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PERCOLATION ON COMPLEX NETWORKS AND ITS APPLICATIONS

Abstract

Real complex systems can be easily and effectively represented by networks. Networks are
ubiquitous in our daily life, including, social networks, transportation networks, technological
networks, etc. Networks or graphs are mathematical objects in which nodes represent the
constituent units of the system and links represent interaction between these units. Recently
a more general framework of multiplex networks has been introduced in order to study
networks with more than one layer. In an L-layer multiplex network each node is present
simultaneously in all layers, however, each layer corresponds to a different type or flavor of
interactions between nodes. Beyond the structure of the network (either it is monoplex or
multiplex) one is interested to unravel the interplay between structure of a network and the
dynamic taking place on top of it.

Percolation and some of its variants as candidate processes taking place on top of the
networks are studied in this thesis. More explicitly the thesis includes the following. (a)

Bond percolation on monoplex networks. This study models neuronal systems and proves
that systems can attain power-law indications of criticality without being at critical point.
(b) Generalized core percolation of monoplex networks. This study helps us to improve
our understanding of structure of networks by offering new layout based on core and k-core
percolation. (c) Observability phase transition on multiplex networks. Observability phase
transition of synthetic and real multiplex networks are studied. We show that while the latter
has second order phase transition, the former has first order type. (d) Community structure
and hyperbolic embedding of networks. We show that there is a one-to-one correspondence
between hyperbolic embedding and community structure. Utilizing this analogy we unravel
the reason behind the robustness of real-world multiplex networks. (e) Optimal percolation
on multiplex networks. We define the model and design algorithms to approximately solve
this problem. We differentiate this problem from its monoplex counterpart and show that
forgetting multiplex nature of the network can overestimate robustness of the network. (f)

k-core structure of real multiplex networks. We show that real multiplex networks have rich
k-core structure. Moreover, we investigate the role of geometric correlations in this regard.
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Chapter One

Introduction

Many of the real and man-made complex systems around us are represented efficiently by

graphs or networks [1, 2]. Transportation networks, social networks, technological networks

and brain networks are just a few examples of real complex networks. A network or a

graph G(V , E) is a collection of nodes (vertices)V and links (edges) E . Nodes represent the

constituent units of a system and links capture the interaction pattern between these units.

Network science was developed in order to study their emergent and collective behavior [3–5].

Understanding the structure of networks is the first step in analysis of a complex system [2].

However, in most of the real networks, the structure is supplemented by a dynamic which

is taking place on top of it [6]. For instance, epidemic spreading on a social network [7, 8],

cascades and black outs occurring on an interdependent networks of the Internet and power

grids [9], percolation phenomenon and its variants on monoplex and multiplex networks [9–

14] and so forth. The approach of the network science in dealing with a complex system can

be summarized in three main steps:

• Analysis of the structure of the complex network.

• Unravelling the dynamics of and on the complex network.

• Investigation of the controllability of the complex network.

Initially one needs to characterize the structure of a complex system before delving into its
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dynamic and controllability [2]. Network science facilitates structural analysis of a complex

system by considering the graph associated with that system. Then, characterizing the struc-

ture of a complex system reduces to the topological description of the equivalent underlying

graph. Structural analysis of a graph is achieved by measuring some well-defined mathe-

matical measures, metrics and etc. Topological descriptors of a graph include quantities

such as: degree distribution, clustering (abundance of triangles) [15], community structure

(higher order structure of tightly connected nodes) [16], node and edge centralities [2] and so

forth. Some of the aforementioned metrics and their definitions can be found in Table 1.1.

Hereafter we use the words graph and network interchangeably.

After describing the structure of the underlying graph of a complex system, one can raise

questions about the dynamics of and on the system [6, 17]. The main goal of this step

is to understand how a complex network —its structure, the process which is taking place

on top of it or both— evolves in time. It is crucial to realize the difference between the

dynamic of a network and the dynamic on a network. While the latter refers to a dynamical

process e.g. random walk, taking place on the network, the former refers to the dynamic

of the network itself. Throughout the thesis we are dealing with static networks, i.e. their

underlying graphs are not evolving in time. We study dynamical processes that are taking

place on top of static networks. Ultimately, we unravel the interplay between the structure

of a graph and the dynamical process taking place on top of it.

An important point of view in the analysis of complex systems is controllability [18].

Controllability can be defined as follows. Given the structure, dynamic and initial state of

the system under study S0, controllability is defined as finding the required input signals or

interventions in order to drive the system from the initial state S0 to the desired final state

S1 [19, 20]. In the thesis we are not involved in this topic.

In this chapter I briefly describe the structure of complex networks and dynamics taking

place on them. Regarding the structure, I specifically consider the networks that are used

in my thesis, i.e. monoplex and multiplex networks and regarding the dynamics I consider
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percolation process (or phenomenon as it is called in physics) and its variants as candidate

processes that are taking place on top of these networks. It is worth to mention that the

topic is broad and I will limit myself to the structures and models that are used in my

thesis. The structure of the chapter is as follows. First basic definitions in complex networks

are presented. Then random graph models are presented. Multiplex structures are defined

and the need of this specific representation is discussed and justified. Then I briefly define

percolation models on both monoplex and multiplex networks. Generating function method

as a theoretical tool to study percolation on complex networks is presented. Finally the brief

summary of the results of my thesis are presented in the following order: a) bond percolation

on monoplex networks [2] and how it is used to model neuronal avalanches [21], b) generalized

core percolation as a new layout for networked structures [22], c) depth-one percolation or

observability transition on multiplex networks [23], d) robustness of community correlated

multiplex networks [24] under targeted attack, e) optimal percolation or dismantling of

multiplex networks [14] and f) k-core structure of real multiplex networks [25].

1.1 Networks and Percolation Models

1.1.1 Basic definitions

A network or a graph G(V , E) is a set of nodes V connected by a set of links E. Nodes

represent the elementary units of the system and links capture the connection between these

units. For instance, in the case of a social network individuals can be represented by nodes

and their social connections as links" [26], in a brain network neurons can be represented

by nodes and their synaptic connections as links" [27] and so forth. In a weighted network

each link has a weight which captures intensity of the interaction between the two nodes

or simply the strength of the link. If all the links have the same weight w = 1 we call the

network unweighted. A network is called directed if each link is associated with a direction.
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Indirected networks can be considered as directed networks if each undirected link i − j is

replaced by two directed links i → j and j → i [2]. There is a handy generalization of

networks in which existence of different types or colors of edges between nodes are allowed.

This special case of networks can be modelled by multiplex (multi-layer) framework [28, 29].

Beyond the simple notation G(V , E), one needs mathematically consistent definitions

which can be defined and measured on graphs. These definitions become useful in analyzing

random and real networks. Table 1.1 lists the basic definitions needed in order to follow the

materials presented in the rest of this chapter.

Table 1.1 Basic Definitions

Adjacency Matrix (A) Adjacency matrix A captures the connectivity pattern

of a graph; Aij = 1 when there is a link between node i

and node j and Aij = 0 otherwise.

Degree (k) In an undirected network, ki is number of links con-

nected to node i: ki =
�

j Aij. In a directed network

one should differentiate between incoming and outgo-

ing links. Then indegree and outdegree are define as

kin
i =

�
j Aij and kout

j =
�

i Aij respectively.

Degree

distribution (p(k)) p(k) = Nk

N
is the fraction of nodes with degree k. The

same definition can be generalized to indegree and out-

degree distributions, where Nk is the number of nodes

with degree k. P (k) can be interpreted as the probabil-

ity that if we choose a node at random it has degree k.
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Excess Degree (q) If one chooses a random edge and reaches to one of it is

endpoints, then the number of edges of that node except

the one we came from is the excess degree of that node.

Excess Degree

distribution (q(k)) q(k) = (k+1)p(k+1)
<k>

is the probability of the endpoint of a

randomly chosen edge has excess degree k. <k> is the

average degree of the whole graph.

Clustering Coefficient(c) ci =
NΔ

(ki2 )
, where numerator is the number of triangles

connected to the node i and denominator shows the

whole number of possible triangles of node i. Clustering

of the whole graph is C = 1
N

�
i ci.

Path A set of consecutive edges makes a path. A closed path

is called a loop. Triangle is the shortest possible loop

(with length 3) in undirected graphs.

Component It is a maximal subset of nodes in which each pair of the

nodes in the set are connected with at least one path.

A biggest component of a graph is called largest cluster

or giant component (GC).

k-core A maximal subset of graph where each node has at least

degree k within the subset. k-cores are hierarchically

nested with the highest k in the center.

1.1.2 Monoplex Networks: Random v.s. Real

There are families (ensemble) of random graph models in which one can create a random

graph with specific parameters and specifications [30]. One of important random graph
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models is Erdős-Rényi graph (sometimes simply called random graph or Poisson graph) [31].

Erdős-Rényi random graph model G(N, p) comes with two model parameters. N is a number

of nodes and p is a probability of connection. One can make a realization of the model (create

a random graph) by connecting each pair of nodes with probability p. G(N, p) features

Poisson degree distribution, zero clustering and phase transition in the emergence of giant

component [2, 31].

It is legitimate to assume that connections or links in the real-world networks are not

random and hence their structural properties should be different from the ones of the random

graphs [32]. With increase of computational powers and access to large scale real networks,

people realized that these networks feature properties which differ significantly from the

properties of the random graphs [2]. Most of the real networks are characterized by scale

free degree distribution [33], high clustering [34] and community structure [35] only to men-

tion few. The discrepancy between the structure of observed real networks and synthetic

random graphs, led to the following problem. Often synthetic random graphs fail to possess

the topological structures and features associated with the real world networks which intro-

duces errors in modelling of the latter utilizing the former. In order to capture topological

properties of the real world networks more complicated models beyond simple Erdős-Rényi

model have been introduced. The graphs created by these models possess almost the same

structural properties as the ones in their real world counterparts [2, 33, 36]. The analysis

of the full set of these network models is beyond the scope of this thesis. I briefly describe

only the models which are used in my thesis: configuration model [2, 37] and hyperbolic

model [38].

1.1.3 Configuration Model

The main disadvantage of a Poisson random graph is its limitations to mimic the degree

distribution of the real networks. While the former is only reproducing Poisson degree
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distribution, the latter comes in variety of shapes from power-law degree distribution to

exponential one and so forth [32, 39]. Thus, in order to properly model a real network, one

needs a generative random graph model which is able to capture any desired degree distribu-

tion. Configuration model is a simple model which enables one to create maximally random

graph out of a given degree sequence, meaning that beyond the given degree sequence, the

whole structure of the graph is randomly created [2]. This degree sequence can be a sample

degree sequence from a degree distribution or a degree sequence of a real network. The

configuration model associates to each node i degree ki from the candidate degree sequence.

Then each node is given ki stubs (half links). Finally pair of stubs are chosen randomly and

coupled into a link. This process continues until no unmatched stubs are left. It is worth to

mention that initially the total number of stubs needs to be an even number in order to pre-

vent ending up with a single unmatched stub. Stub matching process may create self-links

(links connecting nodes to themselves) and multi-links (more than one edges between two

nodes). However, it is easy to show that density of these structures goes to zero in the limit

of large network size. We utilize random networks created using configuration model [2, 37]

and its extended version [21] in section 2.1 where we study neuronal avalanches on directed

and undirected networks.

1.1.4 Hyperbolic Networks

While configuration model resolves the issue of degree distribution, it cannot create random

instances of graphs with specific properties resembling the ones of the real networks. An

important feature of real networks is non-zero clustering which occurs due to the abundance

of triangles. Huge number of triangles and their self-similar behavior [40] accompanied

by small-worldness and heterogeneous degree distribution makes it plausible to consider real

networks as objects embedded in hidden metric space [38, 40]. Metric property of the hidden

space supports triangle inequality; if a distance between two nodes in the underlying hidden

7



space is interpreted as the probability of connection between them, then high clustering

is nothing more than topological counterpart of triangle inequality of metric space in the

network structure [38, 40]. More details about these networks can be found in chapters five

and seven.

1.1.5 Multiplex networks

Most of the real complex networks surrounding us are not just single isolated networks but

collection of interacting networks e.g. social networks [41, 42], transportation networks [43]

and so forth. Multi-layer networks framework enables one to generalize the tools utilized in

the study of monoplex networks to analyze these high level structures [44, 45]. In my thesis,

I contain myself to a special class of multi-layer or interdependent networks called multiplex

networks [46].

An l-layer multiplex network is composed of l layers and N nodes where all the nodes

exist simultaneously in all of the layers of the multiplex. Nodes of the same identity are

called replicas. Replicas represent the same entities in each layer and they are connected

with inter-layer links to each other. Inter-layer links between the replicas are interpreted as

one to one correspondence between them. Each layer of a multiplex network corresponds to

a different type or flavor of interaction between the nodes. For example a multiplex social

network of Facebook and Twitter is composed of people who have interactions through one

or both of these platforms. A multiplex biological network is composed of nodes (neurons,

proteins, etc) where physical, chemical or any other kind of interactions potentially can exist

between them. In multiplex framework each type of interaction is mapped onto a separate

layer. G(N,A[1], A[2]) briefly captures the structure of a two layer multiplex network, where N

is the number of nodes and A[1] (A[2]) captures the interaction pattern in first (second) layer.

Without losing generality we assume that labels of the nodes in both layer are enumerated in

a way that node i of the two layers are replicas; i = 1, 2, . . . , N . An example of a multiplex
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network is illustrated in Fig. 1.1.

  

A

B

Figure 1.1 Multiplex networks. Schematic representation of a multiplex network
composed of two layers A and B. Each node simultaneously exists in both layers of
the multiplex network. Inter-layer links are shown as green dashed lines and exhibit
one to one correspondence. Each layer represents a different type of interaction
between nodes, i.e. each layer is composed of different intra-layer link structure.
The links in cian color are called overlapping links. A link is called an overlapping
link if it simultaneously exists in all the layers of the multiplex network.

Monoplex networks and their properties have been intensively and deeply studied [2]. It is

a legitimate question now to ask how one should characterize a multiplex network [47]. Defi-

nitions of degree, degree distribution and other properties should be consistently generalized

to multiplex networks. Here we mention four important properties observed in real multiplex

networks which hugely impact the dynamics running on top of them: Degree correlation [48],

edge overlap [49], community-correlated structure [24] and geometric correlations [50, 51].

For comprehensive and detailed information on the structural properties of random and real

multiplex networks see [28, 29, 47, 52].
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1.1.6 Why Multiplexity?

The need to increase the complexity of analysis of a system by using a multiplex struc-

ture is justified by many studies [28]. Intuitively the following question is raised that why

a complicated multiplex framework is needed while there exists a much simpler monoplex

framework [53]? The primitive suggestion can be reducing a multiplex structure to a mono-

plex structure G described by A = A[1] ⊕ A[2]. Then tools from monoplex theory can be

applied to this aggregated network conveniently. While appealing, many studied showed

that this representation can be faulty and lead to a maimed description of the system [28,

54]. By reducing multiplex structure to a monoplex structure (which is dubbed by the term

“forgetting multiplexity“) one may not be able to describe the system properly [9, 14, 46,

55]. This is the nature of multiplexity that leads to new physics and phenomena.

An example of how a multiplex structure gives rise to new physics, is the emergence of a

giant cluster in random Poisson multiplex networks [9, 56]. Consider a two-layer multiplex

network (called duplex) in which each layer is a random Poisson network with N nodes

and average degree <k>. In analogy to giant connected component (GCC) in monoplex

networks, one can define Giant Mutually Connected Components (GMCC). GMCC is a

maximal subset of graph where each pair of nodes is connected at least by a path in the

first layer and by a path in the second layer with a constraint that all these paths should be

inclusive, meaning that all nodes on the paths also should belong to GMCC [9] (maximal

subset is a subset of a set with a specific property. The property cannot be hold by adding

any other member to this subset). One can show analytically that GMCC undergoes a first

order phase transition (with a jump) in contrast to second order phase transition of random

Poisson networks [56]. This is an example of how existence of multiplex interactions can

change the physics of the phenomena observed in the system. Numerous studies proved

that considering multiplexity is needed in order to capture proper physics of dynamical and

structural processes running on top of multiplex networks [9, 13, 14, 55, 57–62].
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As discussed previously, real networks have properties that differ from random graphs.

The same can also be stated for random and real multiplex networks. Random multiplex

networks are created by random placement of inter-layer links between two random (or

even real) isolated monoplex graphs. However, as one expects, real multiplex networks

are not a random composition of two monoplex networks. It is not surprising that one to

one correspondence between replicas (inter-layer links) in reality is not formed randomly.

There are correlations between replica nodes and these correlations play an important role

considering the dynamic running on top of a multiplex network [14, 24, 48–51]. There

are four important inter-layer correlations in multiplex networks which are discussed and

utilized in my thesis, namely, degree correlation [48, 63], edge overlap [14, 49], community

correlation [24] and geometric correlations [50, 51]. It is worth to mention that another

type of correlations also exists in the realm of monoplex networks [4]. These correlations

are referred to as intra-layer correlations. The interest of my thesis is limited to inter-layer

correlations since they are emergent due to multiplexity [47]. These correlations play major

role in the percolation theory of multiplex networks [9, 14, 23, 64].

1.1.7 Degree Correlation

Degree correlation is the simplest correlation in a multiplex network. In a random multi-

plex network the inter-layer links (one-to-one correspondence between replicas) are placed

randomly between the layers. However, generally it is possible that instead of a random one

to one correspondence between nodes, one expects correlation between degrees of replicas

in different layers, e.g. with a high degree in one layer has also a high degree in the other

layer [47]. Inter-layer degree correlation in a multiplex network refers to the correlation be-

tween the degrees of the replicas in different layers of the multiplex network. Hereafter we

simply call these correlations as degree correlations. The importance of degree correlations

originates from the implication they have in the physics of the multiplex networks. For
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instance, degree correlations (either positive or negative) can change the type of phase tran-

sition of GMCC [48, 63]. More importantly recent studies showed that degree correlations

are not only synthetically implanted in random multiplex networks, but they also exist in

real multiplex networks [50].

1.1.8 Edge Overlap

Edge overlap in multiplex networks refers to the simultaneous existence of an edge (i, j)

in both layers of a multiplex network [28, 49]. In general a specific kind of correlation is

considered to be important as long as it is not caused by randomness e.g. it is not observed

in the synthetic random multiplex network. For instance, in the case of degree correlations

we mentioned that random synthetic multiplex networks come with zero degree correlations

due to the random placement of inter-layer links. Since a random multiplex network is a

random one to one coupling of two networks, the probability that an edge between two nodes

simultaneously exists in both layers of the multiplex is vanishingly small. However, in real

multiplex networks a large amount of overlapping fractions have been observed [49]. For

instance, considering online social platforms, it is highly probable that if two individuals are

connected in the first platform, they are also connected in the second platform. It is crucial

to understand the implications that edge overlap has on the physics of multiplex networks.

We will discuss this in the result section, chapters four, five and six.

1.1.9 Community Correlation

In multiplex networks correlations exist on different scales. Degree correlations capture the

node-level correlations and to what extent degrees of the replicas are correlated. Edge overlap

captures correlations at a higher level of two-body interactions. Here we introduce a correla-

tion that exists at macro level; multiplex networks with correlated community structure [24].

Community in a network is a group of nodes which have a tendency to have connections
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within themselves than to other nodes of the network [16, 35]. Community detection consists

of analysis aimed to discern these large scale structures [16, 35].

A community correlated multiplex network is a multiplex network in which there are

correlations between the community structure of the layers. In other words, communities

within separate layers of multiplex networks overlap [65]. More specifically these correlations

imply that nodes belonging to a community in one layer, also form a community in the other

layer. Random graphs do not contain statistically observable community structure [66] and

hence community correlated structures cannot be defined for synthetic random multiplex

networks. On the other hand, most of the real networks feature rich community structure

and these community structures overlap between the layers of multiplex networks [24, 65].

This phenomenon and its implications are studied in the results section and more in-depth

in chapter five.

1.1.10 Geometric Correlation

We previously introduced hyperbolic networks and mentioned that most of the real networks

have underlying hidden metric space [40]. Broad degree distribution, high clustering and

small-world property of real networks imply that the hidden metric space underlying most

of the real networks is hyperbolic [38]. The hyperbolic embedding of complex networks

associates coordinates (r, θ) to each node of the network. Coordinate r is called popularity

and is related to the degree of a node. Δθij abstracts similarity between the two nodes i

and j [67]. A hyperbolic distance between two nodes i and j is defined as dij and is a

combination of popularity and similarity. Intuitively one expects that the distance between

connected nodes should be smaller than the distance between disconnected ones. The topic

of hyperbolic geometry in complex networks is a decade-old and successful field and caught

attention due to its success in shedding light on link-prediction, navigability, discovering of

soft communities, geometric renormalization of networks and so forth [38, 67–70].
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In order to generate a random graph with hyperbolic geometry (referred to H2 model) [38]

coordinates of nodes are sampled from predefined density functions ρr(r) and ρθ(θ). Then

each pair of the nodes is connected with a probability that depends on the hyperbolic dis-

tance between the nodes. Nodes with smaller distance between them have higher probability

to be connected than the nodes with larger distance. Networks created with H2 model and

with proper model parameters are able to mimic real networks in a sense that they fea-

ture power-law degree distribution, high clustering, small-worldness and realistic community

structure [38, 40, 67, 69].

Let’s assume we have a two-layer multiplex network. Embedding each layer of the mul-

tiplex network separately in a separate hyperbolic disk provides two sets of coordinates. By

looking at the coordinates of replica nodes of the multiplex network one observes non-trivial

correlation between the coordinates [50]. These correlations are called hidden, since they are

not noticeable from the structure of the graph. One needs to embed layers of a multiplex

network in metric space in order to unravel hidden correlations. Correlation between r coor-

dinates of nodes is basically the degree correlation which we discussed previously. However,

correlation between the angular coordinates of nodes is a novel observation [50] with huge

physical implications [24, 50, 51].

Angular correlation between layers can be explained in the language of community struc-

ture. Correlation between angular coordinates of nodes in a multiplex network means that Δθ

between pair of nodes (similarity between nodes) persists between the layers [50]. Recently

an analogy between hyperbolic embedding and community structure has been suggested.

Community structure captures the similarity between the nodes [24] or one can say that

community structure and similarity are two equivalent descriptions. Utilizing this observa-

tion, one can conclude that geometric correlations in multiplex networks finds its counterpart

as aforementioned community-correlated structures in multiplex networks [24]. Detailed de-

scription of these findings are provided in the results section and chapter five. Finally it is

worth to mention that geometric correlations are very important when considering dynamics
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of multiplex networks. Recently it was shown that these correlations boost the efficiency of

greedy navigation in multiplex networks [50] and they are the mysterious reason of non-trivial

robustness of real multiplex networks [24, 51] and their rich k-core structure [25].

1.1.11 Phase Transition

Understanding the different phases of matter and transitions between them, e.g., liquid-

gas phase transition or paramagnetic-ferromagnetic phase transition was of great interest of

statistical physicists [71]. As an example, consider a system composed of magnetic dipoles.

How much do the local magnetic dipoles feel each other and are aligned? The celebrated

Ising model captures the basic physics of this problem [72]. To quantify different phases

one needs to define an order parameter for the system under study. For instance, in the

Ising model of N spins one can define order parameter as S =
�N

i=1 si
N

where si ∈ {−1, 1}.

Now one can differentiate between different phases by separating the cases with S > 0 or

S = 0, respectively. A transition from one phase to the other is usually driven by a control

parameter, e.g., the temperature in the Ising model. Transition happens at some specific

value of control parameters defining the transition point. It is important to notice that this

simple picture may break down in some cases like 2D XY model, manifested in bound to

unpaired transition of vortices and anti-vortices [73]. The concepts of order parameter and

phase transition are applicable if one considers a thermodynamic limit where the number of

constituent elements and/or volume of the system is going to infinite.

In this thesis, depending on the system under investigation we defined different order

parameters, control parameters and phase transitions. Regarding the order parameter, one

needs to differentiate between the concept of giant connected component (GCC) and largest

connected component (LCC). In a network with N nodes you always can find a component

with the maximum number of nodes which is called LCC of the network and has a constant

size and independent of N . If in a graph of size N the size of the LCC is growing as N
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(an extensive quantity), then one calls that component a GCC. Hereafter, when we mention

order parameter or phase transition we refer to GCC or a relevant extensive quantity. No

need to mention that GCC and phase transitions in our systems happen in thermodynamic

limit.

Another important concept is the order of the phase transition. Classically the disconti-

nuity of the first or the second derivative of a free energy shows whether the phase transition

is first order or second order. However, we use less rigorous definition that if a change of order

parameter from one phase to another, i.e., from S = 0 to S > 0 is discontinuous (continuous)

then the phase transition is discrete or first order (continuous or second order). Here, we list

different models considered in this thesis and the relevant phase transition parameters.

• Bond percolation. In bond percolation one randomly removes a fraction q of links

from the network, then finds the size of the GCC as a function of q. Normalized size of

GCC is the order parameter and fraction of removed links q plays the role of a control

parameter. The phases can be distinguished considering presence or absence of an

extensive GCC (S > 0 or S = 0).

• Site percolation on monoplex network. This is the same as bond percolation with

a difference that fraction q of nodes (instead of links) are removed randomly from the

network.

• Percolation on multiplex (duplex) networks. The order parameter is normalized

size of GMCC and the control parameter is the fraction of nodes removed randomly

from the both layers of a multiplex network. The two phases of presence or absence of

GMCC are distinguished by the order parameter.

• Optimal percolation on multiplex (duplex) networks. This is the same as

percolation on multiplex (duplex) networks though with an important difference that

nodes are not removed randomly anymore and instead an optimal strategy is deployed
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such that the maximum decrease in the size of GMCC is achieved.

• Observability transition of monoplex networks. In observability model a fraction

of nodes are directly observed (host a sensor) and all their immediate neighbors are also

observed(indirectly). Then one can find the giant connected component of observed

nodes (either directly or indirectly). The normalized size of that GCC is the order

parameter and the fraction of the nodes that are directly and randomly observed is the

control parameter. The two phases of the problem corresponds to presence or absence

of an extensive observable component.

• Observability transition of multiplex networks. The same as observability tran-

sition of monoplex networks except that the definition of observable component now

extends since we have two layers of nodes.

• k-core, core and Gk-core. Here, one is interested in the specific subset of nodes

that make core, k-core or Gk-core. These structures are obtained by specific greedy

leaf removal algorithms which are explained in later subsections. The order parameter

is defined as normalized size of that subset. Usually a random graph has that specific

subset or structure when its average degree is bigger than a threshold or a critical

average degree, i.e., control parameter is the average degree of the random graph.

There are cases that other free parameters in a random graph rather than average

degree can be chosen as control parameter. For instance, in power-law networks one

can fix the average degree and take the exponent of the degree distribution as a control

parameter and then study the phases of presence or absence of a specific structure in

the graph.
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1.1.12 Generating Function

In network theory the generating functions are heavily used as the most common toolbox

to obtain theoretical results in studying different phenomena [2, 74]. A short description of

the method and its usage to find the distribution of the size of the components is presented

here. A more basic method to calculate the size of GCC is presented in the next sections.

A generating function (GF) can be considered as a condensed representation of a proba-

bility distribution function. For a general probability distribution function S(n) with positive

n one can define as follows, G(z) =
�

n S(n)z
n. In a particular network we are given the

degree and the excess degree distribution p(k) and q(k) as well as their generating functions

G0(z) =
�

k p(k)z
k and G1(z) =

�
k q(k)z

k, respectively. The goal is to obtain an analytical

result for π(s) the probability of a randomly chosen node belonging to a small component of

size s and corresponding GF h0(z) =
�

s π(s)z
s. At this point an assumption and a property

of GFs are introduced and utilized:

• The local tree-like assumption. This assumption states that small loops are not

frequent in the graph and local neighborhood of a node can be considered as a tree.

This assumption implies that a given random node is a hinge point of different branches

emanating from its neighbors and thus, the overall size of the component that it belongs

to is the summation of size of each of the branches plus one (counting the node itself).

• Product property of generating functions. GF of a summation of random integer

numbers is product of the GF of the corresponding distributions. For instance, sam-

pling T integer numbers n1, n2, . . . , nT from P1(n), . . . , PT (n) gives a random number

N = n1 + · · ·+ nT which has a GF that is product of the GFs: GN(z) =
�T

i=1 Gi(z).

To go further, we introduce the probability of a node at the endpoint of a random edge

to be in a small component of size s and corresponding GF h1(z) which we denote as ρs.

Locally tree-likeness of the graph implies that a randomly selected node with degree k is in a
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component of size s if the summation of the k outgoing branches of that node adds up to s−1

which happens with the probability P (s−1|k). Averaging over different degrees yields π(s) =
�

k=0 p(k)P (s − 1|k). Transformation to GF yields h0(z) =
�

k=0 p(k)
�

s=1 P (s − 1|k)zs.

Now in the second summation we use the product property of GF and the fact that GF of

component size of neighbors follow h1(z) and obtain h0(z) = zg0(h1(z)). One can derive

similar equation for the GF of the distribution of component size of a nodes at the end of a

randomly selected edge, h1(z) = zg1(h1(z)). Solving the equation for h1(z) and substituting

it in the equation for h0(z) gives the GF for π(s).

As an example, let’s consider the specific case of calculating size of the GCC of a given

graph with given G0(z) and G1(z). Let’s define S as the probability of a randomly chosen

node belongs to GCC. It is easy to see S = 1−h0(1) because h0(1) = π(1)+π(2)+ . . . is the

probability of a random node belongs to a small component irrespective of the component

size. The two equations for component sizes now reduces to h0(1) = g0(h1(1)) and h1(1) =

G1(h1(1)). For a specific case of random graphs with Poisson degree distribution where

p(k) = q(k) = e−<k><k>k

k!
and h0(z) = h1(z) = e<k>(z−1), the two equations reduce to a

single self-consistent equation h0(1) = e<k>(h0(1)−1). Utilizing h0(1) = 1− S one obtains the

equation for GCC, S = 1 − e−<k>S. In next section we derive a similar equation for the

percolation on a graph.

1.1.13 Percolation on monoplex networks

Percolation aims to characterize the emergence of large scale connectivity in complex net-

works or lattices [75–77]. Percolation has many applications in transport in conductors [78],

transport in random media [79], modeling of porous media [80], polymer science [81, 82],

epidemic spreading [8, 83] and networks [10, 84]. In site percolation model one marks each

site or node as occupied with probability p or unoccupied with probability 1-p. In bond

percolation model bonds or links are occupied or unoccupied with probability p or 1 − p
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respectively. The order parameter in percolation process is the size of the giant connected

component (GCC). Phase diagram of percolation phase transition illustrates order parame-

ter as a function of a microscopic occupation probability p. Let’s consider two extreme cases

of site percolation process for the values of p = 0 and p = 1. In a network composed of one

connected component, when p = 0 all the nodes of the networks are unoccupied and size of

the GCC is 0. In the other extreme when p = 1, all the nodes are present in the network

and size of the GCC is N (assuming that the initial graph is connected). It is clear from

this example that there are two different regimes or phases. Size of GCC is an extensive

quantity (growing with the size of the system) when p = 1, while it is an intensive quantity

when p = 0. One can guess that there should be a phase transition point pc where the large

scale connectivity (GCC) emerges [2] and the order parameter changes its nature. Percola-

tion phase transition on monoplex networks generally is of second order type while the phase

transition of percolation on multiplex networks mainly is of first order type (in the absence of

inter-layer correlations) [28, 56]. Here I briefly explain the generating function approach [2,

84] which is successfully used in the study of percolation model on networks. The theoretical

approach introduced here is heavily used in the thesis; in the bond percolation description of

neuronal avalanches [21], generalized core percolation [22] and observability phase transition

or depth-one percolation [23].

Site percolation on simple monoplex networks. Site percolation is defined as

follows. Each node in the network is occupied with probability p and then the fraction of the

nodes that belongs to the GCC, S = |GCC|
N

, is recorded. The goal of the percolation theory

is to develop a theoretical framework to obtain the full phase diagram of the percolation

((S, p) diagram) and phase transition point pc [10]. Let’s assume we are considering a locally

tree-like network with degree distribution p(k) and introduce also a new quantity, excess

degree distribution q(k) = (k+1)p(k+1)
<k>

. We define the generating functions of p(k) and q(k)

by G0(z) =
�

k p(k)z
k and G1(z) =

�
k q(k)z

k respectively. A random node with a degree k

is connected to GCC if a) it is present in the network and b) at least one of its neighbors is
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connected to GCC. Let’s define u as the probability that an end node of an edge (neighbor) is

not connected to GCC. Thus, the probability that a randomly chosen node with k neighbors

belongs to GCC is sk = p(1 − uk). Now in order to obtain S, i.e. fraction of nodes in the

GCC or the probability that a randomly chosen node belongs to GCC, one needs to average

si over all possible values of the degree, S =
�

k p(k)sk = p
�

k p(k)(1 − uk) which leads to

S = p[1 − G0(u)]. We need another equation for u in order to close the set of equations.

A neighbor (an end point of an edge) with excess degree k does not belong to GCC if a)

it is not present in the network which happens with probability 1 − p or b) it is present in

the network but none of its neighbors belongs to GCC which happens with probability puk.

For a neighbor with excess degree k the overall probability is u = 1 − p + puk. However,

we need to average over all possible values of excess degrees u =
�

k q(k)u
k which results in

u = 1− p+ pG1(u). Using these two equations one can solve equation for u iteratively and

substitute the result in the equation for S and calculate size of GCC.
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Figure 1.2 Site and bond percolation on monoplex networks. Site and
bond percolaiton process are carried out on a random graph created by Erdős-Rényi
model with N = 1000 nodes and average degree <k>=4. (a) Phase diagram of
site and bond percolation. (b) Size of the second largest cluster as a function of
occupation probability p. (c) Susceptibility of the order parameter is defined as
χ = <S2>−<S>2

<S>
[85]. In panel (a) markers are simulation results and solid lines are

theoretical prediction. Vertical grey lines indicate the critical point.

As an example we show the case of Erdős-Rényi graphs with N nodes and average degree

<k>. In this specific case, we know that p(k) = q(k) = e−<k><k>k

k!
and G0(z) = G1(z) =
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e<k>(z−1). The equation for u and S in this case reduces to one equation S = p(1− e−<k>S).

This equation can be solved iteratively starting from an initial guess for S. In order to obtain

the phase diagram of percolation one needs to calculate S for the whole range of p ∈ [0, 1].

Phase transition point can be calculated by expanding the equation for S around the critical

point where S = 0 which results in pc = 1
<k>

. Fig. 1.2 shows the result of site and bond

percolation on a random Erdős-Rényi graph. Divergence of size of the second largest cluster

and susceptibility of the order parameter are two mostly used quantities in order to detect the

critical point [85]. The susceptibility is defined as χ = <S2>−<S>2

<S>
, where angular brackets

< ... > indicate average of the S over many different independent realizations of the process.

The use of the divergence of the susceptibility as an indication of the phase transition point

has deep roots in the statistical mechanics of phase transitions [72]. We used the same

formalism of generating function in chapter two to analytically describe neuronal avalanches

in the language of bond percolation model [21]. More details of generating function can be

found there.

1.1.14 Percolation on multiplex networks

In this section we define site percolation on multiplex networks and briefly discuss how it

differs from monoplex case [56]. The theory presented here is heavily used in the chapters

four, five and six. In a site percolation process taking place on top of a multiplex network one

occupies each node (in all of the layers simultaneously) with probability p and then measures

the order parameter which is defined as fraction of the nodes that belong to the Giant

Mutually Connected Component (GMCC) [9, 56]. As in monoplex case we are interested

in the whole phase diagram of (S, p) where S is the fraction of nodes of multiplex network

which belongs to GMCC and p is the microscopic occupation probability of nodes. Besides

phase diagram, locating the exact phase transition point and understanding the type of

phase transition can tell us more about the role of multiplexity in changing the physics of
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percolation process [9].

Let’s consider a two-layer multiplex network with N nodes. The degree distributions

and excess degree distributions of the layers are denoted by p1(k), p2(k) and q1(k), q2(k)

respectively. In analogy to the percolation on monoplex networks we can define generating

functions of these distributions as G
[1]
0 (z) =

�
k p1(k)z

k, G
[2]
0 (z) =

�
k p2(k)z

k, G
[1]
1 (z) =

�
k q1(k)z

k and G
[2]
1 (z) =

�
k q2(k)z

k. In order to be able to analytically derive an equation

for the size of GMCC, one needs to deploy the locally tree-like assumption. When a network

is locally a tree it does not have short loops or density of short loops is negligible. In locally

tree-like graphs neighborhood of any random node looks like a tree. A randomly chosen

node belongs to GMCC if it is a) present in the network which happens with probability p,

b) belongs to the GMCC through first layer (at least one of its neighbors in the first layer

is connected to GMCC) which happens with probability 1 − G
[1]
0 (u1) and c) connected to

GMCC through the second layer (at least one of its neighbors in the second layer is connected

to GMCC) which happens with probability 1−G
[2]
0 (u2). Combining these terms one obtains

S = p[1 − G
[1]
0 (u1)][1 − G

[2]
0 (u2)]. With the same procedure one can obtain an equation for

u1 and u2, u1 = p[1− G
[1]
1 (u1)][1− G

[2]
0 (u2)] and u2 = p[1 − G

[1]
0 (u1)][1− G

[2]
1 (u2)]. One can

iteratively solve the equation for u1 and u2 and finally obtain S.

As an example lets consider a two-layer multiplex networks where each layer is a random

graph created by Erdős-Rényi random graph model with N nodes and average degree <k>.

In this specific case, we know that p1(k) = p2(k) = q1(k) = q2(k) =
e−<k><k>k

k!
and G

[1]
0 (z) =

G
[2]
0 (z) = G

[1]
1 (z) = G

[2]
1 (z) = e<k>(z−1). The equations for u1, u2 and s in this case reduce

to one equation S = p(1 − e−<k>S)2. This equation can be solved iteratively for the whole

range of p ∈ [0, 1] and lead to the phase diagram of percolation. After some algebra we can

obtain the phase transition point pc =
2.4554
<k>

. It is clear that the minimum average degree

that a random Poisson duplex needs to acquire GMCC is < k >= 2.4554. We used the same

formalism in chapter four to analytically describe depth-one percolation or observability

phase transition on multiplex networks. More details of generating function formalism on
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multiplex networks can be found there.
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Figure 1.3 Site percolation on multiplex networks. Site percolation on ran-
dom Poisson multiplex networks where each layer is a random Erdős-Rényi graph
with N = 1000 nodes and average degree <k>=4. Each node is occupied (acti-
vated) in both layers with probability p, and then fraction of the nodes in GMCC is
measured using the algorithm introduced here [9]. (a) Percolation phase diagram.
(b) Susceptibility. In panel (a) markers show the simulation results and solid curve
is the theoretical prediction. Grey vertical lines show the critical point.

Fig. 1.3 illustrates percolation phase diagram of a multiplex network where a random

Erdős-Rényi graphs are used as the topology of the layers. Comparing Fig. 1.2 and Fig. 1.3

one can see that phase transition in multiplex networks in contrast to its single layer coun-

terpart is first order where the order parameter undergoes sudden jump instead of smooth

transition. Finally, one can see that the theoretical approach successfully predicts a first

order phase transition for GMCC and the critical transition point which matches with the

simulation results.
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1.1.15 Implications of multiplexity

We mentioned previously that structure of a network can significantly influence and change

the dynamics running on top of it. For instance, in the case of random monoplex networks

created by configuration model, it has been proven that the phase transition of percolation

process occurs at pc =
<k>

<k2>−<k>
[37, 84]. The transition point pc for networks with degree

distributions that feature diverging first and second moment becomes zero which implies

that these networks are robust against random failure. On the other hand, we proved that

Poisson random graphs have non-zero transition probability pc =
1

<k>
. This example simply

shows the effect of degree distribution on percolation of monoplex networks. With the same

reasoning one will not be surprised that numerous factors play role in the percolation phase

diagram of multiplex networks [49]. Degree correlations [48], edge-overlap [49] and geometric

correlations [51] can change the type of phase transition from the first to the second order

in multiplex networks.

We intuitively explain how existence of non-trivial edge overlap as one of the possible

inter-layer correlations can change the physics of percolation on multiplex networks [49].

Let’s consider a multiplex network with two layers. Furthermore, initially, the structure of

the both layers is the same, and the labels of the nodes in the both layers ordered in a

way that all the links of the multiplex initially are overlapping. Fully overlapping multiplex

network behaves as a single monoplex network and in this case GMCC and GCC are the

same. From the percolation theory of monoplex networks one knows that percolation phase

transition of this special multiplex is of second order type, since its structure has already

been reduced to a single layer structure. Now we perform the following randomization

procedure. We pick each node of the first layer and change its identity or label with the

label of another randomly chosen node from the same layer with probability α [49]. When

α = 0 both layers of multiplex fully overlap and reduce to a single monoplex network and

obtain continuous phase transition for percolation process. When α = 1 the overlap between
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the two layers reduces to its minimum and it becomes a random multiplex network. Theory

of percolation on multiplex networks predicts a first order phase transition for α = 1 . This

simple observation shows that how an inter-layer correlation (in this case edge overlap) can

change the physics of a process running on top of a multiplex network.

In chapter four we study the effect of edge overlap on observability phase transition of

multiplex networks. As in the case of site percolation, observability phase transition of

real networks with high edge overlap becomes smooth in contrast to synthetic multiplex

networks with abrupt phase transition. In chapter six, we study the effect of edge overlap

in the context of optimal percolation. We investigate robustness of multiplex networks in

the presence of inter-layer correlations including the edge overlap. Apart from edge overlap

other types of inter-layer correlations can immensely change the physics of percolation on

multiplex networks. In chapter five we show that geometric correlations and community

correlations cause most of the real multiplex networks to behave counter-intuitively robustly

when facing not only random failure (site percolation) but also extreme structural stress.

1.2 Results

1.2.1 Bond percolation and neuronal avalanches

Very often in physics a criticality of a system is manifested through power laws [86, 87].

One of the contexts where power laws emerge is neuronal systems [88]. Neuronal system is

a network of connected neurons in which a firing mechanism activates neighboring neurons

and gives rise to collective behavior. A cluster of nodes composed of connected activated

neurons is called an avalanche [89]. In neuronal systems power law distribution of avalanche

sizes has been reported in experiments and simulations [88–90]. Power law distribution of

avalanche sizes has been considered an indication that a neuronal system is at its critical

point and benefits from the criticality [91–94]. However, power law distribution of avalanche
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sizes is associated with criticality if the system passes other criticality tests like collapsing

temporal profiles and finite size scaling [95, 96].

Figure 1.4 Probability and cumulative distributions of avalanche sizes.
πs (Ωs) is the probability(cumulative) distribution of avalanche sizes of neuronal
dynamics described in the text and here [21], obtained from theory (dashed lines)
and numerical simulations (dots). Top row corresponds to the uncorrelated directed
network topology with distribution of indegrees and outdegrees following scale free
distribution with exponent λ = 3.7 and λ = 2.7, respectively. Bottom panels
row corresponds to the correlated directed network topology with distribution of
indegrees and outdegrees following scale free distribution with exponent λ = 3.7
and λ = 3.1, respectively. In all the panels lines and dots from right to left are
in decreasing order of p. It is evident from the plot that emergence of power-law
distributions of avalanche sizes can occur even in non-critical states of the system.
(Extracted from [21])

We use a simplified model of neuronal avalanches called independent cascade model

(ICM) [97]. ICM was designed and utilized in the context of social networks to investigate
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the dynamics of opinion spreading [97, 98]. ICM starts from a single activated node, then

at each time step, each activated node activates its inactive neighbors with probability p.

The avalanche stops when no new activation occurs in the network. Then one is usually

interested in measuring the distribution of sizes of active clusters (components of connected

activated nodes) or avalanches. It has been proven that ICM is equivalent to bond percolation

model [97]. This analogy maps the problem of distribution of avalanche sizes to finding of

the distribution of connected components of the network under bond percolation process.

The analogy roots in the fact that probabilistic activation of neighboring neurons can be

decided beforehand, before firing of any neurons. At the beginning, each link is checked for

activation with probability p. Then connected components using active links are obtained.

In an active component, firing of a single neuron can activate all the nodes in that component

and thus each of active components corresponds to a single avalanche and therefore, ICM

can be captured by bond percolation model.

We come up with a unifying and general framework to study aforementioned neuronal

dynamics on monoplex networks. Our framework is able to describe avalanche properties

in undirected networks, uncorrelated directed networks and correlated directed networks.

