plane, and temperature gradient 

is oriented along the well. It makes determining heat flow density less complicated. 

In this case, the equivalent thermal conductivity (λequiv) shall be determined as the 

vertical component of the rock's thermal conductivity tensor since vectors of the heat 

flow density and the temperature gradient are codirectional (vertical). 

If the micro-anisotropy is due to natural factors (oriented anisotropic grains of 

minerals, or oriented natural microcracks) and has to be considered jointly with 

macro-anisotropy (textural or transversal anisotropy) of rocks, the following 

equation shall be used to determine the equivalent thermal conductivity (necessary 

for calculating the heat flow density): 

equiv2 = 𝑁(∑ 𝑖
−1𝑁

𝑖=1 )
−1

     (27) 

where N is the number of core samples in considering depth interval, λi⊥ is the 

thermal conductivity component perpendicular to the bedding plane for the i-th core 

sample accounting thermal micro-anisotropy coefficient that was registered during 

thermal core logging of full-sized cores.  

In the presence of a technogenic induced micro-anisotropy (due to possible 

micro-cracks along the parallel direction to the bedding plane), and in the absence 

of a natural micro-anisotropy, the equivalent thermal conductivity should be 

determined excluding the effect of rocks' technogenic anisotropy and accounting 

only for macro-anisotropy (textural anisotropy). In this case, it is implied that the 

thermal conductivity parallel to the bedding plane (λ||) for each core sample 

characterizes the thermal conductivity of undisturbed rocks. Therefore, the 

equivalent thermal conductivity for the heat flow calculation shall only account for 

rocks macro-anisotropy and be determined as follows: 

equiv1=𝑁(∑ 𝑖||
−1𝑁

𝑖=1 )
−1

     (28) 
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where λi|| is the thermal conductivity component for parallel direction to the bedding 

plane for the i-th core sample. 

Due to the lack of reliable information about the presence or absence of the 

induced technogenic anisotropy for the investigated core samples (which is a 

common cause of anisotropy), two cases were considered:  

1. The equivalent thermal conductivity λequiv.max was determined according to the 

formula (27), assuming that the micro-anisotropy was caused by technogenic 

fractures and has to be excluded from estimating the in situ thermal 

conductivity of rock mass and because of that thermal conductivity parallel to 

the bedding plane (λ||) is more objective and unbiased characteristic of the core 

sample compared to the thermal conductivity perpendicular to the bedding 

plane (λ⊥). For that reason, an upper-bound estimate of rocks' thermal 

conductivity was made. 

2. The equivalent thermal conductivity λequiv.min was determined via the formula 

(26), assuming that the micro-anisotropy is typical for core samples at in situ 

conditions, i.e. is caused by natural factors and corresponds to undisturbed 

rocks. For that reason, a lower-bound estimate of thermal conductivity was 

made. 

Equivalent thermal conductivity for the heat flow calculation was determined, 

accounting for multiscale rock heterogeneity (starting from each core sample), in 

situ saturation, the effect of core changes in core storage, textural anisotropy, micro-

anisotropy, and in situ pressure and temperature. Table 25 provides the results of 

determining equivalent thermal conductivity at in situ conditions, temperature 

gradient, and the heat flow density for coring depth intervals and depth intervals with 

well-log based predictions. 
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Table 25. Results of determining equivalent thermal conductivity and heat flow 
density for coring depth intervals and intervals with well-log based predictions of 
rock thermal conductivity within non-coring intervals. 

