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Abstract
In recent years, a significant demand for computational resources is observed, which resulted in much effort
devoted to the theoretical simplification of complex problems and the development of various technological
platforms to solve particular classes of hard problems. Exciton-polaritons appear to be a very promising physi-
cal system, serving as the perfect foundation for such technological advancement. The main research effort was
focused on describing the correspondence between computational problems of high complexity and the physical
system states. It was shown that using exciton-polaritons, one can realize 𝑘-local Hamiltonians with 𝑘 > 2
with the nontrivial phase configurations. In addition to that, the novel contribution consists in the introduction
of the complex coupling switching method, providing a way to significantly increase the success probability
of solving optimisation problems using the exciton-polariton platform and applicable to gain-dissipative sim-
ulators in general. One can use this method as a useful heuristic on conventional computer architecture with
the algorithmic perspective. Moreover, the existing correspondence between different computational tasks and
presented the methodology of encoding/decoding of an arbitrary computational task into the optical/photonic
hardware was considered. The most generic and complex machine-learning approach was considered with the
potential architecture mapping. It was shown that using the nonlinear spin clusters, one can approximate the
predetermined architecture with minor accumulated error, pushing the limits of the available computation. This
new alternative method allows one to directly implement neural network algorithms on many condensed matter
systems, with various advantages, such as reducing the overhead on the additional variables required to imple-
ment a more conventional approach for neural network realisation. Since the exciton-polariton has promising
and alluring properties with the perspective technologies, the research on the potential applications besides the
existing ones was carried out, emphasizing periodic structures and its analytical description. Emphasizing the
analytic forms, the introduced approach allows one to identify how the velocity profile of the condensate changes
with parameters, such as the trapping and dissipation potentials, which allows avoiding extensive calculations.
The behaviour and the phase diagram were built, which opens the way to the controllable laser or polariton
flows for ultra-fast information processing and analog simulators. Summarizing, one can say with complete
confidence that exciton-polaritons are a promising platform that is not exploited to its full potential.

I hereby declare that the work presented in this thesis was carried out by myself at Skolkovo Institute of
Science and Technology, Moscow, except where due acknowledgement is made, and has not been submitted for
any other degree.

Candidate (Nikita Stroev)

Supervisor (Prof. Natalia Berloff, PhD)
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Chapter 1

Introduction

My interest in this PhD thesis topic was ignited by recent development in the domain of quantum information science or,
more specifically, its subdomain quantum computing, which has tremendously changed during the period of the study.
The motivation was to get involved in physical research (due to my background) with computer science (CS) elements;
however, I had no desire to rush into the mainstream quantum computing research. Many variations of quantum hardware
present a unique and specialized problem solvers. If one wants to obtain the universal quantum computer, it needs to
break through a set of fundamental and engineering challenges. Additionally, the breakthroughs were coming from the
major corporations, which had a tremendous amount of resources to invest. The best choice for me was to contact
Professor Natalia Berloff, who was working at Skoltech CPQM and who with the coworkers recently published a paper
establishing the connection between the condensed matter system of Bose-Einstein condensate Bose–Einstein condensate
(BEC) of exciton-polariton (EP) and XY Hamiltonian, which was the significant step for computation on such systems.
She let me join her group and start PhD research. The developing alternative technologies, like computation based
on the BEC physical platform, gave a good perspective on this specific domain and the mainstream field of quantum
computing in general as a part of the obligatory review work. My motivation was heated up by the practical significance
of the work and lots of potential available projects.

Since the main research direction was already established, my first task was to investigate the novel regime in the
system, achieved by the significant change of external pumping and consider the corresponding mathematical optimization
problem, which was solved by the system and was the result of several wavefunctions intersection (see 3.2). Such an exotic
complicated state was possible due to the matter-wave nature of the EP BEC. Besides the alluring physical parameters,
it has many exciting features, which we can take advantage of, for example, its intrinsic wave nature.

Besides, many physical systems, like quantum gases and ultracold atoms in optical lattices, are investigated with
similar applied purposes. There are many similarities between the alternative physical systems, which spawns similar
perspectives on how to utilize them in the most efficient manner, which makes this field very rich in ideas and models.

I also was involved into the more practical task, like the description of the periodic structures and the velocity profile
of the BEC condensate inside such structures (see 3.7), which brings more insights into the knowledge of the physical
phenomena and a better understanding of the difference between the theoretical propositions and its experimental
realization.

Despite the academic workload, I managed to take the additional course on Foundations of Data Science, which
resulted in independent research’s exciting byproduct. It is considered in the 3.4, where I describe the correspondence
between the classical XY Hamiltonian and the typical machine learning (ML) architecture, which was found using the
approximation techniques and gave several exciting outcomes. Pattern recognition is a subdomain of ML and appears
to be a general universal task of particular practical interest. It can be performed using the Ising problem formulation,
and it’s similar to the particular Hopfield networks; however, I tried to avoid trivial combinatorial results of variational
nature and focused on the more difficult tasks of correspondence between the specific set of nonlinear functions and
mathematical operations, sufficient for the ML.

The development of the ML ideas, together with the investigation of the system’s physical properties, led me to quite
an exotic topic, which holds the name of reservoir computing (RC). Despite its bizarreness and lack of good unification
theory, it seems that it is a promising way to squeeze the system to maximize effectiveness in terms of computation.
Nevertheless, it lacks a universal theory based on the recurrent NN description, which makes it harder to understand or
map to more traditional tasks.

The general problem I am trying to solve was evident initially but condensed to the final statement through the
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Chapter 1. Introduction 1.1. Thesis structure

research process and became more explicit. There is an increasing demand for computational tools, theoretical tools
(algorithms) and physical hardware, which allows one to speed up several tasks of particular interest, which grows across
different domains, both academic and industrial. In this thesis, I aim to exploit the particular EP BEC system to solve
several problems in the most efficient way. Conventional architectures for modern digital computers are suffering from
modern algorithms’ scalability problem, which increases the demand for computational resources.

To summarize, every system can be exploited in terms of computation. The best way to solve the problem of mapping
a particular task into the hardware system is to use strict formalization of this task and the precise mathematical tools
to analyze it and the system’s possible states and behaviour. In general, it is possible to connect many CS task with
every existing platform. However, the question remains to what degree this connection will be efficient. To exploit the
system, one needs to achieve the tradeoff between the complicated computation model and the experimental limitations.

1.1 Thesis structure
The thesis consists of an introduction, three main chapters, represented in Fig. 1-1 a conclusion, additional resources
and a bibliography.

Chapter 1 - Introduction. This first chapter is an introduction section, which includes the small context of the per-
sonal research, the thesis organization, a brief description, and the literature review’s references, the background of
the general problem aimed to be solved. The thesis objectives are defined and the consequent research methodology,
ending with the scientific novelty results.

Chapter 2 - Physical preface. This section considers the brief history of the middle of the previous century’s condensed-
matter, emphasizing the superfluidity and BEC theory. The description of the transition to the particular system
is followed, where the BEC realization is possible - mainly the EP quasiparticles. I cover the basic description of
such a system, present its short experimental history and state of the art research with the latest various applica-
tions. This section’s primary focus is devoted to the physical properties of the system and physical models since
the following chapters will primarily operate with the mathematical models. In the end, the alternative platforms
are presented, which compete with the BEC of EPs for the special-purpose hardware systems.

Chapter 3 - System design. This chapter is devoted to the methods of the EP system adjustment for the realization
of different tasks. The basic block describes the mechanism behind XY Hamiltonian’s realization of the system
obeying the Gross-Pitaevskii (GP) description. The next part is the generalization of the previous method, resulting
in the tensor sum’s minimization, achieved within a similar system but with different parameters. In the following
part, I will demonstrate how to perform the transfer of ML tasks into the XY Hamiltonian (or similar system,
where it is possible to reproduce such a model) in an analogue approximation way. The general description of
the computational framework of reservoir computing and the particular systems is followed, where this way of
computation has been realized. The last part of this section is devoted to engineering periodic structure’s applied
task for reproducing different dynamical states and specific velocities parameters.

Chapter 4 - Algorithmic network. This chapter is aiming at utilizing the established connections (encoding-decoding
procedure) between different CS tasks. Using such a graph, one can map the assignment of particular interest
in the presented special purpose-hardware even if it was not designed for that specifically. It is followed by a
discussion of the applicability of such a diagram for different platforms. The next part discusses the fundamental
building block in CS, which is the SAT and its potential, i.e. how one can reduce many practical assignments into
this basic form. The final block is devoted to calculating the general error accumulated in the transferred deep
learning (DL) architecture.

Chapter 5 - Conclusion. The final chapter summarizes the obtained results and consists of discussing the practical
and theoretical significance of the work.

Chapter 6 - Additional resources. This chapter contains the supplementary information for the thesis, including
the description of several hardware platforms suitable for the same computational tasks as EP system and some
perspectives on constructing hard optimization instances.

1.2 Literature review
Since this work is multidisciplinary by definition, it is essential to give the research scope from different perspectives with
the additional literature reviews. This fact results in several parts located across the thesis, each covering its question if
one wants to familiarize oneself with the presented supporting literature. First, the next section will present the general

13



Chapter 1. Introduction 1.3. Background of the problem

background of the problem, which I am trying to solve utilizing the particular physical system, besides other different
approaches. The history of the BEC and its realization in the EP systems is given in the next chapter. The review of the
state of the art experiments is given afterwards. The corresponding experiments on different platforms, utilized in the
same applied manner, is going afterwards. The brief algorithmic perspectives are given in the same background section,
while the general scope and the connections between algorithms are presented in the Section 4.

1.3 Background of the problem
The general definition of a computation can be treated as a purely physical phenomenon, which occurs inside a particular
physical system. Such a system is usually referred to as a calculating machine or currently known as the computer. Some
computation can be performed on different physical systems that include digital computers, mechanical computers, and
even exotic ones like quantum computers, molecular computers, microfluidics-based computers. The dominant paradigm
for the computational system is modern stored-program computers. They are instances of a specific form of an abstract
machine, a random-access stored-program machine model. This abstract machine is close to the Turing machine’s formal
concept, giving birth to the computational complexity theory and the famous P vs NP problem.

The intrinsic complexity of many objects and processes around us, which can be hardly grasped with a single
analytical formula, makes the computation a routine and necessary procedure in describing the external world. Thus,
computational tools are in great demand in scientific research, like chemistry and other domains, like modern industrial
design. However, all of the corresponding problems are suffering from the scalability of the modern algorithms, which
increase the power and time consumption per sequence of computing operations. All of these challenges must best be
solved, which resulted in the emergence of multiple approaches and research directions.

This thesis aims to utilize a specific condensed-matter system to solve several generic algorithmic problems and
try to do it most efficiently. However, if one needs to solve computational problems efficiently, it is possible to use
alternative approaches to exploit the physical hardware. Thus, I distinguish three main perspectives that deal with the
modern challenges of computation. In general, I greatly rely only on the last one (based on the physical hardware itself).
However, others give general perspectives on the research background, which greatly affected this work and interests.

The first way to deal with complex problems (particularly NP-hard problems) is to use so-called approximation
algorithms. They are efficient algorithms that find approximate solutions to problems (often of optimization type) with
additional provable guarantees on a specific solution’s particular metric to be the optimal one. The origins of this
approach can be traced with the use of [5, 6, 7, 8]. Approximation algorithms are usually studied in theoretical computer
science due to the famous P vs NP conjecture, which states that a broad class of optimization problems is impossible
to solve exactly in polynomial time. Besides, approximation algorithms try to understand to which extinct it is possible
to approximate optimal solutions. The old works about the approximate algorithms on the particular famous tasks, like
travelling salesperson problem, bin packing and MAX CUT [9, 10, 11] are still relevant up to date.

The approximation techniques take advantage of the mathematical structure of the considered object. It is of
particular use when the problem can be represented in a simple, clear, mathematical object. Many problems pose
such a structure which sometimes is not seen at first sight. Thus the approximation play increasingly important roles
in computational mathematics and numerical analysis [12, 13, 14]. One of the common mathematical objects in such
tasks is matrices and their multidimensional generalizations - tensors, which appear across different domains. Several
methods allow one to effectively represent a tensor using fewer parameters because problems of large sizes cannot be
handled by direct numerical methods due to the so-called curse of dimensionality. Among them are Tucker decomposition
[15], singular value decomposition (SVD) generalization [16], which is a subtype of the previous method, Tensor-Train
decomposition [17], Tensor-Ring decomposition [18], for a review see [19, 20, 21].

The general approach appeared to be very fruitful. For example, the implementation of Tensor-Train decomposi-
tion has many successful cases [22, 23]. For example, Tensor-train’s application to compress NN architecture leads to
the dramatic reduction of its parameters [24]. It is essential to emphasize the chosen difference between the presented
approximation methods and the next part, which exploits the statistical physics for investigating the algorithmic prop-
erties. These two approaches can be considered very similar since both of them are getting rid of small parameters in
a particular problem but differently. However, each case’s approximation comes from a different source since the first
approach is essentially mathematical, while the second relies on physical insights.

One way to deal with complex algorithms is to use methods from statistical physics. In general, the statistical
approach was long ago used in the CS domain. However, statistical physics has its unique tools that are different from
standard statistics yet valuable for algorithmic analysis. The significant interest in adapting techniques from statistical
physics, particularly mean-field theory, can be traced until the late 1990s. The initial idea was to create deterministic
heuristic algorithms to approximately solve several optimization problems [25, 26, 27, 28, 29]. This set of algorithms
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are usually referred to as deterministic annealing and has intrinsic connections with the simulated annealing [30, 31].
The general approach matches the particular optimization problem with the cost function and defines the corresponding
Gibbs distribution.

Simulated annealing samples, the Gibbs probability distribution with the corresponding temperature-analogue pa-
rameter is reduced to zero. In contrast, the deterministic annealing attempts follow the approximate value of the mean
of the distribution. The additional usefulness lies in the simplicity of translating them into the special-purpose hardware
like very large-scale integration (VLSI) chips [32] or field-programmable gate array (FPGA). At the beginning stage, the
mean-field approach’s effectiveness was shown heuristically, while the theoretical analysis came later.

The paper [33] gives the historical remarks on the earliest period of such connections between mean-field theory
methods and algorithmic applications. Additionally, it considers explicitly several particular algorithms [34, 35, 36, 37,
38, 39, 40] with the particular emphasis on the mathematical aspects, like convergence and bounds on the convergence
times and relations to other optimization algorithms.

The ideas behind this interesting connection between the algorithms and physics did not vanish and reappeared with
the problems coming with the enormous amounts of data in the modern setting. One of the main algorithmic types is
inference, aiming to extract as much information as possible from the noisy data. It possesses a lot of challenges, resulting
in the birth of the state of the art algorithms [41]. The inference theory’s central questions are at what conditions do the
measurements provide enough quality information, sufficient for a fair inference, and the most efficient algorithms for
this task? The community’s accumulated physical insight allows one to understand and locate these challenges by using
analogies with the phase transitions in the same sense used in statistical physics. This relation is discussed in various
sources [42, 43, 44, 45] and source with an emphasis on spin glass theory [46].

Understanding such problems came from the merging of two large domains that appeared to be very fruitful. Among
the major works and significant results, one can stress the study of the stochastic block model and the problem of
inferring functional groups or communities from the topology of the network with the emphasis on the properties of the
detectability/undetectability phase transition or the easy/hard phase transition [47]. The study of the two prototypical
random k-SAT and q-coloring of random regular graphs problems (random constraint satisfaction problems) resulted
in the formal definition of each phase transition in terms of different notions of correlation between distinct variables
[48] and highlighting domain of the effective parameters and the study of the cavity method, which resulted in the final
formula for the mutual information in statistical inference problems, coming from the graphs and the corresponding
phase transitions in random graph models [49].

The current interdisciplinary field of study is gaining momentum after these successful results. The latest ML results
across different domains [50, 51, 52, 53] can be related to the same field and possess even more challenging and exciting
questions, where the known methods and tools can be used with the same efficiency. For example, the idea of the general
landscape (or multidimensional surface of the particular problem) of the cost function is still alive and shows itself in
the ML problems [54]. There are many more questions within the domain of DL [55, 56], and some problems are hard
to formalize, giving the space for new future directions.

The central part of the thesis will be devoted to the last approach, i.e. exploiting the particular physical system with
its advantages. Various technological platforms act as quantum or classical analogue simulators to solve certain classes
of hard classical optimization problems [57, 58, 59, 60, 61, 62, 63].

It is expected that these kinds of platforms would help to efficiently solve many tasks of significant computational
complexity, ranging from modeling microscopic effects and processes like the behavior of electrons in complex materials
[64, 65] and finding the ground state of spin glasses [66], to the applied combinatorial optimization problems such as the
travelling salesman problem (TSP) [67].

In some cases, it is useful to take advantage of the characteristic speed of a platform [68, 69] or use the benefits
of essentially different type of computation, like the intrinsic parallelism coming with the qubits [70, 71], for which the
so-called "quantum supremacy" on a particular task was claimed to be achieved [72]. Even after the field of quantum
computing is slowly coming to saturation, there are even more bizarre ideas, like topological quantum computing [73].

There are particular kinds of systems, which dynamic behaviour can be exploited. The idea is to use the system as
a type of recurrent NN called the reservoir computing [74, 75, 76, 77, 78]. Together with the broader scope of platforms,
see further in Section 5.

Several methods to deal with the high complexity algorithmic problems and their demanding nature in terms of
power and speed were presented to summarise this section. Each of the approaches possesses good advantages, based
either on the intrinsic mathematical properties of the problem or the characteristic values of the considered physical
platforms exploited in the computational domains. In that sense, high-performance computing is developing from both
theoretical and practical sides, satisfying rapidly growing demands. However, to reach maximal efficiency, one needs to
utilize the effectiveness from all perspectives. That means that the best way is to create a hierarchical approach to the

15



Chapter 1. Introduction 1.4. Thesis objectives

problem - use all three methods in a combination. For example, the first stage is to use the statistical results and analyze
the task with the given data approach; the second is to use the approximation techniques after the task is analyzed and
then try to map the resulting problem into a particular hardware system. The general perspective is that one needs to
utilize all the available tools in the most efficient manner.

1.4 Thesis objectives
The goals/questions of the PhD thesis are the following:

• Investigate the influence of the various EP system manipulation techniques (using numerical/analytical methods)
on the realization of a particular kind of computation and to what degree it affects the final computational task;

• How can one design the physical system to solve more tasks of different nature and complexity? To what extent
can we exploit the given system and the most complex task we can solve?

• What kind of applications besides the existing ones we can engineer?
• What kind of periodic structures can it be realized in the EP settings, and how to manipulate their parameters?

What kind of behaviour can we expect?
• Explore in the general sense the existing connections/correspondence between different computational tasks and

give a brief picture for practical tasks with the available knowledge about the current EP setting.
• Present the methodology of encoding/decoding an arbitrary computational task on the EP system and give several

methodological examples.

1.5 Research methodology
This section covers the main methodological tools used in the current research throughout this thesis.

The standard methods of applied mathematics were extensively used to derive analytical equations, see for example,
the rate equations in Section 3 for tensor sum minimization tasks. Approximation techniques for solving differential
equations or finding approximate solutions were used. For the particular one-dimensional nonlinear Schrodinger equation,
the property of the nonlinear basis of Jacobi elliptic functions was exploited.

The majority of the code for modelling purposes was written in the C++/Python programming languages. Several
cases involved the nonlinear system of differential equations numerical integrations. In contrast, the modelling of the
GP equations involved the finite difference schemes approximation techniques, using either Euler numerical procedure
of first order for time and the second order for the spatial Runge-Kutta with the fourth-order for time and second order
for the coordinate derivative.

In many parts, the differential equations similar to the gradient descent or annealing techniques were used for testing
them on the particular set of generated instances. gradient descent (GD), Hopfield neural network (NN) [25], Gain-
Dissipative algorithm [79] and complex-coupling (CC) post-processing [2] methods were used.

The Pytorch library [80] was extensively used in working with simple NN architectures. Moreover, the analogue set of
computational blocks was written to transfer the given NN architecture into the XY model and outputs the corresponding
parameters.

The computational assignments analysis was performed using the encoding/decoding techniques, with the particular
emphasis on the Ising/quadratic unconstrained binary optimization (QUBO) formulations.

1.6 Scientific novelty
All results obtained in this thesis are new. The following main results were obtained:

1. A new way to adjust and hence to complicate the system of EP condensates was shown, which results in the
increasing complexity of the computational task. The connection between the physical parameters and the complexity
of the assignment was explicitly demonstrated.

2. A new algorithmic heuristics, which we refer to as complex-coupling (CC) switching was obtained. The initial
idea of the procedure is to be applied to the experimental setup to enhance its performance. The heuristic itself was
shown to outperform the conventional Hopfiled NNS on instances of the random tensor sum minimization.

3. Using the approximation techniques, the connection between the mathematical operation and the solution to
the XY Hamiltonians equilibration cluster was established. It allows one to transfer any arbitrary ML architecture to
any condensed matter system to realize XY Hamiltonian and potentially serve as the pre-trained ML hardware. A new
methodology for such transfer was reported.
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Figure 1-1: The scheme represents the general structure of this thesis. Chapter 2 discusses the physical properties
of the EP system. Chapter 3 investigates the possible operational way of manipulating the considered system.
Finally, Chapter 4 is focused on several suitable operational schemes and their connections with the applied
assignments coming from the CS domain.
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4. The analytical description of periodic structures in the EP settings was obtained. A new phase diagram for the
condensate behaviour was built, and the range of possible parameters, including the velocity profile, was derived.

5. A network of the variety of computational tasks was summarized. Using this correspondence, one can encode/de-
code the assignment of particular interest in the task for which the particular hardware was designed.

This thesis’s results are primarily theoretical but of great importance for practical applications, with the significant
connections being explicitly demonstrated and discussed. They may be helpful to specialists working in condensed matter
theory and experiments, emphasizing the EP system or other photonic hardware. The ML section is quite generic and
appears useful for a wide range of systems, not to mention the established approximation itself. Many mathematical
details and a specific derived heuristic algorithm will help computer scientists or researchers work in unconventional
computing or alternative technologies for computing purposes.
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Chapter 2

Physical preface

This section of the thesis is called the physical preface, introducing the reader into the history of the physical ideas of
the 20th century developed mainly in the condensed matter domain with the emphasis on superfluidity and BEC state
of matter. Simultaneously, it appears to be the sole chapter where the connection between the manifestation of physical
phenomena and models can be easily traced and remains obvious through text. After the historical remarks, the chapter
focuses on the BEC systems’ physical properties and its Gross-Pitaevskii (GP) description. Finally, the chapter’s ending
presents the state-of-the-art experiments on the BEC of EPs and a short review of the existing platforms competing in
unconventional applications.

The presented history and the beginning of this chapter are built around physical models, which came through
developing the condensed matter field and attempts to understand the related concepts of nature. The official definition
of a model is a simplified object that preserves only the essential properties of a real existing object or system and is
intended for their study. We emphasise the importance of models in the research settings since the following chapters
will be mainly devoted to studying them. The main scientific activity by itself is the understanding of the world through
models. Besides, it aims to make a particular part or feature of the world more accessible to understand, define, quantify,
visualise or simulate by referencing the existing and usually commonly accepted knowledge.

The engineering and design tasks appear when we want to take advantage of the particular systems using the obtained
knowledge about them, given many options for combining known elements into something useful. Since the CS field is
dealing with computational systems, it has close interconnections with the engineering devices based on tiny electron-
based transistors. Moreover, a lot of theoretical concepts that represent the capabilities of these devices or are closely
connected with them, such as Turing machine or complexity classification, are currently undergoing lots of extensions
due to attempts to incorporate many bizarre aspects of nature into the computational systems (for example the simple
quantum computing elements - qubits).

The thesis is called «Modelling of exciton-polariton condensates for unconventional computing», because its primary
goal is to exploit BEC’s model in the GP framework concerning various computing purposes. Although the topic’s
connection with CS is very unusual and can be seen through the lens of physical science, the central part of this work is
thus can be treated as applied science.

The general idea of unconventional computing is to use physical systems to simulate the process, which resembles
algorithmic problem solving, finally giving the solution to the practical tasks. To investigate this correspondence between
the problem of interest and the physical system, we do not usually need the experimental setup (which will be helpful for
validation purposes). That is why it is enough to work with the theoretical models, but the connection with the physical
world become very elusive. That is another reason to call the chapter a physical introduction, stressing this connection
with the physical experimental setup.

For those who want to skip the historical details, I briefly describe BEC’s essential properties. Initially, a Bose–Einstein
condensate (BEC) is a group of atoms cooled close to absolute zero. While losing the portions of energy, they begin
to clump together and enter the same energy states. Since the corresponding statistics, they become identical, and the
whole group starts behaving as a single entity in the same quantum state. This behaviour is observed when the thermal
de Broglie wavelength becomes comparable or more significant than the average inter-particle spacing.

This final condensed perspective was formed during the long historical process that is rich for other brilliant ideas.
It started with the London ideas in 1938 about the macroscopic wavefunction, which is the Bose and Einstein works’
development. Then, understanding a more detailed picture of superfluid 4He got another perspective with minor overlaps,
like the Feynman idea of the many-body wavefunction and phenomenological two-fluid description by Landau. Moreover,
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many of the critical concepts of modern physics like elementary excitations, collective modes, broken symmetry, order
parameter were first introduced in dealing with superfluid 4He. I give little emphasis on the supporting formulas, using
them mainly in the EP description or stressing the core concepts since representing all of the critical developments in
condensed matter physics with the proper rigour is an impossible task.

2.1 History of BEC
To give a brief history of the scientific development concerned the ideas about macroscopic wave function, BEC, and
superfluidity as the preparatory material for description of BEC in the EP system, the help of «truncated version» from
the source [81] was used. To get the additional perspectives on the historical aspects from other sources one can use
the scientific biography of Fritz London by Gavroglu [82]; the autobiography of Andronikashvilii [83] with an insider’s
perspectives on the low-temperature group under Landau and Kapitza in Moscow; the Ph.D. thesis of Jurkowitz [84],
which examines the development of modern theories of superfluidity and superconductivity developed in the 1930s; the
collection of papers by P.W. Anderson [85]. As we can see, much of the profound physicists were involved in the condensed
matter theory to answer the most intriguing questions of the 20th century.

2.1.1 BEC prediction and the study of superfluidity

Satyendra Nath Bose, an Indian physicist and mathematician, first sent Einstein a paper, where he investigated the
properties of quantum statistics of photons, where he derived Planck’s quantum radiation law without any reference to
classical physics. Einstein greatly admired this work and helped Bose translate the document into German to submit
it to the publication in Zeitschrift für Physik. The «Planck’s Law and Hypothesis of Light Quanta» was published in
German in 1924 under Bose’s name.

Einstein then developed Bose’s ideas. Final efforts resulted in the concept of a Bose gas, which is governed by Bose-
Einstein statistics. In general, it describes the statistical distribution of indistinguishable particles with integer spin, or
in modern terms the bosons. Both photons and Helium-4 atoms appear to be bosons and can occupy the same quantum
state. Einstein proposed that cooling bosonic atoms to very low temperatures would result in their condensation to the
available lowest state, leading to the completely new state of matter.

The first bricks in the development of foundations of quantum mechanics were laid after this noticeable Einstein’s
paper’s appearance. Additionally, this paper referenced "invisible" for that time works of Louis de Broglie [86, 87], using
to some extent the ideas of matter waves. Einstein used the same idea as a justification for calculating the photons
statistics, which have the properties of the bosons. There is an opinion that the origin of Schrodinger’s wave equation
appeared out of Einstein’s BEC paper and not reverse [81].

London brothers Fritz and Heinz introduced a novel concept of superconductivity based on the already mentioned
core idea of a macroscopic wave-function in 1935-1937 years. The illustration of this idea together with the criterion
for Bose-Einstein condensation are presented in Fig. 2-1. The same ideas strongly influenced the development of the
modern microscopic BCS theory [82]. At the same time, the experimental work on the superfluidity in liquid Helium was
in progress. The main experimental effect was discovered by Pyotr Kapitsa [90], and John F. Allen and Don Misener
[91] in 1937 independently and later published in January 1938 in Nature. London heard about it as well as about the
most significant and important physical results, such as the phase transition at 𝑇𝑐 = 2.17𝐾, a peak in the specific heat
and other aspects of strange behavior (like the sudden absence of boiling below the critical temperature 𝑇𝑐 [92], zero
viscosity appearing in the microchannels, approaching the infinity thermal conductivity, etc). London immediately tried
to put the ideas about the bosons and the macroscopic wave-function together, which resulted in the proposal of the
BEC pattern involved in this strange Helium phase transition in late January. Moreover, the basic Einstein’s ideas with
the corresponding formulas for the critical temperature and the specific heat agreed with these experiments. The final
idea was submitted as a one-page work in March and later published in Nature in April [93] by London.

Another noticeable Hungarian-born American physicist, Lazlo Tisza, initiated the two-fluid theory after London
shared his ideas about BEC’s involvement into the Helium phase transition (with the later consequent help of Edward
Teller and Lev Landau, with whom he worked in Kharkov during 1935-1937). The concept of the collective degree of
freedom, which forces the matter to move coherently with the consequent loss of a friction mechanism, appeared. In
general, this mechanism should give rise to superfluid behaviour. In such a way, the general phenomenological theory
began to develop with later improvements. Tisza submitted a brief note after London in May 1938 [94].

To demonstrate the idea of the two-fluid model it is useful to make a few steps further and show the factorization of
the GP equation, which will be described further with all possible modifications and similar mathematical tricks. The
common field-theoretic description of Bose condensation is to separate the classical field of Bose condensate degree of
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Figure 2-1: The picture representing the criterion
for Bose-Einstein condensation [88]. At high tem-
peratures, a weakly interacting gas can be treated
as a system of mechanical particles. In a simplified
quantum description, the wave effects come into
play, atoms can be regarded as wavepackets with
an extension 𝛿𝑥, approximately given by Heisen-
berg’s uncertainty relation 𝛿𝑥 = ℏ/𝛿𝑝, where 𝛿𝑝
denotes the width of the thermal momentum dis-
tribution. 𝛿𝑥 is approximately equal to the ther-
mal de Broglie wavelength 𝜆𝑑𝐵 . Cooling down the
gas is increasing the de Broglie wavelength. At the
BEC transition temperature, 𝜆𝑑𝐵 is comparable to
interatomic distance, and the Bose condensates are
characterized by a macroscopic population of the
ground state of the system. Finally, the tempera-
ture approaches absolute zero, the thermal cloud
disappears, leaving a pure Bose condensate. The
figure is taken from [88].

Figure 2-2: The figure shows the result of the mo-
mentum distribution measurement for the Rubid-
ium atoms. In the left plot, no Bose-Einstein Con-
densation took place. The Bose-Einstein statis-
tics gives the energy distribution of the atoms.
In the middle plot, the conditions for condensa-
tion were hardly achieved. There are statistically
distributed atoms with the ground state’s addi-
tional overpopulation, expressed by the sharp blue
peak. In the picture to the right, condensation
conditions were fulfilled so that hardly any statis-
tically distributed atoms can be seen. One can ob-
serve a high concentration of atoms in the ground
state. This image is specifically credited to Mike
Matthews of the JILA research team, University
of Colorado, Boulder. The picture is taken from
[89].
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freedom from the non-condensate component of the quantum field, which satisfies Bose commutation relations. At zero
temperature we have a dilute Bose gas with all the atoms described by the complex common condensate wavefunction
Φ(r, 𝑡) =

√︀
𝑛𝑐(r, 𝑡)𝑒

𝑖𝜃(r,𝑡), with the superfluid velocity 𝑚v𝑠(r) = ℏ∇𝜃(r, 𝑡). The wavefunction satisfies the GP equation
of motion:

𝑖ℏ𝜕Φ(r, 𝑡)
𝜕𝑡

=

[︂
−ℏ2∇2

2𝑚
+ 𝑉𝑒𝑥(r) + 𝑔𝑛𝑐(r, 𝑡)

]︂
Φ(r, 𝑡), (2.1)

with 𝑉𝑒𝑥(r) is the trap potential and 𝑔𝑛𝑐(r, 𝑡) is the Hartree field term produced by the condensate atoms. It is possible
to rewrite the GP equation in terms of the density 𝑛𝑐(r, 𝑡) and velocity v𝑠(r, 𝑡) of the condensate (this separation as well
as the Madelung transformation will be extensively used further):

𝜕𝑛𝑐(r, 𝑡)

𝜕𝑡
= −∇ · 𝑛𝑐(r, 𝑡)v𝑠(r, 𝑡)

𝑚

(︂
𝜕v𝑠

𝜕𝑡
+

1

2
∇v2

𝑠

)︂
= −∇𝜇𝑐(r, 𝑡),

(2.2)

where the condensate chemical potential is 𝜇𝑐(r, 𝑡) ≡ − ℏ2∇2√𝑛𝑐

2𝑚
√
𝑛𝑐

+ 𝑉𝑒𝑥(r) + 𝑔𝑛𝑐(r, 𝑡). This separation into the two
“hydrodynamic” looking equations is possible due to the complex form of the wavefunction parameter, describing a large
number of atoms in the same single-particle quantum state. For the additional discussion see [95].

The first papers of London and Tisza created much interest in ideas about BEC’s relevance to liquid Helium. Both
scientists developed these concepts in more detail further in [96] and in [97]. However, London works lacked quantitative
description. The necessary theoretical tools required for filling these gaps in the mathematical construction of the theory
describing the liquid Helium appeared only in the late 1950’s [81] when the many-body theory started to develop. Still,
the basic London ideas and concepts can be found in modern microscopic theories of superfluidity and superconductivity
[98].

The original idea of a “two-fluid hydrodynamics” based on the notion of a superfluid and normal fluid was the
consequence of merging the giant matter-wave concepts with the classical hydrodynamics. Tisza managed to explain all
the experiments exhibiting superfluidity, using the two-fluid model moving in opposite directions. It is worth noting that
the Hungarian-American physicist predicted the particular kind of hydrodynamic oscillation, which is famously known
as a second sound.

Unfortunately, London and Tisza’s ideas were overshadowed by the emphasis on operator formalism in quantum
mechanics and its place in the general picture of science with the appearing questions of interpretation of quantum
mechanics. Nevertheless, these concepts have received renewed interest close to the 1950’s with the consequent work of
Bogoliubov in 1947 [99] and Oliver Penrose in 1951 [100].

The significant role in the history of the superfluidity development theory was played by Lev Landau, the Soviet
physicist who made many other fundamental contributions to the different branches of theoretical physics, such as
density matrix method [101] in quantum mechanics, the quantum mechanical theory of diamagnetism, the theory of
second-order phase transitions, the Ginzburg–Landau theory of superconductivity, the theory of Fermi liquid along with
many others. Still, the 1962 Nobel Prize in Physics was awarded to him for the mathematical theory of superfluidity. The
phenomenological paper [102] by Landau on superfluid 4He is considered to be view-changing on perspectives concerning
the condensed matter systems, despite a lot of original ideas of "new hydrodynamics" of two fluids with normal and
superfluid components from the work of Tisza [97].

Moreover, Landau came up with many other brilliant ideas. He introduced the novel but powerful idea that the
liquid (or another many-body system) could be described in terms of a “gas of weakly interacting quasiparticles” (or
excitations), which by themselves have a relatively simple energy spectrum for two kinds of quasiparticles: phonons and
rotons. The quasiparticles concept describes the emergent phenomena for the complicated system, usually very useful
in the microscopic condensed matter settings, where such collective effects essentially behave like weakly interacting
particles in the free space. Modern physics deals with the wide variety of such quasiparticles [103]. Currently, the
modern condensed matter theoreticians are trying to overcome the limitation of the proposed description, which does
not diminish the usefulness of the quasiparticle approach. Despite the historical remarks, the concept is twice helpful in
the description of EP systems, for which there will be devoted quite a lot of attention within the scope of this thesis.

Among other ideas of Landau was the introduction of collective modes, distinctively from the above-mentioned
quasiparticles. By the 1950’s the London-Tisza model was not so popular because of the competing Landau-Khalatnikov
theory. Its close connection with the experiment (direct measurement of the phonon-roton spectrum using inelastic
neutron scattering [104, 105]) confirmed the correctness of the Landau scenario. Nowadays, the Landau-Khalatnikov
theory of superfluid 4He is considered the standard theory, primarily used to describe the superfluid 4He properties.
However, the idea of the bosonic nature of 4He atoms was not mentioned in Landau’s landmark paper, overlooking not
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only the BEC origins but, more importantly, the ideas of the matter-wave system.
The Bose condensate ideas’ Landau resistance can be explained from his personal perspectives on the quantum

mechanics [81]. He sincerely believed in the Copenhagen view of quantum mechanics, as can be concluded from the
beginning of [106]. In his opinion, to obtain an accurate description, one needs to take a classical description and
then quantize it by initializing the operators corresponding to the physical observables. Similarly, the correct way of
understanding a "quantum" liquid was to quantize the standard hydrodynamical theory of a "classical" liquid. However,
this approach never succeeded. This point of view changed after the two excellent papers by Beliaev in 1957 [107]. The
final statement of Beliaev is that «the difference between liquid He and a non-ideal Bose gas is only a quantitative one,
and that no qualitatively new phenomena arise in the transition from gas to liquid". Despite the Landau initial resistance
of a Bose condensate being relevant to superfluid 4He, he quite frequently formulated and used the concept of an order
parameter, which can be thought of as a very much similar idea with a matter-wave.

The big breakthrough came with the paper of Bogolyubov in 1947 [99], which took a lot of time time to be generally
understood and accepted by the whole community of condensed matter physicists. One key point of this work was
the demonstration that "BEC was not much altered by interactions in a weakly interacting dilute Bose gas, something
which was not obvious at the time" [81]. The interactions were shown to change the long wave-length behaviour of
Bose-condensed gas completely. Consequently, Bogolyubov filled the gaps in Landau’s phenomenological theory with his
rigorous mathematical tools, which also resulted in the predicted phonon spectrum at low momentum.

The connection between London and Tisza’s original works and Bogolyubov’s paper can be traced through his work.
Merging the ideas soon resulted in developing a "complete" theory by the early 1960s, based on Bose’s critical role in
broken symmetry. However, these critical results did not attract significant attention until 1957. This happened due to
the quite impressive use of mathematical tools, such as the second quantization technique (unfamiliar at that time) and
several non-conserving approximation.

Landau recognized the correctness of Bogolyubov’s results and acknowledged them [108]. Soon the BCS theory of
superconductivity appeared in 1957 [109], which quickly triggered the attention to the previous works of Bogolyubov
and his treatment of a dilute Bose gas since both theories involve similar ideas.

The ideas about the giant matter-wave and corresponding experimental BEC realization were hidden behind the
mainstream works on superfluidity. The initial perception of the liquid 4He was heavily influenced by the hydrodynamic
description, taking into account the simplicity of the two-fluid model. The corresponding focus was on the collision-
dominated hydrodynamics domain, while the majority of the original experiments in the 1930s were on low frequency,
hydrodynamic phenomena.

In 1946 Peshkov succeeded in observing the second sound as a temperature oscillation and showed that the temper-
ature dependence of the second sound velocity agreed with the prediction of two-fluid hydrodynamics [110]. In contrast
to the superfluidity, to get the direct experimental evidence of BEC was very hard in 4He. However, the BEC state was
immediately observed much later in atomic gases in the first successful experiment [89], while the two-fluid hydrodynamic
region was difficult to access because of the low density.

The Bose complex order parameter in modern theory is defined as Φ(r, 𝑡) =
√︀
𝑛𝑐(r, 𝑡)𝑒

𝑖𝜃(r,𝑡). The superfluid velocity
which is given by the expression 𝑚vs(r, 𝑡) = ℏ∇𝜃(r, 𝑡) can be easily measured by a variety of experiments. Comparing
it with the 𝑛𝑐, which is "hard to catch" in the experiments with superfluid 4He. Additionally, the superfluid density
𝜌𝑠 is easier to measure, which depends on 𝑛𝑐 but in a complicated manner. These facts were additional reasons for the
BEC’s delayed realisation and the shifted attention of the community. The Bose complex parameter is very similar to the
Madelung ansatz, used in quantum hydrodynamics, allowing one to equivalently reformulate the Schrödinger equation in
terms of hydrodynamical variables, similar to the Navier–Stokes equations of fluid dynamics and will be used extensively
in the derivations included in this thesis.