In correlated directed networks correlation between indegrees and outdegrees of nodes are

allowed. In uncorrelated directed networks there is no correlation between indegrees and

outdegrees of the nodes. Using generating function approach developed in the percolation

theory of complex networks and techniques from branching processes, we were able to solve

the model on random graphs [21] with the main assumption of locally tree-likeness of the

underlying networks. Our theoretical analysis and simulation results show that in a non-

critical system, power law distribution of avalanche sizes can arise due to the topological

features of the underlying neuronal network such as degree distribution [21]. Fig. 1.4 illus-

trates the main finding of our study. We applied the theoretical framework on the described

neuronal dynamics for correlated and uncorrelated network topologies. As obvious from the

Fig. 1.4 power law distributions of neuronal avalanches arise even when the system in not in
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its critical state.

1.2.2 Core percolation and k-core decomposition

Structural decomposition of a network sheds light on its structural properties. It can be

described as grouping nodes of a graph in different categories with respect to a property.

k-core decomposition is one of useful structural decompositions of networks [99]. k-core of a

graph is a sub-graph in which each of its nodes has at least degree k. k-core of a graph can be

obtained easily by a simple pruning algorithm. Removing nodes of a graph that have degree

less than k, and continuing this pruning process until no node with a degree less than k is

left, yields the k-core of a graph. k-core of a graph does not need to be a single connected

component and it is potentially composed of disconnected sub-graphs [100]. k-core decom-

position has many applications including, but not limited to, network visualization [100],

locating influential spreaders [101], predicting robustness of mutualistic ecosystems [102],

spectral properties [103] and so forth.

The largest k-core component is called as giant k-core. Analogous to emergence of GCC

of random graphs, giant k-core of random graphs also undergoes a phase transition, i.e.

below critical point there is not a giant k-core and beyond critical point giant k-core appears.

However, the order parameter behaves differently in k-core phase transition in comparison to

GCC phase transition. The behavior of the order parameter is discontinuous in the former

whilst it is continuous in the latter. At the transition point <kc> (an average degree of

the random graph) giant k-core emerges and type of the phase transition and critical point

depends on the number k. For k = 1, 2 the transition is of continuous type, similar to the

phase transition of GCC of random graphs. For k ≥ 3, phase transition of giant k-core is a

hybrid type; discontinuous jump of the order parameter followed by critical singularity [11].

Another important sub-graph is called core. Core of a graph is obtained by applying a

pruning procedure called Greedy Leaf Removal (GLR) which is introduced in the context
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Figure 1.5 Greedy leaf removal. Schematic illustration of core, k-core and Gk-
core decomposition of a small network. Panel (a) shows GLR of core percolation,
panel (b) corresponds to the k-core decomposition of the network and panel (c)
illustrates GLR of Gk-core. Nodes and edges in the red (blue) color are removed
directly (indirectly) at each step and stable cores are colored in green. The network
has a non-zero core, k-core and Gk-core for k = 1, 2, 3.

of maximum matching of graphs [104]. Leaves (nodes with degree one) of the graph are

chosen randomly one by one. Then the chosen leaf and its immediate neighbor are removed

from the graph. GLR is applied repeatedly until no leaf is left in the graph. This procedure

yields the core of the graph. As in the case of GCC and giant k-core of random graphs, giant
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Figure 1.6 Gk-core percolation. The Gk-core phase diagram are obtained for
Erdős–Rényi and scale-free networks with N = 106 nodes and for two values of
k =2 and 3. Top row (a and c) corresponds to the size of the giant Gk-core and
bottom row (b and d) corresponds to the normalized number of links in the Gk-core.
Markers are simulation results averaged over 10 realizations of network instances and
lines are the theoretical results.(Extracted from [22])

core of random graphs undergoes phase transition. The giant core emerges continuously

at the critical point <k>=e [104, 105]. Core of graph plays an important role in several

optimization problems including: maximum matching [99, 106], minimum vertex cover [107],

network controllability [20, 108], etc.

We generalize the definition of a core in chapter three. Our definition is based on the

generalization of leaf nodes. In a graph, leaf refers to a node with degree one. We defined

“k-leaf“ as generalized leaf. k-leaf is defined as a node with degree less than k. Then we

31



followed the GLR pruning process of core percolation [104]: a randomly chosen k-leaf and

all of its immediate neighbors are removed. The process is done iteratively until no k-leaf is

left in the network and consequently the generalized core of the graph is attained. Notice

that when we remove a node all the links connected to that node are consequently removed.

We call this new core as generalized k-core (Gk-core) of a network. Gk-core like k-core

decomposes the network into nested sub-graphs [22]. It is worth to mention that in Gk-core

notation, G2-core is the same as core of the network. Fig. 1.5 shows the GLR of core, k-core

and Gk-core for a small graph.

As in the case of GCC, giant k-core and giant core we also observe phase transition in the

emergence of giant Gk-core. The type of phase transition associated with appearance of giant

Gk-core of a graph depends on the k-number. We studied the Gk-core percolation on random

graphs using generating function and rate equation methods [22, 64]. As expected G2-core

undergoes a continuous phase transition, since G2-core percolation is the same as ordinary

core percolation [105]. However, giant Gk-core for k ≥ 3 emerges in a discontinuous manner

similar to k-core percolation phase transition. Fig. 1.6 illustrates the phase transitions

diagram of Gk-core on random Erdős-Rényi and scale-free networks for two values of k = 2

and 3.

1.2.3 Depth-one percolation or observability phase transition

Here we introduce another variant of percolation model observability or depth-one percola-

tion and generalize it to multiplex networks. Observability captures the idea of observing or

monitoring state of a system. Let’s assume there is a dynamical process running on top of a

network. By placing a sensor or an observer on a node, one can record the states of the node

and its immediate neighbors [109, 110]. Monitoring power-grid networks is the well-known

example of observability [109]. Observability of monoplex networks has been defined and

solved analytically on monoplex random [109] and real networks [111].
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Observability phase transition of monoplex networks is defined as follows. As in the case

of simple site percolation each node hosts a sensor with probability φ. However, there is a

subtle difference between the site percolation and observability. When a node is observed

(occupied) all of its immediate neighbors become observable (occupied) too. Hence, each

node of the network falls in one of the following categories:

• directly observable, if the node is hosting a sensor.

• indirectly observable, if the node is not hosting a sensor but at least one of its immediate

neighbors is hosting a sensor.

• not observable at all.
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Figure 1.7 Observability phase transition of random multiplex networks.
The observability model is applied on random multiplex networks. (a) We considered
two-layer multiplex networks where each layer is created by Erdős–Rényi model
with average degree <k>. (b) The underlying multiplex networks are duplexes
with random scale free networks with degree exponent γ. In both panels sizes of
the networks are fixed to N = 104. Small markers are analytical results and big
markers correspond to simulations.(Extracted from [23])
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Figure 1.8 Observability phase transition of real multiplex networks. The underly-
ing multiplex network corresponds to the C.Elegnas connectome. Each layer of this
multiplex represent different interaction type between neurons: electrical, chemical
monadic, and chemical polyadic. Three duplex composed of different combination
of layers have been considered (Panels (a), (b) and (c)). Observability model has
been applied on these multiplexes. Grey circles are the results of the simulations
with averaging done over 10000 realizations of the model. Small red circles are the
predictions of message passing without overlap and small black circles are the pre-
dictions of message passing with overlap. Insets of the panels zoom in the part of
the phase diagrams close to the critical points.(Extracted from [23])

Either directly or indirectly observable, connected observable nodes make clusters of

observable nodes. The goal of observability phase transition is to study the emergence

of giant observable cluster and the critical point of the phase transition. For synthetic

random graphs and in the thermodynamic limit this phase transition model has been solved

analytically. Observability has a smooth second order phase transition with a very small

value of φ [109]. The same approach is generalized and extended to the real networks

using message-passing or belief propagation methods [111]. Critical point of observability

transition on real networks are very close to 0 [111], meaning that most of the real networks

are already in observable regime.

In chapter four we study observability phase transition on multiplex networks. General-

ization of observability model to multiplex networks is straightforward [23]. In the case of a

two-layer multiplex network, placing an observer or a sensor on a node, makes it observable

in both layers of the multiplex network (directly observable). A node of a multiplex net-
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work is indirectly observable if it is indirectly observable in each of the layers, i.e. in each

layer at least one of its immediate neighbors is indirectly observable. Similar to monoplex

observability, observable nodes either directly or indirectly yield components of observable

nodes. In the case of multiplex networks we are interested in the largest mutually observable

cluster (LMOC). LMOC is a maximal subset of nodes that are observable and there is a

path between them in both layers through the nodes inside the subset.

We studied observability phase transition on two-layer random multiplex networks. Fig. 1.7

illustrates the phase diagrams for random Poisson and scale-free networks. The quantity of

interest is P∞ which is a normalized fraction of the nodes in the LMOC. As expected the

phase transition is of the first order type and there is a good agreement between theory and

simulation.

Fig. 1.8 shows the phase diagram of observability phase transition of real multiplex net-

works. We utilized message passing tools in order to derive the full phase diagram of the

model [23]. Similar to generating function approach our message passing framework is based

on locally tree-like assumption. However, the presence of higher order correlations like edge

overlap introduces errors in message passing method. Utilizing the recent method to deal

with overlap we designed a message passing algorithms for observability phase transition in

the presence of edge overlap [49, 112]. Fig. 1.8 shows that real multiplex networks have a

critical point of observability transition with small value of φ, i.e. they are in observable

regime. It is worth to mention that message passing framework with overlap successfully

captures the continuity of the phase transition. However, message passing without overlap

predicts discontinuous phase transition. Difference in the observability phase diagrams of

random and real multiplex networks suggest that inter-layer correlations like edge overlap

change the type of the phase transition [23].
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1.2.4 Community-correlated multiplex

In previous sections we defined percolation on multiplex networks and we discussed how

inter-later correlations in multiplex network induce new physics. In my thesis I consider tar-

geted percolation [113], optimal percolation [114] and depth-one percolation or observability

phase transition (previous section) [109] on multiplex networks. As explained in introductory

section, it is important to know how structural properties of a network can affect the dynamic

running on top of it [6]. For instance, in the case of monoplex networks a homogeneous degree

distribution causes a finite percolation phase transition point, while a heterogeneous degree

distribution leads to pc = 0, i.e. phase transition of percolation occurs at 0 [115]. When

considering multiplex networks one usually is interested in topological factors beyond single

layer structures [47]. There are many studies analyzing the effect of different topological

structures within monoplex networks and how these structural properties affect the dynam-

ics [2]. In multiplex networks we focus mainly on inter-layer correlations. In chapter five we

analyze community-correlated structures [24] and how these high level correlations between

layers can change the physics of percolation process on a two-layer multiplex network.

The motivation of this study came from a recent study by Kleineberg et al. [50] which

revealed that most of the real multiplex networks contain some hidden inter-layer geometric

correlations. In Ref [50] the authors mapped layers of a multiplex network into a hidden

metric space (hyperbolic in this case). The mapping consists in association of coordinates

to each of the nodes. Then they observed that there are non-trivial correlations between the

coordinates of replica nodes of the layers. The same group later showed that these geometric

correlations are the main reason of the emergent robustness of real multiplex networks under

a targeted attack [51].

In chapter five we revisit the findings of these papers in the language of community

structure. First we show that there is a one to one correspondence between hyperbolic

embedding and community structure of a network. In previous section we discussed that
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Figure 1.9 Hyperbolic embedding community structure of networks. Panel
a shows the hyperbolic embedding of IPv4 Internet and its corresponding community
structure. Position of the nodes are coded with (r, θ) resulting from hyperbolic
embedding of the network. Community structure of the network is color coded, i.e.
nodes belonging to one community have same color. Panel b is the scatter plot of 39
real-world network in (ξ, Q)-plane. Each point represents a network, its modularity
and angular coherence.(Extracted from [24])

hyperbolic embedding of a network is set of coordinates (r, θ). Radial coordinates abstracts

popularity of the nodes and are related to their degrees. On the other hand Δθij captures

the similarity between nodes i and j [67]. The smaller the hyperbolic distance between a

pair, the higher is the probability that they are connected [38].

Network science offers community structure as an alternative representation of networks.

Nodes belonging to community are tightly connected and the probability of finding a con-

nection between the nodes is higher than the probability of establishing connection between

the nodes belonging to different communities. This analogy suggests that if a network with

community structure is embedded in hyperbolic space nodes belonging to the same com-

munity tend to appear close to each other in the hyperbolic representation. We tested this

idea by applying hyperbolic embedding on IPv4 Internet structure. Fig. 1.9a shows that
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communities (nodes with same color) are located tightly in sectors of hyperbolic disk. One

needs a proper way to quantify the analogy between hyperbolic embedding and community

structure and support the claim that nodes within a community are located coherently in

the hyperbolic embedding. To this end, we define the angular coherence ξg of a community g

as ξgeiφg = 1
ng

�
j∈g e

iθj , where ng is the number of the nodes of the community g. ξg ∈ [0, 1]

properly captures the idea of localization of the nodes of the community withing a slice of

hyperbolic disk. ξg = 0 is the extreme case where the nodes of the community g is scattered

in the whole hyperbolic disk. The other extreme is ξg = 1 where nodes of the community g

is localized in a narrow slice of the hyperbolic disk. Then the overall angular coherence of

a network is obtained by weighted averaging over all of its communities: ξ = 1
N

�
g∈C ngξg.

Fig. 1.9b shows the scatter plot of angular coherence (from hyperbolic embedding) and mod-

ularity (from community detection) of 39 real world networks. This figure supports our claim

that the hyperbolic embedding and community structure of networks can be considered as

two sides of the same coin.

In the next step we deployed this analogy and showed that geometric correlations and,

specifically correlations between similarity of the nodes in a multiplex network can be con-

sidered as a correlation of community structure between the layers. If (a) there is one to

one corresponding between hyperbolic embedding and community structure and (b) angular

correlations are the reason behind robustness of multiplex networks then one can conclude

that community correlation can increase the robustness of multiplex networks [24]. In the

remainder of this section I briefly introduce the percolation model, multiplex networks with

community correlation and the results that support this statement.

In order to inspect the robustness of a multiplex network we use the following percolation

model which is called a targeted attack strategy (an optimal version of percolation) on a

multiplex network. First the score si = max(k
[1]
i , k

[2]
i ) of each node i of the multiplex network

is calculated and then the node with the highest score is removed from the both layers of

the multiplex network [51]. While removing nodes one after another one keeps track of the
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Figure 1.10 Robustness of community correlated multiplex networks. We
considered random multiplex network with community correlated structures. The
networks are created using LFR method [116] as explained in the text. The targeted
attack algorithm described in the text is applied to these multiplex networks and
relative size of GMCC is plotted versus fraction of removed nodes. Continuous phase
transition of GMCC here indicates the robustness of the multiplex network. Panel
a illustrates size of GMCC versus fraction of removed nodes for multiplex networks
with community correlation. b is the same as a but for randomized multiplex
networks. Panels c and d are the same as panels a and b but for multiplex networks
with weaker community structure.(Extracted from [24])

size of the GMCC. It is worth to mention that this algorithm is adaptive and at each step

of the algorithm the degrees of the nodes and consequently the scores of the nodes should

be updated.

To analyze the effect of community correlations on the robustness of multiplex networks
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we follow these steps. First we create a single monoplex network with inherent community

structure using LFR model. LFR model creates networks with scale-free degree distributions

and implanted community structures [116]. Then we use this layer as the structure of the

second layer of the multiplex network. Up to this point, this multiplex is a fully overlap-

ping multiplex network with a community structure which can be considered as a monoplex

network. This monoplex network as expected undergoes a continuous second order phase

transition in the percolation model. Then two randomization procedures are applied to this

multiplex network. In the first randomization procedure one goes through the communi-

ties of the second layer and in each community and changes the labels of the nodes within

community and shuffles their labels. This randomization process keeps the inter-layer com-

munity correlation while removing inter-layer degree correlation and edge overlap. In the

second randomization procedure, one picks nodes of the second layer one after another and

relabels its label with the label of another randomly chosen node from the same layer. This

randomization procedure removes all inter-layer correlations including community correla-

tion between the two layers. Fig. 1.10 shows that how multiplex networks with community

correlated structures behave robustly against the targeted attack.

1.2.5 Optimal percolation

Percolation deals with emergence of large scale or extensive connectivity by modulating

microscopic occupation probability p [75]. Optimized version of percolation refers to finding

the minimum number of nodes or links in order to dismantle a graph into small connected

components with sub-extensive size of the original graph [117, 118]. Optimal percolation is

the optimized targeted attack on networks in which one tries to destroy the GCC (GMCC)

of a monoplex (multiplex) network by removing minimum number of nodes [114]. Obviously

there is a trivial solution to destroy a GCC of a graph which is removing all of its nodes.

However, we are not interested in this solution due to the optimization nature of the optimal
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percolation problem. There are better approximate solutions to this optimization problem

than the trivial one.

Graph dismantling or optimal percolation can be defined mathematically in a proper

way [117, 118]. In a graph G(V , E) a C-dismantling set is defined as a subset of nodes, whose

removal upper-bounds the size of GCC by C. C-dismantling number is the minimum size

of all C-dismantling sets. In real applications instead of C-number usually we are interested

in scenarios where one can reduce the size of GCC to 0.01 of its original size. However, in

physics, thermodynamic limit (large N) implies that 0.01×N is still an extensive quantity.

Thus, conventionally the threshold GCCth = 1
N
×
√
N is used as the condition to check if a

graph is dismantled.

Optimal percolation or graph dismantling is of a huge interest in network science mainly

due to the fact that many of interesting optimization problems can be mapped into the

optimal percolation problem. For instance, influence maximization (maximizing an effect

in the social network) [97, 114] or effective epidemic containment (finding optimal nodes to

vaccinate in order to contain an epidemic) [119, 120] are two well-known examples in this

respect.

Optimal percolation is an NP-complete problem [117]. It means that the time needed

to solve this problem grows exponentially with the size of the system. However, recently

fruitful attempts have been made in order to solve this problem in life-scenario situations

which involve real networks [114, 117, 120–122]. There are heuristic algorithms which attain

approximate solutions for an optimal percolation problem. These algorithms can be catego-

rized in three main categories: greedy algorithms, score-based algorithms and, finally, many

body algorithms.

• Greedy algorithms: These algorithms at each step remove the node that leads to the

largest decrease in the size of GCC (or any other quantity of our interest). [97]

• Score-based algorithms: These algorithms are based on defining a score for nodes. The
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score abstracts importance of a node in the structural robustness of the graph. Simply

one can imagine attributing structural centralities to nodes. Then starting from the

nodes with the highest score nodes are removed one by one until the size of GCC

(GMCC) reaches the predefined threshold value [114].

• Many-body approaches: These approaches consider the fact that optimal percolation

is related to the large scale connectivity and thus it is a many-body problem. Then

a proper definition of Hamiltonian or a cost function is needed in order to capture

the many-body aspect of the problem. However, as mentioned previously, optimal

percolation is an NP-complete problem and these algorithms are not able to solve

them exactly, however, in most cases they outperform heuristic algorithms [117, 122].

In chapter six I study optimal percolation on multiplex networks [14, 123]. The goals

of this chapter are a) to generalize optimal percolation to multiplex networks and design

heuristic algorithms or generalize algorithms of optimal percolation of monoplex networks

to approximate the solution of optimal percolation on multiplex networks and b) to study

the effect of multiplexity and inter-layer correlations. We consider only two layer random

and real multiplex networks. First, optimal percolation problem is solved approximately

on these multiplex networks. Then the optimal percolation is solved approximately on the

constituent monoplex layers of the multiplex networks separately. After that the relation

between the structural set of multiplex networks and its constituent layers are quantified.

Finally the effect of inter-layer correlations such as edge overlap on the optimal percolation

problem is investigated.

In the problem of optimal percolation of multiplex networks the goal is to reduce the

relative size of GMCC to the predefined threshold value GMCCth = 1√
N

. We extended

algorithms of optimal percolation of monoplex networks to multiplex networks. This gen-

eralization can lead to some confusion. For instance, consider score-based dismantling al-

gorithms. Generalizing score-based algorithms to the case of multiplex networks on its own
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Figure 1.11 Optimal percolation on a random multiplex network. We con-
sidered a two layer multiplex network where each of the layers is created separately
by Erdős-Rényi model with N = 104 nodes and average degree <k>=5. The plot
illustrates the size of the GMCC as function of fraction of removed nodes. Mark-
ers show the improved efficiency of dismantling algorithms when combined by post
processing greedy reinsertion. The cross marker identifies the approximate solution
found by SA.(extracted from [14])

can be challenging. Let’s consider a two layer multiplex network. A score based algorithm

associates to node i σ
[1]
i in the first layer and σ

[2]
i in the second layer. Now it is legitimate to

ask what is the score of the node i in the whole multiplex network, i.e. functional form of

σi = f(σ
[1]
i , σ

[2]
i ), where σi is the score associated to node i in the multiplex network. Here

we briefly describe high degree (HD) algorithm and its generalization. This algorithm works

by gradually removing nodes with highest degree until the GMCC becomes smaller than the

threshold. There are many possibilities of merging HD scores of a node in layers of a multi-

plex network. Representing σi = ki (here the score is the same as degree) we can come up

with the following candidates ki = k
[1]
i +k

[2]
i or ki = k

[1]
i ∗k[2]

i or any other combination. More
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details about generalizing scores could be found in the Supplementary Material of chapter

six.

A drawback of most of score-based algorithms is that they are not considering the many-

body aspect of the optimal percolation problem [117]. Therefore, these algorithms overes-

timate the size of the structural set. There will be some nodes within the dismantling sets

found by these algorithms that can be removed from the dismantling sets and inserted back

to the network while keeping size of the GMCC smaller than the threshold. Most of the

heuristic algorithms are accompanied by this post processing step in order to get rid of the

nodes that are not structural nodes.

Beyond the aforementioned score-based algorithms we also generalized and redesigned

the simulated annealing (SA) algorithm previously designed for dismantling monoplex net-

works [117]. SA is a well known approach in tackling optimization problems. One defines

a Hamiltonian for the system which in its essence captures the cost function of the opti-

mization. Now the algorithm treats the system as a thermodynamical system. It is known

that low temperature behavior of a physical system is associated with the lowest energy of

the Hamiltonian. Thus, SA algorithm cools down the system until it reaches a minimum

and then reads out the state of the system as a candidate solution of the Hamiltonian (cost

function). The possibility of being trapped in local minimas of the Hamiltonian is the reason

that SA is not a reliable method to find the ground state (lowest energy). However, with

slow cooling there is a high probability to reach good solutions that are not attainable by

other heuristic algorithms.

Fig. 1.11 illustrates the effectiveness of the designed algorithms in approximating the

solution of the optimal percolation on a random multiplex network. Performance of the score

based algorithms is boosted when they are combined by post processing greedy reinsertion.

However, SA still offers the best approximate solution to the problem.

Finally the goal is to understand how multiplexity changes the physics of optimal perco-

lation. As mentioned previously in the introduction section, the importance of multiplexity
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Figure 1.12 Effect of edge overlap on the size of structural sets. We con-
sider a random multiplex network where initially both layers are identical and a
copy of a graph generated by Erdős–Rényi model with N = 1000 nodes and average
degree <k>=5. We select one of the layers, go through each node and switch the
label of the node with another randomly chosen node with probability α. This ran-
domization process explores the whole regime of multiplexity from full-overlapping
to non-overlapping extremes. Then we apply SA algorithm on the randomized mul-
tiplex, their constituent layers and aggregated layers and obtain the average size of
structural set for 100 realizations of SA algorithm. (extracted from [14])

emanates from the fact that most of the well-known phenomena studied on networks undergo

drastic changes when the underlying network is of multiplex type. For instance, percolation,

k-core percolation, super-diffusion, etc. are phenomena that radically change when consid-

ering multiplexity [9, 28, 55, 64].

The same question arises that is it important to consider multiplexity in the optimal

percolation process and what are the consequences if one forgets multiplexity. Forgetting

multiplexity means aggregating all kinds of links and interactions in one layer and treating

the network as a single layer monoplex. In this regard we define structural nodes (SN) as
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the set of nodes which are the solution of the optimal percolation problem. We obtain SNs

of a multiplex network and SNs of each of the monoplex layers of the multiplex network.

The latter is attained by applying optimal percolation on the monoplex layers separately,

i.e. when one forgets about multiplexity. Having the SNs of multiplex network and SNs of

its monoplex constituents, one can compare them to decipher the effect of multiplexity.

We consider two layer random synthetic multiplex network where the first layer is cre-

ated using Erdős-Rényi random graph model. Then we copy the second layer from the first

layer. At this point we have a monoplex network. By using the randomization technique

introduced in previous section we can switch from monoplex to multiplex network and mon-

itor the size of the SNs. Fig. 1.12 shows the result of the analysis of SNs on this multiplex

network for different values of randomization parameter α. We briefly summarize the effect

of multiplexity on optimal percolation:

• Size of the set of structural nodes of a multiplex network is smaller than sets of SNs

of corresponding monoplex layers.

• Beyond the size of the SN sets, one realizes that identities of the nodes detected as

SNs also differ in multiplex scenario from monoplex scenario.

• Inter-layer correlations as degree correlations and edge overlap justifies the discrepancy

between SN set of multiplex network and SN sets of its associated single layer monoplex

networks.

1.2.6 k-core of real multiplex networks

k-core of a graph refers to a subgraph in which each node has degree at least k. However,

this definition is limited to monoplex networks. Azimi. et al. [124] generalized definition of

k-core to multiplex networks. In the case of an L-layer multiplex network k-core is defined

as subset of nodes in which at each layer, degree of nodes satisfies the threshold condition
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kl
i ≥ kl where threshold vector is k=(k1, k2, . . . , kL). k-core of multiplex networks can be

attained by the generalized pruning process. In this pruning process one checks degree of

each node and if at least in one of the layers the degree in that layer is smaller than the

threshold of the layer, the node should be removed. The pruning procedure is iteratively

applied until no node is left or we are left with k-core of the multiplex network. More

detail about the definitions of k-core, k-shell and corresponding algorithms can be found

in [25, 124]. Azimi. et al. [124] introduced this model and solved them analytically using

the method of generating function for locally tree-like random multiplex networks. However,

they reported a discrepancy between theoretical prediction and simulation results for the

case of real multiplex networks. The discrepancy is attributed to the underlying inter-layer

correlations existing in the multiplex networks.

As explained in previous sections, different type of inter-layer correlations exist in mul-

tiplex networks. In order to systematically analyze effects of inter-layer correlations on the

k-core structure of multiplex networks, we used the framework of hyperbolic networks, i.e.

each layer of the multiplex network is considered separately as an object embedded in hy-

perbolic space. Then each node i is represented by its coordinates (ri, θi). In this framework

we are able to detect, control and remove existing inter-layer geometric correlations in mul-

tiplex networks. In this regard, as we explained in previous sections the simple approach to

investigate the effects of inter-layer correlations on the dynamics or process taking place on

top of a multiplex network is to use randomization technique. Randomization enables us to

reduce or completely remove inter-layer correlations and consequently observe its effect on

the k-core structure of a multiplex network. For instance, a simple randomization of labels

of the nodes in one of the layers of the multiplex while removes all inter-layer correlation

between the layers, keeps the structure of the constituent layers unchanged. This technique

allows us to separate the effect of inter-layer correlations from the one of the intra-layer

correlations.

Fig. 1.13 illustrates the k-core structure of the multiplex networks of arXiv and its ran-
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Figure 1.13 k-core of multiplex network of arXiv. Multiplex network of
arXiv has been considered in this figure. Panels (a) and (b) illustrate the hy-
perbolic embedding of the two layers of the multiplex network. Positions of the
nodes in the hyperbolic space correspond to their hyperbolic coordinates (obtained
by embedding). Nodes are color coded with respect to their location in the k-shell
decomposition of the network. Panel (c) shows the diagonal k-shell decomposition
of the arXiv multiplex network.(d) is the same as (c) for the few inner shells. (e)
shows the shell decomposition of the multiplex network after randomization. Pan-
els (f) and (g) illustrate the full k-core spectrum of the original and randomized
multiplex networks of arXiv. (h) shows the size of the k-core of constituent layers
of the multiplex network and (k, k)-core of the original and randomized multiplex
networks. Panel (i) is the same as (h) but for angular coherence metric. (extracted
from [25])

domized counterpart. We used hyperbolic embedding framework to visualize the networks.

Here full randomization takes place where we randomize labels of the nodes in one of the lay-

ers. Randomization destroys all kind of inter-layer correlations. Fig. 1.13(h) shows the size

of the k-core of each of the layers of the multiplex and size of the k-core of the original and

randomized multiplex networks. As clear from the Fig. 1.13(g), the randomization weak-

ens the k-core spectrum. Moreover, we also defined coherence metric for nodes in k-cores.

This metric is defined exactly in the same way as the one defined for community structure
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Figure 1.14 Randomization of multiplex network of arXiv In order to remove
radial or degree correlations, radial randomization (top row) has been carried out.
Panel (a) illustrates the inter-layer correlation metrics such as degree correlation,
normalized mutual information of the angular coordinates and edge overlap as a
function of groups size n of the randomization procedure (more detail can be found in
chapter seven). It is obvious that increasing the group size n increases randomization
effects. (b) shows size of the diagonal k-core of the original multiplex and its
randomized version. While in the former all original inter-layer correlations are
untouched, in the latter degree correlations are reduced (but angular correlations
are preserved). (c) the same as (b) but for angular coherence metric. (d) illustrates
the effect of randomization and relocation of the nodes from the inner shells of the
original multiplex to the outer shells of the randomized multiplex. Each vertical
line shows that how the original diagonal k-shell is redistributed in the new k-
shells of the randomized multiplex network. Bottom row (panels (e), (f), (g)
and (h)) are the same as top row (panels (a), (b), (c) and (d)) but for the
angular randomization case in which angular correlations are removed while radial
correlations are preserved. (extracted from [25])

in previous section. Fig. 1.13(i) shows that inner k-cores of both monoplex and multiplex

networks are more coherent. While this analysis shows that inter-layer correlations play a

big role in the k-core structure of the network, it does not give us the detailed information

on how angular or radial correlations play role separately. Moreover, we want to know the

role of the inter-layer correlations with respect to heterogeneity of the degree distribution.
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In order to answer these questions we need a generalized randomization technique, i.e. a

randomization technique which enables us to reduce each type of the correlations separately

without destroying the other types.

To analyze the effect of geometric correlation (radial and angular correlations) separately,

the following algorithm is introduced. Let’s consider the case in which one wants to destroy

angular correlations between the nodes of the layers. The following algorithm can serve this

purpose. First we choose one of the layers and sort the nodes with respect to their angular

coordinates. Now we group these nodes in small groups of size n. Then we relabel the

labels of the nodes within each group. n is size of the groups and enables us to control the

severity of randomization. The extreme case in which n = 1 corresponds to no random-

ization (relabeling) of the nodes and consequently preserves angular correlations (and other

correlations) between the layers. The other extreme n = N where N is the number of the

common nodes of the multiplex network, corresponds to the complete relabeling of the nodes

in which all kind of correlations are destroyed. The same algorithm is used in order to keep

angular correlations and remove radial correlations. However, in this case one needs to sort

the common nodes with respect to their degrees.

Fig. 1.14 shows the effect of different kind of randomization described above on arXiv

multiplex network. We apply radial randomization (decreasing degree correlations while

keeping angular correlations) and angular randomization (decreasing angular correlations

while preserving degree correlations) on this multiplex network. As Fig. 1.14(b),(f) show

the k-core structure of the arXiv is mostly affected (reduced) by removing inter-layer angular

correlations. However, in the case of multiplex network of the Internet the opposite is ob-

served 1.15. Considering Fig. 1.15(b),(f) one realizes that diagonal k-core of the Internet is

mostly affected when one destroys inter-layer degree correlations. These simple experiments

suggest that in general, both degree and angular correlations are important in order a mul-

tiplex to have a rich k-core structure. However, in the case of multiplex networks with more

homogeneous degree distribution (arXiv) angular correlation between the nodes of the layers
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Figure 1.15 Randomization of multiplex network of the Internet. The same
as Fig. 1.14 but for the multiplex network of the Internet.(extracted from [25])

is the main actor. In the case of multiplex networks with heterogeneous degree distributions

(Internet) radial or degree correlation plays the most important role.
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Chapter Two

Emergence of power laws in noncritical

neuronal systems
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Experimental and computational studies provide compelling evidence that neuronal systems are characterized
by power-law distributions of neuronal avalanche sizes. This fact is interpreted as an indication that these
systems are operating near criticality, and, in turn, typical properties of critical dynamical processes, such as
optimal information transmission and stability, are attributed to neuronal systems. The purpose of this Rapid
Communication is to show that the presence of power-law distributions for the size of neuronal avalanches is not
a sufficient condition for the system to operate near criticality. Specifically, we consider a simplistic model of
neuronal dynamics on networks and show that the degree distribution of the underlying neuronal network may
trigger power-law distributions for neuronal avalanches even when the system is not in its critical regime. To
certify and explain our findings we develop an analytical approach based on percolation theory and branching
processes techniques.

DOI: 10.1103/PhysRevE.100.010401

I. INTRODUCTION

In neuronal systems, but also in many other apparatuses
crucial to living organisms, the emergence of power-law
distributions [1–6] has a remarkable importance. The unique
form of distribution may indicate that the system is operating
near a critical point [7–9] and is therefore benefitting from a
series of potential advantages of critical systems [10–12], such
as optimum information transmission [1,13], dynamical range
and sensitivity to sensory stimuli [14], information capacity
[15,16], and stability [13,17].

In neural systems, power-law distribution of avalanche
sizes and durations (lifetimes) have been observed both in
experiments [1,4,8] and computational models [17–19]. To
validate that power-law distributions are indeed due to criti-
cality, one needs to perform other tests [4], including testing
finite-size scaling relations [4,20] and performing collapse of
temporal profiles [4,20,21]. However, these techniques cannot
determine what mechanisms or conditions keep or pose the
system in the critical regime or if/how the system may lose
its criticality. Nevertheless, other approaches can be used
to demonstrate mechanisms or conditions that can lead to
criticality of biological systems [22] or mechanisms (espe-
cially in living systems) other than criticality that can lead to
power-law distributions [23–29]. In particular, Friedman and
Landsberg [22] considered a simplistic model for neuronal
dynamics and introduced a mechanism through which the hi-
erarchical structure of neuronal networks can generate power-
law distributions even far from criticality. The importance
of network structure underlying neuronal dynamics for the

*afaqeeh@iu.edu

generation of power laws has been also reported in other
studies [18,19].

In this Rapid Communication, we demonstrate that the
degree distribution of the network underlying neural dynamics
plays a fundamental role in the emergence of power-law distri-
butions of avalanche sizes. To do so, we consider a simplified
model of neural dynamics on networks, and show that, for
some scale-free networks, avalanche sizes obey power-law
distributions even in subcritical dynamical regime. Moreover,
in other cases in which the avalanche size distribution is a
power law with exponential cut-off, we disclose what struc-
tural parameters determine the cut-off size and show that even
in such cases it is possible to observe distributions that are
approximately power law over several orders of magnitude. In
addition to numerical evidence, we provide an analytical de-
scription of the phenomenon relying on techniques borrowed
from the theory of percolation [30] and branching processes
[31–33]. We believe that our findings may have important
implications in understanding properties of dynamics on real-
world networks that have heavy-tailed degree distributions
[2,5,34–37].

As mentioned above, we consider a simplistic model of
neural avalanches for which we can show lucidly the impact of
the network structure. In our model, an avalanche starts with
a single activated neuron and, at each time step, every one
of the active neurons fires a signal that stimulates all of their
neighbors. This stimulus activates with a probability p each
neighbor that has not been already activated. The avalanche of
activities continues until no new neuron can be activated. This
model is identical to the so-called independent cascade model,
often considered in the context of opinion spreading in social
networks [38–40]. For neural dynamics, it is a more realistic
version of the Friedman-Landsberg model (FLM) [22] as in
our model each time a neuron receives a stimulus it has the

2470-0045/2019/100(1)/010401(7) 010401-1 ©2019 American Physical Society
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chance to become activated while in the FLM the activation
does not depend on the number of stimulations. In spite of its
simplicity, our model captures the fast timescale behavior of
integrate-and-fire models [41,42]. This fact follows from the
simplifying assumptions that repetitive activation is neglected
and the stimulations that activate a neuron (by increasing
its potential to above its firing threshold) are set at random
[19,22,43,44].

An advantage of this simplification is that our model is
equivalent to a bond percolation model, thus, the avalanche
size distribution is identical to the probability distribution πs

that a randomly chosen node belongs to a percolation cluster
of size s. This analogy enables us to consider a set of well-
established techniques developed for percolation models and
branching processes. In the following, we first describe our
analytical calculations. Then, we show that our theoretical
predictions are in very good agreement with the results of
numerical simulations.

We provide a unifying framework that can describe the
avalanche properties on both undirected and directed net-
works. We consider networks with negligible source-target
correlation, i.e., the correlation between the degree values
at the ending points of an edge. Nevertheless, for directed
networks (DNs), we include analysis for networks with and
without input-output correlation, i.e., the correlation between
the values of indegree j and outdegree k of a node. Thus
we consider three network types: undirected networks (UNs),
uncorrelated directed network (UDNs), and input-output cor-
related directed networks (CDNs).

To generate UNs with specific degree distribution we use
the configuration model [45–47] and for DNs we use an
extended version of this model [48]. In particular, if the
number of stubs of indegree and outdegree distributions are
unbalanced, we remove, from a fraction u of nodes, some
stubs of the distribution with more stubs such that its tail
conserves its form [48].

II. RESULTS

A. Relevant theoretical findings

Our analytical calculations are built on techniques origi-
nated from studies that shed light on structural properties of
networks [49], spread of epidemics [50], properties of site
percolation on undirected [51] and directed [52] networks,
branching processes [32,53], spread of online information on
Twitter [33], and relevant methods for obtaining the properties
of generating functions [54,55]. The findings most related to
our calculations correspond to those of Refs. [51,52] in which
analytical results for the functional form of the distribution
of cluster sizes in a site percolation process were reported.
To improve upon the findings of these references, we sub-
stitute parts of the approaches they employed with our own
techniques developed on the basis of Refs. [33,49,50,53–55].

B. Constructing the governing equations

For UNs, we consider the degree distribution pk of the
network and for DNs we consider the indegree distribution Pj ,
the outdegree distribution Pk (note that we use k for the degree
in UNs as well as for the outdegree in DNs as, we will later

show that they play the same role in describing the avalanche
sizes), and the joint degree distribution Pjk which equals the
fraction of nodes with indegree j and outdegree k. From the
degree distributions we can obtain the excess degree distri-
bution functions qk = kpk/�k� for UNs or qjk = jPjk/� j� for
DNs which describe the probability that following a random
edge we find a node with, respectively, degree k + 1 (UNs) or
indegree j and outdegree k (DNs).

We are going to calculate the distribution of avalanche sizes
πs. This quantity depends on ρs, the probability that following
an edge of the network we reach an avalanche (cluster)
with size s [30,49,50,56]. To calculate these quantities we
will need to work with their generating functions defined as,
respectively, H0(z) = �∞

s=1 πszs and H1(z) = �∞
s=0 ρszs. We

will also need the generating functions for degree k and the
excess degree distributions, defined as

G0(z) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∞�
k=0

pkzk, UN

∞�
j,k=0

Pjkzk, DN,

(1)

G1(z) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∞�
k=0

qkzk, UN

∞�
j,k=0

q jkzk, DN.

(2)

A UN on which a bond percolation process with occupation
probability p is applied should be described by �Gn(z) =
Gn(1 − p + p z) instead [50,57], where n = 0, 1; it is straight-
forward to show that this property holds also for DNs. We
use this fact to extend the governing equations that Newman
derived for H0 and H1 in the absence of percolation [50] to our
case; thus we get

H1(z) = zG1[1 − p + pH1(z)], (3)

H0(z) = zG0[1 − p + pH1(z)]. (4)

The first difference between our calculations and the method
of Refs. [51,52] for calculation of cluster sizes is that we use
the accurately derived Eqs. (3) and (4) instead of equations
derived from heuristics [58].

The next steps of our approach include (i) calculation of
the leading order nonanalytic behavior of H0(z) by finding
the behavior of G1 and G0 around η = 1 − p + pH1(1), and
(ii) using the asymptotic properties of generating functions
[48,54,55] to obtain πs for large avalanche sizes (s � 1) using
the results of (i). To do so, we integrate the above equations
with the methods described in [51,52] and improve upon parts
of these methods by combining them with techniques and
ideas, including branching processes methods [33,53].

C. Solution methods for different regimes of dynamics

1. The critical and subcritical regimes

In these regimes, H0(1), which equals the probability that a
randomly chosen node is in a finite cluster, can be set to
1 [for the supercritical regime, we can instead assume that

010401-2
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H0(1) ≈ 1, if p is not much larger than the critical occupation
probability pc]; thus, according to Eq. (4) H1(1) = 1 too.
Accordingly, to obtain the leading order behavior of H1(z)
[from Eq. (3)] and H0(z) [from Eq. (4)], we can assume
H1(1 − w) ∼ 1 − φ, where φ � 1 and z

.= 1 − w for w � 1,
and then expand the degree-dependent generating functions
around z = 1 to get [48]

G1(1 − pφ) ∼ G1(1) − G	
1(1)pφ + G		

1 (1)(pφ)2 + Dφ
�λ−1

+ o(φ2,φ
�λ−1) = 1 − p

pc
φ + Bφ2 + Dφ

�λ−1

+ o(φ2,φ
�λ−1), (5)

G0(1 − pφ) ∼ G0(1) − G	
0(1)pφ + Mφλ−1 + O(φ2)

= 1 − Eφ + Mφλ−1 + O(φ2), (6)

as φ → 0, where pc is obtained analytically according to the
results of Refs. [47,51,52], and the terms with λ or �λ are
present only for scale-free networks; these effective exponents
are

λ =
	
λ (UN)
λo (DN) and �λ =

⎧
⎪⎨
⎪⎩

λ − 1 (UN)
λo (UDN)

λo − λo − 1

λi − 1
(CDN),

where λ, λo, and λi are the exponents for the tail of the distri-
bution of, respectively, the degrees k in a UN, the outdegrees k
in a DN, and the indegrees j in that DN. The other coefficients
in Eqs. (5) and (6) depend on the network degree distribution
[48]. Note that pc > 0 for the range of�λ values we considered.

We keep up to the third (second) leading order term of G1

(G0) and substitute the result in Eq. (3) [Eq. (4)] to get

H1(1 − w)
.= 1 − φ ∼ (1 − w)



1 − p

pc
φ + Bφ2 + Dφ

�λ−1

�

⇒ w ∼ − δ

pc
φ + Bφ2 + Dφ

�λ−1 (7)

and

H0(1 − w) ∼ 1 − Eφ + Mφλ−1, (8)

where, in Eq. (7), δ = p − pc. Using Eqs. (7) and (8) we
can show that the leading order nonanalytic term of H0(z),
depending on the dynamical regime, has either the form Rw β

or R
√

1 + s∗w [48], where β is a noninteger number and s∗

and R are constant. According to the asymptotic properties
of generating functions [48,54,55], the first form gives a πs

with a power-law tail and the second form results in a power
law with exponential decay. In particular, for �λ > 3 and non-
scale-free networks, πs = R1s−3/2 at the critical point (pc)
and πs = R1s−3/2e−s/s∗

in the noncritical phases; however,
for 2 < �λ < 3, πs = R2s−[1+1/(�λ−1)] at pc (see Supplemental
Material [48] for the definitions obtained for R1 and R2 [59]).
For these cases, Refs. [51,52] reported the same results for
the functional form of πs; however, the equations they used
[instead of Eqs. (3) and (4)] underestimate the prefactors [48].
We also retrieve the result s∗ ∝ δ−2 calculated previously
for UNs (using another method [51]) and we discover that
a similar relation also holds for DNs; furthermore, we find
that the exponential decay factor s∗ is also controlled by

the skewness of the degree distribution according to s∗ ≈
2p2�k��k3�

δ2�k2�2 for UNs and s∗ ≈ 2p2�k�� jk2�
δ2� jk�2 for DNs. This indicates

that even for skewed non-scale-free networks it is possible
that a power-law distribution of avalanche sizes, expanded for
several orders of magnitudes (i.e., as long as s � s∗), emerges.

On the other hand, despite the expectations of
Refs. [51,52], at the subcritical regime of 2 < �λ < 3, we
get pure power-law distribution in the form

πs ∼

⎧
⎨
⎩

�R
�
1 + ppc�k�

−δ

� ppc

−δ

λo−1
s−λo (UDN)

�R
� ppc

−δ

λ−1�� ppc

−δ

�λ−λ+1
s−�λ + s−λ

�
(CDN/UN),

(9)

where �R = a∗(1 − u), and a∗ .= 1/
�

k k
−λ

for k in the tail of
the corresponding k distribution (degree or outdegree distri-
bution) and u < 1 depends on the mass of that tail. To obtain
this result we assumed that the solution of Eq. (7) for 2 <
�λ < 3 has the form φ ∼ a1w

α1 + a2w
α2 + · · · , where α1 <

α2 < · · · , and used the dominant balance method [33,44,60]
to obtain the correct form for the leading order terms [48]. As
demonstrated by Eq. (9), the exponent of this distribution in
UDNs is �λ = λ = λo, and in CDNs and UNs is �λ; in CDNs
the leading order term can be corrected with a λ order term if
the difference between the exponents �λ and λ is considerably
small. Figure 1 shows that our predictions for the subcritical
and critical regimes of 2 < �λ < 3 capture very well the power-
law behaviors of the tail of πs.

