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Abstract 

Deep learning is becoming popular for a growing number of tasks as a result of 

recent technological advancements. Point cloud classification, in particular, has been 

investigated for some time with numerous methods established for various applications, 

including geospatial, industrial, indoor mapping, terrestrial, and so on. Among these, the 

focus is on the geospatial point cloud classification. While these studies in the state-of-the-

art achieve promising results on geospatial point clouds in terms of accuracy, they are not 

very feasible to be deployed to daily applications (i.e., being used by mapping agencies for 

city-scale or country-scale data). This infeasibility is commonly caused by at least one of 

the following characteristics of the methods: being sensor-specific (i.e., LiDAR); 

efficiency issues (i.e., requiring expensive GPUs with high memory capacity); being 

trained on manually labeled massive datasets (i.e., deeper networks tend to require more 

training samples); and being trained for each project due to lack of generalization ability. 

To my knowledge, no studies in the literature have focused on establishing an approach to 

address all of these challenges simultaneously. Therefore, these challenges are considered 

to be not addressed effectively before. 

Considering these challenges, the goal of this study is to develop a framework that 

achieves better or similar accuracies compared to the state-of-the-art with a more efficient 

methodology requiring less computational resources and/or processing time, while 

addressing aforementioned challenges more effectively. Consequently, the objectives are: 

(i) Processing point clouds from different airborne data sources (any of 

photogrammetry or LiDAR); 
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(ii) Generalization ability (i.e., predicting on datasets with different acquisition 

setup); 

(iii) Dealing with density variations both within a dataset as well as among 

distinct datasets; 

(iv) Requiring less computational power and memory (i.e., being significantly 

faster and requiring 4GB GPU memory rather than 16GB); 

(v) Achieving better or similar accuracy (i.e., ≿80%) with the current state-of-

the-art methods.  

The introduced framework relies on the following steps in order to achieve 

capabilities listed above, and more: 

(i) Point cloud preprocessing with downsampling; 

(ii) Handcrafted feature extraction; 

(iii) Deep learning for classification using convolutional neural networks; 

(iv) Post-processing for instance segmentation of buildings.  

The introduced framework is put to a series of thorough tests, where its accuracy, 

computational efficiency, and generalization capability are tested. Furthermore, the 

framework is compared with the state-of-the-art methods in terms of accuracy and 

efficiency. The experiments are held using five datasets in total. Three of them are used for 

generalization tests, and one is used for computational efficiency tests. Based on the 

achieved results, the framework’s capabilities are proven quantitatively.  
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Introduction 

 

 

 

 

 

Objects on maps or in databases connected to the Earth’s surface by locations 

(coordinates, addresses, or different methods) are considered geospatial information, 

composing ~80% of all the data (Bossler et al., 2010). There are various use cases for 

geospatial data, including but not limited to 2D/3D cadaster, navigation, urban studies, 

flight simulation, and oceanography.  

The type of the required geospatial data for a project depends on the purpose, so 

does the platform for acquiring the data. For instance, for cadaster purposes, the required 

accuracy for the final map is commonly fixed by the regulations, and frequently, it is in 

terms of centimeters, which is not possible to be achieved with spaceborne data by today’s 

technology. Another example can be global land cover mapping (such maps include 

thematic information representing the type of the land, such as water, forest, or soil), which 

does not require the same geometric accuracy as cadaster. Considering the scale, it is more 

feasible to use spaceborne data for such purposes. As seen in these two examples, shown 
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in Figure 1-1, different types of geospatial data can be used for different purposes and can 

be considered complementary. 

Keeping the focus on the scope of this study, the following sections will be detailing 

motivations, geospatial data acquisition techniques, point cloud generation and processing 

methods, goal and research objectives, and the structure of the thesis. 

     

Figure 1-1. Land cover map (Pulvirenti et al., 2020) and cadastral map examples (Comune 

di Trento, 2021), respectively left and right images. 

 

1.1.  Motivations 

In recent years, point cloud processing techniques are extensively investigated by 

the research community for various applications (Grilli et al., 2017; Liu et al., 2019; Bello 

et al., 2020). Among these, geospatial point cloud classification methods hold an important 

place, as assigning semantic information to these point clouds allows for the widespread 

use of such geospatial data (Rottensteiner et al., 2012). Such enriched point cloud could be 
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preparatory for change detection (Qin et al., 2016), 3D building modeling (Özdemir and 

Remondino, 2018), planning (Urech et al., 2020), and so on.  

Being an important and challenging task, semantic enrichment of geospatial point 

clouds is also one of the main topics in the research community. There are many studies 

presented in the literature focusing on a semantic interpretation of 3D point clouds with 

different techniques (Su et al., 2015; Kanezaki et al., 2018; Wang et al., 2019) and for 

various approaches (Becker et al., 2018; Bittner et al., 2018; Huang et al., 2018; Maltezos 

et al., 2019), as presented in Chapter 2.  

To the best of my knowledge, many of the current point cloud classification 

solutions are confined to either specific data (e.g., only for LiDAR acquisitions) or 

scenarios (indoor, outdoor, terrestrial, or aerial). This is due to (i) the complexity of the 

point cloud classification process, (ii) differences in the data structure, (iii) the need for 

specific training data, as well as (iv) generalization problems. Despite these challenges, 

various studies in the literature have demonstrated to achieve high accuracies (≿80%) in 

geospatial benchmark datasets. However, it was noticed that these studies are not 

developed to cope with data from different data sources, density variations, generalization, 

and low GPU memory at once. Therefore, these challenges are considered as open research 

issues to be faced in the PhD work. Most of the existing solutions for point cloud 

classification are considered impracticable for daily applications (such as city-scale or 

country-scale applications of a national mapping agency), which roots the motivations for 

developing TONIC framework (Chapter 3), i.e., a practical and powerful AI-based solution 
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for geospatial point cloud classification which tried to tackle the aforementioned challenges 

and open issues. 

In summary, the overall motivations of this PhD work are as follows: 

- Need for a sensor independent classification framework: the tools commonly 

used for daily purposes by the mapping agencies are sensor dependent, which 

means that the software can process data coming from a specific sensor (i.e., 

LiDAR), but not from an alternative (i.e., photogrammetry). 

- Large-scale applicability: national mapping agencies usually deal with 

enormous datasets; hence memory usage, computational power, generalization 

capabilities, and varying data structures are all important issues.  

- Time and cost optimization: many geospatial point cloud classification tasks 

are handled manually, whereas the automation of these steps in the mapping 

pipeline will speed up map-making, therefore reducing the overall cost. 

 

1.2.  Geospatial Data Acquisition Techniques 

The geospatial data acquisition techniques can be categorized by the platform used, 

such as terrestrial, airborne, and spaceborne. In the following sections, geospatial data 

acquisition techniques will be detailed in these three categories. 

 

1.2.1.  Terrestrial 

The history of terrestrial mapping with land surveys dates back to the Babylonian 

era to specify the property borders with stones (Brinker and Minnick, 1995). Since then, 
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terrestrial surveying has come a long way by using current technologies like total stations 

and laser scanners (Figure 1-2). Terrestrial geospatial data acquisition techniques can reach 

accuracies below a centimeter while providing fast data acquisition (Gopi et al., 2018; 

Stenz et al., 2020). 

                 

Figure 1-2. Trimble C5 total station (Trimble, 2021) and TLS (Riegl, 2021), respectively 

left and right images. 

In a land surveying study, which can be considered the most basic terrestrial data 

acquisition, the workflow includes planning the survey, data collection in the field, post-

processing of the acquired data with computers, and delivering the data (most commonly 

to a GIS database). Typical applications with the data acquired using terrestrial techniques 

include but are not limited to; cadaster, construction, topographic map production, mine 

surveying, GCP surveying for photogrammetry/remote sensing studies, cultural heritage 

modeling with terrestrial photogrammetry, and mobile mapping applications. 
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Figure 1-3. Example of fieldwork for GCP surveying (Ground Control Points for Drone 

Mapping, 2021) 

 

1.2.2.  Airborne 

The first airborne data acquisition dates back to 1858 by Gaspard Tournachon using 

a manned balloon over Paris. Ever since, airborne data acquisition techniques have adapted 

the use of balloons, pigeons, kites, rockets, helicopters, airplanes, and UAVs (Eisenbeiß, 

2009). Such airborne data are used for photogrammetry and remote sensing studies. 

Photogrammetry and remote sensing are defined by Gomarasca (2009) as follows:  

“Art, science and technology to obtain valid information about physical objects and the 

environment, through the processes of collection, measure and interpretation of images 

(photographic or digital) and analog or digital representation of the models of electromagnetic 

energy derived from survey systems (photographic cameras or scanning systems), without contact 

with the objects.” 

In order to understand the major difference between photogrammetry and remote 

sensing, one may prefer the definition of photogrammetry made by Luhmann et al. (2019) 



39 

  

as follows: “Photogrammetry encompasses methods of image measurement and interpretation in 

order to derive the shape and location of an object from one or more photographs of that object.”. 

This definition suggests the main focus of photogrammetry as metric information (“shape 

and location”) extraction using photographs. On the other hand, the definition for remote 

sensing made by Konecny (2014) clarifies the difference: “Remote sensing can be considered 

as the identification or survey of objects by indirect means using naturally existing or artificially 

created force fields.”. It can be inferred from this definition that the remote sensing 

technique’s primary focus is on thematic information (“identification or survey objects”) 

extraction.  

The abovementioned techniques utilize images for metric and semantic information 

extraction. In addition to these two, LiDAR (light detection and ranging), utilizes laser 

light. The laser light is used for ranging, which means the main focus of the technique is 

again on the metric information, generating a collimated light beam (Gomarasca, 2009). 

The LiDAR technique has different advantages and disadvantages compared to 

photogrammetry. On the one hand, a primary advantage can be seen as the delivery of the 

3D point cloud without image processing, while on the other hand, a common disadvantage 

can be seen as the missing color information. One of the most recent trends in this field is 

using an acquisition system combining these two techniques (LiDAR and 

photogrammetry) to take advantage of both, which is named hybrid, and an example sensor 

can be Leica CityMapper-2 Hybrid Airborne Sensor  (2021). A point cloud produced in 

this way includes color information from photogrammetry along with additional LiDAR 

features. 
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Besides these introductory discussions, photogrammetry and LiDAR techniques 

will be discussed under Section 1.3 Point Cloud Generation Methods. 

 

1.2.3.  Spaceborne 

The roots of spaceborne geospatial data date back to the Cold-War era, based on 

the reconnaissance needs. The Soviet Union used the Zenit satellites system, while the 

USA used the Corona system in the early 1960s (Figure 1-4). The actual data acquisition 

steps were analog, based on retrieving the films from the orbiting satellites (Pelton et al., 

2017).  

Shifting the focus to the present day, it is not only the technology evolutions 

pushing spaceborne techniques but also the evolutions in the needs and common use cases. 

In addition to original motivations, spaceborne techniques have been one of the main data 

sources for modern map-making studies. The most common applications of spaceborne 

geospatial data are thematic maps produced with remote sensing techniques. Being 

acquired from space, two of the main advantages for such data can be considered large 

coverage (orbits covering the most if not all the Earth’s surface) and high temporal 

resolution (due to continuous orbiting of satellites). With the recent advances in 

technology, spaceborne systems can achieve very high spatial resolutions such as 1 meter 

or better (Tapete and Cigna, 2018).  
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Figure 1-4. Sample Image sample from Corona Spy Satellite System, The Pentagon, 25 

September 1967 (Corona (satellite), 2021) 

Spaceborne data are also becoming increasingly popular for DSM generation, 

taking advantage of high-resolution satellite imagery and photogrammetry techniques. 

DSM, being a grid-based height representation (structured as an image, where pixel values 

are the heights) of the Earth’s surface (Figure 1-5) with all the objects on it, can be used 

for 3D city modeling purposes as well asw many other GIS studies.  

 

Figure 1-5. Simplified DSM (red) and DTM (blue) comparison (Digital Elevation Model, 

2021). 
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Spaceborne DSM generation technique will be further discussed in Section 1.3 

Point Cloud Generation Methods. As an example, Figure 1-6 shows two DSMs generated 

using airborne LiDAR (Vaihingen, Germany (Cramer, 2010)) and spaceborne imagery 

(Trento, Italy (Poli et al., 2013)), where both are rendered via hillshade with 45.0° altitude 

and 315.0° azimuth using open-source GIS software QGIS (QGIS.org, 2021). 

   

Figure 1-6. DSM samples were produced with airborne and spaceborne data, respectively 

left and right images. 

In addition to the abovementioned techniques, GNSS is another spaceborne data 

acquisition technique. GNSS technique, in brief, can be described as a spaceborne radio 

navigation system. Due to the scope of the thesis, it is not discussed in detail, yet, readers 

may refer to a related book, such as the one from Hofmann-Wellenhof et al. (2012). 
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1.3.  Point Cloud Generation Methods 

Point clouds can be simply defined as a group of data points in space. In geospatial 

science, a 3D point cloud is defined in a projected -Cartesian- coordinate system such as 

UTM. As the coordinate systems are not within the scope of this study, readers may refer 

to a related book, such as the one from Maling (1992).  

There are two common data types representing 3D geospatial data; 3D point clouds 

and DSMs. On the one hand, 3D point clouds have irregular distribution in space. In other 

words, they are not in a grid structure. On the other hand, DSMs can be described as 2.5D 

representations of the 3D point clouds in a grid structure. This means, to produce a DSM, 

the 3D point cloud is projected to a 2D grid (like an image), where each grid’s value 

represents the height. This procedure is also known as rasterization. In Figure 1-7, a 3D 

irregular point cloud (Dortmund, Germany (Gerke et al., 2016)) and a DSM (Imst, Austria 

(Toschi et al., 2021)) are shown side-by-side. The point cloud generation techniques 

described in the upcoming sections are used for generating 3D point clouds. Then, based 

on the necessity, a DSM can be produced. DSMs have been a popular product for many 

mapping agencies as they include very similar geometric data yet, easier to process with 

the GIS techniques. 

Geospatial point cloud generation methods can be named as photogrammetry and 

LiDAR, and the platform use can be terrestrial, airborne, and spaceborne. For the sake of 

content integrity, airborne and spaceborne photogrammetry, as well as airborne LiDAR 

techniques, will be further discussed in this section. 
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Figure 1-7. Top view for building and surroundings: 3D irregular point cloud (left) and 

DSM, colorized based on the height (blue: lower, green: higher). 

 

1.3.1.  Airborne and Spaceborne Photogrammetry 

To describe photogrammetry, in addition to the definitions made in Section 1.2.2, 

one may look in detail at the word ‘photogrammetry’. The word is derived from three Greek 

words ‘photos’, ‘gramma’ and ‘metron’, which mean ‘light’, ‘drawn’, and ‘measure’, 

respectively. Therefore, ‘photogrammetry’ can be inferred as the art and science of 

measuring with photographs.  

The geometric basis of photogrammetry is central perspective geometry, as shown 

in Figure 1-8. 
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Figure 1-8. Visualization of central projection adapted from Gomarasca (2009). 

Using a single photograph with photogrammetry technique will result in a scaled 

version of that photograph, which means the result will be in a 2D object space. Thus, in 

order to achieve a 3D object space, there should be at least two images to make a stereo 

pair, as seen in Figure 1-9. Such a stereo pair is expected to include photographs of the 

same objects from different locations, enabling the photogrammetric evaluation of 

acquired data. The object point Pxyz is observed from both images with image points P’ and 

P” through a line passing through C. Therefore, P’, C and Pxyz are collinear points, as well 

as P”, C and Pxyz. This collinearity condition brings Epipolar Plane when combined with 

the base vector. This is known as the coplanarity condition in photogrammetry. 
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Figure 1-9. Photogrammetric stereo pair geometry overview, adapted from Linder (2009). 

The mathematical model of photogrammetry is based on central projection, 

collinearity, and coplanarity conditions mentioned above. All these allow the relationship 

between the images and the objects to be defined as shown in Figure 1-10, where FC is the 

center of the image coordinate system, PP is where the imaginary axis of the optical center 

passes through the image plane and the others are as described in the figure. 
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Figure 1-10. Image and object coordinates relations adapted from Kraus (2007). 

The relationship shown in Figure 1-10 is explained using Equation (1), where rij 

are the elements of the rotation matrix of the image calculated based on the exterior 

orientation parameters defining the angular position of the image around the X, Y, Z axes. 

Due to content integrity, rotation matrix and further calculations are not introduced here, 

yet, readers may refer to a photogrammetry book, such as Kraus (2007) or McGlone (2013). 

 = 
0
− 𝑐

𝑟11(𝑋 − 𝑋0) + 𝑟21(𝑌 − 𝑌0) + 𝑟31(𝑍 − 𝑍0)

𝑟13(𝑋 − 𝑋0) + 𝑟23(𝑌 − 𝑌0) + 𝑟33(𝑍 − 𝑍0)
 

(1) 

 = 
0
− 𝑐

𝑟12(𝑋 − 𝑋0) + 𝑟22(𝑌 − 𝑌0) + 𝑟32(𝑍 − 𝑍0)

𝑟13(𝑋 − 𝑋0) + 𝑟23(𝑌 − 𝑌0) + 𝑟33(𝑍 − 𝑍0)
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One of the most recent trends in airborne photogrammetry is the adoption of oblique 

imagery. In airborne photogrammetric applications, the typical data acquisition approach 

used to be based on nadir-only imagery, in which a single image is acquired with a camera 

fixed at nadir direction (-Z in Figure 1-10). With the oblique image acquisition (Figure 

1-11) technique, five images are acquired simultaneously: one in the nadir direction and 

four in the left, right, front and back directions (i.e., ±45º from ZX and ZY planes). The 

additional oblique images provide visibility on the facades of the buildings and other 

objects, increasing the completeness and the captured details of the acquired data. 

   

Figure 1-11. Examples for nadir (left) and oblique (right) images from the 3DOMCity 

benchmark (Özdemir et al., 2019b). 

Spaceborne photogrammetry can be seen as an extension to airborne 

photogrammetry, where the significant changes are in the data acquisition. These changes 
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can be summarized as image acquisition equipment, acquisition network, acquisition time 

interval, and atmospheric effects (Qin, 2019). In airborne systems, commonly, a camera 

captures a photograph with a central perspective, as shown in Figure 1-8. In comparison to 

these systems, in spaceborne photogrammetry, remote sensing satellite systems acquire the 

images. Such systems do not have a camera with a central perspective geometry. Instead, 

they commonly use multiple central perspective types of sensors (push broom or whisk 

broom). The acquisition network (positions of the camera centers for image acquisition) 

for airborne photogrammetry is designed by the experts during flight planning, where the 

flight altitude and overlap ratios of images are considered. In spaceborne, however, the 

satellites follow their orbit at a certain speed which does not allow image acquisition 

planning by experts. Due to the same reason, the experts cannot decide the image 

acquisition time intervals either.  

Last but not least, another significant difference is the atmospheric effects. As the 

satellites used in spaceborne systems fly at a much higher altitude than airborne systems, 

the atmospheric effects will affect the images more. For further discussions on spaceborne 

photogrammetric systems, readers may refer to the articles such as Poli et al. (2015), Qin 

(2019), or Han et al. (2020), while for further information about spaceborne systems, 

readers may refer to a remote sensing book, such as the one from Konecny (2014). 
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1.3.2.  Airborne LiDAR 

As mentioned in the previous section, LiDAR utilizes laser light for distance 

measuring (ranging). LiDAR systems use one of the two common methods; time-of-flight 

(TOF) or phase measurement.  

TOF method follows these simplified steps:  

(i) emitting laser radiation and starting the time counter; 

(ii) counting the time till the laser radiation returns; 

(iii) stopping the time counter once the sent laser radiation is returned (detection); 

(iv) distance covered by the laser radiation is calculated based on how much time 

it spent during the travel, as the speed is known a priori. 

The alternative approach, named phase measurement, shares the same steps for 

emitting laser radiation and detecting its return. The difference is that the receiving sensor 

measures the phase difference between the sent laser radiation and the received one. The 

measured phase difference is then used for calculating the distance the laser radiation has 

traveled.  

Among these two methods, the acquired data reflect the differences in the working 

mechanisms as well. The few major differences in the acquired data can be summarized as 

TOF systems expected to produce fewer points per second and operate at higher ranges 

than phase difference measuring systems. For further details, readers may refer to books 

on this topic, such as Vosselman and Maas (2010) or Shan and Toth (2018). 
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1.4.  Point Cloud Classification 

Point clouds are one of the most common products of geospatial studies. However, 

they are not necessarily the final product. Point clouds can provide a highly detailed and 

high-resolution 3D representation, yet, they are not very feasible when using them for map-

making. One of the main reasons for that is a point cloud can give only the answer to the 

question ‘where?’, but not to ‘what?’. Another reason is that a point cloud per se does not 

include information such as faces or edges of the represented geometry. In order to get an 

answer to the question of ‘what?’, a point cloud should be enriched with semantic 

information, which is possible by semantic segmentation (also known as classification). 

For generating further geometric information, a mesh model should be generated. Example 

usage of semantic information and model generation from Bergamo / Italy can be seen in 

Figure 1-12. The building model is generated after corresponding points are extracted from 

a city-scale point cloud using classification approach (Özdemir and Remondino, 2018). 