Depth interval, m Estimation of equivalent 

thermal conductivity, 

Wm-1К-1 

Temperature 

gradient, 

mKm-1 

Heat flow estimate, 

mWm-2 

lower upper lower upper average 

From results of continuous thermal core logging 

1348.50-1366.10 3.21 3.42 18.05 58.0 61.7 59.8 
2612.29-2629.20 2.80 2.93 28.30 79.3 82.8 81.1 

2657.00-2665.74 3.07 3.17 23.93 73.5 75.8 74.6 
2737.30-2746.02 3.04 3.28 22.72 69.1 74.5 71.8 
2754.90-2763.60 3.11 3.22 24.68 76.8 79.5 78.1 
2794.90-2812.50 3.08 3.23 22.08 68.1 71.3 69.7 

2916.90-2934.34 3.33 3.44 23.00 76.7 79.2 78.0 
3506.40-3539.30 2.57 2.87 27.56 70.8 79.0 74.9 

From results of well-log based predictions of rock thermal conductivity within non-coring 
intervals (average values of thermal conductivity and heat flow) 

1991 - 2091 3.23 22.96 74.1 
2144 - 2361 5.54 13.51 74.8 

2628 - 2658 2.74 24.63 67.4 
2666 - 2737 3.02 22.76 68.7 
2764 - 2794 3.13 23.62 73.9 
2813 - 2915 2.99 22.98 68.6 

2935 - 3100 3.08 22.75 70.1 

 

The vertical variations of the heat flow density presented in Table 25 are plotted 

in Figure 47 together with the previously published data on average heat flow 

estimate that were inferred by Golovanova (2005), Hodyreva et al. (1985) and 

Gordienko et al. (1987).  
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Figure 47. Heat flow density for the investigated depth intervals and previously 
published data on heat flow density for the well under study (Popov et al., 2021b). 

Blue line (left panel) presents the vertical variations of the temperature gradient 
(determined with 5 m moving window with a 10-cm step). Light-blue lines (central 
panel) present the lower estimate of the equivalent thermal conductivity within 
coring depth intervals. Blue lines (central panel) present the upper estimate of the 
equivalent thermal conductivity within coring depth intervals. Red lines present the 
average estimates of the equivalent thermal conductivity within the intervals with 
well-log based predictions of rock thermal conductivity. Light-blue and blue lines in 
the right panel of the figure represent the lower and upper estimate of heat flow 

density within coring depth intervals. Red lines in the right panel repre-sent the 
average estimate of the heat flow density within the intervals with well-log based 
predictions of rock thermal conductivity. The empty black box on the right panel 
represent the previously published data on heat flow density (34.0 mW·m-2) for the 
are under study. Black vertical line on the right panel presents the regression trend 
of the increase of heat flow density (with average value of 72.6 mW·m-2 below 2000 
m). Lithology legend was given in Figure 39.   



155 
 

 

Figure 47 demonstrates that all newly obtained data on heat flow density are 

significantly higher than the average value of previously published data. The heat 

flow density for the 1348.50–1366.10 m depth interval varies from 58.0 to 61.7 

mW·m-2 with the average value of 59.8 mW·m-2, which is essentially lower than the 

heat flow density for the deeper horizons (starting from 1991 m and below). This is 

coherent with the previously determined tendency suggesting that the heat flow 

density for depth shallower than 2000 m is in most cases smaller than the heat flow 

density for the larger depths due to the combined impact of paleoclimate and 

migration of fluids in rock masses (Clauser et al., 1997; Emmermann et al., 1997; 

Popov et al., 1999; Kukkonen et al., 2011; Popov et al., 2012; Popov et al., 2018; 

Kukkonen et al., 1997;  Popov et al., 1988; Mottaghy et al., 2005).   

The average heat flow density for 13 depth intervals that are between 2144 and 

3539.30 m (Table 25) is 72.6 mW·m-2 with the standard deviation of 3.6 mW·m-2. 

For 13 sampling elements and the corresponding Student's coefficient of 2.16 at the 

0.95 confidence level, the absolute uncertainty of estimate of the average heat flow 

density is 2.2 mW·m-2, whereas the relative uncertainty of estimate of the average 

heat flow density is 3.0%. 