In the procedure for deriving Eq. (9) we made no assump-
tion about the sign of δ; however, we immediately notice that
Eq. (9) is only valid for the subcritical regime since in the
supercritical regime (that δ > 0) the prefactor and hence the
probability πs will not be a real non-negative value. In

FIG. 1. The probability πs and its cumulative distribution 
s for
a UDN with λo = 2.7 and λi = 3.7 (top panels) and a CDN with
λo = 3.1 and λi = 3.7 (bottom panels) both with 2 × 107 nodes.
The green or blue dots are the numerical results and the dashed
lines correspond to the theoretical power law πs [Eq. (9) for p < pc]
with the same maximum s as that of the numerical data. The nearly
vertical cut-offs in 
s are caused by the cumulative sum on data
with finite maximum s and not by the shape of πs. In each panel,
the numerical results for lower p values are those located at lower
positions. The networks are constructed using our extension of the
configuration model [48].
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the next section, we show that a set of equations other than
Eqs. (5) and (6) and a modified method should be used to
obtain valid results for the supercritical regime of 2 < �λ < 3.

2. The supercritical regime of 2 < �λ < 3

We first consider the governing Eqs. (3) and (4). Then as
we know that in the supercritical phase H1(1) < 1, for z values
close to 1 (or z

.= 1 − w with w � 1) we can write

H1(z) = �h + � = 1 − η + �, (10)

where �h, η < 1 and � � 1. Thus, in the right-hand side of
Eqs. (3) and (4),

1 − p + pH1(z) = 1 − pη + p� (11)
.= η + p�, (12)

where η = 1 − pη = 1 − p(1 −�h) = 1 − p + p�h. Now, we
can write

H1(z) = z G1(η + p�) (13)

= z
�
G1(η) + G	

1(η)p� + 1
2 G		

1 (η)p2�2 + · · ·
�
. (14)

Therefore, according to Eqs. (10) and (14),

�h + � = z [a0 + a1� + a2�
2 + · · · ], (15)

where a0 = G1(η) = �h [see Eqs. (3) and (10)], a1 = G	
1(η)p,

and a2 = 1
2 G		

1 (η)p2. Equation (15) gives

� ∼ 1 − a1z

2a2z
± 1

2a2z

�
(1 − a1z)2 + 4a0a2z(1 − z). (16)

Now we consider that the supercritical properties of H1(z) can
be well approximated using the behavior of � near the branch
point z = 1; around this point we have

� ∼ 1 − a1

2a2
± 1 − a1

2a2

�
1 + s∗(1 − z), (17)

where s∗ = 4a0a2
(1−a1 )2 . Now,

H0(z) = z G0(η + p�) (18)

∼ (1 − w)[G0(η) + G	
0(η)p� + o(�2)] (19)

∼ analytical terms ± b
�

1 + s∗(1 − z), (20)

where b = pG	
0(η) (1−a1 )

2a2
. Then, according to the asymptotic

properties of generating functions [48,54,55],

πs ∼ ±bs∗1/2

2
√

π
s−3/2 e−s/s∗

as s → ∞ (21)

∼ ± G	
0(η)

√
G1(η)�

2π G		
1 (η)

s−3/2 e−s/s∗
as s → ∞, (22)

where s∗ .= 2p2G1(η) G		
1 (η)

(1−pG	
1(η))2 and η is calculated using Eqs. (3) and

(12) according to the prescription described in Sec. S3.2.d
of [48]. Figures 2(e) and 2(f) show that Eq. (22) performs
well in describing the distribution of avalanches with finite
(nonextensive) sizes in the supercritical regime of 2 < �λ < 3.
It is worth noting that, in the supercritical regime, extremely
large avalanches do also exist; such avalanches have a size
that scales linearly with the network size. Hence, in the
thermodynamic limit where the network size N → ∞, their

FIG. 2. (a)–(d) The full cluster size distribution at the critical
and supercritical regimes of our neuronal dynamics model for a
UDN with 5000 nodes and the other parameters identical to those
of Fig. 1(a). At the supercritical phase, a bump appears at the tail of
the distribution which corresponds to the percolating clusters whose
sizes diverge at the thermodynamic limit (i.e., as N → ∞). (e), (f)
The distribution 
s (the cumulative distribution of πs) of the finite
clusters (i.e., excluding the bump at the tail) for the supercritical
regime of (e) a UN with λ = 3.3, pc = 0.23, and 5 × 107 nodes and
(f) the UDN of Fig. 1(a). The dots represent numerical simulations
and the dashed lines are the theoretical results. Closer to the critical
point a better agreement between theory and numerics is observed. In
panels (e) and (f), the results for the lower p value are those located
at a lower position.

size also diverges. In finite networks, the effect of such
avalanches on the distribution of avalanche sizes can be
observed as a bump (in DNs) or a single point (in UNs) in
the tail of the distribution. As the system moves further from
the critical point this bump (or point in UNs) separates and
moves away from the rest of the distribution [Figs. 2(a)–2(d)].

An interesting outcome of Eq. (22) is that the depen-
dence of s∗ (the exponential decay parameter) on the in-
verse of δ is no longer purely quadratic; nonetheless, s∗

is still determined by p and skewness of degree distri-
butions through a function that depends on p and the
properties of G1 at η [61]. It is worth mentioning that, for an-
alyzing supercritical avalanches, methods based on Ref. [53]
are also possible; nonetheless, such methods produce rather
poor results [48].

As we mentioned earlier, a prominent implication of our
results for the noncritical cases is that even non-scale-free
networks can produce avalanches distributed according to a
power law for several orders of magnitude. This has signif-
icant implications for the experiments of neuronal dynamics
that are commonly performed on small size samples [62,63];
this is because in such cases pure power laws and the power-
law part of noncritical systems may be indistinguishable (see
Fig. 3).

010401-4

57



EMERGENCE OF POWER LAWS IN NONCRITICAL … PHYSICAL REVIEW E 100, 010401(R) (2019)

FIG. 3. The distribution πs for the subcritical regime of (a) CDNs
and (b) UNs with 5000 nodes for 10 5 avalanches in each network.
The curves, from top to bottom, correspond to a CDN (UN) with,
respectively, exponential, power-law, and log-normal outdegree (de-
gree) distribution. For each of these networks an apparent power-
law tail is observed for πs. (Note that power laws observed in
experimental setups have similar ranges of s [1,8].) The simulations
are performed far from the critical point at occupation probabilities
in the range (0, pc/2). In non-scale-free CDNs, the correlations are
implemented by setting j = k 0.7.

III. CONCLUSIONS

In summary, we have provided analytical proofs, accom-
panied by numerical confirmations, that even in a simplified
description of neuronal dynamics, because of structural het-
erogeneity, different types of critical and noncritical power-
law avalanches with different exponents can be observed.
This finding may help us to better explain the emergence

of power-law neuronal avalanches with exponents different
from 3/2 observed in experiments [64,65] and in realistic
computational simulations [19]. Moreover, critical systems
are known to have crucial advantages such as optimum in-
formation transmission, capacity, and stability [1,13,15–17]
because of their power-law avalanches. Thus the existence
of power laws in other dynamical regimes implies that some
noncritical systems may benefit from similar advantages due
to divergence of the mean values and scale invariance of their
power-law distributions [13]. Furthermore, the emergence of
such noncritical power laws introduces new challenges for
accurate detection of criticality in experimental setups due to
the finite size of the commonly used samples. In addition to
the importance of these findings in the context of neuronal
systems, the insights on percolation properties of networks
that this Rapid Communication provides may find applica-
tions in topics such as network robustness [56,66], epidemic
spreading [50,67,68], and stability of biological systems [69].
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S 1 Degree distributions and Network construction

In undirected networks (UNs), for a given degree distribution pk we use configuration model to generate our
benchmark networks. In directed networks (DNs), we follow the recipe described in Secs. S2.1 and S 1.1.
Note that we use k to denote the degree of nodes in UNs and also the out-degree of nodes in DNs; this use
of notations facilitates drawing an analogy between the equations obtained for the undirected and for the
directed networks.

S 1.1 Initial assignment of the degrees in directed networks

In DNs, two types of degree-degree correlations are possible: the input-output (IO) correlation and the
source-target (ST) correlation. IO is the correlation between the indegree and outdegree values of each of
the nodes; ST, instead, is the correlation between the outdegree of a source (i.e., the node from which a link
started) and the indgree of a target (i.e., the ending point (at the arrow side) of that link). It is worth noting
that undirected networks can be assumed to have full IO correlation as the degree of a node is a measure for
both the number of possible inputs and the number of possible outputs. On the other hand, similar to the
directed case, in undirected networks we may or may not observe ST correlation and, in fact, in undirected
networks people only measure ST correlation (as the IO correlation is not a varying factor).

We consider networks with negligible ST correlation (we see in Sec. S 1.3 why this consideration is
important for our calculations). For synthesizing our undirected scale-free networks, we generate networks
with no assortativity [1] (a measure of the ST correlation) by imposing a cutoff on the tail of the degree
distribution [2], i.e., we consider a degree distribution pk ∝ k−λ, for kstart ≤ k ≤ kmax, and pk = 0 everywhere
else. It is also known [3, 4] that random directed scale-free networks can be disassortative (i.e., they may
have negative ST correlation); thus, we imposed cutoffs on the in-degree and out-degree distribution and
checked that the generated networks do not have an effective correlation between pairs of connected nodes,
such that the probability that a node with out-degree k is connected to a node with in-degree j does not
depend on k.

Nevertheless, for DNs, we include in our study networks with correlations between the in-degree and
out-degree of each node (the IO correlation). In terms of this type of correlation, we consider uncorrelated
and fully correlated directed networks and denote the out-degree and in-degree of a node with, respectively,
k and j. In case of scale-free networks, we first draw the out-degree sequence from a power-law distribution

P(tail)
k = cok−λo for kstart ≤ k ≤ kmax. (S1)

The upper cutoff, that is the largest possible out-degree kmax, is set to N
1
λo−1 . For uncorrelated directed

networks (UDNs), we then draw the sequence of in-degrees from the distribution

P(tail)
j = ci j−λi for jstart ≤ j ≤ jmax, (S2)

where jmax is set to N
1
λi−1 . For fully correlated directed networks (CDNs) with power-law degree distribution,

in order to preserve the power-law shapes of the input degree sequences, the in-degree of each node is set to
a value determined by the relation [5]

j = J(k) = k
λo−1
λi−1 , (S3)
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thus,
P(tail)

j = cok−λo δ(k, J−1( j)) = ci j−λi δ( j, J(k)). (S4)

In non-scale-free networks that we do not need to impose a restriction on the type of the in-degree distri-
bution we just set J(k) = k α, where α is a constant number. When generating the CDNs, to assign the
appropriate value of j to nodes with out-degree k, we obtain [J(k)], the integer part of J(k); then with proba-
bility J(k)−[J(k)], we assign the in-degree [J(k)] to a node with out-degree k; otherwise, we set its in-degree
to [J(k)] + 1.

S 1.2 Balancing the total number of in- and out-stubs

For generating CDNs, after obtaining the degree sequences of the nodes, we want to connect them at random
to generate the network. However, before that, we need to balance the total number of out-stubs and the total
number of in-stubs so that no extra stub is left after connecting the nodes. Depending on the values of λo, λi,
kstart and jstart, the total number of out-stubs may be smaller or larger than the total number of in-stubs. We
define Xinit = N

��
k≥kstart

kP(tail)
k −� j≥ jstart

jP(tail)
j

�
, which is the initial number of out-stubs minus the initial

number of in-stubs. Let’s consider the case where the total number of out-stubs is larger than the total
number of in-stubs, i.e., Xinit > 0. In this case, we consider the out-degrees of the nodes. Then we perform
the following steps

1. Select a kmin ≤ kstart (We considered kmin = kstart − 1 ).

2. Select a node at random and reduce its out-degree to kmin.

3. Calculate X = the total number of out-stubs − the total number of in-stubs.

4. If X > 0, return to step 2. Otherwise, put back the extra stubs removed by adding them to the last
node selected; then return the new sequence of out-stubs.

The resulting out-degree distribution is

Pk =

�
u for k = kmin

(1 − u)P(tail)
k for k ≥ kstart,

(S5)

where u is the fraction of nodes with out-degree kmin. As the in-degree distribution is not altered Pj = P(tail)
j .

In the case where there are more in-stubs than out-stubs (i.e., when Xinit < 0), we perform a similar set
of steps and decrease the number of in-degrees of a set of randomly selected nodes to a predefined value
jmin. This procedure results in a new distribution of in-degrees

Pj =

�
u for j = jmin

(1 − u)P(tail)
j for j ≥ jstart,

(S6)

where, here, u is the fraction of nodes with in-degree jmin. The out-degree distribution remains to be Pk =

P(tail)
k .
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S 1.3 The joint distributions

The joint degree distribution for the UDNs is

Pjk = PjPk for UDNs (S7)

For the CDNs, if Xinit > 0, then the joint degree distribution is

Pjk =

�
uP(tail)

j for k = kmin

(1 − u)P(tail)
k for k ≥ kstart.

(S8)

On the other hand, if, Xinit < 0,

Pjk =

�
uP(tail)

k for j = jmin

(1 − u)P(tail)
k for j ≥ jstart.

(S9)

As we consider networks with negligible ST correlation, the “excess” joint degree distribution qjk is

qjk =
j
� j� Pjk. (S10)

Similarly, in our UNs the ST correlation is negligible; hence, their excess degree distribution is simply

qk =
k
�k� pk, where pk is the degree distribution.

S 1.4 The generating functions for degree-based distributions

The generating functions (GFs) for degree and excess degree distributions in UNs and for joint degree
distribution and joint excess degree distribution in DNs are defined as

G0(h) =





∞�
k=0

pk hk undirected network

∞�
j,k=0

Pjk hk directed network,
(S11)

G1(h) =





∞�
k=0

qk hk undirected network

∞�
j,k=0

qjk hk directed network.
(S12)

In a bond percolation with occupation probability p, the generating functions will be transferred to �G0/1(h) =
G0/1(1 − p + ph) (see Ref. [6] for the derivation of this result for undirected networks; it is straightforward
to show that this result also holds for DNs). We will later see that we would need to obtain the behavior of
�G0/1(h) for h close to 1, i.e. we would need the behavior of �G0/1(1 − φ) = G0/1(1 − pφ) where h � 1 − φ and
φ � 1.
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S 2 Asymptotics for the degree-based generating functions

In our calculations we need the asymptotic forms of the degree dependent generating functions when they
are expanded around 1 [5, 7, 8], i.e.,

G1(1 − pφ) ∼ G1(1) −G�1(1)pφ +G��1 (1)
�
pφ
�2
+ Dφ�λ−1 + o(φ2 | φ�λ−1), (S13)

G0(1 − pφ) ∼ G0(1) −G�0(1)pφ + Mφλ−1 + O(φ2). (S14)

We find that, for a bond percolation with occupation probability p, there exist a general form for the asymp-
totic expansion of each of the degree dependent generating functions:

G1(1 − pφ) = 1 − Apφ + Bφ2 + Dφ�λ−1 + . . . , (S15)

G0(1 − pφ) = 1 − Eφ + Mφλ−1 + . . . , (S16)

where the definitions of the parameters depend on the type of the network (note that the �λ − 1 and λ − 1
terms exist only in scale-free networks). We provide these definitions in Sec. S 2.1. In Sec. S 2.2, we provide
details of the calculations for two different cases. A similar approach can be employed for any of the other
cases.

S 2.1 Definitions

We denote by k either the degree in undirected networks (UNs) or the out-degree in DNs (and their two
sub-classes UDNs and CDNs). Below we summarize the definitions of various parameters appeared in
Eqs. (S15) and (S15); these parameters will be used in the rest of this supplemental material as well.

λ =





λ (UN)

λo (UDN)

λo (CDN)

, �λ =





λ − 1 (UN)

λo (UDN)

λo − λo − 1
λi − 1

(CDN)

, a∗ �
1�kmax

kstart
k−λ

, Q �
1�kmax

kstart
k−�λ
=





a∗

�k� (UN)

a∗ (UDN)
a∗

�k� (CDN)

,

A =
1
pc
=





�k(k − 1)�
�k� (UN)

� jk�
�k� (DN)

, B =





1
2
�k(k − 1)(k − 2)�

�k� p2 (UN)

1
2
� jk(k − 1)�
�k� p2 (DN)

, u =





0 (UN)

0 (UDN with Xinit < 0)

u (UDN with Xinit > 0)

u (CDN)

,

D = (1 − u)QΓ(1 − �λ)p�λ−1, M = (1 − u)a∗Γ(1 − λ)pλ−1 and E = �k�p.
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S 2.2 Examples of calculations of the asymptotic forms

S 2.2.a Case 1: UDNs and Xinit < 0

G0(H1) =
�

j,k

P jPk H1
k ≡
�

k

P jmin,k H1
k +

�

( j≥ jstart), k

P j,k H1
k (S17)

=
�

k

P jmin Pk H1
k +

�

( j≥ jstart), k

P jPk H1
k

=
�

k

u P(tail)
k H1

k +
�

( j≥ jstart), k

(1 − u)P(tail)
j P(tail)

k H1
k

= u
�

k

P(tail)
k H1

k + (1 − u)
�

k

P(tail)
k H1

k

=
�

k

P(tail)
k H1

k

=
�

k

P(tail)
k (1 − pφ) k

=
�

k

cok−λo (1 − pφ) k (S18)

∼ 1 − �k�pφ + Mφλo−1, (S19)

where M = coΓ(1 − λo)pλo−1, co and λo are defined in Eq. (S1), and in line 4 we used the fact that�
( j≥ jstart) P(tail)

j = 1. To obtain (S19) from (S18) we used generating function techniques (see Sec. S 6 and
Refs. [5, 7–9]). Now,

G1(H1) =
�

k

1
� j�

�
u jmin + (1 − u)

�

j≥ jstart

jP j

�
PkH1

k

=
�

k

1
� j�
�� j�� PkH1

k

=
�

k

PkH1
k =
�

k

P(tail)
k H1

k

∼ 1 − � jk�� j� pφ +
� jk(k − 1)�

2� j� p2φ2 + Dφ�λ−1, (S20)

where D = co Γ(1 − �λ) p�λ−1 (see Sec. S 6 and Refs. [5, 7–9]).

S 2.2.b Case 2: CDNs and Xinit > 0

G0(1 − pφ) = u(1 − pφ)kmin + (1 − u)
�

j,k≥kstart

P(tail)
k (1 − pφ) k

= u
�
1 − kmin pφ + . . .

�
+ (1 − u)

�
1 − k pφ +

1
2

k(k − 1)p2φ2 + Mφλo−1 + . . .

�

∼ 1 − �k�pφ + (1 − u)Mφλo−1, (S21)
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where� denotes averaging over P(tail)
k and M = coΓ(1 − λo)pλo−1.

G1(H1) = u H1
kmin + (1 − u)

�

j,k≥kstart

j
� j� p

(tail)
k H1

k

= u (1 − pφ)kmin + (1 − u)
�

k≥kstart

co

� j�k
−�λ (1 − pφ) k

= u
�

1 − kmin pφ +
kmin(kmin − 1)

2
p2φ2 + . . .

�
+ (1 − u)

�
1 − jk
� j� pφ +

1
2

jk(k − 1)
� j� p2φ2 + Dφ�λ−1 + . . .

�

∼ 1 − � jk�� j� pφ +
� jk(k − 1)�

2� j� p2φ2 + (1 − u)Dφ�λ−1, (S22)

where �λ = λo − λo − 1
λi − 1

and D =
co

� j�Γ(1 −
�λ)p�λ−1.

S 3 Governing equations and the use of asymptotic expansions

Let’s denote by πs the probability that an avalanche has a size s (or equivalently the probability that the size
of the avalanche of a (randomly selected) seed is s. For our neural dynamics model (described in the main
text), the size of avalanche of a node in a directed network is equivalent to the size of its outcomponent in
bond percolation process with occupation probability p. On an undirected network, πs is the probability that,
in the bond percolation process, a randomly selected node is in a component with size s. This equivalence
enables us to employ the findings for percolation properties of networks. In that regard, we consider the
generating function H0(z) corresponding to πs. Also we consider an initial seed (root) of an avalanche and
the (sub-)avalanches created at each of its neighbors. Accordingly, we denote by ρs the probability that one
of this sub-avalanche has a size s and by H1(z) its corresponding generating function. It has been shown that
in a network with no percolation (i.e., with p = 1) we can write H1(z) = z G1(H1(z)) and H0(z) = z G0(H1(z))
[6, 10–12]. Also it has been proved that for a percolation process with probability p an undirected network,
G0(z) is transformed to G0(1 − p + pz) and G1(z) is transferred to G1(1 − p + pz) [6]. It is straightforward to
show that the same relations hold for percolation on directed networks [9]. The above findings conclude that
in a bond percolation process the generating functions H0(z) and H0(z) satisfy the pair of equations below:

H1(z) = z �G1(H1(z)), (S23)

H0(z) = z �G0(H1(z)). (S24)

For z ∼ 1 − w and w << 1, H1 ∼ 1 − φ with φ � 1, Eqs. (S15) and (S23) together yield:

H1(1−w)

= 1 − φ
∼ (1 − w)(1 − Apφ + Bφ2 + Dφ�λ−1)
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⇒ w ∼ −Aδφ + Bφ2 + Dφ�λ−1. (S25)

On the other hand, combining Eq. (S16) with Eq. (S24) gives:

H0(1 − w) ∼ 1 − Eφ + Mφλ−1. (S26)

Using Eq. (S25), we obtain the leading order behavior of φ. Then we substitute the results in Eq. (S26)
to obtain the leading order nonanalytic behavior of H0. The result is then used to calculate the probability
πs of having an avalanche with size s (see Secs. S 3.1 and S 3.2).

S 3.1 Non-scale-free and scale-free with �λ > 3 networks

In non-scale-free networks the �λ − 1 term in Eq. (S25) and the λ − 1 term in Eq. (S26) do not exist; hence
their results are identical to the results of scale-free networks with �λ > 3 and λ > 2, or equivalently �λ > 3,
as �λ ≤ λ. In such (non-scale-free or �λ > 3) networks, Eq. (S25) can be written as

w ∼ −Aδφ + Bφ2. (S27)

Thus at the critical point (δ = 0)

φ ∼
�w

B

�1/2
, (S28)

and in the noncritical regimes

φ ∼ Aδ
2B
± 1

2B

�
(Aδ)2 + 4Bw as w→ 0 (S29)

∼ Aδ
2B
± Aδ

2B

√
1 + s∗w, (S30)

where s∗ �
4B

(Aδ)2 . Then,

H0(1 − w) ∼ analytic part +
−E
B1/2 w1/2 (for δ = 0), (S31a)

H0(1 − w) ∼ analytic part + ±AEδ
2B

√
1 + s∗w (for δ � 0), (S31b)

as w→ 0, and using generating functions techniques (see Secs. S 6 and S 7)

πs ∼ −E
B1/2 Γ(−1/2)

s−3/2 (δ = 0), (S32a)

πs ∼ ± E√
4πB

s−3/2 e−s/s∗ (δ � 0), (S32b)

as s→ ∞ (see the simplified definition of parameters in Sec. S 4).
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S 3.2 Scale-free networks with 2 < �λ < 3

In this case, according to Eq. (S25), we have

w + Aδφ − Dφ�λ−1 ∼ 0. (S33)

The solutions of this equation for different cases are derived in the following.

S 3.2.a At the critical point (δ = 0)

In this case, equation (S33) gives

w ∼ Dφ�λ−1

⇒ φ ∼
�w

D

� 1
�λ−1

⇒ H0 ∼ −E
�w

D

� 1
�λ−1 (S34)

⇒ πs ∼ −E

Γ
�
−1
�λ−1

�
�

1
D

� 1
�λ−1

s−
�

1
�λ−1
+1

�
. (S35)

For UDNs, the prefactor equals −�k�/
��

(1 − u)coΓ(1 − �λ)
�1/(�λ−1)

Γ(1/(1 − �λ))
�

(see Sec. S 2.1); for CDNs

and UNs, the prefactor is obtained by multiplying this answer by �k�1/(�λ−1). The results of Eq. (S35) matches
very well the numerical results for UDNs (the results for p = pc in the top panels of Fig. S1); for CDNs the
theoretical prediction for p = pc slightly underestimates the numerics (Fig. S1 bottom panels).

S 3.2.b Subcritical regime (δ < 0)

To find the leading order behavior of (S33) which states

w + Aδφ − Dφ�λ−1 ∼ 0,

we try φ ∼ b1w β1 + b2w β2 + . . . and using the dominant balance method [13] we get β1 = 1, b1 =
−1
Aδ

,

β2 = �λ − 1 and b2 =
Db�λ−1

1

Aδ
=

D
Aδ

�−1
Aδ

��λ−1

. Thus,

H0 ∼ −ED
Aδ

b�λ−1
1 w�λ−1 + M bλ−1

1 w λ−1 (S36)

⇒ πs ∼ −ED b�λ−1
1

Aδ Γ(1 − �λ) s−�λ +
M bλ−1

1

Γ(1 − λ) s−λ. (S37)

Using the definitions of Sec. S 2.1 we get

πs ∼





a∗(1 − u)
�
1 + ppc�k�

−δ
� � ppc
−δ
�λo−1

s−λo (UDN)

a∗(1 − u)
�� ppc
−δ
��λ

s−�λ +
� ppc
−δ
�λ−1

s−λ
�

(CDN and UN)
(S38)

9

69



(a)

(b)

(c)

(d)

Figure S1: The probability πs and its cumulative distribution Ωs for a UDN (top panels) with λo = 2.7,
λi = 3.7, and Xinit < 0 and a CDN (bottom panels) with λo = 3.1 and λi = 3.7, and Xinit > 0 . The green or
blue dots are the numerical results and the dashed lines are the theoretical results.

The results of Eq. (S37) are in very good agreements with the numerical results (Fig. S1) as long as p is not
too close to pc or too far from pc (i.e., too close to 0). We immediately notice that the result we obtain is
only valid for the subcritical regime (δ < 0) since in supercritical regime that δ > 0 the prefactor and hence
the probability πs won’t be a real nonnegative value. Thus we see that we should not use exactly the same
method for the supercritical regime. This point was neglected in Refs. [5, 7]; in the following we provide
the correct way of calculating πs in the supercritical regime.

S 3.2.c Supercritical regime (δ > 0); method 1

Method 1 that we introduce here is the method used for generation of the results of Fig. 2 in the main text.
In this method, we first consider the governing equations (S23) and (S24) written in terms of G1 and G2

instead of �G1 and �G2:

H1(z) = z G1(1 − p + pH1(z)),

H0(z) = z G0(1 − p + pH1(z)).

Then as we know that in the supercritical phase H1(1) < 1, for z values close to 1, or z = 1 − w with w � 1,
we can write

H1(z) = �h + � = 1 − η + �. (S39)

Thus,

1 − p + pH1(z) = 1 − p + p(1 − η + �) (S40)
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= 1 − p + p − pη + p� (S41)

= 1 − pη + p� (S42)

� η + p�, (S43)

where η = 1 − pη = 1 − p(1 − �h) = 1 − p + p�h. Now, we can write

H1(z) = z G1(η + p�) (S44)

= z
�

G1(η) +G�1(η)p� +
1
2

G��1 (η)p2�2 + . . .

�
. (S45)

Therefore, according to Eqs. (S39) and (S45)

�h + � = z
�
a0 + a1� + a2�

2 + . . .
�
, (S46)

where a0 = G1(η) = �h (see Eqs. (S23) and (S39)), a1 = G�1(η)p, and a2 =
1
2G��1 (η)p2. Equation (S46) gives

� ∼ 1 − a1z
2a2z

± 1
2a2z

�
(1 − a1z)2 + 4a0a2z(1 − z) (S47)

Now we consider that the supercritical properties of H1(z) can be well approximated using the behavior of �
near the pole z = 1; around this pole we have

� ∼ 1 − a1

2a2
± 1 − a1

2a2

�
1 + s∗(1 − z), (S48)

where s∗ =
4a0a2

(1 − a1)2 . Now, using Eqs. (S48), (S43) and (S24) we get

H0(z) = z G0(η + p�) (S49)

∼ (1 − w)
�

G0(η) +G�0(η)p� +
1
2

G��0 (η)p2�2 + . . .

�
(S50)

∼ analytic terms ±G�0(η)p
1 − a1

2a2

�
1 + s∗

�
�z − z
�

(S51)

∼ analytic terms ± b
�

1 + s∗
�
�z − z
�
, (S52)

where b =
p G�0(η) (1 − a1)

2a2
. Then, Eq. (S52) yields (see Sec. S 7),

πs ∼ ±bs∗1/2

2
√
π

s−3/2 e−s/s∗ as s→ ∞ (S53)

∼ ±
p G�0(η) (1 − a1)

2a2

2
√

a0a2

(1 − a1)
2
√
π

s−3/2 e−s/s∗ as s→ ∞ (S54)

∼ ± p G�0(η)
√

a0

2
√
πa2

s−3/2 e−s/s∗ as s→ ∞. (S55)

The η in Eq. (S55) is calculated according to the prescription described in Sec. S 3.2.d. Figure S2 shows
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(a) (b)

(c) (d)

Figure S2: The probability πs and its cumulative distributionΩs for the supercritical regime of an undirected
network with λ = 3.3 (top panels) and the UDN of Fig. S1 (bottom panels). The dots are the numerical
results and the dashed lines are the theoretical results. Closer to the critical point a better agreement between
theory and numerics is observed.

that the results of Eq. (S55) are in good agreement with the numerics as long as p is not too far from pc.
In Appendix S 9, we describe two other methods. Method 3, at first, expands the generating functions

around H1 = 1 (as opposed to the expansions in this section which considered the fact that at z = 1, H1

takes a value appreciable smaller than 1). Then z is expanded around the point z∗ at which its derivative
is zero! This operation cannot be justified and, as we will see in Appendix S 9, this operation will result
in inaccurate predictions; nonetheless it gives a πs which dependents on better known network parameters
such as the average degree and not on the rather elaborate functions of η.

Method 2 is our attempt to relate method 1 and method 3; in method 2, we assume that although H1(1) is
smaller than 1, we can still approximate H1(1) with 1. Using this approximation, the parameters that appear
in the expansions of the generating functions depend on well-known quantities such as the average degree,
etc., instead of the quantity η. On the other hand, in contrast to method 3, in method 2 we do not expand z
around an unjustifiable value z∗; rather we expand z around a value �z determined by our governing equation
for H1(z) (see Eq. (S56)).

In Appendix S 9, we show that method 1 described here is more accurate and more reliable than the other
two methods. It is worth noting that, a finding of method 3 is that s∗, the exponent of the exponential decay
of πs, is proportional to δ−(�λ−1)/(�λ−2); this result was obtained before (Ref. [7]) using another set of techniques.
But now we know that this result may not be correct, as method 3 does not accurately describe the behavior
of πs. This indicates that even for the supercritical regime of 2 < �λ < 3, the methods of preexisting studies
may have significant inaccuracies.
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S 3.2.d Calculation of �h and η

According to Eqs. (S23) and (S39) (and similarly Eqs. (S23) and (S96)), at z = �z,

�h = �z �G1(�h) (S56)

= �z G1(1 − p + p�h) (S57)

We assume �z ≈ 1. Then we can solve Eq. (S57) recursively. Alternatively, if we are interested in obtaining
quickly the whole �h–p behavior, we can consider η � 1 − p + p�h as a new generating function to get

η = 1 − p + p�h (S58)

= 1 − p + p�z G[1](η) (S59)

= 1 − p
�
1 −�z G[1](η)

�
(S60)

⇒ (S61)

p =
1 − η

1 −�z G[1](η)
. (S62)

Then for each value of η we can calculate directly the corresponding p (using the assumption �z ≈ 1), and
then obtain from Eq. (S58) the corresponding �h.

S 3.3 A note on the effect of percolation on governing equations

As mentioned in the main text the governing equations used in Refs. [5, 7] cannot give correct prefactors
for πs; this is because they do not apply correctly the effect of percolation on generating functions, while
such effect in correctly captured by Eqs. (S23) and (S24) that incorporate the analytical results that Ref. [6]
obtained for the effect of percolation on generating functions G0 and G1. In fact the πs obtained using
Eqs. (S23) and (S24) equals one over p times the πs that can be obtained using the governing equations
of Refs. [5, 7]. One way to show this is comparing the two different sets of equations for the generating
function employed in each method (see also Ref. [9]): Let us define the argument of G1 in Eq. (S23) as
another generating function �H1, i.e., �H1 = 1 − p + pH1. Now, writing Eq. (S23) in terms of �H1, we get
�H1(z) = 1 − p + pz G1( �H1(z)); thus, �H satisfies the governing equation

�H1(z) = 1 − p + pz G1( �H1(z)), (S63)

used in [7] and [5]. On the other hand, whether we define φ = 1−H1 or φ = 1− �H1, both of the corresponding
equations for H0 (i.e., the equation �H0(z) = 1 − p + pz G0( �H1(z)) used in [5, 7] and Eq. (S24)) lead to the
same form for H0 in terms of φ, up to the linear order (compare Eq. (5.53) of [9] and Eq. (S26)). Hence,
the difference between πs values obtained from the two methods lies in the difference between H1 and �H1.
Now, as H1 = (1− p)/p+ �H1/p, therefore, except for s = 0, all the coefficients ρs of the generating function
H1(z) =

�
s ρszs are equal to �ρs, the coefficients of �H1(z), divided by p. Consequently, πs obtained using H1

is equal to one over p times the πs obtained using �H1, for s � 0.
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S 4 Summary of the results for πS and its parameters

πs ∼





R3 s−�λ (subcritical, 2 < �λ < 3)

R4 s−3/2 e−s/s∗ (supercritical, 2 < �λ < 3)

R2 s−(1+ 1
�λ−1

) (critical, 2 < �λ < 3)

R1 s−3/2 e−s/s∗ (noncritical, �λ > 3)

R1 s−3/2 (critical, �λ > 3)

, where s∗ =





2p2�k��k3�
δ2�k2�2 (�λ > 3, UN)

2p2�k�� jk2�
δ2� jk�2 (�λ > 3, DN)

2p2 G1(η) G��1 (η)
�
1 − pG�1(η)

�2 (2 < �λ < 3)

,

R3 =





(1 − u) a∗
�

1 +
ppc

|δ| �k�
�� ppc

−δ
�λo−1

(UDN)

(1 − u) a∗
� ppc

−δ
��λ

(CDN & UN)

, R4 = ± G�0(η)
√

G1(η)�
2πG��1 (η)

,

R1 =





�
�k�3/ �2π� jk2�� (DN)

�
�k�3/ �2π�k3�� (UN)

, and R2 =





−�k�
Γ
�

1
1−λo

�
[(1 − u)coΓ(1 − λo)]

1
λo−1

(UDN)

−�k�1+ 1
�λ−1

Γ
�

1
1−�λ

� �
(1 − u)a∗Γ(1 − �λ)

� 1
�λ−1

(CDN & UN)
.

S 5 More on the sample size effects

The finite size of a sample can impose exponential-like cut-offs on power-law distributions even at the
critical point. Figure S3(a) demonstrates that such exponential cut-offs disappear (are in fact displaced to
larger values) as larger sample sizes are used and the numerics approach the power-law distribution predicted
by the theory. Another effect of the finite size that we described in the main text (see Fig. 3 of the main
text) was that systems with skewed degree distribution can produce power-law distributions that expand
for several orders of magnitudes and that such power-laws may be indistinguishable from pure power-laws.
Such power-laws can be observed if a sufficiently large number of experiments (e.g. 105) are performed
(Fig. S3(a)); on the other hand, in case a huge number of experiments are performed exponential cut-offs
produced by the finite size can be detected. However, such exponential decays have a similar effect on pure
or non-pure power-laws and power-laws with different nature may still be indistinguishable (see Fig. S3(a)).
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(a) (b)

Figure S3: (a) The exponential cut-offs imposed on power-law avalanches by finite size effects disappear
as the network size is increased. The dots show simulation results for subcritical and critical regime of
UDNs with λo = 2.7 and λi = 3.3 with different sizes N; the numerics approach the theoretical description
(dashed lines) as N increases. (b) In finite sample sizes that pure power laws can be indistinguishable from
power-laws that have an exponential cut-off because of their noncritical avalanches (compare the bold lines
and also see Fig. 3 of the main text). Although a huge number of experiments can disclose the exponential
cut-off produced by finite size effects; still the source of the power-law behaviour is undecidable. For bold
lines the number of numerical experiments was 105 and for the dashed lines 107 experiments are performed.

S 6 (a − z) β non-analyticity (as in Eqs. (S31a) and (S108))

Consider a function H(z) =
�∞

n πnzn that has a branch point at z∗ = a; hence its expansion around a has a
leading order behaviour in the form

H(z) ∼ analytic part + R(a − z) β as z→ a. (S64)

This is the same format Eqs. (S31a) and (S108) have considering β = 1/2, w � 1 − z and a = 1 (Eq. (S31a))
or a = z∗ (Eq. (S108)). The sequence πn, for large n, is then determined by the leading order nonanalytic
term2 R(a− z)β [14]. Hence, to obtain πn, we need to find the coefficients of zn in the expansion of (a− z)β =�∞

n ηn zn. To do so, we can use binomial expansion [14]:

(a − z)β =
∞�

n=0

�
β

n

�
(−z)naβ−n (S65a)

2If the function has more than one singular point, for example two singularities, the behaviour of πn for the largest values
of n is determined by the leading order term for the branch point closest to the origin; but for some smaller n (which are still
sufficiently large) the behaviour may be determined by the leading order term for the branch point further from the origin [8]. The
accuracy of approximations for πn is increased by the number of singularities considered according to a non-increasing order of
the modulus of the singular points [14].
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=

∞�

n=0

�
n − β − 1

n

�
e(ln a)(β−n)zn. (S65b)

Accordingly, ηn , which are the coefficients of zn in the above expansion, are equal to

ηn �
�

n − β − 1
n

�
e(ln a)(β−n) (S66a)

=
Γ(n − β)

Γ(−β)Γ(n + 1)
e(ln a)(β−n) (S66b)

∼ e(ln a)β

Γ(−β) n−(β+1) e−(ln a)n as n→ ∞, (S66c)

where in S66c we used Stirling’s approximation Γ(n + 1) = n! =
√

2πn
�

n
e

�n. Hence,

πn ∼ R e(ln a)β

Γ(−β) n−(β+1) e−(ln a)n as n→ ∞. (S67)

For the generating function H(z) in the form of Eq. (S34), a = 1 and for that in the form of Eq. (S108),
a = z∗. For a = 1, Eq. (S35) is obtained, that is,

πn ∼ R
Γ(−β) n−(β+1) as n→ ∞. (S68)

On the other hand, for a = z∗ ∼ 1 + ξ (which is the case for Eq. (S108)), and ξ < 1 we get

πn ∼ R e ξβ

Γ(−β) n−(β+1) e− ξ n as n→ ∞. (S69)

S 7
√

1 + s∗(�z − z) non-analyticity (as in Eqs. (S31b), (S52) and (S100))

Using the Cauchy theorem, πs can be written as [11]

πs =
1

2πi

�

C

H0(z)
zs dz, (S70)

where C can be any closed contour around the origin that does not enclose any poles in H0. We choose a unit
circle and deform it into the keyhole contour CR∪l1∪C�∪l2 shown in Fig. S4. In Fig. S4, µ is a branch point,
and the branch cut is located on the real axis from α to∞. It is straightforward to show that the integrals along
the circular contours CR and C� limit to zero [15, 16]. Hence, for H0(z) ∼ analytic part ± b

�
1 + s∗ (�z − z)

as z→ �z, we will have:

πs = ± b
2πi

�

l1∪ l2

�
1 + s∗ (�z − z)

zs dz (�z − z � w) (S71a)
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= ∓ b
2πi

�

l1∪ l2

√
1 + s∗ w

zs dw (z � e ρ and w � �z − eρ ∼ −ρ [assuming �z ≈ 1]) (S71b)

= ± b
2πi

�

l1∪ l2

√
1 − s∗ ρ

esρ dρ (u � 1 − s∗ ρ) (S71c)

= ± b
2πi

�

l1∪ l2

√
u

es(1−u)/s∗ (−du
s∗

) (S71d)

= ∓b e−s/s∗

2πis∗

�

l1∪ l2
u1/2e(s/s∗)u du, (S71e)

where in Eq. (S71a), we used the fact that the net contribution from the analytic part of H0 on l1 ∪ l2 is zero.
In Eq. (S71d), we made the substitution z � e ρ, and w � �z − eρ ∼ −ρ as ρ → 0. To obtain Eq. (S71e), we
employed the substitution u � 1 − s∗ ρ. Now consider that the location of an arbitrary point on the l1 path
can be written as z = c+ i d, or, equivalently, w = (�z− c)− i d, ρ � (c−�z)+ i d, and u = (1+�z− c)− i d. Thus,
in the complex u-plane, l1 is located in the third quadrant. Moreover, note that, along l1, z in Eq. (S71a)
varies from 1/s∗ + �z to ∞; this corresponds to a variation in w from −1/s∗ to −∞. Hence, ρ in Eq. (S71d)
varies from 1/s∗ to ∞, and u varies from 0 to −∞. Similarly, along l2, u is located in the second quadrant
and varies from −∞ to 0. Therefore, we can use another change of variable: u � reiθ, where





along l1 : θ = −π, u = −r, and u1/2 = r1/2e−iπ/2

along l2 : θ = π, u = −r, and u1/2 = r1/2eiπ/2.
(S72)

Thus, along l1, r varies from 0 to∞, and along l2, it varies from∞ to 0. Therefore,

πs = ∓b e−s/s∗

2πis∗

�

l1∪ l2
r1/2eiθ/2e−(s/s∗)r du, (S73a)

= ∓b e−s/s∗

2πis∗

�� ∞

0
e−iπ/2 +

� 0

∞
eiπ/2
�

r1/2e−(s/s∗)r (−dr) (S73b)

= ±b e−s/s∗

πs∗

�
eiπ/2 − e−iπ/2

2i

� � ∞

0
r1/2e−(s/s∗)r dr (S73c)

Figure S4: The keyhole contour C in the complex z-plane for the integral of Eq. (S70). A branch cut extends
from µ = 1/s∗ +�z (see Eq. (S71b)) to∞. The circular arcs have radii � and R.
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= ±b e−s/s∗

πs∗
(s∗/s)3/2

� ∞

0
t3/2−1e−t dt , (S73d)

where the change of variable r = (s∗/s)t is performed in Eq. (S73d). Now, the integral in Eq. (S73d) equals
Γ(3/2) =

√
π/2. Hence,

πs ∼ ±bs∗1/2

2
√
π

s−3/2 e−s/s∗ . (S74)

S 8 Simpler equations to numerically calculate G0/1 at a specific point h

In uncorrelated directed networks

G0(h) =
∞�

j,k=0

Pjk hk =

∞�

j,k=0

PjPk hk =

∞�

j=0

Pj

∞�

k=0

Pk hk =

∞�

k=0

Pk hk, (S75)

G1(h) =
1
� j�

∞�

j,k=0

jP jk hk =

�
1
� j�

∞�

j=0

jP j

� ∞�

k=0

Pk hk =

∞�

k=0

Pk hk (S76)

However, for correlated directed networks of Eq. (S8)

G1(h) =
∞�

j,k=0

qjk hk (S77)

=
1
� j�

∞�

j=0

�
j u P(tail)

j hkmin +

∞�

k=kstart

j (1 − u) P(tail)
k hk

�
(S78)

=
1
� j�

�
u � j� hkmin + (1 − u)

∞�

j=0

∞�

k=kstart

j P(tail)
k δk,K( j) hk

�
(S79)

=
1
� j�

�
u � j� hkmin + (1 − u)

∞�

j=0

j P(tail)
j hK( j)

�
(S80)

= u hkmin +
1
� j� (1 − u)

∞�

j=0

j P(tail)
j hK( j) (S81)

= u
� j hkmin�
� j� + (1 − u)

1
� j�� j hK( j)� (S82)

=
� jhk�
� j� , (S83)

where in Eq. (S79) we used the fact that in our fully correlated networks, according to Eq. (S3), k is deter-
mined by j such that k = K( j) = j

λi−1
λo−1 . To write Eq. (S80), we considered that for a j and a k that satisfy

Eq. (S3), Pk and Pj are actually identical. It is worth noting that in Eqs. (S81)-(S82), the averages are over
all the in-degree values (compared to Eq. (S77) which averages over all in-degree−out-degree pairs).
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Similarly, for correlated directed networks of Eq. (S9) we can write

G1(h) =
∞�

j,k=0

qjk hk (S84)

=
1
� j�

∞�

j,k=0

jP jk hk (S85)

=
1
� j�

∞�

k=0

�
jmin u P(tail)

k hk +

∞�

j= jstart

j (1 − u) P(tail)
k hk

�
(S86)

=
1
� j�

∞�

k=0

�
u jmin P(tail)

k hk + (1 − u)
∞�

j= jstart

j P(tail)
k δ j,J(k) hk

�
(S87)

=
1
� j�

�
u jmin

∞�

k=0

P(tail)
k hk + (1 − u)

∞�

k=0

∞�

j= jstart

j P(tail)
k δ j,J(k) hk

�
(S88)

=
1
� j�

�
u jmin

∞�

k=0

P(tail)
k hk + (1 − u)

∞�

k=0

J(k) P(tail)
k hk

�
(S89)

=
1
� j�
�
u jmin �hk� + (1 − u) �J(k)hk�� (S90)

=
1
� j�
�
u � jmin hk� + (1 − u) �J(k)hk�� (S91)

=
� jhk�
� j� , (S92)

where the averages are over all the out-degree values.