Penrose and Onsager [111] extended the concept of Φ(r, 𝑡) to a uniform Bose liquid and discussed the corresponding
long-range correlations in 1956. They estimated the 𝑛𝑐 density at 𝑇 = 0 using Feynman approach which will be mentioned
below and found 𝑛𝑐 = 0.08𝑛 in liquid 4He. Further experiments in 1980s gave more convincing values. Additionally,
after a good analysis the estimates on 𝑛𝑐 = 0.1𝑛 at 𝑇 = 0 can be made with the important limit of 𝑛𝑐 → 0 as 𝑇 → 𝑇𝑐.

Another prominent American theoretical physicist Richard Feynman made his contributions to superfluidity and
BEC quantum mechanics. Starting with the various papers, he succeeded to obtain the “microscopic” picture of the
roton part of the quasiparticle spectrum. The initial scope of his works aimed to answer the critical question on the
connection between many-body wavefunctions Ψ𝑁 (𝑟1, 𝑟2, ...𝑟𝑁 ) for the ground state the lowest excited states of liquid
4He and Bose statistics [112, 113]. These works were the beginning of a direction to create various approximations for
the many-particle quantum states wavefunctions. The approach was successful in calculating ground-state properties.
Besides, part of Feynman’s works was devoted to vortices and their role in superfluid 4He. He stressed the idea that
so-called “rotons” were intrinsically connected to the phenomena of superfluidity - and these were related to vortices.
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A significant number of insights on the BEC behaviour was obtained during the 1957 - 1965 period. In these years,
the interacting Bose-condensed gas problem was a hot topic and attacked by many theorists. The main key aspects can
be found in [98, 107, 114, 115, 116, 99].

Another critical development, which can not be separated from these contributions is the famous GP equation for
Φ(r, 𝑡) [117] which describes the ground state of a quantum system of identical bosons and is relevant for the description
of the trapped gases. It was obtained using the Hartree–Fock approximation and the pseudopotential interaction model
from 1959 to 1961. Nevertheless, Pitaevskii’s real contribution lies in introducing the whole idea of a macroscopic wave-
function that could depend on both position and time. In some sense, it serves as a development of the giant matter wave
idea. Pitaevskii’s work was also inspired by the use of a similar “wave-function” approach from Ginzburg and Landau
pioneering work on spatially inhomogeneous superconductors [118].

The Bose statistics and corresponding effects played a crucial role in physics during the 20th century with the
essential manifestation in the phenomenon of superfluidity of liquid 4He. It also inspired alternative activities, like the
first experiments on liquid 3He (a Fermi liquid) in 1949, which were not so fruitful since it showed no evidence for
superfluidity down to 1K.

The modern understanding of superfluidity in Bose fluids is intrinsically connected with the understanding of super-
conductivity [85], where the general macroscopic wavefunction is the Bose order parameter in superfluids [107], while is
almost equivalent to the Cooper pair amplitude in superconductors [119]. Developing these ideas lead to the realization
that the Bardeen–Cooper–Schrieffer (BCS) theory [109] can be treated as a “BEC of Cooper pairs” [119]. This similarity
became clear in 1980s when Leggett, Nozieres and others (see the article by Randeria in [120]) stressed out that the
BCS theory in the strong coupling limit intrinsically reduces to a Bogolyubov theory of a dilute Bose gas composed of
non-overlapping Cooper pairs.

Some of the research directions of modern physics are aiming towards studying this BCS phenomenon with the
emphasis on BCS to BEC transition [121]. Before that, there were lots of systems investigated for the BEC properties.
The review [120] lists the major systems that can exhibit the BEC properties. Among them are laser-cooled alkali atoms,
spin-polarized hydrogen atoms and optically-excited excitons in semiconductors which will be in the centre of attention,
devoted in this thesis. The following subsection will give a brief overview of the experimental achievements, which went
hand in hand with the described history of theoretical developments before jumping into the particular EP settings.

2.1.2 Experimental verification of BEC

Repeating the previous experimental key results - 1938 was the year when Pyotr Kapitsa and independently John Allen
and Don Misener discovered superfluidity in liquid Helium at a temperature below the 𝜆-point 𝑇 = 2.17𝐾 [90, 91]. The
obtained substance had many bizarre properties: zero viscosity and the existence of quantised vortices. However, the
idea of experimental realization of BEC, fundamental for the superfluid helium-4, was delayed due to several potential
reasons listed before.

The first form of a "pure" gaseous BEC was produced by Eric Cornell, Carl Wieman, and their team at the University
of Colorado at Boulder NIST–JILA lab (National Institute of Standards and Technology - Joint Institute for Laboratory
Astrophysics US) with a gas of rubidium atoms cooled down to 170 nanokelvins [89] on 5 June 1995. Fig. 2-2 and Fig. 2-
3 shows the momentum distribution measurements and the experimental setup respectively. Shortly after this event,
Wolfgang Ketterle produced the same state of matter at MIT but with a gas of sodium atoms [122]. These achievements
were rewarded with the 2001 Nobel Prize in Physics for Cornell, Wieman, and Ketterle. Another result around the same
time was achieved by a Randall Hulet group at Rice University with lithium atoms with a slight delay of one month
after the JILA work [123].

To obtain the Bose-Einstein condensation, one needs to operate with the techniques to cool gases to sub-microkelvin
temperatures and confine them at high density while keeping them away from the vacuum chamber’s hot walls [120]. The
sequential cooling technique, which first slows the atomic beam, then optically traps them, and laser cools with the final
magnetic trapping and evaporative cooling. The overall cooling process goes from 600 K by nine orders of magnitude to
1mK.

To identify the BEC formation within the experimental setup, one can use four noticeable features, among which
are the sudden density increase, the sudden appearance of a bimodal cloud consisting of a diffuse, normal component
and a dense core, anisotropic velocity distribution of the condensate and agreement between the predicted and measured
transition temperatures. The condensate image is usually recorded by illuminating the cloud with resonant laser light
and imaging the shadow of the cloud onto a charged-coupled device camera [89].

Two critical experimental techniques were practically perfected during these experimental achievements. In the first
work, a dilute vapour of nearly two thousand rubidium-87 atoms was cooled below 170 nK using a combination of laser
cooling and magnetic evaporative cooling. Laser cooling is a technique that uses the photon exerted pressure to slow
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Figure 2-3: The picture representing apparatus for
the first experimental observation of the BEC [89].
Six laser beams intersect in a glass cell, creating
a magneto-optical trap. The cell is 2.5 cm square
by 12 cm long, and the beams are 1.5 cm in di-
ameter. The coils generating the fixed quadrupole
and rotating transverse components of the top trap
magnetic fields are shown in green and blue, re-
spectively. The glass cell hangs down from a steel
chamber (not shown) containing a vacuum pump
and rubidium source.

down an atom moving against a laser beam since it encounters a higher frequency than an atom moving with the beam’s
direction. The inventors of laser cooling, Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips, got the 1997
Nobel Prize in Physics.

Another technique - evaporative cooling occurs in a magnetic trap, where the atoms with the highest energy escape
while the remaining ones collide with each other, apportioning out the remaining energy. During this time, the atoms
slow down and are closely packed at the bottom of the trap so that their quantum nature becomes more pronounced.
The particles’ wave nature starts to manifest itself, and the particle-wave packets become less distinct and start to
overlap. The chain reaction of atoms going down the trap into the lowest energy state results in merging into the single
ground-state wavefunction which is a BEC itself.

After this tremendous success, the foundation for the experimental field of ultracold atoms was layed. Hundreds of
research groups are now producing BECs of dilute atomic vapours in their laboratories routinely, leading to an increase in
experimental and additional theoretical activity. The list of isotopes for which BECs had been obtained is the following:
7Li, 23Na, 39K, 41K, 85Rb, 87Rb, 133Cs, 52Cr, 40Ca, 84Sr, 86Sr, 88Sr, 174Yb, 164Dy, 168Er [124]. They are mostly alkali
metals, alkaline earth metals, and lanthanide atoms since their nuclear properties are a perfect fit for working in traps.
Some alkali gases’ bosonic nature arises from an interplay of electronic and nuclear spins, despite their nuclei having
half-integer total spin. At low temperatures, the half-integer total spin of the electronic structure together with the half-
integer total spin of the nucleus are coupled by the weak interaction. Nevertheless, such systems’ chemical properties at
room temperature are determined mostly by the electronic properties, which is essentially fermionic, because the energy
of typical thermal excitations is much higher than the electronic-nuclear spin coupling values.

After the significant 1995 year, different atomic species have been condensed. BEC state was realized using molecules,
quasiparticles in solids (magnons, excitons, polaritons, since they have integer spin, representing their bosonic nature)
and photons [125, 126]. Additionally, BEC is an excellent platform to study various physical phenomena. Among them
are interference effects, superfluidity, and quantized vortices, bright matter-wave solitons, light pulses slowed with the
electromagnetically induced transparency [127]. Besides, the BEC platform allows one to reproduce exotic phenomena,
like the correspondence between analogue gravity black holes and vortices, realization of "optical lattices", usefull to
explore the transition between a superfluid and a Mott insulator [128], the solids that flow through themselves [129],
magnetic liquid droplets [130], neutral particles that act like charged [131] or explosion analgues in BEC[132].
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2.2 BEC of exciton-polaritons

2.2.1 What is an exciton-polariton?

Microcavity polariton is a quasiparticle resulting from the strong coupling between a Wannier-Mott exciton (a bound
pair of electron and hole) and light components (strongly confined photon field in a semiconductor microcavity). Having
the quasiparticle concept for the model isolated system in mind, the vacuum analogue for a semiconductor is the state
with a filled valence band and an empty conduction band. At the same time, excitons are treated as units of elementary
excitations or quasiparticles. They consist of an excited from the valence band electron with charge −𝑒 and a hole, a
vacancy having the opposite charge +𝑒. The electron-hole system is bound by a Coulomb interaction, which energy
is approximately of 10-100 meV and the Bohr radius is 10-100 Å [133]. Using conventional for the condensed matter
notation, one can write the exciton creation operator in the following way:

𝑒†𝐾,𝑛 =
∑︁
𝑘,𝑘′

𝛿𝐾,𝑘+𝑘′𝜑𝑛

(︂
𝑚ℎ𝑘 −𝑚𝑒𝑘

′

𝑚𝑒 +𝑚ℎ

)︂
�̂�†𝑘�̂�

†
𝑘′ (2.3)

where �̂�†𝑘 and �̂�†𝑘′ are the creation operators of a conduction-band electron with momentum 𝑘 and of the valence-band
hole with 𝑘′ respectively. 𝑚𝑒 and 𝑚ℎ are their corresponding masses, 𝐾 is the center-of-mass momentum of the exciton
and the 𝜑𝑛(𝑘) is the wave-function of the mutual dynamics of an electron and a hole similar to the system of an electron
and a proton in a hydrogen atom with 𝑛 being the quantum number of the relative motion. One can easily derive
commutation relations from the presented form:

[𝑒𝐾′,𝑛′ , 𝑒𝐾,𝑛] = 0[︁
𝑒†𝐾′,𝑛′ , 𝑒

†
𝐾,𝑛

]︁
= 0[︁

𝑒𝐾′,𝑛′ , 𝑒†𝐾,𝑛

]︁
= 𝛿𝐾𝐾′𝛿𝑛𝑛′ −𝑂

(︀
𝑛exc𝑎

3
𝐵

)︀
,

(2.4)

which allows us to treat excitons as bosons with the assumption that exciton interparticle distance is much larger than its
Bohr radius 𝑛exc ≪ 𝑎−3

𝐵 . So far, excitons are electron-hole pairs which are bounded together by the Coulomb interaction.
Their binding energy depends on their mass and the Bohr radius, similar to the hydrogen atom case. Following [134],
the brief introduction to the EP physics is presented.

By introducing the microcavity, one can achieve the photon confinement in the 𝑧 direction. A semiconductor quantum
well (QW) is required to enhance polariton properties and achieve stronger EP coupling. It is a thin layer of semicon-
ductors with a small thickness compared to the exciton Bohr radius. QW is surrounded by barrier layers with a much
larger bandgap. QW excitons behave like two-dimensional quasiparticles in the presented setting if only one quantized
level of their motion is concerned. The quantum confinement modifies the valence band structure and, hence, changes
the optical transition strengths and selection rules. Moreover, the momentum conservation happens only in the QW
plane but not along the confinement axis. Thus, the exciton couple to light with the in-plane wave number 𝑘|| = 𝑘𝑥𝑦 and
any transverse 𝑘⊥ = 𝑘𝑧. The confinement of a QW exciton leads to its smaller Bohr radius and larger binding energy
than its bulk analogue.

A distributed Bragg reflector (DBR) is a building block of a semiconductor microcavity. Its role is to serve as a
high-reflectance mirror when the wavelength of the incident light is in the stopband range, and the destructive interface
effects prevent the transmission of light. The DBR structure consists of layers of different high and low refraction indices
with the optical path equals to a quarter of a target wavelength. It is possible to get high values of reflectivities using
this kind of structure and, consequently, dramatically increasing the photon lifetimes. More important is that one can
form a resonance at 𝜆𝑐 with two such high-reflectance DBRs that surround a layer with an optical thickness proportional
to the half of the 𝜆𝑐 and some integer number. The well-known formula gives the transmission at this wavelength:

𝑇 =
(1−𝑅1) (1−𝑅2)[︀

1−
√
𝑅1𝑅2

]︀2
+ 4

√
𝑅1𝑅2 sin

2(𝜑/2)
, (2.5)

with 𝜑 is the photon phase shift after reflection and 𝑅1, 𝑅2 are the reflectances of the DBRs (depending on the refraction
indices). Another important characteristic of the cavity is the quality factor 𝑄:

𝑄 =
𝜆𝑐

Δ𝜆𝑐
≃ 𝜋 (𝑅1𝑅2)

1/4

1− (𝑅1𝑅2)
1/2

, (2.6)

where Δ𝜆𝑐 is the width of the resonance, which for an ideal case would go to zero. In the special case of cavity equals
half the wave-length, 𝑄 will represent the average number of photon reflections between the cavity borders.
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The behaviour of photon field inside the cavity depends on the considered axis. The confinement takes place only in
the 𝑥𝑦 plane, while the incident light from the angle 𝜃 relative to the 𝑧 axis would have a resonance at 𝜆𝑐/ cos 𝜃. One
can define the energy dispersion for the photon field (also called cavity dispersion):

𝐸𝑝ℎ =
ℏ𝑐
𝑛𝑐

√︁
𝑘2𝑧 + 𝑘2𝑥𝑦, (2.7)

with 𝑘𝑧 = 𝑘⊥ = 𝑛𝑐 (2𝜋/𝜆𝑐), with 𝑛𝑐 being the refraction index of the cavity. Each resonance mode with in-plane wave
number 𝑘𝑥𝑦 has the unique correspondence with the incidence angle 𝜃, so if 𝑘𝑥𝑦 ≪ 𝑘𝑧:

𝑘𝑥𝑦 = 𝑛𝑐
2𝜋

𝜆𝑐
tan

[︂
sin−1

(︂
sin 𝜃

𝑛𝑐

)︂]︂
≈ 2𝜋

𝜆𝑐
𝜃, (2.8)

This allows one to rewrite the dispersion relation in the following form:

𝐸𝑝ℎ ≈ ℏ𝑐
𝑛𝑐
𝑘𝑧

(︂
1 +

𝑘2𝑥𝑦
2𝑘2𝑧

)︂
= 𝐸cav (𝑘𝑥𝑦 = 0) +

ℏ2𝑘2𝑥𝑦
2𝑚cav

, (2.9)

which consequently makes it possible to evaluate the cavity-photon effective mass, which is typically of 10−5𝑚𝑒. It is clear
that the low mass of the particles participating in the condensation transition leads to the higher critical condensation
temperatures, which is close to the room temperature.

The storage of the combined excitations in the system can be achieved when the energy exchange rate between the
cavity field and excitons exceeds the decay and decoherence rates of the photons and the excitons. Then, the creation of
new eigenstates that are coherent superpositions of the two initial states happens. One can make a working assumption
about the fully two-dimensional behaviour of the system (all corresponding wavevectors will be in the 𝑥𝑦 plane so that
𝑘 = 𝑘𝑥𝑦 = 𝑘|| and the same works for the dispersion relations 𝐸(𝑘)). Thus, the linear Hamiltonian of such a system can
be written in the simple form of its constituents and the interaction term:

�̂�𝑝𝑜𝑙 = �̂�𝑝ℎ + �̂�𝑒𝑥𝑐 + �̂�𝑖𝑛𝑡 =
∑︁
𝑘

𝐸𝑝ℎ(𝑘)�̂�
†
𝑘�̂�𝑘 +

∑︁
𝑘

𝐸𝑒𝑥𝑐(𝑘)�̂�
†
𝑘 �̂�𝑘 +

∑︁
𝑘

𝑔0
(︁
�̂�†𝑘 �̂�𝑘 + �̂�𝑘 �̂�

†
𝑘

)︁
, (2.10)

where �̂�𝑘 is the same photon creation operator, �̂�𝑘 is the exciton creation operators, 𝑔0 = ℏΩ is the exciton-photon dipole
interaction strength. The diagonalization of the Hamiltonian (2.10) will give the eigenenergies of the new eigenstates.
To find them, one has to calculate the eigenvalues of the following matrix:

�̃� =

[︃
𝐸𝑝ℎ(𝑘) 𝑔0

𝑔0 𝐸𝑒𝑥𝑐(𝑘)

]︃
(2.11)

This can be achieved by the linear transformations 𝑃 = 𝑋𝑘 �̂�𝑘 + 𝐶𝑘�̂�𝑘 and �̂� = −𝐶𝑘 �̂�𝑘 + 𝑋𝑘�̂�𝑘, which lead to the
simpler form of the Hamiltonian (2.10):

�̂�𝑝𝑜𝑙 =
∑︁
𝑘

𝐸L(𝑘)𝑃
†
𝑘𝑃𝑘 +

∑︁
𝑘

𝐸U (𝑘) �̂�†
𝑘�̂�𝑘, (2.12)

where two branches of lower and higher eigenenergies corresponds to the new quasiparticles of the system, which are
referred as the lower polaritons (L) and upper polaritons (U).

The eigenenergies of the polariton Hamiltonian are derived from the diagonalization procedure of the matrix �̃�:

𝐸L,U(𝑘) =
1

2

[︂
𝐸𝑒𝑥𝑐(𝑘) + 𝐸𝑝ℎ(𝑘)±

√︁
(𝐸𝑒𝑥𝑐(𝑘)− 𝐸𝑝ℎ(𝑘))

2 + 4𝑔20

]︂
(2.13)

The phenomenon of splitting of the eigenvalues of a Hermitian matrix that cannot become equal in value is also known
as avoided crossing, also referred to as the von Neumann-Wigner theorem. The energy separation between the two
new states is connected with the coupling energy between the photons and excitons. Introducing the energy difference
Δ𝐸(𝑘) = 𝐸𝑒𝑥𝑐(𝑘) − 𝐸𝑝ℎ(𝑘), the resonance case Δ𝐸(𝑘) = 0 has the lowest separation value of 2𝑔0 between L and U
energies, which is often called the normal-mode splitting.

Since the polariton is a linear superposition of an exciton and a photon with the same 𝑘 = 𝑘𝑥𝑦, it inherits the bosonic
nature of the excitons and photons. Each fractions in the branches are given by the Hopfield coefficients [135]:

|𝑋𝑘|2 = 1
2

(︂
1 + Δ𝐸(𝑘)√

Δ𝐸(𝑘)2+4𝑔20

)︂
|𝐶𝑘|2 = 1

2

(︂
1− Δ𝐸(𝑘)√

Δ𝐸(𝑘)2+4𝑔20

)︂
,

(2.14)
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which in case of Δ𝐸 = 0, |𝑋|2 = |𝐶|2 = 1
2

one has half photon and half exciton state.

2.2.2 Gross-Pitaevskii description

As previously mentioned, an ideal gas of noninteracting bosonic particles can undergo the BEC transition, which Einstein
predicted in 1925. However, the essential properties of BEC rely on the particle-particle interaction and resulting peculiar
excitation spectra. Bogoliubov was the first to develop a quantum field-theoretical formulation for a weakly interacting
Bose condensed system. It is helpful to show on the simple model how one can obtain the mean-field description from the
Bogoliubov theory with the following quantities, such as interaction effects, the excitation spectra and the consequent
superfluidity.

The Hamiltonian of the EP condensate in terms of the LP complex-field operator 𝜓 reads:

�̂� =

∫︁ (︂
ℏ2

2𝑚
∇𝜓+∇𝜓

)︂
𝑑𝑟 +

1

2

∫︁
𝜓+𝜓′+𝑉

(︀
𝑟′ − 𝑟

)︀
𝜓𝜓′𝑑𝑟′𝑑𝑟, (2.15)

with 𝑉 (𝑟) being the two-body interaction potential. The Heisenberg equation of motion is then defined as:

𝑖ℏ 𝜕
𝜕𝑡
𝜓(𝑟, 𝑡) = [𝜓(𝑟, 𝑡), �̂�] =

[︂
−ℏ2∇2

2𝑚
+

∫︁
𝜓+ (︀𝑟′, 𝑡)︀ ×𝑉

(︀
𝑟′ − 𝑟

)︀
𝜓
(︀
𝑟′, 𝑡
)︀
𝑑𝑟′
]︁
𝜓(𝑟, 𝑡) (2.16)

If one writes the field operator in the momentum basis form 𝜓(𝑟) = 1√
𝑉

∑︀
𝑝 �̂�𝑝𝑒

𝑖𝑝·𝑟/ℏ, where 𝑉 is a quantization
volume, �̂�𝑝 is the annihilation operator for the single-particle state with a momentum 𝑝, the Hamiltonian can be rewritten
as:

�̂� =
∑︁
𝑝

𝑝2

2𝑚
�̂�+𝑝 �̂�𝑝 +

1

2𝑉

∑︁
𝑝1

∑︁
𝑝2

∑︁
𝑞

𝑉𝑞�̂�
+
𝑝1+𝑞�̂�

+
𝑝2−𝑞�̂�𝑝1 �̂�𝑝2 , (2.17)

where 𝑉𝑞 =
∫︀
𝑉 (𝑟) exp[−𝑖𝑞 · 𝑟/ℏ]𝑑𝑟 is the Fourier transform of the interparticle potential.

Initially, we are interested in the macroscopic description of the condensate, we need to take into account the small
momenta and take 𝑞 = 0 value for the Fourier component, thus 𝑉0 = 𝑔 =

∫︀
𝑉 (𝑟)𝑑𝑟 and the interaction term in the

Hamiltonian is written as
𝑔

2𝑉

∑︁
𝑝1

∑︁
𝑝2

∑︁
𝑞

�̂�+𝑝1+𝑞�̂�
+
𝑝2−𝑞�̂�𝑝1 �̂�𝑝2 (2.18)

The corresponding 𝑐-number (𝑐 being the number replacing the operator �̂�0) field amplitude, which appears to be an
order parameter, 𝜓0(𝑟, 𝑡) does change slowly over distances in comparison with the range of the interparticle force, thus
we can change the potential form to the delta function and obtain the GP equation:

𝑖ℏ 𝜕
𝜕𝑡
𝜓0(𝑟, 𝑡) =

(︂
−ℏ2∇2

2𝑚
+ 𝑔 |𝜓0(𝑟, 𝑡)|2

)︂
𝜓0(𝑟, 𝑡) (2.19)

Initially, the GP picture was obtained for bosonic fluid-like 4He and described its ground state using the Hartree–Fock
approximation and the pseudopotential interaction model. The nonlinear term in the equation has its origin in the
interaction between the particles. In the general case, the GP equation does not have an analytic solution. If one wants
to model the behaviour and especially the dynamic properties, it is necessary to use different numerical methods.

The GP model’s weaknesses come from the physical approximation valid for certain classes of BECs, like the contact
two-body type interaction, which does not cover the general case. Moreover, the GP description of the EP system has
more limitations on the GP model’s applicability.

2.2.3 Quantum description and related effects

The key model of this thesis is the rate equations (which will be derived at the beginning of the next chapter), which
represent the reduced description of the separate EP condensates. Such a system consists of the macroscopic wavefunction
description of classical units (or their degrees of freedom), which interacts via harmonic potential. At the same time, the
noise which plays a crucial part in the condensation process is treated as a classical random process.

However, one should understand that to reach the point of rate equations; one needs to perform many simplifications
with the initial physical description. The central derivations of this thesis are based on the GP equation, which is "blind"
to the microscopic quantum effects, essential for EP systems. To ignore these properties, we will give a partial description
of this system from the quantum mechanical perspective, conventional for the quantum optics domain. This subsection
contains standard models for such a system with the corresponding effects omitted in the classical description.

Superradiance is a phenomenon describing a group of several emitters, which interact with a common light field
collectively and coherently due to the small separation of these sources compared to the wavelength of the light. The
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related term superradiance was introduced in 1954 by Robert H. Dicke. This effect was considered in [136] and following
works of Hepp and Lieb in 1973 on the steady-state superradiance [137] with the example of the so-called Dicke model,
which became a fundamental model of quantum optics and the basic model to describe the interaction between light and
matter. The Dicke Hamiltonian reads:

𝐻 = 𝜔𝑐𝑎
†𝑎+ 𝜔𝑧

𝑁∑︁
𝑗=1

𝜎𝑧
𝑗 +

2𝜆√
𝑁

(︁
𝑎+ 𝑎†

)︁∑︁
𝑗

𝜎𝑥
𝑗 , (2.20)

where the light component is described as a single quantum mode with the creation and annihilation operators 𝑎† and
𝑎, while the matter is described as a set of two-level systems with spin operators 𝜎𝛼

𝑖 . The photon frequency is denoted
by the 𝜔𝑐 parameter, 𝜔𝑧 represents the energy gap for the atom system and the photon-atom subsystems coupling is
paramatrized by 𝜆. The coefficient 1√

𝑁
is required for appropriate scaling of the number of photons 𝑛 with the 𝑁

atoms in the superradiant phase. The Hamiltonian (2.20) can be rewritten in more compact form through the total spin
operators 𝑆𝛼 =

∑︀
𝑗 𝜎

𝛼
𝑗 , which greatly simplifies corresponding analysis. This model undergoes transition from normal

to superradiant phase in the thermodynamic limit, which shares the mean-field Ising universality class.
Various physical realizations of the Dicke model have been considered, accounting for different behaviour or setups.

For example, the generalized Dicke Hamiltonian has the form:

𝐻 = 𝜔𝑐𝑎
†𝑎+ 𝜔𝑧

𝑁∑︁
𝑗=1

𝜎𝑧
𝑗 +

𝜆√
𝑁

𝑁∑︁
𝑗=1

(︁
𝑎𝜎+

𝑗 + 𝑎†𝜎−
𝑗

)︁
+

𝜆′
√
𝑁

𝑁∑︁
𝑗=1

(︁
𝑎𝜎−

𝑗 + 𝑎†𝜎+
𝑗

)︁
, (2.21)

where 𝜆 and 𝜆′ determines the weights of interpolation between Dicke and Tavis–Cummings models. Such generalisation
spawns different phase diagram with unequal weights, which makes the coexistence of the normal and superradiant
stable states possible. Other extensions include Raman driving scheme with the additional term 𝑈𝑎†𝑎𝜎𝑧 in the model
Hamiltonian or an additional coherent light source coupled directly to the cavity mode with 𝐻𝐹 = 𝐹

(︀
𝑎+ 𝑎†

)︀
part.

Another variation of the Hamiltonian (2.20) can be extended for the individual subsystems with different characteristic
constants:

𝐻 = 𝜔𝑐𝑎
†𝑎+

𝑁∑︁
𝑗=1

𝜔𝑗
𝑧𝜎

𝑧
𝑗 +

2√
𝑁

(︁
𝑎+ 𝑎†

)︁∑︁
𝑗

𝜆𝑗𝜎𝑥
𝑗 , (2.22)

which is addressing the role of disorder and thus usually called disordered Dicke model, which is relevant to the study of
microcavity polaritons. The discussion of other models and corresponding variations, non-equilibrium aspects of these
models and some analytical and numerical approximations, used to study them can be found in [138].

Polariton condensation can be described by a model of localized excitons coupled to a continuum of radiation modes in
a two-dimensional microcavity in case of neglecting Coulomb interactions between different units, based on the previous
Hamiltonian. The thermodynamic properties of such model were investigated in great detail in [139, 140, 141, 142].

After defining the Hamiltonian, one is usually interested in the dynamics of the corresponding system. In general,
one can not simply treat real physical systems as isolated due to the interaction with the environment, and the EPs are
not an exception. The canonical formulation of quantum mechanics uses unitary dynamics to describe a system’s time
evolution, which entails the absence of decay and phase decoherence processes. Specific mathematical techniques have
been introduced to describe the interaction of a quantum system with its environment. For example, the Caldeira-Leggett
model treats the environment Hamiltonian as an infinite set of free modes with a continuous spectrum [143], which allows
describing dissipative dynamics with the environment memory effects.

However, a typical quantum optics setup do not require to account for such complicated effects, and a reasonable
simplification is usually enough. For this purpose, a Markovian open quantum systems framework has been developed
[144, 145]. Such effective dynamics for the reduced density matrix of the system give rise to the Lindblad-form master
equation, which reads:

�̇� = ℒ𝜌 = −𝑖[𝐻, 𝜌] +𝒟𝜌, (2.23)

where the first term represents the Von Neumann equation, which can be formally solved for the density matrix 𝜌 by
double multiplication of the system’s density matrix by the evolution operators 𝑈 (𝑡, 𝑡′) = 𝑒−𝑖𝐻(𝑡−𝑡′) and 𝑈 (𝑡′, 𝑡). ℒ
is called the Liouvillian super-operator. The second term 𝒟 is referred as Lindblad super-operator and dramatically
changes the dynamics of the isolated system. It is given by the following expression:

𝒟𝜌 =
∑︁
𝑖

𝛾𝑖(2𝐿𝑖𝜌𝐿
†
𝑖 −

{︁
𝐿†

𝑖𝐿𝑖, 𝜌
}︁
), (2.24)

where 𝐿𝑖 are jump operators that are usually determined by describing the coupling between system and bath. Index 𝑖 for
rates 𝛾𝑖 and jump operators correspond to different sources of dissipation. In the case of the initial Dicke model, the main
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sources are collective effects (such as cavity decay and collective atomic decay), and single-atom decay and dephasing
[138]. The Lindblad master equation allows one to trace such effects as equilibration with the pump and decay processes,
thermalization of the system and different aspects of interaction with the environment. Such an approach is closely
related to Keldysh field theory. For a broader description (a non-Markovian case), one usually develops approximated
schemes that account for the omitted effects.

Besides, EP systems have many more exciting effects, which include the charge-imbalanced electron-hole system in
an optical microcavity [146], where the exciton condensation is expected to have unpaired carriers, occupying a crescent-
shaped part of the momentum space due to the strong coupling to photons; polariton condensation and lasing over a
wide range of cavity frequencies with organic molecules, which have multiple vibrational modes and were studied in the
framework of a non-equilibrium Dicke-Holstein model [147], including both strong coupling to vibrational modes and
strong matter-light coupling in the thermodynamic limit; consequent study of the organic polariton lasing using the
microscopic picture beyond-mean-field approach and accounting for all photon modes in a system [148]. Furthermore,
one can consider more complex models with a non-equilibrium scenario for the steady-state properties of the photons,
taking into account the pump and decay processes [149] and consequent work on the thermalization process of photon
gas [150].

In such a way, EPs represent an interesting platform for exploring its computational analogue properties, in addition
to the physical properties. However, due to the enormous complexity of the system, it is either investigated using
reduced macroscopic spatially dependent models (using different assumptions, such as the BEC condensation) similar
to GP description or using localized quantum mechanical models with the particular Hamiltonian (such as presented
above). In the last case, the behaviour of the system is richer, while in the first framework, many effects are ignored.
Among them are quantum fluctuations, complex dynamics of the excitation levels, non-equilibrium processes and many
others. The choice of the model usually depends on the quantities of interest.

One should pay attention to other microscopic processes in the EP system since such consideration gives more degrees
of freedom to inspect compared to the simple mean-field theory [151, 152, 153]. These effects make a rich landscape for
the potential future research directions and should be considered for the proper design of optoelectronic devices. An
additional direction of work is to trace the influence of these effects on the algorithmic side of the operational regime.

2.2.4 Physical realization of exciton-polariton condensate

The early theoretical propositions of polariton BEC are attributed to the Atac Imamoglu and coauthors [154]. In that
work they analyzed elementary properties of exciton and polariton lasers and the process of generating coherent optical
and matter waves. They stressed the significant difference between these types of lasing and tried to realize it in the
subsequent work The authors claimed the observation of the BEC state in [155], however it was soon disproved [156].
Preliminary work was later peformed with the collaboration with the research group of Jacqueline Bloch. In 2002 the
evidence for nonequilibrium condensation was reported [157]. The paper claimed a phase transition from a classical
thermal mixed state to a quantum-mechanical pure state of EPs in GaAs multiple QW microcavity. It was supported by
the decrease of the second-order coherence function, a nonlinear threshold behavior in the pump-intensity dependence
of the emission, a polariton-like dispersion relation above threshold, and a decrease of the relaxation time of the lower
polariton state. However, the widely accepted claim of nonequilibrium Bose–Einstein condensation of polaritons was
achieved by the group of Benoit Deveaud in 2006 [158].

The work presented the compelling evidence for BEC of polaritons, among which are the observation of massive
occupation of the ground state by a polariton gas at thermal equilibrium at 19 K, an increase of temporal coherence,
long-range spatial coherence and linear polarization. Since the BEC of dilute atom gas of rubidium atoms happens at
the temperatures below 200 nanokelvin and the EP quasiparticles are 109 times lighter, the theoretical estimate for the
critical temperature is of order of cryogenic temperatures.

The sample studied in the work consists of a CdTe/CdMgTe microcavity grown by molecular beam epitaxy and
contained 16 quantum wells displaying a vacuum field Rabi splitting of 26 meV. The continuous-wave Ti:Sapphire
laser was used to excite the microcavity with an acousto-optic modulator. Aside from the [158] the set of additional
paramaters, like pulse duration, laser beam shape, excitation energy, DBR parameters can be found in the PhD thesis
of Jacek Kasprzak [159]. Fig. 2-4 and Fig. 2-5 show the schematic QW structure together with the different dispersion
branches with the corresponding technical parameters.

After this significant demonstration, the research on EP BEC did not decline, but began to gain momentum. In 2007,
the group of David Snoke demonstrated nonequilibrium BEC of polaritons in a trap [160]. The group of Jaqueline Bloch
observed polariton condensation in 2009 [161] after which many other experimental groups shifted their attention to
different aspects of EP BEC. Alberto Amo reported the the polariton superfluidity later [162]. Moreover, this effect was
demonstrated more recently at room temperature [163] which is the first manifestation of room temperature superfluidity.
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Figure 2-4: QW picture with the corresponding pumping and field distribution. The lower picture represents
the momentum distribution, similar to one found in BEC, but in the EP system.and the Schematic picture
representing the criterion for Bose-Einstein condensation. Schematic picture is taken from the PhD thesis [159].

2.2.5 Polariton condensate notable properties

This subsection lists several alluring properties, which represent a significant interest from considering both practical
and fundamental perspectives.

The previous subsection gave the theoretical description of the EP system and the corresponding characterization
in dispersion relations. It was shown that one of the distinctive features of EPs is their light effective mass, orders of
magnitude lower than the bare electron has. That means the corresponding de Broglie wavelength is larger than the
electron and the BEC condensation criterion for the critical temperature and density is easier to achieve. The ordinary
𝑇𝑐 = 10𝐾 using materials such as GaAs and CdTe, which leads to the fascinating fact that using different materials can
achieve the room-temperature manifestation of the BEC effects.

Using GaN, ZnO and other organic semiconductors—polariton condensates at higher temperatures, including room
temperature, have already been realized [164, 165, 166]. This broadens the range of applicability for the EPs. The
potential practical interest allows one to use this platform in an environment where different quantum systems can
hardly be exploited.

As the necessary confinement for the BEC of EP production was discussed before, EP condensates essentially form
two-dimensional structures. This allows one to investigate the exciting physics aspects connected with the particular
two dimensions. One such phenomenon is the continuous-wave Berezinskii–Kosterlitz–Thouless (BKT) transition [167]
of the two-dimensional XY model in statistical physics. It is a transition from bound vortex-antivortex pairs to unpaired
vortices and anti-vortices at the critical temperature, where the interplay of long-range order and thermally excited
vortices is balancing.

The BEC itself, when the particles spontaneously occupy the ground state, appears a very interesting phenomenon
with many corresponding interesting properties, among which are the thermalization mechanism, the existence of the
macroscopic wavefunction forming an order parameter with the off-diagonal long-range order is a central concept.

The consequent property of the superfluidity, similar to the 4He realization or superconductivity, viewed as a con-
densation of Cooper pairs. This spectacular property manifests itself in the frictionless flow due to the spontaneous
coherence or the impossibility of rotating the superfluid.

The spatial coherence and the wave matter nature result in the existence of the nontrivial phases of polariton
condensates and the existence of quantized vortices, which are topological defects with zero density at its core and a
multiple of phase rotation around it. Single vortices and vortex pairs in EP condensates excited by non-resonant pumping
have been observed either pinned at defects or imprinted from the phase fluctuation of lasers. Vortices are detected via
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Figure 2-5: The picture showing the microcav-
ity diagram and energy dispersion from the sem-
inal work [158]. (a) A microcavity is a planar
Fabry–Perot resonator with two Bragg mirrors at
resonance with excitons in QWs. (b) Energy lev-
els as a function of the in-plane wavevector 𝑘 in a
CdTe-based microcavity. Interaction between ex-
citon and photon modes, with parabolic disper-
sions (dashed curves), gives rise to lower and upper
polariton branches (solid curves) with dispersions
featuring an anticrossing typical of the strong cou-
pling regime.

the phase output, where it is possible to reconstruct the spatial phase and intensity distributions.
Despite the limitation for studying the standard BEC physics, the dynamical nature of a polariton condensate provides

a new experimental tool for the research of the nonequilibrium open system consisting of interacting bosons. In other
words, the system is essentially gain-dissipative. Through the photon leakage, it is possible to access the condensate’s
quantum-statistical properties through the experiment. Alternatively, the realization of the optical lattices in cold atomic
gases allowed one to manipulate BEC states, with the experiments such as the superfluid–Mott insulator transition [168].

The creation of periodic potentials can lead to applications concerning quantum simulation, where complicated
quantum many-body systems are realized, which can hardly be accessible by the reach of computer simulations [169].
The corresponding branch aims to recreate the exotic Hamiltonians for models of metamaterials that have no natural
realization. Many engineering methods were created to shape in-plane potentials by modifying either the photonic or
excitonic modes. Among them are chemical etching for forming pillars, strips and 2D lattices, laser pump spot formation,
piezoelectric acoustic lattices - for the complete list, see the review [170]. The exciting question property is the quantum
and classical noise description in the EP system, allowing one to improve the analog simulators.

2.3 Alternative platforms
In the next section, we will show how to utilize the lattices of EP condensates to efficiently simulate the XY Hamiltonian
when operating at the condensation threshold. The system time evolution process tends to minimize the amount of
matter, which depends on the condensates’ relative phases. The underlying mechanism dramatically relies on the
macroscopic wave functions’ interference, produced by the external sources in the gain-dissipative setting. Using this
mechanism to our advantage, it is possible to create special-purpose hardware, which operates like simulated annealing
due to the equations’ gradient terms. It is possible to extend the system parameters to minimize Ising and q-state Potts
models [171].