The published data contains geothermal information for seven wells in the 

drilling area: Orenburg, (Hodyreva et al., 1985), two unnamed wells (Gordienko et 

al., 1987), Goncharovskaya-16, Denisovskaya-1, Denisovskaya-3, and 

Yakshimbetovskaya-157 (Golovanova, 2005). These wells are 118, 87, 38, 118, 130, 

103, and 113 km away from the studied well, respectively. The published heat flow 

estimates for these wells are 48, 38, 26 32, 33, 31, and 30 mW·m-2, respectively, 

with the average heat flow density of 34.0 mW·m-2. Thus, the obtained average heat 

flow value is greater than the previous heat flow average value for this territory by 

114% (34.0 mW·m-2). 
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5.3 Conclusion 

The new techniques, including continuous thermal core logging, new laser 

optical scanning instrument in combination with rock thermal property 

measurements at elevated temperatures and on core samples saturated under vacuum 

with brine, provided investigations of more than 5200 rock samples and 

representative experimental data on rock thermal properties including thermal 

conductivity components along and perpendicular to the rock bedding plane, 

volumetric heat capacity and anisotropy coefficient for determining heat flow 

density in two wells. Application of WLBT for predicting rock thermal properties 

during geothermal investigations allowed registering detailed vertical variations of 

heat flow density within intervals where cores were not available.  

The registered terrestrial heat flow density for the Bazhenovskaya 1 well is 87.1 

mW·m-2 and for the Balyikinskaya 10 well is 72.6 mW·m-2. The determined values 

of the heat flow density essentially exceed the previously published data for this area 

(by 45% and 114% for the Bazhenovskaya 1 Balyikinskaya 10 wells, respectively).  

Similarly to the results of experimental geothermal investigations in deep and 

super-deep wells conducted between 1990 and 2010 (Popov et al., 2019b), the 

obtained data on heat flow and rock thermal properties demonstrated the necessity 

in a new special experimental estimations of the heat flow density and rock thermal 

properties when studying hydrocarbon fields at any stage that includes regional basin 

and petroleum system modelling to avoid serious errors in geothermal data (almost 

unavoidable otherwise). 
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Summary and Conclusions 

1. An approach for predicting rock thermal properties from sonic log data 

accounting for thermal anisotropy, rock heterogeneity, in situ temperature, 

pressure, and saturation via the regression analysis was developed and 

tested for organic-rich shales of the Bazhenov Formation. 

2. The developed approach was extended by applying advanced machine 

learning algorithms, involving additional well-log data and integrating the 

data on rock thermal properties inferred from continuous thermal core 

logging. The extended version of the approach was tested on representative 

experimental data from the heavy-oil field and yielded successful results. 

3. From comparison of measured and predicted profiles of rock thermal 

properties it can be concluded that thermal conductivity for parallel and 

perpendicular direction to the bedding plane and volumetric heat capacity 

using the developed regression and theoretical model-based approaches can 

be predicted with uncertainties of less than 10%, 15%, 10% (for 0.95 

confidential probability level), respectively. In most cases, the regression 

model-based approach yields more precise predictions of rock thermal 

properties than theoretical model-based. 

4. The sensitivity study of the regression models for predicting rock thermal 

properties from gradient boosting revealed that the sonic, neutron and 

density logs are the most important pieces of information when predicting 

both thermal conductivity and volumetric heat capacity. 

5. An approach for predicting rock thermal properties also considering 

thermal anisotropy, rock heterogeneity, in situ temperature, pressure, and 

saturation through advanced theoretical modelling was developed and also 

tested for organic-rich shales of the Bazhenov Formation. 
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6. An approach for assessing uncertainty in the correction factor of the 

Krischer-Esdorn model of thermal conductivity was suggested and tested. 

The approach relies on the application of the partial-derivative method. The 

developed approach is not limited only to the Krischer-Esdorn model. It can 

be applied for assessing uncertainty in correction factors of Lichtenecker-

Rother and Lichtenecker-Asaad models. 

7. The developed approaches (regression and theoretical modelling based) 

were unified and presented within the novel well-defined well-log based 

technique (WLBT) for determining rock thermal properties. The developed 

workflow is based on the application of advanced thermal core logging 

technique that provides continuous non-contact non-destructive profiling of 

thermal conductivity (principal components of thermal conductivity) and 

volumetric heat capacity on full-diameter cores, core plugs and broken 

cores. The comparison between WLBT and the commonly used Deming 

approach for predicting thermal conductivity accounting for thermal 

anisotropy revealed that WLBT provides more precise predictions for 

parallel and perpendicular directions to the bedding plane essentially. 