S 9 Other methods for the supercritical regime

Method 2

This method is a variation of method 3 (see Sec. Method 3) and provides a much better description of
numerical results than method 3; however its performance is still worse than that of method 1 (Sec. S 3.2.c).
We start with Eq. (S23) which states that

z =
1 − φ

G1(1 − pφ)
. (S93)

Then, for 2 < �λ < 3, we have

z ∼ 1 − φ
1 − Apφ + Dφν + o(ν)

as φ→ 0 (S94a)

∼ (1 − φ)(1 + Apφ − Dφν) as φ→ 0 (S94b)
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∼ 1 + Aδφ − Dφν as φ→ 0, (S94c)

where ν � �λ − 1. Equation (S94c) has the same leading order behavior as Eq. (S25) when 2 < �λ < 3;
hence, obviously, it has the same solutions for δ � 0. To obtain a valid solution δ > 0, we first define
h � H1(z) = 1 − φ; accordingly, z = H−1

1 (h). According to Eq. (S94c),

z = 1 + Aδ(1 − h) − D(1 − h)ν, (S95a)

The taylor expansion of z around an arbitrary point �h < 1 has the form:

z ∼ �z − β (h − �h) − α (h − �h)2 as h→ �h, (S96)

where �z = z(�h), β = − dz
dh

����
h=�h
= Aδ − Dν(1 − �h)ν−1, and α = −1

2
d2z
dh2

����
h=�h
=

Dν(ν − 1)(1 − �h)ν−2

2
. It is

worth mentioning that we know that at �h = 1 the correct behavior of z is described by Eq. (S104a) and not
Eq. (S96). The solution to Eq. (S96) is

h − �h ∼ −β
2α
± 1

2α

�
β2 − 4α(z −�z); (S97)

Therefore,

φ = 1 − h ∼ −�h + β
2α
± 1

2α

�
β2 + 4α(�z − z), (S98)

and according to Eqs. (S24) and (S16)

H0(�z ) ∼ analytic terms ± �z E
2α

�
β2 + 4α(�z − z) (S99)

∼ analytic terms ± b
�

1 + s∗(�z − z), (S100)

where, b =
�z Eβ
2α
=
�z E
�

Aδ − Dν(1 − �h)ν−1
�

Dν(ν − 1)(1 − �h)ν−2
and s∗ =

4α
β2 =

2Dν(ν − 1)
�

1 − �h
�ν−2

�
Aδ − Dν(1 − �h)ν−1

�2 .

Using Eq. (S99) and the result of S 7, for 2 < �λ < 3 and δ > 0, we obtain

πs ∼ ±bs∗1/2

2
√
π

s−3/2 e−s/s∗ (S101)

πs ∼ ± �z E
2
√
πα

s−3/2 e−s/s∗ as s→ ∞ (S102)

∼ ± �z E�
2πDν(ν − 1)(1 − �h)ν−2

s−3/2 e−s/s∗ as s→ ∞. (S103)

In Eq. (S103)3, we should substitute a suitable pair of values (�z,�h), such that they satisfy the condition that �h
is not equal to 1 but also satisfy our assumptions that �h is close to 1. This imposes a degree of arbitrariness
and unreliability in our method. In Fig. S5 we used �h = 0.95 and obtained the corresponding �z using
Eq. (S57); we see that for this pair of values method 2 performs better than Method 3 (see the following
section). Figure S5 also shows that method 1 (Sec. S 3.2.c) is more accurate than Method 3 and more reliable
than method 2 (this section).

3It is worth mentioning that the above approach can also be used for λ > 4; in this case the term Dφν in Eq. (S94a) is replaced
with Bφ2. Consequently, πs is determined by Eq. (S101), but with different s∗ and b values.
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(a) (b)

Figure S5: The probability πs and its cumulative distribution Ωs for the undirected network of Fig. S2. The
dots are the numerical results and the lines are the theoretical results obtained from different methods.

Method 3

We developed this method based on the method of Lee et al. [8]. Consider Eq. (S95a) and its derivative:

z = 1 + Aδ(1 − h) − D(1 − h)ν, (S104a)
dz
dh
= −Aδ + Dν(1 − h)ν−1 . (S104b)

Also consider the point h∗ for which
dz
dh

����
h∗
= 0. According to Eq. (S104b), 1 − h∗ =

�
Aδ
Dν

� 1
ν−1

and

z∗ � z(h∗) = 1+Aδ(1−h∗)
�

1 − D
Aδ

(1 − h)ν−1

�
= 1+Aδ(1−h∗)(1−1/ν) is obtained from Eq. (S104a). Then

for the expansion of z around h∗ we get [8]

z = z∗ +
∞�

n=2

Mn

n!
(h − h∗)n. (S105a)

To the leading order,

z − z∗ ∼ M2

2
(h − h∗)2 as h→ h∗, (S106)

where M2 = −ν(ν−1)D(1−h∗)ν−2 = −ν(ν−1)D
�

Aδ
Dν

�(ν−2)/(ν−1)

. Thus, the leading order behaviour of H1(z)

is determined by

1 − φ = h ∼ h∗ ±
�

2
M2

(z − z∗)1/2 as z→ z∗; (S107)

as a result, the expansion of H0(z) around z∗ has a singularity at z = z∗:

H0(z) ∼ analytic part ± �k� p

�
2
−M2

(z∗ − z)1/2 as z→ z∗, (S108)

as opposed to the the critical and subcritical case, where the singularity (closest to the origin) is located at
z = 1 − w = 1. It is worth noting that M2 in Eq. (S108) is real only for nonnegative δ; hence, as we will
show in a moment, for 3 < γ < 4, πs obtained from Eq. (S108) is valid only for p > pc.
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Using Eq. (S108) and the results of Appendix S 6, for 3 < γ < 4 and δ > 0, we obtain

πs ∼ �k� p e ln(z∗)/2
√−2πM2

s−3/2 e− ln(z∗) s as s→ ∞. (S109)

Now, it is obvious that as, for 3 < γ < 4, M2 is real when δ > 0, Eq. (S109) is valid only for the supercritical
phase. The rate of exponential decay is determined by ln(z∗) which is proportional to δ1+1/(ν−1) = δ(�λ−1)/(�λ−2);
this result is consistent with the result obtained using finite size scaling [7] for undirected networks with
3 < λ < 4. Fig. S5 illustrates that method 3 is not accurate for describing the supercritical properties of
networks with 2 < �λ < 3 and that methods 1 and 2 provide better descriptions for such networks.

It is worth mentioning that the above approach can also be used for γ > 4; in this case the term Dφν in
Eq. (S94a) is replaced with Bφ2. Consequently, πs is determined by Eq. (S109), but with a different z∗ and
M2 values. This result is valid for both the supercritical and subcritical region, and matches (not shown) the
result of Sec. 5.5.4 of Ref. [9] (the so called method (IV) in [9]) for γ > 4.
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We introduce a k-leaf removal algorithm as a generalization of the so-called leaf removal algorithm. In this
pruning algorithm, vertices of degree smaller than k, together with their first nearest neighbors and all incident
edges, are progressively removed from a random network. As the result of this pruning the network is reduced
to a subgraph which we call the Generalized k-core (Gk-core). Performing this pruning for the sequence of
natural numbers k, we decompose the network into a hierarchy of progressively nested Gk-cores. We present an
analytical framework for description of Gk-core percolation for undirected uncorrelated networks with arbitrary
degree distributions (configuration model). To confirm our results, we also derive rate equations for the k-leaf
removal algorithm which enable us to obtain the structural characteristics of the Gk-cores in another way. Also
we apply our algorithm to a number of real-world networks and perform the Gk-core decomposition for them.

DOI: 10.1103/PhysRevE.99.022312

I. INTRODUCTION

Structural decomposition of complex networks providing
classification of the vertices into different subsets is one of
the effective approaches for studying the structural properties
of networks. As a primary and well-known example, one can
indicate k-core decomposition, which is an efficient technique
for uncovering structural properties of large networks [1,2].
The k-core of a network is defined as the largest subgraph
whose vertices have degree at least k [3]. There is a pruning
algorithm enabling one to obtain k-core subgraphs for a
given network: at each step, a vertex of degree less than k
is randomly chosen and removed. The pruning is continued
until no further removal is possible. As the result of this
pruning the network is decomposed to a set of enclosed
k-cores. The vertices belonging to higher (more central) cores
are more strongly connected. It was also shown that the
vertices of the inner core are more influential spreaders in
epidemic processes [4]. A giant k-core emerges above a
percolation threshold [5]. The most remarkable result is that
for k � 3 the giant k-core shows a discontinues hybrid phase
transition combining discontinuity and a critical singularity
[5,6]. Furthermore, generalized models for k-core percolation
have been studied on interdependent and multiplex networks,
which reveal more features than the ordinary k-core percola-
tion problem on single networks [7,8].

Another key subgraph of a random network is simply
called its core. These subgraphs significantly differ from the
k-cores. A core of an undirected network is obtained only
by a pruning algorithm in contrast to the k-core, which is, in
addition, defined by a specific constraint on the connectivity of

its vertices. The pruning algorithm producing a core is called
the leaf removal algorithm and was introduced by Karp and
Sipser [9]. In this pruning algorithm, a vertex of degree one
(a leaf) is randomly chosen and removed together with its
neighbor and all incident edges. The algorithm is continued
until no leaves remain. The resulting subgraph is formed by
some isolated subgraphs and the giant one, which is called
the core. For the Erdős-Rényi (ER) random graphs, Bauer
and Golinelli showed that the core percolation threshold is
located at the mean degree �q� = e = 2.718 . . ., so that above
this point the network contains the giant core, while below
the threshold the size of the giant core is zero [10]. The core
structure and the phase transition at �q� = e is related to a
number of phenomena in physics such as conductor-insulator
transitions [11] and replica symmetry breaking in the minimal
vertex covers [12]. Moreover it was shown that the formation
of the core is related to controllability robustness [13,14]
and some combinatorial optimization problems such as the
maximum matching and minimum vertex cover [9,12,15].
Also a generalized leaf removal process, which is applicable
in the minimum dominating set problem, has been introduced
in Ref. [16]. Using a time-dependent analysis, people have
studied the core percolation related to this generalized leaf-
removal algorithm.

In this paper, we generalize definition of the leaf to the
“k-leaf,” defined as a vertex of degree less than k. In this
algorithm we remove recursively a k-leaf together with all its
first neighbors and their incident edges. Following this prun-
ing algorithm, the network is decomposed to a hierarchy of
nested cores, similarly to the ordinary k-core decomposition.
We call this structure the Generalized k-core (Gk-core). In this
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FIG. 1. The open green dot shows a k-leaf. Once a k-leaf is
selected, the k-leaf together with the dashed red edges are removed.

notation, the ordinary core is represented by the G2-core. The
vertices belonging to inner Gk-cores and their first neighbors
are of high degree and well connected. Analytical calculation
is possible only for the networks with a locally treelike
structure. For these kind of networks, and using the generating
function technique, we study the structural transitions and
emergence points of the Gk-core subgraphs.

The k-leaf removal algorithm can be also considered as the
inducing effect, introduced by Zhao et al. [17]. In the inducing
process, a collapsed vertex i will induce its remaining neigh-
bors, to be collapsed if vertex i has fewer than k remaining
neighbors. In Ref. [17] the inducing effect together with the
spontaneous collapsing process leads to the emergence of
other subgraphs, called protected cores.

The leaf removal algorithm is a Markovian process. We
describe evolution of the network structure during the pruning
process by applying rate equations, which have been derived
for the ordinary leaf removal algorithm on undirected and
directed graphs [15,18,19]. This approach provided the size
and the emergence point of the ordinary core. In this paper,
we also derive rate equations for the degree distribution of a
network during the execution of the k-leaf algorithm, which
enables us to obtain the structure of the Gk-cores in an
alternative way.

The paper is organized as follows. In Sec. II we present an
analytical framework to study Gk-core percolation for random
networks with arbitrary degree distributions. We apply our
general results to the ER and scale-free networks. We compare
our results with numerical simulations. In Sec. III we derive
the rate equations for the k-leaf removal algorithm, and using
these equations we find in another way how Gk-cores are or-
ganized. In Sec. IV a set of real-world networks are analyzed
in the framework of our approach.

II. ANALYTICAL FRAMEWORK

Let us consider an uncorrelated network with an arbitrary
degree distribution P(k). To produce a generalization of the
core subgraph, we use the following pruning algorithm: at
each step we randomly choose a k-leaf (i.e., a vertex of degree
less than k) and remove it together with its neighbors and all
incident edges to the neighbors. Figure 1 shows a k-leaf (open
green dot) and the k-leaf removal process. As a result of the
pruning, the degrees of some vertices change. The procedure
is iterated until no vertices of degree less than k remain in
the network. The residual network, if it exists, is called the
Gk-core.

To find the size of the Gk-core, we classify the vertices into
three groups: (1) α-removable: the vertices that can become a

FIG. 2. Schematic representation of the probabilities α and β.

leaf; (2) β-removable: the vertices that can become a neigh-
bor of a leaf; (3) the vertices that are neither α-removable
nor β-removable and hence belong to Gk-core. Using the
assumption that the network has a locally treelike structure,
we can write self-consistency equations for probabilities that
a random neighbor of a random vertex is α-removable, β-
removable, or a nonremovable vertex. We call these proba-
bilities α, β, and 1 − α − β, respectively. These probabilities
are represented graphically in Fig. 2. Note that the definition
of these probabilities is the same as that already defined in
Ref. [20]. The difference is in the definition of the leaves.

At least one of the neighbors of a β-removable ver-
tex must be α-removable. Furthermore, an end vertex of
a randomly chosen edge belongs to the Gk-core, if it
has at least k − 1 neighbors which belong to the Gk-core
and none of its neighbors are of type α. Taking into ac-
count these facts, we write the following two self-consistent
equations:

1 − α − β =
�

q

qP(q)

�q�

×
q−1�

s=k−1

�
q − 1

s

�
(1 − α − β )sβq−1−s,

β = 1 −
�

q

qP(q)

�q� (1 − α)q−1. (1)

The first equation represents the probability that an end
vertex of a randomly chosen edge belongs to the Gk-core.
qP(q)/�q� is the probability that the end vertex of a uniformly
randomly chosen edge has degree q, and the combinatorial
multiplier (m

n ) gives the number of ways one can choose n
edges from a sample of m edges. At least k − 1 edges of q − 1
edges (other edges than the starting one) must lead to the
Gk-core. Equation (1) also shows the probability that an end
vertex of a randomly chosen edge is β-removable. At least one
of the neighbors of a β-removable vertex must be a leaf, i.e.,
an α-removable vertex. These two equations are schematically
represented in Fig. 3.

FIG. 3. Graphical representation of the self-consistency equa-
tions for the probabilities β and 1 − α − β.
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FIG. 4. Schematic representation of the probability that a vertex
belongs to the Gk-core, which is the relative size nkc of the Gk-core.

From Eq. (1), one can derive the following self-
consistency equation for α:

α =
�

q

qP(q)

�q�
k−2�

s=0

�
q − 1

s

�
(1 − α − β )sβq−1−s. (2)

The probabilities α and β enable us to obtain the probability
nkc that a randomly chosen vertex belongs to the Gk-core,
which is also the relative size of the Gk-core. Figure 4 shows a
schematic representation of this probability. A vertex is in the
Gk-core if the vertex has at least k neighbors which belong to
the Gk-core. Hence we can write the following equation for
the relative size of the Gk-core:

nkc =
�

q>k

P(q)
q�

s=k

�
q
s

�
(1 − α − β )sβq−s. (3)

To be able to solve Eqs. (1)–(3) analytically, we rewrite these
equations using generating functions [21]. For a network with
a given degree distribution P(q), the generating function G(x)

is defined as

G(x) ≡
�

q

P(q)xq. (4)

Hence, we obtain the following equations for α, β and nkc in
terms of the generating function:

α = 1

�q�
k−2�

s=0

(1 − α − β )s

s!
G(s+1)(β ),

β = 1 − G(1)(1 − α)

�q� , (5)

nkc = G(1 − α) −
k−1�

s=0

(1 − α − β )s

s!
G(s)(β ),

where we used the notation G(s)(x) for the sth derivatives of
G(x).

Furthermore, the probability that both end vertices of an
edge in the network belong to the Gk-core is (1 − α − β )2.
Hence, the fraction of edges in the Gk − core, denoted by lkc,
is obtained as

lkc = c

2
(1 − α − β )2. (6)

Let us first consider ER networks with Poisson degree
distributions, P(q) = cqe−c/q!, where c is the vertex mean
degree for the network. For the Poisson distribution, the
generating function and its sth derivative are G(x) = e−c(1−x)

and Gs(x) = cse−c(1−x), respectively. One can easily find the
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FIG. 5. The relative sizes and the normalized number of edges of the Gk-core for k = 2, 3, 4. The points are the results of numerical
simulation for the ER and asymptotically scale-free networks of size N = 106, averaged over 10 realizations. The lines are analytical results
obtained from Eqs. (5) and (6). As γ approaches 2, finite size effects become more important, and a deviation between theoretical results and
simulations is observed.
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FIG. 6. The behavior of (a) the transition point c∗ and (b) the
size of the Gk-core at the transition point, n∗

kc, vs k for ER random
networks.

relation between α and β probabilities as β = 1 − e−cα ,
which is independent of the value of k. For ER networks with
Poisson degree distributions, one can write a closed form for
α and nkc from Eqs. (1) and (2):

α = e−cα �[k − 1, c(e−cα−α)]

(k − 2)!
,

nkc = e−cα

�
1 − �[k, c(e−cα−α)]

(k − 1)!

�
, (7)

where �(s, x) is the upper incomplete � function.The relative
size and the normalized number of edges of the Gk-core for
k = 2, 3, and 4 are shown in Fig. 5. The analytic results
(curves) are compared with numerical simulations (symbols).
As we can see in the figure, in contrast to the ordinary core
(k = 2), for k � 3 a Gk-core emerges discontinuously at the
percolation threshold.

Equations (7) enable us to obtain the transition point
c∗ and the size of the Gk-core at the transition point, n∗

kc,
for each k. From numerical data, we estimate the asymptotic
representations for c∗ and n∗

kc as the following:

c∗ ≈ k + C
√

k ln ln k,

n∗
kc ≈ 1 − 1

C
√

k ln ln k
, (8)

C = 2.413 . . . .

Figure 6 shows the behavior of c∗ and n∗
kc, in which the

curves asymptotically coincide to Eqs. (8).
Next we consider scale-free networks. It was shown

that for the purely power-law scale-free networks the
ordinary core does not exist [20]. Hence we con-
sider the asymptotically scale-free, uncorrelated networks
generated by the static model with the degree distri-

bution P(q) = [ c(γ−2)
2(γ−1) ]

γ−1
�[q − γ + 1,

c(γ−2)
2(γ−1) )/�(q + 1) ∼=

q−γ , where �(s) is the � function [22,23]. For this de-
gree distribution the generating function is G(x) = (γ −
1)En[(1 − x) c(γ−2)

2(γ−1) ], where En(x) =
� ∞

1 dye−xyy−n is the ex-
ponential integral. Figure 5 shows the relative size and the nor-
malized number of the general 2-, 3-, and 4-cores for different
values of γ versus c. With decreasing γ , the emergence point
is shifted towards higher values of c. For scale-free networks
when γ → 2, finite-size effects become more significant.
By imposing the proper degree cutoffs, one can eliminate
the finite-size effects and the intrinsic degree correlations
[24,25]. In Fig. 5 we compare the emergence of cores for
asymptotically scale-free and ER networks. As one can see,
the dependence of the cores on c for these networks is similar
and, as expected, the curves with larger γ approach the result
for ER networks.

We define pruning time steps in a way that enables us
to classify the vertices of the network into a set of layers
for a given k. At time step t � = 1, we select the vertices of
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FIG. 7. Total number of pruning steps τ vs mean degree c. The curves shows diverging of τ (c) at the emergence point of (a) G2-core, (b)
G3-core, and (c) G4-core for the ER and asymptotically scale-free networks of size N = 106, averaged over 10 realizations.
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FIG. 8. (a) The relative sizes and (b) normalized number of edges
of the Gk-core in ER networks for k = 2, 3, and 4, vs the mean
degree c of the network. The points show the results obtained by
the rate equation approach and lines show the results obtained using
the formalism of Sec. II [Eqs. (5) and (6)].

degree less than k (k-leaves) and remove these vertices and
their neighbors by applying the k-leaf algorithm. Removing
the vertices in the first step may produce new k-leaves, which
will be removed at t � = 2 and so on. The vertices removed

at each step t � form a layer of the network. In other words,
the network is pruned layer by layer until there is no k-leaf
left. We denote the total number of pruning steps as τ so that
t � = {1, 2, . . . , τ }. After τ steps, the network consists of finite
components or a giant Gk-core. For different networks we
obtain τ (c) using numerical simulation; see Fig. 7. As we can
see, the dependencies τ (c) diverge at the birth points of the
cores.

III. RATE EQUATIONS

The structural evolution of the network during pruning
processes is described by the so-called rate equations for the
degree distribution of the remaining network [15,18]. Here we
derive rate equations for the k-leaf removal algorithm. Let us
consider a network of N vertices and L edges. For simplicity
we remove only the edges during the pruning process. In
other words, at each time step t we choose randomly a k-
leaf and remove all k edges incident to it, together with all
edges incident to its k neighbors. In this way, the number of
vertices of the network remain constant. Note that the time
steps t differ from t �. The algorithm is iterated until P(q) = 0
for all q < k. The important point of this approach is that
the dynamics is self-averaging in the thermodynamic limit:
N → ∞. After a certain number of time steps, almost all
random networks have the same degree distribution, which is
independent of the (random) order of the removal of leaves
[10]. Hence this approach can be used as a confirmation of
the results obtained in the previous section.

We introduce the rescaled time t = T
N , where T is the total

number of steps of the pruning algorithm, so �t = 1/N is the
rescaled time of one iteration. Let N (q, t ) be the average num-
ber of vertices with degree q at time t . Since the total number
of vertices is constant, i.e., N (t ) = N , we have N (q, t ) =
NP(q, t ). We can write the change of N (q, t + �t ) − N (q, t )
after one iteration. In the large network limit, we can pass
from the discrete difference to the time derivative of the degree
distribution and obtain the following evolution equation for
the degree distribution:

N (q, t + �t ) − N (q, t ) = Ṗ(q, t )

= − θ (k − q)P(q, t )�
q θ (k − q)P(q, t )

+ δq,0

�
1 +

�
q qθ (k − q)P(q, t )

�
q θ (k − q)P(q, t )

�
−

�
q qθ (k − q)P(q, t )

�
q θ (k − q)P(q, t )

qP(q, t )

�q�t

+
�

q qθ (k − q)P(q, t )
�

q θ (k − q)P(q, t )

�
q q(q − 1)P(q, t )
�

q qP(q, t )

�
(q + 1)P(q + 1, t ) − qP(q, t )

�q�t

�
. (9)

Let us explain different terms on the right-hand side of
Eq. (9). First, we choose a random vertex of degree less than
k and remove all edges incident to it. The probability that a
vertex has degree less than k is θ (k−q)P(q,t )�

q θ (k−q)P(q,t ) , where θ (i) is

defined for integers: θ (i�0) = 1 and θ (i < 0) = 0. Thus with
this probability, the number of vertices with q < k decreases
by 1. This gives the first term. After removing the edges
incident to the leaf and all edges incident to its neighbors, the

leaf and all its neighbors become vertices of degree zero. The
average number of neighbors of a vertex of degree less than k

is
�

q qθ (k−q)P(q,t )�
q θ (k−q)P(q,t ) . Hence the second term shows the number of

vertices whose degrees become zero. On the other hand, the
degree distribution of the end vertices of a randomly chosen
edge is qP(q)

�q� . When we remove the edges incident to the
nearest neighbors of the leaf, the number of vertices of degree
q is decreased by the mean degree of the leaf with probability
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FIG. 9. Graphical visualization of the Gk-core decomposition of (a) astrophysics and (b) transcriptional regulation networks.

qP(q)
�q� . Finally the last contribution results from modification

of degrees of the second neighbors of the leaf. After removal
of all edges incident to the leaf and its nearest neighbors,
the number of connections of the second nearest neighbors of
the leaf decreases by one. The average number of the second
neighbors is equal to the mean degree of the nearest neighbors
except one (connection to the leaf), multiplied by the average
number of the nearest neighbors of the leaf. Equation (9)
is a set of differential equations, describing the evolution of
a network during the pruning. For k = 2, these equations
coincide with the known ones [18]. Solving Eq. (9) iteratively,
we can obtain the degree distribution of the network at each
time step t .

As we already mentioned, we do not remove the vertices
during the leaf removal algorithm, and so the total number
of the vertices remains constant. However, at each time step
all edges incident to the leaf and the edges incident to all
its nearest neighbors are removed. Hence, at each time step
the average number of removed edges is equal to the mean
number of nearest neighbors multiplied by their mean degree.
This results to the following evolution equation for the aver-

age number of remained edges in the network:

L̇(t )

N
= −�q2�t

�q�t

�
q qθ (k − q)P(q, t )

�
q θ (k − q)P(q, t )

. (10)

We apply the leaf removal algorithm to an uncorrelated
network with a degree distribution P(q, t = 0) and a vertex
mean degree equal to c0 as the initial conditions. For each
value of k, the algorithms are iterated until no vertices of
degree less than k remain. To find the Gk-core, the algo-
rithm must continue until time t∗

k at which P(1, t∗
k ) = P(2, t∗

k )
= · · · = P(k − 1, t∗

k ) = 0. Our numerical results for different
networks show that P(1, t ) is the last probability to become
zero; that is, the vertices of degree 1 disappear after all other
leaves. This is why during iteration we look at the behavior of
P(1, t ), and the algorithm stops at time t∗

k for a given k. The
remaining subgraph is the Gk-core. For k = 2 the algorithm
coincides with the ordinary leaf-removal algorithm and the
remaining subgraph is the G2-core or simply the core. After
we find t∗

k , the size and the number of edges of the Gk-core

TABLE I. Gk-core decomposition of real networks with the number of vertices N and the number of edges L. kmax is the label of the
innermost core. nkmax−core and n2−core show the relative size of the innermost and outermost cores, respectively. Similarly, lkmax−core and l2−core

show the normalized number of edges of the innermost and outermost cores, respectively.

Name N L Ref. kmax nkmax−core lkmax−core n2−core l2−core

E. coli, transcription 97 212 [26] 3 0.319 0.793 0.917 2.051
AS Oregon 6474 12 572 [27] 2 0.001 0.001 0.001 0.001
Astrophysics 16 046 121 251 [28] 31 0.002 0.045 0.769 5.980
C. elegans, neural 297 2148 [29] 3 0.885 6.037 0.915 6.447
Cond-Mat 16 264 47 594 [28] 10 0.006 0.003 0.618 1.884
Dolphins 62 159 [30] 3 0.161 0.290 0.645 1.322
Email-Enron 36 692 183 831 [31] 7 0.0004 0.001 0.389 1.052
Linux 30 834 213 217 [32] 5 0.0003 0.0008 0.147 0.375
petster-friendship-hamster 1858 12 534 [32] 8 0.010 0.047 0.584 2.664
Sociopatterns-Infectious 410 2765 [33] 9 0.056 0.443 0.912 6.090
PGPgiantcompo 10 680 24 316 [34] 17 0.001 0.014 0.158 0.483
US Air Transportation 500 2980 [35] 3 0.008 0.012 0.260 0.494
Yeast-protein 2284 6646 [36] 3 0.003 0.011 0.025 0.052
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can be obtained from the following relations:

Nkc = N[1 − P(0, t∗
k )], (11)

Lkc = L(t∗
k ). (12)

We apply this approach to the ER random graphs. The
Poisson degree distribution rapidly decays, and it is sufficient
to consider qmax = 30, i.e., we solve the set of the first 31
equations. Figure 8 shows the size and the number of edges
calculated from Eqs. (9)–(12) for the ER networks. In this
figure we compare the results obtained by solving the rate
equations (points) with the analytic results of the previous
section (lines) for the general 2-, 3-, and 4-cores.

IV. REAL-WORLD NETWORKS

We apply the k-leaf removal to a number of real-world
networks and find cores of these networks. The characteristics
of real-world networks, analyzed in the paper, are listed in
Table I. The outermost core is the largest core, which cor-
responds to k = 2 and includes other cores. As we increase
the value of k, the size of cores is decreased, and the core
corresponding to maximum k (kmax) is the smallest and in-
nermost core. We present the relative size and number of
edges of the outermost and innermost Gk-cores in Table I.
We find that many real social networks are decomposed to
a large hierarchy of the Gk-cores. For instance, the layers of
arXiv networks, e.g., cond-mat, astro-ph, or hep-th, have the
highest numbers of the Gk-cores nested into each other among
networks analyzed in this paper. In contrast, the food webs
and biological networks have a small number of cores. Using
the visualization algorithm proposed in Ref. [1], visualization
of the astrophysics network in 2005 [28] and transcriptional
regulation network [26] are presented as two examples in
Fig. 9. The regulation network has a few cores, while the
astrophysics network has around 30 cores in our proposed
network decomposition scheme. Comparing with the random
networks, the real networks have more cores. Similarly to
what was found in the ordinary core problem, this difference
reveals that other structural features such as correlations and

clustering may be significant for the sizes and organization of
the Gk-cores.

V. CONCLUSION

In this work we have generalized the ordinary core sub-
graph to the Gk-cores. We proposed the k-leaf removal al-
gorithm as a generalization of the ordinary leaf removal The
k-leaf pruning algorithm enables us to decompose large ran-
dom networks into a hierarchical set of progressively nested
subgraphs which we called the Gk-cores. Our approach can
also be considered as a generalization of the ordinary k-core
decomposition. In our pruning at each time step, not only the
vertices of degree less than k but also their nearest neighbors
are removed. Following this pruning, the network is decom-
posed into a hierarchy of progressively nested Gk-cores such
that the vertices, belonging to the inner cores, and also their
first neighbors are of higher degree and well connected. Using
the generating function technique, we found the structural
characteristics and the emergence point of the Gk-cores for the
Erdős-Rényi and scale-free random networks. Similarly to the
ordinary k-core percolation, Gk-cores show a discontinuous
phase transition for k � 3. We compared our results with
numerical simulations and observed a complete agreement. In
addition, we used the rate equation approach to describe the
evolution of degree distribution of random networks during
the k-leaf pruning algorithm. We checked that the result of
the application of this approach to the ER graph completely
coincides with the exact result obtained by the analytical
calculations. We have applied the k-leaf removal algorithm
to a number of real-world networks. Among the real networks
explored, the social networks have a large kmax.

We emphasize that in contrast to the k-core decomposi-
tion, the Gk-cores are not about the classification of vertices
in a network according to their properties but rather about
the characterization of a specific robustness of this network.
Suppose that a network is attacked by a virus infecting and
removing weak vertices (of degree less than k) and their
nearest neighbors. The Gk-cores show what will remain of the
network after this epidemic. The resilience and robustness of
a network against this kind of epidemic is characterized by the
size of its Gk-core. This may explain why the social networks
that we explored have a large kmax.
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a b s t r a c t

We extend the observability model to multiplex networks composed of two network
layers. We present mathematical frameworks, valid under the treelike ansatz, able to
describe the emergence of the macroscopic cluster of mutually observable nodes in both
synthetic and real-world multiplex networks. We show that the observability transition in
synthetic multiplex networks is discontinuous. In real-world multiplex networks instead,
edge overlap among layers is responsible for the disappearance of any sign of abruptness
in the emergence of the macroscopic cluster of mutually observable nodes.

© 2018 Published by Elsevier B.V.

1. Introduction

Complex systems where elementary units have different types of interactions can be conveniently modeled as multiplex
networks [1–3]. This is a very generic representation, where elements of a system are organized in multiple network layers,
each standing for a specific color or flavor of interaction. Systems that can be represented in this way are abundant in the
real world. Examples include, among others, social networks sharing the same actors [4,5], and multimodal transportation
graphs sharing common geographical locations [6,7].

Several analyses ofmultiplex networks have been performed recently [1–3]. A common result, shared by the vastmajority
of these studies, is that a process defined on a multiplex network is characterized by features radically different from
those observed for the same type of process when this is applied to an isolated network. Examples regard dynamical
processes taking place on multiplex networks, such as diffusion [8,9], epidemic spreading [10–13], synchronization [14],
and controllability [15]. Examples include also structural processes as those typically framed in terms of percolationmodels.
For instance in their seminal paper, Buldyrev et al. considered a site-percolation model aimed at understanding the role of
interdependencies among two network layers [16]. The macroscopic cluster of mutually connected nodes in a multiplex
network emerges discontinuously, at odds with what instead observed for the same process on an isolated network where
the percolation transition is always continuous. A large number of subsequent studies have then analyzed in detail the
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features of the percolation transition inmultiplex networks [17–28]. Several variants of the percolationmodel have been also
considered, including redundant site percolation [29], k-core percolation [30], weak percolation [31], bond percolation [32],
and optimal percolation [33].

In this paper, we focus our attention on an additional variant of the percolationmodel usually named as the observability
model [34,35]. In isolated networks, themodel finds itsmotivation in the study of some dynamical processeswhere the state
of the system can be determined by monitoring or dominating the states of a limited number of nodes in the network [36].
Examples include, among others, real-time monitoring of power-grid networks [34], and mobile ad-hoc networks [37]. The
observability model has been considered in synthetic models [34] and real-world topologies [35]. In the simplest version
of the model, every node in the network can host an observer with probability φ. Placing an observer on one node can
make the node itself and all its nearest neighbors observable. Nodes in the network can therefore assume three different
states: (i) directly observable, if hosting an observer; (ii) indirectly observable, if being the first neighbor of an observer; (iii)
or not observable, otherwise. Observable, either directly or indirectly, nearest-neighbor nodes form clusters of connected
observable nodes. As in the case of percolation, the question of interest in network observability is understanding the
macroscopic formation of observable clusters in the network on the basis ofmicroscopic changes in the state of its individual
nodes. In synthetic infinite graphs, the macroscopic cluster of observable nodes obeys a continuous phase transition as a
function of the probability φ, and the critical threshold is generally very small [34]. In most real-world networks also, the
largest cluster grows smoothly, and the transition point is generally very close to zero [35].

In our extension of the observability model to multiplex networks, we focus our attention on the emergence of clusters
of mutually observable nodes. The definition of these clusters is a straightforward combination of the notions of clusters
of observable nodes in isolated networks [34] and clusters of mutually connected nodes in multiplex networks [16]. The
extension of the observability model to multiplex networks finds its rationale in any situation where the goal is monitoring
the structure or controlling the dynamics of a system structured in multiple layers of interactions. A genuine example could
be understanding the process of partial reconstruction of the structure of two coupled social media, such as Facebook and
Twitter, from random sampling. Actors are shared by the two social networks. Observing an individual means getting full
access to her/his account thus being able to get information about the identity of her/his friends on both platforms. If one
does not have any prior knowledge of the connections among nodes in the system, but has access only to the list of all its
node, a naive way to reconstruct part of the topology of the multiplex would be to randomly sample a fraction of nodes, and
aggregate structural information from their egocentric graphs [38]. Clusters of mutually observable nodes in this situation
would correspond to mutually connected portions of the system that emerge from such a sampling strategy.

The paper is organized as follows. In Section 2, we define the observability model in multiplex networks. In Section 3, we
study the model in ensembles of multiplex networks whose layers are generated according to the configuration model. In
Section 4,we introduce amessage-passingmethod to dealwith the observabilitymodel inmultiplex networkswith specified
topology, such as real-world multiplex networks. The framework described in this section is based on the assumption that
the number of edges shared by the different layers of the multiplex is negligible. The message-passing method valid for
multiplex networks in presence of edge overlap is much more cumbersome, and, for this reason, presented only in the
Appendices. Finally, in Section 5, we summarize the main findings of the paper.

2. Observability model in multiplex networks

We consider amultiplex network composed ofN nodes structured in two layers, namelyα andβ . Node labels take integer
values from 1 toN in both layers. Nodes with identical labels correspond to copies (or replicas) of the same individual or unit
in the two layers. The observability model we consider here is a natural extension to multiplex networks of the same model
already considered on isolated networks [34,35]. Observers or sensors are placed at random with probability φ on every
node in the system. If an observer is placed on a node i, the node i is directly observable in both layers. A node i, that is not
directly observable, but is attached to at least one directly observable node j in layer α and at least one directly observable
node k in layer β , with j not necessarily equal to k, is indirectly observable. We focus our attention on mutually observable
clusters of nodes. Theway these clusters are defined is identical to the one inwhich clusters ofmutually connected nodes are
defined in site percolation [16]. The only difference comes from the fact that a node in order to be ‘‘occupied’’ can be either
in the directly or indirectly observable state. Note that mutually connected and mutually observable clusters coincide for
φ = 1. In particular, two nodes belong to the same cluster of mutually observable nodes if they are observed, either directly
or indirectly, and they are connected by at least by one path (internal to the cluster itself) in both layers. Our model can
be seen as a depth-one percolation model on a multiplex network. As we are interested in understanding the extent of the
system that can be monitored by placing random points of observation, the focus of our analysis is centered on quantifying
how the size of the Largest Mutually Observable Cluster (LMOC) changes as a function of the microscopic probability φ of
nodes to be directly observable. In the following, we discuss the details of how the problem can be solved exactly under two
conditions: (i) absence of link overlap among layers, and (ii) validity of the locally treelike ansatz. In the Appendix A, we
report the full mathematical framework valid when condition (i) is removed.
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Fig. 1. (a) The different variables used in the single-layer equations are defined depending on the state of the nodes, here denoted by different shapes and
colors. Schematic illustrations for the derivation of the equations for the probabilities u (panel b), v (panel c) and z (panel d).

3. Observability transition in randommultiplex networks

Let us consider the case of a multiplex composed of two network layers generated independently according to the
configuration model [39]. If the layers are sufficiently sparse, the fact that the layers are generated independently allow
us to consider the overlap among layers (i.e., the simultaneous existence of the same edge in both layers happens with
vanishing probability) negligible. The only inputs required to study such a system are the degree distributions of the two
layers, namely P [α](k) and P [β](k).

The analytic treatment for this special types of networks is similar to one presented in Ref. [34] for isolated networks.
To generate a self-consistent set of equations able to describe how the LMOC changes as a function of φ in this special type
of multiplex networks, we define the following conditional probabilities valid for a randomly selected edge in layer α (see
Fig. 1):

1. u[α], that is the probability to reach the LMOC if we start from a node in arbitrary state and we follow one of its edges
having a node in the directly observable state on the other end of the edge.

2. v[α], that is the probability to reach the LMOC if we start from a node in arbitrary state and we follow one of its edges
having, on the other end of the edge, a node that is not directly observable.

3. z[α], that is the probability to reach the LMOC if we start from a node that is not directly observable and we follow one
of its edges having, on the other end of the edge, a node that is also not directly observable.

The same exact definitions are valid for the conditional probabilities u[β], v[β], and z[β] for layer β .
As mentioned above, a generic node is part of the LMOC if observable, either directly or indirectly, and attached to at

least one other node that is part of the LMOC. The way this happens depends however on the state of the node. We make
therefore a distinction between (i) a directly observable node and (ii) a not directly observable node.

Let us consider first case (i). If one of the nodes at the end of a generic edge is directly observable, the probability that
the node is not connected to the LMOC is φ(1− u[α]) if the other node is directly observable, or (1− φ)(1− v[α]) if the other
node is not directly observable. If the node we are considering has degree k, then the probability that the node is connected
to the LMOC in layer α is

q[α]
k = 1 −

k∑

m=0

(
k
m

)
[φ(1 − u[α])]m[(1 − φ)(1 − v[α])]k−m. (1)

The sum on the r.h.s. of the equation above quantifies the probability that none of the neighbors of a node with degree k
is part of the LMOC. This probability is then discounted from 1 to estimate the probability that at least one neighbor of the
node is part of the LMOC. If we consider all nodes, we have that

q[α] =
∑

k

P [α](k)q[α]
k = 1 − G[α]

0

(
1 − φu[α] − (1 − φ)v[α]) , (2)

where G[α]
0 (x) = ∑

kP
[α](k)xk is the generating function of the degree distribution for layer α. We can repeat the same exact

arguments for layer β . In particular, the probability that a generic node is part of the LMOC is given by the product that the
node is attached to the LMOC simultaneously in both layers, that is

q = φ q[α] q[β] , (3)
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where the extra factor φ comes from the fact that we are considering the case of a node that is directly observable.
For case (ii), we can proceed in a similar way as above. If our node is not directly observable, andwe select one of its edges

at random, then the probability that this node is not connected to the LMOC is φ(1− u[α]) if the other node at the end of the
edge is directly observable, or (1 − φ)(1 − z[α]) if the other node is not directly observable. If the node we are considering
has degree k, the probability that this node is connected to the LMOC in layer α is

r [α]
k = 1 − (1 − φ)k+

−
k∑

m=1

(
k
m

)
[φ(1 − u[α])]m[(1 − φ)(1 − z[α])]k−m.

(4)

The term (1−φ)k comes from the fact that if none of the nodes at the end of the k edges departing from our node are directly
observable, then necessarily our nodewill be not indirectly observable and thus surely out of any cluster. The remaining part
of the r.h.s. instead quantifies the probability that none of the neighbors of our node is part of the LMOC, assuming that at
least one of them is directly observable. Both these probabilities are discounted from 1 to compute the probability that our
indirectly observable node is part of the LMOC. If we consider all nodes, we have that

r [α] =
∑

k

P [α](k)r [α]
k =

1 − G[α]
0

(
1 − φu[α] − (1 − φ)z[α])

+G[α]
0

(
(1 − φ)(1 − z[α])

) − G[α]
0 (1 − φ) .

(5)

For layer β , the arguments are identical. The probability that a generic node that is not directly observable is part of the
LMOC is given by the product that the node is attached to the LMOC simultaneously in both layers, that is

r = (1 − φ) r [α] r [β] , (6)

where the extra factor 1 − φ comes from the fact that we are considering the case of a node that is not directly observable.
Combining cases (i) and (ii) together, we can finally write

P∞ = q + r , (7)

for the average size of the LMOC. To compute Eq. (7), we still require a way to estimate properly the conditional probabilities
u[α], u[β], v[α], v[β], z[α], and z[β]. Following a similar approach as the one described above, we have that

u[α] = [
1 − G[α]

1 (1 − φu[α] − (1 − φ)v[α])
]×

[
1 − G[β]

0 (1 − φu[β] − (1 − φ)v[β])
]

,
(8)

v[α] = [
1 − G[α]

1 (1 − φu[α] − (1 − φ)z[α])
]×

[
1 − G[β]

0 (1 − φu[β] − (1 − φ)z[β])+
−G[β]

0 (1 − φ) + G[β]
0 ((1 − φ)(1 − z[β]))

]
,

(9)

and

z[α] = [
1 − G[α]

1 (1 − φu[α] − (1 − φ)z[α])+
−G[α]

1 (1 − φ) + G[α]
1 ((1 − φ)(1 − z[α]))

]×
[
1 − G[β]

0 (1 − φu[β] − (1 − φ)z[β])+
−G[β]

0 (1 − φ) + G[β]
0 ((1 − φ)(1 − z[β]))

]
.

(10)

The intuition behind the previous equations is straightforward. When looking at an edge on layer α, the probability that
this edge will bring to the LMOC will depend on the generating function of the excess degree distribution of the layer,
i.e., G[α]

1 (x) = [d/dxG[α]
0 (x)]/[d/dxG[α]

0 (1)]. On the other hand, the probability that a node at the end of this edge is also
attached to the LMOC on layer β will depend only on the degree of the node itself on layer β , accounted by the generating
function of the degree distribution, namely G[β]

0 (x). Note that equations for u[β], v[β], and z[β] can be obtained by simply
swapping α and β in Eqs. (8), (9), and (10).