 

Figure 1-12. Building model generation example. From left to right: image of the building, 

point cloud extracted with classification and randomly colorized for each extracted planar 

segment, point cloud and derived 3D model of the building together, 3D model of the 

building. 
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Classification can be defined as assigning a class label to each given data point. A 

data point can be an image, a pixel of an image, a point cloud, or a point in a point cloud. 

Depending on the task, classification can be referred to with different names. For instance, 

assigning a class label to a point cloud (Liu et al., 2019) or an image (Liu et al., 2020) can 

be referred to as object classification. The terminology for the classification tasks is 

commonly defined as shown in Figure 1-13. 

  
(a) (b) 

  
(c) (d) 

Figure 1-13. Classification tasks are shown on the image domain. Figure retrieved from 

Liu et al. (2020). (a) image object classification, (b) object detection and localization, (c) 

semantic segmentation, (d) instance segmentation. 

As shown in Figure 1-13, image object classification refers to assigning a label (or 

labels) to a single input (image), where the locations of the object(s) within the input are 

unknown. Object detection and localization also provide the location of each object within 



53 

  

the input using a bounding box. Taking a step further with semantic segmentation, a class 

label is assigned to each part of the input (pixel in the image), which enables the extraction 

of the exact location within the input (borders of the objects within the image, instead of a 

bounding box), yet, the information about individual objects is possible only with the 

instance segmentation technique. 

Various studies focus on different perspectives of deep learning (DL)-based point 

cloud processing, including 3D shape classification, 3D object detection (Yan et al., 2020), 

and 3D point cloud classification (Hackel et al., 2017). The main differences among these 

tasks are similarly represented in Figure 1-13. In order to clarify in the 3D point cloud 

domain, the definitions in the literature are given below based on Guo et al. (2020) and Liu 

et al. (2019): 

- 3D shape classification is where the deep neural network (DNN) learns the 

global shape of the given point cloud objects (i.e., a teapot, a car).  

- 3D object detection is where the DNN is fed with an entire scene and returns 

the bounding boxes for each one of the detected objects (i.e., pedestrians, trees, 

and cars in the street). 

- 3D point cloud classification is where the DNN is, again, fed with an entire 

scene and returns class probabilities for each point. Commonly the class label 

with the highest probability is assigned to each one of the points. The challenge 

here is that the network needs to learn both global and local geometric structures 

in order to succeed. 
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Keeping the focus on the geospatial point clouds, the term ‘classification’ in this 

domain is commonly used for the task where a class label is assigned to each point in the 

point cloud. Therefore, the closest task definition from Figure 1-13 could be the semantic 

segmentation, which is widely used by the community. Figure 1-14 shows a classified-

versus-unclassified point cloud. 

For further reading on the topic, readers may refer to a DL book (Goodfellow et al., 

2016) or a survey article (Guo et al., 2020). 

 

  

(a) (b) 

Figure 1-14. Example on classified (a) and unclassified (b) point clouds from the 

3DOMCity Benchmark (Özdemir et al., 2019b) 

 

1.5.   Goal and Research Objectives 

Given the motivations (Section 1.1) and the recent developments in the state-of-

the-art (Chapter 2) the goal of this study is to develop a point cloud classification 

framework for geospatial point clouds that achieves better or similar accuracies compared 

to the state-of-the-art (≿80%) with a more efficient (in terms of computational time and 

hardware requirements) methodology. In this way, the developed framework can be a 
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feasible solution for daily applications with large datasets (i.e., city-scale or country-scale). 

This feasibility is considered as a step forward from research projects, where the datasets 

are significantly smaller, towards daily applications. 

The observed challenges (as mentioned Section 1.1) in the literature (Chapter 2) 

root the motivations to develop a framework with the following objectives in order to 

address these challenges more effectively: 

(i) Invariant to different data sources: A framework designed for adapting any 

data source, including photogrammetry (oblique or nadir-only acquisitions), 

LiDAR, or their combination; 

(ii) Generalizable: Point clouds acquired with different sensors in different 

locations have varying characteristics such as density. Therefore, a high 

generalization capability is required for being able to handle such dataset 

variety; 

(iii) Invariant to point cloud density variations: A point cloud may have density 

variations, which changes the local geometry within the dataset and hampers 

classification; 

(iv) Low computational cost and hardware requirement: The DL frameworks 

commonly require GPUs with high memory, which increases the hardware 

cost (also energy consumption in many cases). A deep neural network that 

cannot be used without a high-memory GPU creates a bottleneck for 

usefulness, especially for large-scale applications (such as nationwide 

mapping); 
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(v) Accuracy better or similar than the current state-of-the-art methods (≿80%). 

Based on the way the handcrafted features treated (Section 3.1.2) with CNNs, this 

work can be categorized as architectural innovation. To my knowledge, no other methods 

use this approach. The patches are generated (a 2D matrix or a 3D array per point) using 

handcrafted features and coordinates of the neighboring points, and then processes as 

images aiming to predict a class label per point. Therefore, in terms of innovation, this 

approach can be considered as a new relationship between geospatial point clouds and 

CNNs (Henderson and Clark, 1990).  

The novelty of this PhD work can be considered as the entire point cloud 

classification framework which links aerial point clouds with CNN methods. The 

developed methodology, named TONIC, is able to process aerial point clouds acquired 

with different sensors and at different densities. It achieves accuracy values in the same 

order as current state-of-the-art methods. It can be generalized to process unseen datasets 

and requires low computational resources compared to other existing methods. Therefore, 

for the first time, a geospatial point cloud classification framework can efficiently achieve 

high accuracies with a proven generalization capability, which supports the method 

towards being a feasible solution for daily applications as it would not need separate 

training dataset for each distinct dataset. 
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1.6.  Thesis Structure 

The thesis is structured in six chapters starting with this introductory chapter, 

followed by a literature review, proposed frameworks, results, validation of the proposed 

framework, and finalized with discussions and conclusion.  

The introduction chapter is focused on motivations, geospatial data acquisition 

methods, point cloud generation, and processing methods, as well as discussing the goal 

and research objectives of the study. 

The literature review chapter discusses the classification and semantic 

segmentation methods used for geospatial data in the state-of-the-art. Therefore, the 

artificial intelligence methods will be addressed initially, then, various ML and DL 

approaches will be reviewed, focusing on geospatial point cloud data. The section will be 

ended with a brief look to the state-of-the-art. 

In the proposed framework chapter, geospatial point cloud classification framework 

will be discussed in detail, including point cloud preprocessing, feature extraction, DL 

approach, and post-processing for instance segmentation. 

In the results chapter, the datasets to be used for validating the developed 

methodology will be explained and the proposed framework will be evaluated on these 

datasets.  

In the validation chapter, the developed methodology will be evaluated for 

generalization. Furthermore, it will be compared to the state-of-the-art in terms of accuracy 

as well as hardware requirements and computation time.  
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In the discussions and conclusion chapter, the results will be further discussed along 

with the limitations of the proposed frameworks and the future works, and a conclusion 

will be made. 

In the appendices, some codes related to the thesis are shared. 

 



59 

  

  



60 

  

 

Literature Review 

 

 

 

 

 

In this section, firstly, artificial intelligence (AI) will be discussed with the phases 

it has been through over the decades, along with some basic descriptions. Afterward, the 

literature will be reviewed for AI studies focused on geospatial point cloud classification 

and a summary of the state-of-the-art will be given.  

 

2.1.  An Overview of Artificial Intelligence 

AI can be described as techniques allowing computers to simulate the intelligence 

of the human. These techniques can be as simple as a hard-coded knowledge base 

implementation (i.e., early AI studies with rule-based systems) or complex artificial neural 

networks (i.e., more recent AI studies with DL). The first studies in the AI domain date 

back to the early 1900s, when manually designed basic statistical methods were used for 

identification (Garson, 1900). Throughout the decades, AI methods evolved into different 
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phases of rule-based systems, classic machine learning, representation learning, and -most 

recently- DL: 

- Rule-based systems depends on a knowledge base, which can be seen as a 

collection of hard-coded information. Received data is then evaluated based on 

these set of rules. 

- Classic Machine Learning (ML) is a sort of capability, which enables the 

machines to gain knowledge by learning the patterns from the data itself. In this 

case, the data machine learns is typically the representation of the data (rather 

than the raw data), which is formulated by the experts and commonly named as 

handcrafted features.  

- Representation Learning is the method in which the machine learns the 

representations from the data itself. In this way, the machine learns connections 

not only between the data and its representation but also between the 

representation and the output. 

- Deep Learning (DL) method, like representation learning, can derive 

representations from the data. Moreover, this method is also capable of deriving 

representations of the representations, which makes it deep. 

DL method being the most recent among these, is more complex. However, this 

complexity enables solving more difficult tasks with higher accuracies, meaning more 

useful results. Figure 2-1 shows the AI methods side-by-side in order to compare them in 

an easier way.  
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Figure 2-1. Rule-based systems, ML, representation learning, and DL methods are shown. 

Figure adapted from Goodfellow et al. (2016). 

As Figure 2-1 represents the basic differences of these approaches, Figure 2-2 

demonstrates the relations between them. It can be seen AI is the broad discipline covering 

all rule-based systems, ML, representation learning, and DL.  
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Figure 2-2. Relationship between AI approaches with example algorithms. Adapted from 

Goodfellow et al. (2016). 

To clarify the relationships between AI approaches and better understand them, the 

example algorithms of random forest, autoencoders, and multi-layer perceptron (MLP) are 

briefly explained below: 

- Random Forest (RF) is one of the most popular ML algorithms. The idea behind 

this algorithm is to utilize multiple decision trees on a randomly generated 

subspace of the given data.  

- Autoencoder is a kind of neural network capable of deriving representation (also 

known as code or feature) from the given input data. This kind of network 

consists of two functions: encoder and decoder. The encoder function learns the 

representation generation from the data, while the decoder learns how to create 

the original data from these representations. This process of mapping is also 
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called reconstruction. The autoencoders include a hidden layer between the 

input and output layers, which contains the description of the representation. 

Earlier applications of autoencoders focused on data reduction and feature 

learning, while recent studies focused on generative modeling. 

- Multi-Layer Perceptron is one of the most typical examples of DL. The 

objective of an MLP is to approximate a mathematical function. Such networks 

structures do not have any connection from their outputs back to themselves 

(known as feedback connections), and therefore, MLPs are also called 

feedforward neural networks. 

For further reading on autoencoders, MLPs, and DL in general, readers may refer 

to a DL book such as Goodfellow et al. (2016), and for RF and other topics in ML to a 

book such as Burkov (2019). 

DL is a more recent and popular research field (Figure 2-3), it is supported by 

researchers with various backgrounds (i.e., engineers, mathematicians, computer scientists, 

architects, and so on). 

 

Figure 2-3. Interest over time for support vector machine (blue) and convolutional neural 

networks (red) between January 2004 and June 2021 (Google Trends, 2021). 
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Typical pipelines for geospatial point cloud classification with DL and ML can be 

summarized in Figure 2-4. As it can be seen, DNN usage eliminates the need for 

handcrafted feature extraction, while this is not the case for ML. 

 

Figure 2-4. Pipelines for DL and ML approaches for geospatial point cloud classification. 

Dark blue boxes represent modules that can learn.  

Since this framework (Chapter 3) can be considered between ML and DL, in the 

following subsections, the studies in the literature with ML and DL techniques for 

geospatial point cloud classification will be reviewed. 

 

2.2.  Geospatial Point Cloud Classification with Classic Machine Learning 

ML methods for geospatial point cloud classification focus on labeling each point 

individually by processing their features. These features, which are defined by the expert 

who handcrafts them, are extracted for each one of the points individually. Handcrafted 
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features typically describe local (i.e., planarity, linearity) or global geometry (i.e., height 

above ground level, surface normal). 

On the one hand, handcrafting features bring a few considerable advantages for 

point cloud classification with ML: 

(i) The expert knowledge can be reflected in the designed approach, which is 

expected to ensure desired outcomes while making use of the expertise; 

(ii) The handcrafted features are case-specific. Therefore, the number of 

features does not need to be too high (compared to representation learning 

methods) in most cases; 

(iii) As a result of using fewer features, commonly, algorithms used for the task 

do not need to be very complex. Thus, short processing times are expected. 

On the other hand, handcrafting features may also bring some limitations: 

(i) Having fewer features can lead to poor accuracy in complex tasks and 

complex scenes. One cannot formulate too many features (especially 

compared to DL methods); 

(ii) Case-specific feature handcrafting may lead to poor generalization 

capability; 

(iii) For complex problems, features derived from more abstract features (as in 

the DL, Figure 2-1) can be needed, which are not feasible to be handcrafted. 

In many cases, the computational efficiency of the ML algorithms makes it 

preferable, and some problems can be solved with high accuracy as well (Matrone et al., 
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2020). However, as Heipke and Rottensteiner (2020) state, there is a limit to the extent of 

feature handcrafting, and therefore, how good the results can be.  

ML has been a popular research domain with various research studies carried on 

with different perspectives. Weinmann et al. (2013) analyzed impact of the features in the 

classification of terrestrial laser scanning (TLS) data. Their findings indicate few and 

sophisticated features can achieve better performance measures compared to the use of an 

increased number of features. The performance measures do not only include memory 

consumption and computational efficiency but also accuracy. This is proving the 

importance of expert knowledge in handcrafting features as mentioned above. Hackel et al. 

(2016) suggest point density variations cause difficulties in terms of describing local 

geometry as well as computational efficiency. Therefore, they present a TLS classification 

method that can handle varying point densities. Their approach is based on downsampling 

the entire point cloud and extracting features with a multi-level pyramid approach. They 

implemented the nearest neighbor search for each level of the pyramid separately. In this 

way, although the retrieved neighbor points are not exactly within the same radius for each 

point, it is stated to be efficient for feature extraction. Thomas et al. (2018) focused on 

utilizing multiscale spherical neighborhoods for indoor and outdoor LiDAR point clouds. 

The spherical neighborhood, in comparison to the alternative k-nearest neighbors (knn), 

has the advantage of ensuring the retrieved neighboring points to be within a given radius. 

In contrast, the knn approach delivers a fixed number of points without any restrictions on 

the distance. Based on this advantage, the authors indicate their classification framework -

using an RF classifier- can achieve accuracies such as 62% mean intersection-over-union 
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(mIoU) on the Paris-Lille-3D dataset. Pârvu et al. (2020) implemented a region growing 

algorithm for the neighborhood retrieval of the feature extraction step. Their proposed 

method utilizes region growing for each point in the given point cloud, and the extracted 

segment is then used for computing the handcrafted features for representing the local 

geometry. The proposed method is demonstrated to improve the classification accuracy for 

ground and vegetation classes. Zhang et al. (2013) developed a classification method that 

combines surface growing along with support vector machine (SVM) for LiDAR point 

cloud classification. Their approach uses an object-based approach, which utilizes 

segments (in other words, clusters) derived with surface growing as objects. Features are 

extracted at a segment level, then, the SVM classifier is used for the classification of these 

segments. The authors also implemented connected components-based refinement to cope 

with noises in classification results. Vosselman et al. (2017) proposed a method 

implementing multiple segmentation methods which allow context-based classification. 

The proposed segmentation approach includes planar segmentation using Hough transform 

(Illingworth and Kittler, 1988) as well as feature-based segmentation. The eliminated 

points, which do not fit within the segmentation parameters during segmentation, are then 

assigned to a class based on their neighborhood. Isolated points with no neighbors can be 

left as unclassified. Li et al. (2019) applied label smoothing as a post-processing step in 

order to improve classification results. Taking advantage of the graph-structured 

framework by Landrieu et al. (2017), the authors initially generate an optimal graph using 

the points’ coordinates. Afterward, they apply probabilistic label relaxation to improve the 

consistency of the labels. In the final step, the data produced in the previous steps are used 
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as inputs for a graph-structured regularization, which forms the ultimate labels for the 

points. 

As seen, the studies in the literature focus on different challenges such as features 

to extract (finding more related features), the scale of the local neighborhood for feature 

extraction (multi-scale versus single scale), alternative ways to retrieve nearest points 

(search radius versus knn), and post-processing of the classification results. Although some 

of these studies present their methodologies on terrestrial datasets, they indicate common 

issues which are also valid on airborne point clouds: feature selection, neighborhood 

selection for feature extraction, and multi-scale feature extraction.  

The current challenges and limitations of ML methods for geospatial point cloud 

classification include feature engineering (especially for irregular/noisy point clouds as the 

local geometry variety is high within the point cloud), solving complex problems (i.e., more 

classes), being able to exploit more data, generalization, and transfer learning adaptation. 

These challenges and limitations are considered to be rooted in the nature of ML methods, 

as the algorithms are typically less complex (i.e., decision trees versus MLPs) than DL 

methods.  

 

2.3.  Geospatial Point Cloud Classification with Deep Learning  

As Wang et al. (2020) indicates, DL is becoming increasingly popular for different 

data processing necessities. The two major reasons reported are the recent developments 

in technology and the increase in the available datasets. The recent developments in 

technology enabling realizing deeper (i.e., more layers) and wider (layers with more 
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parameters/filters) neural networks, while accessing more data for training and validation 

helps to exploit these algorithms. Unlike ML methods, which are incapable of handling 

(Wang, 2015). Being able to learn -the representation- from input data (Figure 2-1) and 

achieve better results with better generalization ability (Wang et al., 2020), DL methods 

are the current state-of-the-art in many applications, including geospatial point cloud 

classification. 

Point cloud classification methods have been developed with different approaches 

based on convolutional neural networks (CNN), graph recursive neural networks (RNN), 

point convolutions, point-wise MLPs, and so on (Guo et al., 2020). In this section, the 

studies in the current state-of-the-art about geospatial point cloud classification with DL 

will be detailed. 

Geospatial point cloud classification has been studied by many researchers with 

varying approaches. Charles et al. (2017) proposed PointNet, which consumes 3D point 

clouds directly (nx3 input, where n is the number of points), and their proposed method is 

capable of semantic segmentation. The proposed network utilizes several MLP networks 

to extract global and local features from the given point set. Qi et al. (2017) developed 

PointNet++ based on the previously mentioned PointNet. The network processes the point 

cloud with varying neighborhoods for learning the local geometry better. The major 

difference between PointNet and PointNet++ can be seen as the varying neighborhood 

implementation for feature extraction. PointNet++, with this improvement, increased the 

classification performance and has been a benchmark network since then. Yousefhussien 

et al. (2018) developed a 1D-CNN-based method that can learn global and local geometric 
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features from a given point cloud for classification. Their method implements a multi-scale 

approach. The network is capable of consuming the available spectral data (i.e., color data 

from photogrammetric point clouds, or intensity LiDAR features) in addition to the 3D 

coordinates. Özdemir et al. (2019a) proposed a method combining handcrafted features 

with DL. In the proposed method, handcrafted features (namely covariance features and 

height above ground using DEM, which are extracted within the framework) are used as 

supplementary data along with the 3D point coordinates to boost the classification process. 

Their results indicate that ML methods are not capable of exploiting all the additional 

information, while DL is. The shared results also indicate the inclusion of handcrafted 

features enables designing a shallower DNN, which allows faster computations. Li et al. 

(2020a) developed a geometry-attentional DNN for airborne laser scanning (ALS). The 

proposed method is based on geometry-aware convolutions with a dense hierarchical 

architecture, including elevation-attention. Geometry-awareness can be described as the 

extraction of the local pattern for a given point neighborhood using convolutional layers as 

well as MLPs. The dense hierarchical architecture is based on implementing several skip 

connections (the output of one layer is passed as the input of at least two layers: the next 

layer and another further layer) between downsampling and upsampling blocks. Elevation-

attention is handled by feeding an MLP structure with the input points’ z coordinates as a 

vector. Wen et al. (2021) developed a graph-attention-based approach that includes graph 

local and graph global attentions. The graph local attention consists of edge and density 

attentions using MLPs. Similarly, graph global attention also uses MLPs. However, the 

graph here takes advantage of the Euclidean distances between every point, which is not 
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taken into consideration by other methods, according to the authors. Huang et al. (2020) 

developed their DL method based on PointNet++. Their proposed approach includes 

hierarchical data augmentation, which is not implemented in the original PointNet++ 

framework. The framework uses a nonlinear manifold-based joint learning approach and 

removes redundant and disruptive information. The learned hierarchical deep features are 

globally optimized and embedded into a low-dimensional space. In order to achieve global 

optimization of the initial classification results, a graph-structured optimization based on 

the Markov random fields approach is used. Li et al. (2020b) proposed Dance-Net, which 

introduces a density-aware convolution module that approximates typical convolutions on 

irregular 3D point clouds. The proposed density-aware convolution module reweights the 

learnable weights of the convolution kernels based on the point-wise density. The module 

approximates to a continuous convolution and is implemented in downsampling and 

upsampling blocks, also called as the multi-scale approach. Winiwarter et al. (2019) 

developed their method based on PointNet++ implementing a batching framework, which 

enables processing larger (i.e., geospatial) point clouds. Another structural modification 

they implemented is the ability to include additional features of the point cloud (i.e., colors, 

LiDAR features) in computation. Chen et al. (2021) proposed other modifications to 

PointNet++. The first proposed modification is about the treatment of the local 

neighborhood points. The authors suggest the way the original network handles the local 

neighborhood ignores the centroids of the local neighborhoods at different scales. In this 

way, the authors report, irrelevant information may be learned by the network. Therefore, 

they propose an alternative approach that takes centroids into consideration during the 
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processing of the local neighborhood points. The second proposed modification is the loss 

function. The authors implemented a modified version of the focal (Lin et al., 2017) loss 

function. The original focal loss function, in short, is designed to handle the class imbalance 

for the classification task by weighting the misclassified samples. The authors’ modified 

implementation explicitly executes computations based on the number of points in each 

category. Another modification, the authors reported, is focused on increasing the 

importance of the elevation data along with distance-based interpolation. Increasing the 

importance of the elevation is expected to increase the ability to derive features 

representing the geometry better. Laupheimer et al. (2020) proposed an association-based 

method, where the point cloud and the mesh model are associated in order to transfer 

features and class labels between them. The proposed method relies on the classification 

of the mesh model rather than the point cloud. The feature extraction is computed on the 

mesh model, while LiDAR features (i.e., intensity) are retrieved from the associate points. 