8. WLBT was applied to geothermal investigations of two prospecting wells 

and allowed us registering detailed vertical variations of formation thermal 

properties and heat flow density within intervals where cores were 

unavailable. This yielded estimations of intervals and obtaining vast rock 

thermal properties and heat flow density data for regional basin and 

petroleum system modelling. 

The research findings disclosed a qualitatively new framework for well-log 

based determination of rock thermal properties. The developed WLBT for 

determining rock thermal properties relies on the application of an advanced 

experimental basis. Testing on representative experimental data from various 
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hydrocarbon field, including organic-rich shales and heavy-oil field highlights the 

effectiveness of the WLBT for determining rock thermal properties. The 

implementation of WLBT for determining rock thermal properties within the 

geothermal investigations allowed us to obtain new data on vertical variations of 

heat flow density and formation thermal properties and opened new perspectives to 

subsequent studies on the hydrocarbon fields in the study areas.  
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Recommendations for future research 

There are several highly important and principal research directions for the near 

future investigations to enhance the proposed well-log based technique for 

predicting rock thermal properties: 

 Development of the database that includes both reliable data on rock 

thermal properties and well-logging data. The database should include 

information on thermal anisotropy, rock heterogeneity, lithology 

(including mineralogical composition of rocks), effects of additional 

saturation of rock thermal properties (along directions of principal axes 

of thermal conductivity tensor) and rock porosity. For unconventional 

reservoirs, data on organic matter content is also required. The database 

can be the basis for applying a well-log-based technique for predicting 

rock thermal properties in case of absence of data on rock thermal 

properties in the investigating area. 

 Integration of similarity learning approaches within the suggested 

workflow. To apply effectively the previously mentioned database the 

assessment of similarities between the investigating geological objects 

or geological profiles should be performed during predictions of rock 

thermal properties. Various machine learning-based approaches (such as, 

e.g. siames neural networks or ensemble tree-based methods), were 

recently suggested to solve the task at hand. The effectiveness of the 

suggested similarity learning approaches was proven for solving various 

problems (see, e.g., Kang et al., 2017) and is a perspective way for 

enhancing the well-log based technique for predicting rock thermal 

properties. 

 Enhancement of the theoretical model-based approach via integration of 

effective medium theory methods. Application of the effective medium 
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theory models was proven to be highly effective for predicting rock 

thermal properties (see, e.g., Bayuk et al., 2016). The benefit of applying 

effective medium theory approaches is the opportunity to predict thermal 

properties on the basis of data on elastic wave velocities and electrical 

resistivity without conducting regression analysis and necessity in 

experimental data on rock thermal properties. 

 Comprehensive analysis of applicability of commonly used in 

geophysics approaches and models to characterize the stiffness and 

electrical resistivity tensors. Since the predictions of rock thermal 

conductivity in case of thermal anisotropy require knowledge on 

principal components of stiffness and electrical resistivity tensors, we 

need to enhance and verify the accepted models of anisotropic rocks and 

define their limitations.  

 Adaptation and testing of the developed approaches on igneous and 

metamorphic rocks. For geothermal investigations and radioactive waste 

disposal, the data on rock thermal properties of igneous and metamorphic 

rocks are of a high interest. The enhancement of the suggested technique 

for predicting thermal properties of igneous and metamorphic rocks 

should account for peculiarities these rocks (such as low porosity, 

mineral composition, etc.). 

 Investigating the effect of elevated pressure and temperature on rock 

thermal properties in case of thermal anisotropy. Literature review shows 

that there are only a few publications that are focused on experimental 

investigations of thermal properties of anisotropic rocks at elevated 

temperatures providing a comprehensive description of methodological 

and metrological basis. Thus, this research direction is highly relevant. 
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