To exploit the system effectively, one needs to map an optimization problem of interest into the QUBO. There is the
possibility to do so and into the connection matrix of the Ising network. The problem of finding the optimal solution
of a QUBO problem reduces to finding the ground state of the Ising Hamiltonian, which can be related to finding the
’maximum occupancy’ of the collective supermode of the underlying network, as a system-specific gain mechanism is
continuously increased to reach the coherence threshold [172, 68].
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There are lots of similar platforms that are operating in an analogic way. A small part of them was mentioned before
in the background section. Here we give an additional list of them with little discussion, which mostly operates in the
same annealer-like manner.

In recent years, much effort has been devoted to developing such platforms that act as quantum or classical analog
simulators aimed at solving certain classes of hard classical optimization problems [57, 58, 59, 60, 61, 62, 63]. It is
expected that these kinds of platforms would help to efficiently solve many tasks of significant computational complexity,
ranging from modeling microscopic effects and processes like the behavior of electrons in complex materials [64, 65] and
finding the ground state of spin glasses [66], to the applied combinatorial optimization problems such as the TSP [67].

These activities have a reverse effect, which spawns the algorithmic analogs like the Simulated Bifurcation algorithms
inspired by quantum adiabatic optimization using a nonlinear oscillator network [173], destabilization of local minima
based on degenerate parametric oscillator networks [174], parallel tempering Monte Carlo [175], and the gain-dissipative
algorithm based on the operation of the polariton graph simulator at the condensation threshold [171].

Nonequilibrium condensates, optical parametric oscillators, lasers, memristor crossbars, and other platforms have
been considered annealing-inspired accelerators and demonstrated success in finding the ground state of spin Hamiltonians
with continuous or discrete variables [58, 62, 68, 176]. In particular, the coherent Ising machine has been shown to
significantly outperform classical simulated annealing in terms of accuracy and computation time to solve MAX-CUT
problems [58] efficiently. It has shown better scalability than the quantum annealers [177]. Memristor - Hopfield NN
with massively parallel operations performed in a dense crossbar array was shown to solve NP-hard MAX-Cut problems
predicting over four orders of magnitude advantage over digital and optical hardware [176]. Integrated photonic circuits
that use self-phase modulation in two microring resonators were shown to act as an optical coherent Ising machine
[178, 179]. Research groups are also utilizing ultracold bosonic and fermionic atoms, molecular gases in optical lattices
[180, 181, 182, 183] photons [184], trapped ions [185, 186] and superconducting q-bits [187]. The separate part with
the detailed description of operational regimes of lasers, coherent Ising machine and photonic networks can be found in
Chapter 6 with additional information.

Another subdomain of such works is closely connected with reservoir computing, which also exploits different physical
settings, but does it in a unique way, similar to recurrent NNs. This topic will be discussed separately in 3.5.5.
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Chapter 3

System design

This chapter considers several ways of manipulating the system parameters to achieve a certain performance with the
correspondence of the existing computational task. One can view it as a system design or alternatively, the description
of how to manipulate the system to use it in a certain way.

3.1 Quadratic programming/minimization
This section will cover the principal results concerning the process of simulating classical XY Hamiltonian on a polariton
platform, which (results) were considered in great detail in [188, 68] with the particular emphasis on an analytical
solution for a single condensate and obtaining the XY model. Other physical systems have previously simulated the XY
model, particularly - ultracold atomic optical lattices [189] and coupled photon lasers network [62]. To design an analog
Hamiltonian, one needs first to map the target Hamiltonian into the elements of the simulator and the corresponding
interactions between the elements, prepare the simulator in a state that is relevant to the problem of interest, and finally,
perform the measurements on the simulator with the required precision.

The XY Hamiltonian’s choice is motivated by the critical work, tailoring the universal models with the classical spin
models [190]. In general, the XY model can be treated as a quadratic constrained optimization model, which is known
to be an NP-hard problem for non-convex and dense matrices [191].

Polariton graph configuration has an enormous degree of flexibility in engineering the geometrical configuration of
elements and so the corresponding interactions between them, going beyond a standard lattice configuration. As well as
the spatial coordinates, more parameters can be changed for manipulating the system setup; see for example [192].

After preparing the simulator in the relevant state, it is possible to realize the initial configuration, searching for the
global minimum of the XY Hamiltonian through the dynamic evolution via a bottom-up approach, potentially having
an advantage over classical or quantum annealing methods.

The steady-state of such a system is reached through the balancing of pumping and dissipation of photons. Their
decay (through the Bragg reflectors) carries all necessary information of the corresponding polariton state wavefunction.
It is enough for a polariton condensate characterization in its steady state.

The next step is to explain how a polariton condensate’s particular arrangement can lead to the reproduction of
the XY model starting from the mean-field model of polariton condensates and derive analytical solutions for a single
condensate. As was discussed in the previous chapters, the mean field of polariton condensates can be described by
the driven-dissipative GP equation, coupled to the rate equation for the density of the exciton reservoir 𝑛𝑅. After the
assumption of the stationary state of the reservoir 𝜕𝑛𝑅

𝜕𝑡
= 0, rewriting the equations lead us to the form of the complex

Ginzburg-Landau equation (cGLE) with a saturable nonlinearity:

𝑖
𝜕Ψ

𝜕𝑡
= −(1− 𝑖𝜂𝑑𝑛𝑅)ΔΨ + |Ψ|2Ψ+ 𝑔𝑛𝑅Ψ+ 𝑖[𝑛𝑅 − 𝛾]Ψ, (3.1)

𝑛𝑅 = 𝑝(𝑟)/(1 + 𝑏|Ψ|2), (3.2)

Where 𝜂𝑑 is s the energy relaxation coefficient specifying the rate at which gain decreases with increasing energy, 𝑔
is the strength of effective polariton-exciton interactions and 𝛾 is the is the rate of the condensate losses in the cavity.
By taking the Taylor expansion for small densities in the expression for the reservoir 𝑛𝑅 and we arrive at the different
form of the cGLE:
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𝑖
𝜕Ψ

𝜕𝑡
= −(1− 𝑖𝜂𝑝)ΔΨ + (1− 𝑔𝑏𝑝)|Ψ|2Ψ+ 𝑔𝑝Ψ+ 𝑖[𝑝− 𝛾 − 𝑝𝑏|Ψ|2]Ψ, (3.3)

Considering the approximation of the steady state solutions for a radially symmetric Gaussian pumping profile
𝑝(𝑟) = 𝑝0 exp

(︀
−𝜎𝑟2

)︀
, with the 𝑝0 being the maximum pumping intensity and 𝜎 is the inverse width of the Gaussian,

one can use the Madelung transformation Ψ =
√
𝜌 exp[i𝑆] to separate the real and imaginary parts of equation 3.3 :

1

𝑟𝜌

d(𝑟𝜌𝑢)

d𝑟
=

𝑝(𝑟)

1 + 𝑏𝜌

(︃
1 +

𝜂
(︀
𝑟(
√
𝜌)′
)︀′

𝑟
√
𝜌

− 𝜂𝑢2

)︃
− 𝛾 (3.4)

𝜇 = −
(
√
𝜌)′′

√
𝜌

−
(
√
𝜌)′

𝑟
√
𝜌

+ 𝑢2 + 𝜌+
𝑝(𝑟)

1 + 𝑏𝜌

(︂
𝑔 − 𝜂

𝑟𝜌

d(𝑟𝜌𝑢)

d𝑟

)︂
(3.5)

In the asymptotic behaviour where 𝑝(𝑟) = 0, the velocity 𝑢 = |u| = 𝑑𝑆
d𝑟

is given by the outflow wavenumber 𝑘𝑐 = 𝑐𝑜𝑛𝑠𝑡

with 𝑟𝜌𝑟 + 𝜌 = −𝛾𝜌𝑟/𝑘𝑐, which gives 𝜌 ∼ exp [−𝑟𝛾/𝑘𝑐] /𝑟 after the integration. The chemical potential at the infinity is
given by 𝜇 = 𝑘2𝑐 − 𝛾2/4𝑘2𝑐 . Utilizing these equations, we can write the density and the velocity in the following forms:

𝜌(𝑟) =
𝑎0

𝛾𝑟 exp
(︀
𝛾𝑟𝑘−1

𝑐

)︀
𝑘−1
𝑐 + 𝜉 − 𝛾𝑟/𝑘𝑐 + 𝑎3𝑟3

∼ 𝑎0𝑘𝑐 exp [−𝑟𝛾/𝑘𝑐] /𝑟𝛾, 𝑟 → ∞, (3.6)

𝑢(𝑟) = 𝑘𝑐 tanh (𝑙𝑟/𝑘𝑐) ∼ 𝑘𝑐, 𝑟 → ∞, (3.7)

using their behaviour at the initial spot and infinity. The next step is to parametrize the potential solutions with
𝜉, 𝑎0, 𝑎3 and 𝑙. One can find them using the previous equations and matching with the asymptotic. The expansion to
𝑂(𝑟2) of equation 3.4 determines 𝑘𝑐, while the expansions to 𝑂(𝑟2) of equation 3.5 define the remaining parameters
through two nonlinear equations. The details of the calculations together with the final coefficients can be found in the
original article [188].

Equations 3.6 and 3.7 with the parameters found for the given system together with the pumping parameters 𝑝0 and
𝜎 fully specify the approximate analytical solution of equations 3-1 (see Figs. 3-1).

Figure 3-1: Approximate analytical (blue lines) and numerical (black lines) solutions for density (solid lines)
and velocity (dashed lines) of equation 3.3 for the pumping profile given by 𝑝(𝑟) = 𝑝0 exp

(︀
−𝜎𝑟2

)︀
(green shaded

area). The system parameters are 𝑏 = 1.5, 𝛾 = 0.2, 𝑔 = 0.5 and (a) 𝜎 = 0.2, 𝑝0 = 5;(b)𝜎 = 0.4, 𝑝0 = 10. The
picture is taken from the [188].

A spatial light modulator (SLM) can be used to pump condensates at the vertices of a distributed graph via
𝑝(r) =

∑︀𝑁
𝑖=1 𝑝𝑖 exp

[︀
−𝜎𝑖 |r− r𝑖|2

]︀
. Assuming that all vertices are pumped identically and additionally assuming that

all condensates are well-separated, we can use the linear approximation for the the resulting condensate wavefunction
Ψ𝑁 (r, 𝑡) ≈

∑︀𝑁
𝑖=1 Ψ0 (|r− r𝑖|) exp (i𝜃𝑖), where Ψ0 is the single condensate solution, which is given by:

Ψ0(𝑟) =
√︀
𝜌0(𝑟) exp

[︂
i
𝑘2𝑐
𝑙
log

(︂
cosh

(︂
𝑙

𝑘𝑐
𝑟

)︂)︂]︂
∼
√︀
𝜌0(𝑟) exp [i𝑘𝑐𝑟] , 𝑟 → ∞. (3.8)

The total amount of matter ℳ in the system can be written:

ℳ =

∫︁
|Ψ𝑁 |2 dr =

1

(2𝜋)2

∫︁ ⃒⃒⃒
Ψ̃𝑁 (k)

⃒⃒⃒2
dk = 2𝜋𝑁

∫︁ ∞

0

|Ψ0|2 𝑟d𝑟 +
∑︁
𝑖<𝑗

𝐽𝑖𝑗 cos (𝜃𝑖 − 𝜃𝑗) , (3.9)
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𝐽𝑖𝑗 =
1

𝜋

∫︁ ∞

0

⃒⃒⃒
Ψ̃0(𝑘)

⃒⃒⃒2
𝐽0 (𝑘 |r𝑖 − r𝑗 |) 𝑘d𝑘, (3.10)

where the modulus expression is the Fourier transform of the original macroscopic wavefunction:

Ψ̃𝑁 (k) =

∫︁
exp(−ik · r)Ψ𝑁 (r)dr = Ψ̃0(𝑘)

𝑁∑︁
𝑖=1

exp (ik · r𝑖 + i𝜃𝑖) , (3.11)

where Ψ̃0(𝑘) = 2𝜋
∫︀∞
0

Ψ0(𝑟)𝐽0(𝑘𝑟)𝑟𝑑𝑟 and 𝐽0 is the Bessel function. Since the system tends to maximize the total
number of particles given by the Equation 3.9, this is equivalent to minimizing the XY Hamiltonian (the last term in
the expression).

Such polariton graphs offer the excellent scalability of optical lattices. The condensates’ arrangement allows one to
study disordered systems and control the sign and the strength of the coupling for each element independently. There
are lots of variations for the spin configurations. The coupling between the adjacent polaritons can be modified by either
varying the distance between the pumping spots or changing the individual spots’ pumping parameters. Additionally,
the cGLE can be reformulated as the Kuramoto model which is a paradigm for describing the spontaneous emergence
of collective synchronization [193].

The simpler perspective is to consider ordinary one-dimensional Schrodinger equation with the delta-type potential
𝛿(𝑥), for which there is a symmetric solution, described by the exponential function. Adding the phase shift due to the
time evolution, we can approximate the condensate by the function exp(−i𝑘 · |𝑥|) exp(−𝛽 · |𝑥|). Calculating the density
of two condensates, we come to the underlying interference pattern responsible for the correspondence between the EP
system reproducing the XY Hamiltonian.

3.2 Tensor sum minimization and complex coupling switching
Gain-dissipative platforms consisting of lasers, optical parametric oscillators and nonequilibrium condensates operating
at the condensation/coherence threshold have been recently proposed as efficient analog simulators of 2-local spin Hamil-
tonians with continuous or discrete degrees of freedom. In this section, it will be shown that nonequilibrium condensates
above the threshold arranged in an interacting network may realize 𝑘-local Hamiltonians with 𝑘 > 2 and lead to nontriv-
ial phase configurations. The derivation of the rate equations in the generalization settings for the higher-order binary
optimization problems will be repeated. Additionally, the method of facilitating the search for the global solution by
invoking complex couplings in the system will be presented, and the efficiency of the method on the sets of complex
problems will be demonstrated.

Discrete Ising ’spins’ or continuous XY ’spins’ are encoded in individual phase modes of the nonlinear networks in all
the presented technological platforms. An optimization problem of interest is mapped into the quadratic unconstrained
binary optimization (QUBO) and, therefore, into the Ising network’s connectivity matrix. The problem of finding the
optimal solution of a QUBO problem reduces to finding the ground state of the Ising Hamiltonian, which can be related
to finding the ’maximum occupancy’ of the collective supermode of the underlying network, as a system specific gain
mechanism is continuously increased to reach the coherence threshold [172, 68].

The focus of all these technological and inspired implementations of the annealer-based optimization has been on
QUBO; however, there is a large class of optimization problems — the high-order binary optimization (HOBO) –
that are more naturally encoded by the 𝑘-local Hamiltonians [194, 195]. HOBO is concerned with optimizing a (high
degree) multivariate polynomial function in binary variables. A basic model is to maximize or minimize a 𝑘-th degree
polynomial function 𝑓(x) where x = (𝑥1, ..., 𝑥𝑖, ..., 𝑥𝑛), 𝑥𝑖 ∈ {−1,+1}. HOBO examples are ubiquitous from Hypergraph
max-covering problem to Frobenius and "market split" problems [195]. HOBO is a fundamental problem in integer
programming and is also known as the Fourier support graph problem. Any HOBO can be mapped into the QUBO
[190]; however, the overhead in the number of nodes becomes prohibitive in an actual technological platform, so it is
important to consider ways to solve HOBO directly. The purpose of this section is three-fold. First, I show that Ising
machines based on nonequilibrium condensates can be used to address 4-local HOBO when operating above the threshold.
Secondly, inspired by the operation of the nonequilibrium networks, a new optimization algorithm for solving HOBO
of arbitrary degree will be proposed. Finally, I show that another physics-inspired method of turning on and off the
complex coupling between the nonlinear condensates greatly enhances the global minimum search.

Polynomial optimization with coherent networks. The optimization problem studied in this section is

min
x∈{−1,+1}𝑁

−
∑︁
Ω

A𝑘
𝑖1,𝑖2,···,𝑖𝑘𝑥𝑖1𝑥𝑖2 · · · 𝑥𝑖𝑘 , (3.12)
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where Ω = {𝑖𝑗 : 1 ≤ 𝑖1 ≤ 𝑖2 ≤ ... ≤ 𝑖𝑘 ≤ 𝑁} and A𝑘 is the super-symmetric tensor of degree 𝑘.
To formulate the gain-dissipative platform that reaches the ground state of HOBO by finding the ’maximum oc-

cupancy’ collective supermode of the underlying network of nonequilibrium condensates we consider the mean-field
equations that govern such a network based on the Ginzburg-Landau equation [196, 197]. This is a universal driven-
dissipative equation that describes the behaviour of systems in the vicinity of a symmetry–breaking instability and
has been used to describe lasers, thermal convection, nematic liquid crystals, and various non-equilibrium condensates
[198, 199]. When derived asymptotically from a generic laser model given by Maxwell-Bloch equations it has a saturable
nonlinearity and can be written as

i
𝜕𝜓

𝜕𝑡
= −∇2𝜓 + �̃� |𝜓|2𝜓 + 𝑖

(︂
𝑃 (r, 𝑡)

1 + 𝑏|𝜓|2 − 𝛾𝑐

)︂
𝜓, (3.13)

where 𝜓(r, 𝑡) is the wavefunction of the system, �̃� is the strength of the delta-function interaction potential, 𝛾𝑐 is the
rate of linear losses, 𝑏 parametrizes the effective strength of nonlinear losses, 𝑃 (r, 𝑡) describes the gain mechanism that
adds particles to the system. First of all, we assume that 𝑏 ≪ 𝑈 , so that the saturation term can be replaced by its
Taylor expansion:

𝑃 (r, 𝑡)

1 + 𝑏|𝜓|2 ≈ 𝑃 (r, 𝑡)− 𝑃 (r, 𝑡)𝑏|𝜓|2. (3.14)

We define by 𝑝(r) = 𝑃 (r, 𝑡) the injection profile that gives rise to a single condensate centered at the origin that is
described by a normalized wavefunction 𝜑(r). Mathematically, 𝜑(r) satisfies

𝜇𝜑 = −∇2𝜑+ �̃� |𝜑|2𝜑+ 𝑖

(︂
𝑝− 𝑝𝑏|𝜑|2 − 𝛾𝑐

)︂
𝜑, (3.15)

∫︁
Γ

|𝜑(r)|2 𝑑r = 1, (3.16)

where 𝜇 is the chemical potential (the Lagrange multiplier) and Γ is the entire system space. Based on the wavefunction
of the single isolated condensate, we can construct an approximation for 𝑁 localized condensates noting that the well-
separated condensates interact by the outflow of the particles from the positions where they were created [198, 199]. This
is in a contrast with the conservative condensates, such as ultracold atomic Bose-Einstein condensates, where spatially
separated condensates (with separation much larger than the condensate width) do not interact.

We shall assume that pumping 𝑃 (r, 𝑡) adds particles in 𝑁 spatial locations centered at r𝑖, 𝑖 = 1, ..., 𝑁 , so that
𝑃 (r, 𝑡) =

∑︀
𝑖 𝑓𝑖(𝑡)𝑝𝑖(r), where 𝑓𝑖 is the time-dependent part of the pumping at the position r = r𝑖 and 𝑝𝑖(r) ≡ 𝑝(r− r𝑖).

If the distances between the neighbouring condensates are larger than the width of 𝑝(r), we employ the tight binding
approximation and write the wavefunction of the system as a linear superposition of the wavefunctions of the individual
condensates 𝜓(r, 𝑡) ≈

∑︀𝑁
𝑖=1 𝑎𝑖(𝑡)𝜑𝑖(r), where 𝑎𝑖(𝑡) is the time-dependent complex amplitude and 𝜑𝑖(r) ≡ 𝜑(r − r𝑖)

[200, 171]. We substitute the expressions for 𝑃 and 𝜓 into Eq. (3.13) with the Taylor expansion of the saturation term
given by Eq. (3.14), multiply by 𝜑*

𝑗 for 𝑗 = 1, ..., 𝑁 and eliminate the spatial degrees of freedom by integrating in the
entire plane Γ. The time evolution of the individual functions 𝑎𝑖(𝑡) will separate if we assume that the integrals that
involve products of the wavefunctions of the separated condensates are negligible compared with the integrals of the
products of the same condensates or with the integrals that involve the pumping profiles that overlap with 𝜑𝑖, so that∫︁

Ω

𝜑𝑖𝜑
*
𝑗 𝑑r ≪

∫︁
Ω

|𝜑|2 𝑑r = 1 for 𝑖 ̸= 𝑗, (3.17)∫︁
Ω

𝜑*
𝑗∇2𝜑𝑖 𝑑r ≪

∫︁
Ω

𝜑*∇2𝜑𝑑r ≡ 𝑑 for 𝑖 ̸= 𝑗 (3.18)∫︁
Ω

𝜑𝑖𝜑
*
𝑗 𝑑r ≪

∫︁
Ω

𝑝𝑚𝜑𝑖𝜑
*
𝑗 𝑑r for 𝑖 ̸= 𝑗,𝑚 ∈ {𝑖, 𝑗}, (3.19)∫︁

Ω

𝜑𝑖𝜑
*
𝑗𝜑𝑘𝜑

*
𝑚 𝑑r ≪

∫︁
Ω

𝑝𝑚𝜑𝑖𝜑
*
𝑗𝜑𝑘𝜑

*
𝑙 𝑑r, 𝑚 ∈ {𝑖, 𝑗, 𝑘, 𝑙}, etc.

The validity of these assumptions can be verified using asymptotics developed in [188] where it was shown that 𝜑 created
with a Gaussian pump can be approximated by

𝜑(𝑟) =

√︂
2

𝜋
𝛽 exp[−𝛽𝑟 + 𝑖𝑘𝑐𝑟], (3.20)

where 𝑘𝑐 is the outflow velocity and 𝛽 is the inverse characteristic width of the condensate [188]. The integrals 𝜒𝑖𝑗 =
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∫︀
𝜑𝑖𝜑

*
𝑗 𝑑r for 𝑖 ̸= 𝑗 can be evaluated using the elliptical coordinates in terms of the Bessel functions [201]

𝜒𝑖𝑗 = 2𝛽2𝑙𝑖𝑗

[︂
1

𝛽
𝐽0(𝑘𝑐𝑙𝑖𝑗)𝐾1(𝛽𝑙𝑖𝑗) +

1

𝑘𝑐
𝐽1(𝑘𝑐𝑙𝑖𝑗)𝐾0(𝛽𝑙𝑖𝑗)

]︂
, (3.21)

where 𝑙𝑖𝑗 = |r𝑖 − r𝑗 |. We assumed that the condensates are well separated, 𝑙𝑖𝑗𝛽 ≫ 1, so that for 𝑖 ̸= 𝑗 we have 𝜒𝑖𝑗 ≪ 1

as follows from Eq. (3.21). The correctness of other assumptions can be established in a similar manner. Under these
assumptions, the tight binding approximation of Eq. (3.13) leads to 𝑁 equations

𝑑𝑎𝑖
𝑑𝑡

∫︁
Γ

|𝜑|2 𝑑r = 𝑖𝑎𝑖𝑑− 𝑖𝑈 |𝑎𝑖|2𝑎𝑖
∫︁
Γ

|𝜑|4 𝑑r+ 𝑎𝑖(𝑓𝑖

∫︁
Γ

𝑝|𝜑|2 𝑑r− 𝛾𝑐

∫︁
Γ

|𝜑|2 𝑑r)

+
∑︁
𝑗,𝑗 ̸=𝑖

𝑎𝑗𝑓𝑗

∫︁
Γ

𝑝𝑗𝜑𝑗𝜑
*
𝑖 𝑑r− 𝑏−1

∑︁
𝑚∈{𝑖,𝑗,𝑘,𝑙},𝑗,𝑘,𝑙

𝑓𝑚

∫︁
Γ

𝑝𝑚𝜑𝑗𝜑𝑘𝜑
*
𝑙 𝜑

*
𝑖 𝑑r 𝑎𝑗𝑎𝑘𝑎

*
𝑙 .

We use normalization Eq. (3.16) and introduce Ψ𝑖 = 𝑎𝑖 exp(i𝑡𝑑) to absorb the first term on the right hand side into the
phase of Ψ𝑖. We also denote 𝛾𝑖 = 𝑓𝑖

∫︀
Γ
𝑝|𝜑|2 𝑑r− 𝛾𝑐, 𝑈 = �̃�

∫︀
Γ
|𝜑|4 𝑑r, 𝐽𝑖𝑗 = 𝑓𝑗

∫︀
Γ
𝑝𝑖𝜑𝑗𝜑

*
𝑖 𝑑r for 𝑗 ̸= 𝑖, 𝜎𝑖 = 𝑏𝑓𝑖

∫︀
Γ
𝑝|𝜑|4 𝑑r

and 𝑄𝑖𝑗𝑘𝑙 = −𝑏
∑︀

𝑚∈{𝑖,𝑗,𝑘,𝑙} 𝑓𝑚
∫︀
Γ
𝑝𝑚𝜑𝑘𝜑

*
𝑙 𝜑𝑗𝜑

*
𝑖 𝑑r, where 𝑖 = 𝑗 = 𝑘 = 𝑙 is excluded from the summation. With this

notation, we obtain 𝑁 equations of the form

𝑑Ψ𝑖

𝑑𝑡
= Ψ𝑖

(︀
𝛾𝑖 − (𝜎𝑖 + i𝑈)| Ψ𝑖 |2

)︀
+
∑︁
𝑗,𝑗 ̸=𝑖

𝐽𝑖𝑗Ψ𝑗 +
∑︁

⟨𝑗,𝑘,𝑙⟩

𝑄𝑖𝑗𝑘𝑙Ψ𝑗Ψ𝑘Ψ
*
𝑙 +𝐷𝜉𝑖 (𝑡) . (3.22)

where ⟨𝑖, 𝑗, 𝑘⟩ denotes the permutations of {𝑗, 𝑘, 𝑙} that exclude 𝑗 = 𝑘 = 𝑙 = 𝑖.
In writing Eq. (3.22) we also introduced the Langevin noise 𝜉𝑖(𝑡) (⟨𝜉𝑖(𝑡)𝜉*𝑖 (𝑡′)⟩ = 𝛿(𝑡− 𝑡′)) which represents intrinsic

vacuum fluctuations and classical noise with a diffusion coefficient 𝐷. The rate equations on Ψ𝑖(𝑡) take the form similar
to what we obtained for a polaritonic networks at the condensation threshold [69], but now involve higher order terms
represented by the super-symmetric tensor Q. At the condensation threshold these terms can be neglected, however,
above the threshold these terms allow to minimize the higher order k-local Hamiltonians. To see this, we rewrite Eq. (3.22)
in terms of the number densities 𝜌𝑖 and phases 𝜃𝑖 using the Madelung transformation Ψ𝑖 =

√
𝜌𝑖 exp[i𝜃𝑖] for simplicity

excluding the noise:

1

2
�̇�𝑖(𝑡) = (𝛾𝑖 − 𝜎𝑖𝜌𝑖)𝜌𝑖 +

∑︁
𝑗,𝑗 ̸=𝑖

𝐽𝑖𝑗
√
𝜌𝑖𝜌𝑗 cos 𝜃𝑖𝑗

+
∑︁

⟨𝑗,𝑘,𝑙⟩

𝑄𝑖𝑗𝑘𝑙
√
𝜌𝑖𝜌𝑗𝜌𝑘𝜌𝑙 cos 𝜃𝑖𝑗𝑘𝑙, (3.23)

𝜃𝑖(𝑡) = −𝑈𝜌𝑖 −
∑︁
𝑗,𝑗 ̸=𝑖

𝐽𝑖𝑗

√
𝜌𝑗

√
𝜌𝑖

sin 𝜃𝑖𝑗

−
∑︁

⟨𝑗,𝑘,𝑙⟩

𝑄𝑖𝑗𝑘𝑙

√
𝜌𝑗𝜌𝑘𝜌𝑙
√
𝜌𝑖

sin 𝜃𝑖𝑗𝑘𝑙, (3.24)

where 𝜃𝑖𝑗 = 𝜃𝑖 − 𝜃𝑗 and 𝜃𝑖𝑗𝑘𝑙 = 𝜃𝑖 + 𝜃𝑙 − 𝜃𝑘 − 𝜃𝑗 .
Equation (3.24) describes the evolution of the higher order Kuramoto oscillators. The higher order terms affect

the states even in the simplest configuration of two identical oscillators pumped with 𝛾𝑖 = 𝛾 for which the occupancy
𝜌0 = 𝜌1 = 𝜌2 at the fixed point of Eqs. (3.23-3.24) reads 𝜌0 = [𝛾 + 𝐽 cosΔ𝜃 + �̃� cos(2Δ𝜃)]/𝜎 where Δ𝜃 = 𝜃1 − 𝜃2

and �̃� = 𝜌0𝑄. By choosing the minimum pumping 𝛾 to reach the required occupancy, we minimize the Hamiltonian
𝐻two = −𝐽 cosΔ𝜃 − �̃� cos(2Δ𝜃) while Eq. (3.24) describes the gradient descent to the local minimum of 𝐻two. If �̃� is
negligible, we have the minimization of the XY Hamiltonian, so Δ𝜃 = 0 or 𝜋 if 𝐽 > 0 or 𝐽 < 0 respectively. The same
minimum is realised if �̃� is present but has the same sign as 𝐽 . However, a different phase difference is realised when
𝐽�̃� < 0 and |�̃�/𝐽 | ≥ 1

4
, namely Δ𝜃 = arccos(−𝐽/4�̃�).

In the example of two oscillators the stationary state with equal occupancy of the nodes is always reached. However,
in a more general system with many oscillators, unless the oscillatory network is highly symmetric (all oscillators have
equal number of connections of the same strength with other oscillators) the systems breaks into subsystems characterised
by different frequencies. To guarantee the full synchronisation of the network we need to choose the injection rates in such
a way that all oscillators have the same occupancy 𝜌th [69]. For instance, this can be achieved by adjusting the pumping
rates dynamically, depending on the occupancy of the 𝑖−th oscillator at time 𝑡: 𝛾𝑖 = 𝜖(𝜌th − 𝜌𝑖), where the parameter 𝜖
characterizes how fast 𝛾𝑖 adjusts to changes in 𝜌𝑖. Aiming at the algorithmic implementation, we will focus on tensors
of the same order 𝑘, and leave the problems with mixed order tensors for future work. In case of polariton condensates,
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this means that the fourth order tensors dominate the dynamics of the second-order terms. With appropriate density
adjustments, as described above, the system of 𝑁 oscillators will always synchronize and achieve the stationary minimum
of the Hamiltonian 𝐻 = −

∑︀
𝑖

∑︀
⟨𝑗,𝑘,𝑙⟩ �̃�𝑖𝑗𝑘𝑙 cos 𝜃𝑖𝑗𝑘𝑙 with super-symmetric tensor of 𝑘 = 4.

To replace the minimization in the space of continuous spins with binary states, one could combine nonresonant
pumping with resonant at twice the frequency of the condensate which introduces the terms proportional to 𝜓* (Ψ*

𝑖 ) to
the right-hand side of Eq. (3.13) (Eq. (3.22)) similarly to 𝑘 = 2 case [69]. Resonant and nonresonant excitations have
been previously combined in experiments on polariton condensates using chemical etching across the sample allowing
resonant excitation from the back side of the cavity. The resonant excitation laser was synchronized with the nonresonant
one and with the condensate frequency [202]. Such combination of resonant and nonresonant excitations would lead to
the realisation of the minimum of the 𝑘-local Hamiltonians, so to solving Eq. (3.12) with the binary spins 𝑥𝑖 = cos 𝜃𝑖,
where 𝜃𝑖 are limited to 0 and 𝜋 values due the action of the resonant forcing. However, in contrast with 𝑘 = 2 case, the
phase projections on the binary states for 𝑘 > 2 is automatic thanks to the mixture of Ψ𝑖𝑗 and Ψ*

𝑖𝑘
present in the tensor

form, and the presence of the additional resonant field in not necessary. We elucidate the reasons for this below.
Physics-inspired optimization. The formulated principle of coherence formation at a minimum of a spin Hamiltonian

formulated above inspires an efficient algorithm for finding the global minimum of HOBO. For this, we extend and
simplify Eq. (3.22) to capture the mechanism of relaxation to the minimum of the HOBO but without the necessity to
capture full physics of the actual system. The minimum of HOBO for 𝑁 binary variables can be found by numerical
integration of 2𝑁 equations

𝑑Ψ𝑙

𝑑𝑡
= Ψ𝑙(𝛾𝑙(𝑡)− |Ψ𝑙|2) +

∑︁
Ω̄

A𝑘
𝑖1,𝑖2,···,𝑙,···𝑖𝑘Ψ𝑖1Ψ𝑖2 · · ·Ψ*

𝑖𝑘 ,

(3.25)
𝑑𝛾𝑙
𝑑𝑡

= 𝜖(𝜌th − |Ψ𝑙|2), (3.26)

where Ω̄ = Ω/𝑙 and the initial values for pumping strength 𝛾𝑙(𝑡 = 0) = −max1≤𝑙≤𝑁

∑︀
Ω̄ |A𝑘

𝑖1,𝑖2,···,𝑙,···𝑖𝑘 |. At the fixed
point, the imaginary part of Eq. (3.25) gives a set of linear equations such that the 𝑙-th equation involves superposition of
sin(

∑︀
𝑖𝑗 ̸={𝑙,𝑖𝑘}

𝜃𝑖𝑗 −𝜃𝑖𝑘 −𝜃𝑙) that has to be equal to zero. In general, the only way for the system to satisfy these equations
is to bring all phases 𝜃𝑙 to take on 0 or 𝜋. The total occupancy of the system at the fixed point is found from the real part of
Eq. (3.26) and is equal to 𝑁𝜌th, so that 𝑁𝜌th =

∑︀𝑁
𝑙=1 𝛾𝑙+

√
𝜌th

𝑘−2∑︀
Ω A𝑘

𝑖1,𝑖2,···,𝑖𝑘 cos(𝜃𝑖1) cos(𝜃𝑖2)···cos(𝜃𝑖𝑘 ). If we set the
process of raising the pumping from below that guarantees that

∑︀𝑁
𝑙=1 𝛾𝑙 is the smallest possible injected intensity, then at

the fixed point the system finds the global minimum of the 𝑘−local Hamiltonian 𝐻 = −
∑︀

Ω A𝑘
𝑖1,𝑖2,···,𝑖𝑘 cos(𝜃𝑖1) cos(𝜃𝑖2) ·

· · cos(𝜃𝑖𝑘 ), and, therefore, solves Eq. (3.12). We will refer to the Eqs. (3.25-3.26) as the tensor gain-dissipative (TGD)
method.

To illustrate the behavior of the system we first consider a toy problem: the following 3-local Hamiltonian

𝐻test(x) = −8𝑥1𝑥2𝑥3 − 4𝑥1𝑥2𝑥4 − 2𝑥2𝑥3𝑥4 − 𝑥1𝑥3𝑥4, (3.27)

with variables 𝑥𝑖 ∈ {±1}, while Eq. (3.25) becomes Ψ̇𝑙 = Ψ𝑙(𝛾𝑙 − |Ψ𝑙|2) +
∑︀

⟨𝑗,𝑘⟩𝐾𝑙𝑗𝑘Ψ𝑗Ψ
*
𝑘, and 𝐾 is a tensor with

nonzero entries 1, 2, 4, 8. The Hamiltonian 𝐻test has 24 stationary points, among which there are three local minima:
𝐻1 = −9, 𝐻2 = −11, 𝐻3 = −13 and the global minimum 𝐻4 = −15, that all can be accessed during the time evolution
of the system. To understand the basins of attraction for these stationary points we numerically integrate Eqs. (3.25-
3.26) starting with initial conditions Ψ𝑖(𝑡 = 0) = 1

100
exp[i𝜃𝑖(𝑡 = 0)] where the phases 𝜃𝑖(𝑡 = 0) ∈ [0, 2𝜋) are uniformly

distributed in the 4-dimensional space. the corresponding details are presented at the end of this section. Figure 3-
2(a) depicts the statistics of distribution of the stationary points reached and indicates that the basins of local minima
combined are larger than that of the global minimum. To facilitate the search for the global minimum the algorithm
needs to allow for a possibility to explore the hyperspace until the lowest lying energy state is found. This can be achieved
by adding a noise (typically present in physical system as well), that shifts the trajectory from its deterministic path
while allowing it to stay below any local minima. This can be ascertained by decreasing 𝜖 that controls the time the
system spends while raising to the condensation threshold from below. We illustrate this behaviour in Fig. 3-2(b) that
depicts the statistics of reaching local and global minima found by numerical integration of Eqs. (3.25-3.26) using the
same initial conditions as in Fig. 3-2(a) but with the white noise added. Further decreasing the 𝜖 parameter allows to
improve the possibility of reaching the global minima. On Fig. 3-2(d) we show one of such trajectories as it approaches
the global minimum of 𝐻test from below.

With the growth in the number of variables and concomitant growth of the system hyperspace any local noisy
perturbation of the trajectory may not be sufficient to reach the global minimum basin of attraction or it would take
prohibitively long time. Recent interest in heteroclinic networks - networks that exhibit saddle states that are dynamically
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Figure 3-2: Success rates for achieving local and
global minima of 𝐻test given by Eq. (3.27) us-
ing numerical simulations of Eqs. (3.25-3.26) for
three different controls described in the main text:
fully deterministic integration without noise (a);
with white noise added to the right hand side of
Eq. (3.25) (b); using CC control as described in
the main text (c). The indexes marked on the
horizontal axis label local minima as 1, 2, 3 that
correspond to 𝐻1, 𝐻2 and 𝐻3 respectively. The
global minimum (𝐻4) is labeled 4. The insert
(d) shows the two-dimensional projection (𝜃3 =
𝜃4 = 0) of the energy landscape for 𝐻test with
𝑥𝑖 = cos 𝜃𝑖. The scaled (by a factor of 3, due to the
ternary terms) and shifted total injected intensity
(
∑︀

𝛾𝑖 − 𝑁𝜌th)/3 found by numerical simulation
of Eqs. (3.25-3.26) and shown by the blue trajec-
tory in the same 2D projection. The trajectory
raises monotonically below the global minimum
until some of the occupations exceed the thresh-
old.

linked via heteroclinic connections – proposes a way to allow for a fast switching between the states [203]. Motivated
by these ideas we introduced heteroclinic orbits into our model by engineering time-dependent complex-coupling (CC)
into the network Eqs. (3.25-3.26). CCs naturally appear in polariton model if the energy shift due to a noncondensed
reservoir 𝑅(r, 𝑡) is present in the system. This introduces 𝑔𝑅(r, 𝑡)𝜓(r, 𝑡) term into the right-hand side of Eq. (3.13),
where 𝑔 parametrizes the strengths of the interactions between condensed and non-condensed particles. In the tight
binding approximation and in analogy with the derivation of rate equations simulating the Ising and XY Hamiltonians
[204], this term changes 𝐴𝑘

𝑖1,𝑖2,···,𝑖𝑘 to the complex coupling 𝐴𝑘
𝑖1,𝑖2,···,𝑖𝑘 + 𝑖𝐵𝑘

𝑖1,𝑖2,···,𝑖𝑘 , where B represents the part of
the coupling that comes from the energy shift due to reservoir. For instance, in polariton lattices such coupling can be
turned on and off experimentally between the individual lattice elements and with strengths varying in time and space
[205]. The presence of the complex part of the coupling introduces the phase lag in the system that leads to either shift
of the stationary point of Eqs. (3.25-3.26) for small values of the complex part or destabilization of it by creating a saddle
point [204]. In the latter case, if the complex part of the coupling is turned on, the system trajectory quickly leaves the
neighborhood of the previous stationary point along the fastest direction. Including this switching dynamics into the
system facilitates the search for the true global minimum by allowing fuller exploration of the phase space.

