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Abstract 

Even during the period of energy transition, there is no doubt that unconventional oil 

and gas resources will play a significant role in the future energy market. The energy transition 

pushes the exploration and production of oil and gas to be more marginal and minimize the 

carbon footprint. Marginality of production is having the maximum production plateau and the 

minimum cost of the production operation. It requires to have accurate development and 

management scenarios. Latter can be achieved by having an in-depth understanding of fluid 

flow in tight porous media. 

The deviation from Darcy’s law because of various storage and flow mechanism is the 

most challenging aspect of modelling fluid flow in unconventional hydrocarbon resources. 

Therefore, it is highly required to take the effects of Knudsen diffusion, slippage, adsorbed gas 

and dissolved gas into account. However, it leads to form a second-order highly nonlinear 

partial differential equation. Using the classic derivation-dependent approaches like Newton’s 

method to solve the derived governing equation numerically is challenging due to the 

requirement of making proper initial guesses, forming the Jacobian matrix and its inversion. 

As a result, the current research has put forward great efforts to use soft computing techniques 

of metaheuristic algorithms and machine learning approaches to solve the supposed equation 

easier and with less computational cost.  

Regarding the microscopic scale and applying pore-scale physics, having a large 

portion of pores with a size less than the spatial resolution of micro X-ray computed 

tomography images is the main obstacle required to practically come across. Accordingly, a 

novel workflow of digital image processing based on deep learning algorithms and other 

important image-based operators has been proposed. Typically, the supposed images are 
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suffering from noises, and they are supposed to be treated with various filters. But, the 

parameters of filters are usually expected to be adjusted by experienced users. As a result, it 

has been tried to use deep learning to filter images with minor troubles. Then, the clean images 

have been implemented with classic approaches of digital rock physics to observe their 

credibility in case of being applied to the tight porous media. After that, it has been tried to 

employ a deep learning operator to generate images with various synthetic lower resolutions. 

Having the corresponding porosities versus their synthetic resolution, it becomes possible to 

develop an exponential model capable of predicting the porosity for the theoretical spatial 

resolution of 0-micron meter per voxel. Finally, the computed porosity has been taken to 

predict the permeability free of biases.  

The research shows that using various artificial intelligence methods can generate 

accurate results for fluid flow simulation in unconventional porous media with less 

computational cost and difficulties.     
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1. Introduction  

1.1 The Importance of Developing Unconventional Resources 

Hydrocarbon resources are dwindling, while many research has recently indicated that 

unconventional hydrocarbon reservoirs can supply great energy values with minimum adverse 

effects on the environment [1]. Accordingly, providing more natural gas has become a priority 

for authorities and a challenging hot topic for researchers [2]. Besides new technological 

advances in both fields of hydraulic fracturing and horizontal well drilling, being faced up with 

a fast decline in conventional reserves have caused attention to be drawn towards the 

unconventional resources such as tight and ultra-tight plays [3], which have been playing a 

progressively leading role in the energy market during very recent years [4]. For instance, it is 

statistically reported that “The Shale Gas Revolution” caused shale gas to be taken as a reliable 

energy source in the USA [5]. In fact, shale gas comprised just less than 2% of domestic outputs 

within the early years of the current century [6]. Surprisingly, today it accounts for almost a 

third. It has even been estimated that 46% of produced gas in the USA during 2035 will be 

from shale gas plays [7]. 

Before starting relevant discussions, it is critical to understand what an unconventional 

reservoir is. The definition is highly reliable to conventional reservoirs, which are generally 

defined as high permeability, high-quality reservoirs where all it has to be done is drilling a 

vertical well and running a perforation operation at the productive interval that causes the well 

to flow at profitable rates [8]. Conversely, unconventional resources are routinely characterized 

as low-quality reservoirs that have to be stimulated to produce commercial flow rates and 

recover commercial volumes of hydrocarbon [9]. In more details, high viscosity oil and low 



15 

 

permeability are the main reasons to label a reservoir as a low-quality resource [10]. However, 

the application of long horizontal well coupling with hydraulic fracturing in case of tight and 

ultra-tight reservoirs and taking advantages of thermal methods to reduce the viscosity of heavy 

oil can effectively stimulate the formations in most cases [8,11]. 

The unconventional oil and gas endowment is orders of magnitude greater than the 

conventional resources that have been the principal objectives of production and exploration 

for the past 120 years [12]. To picture the described concept, it is necessary to become familiar 

with the “Hydrocarbon Resource Extraction Risk Triangle” idea shown in Figure 1. The shown 

notion illustrates that the high-quality reservoirs are at the top of the triangle, while going 

deeper into this triangle causes facing up with lower quality reservoirs [13,14]. The “risky” 

undertaking may also be explained by the fact that we are currently on a steep learning curve 

regarding the technologies necessary to create a gas hydrate production [15] financially. 

Technically, unconventional deposits can be grouped into three general categories: 

I. Unconventional resources, which include ultra-tight sandstones and carbonates 

and source rocks. 

II. Unconventional oil and gas fluids, comprising sour/acid gases, bitumen, and 

heavy oil. 

III. Hydrocarbons “locked in rocks” such as oil shale and methane hydrates (an 

immature source rock) 
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Figure 1: Hydrocarbon Resource Extraction Risk Triangle 

The Hydrocarbon Resource Extraction Risk Triangle shows that high-grade deposits 

are small and difficult to find but easy to extract, and more enormous resources can be found 

in deeper levels, but they do need higher product prices and improved technology to be 

extracted [15]. Nevertheless, the world needs more energy under all developing scenarios, 

leading to this issue that unconventional resources play an ever-increasing role in our energy 

supply [16,17]. Due to this fact, the world’s emerging economies will require sustained oil and 

gas use for the foreseeable future, which cannot be prepared with declining conventional oil 

and gas reservoirs. As a result, it can be deduced that developing unconventional resources is 

an inevitable topic, and it is a requirement to do research projects about unconventional 

reservoir studies. 

To put it another way, it can be concluded that tight hydrocarbon reservoirs are 

statistically and practically known as potential options to guarantee a sustainable energy supply 

into future markets [18,19]. The supposed potential can be turned into action only if the 

technical risks of developing such unconventional oil and gas reservoirs be minimized 
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considerably. It can be achieved by employing various reservoir management and simulation 

scenarios. However, the inherent complexity and nonlinearity of tight and ultra-tight 

hydrocarbon resources are the main obstacles that make it challenging to use classic approaches 

[20]. Therefore, it is where using modern methods like machine learning techniques can be 

implemented. The current research has made significant attempts to macroscopically and 

microscopically examine how it is possible to take advantage of various machine-learning 

approaches to obtain more accurate and practical characterizations of tight and ultra-tight 

porous media. Accordingly, the general trend of the research and the main challenges has been 

visualized in Figure 2. 

 

Figure 2: The multiscale analyses of unconventional resource, and the challenges 

Based on the previous literature, a second-order nonlinear partial differential equation 

describing fluid flow in a shale gas reservoir has first been developed regarding the 

macroscopic scale. Then, it has been tried to solve the equation with soft computing approaches 

than classic ones.  Regarding the microscopic scale, a tight sandstone sample taken from the 
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Achimovskiy formation has been studied based on the classic approaches of digital rock 

physics. Generally, digital rock physics blends microtomographic imagery with sophisticated 

models of material properties. It is utilized in complementary laboratory studies to better 

understand critical transport-related physical processes and efficient mechanical 

characteristics. Digital rock physics blends microtomographic imagery with sophisticated 

models of material properties. It is utilized in complementary laboratory studies to better 

understand critical transport-related physical processes and efficient mechanical 

characteristics. However, the main challenge of using digital rock physics is those pores that 

cannot be seen in the images or are technically known as sub-resolved pores. The current 

research has endeavoured to figure out how to use modern image processing techniques to 

overcome the addressed issue.  