Thomas et al. (2019) proposed Kernel Point Convolution (KPConv), which processes the 

point clouds without generating a voxel or other transitional representations. The proposed 

network uses a search radius (rather than knn) to retrieve local neighborhoods. The kernel 

is designed with the capability of learning the local shifts by implemented deformation to 

the kernel itself. The network is designed with grid subsampling and pooling layers. Grid 

subsampling ensures invariance against density variations while confirming positional 

stability of the input points, while pooling layers increase the receptive field. Zhang et al. 

(2020) proposed a framework for instance segmentation of LiDAR point clouds. The 

developed instance segmentation method relies on horizontal midpoint as well as the height 
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limits of an object. This information is then used for grouping the points forming candidate 

objects and noise removal. The candidate objects’ midpoints are then compared with a 

30cm threshold in order to merge them to a single object or leave them as separate objects. 

The authors report their method achieves higher accuracy than the state-of-the-art on a 

terrestrial dataset, which they introduce. Zhang et al. (2021) proposed an unsupervised 

instance segmentation for building extraction from airborne LiDAR point clouds. The 

proposed method divides building point clouds using a tree structure and computing 

geometric features. The decision is made whether it is a single building or multi-building 

instance. 

Both ML and DL studies in the current state-of-the-art (on point cloud 

classification) deal with similar challenges, including data irregularity, density variations, 

and neighborhood retrieval techniques. Each study focuses on different challenges with 

different perspectives, trying to improve the state-of-the-art. The challenges and limitations 

of DL methods for geospatial point cloud classification include density variations, 

noise/outlier presence, availability of larger data sets, generalization, and explainability. 

Among these challenges, noise/outlier presence in the point cloud can also be dealt with 

during the generation step, where many improvements happened (Gruen, 2012; Haala, 

2013). The availability of larger data sets for different purposes are also increasing in recent 

years (Guo et al., 2020). Generalization capabilities are observed to be increasing (Liu et 

al., 2019; Xie et al., 2020b), as well as studies on explainability are becoming more popular 

(Xie et al., 2020a).  
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2.4.  Summary of the Chapter 

In this section, an overview of artificial intelligence is given along with geospatial 

point cloud classification studies in the literature. It is seen that although the techniques 

and approaches may differ, the challenges are similar: irregular structure of the 3D point 

clouds, density variations within a dataset, and neighborhood definitions (local versus 

global, multi-scale, knn versus radius neighborhood retrieval). A summarized view of the 

literature is represented in Figure 2-5, which is clustered by challenges and this work is 

compared to the current state-of-the-art. 

Another challenge in the geospatial point cloud domain is instance segmentation. 

The instance segmentation techniques with DL require much more data (Zhang et al., 2020) 

and such datasets are not available in the geospatial domain yet. For this reason, urban-

scale studies are focusing on unsupervised, geometric-analysis-based approaches for 

instance segmentation (Xia et al., 2021; Zhang et al., 2021).  

As crucial as the abovementioned challenges are, the following two key factors 

could be considered as essential while designing a geospatial point cloud classification 

framework: computational efficiency (in terms of computational power and memory 

requirements) and generalization (being able to process point clouds acquired with 

different sensors and at different densities) capability. These two key factors can be critical 

for implementations and deployment in large-scale applications, such as the daily 

procedures of mapping agencies. 

In the upcoming chapter, the proposed method will be explained in detail, which is 

aims to cope with all these challenges. 
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Figure 2-5. A brief look to the literature. TONIC: efficienT classification Of urbaN poInt 

Clouds framework (Özdemir et al., 2021). 
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Proposed Framework  

 

 

 

 

 

 

In this section, first, a brief introduction to the framework will be given. This will 

be followed by detailed discussions for each step of this framework, including 

downsampling (Section 3.1), feature extraction (Section 3.2), and classification with DL 

using image representation (Section 3.3). The overall structure of the framework is shown 

in Figure 3-1. Besides these main framework steps, instance segmentation for buildings 

will also be introduced in Section 3.4. 

The framework’s design started with previous works (Özdemir and Remondino, 

2019; Özdemir et al., 2019a), setting the foundations of it. This last iteration is focused on 

increasing the performance and reliability, computational efficiency, and enhancing 

generalization capabilities, which are further discussed in the next chapters (Chapters 4 and 

5). The feature extraction approach and deep neural network design are discussed in detail 

in this section. 
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Figure 3-1. TONIC framework. 

The framework receives 3D point clouds and outputs class labels per-point. If these 

point clouds include any radiometric data (i.e., RGB color) or LiDAR features (i.e., 

intensity, number of returns) these data are exploited, as well. 

During development and testing, used open-source libraries are used including 

C++14 Standard Library (ISO, 2014), libLAS (Butler, 2021), Point Cloud Library (Rusu 

and Cousins, 2011) for point cloud processing, TensorFlow v2.5.0 (Martín et al., 2015) 

with Keras (Chollet and others, 2015) for DL implementation, Pandas (McKinney, 2010; 

Reback et al., 2020) and NumPy (Harris et al., 2020) for data manipulation, and Scikit-

Learn (Pedregosa et al., 2011) packages for ML. 

 

3.1.  Point Cloud Preprocessing with Downsampling 

The overall density of a point cloud is one of its most important characteristics. The 

deviations in the overall density may cause by data acquisition (i.e., flight height, camera 
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and lens setup, LiDAR sensor, and so on) as well as data processing options (i.e., parameter 

settings for dense image matching, filtering, and so on). The overall density of a point cloud 

can be as low as 1 pts/m2 or as high as 1000 pts/m2. Such overall density discrepancies 

hamper the classification task. For example, at ~1 pts/m2 overall density, it is unfeasible or 

at least problematic to extract some high level-of-detail classes (i.e., traffic lights, cars). 

Besides the overall density, density variation within a point cloud is another critical 

characteristic to be considered. Density within a point cloud can be as low as 1 pts/m2 and 

as high as 1000 pts/m2, which indicates a high density variation. Higher density variations 

can lead to less consistency in terms of level-of-detail in a point cloud. It also makes it hard 

to extract local geometry (Özdemir and Remondino, 2019).  

As the local geometry (utilizing handcrafted features (Section 3.2) as well as DL 

(Section 3.3)) needs to be extracted, density variation has a substantial impact on this 

framework’s performance. The handcrafted and learned features become less consistent as 

the density variety increases. Based on these density-related challenges, downsampling is 

implemented, expecting the following advantages: 

(i) Downsampling reduces the total amount of data. As a result of data 

reduction, the entire process speeds up significantly; 

(ii) Density within the point cloud to become more consistent (low density 

variation). Thus, the features; 

(iii) Ensure that distinct point clouds have similar density characteristics, and 

therefore maximizing the generalization capabilities; 

(iv) Reducing the noise.  



81 

  

Point Cloud Library’s voxel-grid filter is used for the downsampling. A critical 

advantage of this method is that it outputs the coordinates of the centroid for the points 

falling into the same voxel instead of the center of the voxel (Figure 3-2). In this way, the 

original geometry is altered less compared to voxelation. 

 

Figure 3-2. Voxel-grid filtering: the unevenly distributed points (blue) in the voxel (black 

cube); the centroid of the input points (red), which is the output of the filtering.  

Using the voxel-grid filtering, also the noise is reduced, as output is the voxel 

centers instead of the points’ centroid (red point in Figure 3-2). As the output of the filtering 

is not selected among the input points, but rather a new point is generated, the output point 

itself does not keep the original sensor data (i.e., colors or LiDAR features). These sensor 

data is then retrieved for each point from their nearest neighbors in the full resolution 

original input point cloud, after the filtering. The voxel size decision and its impact on the 

classification results will be further discussed in the next chapter (Section 4.1). 

In Figure 3-3, it can be seen the original point cloud’s (ISPRS Vaihingen point 

cloud (Niemeyer et al., 2014)) density variation is very high, while the filtered cloud is 
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much more homogeneous. Besides the homogeneity, there are fewer points representing 

the same scene preserving the objects in the scene. 

 

  

Figure 3-3. Original (left) and after (right) voxel-grid filtering. Black circles highlight the 

eliminated density variation, red circles highlight the overall data reduction. 

 

3.2.  Feature Extraction 

The first thing to consider for handcrafted feature extraction is the neighborhood 

retrieval approach. There are two alternatives as mentioned before: knn and radius search. 

Knn method retrieves the nearest k number of points, which assures there will always be a 

constant number of points for computing the features. This assurance prevents undoable 

feature extraction, which happens whenever there are insufficient points (i.e., less than 3 

for principal component analysis or plane fitting) in the search neighborhood. However, 

the problem with this approach is the coverage of the neighborhood points. Considering 

the density variations within a point cloud, the coverage of the nearest 10 points will vary 

from region to region. On the contrary, with the radius search, the points falling within a 
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certain search radius will be retrieved, which assures a more stable geometry 

representation. The problem in this case occurs: 

(i) when there are very few points (i.e., 2 points) within the defined search 

radius (i.e., 40cm), which prevents the computation of features, or  

(ii)  when there are too many points (i.e., 195 points), which slows down the 

computations.  

Due to these issues, neighborhood selection has always been a challenging decision 

when it comes to feature extraction, as also mentioned in Chapter 2. 

As mentioned in Section 3.1, one of the advantages of the downsampling 

implementation is the ensured low density variation within the point cloud, which assures 

consistency of the geometry in the points’ local neighborhood. In this way, the problem 

with coverage when knn used is overcome. Therefore, knn method is used for local 

neighborhood queries for the feature extraction. In order to extract the differences in the 

local geometry better, a multi-scale feature extraction approach is applied with three 

different scales.  

So as to improve computational performance by triggering fewer search queries (of 

local neighborhood points), the implementation triggers the search with the largest scale 

only once per point. As the used knn search algorithm (of Point Cloud Library) outputs the 

points sorted by their distances to the query point, this information is exploited by 

computing the features starting from the nearest n points, followed by 2n, and so on, as 

shown in Algorithm 3-1.  
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Extracted features include eigenvalues (λ1 > λ2 > λ3) derived from the principal 

component analysis (Wold et al., 1987) implementation of Point Cloud Library, 

eigenvectors-based surface normal estimations (the last three elements of the eigenvectors), 

covariance features (linearity, sphericity, omnivariance), as well as geometrically 

computed features (local elevation change, local planarity, vertical angle, and height above 

ground).  

Algorithm 3-1. Multi-scale knn search implementation. 

Input: 3D Point Cloud 

Initialization: Not applicable. 

Output: Multi-scale features per point. 

1: for each point in the point cloud do 

2:     retrieve the highest-scale (3n, n points for 3 scales) local neighborhood points 

        retrieved points are sorted by distance by the search algorithm as default 

3:     for each scale do  

4:         compute the features with the related batch of points (n, 2n, 3n) 

5:     end for 

6: end for 

The covariance features are computed following the formulation of Hackel et al. 

(2016). The others are computed based on direct geometrical computations rather than 

principal component analysis derived eigenvalues or eigenvectors. Formulas for the used 

features are as shared in Table 3-1. 
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Table 3-1. Formulas of the handcrafted features. 

Linearity (𝜆1 − 𝜆2) / 𝜆1 

Sphericity 𝜆2 / 𝜆1 

Omnivariance (𝜆1 ∗ 𝜆2 ∗ 𝜆3)
1/3 

Local Elevation Change 𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛 

Local Planarity 
1

𝑛
∑ 𝐿2(𝑝𝑘 , �⃗� )

𝑛

𝑘=0

 

Vertical Angle cos−1(
�⃗� 𝑥𝑦 ∙ 𝑝 

(||�⃗� 𝑥𝑦||)  ∗ (||𝑝 ||)
) 

Height Above Ground 𝑝𝑟𝑧 − 𝑝𝑙𝑧  

The employed non-covariance features are listed below (visualized in Figure 3-4):  

(i) Local elevation change is the difference in the minimum and maximum z-

coordinates in the neighborhood; 

(ii) Local planarity is the mean distance between the neighboring points (𝑝𝑘) to 

the best-fit plane (�⃗� ) of these points. Computed with Point Cloud Library’s 

built-in Sample Consensus (SAC) segmentation class using Random 

Sample Consensus method (RANSAC, (Fischler and Bolles, 1981)); 

(iii) Vertical angle is the angle between the normal vector of a point (𝑝 ) and xy-

plane (�⃗� 𝑥𝑦); 

(iv) Height above ground is the difference between z-coordinates of the point 

(prz) and the possible lowest point (plz). The possible lowest point is a 

hypothetical point representing the ground level and is extracted as shown 

in Algorithm 3-2.  



86 

  

The feature extraction tool is built using Point Cloud Library and written in C++ 

programming language. The implementation is designed with a multi-threading method 

allowing to utilize as many CPU threads as preferred. Therefore, the feature extraction step 

can be executed quickly on almost any modern hardware and operating system.  

Algorithm 3-2. Identification of the possible lowest point. 

Input: 3D Point Cloud 

Initialization: Iterate through the input point cloud, get the lowest z-coordinate (zmin). 

Output: Possible lowest point, to be used for calculating height above ground feature. 

1: for each point in the cloud (pr: {prx, pry, prz}) do 

2:     generate a pseudo point (pp: {prx, pry, zmin}) 

3:     retrieve the nearest neighboring point for pp from the input cloud 

4:     retrieve the z-coordinate of the found point (fpz)  

5:     change the z-coordinate of the pp with fpz 

6:     search for the nearest neighbor point for pp in the input cloud 

        the found point is the possible lowest point (pl: {plx, ply, plz})  

7: end for 

 

 

High 

 

 

 

 

 

 

Low     
  (a) (b) (c) (d) 

Figure 3-4. Local elevation change (a), local planarity (b), vertical angle (c), height above 

ground (d) are shown on the ISPRS Vaihingen Dataset. Colors scaled as blue-green-

yellow-red, from lower to higher values. 
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3.3.  Classification with Deep Learning and Machine Learning 

The proposed classification framework (Figure 3-1) relies on the handcrafted 

features (Section 3.2) as well as self-learned ones. Moreover, if they are available, 

additional sensor data is also utilized as features (i.e., intensity, number of returns and 

return number for LiDAR point clouds, color information for photogrammetric ones), and 

coordinates of the local neighborhood points. The handcrafted feature implementation 

allows designing a shallower DNN. This is because some of the features the network would 

need to learn are already handcrafted and given. The framework includes both 2DCNN and 

a 3DCNN which are applied depending on the data and tasks reported in the discussions 

(Chapter 6). The proposed approach’s workflow is shown in Figure 3-5. 

 

Figure 3-5. Workflow of the proposed classification framework based on DL. 

As seen in Figure 3-5, in addition to the handcrafted features, the downsampled 

point cloud is also fed to the network inside the image representation. The image 

representation mentioned here is a 2D data table (a matrix) formed for each point with their 

neighboring points. The matrix includes the features as well as the coordinates of the local 

neighborhood points (Figure 3-6).  
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Figure 3-6. The matrix structure generated for each point: Pn denotes points, dx,y,z denotes 

matrix-wise scaled coordinates (blue cells), and Fm represents the features (green cells). 

The coordinates of the local neighborhood points are centered around the point of 

interest and divided by maximum coordinates values in the matrix for normalization 

purposes. The coordinates are then clipped to the minimum and maximum values of 0 and 

1, respectively. Handcrafted features and sensor data are globally normalized rather than 

matrix-wise. The matrix is then sorted by x- and z- coordinates respectively, which is 

observed to provide fractionally better results. The prepared matrix is classified with an 

image object classification approach by the network. 

The network used for the data structure described above is based on 2D 

convolutions, as shown in Figure 3-7. The network receives the 2D matrices (Figure 3-6) 

and processes them like an image object classification, outputting the class probabilities. 

The network is schematized with layer parameter settings, aside from the last Dense layer 

that has the output dimension set to number classes per dataset. 
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Figure 3-7. Network structure of the 2DCNN (BN: batch normalization). 

Unlike rendering-based or voxel-based methods (Guo et al., 2020), TONIC’s CNN 

methods use pseudo images, as shown in Figure 3-8. 

 

Figure 3-8. Sample matrices, rendered as images for visualization. Matrices are transposed 

for better illustration. 

Besides the 2DCNN, a 3DCNN structure is also implemented, due to their 

demonstrated performances in the image processing domain. A 3DCNN model has the 

advantage of exploiting inter-channel correlation as well as spatial correlation (Koundinya 
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et al., 2018). The 2D matrices are reshaped along the features’ axis (vertical axis in Figure 

3-6) in order to adapt the abovementioned 2D matrices for a 3DCNN.  

 

Figure 3-9. Network structure of the 3DCNN (BN: batch normalization). 

This reshaping of 2D matrices produces 3D arrays (also known as tensors by the 

DL community), the shape of input a 3DCNN requires. In this way, a 2D matrix with 

dimensions of, e.g., 45x15 converted to 45x5x3. The applied 3DCNN architecture (Figure 

3-9) is a slightly modified version of the 2DCNN architecture presented in Figure 3-7. 

Visualizing the 3D patches gives the color images shown in Figure 3-10. 

An example of the classification result is shown in Figure 3-11 for qualitative 

representation. The results will be further discussed in Chapters 4 and 5. 

In addition to the developed DL methods, a Random Forests (RF) classifier is also 

utilized for comparison with ML. The input for the RF classifier is the feature vector for 

each point, including all the features explained in Section 3.2.  
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Figure 3-10. Sample tensors, rendered as color images for visualization. Transposed for 

better illustration. 

 

  

Figure 3-11. An example of classification result, 2DCNN method on the ISPRS Vaihingen 

dataset. 

 

3.4.  Post-Processing for Instance Segmentation of the Buildings 

The classification of geospatial point clouds in urban scenes is commonly needed 

for 3D city or building modeling applications. However, a classified point cloud cannot be 
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directly used for model generation. Objects need to be separated into instances (i.e., 

individual buildings) for such applications. Therefore, this step is implemented as post-

processing to achieve instance-segmentation results.  

The instance segmentation workflow is shown in Figure 3-12. The method relies 

on clustered roofs instead of facades or their combination. Since the facade points may not 

exist in all datasets or may not be as complete as roofs (i.e., nadir only acquisitions). 

 

Figure 3-12. Instance segmentation workflow for buildings. 

As seen in Figure 3-12, the input of this step is the classified point cloud. The point 

cloud is first separated by the classes, which outputs a file for each class in the point cloud. 

This step is followed by Euclidean distance clustering of the roofs, which is applied using 

the built-in functions of Point Cloud Library. Clustering the roofs delivers separated 

buildings (building instances). The points in the class of facade (if exists) are then retrieved 

to the nearest roof cluster, which forms the separated buildings, as shown in Figure 3-13. 

For further reading on clustering methods, readers may refer to the overview by 

Madhulatha (2012). 
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Figure 3-13. Building instances (randomly colored) and the other objects (gray), ISPRS 

Vaihingen evaluation dataset. 

 

3.5.  Summary of the Chapter 

In this chapter, the proposed methodology is introduced step-by-step: preprocessing 

with downsampling, multi-scale handcrafted feature extraction, DL implementation, and 

post-processing for instance segmentation. 

In the next chapter, the accuracy assessment methodology will be explained, 

datasets used for validation will be introduced, downsampling experiments will be 

discussed, and classification results will be reported. 
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Results and  

Accuracy Assessment 

 

 

 

In this chapter, the following topics will be discussed: the accuracy assessment 

methodology, datasets used, downsampling approach and its effects, and quantitative 

results for the proposed TONIC classification framework. 

 

4.1.  Accuracy Assessment Methodology 

Accuracy assessment of the classification results are done with the F1 score (also 

known as Sørensen–Dice coefficient ), overall accuracy (OA), and intersection over union 

(IoU, also known as Jaccard index), along with weighted versions of them with the 

formulas shown in Table 4-1 (Verma and Aggarwal, 2020). Before these metrics, true 

positive (TP), true negative (TN), false positive (FP) and false negative (FN) terms are 

illustrated in Figure 4-1, which are the core elements to calculate the aforementioned 

accuracy metrics. 
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Figure 4-1. Visualization of true positive, true negative, false positive, and false negative. 