Complex coupling switching. To implement the complex coupling switching on Hamiltonian given by Eq. (3.27) we
turn two of the real coupling coefficient into the complex ones with a significant complex part as soon as the system
reaches a steady state. The system trajectory leaves the basin of attraction of that state and travels to a different part
of the system hypercube [0, 2𝜋]𝑁 . When the complex part of the coupling is turned off another steady state may be
found. By varying the coupling elements to be switched, the duration of the switching in time and the amplitude of the
imaginary coupling we allow the system to efficiently search for global minimum. In our test example, implementing
the switching of a coupling coefficients 𝐾123 and 𝐾124 according to 𝐾123(𝑡) = 8(1 + 4𝑖),𝐾124(𝑡) = 4(1 − 10𝑖), 𝑡 ∈
[𝑡1, 𝑡1 + 160] ∪ [𝑡2, 𝑡2 + 160] ∪ [𝑡3, 𝑡3 + 280] and keeping 𝐾123(𝑡) = 8,𝐾124(𝑡) = 4 otherwise allows every trajectory
irrespective of its initial state to arrive to the global minimum. Here 𝑡1, 𝑡2, 𝑡3 are times at which the system settles to a
steady state after switching the complex part of the couplings off. Figure 3-2(c) shows convergence of all trajectories to
the global minimum with 100% probability.

Complex coupling switching for large N.
We adapt the idea of the complex couplings switching for the large scale simulations and illustrate the benefits of

such approach on 20 dense and 20 sparse tensor sets 𝐾𝑖𝑗𝑘 of 3𝑑 rank of size 106 over 500 runs. The elements of the
dense tensors are uniformly distributed in [−1, 1]. To generate sparse tensors we take the dense tensors and randomly set
9/10th of all elements to zero. To implement the complex coupling switching (TGD+CC) method on large 𝑁, as soon as
the system reaches the steady state we randomly choose 𝑁/50 of the coupling strengths 𝐾𝑖𝑗𝑘 (and their corresponding
elements with all possible permutations of the indexes) and modify them by adding 𝜒𝑖𝑗𝑘 = 3𝑖𝐾𝑖𝑗𝑘. This destabilises the
system and forces the trajectory to leave along a certain orbit. After that we let 𝜒𝑖𝑗𝑘 = 0 and allow the original system
to relax to a new steady state. Keeping the total injected rate

∑︀
𝛾𝑙 small forces the trajectories to explore the low

40



Chapter 3. System design 3.2. Tensor sum minimization and complex coupling switching

Figure 3-3: The probability density function of the final solutions in comparison with the best one found
(referred as the global minimum) among 500 runs on the set of 20 dense tensors 𝐾𝑖𝑗𝑘 in the main figure and 20
sparse tensors in the inset of the 3𝑑 rank tensors for 𝑁 = 100. The algorithms are TGD, NBU, Hopfield NN,
and TGD+CC.

energy states of the Hamiltonian until the true global minimum is found. Further details of the numerical integration of
Eqs. (3.25-3.26) are presented in end of this section.

We compared the behaviour of the TGD, TGD+CC with two network-based methods and show that TGD+CC
outperforms all of these methods. The first network-based method represents the networks of bistable units (NBU)
in the presence of a double-well potential derivative that forces the network elements 𝑥𝑙 to take on ±1 while solving
Eq. (3.12):

𝑑𝑥𝑙
𝑑𝑡

= −ℎ𝑥𝑙|𝑥𝑙|𝑘−1(𝑥2𝑙 − 1) +
∑︁
Ω̄

A𝑘
𝑖1,𝑖2,···,𝑙,···,𝑖𝑘𝑥𝑖1𝑥𝑖2 · · · 𝑥𝑖𝑘 ,

(3.28)

where 𝑥𝑙(𝑡 = 0) are randomly distributed real numbers, and ℎ is a control parameter. In comparison with the usual 𝑘 = 2

case [174], we balanced the degrees of polynomial between two term on the right-hand side of Eq. (3.28) by introducing
|𝑥𝑙|𝑘−1 factor.

Another efficient solver of Eq. (3.12) is given by a higher order Hopfield NNs [206]:

𝑑𝑥𝑙
𝑑𝑡

= −𝑥𝑙 +
∑︁
Ω̄

A𝑘
𝑙,𝑖1,𝑖2,···,𝑖𝑘𝑠𝑖1𝑠𝑖2 · · · 𝑠𝑖𝑘 ,

(3.29)

𝑠𝑙 = tanh(𝑥𝑙(𝑡)/𝛽), (3.30)

where 𝑥𝑙 are real continuous variables and 𝛽 is the scaling parameter. The details of the numerical integration of
Eq. (3.28) and Eqs. (3.29-3.30) are presented below respectively.

Figure 3-3 shows the advantage of TGD+CC in comparison with other methods for large scale tensor optimisation
on both dense and sparse tensors. TGD+CC consistently has a better success probability of finding the global minimum.

Corresponding technical details:
Eqs. (3.25-3.26) were Euler integrated with 𝜖 = 0.001𝑀 , 𝛾𝑙(𝑡 = 0) = −0.2𝑀 , 𝜌th = 1, with 𝐷 = max(1 − 𝜌/𝜌th, 0)

, 𝑑𝑡 = 0.01, 𝑇stop = 300, 𝑀 = max1≤𝑙≤𝑁

∑︀
Ω̄ |𝐴𝑘

𝑙,𝑖1,𝑖2,···,𝑖𝑘 |. Tensor elements were scaled by 0.05 to slow the dynamics
down.

Eqs. (3.25-3.26) were Euler integrated with 𝜖 = 0.01𝑀 , 𝛾𝑙(𝑡 = 0) = −0.2𝑀 , 𝜌th = 0.1𝑀, with 𝐷 = 100max(1 −
𝜌/𝜌th, 0), 𝑑𝑡 = 0.001, 𝑀 = max1≤𝑙≤𝑁

∑︀
Ω̄ |𝐴𝑘

𝑙,𝑖1,𝑖2,···,𝑖𝑘 |. The elements of dense (sparse) tensors were multiplied by 5/6𝑁

(15/6𝑁).
Eq. (3.28) was Euler integrated with 𝑑𝑡 = 0.001 with the saem number of iterations as in other methods. The

initial conditions 𝑥𝑙(𝑡 = 0) were uniformly randomly distributed in [−0.5, 0.5], and ℎ𝑗+1 = 1.2ℎ𝑗 is updated each time∑︀
𝑙 |

𝑑𝑥𝑙
𝑑𝑡

| < 0.001 is satisfied.
Eqs. (3.29-3.30) were Euler integrated with 𝑑𝑡 = 0.02. The initial conditions 𝑥𝑙(𝑡 = 0) are randomly distributed in

[−5, 5], 𝛽(𝑡 = 0) = 10, while 𝛽𝑗+1 = 0.8𝛽𝑗 is updated each time
∑︀

𝑙 |
𝑑𝑥𝑙
𝑑𝑡

| < 0.001 is satisfied.
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3.3 Alternative application methods
When speaking about the EP system in the context of the applications, especially the information-processing applications,
one has to understand that this condensed-matter system has many degrees of freedom, which can be experimentally
manipulated. It allows one to utilize the experimental setup in many other ways than the presented methodology
of pairwise/multiwise condensates interaction. Choosing other degrees of freedom mostly determines the operational
setup. For the demonstrative purpose, it is helpful to present alternative approaches, which mainly deal with EPs as the
macroscopic two-level system.

The first approach is based on the similarity of superfluid polariton flows [198] and superconducting electric currents.
It aims at building a polariton analogue of the superconducting flux qubit [207]. The idea is to introduce a 𝜋-phase
delay in the condensate ring, which forces the quantum fluid to propagate a clockwise or anticlockwise circular current to
reduce the total gained phase to 0 or 2𝜋 value. This 𝜋-delay line can be provided by a dark soliton pinned to a potential
well created by a C-shape nonresonant pump spot. The resulting condensate exhibit coherent oscillations, which give
the artificial qubits their desired properties. The combination of different resonant/nonresonant pumping as well as
their parameters allows one to manipulate the condensate given quantum state, its phase and other properties [207]. In
particular, it is possible to achieve the following effective Hamiltonian in the following truncated two-level basis:

�̂� =
Δ0

2
𝜎𝑧 +

𝛿𝜔

2
𝜎𝑥, (3.31)

where Δ0 is the energy of the basis states splitting, and 𝛿𝜔 is the parameter corresponding to the gauge field-induced
splitting between the circular polariton flows with opposite momenta. Based on the EP system, one can obtain familiar
for the quantum information science operations, such as Pauli 𝑋 and 𝑌 gates (denoted as ℛ𝑥 and ℛ𝑦, which require the
electric pulses, generating a time-periodic radial electric field polarizing excitons in the cavity plane), the 𝑍-gate ℛ𝑧(𝜃)

(achieved by the appropriate time delay ℏ𝜃/Δ0 between two successive single-qubit operations), the so-called iSWAP
operation (permuting the states of the two qubits with the addition of 𝜋/2 phase difference), NOT-gate (simple qubit
flip), CNOT-gate and Z-CNOT-gate. Moreover, using such operations, one can repeat Deutsch’s algorithm [208].

Another similar complete theoretical scheme of quantum computing was introduced in [209]. It describes how
to realize qubits externally controllable by applied laser pulses based on the quantum fluctuations in semiconductor
micropillars. One can utilize quantum tunnelling and nonlinear interactions between the condensates to realize the
quantum information domain’s basic operations.

3.4 Machine learning approaches
The classical XY model, sometimes also called classical rotator or simply O(2) model, was a subject of extensive theo-
retical and numerical research and appears to be one of the basic blocks in the rich hierarchy of the condensed matter
systems [210, 211, 212, 213, 214]. The latest advances in metrology and experimental techniques across different domains
of the condensed matter field [169, 215, 216, 217] allow fabricating different devices, whose operations are based on
the underlying mechanisms of the physical systems. Several activities are aiming to recreate different models on chips
for both fundamental and applied purposes. It was shown before that EPs appear to be the system that gives rich
opportunities for many applications [218, 219, 68, 220, 221, 222, 223, 224, 225] and in particular the reconstruction of
the XY model [68, 188]. The problem arises in attempts to even start using or manipulating these systems for simple
mathematical operations, not to mention more complex procedures.

We choose the classical XY model for the demonstrative purpose of a simple system, which behaves in a nonlinear
way in the process of equilibration and can be used as an excellent example for possible extensions. With the motivation
to translate the deep learning (DL) architecture into the classical condensed matter platform, we show how to build very
complex structures based on the XY model’s nonlinear blocks. The corresponding kind of Hamiltonian is quite general
because it can be found in nature as magnetic materials or can be reproduced with other condensed matter systems with
analog simulations [226, 227, 68].

The key points of this section are:

• I show how to realize the basic numerical operations on the small XY models, which variables tend to minimize
the current Hamiltonian clusters’ energy.

• The set of the obtained operations is enough to realize different combinations of mathematical operations and
translate the deep NN architectures to the class of XY models possible.

• Beside the mathematical interest, the discussion of the current approach’s practical significance is presented to-
gether with the engineering details and possible adjustments to the existing special-purpose hardware aimed at
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reproducing the XY models.

• The general methodology of working with the simple but nonlinear systems, which can be extended to other
different Hamiltonians, i.e. with different interactions or models with additional degrees of freedom (quantum
effects), is shown, underlying the large scope of this work.

3.4.1 Basic XY equilibrium blocks

This part is devoted to describing the basic blocks of the XY NN with a particular emphasis on the deep learning (DL)
architecture. DL is usually defined as a part of the ML methods based on the artificial NN with representation learning
and proven to be effective in many scientific domains [50, 51, 52, 53]. It appears to be applicable in many areas ranging
from applied fields such as chemistry and material science to fundamental ones like particle physics and cosmology [228].

The DL is typically referred to as a black box [55, 56]. When it comes to DL’s application, one usually asks questions
about adapting the DL architectures to the new problems, how to interpret the results and how to quantify the outcome
errors reliably. Leaving these open problems behind, the focus is on a more applied task. To build DL architectures,
one wants to transfer the pretrained parameters into a realization of a nonlinear computation. One of the mathematical
core ideas in ML architectures is the ability to build hyperplanes on each neuron output, which taken together allows
one to approximate the input data efficiently and adjust it to the output in the case of supervised learning (for example,
in the classification tasks [229]). This procedure can be paraphrased as the feature engineering that before the modern
DL approaches and the available computational resources was performed in a manual way [230].

Building hardware that performs the hyperplane transformation with a specific type of a nonlinear activation function
with a given precision allows one to separate input data points and present building block operations for more complex
tasks. Studying the hierarchical structures with such blocks leads to constructing more complex architectures capable of
performing more sophisticated tasks.

Decomposing the nonlinear expressions common in the ML such as tanh(𝑤0𝑥0 +𝑤1𝑥1 + . . . +𝑤𝑛𝑥𝑛 + 𝑏), produces a
set of mathematical operations, which one needs to approximate with our system. These are nonlinear operation tanh,
which is conventionally called an activation function, the multiplication of the input variables 𝑥𝑖 by the constant (after
training) coefficients 𝑤𝑖 (also called weights of a NN) and the summation operation (with the additional constant 𝑏,
called bias).

The activation function is an essential aspect of the deep NNs, bringing nonlinearity into the learning process. The
nonlinearity allows modern NNs to create complex mappings between the inputs and outputs, vital for learning and ap-
proximating complex data with high dimensionality. Moreover, the nonlinear activation functions afford backpropagation
due to the smooth derivative of those functions. They normalize each neuron’s output, allowing one to stack multiple
layers of neurons to create a deep NN. The functional form of the nonlinear function is zero centred with the saturation
effect, which leads to a certain response for the inputs that take strongly negative, neutral, or strongly positive values,
not to mention the information-entropic foundation of its derivative form and other interesting properties [231, 232].
One will see that approximating this operation is straightforward with the XY networks.

Firstly, it is possible to introduce the list of simple blocks corresponding to the set of operations necessary to realize
the nonlinear activation function, which can be obtained by manipulating the small clusters of spins with underlying
U(1) symmetry. These clusters minimize the XY Hamiltonian:

𝐻 =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝐽𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗), (3.32)

where 𝑖 and 𝑗 goes over 𝑁 elements in the system, 𝐽𝑖𝑗 is the interaction strength between 𝑖𝑡ℎ and 𝑗𝑡ℎ spins represented
by the classical phases 𝜃𝑖 ∈ [−𝜋, 𝜋]. If one takes several spins as inputs 𝜃𝑖 in such a system and consider the others
as outputs 𝜃𝑘, then it is possible to treat the whole system as a nonlinear function which returns argmin

𝜃𝑘

𝐻({𝜃𝑖}, {𝜃𝑘})

values due to the system equilibration into the steady-state. In some cases the ground state is unique, other cases can
produce multiple equilibrium states.

It is useful to consider the analytical solution to such kind of task, describing the function with one output and
several input variables. One considers the system with 𝑁 spins: 𝜃𝑖, 𝑖 = 1, .., 𝑁 − 1 are input spins and 𝜃𝑁 is the output
spin coupled with the input spins by the strength coefficients 𝐽𝑖 ≡ 𝐽𝑖𝑁 . The system Hamiltonian can be written as
𝐻 =

∑︀𝑁−1
𝑖 𝐽𝑖 cos(𝜃𝑖 − 𝜃𝑁 ). By expanding 𝐻 as

∑︀𝑁−1
𝑖 𝐽𝑖 cos(𝜃𝑖 − 𝜃𝑁 ) =

∑︀𝑁−1
𝑖 𝐽𝑖 cos 𝜃𝑖 cos 𝜃𝑁 +

∑︀𝑁−1
𝑖 𝐽𝑖 sin 𝜃𝑖 sin 𝜃𝑁

one can solve for the minimizer 𝜃𝑁 :

𝜃𝑁 ≡ 𝐹 ((𝜃1|𝐽1), (𝜃2|𝐽2), ..., (𝜃𝑁−1|𝐽𝑁−1)) = − sign𝐵

(︂
𝜋

2
+ arcsin

𝐴√
𝐴2 +𝐵2

)︂
, (3.33)
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Figure 3-4: Several examples of basic blocks and their combinations used in the XY NN architectures. (a)
The block performing the function 𝐹 ((𝜃𝑖𝑛| − 1), (𝜋|𝐽)) with one input spin and one reference/control spin with
imposed 𝜋 value, all coupled with the output by the ferromagnetic −1 and 𝐽 (𝐽 = 1 is used on the picture).
Depending on 𝐽 one can realise the operations that approximate the multiplication by the constant 𝑘 so that
𝜃𝑜𝑢𝑡 ≈ 1.5 tanh 4𝜃𝑖𝑛+0.5𝜃𝑖𝑛 with 𝐽 = −0.9. (b) Two blocks representing 𝐹 (𝐹 ((𝜃1|−1), (𝜋|𝐽1))|−1), (𝜋|𝐽2)). (c)
The block 𝐹 ((𝜃1| − 1), (𝜃2| − 1)) for the the half sum of two variables 𝜃1 and 𝜃2. (d) Two blocks performing the
function 𝐹 (𝐹 ((𝜃1|−1), (𝜃2|−1))|−1), (𝜋|−0.9)). Some of the response functions for these blocks are presented
in Fig.3-5.

where 𝐴 =
∑︀𝑁−1

𝑖 𝐽𝑖 cos 𝜃𝑖 and 𝐵 =
∑︀𝑁−1

𝑖 𝐽𝑖 sin 𝜃𝑖. Alternatively, this formula can be rewritten through the complex ana-
log of the order parameter 𝐶 =

∑︀𝑁−1
𝑖 𝐽𝑖𝑒

𝑖𝜃𝑖 = 𝐴+𝑖𝐵 in the following way: 𝜃𝑁 = 𝐹 ({𝜃𝑖|𝐽𝑖}) = − sign(Im𝐶) (𝜋 −Arg𝐶).
It is possible to present several basic blocks in Fig. 3-4 and the outcomes of the functions responses in Fig. 3-5.

The notation introduced in Eq. (3.33) will be used to describe both the activation function and the graph cluster of
spins below. The recurrent notation where the output of the first block serves as the input to the next one will be used,
for example 𝐹 (𝐹 ((𝜃1|𝐽1), (𝜃2|𝐽2))|𝐽3), (𝜃4|𝐽4)).

To describe the iterative implementation of many (𝑘) identical blocks, where the input is defined in terms of the
output of the previous same block, one can rewrite the recurrent formula for one argument as: (𝐹1 ∘ 𝐹1 ∘ ... ∘ 𝐹1)(𝜃𝑖𝑛) ≡
𝐹1(𝐹1(...𝐹1(𝜃𝑖𝑛))) ≡ 𝐹 𝑘

1 (𝜃𝑖𝑛), where 𝐹1(𝜃𝑖𝑛) = 𝐹 ((𝜃𝑖𝑛|𝐽1), (𝜃2|𝐽2)) is a certain block with the predefined parameters. All
possible blocks of spins are separated into several groups and consider them below in more detail.

The phase 𝜃𝑖 are in [−𝜋, 𝜋], however, for an efficient approximation of the operations (summation, multiplication and
nonlinearity) one needs to limit the domain to [−𝜋/2, 𝜋/2] which we refer to as the working domain. Additionally, we
need to guarantee that the values of the working spins (which are not fixed and are influenced by the system input, thus
serving as analogue variables) are located within the limits of the working domain. This will be implemented below.
Next, I consider the implementation of the elementary operations.

- Multiplication by the constant value 𝑘 > 0. Connecting the input spin with the output spin by the “ferromagnetic”
coupling 𝐽 = −1 will lead to the input spin’s replication. In this way, one can transmit the spin value from one block
to another. Changing the value of the output spin can be achieved in many ways. The addition of another spin with a
different value and coupling it to the output spin with a constant coupling 𝐽 is one such possibility (for example, with
imposed 𝜋 value, which one will refer to as a reference/control spin). If 𝐽 is in [0, 1) (relative to −1 coupling between 𝜃𝑖𝑛
and 𝜃𝑜𝑢𝑡), then the reference spin influences the output spin value with the effective “repulsion” and thus, depending on the
relative coupling strength, decreases the output spin value (see Fig. 3-5(a,b) and the corresponding cluster configuration
on Fig. 3-4(a)). The resulting relation between the input and output spin values can be a good approximation to the
multiplication by certain values lying in the [0, 1] range. The block corresponding to the implementation of 𝐹 ((𝜃𝑖𝑛| −
1), (𝜋|1)) has a peculiarity in case of 𝜃𝑖𝑛 = 0, which allows the output to take any value due to the degeneracy of the
ground state. To overcome this degeneracy, it is possible choose 𝐽 = 0.99.

For 𝑘 > 1 one can use a ferromagnetic coupling 𝐽 < 0 (see Fig. 3-5(c) and the corresponding cluster configuration on
Fig. 3-4(a)). However, the positive values of 𝐽 are more reliable for the implementation since the output functions have
small approximation errors (see Supplementary information for the exact values of this error and further clarification).
One can replace the multiplication by a large factor by the multiplications by several smaller factors to reduce the final
accumulated error. It is possible to guarantee the uniqueness of the output since the clusters are small, and the output
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is defined by Eq. (3.33), which gives the unique solution.
- Nonlinear activation function.
The function 𝐹 ((𝜃𝑖𝑛|−1), (𝜋|−0.9)) is similar to the hyperbolic tanh function (see Fig. 3-5(c) and the Supplementary

information for the exact difference). There are two ways of using such a transformation as an activation function.
1) One can use the similarity between the values of the 𝐹 ((𝜃𝑖𝑛|−1), (𝜋|−0.9)) and the function 1.5 tanh(4𝜃𝑖𝑛)+0.5𝜃𝑖𝑛

(see Fig. 3-5(f)). In general, many nonlinear functions can be used in NNs. Usually, a minor modification in the functional
form of the nonlinear activation function does not change the network’s overall functionality, with the additional training
procedures of NNs in some architectures. It is possible to train the NN initially with the 1.5 tanh(4𝜃𝑖𝑛)+0.5𝜃𝑖𝑛 function
so that in the final transfer, it will not be necessary to adjust the spin system to approximate the given function.

2) One can use the similarity with the approximate hyperbolic tangent function within the XY spin cluster. In other
words, to execute tanh(𝜃𝑖𝑛), one has to perform (𝐹 ((0.25𝜃𝑖𝑛| − 1), (𝜋| − 0.9))− 0.5𝜃𝑖𝑛)/1.5 function using the spin block
operations. This option will be used below.

- Multiplication by the constant value 𝑘 = −1. The main difficulty of this operation is in finding the set of parameters
for the spin block where 𝜕𝐹

𝜕𝜃𝑖𝑛
< 0 holds. 𝐹 ((𝜃𝑖𝑛|1), (𝜋|𝐽)) is a good example of such a block. To perform the multiplication

by 𝑘 = −1, we need to embed the whole working domain into the region where the presented inequality is valid and
return these values with the multiplication by 𝑘 > 0 factor. One final realization can be represented as 𝐹 3

3 (𝐹2(𝐹
2
1 (𝜃𝑖𝑛)))

function, where 𝐹1(𝜃𝑖𝑛) = 𝐹 ((𝜃𝑖𝑛| − 1), (𝜋|0.9)), 𝐹2(𝜃𝑖𝑛) = 𝐹 ((𝜃𝑖𝑛|1), (𝜋|𝐽)), 𝐹3(𝜃𝑖𝑛) = 𝐹 ((𝜃𝑖𝑛| − 1), (𝜋| − 0.2)).
- Summation. The function 𝐹 ((𝜃1|−1), (𝜃2|−1)) gives a good approximation to the half sum (𝜃1+𝜃2)/2. This block is

presented in Fig. 3-4(c) and the cross-sections of the surface defined by the function of two variables 𝐹 ((𝜃1|−1), (𝜃2|−1))

are plotted in Fig. 3-5(e). The plots show that the spin system realizes the half sum of two spin values with a minimum
discrepancy compared to the target function on a working domain. One can multiply the final result by two using
previously described multiplication to achieve an ordinary summation. In general, such a type of summation can be
extended on multiple spins 𝑁 > 2, in a similar way of connecting them to the output spin, with the final value of
(𝜃1 + ..+ 𝜃𝑁 )/𝑁 .

Summarizing, the method of approximating the set of mathematical operations, necessary for performing the tanh(𝑤0𝑥0+

𝑤1𝑥1 + . . . + 𝑤𝑛𝑥𝑛 + 𝑏) function, using the XY blocks described by Eq. (3.33) was presented. The output spin value
of each block is formed when a global equilibrium is reached in the physical system with the speed that depends on
particular system and its parameters. The universality of the model was kept, which allows one to implement this
approach using various XY systems. There were no assumptions about the nature of the classical spins, their couplings,
or the manipulation techniques, however, the forward propagation of information requires directional couplings. As the
blocks corresponding to elementary operations are added one after another, the new output spins and new reference
spins should not change the values of the output spins from the previous block. The directional couplings that affect the
output spins of the next block but not the output spins of the previous block satisfy this requirement. Many systems
can achieve directional couplings. For instance, in optical systems the couplings are constructed by redirecting the light
with either free- space optics or optical fibres to an SLM. At the SLM, the signal from each node is multiplexed and
redirected to other nodes with the desired directional coupling strengths [233].

3.4.2 One-dimensional function approximations

This section illustrates the efficiency of the proposed approximation method on one-dimensional functions of intermediate
complexity by considering two examples of mathematical functions and their decomposition into the basis of nonlinear
operations.

For illustration, it is possible choose two nontrivial functions (one is monotonic and another is non-monotonic). The
use of the methodology for more complex functions in higher dimensions is straightforward. In the next section, I will
show the method efficiency for two-dimensional data-scientific toy problems.

I consider two functions
ℱ1 = 0.125𝐹𝑡(1.2𝑥) + 0.125𝐹𝑡(0.5(𝑥+ 1.4)), (3.34)

and
ℱ2 = 0.125𝐹𝑡(0.5(𝑥− 1.2))− 0.03125𝐹𝑡(0.5(𝑥+ 1.2)), (3.35)

where 𝐹𝑡(𝑥) = 1.5 tanh(4𝑥). Note, that arbitrary functions can be obtained using a linear superposition of scaled and
translated basic functions 𝐹𝑡(𝑥).

The comparison of the XY blocks approximations and the target functions are given in Fig. 3-6 and Fig. 3-7 demon-
strating a a good agreement in the working domain. I also plot the explicit structures of the corresponding XY spin
clusters showing a small overhead on the number of spins used per operation.
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Figure 3-5: Several examples of input-output relations for the basic blocks and their combinations used in the
XY NN architectures. (a) The parametrised family of 𝐹 ((𝜃𝑖𝑛| − 1), (𝜋|𝐽)) functions, that corresponds to the
basic blocks. Depending on 𝐽 coupling strength parameter one can realise the multiplication by arbitrary 𝑘.
(b) The graphs of 𝐹 ((𝜃𝑖𝑛| − 1), (𝜋|𝐽)) functions for various values of 𝐽 illustrating the the multiplication by
small values of 𝑘. (c) The graphs of 𝐹 ((𝜃𝑖𝑛| − 1), (𝜋|𝐽)) functions for smaller values of 𝐽 < 0. (d) The graphs
of 𝐹 3

3 (𝐹2(𝐹
2
1 (𝜃𝑖𝑛)|𝐽)) functions, where 𝐹1(𝜃𝑖𝑛) = 𝐹 ((𝜃𝑖𝑛| − 1), (𝜋|0.9)), 𝐹2(𝜃𝑖𝑛|𝐽) = 𝐹 ((𝜃𝑖𝑛|1), (𝜋|𝐽)), 𝐹3(𝜃𝑖𝑛) =

𝐹 ((𝜃𝑖𝑛| − 1), (𝜋| − 0.2)), showing different negative outputs. (e) The graphs of 𝐹 ((𝜃1| − 1), (𝜃2| − 1)), imple-
menting the block shown on Fig. 3-4(c), which approximates half sum of input variables. (d) The graphs of
1.5 tanh(4𝜃𝑖𝑛) + 0.5𝜃𝑖𝑛 and 𝐹 ((𝜃𝑖𝑛| − 1), (𝜋| − 0.9)).
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Figure 3-6: Top: The demonstration of the approximation quality, obtained by using the nonlinear XY spin
clusters. The analytical monotonic function (red dashed line) is given by Eq.(3.34), the orange line is the
approximation, the blue line is 𝜃𝑜𝑢𝑡 = 𝜃𝑖𝑛. Bottom: The graph structure, representing the basic mathematical
operation in the Eq.(3.34), given by the blocks, discussed in Section 3.4.1. The input variables are mapped into
the top spins, after which the cluster is equilibrated before performing the next operation. The blue empty
nodes are working spins that change according to the variables at higher block. The blue nodes with the fixed
𝜋-value are reference/control spins. The black edges without the notation have the fixed relative strength −1,
while for others the coupling is written on the edges explicitely. The red colour of the edge represents the
positive relative coupling strength 𝐽 . The bottom spin gives the value of the coded function.
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Figure 3-7: Top: The demonstration of the approximation quality, obtained by using the nonlinear XY spin
clusters. The analytical non-monotonic function (red dashed line) is given by Eq.(3.35), the orange line is the
approximation, the blue line is the linear identity relation. Bottom: The graph structure, representing the
essential mathematical operation in Eq.(3.35), given by the blocks, discussed in Section 3.4.1. The notation
used for describing the graph parameters is the same as in Fig. 3-6.
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3.5 Neural networks benchmarks
In this section, the test of the XY NN architectures and check their effectiveness using typical benchmarks are presented.
For simple architectures, the classification of predefined data points perfectly suits this goal. I consider standard two-
dimensional datasets, which conventionally referred to as ‘moons’ and ‘circles’ and can be generated with Scikit-learn
tools [234]. An additional useful property of such tasks is that they are easy for manual feature engineering.

First, one can train a simple NN. The parameters for the training setup are given in Supplementary information
subsection. The final performance demonstrates perfect accuracy in both datasets. The architecture consists of two
neurons’ input layer, one hidden layer with three neurons for each feature and tanh activation function. The output
layer consists of two neurons, which are transformed with Softmax function. The corresponding weights for both cases
are given in Supplementary information subsection. Fig. 3-8 and Fig. 3-9 show the decision boundaries with the given
pretrained architectures and the landscape of one of the final neuron visualizations together with the data points.

Since the focus is on transferring the described architectures into the XY spin cluster system, we consider the basic
architecture adjustment on the example of one feature. Suppose we have the expression tanh(𝑤1𝑥+𝑤2𝑦+ 𝑏). To repeat
the chosen strategy 2) of approximating the nonlinear activation function, it is possible rewrite the coefficients 𝑤1, 𝑤2

and 𝑏 as, say, 𝑤𝑖 → (𝑁/𝐾)[(𝐾/𝑁)𝑤𝑖], where 𝐾 is a parameter chosen to increase the accuracy of each computation.
One can approximate the square brackets’ operations using the building blocks from the Section 3.4.1. The factor 𝑁 = 3

will be cancelled by the value 1/𝑁 during the summation of 𝑁 spins, while the factor 𝐾 = 4 in the denominator will
be taken into account during the operation of the function 𝐹 ((𝜃𝑖𝑛| − 1), (𝜋| − 0.9)), which is close to the tanh 4𝜃𝑖𝑛. The
resulting procedure achieves good performance seen in Fig. 3-8, while the details are provided further in Supplementary
information section.

The final Softmax function in the original NN serves as the comparison function of two features to achieve the final
decision boundary’s smooth landscape. One can omit this function and replace it with a simpler expression 𝑥 − 𝑦. To
achieve the binary decision boundaries, one can exploit the block performing 𝐹 ((𝜃𝑖𝑛| − 1), (𝜋| − 0.9)) several times to
place the final spin value either close to 𝜋/2 or −𝜋/2. In this way, it is possible to adjust the architecture that performs
the same functions as the described simple NN on a toy model. The final decision boundary of the XY NN approximation
can be seen in Fig. 3-8, which is very close to the boundary of the standard trained NN architecture.

The case of the "moons" dataset is a bit different. While the smooth functions are easy to approximate with the
nonlinear XY blocks, it is quite complicated to reproduce "sharp" patterns with the high value of the function derivative.
For this purpose, we adjust the NN coefficients to achieve good decision boundaries. The difference between the NN and
its approximation and consequent results is shown in Fig. 3-9. Adjusted parameters of NN are given in the Supplementary
information section. Figures 3-8 and 3-9 show the XY blocks of the spin architectures. The presented methodology allows
us to upscale the XY blocks with even more complex ML tasks.

3.5.1 Transfering deep learning architecture

Deep NNs are surprisingly efficient at solving practical tasks [235, 51, 50]. The widely accepted opinion is that the key
to this efficiency lies in their depth [236, 237, 238]. One can transfer the architecture’s depth into our XY NN model
without any significant loss of accuracy.

The transfer of the predefined architecture into the XY model was shown. This section discusses the transition of
more complex deep architectures, which are considered conventional across different ML fields. To extend the method, it
is possible choose two conventional image recognition task models (the architecture details are given in the Supplementary
information section).

The focus of the architecture adjustment will be on operations, which were not previously discussed. The list
of such operations are Conv2D, ReLU activation function, MaxPool2D and SoftMax [50, 239, 240]. The Conv2D

is a simple convolution operation and does not present a significant difficulty, since it factorizes into the operations
previously discussed. ReLU activation function can be replaced with its analog LeakyReLU. Using its similarity with
the analytical expression 1.5(1 + tanh 0.8(𝜃𝑖𝑛 − 1.5)) allows one to obtain the following set of transformations through
𝑧 = 𝐹 (𝐹 ((𝜃𝑖𝑛|− 1), (−1.5|− 1))|− 1), (𝜋|1.5)). Performing the summation of the three terms 1.5, 𝐹 ((𝜃𝑖𝑛|− 1), (𝜋|− 0.9))

and −0.5𝜃𝑖𝑛 gives us a good approximation for LeakyReLU.
MaxPool2D relies on max(𝑥, 𝑦) realisation. Therefore, it is convenient to use two similar architectures of spin value

transmission, which are symmetrical with respect to variables 𝑥 and 𝑦. The first one consists of 𝑥 − 𝑦 operation,
ReLU approximation ( which is essentially max(0, 𝑥− 𝑦) function), and summation with the 𝑦 variable, while the second
architecture interchanges 𝑥 and 𝑦 and consists of 𝑦−𝑥, ReLU and +𝑥 operations. Summing the results of each architecture
will give us the required value of max(𝑥, 𝑦).
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Figure 3-8: Top row: Decision boundaries of the simple (2,3,2) NN on the left and approximated ones for the
XY NN on the right on toy 2-D circle data set. Black lines represent the bounds for automatically found features
in the middle layer of classical NN, and the approximated features are shown on the right picture. Middle row:
The isosurface for the one particular chosen feature for typical NN and its corresponding matched XY NN last
variable isosurface. The parameters of both NN and XY NN architectures can be found in the Supplementary
information. Bottom: The corresponding graph structure.
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Figure 3-9: Decision boundaries of the simple (2,3,2) NN on the left and approximated ones for the XY NN on
the right on toy 2-D moons data set. Black lines represent the bounds for automatically found features in the
middle layer of classical NN, the approximated features adjusted for this specific task are located in the right
picture. Middle row: The isosurface for the one particular chosen feature for typical NN and its corresponding
matched XY NN last variable isosurface. The parameters of both NN and XY NN architectures can be found in
the Supplementary information. One can state that the XY model can give a good approximation of the classical
NN architectures with not ideally smooth representations, but requires small adjustments of their parameters,
due to difficulties with representing sharp geometric figures (which in general can be multidimensional). Bottom:
The corresponding graph structure.
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Figure 3-10: The picture’s left side demonstrates the graph representation of the 𝐹𝑡(0.5(𝑥 + 1.4)) operation
defined in the text. The final spin values are established through 6 time units, and the measure equals the
local characteristic equilibration time of the XY spin cluster. The right side shows the alternative architecture,
which performs each operation at the same cluster while saving the local output spin value and transferring it
the next time through the self-locking mechanism. The colour correspondence is the same as in XY graphs:
blue nodes are the working spins, and green are reference/control spins with 𝜋-values.

The SoftMax 𝑒𝑧𝑖/
∑︀𝐾

𝑗=1 𝑒
𝑧𝑗 with the input variables 𝑧𝑖 can be approximated using several assumptions. Diminishing

the exponential embeddings, the problem breaks down into approximating the 𝑥
𝑥+𝑦

function for 𝑥 > 0 and 𝑦 > 0.
Approximating 1

1+0.1𝑦/𝑥
≈ 0.9 tanh(4𝑦/𝑥), one can use the block 𝐹 ((𝜃𝑖𝑛| − 1), (𝜋| − 0.9)) to represent tanh function,

while the scaling factor 0.1 can be controlled by an alternative architecture that depends on 𝑦.

3.5.2 Exciton-polariton setting

In this subsection, we discuss implementing the proposed technique using a system of EP condensates. As was previously
shown, it is possible to reproduce XY Hamiltonian in the context of EPs [68, 188]. Each condensate is produced by
the pumping sources’ spatial modulation and can be treated with the reduced parameters for each unit representing
the density and phase degrees of freedom, serving as the analogue variables for the minimization problem. The EP
condensate is a gain-dissipative, non-equilibrium system due to the finite quasiparticle lifetimes. Polaritons decay emitting
photons. Such emission carries all necessary information of the corresponding system state and can serve as the readout
mechanism. Redirecting photons from one condensate to another using an SLM allows to couple the condensates in a
lattice directionally [233].

The system of condensates maximizes the total occupation of condensates by arranging their relative phases so as
to minimise the XY Hamiltonian [68]. The EP platform allows one to manipulate several parameters, such as coupling
strengths between the condensates to tune them to the particular mathematical operation, or to fix the phase of the con-
densate (through the combination of resonant and non-resonant pumping, see [241]), and thus creating reference/control
spins. Each input spin of the whole system can be controlled via two fixed couplings with the two reference/control
spins of different values, see, for example, one of the blocks from Fig. 3-5. Fixing the coupling coefficients between other
spatially located elements is required to perform the necessary operation and establish the XY network. It can be further
upscaled to approximate a particular ML architecture, with the final output spin being the readout target.

One additional note is that the same system can be exploited differently by introducing the spin self-locking mecha-
nism. It consists of saving the spin value in the system without coupling connections with the external elements. This
mechanism can be achieved by coupling the local output with another element(s) with high negative coupling strength
and consequent decoupling it from the previous units. The self-locking allows one to save the local output and use it for
the consequent operations, without significant overhead on elements coming from the previously established operations. I
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demonstrate the difference in Fig. 3-10. The initial universal methodology requires all elements, which the XY graph con-
tains. The presented alternative, requiring a self-locking mechanism, operates with fewer spins by performing each action
at the same cluster. Hence, it is volume efficient, which is noticeable in the scaling of elements per operation. Fig. 3-10
shows the same operation with 16 spins (without external nodes) and 8 total spins with the self-locking mechanism.

3.5.3 Conclusions and future directions

In this chapter, I introduced the robust and transparent approach for approximating the standard feedforward NN
architectures utilizing the set of nonlinear functions arising from the classical XY spin Hamiltonian behaviour and
discussed the possible extensions to other architectures. The number of additional spins required per operation scales
linearly. The best-case scenario has two spin elements per multiplication and nonlinear operation (not taking into account
the multiplication by a negative factor), making the general framework rather practical. Some operation approximations
used in this work allow additional improvements to reduce the cumulative error between the initial architecture and its
nonlinear approximation (see Supplementary information).

The entire spectrum of the benefits dramatically depends on a particular type of optical or condensed matter platform.
The presented approach has universal applicability, and at the same time, has a certain degree of flexibility. It preserves
basic blocks’ simplicity, and overall structure works with the intermediate complexity architectures capable of solving
toy model data scientific tasks. The upscaling to reproduce DL architectures was discussed.

Finally, the alternative of using a hybrid architecture was presented. Instead of transferring the operations used
in the conventional NN model, one can introduce the nonlinear blocks coming from the presented XY model into the
working functional given by a particular ML library. For example, one can change the activation function into the one
that comes from the system operation and therefore is easily reproducible by that system. This would result in the
architecture and the transfer process that do not require additional adjustments from the hardware perspective.

The question about the implementation of the backpropagation mechanism, i.e. computing of the gradient of the NN
weights in a supervised manner, usually with the GD method, is still under consideration because of the limited scope
of the work with the transfer of the predefined, pretrained architecture.

Supplementary information.
Here one can find the parameters of the NNs used in this section and details of the training and approximations for
the XY graphs. Moreover, one can find two DL architectures mentioned in the main text emphasising their nonlinear
operations.