At this point, we have everything necessary to estimate Eq. (7). We have first to solve Eqs. (8), (9), and (10), and the
analogous ones for layer β , by iteration. Then, we can plug the obtained values of the conditional probabilities for generic
edges into the equations for the nodes.

Fig. 2 shows a comparison between the results of direct numerical simulations of the observability model and
the numerical solutions of our equations for duplex networks formed by layers obeying Poisson degree distributions,
i.e., P [α](k) = P [β](k) = ⟨k⟩ke−⟨k⟩

⟨k⟩! . The figure provides evidence of a perfect agreement between theory and simulations.
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Fig. 2. Observability transition in random Poissonmultiplex networks. We consider multiplex networks with layers generated independently and given by
realizations of the configurationmodel with N = 10,000 nodes and degree sequence generated according to a Poisson distribution with average degree ⟨k⟩.
Results of our theoretical method (small symbols) are compared with those of numerical simulations of the observability model (large symbols). Symbols
correspond to average values over 100 realizations of the network model and a single simulation of the observability model for each of them. We consider
different values of ⟨k⟩, ⟨k⟩ = 3.0, 5.0, 7.0, 10.0, and 20.0. Values of P∞ for the various cases drop to zero in the same order if the figure is read from right
to left.

Fig. 3. Observability transition in randomPoissonmultiplex networks. (a)Weplot the rescaled value of the critical threshold φ̃c = φc+(1−φc )[1−(1−φc )⟨k⟩]
(black circles) as a function of the average degree ⟨k⟩ for Poisson multiplex networks of infinite size. φ̃c is the effective probability of a generic node to be
observed, either directly or indirectly. We find that φ̃c ∝ ⟨k⟩−3/4 (gray full line). The vertical red line indicates the value ⟨k⟩c ≃ 2.4554 where φ̃c = 1
(horizontal red line). (b) Height of the discontinuous jump P∞(φ+

c ) as a function of the average degree ⟨k⟩ (black circles) for the same multiplex networks
of panel (a). We find that P∞(φ+

c ) ∝ ⟨k⟩−7/4 (gray full line). The vertical red line indicates the value ⟨k⟩c ≃ 2.455 where P∞(φ+
c ) ≃ 0.511 (horizontal red

line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

As the generating functions G[α]
0 , G[α]

1 , G[β]
0 , and G[β]

1 can be written in a closed form for the Poisson distribution, we can
also study the numerical solution of the equations for infinitely large networks (Fig. 3). As long as the average degree ⟨k⟩
of the multiplex network model is finite, the transition between the non-observable and the observable phases is always
discontinuous, exactly as in the case of the standard percolation model [16]. We note that the system is always in the
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non-observable regime for ⟨k⟩ < 2.4554, i.e., the same value found for the minimum average degree necessary for the
emergence of the percolating phase in the standard percolation model [16]. This is expected from the equivalence between
the observability model and the standard percolation model for φ = 1. For ⟨k⟩ ≥ 2.4554, the transition point and height of
the discontinuous jump in the observability model become different from those typical of site percolation. There, we have
that the critical occupation probability pc and the height of the discontinuous jump P∞(p+

c ) decay to zero as a function of
the average degree ⟨k⟩ as pc ∝ P∞(p+

c ) ∝ ⟨k⟩−1 [16]. For the observability model, we find instead that the rescaled critical
threshold φ̃c = φc + (1−φc)[1− (1−φc)⟨k⟩] does not decrease as ⟨k⟩−1 as a naive mapping between the twomodels would
predict. Instead, the scaling is compatible with φ̃c ∝ ⟨k⟩−3/4 (Fig. 3a). The height of the discontinuous jump P∞(φ+

c ) also
does not go to zero as ⟨k⟩−1 as predicted in the standard percolation model, but instead as P∞(φ+

c ) ∝ ⟨k⟩−7/4 (Fig. 3b). On
the basis of these numerical findings, we conclude that observability transition cannot be trivially explained in terms of the
standard percolation transition.

4. Observability transition in real multiplex networks

In this section, we develop an analytic framework able to approximate the phase diagram of the observability transition
for a duplex with given adjacencymatrices for the two layers. This information is encoded in the sets ∂

[α]
i and ∂

[β]
i containing

the neighbors of node i respectively in layers α and β for every node i. We indicate the sizes of these sets respectively as k[α]
i

and k[β]
i . We make use of two assumptions: (i) layers have null overlap in the sense that set of neighbors of the same node

in the two layers have null intersection; (ii) the network is locally treelike.
Suppose we are interested in estimating the probability si that node i is part of the LMOC. This will happen if node i

is receiving at least one message in layer α and one message in layer β about the belonging to the LMOC. We consider
conditional probabilities, or average message values, over the ensemble of random placements of observers in the network.
In particular, we define three different messages for every edge j → i in layer α dependent on the states of the nodes j and i:

1. u[α]
j→i is the probability that node j is in the LMOC, irrespective of whether node i is in the LMOC or not, given that node

j is directly observable.
2. v

[α]
j→i is the probability that node j is in the LMOC, irrespective of whether node i is in the LMOC or not, given that node

j is not directly observable.
3. z[α]

j→i is the probability that node j is in the LMOC, irrespective of whether node i is in the LMOC or not, given that
neither j nor i are directly observable.

u[β]
j→i, v

[β]
j→i, and z[β]

j→i represent the same quantities as above but for layer β . Note that messages traveling on the same edge
but in opposite direction are different.

The generic node i is part of the LMOC if one of these two conditions are met: (i) the node is directly observable and
attached to at least one other node in layer α and layer β that are part of the LMOC; (ii) the node is indirectly observable and
attached to at least one other node in layer α and layer β that are part of the LMOC. The rationale behind the derivation of
the following equations is still graphically described by the illustration of Fig. 1.

Considering only layer α, for case (i), we can write

q[α]
i =

[
1 −

∏

j∈∂
[α]
i

(1 − φu[α]
j→i − (1 − φ)v[α]

j→i)
]

. (11)

For case (ii), we have instead

r [α]
i =

[
1 −

∏

j∈∂
[α]
i

(1 − φu[α]
j→i − (1 − φ)z[α]

j→i)+

− (1 − φ)k
[α]
i

[
1 −

∏

j∈∂
[α]
i

(1 − z[α]
j→i)

]]
.

(12)

The same type of equations are valid for layer β . As the node must be part of the LMOC in both layer simultaneously, we can
write

qi = φ q[α]
i q[β]

i , (13)

and

ri = (1 − φ) r [α]
i r [β]

i , (14)
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where the factors φ and 1−φ come from the fact that we are considering the cases of a directly observable and a non directly
observable node, respectively. The size of the average LMOC is given by

P∞ = 1
N

∑

i

[qi + ri] . (15)

The self-consistent equations for the messages are instead given by

u[α]
j→i =

[
1 −

∏

k∈∂
[α]
j \i

(1 − φu[α]
k→j − (1 − φ)v[α]

k→j)
]
×

[
1 −

∏

k∈∂
[β]
j

(1 − φu[β]
k→j − (1 − φ)v[β]

k→j)
]

,

(16)

v
[α]
j→i =

[
1 −

∏

k∈∂
[α]
j \i

(1 − φu[α]
k→j − (1 − φ)z[α]

k→j)
]
×

[
1 −

∏

k∈∂
[β]
j

(1 − φu[β]
k→j − (1 − φ)z[β]

k→j)+

− (1 − φ)k
[β]
j

[
1 −

∏

k∈∂
[β]
j

(1 − z[β]
k→j)

]]
,

(17)

and

z[α]
j→i =

[
1 −

∏

k∈∂
[α]
j \i

(1 − φu[α]
k→j − (1 − φ)z[α]

k→j)+

− (1 − φ)k
[α]
j −1[1 −

∏

k∈∂
[α]
j \i

(1 − z[α]
k→j)

]]×

[
1 −

∏

k∈∂
[β]
j

(1 − φu[β]
k→j − (1 − φ)z[β]

k→j)+

− (1 − φ)k
[β]
j

[
1 −

∏

k∈∂
[β]
j

(1 − z[β]
k→j)

]]
,

(18)

for a generic edge j → i belonging to layer α. Equations with the same structure allow to compute the probabilities defined
for edges in layer β . We remark that the equations abovemake use of the locally treelike approximation, hence the products
appearing on their right-hand sides. Further, backtracking terms are excluded in the products.

The analytic framework is now completed. To estimate the average size of the LMOC as a function of φ, one needs to: first,
solve Eqs. (16), (17), and (18) by iteration; second, plug these solutions into Eqs. (11), and (12); third, estimate in sequence
Eqs. (13), (14), and (15).

We performed comparisons between numerical solutions of the framework and results of numerical simulations for
a single multiplex networks formed by random scale-free network layers which have negligible overlap (see Fig. 4). The
agreement between the two approaches is remarkable.

We stress the fact that the framework presented above is valid under the assumption that the two layers that compose the
multiplex do not share any edge. This is a very strong assumption, often violated by real-world networks. For instance, edge
overlap may have a dramatic consequence on the properties of the percolation transition [40–42,26,43,28]. We developed a
mathematical framework valid in case of edge overlap. Given its length and complexity, we present the details only in the
Appendix A.

Indeed, results from the application of the twomethods (with or without edge overlap) to real-worldmultiplex networks
provide different scenarios and degree of accuracy. In Fig. 5 for example, we show a comparisons between numerical
simulations and numerical solutions of the frameworks when applied to a multiplex transportation network [26]. The
framework that accounts for edge overlapwell approximates the ground-truth results obtainedwith numerical simulations.
The LMOC grows smoothly for any value of φ. The framework that does not account for edge overlap instead tends to
underestimate the size of LMOC obtained from numerical simulations. It also provides evidence of an abrupt emergence of
the LMOC at φ > 0. Similar considerations are valid also for the multiplex network representing the C. Elegans connectome
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Fig. 4. Observability transition in random scale-free multiplex networks. We consider single instances of multiplex networks with layers generated
independently, and given by realizations of the configuration model with N = 10,000 nodes and degree sequence generated according to a power-law
degree distribution P [α](k) = P [β](k) ∼ k−γ with degree exponent γ (minimal and maximal degrees are respectively set kmin = 3 and maximal degree
kmax = √

N , so that edge overlap between layers is negligible). Results of the message-passing framework without overlap (small symbols) are compared
with those of numerical simulations of the observability model (large symbols). Results of numerical simulations are obtained on a single instance of the
network model and 100 simulations of the observability model. We consider different values of γ , γ = 2.5, 3.0 and 3.5. Values of P∞ for the various cases
drop to zero in the same order if the figure is read from right to left.

Fig. 5. Observability transition in the US air transportationmultiplex network. (a) The system is obtained by combining American Airlines and Delta routes.
We consider only US domestic flights operated in January, 2014, and construct the duplex network where airports are nodes and connections on the layers
are determined by the existence of at least a flight between the two locations. In the diagram, the gray big circles represents results of numerical simulations,
the red small circles stand for results from the framework that does not account for edge overlap, and the black small circles represent results obtained
from the mathematical framework that accounts for edge overlap. Gray circles correspond to average values over 10,000 simulations of the observability
model. The inset shows a zoom of a specific part of the diagram. (b) Same as in panel (a), but for the combination of American Airlines and United flights.
(c) Same as in panel (a), but for the combination of Delta and United flights. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

(Fig. 6) [44,45], and all other real-world multiplex networks considered in Appendix E. In Table 1, we summarize results
from the analysis of various real-world networks. We considered systems of very different nature, including transportation,
biological, and social multiplex networks. Most of the real-world multiplex networks analyzed here appear to be always
in observable regime, as the critical value φc estimated from the theoretical frameworks is very close to zero. This second
observation is apparent from the solution of the framework accounting for edge overlap. Instead the framework that does
not account for edge overlap seems to provide a distorted vision of the true nature of the phase transition in several cases.
Based on this finding, we believe that edge overlap represents the simplest cause of the smoothness of the observability
transition in real-world multiplex networks.

5. Conclusions and discussion

In this paper, we extended the observability model, originally considered on isolated networks, to multiplex networks.
In particular, we focused our attention on the emergence of the largest cluster of mutually observed nodes as a function
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Fig. 6. Observability transition in the C. Elegans connectome multiplex network. Edges in different layers represent different types of synaptic junctions
among the neurons: electrical, chemicalmonadic, and chemical polyadic. (a) Analysis of themultiplex obtained by combining together the layers of electrical
and chemical monadic interactions. In the diagram, the gray big circles represents results of numerical simulations, the red small circles stand for results
from the framework that does not account for edge overlap, and the black small circles represent results obtained from the mathematical framework that
accounts for edge overlap. Gray circles correspond to average values over 10,000 simulations of the observabilitymodel. The inset shows a zoomof a specific
part of the diagram. (b) Same as in panel (a), but for the combination of electrical and chemical polyadic interactions. (c) Same as in panel (a), but for the
combination of chemical monadic and polyadic interactions. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 1
Observability transition in real multiplex networks. From left to right, we report the following information: name of the system and references of the
papers where the system has been studied as a multiplex network, name of the layers used to generate the multiplex network, number of nodes in the
network, critical probability φc and height of the jump P∞(φ+

c ) estimated with the Message-Passing (MP) framework that does not account for edge
overlap, critical probability φc and height of the jump P∞(φ+

c ) estimated with the Message-Passing (MP) framework that accounts for edge overlap. Values
of the critical probability φc are computed with precision equal to 0.001, therefore entries in the table showing exactly this numerical value indicate that
true values are actually smaller than it.

Network Layers N MP MP with overlap

φc P∞(φc ) φc P∞(φc )

Air Transportation [26]
American Air. – Delta 84 0.030 0.040 0.004 0.005
American Air. – United 72 0.027 0.035 0.002 0.003
United – Delta 81 0.033 0.041 0.005 0.007

C. Elegans [44,45]
Electric – Chem. Mon. 226 0.039 0.021 0.006 0.001
Electric – Chem. Pol. 247 0.029 0.020 0.004 0.001
Chem. Mon. – Chem. Pol. 257 0.016 0.016 0.002 0.002

Arxiv [46,47]

cond-mat.dis-nn – physics.data-an 916 0.017 0.006 0.001 0.001
physics.bio-ph – cond-mat.dis-nn 790 0.026 0.003 0.001 0.002
physics.bio-ph – physics.data-an 564 0.023 0.002 0.001 0.000
cond-mat.dis-nn – cs.SI 521 0.030 0.005 0.001 0.001
physics.soc-ph – physics.data-an 50 0.057 0.082 0.005 0.004

Sacc. Pom. [48,49,47]

Direct – Phys. Assoc. 510 0.086 0.004 0.011 0.000
Phys. Assoc. – Synth. Gen. 426 0.077 0.026 0.013 0.000
Direct – Synth. Gen. 289 0.087 0.033 0.022 0.000
Phys. Assoc. – Association 54 0.074 0.067 0.010 0.007

Physicians [50,47]
Advice – Discussion 104 0.097 0.076 0.016 0.006
Advice – Friendship 99 0.176 0.130 0.078 0.042
Discussion – Friendship 106 0.159 0.130 0.057 0.026

Drosophila M. [48,49,47] Supp. Gen. – Addit. Gen. 449 0.019 0.011 0.001 0.000

India Transportation [51,47] Airports – Train Stat. 67 0.022 0.031 0.001 0.000

Human Brain [52,47] Anatomical – Functional 74 0.090 0.150 0.021 0.002

of the microscopic probability of individual nodes to host observers. We developed mathematical frameworks able to well
describe the observability diagram in synthetic and real-worldmultiplex networks. The framework allows us to approximate
the true observability diagram of a given multiplex network with a number of operations that scales as E ln E, where E is the
total number of edges in the system (see Appendix D). Our results indicate that the features of this model cannot be trivially
deduced from those valid for percolation. This statement is true both for randomly generated multiplex networks, as well
as for multiplex networks representing real-world systems. Interestingly, real-world multiplex networks seem to be always
in the observable regime, as long as the fraction of nodes that is directly observed is larger than zero. This fact seems due to
the natural, and ubiquitously observed, presence of edge overlap among the layers that compose real multiplex networks.

The approach described in this paper is valid only for multiplex networks composed of two layers. The generalization
of the framework (accounting for edge overlap) to an arbitrary number of layers seems not as straightforward. Additional
theoretical work is required to devise a complete theory of the observability model in arbitrary multiplex networks.
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Appendix A. Message passing with edge overlap

This section is devoted to the description of the message-passing algorithm to approximate the behavior of the Largest
Mutually Observable Cluster (LMOC) in multiplex networks. The formalism differ from the one already presented in the
main text for the fact that the only approximation used is the locally treelike ansatz. Edge overlap among layers is instead
accounted by this framework. The method presented here is a generalization of the algorithm proposed in Ref. [28] for
standard site percolation on multiplex networks. The method relies on the definition of the multilink m⃗ji = (a[α]

ji , a[β]
ji ) for

every pairs of nodes j and i in the duplex, where a[α]
ji = 1 if the nodes are connected in layer α, and a[α]

ji = 0, otherwise. The
same definition applies for layer β . Messages considered in the approach are:

1. u
m⃗ji,n⃗
j→i , valid when node j is directly observable.

2. v
m⃗ji,n⃗
j→i , valid when node j is not directly observable.

3. z
m⃗ji,n⃗
j→i , valid when neither node i nor node j are directly observable.

In the definition of the messages, we use n⃗ = (n[α], n[β]) to maintain the notation as compact as possible. Different
messages are indicatedbydifferent values of n⃗, namely (0, 0), (1, 0), (0, 1), and (1, 1). Note that ifn[α](1−a[α]

ji )+n[β](1−a[β]
ji ) ̸=

0, the corresponding message is automatically zero. Further, normalization implies that u
m⃗ji,(0,0)
j→i = 1− u

m⃗ji,(1,0)
j→i − u

m⃗ji,(0,1)
j→i −

u
m⃗ji,(1,1)
j→i . It is further convenient to cumulate messages over layers as:

u[α]
j→i = u

m⃗ji,(1,0)
j→i + u

m⃗ji,(1,1)
j→i , (A.1)

u[β]
j→i = u

m⃗ji,(0,1)
j→i + u

m⃗ji,(1,1)
j→i , (A.2)

and

u[α,β]
j→i = u

m⃗ji,(1,0)
j→i + u

m⃗ji,(0,1)
j→i + u

m⃗ji,(1,1)
j→i . (A.3)

The same definitions are valid for v- and z-type messages.
The probability that node i is in the LMOC is calculated in different manner depending on whether node i is (i) directly

observable or (ii) not directly observable. For case (i), we have

qi = φ

[
1 −

[∏

j∈∂i

(
1 − φu[α]

j→i − (1 − φ)v[α]
j→i

)] −
[∏

j∈∂i

(
1 − φu[β]

j→i − (1 − φ)v[β]
j→i

)]+
[∏

j∈∂i

(
1 − φu[α,β]

j→i − (1 − φ)v[α,β]
j→i

)]
]

. (A.4)

Essentially, the probability for node i to be directly observable and part of the LMOC is given by the product of the probability
to be directly observable and attached at least to another node that is part of the LMOC. The latter is estimated as one minus
the probability that none of the nodes connected to i are part of the LMOC.

To account for the overlap among edges in the two layers, we need to make a distinction among neighbors of a node. We
define three sets of neighbors for node i: ∂ [α]

i , that is set of nodes that are neighbors of node i just in layer α; ∂ [β]
i , that is set of

nodes that are neighbors of node i just in layer β; ∂ [α,β]
i , that is the set of nodes that are neighbors of node i at the same time

in both layers. In particular, we indicate with k[α]
i , k[β]

i , k[α,β]
i the size of the sets ∂

[α]
i , ∂ [β]

i , ∂ [α,β]
i , respectively. We also define

degree of each node in layer α, layer β and total as follows: k[1]
i = k[α]

i + k[α,β]
i , k[2]

i = k[β]
i + k[α,β]

i , k[1,2]
i = k[α]

i + k[β]
i + k[α,β]

i .

ri = (1 − φ)
[
1 − A − B + C

]
(A.5)

A =
[∏

j∈∂i

(
1 − φu[α]

j→i − (1 − φ)z[α]
j→i

)] + (1 − φ)k
[1]
i

[
1 −

∏

j∈∂i

(1 − z[α]
j→i)

]

B =
[∏

j∈∂i

(
1 − φu[β]

j→i − (1 − φ)z[β]
j→i

)] + (1 − φ)k
[2]
i

[
1 −

∏

j∈∂i

(1 − z[β]
j→i)

]
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C =
[∏

j∈∂i

(
1 − φu[α,β]

j→i − (1 − φ)z[α,β]
j→i

)] + (1 − φ)k
[1,2]
i

[
1 −

∏

j∈∂i

(1 − z[α,β]
j→i )

]
+

[ ∏

j∈∂
[α]
i

(
1 − φu[α]

j→i − (1 − φ)z[α]
j→i

) − (1 − φ)k
[α]
i

∏

j∈∂
[α]
i

(1 − z[α]
j→i)

]
×

(1 − φ)k
[2]
i

[ ∏

j∈∂
[α,β]
i

(1 − z[α]
j→i) −

∏

j∈∂
[β]
i

(1 − z[β]
j→i)

∏

j∈∂
[α,β]
i

(1 − z[α,β]
j→i )

]
+

[ ∏

j∈∂
[β]
i

(
1 − φu[β]

j→i − (1 − φ)z[β]
j→i

) − (1 − φ)k
[β]
i

∏

j∈∂
β
i

(1 − z[β]
j→i)

]
×

(1 − φ)k
[1]
i

[ ∏

j∈∂
[α,β]
i

(1 − z[β]
j→i) −

∏

j∈∂
[α]
i

(1 − z[α]
j→i)

∏

j∈∂
[α,β]
i

(1 − z[α,β]
j→i )

]
. (A.6)

The terms A and B are obvious. C instead contains a series of exceptions that must be handled to properly account for
overlap. In particular,

1. The first term in C stands for the probability that node i is not connected to the LMOC in none of the layers. It accounts
also for the exception where all of its neighbors are not directly observable.

2. Probability for node i of being not connected to LMOC through layerα and being not observable in layerβ . Connections
in layer β do not matter, but overlapping links, may connect node i to the LMOC in layer α.

3. Same as point 2, but swapping α with β .

The exceptions mentioned above are computed noting that
∏

j∈∂i

(
1 − φu[α,β]

j→i − (1 − φ)v[α,β]
j→i

) =
[ ∏

j∈∂
[α]
i

(
1 − φu(1,0),(1,0)

j→i − (1 − φ)v(1,0),(1,0)
j→i

)]×

[ ∏

j∈∂
[β]
i

(
1 − φu(0,1),(0,1)

j→i − (1 − φ)v(0,1),(0,1)
j→i

)]×

[ ∏

j∈∂
[α,β]
i

(
1 − φu[α,β]

j→i − (1 − φ)v[α,β]
j→i

)]
. (A.7)

We can now derive self-consistent equations for the messages. For u- and v-type messages, these are provided by the
following equations:

u(1,1),(1,1)
j→i = u(1,0),(1,0)

j→i = u(0,1),(0,1)
j→i = 1 −

[ ∏

k∈∂j\i

(
1 − φu[α]

k→j − (1 − φ)v[α]
k→j

)]

−
[ ∏

k∈∂j\i

(
1 − φu[β]

k→j − (1 − φ)v[β]
k→j

)] +
[ ∏

k∈∂j\i

(
1 − φu[α,β]

k→j − (1 − φ)v[α,β]
k→j

)]
, (A.8)

u(1,1),(1,0)
j→i =

[ ∏

k∈∂j\i

(
1 − φu[β]

k→j − (1 − φ)v[β]
k→j

)] −
[ ∏

k∈∂j\i

(
1 − φu[α,β]

k→j − (1 − φ)v[α,β]
k→j

)]
, (A.9)

u(1,1),(0,1)
j→i =

[ ∏

k∈∂j\i

(
1 − φu[α]

k→j − (1 − φ)v[α]
k→j

)] −
[ ∏

k∈∂j\i

(
1 − φu[α,β]

k→j − (1 − φ)v[α,β]
k→j

)]
, (A.10)

v
(1,1),(1,1)
j→i = 1−

[ ∏

k∈∂j\i

(
1 − φu[α]

k→j − (1 − φ)z[α]
k→j

)] −
[ ∏

k∈∂j\i

(
1 − φu[β]

k→j − (1 − φ)z[β]
k→j

)]+
[ ∏

k∈∂j\i

(
1 − φu[α,β]

k→j − (1 − φ)z[α,β]
k→j

)]
, (A.11)
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v
(1,1),(1,0)
j→i =

[ ∏

k∈∂j\i

(
1 − φu[β]

k→j − (1 − φ)z[β]
k→j

)] −
[ ∏

k∈∂j\i

(
1 − φu[α,β]

k→j − (1 − φ)z[α,β]
k→j

)]
, (A.12)

v
(1,1),(0,1)
j→i =

[ ∏

k∈∂j\i

(
1 − φu[α]

k→j − (1 − φ)z[α]
k→j

)] −
[ ∏

k∈∂j\i

(
1 − φu[α,β]

k→j − (1 − φ)z[α,β]
k→j

)]
, (A.13)

and

v
(1,0),(1,0)
j→i = 1−

[ ∏

k∈∂j\i

(
1 − φu[α]

k→j − (1 − φ)z[α]
k→j

)
]

−
[ ∏

k∈∂j\i

(
1 − φu[β]

k→j − (1 − φ)z[β]
k→j

)+

(1 − φ)k
[2]
j ×

[
1 −

∏

k∈∂j\i
(1 − z[β]

k→j)
]]

+
[ ∏

k∈∂j\i

(
1 − φu[α,β]

k→j − (1 − φ)z[α,β]
k→j

) +
[ ∏

k∈∂
[α]
j \i

(
1 − φu[α]

k→j − (1 − φ)z[α]
k→j

)]×

(1 − φ)k
[2]
j ×

[ ∏

k∈∂
[α,β]
j

(1 − z[α]
k→j) −

∏

k∈∂
[β]
j

(1 − z[β]
k→j)

∏

k∈∂
[α,β]
j

(1 − z[α,β]
k→j )

]]
. (A.14)

For z-type message, the expressions are more complicated. We have that

I =
[[ ∏

k∈∂j\i

(
1 − φu[α]

k→j − (1 − φ)z[α]
k→j

)] + (1 − φ)k
[1]
j −1

[
1 −

∏

k∈∂j\i
(1 − z[α]

k→j)
]]

II =
[[ ∏

k∈∂j\i

(
1 − φu[β]

k→j − (1 − φ)z[β]
k→j

)] + (1 − φ)k
[2]
j −1

[
1 −

∏

k∈∂j\i
(1 − z[β]

j→i)
]]

(I, II) =
[[ ∏

k∈∂j\i

(
1 − φu[α,β]

k→j − (1 − φ)z[α,β]
k→j

)] + (1 − φ)k
[1,2]
j −1

[
1 −

∏

k∈∂j\i
(1 − z[α,β]

j→i )
]]

+
[[ ∏

k∈∂
[α]
j

(
1 − φu[α]

k→j − (1 − φ)z[α]
k→j

) − (1 − φ)k
[α]
j

∏

k∈∂
[α]
j

(1 − z[α]
k→j)

]
×

(1 − φ)k
[2]
j −1

[ ∏

k∈∂
[α,β]
j \i

(1 − z[α]
k→j) −

∏

k∈∂
[β]
j

(1 − z[β]
k→j)

∏

k∈∂
[α,β]
j \i

(1 − z[α,β]
k→j )

]]
+

[[ ∏

k∈∂
[β]
j

(
1 − φu[β]

k→j − (1 − φ)z[β]
k→j

) − (1 − φ)k
[β]
j

∏

k∈∂
[β]
j

(1 − z[β]
k→j)

]
×

(1 − φ)k
[1]
j −1

[ ∏

k∈∂
[α,β]
j \i

(1 − z[β]
k→j) −

∏

k∈∂
[α]
j

(1 − z[α]
k→j)

∏

k∈∂
[α,β]
j \i

(1 − z[α,β]
k→j )

]]
(A.15)

z(1,1),(1,1)j→i = 1 − I − II + (I, II)

z(1,1),(1,0)j→i = II − (I, II)

z(1,1),(0,1)j→i = I − (I, II) (A.16)

z(1,0),(1,0)j→i = 1−
[[ ∏

k∈∂j\i

(
1 − φu[α]

k→j − (1 − φ)z[α]
k→j

)] + (1 − φ)k
[1]
j −1

[
1 −

∏

k∈∂j\i
(1 − z[α]

k→j)
]]

−
[[ ∏

k∈∂j\i

(
1 − φu[β]

k→j − (1 − φ)z[β]
k→j

)] + (1 − φ)k
[2]
j

[
1 −

∏

k∈∂j\i
(1 − z[β]

j→i)
]]

+
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[[ ∏

k∈∂j\i

(
1 − φu[α,β]

k→j − (1 − φ)z[α,β]
k→j

)] + (1 − φ)k
[1,2]
j −1

[
1 −

∏

k∈∂j\i
(1 − z[α,β]

j→i )
]]

+
[[ ∏

k∈∂
[α]
j \i

(
1 − φu[α]

k→j − (1 − φ)z[α]
k→j

) − (1 − φ)k
[α]
j −1

∏

k∈∂
[α]
j \i

(1 − z[α]
k→j)

]
×

(1 − φ)k
[2]
j

[ ∏

k∈∂
[α,β]
j

(1 − z[α]
k→j) −

∏

k∈∂
[β]
j

(1 − z[β]
k→j)

∏

k∈∂
[α,β]
j

(1 − z[α,β]
k→j )

]]
+

[[ ∏

k∈∂
[β]
j

(
1 − φu[β]

k→j − (1 − φ)z[β]
k→j

) − (1 − φ)k
[β]
j

∏

k∈∂
[β]
j

(1 − z[β]
k→j)

]
×

(1 − φ)k
[1]
j −1

[ ∏

k∈∂
[α,β]
j

(1 − z[β]
k→j) −

∏

k∈∂
[α]
j \i

(1 − z[α]
k→j)

∏

k∈∂
[α,β]
j

(1 − z[α,β]
k→j )

]]
(A.17)

z(0,1),(0,1)j→i = 1−
[[ ∏

k∈∂j\i

(
1 − φu[α]

k→j − (1 − φ)z[α]
k→j

)] + (1 − φ)k
[1]
j

[
1 −

∏

k∈∂j\i
(1 − z[α]

k→j)
]]

−
[[ ∏

k∈∂j\i

(
1 − φu[β]

k→j − (1 − φ)z[β]
k→j

)] + (1 − φ)k
[2]
j −1

[
1 −

∏

k∈∂j\i
(1 − z[β]

j→i)
]]

+
[[ ∏

k∈∂j\i

(
1 − φu[α,β]

k→j − (1 − φ)z[α,β]
k→j

)] + (1 − φ)k
[1,2]
j −1

[
1 −

∏

k∈∂j\i
(1 − z[α,β]

j→i )
]]

+
[[ ∏

k∈∂
[α]
j

(
1 − φu[α]

k→j − (1 − φ)z[α]
k→j

) − (1 − φ)k
[α]
j

∏

k∈∂
[α]
j

(1 − z[α]
k→j)

]
×

(1 − φ)k
[2]
j −1

[ ∏

k∈∂
[α,β]
j

(1 − z[α]
k→j) −

∏

k∈∂
[β]
j \i

(1 − z[β]
k→j)

∏

k∈∂
[α,β]
j

(1 − z[α,β]
k→j )

]]
+

[[ ∏

k∈∂
[β]
j \i

(
1 − φu[β]

k→j − (1 − φ)z[β]
k→j

) − (1 − φ)k
[β]
j −1

∏

k∈∂
[β]
j \i

(1 − z[β]
k→j)

]
×

(1 − φ)k
[1]
j

[ ∏

k∈∂
[α,β]
j

(1 − z[β]
k→j) −

∏

k∈∂
[α]
j

(1 − z[β]
k→j)

∏

k∈∂
[α,β]
j

(1 − z[α,β]
k→j )

]]
. (A.18)

In the Appendices B and C, we briefly discuss the reduction of the framework presented in Appendix A in two simple
cases: no overlap and full overlap.

Appendix B. Reduction of the framework to the case of no overlap

If there is no overlap between the two layers of the multiplex, then u
m⃗ji,(1,1)
j→i = v

m⃗ji,(1,1)
j→i = z

m⃗ji,(1,1)
j→i = 0 and k[1]

i = k[α]
i

and k[2]
i = k[β]

i . Further, any term that previously was separated into three multiplications, such as the r.h.s. of Eq. (A.4), will
contain only two multiplications. Please note that multiplications over empty sets, such as

∏
j∈∂

[α,β]
i

, will be, by definition,
equal to one. Eq. (A.4) becomes

∏

j∈∂i

(
1 − φu[α,β]

j→i − (1 − φ)v[α,β]
j→i

) =
[ ∏

j∈∂
[α]
i

(
1 − φu(1,0),(1,0)

j→i − (1 − φ)v(1,0),(1,0)
j→i

)]×

[ ∏

j∈∂
[β]
i

(
1 − φu(0,1),(0,1)

j→i − (1 − φ)v(0,1),(0,1)
j→i

)]
.
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Fig. D.7. Estimate of the computational time τ required to draw the entire observability diagram for an interdependent network formed by two scale-free
graphs with minimal degree kmin = 3, and degree exponent γ = 2.5 (red squares). Results have been obtained on an Intel(R) Xeon(R) CPU E5-2695
v2 2.40 GHz machine. Each point corresponds to the average value over 10 realizations of the network models. Standard deviation is compatible with
the size of the symbols. We draw the percolation diagram by considering any value of the probability φ in the interval [0, 1] with a precision dφ = 10−3.
Numerical convergence of the iterative algorithm is achieved when values of the same variable differ by at maximum ϵ = 10−7 between two consecutive
iterations. The computational time τ is plotted as a function of the number of edges E in the multiplex. We test the scaling τ ∼ E ln(E) (green line).

As there are no links shared by the two layers, the r.h.s of Eq. (A.1) becomes identical to Eq. (9) of the main text, with
only difference of containing explicitly the factors q[α]

i and q[β]
i of Eq. (7). We can apply the same procedure for the other

equations. For example, Eq. (A.2) reduces to Eq. (10) as follows. Substitute r [α]
i and r [β]

i , as defined in Eq. (8), into Eq. (10).
Define r [α]

i = 1 − X , r [β]
i = 1 − Y , and r [α]

i r [β]
i = 1 − X − Y + XY . When there is no overlap, the terms A and B of Eq. (A.3)

are exactly given by X and Y . The last term C is nothing more than XY , as we know that k[1]
i = k[α]

i and k[2]
i = k[β]

i .

Appendix C. Reduction of the framework to the case of full overlap

When there is full overlap between the two layers of the multiplex, then u[α]
j→i = u[β]

j→i = u[α,β]
j→i and k[1]

i = k[2]
i = k[α,β]

i .
Further, any term that previously was separated into three multiplications, such as the r.h.s. of Eq. (A.4), will contain only
one multiplication. Please note that multiplications over empty sets, such as

∏
j∈∂

[α]
i

and
∏

j∈∂
[β]
i

, will be, by definition, equal
to one.

In the full overlap, case, the three terms on the r.h.s. of Eq. (A.1) become identical, thus two of themwill cancel each other.
Excluding the prefactor φ, Eq. (A.1) thus reduces to Eq. (7) of the main text.

When there is full overlap, the terms A and B, and first line of C of Eq. (A.3) are equivalent. In Eq. (A.2), two of the terms
cancel each other, thus the equation, except for the prefactor 1−φ, reduces to the single-layer version given by Eq. (8) of the
main text. The remaining terms of the factor C (line 2, 3, 4 and 5) are all equal to zero. To understand this fact, it is enough
to look at line 3: if we set multiplication over empty set (

∏
j∈∂

[β]
i

) equal to one, then the term inside the bracket is equal to

zero, since for the full-overlap case, we have that z[α]
j→i = z[β]

j→i = z[α,β]
j→i . For the same reason, line 5 of the C is zero too.

We can reduce all other equations of the Appendix A to their single-layer version, similarly as we did above.

Appendix D. Computational complexity of the algorithm

See Fig. D.7.

Appendix E. Real-world multiplex networks

See Figs. E.8, E.9, E.10 and E.11.
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Fig. E.8. Observability transition in the Arxiv collaboration multiplex networks [46,47].

Fig. E.9. Observability transition in the Saccharomyces Pombemultiplex networks [48,49,47].
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Fig. E.10. Observability transition in the Physician multiplex networks [50,47].

Fig. E.11. Observability transition in the (a) Drosophila M. [48,49,47], (b) India Transportation [51,47], and (c) Human Brain [52,47] multiplex networks.
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We show that the community structure of a network can be used as a coarse version of its embedding in a
hidden space with hyperbolic geometry. The finding emerges from a systematic analysis of several real-
world and synthetic networks. We take advantage of the analogy for reinterpreting results originally
obtained through network hyperbolic embedding in terms of community structure only. First, we show that
the robustness of a multiplex network can be controlled by tuning the correlation between the community
structures across different layers. Second, we deploy an efficient greedy protocol for network navigability
that makes use of routing tables based on community structure.
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A wealth of recent publications provides evidence of
the advantages that may arise from thinking of real-world
networks as instances of random network models
embedded in hidden metric spaces [1,2]. In this class of
models, every node is represented by coordinates that
identify its position in the underlying space, and the
distance between pairs of nodes determines their likelihood
of being connected. The most popular formulation of
spatially embedded network models relies on hyperbolic
geometry [3,4]. Hyperbolic network geometry emerges
spontaneously from models of growing simplicial com-
plexes [5]. Hyperbolic geometry appears the natural choice
for networks with broad degree distributions, under the
hypothesis that the generating mechanism for edges in the
network is a compromise between the popularity of
individual nodes and similarity among pairs of nodes
[6]. Popularity is represented by the radial coordinate of
nodes in the hyperbolic space, while similarity is accounted
for by the difference between angular coordinates of pairs
of nodes. Hyperbolic maps are useful in practical contexts,
as generating efficient routing protocols in information
networks [7], characterizing the hierarchical organization
of biochemical pathways in cellular networks [8], and
monitoring the evolution of the international trade network
[9]. However, thinking of networks as embedded in the
hyperbolic space is important from the theoretical point
of view too. Growing network models that rely on hyper-
bolic geometry provide a genuine explanation for the
emergence of power-law degree distributions from local
optimization principles only [6]. Further, recent work show
that the main features of the percolation transition in
multiplex networks can be predicted by simply accounting

for interlayer correlation among hyperbolic coordinates of
nodes [10,11].
Popularity and similarity are core features of models

used in network hyperbolic embedding. They are, how-
ever, central in another heavily used model in network
science: the degree-corrected stochastic block model
(SBM) [12]. The SBM assumes a hidden cluster structure
where nodes are divided into a certain number of groups.
This classification accounts for similarity, as pairs of
nodes have different likelihoods of being connected
depending on their group memberships. Instead, the
degree correction provides a natural way of accounting
for the popularity of the individual nodes. The SBM is
generally considered in the context of graph clustering,
representing a generative network model with given
mesoscopic structure [13]. The SBM is used in the
formulation of principled community detection methods
[14]. These methods, in turn, are equivalent to other well-
established techniques for community detection, therefore
giving a central role in the graph clustering business to
the SBM [15].
At least superficially, the analogy between the ideas of

hyperbolic embedding and community structure is appar-
ent. In a recent paper, Wang et al. showed that information
about community structure can be used to improve the
accuracy and efficiency of standard algorithms for hyper-
bolic embedding [16]. Also, previous work was devoted to
the development of network models embedded in hyper-
bolic geometry with the addition of a preimposed com-
munity structure [17–19]. We are not aware, however,
of previous attempts to investigate the theoretical and
practical similarity of the two approaches when applied
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independently to the same network topology. This is the
purpose of the present Letter.
We assume that the topology of an undirected and

unweighted network G with N nodes is fully specified
by its adjacency matrix A, whose element Ai;j ¼ Aj;i ¼ 1

if a connection between nodes i and j is present, or
Ai;j ¼ Aj;i ¼ 0, otherwise. The hyperbolic embedding of
the network G consists in a pair of coordinates ðri; θiÞ for
every node i ∈ G. The quantity ri is the radial coordinate of
node i; θi is its angular coordinate. We assume that this
information is at our disposal. The way we acquire such
knowledge depends on whether the network analyzed is
synthetic or real. For synthetic graphs, we consider single
instances of the popularity-similarity optimization model
(PSOM) [6], so that hyperbolic coordinates correspond to
ground-truth values of the model. We also analyze several
real networks, where coordinates of nodes are obtained by
fitting graphs against the PSOM. In this second scenario,
we either rely on publicly available embeddings [10,20] or
we apply publicly available algorithms to the graphs [20].
Details are provided in [21]. We remark that the PSOM is
the model of reference in most of the hyperbolic embedding
techniques. It assumes the existence of an underlying
hyperbolic space, and it consists of a random growing
network model, where nodes are connected depending on
their distance and the value of other model parameters, such
as average degree hki, exponent γ of the power-law degree
distribution PðkÞ ∼ k−γ , and temperature T. When a real
network is fitted against the PSOM, the parameters hki and
γ of the model are determined on the basis of the observed
network, while T is treated as a free parameter [20]. Its
value may be set to the one that yields the best match
between the theoretical and numerical results for the
distance dependent connection probability [38]; when
hyperbolic embedding is used in greedy routing, one
may look for the T value that results in the highest success
rate [20]. The radial coordinate ri of every node i is
uniquely identified by its degree ki; hence, ri is not truly
learned. Instead, the angular coordinate θi for every node
i ∈ G is treated as a fitting parameter. There are various
techniques to perform the fit, including approximated
optimization algorithms [20,38], and ad hoc heuristic
methods [39,40].
In our analysis, we further assume to know the com-

munity structure of the graph G, consisting in a flat
partition of the network into C total communities, where
every node i ∈ G is associated with a discrete-valued
coordinate σi ¼ 1;…; C. Algorithms for community detec-
tion are numerous [13]. Here, we rely on results obtained
by three popular methods: the Louvain algorithm [41],
Infomap [42], and the algorithm by Ronhovde and
Nussinov [43]. We remark that, in the degree-corrected
SBM, the probability for nodes i and j to be connected is a
function of σi, σj, ki, and kj. Hence, the graph G can be
thought of as embedded into a community structure, where

every node i is de facto represented by the coordinates
(ki, σi).
A direct comparison between the hyperbolic embedding

and the community structure of the graph G consists in a
comparison between the coordinates of the individual
nodes in the two representations. Further, as the degree
of the nodes trivially matches in both representations, the
comparison reduces only in matching angular coordinates
θs and group memberships σs. From the numerous empiri-
cal tests we conducted on both real and synthetic networks,
two main conclusions emerge. First, networks usually
considered in hyperbolic embedding applications are
highly modular, in the sense that partitions found by
community detection algorithms correspond to very large
values of the modularity function Q [44] (see Fig. 1 and
[21]). Second, nodes within the same communities are
likely to have similar angular coordinates. This second
finding is in line with what already shown in Ref. [16]. To
quantify coherence among angular coordinates of nodes
within the same community g, we first define the variables
ξg and ϕg with

ξgeiϕg ¼ 1

ng

XN

j¼1

δσj;ge
i θj : ð1Þ

δx;y ¼ 1 if x ¼ y and δx;y ¼ 0, otherwise. The rhs of
Eq. (1) stands for the sums of vectors in the complex
plane of the type ei θ ¼ cosðθÞ þ i sinðθÞ of all nodes in
group g. The vectorial sum is divided by the community

FIG. 1. Hyperbolic embedding and community structure for
real and synthetic networks. (a) We compare the hyperbolic
embedding of the IPv4 Internet with its community structure.
Every point represents a node in the largest connected component
of the graph. Positions are determined by the radial and angular
coordinates of the nodes in the hyperbolic embedding of the
network [10]. We use the best partition found by the Louvain
algorithm to determine the community structure of the graph [41].
The partition consists of C ¼ 31 communities. Colors of the
points identify community memberships. The value of the
modularity is Q ¼ 0.61, while angular coherence is ξ̄ ¼ 0.72.
(b) We consider 39 real-world networks and 2 instances of the
PSOM, and we compare their community structure and hyper-
bolic embedding (see details in [21]). The plot displays each
network on the (Q, ξ̄)-plane. We show results obtained using
Louvain (black squares) and Infomap (red circles) [42].
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size ng to obtain an average vector for the community. ϕg is
the angular coordinate of community g. The module 0 ≤
ξg ≤ 1 indicates how coherent are the angular coordinates
of the nodes within group g. Note that, the definition of
Eq. (1) resembles the one used for the order parameter of
the Kuramoto model [45]. We finally measure the angular
coherence of a partition as the weighted average