As it can be seen in Figure 4-1, where the example is a binary classification (i.e., 

the prediction can indicate either class true or class false): 

- TP is when the classification is true, and it is correct; 

- FP is when the classification is true, and it is wrong; 

- TN is when the classification is false, and it is correct; 

- FN is when the classification is false, and it is wrong. 

Among those metrics, a visual representation of the IoU can be made for better 

understanding, while the others are hard to visualize. This is because the IoU metric 

represents an area, as shown in Figure 4-2. 
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Table 4-1. Formulas of accuracy assessment metrics (N: total number of points in the point 

cloud; c: number of classes; ni: number of points in class i; F1i: F1 score for the class i; 

IoUi: IoU score for class i).  

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Recall 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 Score 2 ∗ 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 IoU 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 +  𝐹𝑁
 

Weighted F1 

Score 

1

𝑁
∑(𝑛𝑖 ∗ 𝐹1𝑖)

𝑐

𝑖=0

 Weighted IoU 
1

𝑁
∑(𝑛𝑖 ∗ 𝐼𝑜𝑈𝑖)

𝑐

𝑖=0

 

Overall Accuracy  

(OA) 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

 

 

 

 

Figure 4-2. Intersection over union visualization, where the blue rectangle shows prediction 

and the green rectangle shows the ground truth. 

As shown in Figure 4-2, IoU represents the ratio of the two areas: the overlapped 

area between the ground truth and the prediction, and the union of these two areas. Scikit-

Learn library (Pedregosa et al., 2011) is used for calculation of all the accuracy metrics. 

For the training of DL models, the F1 score is preferred as a loss function as it is 

commonly used for assessing the performance of a classifier. However, the F1 score is not 

suitable as a loss function. In fact, the F1 score is based on counted metrics (TP, TN, FP, 

FN), which prevents its implementation as a loss function. Therefore, an approximation to 
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F1 score is implemented based on the predicted probabilities, rather than counted 

classification results. The chosen optimizer is stochastic gradient descent (SGD) due to its 

performance. The patience is set to 15 epochs for early stopping, observing the validation 

loss. The learning rate is set to 0.001 and the training is limited to 100 epochs. Besides, in 

order to handle class imbalance in datasets, the training samples are weighted (i.e., reducing 

the weight of classes which are represented more in the dataset depending on the 

occurrences). 

 

4.2.  Validation Datasets 

Based on the generalization, density, and data-source invariance objectives 

(Section 1.5), the framework is tested with five different datasets. The datasets include 

ISPRS Vaihingen, DALES, LASDU, Bordeaux, and 3DOMCity (Table 4-2). Except for 

the Bordeaux, all datasets are publicly available with ground truth labels. The differences 

between datasets are density, resolution, source, available sensor data, and the number of 

classes. The definitions of the terms density and resolution are considered as given below: 

- Density is the average number of points per m2 on the ground; 

- Resolution is the average of the distances between each point and its nearest 

neighbor.  

For further reading in benchmarking in photogrammetry and remote sensing, 

readers may refer to the review by Bakuła et al. (2019). 
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Table 4-2. Summary of the validation datasets (L: LiDAR, OP: oblique photogrammetry, 

Lab: laboratory, Res: Resolution, IR-R-G: Infrared-red-green) 

Dataset Source Points 
Density 

(pts/m2) 

Res. 

(m) 

Area 

(m x m) 
Color Classes 

ISPRS Vaihingen 

(Cramer, 2010; 

Niemeyer et al., 

2014) 

L 1,165,598 4 0.258 
383 x 405 + 

374 x 402 
IR-R-G 9 

DALES (Varney et 

al., 2020) 
L 497,632,442 35 0.116 

500 x 500 

(40 tiles) 
No 8 

LASDU (Cheng et 

al., 2013; Ye et al., 

2020) 

L 3,080,856 3 0.484 1071 x 1285 No 5 

Bordeaux (Toschi 

et al., 2021) 
L + OP 10,230,941 25 0.173 704 x 739 RGB 5 

3DOMCity 

(Özdemir et al., 

2019b) 

OP 

(Lab) 
22,825,024 14000 

0.158m

m 
0.813 x 0.811 RGB 6 

 

4.2.1.  ISPRS 3D Semantic Labeling Contest Dataset (ISPRS Vaihingen) 

ISPRS 3D Semantic Labeling Contest Dataset of Vaihingen (hereinafter ISPRS 

Vaihingen for the sake of readability) has been one of the most popular datasets for urban-

scale geospatial point cloud classification benchmarking (Cramer, 2010; Niemeyer et al., 

2014). The point cloud is acquired with the Leica ALS50 LiDAR scanner over Vaihingen, 

Germany. In the dataset, the training (753,876 points) and testing (411,722 points) point 

clouds are labeled for nine classes as follows: powerline, low vegetation (grass), 

impervious surface (ground), car, fence, roof, facade, shrub, and tree (Figure 4-3). The 

dataset includes LiDAR points, intensities, the number of returns and return numbers are 

provided within the classification benchmark dataset. Besides these, IR-R-G orthophotos 
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(infrared, red, green channels) are also provided, which we exploited in our experiments. 

Points per class distribution of the dataset are given in Table 4-3. 

 

 

Figure 4-3. The ISPRS Vaihingen dataset, training data shown alone for better 

visualization. 

 

Table 4-3. Class distribution for training and validation point clouds of the ISPRS 

Vaihingen dataset. 

Class 
Training Validation 

Number of Points Percentage Number of Points Percentage 

Cables 527 0.07% 600 0.15% 

Grass 180,792 23.98% 98,690 23.97% 

Ground 193,824 25.71% 101,986 24.77% 

Car 4,610 0.61% 3,708 0.90% 

Fence 12,081 1.60% 7,422 1.80% 

Roof 152,064 20.17% 109,048 26.49% 

Facade 27,192 3.61% 11,224 2.73% 

Shrub 47,612 6.32% 24,818 6.03% 

Tree 135,174 17.93% 54,226 13.17% 

Total 753,876 100.00% 411,722 100.00% 
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4.2.2.  DALES Dataset 

Dayton Annotated LiDAR Earth Scan (DALES) dataset is a new, large-scale 

benchmark dataset for semantic segmentation of point clouds (Varney et al., 2020). The 

data acquisition is done with a Riegl Q1560 airborne laser scanner with an altitude of 1300 

meters over the Surrey City in British Columbia, Canada. Being large-scale, the dataset is 

distributed with 500m-by-500m tiles, each containing ~12 million points, >500 million 

points in total. There are 29 tiles for training and 11 for testing. The point cloud is labeled 

for eight classes -excluding unknown- as follows ground, vegetation, car, truck, cable, 

fence, pole and building. The dataset includes number of returns and return numbers as 

LiDAR features, yet it lacks LiDAR intensity and color information. (Figure 4-4). Points 

per class distribution of the dataset is given in Table 4-4. 

 

 

Figure 4-4. The DALES Dataset, a tile from the training set shown. 
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Table 4-4. Class distribution for training and validation point clouds of the DALES dataset. 

Class 
Training Validation 

Number of Points Percentage Number of Points Percentage 

Unknown 6,997,560 1.90% 681,571 0.50% 

Ground 178,021,561 48.29% 68,871,897 50.40% 

Vegetation 120,818,120 32.77% 41,464,228 30.34% 

Car 2,583,281 0.70% 1,070,554 0.78% 

Truck 748,890 0.20% 154,142 0.11% 

Cable 799,886 0.22% 230,412 0.17% 

Fence 1,512,927 0.41% 624,069 0.46% 

Pole 276,924 0.08% 92,724 0.07% 

Building 56,908,533 15.44% 23,454,294 17.16% 

Total 368,667,682 100.00% 136,643,891 100.00% 

 

 

4.2.3.  LASDU Dataset 

Large-Scale Aerial LiDAR Point Clouds of Highly-Dense Urban Areas (LASDU) 

is also a newer classification benchmark and focuses on the urban scenarios (Ye et al., 

2020). The data acquisition for this dataset is made with Leica ALS70 over the Heihe River 

area in the northwest of China. The dataset is divided into four sections by the directions 

of north-south and east-west and divided equally for training and testing. The point cloud 

has >3 million points in total, covering >1 km2 area. The point cloud is labeled for five 

classes: ground, building, tree, low vegetation, and artifact (Figure 4-5). The dataset 

provides LiDAR features yet, does not include orthophoto or any color information. Points 

per class distribution of the dataset are given in Table 4-5. 
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 (a) (b) 

Figure 4-5. The LASDU point cloud with five classes (a). The parts for training and testing, 

red and blue respectively (b). 

 

Table 4-5. Class distribution for training and validation point clouds of the LASDU dataset. 

Class 
Training Validation 

Number of Points Percentage Number of Points Percentage 

Ground 704,425 41.56% 637,257 45.98% 

Building 508,479 30.00% 395,109 28.51% 

Tree 204,775 12.08% 108,466 7.83% 

Low Veget. 210,495 12.42% 192,051 13.86% 

Artifact 66,738 3.94% 53,061 3.83% 

Total 1,694,912 100.00% 1,385,944 100.00% 

 

 

4.2.4.  Bordeaux Dataset 

The Bordeaux Dataset is recently produced for another study on point cloud 

registration refinement (Toschi et al., 2021). Two more classes are added (namely 
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vegetation and others) to the original classes before using the dataset. The data acquisition 

is made with a Leica CityMapper hybrid sensor. The sensor is hybrid as it contains both a 

Hyperion LiDAR unit and an oblique photogrammetric multi-camera system. The multi-

camera system consists of one nadir and four 45° tilted cameras. The data was acquired 

over the City of Bordeaux in France. It covers an area of ~700m-by-700m with ~10 million 

points. The point cloud is labeled for five classes as follows ground, facade, roof, 

vegetation, and others (cars, bus stops, fences, and other artificial objects). The point cloud 

is separated for training and testing by 70% and 30%, respectively (Figure 4-6). The dataset 

includes both LiDAR features and colors. Points per class distribution of the dataset are 

given in Table 4-6. 

 

  
 (a) (b) 

Figure 4-6. The Bordeaux point cloud with five classes (a). The parts for training and 

testing, red and blue respectively (b). 
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Table 4-6. Class distribution for training and validation point clouds of the Bordeaux 

dataset. 

Class 
Training Validation 

Number of Points Percentage Number of Points Percentage 

Ground 1,434,895 19.75% 917,446 30.94% 

Facade 1,180,663 16.25% 386,237 13.03% 

Roof 4,351,748 59.89% 1,445,553 48.76% 

Veget. 242,121 3.33% 195,607 6.60% 

Others 56,610 0.78% 20,061 0.68% 

Total 7,266,037 100.00% 2,964,904 100.00% 

 

 

4.2.5.  3DOMCity Dataset 

3DOMCity is our initiative and includes several benchmark tasks, such as image 

orientation, dense image matching, and point cloud classification (Özdemir et al., 2019b). 

The data acquisition is made with a Nikon D750 digital camera with a 50mm focal length 

lens. Oblique aerial image acquisition is simulated by five different shots at camera stations 

for nadir (~0.124mm GSD) and oblique (~0.128-0.273mm GSD) views. Initially, only a 

small portion of the point cloud was labeled for ground truth use. For this study, the entire 

point cloud is labeled for the classification task. The point cloud is labeled for six classes: 

ground, grass, shrub, tree, facade, and roof. Dataset is separated ~70-30% for training and 

testing, respectively (Figure 4-7). Points per class distribution of the dataset are given in 

Table 4-7. 
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 (a) (b) 

Figure 4-7. The 3DOMCity point cloud with six classes (a). The parts for training and 

testing, red and blue respectively (b). 

 

Table 4-7. Class distribution for training and validation point clouds of the Bordeaux 

dataset. 

Class 
Training Validation 

Number of Points Percentage Number of Points Percentage 

Ground 2,250,516 13.62% 682,212 10.82% 

Grass 1,037,156 6.28% 800,733 12.70% 

Shrub 628,953 3.81% 307,602 4.88% 

Tree 3,414,501 20.67% 1,584,805 25.13% 

Facade 6,635,080 40.17% 1,917,940 30.41% 

Roof 2,552,885 15.45% 1,012,641 16.06% 

Total 16,519,091 100.00% 6,305,933 100.00% 

 

4.3.  Point Cloud Preprocessing for Density Analysis 

As mentioned in Section 3.1, downsampling the point cloud is expected to have 

some benefits: the reduced total amount of data for better computing speed; lower density 

variations for more consistent features; bringing similar overall density characteristics 
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among distinct point clouds for better generalization; and reduced noise. The 

downsampling method implemented here is voxel-grid filtering, which outputs the centroid 

of the points in the same voxel. 

Downsampling, in case overdone, can eliminate too many points. This over-

downsampling may cause two major effects: loss of detail and insufficient data for training 

a network. These effects can lead to low accuracy and not useful results. On the contrary, 

if downsampling is kept minimal, it may not be supportive for reaching the aforementioned 

objectives. For these reasons, experiments were held in order to get an understanding of 

the process and decide optimal downsampling to achieve optimal results.  

The voxel dimensions are the critical parameters for voxel-grid downsampling. 

Here, the voxel dimensions are calculated with a leaf coefficient parameter and the original 

resolution of the point cloud. As mentioned before (Section 3.5), the resolution here is the 

average of the distances between each point and their nearest neighbors. However, the 

resolution is not sufficient alone to represent the density characteristics, as it does not 

represent the density variations. For this reason, the density characteristics are measured 

via minimum, mean, median, maximum, and standard deviation of the number of nearest 

neighboring points. The nearest neighboring points are retrieved with a radius search 

instead of a knn, as the goal is to measure the geometric consistency (Hermosilla et al., 

2018). Influenced by the neighboring distance in the image domain (Figure 4-8), the radius 

is calculated as 1.45 times the resolution. 
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Figure 4-8. Relation between nearest neighborhood and resolution on the image. The pixels 

y are the nearest neighbors of the pixel x, at 1-pixel resolution. The red circle is the smallest 

circle to cover the nearest neighbors; the thick blue line is the distance from the border of 

pixel x to the red circle, which is sqrt(12 + 12) ≈ 1.41 pixels. 

As seen in Figure 4-8, from the borders of a pixel to cover its nearest neighbors, the 

distance is ~1.41 times the resolution. Considering the irregularities in the point cloud, this 

value is taken as 1.45 in order to expand the coverage by a small margin without changing 

it significantly. Here, the distance from the border of pixel x is considered, as the points in 

the point cloud do not have borders.  

Instead of theoretically verifying the effects of downsampling via comparing 

statistics of the computed feature spaces (i.e., minimum, maximum, mean, median, 

standard deviation, or any other statistical measure), a more practical validation 

methodology is preferred. Therefore, in order to compare these feature spaces, the 
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classification results obtained using them are compared. For these experiments, the 

concentration is on the classification results achieved with feature spaces coming from 

downsampling with varying voxel dimensions. For classification, a Random Forests 

(Breiman, 2001) classifier is preferred because of its fast prediction abilities. Moreover, in 

this way, the DL methods can be compared with an ML method. The classification results 

are evaluated in terms of weighted F1 score and OA. 

ISPRS Vaihingen, LASDU, and Bordeaux datasets are used for experimenting with 

the downsampling effects. The parameter in focus here is the leaf coefficient. Starting from 

1, meaning no downsampling, the parameter is set to multiplies of two. The coefficient is 

increased till the resolution reaches ~1.0 m in order to keep the level-of-detail represented 

by the point cloud at a significant level for classification purposes. For this reason, and as 

the initial resolutions differ among distinct datasets, the number of experiments varies for 

each dataset.  

The ISPRS Vaihingen dataset used for density analysis includes training, 

validation, and the rest of the tile, as shown in Figure 4-9. This decision is to include a 

larger area to have a more realistic analysis. It can be seen from the figure the training and 

validation parts are small areas compared to the tile. Therefore, the density analysis would 

be affected by the noise easily.  
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Figure 4-9. The ISPRS Vaihingen dataset as used for density analysis. Training (red), 

validation (green), and rest (blue) of the dataset. 

The test results shown in Table 4-8 indicate the best accuracy is achieved with a 

leaf coefficient of 2, ending up with 0.796 OA at 0.434 m resolution. However, as it can 

be seen neither weighted F1 nor OA score shows a significant change between leaf 

coefficients 2 and 4. On the contrary, the standard deviation is minimum with leaf 

coefficient 4. The minimum standard deviation means more homogeneous point 

distribution and less density variation, especially compared to the original point cloud’s 

12.99s. Regarding data reduction, using leaf coefficient 4, downsampled point cloud 

contains one-fifth of the original while using leaf coefficient 2 has half of it. 
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Table 4-8. Density analysis on the ISPRS Vaihingen dataset. 

Leaf 

coefficient 

% of 

points 

Reso. 

(m) 

Min 

knn 

Mean 

knn 

Median 

knn 

Max 

knn 

Std. 

knn 

Weigh. 

F1 OA 

1 100 0.258 2 11 5 106 12.99 0.788 0.788 

2 50 0.434 2 4 5 15 1.51 0.798 0.796 

4 20 0.732 2 4 4 13 1.31 0.776 0.788 

6 11 1.07 2 4 3 13 1.37 0.768 0.770 

For the LASDU dataset, the downsampling is performed on the entire point cloud, 

and the test results are shown in Table 4-9.  

Table 4-9. Density analysis on the LASDU dataset. 

Leaf 

coefficient 

% of 

points 

Reso. 

(m) 

Min 

knn 

Mean 

knn 

Median 

knn 

Max 

knn 

Std. 

knn 

Weigh. 

F1 OA 

1 100 0.484 2 4 4 83 1.45 0.826 0.814 

2 48 0.792 2 5 4 12 1.24 0.823 0.821 

4 15 1.440 2 5 5 14 1.31 0.805 0.816 

As seen in Table 4-9, classification results reached with the original dataset 

fractionally better in terms of weighted F1 score, while it is vice-versa for the OA. Using 

a leaf coefficient of 2: achieves better OA, reduces the point cloud to less than half of the 

original, and minimizes the standard deviation. 

The downsampling analysis tests for the Bordeaux dataset were also held on the 

entire dataset. The results are shown in Table 4-10.  

As shown in Table 4-10, not only does OA improve significantly after 

downsampling compared to the original cloud, but the weighted F1 score improves as well. 

Reducing the data almost to a tenth of the original, density variation is also minimized 

using a leaf coefficient of 6, resulting in 0.737 m resolution. 
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Table 4-10. Density Analysis on the Bordeaux dataset. 

Leaf 

coefficient 

% of 

points 

Reso. 

(m) 

Min 

knn 

Mean 

knn 

Median 

knn 

Max 

knn 

Std. 

knn 

Weigh. 

F1 OA 

1 100 0.173 2 6 2 61 6.01 0.930 0.928 

4 23 0.528 2 4 2 14 1.44 0.922 0.942 

6 12 0.737 2 4 4 12 1.31 0.940 0.940 

8 8 0.946 2 4 4 12 1.32 0.935 0.935 

Bearing in mind the achieved results of F1 score, the standard deviation for knn, 

and data reduction represented in the tables above, a resolution of 0.7–0.8m can be 

considered the most suitable for all datasets. This can be considered as the optimal 

compromise balancing accuracy, density variation, and data amount. Besides, the 

generalization capability should be taken into consideration (Section 5.1).  

One may worry about the time spent on the downsampling as it is an additional 

step. However, it can be seen from Table 4-11 that downsampling saves a significant 

amount of time during feature extraction instead of expanding it. The computations shown 

in Table 4-11 are held on Intel i9-8950HK Mobile CPU using 4 CPU threads. As seen, the 

feature extraction step alone takes more than 47 times without downsampling. The 

downsampling step takes ~11 seconds to complete, yet, it saves ~2858 seconds from 

feature extraction for a point cloud with ~10,200,000 points. As the downsampling results 

a point cloud without the sensor data (i.e., color or intensity). Therefore, these data are 

retrieved from the nearest neighboring points in the original cloud. This retrieval time is 

also included in the given times. Considering the original point cloud has ~8 times the 

points, the time differences are understandable.  
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Table 4-11. Feature extraction and downsampling times for the Bordeaux Dataset times are 

given in terms of seconds. 

 Full Cloud 

Downsampled 

Cloud 

Ratio (Full / 

Downsampled) 

Feature Extraction 2919.47 61.70 47.32 

Downsampling* 10.82 - - 

# of points 10,230,941 1,264,690 8.09 

*Downsampling time includes retrieval of the sensor data. 

Based on these experiments, downsampling is applied to all datasets using a fixed 

0.75m voxel dimension. In Table 4-12, the number of points and the ratio of kept points 

before and after downsampling are shown for all the datasets used. 

Table 4-12. The number of points in each dataset before and after the downsampling 

procedure. 

Dataset 

ISPRS 

Vaihingen DALES LASDU Bordeaux 3DOMCity 

# of original points 1,165,598 497,632,442 3,080,856 10,230,941 22,825,024 

# of downsampled points 236,603 27,652,837 1,465,068 1,264,690 2,075,937 

Ratio of kept points 0.203 0.056 0.476 0.124 0.091 

The ratio of eliminated points reported in Table 4-12 differs between 52-94%. This 

variety of ratios are due to the differences among the original point clouds’ resolutions.  

In order to have a correct and fair accuracy assessment, the classification outputs 

are projected back to the original point clouds based on nearest neighbors.  