For training simple classical (2, 3, 2) feedforward NN architectures on "moons" and "circle" datasets the Pytorch
library was used [80] with the Adam optimizer [242] with batch size 32 and learning rate 0.01 value. The expected
learning procedure passed without the problems on datasets consisting of 200 points generated with the small noise of
magnitude 0.1. The final performance gives perfect expected accuracy in both cases.

For the "circles" dataset, the NN parameters are presented in Table 3.1.

Table 3.1: NN (2,3,2) parameters used for the toy dataset ’circles’

(a)

𝑤11 𝑤12 𝑏1
−1.3465 −2.4191 1.1582
−3.5880 −0.1474 −1.5228
−1.3565 2.6776 1.5239

(b)

𝑤21 𝑤22 𝑤23 𝑏2
−17.8809 16.4797 −18.2794 23.6661
17.3684 −17.0227 18.4634 −23.3256

The first row of mathematical approximations gives us similar coefficients. One can rewrite in the same manner
the NN parameters with minor adjustments for demonstrative purposes (see the main text for the detailed analysis of
possible assumptions and the improvements such as the multiplication by the scaling coefficients).

The presented approximation architecture given in Table 3.2 was adjusted for better representation of one final
feature, which is general enough to mark the decision boundaries for this particular task, while getting rid of the un-
necessary parameters. Another approximation stage leads us to the final architecture, which is shown in Fig. 3-8. Let
𝑓𝑖 denote the 𝑖-th feature and 𝑅(𝑥) = 𝐹 ((𝐹1(𝑥)| − 1), (𝐹3(𝐹2(𝑥))| − 1)), where 𝐹1(𝑥) = 𝐹 ((𝑥| − 1), (𝜋| − 0.9)), 𝐹2(𝑥) =

𝐹 ((𝑥| − 1), (𝜋|1)), 𝐹3(𝑥) = 𝐹 ((𝑥|1), (𝜋|2)) represents the approximation of the activation function with the reduced ac-
curacy, then:
𝑥11 = 𝐹 ((𝐹 ((𝑥1| − 1), (𝜋|0.99))|1), (𝜋|2))
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Table 3.2: XY NN (2,3,1) parameters used to approximate the standard NN for the toy dataset ’circles’

(a)

𝑤11 𝑤12 𝑏1
−0.5 −0.75 0.35
1.0 0.0 0.45
−0.5 1.0 0.6

(b)

𝑤21 𝑤22 𝑤23 𝑏2
1.0 1.0 1.0 −0.31

𝑥12 = 𝐹 ((𝐹 ((𝑥11| − 1), (𝜋|0.99))|1), (𝜋|2))
𝑦11 = 𝐹 ((𝐹 ((𝑦1| − 1), (𝜋|0.99))|1), (𝜋|2))
𝑦12 = 𝐹 ((𝐹 ((𝑦11| − 1), (𝜋| − 0.08))| − 1), (𝜋| − 0.08))

𝑓1 = 𝐹 ((𝑥12| − 1), (𝑦12| − 1), (𝑏1 = 0.35| − 1))

𝑓11 = 𝑅(𝑓1);

𝑥21 = 𝐹 ((𝐹 ((𝑥2| − 1), (𝜋|0.99))|1), (𝜋|2))
𝑓2 = 𝐹 ((𝑥21| − 1), (𝑦2| − 1), (𝑏2 = 0.6| − 1))

𝑓22 = 𝑅(𝑓2);

𝑓3 = 𝐹 ((𝑥3| − 1), (𝑦3|0), (𝑏3 = 0.45| − 1))

𝑓33 = 𝑅(𝑓3);

𝐺0 = 𝐹 ((𝑓11| − 1), (𝑓22| − 1), (𝑓33| − 1))

𝐺 = 𝐹 ((𝐺0| − 1), (𝑔 = −0.1033| − 1))

This structure is represented in Fig. 3-8.
The NN parameters for the "moons" dataset are presented in 3.3 Table.

Table 3.3: NN (2,3,2) parameters used for the toy dataset ’moons’

(a)

𝑤11 𝑤12 𝑏1
6.2888 −3.2930 −3.0992
−3.5880 −4.2940 5.9965
−6.1958 −2.7684 0.6882

(b)

𝑤21 𝑤22 𝑤23 𝑏2
−6.1143 −6.8860 −6.8151 −0.0621
6.6825 6.2848 6.8381 −0.0325

First row of the approximations parameters is given in Table 3.3 .

Table 3.4: XY NN (2,3,1) parameters used to approximate the standard NN for the toy dataset ’moons’

(a)

𝑤11 𝑤12 𝑏1
1.0 −0.125 −0.9
1.0 −0.125 0.9
−0.5 −0.125 0

(b)

𝑤21 𝑤22 𝑤23 𝑏2
1.0 1.0 1.0 0.065

The presented architecture was adjusted for better representation of one final feature. For the case of "moons," the
additional adjustment has been added since the presented XY architecture has lower expressivity for the case of sharp
boundaries. Another approximation stage leads us to the final architecture, which can be found in Fig. 3-9:
𝑦11 = 𝐹 ((𝐹 ((𝑦1| − 1), (𝜋|0.99))| − 1), (𝜋|0.99))
𝑦12 = 𝐹 ((𝐹 ((𝑦11| − 1), (𝜋|0.99))|1), (𝜋|2))
𝑓1 = 𝐹 ((𝑥1| − 1), (𝑦12| − 1), (𝑏1 = −0.95| − 1))

𝑓11 = 𝑅(𝑓1);

𝑦21 = 𝐹 ((𝐹 ((𝑦2| − 1), (𝜋|0.99))| − 1), (𝜋|0.99))
𝑦22 = 𝐹 ((𝐹 ((𝑦21| − 1), (𝜋|0.99))|1), (𝜋|2))
𝑓2 = 𝐹 ((𝑥1| − 1), (𝑦22| − 1), (𝑏1 = 0.9| − 1))

𝑓22 = 𝑅(𝑓2);

𝑥31 = 𝐹 ((𝐹 ((𝑥3| − 1), (𝜋|0.99))|1), (𝜋|2))
𝑦31 = 𝐹 ((𝐹 ((𝑦3| − 1), (𝜋|0.99))| − 1), (𝜋|0.99))
𝑦32 = 𝐹 ((𝐹 ((𝑦31| − 1), (𝜋|0.99))|1), (𝜋|2))
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𝑓3 = 𝐹 ((𝑥31| − 1), (𝑦32| − 1), (𝑏1 = 0| − 1))

𝑓33 = 𝑅(𝑓3);

𝐺0 = 𝐹 ((𝑓11| − 1), (𝑓22| − 1), (𝑓33| − 1))

𝐺 = 𝐹 ((𝐺0| − 1), (𝑔 = 0.0216| − 1))

The presented structure follows the graph structure given in Fig. 3-9.
The presented DL architectures are defined with the Pytorch library’s help in the following Table 3.5.

Table 3.5: Examples of the simple DL architectures used to represent nonlinear/unique functions. (a) NN for
simple 10 classes digit recognition. (b) NN for CIFAR10 dataset classification.

(a)

NN layer
5 × 5 Conv2D(3,6)
2 × 2 MaxPool2D
5 × 5 Conv2D(6,16)
Linear (400,120)
Linear (120,84)
Linear (84,10)

(b)

NN layer
5 × 5 Conv2D(1,10)
2 × 2 MaxPool2D
ReLu
Dropout(0.5)
5 × 5 Conv2D(10,20)
2 × 2 MaxPool2D
ReLU
Flatten
Linear (320,50)
ReLU
Linear (50,10)
Softmax

In Table 3.5, one can find the details of two DL architectures that were discussed in the main text emphasizing their
nonlinear operations.

Finally, the initial task of approximating a particular set of mathematical operations by the parametrized family of
nonlinear functions can be done more rigorously with a potential for the accumulated error estimation through the layers
of NN.

The discrepancy between the target function and its approximation can be estimated with the 𝐿1([−𝜋/2, 𝜋/2]) norm
on the working domain:

𝐿1 =

∫︁ 𝜋/2

−𝜋/2

| − sign𝐵(𝑥, {𝐽𝑖})
(︂
𝜋

2
+ arcsin

𝐴(𝑥, {𝐽𝑖})√︀
𝐴(𝑥, {𝐽𝑖})2 +𝐵(𝑥, {𝐽𝑖})2

)︂
− 𝑓(𝑥)target|𝑑𝑥. (3.36)

Starting with the multiplication operation, one can calculate Eq. (3.36) with 𝑓(𝑥, 𝑘)𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑘𝑥 and obtain the expression
(depending on the (𝐽, 𝑘) parameters) for one block of spins. Further minimisation of Eq. (3.36) leads to the expression for
𝐽(𝑘). Evaluating Eq.(3.36) analytically can be done in simpler way by replacing the expression involving arcsin function
the one with arcctg, so that initial integral (in terms of the argument of the complex parameter 𝐶 =

∑︀𝑁−1
𝑖 𝐽𝑖𝑒

𝑖𝜃𝑖)
contains the following expression for one input and one control/reference spin:

𝐼 =
∫︀ 𝜋/2

−𝜋/2
arcctg 𝐵((𝑥|−1),(𝜋|𝐽))

𝐴((𝑥|−1),(𝜋|𝐽))
𝑑𝑥 =

∫︀ 𝜋/2

−𝜋/2
arcctg sin(𝑥)

𝐽+cos(𝑥)
𝑑𝑥. (3.37)

We evaluate this to

𝐼 = 𝑥 arcctg
sin(𝑥)

𝐽 + cos(𝑥)
+

1

4
(𝑥2 + 2𝑖 sign(𝐽2 − 1)××(𝑖[Li2(

𝐷(1− 𝐸)

1 + 𝐸
) + Li2(

𝐷*(1− 𝐸)

1 + 𝐸
)] +

+2𝑥 arctanh(𝐸−1)−𝐺 arctanh(𝐸) + [𝐺− 2𝑖 arctanh(𝐸)] log
2𝐽(1 + 𝐸)

𝐼1(𝑡𝑔(𝑥/2)− 𝑖)
+ [𝐺+ 2𝑖 arctanh(𝐸)] log

2𝐽(1 + 𝐸)

𝐼2(𝑡𝑔(𝑥/2) + 𝑖)
+

+ log𝐻𝑒−𝑖𝑥/2(2𝑖 arctanh(𝐸)− 2𝑖 arctanh(𝐸−1) +𝐺) + log𝐻𝑒𝑖𝑥/2(2𝑖 arctanh(𝐸−1)− 2𝑖 arctanh(𝐸) +𝐺)))

⃒⃒⃒⃒𝜋/2

−𝜋/2

,(3.38)

with variables𝐷(𝐽) = (𝐽2+1+|𝐽2−1|)/2𝐽 , 𝐸(𝑥, 𝐽) = 𝑖|𝐽2−1|
(𝐽+1)2

tg 𝑥/2, 𝐶(𝐽) = arccos(−𝐽2+1
2𝐽

),𝐻(𝐽) = 𝑖|𝐽2−1|
2
√
𝐽
√

𝐽2+2𝐽 cos 𝑥+1
,𝐼1(𝐽) =

2𝑖(𝐽 − 1), if 𝐽2 > 1; 2𝑖𝐽(1− 𝐽), otherwise, 𝐼2(𝐽) = 2𝑖𝐽(𝐽 − 1), if 𝐽2 > 1; 2𝐽(𝐽 − 1), otherwise and arcctg, arctanh, arccos

denoting the inverse for tangent, hyperbolic tangent, cosine functions respectively with Li𝑠(𝑥) =
∑︀∞

𝑘=1 𝑥
𝑘/𝑘𝑠 being the

polylogarithm function and * denoting the complex conjugate operation. One can simplify the given formula by the
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Figure 3-11: Top: (a) Function 𝐽(𝑘) that minimizes Eq. (3.36) with 𝐹 ((𝑥| − 1), (𝜋|𝐽)), 𝑓(𝑥)𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑘𝑥 and a
positive factor 𝑘 (blue line), its approximation (white blue line) and the fitted formula ≈ 1/𝑘−1. The supporting
plots depict 102𝐿1 (light orange line) and 102𝐿∞ (orange) for each value of 𝑘. Vertical black lines denote the
points with the minimal accumulated error. (b) Function 𝐽(𝑘) that minimises Eq. (3.36) with 𝐹 ((𝑥|1), (𝜋|𝐽)),
𝑓(𝑥)𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑘𝑥 and a negative factor 𝑘 (blue line), its approximation (white blue line) and the fitted formula
≈ 0.4−1/𝑘. The supporting plots depict 2𝐿1 (light orange line) and 2𝐿∞ (orange) for each value of 𝑘. Bottom:
(c) Function tanh 4𝑥+ 𝑥/2 (blue line) and its approximation with the function 𝐹 ((𝑥| − 1), (𝜋| − 0.9036)) (light
blue line) with the optimised parameter 𝐽 . The supporting orange plot represents the error at each point
on 𝑥-axis. (d) The half-sums for 𝑥 and two variables 𝑦 = −0.2𝜋, 0.2𝜋 (blue lines), which coincide with their
approximations 𝐹 ((𝑥|−1), (𝑦|−1)) (white blue) giving insignificant approximating error 1013𝐿1 (red and orange
lines).

contraction of the complex pair terms:

𝐼 = 𝑥 arcctg
sin(𝑥)

𝐽 + cos(𝑥)
+

1

4
(𝑥2 + 2𝑖 sign(𝐽2 − 1)× (𝑖[

∞∑︁
𝑘=1

2 cos(𝑘𝜑)

𝑘2
] + 2𝐺 log𝐻 + (2𝑥−𝐺) arctanh(𝐸)+

+𝐺 log
𝐽(1 + 𝐸)2

𝐸2(𝐽 + 1)2 − (𝐽 − 1)2
− 2𝑖 sign(𝐽2 − 1)× arctanh(𝐸) log

𝐽(𝐸(𝐽 + 1)− (1− 𝐽))

𝐸(𝐽 + 1)− (𝐽 − 1)
))

⃒⃒⃒⃒𝜋/2

−𝜋/2

, (3.39)

where a new variable 𝜑 = Arg(D(1-E)/(1 + E) was added.
To shorten the description of the dependence of the coupling strength 𝐽 on the multiplication factor 𝑘 and avoid

overcomplicated analytical expressions, the plot of its approximation is presented, which alternatively can be calculated
numerically and can be approximated by an expression 1/𝑘− 1 with a good accuracy. Additionally, the 𝐿1([−𝜋/2, 𝜋/2])
was calculated according to Eq. (3.36) for each value of 𝑘. Another good measure of the approximation quality is 𝐿∞,
which is the maximal discrepancy between the functions 𝐹 ((𝑥| − 1), (𝜋|𝐽)) and 𝑓(𝑥)𝑡𝑎𝑟𝑔𝑒𝑡, which has a similar behaviour
as the original norm. Fig. (3-11) (a) shows all the plots corresponding to the multiplication by a positive factor 𝑘 > 0

with the special points of the minimal error at 𝑘 = 1, 0.5 and 𝑘 = 0. These graphs explain why the lesser factors are more
reliable for the multiplication, and why multiplying by a larger factors without factorization leads to worse performance.

The same task of multiplication, but by a negative factor 𝑘 < 0 is illustrated in Fig. (3-11)(b). The 𝐽(𝑘) function
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can be approximated with a reasonable accuracy by an expression 0.4− 1/𝑘. Since the general error has a much higher
factor ≈ 102 for the negative values, one has to accompany this block with an additional linear embeddings to achieve
a good approximation. The nonlinear function 3/2 tanh 4𝑥 + 𝑥/2 and its approximation with the optimised function
𝐹 ((𝑥| − 1), (𝜋| − 0.9036)) is depicted in the Fig. (3-11)(c). The lowest accuracy is observed near the origin.

The final example of the half-sum approximation is illustrated in Fig. (3-11)(d). The surprisingly good agreement
(with an error of 10−13 of the magnitude) between the initial function and its XY representation 𝐹 ((𝑥|−1), (𝑦|−1)) can
be explained with the help of the Taylor expansion of Eq.(3.33) near zeros. It gives the linear coefficient of 1/2 accurate
to the fourth order of approximation. With all the presented information, one can estimate the maximal discrepancy
between an arbitrary NN and its transferred XY analog, which will be a good measure of the approximation quality and
final adequacy of the transfer.

3.5.4 Revision of the results

After the general discussion, it is vital to emphasize the presented work’s final results. There are many diverse outcomes
of great applied interest and multidisciplinary nature (between the applied mathematics, physics, and computer science
domains). The presented work solves many internal problems of the DL architecture transfer approach; however, the list
of different outcomes is presented below:

It was shown that using the nonlinear operations, representing the equilibration of the spin coupled to the XY
Hamiltonian cluster, we can approximate the basic mathematical operations, in other words, create the nonlinear set of
operations for such logic. Besides the basic mathematical operations, we can upscale this system for DL architectures
of different complexity and calculate the general accumulated error after changing the architecture by its nonlinear spin
logic analog. The DL transfer was the initial motivation for such a task.

The considered system of XY spins is essentially nonlinear in the fundamental interactions between the elements. In
general, nonlinearity complicates the system in the way it can be hardly manipulated. Despite these difficulties, making
the nonlinear system perform an ML-like task in an approximating manner is possible.

It is possible to calculate the probability of a given particular frustrated XY model to be close to the system that
realizes a specific ML architecture, given the clear similarity between the mathematical operations in the architecture
and spin clusters. In general, any system with an adjustable response and wide range of output values can be treated as a
black-box NN. The coupling parameters and fixed spins give the subspace of all possible configurations or the probability
of realizing such configurations.

The general methodology of using some multiparametric nonlinear function to approximate the operations in the
neural architecture can be extended on the Hamiltonian with different interactions or additional degrees of freedom in
the same approximation manner.

The equivalence between the ML transformation and XY Hamiltonian’s minimization in the gradient descent manner
was shown. Pretrained ML transformation can be performed in a shallow logic by minimizing the XY model with specific
parameters since each cluster was designed to give the unique output, and the cluster hierarchy was built in a consequent
manner.

In the search for the best physical setup for the specialized hardware, many architectures and concepts appeared that
exploit the XY models in the annealing techniques. The given correspondence allows one to adjust every specialized XY
hardware to be modified to perform the ML task. Adjusting existing architecture can be of great use in some cases. The
number of additional spins required per operation has linear scaling. We have two spin elements per multiplication and
two spins per nonlinear operation in the best practice case.

Finally, we can stress the supporting help of working with such approximating techniques in the hybrid architecture
case. Suppose the system is performing the non-related ML task. In that case, some of its elements can significantly
benefit from the additional clusters, which performs the nonlinear transformations in the same approximating technique,
that was proposed.

3.5.5 Reservoir computing

The section before demonstrated the particular type, close to a reservoir computing (RC) system but did not appear to
be so. It was shortly mentioned about this unconventional type of computing; however, the term was not considered in
great detail. Since this computational method is a subtype of the thesis topic, this section pays additional attention to
this phenomenon.

RC is a term that defines the computational framework when the input variables are fed into a fixed dynamical
system, which is called a reservoir and performs the nonlinear dynamical evolution, after which the readout variables
are read from the system. RC can also be treated as an extension of a particular type of NNs. One can meet additional
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requirements for a system to be called the RC. The essential emphasis that the considered system should be fixed and
nonlinear. The training or the parameter tuning is performed only at the readout stage, i.e. the final post-processing of
the output signal. The two common types of RC are liquid-state machines [243] and echo state networks [244], which
also go hand in hand with their NN paradigms.

RC has additional properties that are implied when one speaks about this type of unconventional computing. One
usually treats the reservoir system as a collection of recurrently connected units. These units’ connectivity structure is
usually supposed to be random, and the units themselves are essentially non-linear. The system’s dynamic evolution
should be driven by the input with the additional property of being affected by the previous states, i.e. have some analog
of the internal states similar to the recurrent NNs. In most works, it is assumed that the reservoir has to realize a rich
collection of dynamical input-output mapping, which is crucial and without the mathematical rigour corresponds to the
available high-dimensional computational space. This transformation of the readout is adapted to the particular task
using a simple regression mechanism. The initial research on the RC did not have a mathematical rigour and mostly
had a heuristic approach due to the lack of the developed mathematical theory of the dynamical systems. However, the
recent RC trends initialize additional interest to the mathematical description, spawn the revision, and new directions
in mathematics [245, 246].

The origins of the RC ideas can be traced down to the 2000s. At that point, a new trend of using recurrent NNs
started with the mentioned echo state networks [244] and liquid state machines [243]. Some of the ideas came from the
ML community; however, several earlier works came from the biological domain. The biologically plausible reservoirs of
the spiking-type neurons, usually associated with the liquid state machines, were first in focus. The pioneering works of
Peter F. Dominey and Wolfgang Maass were first to lay the RC principle’s foundations as early as 1995 [247]. Even after
that moment, the author continued extending and refining the models [248, 249]. More details about the RC origins can
be found in [250, 251].

The previously discussed work on translating the DL architectures into the XY Hamiltonian system can not be
treated as RC since the considered translated architectures were of the feedforward type. The predefined structure does
not have recurrent connections, eliminating the RC’s link and the discussed concept, despite the initial closeness. In any
case, the EP system can possess rich, dynamic behaviour, with the possibility of implementing the RC framework, which
will be discussed further.

The computational power of the variety of available systems can reduce the effective computational cost or gain the
speed benefit for a particular type of task. In such a way, the RC concept is of great practical significance for many
research and industry areas with the potential of direct, helpful economic impact. There are different types of existing
RC systems, implemented on the different experimental settings, which are of conventional type [252, 253].

Many various platforms are potentially suitable for implementing the RC concept. There are electron-based systems
with analog circuits [254], FPGAs [255, 256], VLSI [257], memristive type of RC with neuromorphic devices and circuits
[258]; optoelectronic devices [259]; photonic and optical RC type [260] with the optical node arrays [78], optoelectronic
and optical feedback with gain [261], optical feedback in a laser cavity [262]; spintronic RC [263]; mechanical RC [264] and
even biological type [265]. Besides, RC’s framework is going beyond the traditional platforms, going into the nano-scale
materials and substrates that exhibit stimulation-dependent changes. Another proposal is a nano-scale reservoir with
quantum dots and chemical compounds that change their absorption spectrum depending on the pH or redox potential in
their environment [266]. Each platform has its characteristics, advantages, and disadvantages, coming from the particular
physical system realization and design. Part of them benefit from simpler configurations like mechanical settings, faster
processes in the optical platform, or cope with imperfection and noise.

With the recent progress in quantum computing, the framework of RC has started to be implied to the quantum
platforms. The intrinsic parallelism, connected with the additional degrees of freedom and the exploit of the part of the
Hilbert space, promises the richer dynamics in the classical systems. Such systems’ computational power can reduce the
effective computational cost and memory [267, 268]. With recent advances in the so-called "extraction" of EPs’ quantum
nature beyond the mean-field approach, it can serve as an excellent platform for quantum RC [209].

The EP setting is the focus of researchers who want to establish it as an RC platform. It is actively investigating all
the aspects of the RC concept applicability with the particular emphasis on GL system [76]. Additional research covers
the extensions to quantum RC [75].

RC’s field is an auspicious one with many exciting research directions, exemplary practical implementations, and
inevitable potential benefits; nevertheless, it has its common problems shared between different particular platforms.
One shared problem is the discrepancy between the theoretical description of a given physical system and its practical
realization of its dynamic evolution. Since such a black box’s evolution process is very complex and the system of
differential equations describing the particular hardware is vulnerable to small perturbations, it is possible to get the
significant variance in some cases. In some cases, these results can also be intractable, while simulation of such systems
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may meet the difficulties of results reproducibility.
The theoretical unification is still in progress. The standard mathematical treatment of RC is the recurrent NN

approaches; however, there are additional perspectives with delayed dynamical systems [269], cellular automata [270],
coupled oscillators [271].

3.6 State of the art applications
Here the reader can meet the brief list of the latest experimental advances that were achieved in EP applications,
gathering the outstanding works among the majority of the available papers.

The major aspects of the EP BEC state have been realized. The intriguing new physics in solid-state systems, such
as the formation of a macroscopic coherent state, was observed in [272, 273] with the polariton condensation in [274].
The consequent phenomenon of superfluidity was shown in [275, 276], as well as other topological effects, like quantized
vortices [277] or [278, 279, 280] together with the non-equilibrium properties [281, 282].

Shifting the attention to the technological applications, one can observe that polaritons appear to be the solid
candidates for technological applications such as dissipation-less optical devices [218, 219], considered with the great
details in this chapter analog simulators [68]. The information transmission using EP devices is a very fruitful direction
of the technological development [220, 221, 222], since the EP complex field has various degrees of freedom that can
be manipulated. Simultaneously, the overall system poses high characteristic time or operational speed, low energy
consumption and volume efficiency, crucial for modern photonics.

It is possible to recreate all-optical systems, like logical switch within the EP system [283], where using an organic
exciton medium with the high quantum yield at room temperature one can start building the foundation for the future
all-optical logical networks. The platform’s ultra-fast intrinsic speed makes the control over the macroscopic condensate
wavefunction via a single photon available [284]. Significant progress is achieved, in comparison with the previous works
on optical switches [223, 224, 225], which are potential carriers for fast and efficient information processing due to their
photonic component.

There is much space for future research and development of practical applications since many EP BEC parameters
were not exploited in terms of information transmission, like the condensate phase.

Another state of the art demonstrates the engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical
cavities [285], which is a part of the research aiming at recreating exotic Hamiltonian systems.

3.7 Engineering periodic structures with the target velocity
The precise implementation of well-controllable lattice potentials for bosonic condensates is an inevitable step towards
the realization of advanced classical [286, 68, 287] and quantum simulators [288]. Polariton condensates in lattices
could be manipulated into soliton, which is seen as a building block for polaritonic circuits, where propagation and
localization are optically controlled and reconfigurable [289]. Velocity control is needed to form topologically protected
stated (e.g. chiral edge states) at the surface of topological insulators that allow unidirectional transport immune to
backscattering and topological edge modes [290], or to form optical delay lines with enhanced transport properties
[291]. The full exploitation of polariton’s potential for technological applications requires engineering microstructures
with certain high quality trapping profiles with precise parameters and realising quasiparticles flow and density control.
Polariton condensation has been recently achieved in a one-dimensional strong lead halide perovskite lattices [292, 293]
paving the way for all-optical integrated logic circuits operating at room temperature.

However, unlike optical lattices of equilibrium ultra-cold BECs, the periodic trapping of nonequilibrium condensates
provides flows between the lattice sites that are difficult to predict and challenging to control. In this section, we show
how to control the velocity and density of polariton condensates by using spatially varying dissipation and pumping
profiles. The spatially controlled dissipation can be achieved by many methods including proton implant technique [294],
excited states absorption [295], by changing the thickness of the film [296] and other techniques [287].

Figure 3-12 shows the schematic of the experimental setup with uniform incoherent injection and nonuniform spatially
varying dissipation that creates the desired flow pattern.

Methodology for a periodically varying dissipation. Our starting point is a generic laser or nonequilibrium condensate
model in the form of the complex complex Ginzburg-Landau equation (cGLE) with saturable nonlinearity that results
from the Maxwell-Bloch equations:

𝑖
𝜕Ψ

𝜕𝑡
= −1

2
ΔΨ+ |Ψ|2Ψ+ 𝑔𝑛𝑅Ψ+ 𝑖[𝑛𝑅 − 𝛾(x)]Ψ, (3.40)
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Figure 3-12: Schematics of the flow management
approach presented in our work. The top yellow
plate represents the source of the incoherent uni-
form pumping (cw excitation). Grey layers denote
the distributed Bragg reflectors between which the
quantum well is located and the formation of the
polariton condensates takes place. On the top we
show density of the polaritons with the light-blue
color scheme representing the periodicity of the
density regions (dark blue (white) color marks the
maxima (minima) of the density). The target flow
profile is shown by the black arrows indicating the
direction of the flow. Below the structure we show
the spatially varying dissipation that leads to such
a flow profile.

where Ψ(x, 𝑡) is the complex-valued order parameter, 𝛾(x) is the spatially varying linear losses due to imperfect con-
finement, 𝑛𝑅 is the density distribution of noncondensed reservoir particles (such as hot excitons) that provides gain
saturation 𝑛𝑅 = 𝑃 (x, 𝑡)(1+ 𝑏|Ψ|2)−1, 𝑃 (x, 𝑡) is the gain, 𝑏 characterizes the relative strengths of the gain saturation and
self-interactions. Parameter 𝑔 characterises the strength of the interactions between the condensate and the reservoir
of noncondensed particles. This model has been quite successful in describing many aspects of lasers and polariton
condensate dynamics and the resulting steady states [281, 282, 197] due to its universality [297, 298, 299].

As the pumping is increased above the threshold for condensation, the coherence across the pumping region is
established. Close to the condensation threshold and with the constant pumping 𝑃 = 𝑃𝑐, 𝑛𝑅 ≈ 𝑃𝑐 − 𝑃𝑐𝑏|Ψ|2 and
Eq. (3.40) can be replaced with a more standard form of the cGLE

𝑖
𝜕Ψ̃

𝜕𝑡
= −1

2
ΔΨ̃ + 𝛽|Ψ̃|2Ψ̃ + 𝑖[𝑃𝑐 − 𝛾(x)− 𝜎|Ψ̃|2]Ψ̃, (3.41)

where 𝜎 = 𝑃𝑐𝑏|1 − 𝑔𝑃𝑐𝑏|−1, Ψ̃ = Ψexp[𝑖𝑔𝑃𝑐𝑡]|1 − 𝑔𝑃𝑐𝑏|1/2, and 𝛽 = sgn(1 − 𝑔𝑏𝑃𝑐) characterises the sign of the self-
interactions: defocusing (𝛽 = +1) or focusing (𝛽 = −1). We also consider 𝛽 = 0, in which case 𝜎 = 𝑃𝑐𝑏 and Ψ̃ =

Ψexp[𝑖𝑔𝑃𝑐𝑡].
If the pumping strength remains constant, the system reaches the steady state characterised by the chemical potential

𝜇, such that Ψ̃ = 𝜓(x) exp[−𝑖𝜇𝑡]. The steady state written using the Madelung transformation 𝜓 =
√︀
𝜌(x, 𝑡)𝑒𝑖𝑆(x,𝑡) in

terms of the density 𝜌 and phase 𝑆 satisfies

𝜇 =
1

2
u2 − 1

2

∇2√𝜌
√
𝜌

+ 𝛽𝜌, (3.42)

1

2
∇ · (𝜌u) = (𝑃 − 𝛾(x)− 𝜎𝜌)𝜌, (3.43)

where u = ∇𝑆 is the condensate outflow velocity profile.
The systems out of equilibrium such as lasers or nonequilibrium condensates are characterised by the existence of

nonzero velocity profiles even at the steady states. The steady-state currents connect regions of net gain with those of
net loss which form due to the combination of density-dependent gain rate and spatial inhomogeneity of either pumping
or dissipation. The superflow velocities in turn affect the density profile. The main question we address in this section is
how to engineer a given velocity profile using the controls available in our system such as the spatially varying pumping
or dissipation. This control will be achieved by observing that nonlinear Eq. (3.42) can be solved yielding the solutions
in terms of 𝜌 for spatially constant pumping and a given velocity profiles. Such density when substituted into Eq. (3.43)
allows one to specify the spatially varying dissipation that leads to the given superflow. This is a generic procedure,
that can be made to works for any physically relevant target velocity profile. We will illustrate this approach using the
velocity profiles that allow to integrate Eq. (3.42) exactly leading to fully analytical pumping and dissipation profiles.
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We also use this method for non-periodic velocity profiles and spatially localised excitations that require numerical
integration of Eq. (3.42). We consider a one-dimensional velocity profile u = 𝑢(𝑥), however, the extension to higher
dimensions is straightforward. Equation (3.42) is the second order nonlinear ordinary differential equation which for
a given periodic expression for 𝑢(𝑥) relates to the steady state of the Gross-Pitaevskii equation (GPE) that describes
trapped quasi-one-dimensional dilute gas of the Bose-Einstein condensate (BEC). The GPE for such gas reads

𝑖𝜓𝑡 = −1

2
𝜓𝑥𝑥 + 𝛽|𝜓|2𝜓 + 𝑉 (𝑥)𝜓, (3.44)

where 𝜓(𝑥, 𝑡) is the macroscopic wavefunction of the Bose-Einstein condensate and 𝑉 (𝑥) is the trapping potential. The
steady state of Eq. (3.44) with 𝜓 =

√
𝜌 exp[𝑖𝑆 − 𝑖�̂�𝑡] and a constant phase 𝑆 satisfies �̂� = 𝑉 (𝑥) − (

√
𝜌)𝑥𝑥/2

√
𝜌 + 𝛽𝜌,

which reduces to Eq. (3.42) if we let 2𝑉 (𝑥) = 𝑢(𝑥)2, �̂� = 𝜇 and 𝜌 = 𝜌. So the trap used in equilibrium condensates can
be thought of as the postulated expressions for the velocity profiles. The density, therefore, can be obtained similarly to
finding the stationary density of equilibrium condensates in a given external potential either analytically (if such solution
is known) or numerically by integrating Eq. (3.44) in imaginary time while renormalizing the wavefunction by the fixed
number of particles. Once we know the density profile, Eq. (3.43) gives the expression for the spatial dissipation that
leads to that density and velocity

𝛾(𝑥) = 𝑃𝑐 − 𝜎𝜌− 1

2
𝑢𝑥 − 1

2
𝜌𝑥𝑢/𝜌. (3.45)

For some external potentials the exact solution of the GPE could be found. An important class of such potentials
are Jacobi elliptic functions, so we first consider 𝑢(𝑥)2 = −2𝑉0sn

2(𝑥, 𝑘), where sn(𝑥, 𝑘) denotes the Jacobi elliptic sine
function with an elliptic parameter 0 < 𝑘 < 1 and 𝑉0 < 0 characterizes the depth of the periodic variation. Such periodic
profiles require translational invariance, that can be realised experimentally using toroidal geometry of excitation [300].
Denoting 𝑟(𝑥) =

√︀
𝜌(𝑥), Eq. (3.42) becomes

𝜇𝑟4(𝑥) = −𝑟
3(𝑥)𝑟′′(𝑥)

2
+ 𝛽𝑟6(𝑥)− 𝑉0sn

2(𝑥, 𝑘)𝑟4(𝑥). (3.46)

The solutions to the nonlinear ordinary differential Eq. (3.46) can be obtained by expanding 𝑟(𝑥) in terms of the
various Jacobi elliptic functions (sn,dn, cn), substituting 𝑟(𝑥) into Eq. (3.46) and equating equal powers of these functions
to zero to get the expressions for the parameters [301, 302].

Defocusing regime; 𝛽 = 1. Firstly, we consider 𝑟2(𝑥) = 𝐴 sn2(𝑥, 𝑘) + 𝐵, which leads to the following conditions
𝜇 = 1

2
(1 + 𝑘2 + 3𝐵 − 𝐵𝑉0

𝑘2−𝑉0
), 0 = 𝐵(1 + 𝐵

𝑘2+𝑉0
)(𝑘2 + 𝑉0 + 𝐵𝑘2), 𝐴 = 𝑘2 + 𝑉0. These conditions are satisfied in the

following three cases. 1) 𝐵 = 0 and 𝐴 = 𝑘2 + 𝑉0 with 𝜇 = (1 + 𝑘2)/2 result in

𝜌(𝑥) = (𝑉0 + 𝑘2)sn2(𝑥, 𝑘), −𝑘2 ≤ 𝑉0 < 0; (3.47)

2) 𝐵 = −𝐴 = −(𝑘2 + 𝑉0) with 𝜇 = 1/2− 𝑘2 − 𝑉0 results in

𝜌(𝑥) = −(𝑉0 + 𝑘2)cn2(𝑥, 𝑘), 𝑉0 ≤ −𝑘2; (3.48)

3) 𝐵 = −(𝑉0 + 𝑘2)/𝑘2 = −𝐴/𝑘2 with 𝜇 = −1− 𝑉0/𝑘
2 + 𝑘2/2 results in

𝜌(𝑥) =
−(𝑉0 + 𝑘2)

𝑘2
dn2(𝑥, 𝑘), 𝑉0 ≤ −𝑘2. (3.49)

Secondly, we consider 𝑟2(𝑥) = 𝑎1cn(𝑥, 𝑘) + 𝑏1 which yields the following conditions on the coefficients: 𝑉0 = − 3
8
𝑘2,

𝜇 = 1
8
(1 + 𝑘2) +

6𝑎2
1

𝑘2 , 0 =
𝑎2
1

4𝑘6 (16𝑎
2
1 − 𝑘4)(16𝑎21 + 𝑘2 − 𝑘4), 𝑏1 =

4𝑎2
1

𝑘2 . This leads to two possibilities for amplitude 𝑎1:
𝑎1 = 𝑘2/4, and 𝑎1 = −𝑘2/4, resulting in

𝜌(𝑥) =
𝑘2

4
(1± cn(𝑥, 𝑘)). (3.50)

Finally we consider 𝑟2(𝑥) = 𝑎2dn(𝑥, 𝑘)+ 𝑏2 that gives the conditions on the parameters 𝑉0 = − 3
8
𝑘2, 𝜇 = 1

8
(1+𝑘2)+6𝑎22,

0 =
𝑎2
2
4
(16𝑎22−1)(16𝑎22+𝑘

2−1), 𝑏2 = 4𝑎22. This leads to 𝑎2 = ±1/4, 𝜇 = 1/2+𝑘2/8 with the expression on the amplitude

𝜌(𝑥) =
1

4
(1± dn(𝑥, 𝑘)), (3.51)

or 2) 𝑎2 =
√
1− 𝑘2/4, 𝜇 = 1− 𝑘2/2 with 𝑘′ =

√
1− 𝑘2 leading to

𝜌(𝑥) =
𝑘′

4
(𝑘′ + dn(𝑥, 𝑘)). (3.52)
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The dissipation profile that leads to these density and flow profiles is determined by Eq. (3.45). The representative
examples of these solutions are depicted in Fig. 3-13.

Focusing regime; 𝛽 = −1. The focusing case yields some different sets of solutions. Taking 𝑟2(𝑥) = 𝐴sn2(𝑥, 𝑘) + 𝐵

leads to 𝜇 = 1
2
(1 + 𝑘2 − 3𝐵 + 𝐵𝑉0

𝑉0+𝑘2 ), 0 = 𝐵( 𝐵
𝑉0+𝑘2 − 1)(𝑉0 + 𝑘2 − 𝐵𝑘2), 𝐴 = −(𝑉0 + 𝑘2). The possible choices are 1)

𝐵 = 0 with 𝜇 = (1 + 𝑘2)/2 leading to

𝜌(𝑥) = −(𝑉0 + 𝑘2)sn2(𝑥, 𝑘), −𝑘2 ≥ 𝑉0, (3.53)

2) 𝐵 = −(𝑘2 + 𝑉0), with 𝜇 = 1/2− 𝑘2 − 𝑉0 leading to

𝜌(𝑥) = (𝑉0 + 𝑘2)cn2(𝑥, 𝑘), −𝑘2 ≤ 𝑉0 < 0, (3.54)

or 3) 𝐵 = (𝑉0 + 𝑘2)/𝑘2 with 𝜇 = −1− 𝑉0/𝑘
2 + 𝑘2/2 leading to

𝜌(𝑥) =
(𝑉0 + 𝑘2)

𝑘2
dn2(𝑥, 𝑘), −𝑘2 ≤ 𝑉0 < 0. (3.55)

Taking 𝑟2(𝑥) = 𝑎1sn(𝑥, 𝑘)+𝑏1 gives us a set of conditions: 𝑉0 = − 3
8
𝑘2, 𝜇 = 1

8
(1+𝑘2)− 6𝑎2

1
𝑘2 , 0 = − 𝑎2

1
4𝑘6 (16𝑎

2
1−𝑘4)(16𝑎21−𝑘2),

𝑏1 =
4𝑎2

1
𝑘2 . If 1) 𝑎1 = ±𝑘2/4, 𝜇 = 1/8− 𝑘2/4, we get

𝜌(𝑥) =
𝑘2

4
(1± sn(𝑥, 𝑘)), (3.56)

or 2) 𝑎1 = ±𝑘/4, 𝜇 = −1/4 + 𝑘2/8, so that

𝜌(𝑥) =
1

4
(1± 𝑘 sn(𝑥, 𝑘)). (3.57)

Finally, we consider 𝑟2(𝑥) = 𝑎2dn(𝑥, 𝑘)+𝑏2 which yields 𝑉0 = − 3
8
𝑘2, 𝜇 = 1

8
(1+𝑘2)+6𝑎22, 0 =

𝑎2
2
4
(16𝑎22−1)(16𝑎22+𝑘

2−1),

and 𝑏2 = −4𝑎22. The only nontrivial solution exists for 𝑎2 =
√
1− 𝑘2/4. Let 𝑘′ =

√
1− 𝑘2, and with 𝜇 = 1/4 + 𝑘′2/4 the

solution becomes
𝜌(𝑥) =

𝑘′

4
(dn(𝑥, 𝑘)− 𝑘′). (3.58)

For any given uniform pumping 𝑃𝑐 the corresponding dissipative profile is given by Eq. (3.45) with some representative
examples of these solutions shown in Fig. 3-13.

