

Skolkovo Institute of Science and Technology

GEOSPATIAL POINT CLOUD CLASSIFICATION

Doctoral Thesis

by

EMRE ÖZDEMİR

DOCTORAL PROGRAM IN ENGINEERING SYSTEMS

Supervisors

Associate Professor Alessandro Golkar

Dr. Fabio Remondino

Moscow - 2021

© Emre Özdemir 2021

2

3

I hereby declare that the work presented in this thesis

was carried out by myself at Skolkovo Institute of

Science and Technology, Moscow, Russia and Bruno

Kessler Foundation, Trento, Italy except where due

acknowledgement is made, and has not been submitted

for any other degree.

Candidate (Emre Özdemir)

Supervisor (Prof. Alessandro Golkar)

Supervisor (Dr. Fabio Remondino)

4

5

Abstract

Deep learning is becoming popular for a growing number of tasks as a result of

recent technological advancements. Point cloud classification, in particular, has been

investigated for some time with numerous methods established for various applications,

including geospatial, industrial, indoor mapping, terrestrial, and so on. Among these, the

focus is on the geospatial point cloud classification. While these studies in the state-of-the-

art achieve promising results on geospatial point clouds in terms of accuracy, they are not

very feasible to be deployed to daily applications (i.e., being used by mapping agencies for

city-scale or country-scale data). This infeasibility is commonly caused by at least one of

the following characteristics of the methods: being sensor-specific (i.e., LiDAR);

efficiency issues (i.e., requiring expensive GPUs with high memory capacity); being

trained on manually labeled massive datasets (i.e., deeper networks tend to require more

training samples); and being trained for each project due to lack of generalization ability.

To my knowledge, no studies in the literature have focused on establishing an approach to

address all of these challenges simultaneously. Therefore, these challenges are considered

to be not addressed effectively before.

Considering these challenges, the goal of this study is to develop a framework that

achieves better or similar accuracies compared to the state-of-the-art with a more efficient

methodology requiring less computational resources and/or processing time, while

addressing aforementioned challenges more effectively. Consequently, the objectives are:

(i) Processing point clouds from different airborne data sources (any of

photogrammetry or LiDAR);

6

(ii) Generalization ability (i.e., predicting on datasets with different acquisition

setup);

(iii) Dealing with density variations both within a dataset as well as among

distinct datasets;

(iv) Requiring less computational power and memory (i.e., being significantly

faster and requiring 4GB GPU memory rather than 16GB);

(v) Achieving better or similar accuracy (i.e., ≿80%) with the current state-of-

the-art methods.

The introduced framework relies on the following steps in order to achieve

capabilities listed above, and more:

(i) Point cloud preprocessing with downsampling;

(ii) Handcrafted feature extraction;

(iii) Deep learning for classification using convolutional neural networks;

(iv) Post-processing for instance segmentation of buildings.

The introduced framework is put to a series of thorough tests, where its accuracy,

computational efficiency, and generalization capability are tested. Furthermore, the

framework is compared with the state-of-the-art methods in terms of accuracy and

efficiency. The experiments are held using five datasets in total. Three of them are used for

generalization tests, and one is used for computational efficiency tests. Based on the

achieved results, the framework’s capabilities are proven quantitatively.

7

8

Publications

1. Özdemir, E, Remondino, F, Golkar, A. An Efficient and General Framework for Aerial

Point Cloud Classification in Urban Scenarios. Remote Sensing. 2021 13(10).

2. Farella, EM, Özdemir, E, Remondino F. 4D Building Reconstruction with Machine

Learning and Historical Maps. Applied Sciences. 2021 11(4)

3. Pârvu, IM, Özdemir, E, Remondino, F. Aerial Point Cloud Classification Using an

Alternative Approach for the Dynamic Computation of K-Nearest Neighbors. Journal of

Applied Engineering Sciences. 2020 10(2):155-62.

4. Özdemir, E, Remondino, F, Golkar, A. Aerial Point Cloud Classification with Deep

Learning and Machine Learning Algorithms. ISPRS - International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019 XLII-

4/W18:843-9.

5. Özdemir, E, Toschi, I, Remondino, F. A Multi-Purpose Benchmark for Photogrammetric

Urban 3d Reconstruction in a Controlled Environment. ISPRS - International Archives of

the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019 XLII-

1/W2:53-60.

6. Özdemir, E, Remondino, F. Classification of Aerial Point Clouds with Deep Learning.

ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences. 2019 XLII-2/W13:103-10.

7. Grilli, E, Özdemir, E, Remondino, F. Application of Machine and Deep Learning

Strategies for the Classification of Heritage Point Clouds. ISPRS - International Archives

of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019 XLII-

4/W18:447-54.

9

8. Özdemir, E, Remondino, F. Segmentation of 3D Photogrammetric Point Cloud for 3D

Building Modeling. ISPRS - International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences. 2018 XLII-4/W10:135-42.

9. Pârvu, IM, Remondino, F, Özdemir, E. LOD2 Building Generation Experiences and

Comparisons. Journal of Applied Engineering Sciences. 2018 8(2):59-64.

10

11

Acknowledgments

To begin with, I would like to thank my supervisors Prof. Fabio Remondino and

Prof. Alessandro Golkar, who advised me during my studies and always were on my side.