All in all, the main objectives of the prepared thesis in case of the macroscopic analyses 

can be outlined as below: 

• Making an investigation about the storage and flow phenomena in tight and 

ultra-tight porous media (Chapter 2) 

• Using AI-based solvers to handle the nonlinearity of governing equations of 

fluid flow in tight and ultra-tight porous media (Chapters 2 and 3) 

and for the microscopic investigation, there are:  

• Using AI techniques to suppress the noise of computed tomography images 

(Chapter 4)  

• Checking the applicability of classic methods to analyze the petrophysical 

properties of tight samples (Chapter 5) 
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• Extraction of bulk petrophysical properties from computed tomography 

images by means of digital image processing (Chapter 6) 

1.2 Macroscopic Scale  

Fluid flow in porous media can be described by the following transport mechanisms: 

molecular diffusion, Knudsen diffusion, surface diffusion, and viscous flow [21]. The fluid 

transport mechanism in the typical oil and gas reservoir with large pore sizes is the viscous 

flow described by Darcy’s law [22]. Darcy’s law is a phenomenological resulting constitutive 

equation that addresses the fluid flow in porous media [23]. Darcy’s law has been developed 

under certain conditions. The most limiting assumption of Darcy’s law is its development based 

on the laminar flow governed by viscous forces [24]. However, the fluid flow with high 

velocities in porous media where the inertial forces are more significant than the viscous forces, 

the flow is turbulent [25]. It can be corrected by adding an inertial term to Darcy’s equation, 

known as the Forchheimer term [2]. A series of previous experimental and field research has 

indicated that fluid flow in ultra-tight and tight porous media noticeably deviates from the 

results generated by the implementation of Darcy’s law [26]. It is due to a couple of reasons, 

such as nanoscale pores or even mature or immature organic contents in the main body of the 

studying porous media [27]. The following two sections discuss the phenomena mentioned 

above and how their effects can be taken into account in the form of a governing equation. 

1.2.1 Fluid Flow and Storage Mechanisms in Shale Gas Plays 

The significant differences between shale gas reserves and conventional hydrocarbon 

resources related to natural nanoscale pores and organic content have been briefly examined 

[28]. Darcy’s law and standard continuous flow equations generally underestimate the flow 
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rate when applied to the tight and ultra-tight porous medium of shale gas deposits [29]. It is 

mainly related to the zero-velocity boundary condition, which is the deriving assumption. The 

Knudsen number (Kn) is commonly used as an explanatory indicator when attempting to 

understand the notion of multi-mechanism flow in ultra-tight porous media [30,31]. The 

different flow regimes could be categorized by Knudsen Number: 

 𝐾𝐾𝑛𝑛 =
𝜆𝜆
𝑑𝑑

 (1)  

where λ is technically specified in shale gas reservoirs as the mean distance travelled 

by a gas molecule before the interaction with the other molecule that modifies its track, energy 

or other features. Also, d stands for the pore diameter. The categorization of flow types based 

on Kn has been introduced in Table 1.  

Table 1: Different flow regimes as a function of Kn  

Kn Flow Type 

Kn < 10-3 Continuum Flow 

10-3 < Kn < 10-1 Slip Flow 

10-1 < Kn < 10 Transition Flow 

10 < Kn  Free Molecular Flow 

 

According to detailed investigations on the morphology and pore size distribution of 

shale gas reservoirs, pore diameters in shale gas resources vary from 1 to 200 nm, leading with 

Kn corresponding values ranging from 0.0002 to 6, respectively [32]. Overall, flow in shale gas 
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reservoirs is a multi-mechanism phenomenon that includes transition flow, slip flow and 

continuum flow [33]. Generally, an apparent permeability (kapp) model taking the effects of all 

the flow regimes into account is usually employed to facilitate the simulation procedure more 

effectively.  

The economics of shale gas plays is technically the critical factor in evaluating the 

quality of shale gas resources. The storage mechanisms in shale gas plays are the free 

compressed gas and the adsorbed layer on the surface of kerogens already full of dissolved gas 

[34]. The mode of gas storage is influenced by surface area and the size of pores. Typically, 

because the macropores do not play a leading role in surface area, they are assumed to be the 

main path for the transportation of free compressed gas [35]. Following the same logic, 

mesopores and micropores are the essential sites for gas adsorption. Moreover, geological 

conditions like reservoir temperature, moisture content and reservoir pressure could impact the 

amount of free, adsorbed, and dissolved gas [36]. 

In other words, not taking the adsorbed gas that has a semi-liquid physical state with a 

greater density than the free compressed gas into account leads to some significant 

underestimation [37]. The impacts of adsorbed gas could become more prominent when 

combined with a substantial quantity of surface area in shale gas reservoirs that is tenfold more 

than in conventional reservoirs. The standard Langmuir isotherm is the most often used 

adsorption isotherm because it considers a dynamic instantaneous equilibrium at constant 

temperature and pressure between adsorbed and non-adsorbed gas [38]. Furthermore, the 

adsorbed layer, which consists of gas molecules that adhere to kerogen surfaces, limits the 

possible conductance for the passage of free and previously desorbed gas [39]. As a result, 

because the methane molecule radius is similar to the pore diameters, the adsorbed gas has a 

detrimental influence on permeability. However, below a threshold pressure, the adsorbed 
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molecules begin to be desorbed. The gas molecule desorption caused by pressure reduction 

reduces the thickness of the adsorbed layer, increasing permeability [40].  

Regarding the organic contents in the shale plays, kerogen is an organic substance 

similar to bitumen in that it may store hydrocarbons in a dissolved form [41]. Recent theoretical 

and practical studies have revealed that a significant portion of the gas-in-place in shale 

reservoirs is in the dissolved form in the kerogens [42]. Furthermore, it has been demonstrated 

that gas generation from kerogen is a slow process, with Fickian diffusion serving as the 

primary transport mechanism [43].  

In sum, it can be interpreted that storage in shale gas resources is based on three sources 

of gas: free (compressed gas), gas dissolved in kerogen, and gas adsorbed on pore walls. In 

addition, the previous literature underlines that gas is typically stored in pores and adsorbed on 

the oil-wet surface of nanoscale pores on organic contents. On the contrary, the water-wet 

nature of clays caused the provided empty sites to be filled with water although the effect of 

the supposed water film has not been considered in the following parts of the current research.  

1.2.2 Modelling and Simulation 

Based on the previous discussion, it can be concluded that the flow and storage in shale 

gas resources, as one of the essential types of unconventional resources, are following multi-

mechanism regimes. As a result, it is much-needed to implement numerical methods with 

maximum accuracy with the respect to the mass conservation law. Also, the model should have 

the capability to be tuned with all the required storage and flow mechanisms occurring in shale 

gas resources. Technically, it is possible to have a sequential logic for the production scenario. 

It starts with pressure reduction due to the production of free compressed gas molecules. It 
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results in the release of immobile gas molecules (adsorbed gas) from the surface of kerogens. 

The desorption causes thermodynamical disturbances on the surfaces of kerogens generating 

concentration gradients between bodies of kerogens and their surfaces. That is the primary 

reason why solute gas is transferred from the bulk of kerogen to its surfaces.  