Non-interacting case: 𝛽 = 0. The case of 𝑔𝑃𝑐𝑏 = 1 has fewer physically relevant solutions. For 𝑟2(𝑥) = 𝐴sn2(𝑥, 𝑘)+𝐵,
we get 2𝜇𝐴𝐵 = −𝑉0𝐵

2 + 𝐴𝐵 + 𝐴𝐵𝑘2, 0 = (𝜇𝐵 + 𝐴/2)𝐵, 2𝜇𝐴2 = −3𝐴𝑘2𝐵 + 𝐴2(1 + 𝑘2) − 4𝐴𝐵𝑉0, 𝑉0 = −𝑘2, which
leads to the following possibilities. 1)𝐵 = 0 and 𝜇 = (1 + 𝑘2)/2 gives (with 𝐴 > 0)

𝜌(𝑥) = 𝐴 sn2(𝑥, 𝑘), (3.59)

or 2) 2𝜇 = −𝐴/𝐵 = 1 which yields (𝐴 < 0)
𝜌(𝑥) = −𝐴 cn2(𝑥, 𝑘), (3.60)

and 3) 2𝜇 = −𝐴/𝐵 = 𝑘2 results in (𝐴 < 0)
𝜌(𝑥) = −𝐴dn2(𝑥, 𝑘)/𝑘2. (3.61)

For 𝑟2(𝑥) = 𝑎1cn(𝑥, 𝑘) + 𝑏1, or 𝑟2(𝑥) = 𝑎1dn(𝑥, 𝑘) + 𝑏1 setting the terms before the basic functions to zero imposes
equations: 𝜇𝑎21 = −𝑉0𝑎

2
1 + 𝑉0𝑏

2
1 + (1 − 2𝑘2)𝑎21/8, 𝜇𝑏

2
1 = −𝑉0𝑏

2
1 + (1 − 𝑘2)𝑎21/8, for cn-type and 𝜇𝑎21 = −𝑉0𝑎

2
1/𝑘

2 +

𝑉0𝑏
2
1/𝑘

2 + (𝑘2 − 2)𝑎21/8, 𝜇𝑏
2
1 = −𝑉0𝑏

2
1/𝑘

2 + (𝑘2 − 1)𝑎21/8, for dn-type with two common equations 𝑉0𝑎
2
1 + (3𝑎21𝑘

2)/8 = 0,

and 4𝑉0𝑎1𝑏1 + 𝑎1𝑏1𝑘
2 = 0, which are compatable only with 𝑏1 = 0, 𝑉0 = −3𝑘2/8, giving the resulting values for 𝑘 = 1,

𝜇 = 1/4. The final solutions in both cases take the form of a solitary wave:

𝜌(𝑥) = 𝑎1sech(x), 𝑎1 > 0. (3.62)

Next, we consider the stability of the presented solutions by evolving them dynamically according to Eq. (3.40).
The instability takes place when the dissipative profile becomes strongly negative in some spatial regions, so starts
representing the generation of quasiparticles that can not be compensated by the remaining positive dissipative regions.
This leads to the uncontrollable growth of particles in the repulsive (𝛽 = 1) and non-interactive (𝛽 = 0) regimes; in
attractive regime (𝛽 = −1) the system either exhibits oscillations due to the interplay between attractive forces and fast
saturation response or undergoes the transition to another stationary solution. We note that when the solution is stable,
the system finds it starting from any random noise, not just from the perturbed solution. This assures that the control
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Figure 3-13: Flow velocity 𝑢(𝑥) (green dotted lines), density 𝜌(𝑥) (dashed blue lines) and the dissipation profile
𝛾(𝑥) (black solid lines) in the repulsive 𝛽 = 1 (a,b,c),(g,h,i) and attractive 𝛽 = −1 (d,e,f) regimes (with
𝑔 = 1, 𝑏 = 1.5). Shown are the solutions given by Eq. (3.47) with 𝑃𝑐 = 0.5, 𝑘 = 0.707, 𝑉0 = −0.14 (a),
Eq. (3.49) with 𝑃𝑐 = 1/3, 𝑘 = 0.707, 𝑉0 = −0.58 (b), Eq. (3.52) with 𝑃𝑐 = 0.5, 𝑘 = 0.866, 𝑉0 = −0.28125
(c), Eq. (3.53) with 𝑃𝑐 = 5/6, 𝑘 = 0.5, 𝑉0 = −0.41 (d), Eq. (3.55) with 𝑃𝑐 = 5/6, 𝑘 = 0.5, 𝑉0 = −0.2275 (e),
Eq. (3.57) with 𝑃𝑐 = 5/6, 𝑘 = 0.866, 𝑉0 = −0.28125 (f), Eq. (3.49) with 𝑃𝑐 = 1/3, 𝑘 = 0.5, 𝑉0 = −0.5 (g,h,i).
The last row demonstrates the stable solutions with the perturbed dissipation profiles given by the equations
0.5𝛾𝑚𝑎𝑥(1− sign(cn(𝑥, 𝑘))|cn(𝑥, 𝑘))|0.8 (h) and 0.5𝛾𝑚𝑎𝑥(1− sign(cn(𝑥, 𝑘))|cn(𝑥, 𝑘))|0.6 (i).
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Figure 3-14: Stability diagrams for the family of dn(x,k) solutions given by Eq. (3.49), Eq. (3.55) and Eq. (3.61)
(with 𝑔 = 1, 𝑏 = 1.5), obtained by numerical integration of Eq. (3.40)(a, without the Taylor expansion for the
pumping term) and Eq. (3.41)(b, with the Taylor expansion). Green color stands for stable, yellow - for unstable
and light green - for the transitional regimes to a different stable configuration. Black line depicts the solutions
with 𝛽 = 0, dash lines - the borders for the specified regions, while black crosses indicate the solutions also
shown in Fig. 3-15.

is working and leads to the target velocity profile.
Figures 3-15 (a-c) and (d-f) demonstrate the behavior of the solutions governed by Eq. (3.49) and Eq. (3.55) respec-

tively: stable evolution, evolution to a different stationary solution and unlimited growth of the density due to the lack
of the gain saturation.

On the one hand, the negative dissipation (gain) has been experimentally realised by using injection below the
threshold for the condensate formation [303]. On the other hand, one can use the linear relationship between the
pumping intensity 𝑃𝑐 and the dissipation given by Eq. (3.45) to increase 𝑃𝑐 to make 𝛾 > 0 for all x. This will stabilise
the solution while removing the necessity to generate nonuniform gain. This will not work for analytic solution if changing
𝑃𝑐 changes the sign of 𝛽 = sign(1 − 𝑃𝑐𝑔𝑏) that controls the type of the solution (focusing, defocusing, linear). So this
approach would not work if increase in 𝑃𝑐 changes the solution type. To overcome this problem one may choose the
microcavity with lower values of 𝑔 (more excitonic) and 𝑏 (stronger polariton-polariton interactions)[304]. In Fig. 3-14
we used the experimentally largest values 𝑔 and 𝑏.

Experimentally achievable dissipation and pump may suffer from imperfections. In Fig.(3-13) (g,h,i) we show the
effect of perturbing the effective pumping/dissipation profiles.

General framework for the velocity engineering. So far we considered the velocity profiles for which the analytical
solution of the governing equations exists: periodic profiles are expressed as Jacobi elliptic functions. However, any
physically realistic velocity profile can be engineered using numerical integration of Eq. (3.44). Some of the resulting
pumping/dissipation profiles are shown in Fig. 3-16 for analytical velocity profiles that correspond to a spatially localised
excitations. Several subtleties arise that are not present when analytical solutions of Eq. (3.44) exist. To find the steady
state of Eq. (3.42) for a given velocity profile, we used the relaxation of Eq. (3.44) (integration in imaginary time)
while renormalizing the wavefunction to a fixed number of particles 𝑁 at every time step. To use the spatially localised
excitation, the velocity profile has to be a constant away from the excitation spot [188], so we used the velocity profiles
that satisfy this condition. The resulting density decays as exp[−2𝜇𝑥] away from the excitation to satisfy Eq. (3.42).
Such straightforward asymptotics allows us to evaluate the last term of Eq. (3.45) that otherwise would be problematic
to find numerically for small densities.

The cGLE-type systems are pattern-forming systems with a complex interplay of gain, dissipation, nonlinearities
due to self interactions and gain saturation. This makes the engineering of the flow and density profiles in such systems
challenging. However, such control is necessary for implementation of various proposals from topological insulators to
optical/photonic/polaritonic transistors, information processing devices and Hamiltonian simulators. In this work we
proposed a method for realising periodic modulations of the density and velocity profiles in a wide variety of laser/con-
densate systems governed by the cGLE.
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Figure 3-15: The stable (left column), transitional (middle column), unstable (right column) evolutions of
dn(x,k) solutions given by Eq. (3.49) in a repulsive regime (𝑃𝑐 = 1/3, 𝜎 = 1, 𝛽 = 1, 𝑔 = 1) with 𝑘 = 0.5 and√
𝜌𝑚𝑎𝑥(𝑡 = 0) = 0.15 (a), √𝜌𝑚𝑎𝑥(𝑡 = 0) = 0.3 (b), √𝜌𝑚𝑎𝑥(𝑡 = 0) = 0.6 (c) and by dn(x,k) solutions given by

Eq. (3.55) in an attractive regime (𝑃𝑐 = 1, 𝜎 = 3, 𝛽 = −1) with 𝑘 = 0.5 and and √
𝜌max(𝑡 = 0) = 0.05 (d),√

𝜌max(𝑡 = 0) = 0.25 (e), √𝜌max(𝑡 = 0) = 0.4 (f).

Figure 3-16: Flow velocity 𝑢(𝑥) (green dotted lines), density 𝜌(𝑥) (dashed dark and white blue lines) and the
dissipation profile 𝛾(𝑥) (black and grey solid lines) in the repulsive, 𝛽 = 1, regime. The velocity profile and
pumping were chosen as 𝑢(𝑥) = 2 tanh[0.3(𝑥 − 20)] + 2 exp[−0.5(𝑥 − 20)2] and 𝑃𝑐 = 4. The number of the
particles as 𝑁 =

∫︀
|Ψ|2𝑑𝑥 = 2 (faint dashed-blue line for density and black line for dissipation) and 𝑁 = 4

(dark-blue line for density and grey line for dissipation). The inset shows the velocity profile that leads to a
single localised condensate peak and the velocity profile 𝑢(𝑥) = 2 tanh(0.3(𝑥− 20)) .
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Chapter 4

Algorithmic network

In this Chapter one can find the wide spectrum of algorithms, that can be encoded into the QUBO setup of the special-
purpose hardware:

1. Optimization tasks

(a) PUBO/QUBO (polynomial/quadratic unconstrained binary optimization)

(b) Quadratic/polynomial programming

(c) Nonlinear programming

2. Machine learning methods

(a) Classical ML

i. Regression and least squares estimation

ii. Classification (k-NN, SVM)

iii. Dimensionality reduction (PCA, SVD, LSA)

iv. Clusterization (k-means, mean-shift)

(b) Neural network architectures (Hopfield NN)

(c) NN ensembles

(d) Image processing tasks

(e) Probabilistic graphical models

3. Direct encoding/decoding examples

(a) SAT formulations

(b) Karp NP-complete examples: MIS, set cover, treewidth computation

The additional useful links are provided on the case studies, where one can find the encoding/decoding correspon-
dence in the context of the D-wave processor for the following tasks: graph partitioning, finding maximum cliques,
nonnegative/binary matrix factorization, portfolio optimization problems, prime factorization and quantum chemistry
problems.

4.1 Unified optimization picture
The primary motivation is to present the unified picture of algorithms that can be solved on the near term condensed
matter and optical systems, operating in the annealer or GD-based manner and lacking the option of the proper pro-
grammability. It is essential to look at the current chapter from multiple perspectives, considering various tasks that can
be heuristically solved via annealing-like techniques, algorithmic perspective on the presented equations, and the general
physical view. Moreover, one can find additional information about the supplementary topics, such as constructing
hard instances for the optimization tasks and their properties, their connection with the disorder physics, several helpful
advice and techniques on implementing the obtained results within the hardware setup.
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Figure 4-1: Different types of optimization problems concerning the variable domain for the functionals with the
pairwise interaction. The outer black arrows denote the initial formulation of the problem. One can consider
the typical QUBO under the roman number I, the classical XY-Hamiltonian II on the periodic domain, as an
example of a nontrivial function, or the quadratic polynomial optimization problem on the domain [𝑎, 𝑏] III.
In case of the limited functionality of the special-purpose hardware, one is usually able to solve only one of
the problems. It is usefull to work with all of the presented formulations, to avoid the extensive description of
efficient mapping between different assignments. For this purpose, it is necessary to present various embeddings
between several types of optimization problems.1 denotes the introduction of the effective force-field (which is
similar to the use of tanh term, see Hopfield NN further) to constraint the variable into the discrete domain. 2
denotes the continuous domain’s discretization into the set of possible values and introduces additional variables
to exploit the binary variables as the set of integers. 3, 4, 5 denotes the unique embeddings, depending on the
function type II. All details of the mappings are discussed in the main text.

Several types of optimization problems differ in either the target function or the available range of
variables. Some of the discussed assignments have efficient embeddings into one of these optimization
tasks but not into all of them. In order to avoid excessive description of the methodology for mapping
each particular assignment into a different type of optimization problem, it is helpful to present the
unified framework for all of the optimization tasks. This relieves everybody from the specification of the
optimization problem in each case of practical assignment since it is enough to connect the problem with
one optimization type that can be easily embedded into any other through the presented scheme.

However, the specific limitations should be imposed on the covered material that arises from the recent developments
coming from the state of the art quantum information science and specific quantum systems. It is better to avoid the
colossal volume of the results from quantum systems involving additional degrees of freedom governed and representing
the intrinsic quantum effects, typical qubit systems or topological quantum computing. Thus, the focus is on the more
robust and near-term devices, aiming to solve the three different kinds’ general optimization task.

The optimization problem (I) studied in this chapter is called polynomial unconstrained binary optimization (PUBO),
also known as high-order binary optimization (HOBO):

min
x∈{−1,+1}𝑁

−
∑︁
Ω

A𝑘
𝑖1,···,𝑖𝑘𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑘 , (4.1)

where Ω = {𝑖𝑗 : 1 ≤ 𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑘 ≤ 𝑁} and A𝑘 is the super-symmetric tensor of degree 𝑘. The alternative
optimization problems considered in this chapter that can be mapped at the Eq. (4.1) and in the reverse way can be
formulated in slightly different forms (III) are called polynomial programming (PP):

min
x∈[𝑎,𝑏]𝑁

−
∑︁
Ω

A𝑘
𝑖1,···,𝑖𝑘𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑘 , (4.2)

with the same notation except, but different available domain for the arguments. The constraints in the form 𝑥𝑖 ∈ [𝑎, 𝑏]

can be rewritten in the following way 𝑥𝑖 ≤ 𝑏 and −1𝑥𝑖 ≤ −𝑎. Thus, the PP form is obtained, which is to minimize
the same target function A𝑘

𝑖1,···,𝑖𝑘𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑘 , subject to 𝐵x ⪯ c, where c consists of −𝑎 and 𝑏 values and 𝐵 consists
of +1,−1 coefficients for each variable 𝑥𝑖 respectively. The special case of A𝑖1,𝑖2 with rank 2 is known as quadratic
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Figure 4-2: The visualization of the methodology for solving a particular task on the physical system. The left
box presents a certain operation or a specific assignment. Arrow 1 direct us to the middle box, representing
the encoding procedure. Following arrow 2, one can use the obtained parameters to operate a physical system
to obtain a solution. Number 3 on the same arrow represents the heuristics method arising from the model
description of the same physical system that can be programmed for the conventional computer architecture
with all the model’s corresponding benefits.

programming (QP) and can be written as:
minimize 1

2
xT𝐴x

subject to 𝐵x ⪯ c,
(4.3)

where one omits the linear term, that can be incorporated into the x vector as the additional fixed variable.
Solving the presented optimization tasks (I, II, III) with the corresponding constraints on the conventional computer

architectures is currently a usual routine with the well-established methods [305, 306] facing only the problems of
computational resources. However, the hardware setup tuned to perform GD-like dynamics "knows nothing" about
details of a particular task in the form of constraints.

It is necessary to comment about incorporating the constraints in the formulation of task (III) on a particular
hardware setup. In contrast to task (II), where the space of the feasible arguments is not limited, and task (I), where the
final discrete values can be obtained by applying some sort of the effective force-field (depending on a particular physical
setup), pinning the continuous variables to the discrete ones, here one has to change the target coefficients of the tensor
sum. In case of the equality constraints, it is possible to add the additional cost function in the form of 𝐶(𝑡)(𝜃𝑇

𝑖 x− 𝜃𝑖)
2

to the cost function and change the coefficients of the initial minimization problem by corresponding values. This term
corresponds to the constraint in the form of 𝜃𝑇

𝑖 𝑥 = 𝜃𝑖, and 𝐶(𝑡) is the time depending positive function, which reaches the
threshold value parallel to the convergence of the hardware dynamics. The similar term 𝐶(𝑡)(𝜃𝑇

𝑖 x− 𝜃1) corresponds to
the constraint in the form of 𝜃𝑇

𝑖 𝑥 < 𝜃1 for the minimization task, similar to the regularization terms in the optimization
tasks. Here 𝐶(𝑡) is slowly growing through the operational regime, until this particular constraint is satisfied. Similar
ideas are expressed in more details in the context of the quantum adiabatic optimization devices [307] and repeatedly
mentioned in this work.

Another interesting form of the optimization problems is nonlinear programming, which is the most general case of
the considered problems. One can take into account a particular case (II), where the target function can be factorized
as the sum of the pairwise periodic function cos:

min
𝜃∈[0,2𝜋)𝑁

−
∑︁
Ω

J𝑖1,𝑖2 cos(𝜃𝑖1 − 𝜃𝑖2), (4.4)

this case is also known as the XY model in statistical physics. Further, the relationships between all these models in
the context of special-purpose hardware operations will be shown. Additionally, there is no need to specify the type
of optimization problem when considering a particular task since it is possible to mention only one formulation. Its
connection with others is followed automatically from the presented mappings.

Here, one can find a shallow description of the general methodology of correspondence between different optimization
tasks formulations based on the analytical-numerical approximations. Fig. (4-1) represents the main optimization tasks
(I, II, III) together with their encoding/decoding relationships on the hardware level. Arrow (1) denotes the introduction
of the effective force-field (which is similar to the use of tanh term, see Hopfield NN further, the nature of the related
term depends on the particular physical system) to constraint the variable into the discrete domain. (2) can be realized in
different ways. The first one is called semidefinite relaxation and used extensively in the computer science domain. One
can find several approximation methods with the application to quadratic optimization problems [308], and large-scale
applications with mostly image segmentation tasks [309]. A good example involves linear programming relaxation of
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Figure 4-3: The basic scheme of the ML subfields. Part of the presented blocks are covered from the perspective
of utilizing these algorithms on the hardware setup.

an integer programming problem, when one removes the integrality constraint, allowing non-integer rational solutions.
On the hardware level, one can do the same with the physical sources of the constraint terms in the analogy with
the computer analogue. Another method is to encode the feasibility argument space by its discrete analogue with the
corresponding coefficients recalculations. (3), (4) denotes the unique embeddings, depending on the function type (II).
One can see a simple correspondence, which is for sure not unique and possibly can be improved. Considering a specific
type of function, as in Fig. (4-1), for the (3), one can use the analytic Taylor expansion of the cos function on the
periodic domain for each pair of variables 𝑥, 𝑦. Using this relationship, one can recalculate the corresponding coefficients
𝐽𝑖𝑗 , taking into account the fixed precision of the expansion. (4) can be embeded in the similar manner. Rewriting
the quadratic form (III) in the diagonal form, one has to approximate the sum of squares ̃︁𝐽1𝑥21 + ... + ̃︁𝐽𝑛𝑥2𝑛 form by
means of the harmonic cos basis. Using the same Taylor expansion, one can express the 𝑥2𝑖 through the desired functions
and recalculate the corresponding coefficients of the quadratic problem, paying attention to the additional constraints
connected with both the initial formulation and embeddings. Higher order terms can be efficiently embedded into lower
by introduction of auxiliary variables. (5) can be done through arrows (2) (4).

The case of Eq. (4.1) with the tensor rank 2 and the binary variables is known as quadratic unconstrained binary
optimization (QUBO). It can be considered as a combinatorial optimization problem, which has many applications.
The essential property of such a problem is its universality, which reflects itself in the numerous connections with other
different problems and assignments, among which the most important are SAT in the computer science domain and Ising
model in physics. These connections allow one to formulate more embeddings across a variety of tasks. Research on
QUBO has generated a wide range of solution techniques for this essential model [310]. Among them are exact methods,
such as a MAX-Cut reformulation, branch and bound algorithm, its modifications, Lagrangian decompositions, different
heuristic algorithms, such as tabu search, simulated annealing or genetic algorithms.

Most of the presented formulas and equations have a specific notation typical for numerical mathematics since most
of the methods and algorithms were designed specifically for conventional computer architecture. Fig. 4-2 presents the
general methodology of solving a particular task using the special-purpose hardware.

4.2 Machine learning methods
Here, a brief perspective on the ML field is given before transitioning to the algorithms’ list, available for the hardware
platform’s implementation. One of the main ML field’s goal is to predict good outcomes from the given data. The
richness of the data dramatically influences the methods’ performance, making it easier to find patterns and predict
accurate results. There are three crucial components in ML, which are data, features, and algorithms. The general
structure can be seen in Fig. 4-3.

Practically speaking, one can meet the data in many places and many ways — E-mails, stock prices time-series, users
databases and collection of the experimental measurements. Data can be collected in different ways, either manually,
usually quite long and costly with few errors or automatically by feeding everything to some sorting algorithms. Large
corporations, for example, can use their users for such kind of activity. The collected data (or datasets) can be of great
value depending on the context, determining the demand for suitable rare datasets.

Features represent the properties or characteristics of the considered objects. A small amount of foundation, sorted,
and significant features in most cases can guarantee the success of the ML approach to the problem. It is very time-
consuming to determine the feature in the so-called ’raw’ big datasets and select the right ones. Sometimes one has to
avoid human-based decisions to avoid introducing subjectivity and opinion-based bias to optimize the model performance.
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The latest DL success is partially tied to automatic feature engineering compared to the previous ML models.
The last part of the considered scheme is the algorithm. Choosing the method of solving a particular task depends

on the context and influences such parameters as the final model’s accuracy, speed, and computational complexity. In
general, one problem can be solved in many different ways.

The components were presented according to their significance in the ML pipeline. Simply saying, one can not extract
any useful information from the noisy and meaningless dataset. First of all, the feature extraction will be difficult, if not
impossible, not to mention the last part, where even the best algorithms will be useless.

The following subsection starts the discussion with the classical algorithms, which are the basis of many existing
applications. The reader can find the short but informative structure of the main ML methods that will be the centre of
attention with the aim of transferring them into the special-purpose hardware.

4.2.1 Classical machine learning

Regression and least-squares estimation

One of the earliest methods in the area of statistical modelling is regression analysis. The general definition is statistical
procedures for establishing the relationships between an output (observation or dependent variable) and one or more
arguments (or independent variables). Different predictions and decision making in many applied domains benefit from
the regression analysis since it is hard to have analytical expressions for every problem met.

This linear regression model assumes that the dependent variables denoted by 𝑦𝑖 has a linear relationship depending
on the m-vector of points {𝑥𝑖1, . . . , 𝑥𝑖𝑚}𝑛𝑖=1 with an addition of the disturbance terms 𝜖𝑖 in each case. This relationship
can be written in the following term:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + · · ·+ 𝛽𝑚𝑥𝑖𝑚 + 𝜖𝑖. (4.5)

The short notation involves the matrix form y = 𝑋𝛽 + 𝜖 with the following variables: y = 𝑦𝑖, 𝑋 = 𝑥𝑖𝑗 ,𝛽 = 𝛽𝑗 , 𝜖 =

𝜖𝑖(𝑖 = 1, . . . , 𝑛), (𝑗 = 0, . . . ,𝑚), with 𝑥𝑖0 = 1.
The task for the Eq. (4.5) is to estimate the values of the regression coefficients 𝛽𝑗 given the data points 𝑥𝑖𝑗 and

observables 𝑦𝑖, so that the error term 𝜖 = y −𝑋𝛽 is minimized. One has many procedures to deal with the estimation
of the parameters. The most common estimation technique is called the least-squares estimation. In this setting, the
optimum parameter is defined through the minimization of the sum of mean squared loss:

min
𝛽𝑗

𝑛∑︁
𝑖=1

(︃
𝑚∑︁

𝑗=0

𝛽𝑗 · 𝑥𝑖𝑗 − 𝑦𝑖

)︃2

, (4.6)

which can be connected with the quadratic programming Eq. (4.3) for variables, where the coefficients 𝐴𝑖𝑗 =
∑︀𝑛

𝑘=1 𝑥𝑘𝑖𝑥𝑘𝑗 ,
and indices 𝑖, 𝑗 goes over (𝑗 = 0, . . . ,𝑚+ 1) with 𝑥𝑖0 = 1, 𝑥𝑖,𝑚+1 = −𝑦𝑖.

The optimal solution can be obtained by differentiating the Eq. (4.6) and equating it to zero with respect to parameters
𝛽𝑗 . Solving the matrix linear relation gives us the expression:

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌. (4.7)

It is possible to use different modifications of the proposed procedure. It can be generalized least squares, where one
introduces a certain degree of correlation between the residuals (4.6), or the weighted least squares, where the knowledge
of the variance of observations is incorporated as the coefficients 𝑤𝑘 before each of the residual. Such method is affecting
the coefficients 𝐴𝑖𝑗 in a straightforward way through the sum 𝐴𝑖𝑗 =

∑︀𝑛
𝑘=1 𝑤𝑘𝑥𝑘𝑖𝑥𝑘𝑗 .

Moreover, intrinsically different techniques can be based on the maximum likelihood estimation, Bayesian methods,
or the introduced regularisation. Among the forms of penalized estimations, it is helpful to point out the most general
one: the Tikhonov regularization. In case of the same problem as in the Eq. (4.6) with the Euclidean norm, ‖·‖2, to
endow a particular solution with some wanted properties, one can add the regularization term in the form of ‖Γ𝛽‖2,
where Γ is known as Tikhonov matrix, which affects the final coefficients of the optimization problems and shift the
optimal parameters 𝛽:

𝛽 = (𝑋𝑇𝑋 + Γ𝑇Γ)−1𝑋𝑇𝑌. (4.8)

In many cases, Tikhonov matrix is chosen as proportional to the identity matrix Γ = 𝛼𝐼, which penalizes the large values
of 𝛽 parameters. Other forms of the regularization include generalized Tikhonov regularization with the corresponding
shift of the target parameters 𝛽 − 𝛽Δ, Ridge regression, Lasso (where one introduces the constraints in the form of∑︀𝑚

𝑗=1 |𝛽𝑗 | < 𝑡 into the Eq. (4.6)), etc.
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The natural extension of the linear regression involves the polynomial basis. In case of one argument, it is possible
to rewrite the familiar relationship Eq. (4.5) in the following term:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥
2
𝑖 + · · ·+ 𝛽𝑚𝑥

𝑚
𝑖 + 𝜖𝑖. (4.9)

In this case, one has the same notation y = 𝑋𝛽+𝜖 with the following variables: y = 𝑦𝑖, 𝑋 = 𝑥𝑖𝑗 = 𝑥𝑗𝑖 ,𝛽 = 𝛽𝑗 , 𝜖 = 𝜖𝑖(𝑖 =

1, . . . , 𝑛), (𝑗 = 0, . . . ,𝑚), with 𝑥𝑖0 = 1. Given the data points, the same task of Eq. (4.6) will be used except the variables
change 𝑥𝑖𝑗 = 𝑥𝑗𝑖 . From the perspectives of regression parameters estimation, the task did not change. The only change
involves the preprocessing of the QUBO coefficients. The first extension from the linear regression to the polynomial
can be described as the change of the following coefficients basis [1(= 𝑥𝑖0), 𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑚] →

[︀
1, 𝑥𝑖, 𝑥

2
𝑖 , . . . , 𝑥

𝑚
𝑖

]︀
. It is

possible to extend this basis to a set of some nonlinear functions 𝑓(𝑥𝑖)𝑗 , not only polynomial degrees: [1, 𝑥𝑖, 𝑥2𝑖 , . . . , 𝑥𝑚𝑖 ] →
[1, 𝑥𝑖, 𝑓(𝑥𝑖)1, . . . , 𝑓(𝑥𝑖)𝑚−1].

Multiple linear regression is a generalization of linear regression to the case of more than one independent variable.
The basic model for multiple linear regression can be written in a similar form:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + · · ·+ 𝛽𝑚𝑋𝑖𝑚 + 𝜖𝑖, (4.10)

where instead of one variables 𝑥𝑖𝑗 one have a set in the form of matrix 𝑋𝑖𝑗 . Depending on the chosen norm for the
matrix, it is possible to formulate the task of finding the regression coefficients. Taking the square Frobenius norm of the
matrix, the search is equivalent to the already mentioned task Eq.(4.6), except with the additional sum over the matrix
elements (𝑘2):

min
𝛽𝑗

𝑘2∑︁
𝑙=1

𝑛∑︁
𝑖=1

(︃
𝑚∑︁

𝑗=0

𝛽𝑗 · 𝑥𝑖𝑗𝑙 − 𝑦𝑖𝑙

)︃2

, (4.11)

where the additional index 𝑙 denotes the summation across all of the matrix elements.
This form can be extended further for multivariate linear regression or combined with the nonlinear basis with minor

consequences concerning the parameters search and hardware operations, except for the much-complicated procedure of
the coefficients preprocessing. Thus, the regression can be treated as the simplest form of supervised learning.

Classification

Classification is the most popular task in the ML domain. The purpose of classification is to sort the given objects
among the initially defined classes. Labelled data with features is always needed for classification. There are enormous
amounts of objects that can be classified. The earliest algorithms include naive Bayes and decision trees. There is no
need to consider them in great detail and refer the reader to the Markov random field (MRF) encoding, which is the
general case for such models and will be considered below.

The k-nearest neighbors algorithm (kNN) is a non-parametric classification method used in statistics [311, 312]. It
aims to classify the objects by considering their given neighbours with the defined class, depending on the 𝑘 nearest
neighbours. The typical choice for the distance is the Euclidean measure. The process of consequent assignments is
repeated until the convergence. There is no need to explicitly present the corresponding formulas since they are very
similar to the k-means, the clusterization algorithm, presented below. The difference is that the k-NN is supervised
learning, while k-means generally is not. Both are usually based on the Euclidean distances’ calculations, making them
a potential target for transferring for the special-purpose hardware, aiming to solve certain optimization tasks, presented
at the beginning of this chapter.

support vector machine (SVM) is a supervised learning model that analyzes data for classification purposes. It aims
to construct a hyperplane between the classes of training data points in a high-dimensional space, emphasizing a good
separation achieved by maximizing its margin. SVM was introduced in [313] and standardized in [314]. One can treat
SVM as the probabilistic binary linear classifier.

Linear SVM deals with the 𝑛 points xi in the 𝑚-dimensional space, where each point has an assigned a binary class
𝑦𝑖 = ±1. The task is to construct a hyperplane that divides these two groups with the maximized distance between the
nearest point(s) and the hyperplane.

The so-called "hard margin" scenario assumes that the initial data is linearly separable. Thus, one can start with
constructing two parallel hyperplanes, which have the largest distance between each other and at the same time, each
of the surfaces contains at least one point from different classes correspondingly. The target surface between these
hyperplanes is called the maximum margin hyperplane. To mathematically describe these surfaces, one can write:

𝑤𝑖𝑥𝑖 − 𝑏 = ±1, (4.12)
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where 𝑤𝑖 is components of the normal vector for both of the hyperplanes, 𝑥𝑖 are 𝑚-dimensional coordinates, 𝑏 defines
the surface shift concerning the zero coordinates and ±1 defines the class. Everything above the 𝑦 = 1 is of one class,
and everything below 𝑦 = −1 is of another. The offset of the hyperplane is determined through the 𝑏/ ‖w‖, while the
marginal distance equals 2/ ‖w‖. To maximize the last one has to minimize the denominator ‖w‖.

This task can be reformulated as the optimization problem, adding the constraints that prevents data points from
falling into the margin:

min ‖w‖
s.t. 𝑦𝑖

(︀
w𝑇x𝑖 − 𝑏

)︀
≥ 1 for 𝑖 = 1, ..., 𝑛

(4.13)

The natural extension for the SVM is considering a so-called "soft margin" case. It is assumed that the given data
points are not linearly separable. To accommodate the method to this scenario, one has to introduce a new kind of
variables 𝜉𝑖 = max(0, 1− 𝑦𝑖

(︀
w𝑇x𝑖 − 𝑏

)︀
), which are usually referred to as the hinge loss functions. These variables have

regularizers roles when dealing with real-world data. Thus it is possible to rewrite the Eq. (4.13) problem in the following
way:

min
1

𝑛

𝑛∑︁
𝑖=1

𝜉𝑖 + 𝐶‖w‖2

s.t.𝑦𝑖
(︁
w𝑇x𝑖 − 𝑏

)︁
≥ 1− 𝜉𝑖 and 𝜉𝑖 ≥ 0, for all 𝑖,

(4.14)

where the constant 𝐶 regulates the interplay between the pure hard margin classifier and soft margin one. To properly
address the new kind of variables and reformulate the problem to the initial scope of this chapter, exploiting the well-
known Lagrange duality:

max 𝑓 (𝑎1, . . . , 𝑎𝑛) =
𝑛∑︁

𝑖=1

𝑎𝑖 −
1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑦𝑖𝑎𝑖
(︁
x𝑇
𝑖 x𝑗

)︁
𝑦𝑗𝑎𝑗

s.t.
𝑛∑︁

𝑖=1

𝑎𝑖𝑦𝑖 = 0, and 0 ≤ 𝑎𝑖 ≤
1

2𝑛𝐶
for all 𝑖,

(4.15)

where the w is expressed through the new variables 𝑎𝑖, so that w =
∑︀n

i=1 aiyixi, and the initial task of determining the
offset of the surface is expressed via b = wTxi − yi. Thus, it is possible to obtain the problem, which is exactly (4.3)
with 𝐴𝑖𝑗 = 𝑦𝑖

(︀
x𝑇
𝑖 x𝑗

)︀
𝑦𝑗 with the linear field of constant 1 and 𝐵 determined by constraints. This problem can be solved

with the standard quadratic algorithms, and is prepared to be solved on the special-purpose hardware.
It is useful to mention the nonlinear extension of the SVM, which solves nonlinear classification and can exploit the

different functional forms of kernels to deal with the problem. Depending on the particular hardware and its possible
function realisation, one can modify the scalar dot product in the quadratic form in the Eq. (4.15) formulation by a
certain kernel function 𝑘(xi,xj) to extend the initial functionality.

Let us transition to the unsupervised learning models, where the algorithms usually lack any direction in labels and
target output.

Dimensionality reduction

Dimensionality reduction involves the transformation of data from the space with many dimensions into a low-dimensional
space, usually preserving meaningful and valuable properties from the original data. High-dimensional data is hardly
handled in practice due to the curse of dimensionality. Additionally, the practical significance lies in combining several
features and working with these new feature types, also referred to as abstractions.

Dimensionality reduction is standard in data-intensive fields. It can be used in signal processing, neuroinformatics,
and bioinformatics [315, 316]. One can find its applications in recommender systems [317], semantic search [318] or as a
primary tool in many domains involving numerical analysis.

One of the famous methods for dimensionality reduction is the principal component analysis (PCA). It was invented
in 1901 by Karl Pearson [319]. The idea behind PCA is to approximate a particular data with linear manifolds of lower
dimension. PCA can be alternatively interpreted as finding subspaces of lower dimension in the orthogonal projection
on which the data variation is maximum.

The initial task behind the PCA is to find the best approximation of the data points by means of lines and surfaces.
Given the set of vectors x1,x2, . . . ,x𝑚 ∈ R𝑛, the aim is at finding the sequence of 𝑘 𝑘-dimensional affine spaces 𝐿𝑘 ⊂ R𝑛

which solve the task of:

min

𝑚∑︁
𝑖=1

d2 (x𝑖, 𝐿𝑘) = min

𝑚∑︁
𝑖=1

𝑛∑︁
𝑙=1

(︃
𝑥𝑖𝑙 − 𝑎0𝑙 −

𝑘∑︁
𝑗=1

𝑎𝑗𝑙

𝑛∑︁
𝑞=1

𝑎𝑗𝑞 (𝑥𝑖𝑞 − 𝑎0𝑞)

)︃2

, (4.16)

for each 𝑘 among 𝐿𝑘, where d (x𝑖, 𝐿𝑘) is the Euclidean distance from the point x𝑖 to the 𝐿𝑘. Affine spaces 𝐿𝑘 are defined
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as the set of linear combinations 𝐿𝑘 = {a0+𝛼1a1+ · · ·+𝛼𝑘a𝑘} with 𝛼𝑖 ∈ R, while the set of vectors {a1,a2, . . . ,a𝑘} ⊂ R𝑛

is orthonormal.
The presented task is solved with the sequence of the same type optimization problems. The starting vector a0 is

simply defined as

a0 = argmin
a0∈R𝑛

𝑚∑︁
𝑖=1

d2 (x𝑖, 𝐿0) =
1

𝑚

𝑚∑︁
𝑖=1

x𝑖. (4.17)

The iteration loop consists of the subtraction of the resulting projection x𝑖 := x𝑖 − a0 (a0,x𝑖) (with the scalar product
(a0,x𝑖)) for each vector and calculating the next component. For the vectors defining the 𝐿𝑗 :

a𝑗 = argmin
‖a𝑗‖=1

(︃
𝑚∑︁
𝑖=1

(x𝑖 − a𝑗 (a𝑗 ,x𝑖))
2

)︃
, (4.18)

and following subtraction x𝑖 := x𝑖 − a𝑗 (a𝑗 ,x𝑖), until the parameter 𝑘 reaches the 𝑛 − 1 of the initial problem space
dimension. Using the property ||x𝑖 − a𝑗 (a𝑗 ,x𝑖) ||2 = ||x𝑖||2 − (a𝑗 ,x𝑖)

2 one can easily map this task into the Eq. (4.3)
with the normalization constraints, where 𝐴𝑖𝑗 = −𝑥𝑖𝑥𝑗 . To shorten the presented notation, the iterative procedure can
be written in the following similar form with the maximization tasks:

X̂𝑘 = X−
𝑘−1∑︁
𝑠=1

Xw(𝑠)w
T
(𝑠), (4.19)

w(𝑘) = argmax
‖w‖=1

{︂⃦⃦⃦
X̂𝑘w

⃦⃦⃦2}︂
, (4.20)

where 𝑘 is the number of principal component, X is the data matrix of size 𝑛×𝑚, 𝑤𝑠 are the weight coefficients, similar
to the aj components. The maximization form is actually a Rayleigh quotient, because

w(𝑘) = argmax
‖w‖=1

{︂⃦⃦⃦
X̂𝑘w

⃦⃦⃦2}︂
= argmax

{︃
w𝑇 X̂𝑇

𝑘 X̂𝑘w

w𝑇w

}︃
, (4.21)

and the quotient’s maximum possible value is the largest eigenvalue of the matrix X̂𝑇
𝑘 X̂𝑘. In case, that the sequential

operation is limited on the specific hardware system, one can still use the first iteration of the PCA method to obtain
the largest eigenvalues of a matrix. This is useful in some applications, like the power method (that refers to the early
work [320]) and its applications, among which there is famous PageRank algorithm [321].