ξ̄ ¼ 1

N

XC

g¼1

ngξg: ð2Þ

By definition, we have that 0 ≤ ξ̄ ≤ 1. For all networks
considered in our analysis (see Fig. 1 and [21]), angular
coherence is typically large.
Our empirical tests demonstrate that strong angular

coherence within communities of strongly modular net-
works is a quite robust feature of both synthetic and real
systems. This finding tells us that the analogy between
community structure and hyperbolic embedding may
extend beyond the mere similarity among their ingredients.
The following examples show that the analogy is useful
also in the interpretation of physical properties of networks
and the design of practical algorithms on networks.
Our first example regards the rephrasing, in terms of

community structure only, of a result obtained by analyzing
the hyperbolic embedding of multiplex networks. In two
recent papers [10,11], Kleineberg and collaborators found
that the interlayer correlation between hyperbolic coordi-
nates of nodes in multiplex networks is a good predictor
for the robustness of a system under targeted attack.
Specifically, they found that, when correlation among
angular coordinates is high, the percolation transition is
smooth. Instead, multiplex networks characterized by a
small value of interlayer correlation exhibit abrupt perco-
lation transitions. The finding was initially obtained for
real-world multiplex networks. A theoretical explanation
was then given in terms of a synthetic network model [11].
To further support the analogy between hyperbolic embed-
ding and community structure that we are arguing for in this
Letter, we replicated all results of Ref. [11] using commu-
nity structure only. First, we analyzed the same real-world
multiplex networks considered in Ref. [11]. We found that
their robustness can be predicted very well by the level of
correlation among the community structures of the layers
[21]. Then, we provided a theoretical explanation. We
replaced the network model by Kleineberg et al. with a
variant of the SBM known in the literature as the
Lancichinetti-Fortunato-Radicchi (LFR) benchmark graph
[46]. The LFRmodel mostly differs from the standard SBM
for relying on heterogeneous distributions of node degrees
and community sizes. In our model for multiplex networks
[21], we first generate a single LFR graph that is used as the
topology for both layers. We then exchange the node labels
in one layer to destroy edge overlap and degree-degree

correlation. We consider two distinct scenarios. In the first
case, we exchange the label of every node with the one of a
randomly chosen node from the same community. This
allows us to maintain perfect correlation between the
community structure of the two layers. In the second case,
we exchange the labels of a number of randomly sampled
nodes, such that the edge overlap between the layers equals
the value obtained in the first randomization scheme. This
second recipe completely destroys the correlation between
the community structures of the two layers. In Fig. 2(a), we
show the phase diagrams for instances of the multiplex
model when relabeling uses information about the com-
munity structure of the graph. Here, the community
structure is strong, in the sense that the fraction of external
connections per node is only μ ¼ 0.1. The transition

FIG. 2. Robustness of multiplex networks with correlated
community structure. We measure the relative size of the largest
mutually connected cluster as a function of the fraction of nodes
removed from the system. The synthetic multiplex graphs are
obtained using the recipe described in the text, where two
Lancichinetti-Fortunato-Radicchi (LFR) networks with size N
are coupled together. The LFR models are such that: the average
degree is hki ¼ 6, the maximum degree is kmax ¼

ffiffiffiffi
N

p
, node

degrees k obey a power-law distribution PðkÞ ∼ k−γ with ex-
ponent γ ¼ 2.6, and there are C ¼

ffiffiffiffi
N

p
communities of identical

size S ¼
ffiffiffiffi
N

p
. For every N, we show the results for five distinct

instances of the model. (a) LFR graphs are generated with
μ ¼ 0.1. Labels are exchanged only among nodes within the
same clusters. All nodes are considered for relabeling at least
once. (b) Same as in panel (a). However, relabeling of nodes is
not constrained by community structure. The number of nodes
that are relabeled is such that the edge overlap among layers is the
same as in panel (a) [21]. (c) and (d) Same as in panels (a) and (b),
respectively, but for LFR graphs constructed using μ ¼ 0.3.
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appears smooth, and it becomes smoother as the size of the
model increases. This is an indication that, in the limit of
infinitely large LFR graphs, the percolation transition is
likely continuous. In Fig. 2(b), we consider the second
relabeling scheme that does not account for community
structure. The resulting diagrams indicate that the perco-
lation transition is abrupt. The level of correlation among
community structure of the two layers can be decreased by
increasing μ, so that community structure itself becomes
less neat. This is done in Figs. 2(c) and 2(d), where the
transition appears abrupt no matter how the labels of the
nodes are relabeled. In [21], we report results for different
parameter values of the LFR model. Results confirm our
claim that the extent of correlation between the community
structure of the layers of a multiplex can be used to explain
the robustness properties of the system under targeted
attack.
Our second example focuses on greedy routing [2,7]. To

be brief, the scenario considered is the following. A packet
originated by node s must be delivered to node t. The
packet can navigate the network by walking at each step on
an edge. The packet moves on the network until it reaches
its destination t, or it visits the same node twice. In the first
case, the packet is correctly delivered. In the second case,
the packet is considered lost, and it is discarded. The goal of
a good routing strategy is to deliver packets with a high
probability and with a small number of steps, for any
randomly chosen pair of source and target nodes s and t.
Hyperbolic embedding turns out to be very useful in the
formulation of a greedy strategy, where individual steps are
determined on the basis of the distance among nodes in the
hyperbolic space. Specifically, if a message is at node i,
then the next move will be on the node

jðiÞðbestÞ ¼ arg min
j∈N i

dðj; tÞ; ð3Þ

where N i is the set of neighbors of i, and dðj; tÞ is the
distance between nodes j and t. The greedy technique is
computationally feasible as every node needs to know only
the identity and the geometric coordinates of its neighbors.
The regimes of effectiveness of the routing method have
been systematically studied in artificial network models [2].
The technique has been proven to be extremely effective on
some real-world topologies [2,7]. We devised a new greedy
routing protocol that makes use of the cluster structure of a
network instead of its hyperbolic embedding. Specifically,
we replaced the definition of distance in the hyperbolic
space between nodes with the fitness

dðj; tÞ ¼ βDσj;σt − ð1 − βÞ ln kj; ð4Þ

where kj is the degree of node j, and σj and σt are the
indices of the communities of nodes j and t, respectively.
Dσj;σt is the length of the shortest path between

communities σj and σt calculated on a weighted supernet-
work in which supernodes are communities of the original
network. Each pair of supernodes g and q is connected
with a superedge with weight 1 − ln ρg;q; here, ρg;q is the
probability that, in the original network, a randomly chosen
node in community g has an edge to community q [21]. The
term ln kj in Eq. (4) serves to perform degree correction.
The factor 0 ≤ β ≤ 1 serves to control the relative impor-
tance of one factor over the other. β plays a similar role as
of the temperature T in hyperbolic routing protocols [20],
and its value may be appropriately chosen with the goal of
optimizing the success rate in the delivery of messages
[21]. The routing protocol based on Eq. (4) is still
computationally efficient as long as the total number of
communities C grows sublinearly with the size of the graph
N. In the extreme case, where every community is formed
by a single node, so that C ¼ N, the method will be 100%
accurate in delivering packets, but it will also be computa-
tionally expensive. In Fig. 3, we display the performance of
community-based greedy routing as a function of the mean
size of the communities. We study the performance on both
synthetic and real-world networks. The number of com-
munities is tuned by changing the resolution parameter in

FIG. 3. Performance of community-based routing. (a) We
consider single instances of the growing network model of
Ref. [38] with N ¼ 5, 000 nodes, hki ¼ 5, and degree exponent
γ ¼ 2.1. Different symbols and colors refer to different values
of the temperature T. The plot shows how success rate of the
community-based greedy routing strategy changes as a function
the average size of the communities. Communities are identified
using the algorithm by Ronhovde and Nussinov [43]. Their
number can be varied by changing the resolution level of the
algorithm. Dashed lines are obtained on the same networks but
using hyperbolic greedy routing. (b) Same as in panel a, but for
real networks. We consider the following networks: the Internet at
the level of autonomous systems (AS) [47]; the worldwide air
transportation network (AT) [48]; the European road network
(ER) [49]; the peer-to-peer network (P2P) [50]; the arXiv
collaboration network [51]. For all the networks (except arXiv)
the dashed lines are obtained by varying the temperature T in the
algorithm for hyperbolic embedding introduced in Ref. [20]; for
the arXiv network the dashed line shows the result for the
optimum hyperbolic coordinates whose data were available in
[10]. Details can be found in [21].
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the algorithm by Ronhovde and Nussinov [43]. Success
rates of the community-based greedy protocol are always
very good, as long as communities are not too large.
In summary, we showed that looking at a network as

embedded in a hyperbolic geometry is similar, both in theory
and practice, to pretending that the network is organized into
communities, provided that community structure is detected
by a method that accounts for the degree of the nodes. Our
finding provides evidence that the intercommunity structure
in networks may have geometric organization, meaning that
at the global level, geometry dominates, while at the local
scale, communitymemberships prevail. Thus, real networks
may be modeled by a graphon [52] consisting of a mixture
of latent-spatial and blocklike structures. This fundamental
model has the potential to generate further understanding of
physical processes, such as spreading and synchronization,
in real networks.
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Hyperbolic embedding and community detection

In table S1, we provide a list of all networks considered
in our analysis.

We obtain hyperbolic coordinates of networks in the fol-
lowing way. For real networks, we either rely on embed-
dings publicly available [1, 2] or we apply publicly available
algorithms to the graphs [2]. Urls of electronic resources
for all networks are provided in table S1. In the hyper-
bolic embeddings that we performed, we made use of the al-
gorithm provided in https://bitbucket.org/dk-lab/
2015_code_hypermap. As prescribed in Ref. [2], the value
of the temperature T used in the embedding corresponds
to the one leading to maximal success rate in greedy rout-
ing [3, 4] (see section below). We further consider two
instances of the popularity-similarity optimization model
(PSOM) [5]. They are generated using different values of
the model parameters. The code to generate instances of
the PSOM has been taken from https://www.cut.ac.cy/
eecei/staff/f.papadopoulos.

We use three distinct methods for detecting communi-
ties in networks: the Louvain algorithm [6], Infomap [7],
and the algorithm by Ronhovde and Nussinov [8]. Lou-
vain and Infomap are used in the analysis about the rela-
tion between hyperbolic embedding and community struc-
ture (see Table S1). The algorithm by Ronhovde and Nussi-
nov is used in the analysis of greedy routing. For Lou-
vain and Infomap we rely on the algorithms implemented
in the library http://igraph.org/python. We consider
always the “best” (i.e., the one with maximum modularity
for Louvain , the one with minimum description length for
Infomap) partitions found by the algorithms. The imple-
mentation of the algorithm by Ronhovde and Nussinov was
taken from http://www.elemartelot.org/index.php/
programming/cd-code. We chose this algorithm to study
greedy routing as it allows for a finer tuning of the resolution
of the community structure than the other two algorithms.
After obtaining the modular structure from this algorithm,
we perform an additional step to improve the quality of com-
munities: If there is any community with size one we change
the community label of the only member of that community
to the label of its highest degree neighbor.

Community structure and robustness of real-world multiplex
networks

We performed the same type of analysis as in Ref. [15] by
studying the relation between system robustness and “geo-
metric” correlations among the network layers in real mul-
tiplex networks. We just replaced hyperbolic embedding

with community structure. Specifically, given a multiplex
network composed of two layers, we first detect communi-
ties in the largest connected component of both layers inde-
pendently by using either Louvain or Infomap. Correlation
between the community structure of the layers is measured
using the normalized mutual information (NMI) defined in
Ref. [26]. As the number of nodes in the layers may be dif-
ferent, in the computation of the NMI values, we considered
only nodes appearing in both layers. We finally used the ob-
tained NMI values in the scatter plots of Fig. S1. We find
that the robustness of the various networks can be predicted
equally well by looking at correlations among either hyper-
bolic coordinates or community memberships of the nodes
in the two layers (see panels a–c). Further, we find that NMI
values in the various representations are strongly correlated
(panels d–e).

Multiplex networks with correlated community structure

The first step in the creation of a single instance of our
multiplex model consists in generating a single instance
of the Lancichinetti-Fortunato-Radicchi (LFR) model [27].
The LFR model is a variant of the degree-corrected stochas-
tic block model. The model allows to generate single-
layer networks with built-in community structure, where
both the degree distribution P(k) and community size dis-
tribution P(S ) are power-law functions, i.e., P(k) ∼ k−γ and
P(S ) ∼ S −β. In addition to the exponents γ and β, in the
generation of one instance of the LFR model, one needs to
specify the value of several parameters, including: average
degree �k�, maximum degree kmax, minimum smin and maxi-
mum smax community size, size of the network N, and the
mixing parameter µ. The mixing parameter 0 ≤ µ ≤ 1
specifies the fraction of edges that a single node shares with
nodes outside its own community. This parameter plays a
fundamental role to determine how strong the community
structure is. Low values of µ correspond to a strong com-
munity structure. As µ increases, community structure be-
comes fuzzy. The maximal value of µ for which planted
community structure is exactly recoverable is bounded by a
quantity calculated in Ref. [28]. In our simulations, we use
µ = 0.1 to represent a regime of strong community structure,
and µ = 0.3 for regime of loose community structure. These
values have been chosen arbitrarily, thinking to the applica-
tion of the model here. For example, we didn’t use µ values
too close to zero to avoid the presence of disconnected com-
ponents.

Once a single instance of the LFR model is generated, we
use that instance to define the topology of both layers of the
multiplex. Node labels of the two layers are initially iden-
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Table S1. Relation between community structure and hyperbolic embedding in real and synthetic networks. From left to right, we
report: name of the network, size of the giant component N, number of communities C identified by the Louvain algorithm, value of the
modularity Q corresponding to the Louvain partition, angular coherence ξ̄ of the Louvain partition, number of communities C identified by
Infomap, value of the modularity Q corresponding to the Infomap partition, angular coherence ξ̄ of the Infomap partition, reference(s) of
the papers where the dataset was reported and/or where hyperbolic coordinates of the network were obtained, urls of the websites where
the corresponding data can be downloaded. If the url is denoted by ∗, this means that data were obtained from a private communication and
they are available upon request from the authors of Ref. [9].

Louvain Infomap
network N C Q ξ̄ C Q ξ̄ Refs. url

IPv4 Internet 37, 542 31 0.61 0.72 1, 625 0.47 0.94 [1] http://koljakleineberg.wordpress.com/materials
IPv6 Internet 5, 143 19 0.48 0.53 418 0.41 0.86 [1] http://koljakleineberg.wordpress.com/materials

C. Elegans, layer 1 248 9 0.65 0.70 29 0.61 0.83 [1, 10, 11] http://koljakleineberg.wordpress.com/materials
C. Elegans, layer 2 258 9 0.50 0.82 23 0.46 0.84 [1, 10, 11] http://koljakleineberg.wordpress.com/materials
C. Elegans, layer 3 278 7 0.44 0.87 11 0.42 0.86 [1, 10, 11] http://koljakleineberg.wordpress.com/materials

D. Melanogaster, layer 1 752 17 0.64 0.82 70 0.59 0.91 [1, 12, 13] http://koljakleineberg.wordpress.com/materials
D. Melanogaster, layer 2 633 17 0.64 0.72 68 0.60 0.89 [1, 12, 13] http://koljakleineberg.wordpress.com/materials

arXiv, layer 1 1, 537 32 0.87 0.78 130 0.81 0.94 [1, 14] http://koljakleineberg.wordpress.com/materials
arXiv, layer 2 2, 121 35 0.86 0.74 190 0.79 0.96 [1, 14] http://koljakleineberg.wordpress.com/materials
arXiv, layer 3 129 10 0.81 0.88 17 0.78 0.93 [1, 14] http://koljakleineberg.wordpress.com/materials
arXiv, layer 4 3, 669 46 0.82 0.69 290 0.74 0.91 [1, 14] http://koljakleineberg.wordpress.com/materials
arXiv, layer 5 608 23 0.85 0.86 61 0.79 0.96 [1, 14] http://koljakleineberg.wordpress.com/materials
arXiv, layer 6 336 17 0.84 0.96 38 0.80 0.98 [1, 14] http://koljakleineberg.wordpress.com/materials

Physician, layer 1 106 8 0.51 0.78 13 0.52 0.80 [15] http://koljakleineberg.wordpress.com/materials
Physician, layer 2 113 10 0.56 0.79 14 0.55 0.77 [15] http://koljakleineberg.wordpress.com/materials
Physician, layer 3 110 9 0.60 0.53 18 0.59 0.72 [15] http://koljakleineberg.wordpress.com/materials

SacchPomb, layer 1 751 21 0.79 0.53 86 0.73 0.83 [1, 12, 13] http://koljakleineberg.wordpress.com/materials
SacchPomb, layer 2 182 13 0.82 0.79 28 0.78 0.91 [1, 12, 13] http://koljakleineberg.wordpress.com/materials
SacchPomb, layer 3 2, 340 25 0.52 0.78 119 0.47 0.88 [1, 12, 13] http://koljakleineberg.wordpress.com/materials
SacchPomb, layer 4 819 11 0.60 0.69 67 0.56 0.88 [1, 12, 13] http://koljakleineberg.wordpress.com/materials

Human brain, layer 1 85 5 0.62 0.87 8 0.62 0.92 [15] http://koljakleineberg.wordpress.com/materials
Human brain, layer 2 78 6 0.55 0.85 8 0.56 0.88 [15] http://koljakleineberg.wordpress.com/materials

Rattus, layer 1 1, 866 32 0.69 0.71 129 0.65 0.87 [1, 12, 13] http://koljakleineberg.wordpress.com/materials
Rattus, layer 2 529 20 0.85 0.75 61 0.80 0.93 [1, 12, 13] http://koljakleineberg.wordpress.com/materials

Air/Train, layer 1 69 5 0.34 0.68 6 0.19 0.62 [15] http://koljakleineberg.wordpress.com/materials
Air/Train, layer 2 67 6 0.26 0.73 5 0.04 0.41 [15] http://koljakleineberg.wordpress.com/materials

ARK200909 24, 091 29 0.62 0.77 980 0.53 0.94 [2] http://bitbucket.org/dk-lab/2015_code_hypermap
ARK201003 26, 307 29 0.62 0.71 1, 070 0.52 0.94 [2] http://bitbucket.org/dk-lab/2015_code_hypermap
ARK201012 29, 333 28 0.60 0.80 1, 171 0.49 0.94 [2] http://bitbucket.org/dk-lab/2015_code_hypermap
Enron emails 33, 696 291 0.58 0.66 1, 546 0.52 0.82 [9, 16] ∗

Music chords 2, 476 8 0.29 0.57 6 0.00 0.16 [9, 17] ∗

OpenFights Air Transp. 3, 397 26 0.65 0.89 167 0.61 0.95 [9, 18] ∗

Human Metabolites 1, 436 18 0.67 0.78 101 0.62 0.90 [9, 19] ∗

Human HI-II-14 proteome 4, 100 42 0.47 0.54 334 0.43 0.80 [9, 20] ∗

AS Internet 23, 748 24 0.60 0.78 994 0.52 0.94 [9, 21] ∗

AS Oregon Interent, T = 0.58 6, 474 31 0.63 0.66 412 0.54 0.88 [22] http://snap.stanford.edu/data/as.html
Air Transportation, T = 0.14 3, 618 36 0.69 0.93 246 0.64 0.97 [23] http://seeslab.info/downloads

P2P, T = 0.92 6, 299 19 0.47 0.77 598 0.41 0.85 [24] http://snap.stanford.edu/data/p2p-Gnutella08.html
Euro Roads, T = 0.28 1, 039 25 0.86 0.36 134 0.77 0.71 [25] http://konect.uni-koblenz.de/networks/subelj_euroroad

PSOM, �k� = 5, γ = 2.1, T = 0.1 4, 114 40 0.85 0.99 248 0.77 1.00 [5] http://www.cut.ac.cy/eecei/staff/f.papadopoulos
PSOM, �k� = 5, γ = 2.1, T = 0.9 4, 180 30 0.70 0.75 461 0.58 0.85 [5] http://www.cut.ac.cy/eecei/staff/f.papadopoulos

tical, so that the adjacency matrices of the two layers are
identical. We then start relabeling nodes of one layer only.
As already mentioned in the main text, we use two differ-
ent strategies for relabeling. In the first strategy, we make
use of the known community structure. In essence, in the
relabeling procedure, the label of every node is exchanged

with the one of another node randomly chosen from the
same community. In the other procedure instead, the con-
straint on the group memberships is not used. This second
variant corresponds to the same model already considered in
Refs. [29, 30]. In this second variant, we perform a num-
ber of label swaps such that the value of the edge overlap
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Figure S1. Community structure and robustness of real multiplex networks. We consider the 26 multiplex networks analyzed in Ref. [15].
As in Ref. [15], we rely on the quantityΩ as a proxy to evaluate the robustness of a given multiplex network. Ω = (ΔN−ΔNrs)/(ΔN+ΔNrs),
where ΔN and ΔNrs are respectively the widow sizes of the transitions in targeted and random percolation processes on the network. Ω
values for the various networks have been taken from the supplemental material of Ref. [15]. The normalized mutual information (NMI)
serves to quantify similarity between the embedding of the nodes in the two layers. Values of the NMI for hyperbolic embedding have also
been taken from the supplemental material of Ref. [15]. We calculated instead NMI values among the community structures found for the
layers of a multiplex using the definition provided in Ref. [26]. Communities in each layer are found using either Louvain or Infomap. (a)
As a reference, we reproduced the same plot as in Fig. 4 of Ref. [15], where each network represents a point in the (NMI, Ω)-plane. The
dashed line is obtained with simple linear regression. The correlation coefficient calculated from the data points is r = 0.63. (b) Same as
in panel a, but for NMI values calculated using the community structures found by the Louvain algorithm. Here r = 0.54. (c) Same as
in panel b, but for NMI values calculated using the community structures found by Infomap. We measured r = 0.68 in this case. (d, e,
and f) We compare NMI values obtained using the various embedding methods. The various panels represent: (d) Louvain vs. hyperbolic
(r = 0.56); (e) Infomap vs. hyperbolic (r = 0.55); (f) Infomap vs. Louvain (r = 0.76).

among the two layers is comparable with the one obtained
in the first variant of the model. Both variants of the mul-
tiplex model essentially lead to very small values of edge
overlap and degree-degree correlation between layers. The
first variant, however, preserves perfect correlation between
the community structure of the two layers, while the second
variant destroys it completely.

The robustness of single instances of the multiplex model
described above are then studied as in Ref. [15]. Every node
i in the network has associated the score Ki = max (k(1)

i , k
(2)
I ),

with k(x)
i the degree of node i in layer x. Nodes are then

ranked in descending order according to this score, with ties
randomly broken. The top node is removed from the net-
work. After every removal, the score is Ki of every node i
still in the system is recomputed. Further, the relative size
of the mutually connected giant component is evaluated to
construct a percolation phase diagram [31].

We considered various sets of parameters for the gener-
ation of the LFR model. All of them provide the same
type of message. When the community structure is strong
(i.e., small µ values), the model with correlated community
structure undergoes a smooth percolation transition. If cor-
relation in community structure is destroyed, the transition
becomes abrupt. If the community structure is not strong

(i.e., large µ values), then both relabeling schemes lead to
an abrupt transition. The result is valid also for LFR models
with homogenous degree distribution (see Figure S2).

Greedy routing

As already considered in Refs. [3, 4], we immagine that a
packet is traveling from the source node s to the target node
t in a network with N nodes and adjacency matrix A. The
packet moves on edges of the network, performing a single
hop at each stage of the dynamics. Greedy routing relies on
a definition of “distance” between pairs of nodes in the net-
work. At every stage r of the dynamics towards the target
node t, a packet sitting on node pr = i choose to move to the
node j (i)

(best) defined in Eq. (4) of the main text. In essence,

j (i)
(best) is the neighbor of node i that has minimal distance to

the target node t. In our numerical simulations, we avoid
immediate backtracking walks of the packet, therefore node
j (i)
(best) = pr+1 � pr−1, i.e., cannot be equal to the node vis-

ited before node i; this condition improves significantly (not
shown) the performance of both methods considered in this
paper. The packet continues to travel until one of these two
conditions is met: (i) the packet arrives at destination after
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R steps, i.e., pR = t; (ii) the packet visits twice the same
node, i.e., pr = pv, with v < r. Condition (i) corresponds
to success. Condition (ii) represents failure and the packet
is discarded. To evaluate performance of the routing proto-
col, we use at least B = 10, 000 numerical simulations. In
each simulation, source s and target t nodes are randomly
chosen among the nodes in the giant connected component
of the network. We quantify three different metrics of per-
formance:

1) The success rate z , i.e., the fraction of packets cor-
rectly delivered. This is a metric of performance intro-
duced in Ref. [3]. Results for this metric are presented
in Figure 3 of the main text.

2) The average value of �R�, i.e., the average length of the
paths for successfully delivered packets. This metric
of performance was also introduced in Ref. [3]. Re-
sults for this metric are presented in Figures S3c and
d.

3) Efficiency η = z �1/R�, where �1/R� represents the
mean value of the inverse of the path length obtained
for each of the successfully delivered packets. This

Figure S2. Robustness of multiplex networks with correlated
community structure. We measure the relative size of the
largest mutually connected cluster as a function of the fraction of
nodes removed from the system. The synthetic multiplex graphs
were obtained using the recipe described in the text, where two
Lancichinetti-Fortunato-Radicchi (LFR) models with size N are
coupled together. The LFR models are such that: the average de-
gree is �k� = 6 and the maximum degree is kmax = 6, so that degree
of all nodes is k = 6; communities have identical size S = 64. For
every value of N we show the results for five distinct instances of
the model. (a) LFR graphs are generated with µ = 0.1. Labels are
exchanged only among nodes within the same clusters. (b) Same
as in panel a. However, relabeling of nodes is allowed among all
nodes in the network. Probabilities of relabeling in panels a and b
are such that the edge overlap among layers is the same for both
models. (c and d) Same as in panels a and b, respectively, but for
LFR graphs constructed using µ = 0.3.

Figure S3. Same analysis as in Figure 3 of the main text. Perfor-
mance is measured in terms of efficiency (panels a and b), and the
average path length of successfully delivered packets (panels c and
d).

definition of η is based on a metric of performance
introduced in Ref. [32]. Results for this metric are
presented in Figures S3a and b.

It is worth noting that the efficiency measure (which is a bal-
ance between success rate and path length) shows similar
results as those of the success rate (Figure S3a and b); this
is because for almost all the networks of Figure S3, the path
length does not change remarkably as the mean community
size or the temperature is altered (Figures S3c and d). Thus,
the success rate results (investigated in Figure 3 of the main
text) are sufficient to assess the performance of the two rout-
ing methods investigated in this paper.

In the standard application of network hyperbolic embed-
ding, the distance between pairs of nodes is given by their
distance in the hyperbolic space [3, 4]. In our community-
based routing protocol, we substituted the distance in the
hyperbolic space with the analogous quantity based on the a

Figure S4. Same analysis as in Figure 3 of the main text. For each
modular structure the β value for which we obtained the highest
success rate is reported.
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priori given community structure of the graph. Specifically,
we define the weight between the connected modules g and
q as

wg,q = 1 − ln ρg,q , if ρg,q > 0 , (S1)

where

ρg,q =

�
i> j Ai, jδσi,gδσ j,q�

i> j Ai, jδσi,g
. (S2)

In the above equation, δx,y = 1, if x = y, while δx,y = 0, oth-
erwise; Ai, j = Aj,i = 1 if nodes i and j are connected, while
Ai, j = Aj,i = 0, otherwise; σi is the group membership of
node i according to the given community structure. Eq. (S2)
is the ratio between the total number of edges shared be-
tween nodes within communities g and q, and the total de-
gree of nodes in community g. ρg,q can be also interpreted
as the probability that following a random edge of a random
node in module g we reach a node in module q. We consider
each community as a supernode, and the network as a super-
network composed of supernodes connected with weighted
superedges. The weight of the superedge between supern-
odes g and q is defined in Eq. (S1). Then, we find the length
of the shortest paths between every pair of supernodes. This
operation relies on the algorithm by Johnson [33]. The out-
put is a full matrix D that includes the distances between ev-
ery pair of modules. The generic element Dg,q of this matrix
contains a sum of weights defined in Eq. (S1), which is ba-
sically equivalent to a sort of expected path length between
communities g and q, under the hypothesis that connections
were generated according to the stochastic block model [34].
Given that we are at node i at stage r of the trajectory of the
packet, the “distance” between a neighbor j of node i and
the target t is finally defined as

d j,t = βDσ j,σt

+ (1 − β)
��

1 − log
�
k j ρσi,σ j

��
−
�
1 − log

�
ρσi,σ j

���

(S3)

= βDσ j,σt − (1 − β) ln k j (S4)

where k j is the degree of node j, and 0 ≤ β ≤ 1. The pre-
vious expression defines a measure of “distance” between
node j and module σt. This is computed as a distance be-
tween modules σ j and σt, but corrected for the fact that we
are aware of the degree of node j. This definition of distance
is motivated by the degree-corrected stochastic block model
in which the probability that following a randomly chosen
edge from community σ j we reach a node in community
σ j� is proportional to k j ρσ j,σ j� . Note that we are aware also
of the degrees of nodes i and t, but this information is not
helpful in the protocol. The factor β serves to weight the
importance of the community structure vs. the degree of the
individual nodes in the definition of distance. This factor
can be tuned appropriately to optimize the success rate of the
greedy routing protocol. Optimal values used in our simula-
tions are displayed in Figure S4. As Figure S4 illustrates, the
most optimum value of β depends on the network structure
and also on the considered modular structure; more specif-
ically, β is more likely to be close to 1 for networks with
lower temperatures (or effectively those with higher clus-
tering coefficients) and for modular structures with smaller
mean community sizes.
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[19] M. Á. Serrano, M. Boguná, and F. Sagués, Molecular biosys-
tems 8, 843 (2012).
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Optimal percolation is the problem of finding the minimal set of nodes whose removal from a

network fragments the system into non-extensive disconnected clusters. The solution to this

problem is important for strategies of immunization in disease spreading, and influence

maximization in opinion dynamics. Optimal percolation has received considerable attention in

the context of isolated networks. However, its generalization to multiplex networks has

not yet been considered. Here we show that approximating the solution of the optimal

percolation problem on a multiplex network with solutions valid for single-layer networks

extracted from the multiplex may have serious consequences in the characterization of the

true robustness of the system. We reach this conclusion by extending many of the methods

for finding approximate solutions of the optimal percolation problem from single-layer

to multiplex networks, and performing a systematic analysis on synthetic and real-world

multiplex networks.
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A multiplex is a network in which nodes are connected
through different types or flavors of pairwise edges1–3. A
convenient way to think of a multiplex is as a collection

of network layers, each representing a specific type of edges.
Multiplex networks are genuine representations for several real-
world systems, including social4,5, and technological systems6,7.
From a theoretical point of view, a common strategy to under-
stand the role played by the co-existence of multiple network
layers is based on a rather simple approach. Given a process and a
multiplex network, one studies the process on the multiplex and
on the single-layer projections of the multiplex (e.g., each of the
individual layers, or the network obtained from aggregation of
the layers). Recent research has demonstrated that ignoring
the effective co-existence of different types of interactions in the
study of a multiplex network may have dramatic consequences in
the ability to model and predict properties of the system.
Examples include dynamical processes, such as diffusion8,9, epi-
demic spreading10–13, synchronization14, and controllability15, as
well as structural processes such as those typically framed in
terms of percolation models16–29.

The vast majority of the work on structural processes on
multiplex networks have focused on ordinary percolation models
where nodes (or edges) are considered either in a functional or in
a non-functional state with homogenous probability30. In this
paper, we shift the focus on the optimal version of the percolation
process: we study the problem of identifying the smallest set of
nodes in a multiplex network such that, if these nodes are
removed, the network is fragmented into many disconnected
clusters with non-extensive sizes. We refer to the nodes belonging
to this minimal set as structural nodes (SNs) of the multiplex
network. The solution of the optimal percolation problem has

direct applicability in the context of robustness, representing the
cheapest way to dismantle a network31–33. The solution of the
problem of optimal percolation is, however, important in other
contexts, being equivalent to the best strategy of immunization to
a spreading process, and also to the best strategy of seeding a
network for some class of opinion dynamical models34–37.
Despite its importance, optimal percolation has been introduced
and considered in the framework of single-layer networks only
recently35,36. Optimal percolation is a NP-complete problem32.
Hence, on large networks, we can only use heuristic methods to
find approximate solutions. Most of the research activity on this
topic has indeed focused on the development of greedy
algorithms31–33,35.

Here we consider the generalization of optimal percolation to
multiplex networks. Our generalization consists in the redefini-
tion of the problem in terms of mutual connectedness16. To this
end, we reframe several algorithms for optimal percolation in
single-layer networks to obtain methods that consider the mul-
tiplex structure of networks as well. Basically all the algorithms we
use provide coherent solutions to the problem, finding sets of SNs
that are almost identical. Our main focus, however, is not on the
development of new algorithms, but on understanding the con-
sequences that arise from neglecting the multiplex nature of a
network under an optimal percolation process. We compare the
actual solution of the optimal percolation problem in a multiplex
network with the solutions to the same problem for single-layer
networks extracted from the multiplex system. We show that
“forgetting” about the presence of multiple layers can be poten-
tially dangerous, leading to the overestimation of the true
robustness of the system mostly due to the identification of a very
high number of false SNs. We reach this conclusion with a sys-
tematic analysis of both synthetic and real-world multiplex
networks.

Results
Identifying structural nodes in multiplex networks. We con-
sider a multiplex network composed of N nodes arranged in two
layers. Each layer is an undirected and unweighted network.
Connections of the two layers are encoded in the adjacency
matrices. A and B. The generic element Aij= Aji= 1 if nodes i and
j are connected in the first layer, whereas Aij= Aji= 0, otherwise.
The same definition applies to the second layer, and thus to the
matrix B. The aggregated network obtained from the super-
position of the two layers is characterized by the adjacency matrix
C, with generic elements Cij= Aij+Bij−AijBij. We focus our
attention on clusters of mutually connected nodes16: two nodes in
a multiplex network are mutually connected, and thus part of the
same cluster of mutually connected nodes, only if they are con-
nected by at least a path, composed of nodes within the same
cluster, in every layer of the system. In particular, we focus our
attention on the largest among these cluster, usually referred to as
the giant mutually connected cluster (GMCC). Our goal is to find
the minimal set of nodes such that, if removed from the multi-
plex, no mutual cluster with a size greater than N1/2 is found in
the network. This is a common prescription, yet not the only one
possible, to ensure that all clusters have non-extensive sizes in
systems with a finite number of elements35. Whenever we con-
sider single-layer networks, the above prescription applies to the
single-layer clusters in the same exact way.

We generalize most of the algorithms devised to find
approximate solutions to the optimal percolation problem in
single-layer networks to multiplex networks31–33,35,36. Details on
the implementation of the various methods are provided in the
Supplementary Note 1. We stress that the generalization of these
methods is not trivial at all. For instance, most of the greedy
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Fig. 1 Performance of different algorithms aimed at solving the optimal
percolation problem. We consider a multiplex network with N= 10,000
nodes. The multiplex is composed of two network layers generated
independently according to the Erdös−Rényi model with average degree 〈k〉
= 5. Each curve represents the relative size of the GMCC as a function of
the relative number of nodes inserted in the set of SNs, thus removed from
the multiplex. Colored markers indicate the effective fraction of nodes left
in the set of SNs after a greedy post-processing technique is applied to the
set found by the corresponding algorithm. The purple cross identifies
instead the size of the set of SNs found through Simulated Annealing
optimization. Please note that the ordinate value of the markers has no
meaning; in all cases, the relative size of the largest cluster is smaller than
N1/2. Details on the implementation of the various algorithms are provided
in Supplementary Notes 1, 2
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methods use node degrees as crucial ingredients to calculate and
assign scores to each of the nodes, and then remove nodes with
respect to their scores. In a multiplex network, however, a node
has multiple degree values, one for every layer. In this respect, it is
not clear what is the most effective way of combining these
numbers to assign a single score to a node: they may be summed,
thus obtaining a number approximately equal to the degree of the
node in the aggregated network derived from the multiplex, but
also multiplied, or combined in more complicated ways. We find
that the results of the various algorithms are not particularly
sensitive to this choice, provided that the simple but effective post-
processing technique considered in refs. 31–33 is applied to the set
of SNs found by a given method. In Fig. 1, for example, we show
the performance of several greedy algorithms when applied to a
multiplex network composed of two layers generated indepen-
dently according to the Erdős−Rényi (ER) model. Although the
mere application of an algorithm may lead to different estimates of
the size of the set of SNs, if we greedily remove from these sets the
nodes that do not increase the size of the GMCC to the predefined
sub-linear threshold (N1/2)31–33 (Supplementary Note 2), the sets
obtained after this post-processing technique have almost identical
sizes (Supplementary Figs. 1–4).

As Fig. 1 clearly shows, the best results, in the sense that the size
of the set of SNs is minimal, is found with a simulated annealing
(SA) optimization strategy32 (see details in the Supplementary
Note 1). The fact that the SA method is outperforming score-
based algorithms is not surprising. SA actually represents one of
the best strategies that one can apply in hard-optimization tasks.
In our case, it provides us with a reasonable upper bound on the
size of the set of SNs that can be identified in a multiplex network.
The second advantage of SA in our context is that it does not rely
on ambiguous definitions of ingredients (e.g., node degree).
Despite its better performance, SA has a serious drawback in
terms of computational speed. As a matter of fact, the algorithm
can be applied only to multiplex networks with moderate sizes. As
here we are interested in understanding properties of the optimal
percolation problem in multiplex networks, the analysis presented
in the main text of the paper is entirely based on results obtained
through SA optimization. This provides us with a solid ground to
support our statements. Extending the analysis of score-based
algorithms to larger multiplex networks leads to qualitatively
similar results (Supplementary Note 3, Supplementary Figs. 5–8).

The size of the set of structural nodes. We consider the relative
size of the set of SNs, denoted by q, for a multiplex composed of
two independently fabricated ER network layers as a function of
their average degree 〈k〉. We compare the results obtained
applying the SA algorithm to the multiplex, namely qM, with
those obtained using SA on the individual layers, i.e., qA and qB,
or the aggregated network generated from the superposition of
the two layers, i.e., qS. By definition, we expect that
qM � qA ’ qB � qS. What we do not know, however, is how bad/
good are the measures qA, qB and qS in the prediction of the
effective robustness of the multiplex qM. For ordinary random
percolation on ER multiplex networks with negligible
overlap, we know that qM ’ 1� 2:4554=hki16,
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qA ’ qB ’ 1� 1=hki, and qS ’ 1� 1=ð2hkiÞ38. Relative errors
are therefore εA ’ εB ’ ð2:4554� 1Þ=ðhki� 2:4554Þ, and
εS ’ ð2:4554� 1=2Þ=ðhki� 2:4554Þ. We find that the relative
error for optimal percolation behaves more or less in the same
way as that of ordinary percolation (Fig. 2b), noting that, as 〈k〉 is
increased, the decrease in the relative error associated with the
individual layers is slightly faster than what expected for ordinary
percolation. The relative error associated with the aggregated
network is larger than the one expected from the theory of
ordinary percolation. As shown in Fig. 2a, for sufficiently large
〈k〉, dismantling an ER multiplex network is almost as hard as
dismantling any of its constituent layers.

Edge overlap and degree correlations. Next, we test the role
played by edge overlap and layer-to-layer degree correlation in
the optimal percolation problem. These are the ingredients that
dramatically change the nature of the ordinary percolation
transition in multiplex networks26,39–43. In Fig. 3, we report the
results of a simple analysis. We take advantage of the model
introduced in ref. 44. This is one of the simplest models able to
tune a system from a multiplex to a simplex topology. The system
is composed of two identical network layers. Nodes in one of the
two layers are relabeled with a certain probability α. For α= 0,
multiplex, aggregated network and single-layer graphs are all
identical. For α= 1, the networks are analogous to those con-
sidered in the previous section. We note that this model does not
allow to disentangle the role played by edge overlap among layers
and the one played by the correlation of node degrees. For α= 0,
edge overlap amounts to 100%, and there is a one-to-one match
between the degree of a node in one layer and its degree in the
other layer. As α increases, both edge overlap and degree corre-
lation decrease simultaneously. As it is apparent from the results
of Fig. 3, the system reaches the multiplex regime for very small
values of α, in the sense that the relative size of the set of SNs

deviates instantly from its value for α= 0. This is in line with
what already found in the context of ordinary percolation pro-
cesses in multiplex networks: as soon as there is a finite fraction of
edges that are not shared by the two layers, the system behaves
exactly as a multiplex26,39–43.

Accuracy and sensitivity. So far, we focused our attention only
on the size of the set of SNs. We neglected, however, any analysis
regarding the identity of the nodes that actually compose this set.
To proceed with such an analysis, we note that different runs of
the SA algorithm (or any algorithm with stochastic features)
generally produce slightly different sets of SNs, even if they all
have almost identical sizes. The issue is not related to the opti-
mization technique, rather to the existence of degenerate solu-
tions to the problem. In this respect, we work with the quantities
pi, each of which describes the probability that a node i appears in
the set of SNs in a realization of the detection method (here, the
SA algorithm). This treatment takes into account the fact that a
node may belong to the set of SNs in a number of realizations of
the detection method and may be absent from this set in some
other realizations.

We define self-consistency of a SN-detection method as
S ¼ P

i p
2
i

� �
=
P

i pi
� �

, which describes the ratio of the expected
overlap between two SNs obtained from two independent
realizations of the detection method to the expected size of the
SN. If the set of SNs is identical across different runs, then S= 1.
The minimal value we can observe is S=Q/N, assuming that the
size of the structural set is equal to Q in all runs, but nodes
belonging to this set are changing all the times, so that for every
node i we have pi=Q/N. As reported in Fig. 4a, self-consistency S
assumes high values for single-layer representations of the
network, even for syntethic multiplex networks. On the other
hand, S decreases significantly as the overlap and interlayer
degree correlations decrease (Fig. 4a). Low S values for
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multiplexes with small overlap and correlation together with the
small sizes of their set of SNs (Fig. 2) suggest that in such
networks many slightly different SN sets may exist.