Regarding the filed units, A one-dimensional (1D) model for a conventional porous 

media can be developed based on mass conservation law as below [44]:  

 −��𝜌𝜌𝑓𝑓𝑣𝑣𝑣𝑣�𝑥𝑥+𝑑𝑑𝑥𝑥Δ𝑡𝑡 − �𝜌𝜌𝑓𝑓𝑣𝑣𝑣𝑣�𝑥𝑥Δ𝑡𝑡� = 𝑉𝑉𝑏𝑏𝜙𝜙 ��𝜌𝜌𝑓𝑓�𝑡𝑡+𝑑𝑑𝑡𝑡 − �𝜌𝜌𝑓𝑓�𝑡𝑡�  (2)  

where  

 𝑣𝑣 = −(5.615)(0.001127)
𝑘𝑘
𝜇𝜇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (3)  

where 0.001127 is the constant to convert Darcy's unit to field units, and 5.615 is the conversion 

factor to change from bbl to ft3. The insertion of Equation 3 into Equation 2 results in:  

 
𝜕𝜕
𝜕𝜕𝜕𝜕 �

0.00633𝑘𝑘𝑣𝑣
𝜌𝜌𝑓𝑓
𝜇𝜇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

Δ𝜕𝜕 =
𝜕𝜕
𝜕𝜕𝑡𝑡
𝑉𝑉𝑏𝑏�𝜌𝜌𝑓𝑓𝜙𝜙� (4)  

where v is the velocity in x-direction, k is permeability (md), A is the surface area (ft2) of the 

grid cell in the yz-plane, μ is viscosity (cp), 𝜌𝜌𝑓𝑓 is the density of free or compressed gas 

(𝑙𝑙𝑙𝑙𝑚𝑚 𝑓𝑓𝑡𝑡3⁄ ), ϕ is porosity, Vb is the bulk volume (ft3) of the control volume (grid cell), and Δ𝜕𝜕 

is the length of each grid (ft) after the discretization. 

As mentioned earlier, the fluid flow in a shale gas play is a multi-mechanism 

phenomenon. To have the effects of all the mechanisms as a single parameter, substituting the 

k with kapp in Equation 4 can make the model representing the complexity of a multi-
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mechanism flow more accurately and adequately. The next step to make Equation 4 

representing the shale gas plays more practically is the effects of adsorbed gas into account. It 

becomes possible by adjusting the accumulation term as:  

 
𝜕𝜕
𝜕𝜕𝜕𝜕 �

0.00633𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣
𝜌𝜌𝑓𝑓
𝜇𝜇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

Δ𝜕𝜕 =
𝜕𝜕
𝜕𝜕𝑡𝑡
𝑉𝑉𝑏𝑏�𝜌𝜌𝑓𝑓𝜙𝜙 + (1 − 𝜙𝜙)𝜌𝜌𝑎𝑎� (5)  

where 𝜌𝜌𝑎𝑎 represents the mass of adsorbed gas per volume of solid. Having the definition for 

the concepts of gas compressibility (Cg), Langmuir isotherm and chain rule, it is possible to 

reformulate Equation 5 as:  

 
𝜕𝜕
𝜕𝜕𝜕𝜕 �

0.00633𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣
𝜌𝜌𝑓𝑓
𝜇𝜇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

Δ𝜕𝜕 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡
𝐶𝐶𝑔𝑔𝜌𝜌𝑓𝑓𝑉𝑉𝑏𝑏(𝜙𝜙 + (1 − 𝜙𝜙)𝐾𝐾𝑎𝑎) (6)  

where 𝐾𝐾𝑎𝑎 = 𝜕𝜕𝜌𝜌𝑎𝑎 𝜕𝜕𝜌𝜌𝑓𝑓⁄ . The solute gas and its quantity in kerogen can be calculated with the 

help of Henry’s law, where the solute gas in kerogen is proportional to the pressure. The effects 

of solute gas can be added to Equation 6 as a source term. The idea has been taken from the 

concepts implemented in fractured reservoirs [45]. It leads to the development of a discretized 

second-order nonlinear partial differential equation governing the multi-mechanism flow and 

storage in shale gas plays as: 

 
𝜕𝜕
𝜕𝜕𝜕𝜕 �

0.00633𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣
𝜌𝜌𝑓𝑓
𝜇𝜇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

Δ𝜕𝜕 + 𝑞𝑞𝑘𝑘∗ =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡
𝐶𝐶𝑔𝑔𝜌𝜌𝑓𝑓𝑉𝑉𝑏𝑏(𝜙𝜙 + (1 − 𝜙𝜙)𝐾𝐾𝑎𝑎) (7)  

where 𝑞𝑞𝑘𝑘∗  is the mass flux from kerogen to matrix (𝑙𝑙𝑙𝑙𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑⁄ ), and it is represented as:   

 𝑞𝑞𝑘𝑘∗ = 𝐷𝐷𝑘𝑘𝑣𝑣𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (8)  
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The kerogen diffusion coefficient is represented as Dk (𝑓𝑓𝑡𝑡2 𝑑𝑑𝑑𝑑𝑑𝑑⁄ ) and Ak is the kerogen 

surface area (𝑓𝑓𝑡𝑡2). Also, the concentration gradient in the z-direction is represented as 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ . 

About kerogens, it is necessary to consider that they are in contact with each grid block like a 

coating surface. With the beginning of natural depletion that continued by desorption from the 

surface of kerogens, the concentration profile within the kerogen body is changed. It causes 

kerogen to feed in the z-direction (perpendicular to the xy-plane) to the grid body.   

 Regarding Equation 7, it must be mentioned that the nonlinear terms dependent to 

pressure are:  

• kapp computed by Darabi et al – Described in Chapter 2 Table 2 and Equation 17 

•  𝜌𝜌𝑓𝑓 computed by 𝜌𝜌 = 𝑎𝑎𝑝𝑝
𝑧𝑧𝑧𝑧𝑧𝑧

 in which z is the gas compressibility factor that can 

numerically be computed by the model presented by Hall-Yarborough  

•  𝜇𝜇 computed by Lee-Gonzalez-Eakin  

• 𝑞𝑞𝑘𝑘∗  as described in Chapter 2 Equations 2, 18, 19 

• 𝐶𝐶𝑔𝑔 as described in Chapter 2 Equations 9, 10 

• 𝐾𝐾𝑎𝑎 as described in Chapter 2 Equations 11, 13, 15, 16  

One of the main concerns that should be considered is the different scales existing in 

the introduced governing equation (Equation 7). It must first be underlined that the flow in the 

porous media has been modelled in one dimension. Then, it has been assumed that the layer of 

kerogen around the porous media has the 1/50 thickness of the porous media. From the 

homogenization point of view, the referred assumption helps to solve the problem with 

concurrent methods. In concurrent methods, both scales are simultaneously addressed in the 

problem formulation. In addition, it should be added that both scales are coupled together by 
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pressure passing that technically remarks as a serial method. On the contrary, the assumption 

has caused the final model not perfectly representing reality. 

1.2.3 Solvers 

The discretization based on the finite difference method is supposed to be employed to 

solve Equation 7 numerically. The result is a set of simultaneous algebraic equations stated 

as: 

 𝐶𝐶1𝑌𝑌 + 𝐶𝐶2 = 0 (9)  

Y represents the vectors of unknowns (pressures), and C1 and C2 represent the matrixes of 

coefficients and dependencies, respectively [46]. Going through the compressibility of gases 

and their dependency on the pressure, the subsequence of discretization (Equation 9) results 

in a set of nonlinear simultaneous algebraic equations [1]. Thus, finding a suit of pressures that 

satisfies Equation 9 at each time step is the main target of applying nonlinear solvers.   