There are alternative formulations of the PCA task, such as covariance matrix diagonalization or singular value
decomposition (SVD). SVD is a special form of a rectangular matrix decomposition in the form:

X = UΣV⊤, (4.22)

where U is the unitary matrix (representing the rotation as the linear transformation of the space in the geometrical
interpretation), Σ is the rectangular diagonal matrix with non-negative real numbers on the diagonal (which are called
the singular values, the action of the matrix has the interpretation of the corresponding scaling by diagonal elements)
and V⊤ is another unitary matrix (with the same additional rotation interpretation).

The correspondence between the previously mentioned PCA task and SVD decomposition is quite apparent. The
calculation of the corresponding coefficients for the optimization task is straightforward. It was shown that to perform
the PCA, one has to find the eigenvectors of the covariance matrix XX⊤ (neglecting the 1

𝑛−1
scaling factor depending on

the number of points) with X being the data matrix. The covariance matrix is diagonalizable, and with the normalized
eigenvectors, one can write:

XX⊤ = WDW⊤ (4.23)

Applying SVD to the same data matrix X gives:

XX⊤ =
(︁
UΣV⊤

)︁(︁
UΣV⊤

)︁⊤
=
(︁
UΣV⊤

)︁(︁
VΣU⊤

)︁
, (4.24)

which lead us to the equality:
WDW⊤ = UΣ2U⊤, (4.25)

where one can see the clear correspondence. Using this information, one can perform the SVD decomposition similarly
to PCA on the special-purpose hardware.
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Clusterization

The most detailed description of clusterization is the separation of the objects on an unknown basis. The goal can
be alternatively defined as a classification, but no previously known classes have a significant difference. The number
of clusters can be set in advance or defined automatically by the machine. The algorithm itself determines objects’
similarity by the features that one marked and put the objects with many similar characteristics in the same class. There
are currently a lot of successful applications of clusterization. Among the fields are market analysis (consumer analytics),
image compressing, data analytics, and anomaly detection.

K-means clustering is a clustering method that aims to partition 𝑛 observations into 𝑘 clusters. Each of these
observations is located in the cluster with the nearest mean, also called a centroid [322, 323, 324]. There are heuristic
algorithms that deal with such an assignment; however, the initial problem is NP-hard.

Given a set of observations {𝑥1, ..., 𝑥𝑛} in a 𝑑-dimensional space k-means algorithm aims to partition these observa-
tions into 𝑘 sets {𝑆1, 𝑆2, ..., 𝑆𝑘} to minimize the within-cluster sum of squares (or variance):

argmin
𝑆𝑖

𝑘∑︁
𝑖=1

∑︁
x∈𝑆𝑖

⃦⃦
x− 𝜇𝑆𝑖

⃦⃦2
, (4.26)

where 𝜇𝑆𝑖
is the mean of points in 𝑆𝑖.

To perform such optimization task, one usually uses an iterative technique, consisting of two steps. Starting with an
initial set of k means 𝑚1,(1), ...,𝑚𝑘,(1), the first step is to assign each observation to the cluster with the nearest mean,

according to the Euclidean distance: 𝑆𝑖,(𝑡) =
{︁
𝑥𝑝 :

⃦⃦
𝑥𝑝 −𝑚𝑖,(𝑡)

⃦⃦2 ≤
⃦⃦
𝑥𝑝 −𝑚𝑗,(𝑡)

⃦⃦2 ∀𝑗, 1 ≤ 𝑗 ≤ 𝑘
}︁
. Afterwards, one has

to recalculate the centroids: 𝑚𝑖,(𝑡+1) =
∑︀

𝑥𝑗∈𝑆𝑖,(𝑡)
𝑥𝑗 . The loop is run until the convergence.

The algorithm uses the assigning of objects to the nearest cluster by Euclidean distance, and it is a suitable method
for transferring its sequential operations to the specific hardware.

Mean shift is a high-dimensional-space analysis method for locating the maximum density function given a discrete
number of data sampled from this arbitrary density function. It is helpful in complex hierarchical algorithms and is used
in different computer vision or image processing domains.

Given data points 𝑥𝑖 in 𝑛-dimensional space, one can use the kernel function 𝑘(𝑟), acting on the norm value 𝑟, to
determine the mean shift’s value. The kernel function has to be non-negative, non-increasing and continuous. One can
use the flat kernel, so that 𝑘(𝑟) = 1 if 𝑟 < 𝑟0 and 0 outside. Each iteration is composed of calculating the function:

𝐹 (𝑥) =
∑︁
𝑖

𝑘

(︂
||𝑥− 𝑥𝑖||2

𝛼2

)︂
, (4.27)

where 𝛼 states for the scaling factor, and computing the maximum of 𝐹 (𝑥). One can easily see the relationship between
the Eq. (4.27) and Eq. (4.3) without the constraints.

4.2.2 Neural networks

It is common to speak about NNs starting from the biological perspective, which served as the inspiration for the so-called
artificial NNs. Considering this chapter’s multidisciplinary character, the focus will be devoted to the NN properties
from the universal mathematical perspectives while avoiding analogies with the human brain.

Any NN can be defined as a set of neurons and connections between them. An artificial neuron’s task is to take
input numbers, process them in a certain way (executing a special function), and output the results. The common
mathematical transformation of one NN layer can be written in the following way tanh(

∑︀𝑁
𝑖=0 𝑤𝑖𝑥𝑖 + 𝑏), where 𝑤𝑖 denote

the weights for the input data points 𝑥𝑖 (or independent variables) and the constant 𝑏 is the shift called bias. The tanh

is used as nonlinear activation function. A single layer NN that performs a similar transformation is called a perceptron,
and it gives a single output. The perceptrons, assembled into multilayered structures of such units, are called multilayer
perceptrons.

The reader can search the specific books for the introduction to the NNs [325, 326, 327] with more modern work
[328] and the latest results after the DL breakthrough [50].

The activation function plays an important role in the NN design because the output signal would be simply a
linear function in its absence. Many functional forms of activation functions, such as binary step function, sigmoid (or
logistic function), hyperbolic tangent and many others. They allow a NN to map an input to the output appropriately.
Thus, NN is considered a universal function approximators [329]. From the geometrical perspective, the weights of
tanh(

∑︀𝑁
𝑖=0 𝑤𝑖𝑥𝑖 + 𝑏) functions can be manually tuned to fit any set of points.

To choose the NN weights, one usually uses the backpropagation procedure [330, 331]. It consists of tuning the NN
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weights according to the difference between the actual output value of the network and the predicted one, with the final
goal of minimizing this discrepancy or cost function. The tuning procedure involves computing the total discrepancy
gradients on each layer starting from the final one and the corresponding weight values updates. Through the extensive
number of such loops, there is a chance that the weights will be corrected in the desired way.

A well-trained NN can even approximate most of the algorithms presented here, given the appropriate parameters.
Any deep NN (with many layers) can be converted into a shallow recurrent one (Hopfield NN) with a significant overhead
on the number of neurons in the standard layer. That means that any deep NN functionality can be performed on the
device, adjusted to solving the QUBO. The only problem is to find the correct coefficients for the task.

One can match the shallow network with the simple energy model. In general, there is a conceptual approach to
many ML tasks, which is called the energy-based learning [332]. This apparent correspondence will be demonstrated on
the crucial model of Hopfield NNs.

Hopfield neural networks and quadratic optimization

A Hopfield network is a recurrent artificial NN considered in [333]; however one can observe earlier works based on similar
Ising models. The essential elements of Hopfield NN are binary threshold nodes, which converge to a local minimum.
They can store and recall multiple memories, making the Hopfield NN an attractive model for associative memory.
Nevertheless, the binary nodes can sometimes converge to a wrong pattern. The balance between different patterns
and the memory units’ dynamical behaviour is an active investigation area with the modern research context related to
artificial intelligence and cognitive sciences. There will be many more essential connections at the end of this subsection,
some of which lie on the surface. There are typically two well-known formal forms of the model. The first one is discrete
with respect to the time and neuron state variables and describes the state of neurons in the following way:

𝑆𝑖(𝑡+ 1) =

{︃
1, if Σ𝑗𝐽𝑖𝑗𝑆𝑗(𝑡) + 𝐼𝑖 > 0

0, otherwise
(4.28)

where 𝑆𝑖 denotes the state of the 𝑖-th neuron, 𝐽𝑖𝑗 is the coupling strength coefficients for the influence of the neuron 𝑗

to the neuron 𝑖 and 𝐼𝑖 is a direct input or bias coefficient. The structure of Eq. (4.28) is similar to the one, that have
just been discussed in the beginning of the NN description tanh(

∑︀𝑁
𝑖=0 𝑤𝑖𝑥𝑖 + 𝑏).

The second model has the form:
𝑑𝑥𝑖/𝑑𝑡 = −𝑥𝑖/𝜏 +Σ𝑗𝐽𝑖𝑗𝑔 (𝑥𝑗) + 𝐼𝑖, (4.29)

where 𝑥𝑖 denotes the mean state of the 𝑖-th neuron that can get continuous values in the initially defined range, 𝐽𝑖𝑗 is the
same coupling strength coefficients for the influence of the neuron 𝑗 to the neuron 𝑖, 𝐼𝑖 is a direct input or bias coefficient,
𝑔 is a monotone function that converts continuous state into the discrete, i.e. makes the correspondence between the
variables 𝑆𝑖 = 𝑔(𝑥𝑗), and 𝜏 is the characteristic time of the differential equation (4.29) for the convergence to an optimal
or suboptimal solution.

The analogue computation with the NN can be described as an evolution of the state space in continuous variables.
One can precisely trace it following the Eq. (4.29). The vital aspect of such differential equation structure is the existence
of a Lyapunov function, which is vital to stability theory of dynamical systems and control theory [334]. This Lyapunov
function (that can also be referred to as an energy function) 𝐻 behind the Hopfield NN can lead to the understanding of
possible final states, which appear to be attractors considering the asymptotic behaviour the system. Hopfield networks
are capable of universal computation in the Turing sense [335]. The explicit formula for the Lyapunov function in the
discrete variant of the model:

𝐻 = −1

2
Σ𝑖𝑗𝐽𝑖𝑗𝑆𝑖𝑆𝑗 − Σ𝑖𝐼𝑖𝑆𝑖, (4.30)

which is equivalent to the initially considered problem of tensor sum minimization (4.1) with the rank 2 tensor and
variables 𝑆𝑖 being 𝑥𝑖, or equivalently the famous Ising model, and reduction of the non-zero field 𝐼𝑖 by the introduction
of the additional variable 𝑆𝑁+1 = 1. In case of continuous variable, the same function has slightly different form:

𝐻 = −1

2
Σ𝑖𝑗𝐽𝑖𝑗𝑆𝑖𝑆𝑗 − Σ𝑖𝐼𝑖𝑆𝑖 +

1

𝜏
Σ𝑖

∫︁ 𝑆𝑖

𝑔−1(𝑍)𝑑𝑍, (4.31)

where the last term appears due to the correspondence between the discrete and continuous state 𝑆𝑖 = 𝑔(𝑥𝑖). For the 𝑔
one usually pick the tanh(𝑥/𝛽) function, where the 𝛽 parameter tends to zero value during the evolution of the Hopfield
NN making the last term of the Eq. (4.31) to converge to the same zero value, see [25] with the additional emphasis on
the optimization problems.

The associative memory was addressed by the theory of Hebbian learning [336, 337]. The basic concepts can be
explained through the connection between Hopfield NN’s coupling coefficients and the memory patterns. One of the
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common formulaic descriptions can be presented in the following way:

𝐽𝑖𝑗 =
1

𝑝

𝑝∑︁
𝑘=1

𝑠𝑘𝑖 𝑠
𝑘
𝑗 , (4.32)

where 𝐽𝑖𝑗 is the strength of the connection between 𝑖 and 𝑗 neurons, 𝑝 is the number of training patterns and 𝑥𝑘𝑖 is the
pattern input.

As mentioned before, the Hopfield model is isomorphic to the Ising model of magnetism (for zero temperature) [338],
which have been extensively analyzed by the physicist community in great details. One can instantly tailor the Hopfield
model with another example of the disorder systems: the Sherrington-Kirkpatrick model [339], with the difference
between the coupling coefficients.

It appears that there are much more fruitful connections of the Hopfield NN with many other essential problems
besides the disordered systems. The most important connections will be shortly covered, which allow one to see the
correspondence between the Hopfield NN (or its equivalent formulations) with almost any possible assignment or problem
of particular interest.

Finding the ground state of the Ising model is NP-hard and is the particular case of the initially defined problem of
PP (4.1) with the tensor rank 2, which in some cases can be related to the QP. Another significant task is the Boolean
satisfiability problem (SAT) [340], and its a more narrow analogue which is weighted MAX-2-SAT. SAT is a universal
problem because many computational assignments can be reduced to some instance of the SAT problem.

The Hopfield NN can be reduced to more deep NN and reverse – every deep feedforward NN can be reduced to
a shallow reecurrent one with different parameters. It is also possible to pick the appropriate parameters for choosing
the deep NN and get a shallow network. Both networks will have the same approximation qualities, given the proper
parameters. One can find the topic of the correspondence between deep and shallow NN being investigated in [341, 342,
343, 344]. A similar analogy can be applied to the initial problem defined by the Eq. (4.1). It is possible to reduce the
tensor sum into the quadratic polynomial by introducing the auxiliary variables. The good examples of such substitutions
are presented in [345]. A similar procedure can be applied to convert quadratic optimization back into the tensor-sum
by reducing variables.

Recalling the Hopfield NN, one can view it from a different perspective. Changing the sign before the Lyapunov
function will lead to the maximization task. It can be considered as an anti-Hopfield model. Using the Hebbian learning
rule, which connects the coupling coefficients’ values with the stored patterns, the anti-Hopfield model will penalize
the stored patterns, which can be considered the unlearning procedure. This effect is highlighted in the context of the
planted solution [346].

One of the types of Hopfield NN is called a Boltzmann machine. It is a type of stochastic recurrent NN, unlike the
Hopfield NN, but with the same energy form given by Eq. (4.30). To train the Boltzmann machine, one must prepare
the visible units according to the input data (in contrast to the hidden, which do not receive any information from the
external sources). The next step is to run the network by choosing a unit, resetting its state, and repeating it until
reaching the so-called thermal equilibrium at a particular parameter of the system 𝑇 . The final state depends only
on the global state’s energy. One can find a review covering the main areas of use for such specific NN architectures
[347], where the emphasis is made on the inverse statistical problems. The stochasticity of the Boltzmann machines
allows one to trace additional significant correspondence of the Ising-like models with a special type of Markov random
field (MRF) [348, 349], a class of probabilistic graphical model (PGM). Despite the theoretical interest, the Boltzmann
machine is rarely used in large practical applications, even considering some modifications, like restricted Boltzmann
machines [350, 351] or deep Boltzmann machines [352].

Modern Hopfield networks

Recently a new type of NN was introduced, which is called a modern Hopfield network [353]. It is the generalization
of the conventional Hopfield NN with continuous states and a corresponding update rule (equivalent to the attention
mechanism used in the modern transformer architectures). This type of NN can store exponentially many patterns
growing with the number of variables. Moreover, it retrieves the pattern using only one update while having a small
retrieval error. Such architectures can be incorporated into other, larger architectures and be applicable across various
domains. For example, Hopfield layers showed greater performance on different state-of-the-art benchmark problems
across various domains, including drug design datasets, compared to different ML methods.

The central part of the results from the original article [353] can be suitable for the original model of Hopfield NN with
several appropriate adjustments. Moreover, since the last model can be realized on several types of hardware (including
the EP platform, the topic of the current thesis), they share the same advantages of this specific architecture.
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One can successfully integrate the new modern Hopfield network into DL architectures to access such functionality
as storage and access specific input data or learned prototypes. Moreover, such Hopfield layers provide attention mech-
anisms, pooling, additional memory and other useful functions. One can find many more groups of methods, which can
be realized through modern Hopfield NNs. Among them are methods mentioned in this chapter, such as SVM, logistic
and multinomial regression, PCA, boosting and bagging of NNs or others, like decision trees, random forest, Bayesian
methods [353]. For other connections see [354, 355].

The storage of the exponentially many patterns can be realized even for the case of binary variables [356, 357] using
the extension of the original quadratic form into high-order terms. The possibility of tensor terms realization in the
dynamics of the condensate degrees of freedom was previously mentioned in Chapter 3.15. This makes the discussed
physical platform a prospective candidate for the realization of the functionality mentioned above. However, the topology
of the possible condensate connections can be pretty sparse due to the two-dimensional physical setup or the coefficient
correlations. The same concerns the topology for the possible tensor terms, which should provide good scaling for the
optimization problems and memory capacity for the NN realization and should be investigated further.

4.2.3 Ensemble methods

The NN architectures relations to each other in the context of their reproduction on a particular hardware system
was analyzed. In many cases, the standard approach to the NN training is to use the predefined architecture, and the
backpropagation mechanism to find the suitable weights of such NN [358, 50]. There are also exciting methods of defining
NN’s structure and corresponding NN weights as constructive learning [359, 360, 361] that alters the network structure
as learning proceeds or destructive learning, such as optimal brain damage [362, 363, 364]. However, they may not be
enough or less likely to be used in practical applications. Not taking into account the current research topic about the
neural architecture search [365], the focus is on more efficient ensemble methods relevant to this chapter’s main topic.

Ensemble methods have an elementary underlying idea. It consists of taking several not very effective methods
or NNs and combining them to correct each other’s mistakes to enhance the overall quality of the resulting system
[366, 367, 368, 369]. While being actively used in production, these methods give very high accuracy. The instability of
the fundamental architectures or considerable variation in the outcome only improves ensemble methods’ overall efficiency.
Moreover, the assembly process allows exploring an immense combinatorial variability. Several critical methods were
mentioned in the context of transferring it on general hardware capable of the optimization tasks defined in the beginning.

The idea of stacking [370, 371] is to train several different NNs or different algorithms on the same data and pass their
results to the input of the governing one, which makes the final decision. Bagging (or Bootstrap AGGregatING) [372, 373]
is an ensemble meta-algorithm designed to improve the accuracy of the basic algorithm. It can be thought of as the model
averaging techniques since the idea is to use several different samples for the set of tunable algorithms’ learning process.
At the same time, the final answer is obtained through the averaging of the outcomes. The intrinsic capability to parallel
this meta-algorithm makes it quite attractive from the engineering perspective. To utilize the Boosting [373, 374, 375] is
to tune (or train) algorithms in a consequent manner so that each subsequent step is correcting the previous one. The
samples for a particular step are biased concerning the important or problem sets of points. The famous variant of this
meta-algorithm is called gradient boosting.

The ensemble methods are usually used in the context of working with the NNs. The vital part of this subsection
is that each presented meta-algorithm can be performed on the specialized hardware, where it is set up to perform a
particular task. It is possible to utilize the experimental set up sequentially (see, for example, the PCA). In the same
way, one can use the hardware with the boosting or bagging methods.

4.2.4 Image processing

Several problems arising in the computer vision domain can be formulated as binary quadratic programs, which is the
particular case of our target problem (4.1). The assignment which is of practical interest usually can be identified
as large-scale problems. The technique called the semidefinite relaxation appeared to be very efficient [309] and was
discussed at the beginning of this chapter in dealing with different types of constraints in the problem formulation.

The list of discussed problems in the later work itself includes image co-segmentation (4.33), image segmentation
with different constraints and the tasks that can be related to the target problem with the significant difference in the
constraints, graph matching (4.34), image deconvolution (4.35), graph bisection (4.36), and many similar related to these
ones. The computational complexity of these problems is high, which leads the authors to propose an improved version
of the semidefinite programming approach which is more efficient and scalable. Some of these formulations (among which
several are quite obvious and will be discussed further in the Section (4.3) are listed with little corresponding details and
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refer the reader to the original work:

minx∈{−1,+1}𝑁 x⊤Ax

s.t.
(︀
x⊤t𝑖

)︀2 ≤ 𝜅2𝑛2
𝑖 , 𝑖 = 1, . . . , 𝑠,

(4.33)

is the image co-segmentation task with the matrix A that can be found in [376], 𝑠 is the number of images, 𝑛𝑖 is the
number of pixels for 𝑖-th image, and 𝑛 =

∑︀𝑠
𝑖=1 𝑛𝑖.t𝑖 ∈ {0, 1}𝑛 is the indicator vector for the 𝑖 -th image. 𝜅 ∈ (0, 1].

minx∈{0,1}𝐾𝐿 h⊤x+ x⊤Hx

s.t.
∑︀𝐿

𝑗=1 x(𝑖−1)𝐿+𝑗 = 1, 𝑖 = 1, . . . ,𝐾∑︀𝐾
𝑖=1 x(𝑖−1)𝐿+𝑗 ≤ 1, 𝑗 = 1, . . . , 𝐿

(4.34)

is graph matching and 𝑥(𝑖−1)𝐿+𝑗 = 1 if the 𝑖 -th source point is matched to the 𝑗 -th target point; otherwise it
equals to 0.ℎ(𝑖−1)𝐿+𝑗 records the local feature similarity between source point 𝑖 and target point 𝑗;𝐻(𝑖−1)𝐿+𝑗,(𝑘−1)𝐿+𝑙 =

exp
(︀
− (d𝑖𝑗 − d𝑘𝑙)

2 /𝜎2
)︀

encodes the structural consistency of source point 𝑖, 𝑗 and target point 𝑘, 𝑙. The corresponding
details can be found in [377]

min
x∈{0,1}𝑛

‖q−Kx‖22 + S(x) (4.35)

is the image deconvolution task, where K is the convolution matrix corresponding to the blurring kernel k, S denotes the
smoothness cost, x and q represent the input image and the blurred image respectively [309].

min
x∈{−1,1}𝑛

− x⊤Wx

s.t. x⊤1 = 0

(4.36)

is graph bisection (many analogous formulations will be discussed further) with 𝑊𝑖𝑗 =

{︃
exp

(︀
−d2

𝑖𝑗/𝜎
2
)︀

if (𝑖, 𝑗) ∈ ℰ
0 otherwise

where d𝑖𝑗 denotes the Euclidean distance between 𝑖 and 𝑗. All of these tasks are obviously easily mapped into the initial
optimization problem defined by Eq. (4.1).

4.2.5 Probabilistic graphical models

A probabilistic graphical model (PGM) is a model in the form of a graph, where nodes represent random variables
(events, conditions, etc.). At the same time, the arcs express the conditional dependence structure between these nodes.
Graph structure brings with itself an important property of modularity, which allows one to build complex models from
the simpler parts. Such a compositional approach and the probability theory provide a very appealing framework for
describing various complex models. Many fields such as statistics, information theory, systems engineering, and statistical
mechanics deal with special cases of general graphical model formalism. The PGMs provide a general view of all of these
models as instances of a common formalism. Mixture models, hidden Markov models or frequently discussed Ising models
are good examples of a broad and general framework. One can find good introduction to the topic of PGM in [378, 379]
and comprehensive description with many rich details in [380, 381].

PGMs can provide a compact representation of joint probability distributions. Given 𝑁 binary random variables,
one needs 2𝑁 parameters to describe the joint probability distribution 𝑝(𝑥1, ..., 𝑥𝑁 ), while at the same time, a PGM
may need much fewer (in some cases - exponentially fewer), depending on the connections between nodes and the model
assumptions. The possible factorization of the joint probability distribution, due to the information about the model,
can help effectively work with inference tasks [379].

Graphical models can be divided into undirected and directed. Undirected graphical model, also called Markov
random field (MRF), is standard physics and computer vision model. Directed graphical model, or Bayesian network
(BN), is popular in the ML community. The main difference between these models is that BNs are directed and acyclic,
while MRFs are undirected and cyclic. The consequence of this difference is the limited ability to represent specific
dependencies for each type. BNs can not represent cyclic dependencies; in contrast, MRFs can not reproduce induced
dependencies.

A good example of MRF is the widely used Ising model. It is possible to obtain the corresponding state of such
a model by projecting the possible state of the XY model. The last can be reproduced by a variety of condensed-
matter platforms with state of the art characteristics such as superconducting Josephson junction arrays [382, 383], EP
condensates [68, 188] or ultracold bosonic quantum gases in optical lattices [227, 384]. These connections emphasize the
hardware perspective on the MRFs realization.

Similarly, one can realize BNs in the same setup by making the coupling coefficients asymmetrical. For example, one
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can easily redirect light in the hardware optical setting using SLM to connect the elements. It is also possible to have a
hybrid model with both directed and undirected connections, usually referred to as a chain graph.

The joint distribution of a MRF can be expressed in the following form:

𝑝(𝑥) =
1

𝑍

∏︁
𝐾∈𝒦

𝜓𝐾 (𝑋𝐾) , (4.37)

where 𝒦 is the set of maximal cliques in the graph, 𝜓𝐾 (𝑥𝐾) is a positive, real-valued potential function defined on the
clique set of variables 𝑋𝐾 = {𝑥𝑖}𝑛𝑖=1 , 𝑖 ∈ 𝐾, and 𝑍 is the normalization factor (accounts for all possible realisation of
𝑋𝐾 , same as in the statistical physics expression):

𝑍 =
∑︁
𝑋

∏︁
𝐾∈𝒦

𝜓𝐾 (𝑋𝐾) (4.38)

Eq. (4.37) has the form of a factor graph, which is a bipartite graph representing the factorization of a joint probability
distribution function. It can be easily seen that the Ising model (4.30) is a special case of the Eq. (4.37) (𝑥𝑖 ∼ 𝑆𝑖) with
the pair potentials 𝜓 (𝑋𝐾) = 𝜓 (𝑥𝑖, 𝑥𝑗) = 𝑒𝐽𝑖𝑗𝑥𝑖𝑥𝑗 for nodes 𝑖, 𝑗 and individual potential functions 𝜓(𝑥𝑖) = 𝑒𝐼𝑖𝑥𝑖 for
non-zero fields.

One can write similar expression for the directed graphical model:

̃︂𝑝(𝑥) = 𝑑∏︁
𝑗=1

̃︀𝑝 (︀𝑥𝑗 | 𝜋𝑥𝑗

)︀
, (4.39)

with 𝜋𝑥𝑗 is the set of parent nodes of 𝑥𝑗 , the index 𝑗 = 1, .., 𝑑 represents the observable variables on the directed acyclic
graph 𝐺 be a directed acyclic graph with vertices 𝑉 = (𝑥1, . . . , 𝑥𝑑) and the˜ tilde denotes the unnormalized version of
the probability.

Working with the PGM, we are usually interested in certain quantities, such as:
1) Calculating the normalization factor (or statistical sum), given by the Eq. (4.38).
2) Computing the marginal distribution over node or a given subset of nodes in the model (and the normalised

marginal distribution):

𝑝𝑖(𝑥𝑖) =
∑︁
𝑘 ̸=𝑖

˜𝑝({𝑥𝑘}𝑛−1
𝑘=1 ) =

∑︁
𝑥𝑘,𝑘 ̸=𝑖

∏︁
𝐾∈𝒦

𝜓𝐾 ({𝑥𝑘}) , (4.40)

where the expression is given for the node 𝑖 in the case of unnormalised MRF.
3) The inference task is to compute the likelihood of the observed data (in models with latent variables), which is

similar to the previous case, but for the family of BNs.
It is helpful to refer to all of the presented tasks as inference problems and describe the corresponding methods

only for the first problem since other tasks share the same complexity class, which scales similarly in the worst-case
scenarios. Furthermore, the inference tasks can differ in the knowledge about the underlying structure of variables with
their interaction and the full/partial observability of the variables. Finally, the last factor can be easily transferred to
the physical hardware by eliminating the readout mechanism from the hidden variables’ elements.

There are several conventional approaches to inference tasks. Exact inference algorithms include the brute force
method (counting all possible combinations of variables), the elimination of variables algorithm and the message passing
(MP) (also called the belief propagation (BP)), which can be exact, given particular topology of the variables connectivity
(like the tree structure). Moreover, the running time of these exact algorithms scales exponentially with the size of the
largest cluster, which is called the induced width of the graph [379]. However, since the majority of the practical cases
can not be treated precisely, one can use approximate inference algorithms.

There are mainly three approximate inference algorithms: variational inference (mean-field approximation), stochastic
simulation (or sampling), and loopy BP. We are interested in them not from the perspective of conventional algorithms
but concerning the optical hardware. Hence, it is helpful to describe the original routine methods and then go to the
methods of exploiting the specific physical systems.

The simplest way to deal with the inference in intractable probabilistic models is to use sampling subroutines to gain
necessary information about the configurational space. Usually, one is calculating instances of the function of interest to
gain statistical distribution in the hope it closely resembles the property of the actual distribution. However, to perform
the sampling on the unconventional hardware, one has to properly set up the parameters in the system (for example, set
up the coupling strengths in the Ising simulator in correspondence with the pairwise probabilities of binary events) and
faithfully be able to realize initial random distribution of variables to perform the dynamics of the system. In such a
way, it is possible to enjoy much faster operational speed, lower energy consumption, specific intrinsically set up readout
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mechanism of a specific metric or any other beneficial property that a particular physical system can offer. Moreover,
by changing the operational regime of the system into finding the lowest energy values of the given functional, one can
sample the low energy subspace or the most probable events in the given factor graph. The same idea works for the high
energy subspace or rarest events by simply changing the sign before the coupling coefficients. It is possible to introduce
post-processing techniques into the operational regime of hardware or modify it to obtain various modifications of the
sampling procedure, such as importance sampling, Markov Chain Monte Carlo, or their particular cases, such as Gibbs
sampling and the Metropolis-Hastings algorithm [31, 385, 386].

It is not easy to estimate how close the distribution obtained through sampling statistics is to the true one. An
alternative approach is to use variational techniques. The main idea of variational methods is to reformulate the
inference task in the form of a tractable model, i.e. to optimize corresponding parameters. Given an intractable
probability distribution 𝑝(𝑥) variational technique is aimed to solve an optimization problem over a class of tractable
distributions 𝒲 to find a 𝑤(𝑥) ∈ 𝒲 that is similar to 𝑝(𝑥). Further working with the 𝑤(𝑥) is much simpler since its
tractability, ability to analyze the convergence, bounds on the accuracy and good scalability [387, 388].

To solve the optimization problem for the parameters of an approximate distribution, one has to choose the family
of models 𝒲 and a proper cost function 𝑄(𝑤(𝑥)), which reflects the similarity between the initial 𝑝(𝑥) and the chosen
model 𝑤(𝑥). The common choice for this purpose is called the Kullback-Leibler (KL) divergence:

𝐾𝐿(𝑤‖𝑝) =
∑︁
𝑥

𝑤(𝑥) log
𝑤(𝑥)

𝑝(𝑥)
, (4.41)

which is used to measure differences in information contained within two distributions [389]. Since calculating the
normalisation factor is hard, it is easier to work with the KL divergence for the unnormalised distribution:

𝐾𝐿(𝑤‖̃︀𝑝) =∑︁
𝑥

𝑤(𝑥) log
𝑤(𝑥)̃︂𝑝(𝑥) = 𝐾𝐿(𝑤‖𝑝)− log𝑍. (4.42)

Due to the positivity of the KL term, one can establish the lower bound on the log partition function, which can be
helpful in some cases.

The choice of approximating family 𝒲 assumes many different methods, such as exponential families, NNs, Gaussian
processes and many others. However, the practically efficient and the most widely used class of distributions is the set of
fully factored functions 𝑤(𝑥) = 𝑤1(𝑥1)...𝑤𝑑(𝑥𝑑), which is easy to optimize by solving the following optimization problem:

min
𝑤1,...,𝑤𝑑

𝐾𝐿(𝑤‖̃︀𝑝). (4.43)

Such an approach of choosing 𝒲 is called mean-field inference. To solve it, one can use coordinate descent over all of
the factor functions 𝑤𝑖 for each 𝑖, while keeping 𝑤𝑗 , 𝑗 ̸= 𝑖 fixed for each iteration. Such iterative optimization procedure
has a closed-form solution. The final optimized model is often good enough for many practical applications.

One can use the special hardware in two main ways to perform the same methodology of variational inference. First
is the indirect way, when one tune the physical system parameters, corresponding to the set of independent variables
and comparing it with the actual distribution. The second is direct when one solves the exact minimization problem
(4.43) iteratively for each 𝑤𝑖 over the given domain by projecting the functional (4.41) into the available optimization
assignment.

bp (sum-product MP) is a message-passing algorithm for performing inference on graphical models [390, 391]. Com-
pared to the acyclic graphs, operating on a general factor graph with dense connectivity is usually called loopy BP. It
aims at calculating the same approximate inference tasks using specific functions that are called messages.

There are two types of messages that are computed differently depending on the source node on a factor graph. The
first type of messages comes from a variable node 𝑥𝑖 to a factor node ℎ and appears to be a product of all the messages
from neighboring factor nodes:

𝜇
(𝑡+1)
𝑖→ℎ (𝑥𝑖) =

∏︁
𝐻*∖ℎ

𝜇
(𝑡)
ℎ*→𝑖(𝑥𝑖), (4.44)

where 𝐻* denotes the set of all neighboring factor nodes ℎ* of a 𝑥𝑖 except the final factor node ℎ. The second type of
messages comes from a factor node to a variable node and can be calculated as the product of the potential functions
from (4.37) with messages from all other nodes:

𝜇
(𝑡)
ℎ→𝑖(𝑥𝑖) =

∑︁
𝑥𝑗∖𝑥𝑖

𝜓ℎ(𝑥𝑗)
∏︁
𝑘∖𝑗

𝜇
(𝑡)
𝑘→ℎ(𝑥𝑘). (4.45)

The indices (𝑡) and (𝑡+ 1) denotes the order of calculations, however different scheduling can be used for updating the
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messages. For the general case of dense graph with many loops, there is no optimal scheduling. After any number of
iterations, an estimate of the max-marginals (or beliefs) is obtained as:

𝑏
(𝑡)
𝑖 (𝑥𝑖) =

∏︁
𝐻*

𝜇
(𝑡−1)
ℎ*→𝑖(𝑥𝑖), (4.46)

and serves as good estimators of the marginal distributions.
Direct analogue computation on the specific unconventional hardware with the limited programmability option is

challenging. Nevertheless, one can attempt to decompose the mathematical operations used in calculating the messages
and beliefs to the ones available on the specific hardware, as was performed in the Section 3.4 of Chapter 3, see additionally
[3]. However, such an approach has many drawbacks, mainly in the enormous amount of required elements, low analogue
numerical accuracy and bad scalability options.

Nevertheless, the discrete update rules of MP have a very similar mathematical structure as the dynamics of the
Hopfield NN given by Eq. (4.29). This connection was investigated in [392], where one can find the close relationship
between MP algorithms and models of neurodynamics. It was shown that the equations of a continuous Hopfield network
could be derived from the equations of BP on a binary MRF with the assumption of sparse neuron connectivity. A similar
topic was investigated further for the general MP algorithms [393]. This trick can be exploited to perform approximate
inference, using the conventional dynamics of the special-purpose hardware even in the simple GD manner.

4.3 Direct encoding/decoding
Considering the previous list of methods, one can trace their derivation in different tasks of applied interest. In some
cases, it is possible to pick out the part that corresponds to the task easily solvable by the GD-like algorithm. However,
the big part of the classical computer science algorithms that are still important and relevant in a modern setting
is missing. This subsection is devoted to the general description of the existing connections/correspondence between
different computational tasks established for nearly 50 years ago [340, 394, 395]. It can be solved with the same techniques
offered in this chapter. Each case of the encoding/decoding task into the polynomial optimization (4.1) can be considered
uniquely; nevertheless, the present focus is on the universal approach using the SAT formulation.

The Boolean satisfiability problem (SAT) is the fundamental problem of determining whether a set of sentences in
Propositional Logic is satisfiable. For better understanding, one can give a simple example of the formula "a AND
b", which is satisfiable since two variables can be consistently replaced by the values TRUE that the general formula
evaluates to TRUE. In case that there is no such assignment for variables, the formula would be called unsatisfiable ("a
AND NOT a"). Every propositional logic formula can be transformed into an equivalent conjunctive normal form with
the laws of Boolean algebra. To give an example of SAT problem and a corresponding transformation one can write:

(𝑥1 ∧ 𝑦1)∨ (𝑥2 ∧ 𝑦2)∨ ...∨ (𝑥𝑛 ∧ 𝑦𝑛) ⇔ (𝑥1 ∨𝑥2 ∨ ...∨𝑥𝑛)∧ (𝑦1 ∨𝑥2 ∨ ...∨𝑥𝑛)∧ (𝑥1 ∨ 𝑦2 ∨ ...∨𝑥𝑛)∧ (𝑦1 ∨ 𝑦2 ∨ ...∨𝑥𝑛)∧ ...

... ∧ (𝑥1 ∨ 𝑥2 ∨ ... ∨ 𝑦𝑛) ∧ (𝑦1 ∨ 𝑥2 ∨ ... ∨ 𝑦𝑛) ∧ (𝑥1 ∨ 𝑦2 ∨ ... ∨ 𝑦𝑛) ∧ (𝑦1 ∨ 𝑦2 ∨ ... ∨ 𝑦𝑛), (4.47)

where conjunction AND is denoted by ∧, disjunction OR is denoted by ∨, and the number of clauses corresponds to
every possible combination of pair variables.

SAT is the first problem that was proven to be NP-complete [394, 340]. Currently, no known algorithm efficiently
solves each SAT instance. The question of its existence is equivalent to the famous P vs NP problem [396]. Nevertheless,
many heuristic SAT-algorithms can solve problem instances involving large amounts of variables, sufficient for many
applications. Additionally, there are many versions of the SAT problems, like 3-SAT and the generalization k-SAT,
HORN-SAT, XOR-SAT, which can better suit particular unconventional tasks.

Reformulating a particular task into the SAT notation can serve professional computer scientists as a universal tool in
long-standing problem solving, like Pythagorean triples problem [397] and Schur number 5 [398]. SAT version - weighted
weighted MAX-2-SAT appears to be a universal formulation since it allow one to easily reformulate the task as QUBO.
Let us demonstrate the encoding procedure and the main terms more precisely. A 2-SAT has 𝑚 clauses of 2 literals each.
A MAX-2-SAT is the problem of assigning values that maximize the number of satisfied clauses. Weighted MAX-SAT
assigns each clause a positive weight, so that the measure of violating the cost appears in the problem:

(ℓ1,1 ∨ ℓ1,2;𝑤1) ∧ (ℓ2,1 ∨ ℓ2,2;𝑤2) ∧ ... ∧ (ℓ𝑚,1 ∨ ℓ𝑚,2;𝑤𝑚), (4.48)

where ℓ𝑖,1 and ℓ𝑖,2 are the two literals of clause 𝑐𝑖, and 𝑤𝑖 is its weight. To reformulate a weighted MAX-2-SAT problem
as a QUBO, one has to use the fact that maximizing the weight of satisfied clauses is equivalent to minimizing the weight
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of unsatisfied clauses, and using the logic 𝑥𝑖 ∨ 𝑥𝑗 = 𝑥𝑖 ∧ 𝑥𝑗 . The final form looks then:

min
𝑥𝑖

∑︁
𝑖

𝑤𝑖ℓ𝑖,1ℓ𝑖,2, (4.49)

which is the QUBO that has the same form as Eq.(4.1) with the tensor of rank 2. Thus, the connection between the
SAT (that can be easily converted into weighted MAX-2-SAT by use of the Boolean logic) and QUBO is revealed. In
such a way, one can exploit many SAT formulated tasks and convert then into the optimisation problems.