4.4.  Results on Validation Datasets 

In this section, the classification results of the framework on the validation datasets 

will be reported using the accuracy metrics mentioned in Section 4.1.  
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4.4.1.  ISPRS Vaihingen 

 The accuracy metrics per class and the OA analysis are given in the tables below 

for quantitative assessment. For the qualitative assessment, the classification results are 

represented in the figure below. Instance segmentation results are then shared for the 

qualitative assessment without quantitative assessment due to lack of ground truth. 

Table 4-13. Per-class accuracy assessment for the ISPRS Vaihingen dataset. Bold values 

highlight higher scores among classifiers. LV: Low Vegetation. 

 Cables LV Ground Car Fence Roof Facade Shrub Tree 

2DCNN - F1 0.000 0.795 0.904 0.733 0.213 0.929 0.583 0.451 0.817 

3DCNN - F1 0.301 0.781 0.896 0.688 0.207 0.902 0.536 0.413 0.802 

RF - F1 0.393 0.771 0.881 0.547 0.143 0.895 0.574 0.434 0.742 

2DCNN - IoU 0.000 0.660 0.825 0.579 0.119 0.867 0.411 0.291 0.690 

3DCNN - IoU 0.177 0.641 0.811 0.525 0.116 0.822 0.367 0.261 0.670 

RF - IoU 0.244 0.627 0.787 0.376 0.077 0.810 0.403 0.277 0.590 

 

Table 4-14. Average F1, class weighted average F1, and OA for the ISPRS Vaihingen 

dataset. 

 Average F1 Weigh. Av. F1 OA 

2DCNN - F1 0.603 0.822 0.826 

3DCNN - F1 0.614 0.804 0.806 

RF - F1 0.598 0.788 0.786 

2DCNN - IoU 0.494 0.719 0.826 

3DCNN - IoU 0.488 0.693 0.806 

RF - IoU 0.466 0.670 0.786 

As seen in tables above, DL classifiers achieved higher accuracies (≿80% goal) in 

terms of F1 scores and OA.  The RF classifier failed to achieve 80% OA goal by 1.4%. 
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Figure 4-10. Classification results of the ISPRS Vaihingen dataset with proposed DL 

methods and ML method. 
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Figure 4-11. Building instances (randomly colored) and the other objects (gray), the ISPRS 

Vaihingen evaluation dataset. 
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4.4.2.  DALES 

 The accuracy metrics per class and the OA analysis are given in the tables below 

for quantitative assessment. For the qualitative assessment, the classification results are 

represented in the figure below. Instance segmentation results are then shared for the 

qualitative assessment without quantitative assessment due to lack of ground truth. 

Table 4-15. Per-class accuracy assessment for the DALES dataset. Bold values highlight 

higher scores among classifiers. 

 Ground Veget. Car Truck Cable Fence Pole Building 

2DCNN - F1 0.962 0.927 0.666 0.000 0.903 0.530 0.468 0.911 

3DCNN - F1 0.958 0.923 0.682 0.000 0.914 0.490 0.547 0.905 

RF - F1 0.962 0.866 0.355 0.042 0.812 0.291 0.353 0.962 

2DCNN - IoU 0.926 0.863 0.499 0.000 0.823 0.360 0.306 0.837 

3DCNN - IoU 0.919 0.857 0.517 0.000 0.841 0.325 0.377 0.826 

RF - IoU 0.928 0.764 0.216 0.021 0.684 0.170 0.214 0.928 

 

Table 4-16. Average F1, class weighted average F1, and OA for the DALES dataset. 

 Average Weigh. Av. F1 OA 

2DCNN - F1 0.671 0.937 0.938 

3DCNN - F1 0.677 0.932 0.934 

RF - F1 0.571 0.884 0.899 

2DCNN - IoU 0.577 0.884 0.938 

3DCNN - IoU 0.583 0.876 0.934 

RF - IoU 0.474 0.843 0.899 

As seen in tables above, DL classifiers achieve higher OA as in the previous dataset 

results. However, for this dataset, the OA gaps between the classifiers are less. 



118 

  

2DCNN 

 

3DCNN 

 

RF 

 

Legend 

 

Figure 4-12. Classification results of the DALES dataset with proposed DL methods and 

ML method. Two of the tiles shown as samples. 
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Figure 4-13. Building instances (randomly colored) and the other objects (gray). Two of 

the tiles shown as samples. 

 

4.4.3.  LASDU 

 The accuracy metrics per class and the OA analysis are given in the tables below 

for quantitative assessment. For the qualitative assessment, the classification results are 

represented in the figure below. Instance segmentation results are then shared for the 

qualitative assessment without quantitative assessment due to lack of ground truth. 
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Table 4-17. Per-class accuracy assessment for the LASDU dataset. Bold values highlight 

higher scores among classifiers. LV: Low Vegetation. 

 Ground Building Tree LV Artifact 

2DCNN - F1 0.887 0.935 0.860 0.691 0.360 

3DCNN - F1 0.885 0.915 0.858 0.673 0.322 

RF - F1 0.869 0.920 0.845 0.597 0.318 

2DCNN - IoU 0.796 0.878 0.754 0.527 0.220 

3DCNN - IoU 0.793 0.843 0.751 0.507 0.192 

RF - IoU 0.768 0.852 0.731 0.426 0.189 

 

Table 4-18. Average F1, class weighted average F1, and OA for the LASDU dataset. 

 Average Weigh. Av. F1 OA 

2DCNN - F1 0.746 0.851 0.846 

3DCNN - F1 0.730 0.840 0.837 

RF - F1 0.710 0.823 0.821 

2DCNN - IoU 0.635 0.757 0.846 

3DCNN - IoU 0.617 0.741 0.837 

RF - IoU 0.593 0.720 0.821 

 

As seen in the tables above, 2DCNN achieves the highest per-class accuracies, 

which is also reflected in the OA. Rankings of the per-class accuracies, average F1 scores 

and OA show similar characteristics to the results represented for ISPR Vaihingen dataset 

in Table 4-13 and Table 4-14. 
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Figure 4-14. Classification results of the LASDU dataset with proposed DL methods and 

ML method. 
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Figure 4-15. Building instances (randomly colored) and the other objects (gray), LASDU 

evaluation dataset. 
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4.4.4.  Bordeaux 

The accuracy metrics per class and the OA analysis are given in the tables below 

for quantitative assessment. For the qualitative assessment, the classification results are 

represented in the figure below. Instance segmentation results are then shared for the 

qualitative assessment without quantitative assessment due to lack of ground truth. 

Table 4-19. Per-class accuracy assessment for the Bordeaux dataset. Bold values highlight 

higher scores among classifiers.  

 Ground Facade Roof Veget. Others 

2DCNN - F1 0.972 0.819 0.956 0.986 0.708 

3DCNN - F1 0.966 0.807 0.951 0.985 0.682 

RF - F1 0.969 0.821 0.954 0.972 0.567 

2DCNN - IoU 0.945 0.694 0.916 0.972 0.548 

3DCNN - IoU 0.934 0.676 0.907 0.970 0.517 

RF - IoU 0.940 0.696 0.912 0.946 0.396 

 

Table 4-20. Average F1, class weighted average F1, and OA for the Bordeaux dataset. 

 Average F1 Weigh. Av. F1 OA 

2DCNN - F1 0.888 0.943 0.944 

3DCNN - F1 0.878 0.937 0.938 

RF - F1 0.857 0.940 0.940 

2DCNN - IoU 0.808 0.897 0.944 

3DCNN - IoU 0.801 0.887 0.938 

RF - IoU 0.778 0.891 0.940 
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Figure 4-16. Classification results of the Bordeaux dataset with proposed DL methods and 

ML method.  
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Figure 4-17. Building instances (randomly colored) and the other objects (gray), Bordeaux 

evaluation dataset. 

 

4.4.5.  3DOMCity 

 The accuracy metrics per class and the OA analysis are given in the tables below 

for quantitative assessment. For the qualitative assessment, the classification results are 

represented in the figure below. Instance segmentation results are not shared for this 

dataset, as this is in a different scale compared to the geospatial point clouds. 
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Table 4-21. Per-class accuracy assessment for the 3DOMCity dataset. Bold values 

highlight higher scores among classifiers.  

 Ground Grass Shrub Tree Facade Roof 

2DCNN - F1 0.945 0.936 0.798 0.878 0.864 0.906 

3DCNN - F1 0.954 0.938 0.777 0.864 0.866 0.887 

RF - F1 0.927 0.908 0.725 0.807 0.827 0.848 

2DCNN - IoU 0.897 0.880 0.664 0.782 0.761 0.828 

3DCNN - IoU 0.913 0.883 0.635 0.760 0.763 0.796 

RF - IoU 0.863 0.831 0.569 0.676 0.705 0.737 

 

Table 4-22. Average F1, class weighted average F1, and OA for the 3DOMCity dataset. 

 Average F1 Weigh. Av. F1 OA 

2DCNN - F1 0.888 0.889 0.889 

3DCNN - F1 0.881 0.883 0.883 

RF - F1 0.840 0.841 0.841 

2DCNN - IoU 0.802 0.802 0.889 

3DCNN - IoU 0.792 0.793 0.883 

RF - IoU 0.730 0.729 0.841 
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Figure 4-18. Classification results of the 3DOMCity dataset with proposed DL methods 

and ML method.  
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4.5.  Summary of the Chapter 

In this chapter, accuracy assessment methodology, datasets, downsampling 

approach and experiments, and the results from the TONIC framework are reported for 

distinct datasets. In the next chapter, validation of the framework will be discussed through 

generalization experiments and comparisons with the current state-of-the-art methods. 
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Validation 

of the Framework 

 

 

 

In this chapter, the following topics will be discussed: generalization performance 

of the framework with further experiments, and comparison of the results with the state-

of-the-art methods. 

 

5.1.  Generalization Experiments 

To test the framework for understanding its generalization capabilities, several 

experiments performed with training and predicting on separate datasets. Specifically, the 

classifier models trained for the experiments in Section 4.3 are used for classifying other 

datasets. In this way, the generalization ability of the framework could be analyzed. 

One adaptation needed to be applied here is matching of the feature spaces. For 

instance, if a model is trained without the number of returns, but the prediction dataset 

contains this feature, that feature is simply removed from the prediction dataset to match 
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the feature spaces. This process can be summarized as selecting the feature space of the 

prediction dataset with respect to the training dataset used for the model. To clarify, a 

sample is shown in Table 5-1 for the DALES-ISPRS Vaihingen datasets. 

Table 5-1. Original feature spaces and modifications for generalization experiments. 

Feature 

DALES 

(Train) 

ISPRS Vaihingen 

(Predict) Intersection 

Color - IR + R + G - 

Intensity - Yes - 

Number of Returns Yes Yes Yes 

Return Number Yes Yes Yes 

Handcrafted Yes Yes Yes 

As seen in Table 5-1, in the case of the DALES-ISPRS Vaihingen experiment, color 

and intensity features are removed from the ISPRS Vaihingen dataset to use it as prediction 

data for the model trained on the DALES dataset. The handcrafted features are always kept 

as they are computed, yet, the feature space matching via intersection needs to be applied 

for sensor data. Feature space matching modifications will be mentioned for each 

experiment. For clarification, no computations are performed on the feature spaces. This 

step is only removing some sensor features to match the spaces, when needed. 

Aside from matching the feature spaces, the class structures are needed to be 

matched. This is due to re-arranging the ground truth for accuracy assessment. An example 

is shown in Table 5-2. Changes applied to match the classes, along with point distributions 

within the datasets, will be reported for each generalization experiment. To clarify, the 

models are not re-trained. The models are used as is without any change. Only the class 

labels are re-arranged to match them for accuracy assessment. 
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Table 5-2. Corresponding classes between the DALES and the ISPRS Vaihingen datasets, 

along with their distributions, are shown. 

DALES 
Points 

(Train) 
ISPRS Vaihingen 

Points 

(Predict) 

Cable 29.7% Powerline 0.2% 

Ground 50.0% Low veget. / Imp. Surface 38.9% 

Car / Truck 1.2% Car 0.8% 

Fence 0.6% Fence 1.9% 

Building / Pole 0.9% Roof / Facade 22.7% 

Vegetation 17.6% Shrub / Tree 35.5% 

 

Table 5-3. F1 and IoU scores for 2DCNN and 3DCNN classifiers trained on the DALES 

dataset and predicting on the ISPRS Vaihingen dataset. 

 Cable Ground Car Fence Building Vegetation 

2DCNN DALES F1 0.130 0.926 0.399 0.001 0.759 0.397 

3DCNN DALES F1 0.230 0.929 0.347 0.000 0.758 0.318 

RF DALES F1 0.123 0.916 0.168 0.039 0.767 0.429 

2DCNN DALES IoU 0.069 0.862 0.249 0.000 0.611 0.247 

3DCNN DALES IoU 0.130 0.867 0.210 0.000 0.610 0.189 

RF DALES IoU 0.065 0.846 0.092 0.020 0.622 0.273 

Table 5-4. Average F1, class weighted average F1, and OA for 2DCNN and 3DCNN 

classifiers trained on the DALES dataset and predicting on the ISPRS Vaihingen dataset. 

 Average F1 Weigh. Av. F1 OA 

2DCNN DALES F1 0.435 0.753 0.779 

3DCNN DALES F1 0.430 0.739 0.774 

RF DALES F1 0.407 0.755 0.761 

2DCNN DALES IoU 0.340 0.649 0.779 

3DCNN DALES IoU 0.334 0.639 0.774 

RF DALES IoU 0.319 0.647 0.761 
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Figure 5-1. Classification results of the ISPRS Vaihingen dataset on models trained with 

the DALES dataset. 
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The second generalization experiment is with the same classifiers as the first one, 

tested on the Bordeaux dataset. Color data (from photogrammetry), as well as the intensity 

feature (from LiDAR), is removed for these runs. Firstly the corresponding classes, then 

the results are reported in the following tables. 

Table 5-5. Corresponding classes between the DALES and Bordeaux datasets, along with 

their distributions, are shown. 

DALES 
Points 

(Train) 
Bordeaux 

Points 

(Predict) 

Ground 29.7% Ground 13.9% 

Building / Cable / Pole 50.0% Roof / Facade 80.2% 

Vegetation 2.1% Vegetation 5.0% 

Car / Truck / Fence 18.2% Others 1.0% 

 

Table 5-6. F1 and IoU scores for 2DCNN and 3DCNN classifiers trained on the DALES 

dataset and predicting on Bordeaux dataset. 

 Ground Building Vegetation Others 

2DCNN DALES F1 0.965 0.978 0.947 0.434 

3DCNN DALES F1 0.956 0.972 0.937 0.462 

RF DALES F1 0.948 0.945 0.618 0.203 

2DCNN DALES IoU 0.931 0.958 0.900 0.277 

3DCNN DALES IoU 0.916 0.945 0.882 0.300 

RF DALES IoU 0.901 0.895  0.447 0.113 
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Table 5-7. Average F1, class weighted average F1, and OA for 2DCNN and 3DCNN 

classifiers trained on the DALES dataset and predicting on Bordeaux dataset. 

 Average F1 Weigh. Av. F1 OA 

2DCNN DALES F1 0.831 0.968 0.969 

3DCNN DALES F1 0.832 0.961 0.961 

RF DALES F1 0.678 0.926 0.914 

2DCNN DALES IoU 0.766 0.941 0.969 

3DCNN DALES IoU 0.761 0.927 0.961 

RF DALES IoU 0.589 0.871 0.914 
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Legend 
 

Figure 5-2. Classification results of Bordeaux dataset on models trained with the DALES 

dataset. 
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The third generalization experiment is with the ISPRS Vaihingen classifiers, tested 

on the Bordeaux dataset. For this experiment, the color data of the Bordeaux dataset (RGB) 

are kept, although the models are trained on the color-space of the ISPRS Vaihingen dataset 

(IR-R-G). This is due to: 

(i) the input dimensions of the models are fixed and cannot be changed; 

(ii) experimenting the generalization capability of the models also with some 

noisy data, assuming the differences in the color spaces as noise.  

Corresponding classes and the results are reported in the following tables. 

Table 5-8. Corresponding classes between the ISPRS Vaihingen and the Bordeaux datasets, 

along with their distributions, are shown. 

ISPRS Vaihingen 
Points 

(Train) 
Bordeaux 

Points 

(Predict) 

Ground 18.1% Ground 13.9% 

Roof 26.9% Roof  43.6% 

Facade 5.1% Facade 36.6% 

Low Veget. / Shrub / Tree 46.1%  Vegetation 5.0% 

Cables / Car / Fence 3.7% Others 1.0% 

Table 5-9. F1 and IoU scores for 2DCNN and 3DCNN classifiers trained on the ISPRS 

Vaihingen dataset and predicting on the Bordeaux dataset. 

 Ground Facade Roof Vegetation Others 

2DCNN ISPRS F1 0.921 0.690 0.923 0.759 0.400 

3DCNN ISPRS F1 0.882 0.743 0.878 0.832 0.331 

RF ISPRS F1 0.178 0.589 0.824 0.218 0.000 

2DCNN ISPRS IoU 0.854 0.527 0.857 0.612 0.250 

3DCNN ISPRS IoU 0.789 0.591 0.782 0.712 0.198 

RF ISPRS IoU 0.098 0.418 0.700 0.123 0.000 
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Table 5-10. Average F1, class weighted average F1, and OA for 2DCNN and 3DCNN 

classifiers trained on the ISPRS Vaihingen dataset and predicting on the Bordeaux dataset. 

 Average F1 Weigh. Av. F1 OA 

2DCNN ISPRS F1 0.739 0.878 0.882 

3DCNN ISPRS F1 0.733 0.855 0.855 

RF ISPRS F1 0.362 0.548 0.506 

2DCNN ISPRS IoU 0.620 0.793 0.882 

3DCNN ISPRS IoU 0.614 0.751 0.855 

RF ISPRS IoU 0.268 0.434 0.506 
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Legend  

Figure 5-3. Classification results of the Bordeaux dataset on models trained with the ISPRS 

Vaihingen dataset. 
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5.2.  Comparisons with the State-of-the-Art 

In this section, the proposed framework is compared against the current state-of-

the-art methods. Besides the accuracy metrics, training timings are also reported, which are 

acquired from the original research publications. 

The state-of-the-art comparisons include not only point cloud classification 

frameworks but also an alternative CNN to classify using TONIC’s data matrix structure 

(Figure 3-6): EfficientNet, B7 version specifically (Tan and Le, 2019). The EfficientNetB7 

is reported as the most accurate among the other EfficientNets. Therefore, only this version 

is used for comparison here.  

 The network is implemented in the TensorFlow library, and it is applied as shown 

in Figure 5-4. Due to its network architecture, the EfficientNetB7 cannot be fed with 

images smaller than 32x32 pixels dimension. For this reason, the matrices are zero-padded 

in order to fulfill this. 

 

Figure 5-4. EfficientNetB7 implementation via TensorFlow library. 

Table 5-11 represents the comparisons for the ISPRS Vaihingen dataset in terms of 

computational efficiency and accuracy. It can be seen TONIC is faster than the state-of-
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the-art methods, on par with them in terms of accuracy, and it consumes less energy and 

memory.  

Table 5-11. Comparison of the performances between TONIC framework and recent 

papers, ordered by OA. TFLOPS indicates the computational power of the GPU for single-

precision floating-point (FP32) operations. Training times are given in hours. Differences 

from the highest OA score in the table are shown with asterisk. 

Method 

GPU 

TFLOPS 

Training 

Time 

GPU 

Watt 

GPU 

Memory OA GPU 

Li et al. (2020b) 8.73 10 250 24 GB 0.839 Tesla K80 

Li et al. (2020a) 2 x 12.15 7 2 x 250 2 x 12 GB 0.835 2 x Titan Xp  

Wen et al. (2021) 12.15 10 250 12 GB 0.832 Titan Xp  

Chen et al. (2021) 14.13 2 250 32 GB 0.832 Tesla V100 

EfficientNetB7 

Tan and Le (2019) 
13.45 1 250 11 GB 

0.748 
(−9.1%*) 

RTX 2080Ti 

Ours (2DCNN) 13.45 0.15 250 11 GB 
0.826 

(−1.3%*) 
RTX 2080Ti 

Ours (3DCNN) 13.45 0.5 250 11 GB 
0.806 

(−3.3%*) 
RTX 2080Ti 

In terms of prediction timings performance for the ISPRS Vaihingen dataset, 

TONIC framework requires ~9.5 seconds on Nvidia RTX 2080Ti GPU. For comparison, 

EfficientNetB7 takes ~23 seconds for this dataset with the same hardware configuration. 

Feature extraction for the dataset takes less than 10 seconds on Intel i9-8950HK Mobile 

CPU using 12 threads. As a result, even with the combination of a mid-level laptop CPU 
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and a decent GPU, both of the DL models of TONIC are faster and more accurate than the 

EfficientNet, while achieving accuracies on par with the current state-of-the-art methods. 

The RF model is not reported in the table as it is not a DL-based approach. Yet, it takes 

less than 1 minute to train the RF model on the same Mobile CPU while consuming less 

than 2 GB of system memory.  