1.2.3.1 Classic Approach  

Some analytical and numerical approaches have been introduced so far to solve various 

types of PDEs. Although the application of analytical methods yields exact and continuous 

results in time and space, the stated methods are not applicable in cases of PDEs with a high 

level of nonlinearity or irregular boundaries. Hence, numerical methods under different 

scenarios have been put forward. The discretization procedure is a globally accepted method 

to expand the nonlinear PDEs into a system of nonlinear simultaneous algebraic equations. 

Solving a system of nonlinear equations by approximating them with a system of linear 

equations to have the benefits of linear solvers is usually avoided. In addition, increasing the 

errors and inaccuracy in predicting the reservoir performance is known as the major drawback 



27 

 

of the linearization procedures. Instead, it is highly recommended to tackle problems directly 

by using nonlinear solvers, which can converge more accurately towards the correct solutions.  

Routinely, Newton’s method is the most extensively used solver of nonlinear equations. 

The simplicity and high convergence rate are persuasive enough to frequently apply the 

introduced technique to solve nonlinear simultaneous algebraic equations. However, the 

performance of Newton’s method is strongly dependent on making a proper initial guess. 

Evaluation of n2 partial derivatives, computing the inversion of the Jacobian matrix including 

f(n) by f(n) linear systems for a certain number of iterations in each time step causing a high 

computational cost of O(n3) are the main disadvantages of Newton’s method. As a result, 

various attempts have been made to remove the aforementioned disadvantages. The 

modification of the Secant method known as Broyden’s, which have been developed for 

multivariable functions, is the adjustment of Newton’s method by approximating the Jacobian 

matrix. Although Broyden’s method eliminates the computation of partial derivatives and the 

inversion of the Jacobian matrix after the first step of the root-finding process, its superlinear 

convergence rate has made it slower than Newton’s method. Both the mentioned methods only 

converge when the proper initial guesses are chosen. Accordingly, the Steepest Descent 

approach with a linear convergence rate towards solutions was introduced to overcome the 

difficulties of a reasonable initial guess. Nevertheless, the Steepest Descent approach also 

requires the relevant calculations of the Jacobian matrix within each iteration, which is too 

much costly. Another well-known technique to solve nonlinear simultaneous algebraic 

equations is the Homotopy or continuation method, which widens the domain of the converges. 

This method changes an easy problem to a complex target problem. However, the same as other 

referred methods, Homotopy is a strong function of derivatives as well. Requiring more 

functions and Jacobian inverse evaluation, and mathematical algebraic operations in 
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comparison with other Newton-type methods are also other significant aspects of Homotopy. 

Generally, the heavily derivation-dependent, the high computational cost of the Jacobian 

matrix and its inversions, and the lack of ability to deal with ill-conditioned matrixes can 

theoretically be known as the most problematic aspects of classic nonlinear solvers. It should 

also be reminded that forming the Jacobian matrix for some particular cases is unmanageable. 

Technically, Newton’s method is stated as:  

 [𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛] = [𝜕𝜕𝑜𝑜𝑜𝑜𝑑𝑑] − 𝐽𝐽−1[𝑓𝑓(𝜕𝜕𝑜𝑜𝑜𝑜𝑑𝑑)] (10)  

within each time step, 𝜕𝜕𝑜𝑜𝑜𝑜𝑑𝑑 shows the pressures of the last iteration, 𝐽𝐽−1 represents the inversion 

of the Jacobian matrix, and 𝑓𝑓(𝜕𝜕𝑜𝑜𝑜𝑜𝑑𝑑) indicates the outputs of nonlinear simultaneous algebraic 

equations. Equation 10 generates 𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛 which is expected to be inserted into Equation 9 and 

causes the generation of outputs with a magnitude of error less than what has been produced 

by 𝜕𝜕𝑜𝑜𝑜𝑜𝑑𝑑. The Jacobian matrix is developed based on all first-order partial derivation of a vector-

valued function. Technically, the Jacobian matrix is defined as:  

 𝐽𝐽 =
𝑑𝑑𝑓𝑓
𝑑𝑑𝜕𝜕

= �
𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕1

⋯
𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕𝑛𝑛

� =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕1

⋯
𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕𝑛𝑛

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑚𝑚
𝜕𝜕𝜕𝜕1

⋯
𝜕𝜕𝑓𝑓𝑚𝑚
𝜕𝜕𝜕𝜕𝑛𝑛⎦

⎥
⎥
⎥
⎤

 (11)  

Using Newton’s method can have real challenges and difficulties. For instance, the 

quality of convergence in Newton’s method is strongly dependent on the quality of initial 

guesses [47]. Also, for some problems, the arrangement of the Jacobian matrix is somehow 

unmanageable. Moreover, forming all the arrays based on derivations can be time-consuming 

and difficult. Finally, it is necessary to add this point that the computational cost of Newton’s 
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method is notably high because of making an inversion of the Jacobian matrix for a certain 

number of iterations [48]. 

1.2.3.2 Particle Swarm Optimization (PSO)  

In order to overcome the addressed challenges of making proper initial guesses and 

forming the Jacobian matrix, the application of Particle Swarm Optimization (PSO) is 

recommended. PSO is a free-derivation optimization method [49]. It does not need proper 

initial guesses to find the most optimized suite of pressures that their production by C1 in 

Equation 9 results in a close-to-zero matrix. Inspired by social systems among organisms such 

as fish schooling and birds flocking, PSO has been represented as a stochastic optimization 

technique [50]. PSO is a metaheuristic optimization algorithm that can practically be employed 

to solve multidimensional optimization problems. 

Beginning with an arbitrary collection of particles or prospective solutions containing 

pressure numbers, the workflow tries to enhance solutions depending on their properties, 

hopefully generating a certain quantity of zeros. The main target of PSO is to reach the 

supposed goal iteratively [51]. Accordingly, the velocity of particles is changed by means of 

velocity vectors that are functions of random factors. 

 𝜕𝜕𝑖𝑖,𝑗𝑗𝑘𝑘+1 = 𝜕𝜕𝑖𝑖,𝑗𝑗𝑘𝑘 + 𝑣𝑣𝑖𝑖,𝑗𝑗𝑘𝑘+1 (12)  

where  

 𝑣𝑣𝑖𝑖,𝑗𝑗𝑘𝑘+1 = 𝑣𝑣𝑖𝑖,𝑗𝑗𝑘𝑘 + 𝜕𝜕1𝑟𝑟1�𝜕𝜕𝑜𝑜𝑏𝑏𝑛𝑛𝑙𝑙𝑡𝑡 𝑖𝑖,𝑗𝑗
𝑘𝑘 − 𝜕𝜕𝑖𝑖,𝑗𝑗𝑘𝑘 � + 𝜕𝜕2𝑟𝑟2�𝜕𝜕𝑔𝑔𝑏𝑏𝑛𝑛𝑙𝑙𝑡𝑡 𝑖𝑖,𝑗𝑗

𝑘𝑘 − 𝜕𝜕𝑖𝑖,𝑗𝑗𝑘𝑘 � (13)  

During the kth iteration, 𝜕𝜕𝑖𝑖,𝑗𝑗𝑘𝑘  and 𝑣𝑣𝑖𝑖,𝑗𝑗𝑘𝑘  are the position and velocity of the jth element of 

the ith particle. Also, 𝑟𝑟1 and 𝑟𝑟2 are two numbers uniformly and randomly distributed with the 
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range of 0 and 1. The 𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and 𝑥𝑥𝑙𝑙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 indicate the best positions experienced so far by the 

whole population and the ith particle. Furthermore, the confidence of each particle in itself and 

the population are represented by 𝑐𝑐1 and 𝑐𝑐2, respectively. Regarding a 1D geological model, 

the comparison between using Newton’s method and the PSO approach has been shown in 

Figure 3. The results indicate that the PSO can generate results as accurately as Newton’s 

method but with fewer challenges like making proper initial guesses or derivative dependency. 