Next, we turn our attention on quantifying how the sets of SNs
identified in single-layer or aggregated networks are

representative of the ground-truth sets found on multiplex
networks. We denote by pi and wi the probability that node i is
found within the set of SNs of, respectively, a multiplex network
(ground truth) and a specific single-layer representation of that
multiplex. To compare the sets represented by wi with the
ground-truth sets, we adopt three standard metrics in informa-
tion retrieval45,46, namely precision, recall and the Van Rijsber-
gen’s F1 score. Precision is defined as P= [∑ipiwi]/[∑iwi], i.e., the
ratio of the expected number of correctly detected SNs to the
expected total number of detected SNs. Recall is defined as R=
[∑ipiwi]/[∑ipi], i.e., the ratio of the expected number of correctly
detected SNs to the expected number of actual SNs of the
multiplex. We note that the self-consistency we previously
defined corresponds to precision and recall of the ground-truth
set with respect to itself, thus providing a base line for the
interpretation of the results. The F1 score defined as F1= (2)/(1/P
+ 1/R) provides a balanced measure in terms of P and R. As
Fig. 4b shows, P deteriorates as the edge overlap and interlayer
degree correlation decrease. In particular, when overlap and
correlation between the layers of the multiplex network are not
large, precision values for the sets of SNs identified in single layers
or in the superposition of the layers are quite small (P ’ 0:3),
even smaller than the ratio of the qM of the multiplex to the q of
any of these sets (Fig. 3). This means that, when the multiplex
nature of the system is neglected, two systematic errors are
committed. First, the number of SNs is greatly overestimated;
second, a significant number of the true SNs of the multiplex are
not identified. The quantity R, on the other hand, behaves
differently for single-layer and aggregated networks (Fig. 4c). In
single layers, we see that R systematically decreases as the
relabeling probability increases. The structural set of nodes
obtained on the superposition of the layers instead provides large
values of R. This is not due to a good performance rather to the
fact that the set of SNs identified on the aggregated network is

Table 1 Optimal percolation on real multiplex networks

Network Layers N Multiplex Single layers Aggregate

qM S qA PA RA FðAÞ1 qB PB RB FðBÞ1 qS PS RS FðSÞ1

Air
transportation26

American Air.—Delta 84 0.12 0.85 0.14 0.58 0.70 0.63 0.32 0.29 0.79 0.42 0.35 0.32 0.92 0.47

American Air.—United 73 0.10 0.99 0.16 0.32 0.52 0.40 0.14 0.68 1.00 0.81 0.25 0.39 1.00 0.56
United—Delta 82 0.10 1.00 0.27 0.23 0.62 0.34 0.12 0.80 1.00 0.89 0.33 0.30 1.00 0.46

C. Elegance47,48 Electric—Chem. Mon. 238 0.09 0.69 0.16 0.41 0.71 0.52 0.26 0.22 0.60 0.32 0.35 0.21 0.79 0.33
Electric—Chem. Pol. 252 0.12 0.79 0.15 0.50 0.63 0.56 0.39 0.24 0.78 0.37 0.45 0.22 0.82 0.35
Chem. Mon—Chem. Pol. 259 0.25 0.82 0.28 0.69 0.77 0.73 0.39 0.51 0.79 0.62 0.42 0.48 0.80 0.60

Arxiv49 physics.data-an—cond-
mat.dis-nn

1400 0.05 0.78 0.10 0.38 0.77 0.51 0.07 0.55 0.75 0.63 0.13 0.31 0.81 0.45

physics.data-an—cond-
mat.stat-mech

709 0.03 0.73 0.08 0.23 0.67 0.34 0.03 0.64 0.72 0.68 0.09 0.22 0.74 0.34

cond-mat.dis-nn—cond-
mat.stat-mech

499 0.02 0.50 0.06 0.13 0.46 0.20 0.04 0.23 0.51 0.32 0.09 0.13 0.65 0.22

Drosophila
M.50,51

Direct—Supp. Gen. 676 0.01 0.62 0.07 0.12 0.60 0.20 0.11 0.09 0.64 0.16 0.19 0.07 0.87 0.13

Direct—Add. Gen. 626 0.01 0.81 0.07 0.06 0.64 0.11 0.09 0.05 0.59 0.09 0.16 0.04 0.87 0.08
Supp. Gen.—Add. Gen. 557 0.09 0.82 0.14 0.44 0.74 0.55 0.12 0.50 0.70 0.58 0.20 0.35 0.80 0.49

Homo S.48,50 Direct—Supp. Gen. 4465 0.05 0.72 0.16 0.20 0.73 0.31 0.13 0.23 0.64 0.34 0.27 0.15 0.89 0.26
Physical—Supp. Gen. 5202 0.05 0.75 0.15 0.23 0.77 0.35 0.13 0.22 0.63 0.33 0.26 0.16 0.90 0.27

From left to right we report the following information. The first three columns contain the name of the system, the identity of the layers, and the number of nodes of the network. The fourth and fifth
columns are results obtained from the optimal percolation problem studied on the multiplex network, and contain information about the relative size qM, and self-consistency metric S of the set of SNs.
Then, we report results obtained for the first single-layer network of the multiplex, namely the fraction qA of nodes in the structural set, the precision PA, the recall RA, and the F1 score of the set of SNs of
the first layer. The next four columns are identical to those, but refer to the second layer. Finally, the four rightmost columns contain information about the fraction qS of nodes in the structural set, PS
precision, RS recall, and the F1 score of the set of SNs for the aggregated network obtained from the superposition of the two layers. All results have been obtained with 100 independent instances of the
SA optimization algorithm

Fig. 5 Optimal percolation on multiplex transportation networks. We
consider the multiplex network of US domestic flights operated in
January 2014 by American Airlines and Delta. Red circles represent
nodes that were identified as members of the set of structural nodes in
different realizations of the optimal percolation on the multiplex
representation of the network. The size of each circle is proportional to the
probability of finding that node in the set of SNs. All other airports in the
multiplex are represented as black squares. Interestingly, not all the
14 structural nodes match the top 14 busiest “hubs” (https://en.wikipedia.
org/wiki/List_of_the_busiest_airports_in_the_United_States), nor the
probabilities follow the same order as the flight traffic of these airports. The
results have been obtained with 100 independent instances of the SA
optimization algorithm
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very large (Fig. 3), and it is further supported by the results of
Fig. 4c, d, where large R values do not correspond to high F1
scores.

Real-world multiplex networks. In Table 1, we present summary
statistics of the solution of the optimal percolation problem stu-
died on several real-world multiplex networks generated from
empirical data. For most of these networks, we find high values of
self-consistency among solutions. This implies that there is a
certain small group of nodes that have a major importance in the
robustness of such real-world networks to the optimal percolation
process. For most of the networks, the F1 scores are low, indi-
cating that on real-world networks we loose essential information
about the optimal percolation problem if the multiplex structure
is not taken into account.

To provide a practical case study with an intuitive interpreta-
tion, we depict in Fig. 5 the solution of the optimal percolation
problem on a multiplex network describing air transportation in
the United States. SA identifies always 10 airports in the set of
SNs of this network. There is a slight variability among different
instances of the SA optimization, with a total of 14 distinct
airports appearing in the structural set at least once over 100 SA
instances. However, changes in the SN set from run to run mostly
regard airports in the same geographical region. Overall, airports
in the structural set are scattered homogeneously across the
country, suggesting that the GMCC of the network mostly relies
on hubs serving specific geographical regions, rather than global
hubs in the entire transportation system. For instance, the
probabilities that describe the membership of the airports to
the set of SNs do not strictly follow the same order as that of the
recorded flight traffics; nor merely the number of connections of
the airports (not shown) is sufficient to determine the SNs.

Discussion
In this paper, we studied the optimal percolation problem on
multiplex networks. The problem regards the detection of the
minimal set of nodes (i.e., the set of structural nodes, SNs) such
that, if its members are removed from the network, the network is
dismantled. The solution to the problem provides important
information on the microscopic parts that should be maintained
in a functional state to keep the overall system functioning, in a
scenario of maximal stress. Our study focused mostly on the
characterization of the SN sets of a given multiplex network in
comparison with those found on the single-layer projections of
the same multiplex, i.e., in a scenario where one “forgets” about
the multiplex nature of the system. Our results demonstrate that,
generally, multiplex networks have considerably smaller sets of
SNs compared to the SN sets of their single-layer based network
representations. The error committed when relying on single-
layer representations of the multiplex does not regard only the
size of the SN sets, but also the identity of the SNs. Both issues
emerge in the analysis of synthetic network models, where edge
overlap and/or interlayer degree–degree correlations seem to fully
explain the amount of discrepancy between the SN set of a
multiplex and the SN sets of its single-layer based representations.
These issues are apparent also in many of the real-world multi-
plex networks we analyzed. Overall, we conclude that neglecting
the multiplex structure of a network system subjected to maximal
structural stress may result in significant inaccuracies about its
robustness.

Data availability. Real multiplex networks analyzed in the paper
have been constructed using data publicly available on the Web
(see references in Table 1). The source code of the

implementation of the various algorithms used in the paper is
available from the authors upon request.
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Supplementary Figure 1. Optimal percolation for a multiplex network using the High Degree (HD)

algorithm. We consider a multiplex network composed of two identical layers with N = 10000

nodes generated according to the Erdős–Rényi model with average degree �k� = 5.0. Different line

styles correspond to four different methods of defining node scores in multiplex networks. Markers

are the dismantling fraction obtained with these four methods when combined with the Greedy

Reinserting (GR) procedure (see Supplementary Note 2).
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Supplementary Figure 2. Optimal percolation for a multiplex network using the High Degree

Adaptive (HDA) algorithm. We consider a multiplex network composed of two identical layers with

N = 10000 nodes generated according to the Erdős–Rényi model with average degree �k� = 5.0.

Different line styles correspond to four different methods of defining node scores in multiplex

networks. Markers are the dismantling fraction obtained with these four methods when combined

with the Greedy Reinserting (GR) procedure (see Supplementary Note 2).
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Supplementary Figure 3. Optimal percolation for a multiplex network using the Collective Influence

(CI) algorithm. We consider a multiplex network composed of two identical layers with N = 10000

nodes generated according to the Erdős–Rényi model with average degree �k� = 5.0. Different line

styles correspond to four different methods of defining CI scores in multiplex networks. Markers

are the dismantling fraction obtained with these four methods when combined with the Greedy

Reinserting (GR) procedure (see Supplementary Note 2).
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Supplementary Figure 4. Optimal percolation for a multiplex network using the Explosive Immu-

nization (EI) algorithm. We consider a multiplex network composed of two identical layers with

N = 10000 nodes generated according to the Erdős–Rényi model with average degree �k� = 5.0.

Different line styles correspond to two different kernels: Eq. 3 that does not exclude the leaves

and Eq. 3 which excludes the effect of leaves by replacing
�
|M | with

�
|M |− 1. Markers are the

dismantling fraction obtained with these two methods when combined with the Greedy Reinserting

(GR) procedure (see Supplementary Note 2).
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Supplementary Figure 5. Optimal percolation problem in synthetic multiplex networks using HD

algorithm. a) We consider multiplex networks with N = 105 and layers generated independently

according to the Erdős–Rényi model with average degree �k�. We estimate the relative size of

the set of SNs on the multiplex as a function of �k� (turquoise circles), and compare it with the

same quantity but estimated on the individual layers (black squares and purple triangles) or the

aggregated (orange triangles). b) The relative errors of single-layer estimates of the size of the

structural set with respect to the ground-truth value provided by the multiplex estimate. Colors

and symbols are the same as those used in panel (a). The blue curves with no markers represent

instead the theoretically expected behaviour for an ordinary percolation process.
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Supplementary Figure 6. Optimal percolation problem in synthetic multiplex networks using HDA

algorithm. a) We consider multiplex networks with N = 105 and layers generated independently

according to the Erdős–Rényi model with average degree �k�. We estimate the relative size of

the set of SNs on the multiplex as a function of �k� (turquoise circles), and compare it with the

same quantity but estimated on the individual layers (black squares and purple triangles) or the

aggregated (orange triangles). b) The relative errors of single-layer estimates of the size of the

structural set with respect to the ground-truth value provided by the multiplex estimate. Colors

and symbols are the same as those used in panel (a). The blue curves with no markers represent

instead the theoretically expected behaviour for an ordinary percolation process.
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Supplementary Figure 7. The effect of reducing edge overlaps and interlayer degree-degree corre-

lation by partially relabeling nodes in multiplex networks with initially identical layers. Initially,

both layers are a copy of a random network generated by an Erdős-Rényi model with N = 1, 000

nodes and average degree �k� = 5. Then, in one of the layers, each node is selected to switch its

label with another randomly chosen node with a certain probability α. For each α, we determine

the mean of the relative size of the set of SNs over 100 realizations of the HDA+GR algorithm on

the multiplex network.
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Supplementary Figure 8. The effect of reducing edge overlaps and interlayer degree-degree correla-

tion by partially relabeling nodes in multiplex networks with initially identical layers. We consider

the multiplex networks described in Supplementary Figure 7 and the sets of SNs found for the

multiplex and single layer based representations of these networks. a) As the set of SNs found in

different instances of the optimization algorithm are different from each other, we first quantify

the self-consistency of those solutions across 100 independent runs of the HDA+GR algorithm.

We then assume that the multiplex representation provides the ground-truth classification of the

nodes. We compare the results of the other representation with the ground truth by measuring

their precision (panel b), their sensitivity or recall (panel c), and their F1 score (panel d).
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Supplementary Note 1. DISMANTLING ALGORITHMS

In this section, we briefly discuss some of the most effective dismantling algorithms on
monoplex networks and their generalization to multiplex networks with two layers. The aim
of these algorithms is to approximate the set of structural nodes which is the minimal set
of nodes that their removal dismantles the network into vanishingly small (non-extensive)
clusters. We first introduce some of the score-based algorithms. In such algorithms, at each
step, a score for each node is calculated and the node with the highest score is removed
(when several nodes have the same score, one of them is removed at random). We discuss
four different types of such algorithms: High Degree (HD), High Degree Adaptive (HDA),
Collective Influence (CI) and Explosive Immunization (EI). These methods are partially
deterministic in nature, i.e., nearly the same set of structural nodes are discovered at each
realizations of the algorithm. Besides score-based algorithms, we present Simulated An-
nealing (SA) algorithm which is a greedy algorithm that searches the solution space of the
dismantling problem to find the best approximation to the structural sets. The SA method
takes into account the collective behavior of the dismantling problem and provides several
dismantling sets for different realizations of the algorithm on the same network structure.

High Degree (HD)

In a monoplex network, the easiest way to dismantle a network, is a degree-based attack.
After sorting the nodes with respect to their degrees, the nodes with the highest degree are
removed one by one (in cases where there are more than one node with a certain degree,
one of them is removed at random), until the network is dismantled. As this algorithm is
deterministic (except from the randomness in choosing a node from those with the same
degree), the set of nodes that are removed to dismantle the network is almost unique.

In multiplex networks, the degree of a node can be defined in various ways. We consider
four different cases: the score of a node is defined as (i) its degree in layer A, (ii) its degree
in layer B, (iii) the sum of its degrees across all the layers, and (iv) the product of its degrees
across all the layers. It is worth mentioning that, when using HD, HDA and CI methods,
at each step we remove 0.001 × N of the nodes, where N is the total number of nodes (in
each layer) of the multiplex.

As Supplementary Figure 1 illustrates, to destruct a multiplex, the two scores defined
as a combination of degrees in different layers are more effective than those based on the
degrees in only one of the layers. In the main script and in the rest of the Supplemental
Material (SM) when we refer to HD method, we mean the one in which the score of a node
is the product of its degrees across all the layers.

High Degree Adaptive (HDA)

In the HD algorithm if we take into account the history of the process and recalculate, at
each step, the degrees of the nodes, it is referred to as an HDA algorithm. Since the HDA
algorithm is adaptive it is expected to work better than the HD method. In each step of the
monoplex version of the HDA, we remove a fraction 0.001 × N of the nodes that had the
highest degrees; then we recalculate the degree of the nodes present in the Giant Connected
Component (GCC) of the network. We repeat this process until the size of the GCC reduces
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to
√
N or smaller; this threshold satisfies the condition that in the dismantled network the

size of all the clusters is a sub-linear function of N .
Like the HD case, we can define at least four methods to define the degree of a node.

Please notice that in the multiplex version, when we update the degrees, we exclude those
neighbors that are not in the Giant Mutually Connected Component (GMCC) of the net-
work. Supplementary Figure 2 shows the effectiveness of the HDA algorithm for the different
definitions of nodes’ degrees. Similar to the results for HD, it is more effective to combine the
scores of different layers, than considering layers as isolated networks. In all the subsequent
sections and in the main script, when we refer to HDA, we mean the one in which the score
of a node is defined as the multiplication of its degrees across all the layers.

Collective Influence (CI)

In the monoplex version of the CI algorithm [1], the score CIi(l) of node i is equal to the
excess degree of i multiplied by the sum of the excess degrees of its neighbours at a specific
distance l from i:

CIi(l) = (ki − 1)
�

j∈∂Ball(i,l)

(kj − 1), (1)

where ∂Ball(i, l) denotes the neighbors of i at the distance l (i.e., the nodes that have a
geodesic distance l from i). At each step, the CI score is adaptively calculated for all the
nodes; then nodes with the highest score are removed from the network, until the network
is dismantled. It was shown [1] that the performance of the CI method increases with l up
to l = 4; for l > 4 the performance is not improved appreciably as l is increased.

To adapt the CI algorithm to multiplex networks with two layers, we considered several
possible definitions of the CI score in the multiplex: (i) using the CI obtained based only
on the structure of layer A, (ii) based only on the structure of layer B, (iii) the sum of
the CIs of a node in layer A and layer B, and (iv) the product of these two CI scores.
Supplementary Figure 3 illustrates that, the generalizations of the CI method we considered
here are not as effective as those derived based on the HD (Supplementary Figure 1) and
HDA (Supplementary Figure 2) methods. Thus, methods based on the CI measures of the
layers do not provide an effective algorithm for the optimal percolation problem.

Explosive Immunization (EI)

The EI algorithm is based on a method referred to as explosive percolation. The original
explosive percolation method was introduced by Achlioptas et al. [2]. In this method at
first all the edges are removed; then they are gradually reintroduced to the network, but in a
specific order that prevents the formation of the GCC, until a point where the formation of
the GCC is inevitable. To add a new edge, first several random edges are selected. Then a
score is calculated for each of the selected edges using a predefined kernel (a possible kernel,
for example, defines the score as the sum of the sizes of the two clusters connected by the
corresponding edge). Then the edge with the minimum score is added back the network.
The scores represent the contribution of each edge in the formation of the giant cluster.
When the network reaches the point where the formation of the giant cluster is inevitable,
the rest of the edges are added back using the same kernel.
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A problem related to explosive percolation is the optimal immunization [3] in which the
goal is to find the blocker nodes, which if get vaccinated, the giant connected component of
the susceptible nodes breaks down; this break down eliminates a large scale epidemic spread.
Clusella et al. [3] proposed a reverse approach to find the blockers. They introduced an al-
gorithm that locates instead all the nodes that are irrelevant to the formation of the giant
susceptible cluster. In this respect, their algorithm is a modified version of the explosive per-
colation. Their algorithm considers the site percolation version of the explosive percolation,
in which all the links are present but, in the beginning, all the nodes are absent. Then, all
the non-blocker nodes (that have no contribution to the formation of the giant susceptible
cluster) are added gradually. The remaining nodes are the blocker nodes which should be
vaccinated. We refer to this method as the explosive immunization (EI) algorithm.

For a monoplex network we implement the EI algorithm as follows. At each step, we
select N (C) = 1000 candidate nodes from the set of absent nodes, and calculate the score σi

of each of them using the following kernel:

σi =
�

j⊂Ni

��
|Cj|− 1

�
+ k

(eff)
i , (2)

where, Ni represents the set of all connected components (CCs) linked to node i, each of

which has a size Cj, and k
(eff)

i is an effective degree attributed to each node (please see
Ref. [3] for the details). Then the nodes with the lowest scores are added to the network.
This procedure is continued until the size of the GCC exceeds a predefined threshold g∗ (For
the simulations of this paper we used g∗ =

√
N). The minus one term in Eq. 2 is excluding

any leaves connected to node i, since they do not contribute to the formation of the GCC
and should be ignored in the score of a node.

In our extension of the EI method to multiplex networks, we consider the different kernel
but otherwise perform the exact same procedure as the one described above. The new kernel
(Eq. 3) we use is based on the sizes of the mutually connected components (MCCs) rather
than on the sizes of CCs:

σi = 1/2

� �

j⊂N
[A]
i

��
|Mj|
�
+
�

j⊂N
[B]
i

��
|Mj|
��

+

�
k
[A](eff)
i k

[B](eff)
i , (3)

where N
[A]
i is the set of neighbors of node i in layer A, Mj is the size of the MCC to which

node j belongs, and k
[A](eff)
i is the effective degree of i in layer A obtained using the same

definition proposed [3] for the monoplex version of the EI method.
In Eq. 3 we do not add a minus 1 term to exclude the leaves; the reason is that while

in monoplex networks leaves do not have a significant contribution in the formation of the
GCC, in multiplex networks even a leaf node is important in the formation of the GMCC.
This is because at the sub-critical regime of multiplex networks usually most of the MCCs
are isolated nodes or have very small sizes. Supplementary Figure 4 certifies that if the
leaves were excluded instead, the performance of the algorithm would decrease.It is worth
to mention that in the simulations of Figure 1 of the main text, we used a N (C) = 1000.

Simulated Annealing (SA)

The simulated annealing (SA) method has been used for the dismantling problem in
monoplex networks [4]. Generally an SA algorithm defines an energy function that attributes
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energy values to each configuration of the system. The phase space of the system is searched
for the optimal configuration (the one with the minimum energy) by Markov Chain Monte
Carlo moves that switch the system from one configuration to another. In dismantling of
multiplex networks, the algorithm should find the minimal set of nodes which if deleted the
size of the GMCC becomes non-extensive. Each configuration of the multiplex network is
represented by {R, g}, where R and g are, respectively, the number of removed nodes (each
node and all its corresponding replica nodes are counted as one node), and the relative size
of the GMCC. The energy of a configuration is defined as follows:

ε = Rv + g, (4)

where v is the cost of removing a node from the multiplex network and in the simulations
presented in this paper it is set v = 0.6. At each step t of the algorithm, one node, present or
removed, is selected at random; then one of the following sets of operations are performed:

• If the node is present and it belongs to the GMCC, it is removed (thus Rt = Rt−1 + 1)
and the new size of the GMCC (gt) is calculated.

• If the node is present but it does not belong to the GMCC, then it is removed (thus
Rt = Rt−1 + 1); but since it did not belong to the GMCC, gt = gt−1.

• If the node is in the set of removed nodes, it is added back to the network and Rt =
Rt−1 − 1. Then Mi (the size of the MCC formed after inserting i) is calculated and
gt = max (Mi, gt−1).

Afterwards the energy of the new configuration εt is calculated and the set of operations is
accepted with a probability equal to min

�
1, e−β(εnew−ε)

�
. If it is accepted, the new configu-

ration ({Rt, gt}) is retained, otherwise, the operations are omitted and the old configuration
({Rt−1, gt−1}) is preserved.

Here, β is interpreted as the inverse of the temperature of the annealing process. The SA
algorithm starts with a βmin and, at each step, β is slightly increased by δβ. A smaller δβ
means a slower decrease in the temperature which allows the SA method to better search for
the optimal configurations, at the expense of increasing the running time of the algorithm.
In this paper we change the values of β from 0.5 to 20.0 with δβ = 10−6.

In Figure 1 of the main text, we show that the SA method outperforms the four score-
based algorithms; thus, for the analysis of the optimal percolation problem, we mostly use
the SA method (see the main text). In Supplementary Note 3, we also provide results for
the second best algorithm, i.e., the HDA method and show that the results are qualitatively
similar to those of the SA method.
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Supplementary Note 2. GREEDY REINSERTING (GR)

After a network (either isolated or multiplex) is dismantled using a greedy or score-based
algorithm, there are some removed nodes that if added back to the network, the size of
the GMCC is not increased substantially, i.e., no cluster with an extensive size is created
if they are reinserted. Such nodes may have been removed because the greedy or score-
based algorithms are not exact in the sense that they do not take into account the collective
nature of the dismantling problem. An approach that addresses this issue is referred to as
the greedy reinserting (GR) method [4, 5]. In the GR method, after a set of structural nodes
is detected using another algorithm, at each step a randomly chosen node from the set is
reinserted to the network, and unless its reinsertion does not increase the size of the GMCC
to a threshold

√
N , it is removed again. This process is continued until practically none of

the nodes remained in the set can be added to the network without keeping the size of the
GMCC non-extensive.

As shown in Supplementary Figures 1-4 and Figure 1 of the main text, the GR method
boosts effectively the performance of every one of the score-based dismantling algorithms
and returns sets of structural nodes with almost identical sizes irrespective of the initial
algorithm used. Moreover, the result of each of the score-based algorithms combined with
the GR method is nearly as good as that of the SA method (the SA method itself is not
improved appreciably by applying a GR method afterwards). These results suggest that
probably the sets obtained by the SA method and any one of the score-based algorithms
combined with GR are to a considerable extent similar to each other.
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Supplementary Note 3. COMPLEMENTARY RESULTS FOR THE

DEGREE-BASED METHODS

In this section, we provide further results for the HD (Supplementary Figure 5) and the
HDA (Supplementary Figure 6) methods, and also for the combination of the GR method
with HDA (Supplementary Figures 7–8); we compare these results with some of the results
of the SA algorithm presented in the main text. In contrast to the SA algorithm, the degree-
based algorithms are much more efficient in terms of the running time; hence, we were able
to produce some of the results (see Supplementary Figures 5–6) for larger ER networks.

Supplementary Figures 5 and 6 show that, for both HD and HDA performed on the
aggregated representation, the behavior of qc (the relative size of the set of structural nodes)
with respect to the network average degree resembles the results of the SA algorithm. On
the other hand, HDA matches better to the result of SA for optimal percolation on each
of the single layers of the multiplex network. In particular, for networks with sufficiently
large degree, HDA on each of the layers can find a qc very close to the qc it obtains for the
multiplex representation.

As shown in Supplementary Figure 7, the behavior of qc with respect to the relabeling
probability (higher relabeling probability indicates lower density of overlapping edges and
lower interlayer degree-degree correlation) obtained with the HDA+GR method is qualita-
tively similar to the results of the SA algorithm (Figure 3 of the main text). Moreover,
Supplementary Figure 8a shows that, as expected, HDA+GR has a relatively higher self-
consistency compared to that of the SA algorithm reported in Figure 4 of the main text. It
is worth noting that, in contrast to SA, the self-consistency of HDA+GR does not decrease
with the relabeling probability in the multiplex representation (Supplementary Figure 8a).

Interestingly, despite the qualitative similarity of the results, HDA+GR returns higher
values of precision (Supplementary Figure 8b), recall (Supplementary Figure 8c), and F1-
score (Supplementary Figure 8d) than those of SA (see Figure 4 of the main text). As there
is not much randomness in HDA+GR, the structural nodes are dominantly determined
by the sequence of (adaptive) degrees of the nodes and the sets from different network
representations have a higher overlap compared to those find by the SA algorithm.
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Multiplex networks are convenient mathematical representations for many real-world—biological, social,
and technological—systems of interacting elements, where pairwise interactions among elements have dif-
ferent flavors. Previous studies pointed out that real-world multiplex networks display significant interlayer
correlations—degree-degree correlation, edge overlap, node similarities—able to make them robust against
random and targeted failures of their individual components. Here, we show that interlayer correlations are
important also in the characterization of their k-core structure, namely, the organization in shells of nodes with
an increasingly high degree. Understanding of k-core structures is important in the study of spreading processes
taking place on networks, as for example in the identification of influential spreaders and the emergence of
localization phenomena. We find that, if the degree distribution of the network is heterogeneous, then a strong
k-core structure is well predicted by significantly positive degree-degree correlations. However, if the network
degree distribution is homogeneous, then strong k-core structure is due to positive correlations at the level of
node similarities. We reach our conclusions by analyzing different real-world multiplex networks, introducing
novel techniques for controlling interlayer correlations of networks without changing their structure, and taking
advantage of synthetic network models with tunable levels of interlayer correlations.

DOI: 10.1103/PhysRevResearch.2.023176

I. INTRODUCTION

A multiplex network is a collection of single-layer net-
works sharing common nodes, where each layer captures a
different type of pairwise interaction among nodes [1–5].
This is a convenient and meaningful representation for many
real-world networked systems, including social [6,7], techno-
logical [8], and biological systems [9–11]. The simultaneous
presence of different types of interactions is at the root of the
observation of collective phenomena generally not possible in
single-layer networks. A paradigmatic example is provided in
the seminal study by Buldryev et al. [12] where it was shown
that, if multiplexity is interpreted as a one-to-one interdepen-
dence among corresponding nodes in the various layers, then
the mutual connectedness of a multiplex network displays an
abrupt breakdown under random failures of its nodes. Other
examples of anomalous behavior of multiplex networks regard
both dynamical and structural processes [13–20]. Although
multiplexity seems a necessary condition for the emergence of
nontrivial collective behavior, the magnitude of the anomalous
behavior in real-world multiplex networks is often suppressed

*saeedosat13@gmail.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

by the presence of strong interlayer correlations, such as link
overlap, degree-degree correlations, geometric correlations,
and correlated community structure [16,21–25].

An important feature characterizing structural and dynam-
ical properties of single-layer networks is the so-called k-core
structure [26,27]. The k-core of a network is the maximal
subgraph of the network in which all vertices have degree
at least equal to k (see Appendix A 1). The notion of k-core
is used to define so-called k-shells of nodes, and further to
define the node centrality metric ks named k-shell index or
coreness (Appendix A 1). k-cores, and k-shells, are particu-
larly important for the understanding of spreading processes
on networks [28]. For instance, the coreness of a node is a
good indicator of its spreading power [29]. Also, in many
real-world networks, the notion of maximal k-core, i.e., the
core with the largest k, represents a good structural proxy
for the understanding of dynamical localization phenomena
in spreading processes [30]. Finally, the extinction of species
located in the maximal k-core well predicts the collapse of
networks describing mutualistic ecosystems [31].

The notion of k-core can be generalized to the case of
multiplex networks [32]. In a multiplex of L layers, the
k-core is defined for a vector of degree threshold values
k = (k1, . . . , k�, . . . , kL ). Specifically, it is the maximal set of
nodes such that each node complies with the corresponding
degree threshold condition in each layer of the multiplex
(Appendix A 1). In Ref. [32], Azimi-Tafreshi and collabora-
tors studied the emergence of k-cores in random uncorrelated
multiplex network models with arbitrary degree distributions.

2643-1564/2020/2(2)/023176(14) 023176-1 Published by the American Physical Society
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FIG. 1. k-core structure of real-world networks. We analyze single-layer networks. The top row refers to results valid for the IPv6 Internet;
the bottom row refers to results valid for the arXiv coauthorship network. [(a) and (e)] Scatter plot of node degrees vs coreness. The size of
the symbols is proportional to the number of nodes having each specific degree and k-shell index values. [(b) and (f)] Relative size S(k) of the
k-core (see Appendix A 1) in the real networks (labeled as “org”) and their randomized counterparts (labeled as “rnd”). Randomized networks
are obtained by shuffling random pairs of edges while controlling for the average value of the clustering coefficient c̄ (Appendix A 2). c̄ ≈ 0
is obtained after 10,000 and 2000 link rewirings in the Internet and arXiv, respectively. [(c) and (g)] k-shell index of nodes before and after
network randomization (obtained for c̄ ≈ 0). The size of the symbols is proportional to the percentage of nodes whose coreness changed from
ks in the original network to k�

s in the reshuffled network. [(d) and (h)] Angular coherence ξk of the nodes belonging to each k-core.

They showed that k-cores in multiplex networks are character-
ized by abrupt transitions, but their properties cannot be easily
deduced from those of the k-cores of the individual network
layers. They further studied the k-core structure of a few
real-world networks. They noted that these systems display
significant differences from the theoretical predictions that
can be obtained in the framework developed for uncorrelated
networks, thus indicating the necessity of a better understand-
ing of the role of structural correlations in the characterization
of the k-core structure of real-world multiplex networks.

In this paper, we build on the work of Azimi-Tafreshi
et al. [32] and perform a systematic characterization of the k-
core structure of real-world multiplex networks. We consider
a large variety of systems, and study how the size of the
k-core depends on the choice of the vector k. Specifically,
we compare the k-core of real-world networks with the core
observed for the same choice of the vector k on randomized
versions of the networks where interlayer correlations are
destroyed. We find that real-world multiplex networks possess
non-null k-cores while their reshuffled versions do not. We
interpret this fact as a sign of the strength of the k-core
structure of real-world multiplex networks. To provide an
intuitive explanation of this finding, we take advantage of the
geometric interpretation of interlayer correlations in terms of
network hyperbolic embedding [33,34]. Our choice is moti-
vated by a series of recent studies where it has been shown
that not only real-world multiplex networks display significant
geometric correlations [23], but also that the amount of these
correlations is a good predictor of the robustness of the
system under targeted attacks [24,25]. In network hyperbolic

embedding, nodes of a network are mapped to points of the
two-dimensional hyperbolic disk [35]. The radial coordinate
of a node in the disk quantifies the popularity of the node;
the difference between angular coordinates is related instead
to the level of similarity between pairs of nodes. Geometric
correlations in a multiplex network are quantified by look-
ing at the coordinates of the same node in different layers,
provided that the layers are embedded independently in the
hyperbolic space. Geometric correlations can be quantified
either for radial or angular coordinates of the nodes. Both
types of correlations are able to provide insights about the
k-core structure of a multiplex. Specifically, we show that the
more heterogeneous are the degree distributions of the layers,
the more pivotal is the role of popularity correlations in the
emergence of strong k-core structure. On the other hand, the
less heterogeneous are the degree distributions, the more cru-
cial is the role of similarity correlations. These observations
are in remarkable agreement with the behavior observed in
synthetic multiplex networks where we can control the level
of geometric correlations across the layers [23].

II. RESULTS

A. Single-layer networks

We start by studying the k-core structure of single-layer
networks. Most of our results for single-layer networks are
not novel as the problem was already studied in Ref. [36]. We
replicate and expand the analysis of Ref. [36] here for two
main reasons. First, the repetition of the analysis of Ref. [36]
allows us to have a self-contained paper. Second and more

023176-2

154



k-CORE STRUCTURE OF REAL MULTIPLEX NETWORKS PHYSICAL REVIEW RESEARCH 2, 023176 (2020)

FIG. 2. k-core structure of single-layer networks. (a) Hyperbolic embedding of the arXiv network. The position of the nodes in the disk is
determined by their hyperbolic coordinates; different colors serve to differentiate nodes depending on their k-shell index value. (b) Same as in
(a) but for an instance of the S1 model built using similar characteristics as in the arXiv network (i.e., same network size N , and same values of
the degree exponent γ , average degree k̄, and average clustering coefficient c̄). (c) Relative size S(k) of the k-core as a function of the threshold
value k for the arXiv network and the S1 model. The results for the modeled network are average values over 1000 network instances. The
shaded area identifies the region corresponding to one standard deviation away from the average. The average value is computed only over
non-null k-cores, and the bars in the background of the figure display the fraction of instances where such nonempty cores were indeed present.
(d) We consider the same data as in (c) but monitor the angular coherence ξk as a function of k. (e) S(k) vs k for the S1. We set here the size of
the network N = 10 000, degree exponent γ = 2.2, and average degree k̄ = 6. We consider three different values of the temperature parameter
T . This serves to tune the average value of the clustering coefficient c̄ of the model, as T is inversely proportional to c̄. Results are averaged
over 200 instances of the model. Shaded areas stand for one standard deviation away from the average. (f) Same as in (e) but for γ = 2.6.
(g) Same as in (e) but for γ = 3.5. (h) We consider the same networks as in (e) but we monitor angular coherence ξk vs k. (i) Same as in (h)
but for γ = 2.6. (j) Same as in (h) but for γ = 3.5.
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FIG. 3. k-core of real-world multiplex networks. [(a) and (b)] Hyperbolic embedding of the arXiv multiplex network. (a) refers to the
layer arXiv1, while (b) to the layer arXiv2. The position of the nodes in the disk is determined by their hyperbolic coordinates, and only
nodes that exist in both layers are shown (911 nodes); different colors serve to differentiate nodes depending on their k-shell index value.
(c) Correspondence among nodes belonging to the (k, k)-shells (see Appendix A 1) of the arXiv multiplex network. (d) Same as in (c) but
for k � 7. (e) Same as in (c) but for the randomized version of the multiplex where the node labels of one of the two layers are randomly
reshuffled. (f) Relative size S(k1, k2 ) of the (k1, k2)-core for the arXiv multiplex network. (g) Same as in (f) but for the randomized version of
the multiplex network. (h) Relative size S(k, k) of the (k, k)-core for the arXiv multiplex network, and its randomized version. These curves are
compared with those of the relative size S(k) of the k-core of the individual layers. (i) Same as in (h) but for the metrics of angular coherence
ξk,k and ξk .

important, the analysis serves to properly calibrate our frame-
work before extending it to the study of the k-core structure
of multiplex networks. Such a calibration is of fundamental
importance as findings on single-layer networks provide us
with proper baselines for the interpretation of results valid for
multiplex k-core structures, including testable hypotheses on
their expected behavior.

In Fig. 1, we report results obtained by analyzing two
single-layer networks: a snapshot of the Internet at the IPv6
level [37] and the co-authorship network formed by the au-
thors of papers in the “Biological Physics” category of arXiv
[38]. Details on the data and results for other networks can
be found in Ref. [39], Secs. I and II. The k-shell index of the
nodes is strongly correlated with their degree (Figs. 1(a) and
1(e) and Ref. [39], Fig. 2(a)). However, as previously noted in
Ref. [29], nodes with the same value of the k-shell index may
correspond to very different degree values. Further, we note
that the degree distribution of the Internet is much broader
than the one of the arXiv (see Figs. 1(a) and 1(e) and Ref. [39],
Fig. 1). Specifically, the degree distributions of both networks
can be modeled quite well in terms of power laws, i.e.,
P(k) ∼ k−γ , with degree exponent γ = 2.1 for the Internet
and γ = 2.6 for the arXiv, thus indicating that the degree
distribution of the Internet is more heterogeneous than the one
of the arXiv. The correlation between k-shell index and node
degree weakens significantly as we move into inner k-shells in
the arXiv but not in the Internet (Ref. [39], Fig. 2(a)). We have
verified that the less heterogeneous is the degree distribution

the weaker is the correlation between k-shell index and degree
(Supplemental Material [39], Fig. 2(b)).

To quantify the quality of the k-core structure we consider
the relative size S(k) of the k-core as a function of the value
of the threshold k. If there is a rich collection of k-cores with
a wide spectrum of k’s, then the k-core structure is strong; it
is weak, otherwise. Figures 1(b) and 1(f) show that the k-core
structures of the Internet and arXiv are strong. In particular,
we see that S(k) decreases smoothly as k increases, while
S(k) > 0 up to k = 16 for the Internet, and up to k = 13 for
the arXiv.

Reference [36] showed in experiments with synthetic net-
works that both degree heterogeneity and clustering improve
the quality of the k-core structure. To study how these prop-
erties affect the quality of the k-core structure of real net-
works, we study the behavior of S(k) on degree-preserving
randomized versions of the networks. The randomization is
performed by rewiring randomly chosen links till the value
of the average clustering in the network is reduced to a
predefined value (see Appendix A 2). We see in Figs. 1(b)
and 1(f) that the randomization affects the k-core structure
of the Internet to a much lesser extent than the k-core struc-
ture of the arXiv, while the effect is stronger the more we
destroy clustering. As Figs. 1(c) and 1(g) clearly show, the
effect of the randomization consists in redistributing nodes
to lower k-shell values. Specifically, these figures show the
percentage of nodes, indicated by the circles, whose k-shell
index changes from ks in the original network to k�

s in the
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FIG. 4. Interlayer correlations and the k-core structure of the arXiv multiplex network. We analyze the arXiv multiplex network.
(a) Different metrics of interlayer similarity as a function of the group size n used to randomize node labels, thus breaking interlayer degree
correlations. For n = 1, node labels of the network are not randomized; full shuffle of node labels is obtained for large n values. We focus
here on the case where interlayer degree correlation is broken but we preserve interlayer correlation among node angular coordinates (see
main text for details). Metrics of similarities considered here are the Pearson correlation coefficient rk,k� among the degrees of nodes in the
two layers; normalized mutual information NMIθ,θ � of the angular coordinates of the nodes in the two layers; and edge overlap O among the
two layers (Appendix A 6). (b) Relative size S(k, k) of the (k, k)-core. The results of the original multiplex network (n = 1) are compared
with those valid for n = 4. At this level of randomization, we find that rk,k� = 0.36 and NMIθ,θ � = 0.41. These numbers should be compared
respectively with rk,k� = 0.82 and NMIθ,θ � = 0.46 of the original network. The results for n = 4 are average values obtained on 100 independent
randomizations. Shaded areas identify the region corresponding to one standard deviation away from the average. (c) Same as in (b) but for
the angular coherence ξk,k . (d) Scatter plot of the (k, k)-shell index of nodes in the original vs the randomized multiplex network. The size of
the symbols is proportional to the percentage of points in the scatter plot. [(e)–(h)] Same as in (a)–(d), respectively. We consider here the case
where interlayer correlation among nodes’ angular coordinates is destroyed but interlayer correlation among node degrees is preserved (see
main text for details). The results of the original network are compared with those obtained for n = 16, when rk,k� = 0.78 and NMIθ,θ � = 0.01.

randomized network. We see that changes of the k-shell
values induced by the randomization are much more appar-
ent for the arXiv than in the Internet—nodes in the arXiv
are redistributed to significantly lower shells. For instance,
we see in Fig. 1(g) that nodes belonging to ks = 11 in the
original network move to k�

s = 4 and k�
s = 3 in the random-

ized network. These results indicate that networks with more
heterogeneous degree distributions can have strong k-core
structures even if their clustering is weak. On the other hand,
if the degree distribution is less heterogeneous, clustering
becomes more important for having a strong k-core struc-
ture. In the next section, we explicitly verify these obser-
vations in controlled experiments with synthetic networks
[Figs. 2(e)–2(g)].

B. Hyperbolic embedding

To better capture the role of correlations for the charac-
terization of the k-core structure of networks, we decided
to take advantage of the vectorial representation of nodes in
the hyperbolic space [33,35,40]. According to this mapping,
every node i of a network becomes a point, identified by the
coordinates (ri, θi ), in the two-dimensional hyperbolic disk
(see Appendixes A 3 and A 4). The radial coordinate ri quan-

tifies the popularity of node i in the network, and basically
corresponds to the degree ki of the node (Appendix A 4). The
angular coordinate θi serves to quantify pairwise similarities,
in the sense that the angular distance between pairs of nodes
is inversely proportional to their similarity. Whereas radial
coordinates do not convey more explicative information than
node degrees, angular coordinates offer the opportunity to
deal with node similarities in continuous space, thus allowing
for smooth and easily quantifiable metrics of similarities of
arbitrary sets of nodes, including k-cores. Specifically, we
use a measure of coherence among angular coordinates of
nodes within the k-core, namely, ξk , to measure the average
level of similarity among the nodes within the k-core [25]
(see Appendix A 5). By definition ξk ∈ [0, 1], with ξk = 0
meaning that the angular coordinates of the k-core are uni-
formly scattered around the disk, and ξk = 1 meaning that all
nodes within the k-core have identical value for their angular
coordinates. Figures 1(d) and 1(h) show ξk as a function of k
for the Internet and arXiv networks, respectively. We see that
ξk increases with k, meaning that as we move to inner k-cores,
angular coordinates of the nodes tend to be more localized.
Similar results hold if one analyzes other real networks and if
one measures angular coherence in the k-shells instead of the
k-cores (see Ref. [39], Sec. II).
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FIG. 5. Interlayer correlations and the k-core structure of the Internet multiplex network. Same analysis as in Fig. 4 but for the IPv4/IPv6
Internet multiplex network. Correlations of the original network are such that rk,k� = 0.82 and NMIθ,θ � = 0.32. Results of the real-world
system are compared with those obtained after destroying interlayer degree correlations such that rk,k� = 0.12 and NMIθ,θ � = 0.28 in the
top-row panels, and after destroying angular correlations such that rk,k� = 0.76 and NMIθ,θ � = 0.03 in the bottom-row panels.

We take advantage of network hyperbolic embedding not
only for descriptive purposes but also to perform controlled
experiments. We leverage models introduced in the literature
on network hyperbolic embedding to better understand the
role played by clustering and node similarities in predicting
the strength of network k-core structure. Specifically, we rely
on network instances generated according to the S1 model
[33,41], which is isomorphic to hyperbolic geometric graphs
(see Appendix A 3). The model generates synthetic networks
with arbitrary degree distribution and clustering strength.

In Fig. 2, we perform a direct comparison between the
relative size S(k) and angular coherence ξk of the k-core
structure of the arXiv collaboration network and of a synthetic
graph generated according to the S1 model with similar values
of number of nodes, average degree, and average clustering
coefficient as of the arXiv collaboration network. The syn-
thetic network has a power-law degree distribution P(k) ∼
k−γ with exponent γ = 2.6, compatible with the one of the
real-world network (Ref. [39], Sec. I). We see that the two
graphs display a qualitatively similar behavior with respect to
S(k) [Fig. 2(c)] and ξk [Fig. 2(d)] as functions of the threshold
value k.

Synthetic networks allow us to play with the ingredients
that we believe are important in the characterization of net-
work k-core structure. We see that the range of k values
for which we have non-null k-cores widen not only when
the degree distribution becomes more heterogeneous (lower
γ values) but also when the clustering coefficient increases
[Figs. 2(e)–2(g)]. In all these cases, nodes belonging to inner
k-cores always have more similar angular coordinates in the
hyperbolic embedding [Figs. 2(h)–2(j)].

C. Multiplex networks

We now turn our attention to the study of the k-core
structure of real-world multiplex networks. For simplicity,
we limit our attention to two-layer multiplex networks only,
so that k = (k1, k2). We note that a necessary condition for
having a non-null (k1, k2)-core is that the k1-core of layer
� = 1 and the k2-core of layer � = 2 are simultaneously non
null. The condition is clearly not sufficient, as there could
be combinations (k1, k2) associated to empty cores in the
multiplex but still showing nonempty cores at the level of the
individual layers. As a consequence, we expect that multiplex
networks displaying low interlayer correlation at the node
level will be weak in terms of k-core structure, in the sense
that nonempty cores will exist only for limited choices of the
thresholds (k1, k2). Based on our knowledge of the relation
between k-core strength and hyperbolic network embedding,
we further expect that interlayer correlations that are impor-
tant in the prediction of the strength of the k-core structure
of a multiplex are not only those relative to the degree of the
nodes but also those concerning the similarity among pairs of
nodes.