TONIC framework is also implemented for AMD GPUs, using PlaidML (PlaidML, 

2019), which is a Python library enables running Keras on OpenCL (Stone et al., 2010), as 

well as Apple’s Metal API (Apple, 2021). The performance comparison of the same 

2DCNN model running on different GPUs is given in Table 5-13. In order to fit into a 

smaller GPU memory, batch size is reduced. The training on Nvidia GPU utilizes CUDA 

(Nickolls et al., 2008) drivers, while the training on AMD GPU utilizes Metal API. 

Table 5-12. Comparison of the performance between different GPUs, running the same 

model 

Method 

GPU FP32 

TFLOPS 

Training 

Time 

GPU 

Watt 

GPU 

Memory GPU 

Ours (2DCNN) 13.45 0.15 250 11 GB 
Nvidia RTX 

2080Ti 

Ours (2DCNN) 2.46 1.0 60 4 GB 
AMD Radeon 

Pro 560X Mobile 

Other accuracy comparisons are held with the DALES dataset comparing the 

TONIC’s networks with IoU metrics with respect to the current state-of-the-art methods in 

Table 5-13. Both of the KPConv and PointNet++ outperform the proposed method by 3–

4% in terms of OA. 
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Table 5-13. IoU per class and OA scores on the DALES dataset with respect to current 

state-of-the-art methods. 

Method Ground Veget. Car Truck Cable Fence Pole Building OA 

KPConv 

(Thomas et al.) 
0.971 0.941 0.853 0.419 0.955 0.635 0.750 0.966 0.978 

PointNet++  

(Qi et al., 2017) 
0.941 0.912 0.754 0.303 0.799 0.462 0.400 0.891 0.957 

Ours (2DCNN) 0.926 0.863 0.499 0.000 0.823 0.360 0.306 0.837 0.938 

Ours (3DCNN) 0.919 0.857 0.517 0.000 0.841 0.325 0.377 0.826 0.934 

For the LASDU dataset, comparisons of the classification accuracy between the 

proposed framework and available references are given in Table 5-14. The proposed 

models outperform the reference methods (PointNet++ and HDA-PointNet++) by 1–4% in 

average F1 score and 1–3% OA. 

Table 5-14. F1 scores and OA scores on the LASDU dataset with respect to current state-

of-the-art methods. 

Method Ground Building Tree LV Artifact Avg. F1 OA 

PointNet++  

(Qi et al., 2017) 
0.877 0.906 0.820 0.632 0.313 0.710 0.828 

HDA-PointNet++  

(Huang et al., 2020) 
0.887 0.932 0.822 0.652 0.369 0.733 0.844 

Ours (2DCNN) 0.887 0.935 0.860 0.691 0.360 0.746 0.846 

Ours (3DCNN) 0.885 0.915 0.858 0.673 0.322 0.730 0.837 

 

5.3.  Summary of the Chapter 

In this chapter, generalization experiments along with the comparisons with the 

current state-of-the-art methods are discussed. The comparisons were held not only in 
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terms of accuracy but also computational efficiency. In the next chapter, these results will 

be discussed, limitations of the framework will be debated along with future work, and a 

conclusion will be made. 
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Discussion and Conclusions 

 

 

 

 

 

In this chapter, the results (Chapters 4 and 5) will be discussed for distinct dataset 

performances as well as generalization performances. These discussions will be followed 

by summary of the achievements, limitations, future works, and conclusion, respectively. 

 

6.1.  Discussion 

The reported results (Chapters 4 and 5) indicated that 2DCNN and 3DCNN models 

achieve more accurate classification results than RF classifier with the feature space 

defined in Section 3.2. A summary of these results for each dataset can be seen in Table 

6-1. One exception is observed with the Bordeaux dataset where RF outperforms 3DCNN 

by 0.2% while being outperformed by 2DCNN by 0.4%. The differences in OA in distinct 

datasets (Table 6-1) are not very high, especially among DL methods. Specifically, the 

most significant gap observed in distinct datasets is 4.8% in the 3DOMCity dataset between 

2DCNN and RF models. Aside from these, in some cases (Table 4-13 cables, Table 4-15 
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car, pole, building, Table 4-19 facade, Table 4-21 ground, grass), it is observed that some 

models may outperform the others for a specific class in a specific dataset. These are 

considered insignificant cases with small margins, as they are not consistent. 

Table 6-1. Summarized OA achieved in distinct datasets. 

Model 

ISPRS 

Vaihingen DALES LASDU Bordeaux 3DOMCity 

2DCNN 0.826 0.938 0.846 0.944 0.889 

3DCNN 0.806 0.934 0.837 0.938 0.883 

RF 0.786 0.899 0.821 0.940 0.841 

Based on the accuracies of the models in Table 6-1 and the computational 

performances reported in Table 5-11, the 2DCNN model can be considered as the best 

performing one for distinct datasets, followed by 3DCNN. Although the RF is the fastest, 

it falls behind the other two models in terms of accuracy for all the datasets between 0.4-

4.8% OA. 

As for the density variations, the framework achieved the targeted accuracy on 

point clouds with varying resolutions between 0.116m to 0.484m (Table 4-2). Based on 

these results, the framework is expected to operate successfully on geospatial point clouds 

with resolutions up to ~0.7m, due to the decided downsampling resolution indicated in 

Section 4.3.  

In addition to the distinct dataset experiments, the generalization experiments are 

similarly very critical. In Table 6-2, these generalization experiments (Section 5.1) are 

summarized for discussion. 
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Table 6-2. Summarized OA for the generalization tests. 

Trained on Predicted on Model OA 

DALES ISPRS Vaihingen 2DCNN 0.779 

DALES ISPRS Vaihingen 3DCNN 0.774 

DALES ISPRS Vaihingen RF 0.761 

DALES Bordeaux 2DCNN 0.969 

DALES Bordeaux 3DCNN 0.961 

DALES Bordeaux RF 0.914 

ISPRS Vaihingen Bordeaux 2DCNN 0.882 

ISPRS Vaihingen Bordeaux 3DCNN 0.855 

ISPRS Vaihingen Bordeaux RF 0.506 

As it can be seen, the 2DCNN method outperforms the others also in the 

generalization experiments. The RF model is the worst performing in the experiments. 

Especially in the ISPRS Vaihingen-Bordeaux experiment, the RF classifier had strong 

confusions between ground and vegetation, which can be seen in Table 5-9 as well as in 

Figure 5-3.  

To consider both distinct dataset experiments and generalization experiments, these 

results are summarized in Table 6-3 with their averages. As it can be seen, 2DCNN 

outperforms the others for both usages. 

Table 6-3. Average OA per model. DD: Distinct Datasets, Gen.: Generalization 

Model Avg OA on DD Avg OA on Gen. Avg OA 

2DCNN 0.889 0.877 0.883 

3DCNN 0.880 0.863 0.871 

RF 0.857 0.727 0.792 

The reported results indicate that the TONIC framework can outperform the current 

state-of-the-art methods by a few percent of OA (Table 5-14), while requiring less memory 
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and energy consumption due to its design (Table 5-11). These few percent differences are 

not expected to lead to significant changes in the usefulness of AI methods in terms of daily 

use. A manual quality control will be required for any of these methods. A few percent OA 

difference is not expected to change the manual labor needed for the corrections 

significantly. However, it may not be possible to make similar claims for computational 

efficiency. Aside from the energy consumption, which might be neglected with the use of 

environmentally friendly energy sources, the significant impact of the TONIC can be seen 

in the lower computational power and lower memory requirements reported in Table 5-12. 

The main methodological differences between TONIC framework and the current 

state-of-the-art methods can be seen as the following two: 

(i) downsampling with voxel-grid filtering with predefined voxel dimensions,  

(ii) multi-scale handcrafted feature extraction before passing the data to DNN. 

These pre-processing steps, especially the feature extraction, allow designing a 

shallower DNN compared to the state-of-the-art methods, supporting the efficiency 

objective. A shallower DNN does not only run faster but also requires less memory by its 

nature. During the experiments, 1024 points-per-batch were fitted using a GPU with 11 GB 

memory. Needless to say, lower hardware requirements lower the hardware costs and speed 

up the process, which are favorable characteristics for a method, especially for daily 

deployments on large (i.e., city-scale or country-scale) datasets. 

The reported generalization experiment results (summarized in Table 6-2) are 

promising, as the proposed methods reach accuracies as high as distinct dataset 

classification results. A fundamental challenge for generalization is to make the feature 
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spaces of distinct datasets share similar characteristics. The density variations between 

distinct datasets cause challenges in the local geometry definitions, as also mentioned in 

the literature several times (Sections 2.2 and 2.3) and encouraged researchers to develop 

different approaches to deal with this problem. TONIC framework includes a simple and 

efficient solution -downsampling- to cope with this while bringing several advantages, 

including data reduction for efficiency, reducing the density variations for better 

generalization capability, and noise reduction.  

The reported results in Table 6-1 and Table 6-2 indicate the fact that there is a high 

correlation between the dataset used for prediction and the achieved accuracy. For 

example, on the ISPRS Vaihingen dataset, TONIC achieved OA 79-83%. Training the 

models on the DALES dataset, the achieved OAs are 76-78%. Similarly, on the Bordeaux 

dataset, TONIC achieves OA ~94%, training them on the DALES dataset the achieved 

OAs are 91-97%, training them on the ISPRS Vaihingen they can (excluding RF) reach up 

to 88% OA. Comparable observations can also be made with the state-of-the-art methods: 

PointNet++ achieves 96% OA on the DALES (Table 5-13) dataset while it reaches 83% 

on the LASDU (Table 5-14) dataset. Based on these results, it can be concluded that there 

is a high correlation between the used datasets for prediction and the achieved OA. The 

reason for this can be the noise in the ground truth labels (i.e., wrong labeled points), noise 

in the point cloud (i.e., isolated points), and structure of classes in the data (more and 

complex classes versus simpler and fewer classes). 
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6.2.  Summary of the Achievements 

The developed methodology’s novel approach of implementing, pre-processing 

with downsampling, multi-scale handcrafted feature extraction, and DL integration defines 

a new relationship between aerial 3D point clouds and CNNs. This innovative methodology 

is proven to achieve all the objectives mentioned in Section 1.5: 

(i) Process point clouds from different sensors with high accuracy (Sections 

4.3 and 4.4 or Table 6-1 for summary); 

(ii) Generalization (Section 5.1 or Table 6-2 for summary); 

(iii) Being invariant to the density variations: both within distinct datasets 

(Section 4.4) and among different datasets (Section 5.1); 

(iv) Lower computational costs and hardware requirements compared to the 

state-of-the-art (Tables 5-11 and 5-12); 

(v) Achieving better or similar accuracies compared to the current state-of-the-

art (Section 5.2, Tables 5-11, 5-13, and 5-14). 

 

6.3.  Limitations and Future Work 

The main limitation of the developed method is that it is tailored for urban 

scenarios, where the data acquisition is made using aerial sensors (photogrammetry or 

LiDAR). Due to the used handcrafted features, TONIC might not be competitive in 

alternative cases other than geospatial point cloud classification. It can be seen as a 

purpose-built kind of method rather than a one-fits-for-all kind.  
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Another limitation is the isolated noise in the point clouds. The framework expects 

the received point cloud to be free from such isolated points. Although the implemented 

downsampling is helpful with reducing the noisy points on surfaces, isolated points are yet 

to be considered. 

Several open issues can be addressed in the future: 

- UAV point clouds to be examined. The handcrafted features are proven for 

typical airborne geospatial data (LiDAR or photogrammetry), yet, UAVs are 

used for geospatial data acquisitions, as well. Due to the use of different 

platforms with lower flight altitudes, these point clouds are expected to have 

other characteristics (i.e., geometry, density, visible objects). 

- Satellite-based point clouds to be explored. 3D point clouds can be derived 

with the current state-of-the-art high-resolution multi-view satellite imagery. 

The exploitation of such data can be helpful, especially for isolated areas, 

where it is not feasible to plan a flight with an aircraft loaded with 

photogrammetric equipment due to high costs. An example of satellite derived 

data is given in Chapter 1 (Figure 1-6), where it is seen that the spaceborne 

data can come with challenging geometry. Therefore, the TONIC framework 

could be tested on such data for further development. 

- Data augmentation is a de facto standard when it comes to image processing 

with DL. Various types of augmentation are applied during training in order to 

increase the data amount as well as improving the overall performance of the 

networks. The data augmentation is not implemented for TONIC. 
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- 3D building model generation is an essential task for 3D city models. The use 

of the classified point clouds coming from TONIC can be examined. The 3D 

model generation can be seen as the next step of map making with geospatial 

point clouds. The classification step brings the semantics, so that the 3D data 

can be used in GIS for more advanced analysis. 

 

6.4.  Conclusions 

In this thesis, a novel methodology for geospatial point cloud classification is 

proposed, which takes advantage of multi-scale handcrafted features and DL together. In 

this way, it not only reaches better or similar accuracies with the current state-of-the-art 

models but also becomes a more efficient alternative to the existing solutions, requiring 

less computational resources and computational time (as demonstrated in Table 5-11 and 

Table 5-12). Besides, the proposed framework is tested on different datasets acquired by 

various sensors with different resolutions.  

The developed methodology experimented for generalization as well. The reported 

results suggest that TONIC can process data from different sources (photogrammetry or 

LiDAR) without compromising neither accuracy nor computational efficiency. 

Considering the amount of data available in the real world -compared to benchmark 

datasets- and the computational density of the state-of-the-art methods, it will not be 

surprising to see more research approaching with the efficiency perspective in the future. 

Based on the accuracies reported in Chapters 4 and 5, TONIC can be helpful for building 
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extraction (for 3D city modeling), powerline mapping, digital terrain model generation, 

and other geospatial studies relying on point clouds. 
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Appendices A 

In this appendix, the codes of the developed framework are shared, including 

feature extraction tool, deep learning tool, accuracy assessment tool, and instance 

segmentation tool. 

The codes shared in this thesis are not meant to be used for any purpose without an 

official agreement with Skoltech and Bruno Kessler Foundation. 

A.1. Feature Extraction Tool 

// feature extraction tool (C++) 

// author emre özdemir 

// multi-threading implementation: alessandro torresani 

 

#define PCL_NO_PRECOMPILE 

//#include <boost/make_shared.hpp> 

#include <chrono> 

#include <cmath> 

#include <Eigen/Core> 

#include <liblas/liblas.hpp> //laz implementation 

#include <pcl/common/pca.h> 

#include <pcl/features/normal_3d_omp.h> 

#include <pcl/filters/voxel_grid.h> 

#include <pcl/io/ply_io.h> 

#include <pcl/io/pcd_io.h> 

#include <pcl/ModelCoefficients.h> 

#include <pcl/point_types.h> 

#include <pcl/sample_consensus/method_types.h> 

#include <pcl/sample_consensus/model_types.h> 

#include <pcl/search/kdtree.h> 
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#include <pcl/segmentation/sac_segmentation.h> 

#include <thread> 

#include <time.h> 

#include <vector> 

#include <math.h> 

 

// global variables for multi-scale feature extraction 

const int scale = 3; //5 

const int scale_multiplier = 2; //2 

int numpt = 3; 

int scale_vals[scale+1] = {0, 6, 20, 38}; 

 

//argv 1 input cloud 

//argv 2 project name 

//argv 3 project path 

//argv 4 number of cores 

 

// custom point cloud type, to keep the necessary features 

struct Point_custom 

{ 

    PCL_ADD_POINT4D; 

    float class_id; 

    float is_train; // 

    float ei_va_3[scale*3]; //eigen values 1-2-3 

    float shp_ft_3[scale*3]; // elevation change, local 

planarity, vertical angle 

    float ei_ft_3[scale*3]; //eigen features in order: 

surface variation, sphericity, omnivariance 
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    float ei_nrmls_3[scale*3]; //last 3 eigen vectors from 

each scale, the first six are ignored (these are the 

normals..) 

    float h6; // height above "ground" 

    float intensity; 

    float number_of_returns; 

    float return_num; 

    PCL_ADD_NORMAL4D; 

    PCL_ADD_UNION_RGB; 

    EIGEN_MAKE_ALIGNED_OPERATOR_NEW // make sure our new 

allocators are aligned 

} EIGEN_ALIGN16;                    // enforce SSE padding 

for correct memory alignment 

 

POINT_CLOUD_REGISTER_POINT_STRUCT 

(Point_custom, 

 (float, x, x) 

 (float, y, y) 

 (float, z, z) 

 (float, class_id, class_id) 

 (float, is_train, is_train) 

 (float[scale*3], ei_va_3, ei_va_3) 

 (float[scale*3], shp_ft_3, shp_ft_3) 

 (float[scale*3], ei_ft_3, ei_ft_3) 

 (float[scale*3], ei_nrmls_3, ei_nrmls_3) 

 (float, h6, h6) 

 (float, intensity, intensity) 

 (float, number_of_returns, number_of_returns) 

 (float, return_num, return_num) 
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 (float, normal_x, normal_x) //to receive the original 

normals if exists 

 (float, normal_y, normal_y) 

 (float, normal_z, normal_z) 

 (float, rgb, rgb) //to receive the colors 

) 

 

// an object to keep feature group names and number of 

features in each group 

struct fields_struct 

{ 

    const std::string category[4] = {" ei_va_", " shp_ft_", 

" ei_ft_", " ei_nrmls_"}; 

    const int features[4] = {3,3,3,3}; 

} fields; 

 

// functions // 

// to split point cloud indices for multi-threading 

std::vector<std::vector<int>>  split_to_indices(const int 

num_threds, size_t size_pc, size_t elemPerList); 

 

// compute shape features: 

void computeShapeFeatures4(int pt_idx, 

pcl::PointCloud<Point_custom>::Ptr pcl_in, 

pcl::search::Search<Point_custom>::Ptr kdTree, 

pcl::SACSegmentation<Point_custom> plnFitter, 

pcl::PCA<Point_custom> PCA); 

 

// compute eigen features (covariance features) 
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void ComputeMyEigenFeatures3(int pt_idx, 

pcl::PointCloud<Point_custom>::Ptr pcl_in); 

 

// compute height above groundd 

void computeHF5 (int pt_idx, 

pcl::PointCloud<Point_custom>::Ptr pcl_in, 

pcl::search::Search<Point_custom>::Ptr tree, float minz); 

 

// to run all the feature computations, this function is 

triggered per-thread 

void RunComputeMyFeatures(std::vector<int> pointIndices, 

pcl::PointCloud<Point_custom>::Ptr pcl_in, 

pcl::search::Search<Point_custom>::Ptr tree, float minz); 

 

// prepare a header line based on the available sensor 

feautres 

void prepare_head5(pcl::PointCloud<Point_custom>::Ptr 

cloud, std::string *heady, bool *rgb, bool *nxyz, bool 

*intensiti, bool *numret, bool *retnum); 

 

// brings scalar fields from one point cloud to another 

with the nearest neighbor points 

void bring_sf(pcl::PointCloud<Point_custom>::Ptr 

cloud_missing, pcl::PointCloud<Point_custom>::Ptr 

cloud_full, size_t missing_size, 

pcl::search::Search<Point_custom>::Ptr tree, bool rgb, bool 

nxyz, bool intensiti, bool numret, bool retnum); 

 

//reads laz files into a pcl point cloud object 
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void laz2pcl(std::string fname, 

pcl::PointCloud<Point_custom>::Ptr cloud); 

 

int main (int argc, char** argv) 

{ 

    std::cout<<"feature extraction tool is 

running"<<std::endl; 

    std::string infilename = argv[1]; // input point cloud 

    std::string suffix = argv[2]; // project name, suffix 

    std::string prj_dir = argv[3]; // project directory for 

outputs 

    const int numberOfThreads = std::stoi(argv[4]); 

    // this is the downsampled cloud 

    pcl::PointCloud<Point_custom>::Ptr pcl_in (new 

pcl::PointCloud<Point_custom>); 

     

    // laz file will be read into this object 

    pcl::PointCloud<Point_custom>::Ptr pcl_in0 (new 

pcl::PointCloud<Point_custom>); 

     

    // downsampling object 

    pcl::VoxelGrid<Point_custom> grid; 

     

    // search kd-tree object, multi-thread safe, 

downsampled cloud will be passed to this 

    pcl::search::Search<Point_custom>::Ptr tree = 

pcl::shared_ptr<pcl::search::Search<Point_custom> > (new 

pcl::search::KdTree<Point_custom>); 

     

    // string holding the header line, will be filled 
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    std::string heady; 

     

    // bool variables for header object 

    bool rgb, nxyz, intensiti, numret, retnum; 

     

    // output file 

    std::ofstream outfile; 

     

    // report file 

    std::ofstream repout; 

    repout.open(prj_dir+"/" + suffix + 

"_feature_extraction_report.txt"); 

     

    //start chronometer 

    std::chrono::steady_clock::time_point begin = 

std::chrono::steady_clock::now(); 

     

    //read laz file 

    laz2pcl(infilename, pcl_in0); 

     

    //report file reading time 

    std::chrono::steady_clock::time_point end = 

std::chrono::steady_clock::now(); 

    repout << "file reading time: " << 

std::chrono::duration_cast<std::chrono::microseconds>(end - 

begin).count()*0.000001 << "\n"; 

     