The results underline that using PSO instead of Newton’s method could generate results 

slightly faster. It is shown in Figure 3,b where the model with the 200 grids more converges 

0.7 seconds faster. The difference between time convergences goes up to 1.2 seconds if the 

number of grids increases to 300. The maximum difference has been observed for 500 grids, 

where the difference is 3 seconds. However, it is a questionable issue if the dimensions changes 

to 2 or 3. In addition, the next chapter has perfectly shown that using nonlinear AI-based solvers 

in the case of multiphase flow does not generate the same results. In other words, it can be 

deduced that PSO can overcome the nonlinearity of the developed models, but its application 

with respect to time is questionable.   
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(a) 

 

(b) 

Figure 3: (a) The validation of Newton’s method and PSO approach versus the analytical 

solution for 300 grids (b) Performance of the PSO versus Newton’s method to solve 

corresponding simultaneous equations (Chapter 2, Figure 5) 
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1.2.3.3 Adaptive Neural Network (AdNN) 

Using various machine learning approaches like Artificial Neural Networks (ANNs) to 

solve partial differential equations has been a topic of various outstanding research. However, 

going through the literature shows that using ANNs to solve partial differential equations is 

either with the help of already gathered data or by the use of various simulation outputs. 

Therefore, it can be deduced that although using ANNs can solve problems like Equation 9 

easier without the traditional difficulties of using Newton’s method, there is still a data 

collection problem. 

Adaptive Neural Network (AdNN) is technically recognized as a subset of machine 

learning methods that can adjust its randomly distributed weights and minimize its loss function 

with no help of previously collected data [51]. Regarding Equation 9, an AdNN tries to find a 

suite of pressures that their employment generates a matrix of relative zeros. Figure 4 shows 

the proposed algorithm based on the papers presented in 3. The proposed workflow takes 

advantages of adaptive laws to modify the weights of AdNN, which is supposed to generate 

the corrections to the initial set of pressures [52]. Then, the corrected pressures are inserted into 

the nonlinear simultaneous algebraic equations [53]. Eventually, comparing the output matrix 

of answers with the preset criteria determines if the procedure should keep iterating until 

finding the most proper set of pressures or stop the computations.  
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Figure 4: The proposed nonlinear solver based on using AdNN (Chapter 3, Figure 1) 

The success of the implemented algorithm has been illustrated in Figure 5. It is 

shown that the produced outputs are as close as possible to those generated by Newton’s 

method.  
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Figure 5: The results of using AdNN versus results of applying Newton’s method (Chapter 3, 

Figure 3) 

One of the most important aspects of using such a methodology is its computational 

efficiency. The examination of computational efficiency can be done based on the observations 

of RAM usage and CPU Time. The results of the analysis have been indicated in Figure 6. 

Because the proposed workflow is free of calculating the derivatives, the RAM usage is less 

than Newton’s method. It becomes even more important for the larger number of grids. The 

CPU Time measurement shows that using the represented workflow has almost the same 

performance as Newton’s method although it is observed that Newton’s method is faster for 

the larger number of grids. 



35 

 

 

(a) 

 

(b) 

Figure 6: The computational efficiency of the AdNN-solver (Chapter 3, Figure 11, 12) 
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1.3 Microscopic Scale 

The production from unconventional resources like tight and ultratight hydrocarbon 

reservoirs can be guaranteed if the prior reservoir studies are undertaken precisely [54]. As a 

result, carrying out experimental investigations such as Routine Core AnaLysis (RCAL) and 

Special Core AnaLysis (SCAL) to reveal the petrophysical parameters as accurate as possible 

has always been recommended as the most promising plan. However, using classic laboratory 

methods to determine the parameters like the permeability of tight porous media is time-

consuming, expensive and inaccurate [55]. Therefore, having a detailed experimental plan for 

a large number of samples taken from an unconventional resource is impractical.   

Accordingly, Digital Rock Physics (DRP) has been introduced as a state-of-the-art 

technology that takes advantage of microtomographic imaging and advanced numerical 

simulations to complement laboratory investigations to understand relevant physical processes 

[56]. It is evident that in recent years, pore-scale modelling has been recognized as a standard 

and precious approach to estimate and predict the properties of porous media. Pore-scale 

modelling can effectively be employed to study flow simulation in porous media by modelling 

the void spaces and pore throats. Also, it results in the observation and understanding of various 

phenomena at the microscopic scale to accurately determine favourite properties, such as 

permeability, capillary pressure, and relative permeability curves  [57]. 

Micro x-ray Computed Tomography (μxCT) is the most widely accessible and non-

destructive method among various imaging techniques [58]. Technically, the object is placed 

between the stationary source and the detector of the μxCT setup, and by its rotation, images 

are collected from different angles [59]. After generating sinograms applied by back-

projection, 2D cross-sections are created using superimposition [60]. Routinely, μxCT images 
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suffer from noises and artifacts such as roundoff errors, electronic, statistical, and random 

noises [61]. After filtering, the images need to be binarized. Following the thresholding 

method, the black voxels are labelled to void space, and white ones to grains lead to 

reconstructing the 3D sample used in further flow simulations [62]. More details about the 

mechanisms of image acquisition and processing and how the system and codes have been 

adjusted are described in Chapter 5. 

Accordingly, the general procedure of Digital Image Processing (DIP) can be illustrated 

in Figure 7. It starts with imaging the rock sample. Then, the generated sinograms are 

undertaken with the computed tomography to create the supposed μxCT images. As mentioned 

before, image filters are employed to reduce noise levels and increase the quality of images. 

The procedure continues with the application of the segmentation algorithm. The resultant 

binary cube is subjected to the various Pore-Scale Simulation (PSS) methods.   

 

Figure 7: The primary trend of DIP (Chapter 36, Figure 3)  

Direct Numerical Simulation (DNS) and Pore Network Modeling (PNM) are two 

general PSS methods that simultaneously find the pressure and velocity profile [63]. Although 

the PNM is a suitable method for modelling multiphase flow, its application causes losing 
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details of pore structures [64]. It leads to the increasing of numerical errors due to the imposed 

idealization of porous spaces. In contrast, the DNS method is typically recommended as an 

appropriate method for modelling single-phase flow because of its better computational 

efficiency [65]. The DNS method is implemented directly on the captured images so that the 

void spaces are detected, discretized, and then the relevant fluid flow equations are solved. The 

basis of DNS is solving Navier-Stokes Equations (NSE) on grids directly coming from μxCT 

images. It causes studying the effects of pores structure and their effects on flow simulation. 

Following the Computational Fluid Dynamics (CFD), finite-volume, finite-difference, and 

finite-element are well-known methods that can be employed to solve the NSE with high 

computational power [66]. In more detail, the CFD method is a top-to-bottom solution method 

in which the first step is considering NSE. The second one is constructing a computational 

domain then meshing it. After that, in various calculations such as pressure gradients, accuracy 

is determined, and finally, the boundary conditions are applied, and the equations are solved. 

The main dynamic parameter of single-phase flow is permeability, which highly depends on 

the structures and connectivity among pores.  

Although μxCT images can be generated at different resolutions and Fields of View 

(FOV), there are restrictions in choosing the resolution [67]. When the resolution is low, parts 

of pores with minimal dimensions are not recognizable and lead to porosity calculation errors. 

It is also impossible to properly segment throats by Digital Image Processing (DIP). As a result, 

the permeability calculations are severely suffering from a high level of uncertainty. On the 

other hand, more details about pore structures can be obtained at higher resolutions even though 

it equals a narrow FOV and a failure to achieve a representative physical volume where the 

porosity changes are negligible [68]. In other words, the major challenge restricting the 

accuracy of rock properties calculations is the appropriate choice of resolution and the FOV. It 
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is due to the fact that there is an inverse relationship between them so that with increasing 

resolution, FOV decreases and vice versa. 