In Fig. 3, we consider a multiplex version of the arXiv
collaboration network, where one layer is obtained by con-
sidering manuscripts of the section “Biological Physics” (i.e.,
the one considered already in Figs. 1 and 2), and the other
based on manuscripts of the section “Data Analysis, Statistics
and Probability.” For sake of brevity, we will refer to them as
arXiv1 and arXiv2, respectively. We observe that the k-core
structure of the multiplex network is quite robust, in the sense
that the relative size S(k1, k2) of the (k1, k2)-core is strictly
larger than zero for a wide range of choices of the threshold
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FIG. 6. Quantifying the effect of interlayer degree and
similarity correlations in the k-core structure of real-world
multiplex networks. Relative difference DS = [

�
k S(k, k)org

− �
k S(k, k)rnd]/

�
k S(k, k)org between the relative (k, k)-core

sizes S(k, k)org and S(k, k)rnd of real-world multiplex networks and
their randomized counterparts. In the randomized counterparts,
we either destroy interlayer degree correlation or correlation
among the nodes’ angular coordinates. Each point in the figure
corresponds to one of the real-world multiplex networks considered
in this study. The points from left to right correspond to the
following multiplex networks: IPv4/IPv6 Internet, arXiv1-arXiv4,
arXiv2-arXiv4, arXiv1-arXiv2, Drosophila1-Drososphila2,
Air-Train, C.Elegans2-C.Elegans3, and arXiv1-arXiv5 (Ref. [39],
Sec. I). The x axis shows the average degree exponent γ across the
two layers of each multiplex. Results in each case are obtained by
taking the average value of DS over 100 randomized counterparts.
Error bars correspond to one standard deviation away from the
average. The Pearson correlation coefficient between DS and γ is
rDS ,γ = −0.87 when degree correlation is broken and rDS ,γ = 0.48
when similarity correlation is broken. The dashed lines represent
least squares regression lines.

values (k1, k2) [Fig. 3(f)]. This fact becomes apparent when
the results valid for the real network are contrasted with those
valid for a randomized version of the network [Fig. 3(g)]. The
randomization here consists of randomly shuffling the labels
of the nodes of one of the two layers, so that the topology of
both layers remains unchanged but interlayer correlations are
completely destroyed (Appendix A 2). As a visual inspection
of Figs. 3(f) and 3(g) reveals, the real network displays
nonempty cores in a much wider region of the (k1, k2) plane
than the randomized version of the network. The result is
highlighted in Fig. 3(h) for the special case k1 = k2 = k,
where we see that the S(k, k) of the real-multiplex network
behaves almost identically to the S(k) of the individual layers.
On the contrary, the randomized version of the multiplex
network displays an empty core already for k > 2. We can
interpret the robustness of the k-core of the real multiplex net-
work in terms of interlayer correlations. Indeed in Fig. 3(i), we
see that nodes belonging to inner cores have simultaneously
high angular coherence ξk,k (Appendix A 5) in both layers of
the real multiplex, a situation visualized in Figs 3(c) and 3(d)
versus Fig. 3(e) for the randomized version of the network.

Similar results hold for other real-world multiplex networks
(Ref. [39], Sec. III).

Next, we investigate the extent to which degree and sim-
ilarity correlations affect the k-core structure, separately. To
this end, we take advantage of network hyperbolic embed-
ding, where layers are embedded independently, thus each
node has radial and angular coordinates for each layer of
the multiplex. Also in this case, we consider the degree of
the nodes instead of their radial coordinate, being the two
quantities clearly related one to the other. We break each type
of correlation while preserving the other type of correlation.
To break degree correlations, we consider the common nodes
in the two layers of the multiplex, i.e., the nodes that are
simultaneously present in both layers. Then, we select one
of the layers and sort the common nodes with respect to
their angular coordinates. We group the nodes in consecutive
groups of size n, and in each group we reshuffle node labels. If
n is sufficiently small, correlations among angular coordinates
are approximately preserved since the angular coordinates of
nodes do not change significantly within the group. Clearly,
for n = 1, no reshuffling is performed, while if n = N , where
N is the number of common nodes, then all types of interlayer
correlations are broken. To break correlations among angular
coordinates while preserving degree correlations we follow a
similar procedure. Specifically, we select one of the layers,
sort the common nodes with respect to their degrees, group
nodes in consecutive groups of size n, and reshuffle node
labels in each group.

The top row of Fig. 4 shows the results valid for the arXiv
multiplex network when degree correlations are broken while
correlations among angular coordinates are preserved; the
bottom row of Fig. 4 reports results valid when degree cor-
relations are preserved but correlations among angular coor-
dinates are destroyed. As expected, interlayer degree correla-
tion, measured in terms of Pearson correlation coefficient rk,k�

(see Appendix A 6), decreases with the size n of the groups
used in the randomization procedure [Fig. 4(a)]. Similarly,
correlation among angular coordinates of the nodes, mea-
sured in terms of the normalized mutual information NMIθ ,θ �

(Appendix A 6), decreases as n increases. There is, however,
a range of n values where rk,k� is low and NMIθ ,θ � high,
indicating that correlation at the level of angular coordinates is
preserved but degree correlation is destroyed. We consider the
randomized version of the network obtained for n = 4, thus
belonging to the aforementioned range of suitable n values,
and study differences between its (k, k)-core structure and
the one of the real multiplex network [Figs. 4(b) and 4(c)].
The (k, k)-core of the real network is only slightly more
robust than the one of the randomized network [Fig. 4(b)].
Angular coordinates of the nodes in the inner cores are still
strongly correlated [Fig. 4(c)]. The same analysis gives a
completely different result in the case of the Internet multiplex
network, where the two layers are given by the IPv4 and IPv6
topologies, respectively (see Ref. [39], Sec. I for details on
the data). Reducing degree correlation in this case destroys
the (k, k)-core structure [Figs. 5(b)–5(d)].

If we repeat the same exercise but now destroying correla-
tions among angular coordinates while preserving correlations
between degrees, we see a completely different picture. For
the arXiv multiplex network, the randomization procedure
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FIG. 7. k-core structure of synthetic multiplex networks. We study here the effect of degree and angular correlations on the size of the
(k, k)-core S(k, k) and its coherence ξk,k , in two-layer synthetic multiplex networks constructed according to the geometric multiplex model
(Appendix A 7). Interlayer degree correlation can be tuned using the parameter ν ∈ [0, 1], with ν = 0 corresponding to the uncorrelated case,
and ν = 1 to the case where degrees are maximally correlated. Interlayer correlation among angular coordinates of nodes is tuned using
the model parameter g ∈ [0, 1]. When generating network instances according to the GMM, we imposed that each layer of the multiplex
has N = 10 000 nodes, power-law degree distribution with exponent γ = 2.2, average degree k̄ ≈ 6, and temperature T = 0.5 (i.e., average
clustering coefficient c̄ = 0.45). We consider various combinations of the model parameters ν and g. Results in each case are obtained by
taking the average value over 100 realizations. Shaded areas denote regions corresponding to one standard deviation away from the average.
(a) Relative size S(k, k) of the (k, k)-core as a function of the threshold k. The curve corresponding to the monoplex is obtained by measuring
S(k) for the k-core of the individual layers, and then taking the average value. [(b) and (c)] Same as in (a) but for different choices of the
model parameters. [(d)–(f)] We consider the same data as in (a)–(c), respectively but we monitor the metrics of angular coherence ξk,k and ξk

as functions of the threshold value k.

leads to the destruction of the k-core structure [Figs. 4(f)–
4(h)]. Instead, for the Internet multiplex network, we see that
the randomization procedure has virtually no effect on the
strength of the k-core structure, keeping it unchanged with
respect to the one of the original network [Figs. 5(f)–5(h)].

On the basis of our results, we hypothesize that both
degree and similarity correlations matter for the emergence
of strong k-core structures. In particular, when the degree
distributions of the layers are less heterogeneous, like for the
arXiv multiplex network, similarity correlations play a crucial
role. On the other hand, when degree distributions are strongly
heterogeneous, like in the case of the Internet multiplex
network, degree correlations play a crucial role, and the effect
of similarities is strongly attenuated (see Ref. [39], Sec. IV for
results from other multiplex network data). This observation
is also supported by Fig. 6, which quantifies the difference DS

between the curves of the original and randomized networks
of Figs 4(b), 4(f) and 5(b), 5(f). The figure also shows DS for
other multiplex systems (considered in Ref. [39], Sec. IV).
We see in Fig. 6 that when degree correlation is broken the
difference DS increases as the degree exponent γ decreases.
On the other hand, when similarity correlation is broken DS

tends to increase with γ . Figure 6 shows results from different
systems that have different parameters (different layer sizes,
average degrees, etc.). Therefore the fact that DS in Fig. 6 is
not strictly increasing or decreasing is expected.

To test our hypotheses, we rely on synthetic multiplex
networks built according to the geometric multiplex model
(GMM) [23]. This model allows to generate single-layer
topologies using the S1 model, and control for interlayer cor-
relation between node degrees and angular coordinates (see
Appendix A 7). In Figs. 7 and 8, we study the behavior of the
k-core in two-layer synthetic multiplex networks constructed
according to the model for different choices of the model
parameters (more results can be found in Ref. [39], Sec. V).
We confirm the validity of our claims. Both types of correla-
tions are important for the characterization of the k-core of
a multiplex network. Interlayer degree correlations (measured
with ν) are more important than correlations between angular
coordinates (measured with g) when the degrees of the nodes
are broadly distributed. In this case, the role of pairwise
similarities is much attenuated (see the difference between
curves with different ν versus different g in Fig. 7). If instead,
the network layers are characterized by homogeneous degree
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FIG. 8. k-core structure of synthetic multiplex networks. Same as in Fig. 7 but for a different value of the degree exponent γ = 3.5. Results
for model parameter g = 0.75 are also shown in this figure. All other model parameters are identical to those used in Fig. 7.

distributions, similarity correlations are more important than
degree correlations whose role is attenuated (Fig. 8). This
effect is also illustrated in Figs. 9(a) and 9(b), which quantify
the differences between the curves of the monoplex and
multiplex networks of Figs. 7 and 8, as well as in Fig. 9(c),
which illustrates a qualitatively similar behavior as the one
observed for real networks in Fig. 6.

The above findings agree with intuition. When the de-
gree distribution of a layer is more heterogeneous there is
stronger correlation between higher k-shell index values and
node degrees (Ref. [39], Fig. 2). In other words, the position
of similarity of nodes matters less. Thus interlayer degree
correlations are more important for having a wide k-core
structure when the degree distributions of the layers are more
heterogeneous. On the other hand, the less heterogeneous is
the degree distribution the weaker is the correlation between
higher k-shell index values and node degrees (Ref. [39],
Fig. 2). In this case, the position of nodes in the similarity
space matters more. Indeed, we have seen that nodes in inner
cores have high angular coherence [cf. Fig. 1(h)]. Therefore
interlayer similarity correlations become more important for
having a strong k-core structure when the degree distributions
of the layers are less heterogeneous.

III. DISCUSSION AND CONCLUSION

Understanding the principles behind the organization of
real-world networks into cores or shells of nodes with in-
creasingly high degree is crucial for better understanding and
predicting their structural and dynamical properties, their ro-
bustness, and the performance of spreading processes running
on top of them. Yet, while the core organization of single-layer

networks has been extensively studied in the past, little is
known about the core organization of real multiplex networks.
In this paper, we performed a systematic characterization of
the k-core structure of real-world multiplex networks, and
shown that real multiplex networks possess a strong k-core
structure that is due to interlayer correlations. Specifically, we
showed that both degree and similarity correlations between
nodes across layers are responsible for the observed strong
k-core structures. The more heterogeneous are the degree
distributions of the layers, the more pivotal is the role of de-
gree correlations. On the other hand, the more homogeneous
are the degree distributions, the more crucial is the role of
similarity correlations. We reached our conclusions by taking
advantage of network hyperbolic embedding, and showed
that such a geometric description of networks provides a
simple framework to naturally understand and characterize
the k-core structure of real-world multiplex networks. As
the core organization of a network is intimately related to
the behavior of spreading phenomena [29], our results open
the door for a geometric perspective in understanding and
predicting the efficiency of spreading processes and the lo-
cation of influential spreaders in real multiplex networks.
Indeed, the wide k-core structure found in real multiplex
systems, explained by interlayer geometric correlations, sug-
gests that there are nodes, located into inner k-cores, which
could potentially act as efficient spreaders in all layers of
the multiplex simultaneously. For instance, we see in Fig. 10
that in the Internet and arXiv multiplexes nodes with high
(k, k)-shell index in the multiplex have also high k-shell
index in the individual layers. Further, in contrast to arXiv,
where the nodes in the most inner k-shells of the individ-
ual layers belong also to the most inner (k, k)-shells of the
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FIG. 9. Quantifying the effect of interlayer degree and similarity correlations in the k-core structure of synthetic multiplex networks.
[(a) and (b)] Relative difference DS = [

�
k S(k) − �

k S(k, k)]/
�

k S(k) between the monoplex and multiplex relative sizes, S(k) and S(k, k),
in two-layer synthetic multiplexes constructed as in Figs. 7 and 8. We consider various combinations of the model parameters ν and g. Results
in each case are obtained by taking the average value over 100 realizations. Error bars correspond to one standard deviation away from the
average. Reference [39], Fig. 30 shows also the relative difference Dξ = [

�
k ξk − �

k ξk,k]/
�

k ξk between the angular coherences ξk and ξk,k

of the networks of (a) and (b). (c) is the same as (a) and (b) but for different values of the degree exponent γ and parameters ν and g as shown
in the legend.

multiplex, in the IPv4/IPv6 Internet there are nodes with high
k-shell index values in the individual layers but not in the
multiplex. This suggests that there are also nodes that could
potentially be efficient spreaders in the individual layers but
not in the multiplex. We leave such investigations for future
work.
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APPENDIX A: METHODS

1. Cores and shells

The k-core of a single-layer network is the maximal sub-
graph of the network in which all vertices have degree at least
k. The k-core is identified by iteratively removing all nodes
with degree less than k, recalculating the degrees of all the

remaining nodes, and continuing with the iterative scheme till
there are no nodes with degree less than k. By definition, all
nodes in the (k + n)-core, with n � 0, are necessarily part of
the k-core. The nodes that belong to the k-core but not to the
(k + 1)-core form the k-shell of the network, and they are said
to have k-shell index, or coreness, ks = k. The relative size
S(k) of the k-core is

S(k) = Nk

N
, (A1)

where Nk is the number of nodes that belong to the k-core, and
N is the total number of nodes in the network.

In a multiplex system of L layers, the k-core, with k =
(k1, . . . , k�, . . . , kL ), is the set of the subgraphs, one for each
layer, remaining after the following pruning procedure is
performed [32]: all nodes whose degree in at least one layer
� is less than k� are removed from the system; the degree of
all nodes in all layers is recomputed; the pruning continues
iteratively until no node remains such that its degree in layer
� is less than the threshold k�. By definition, the subgraphs
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FIG. 10. Coreness in single layers vs coreness in the multiplex. (a) Coreness ks in arXiv1 of the nodes that have coreness (k, k)s in the
multiplex network consisting of arXiv1 and arXiv2. The size of the symbols is proportional to the percentage of nodes with coreness (k, k)s in
the multiplex that have coreness ks in arXiv1. (b) Same as (a) but for arXiv2. [(c) and (d)] Same as (a) and (b) but for the IPv4/IPv6 Internet.

belonging to the k-core share the same set of nodes.
Further, the (k + n)-core of a multiplex, with n =
(n1, . . . , n�, . . . , nL ) where n� � 0 for all � = 1, . . . , L, is
necessarily a subset of the k-core of the multiplex. Similar to
single-layer networks one can also define k-shells. Figure 3(c)
in the main text illustrates the (k, k)-shells in the considered
arXiv multiplex, i.e., the sets of nodes that belong to the
(k, k)-core but not to the (k + 1, k + 1)-core of the system,
k = 1, 2, . . . , 13. The relative size S(k) of the k-core is

S(k) = Nk

N
, (A2)

where Nk is the number of nodes belonging to the k-core, and
N is the number of common nodes between the layers of the
multiplex.

2. Network randomization

a. Single-layer randomization

In Fig. 1, we employed a degree-preserving clustering-
decreasing randomization procedure that works as follows.
We select a random pair of links (i, j) and (s, t ) in the
network, and rewire them to (i, t ) and (s, j), provided that
none of these links already exist in the network and that the
rewiring decreases the average clustering coefficient c̄ [42] in

the network. If these two conditions are met, then the rewiring
is accepted, otherwise it is not accepted, and a new pair of
links is selected. This way each accepted rewiring step pre-
serves the degree distribution in the network, and decreases its
average clustering. We repeat the rewiring steps till we reach
desired predefined values of the average clustering coefficient
c̄, as shown in the legends of Figs. 1(b) and 1(f).

b. Multiplex randomization

In Fig. 3, we employed a node label reshuffling procedure
that destroys all correlations between two layers of a multi-
plex. Specifically, we randomly reshuffled the labels of the
nodes of one layer, i.e., we interchanged the label of each
node in that layer with the label of a randomly selected node
from the same layer. This process randomly reshuffles the
trans-layer node-to-node mappings without altering the layer
topology.

3. S1 model

Each node i in the S1 model has hidden variables κi, θi. The
hidden variable κi is the node expected degree in the resulting
network, while θi is the angular (similarity) coordinate of the
node on a circle of radius R = N/(2π ), where N is the total
number of nodes. To construct a network with the S1 model
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that has size N , average node degree k̄, power law degree
distribution with exponent γ > 2, and temperature T ∈ [0, 1),
we perform the following steps.

(i) Sample the angular coordinates of nodes θi, i =
1, 2, . . . , N , uniformly at random from [0, 2π ], and their hid-
den variables κi, i = 1, 2, . . . , N , from the probability density
function

ρ(κ ) = (γ − 1)κγ−1
0 κ−γ , (A3)

where κ0 = k̄(γ − 2)/(γ − 1) is the expected minimum node
degree.

(ii) Connect every pair of nodes i, j with probability

p(χi j ) = 1

1 + χ
1/T
i j

, (A4)

where χi j = R�θi j/(μκiκ j ) is the effective distance between
i and j, �θi j = π − |π − |θi − θ j || is the angular distance,
and μ = sin T π/(2k̄T π ) is derived from the condition that
the expected degree in the network is indeed k̄.

The S1 model is isomorphic to hyperbolic geometric
graphs (H2 model) after transforming the expected node
degrees κi to radial coordinates ri via

ri = RH − 2 ln
κi

κ0
, (A5)

where RH is the radius of the hyperbolic disk where all nodes
reside,

RH = 2 ln
N

c
, (A6)

while c = k̄ sin T π
2T ( γ−2

γ−1 )
2
. After this change of variables the

connection probability in (A4) becomes

p(xi j ) = 1

1 + e
1

2T (xi j−RH )
, (A7)

where xi j = ri + r j + 2 ln (�θi j/2) is approximately the hy-
perbolic distance between nodes i, j [33].

4. Hyperbolic embedding

The hyperbolic embeddings of all considered real-world
networks have been obtained in Ref. [23] using the HYPERMAP

embedding method [34]. The method is based on maximum
likelihood estimation. On its input it takes the network adja-
cency matrix A. The generic element of the matrix is Ai j =
Aji = 1 if there is a link between nodes i and j, and Ai j =
Aji = 0 otherwise. The embedding infers radial and angular
coordinates, respectively indicated as ri and θi, for all nodes
i � N . The radial coordinate ri is related to the observed node
degree ki as

ri ∼ ln N − 2 ln ki. (A8)

The angular coordinates of nodes are found by maximizing
the likelihood

L =
�

1� j<i�N

p(xi j )
Ai j [1 − p(xi j )]

1−Ai j . (A9)

The product in the above relation goes over all node pairs i, j
in the network, xi j is the hyperbolic distance between pair i, j
[33] and p(xi j ) is the connection probability in Eq. (A7).

5. Angular coherence

a. Single-layer networks

To quantify how similar are the angular coordinates of
nodes in the k-cores, we use angular coherence, a metric
previously used to quantify the extent to which nodes within
the same community have similar angular coordinates [25].
We define the angular coherence of a k-core as the module
0 � ξk � 1, given by

ξkeiφk = 1

Nk

�

j∈k-core

eiθ j , (A10)

where the sum is taken over the set of nodes that belong
to the k-core, Nk is the number of nodes that belong to the
k-core, and θ j is the angular coordinate of node j. The angular
coherence resembles the order parameter of the Kuramoto
model that captures the coherence of oscillators [43]. The
higher is the ξk ∈ [0, 1] the more localized in the similarity
space are the nodes of the k-core. At ξk = 1 all nodes have the
same angular coordinates, while at ξk = 0 nodes are uniformly
distributed in [0, 2π ]. φk in Eq. (A10) can be seen as the
k-core “angular coordinate,” i.e., it is a measure of where
the k-core is mostly concentrated along the angular similarity
direction. We note that the angular coherence of a k-core is an
average metric, taken over the nodes that belong to the k-core.
Therefore the value of ξk does not depend on the number of
nodes Nk that belong to the k-core.

b. Multiplex networks

For two-layer multiplex networks, we define the angular
coherence of the nodes belonging to the (k, k)-core as the
module 0 � ξk,k � 1, given by averaging the angular coher-
ences of the corresponding nodes in the individual layers,

ξk,keiφk,k = 1

2

2�

�=1

�
1

Nk,k

�

j∈(k,k)-core

eiθ�
j

�
, (A11)

where Nk,k is the number of nodes belonging to the (k, k)-core,
and θ�

j is the angular coordinate of node j in layer � = 1, 2.
Similar to ξk , ξk,k does not depend on the number of nodes
Nk,k that belong to the (k, k)-core.

6. Interlayer similarity

a. Degree correlation

Degree correlation between two layers of a multiplex net-
work is quantified using the Pearson correlation coefficient
[23]

rk,k� = cov(k, k�)

σkσk�
, (A12)

where cov(X, X �) denotes the covariance between two random
variables X and X � and σx denotes the standard deviation
of random variable X . rk,k� takes values in [−1, 1] and is
computed across the nodes that are common in the two layers.
For rk,k� = 1, the degrees of the nodes in the two layers are
fully correlated, for rk,k� = 0 they are uncorrelated, while for
rk,k� = −1 they are fully anticorrelated.
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b. Angular correlation

Angular correlation between the two layers of a multiplex
is quantified using the normalized mutual information [23]

NMIθ ,θ � = MI(θ ; θ �)

max{MI(θ ; θ ), MI(θ �; θ �)} , (A13)

where MI is the mutual information, computed using the
method proposed in Ref. [44]. NMIX,X � takes values in [0, 1]
and is computed across the common nodes in the two layers.
NMIX,X � = 0 means no correlation between X and X �, while
NMIX,X � = 1 means perfect correlation.

c. Edge overlap

The edge overlap O between two layers is given by

O =
�

i> j Ai jA�
i j

min{�i> j Ai j,
�

i> j A�
i j}

, (A14)

where A and A� are the adjacency matrices of the two layers.
The numerator in (A14) is the number of overlapping links be-
tween the two layers, while the denominator is the maximum
possible number of overlapping links.

7. Geometric multiplex model

The geometric multiplex model (GMM) generates single-
layer topologies using the S1 model (Appendix A 3), and
allows for degree and angular coordinate correlations across
the layers. Specifically, correlations can be tuned by varying
the model parameters ν ∈ [0, 1] (degree correlations) and
g ∈ [0, 1] (angular correlations) [23]. Degree (angular) cor-
relations are maximized at ν → 1 (g → 1), while at ν → 0
(g → 0) there are no degree (angular) correlations. The GMM
implementation is available in Ref. [45].
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2

I. REAL-WORLD NETWORK DATA

Table I gives an overview of the analyzed single-layer networks, while Table II gives an overview of the considered
multiplex systems that consist of network layers from Table I.

Network N k̄ γ Ref.

Airport 3397 11.32 1.88 [1–3]
Drosophila 1770 10.01 1.91 [3, 4]
Metabolic 1436 6.57 2.6 [3, 5]
Proteome 4100 6.52 2.25 [3, 6]
Enron 33696 10.73 2.66 [3, 7, 8]
Internet 23748 4.92 2.17 [3, 9]
Music 2476 16.66 2.27 [3, 10, 11]
Words 7377 11.99 2.25 [3, 12]

arXiv1 (physics.bio-ph) 2956 4.13 2.6
arXiv2 (physics.data-an) 3506 4.19 2.6
arXiv3 (physics.soc-ph) 1594 3.79 6.0
arXiv4 (cond-mat.dis-nn) 5465 5.30 2.5

arXiv5 (math.OC) 1605 5.52 4.0
arXiv6 (cond-mat.stat-mech) 1451 3.56 4.0

arXiv7 (q-bio.MN) 1905 4.64 4.0
arXiv8 (cs.SI) 4946 4.69 2.5

[13, 14]

C.Elegans1 (Electric) 253 4.06 2.9
C.Elegans2 (Chemical Monadic) 260 6.83 2.9
C.Elegans3 (Chemical Polyadic) 278 12.25 2.9

[14–16]

Drosophila1 (Suppressive) 838 4.43 2.6
Drosophila2 (Additive) 755 3.77 2.8

[14, 17, 18]

Internet1 (IPv4) 37563 5.06 2.1
Internet2 (IPv6) 5163 5.21 2.1

[9, 14, 19]

Air 69 5.22 2.6
Train 69 9.33 2.9

[14, 20]

TABLE I. Single-layer networks. The first column indicates the name of the network, while N , k̄ and γ denote respectively
the number of nodes in the network, the network’s average degree, and the exponent γ of the power law that best approximates
the network’s degree distribution. More details on the data can be found in the references listed in the last column.

Multiplex network Ncommon rk,k� NMIθ,θ� Ref.

arXiv1 - arXiv2 911 0.82 0.46
arXiv1 - arXiv4 1441 0.90 0.56
arXiv1 - arXiv5 354 0.80 0.44
arXiv2 - arXiv4 1323 0.86 0.48

[13, 14]

Internet1 - Internet2 4731 0.82 0.32 [9, 14]

C.Elegans2 - C.Elegans3 259 0.80 0.31 [14–16]

Drosophila1 - Drosophila2 500 0.83 0.26 [14, 17, 18]

Air - Train 69 0.80 0.08 [14, 20]

TABLE II. Multiplex networks. Each two-layer multiplex network is composed of layers from Table I. The first column
indicates the two layers that constitute the multiplex. Ncommon is the number of common nodes between the two layers; rk,k�

is the Pearson correlation coefficient among the degrees of the nodes in the two layers; and NMIθ,θ� is the normalized mutual
information of the angular coordinates of the nodes in the two layers.
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FIG. 1. Degree Distribution. Degree distribution of (a) the IPv6 Internet and (b) the arXiv co-authorship network
(physics.bio-ph) considered in the main text. The red lines are the empirical distributions, while the dotted blue lines are
power laws with exponents γ = 2.1, 2.6.
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FIG. 2. Correlation between node degree and k-shell index. Pearson correlation coefficient between node degree and
k-shell index, rks,degree, for nodes with k-shell index ks ≥ k where k as indicated in the x-axis. Panel (a) shows the results for
the IPv6 Internet and the arXiv co-authorship network considered in the main text. Panel (b) shows the results for synthetic
networks constructed with the S1-model (Methods section C in the main text) for various values of the degree exponent γ. The
synthetic networks have N = 10, 000 nodes, average degree k̄ = 6, and temperature parameter T = 0.5, while the results are
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20% of the realizations.
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II. k-CORE STRUCTURE OF REAL-WORLD NETWORKS
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FIG. 3. k-core structure of real-world networks. Each row corresponds to a single-layer network from Table I. (a) Scatter
plot of node degrees vs. coreness. The size of the symbols is proportional to the number of nodes having each specific degree
and k-shell index values. (b) Relative size S(k) of the k-core in the real networks (labeled as “org”) and their randomized
counterparts (labeled as “rnd”). Randomized networks are obtained by shuffling random pairs of edges while controlling for
the average value of the clustering coefficient C. (c) k-shell index of nodes before and after network randomization (obtained
for C ≈ 0). The size of the symbols is proportional to the percentage of nodes whose coreness changed from ks in the original
network to k�

s in the reshuffled network. (d) Angular coherence ξk of the nodes belonging to each k-core and k-shell.
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FIG. 4. k-core structure of real-world networks. Same as in Figure 3, but for a different set of networks from Table I.

171



6

arXiv1

100 101

ks

100

101

D
eg

re
e

(a)

100 101

k

10−2

10−1

100

S
(k
)

(b)

org(C≈0.7)
rnd(C≈0.5)
rnd(C≈0.2)
rnd(C≈0.0)

0 5 10 15
ks original

0

5

k
� s

ra
nd

om
iz

ed

(c)

100 101

k

10−1

100

ξ k

(d)

k-core
k-shell

min max

0

1

arXiv2

100 101

ks

100

101

D
eg

re
e

(a)

100 101

k

10−2

10−1

100

S
(k
)

(b)

org(C≈0.7)
rnd(C≈0.5)
rnd(C≈0.2)
rnd(C≈0.0)

0 5 10 15
ks original

0

5

k
� s

ra
nd

om
iz

ed

(c)

100 101

k

10−1

100

ξ k

(d)

k-core
k-shell

min max

0

1

arXiv3

100 101

ks

100

101

D
eg

re
e

(a)

100 101

k

10−2

10−1

100

S
(k
)

(b)

org(C≈0.8)
rnd(C≈0.5)
rnd(C≈0.2)
rnd(C≈0.0)

0 5 10 15
ks original

0

5

k
� s

ra
nd

om
iz

ed

(c)

100 101

k

10−2

10−1

100

ξ k

(d)

k-core
k-shell

min max

0

1

arXiv4

100 101

ks

100

101

102

D
eg

re
e

(a)

100 101

k

10−2

10−1

100

S
(k
)

(b)

org(C≈0.7)
rnd(C≈0.5)
rnd(C≈0.2)
rnd(C≈0.0)

0 5 10 15 20 25 30
ks original

0

5

k
� s

ra
nd

om
iz

ed

(c)

100 101

k

10−2

10−1

100

ξ k

(d)

k-core
k-shell

min max

0

1

FIG. 5. k-core structure of real-world networks. Same as in Figure 3, but for a different set of networks from Table I.
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FIG. 6. k-core structure of real-world networks. Same as in Figure 3, but for a different set of networks from Table I.
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FIG. 7. k-core structure of real-world networks. Same as in Figure 3, but for a different set of networks from Table I.
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FIG. 8. k-core structure of real-world networks. Same as in Figure 3, but for a different set of networks from Table I.
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III. k-CORE STRUCTURE OF REAL-WORLD MULTIPLEX NETWORKS
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FIG. 9. k-core of real-world multiplex networks. (a and b) Hyperbolic embedding of the arXiv1-arXiv4 multiplex network.
Panel a refers to the layer arXiv1, while panel b to the layer arXiv4. The position of the nodes in the disk is determined by
their hyperbolic coordinates, and only nodes that exist in both layers are shown; different colors serve to differentiate nodes
depending on their k-shell index value. (c) Correspondence among nodes belonging to the (k, k)-shells of the arXiv1-arXiv4
multiplex network. (d) Same as in panel c, but for k ≥ 7. (e) Same as in panel c, but for the randomized version of the
multiplex where the node labels of one of the two layers are randomly reshuffled. (f) Relative size S(k1, k2) of the (k1, k2)-core
for the arXiv1-arXiv4 multiplex network. (g) Same as in panel f, but for the randomized version of the multiplex network. (h)
Relative size S(k, k) of the (k, k)-core for the arXiv1-arXiv4 multiplex network, and its randomized version. These curves are
compared with those of the relative size S(k) of the k-core of the individual layers. (i) Same as in panel h, but for the metrics
of angular coherence ξk,k and ξk.
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FIG. 10. k-core of real-world multiplex networks. Same as in Figure 9, but for the multiplex consisting of the layers
arXiv1 (a) and arXiv5 (b). Panel (d) shows the correspondence among nodes belonging to the (k, k)-shells with k ≥ 5.
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FIG. 11. k-core of real-world multiplex networks. Same as in Figure 9, but for the multiplex consisting of the layers
arXiv2 (a) and arXiv4 (b). Panel (d) shows the correspondence among nodes belonging to the (k, k)-shells with k ≥ 7.
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FIG. 12. k-core of real-world multiplex networks. Same as in Figure 9, but for the multiplex consisting of the layers
IPv4 Internet (a) and the IPv6 Internet (b). Panel (c) shows the correspondence among nodes belonging to the (k, k)-shells
with k ≥ 6. (d) Same as in panel c, but for k ≥ 12.
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FIG. 13. k-core of real-world multiplex networks. Same as in Figure 9, but for the multiplex consisting of the layers
C.Elegans2 (a) and C.Elegans3 (b). Panel (d) shows the correspondence among nodes belonging to the (k, k)-shells with k ≥ 5.
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FIG. 14. k-core of real-world multiplex networks. Same as in Figure 9, but for the multiplex consisting of the layers
Drosophila1 (a) and Drosophila2 (b). This figure does not contain a zoom-in of inner shells.

178



13

(a)

1
2
3
4
5
6
7

(b)

1
2
3
4
5
6
7
8

(c)

1
2
3
4
5
6

(e)

1 4 7 10
k1 (Air)

1

4

7

10

k
2

(T
ra

in
)

(f)

1 4 7 10
k1 (Air)

1

4

7

10
k
2

(T
ra

in
)

(g)

100 101

k

10−1

100

S
(k
,k
)

,S
(k
)

(h)

Air
Train
Multiplex Org
Multiplex Rnd

100 101

k

10−1

100

ξ k
,k

,ξ
k

(i)

10−2 10−1 100 10−2 10−1 100

(d)

FIG. 15. k-core of real-world multiplex networks. Same as in Figure 9, but for the multiplex consisting of the layers
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IV. DESTROYING INTER-LAYER DEGREE AND SIMILARITY CORRELATIONS
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FIG. 16. Inter-layer correlations and the k-core structure of the arXiv1-arXiv4 multiplex network. We analyze
the multiplex network consisting of arXiv1 and arXiv4. (a) Different metrics of inter-layer similarity as a function of the group
size n used to randomize node labels, thus breaking inter-layer degree correlations. For n = 1, node labels of the network
are not randomized; full shuffle of node labels is obtained for large n values. We focus here on the case where degree inter-
layer correlation is broken, but we preserve inter-layer correlation among nodes’ angular coordinates. Metrics of similarities
considered here are the Pearson correlation coefficient rk,k� among the degrees of nodes in the two layers; normalized mutual
information NMIθ,θ� of the angular coordinates of the nodes in the two layers; and edge overlap O among the two layers. (b)
Relative size S(k, k) of the (k, k)-core. The results of the original multiplex network (n = 1) are compared with those valid for
n = 4. The results for n = 4 are average values obtained on 100 independent randomizations. Shaded areas identify the region
corresponding to one standard deviation away from the average. (c) Same as in panel b, but for the angular coherence ξk,k.
(d) Scatter plot of the (k, k)-shell index of nodes in the original vs. the randomized multiplex network. The size of the symbols
is proportional to the percentage of points in the scatter plot. (e, f, g and h) Same as in panel a, b, c and d, respectively. We
consider here the case where inter-layer correlation among nodes’ angular coordinates is destroyed, but inter-layer correlation
among nodes’ degrees is preserved. The results of the original network are compared with those obtained for n = 8.
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FIG. 17. Inter-layer correlations and the k-core structure of the arXiv2-arXiv4 multiplex network. Same as in
Figure 16, but for the multiplex consisting of arXiv2 and arXiv4.
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FIG. 18. Inter-layer correlations and the k-core structure of the arXiv1-arXiv5 multiplex network. Same as in
Figure 16, but for the multiplex consisting of arXiv1 and arXiv5.

20 24 28 212
n

0.0

0.5

1.0

In
te

r-
la

ye
rs

im
ila

rit
y

(a)rk,k�

NMIθ,θ�

O

100 101

k

10−1

100

S
(k
,k
)

(b)

n = 1

n = 22

100 101

k

10−1

100
ξ k

,k
(c)

0 5 10
ks original

0

5

k
� s

ra
nd

om
iz

ed

(d)

20 24 28 212
n

0.0

0.5

1.0

In
te

r-
la

ye
rs

im
ila

rit
y

(e)

100 101

k

10−1

100

S
(k
,k
)

(f)

n = 1

n = 22

100 101

k

10−1

100

ξ k
,k

(g)

0 5 10
ks original

0

5

k
� s

ra
nd

om
iz

ed

(h)

0

1

0

1

FIG. 19. Inter-layer correlations and the k-core structure of the C.Elegans2-C.Elegans3 multiplex network.
Same as in Figure 16, but for the multiplex consisting of C.Elegans2 and C.Elegans3.
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FIG. 20. Inter-layer correlations and the k-core structure of the Drosophila1-Drosophila2 multiplex network.
Same as in Figure 16, but for the multiplex consisting of Drosophila1 and Drosophila2.
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FIG. 21. Inter-layer correlations and the k-core structure of the Air-Train multiplex network. Same as in Figure 16,
but for the multiplex consisting of Air and Train.
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V. k-CORE STRUCTURE OF SYNTHETIC MULTIPLEX NETWORKS

(a)

1
2
3
4
5
6
7
8
9

(b)

1
2
3
4
5
6
7
8
9

(c)

1
2

(d)

1 4 7 10
k1 (Layer 1)

1

4

7

10

k
2

(L
ay

er
2)

(e)

1 4 7 10
k1 (Layer 1)

1

4

7

10

k
2

(L
ay

er
2)

(f)

100 101

k

10−1

100

S
(k
,k
)

,S
(k
)

(g)

Layer 1
Layer 2
Multiplex Org
Multiplex Rnd

100 101

k

10−2

10−1

100

ξ k
,k

,ξ
k

(h)

10−2 10−1 100 10−2 10−1 100

FIG. 22. k-core structure of synthetic multiplex networks. Same as in Figure 9, but for a two-layer synthetic multiplex
network constructed according to the Geometric Multiplex Model (GMM) with no inter-layer degree and angular correlations
(ν = g = 0). Each layer of the multiplex has N = 1000 nodes, power-law degree distribution with exponent γ = 2.6, average
degree k̄ ≈ 6, and temperature T = 0.1.
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FIG. 23. k-core structure of synthetic multiplex networks. Same as in Figure 9, but for a two-layer synthetic multiplex
network constructed according to the GMM with intermediate inter-layer degree and angular correlations (ν = g = 0.5). Each
layer of the multiplex has the same parameters as in Figure 22. Panel (d) shows the correspondence among nodes belonging
to the (k, k)-shells with k ≥ 5.
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FIG. 24. k-core structure of synthetic multiplex networks. Same as in Figure 9, but for a two-layer synthetic multiplex
network constructed according to the GMM with maximal inter-layer degree and angular correlations (ν = g = 1). Each layer
of the multiplex has the same parameters as in Figure 22. Panel (d) shows the correspondence among nodes belonging to the
(k, k)-shells with k ≥ 7.
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FIG. 25. k-core of synthetic multiplex networks. We study here the effect of degree and angular correlations on the
relative size S(k1, k2) of the (k1, k2)-core, in two-layer synthetic multiplexes constructed according to the GMM. Results are
shown for different combinations of the inter-layer degree and angular correlation strength parameters ν ∈ [0, 1] and g ∈ [0, 1].
Each layer has N = 1000 nodes, power-law degree distribution with exponent γ = 2.2, average degree k̄ ≈ 6, and temperature
T = 0.5.
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FIG. 26. k-core of synthetic multiplex networks. Same as in Figure 25, but for a different value of the degree exponent
γ = 2.6. All other model parameters are identical to those used in Figure 25.
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FIG. 27. k-core of synthetic multiplex networks. Same as in Figure 25, but for a different value of the degree exponent
γ = 3.5. All other model parameters are identical to those used in Figure 25.
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FIG. 28. k-core structure of synthetic multiplex networks. We study here the effect of degree and angular correlations
on the size of the (k, k)-core S(k, k) and its coherence ξk,k, in two-layer synthetic multiplex networks constructed according to
the GMM. Each layer of the multiplex has N = 10000 nodes, power-law degree distribution with exponent γ = 2.6, average
degree k̄ ≈ 6, and temperature T = 0.5 (i.e., average clustering coefficient c̄ = 0.4). We consider various combinations of the
degree and angular correlation strength parameters ν and g. Results in each case are obtained by taking the average value over
100 realizations. Shaded areas denote regions corresponding to one standard deviation away from the average. (a) Relative size
S(k, k) of the (k, k)-core as a function of the threshold k. The curve corresponding to the monoplex is obtained by measuring
S(k) for the k-core of the individual layers, and then taking the average value. (b and c) Same as in panel a, but for different
choices of the model parameters. (d, e and f) We consider the same data as in panels a, b, and c, respectively, but we monitor
the metrics of angular coherence ξk,k and ξk as functions of the threshold value k.
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FIG. 29. k-core structure of synthetic multiplex networks. Same as in Figure 28, but for power-law degree distribution
with exponent γ = 2.2 in one layer and γ = 3.5 in the other layer.

186



21

ν
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
ξ

γ =2.2

(a)g=0.0
g=0.5
g=1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
ξ

γ =3.5

(b)
g=0.00
g=0.50
g=0.75
g=1.00

FIG. 30. Quantifying the effect of inter-layer degree and similarity correlations in the k-core structure of syn-
thetic multiplex networks. (a and b) Relative difference Dξ =

��
k ξk −�

k ξk,k
�
/
�

k ξk between the angular coherences
ξk and ξk,k for the networks constructed in Figures 9a and 9b in the main text. Error bars are not shown for clarity.

187



22

[1] “KONECT – openflights network dataset,” http://konect.uni-koblenz.de/networks/openflights (2016).
[2] J. Kunegis, in Proc. Int. Conf. on World Wide Web Companion, pp. 1343–135 (2013).
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De Las Rivas, Jan Tavernier, Michael A. Calderwood, David E. Hill, Tong Hao, Frederick P. Roth, and Marc Vidal, “A
proteome-scale map of the human interactome network,” Cell 159, 1212 – 1226 (2014).

[7] Bryan Klimt and Yiming Yang, “Introducing the enron corpus,” in CEAS 2004 - First Conference on Email and Anti-Spam,
July 30-31, 2004, Mountain View, California, USA (2004).

[8] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney, “Community structure in large net-
works: Natural cluster sizes and the absence of large well-defined clusters,” Internet Mathematics 6, 29–123 (2009),
https://doi.org/10.1080/15427951.2009.10129177.

[9] k. claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov, IEEE DHS Cybersecurity Applications and Technologies
Conference for Homeland Security (CATCH) (2009) pp. 205–211.
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Chapter Eight

Conclusions

In my Ph.D. thesis I considered percolation and some of its variants (bond percolation, site

percolation, core percolation, k-core percolation, targeted attack and optimal percolation) as

processes taking place on both monoplex and multiplex networks. The focus in all the cases

was the interplay between the structure of a network and the dynamics which is running on

top of it. The main results of the thesis can be summarized as follows:

• Power laws in noncritical neuronal systems. In this study bond percolation

is used in order to model neuronal avalanches. We studies analytically and numeri-

cally distribution of avalanches in different network topologies. The main finding is

that some specific network topologies can induce power law distributions of avalanches

without the system being at critical point.

• Generalization of core percolation. We defined a new k-core decomposition for

monoplex networks. We studied its phase transition for random synthetic networks

with Poisson and scale free degree distributions using theoretical and numerical tech-

niques. Finally, we presented Gk-core decomposition of the networks as a new network

layout that can have potential implications on singling out influential nodes.

• Observability transition on multiplex networks. We generalized observability

phase transition of monoplex networks to multiplex networks. We developed the exact
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solution of this model for synthetic locally tree-like multiplex networks. We also applied

the model to real multiplex networks and observed that inter-layer correlations as major

players in multiplex networks, make them observable.

• Hyperbolic embedding and community structure. We unveiled the analogy

between hyperbolic embedding and community structure of complex networks. This

analogy helps us to understand robustness of real multiplex networks in the language

of community correlated structures.

• Optimal percolation on multiplex networks. We generalized optimal percolation

(graph dismantling) to multiplex networks. We designed several heuristic algorithms

to solve this problem approximately on both real and synthetic multiplex networks.

Finally, we highlighted that inter-layer correlations such as edge overlap plays a big

role in the robustness of multiplex networks.

• k-core of real multiplex networks. We observed that real multiplex networks

non-trivially have a rich k-core structure. Using randomization techniques to decrease

inter-layer correlations, we observed that the rich k-core of real multiplex networks orig-

inates due to inter-layer correlations. To quantify these correlations we used hyperbolic

network framework. We concluded that in the case of networks with homogeneous de-

gree distributions, angular correlations matter more. However, in the case of networks

with broad degree distributions radial (degree) correlations play an important role.

Finally, I conclude this chapter by following remark. When considering a dynamic taking

place on top of a monoplex or multiplex networks, either real or random, there are many

factors affecting the outcome. Topology of the network, inter-layer correlations, parameters

of the model dynamic which is running on top of either monoplex or multiplex networks,

etc. are examples of these factors.
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