    //get the original point cloud size (number of points) 

and export to report 

    size_t pc_size = pcl_in0->points.size(); 
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    repout << "number of points before downsampling: " << 

pc_size << "\n"; 

 

    // header line of the output file prepared here 

    prepare_head5(pcl_in0, &heady, &rgb, &nxyz, &intensiti, 

&numret, &retnum); 

     

    // reset the chrono before downsampling 

    begin = std::chrono::steady_clock::now(); 

     

    //gridding (downsampling the data) 

    grid.setLeafSize (0.75f, 0.75f, 0.75f); 

    grid.setInputCloud (pcl_in0); 

    grid.filter (*pcl_in); 

     

    // report time ıf downsampling 

    end = std::chrono::steady_clock::now(); 

    repout << "downsampling time: " << 

std::chrono::duration_cast<std::chrono::microseconds>(end - 

begin).count()*0.000001 << "\n"; 

    // reset the chrono before scalar field bringing 

    begin = std::chrono::steady_clock::now(); 

     

    //need to get pc_size and build the tree after 

gridding, also need to fill missing scalar fields (of 

sensor) after downsampling 

    pc_size = pcl_in->points.size(); 

    bring_sf(pcl_in, pcl_in0, pc_size, tree, rgb, nxyz, 

intensiti, numret, retnum); 

    tree->setInputCloud(pcl_in); 
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    //clear the original point cloud 

    pcl_in0->clear(); 

     

    // prepare a list of lists, each list contains the 

point indices, number of lists = number of threads 

    size_t elemPerList = pc_size / numberOfThreads; 

    std::vector<std::vector<int>> pointThreadIndices; 

    pointThreadIndices = split_to_indices(numberOfThreads, 

pc_size, elemPerList); 

     

    // report time for scalar field bringing 

    end = std::chrono::steady_clock::now(); 

    repout << "scalar field bringing time: " << 

std::chrono::duration_cast<std::chrono::microseconds>(end - 

begin).count()*0.000001 << "\n"; 

    // reset the chrono before feature extraction 

    begin = std::chrono::steady_clock::now(); 

     

    // get global min-z for height above ground feature 

    float hmin = 9999999.0f; 

    for (size_t i=0; i<pc_size; ++i) 

    { 

        hmin = hmin > pcl_in->points[i].z ? pcl_in-

>points[i].z : hmin; 

    } 

         

    // Compute features on multiple threads 

    std::vector<std::thread> threads; 

    for (int i=0; i<numberOfThreads; ++i) 
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        threads.push_back(std::thread(RunComputeMyFeatures, 

pointThreadIndices[i], pcl_in, tree, hmin)); //ADD NEW 

THINGS HERE 

     

    // wait for all threads to complete 

    for (int i=0; i<numberOfThreads; ++i) 

        threads[i].join(); 

     

    end = std::chrono::steady_clock::now(); 

    repout << "feature extraction time: " << 

std::chrono::duration_cast<std::chrono::microseconds>(end - 

begin).count()*0.000001 << "\n"; 

    begin = std::chrono::steady_clock::now(); 

     

    // export the point cloud to a csv file, checking the 

available scalar fields 

    outfile.open(prj_dir + "/" + suffix + 

"_features_cloud.txt"); 

    outfile << heady; 

    int s=0; // counter of the scales 

    int k=0; // counter of feature in each feature group 

for each scale 

    std::string str; //each line is prepared into this 

object, then printed for some speed gain 

    for (size_t i = 0; i < pc_size; ++i) 

    { 

        str = 

        (std::to_string(pcl_in->points[i].x)             +" 

"+ std::to_string(pcl_in->points[i].y)        +" "+ 

std::to_string(pcl_in->points[i].z) + " " 
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        + std::to_string(pcl_in->points[i].class_id)      

+" ");//+ pcl_in->points[i].is_train +" "; 

        for (s=0; s<scale; ++s) { 

            for (k = 0; k<fields.features[0] ; ++k)  // k 

for each feature no under the feature category, there are 3 

features under categories:  i=0 and i=3 

            str += (std::to_string(pcl_in-

>points[i].ei_va_3[s*fields.features[0]+k]) + " "); //feat 

0 is ei_va_3 

        } 

         

        for (s=0; s<scale; ++s) { 

            for (k = 0; k<fields.features[1] ; ++k)  // k 

for each feature no under the feature category, there are 3 

features under categories:  i=0 and i=3 

            str += (std::to_string(pcl_in-

>points[i].shp_ft_3[s*fields.features[1]+k]) + " "); //feat 

1 is shp_ft_3 

        } 

         

        for (s=0; s<scale; ++s) { 

            for (k = 0; k<fields.features[2] ; ++k)  // k 

for each feature no under the feature category, there are 3 

features under categories:  i=0 and i=3 

            str += (std::to_string(pcl_in-

>points[i].ei_ft_3[s*fields.features[2]+k]) + " "); //feat 

2 is ei_ft_3 

        } 

         

        for (s=0; s<scale; ++s) { 
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            for (k = 0; k<fields.features[3] ; ++k)  // k 

for each feature no under the feature category, there are 3 

features under categories:  i=0 and i=3 

            str += (std::to_string(pcl_in-

>points[i].ei_nrmls_3[s*fields.features[3]+k]) + " "); 

//feat 3 is ei_nrmls_3 

        } 

        str += (std::to_string(pcl_in->points[i].h6) +" "); 

         

        if (intensiti) 

            str += (std::to_string(pcl_in-

>points[i].intensity) +" "); // 65536.0f // 

normalization&standardization computations will be held in 

python 

        if (numret) 

            str += (std::to_string(pcl_in-

>points[i].number_of_returns) +" "); 

        if (retnum) 

            str += (std::to_string(pcl_in-

>points[i].return_num) +" "); 

         

        if (nxyz) 

            str += (std::to_string(pcl_in-

>points[i].normal_x)   +" "+ std::to_string(pcl_in-

>points[i].normal_y)   +" "+  std::to_string(pcl_in-

>points[i].normal_z)  +" "); 

        if (rgb) 

            str += (std::to_string(pcl_in->points[i].r)  +" 

"+ std::to_string(pcl_in->points[i].g) +" "+  

std::to_string(pcl_in->points[i].b) +" "); 
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        // normalization&standardization computations will 

be held in python /255.f 

        str += "\n"; 

        outfile << str; 

        str.clear(); 

    } 

    outfile.close(); 

    end = std::chrono::steady_clock::now(); 

    repout << "file export time: " << 

std::chrono::duration_cast<std::chrono::microseconds>(end - 

begin).count()*0.000001; 

    repout.close(); 

    std::cout << "Done!" << std::endl; 

} 

 

void RunComputeMyFeatures(std::vector<int> pointIndices, 

pcl::PointCloud<Point_custom>::Ptr pcl_in, 

pcl::search::Search<Point_custom>::Ptr tree, float minz) 

{ 

    // this function is triggered for each thread. 

    // plane fitting (sac segmentation) object passed to 

each thread defined here 

    pcl::SACSegmentation<Point_custom> plnFitter; 

    plnFitter.setModelType (pcl::SACMODEL_PLANE); 

    plnFitter.setMaxIterations(2); 

    plnFitter.setDistanceThreshold(1000); 

    plnFitter.setMethodType (pcl::SAC_RANSAC); 

    plnFitter.setInputCloud(pcl_in); 

     

    //principal component analysis object defined here 
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    pcl::PCA<Point_custom> PCA; 

    PCA.setInputCloud(pcl_in); 

     

    // for each thread a point indices vector is passed, 

loop below triggered for each point 

    for (int i : pointIndices) 

    { 

        computeShapeFeatures4(i, pcl_in, tree, plnFitter, 

PCA); 

        ComputeMyEigenFeatures3(i, pcl_in); 

        computeHF5(i, pcl_in, tree, minz); 

    } 

} 

 

void laz2pcl (std::string fname, 

pcl::PointCloud<Point_custom>::Ptr cloud) 

{ 

    //to be used as laz has 16-bit color coding. 

    float color_bitter = 256.0f/65536.0f; 

 

    // reading laz files into a pcl object 

    std::ifstream ifs; 

    ifs.open(fname, std::ios::in | std::ios::binary); 

    liblas::ReaderFactory f; 

    liblas::Reader reader = f.CreateWithStream(ifs); 

    liblas::Header const& header = reader.GetHeader(); 

     

    // pcl object setting 

    cloud->width  = header.GetPointRecordsCount(); 

    cloud->height = 1; 
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    cloud->points.resize(cloud->width); 

    int count = 0; 

     

    // any other field to be read from the laz file must be 

included in this loop 

    // each point is read one by one from the laz object 

with GetPoint() 

    while (reader.ReadNextPoint()) 

    { 

        liblas::Point const& p = reader.GetPoint(); 

        cloud->points[count].x = 

static_cast<float>(p.GetX()); 

        cloud->points[count].y = 

static_cast<float>(p.GetY()); 

        cloud->points[count].z = 

static_cast<float>(p.GetZ()); 

         

        cloud->points[count].r = 

static_cast<float>(p.GetColor().GetRed()*color_bitter); 

//color_bitter = 256.0f/65536.0f 

        cloud->points[count].g = 

static_cast<float>(p.GetColor().GetGreen()*color_bitter); 

        cloud->points[count].b = 

static_cast<float>(p.GetColor().GetBlue()*color_bitter); 

        cloud->points[count].number_of_returns = 

static_cast<float>(p.GetNumberOfReturns()); 

        cloud->points[count].return_num = 

static_cast<float>(p.GetReturnNumber()); 

        cloud->points[count].class_id = 

static_cast<float>(p.GetClassification().GetClass()); 
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        cloud->points[count].intensity = 

static_cast<float>(p.GetIntensity()); 

        ++count; 

    } 

} 

 

void computeShapeFeatures4(int pt_idx, 

pcl::PointCloud<Point_custom>::Ptr pcl_in, 

pcl::search::Search<Point_custom>::Ptr kdTree, 

pcl::SACSegmentation<Point_custom> plnFitter, 

pcl::PCA<Point_custom> PCA) 

{ 

    // shape features computations 

     

    // plane coefficients and indices objects 

    pcl::ModelCoefficients::Ptr plne_cff (new 

pcl::ModelCoefficients); 

    pcl::PointIndices::Ptr pln_indc (new 

pcl::PointIndices); 

     

    // nearest-neighbor search tool outputs into these 

vectors 

    std::vector<int> neighborsIndices; // Indices of the 

points belonging to the neighborhood 

    std::vector<int> neighbors; // Indices of the points 

belonging to the neighborhood 

    std::vector<float> neighborsDistances; // Distance of 

the neighborhood points from srcPoints 
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    // planarity feature starts from 0, each point's 

distance to plane to be added to this variable 

    float tempPLN = 0.0f; 

     

    // pca output objects 

    Eigen::Matrix3f eigenvectors; // Eigenvectors 

    Eigen::Vector3f eigenvalues; // Eigenvalues 

     

    //hmin&hmax values for local elevation change feature 

    float hmint = 999999.0f; 

    float hmaxt = -999999.0f; 

     

    // kdtree search is triggered for the largest scale 

    kdTree->nearestKSearch(pcl_in->points[pt_idx], 

scale_vals[scale], neighborsIndices, neighborsDistances); 

     

    // using the scales vector (global variable), feature 

extraction is done from smallest scale to largest 

    for (int s=0; s<scale; ++s) 

    { 

        for(size_t mm = scale_vals[s]; mm < 

scale_vals[s+1]; ++mm) 

        { 

            // indices for each scale is passed to another 

vector, this will be passed to plane fitting object and pca 

object 

            neighbors.push_back(neighborsIndices[mm]); 

            hmint = hmint > pcl_in-

>points[neighborsIndices[mm]].z ? pcl_in-

>points[neighborsIndices[mm]].z : hmint; 
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            hmaxt = hmaxt < pcl_in-

>points[neighborsIndices[mm]].z ? pcl_in-

>points[neighborsIndices[mm]].z : hmaxt; 

        } 

         

        // set indices for pca and plane fitting objects 

        

PCA.setIndices(pcl::make_shared<std::vector<int>>(neighbors

)); 

        

plnFitter.setIndices(pcl::make_shared<std::vector<int>>(nei

ghbors)); 

 

        //get eigenvalues and eigenvectors from pca 

        eigenvalues = PCA.getEigenValues(); 

        eigenvectors = PCA.getEigenVectors(); 

         

        //pass eigenvalues to eigenvalues feature 

        pcl_in-

>points[pt_idx].ei_va_3[s*fields.features[0]+0] = 

eigenvalues(0); 

        pcl_in-

>points[pt_idx].ei_va_3[s*fields.features[0]+1] = 

eigenvalues(1); 

        pcl_in-

>points[pt_idx].ei_va_3[s*fields.features[0]+2] = 

eigenvalues(2); 

         

        // if z-component of the vector is negative, revert 

the vector 
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        if (  eigenvectors(8) < 0) 

        { 

            eigenvectors(6) *= -1.0f; 

            eigenvectors(7) *= -1.0f; 

            eigenvectors(8) *= -1.0f; 

        } 

         

        // pass last 3 eigen vectors to eigen normals 

feature 

        pcl_in-

>points[pt_idx].ei_nrmls_3[s*fields.features[3]+0] = 

eigenvectors(6); 

        pcl_in-

>points[pt_idx].ei_nrmls_3[s*fields.features[3]+1] = 

eigenvectors(7); 

        pcl_in-

>points[pt_idx].ei_nrmls_3[s*fields.features[3]+2] = 

eigenvectors(8); 

         

        // fit the plane and check if it failed, 

        plnFitter.segment(*pln_indc, *plne_cff); 

        tempPLN = 0.0f; 

        if ( isnan(plne_cff->values[0]) || isnan(plne_cff-

>values[1]) || isnan(plne_cff->values[2]) || 

isnan(plne_cff->values[3]) ) 

        { 

            //check if plane fitting went well, if not, put 

0 for plane-based features. 

            pcl_in-

>points[pt_idx].shp_ft_3[s*fields.features[1]+1] = 0.0f; 
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        } 

        // if succeded compute the average of the 

distances, 

        else 

        { 

            for(int mm = 0; mm < scale_vals[s+1]; ++mm) 

            { 

                //sum the absolute distances from each 

point to the best fit plane 

                tempPLN += (abs(plne_cff->values[0]*pcl_in-

>points[neighborsIndices[mm]].x + plne_cff-

>values[1]*pcl_in->points[neighborsIndices[mm]].y + 

plne_cff->values[2]*pcl_in->points[neighborsIndices[mm]].z 

+ plne_cff->values[3]) / sqrt(pow(plne_cff->values[0],2.0) 

+ pow(plne_cff->values[1],2.0) + pow(plne_cff-

>values[2],2.0))); 

            } 

            //local planarity shp_ft_3[1], take the average 

            pcl_in-

>points[pt_idx].shp_ft_3[s*fields.features[1]+1] = 

tempPLN/static_cast<float>(scale_vals[s+1]); 

        } 

        //elevation change shp_ft_3[0] 

        pcl_in-

>points[pt_idx].shp_ft_3[s*fields.features[1]+0] = hmaxt-

hmint; 

 

        //vertical angle calculation 
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        float result = acos(pcl_in-

>points[pt_idx].ei_nrmls_3[s*fields.features[3]+2]) * 

200.0f / M_PI; 

        // check if nan, make it 0 if it is, then pass the 

value 

        result = isnan(result) ? 0.0f : result; 

        pcl_in-

>points[pt_idx].shp_ft_3[s*fields.features[1]+2] = result; 

    } 

} 

 

void ComputeMyEigenFeatures3(int pt_idx, 

pcl::PointCloud<Point_custom>::Ptr pcl_in) 

{ 

    // compute eigen features based on the eigenvalues 

    // eigen features in order: surface variation, 

sphericity, omnivariance 

    for (int i = 0; i<scale; ++i) 

    { 

        pcl_in-

>points[pt_idx].ei_ft_3[i*fields.features[2]] = (pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+0] - pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+1]) / pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+0]; 

        pcl_in-

>points[pt_idx].ei_ft_3[i*fields.features[2]+1] = pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+2] / pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+0]; 

        pcl_in-

>points[pt_idx].ei_ft_3[i*fields.features[2]+2] = 
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std::cbrt(pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+2] * pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+1] * pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+0]); 

    } 

} 

 

void computeHF5 (int pt_idx, 

pcl::PointCloud<Point_custom>::Ptr pcl_in, 

pcl::search::Search<Point_custom>::Ptr tree, float minz) 

{ 

    // Indices of the points belonging to the neighborhood 

    std::vector<int> neighborsIndices; 

    // Distance of the neighborhood points from srcPoints 

    std::vector<float> neighborsDistances; 

    //locally lowest point around the point of interest 

    float lowest; 

     

    // z stays the same as pre defined, 1 for lowest, 2 for 

highest points in the cloud 

    Point_custom temp_point1; //from min z 

    temp_point1.x = pcl_in->points[pt_idx].x; 

    temp_point1.y = pcl_in->points[pt_idx].y; 

    temp_point1.z = minz; 

     

    // get the lowest z within the neighbourhood 

    tree->nearestKSearch(temp_point1, 1, neighborsIndices, 

neighborsDistances); 

    temp_point1.z = pcl_in->points[neighborsIndices[0]].z; 
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    tree->nearestKSearch(temp_point1, 1, neighborsIndices, 

neighborsDistances); 

    lowest = pcl_in->points[neighborsIndices[0]].z; 

     

    // pass the difference as height above ground 

    pcl_in->points[pt_idx].h6 = pcl_in->points[pt_idx].z - 

lowest; 

} 

 

std::vector<std::vector<int>> split_to_indices(const int 

num_threds, size_t size_pc, size_t elemPerList) 

{ 

    std::vector<std::vector<int>> pointThreadIndices; 

    std::vector<int> v; 

    for (int i=0; i < size_pc; ++i) 

    { 

        v.push_back(i); 

        if (pointThreadIndices.size() == num_threds - 1) 

        {  // Last chunk case (to handle <numberOfPoints> % 

numberOfThreads != 0) 

            if (i == size_pc - 1) 

            {   // Last point case 

                pointThreadIndices.push_back(v); 

                v.clear(); 

            } 

        } 

        else 

        { 

            if (((i+1) % elemPerList) == 0) 

            {   // Split point 
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                pointThreadIndices.push_back(v); 

                v.clear(); 

            } 

        } 

    } 

    return pointThreadIndices; 

} 

 

void prepare_head5(pcl::PointCloud<Point_custom>::Ptr 

cloud, std::string *heady, bool *rgb, bool *nxyz, bool 

*intensiti, bool *numret, bool *retnum) 

{ 

    std::string temp; 

    *heady = "x y z class_id";// is_train"; //this part is 

fixed 

    for (int i  = 0; i<4; ++i) // i for each feature 

category, there are 4 feature categories. 