The discussed trade-off can become even more challenging when DRP technology is 

supposed to be implemented in a tight and ultra-tight rock sample. To picture the situation more 

understandable, it is highly required to consider the two concepts of spatial image resolution 

and Pore Size Distribution (PSD) [69]. The value of spatial resolution indicates the physical 

dimension that represents a voxel of the image. For instance, the spatial resolution of 1.2 

micrometers per voxel (1.2 μm/vox) reveals the fact that the elements of the object with a size 

less than 1.2 μm/vox cannot be seen in the reconstructed cross-sections. On the other hand, one 

of the most important petrophysical characteristics for each core sample is its PSD. 

Technically, the PSD is a histogram that represents information about the relative abundance 

of each pore sizes in a represented core sample [70].   

In the case of overlapping the PSD with the spatial resolution of μxCT images taken 

from a tight sandstone sample from Achimovskiy formation, a large portion of pores cannot be 

seen in the reconstructed images (Figure 8). Consequently, the computation results of PSS can 

be questionable.  It must be reminded that increasing the spatial resolution of μxCT images is 

not a practical solution because of losing the representativeness of the images [71]. Therefore, 

the question that needs to be answered is how to take the effects of “sub-resolved” pores into 

account [72].  
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Figure 8: Comparing the results of PSD and the spatial resolution of μxCT images (Chapter 

36, Figure 2)   

To answer the raised question, a series of samples have firstly been taken from the 

Achimovskiy formation. Then, they have first been undertaken with the DIP tuned with the 

deep learning method. After having all the quality-increased images of DRP, it has been tried 

to check how much the classic approaches can be employed. Next, with the help of DIP and an 

operator named downsampling mainly used in deep learning, the effects of sub-resolved pores 

have implicitly been taken into account for the porosity and permeability calculations. 
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1.3.1 Digital Image Processing 

As depicted in Figure 7, noise suppression is among the most vital elements of DIP. 

Typically, image denoising is defined as finding a clean image from a noisy image. In other 

words, a noisy image is the summation of a noise component and an original image. The most 

important step of noise reduction is the minimization of feature loss in the cleaned image. The 

various image filters can be classified into two main types of spatial and transform domain 

filters. Within the spatial domain filters, the relevant mathematical operations are directly 

applied to original noisy images [73]. 

On the contrary, transform domain filters are those in which the target image is first 

supposed to be decomposed into different frequency components. Then, the treatment is done 

on the resultant components, and the outcomes finally form a clean image. Regarding all the 

types of filters and their corresponding domains, the trial-and-error attempts have shown that 

the sequential implementation of the bandpass and bilateral can noticeably improve the quality 

of images without much amount of feature loss. The bandpass filter removes the background 

variations and the noise. It attenuates very high and very low frequencies but keeps the 

midrange ones. In other words, the bandpass filter can simultaneously enhance edges and 

reduce the noises [61].  

Also, the bilateral filter has been used because of its edge-preservation, nonlinearity 

and smoothness. However, the usage of classic DIP needs to know about the optimum values 

of filter parameters which can only be obtained by testing various sets of numbers. Also, the 

implementation of both filters on more than 1400 sequential images is time-consuming and 

computationally expensive [74]. They have been taken as the main incentive to use deep 

learning for image denoising. Deep learning layers perform nothing but an approximation of a 
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transfer function between the input and the output. More details about deep learning and their 

impacts to the image processing have been discussed in Chapter 4.  

1.3.1.1 Deep Learning for Noise Reduction  

After finishing the images acquisition, the tomographically computed images have been 

stacked on each other. Then, a cube with the size of 14003 voxels has been cropped from the 

central part of the stacked images. As described earlier, the cropped cube has been undertaken 

with the bandpass and bilateral filters to generate clean images, Figure 9.  

  

(a) (b) 

Figure 9: The effects of the implemented DIP (a) The original image (b) The clean image 

(Chapter 4, Figure 2) 

The noisy images and the clean ones have been used as the training data for a supervised 

image denoising method based on deep learning. In more details, a Residual Encoder-Decoder 

Net (RED-Net) has been employed. The applied RED-Net is formed based on a stack of 

convolutional layers (encoder) and deconvolutional layers (decoder) [75]. The employed RED-

Net has schematically been shown in Figure 10. All the used convolutional and 
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deconvolutional layers have 64 kernels with the size of 3 by 3. Also, the padding is one, and 

the implemented activation function is ReLU.  

 

Figure 10: The schematic of the implemented RED-Net (Chapter 4, Figure 4) 

The performance of the implemented RED-Net using various loss functions has been 

evaluated with the help of full-reference and no-reference matrices. Table 2 shows the 

measured Signal-to-Noise Ratio (SNR) for using different loss functions. The SNR of using 

some loss functions is better than the SNR of the ground truths.   

Table 2: Effects of using various loss functions 

 Source GT L1 L2 SSIM VGG1_1 VGG3_1 VGG3_4 

SNR 0.108 0.558 0.493 0.528 0.582 0.590 0.546 0.576 

 

1.3.2 Pore-Scale Simulation 

The most important parameters that are expected to be computed correctly based on 

DRP are porosity (ϕ) and permeability (k). According to the generated black and white model, 

due to the implementation of a segmentation algorithm, the total porosity can be known as the 

ratio of black voxels over all voxels [76]. However, there are several methods for k 

computation. Basically, k is defined as:  
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 𝑘𝑘 = −
𝜇𝜇𝑈𝑈�
Δ𝑝𝑝
𝐿𝐿

 (14)  

where Δ𝑝𝑝
𝐿𝐿

 is the pressure gradient, 𝜇𝜇 is viscosity and 𝑈𝑈� shows the average flow velocity in the 

entire flow domain. Computation of 𝑈𝑈� is the leading interest for various researches. It can be 

computed based on one of the following methods:  

• Direct Simulation 

• Lattice Boltzmann Method 

• Pore Network Modelling 

Regarding the tight formations, the basic idea is that how much using these methods is 

reliable when a large portion of pores cannot literally be seen in the images. The idea has wholly 

been discussed in the next part. Also, it has been figured out that how it is possible to use the 

classic approaches to consider the effects of sub-resolved pores. 

1.3.2.1 Implementation of the Classic Approaches  

As discussed earlier, the most important concern of applying DRP methods to tight 

formation is that a large portion of pores cannot be seen in the μxCT images. As a result, using 

classic DRP methods is questionable. In terms of DIP, the filtered images are supposed to be 

binarized in order to form a digital rock sample. In spite of using many conventional global 

segmentation algorithms, it has been observed that implementing a double-threshold method 

like Random Walker (RW) algorithm can generate segmented images that their post-processing 

with some morphological operators results in a binary model with the minimum loss of 

information, Figure 11. 
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Figure 11: The implemented DIP in a glance (Chapter 5, Figure 2) 

The next step is the employment of the already mentioned PSS methods. Accordingly, 

the permeability of 5 samples has been computed based on what has been described in Pore-

Scale Simulation. Based on the generated results illustrated in Figure 12, it can be interpreted 

that there are no steady trends among the generated results. 
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Figure 12: The results of permeability computations based on the variety of methods 

(Chapter 5, Figure 4) 

It is necessary to consider that the differences among the generated results are due to 

the various numerical methods that the corresponding commercial simulators have used. Next, 

the dependency of the overall procedure to the implemented DIP has been observed. It needs 

to be highlighted that the supposed sensitivity analysis has been done based on the method of 

the Direct Simulation method. The Manual DIP is the first workflow implemented for all the 

gathered images. The method is based on using a typical Personal Computer (PC). Therefore, 

the resultant binarized cubes have the size of 4003 voxels after running Otsu’s algorithm. After 

that, the same procedure of PSS has been repeated for the 6003 voxels generated by 

Schlumberger through carrying the Cross-Laboratory Control DIP out.  Eventually, the third 

type of DIP has been employed by taking advantage of a High-Performance Computer (HPC) 

unit. The implemented Automated DIP can produce not only a binary cube with the size of 

14003 voxels but also uses the RW algorithm, which is remarked as an advanced double-
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threshold algorithm. The anisotropic permeability analysis of using various DIP has been 

indicated in Figure 13. 