This connection, however, was lying on the surface and was explored in the vital work [307], which provided Ising
formulations for many NP-complete and NP-hard problems and covered all of Karp’s 21 NP-complete problems. One
can find number partitioning, graph partitioning, clique existence, binary integer linear programming, exact cover, set
packing (or maximal independent set), vertex cover, satisfiability (with the emphasis on 3SAT to maximum independent
set reduction), minimal maximal matching, set cover, knapsack with integer weights, graph colouring, clique cover,
job sequencing with integer lengths, hamiltonian cycles and paths, travelling salesman problem, minimal spanning tree
with a maximal degree constraint, Steiner trees, directed and undirected feedback vertex set, feedback edge set, graph
isomorphisms among the covered problems, as well as some useful tricks for the near-term quantum adiabatic optimization
devices.

Here the exact encoding of three easy problems is presented, two of which are taken from the list above for the
demonstrative purpose.

Maximum independent set

Considering the sets to be encoded in an undirected graph 𝐺 = (𝑉,𝐸), where each set 𝑉𝑖 maps to a vertex 𝑖 ∈ 𝑉 , one
seeks the largest subset of vertices of graph 𝐺. An edge 𝑖𝑗 ∈ 𝐸 exists when 𝑉𝑖 ∩ 𝑉𝑗 is non-empty. It is straightforward
to see that the corresponding Hamiltonian is [307]:

𝐻 = 𝐴
∑︁
𝑖𝑗∈𝐸

𝑥𝑖𝑥𝑗 −𝐵
∑︁
𝑖

𝑥𝑖, (4.50)

where the first term is responsible for non-intersection constraint and the second is minimizing one set and maximizing
the size of the opposite set. The question of what is the maximal number of vertices which may be "coloured" (𝑥𝑖 = 1)
such that an edge connects no two coloured vertices, is exactly equivalent to the set packing problem, MAX-Cut or the
reduction of 3SAT problems.

One can encode the binary variables 𝑥𝑖 ∈ 0, 1 into the Ising variables, just simply using the relation 𝑠𝑖 = 2𝑥𝑖 − 1.

Set cover

The set covering problem consists in finding the smallest possible number of sets 𝑉𝑖s, such that the union of them is
equal to 𝑈 , where a set 𝑈 = {1, ..., 𝑛} consists of sets 𝑉𝑖 ⊆ 𝑈(𝑖 = 1, ..., 𝑁) so that 𝑈 =

⋃︀𝑁
𝑖=1 𝑉𝛼. This problem is

NP-hard [340]. Introducing a binary variable 𝑥𝑖, which is 1 if the set 𝑖 is included and 0 otherwise. 𝑥𝛼,𝑚 is another
binary variable, which is 1 if the number of sets 𝑉𝑖 with the 𝛼 element is 𝑚 ≥ 1, and 0 otherwise. The first energy
imposes the constraints that exactly one 𝑥𝛼,𝑚 must be 1 because each element of 𝑈 must be included a fixed number of
times. The number of times that we claimed 𝛼 was included is, in fact, equal to the number of 𝑉𝑖 have been included,
with 𝛼 as an element. Thus, the energy has the form [307]:

𝐻𝐴 =𝐴

𝑛∑︁
𝛼=1

(︃
1−

𝑁∑︁
𝑚=1

𝑥𝛼,𝑚

)︃2

+𝐴

𝑛∑︁
𝛼=1

⎛⎝ 𝑁∑︁
𝑚=1

𝑚𝑥𝛼,𝑚 −
∑︁

𝑖:𝛼∈𝑉𝑖

𝑥𝑖

⎞⎠2

.

(4.51)

It is obvious then that with the given variables one has to minimize over 𝑉𝛼s included in the selection:

𝐻𝐵 = 𝐵

𝑁∑︁
𝑖=1

𝑥𝑖, (4.52)

with the necessary condition 0 < 𝐵 < 𝐴 to be satisfied in any case.
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Treewidth computation

To expand the methodology of encoding/decoding an arbitrary computational task, the particular assignment of finding
the graph’s treewidth is presented. The treewidth of a graph can be defined in several equivalent ways: the size of the
largest vertex set in a tree decomposition of the graph, the size of the largest clique in a chordal completion of the graph
or the maximum order of bramble, a collection of connected subgraphs that all touch each other.

The initial idea behind this task is to adjust the annealer-like hardware/heuristics into performing some dynamic
programming assignment; however, it appears to be very hard to expand the initially defined scope of the setup or method
if the adjustment of the particular hardware does not involve it to perform calculations in the same dynamical and not
static manner (under static one assume the final state of the system which outputs the final stable set of variables, like
the annealing technique converges to the suboptimal solution). Nevertheless, it is possible to get some help from such
special-purpose hardware by providing insight into the considered structure and exploit this information for classical
algorithms as an example.

Giving the standard definition, which will be clarified through the encoding procedure: a tree decomposition of a
graph 𝐺 = (𝑉,𝐸) is a tree, 𝑇 , with nodes 𝑋1, ..., 𝑋𝑛, where each 𝑋𝑖 is a subset of 𝑉 , satisfying the following properties
[399]:

• The union of all sets 𝑋𝑖 equals 𝑉 . That is, each graph vertex is contained in at least one tree node.

• If 𝑋𝑖 and 𝑋𝑗 both contain a vertex 𝑣, then all nodes 𝑋𝑘 of 𝑇 in the (unique) path between 𝑋𝑖 and 𝑋𝑗 contain 𝑣
as well. Equivalently, the tree nodes containing vertex 𝑣 form a connected subtree of 𝑇 .

• For every edge (𝑣, 𝑤) in the graph, there is a subset 𝑋𝑖 that contains both 𝑣 and 𝑤. Vertices are adjacent in the
graph only when the corresponding subtrees have a node in common.

The width of a tree decomposition is the size of its largest set 𝑋𝑖 minus one. The treewidth tw(𝐺) of a graph 𝐺 is the
minimum width among all possible tree decompositions of 𝐺.

Treewidth is usually used in the parameterized complexity analysis of graph algorithms. It shows the similarity
between the tree structure and the particular graph with its connections between nodes. Every complete graph has
treewidth 𝑛− 1 with 𝑛 being the number of nodes. A connected graph with at least two vertices has treewidth 1 if and
only if it is a tree.

It is NP-complete to determine whether a given graph𝐺 has treewidth at most a given variable 𝑘 [400]. However, when
𝑘 is any fixed constant, the graphs with treewidth 𝑘 can be recognized, and width 𝑘 tree decomposition constructed for
them, in linear time [401]. To summarizing, one can build tree decomposition of a graph, knowing its structural property,
known as treewidth. Moreover, one can find the treewidth using the standard encoding into the Ising problem; however,
this encoding will use the auxiliary algorithm, known as integer linear programming (ILP). Knowledge of the constant
𝑘, obtained by the annealing-technique means, can reduce the complexity of the initial NP problem and make it P class.

It is useful to use the ILP-based approach to tackle the problem of determining the treewidth of the graph that
was presented in [402]. The work is based on the elimination order formulation [403, 404], which is based on the
relationship between treewidth and chordalizations of graphs. Finding the treewidth of a graph 𝐺 is equivalent to
finding a triangulation of the graph 𝐺 with minimum clique size. However, the graph can be triangulated if the perfect
elimination scheme exists. The idea is to determine the best elimination order of the vertices. The maximum outdegree
among the found elimination scheme’s vertices should be equal to the width of the final tree decomposition of 𝐺, which
is obtained after the triangulation process. To model the perfect elimination scheme, one needs to introduce the decision
variables of ILP in the following way:

𝑥𝑖𝑗 =

{︃
1, if 𝑖 is ordered before 𝑗 in the perfect elimination scheme,
0, otherwise.

(4.53)

𝑦𝑖𝑗 =

⎧⎪⎨⎪⎩
1, if 𝑖 is ordered before 𝑗 in the perfect elimination scheme
and if 𝑖𝑗 is an edge of the triangulation,
0, otherwise.

(4.54)
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Following the original article, the elimination order formulation reads:

min 𝑤 (4.55)

𝑤 ≥
∑︁
𝑗∈𝑉

𝑦𝑖𝑗 ,∀𝑖 ∈ 𝑉 (4.56)

𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1, ∀{𝑖, 𝑗} ⊆ 𝑉 (4.57)

𝑥𝑖𝑗 + 𝑥𝑗𝑘 − 𝑥𝑖𝑘 ≤ 1, ∀{𝑖, 𝑗, 𝑘} ⊆ 𝑉 (4.58)

𝑦𝑖𝑗 ≤ 𝑥𝑖𝑗 , ∀{𝑖, 𝑗} ⊆ 𝑉 (4.59)

𝑦𝑖𝑗 = 𝑥𝑖𝑗 , ∀𝑖𝑗 ∈ 𝐸 (4.60)

𝑥𝑗𝑘 + 𝑦𝑖𝑗 + 𝑦𝑖𝑘 − 𝑦𝑗𝑘 ≤ 2, ∀{𝑖, 𝑗, 𝑘} (4.61)

𝑥𝑖𝑗 ∈ {0, 1}, 𝑦𝑖𝑗 ∈ {0, 1},∀𝑖, 𝑗 ∈ 𝑉 (4.62)

The constraints (4.58),(4.59) and (4.62) are necessary for variables 𝑥 to establish a linear order. Constraints (4.60) force
the 𝑦𝑖𝑗 variable to be zero as soon as 𝑖 is not ordered before 𝑗. Constraints (4.60) impose the correspondence between
edges of 𝐺 in the triangulation. Constraints (4.62) imply the consistency among each triangle, more precisely - that if
edges 𝑖𝑗 and 𝑖𝑘 are in the triangulation with 𝑖 ordered before 𝑗 and 𝑖 ordered before 𝑘, then there must exist an edge 𝑗𝑘
in the triangulation.

By simple manually defined encoding, one can write down the following cost function terms (which have to be
minimized), associated with each assignment:

𝐻12 =
∑︁
𝑖,𝑗

(𝑦𝑖𝑗)
2 (4.63)

𝐻3 =
∑︁
𝑖,𝑗

(1− 𝑥𝑖𝑗 − 𝑥𝑗𝑖)
2 (4.64)

𝐻4 =
∑︁
𝑖,𝑗,𝑘

𝑥𝑖𝑗𝑥𝑗𝑘(1− 𝑥𝑖𝑘) (4.65)

𝐻5 =
∑︁
𝑖,𝑗

𝑦𝑖𝑗(1− 𝑥𝑖𝑗) (4.66)

𝐻6 =
∑︁
𝑖,𝑗

𝐽𝑖𝑗(𝑦𝑖𝑗 − 𝑥𝑖𝑗)
2 (4.67)

𝐻7 =
∑︁
𝑖,𝑗,𝑘

𝑥𝑗𝑘𝑦𝑖𝑗𝑦𝑖𝑘(1− 𝑦𝑗𝑘). (4.68)

The presented terms constitute the Hamiltonian, which is intended to be minimized. It is possible to map this assignment
to the (4.1) precisely working with the polynomial terms of the 4-th order. However, one needs to unfold the presented
logic by introducing the additional variables to reduce the tensor’s order to the matrix. It makes the encoding very hard
and impractical even for the small graphs ((2𝑁2)2 variables in the most general sense, without considering the internal
symmetry).

Despite the little practical interest of the last example, it presents the methodological idea. It demonstrates the so-cold
hardware-assisted computation, for which one can exploit both the conventional digital computer and the information
obtained from the annealer-setup. In Chapter 3, we have already discussed the dynamical aspect of the minima search.

84



Chapter 5

Conclusion

The results obtained through the thesis research are pretty diverse; nevertheless, they form a unique and interconnected
picture. The EP system appeared to be a promising platform, which can lead to the realization of many complex com-
putational tasks. Setting the experimental parameters properly, one can solve the QUBO or switch to its generalization
- the HOBO problem. Additionally, It was shown that complex ML tasks could be transferred to this condensed matter
system, one of the best candidates for realizing different hardware due to its variety of desirable properties from the
underlying physics. A rich list of possible applications was considered. Nevertheless, the analytical description of periodic
structures was achieved, which is significant for both theory and applications. Moreover, an extensive analysis of the
existing computational assignments was performed, which allow one to operate on the EP lattices in a purely engineering
sense.

To summarise, EPs appear to be an auspicious physical system, serving as the perfect foundation for technological
advancement. Nevertheless, many physical systems can be exploited in terms of computation. The best way to solve
computational problems is to apply strict formalization of the task. The results show it is possible to connect much
of the CS assignment with a specific platform, with the remaining question - to what degree this connection will be
efficient? One has to keep in mind the tradeoff between the physical setup and engineering possibilities and the complex
model/description of the system.

The conventional digital computers will be exploited for a long time. However, particular tasks of high complexity
can be solved with the special purpose hardware, occupying its niche in the future, resulting in our possibilities’ very
rugged landscape.

Despite extensive multidisciplinary research, there are many questions one can pursue as future directions. To what
extent can we complicate the system to ’squeeze’ it for the most computational efficiency or exploit its dynamical
behaviour to solve even more hard problems? How do the quantum effects manifest themselves in finding a good solution
to a specific problem, and is there any way to incorporate such a mathematical description to obtain an efficient heuristic
algorithm? What is the main differences between different physical platforms, and how to properly construct easy/hard
instances to test their performance?
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Chapter 6

Additional resources

6.1 Physical optical platforms for large-scale optimization
Recent years have spawned a competition of different platforms aimed at solving classical optimization problems with
the advantage in speed compared to the classical hardware for a given type of problem. To gain such an advantage, one
has to exploit physical phenomena for solving NP-complete problems, which is the reverse idea of trying to model natural
phenomena. Hence the new multidisciplinary field appeared at the intersection of laser and condensed matter physics,
engineering and complexity theories. Its main goal is to develop quantum devices to simulate spin Hamiltonians. This
section contains information about such simulations for a range of physical systems and is largely based on the work
[405].

6.1.1 Complex laser networks

A new generation of complex lasers such as degenerate cavity lasers, multimode fibre amplifiers, large-aperture vertical
cavity surface emitting lasers, random lasers have many advantages in comparison with the relatively simple traditional
laser resonators in terms of their computing properties [406]. Such networks have many advantages, including a large
number of spatial degrees of freedom, nonlinear interactions that can be controlled by adjusting the spatial structures
of lasing modes, the spatial coherence of emission can be tuned over a wide range, and the output beams may have
arbitrary profiles. The presented list allows one to exploit the complex lasers to be used for reservoir computing [407] or
perform an efficient mapping of hard computational problems into the hardware setup.

The coupling between the lasers can be engineered by mutual light injection from one laser to another, which is the
reason for appearing of the losses, or in other words, dissipative coupling, which depends on the relative phases between
the lasers. Such connections drive the system to a phase-locking and hence to a steady-state solution of quadratic
constrained optimization, which is the same as finding the minimum of the XY Hamiltonian [408]. Degenerate cavity
lasers are beneficial as solvers as all their transverse modes have nearly identical Q. This implies that a large number of
transverse modes lase simultaneously since they all have similar lasing thresholds [406].

The evolution of the 𝑁 single transverse and longitudinal modes class–B lasers can be described by the rate equations
[409, 410] on the amplitude 𝐴𝑖, phase 𝜃𝑖, and gain 𝐺𝑖 of the 𝑖-th laser

𝑑𝐴𝑖

𝑑𝑡
= (𝐺𝑖 − 𝛼𝑖)

𝐴𝑖

𝜏𝑝
+
∑︁
𝑗

𝐽𝑖𝑗
𝐴𝑗

𝜏𝑝
cos(𝜃𝑖 − 𝜃𝑗), (6.1)

𝑑𝜃𝑖
𝑑𝑡

= Ω𝑖 −
∑︁
𝑗

𝐽𝑖𝑗
𝐴𝑗

𝜏𝑝𝐴𝑖
sin(𝜃𝑖 − 𝜃𝑗), (6.2)

𝑑𝐺𝑖

𝑑𝑡
=

1

𝜏𝑐
[𝑃𝑖 −𝐺𝑖(1 + |𝐴𝑖|2)], (6.3)

where 𝑃𝑖, 𝛼𝑖,Ω𝑖 represent the pump strength, loss, frequency detuning of laser 𝑖, respectively, whereas 𝜏𝑝 and 𝜏𝑐 denote
the cavity round trip time and the carrier lifetime, respectively. The coupling strengths between 𝑖-th and 𝑗-th lasers are
represented by 𝐽𝑖𝑗 . If the amplitudes of all lasers are equal, Eq. (6.2) reduces to the Kuramoto equation of coupled phase
oscillators

𝑑𝜃𝑖
𝑑𝑡

= Ω𝑖 −
1

𝜏𝑝

∑︁
𝑗

𝐽𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗). (6.4)
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Equation (6.4) is a celebrated Kuramoto model of identical oscillators which is widely used to describe the emergence of
coherent behaviour in complex systems [411, 412]. By LaSalle Invariance Principle [413] every trajectory of the Kuramoto
model converges to a minimum of the XY Hamiltonian.

The probability of finding the global minimum of the XY Hamiltonian on the experimental setup of the laser array
was shown to agree with the numerical simulation of Eqs. (6.1-6.3). However, simulating the Kuramoto model Eq. (6.4)
on the same matrix of coupling strength gives a much lower probability of finding the global minimum. One can
conclude the amplitude dynamics described by Eq. (6.1), which can reach the global minimum [410] by pumping from
below. Such a statement means that the cavity lasers can be used as an efficient physical simulator for finding the XY
Hamiltonian’s global minimum and, therefore, for solving phase retrieval problems. The phase retrieval problem can
be solved using a digital degenerate cavity laser [414]. It is an all-optical system that uses a nonlinear lasing process
to find a solution that best satisfies the constraint on the Fourier magnitudes of the light scattered from an object.
Furthermore, the compact support aperture is introduced inside the cavity that ensures that different configurations of
laser phases compete to find the one with the minimal losses, ensuring that the solution to the phase retrieval problem
is found correctly. The advantages of such a system are short round-trip times of the order of 20ns and high parallelism
in selecting the advantageous mode.

6.1.2 Coherent Ising machine

The coupled optical parametric oscillator (OPO) network represents an alternative physical system for solving the Ising
problem. Each OPO is a nonlinear oscillator with phases above the threshold that can take a discrete value and be
interpreted as the Ising spins. These artificial spins are encoded by the optical phase of short laser pulses generated by
a nonlinear optical process, i.e. optical parametric amplification. Based on the OPO elements, coherent Ising machine
(CIM) is a gain-dissipative system, which exploits the correspondence between the ground state of the Ising Hamiltonian
and the lowest loss configuration. The idea of such a device is to drive the system close to the near-threshold regime,
where energy minima are not stable yet, except the one responsible for the optimal solution.

The latest most successful implementations of CIMs used fibre-based degenerate OPOs and a measurement-based
feedback coupling. The matrix matrix-vector multiplication has to be performed on an FPGA embedded in the feedback
loop to establish the coupling coefficient. Such a platform enjoys scalability, which is bounded by the electronic feedback,
and the performance was demonstrated for various large-scale Ising problems [415, 416, 417]. The possible CIM’s speedup
over classical algorithms is the question under consideration [418, 419]. The significant advantage of this device is the
ability to implement arbitrary coupling connections [415] between any two spins, so that the connectivity topology is not
restricted by specific factors, compared to the quantum annealer, i.e. D-Wave machine [416].

In CIM, each Ising spin corresponds to a degenerate OPO that is described by a stochastic equation for the complex
amplitude of the signal field 𝑎𝑖:

𝑑𝑎𝑖
𝑑𝑡

= 𝑝𝑎*𝑖 − 𝑎𝑖 − |𝑎𝑖|2𝑎𝑖 +
∑︁
𝑗

𝐽𝑖𝑗𝑎𝑗 , (6.5)

where 𝑝 is a linear pump term, normalized linear and Nnonlinear nonlinear losses, and 𝐽𝑖𝑗 are mutual couplings. A
portion of the light is extracted from the cavity after each round trip to realize these couplings experimentally. That
light is then homodyned against a reference pulse to produce 𝑎𝑖 that is next supplied to FPGA. A feedback signal is
computed for each pulse afterwards. An optical modulator is applied to convert the signal back so that the resulting
light can be used for the next round trip. It is convenient to reformulate the equations (6.5) in terms of the in-phase and
quadrature components 𝑎𝑖 = 𝑐𝑖 + 𝑖𝑠𝑖 which gives us:

𝑑𝑐𝑖
𝑑𝑡

=

(︂
𝑝− 1− (𝑐2𝑖 + 𝑠2𝑖 )

)︂
𝑐𝑖 +

∑︁
𝑗

𝐽𝑖𝑗𝑐𝑗 (6.6)

𝑑𝑠𝑖
𝑑𝑡

=

(︂
− 𝑝− 1− (𝑐2𝑖 + 𝑠2𝑖 )

)︂
𝑠𝑖 +

∑︁
𝑗

𝐽𝑖𝑗𝑠𝑗 . (6.7)

The computational effectiveness of these equations has been demonstrated [420] by tackling small size Ising type problems.
These equations lack an individual pump variation 𝑝𝑖 for equalizing all signal amplitudes |𝑎𝑖|, which is crucial for achieving
the global minimum.

The degenerate OPOs system is highly susceptible to external perturbations that can affect performance [416]. The
requirements of the nonlinear degenerate OPO generation process are powerful laser systems and temperature-controlled
nonlinear materials. This makes the experimental optical setup large and very complex, leading to other physical
platforms’ proposals for the same operational model. Another platform is a CIM based on optoelectronic oscillators with
self-feedback, which is stable and cheaper. It operates with 100 spin elements to solve Ising optimization problems on
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regular and frustrated graphs with similar or better performance compared to the original degenerate OPO-based CIM
[421]. One can use a network of injection-locked multicore fibre lasers for analogue all-optical implementation of a CIM
[422]. The dynamics of a network of injection-locked lasers is described with the nonlinear coupled photon rate equations.
The coupling coefficients were implemented using SLMs and were reported to depend on the photon numbers. However,
these numbers are unknown in advance, representing a particular difficulty for solving a given Ising Hamiltonian with the
proposed device. These issues can be efficiently resolved with the gain variation methods in the future [423]. Considering
the large scale machines, one can find experiments with optical Ising machine based on the use of an SLM and binary
phases in separated spatial points of the optical wavefront of an amplitude-modulated laser beam with thousands of
spins with tunable all-to-all pairwise interactions [424].

6.1.3 Photon and Polariton networks

Microcavity EPs were extensively discussed in the main chapters of this work. The steady states in these nonequilibrium
systems are set by the balance between the pumping from the exciton’s reservoir into polaritons and losses in the form of
photons leakage. A similar system of photon gas confined in a dye-filled optical microcavity closely resembles the physics
of polariton condensates with the macroscopic occupation of the lowest mode [425, 426, 427, 428]. The accumulation
of low-energy photons happens due to the rapid thermalization of rovibrational modes of the dye molecules by their
collisions with the solvent and phonon dressing of the absorption and emission by the dye molecules.

There are many ways to realize the lattices of polariton or photon condensates realized in experiments. Injecting
polaritons in the specific spots of the sample using an SLM is one method of creating optical periodic structure [429,
430, 431, 432, 433]. Similarly, there are many ways of engineering potential landscapes to confine polariton or photons
[434, 435, 436]. To describe the evolution of gain-dissipative condensates in a lattice considering only reduced macroscopic
degrees of freedom of each structural unit, one has to derive the rate equations [423, 437] (see also the derivation in
Chapter 3), which take a form of the Stuart-Landau equations:

Ψ̇𝑖 = −𝑖𝑈 |Ψ𝑖|2Ψ𝑖 + (𝛾𝑖 − |Ψ𝑖|2)Ψ𝑖 +
∑︁
𝑗 ̸=𝑖

𝒞𝑖𝑗Ψ𝑗 , (6.8)

where Ψ𝑖 =
√
𝜌𝑖 exp[𝑖𝜃𝑖] is the complex amplitude of the 𝑖−th condensate, 𝑈 is the strength of self-interactions between

the quasi-particles, 𝛾𝑖 is the effective injection rate (the difference between the pumping of the quasi-particles into the
system and linear losses). The coupling strength 𝒞𝑖𝑗 = 𝐽𝑖𝑗 + 𝑖𝐺𝑖𝑗 is generally a complex number and consists of the
Heisenberg coupling 𝐽𝑖𝑗 mediated by the injection reservoir and the Josephson part 𝐺𝑖𝑗 that comes from exchange
interactions between the condensates. The system described by Eq. (6.8) reaches the fixed point when 𝐽𝑖𝑗 ≫ 𝐺𝑖𝑗 and
the pumping feedback is introduced in the system [423]. The feedback on the pumping intensity ensures that all the
occupations are the same at the fixed point by adjusting the pumping if the occupation exceeds the set threshold value
|Ψ𝑖|2 = 𝜌th. The total injection of the particles in the system of 𝑁 condensates at the fixed point is given by

𝑁∑︁
𝑖=1

𝛾𝑖 = 𝑁𝜌th −
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗<𝑖

𝐽𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗). (6.9)

To guarantee that the found solution is the minimum of the 𝑋𝑌 Hamiltonian, the current expression should be chosen
with the lowest possible total particle injection

∑︀
𝛾𝑖 that leads to the specific occupation 𝜌th. In order to find the true

global minimum, the system has to slowly be brought to the condensation threshold while spending enough time to
explore the phase space to check different phase configurations driven by the system noise. After reaching such phase
configuration, the system quickly converges to the global minimum by the GD given by the imaginary part of Eq. (6.8):

𝜃𝑖 = −𝑈𝜌th −
𝑁∑︁
𝑗 ̸=𝑖

𝐽𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗). (6.10)

This idea has been theoretically justified [423] and experimentally realized for simple polariton graphs [433] with fur-
ther extensions to discrete optimization problems such as QUBO (minimizing the Ising Hamiltonian) or 𝑛-states Potts
Hamiltonians [438]. Combining resonant excitation with a non-resonant one forces the spins to take the discrete values
aligning with the directions set by the resonant excitation. If the resonant drive with 𝑛 : 1 ratio is added to the system,
the dynamics of condensates will acquire additional term:

Ψ̇𝑖 = −𝑖𝑈 |Ψ𝑖|2Ψ𝑖 + (𝛾𝑖 − |Ψ𝑖|2)Ψ𝑖 +
∑︁
𝑗 ̸=𝑖

𝐽𝑖𝑗Ψ𝑗 + ℎ(𝑡)Ψ
*(𝑛−1)
𝑖 , (6.11)
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where ℎ(𝑡) is an increasing function that reaches some value 𝐻 > max𝑖

∑︀
𝑗 |𝐽𝑖𝑗 | at the threshold. At the fixed point,

Eq. (6.9) is replaced with

𝑁∑︁
𝑖=1

𝛾𝑖 = 𝑁𝜌th −
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗<𝑖

𝐽𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)−𝐻𝜌
𝑛/2−1
th cos(𝑛𝜃𝑖). (6.12)

In the case of 𝑛 = 2, the additional term on the right-hand side provides the penalty to phases deviating from 0 or 𝜋,
which reduce the possible available phase and project the initial optimization problem to QUBO. For 𝑛 > 2, the 𝑛-state
Potts Hamiltonian is minimized. The minimization of HOBO may be achieved when the system operates much above
the threshold, and higher-order terms can not be neglected [2], see also the Chapter 3.

The system of 𝑁 interacting coherent centers is better described by the following equations [437] in case of slow time
evolution of the exciton reservoir:

Ψ̇𝑖 = −𝑖𝑈 |Ψ𝑖|2Ψ𝑖 + (𝑅𝑖 − 𝛾𝑐)Ψ𝑖 +
∑︁
𝑗 ̸=𝑖

𝐽𝑖𝑗Ψ𝑗 , (6.13)

�̇�𝑖 = Γ𝑖 − 𝛾𝑅𝑅𝑖 −𝑅𝑖|Ψ𝑖|2, (6.14)

where 𝑅𝑖 is the occupation of the 𝑖−th reservoir, Γ𝑖, 𝛾𝑅 and 𝛾𝑐 characterize the particle injection rate into the reservoir
and the linear losses of the reservoir and condensate, respectively. This is a well-known form of Lang-Kobayashi equations,
used to describe the dynamical behaviour of coupled lasers from Lamb’s semiclassical laser theory [439, 440], where Ψ𝑖

is replaced by the electric field and 𝑅𝑖 by the population inversion of the 𝑖−th laser. The total injection of the particles
in the system of 𝑁 condensates at the fixed point is given by

𝑁∑︁
𝑖=1

Γ𝑖 = (𝛾𝑅 + 𝜌th)[𝑁𝛾𝑐 −
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗<𝑖

𝐽𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)]. (6.15)

Similar to Eq. (6.9), if the total injection into the system is minimal, the phases of coherent centres minimize the XY
Hamiltonian.

6.2 Constructing problem instances
There are many ways to construct difficult instances for the optimization algorithms, including GD-based, listed at
the end of this section. Although not the product of this thesis, two noticeable approaches are presented due to their
appealing mathematical formulation and solid numerical analysis.

The first one is the matrix-tensor model introduced in [441] in the context of generalization in deep learning. Although
it’s original purpose is to investigate the performance of different algorithms in the task of recovering the noisy signal,
one can exploit it for the purpose of creating hard instances for the optimization. The initial task for the matrix-tensor
model is posed as a statistical inference problem with the ground truth signal 𝑥* ∈ IR𝑁 which is sampled uniformly on
the 𝑁 − 1-dimensional sphere, 𝑥 ∈ 𝑆𝑁−1(

√
𝑁). Two observations about the signal, a symmetric matrix 𝑌 and an order

𝑝 symmetric tensor 𝑇 are given:

𝑌𝑖𝑗 =
𝑥*𝑖 𝑥

*
𝑗√
𝑁

+ 𝜉𝑖𝑗 (6.16)

𝑇𝑖1,...,𝑖𝑝 =

√︀
(𝑝− 1)!

𝑁 (𝑝−1)/2
𝑥*𝑖1 . . . 𝑥

*
𝑖𝑝 + 𝜉𝑖1,...,𝑖𝑝 (6.17)

for ordered indices 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 and 1 ≤ 𝑖1 < ... < 𝑖𝑝 ≤ 𝑁 , and the non-diagonal components equal their symmetric
terms. 𝜉𝑖𝑗 and 𝜉𝑖1,...,𝑖𝑝 denote independent Gaussian random variables 𝒩 (0,Δ2) and 𝒩 (0,Δ𝑝) respectively. Given 𝑌 and
𝑇 one aims at estimating the signal 𝑥*. The case of tensor absence comes down to the low-rank perturbation of a random
symmetric matrix or the spiked covariance model [442]. The original work [441] and the corresponding consequent ones
[443, 444] are focused at the algorithmic tractability of obtaining good performance for the matrix-tensor model. The
inference problem can be reformulated as an optimization task with the cost function of the form:

ℒ =
∑︁
𝑖<𝑗

1

2Δ2

(︂
𝑌𝑖𝑗 −

𝑥𝑖𝑥𝑗√
𝑁

)︂2

+
∑︁

𝑖1<···<𝑖𝑝

1

2Δ𝑝

(︃
𝑇𝑖1...𝑖𝑝 −

√︀
(𝑝− 1)!

𝑁(𝑝− 1)/2
𝑥𝑖1 . . . 𝑥𝑖𝑝

)︃2

, (6.18)

which can be also called as log-likelihood, loss function or Hamiltonian depending on the context and can be related to
the initially considered model (4.1). This model lays the foundation for the question of tractability and properties of
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non-convex and high-dimensional optimization problems.
Roughly speaking, two algorithms (GD and the maximum-likelihood approximate MP) were analyzed in the context of

the matrix-tensor model. The energy landscape becomes trivial for the model’s specific parameters, where two algorithms
perform well enough and obtain the same error; however, the maximum-likelihood approximate MP is strictly better
than GD and has a broader region of better performance.

Another interesting way of constructing a problem with a tunable algorithmic hardness is called the Wishart planted
ensemble (WPE) [346]. It is a class of zero-field Ising models with a specifiable ground state. The key idea of designing
hard instances for QP is to use a simple procedure to generate a set of random integer programming problems with
specific statistical symmetry properties. Such a way of problem construction imposes the coupler matrix to follow a type
of Wishart distribution.

One can recall the main logic behind the methodology of the work, which aim is the construction of ensembles of
zero-field Ising Hamiltonians over the 𝑁 -spin complete graph with planted ground state 𝑡𝑖 (where index 𝑖 goes over all
variables) in the form of:

𝐻(𝑠𝑖) = −1

2

∑︁
𝑖 ̸=𝑗

𝐽𝑖𝑗𝑠𝑖𝑠𝑗 , (6.19)

where variable 𝑠𝑖 and the ground state 𝑡𝑖 belong to the configuration space S𝑁 ≜ {±1}𝑁 , so that their relationship is
𝐻(±𝑡𝑖) = min𝑠𝑖∈S𝑁 𝐻(𝑠𝑖). 𝑡𝑖 will be taken to have the ground state 𝑡𝑖 = (+1,+1, ...,+1) and its Z2 image, since its
variation can be subsequently concealed by gauge randomization.

The key information about the solution and its correspondent hardness is contained in the 𝑊𝑖𝑗 , which is the 𝑁 ×𝑀

real-valued matrix 𝑊𝑖𝑗 ∈ R𝑁×𝑀 . To denote the column of such matrix one uses 𝑤𝜇
𝑖 for 𝜇 = 1, ...,𝑀 . The ratio between

the 𝑀 and 𝑁 represents the scaling factor 𝛼 > 0: 𝑀 = 𝛼𝑁 . With the given ground state 𝑡𝑖, the procedure is to construct
a consistent homogeneous Ising-constrained linear system with 𝑠𝑖 = ±𝑡𝑖 as a solution, or to obtain the specific 𝑊𝑖𝑗 such
that 𝑊𝑇

𝑗𝑖 𝑡𝑖 = 0𝑗 . It imposes that the positive semidefinite quadratic form:

𝐺(𝑠𝑖) =
1

2
𝑠𝑇𝑖 𝑊𝑖𝑗𝑊

𝑇
𝑗𝑖𝑠𝑖 =

1

2

⃦⃦⃦
𝑊𝑇

𝑗𝑖𝑠𝑖

⃦⃦⃦2
2

(6.20)

would get its minimum zero value at 𝑠𝑖 = 𝑡𝑖 and the coupling coefficients for the initial problem can be defined as:

𝐽𝑖𝑗 = − 1

𝑁
𝑊𝑖𝜇𝑊

𝑇
𝜇𝑗 , (6.21)

with a small addition about the diagonal values, which have to be zero 𝐽𝑖𝑗 = 𝐽𝑖𝑗 − diag(𝐽𝑖𝑗).
From the computational perspective, the task of finding the ground state of Ising model with the predefined matrix

𝑊𝑖𝑗 is equivalent to finding a solution to the integer programming feasibility (which is an NP-hard problem):

solve 𝑊𝑇
𝑗𝑖𝑠𝑖 = 0𝑗

subject to 𝑠𝑖 ∈ S𝑁 .
(6.22)

With the 𝑊𝑖𝑗 of size 𝑁 ×𝑀 , where 𝑀 < 𝑁 dim
(︀
null

(︀
𝑊𝑇

𝑖𝑗

)︀)︀
= 𝑁 −𝑀 . Large 𝑀 results in a ferromagnetic system.

Due to the law of large numbers:

𝐽𝑖𝑗 = − 1

𝑁
𝑊𝑖𝑚𝑊

𝑇
𝑚𝑗 = − 𝛼

𝑀
𝑊𝑖𝑚𝑊

𝑇
𝑚𝑗 → −𝛼Σ𝑖𝑗 , (6.23)

with the couplers uniformly approach 𝐽𝑖𝑗 = 𝛼
𝑡𝑖𝑡𝑗
𝑁−1

. The system reduces to a gauge-transformed and rescaled Curie-Weiss
ferromagnet, whose ground state is easy to find because of the absense of the frustration. Thus, the parameter 𝑀 impacts
problem difficulty with the hardest instances being generated for some intermediate values of 𝑀 . This easy-hard-easy
profile is investigated in more details in the original work [346]. Moreover, the article inspects the other connections
with more computer science assignments, like the special case of 𝑀 = 1 for Eq.(6.22), which is the subset sum problem;
its further specialization that is the number partitioning problem (with many interesting properties, in particular an
algorithmic easy-hard phase transition [445, 446, 447]), etc.

The analytical results were confirmed by extensive numerical calculations using the highly optimized implementation
of parallel tempering Monte Carlo, including the observed hardness of finding the ground state of moderately sized
instances, see Fig.6-1. The visualization of the different energy landscape is presented in Fig.6-2. The investigation of
both models, the WPE and the matrix-tensor models leave the space for many questions concerning the dynamics of the
algorithms and their behaviours in the multidimensional rugged landscape of a particular problem.

Other models. In addition to the matrix and matrix-tensor models, various differently defined models can describe
complicated problems with tunable hardness. One can pay attention to the community detection and the stochastic block

90



Chapter 6. Additional resources 6.2. Constructing problem instances

(a) (b) (c)

Figure 6-1: (a) The mentioned easy-hard-easy profile, which is represented in the time to approximate solution
vs 𝑀 corresponding size of the 𝑊𝑖𝑗 matrix in Eq.(6.20) for the 𝑁 = 32. Optimized parallel tempering Monte
Carlo was used, despite the focus on the GD-like algorithms in this article. 𝜖 is the acceptable excess energy
over the ground state. (b) Expected number of local optima for WPE instances of size 𝑁 = 24 as a function of
𝛼 = 𝑀/𝑁 . (c) Residual locally optimal energy distributions for WPE instances of size 𝑁 = 24 as a function of
𝛼 = 𝑀/𝑁 . For small 𝛼, the distributions are concentrated on low residual energy values. All three pictures are
taken from [346].

Figure 6-2: Disconnectivity graphs (which are two-dimensional representations of high-dimensional energy land-
scapes with corresponding energy barriers, that can be traced along a specific pathway from one minima to
another) representing the energy landscape of four specific 𝑁 = 24 WPE instances. Leaf nodes of the tree struc-
tures represent local minima, and internal nodes - barrier states. (a) 𝑀 = 4 with a tremendous near-degeneracy
of a large number of metastable states with energy very close to that of the planted solution. (b) 𝑀 = 8, the
degeneracy begins to lift with the decrease in the number of minima. As 𝑀 increases to 15 (c) and 32 (d), the
ground state becomes increasingly dominant and the problems computationally easier. The pictures are taken
from the [346].
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models [448, 47, 449, 450]. Other models include the locked constraint satisfaction problems [451], and the universal
NK model [452, 453] with tunably rugged cost functions that can cover the complexity of a variety of different systems.
Moreover, a physics-based approach was used for generating hard 3-SAT problems with planted solutions [454], the quiet
planting [455] is the technique for devising graph q-colouring problems with known solutions.

No Free Lunch Theorem. The no free lunch theorem (NFLT) is a theorem stating that an effective general-purpose
universal optimization strategy can not exist, and the difference in the performance between the strategies depends on the
structure of the specific problem under consideration. NFLT appeared in 1997 in the work of David Wolpert, and William
Macready [456]. Previously, Wolpert had derived the analogue theorem for ML (statistical inference) [457]. NFLT is
important not only for the domain of algorithms and problem instances but also in the context of special-purpose hardware
since each experimental setup represents its way of finding the solution to the specific problem. One can paraphrase
the NFLT in many ways. For example - any two optimization algorithms are equivalent when their performance is
averaged across all possible problems, or each algorithm has its own best and worst-case scenario—the same works for
the specialized hardware. Therefore, one should pay attention to the NFLT when demonstrating performance results
on the so-called best case scenario instances and carefully specify the details of the experiment. Moreover, we want to
address several related questions closely connected with optimization as future research directions. Among them are:

1) Introduction of the standard indicators for the fair comparison of the hardware.
2) Methods of the hardware performance evaluation and introduction of the related specific metric (for example, time

to solution, the quality of the performance, etc.)
3) How to introduce the constraints into the hardware operational regime?
4) Methodology of the hard instance generation for a particular setup (as well as easy ones).
5) How to generalize the results of the hardware operations.
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