    { 

        for (int j = 0; j<scale; ++j) //j is for scale, 

defined globally 

        {   // k for each feature no under the feature 

category, there are 3 features under categories:  i=0 and 

i=3 

            for (int k = 0; k<fields.features[i] ; ++k) 

            {   //feature_category_$scale_$feature_no 

                temp = fields.category[i] + 

std::to_string(j+1) + "_" + std::to_string(k+1); 

                (*heady) += temp; 

            } 

        } 
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    } 

    (*heady) += " height_6p"; 

     

    *intensiti = true; 

    if (cloud->points[0].intensity == 0 && cloud-

>points[1].intensity == 0 && cloud->points[2].intensity == 

0) 

        *intensiti = false; 

    if (*intensiti==true) 

        (*heady) += " intensity"; 

 

    *numret = true; 

    if (cloud->points[0].number_of_returns == 0 && cloud-

>points[1].number_of_returns == 0 && cloud-

>points[2].number_of_returns == 0) 

        *numret = false; 

    if (*numret==true) 

        (*heady) += " num_returns"; 

     

    *retnum = true; 

    if (cloud->points[0].return_num == 0 && cloud-

>points[1].return_num == 0 && cloud->points[2].return_num 

== 0) 

        *retnum = false; 

    if (*retnum==true) 

        (*heady) += " retr_numb"; 

 

    *nxyz = true; 

    if (cloud->points[0].normal_x == 0 && cloud-

>points[0].normal_y == 0 && cloud->points[0].normal_z == 0) 
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        *nxyz = false; 

    if (*nxyz==true) 

        (*heady) += " nx ny nz"; 

     

    *rgb = true; 

    if ( cloud->points[0].r == 0 && cloud->points[0].g == 0 

&& cloud->points[0].b == 0) 

        *rgb = false; 

    if (*rgb==true) 

        (*heady) += " r g b"; 

    (*heady) += "\n"; 

} 

 

void bring_sf(pcl::PointCloud<Point_custom>::Ptr 

cloud_missing, pcl::PointCloud<Point_custom>::Ptr 

cloud_full, size_t missing_size, 

pcl::search::Search<Point_custom>::Ptr tree, bool rgb, bool 

nxyz, bool intensiti, bool numret, bool retnum) 

{ 

    for (size_t i = 0; i<missing_size; i++) 

    { 

        // create a temporary point from the point cloud 

with missing scalar fields 

        Point_custom tempPoint; 

        tempPoint.x = cloud_missing->points[i].x; 

        tempPoint.y = cloud_missing->points[i].y; 

        tempPoint.z = cloud_missing->points[i].z; 

         

        // search returns outputs into these vectors 

        std::vector<int> pointIdxSearch; 
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        std::vector<float> pointSquaredDistance; 

         

        // run the search, retrieve only the available 

features 

        tree->nearestKSearch(tempPoint, 1, pointIdxSearch, 

pointSquaredDistance); 

        { 

            cloud_missing->points[i].class_id = cloud_full-

>points[pointIdxSearch[0]].class_id; 

            if (rgb) 

            { 

                cloud_missing->points[i].r = cloud_full-

>points[pointIdxSearch[0]].r; 

                cloud_missing->points[i].g = cloud_full-

>points[pointIdxSearch[0]].g; 

                cloud_missing->points[i].b = cloud_full-

>points[pointIdxSearch[0]].b; 

            } 

            if (nxyz) 

            { 

                cloud_missing->points[i].normal_x = 

cloud_full->points[pointIdxSearch[0]].normal_x; 

                cloud_missing->points[i].normal_y = 

cloud_full->points[pointIdxSearch[0]].normal_y; 

                cloud_missing->points[i].normal_z = 

cloud_full->points[pointIdxSearch[0]].normal_z; 

            } 

            if (intensiti) 

            { 
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                cloud_missing->points[i].intensity = 

cloud_full->points[pointIdxSearch[0]].intensity; 

            } 

            if (numret) 

            { 

                cloud_missing->points[i].number_of_returns 

= cloud_full->points[pointIdxSearch[0]].number_of_returns; 

            } 

            if (retnum) 

            { 

                cloud_missing->points[i].return_num = 

cloud_full->points[pointIdxSearch[0]].return_num; 

            } 

        } 

    } 

} 
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A.2. 2DCNN Classification Tool 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

#@author: emrozdmr 

# classication tool (Python 3) 

 

# import the used libraries 

import os 

import tensorflow as tf 

import numpy as np 

import pandas as pd 

from sklearn.utils import class_weight 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, 

Flatten, LeakyReLU 

from tensorflow.keras.layers import Conv2D, MaxPooling2D, 

BatchNormalization 

from tensorflow.keras.utils import to_categorical 

from tensorflow.keras.optimizers import SGD 

from tensorflow.keras.callbacks import EarlyStopping, 

ModelCheckpoint 
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from tensorflow.keras.models import model_from_json 

import tensorflow.keras.backend as K 

from scipy.spatial import cKDTree 

from sklearn.metrics import f1_score, accuracy_score, 

confusion_matrix 

import gc 

 

#tf.function decoration makes it as-if tensorflow 

functions, enables to run efficiently inside the model 

 

@tf.function 

def f1_loss(true, pred): 

    # weighted f1 loss function, to experiment. 

    ground_positives = K.sum(true, axis=0)       # = TP + 

FN 

    pred_positives = K.sum(pred, axis=0)         # = TP + 

FP 

    true_positives = K.sum(true * pred, axis=0)  # = TP 

    precision = (true_positives + K.epsilon()) / 

(pred_positives + K.epsilon())  

    recall = (true_positives + K.epsilon()) / 

(ground_positives + K.epsilon())  

    f1 = 2 * (precision * recall) / (precision + recall + 

K.epsilon()) 

    weighted_f1 = f1 * ground_positives / 

K.sum(ground_positives) 

    weighted_f1 = K.sum(weighted_f1) 

    return 1 - weighted_f1 #for metrics, return only 

'weighted_f1' 
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@tf.function 

def f1_lossAVG(true, pred): 

    #average f1 loss functions 

    ground_positives = K.sum(true, axis=0)       # = TP + 

FN 

    pred_positives = K.sum(pred, axis=0)         # = TP + 

FP 

    true_positives = K.sum(true * pred, axis=0)  # = TP 

    precision = (true_positives + K.epsilon()) / 

(pred_positives + K.epsilon())  

    recall = (true_positives + K.epsilon()) / 

(ground_positives + K.epsilon())  

    f1 = 2 * (precision * recall) / (precision + recall + 

K.epsilon()) 

    f1 = K.mean(f1) 

    return 1 - f1 

 

@tf.function 

def f1_acc(y_true, y_pred): 

    #taken from old keras source code 

    #f1 accuracy is used as metric 

    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 

0, 1))) 

    possible_positives = K.sum(K.round(K.clip(y_true, 0, 

1))) 

    predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 

1))) 

    precision = true_positives / (predicted_positives + 

K.epsilon()) 
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    recall = true_positives / (possible_positives + 

K.epsilon()) 

    f1_val = 

2.0*(precision*recall)/(precision+recall+K.epsilon()) 

    return f1_val 

 

def get_data(mydataFrame): 

    # parse the input pandas dataframe 

    # output separated sub-parts of it 

    labels = mydataFrame['class_id'].copy() 

    del mydataFrame['class_id'] 

    data_array = mydataFrame.values 

    coordi = data_array[:,0:3] 

    return labels, data_array, coordi 

 

def get_patches3_2d(dataframe, knn, num_feat): 

    # the 2d patches to be passed to the network 

    labels_arr, dataa, coordie = get_data(dataframe) 

    #ckdtree is faster 

    trie = cKDTree(coordie, leafsize=1) 

    big_arr = np.zeros((labels_arr.shape[0], num_feat, 

kk,1), dtype=np.float32) 

    #labels_arr.shape[0] is number of points 

    for x in range(labels_arr.shape[0]): 

        #search for each point 

        idx = trie.query(coordie[x,:],k=knn) 

        #retrieve the neighboring points 

        id_arr = idx[1] 

        id_arr = np.sort(id_arr) 
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        #get the data for these nighboring points into the 

2d array 

        temp = dataa[id_arr,:] 

         

        #patch-wise coordinates, centered aroind the point 

of interest 

        temp[:,0:3] = temp[:,0:3] - coordie[x,:] 

         

        #divide coordinates to patch_max, replace nan 

values with zeros, which may occur during division 

        temp[:,0:3] = temp[:,0:3] / np.amax(temp[:,0:3], 

axis=0) 

        temp[:,0:3] = np.nan_to_num(temp[:,0:3]) 

         

        #clip coordinates  to [0,1], and sort by x and z 

        temp[:,0:3] = np.clip(temp[:,0:3],0,1) 

        temp = temp[temp[:,0].argsort(kind='mergesort'),:] 

        temp = temp[temp[:,2].argsort(kind='mergesort'),:] 

        temp = np.reshape(temp,(num_feat,knn,1)) 

        big_arr[x,:,:,:]=temp   

    return big_arr, labels_arr, labels_arr.shape[0] 

 

# input parameters 

 

# root directory: the outputs will be there 

root_dir = '/home/emrozdmr/projects/bordo_new_tf2/' 

 

# input file 

all_file_name = 'br6_f12p_features_cloud_normd.txt' 

os.chdir(root_dir) 
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# project name 

suffix = 'bordo_noth_2d' 

 

#read csv file into a pandas object, force float32s 

all_data = pd.read_csv(root_dir+all_file_name, sep=" 

",index_col=False, dtype=np.float32) 

 

# sorting is fast and helps with the kdtree search 

all_data = all_data.sort_values(by=['x']) 

 

#in case a nan column exists, remote it 

try: del all_data['nan'] 

except: print('no nan col') 

 

#optional, remove some sensor features for experimenting 

#del all_data['intensity'];  del all_data['retr_numb'];  

del all_data['num_returns'] 

#del all_data['r'];  del all_data['g'];  del all_data['b'] 

 

#split training and validation data based on the is_train 

train = all_data[all_data['is_train']==1].copy() 

evald = all_data[all_data['is_train']==0].copy() 

 

# remove is_train column and the original dataframe, they 

are not needed anymore 

del train['is_train'], evald['is_train'], all_data 

 

# 15 points to create 2d matrices 

kk=15 
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#number of features are dynamic, because of the availabe 

sensor features 

num_feat = train.shape[1] - 1 

 

# get the tensor holind 2d arrays, class_id ground truths 

and number of points for training and validation data 

x_train3, my_lbls_arr, num_pts_train = 

get_patches3_2d(train, kk, num_feat)  #get training data          

x_eval, my_lbls_arr_evl, num_pts_eval = 

get_patches3_2d(evald, kk, num_feat) #get validation data 

 

#remove the dataframes, not necessary anymore, and force-

clean the memory 

del train, evald 

gc.collect() 

 

# get number of classes and class weights 

ua,uind=np.unique(my_lbls_arr,return_inverse=True) 

counts=np.bincount(uind) 

cls_wghs = 

class_weight.compute_class_weight(class_weight='balanced', 

classes=ua, y=my_lbls_arr) 

 

#print class weights 

print(ua) 

print("weights: ", cls_wghs) 

print("weights max: ",cls_wghs.max()) 

print("weights max: ",cls_wghs.min()) 
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# push class weights into a dict, required by newer TF 

versions 

myclass_weights = {} 

for x in range(cls_wghs.shape[0]): myclass_weights[x] = 

cls_wghs[x] 

 

# create the model 

model = Sequential() 

model.add(Conv2D(32, (3, 3), padding='same', 

input_shape=(num_feat,kk,1))) 

model.add(BatchNormalization()) 

model.add(LeakyReLU()) 

 

model.add(Conv2D(64, (3, 3), padding='same')) 

model.add(BatchNormalization()) 

model.add(LeakyReLU()) 

model.add(MaxPooling2D(pool_size=(2, 2), padding='valid')) 

 

model.add(Conv2D(128, (3, 3), padding='same')) 

model.add(BatchNormalization()) 

model.add(LeakyReLU()) 

 

model.add(Conv2D(256, (3, 3), padding='same')) 

model.add(BatchNormalization()) 

model.add(LeakyReLU()) 

 

model.add(Conv2D(512, (3, 3), padding='same')) 

model.add(BatchNormalization()) 

model.add(LeakyReLU()) 

model.add(MaxPooling2D(pool_size=(2, 2))) 
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model.add(Flatten()) 

model.add(Dense(36, activation='relu')) 

model.add(Dropout(0.25)) 

model.add(Dense(len(myclass_weights), 

activation='softmax')) 

 

# training parameters, optimizer definitions 

my_epochs = 100 

learning_rate = 0.001 

decay_rate = learning_rate / my_epochs      # LearningRate 

= LearningRate * 1/(1 + decay * epoch) 

my_batch_size = 1024 

sgd = SGD(learning_rate=learning_rate, decay=decay_rate, 

nesterov=False, momentum=0.95 ) 

 

#compile the model with the specified, optimizer, loss, and 

metric functions 

model.compile(loss=f1_lossAVG, optimizer=sgd, 

metrics=[f1_acc]) 

 

# export model structure to json 

model_json = model.to_json()     # serialize model to JSON 

with open(root_dir+suffix+"_2dcnn.json", "w") as json_file: 

json_file.write(model_json) 

 

# set callbacks for training, and force-clean memory before 

the training 

my_callbacks = [EarlyStopping(patience=15, 

min_delta=0.0001, restore_best_weights=True), 
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ModelCheckpoint(filepath=suffix+'_model.h5', 

save_best_only=True, verbose=1)] 

gc.collect() 

 

# run the training, export the losses and accuracies for 

training and validation into my_history variable 

my_history = model.fit(x_train3, 

to_categorical(my_lbls_arr, 

num_classes=len(myclass_weights)), 

batch_size=my_batch_size,  

                       

validation_data=(x_eval,to_categorical(my_lbls_arr_evl, 

num_classes=len(myclass_weights))), epochs=my_epochs,  

                       class_weight=myclass_weights, 

shuffle=True, callbacks=my_callbacks) 

 

# export the traning history into a csv file 

pd.DataFrame.from_dict(my_history.history).to_csv(root_dir+

suffix+'_2dcnn_history.csv',index=False) 

 

#export model weights, clean history object 

model.save_weights(root_dir+suffix+"_2dcnn_weights.h5")    

# serialize weights to HDF5 

del my_history 

 

 

 

""" 

## OPTIONAL BITS 
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#read validation data, and predict on it, 

# as the coordinates are not kept above, it is necessary to 

read again to get the coordinates for exporting the 

classification results 

all_data = pd.read_csv(root_dir+all_file_name, sep=" 

",index_col=False, dtype=np.float32, usecols=[0,1,2,3,4]) 

#del all_data['intensity'];  del all_data['retr_numb'];  

del all_data['num_returns'] 

#del all_data['r'];  del all_data['g'];  del all_data['b'] 

all_data = all_data.sort_values(by=['x']) 

evald = all_data[all_data['is_train']==0].copy() 

del all_data 

coords_eval = evald.iloc[:,0:3].values 

del evald 

predicted_eval = 

model.predict(x_eval,batch_size=my_batch_size,verbose=1) 

prd_evl = np.argmax(predicted_eval, axis=1) 

res_eval = np.column_stack((coords_eval,prd_evl, 

np.amax(predicted_eval, axis=1))) 

np.savetxt(root_dir+suffix+'_clsfd_eval_probs.txt',res_eval

,fmt='%1.3f %1.3f %1.3f %d %1.3f') 

del predicted_eval, res_eval, coords_eval 

gc.collect() 

 

 

# read another dataset to run prediction on 

all_data = 

pd.read_csv('/full/path/to/pointcloudwithfeatures.txt', 

sep=" ",index_col=False, dtype=np.float32) 
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#del all_data['intensity'];  del all_data['retr_numb'];  

del all_data['num_returns'] 

#del all_data['r'];  del all_data['g'];  del all_data['b'] 

all_data = all_data.sort_values(by=['x']) 

coords_eval = all_data.iloc[:,0:3].values 

x_eval, my_lbls_arr_evl, num_pts_eval = 

get_patches3_2d(all_data, kk, num_feat)  

del all_data 

predicted_eval = 

model.predict(x_eval,batch_size=my_batch_size,verbose=1) 

prd_evl = np.argmax(predicted_eval, axis=1) 

res_eval = np.column_stack((coords_eval,prd_evl, 

np.amax(predicted_eval, axis=1))) 

np.savetxt('/full/path/to/exported_classification_result.tx

t',res_eval,fmt='%1.3f %1.3f %1.3f %d %1.3f') 

del predicted_eval, res_eval, coords_eval 

gc.collect() 

""" 
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A.3. Accuracy Assessment Tool 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

# @author: emre özdemir 

 

#imports 

import sys 

import pandas as pd 

import numpy as np 

import os 

from sklearn.metrics import accuracy_score, f1_score, 

confusion_matrix, jaccard_score 

 

# accuracy assessment tool 

# recieves a single file with ground truth and prediction 

class ids, outputs the accuracy assessment report 

 

# control the passed inputs, give a message if something is 

wrong 

assert len(sys.argv) == 2, print("Please give the file name 

to the grount truth and prediction.\n \ 

          the text file is expected in order of x y z 

class_id_gt class_id_predicted, can have a header line\n  \ 
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          Example use of this tool:\n \ 

          'python acc_calc.py full/path/to/your_file.txt 

'\n \ 

          Come back with the required file!") 

 

# read the data, print number of points 

all_data = pd.read_csv(sys.argv[1], sep=" 

",index_col=False, usecols=[3, 4]) 

print("Number of points ",all_data.shape[0]) 

 

# compute accuracy metrics 

overall_acc = accuracy_score(all_data.iloc[:,0], 

all_data.iloc[:,1]) 

f1_scores = f1_score(all_data.iloc[:,0], 

all_data.iloc[:,1], average=None) 

f1_score_weighted = f1_score(all_data.iloc[:,0], 

all_data.iloc[:,1], average='weighted') 

con_mat = confusion_matrix(all_data.iloc[:,0], 

all_data.iloc[:,1]) 

iou_per_class = jaccard_score(all_data.iloc[:,0], 

all_data.iloc[:,1], average=None) 

iou_global = jaccard_score(all_data.iloc[:,0], 

all_data.iloc[:,1], average='micro') 

iou_weighted = jaccard_score(all_data.iloc[:,0], 

all_data.iloc[:,1], average='weighted') 

 

#export the report 

report_fname = os.path.dirname(sys.argv[1]) + "/report_" + 

os.path.basename(sys.argv[1]) 

np.set_printoptions(precision=4) 
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file = open(report_fname,"w")  

file.write("F1 Scores per class\n\n")  

file.write(str(f1_scores)) 

file.write("\n\nWeighted F1 Score\n\n") 

file.write('{:.4f}'.format(f1_score_weighted) ) 

file.write("\n\nAverage F1 Score\n\n") 

file.write('{:.4f}'.format(f1_scores.mean() ) ) 

file.write("\n\nIOU per class\n\n") 

file.write(str(iou_per_class)) 

file.write("\n\nIOU Global\n\n") 

file.write('{:.4f}'.format(iou_global ) ) 

file.write("\n\nIOU Weighted\n\n") 

file.write('{:.4f}'.format(iou_weighted ) ) 

file.write("\n\nAverage IOU\n\n") 

file.write('{:.4f}'.format(iou_per_class.mean() ) ) 

file.write("\n\nOverall Accuracy\n\n") 

file.write('{:.4f}'.format(overall_acc) ) 

file.write("\n\nConfusion Matrix\n\n")  

file.write(str(con_mat)) 

file.close()  

print("Find the report next to the input file.") 
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A.4. Instance Segmentation Tool 

// clusterings tool (C++) 

// author emre Özdemir 

 

#define PCL_NO_PRECOMPILE 

#include <pcl/ModelCoefficients.h> 

#include <pcl/point_types.h> 

#include <pcl/filters/extract_indices.h> 

#include <pcl/filters/voxel_grid.h> 

#include <pcl/features/normal_3d.h> 

#include <pcl/search/kdtree.h> 

#include <pcl/sample_consensus/method_types.h> 

#include <pcl/sample_consensus/model_types.h> 

#include <pcl/segmentation/sac_segmentation.h> 

#include <pcl/segmentation/extract_clusters.h> 

#include <pcl/io/ply_io.h> 

 

// argv[1] input file 

// argv[2] output directory 

 

// custom point cloud type for clusters 

struct Point_custom 

{ 

    PCL_ADD_POINT4D; 
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    float class_id; 

    float cluster_id; 

    EIGEN_MAKE_ALIGNED_OPERATOR_NEW // make sure our new 

allocators are aligned 

} EIGEN_ALIGN16;                    // enforce SSE padding 

for correct memory alignment 

 

POINT_CLOUD_REGISTER_POINT_STRUCT 

(Point_custom, 

 (float, x, x) 

 (float, y, y) 

 (float, z, z) 

 (float, class_id, class_id) 

 (float, cluster_id, cluster_id) 

) 

 

 

int main (int argc, char** argv) 

{ 

    std::cout<<"Euclidean clustering is 

running"<<std::endl; 

    // input file, ply 

    std::string indir = argv[1]; 

     

    // output directory 

    std::string outdir = argv[2]; 

 

    // point cloud object definition and reading with 

control 
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    pcl::PointCloud<Point_custom>::Ptr cloud (new 

pcl::PointCloud<Point_custom>); 

    if ( pcl::io::loadPLYFile <Point_custom> (indir, 

*cloud) == -1) 

    { 

        std::cout << "Cloud reading failed." << std::endl; 

        return (-1); 

    } 

     

    std::cout << "File successfully read\nIt is processing, 

hold on for a while..." << std::endl; 

     

    // creating the kdtree object for the search method of 

the extraction 

    pcl::search::Search<Point_custom>::Ptr tree = 

pcl::shared_ptr<pcl::search::Search<Point_custom> > (new 

pcl::search::KdTree<Point_custom>); 

    tree->setInputCloud (cloud); 

     

    // vector for exported cluster indices 

    std::vector<pcl::PointIndices> cluster_indices; 

     

    // euclidean distance clustering object definition 

    // and parameter setting 

    pcl::EuclideanClusterExtraction<Point_custom> ec; 

    ec.setClusterTolerance(1.50f); //3.5 

    ec.setMinClusterSize(100); 

    ec.setMaxClusterSize(1600000); 

    ec.setSearchMethod(tree); 

    ec.setInputCloud(cloud); 
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    ec.extract(cluster_indices); 

     

    // counter to keep cluster_id 

    int k = 1; 

     

    //commented lines in the loop are useful for exporting 

each cluster in individual filess 

    for (std::vector<pcl::PointIndices>::const_iterator it 

= cluster_indices.begin (); it != cluster_indices.end (); 

++it) 

    { 

//        pcl::PointCloud<Point_custom>::Ptr cloud_cluster 

(new pcl::PointCloud<Point_custom>); 

        for (std::vector<int>::const_iterator pit = it-

>indices.begin (); pit != it->indices.end (); ++pit) { 

            cloud->points[*pit].cluster_id = k; 

//            cloud_cluster->points.push_back (cloud-

>points[*pit]); 

        } 

         

        ++k; 

//        cloud_cluster->width = cloud_cluster->points.size 

(); 

//        cloud_cluster->height = 1; 

//        cloud_cluster->is_dense = true; 

//        pcl::io::savePLYFileBinary(outdir + "/cluster_" + 

std::to_string(k) + ".ply",*cloud_cluster); 

    } 

    //export the cloud with cluster_ids 
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    pcl::io::savePLYFileBinary(outdir + "/clustered_" + 

std::to_string(k) + ".ply",*cloud); 

    std::cout << "Done!" << std::endl; 

} 
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