  

  

 

Figure 13: Effects of image processing on the permeability anisotropy analysis (Chapter 5, 

Figure 5) 
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 In conclusion, it is believed that the complexity of pore geometry existing in tight 

sandstones is the main reason that why there is a kind of deviation in calculated permeability 

values. In other words, due to the high level of the inherent complexity within the supposed 

samples, the results of pore-scale simulations are strongly dependent on the applied size of the 

sample and the applied segmentation algorithm.  

1.3.2.2 Effects of Sub-Resolved Pores  

The image-based computations of petrophysical properties are typically suffering from 

biases. In other words, there are several important considerations when comparing DRP results 

with lab measurements. One of the most significant factors that affect the quality of DRP results 

is the degree of resolved rock components. Moreover, the DRP results are impacted by each 

step shown in Figure 11. Besides, it should be considered that the computed results are based 

on a micron-scale while the measurements have been made at the core scale. 

Consequently, the biases are created in the computed results, even for those perfectly 

homogeneous samples. To put it in another way, a systematic offset has been observed when 

comparing the computed porosity and permeability with those coming from the laboratory 

measurements. In some details, it has been noticed that the image-based porosities are 50% less 

than the expected values [77], and also, the computed permeabilities are 10-times greater than 

the experimental values [60]. Further analyses show that applying a deep-learning operator 

known as downsampling can synthetically reduce the spatial while not changing the physical 

size. Running the downsampling allows the researchers to have a set of computed porosities 

versus the synthetic spatial resolution.  

To put it more simply, downsampling mimics the trend of multi-scale imaging. Like 

losing more details (observing fewer pores) for lower spatial resolution, the downsampling can 
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be considered a method to generate synthetic images with the lower resolution if the maximum 

operator is applied. For instance, the images of the sample can have a spatial resolution of 1.2 

μm/vox. The sequential applying of the downsampling operator can generate the synthetic 

resolution of 2.4, 4.8, 9.6 and 19.2 μm/vox.  

Then, there is a possibility of computing the porosity for each one of the mentioned 

resolutions. The analyses made to the Achimovskiy formation show that the scatter can 

accurately be modelled with an exponential trendline. The generated model provides the 

opportunity to estimate the porosity for the spatial resolution of 0 μm/vox, which is 

theoretically possible but physically not. The procedure has graphically been illustrated in 

Figure 14. The implementation of the method to 5 samples taken from Achimovskiy formation 

has been performed in Figure 15. 
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Figure 14: The effect of downsampling on the measured porosities (Chapter 56, Figure 6)  

It is required to mention that both parameters of 𝜙𝜙0 and 𝛼𝛼 are determined based on the 

fitting procedure. Regarding the micro-scale resolution, it is possible to consider Res. as zero 

in the obtained equation and then estimate the porosity at the intersection with the y-axis.  
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Figure 15: Estimation of ϕA by using the introduced procedure (Chapter 55, Figure 8) 

The whole procedure results in the estimation of actual porosity (ϕA). Regarding the 

porosity coming from Images (ϕI), it is possible to estimate the bias between both types of 

porosities as: 

 𝛽𝛽 = �
𝜙𝜙𝐴𝐴
𝜙𝜙𝐼𝐼
�
3

�
1 − 𝜙𝜙𝐼𝐼
1 − 𝜙𝜙𝐴𝐴

�
2

 (15)  

where ꞵ shows the bias. Then, ꞵ can be employed to compute the Actual permeability (kA) 

based on Image permeability (kI) as:  

 
𝑘𝑘𝐼𝐼
𝑘𝑘𝐴𝐴

= 𝛽𝛽 (16)  
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It has been observed that using the discussed procedure to find the kA has been 

successful enough so that the ratios of kA over the experimental permeability values are closer 

to unity than other approaches, Figure 16.  

 

Figure 16: Estimation of kA with the help of computed ꞵ (Chapter 5, Figure 10) 

𝑘𝑘𝐸𝐸𝐸𝐸.3, 𝑘𝑘𝐸𝐸𝐸𝐸.5 and 𝑘𝑘𝐸𝐸𝐸𝐸.6 shown in the legend have fully be described in Chapter 6 where the 

relevant paper has been presented there. It must be underlined that all the supposed equations 

have the same notation in the supposed paper.   

To sum up, Chapters 2 and 3 will show two successful samples of applying artificial 

intelligence methods to overcome and manage the inherent nonlinearity of macroscopic fluid 

flow and storage in tight and ultra-tight porous media. The main microscopic challenge that 

the current research has tried to figure out is whether the current technology of digital rock 

physics can take the effects of sub-resolved pores into account. The outcomes of image 

processing indicate that applying new technologies like using advanced neural networks for 

noise suppression (Chapter 4) is inevitable. In terms of pore-scale simulation, Chapter 5 has 
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shown that the implementation of classic approaches cannot generate satisfying results. 

Therefore, a hybrid workflow based on digital image processing, downsampling and empirical 

correlation has been developed in Chapter 6. Finally, the thesis has been summarized in 

Chapter 7, where my challenges within doing the thesis have been addressed, and the probable 

solutions for the following studies have been discussed.    

 



54 

 

2. A novel approach for solving nonlinear flow equations: The 

next step towards an accurate assessment of shale gas 

resources 

Fluid flow in tight and ultra-tight porous media is a function of various flow and storage 

mechanisms. Taking the effects of slippage, diffusion, desorption and dissolved gas as the 

essential phenomena of ultra-tight porous media like shale gas resources into account 

noticeably increases the inherent nonlinearity of fluid flow governing equations. The 

implementation of classic solvers like Newton's method can generate satisfying results only if 

a proper initial guess has already been made. Moreover, the usage of Newton's method is based 

on making derivatives and forming the Jacobian matrix, which can be challenging. Going 

through Newton's method clarifies that it tries to find a series of pressures that lead the 

nonlinear simultaneous algebraic equations to generate zeros based. The same idea can be 

employed by means of metaheuristic optimization methods that are going to find the best 

colony of particles (pressures), making the algebraic equations equal to zeros. The presented 

paper has first tried to show the most important phenomena of shale gas resources and then 

propose a new application of Particle Swarm Optimization (PSO) as a nonlinear solver. Also, 

the impact of the prepared paper to the roadmap of the research has been shown in Figure 17. 
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Figure 17: Chapter 2 in a glance 
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3. A nonlinear solver based on an adaptive neural network, 

introduction and application to porous media flow 

Regarding the universal approximation theory that states a Single Hidden Layer (SHL) 

neural network has the capability of estimating any nonlinear, continuous, and unknown 

functions, the capability of using neural networks to solve the partial differential equations has 

always taken many the researchers' attention. Despite the previous attempts in which multi-

layer perceptron networks were tried to fit the gathered data, the presented paper has 

investigated the possibility of using Adaptive neural networks as the nonlinear solver. In 

comparison with the previous research, the most important advantage of the proposed 

workflow is that it does not need to be trained based on the gathered data. The training 

procedure goes based on generated errors by the output of the simultaneous nonlinear algebraic 

equations and adaptive laws. Moreover, the proposed solver has the independence to the 

physics of the problem. In other words, although it is an artificial intelligence-based solver, it 

works like classic mathematical methods. However, the required runtime for the convergence 

is longer than generally recorded for Newton's method. Also, the impact of the prepared paper 

to the roadmap of the research has been shown in Figure 18. 
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Figure 18: Chapter 3 in a glance 
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4. Deep learning in denoising of micro-computed tomography 

images of rock samples 

Digital image processing of μxCT images is one of the main two steps of DRP research 

and operations. Undoubtedly, noise suppression is globally known as one of the most 

important, problematic and user-dependent steps that need to be carefully taken during image 

processing. Different types of noises and artefacts have made choosing the best filters very 

much tricky. On the other hand, choosing the best among the countless number of filters can 

be considered a multi-objective problem. Furthermore, using a proper set of filters for a large 

number of filters having an extensive size can really be time-consuming. Therefore, having an 

intelligent denoiser based on deep learning can be a solution with faster performance and less 

user dependency.  The presented paper has discussed how to use artificial intelligence for noise 

reduction in μxCT images. The main impact of the published paper on the general trend of the 

research has been shown in Figure 19. 
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Figure 19: Chapter 4 in a glance 
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5. Different methods of permeability calculation in digital 

twins of tight sandstones 

The application of digital rock physics to tight samples can be challenging. It is due to 

the fact that the pores existing in the tight samples cannot be detected in the μxCT images of 

the supposed sample. Hence, a particular question raises here is how much the classic methods 

of digital rock physics are applicable to unconventional resources like tight sandstones. The 

question can be considered based on two aspects of digital image processing and pore-scale 

simulations. The other side of the topic is how the overall procedure of digital rock physics is 

influenced by the type of hardware used. The presented paper has put forth tremendous efforts 

to understand how various combinations of image processing, pore-scale simulations and the 

employed hardware affect the quality of generated results of digital rock physics. The main 

impact of the published paper on the general trend of the research has been shown in Figure 

20.   
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Figure 20: Chapter 5 in a glance 
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6. Strengthening the digital rock physics, using downsampling 

for sub-resolved pores in tight sandstones 

A couple of research has made great efforts to develop techniques to calculate the 

petrophysical properties of tight samples based on digital rock physics. The main obstacle is 

taking the effects of those pores that cannot be detected in the images when running various 

pore-scale simulations. One of the premier ideas is multi-scale imaging, in which some ideas 

like upscaling is applied to map between the generated results at different spatial resolutions. 

The same concept can synthetically be conducted with the help of a downsampling algorithm. 

The technique is based on artificially reducing the resolution step-by-step. Then, the 

established correlation between the computed porosities and the synthetic resolutions will be 

extrapolated to an extremely high resolution (close to zero) to find the value of the favourite 

parameter independence of pore size distribution. Also, the impact of the prepared paper to the 

roadmap of the research has been shown in Figure 21Figure 18.    
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Figure 21: Chapter 6 in a glance 
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7. Conclusions and Future Research 

In general, the current thesis has tried to investigate how it is possible to maximize 

production from unconventional resources with the help of artificial intelligence. It is believed 

that taking the effects of multi-scale phenomena of flow and storage and their noticeable degree 

of nonlinearity in unconventional resources into account in terms of modelling and simulation 

is the most critical macroscopic challenge. The prepared research has tried to determine 

whether using various artificial intelligence methods can overcome the supposed difficulty. 

Published papers in Chapters 2 and 3 have shown that using metaheuristic algorithms and 

neural networks can perform efficiently for 1D systems although their performances for more 

complex systems are still questionable. To put it more simply, it is still not clear that the same 

performance will be obtained if the introduced ideas are applied to 2D and 3D cases. 

Moreover, the other challenge that should be considered is the applicability of the 

proposed methods to the compositional models. In compositional models, it is required to use 

the equation of states, adding another level of nonlinearity to the governing equations. For 

instance, the fluid flow of condensate or rich gases in the ultra-tight porous media of shale gas 

resources can be considered as an in-depth topic of research where not only the complexity of 

the geometry is a challenge but also which equation of states should be applied is another aspect 

of uncertainty. In fact, the interaction among the various forms of storage in terms of a single 

equation of state describing the fluid properties in shale gas resources is a topic that can be 

regarded as an important topic of research for future studies. 

Following the microscopic analyses of tight formations, the critical point is that a large 

portion of pores in the tight formations has a size less than the spatial resolution of μxCT images 

that causes them not to be detected in the μxCT images. They are technically addressed as "sub-
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resolved" pores. The current state of digital rock physics cannot analyze the tight formations, 

and it is highly required to take advantage of modern technologies and methods like machine 

learning and advanced image processing.  

First, the μxCT images are typically suffering from noises and artefacts. They can lead 

to the wrong segmentation results. Hence, it is highly required to remove the noise elements 

from the images. Using a suitable set of filters for noise suppression can be time-consuming. 

Also, each type of filter has a specific set of parameters that are supposed to be determined by 

the user. Although a couple of unsupervised methods can independently improve the quality 

of images, using them is still time-consuming. Therefore, it has been tried to use a deep learning 

approach that is trained based on unsupervised approaches but implemented on GPUs, Chapter 

4. The next step of research that should be regarded is replacing some accurate but time-

consuming segmentation algorithms with deep learning approaches.  

The next step is to understand how much results of using classic pore-scale simulations 

are reliable in applying them to the models built based on μxCT images from tight formations 

where many details are missed in the images. Chapter 5 has shown that it is much-needed to 

use modern imaging techniques and simulation methods to improve the quality of digital rock 

physics and make them comparable with lab results. As a result, it has been tried in Chapter 6 

to develop and use a hybrid method of image processing, downsampling and empirical 

approaches to estimate the key petrophysical properties of porosity and permeability of the 

sample based on the extrapolation of the interpreted correlations. Even though the generated 

results are in good agreement with the experimental reports, there are still some challenges. 

The estimated properties are bulk values, and it is unclear how the local effects of sub-resolved 

pores and their distributions are. A clearer picture of sub-resolved pores can be obtained with 

the help of some more advanced technologies like Scanning Electron Miscroscopic (SEM). 
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However, mapping extremely high-resolution SEM images to the μxCT images could be a 

critical question for the next level of research. Even if a suitable model of sub-resolved pores 

distribution can be obtained, the next question is which technique of pore-scale simulation 

should be followed. Taking the sub-resolved pores as a porous material, it is recommended to 

use Stokes-Brinkman equations. The topic that can be regarded as the next step of research is 

how to make sure that the results of the simulation are valid. Of course, checking the computed 

capillary pressure and relative permeability curves of the model with the experimental results 

is always a promising method, but the puzzle of how the sub-resolved pores are distributed is 

still unanswered. Some modern techniques like Positron Emission Tomography (PET) can 

show the advancement of the injecting fluid in the pore-scale. Those observations at the pore-

scale can be taken as an analytical solution to validate the developed models based on μxCT 

images. Arranging the described idea and turning it into action can be an exciting research topic 

for interested readers. 

Last but not least, mapping between macroscopic and microscopic scales is one of the 

most critical steps in the proposed workflow. To the last knowledge of the author, upscaling in 

unconventional resources is still open to endless questions. An outstanding research topic is 

investigating a multi-scale AI-based approach that can reflect a proper value of petrophysical 

properties to a grid block in a continuum-scale simulator based on microscopic properties 

already obtained and interpreted. 
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