In close collaboration with them, I had the best environments to be productive and succeed.

These years of work would not have been possible without my family and my one-

and-only Fatma being tirelessly there for me. It is priceless to have the ones you love, and

you can rely on them when you need them the most. I am sincerely grateful to them for

their endless support.

Finally, I wish to thank my teammates at the 3D Optical Metrology Unit of Bruno

Kessler Foundation and Strategic Innovation Research Group of Skoltech for having a

great time together. They have always been helpful and good friends.

12

13

Table of Contents

Abstract ... 5

Publications ... 8

Acknowledgments... 11

Table of Contents .. 13

List of Symbols, Abbreviations .. 17

List of Figures ... 20

List of Tables .. 26

List of Algorithms ... 31

 Introduction ... 33

1.1. Motivations ... 34

1.2. Geospatial Data Acquisition Techniques .. 36

1.2.1. Terrestrial .. 36

1.2.2. Airborne .. 38

1.2.3. Spaceborne .. 40

1.3. Point Cloud Generation Methods.. 43

1.3.1. Airborne and Spaceborne Photogrammetry .. 44

1.3.2. Airborne LiDAR ... 50

1.4. Point Cloud Classification .. 51

1.5. Goal and Research Objectives .. 54

1.6. Thesis Structure .. 57

 Literature Review ... 60

14

2.1. An Overview of Artificial Intelligence ... 60

2.2. Geospatial Point Cloud Classification with Classic Machine Learning 65

2.3. Geospatial Point Cloud Classification with Deep Learning 69

2.4. Summary of the Chapter ... 75

 Proposed Framework ... 78

3.1. Point Cloud Preprocessing with Downsampling .. 79

3.2. Feature Extraction ... 82

3.3. Classification with Deep Learning and Machine Learning 87

3.4. Post-Processing for Instance Segmentation of the Buildings 91

3.5. Summary of the Chapter ... 93

 Results and Accuracy Assessment .. 95

4.1. Accuracy Assessment Methodology ... 95

4.2. Validation Datasets ... 98

4.2.1. ISPRS 3D Semantic Labeling Contest Dataset (ISPRS Vaihingen) 99

4.2.2. DALES Dataset ... 101

4.2.3. LASDU Dataset .. 102

4.2.4. Bordeaux Dataset .. 103

4.2.5. 3DOMCity Dataset ... 105

4.3. Point Cloud Preprocessing for Density Analysis .. 106

4.4. Results on Validation Datasets ... 113

4.4.1. ISPRS Vaihingen .. 114

4.4.2. DALES .. 117

15

4.4.3. LASDU ... 119

4.4.4. Bordeaux ... 123

4.4.5. 3DOMCity .. 125

4.5. Summary of the Chapter ... 128

 Validation of the Framework ... 130

5.1. Generalization Experiments .. 130

5.2. Comparisons with the State-of-the-Art ... 138

5.3. Summary of the Chapter ... 141

 Discussion and Conclusions ... 144

6.1. Discussion ... 144

6.2. Summary of the Achievements ... 149

6.3. Limitations and Future Work .. 149

6.4. Conclusions ... 151

Bibliography ... 155

Appendices A .. 169

16

17

List of Symbols, Abbreviations

2D – Two Dimensional

2.5D – Two-and-a-half Dimensional

3D – Three Dimensional

3DOM – 3D Optical Metrology

AI – Artificial Intelligence

ALS – Airborne Laser Scanning

CPU – Central Processing Unit

CNN – Convolutional Neural Network

DALES – Dayton Annotated LiDAR Earth Scan

DNN – Deep Neural Network

DL – Deep Learning

DTM – Digital Terrain Model

EDM – Electronic Distance Measurement

GCP – Ground Control Point

GNSS – Global Navigation Satellite System

GPU – Graphics Processing Unit

GSD – Ground Sampling Distance

IoU – Intersection-Over-Union

ISPRS – International Society for Photogrammetry and Remote Sensing

18

KNN – K-Nearest Neighbor

LASDU – Large-Scale Aerial LiDAR Point Clouds of Highly-Dense Urban Areas

LiDAR – Light detection and ranging

mIoU – Mean Intersection-Over-Union

ML – Machine Learning

OA – Overall Accuracy

RANSAC – Random Sample Consensus

RGB – Red, Green, Blue

RF – Random Forest

RNN – Recursive Neural Network

SAC – Sample Consensus

SGD – Stochastic Gradient Descent

SQRT – Square Root

SVM – Support Vector Machine

TLS – Terrestrial Laser Scanner

TOF – Time Of Flight

TONIC – efficienT classification Of urbaN poInt Clouds

UAV – Unmanned Aerial Vehicle

UTM – Universal Transverse Mercator

19

20

List of Figures

Figure 1-1. Land cover map (Pulvirenti et al., 2020) and cadastral map examples (Comune

di Trento, 2021), respectively left and right images. .. 34

Figure 1-2. Trimble C5 total station (Trimble, 2021) and TLS (Riegl, 2021), respectively

left and right images.. 37

Figure 1-3. Example of fieldwork for GCP surveying (Ground Control Points for Drone

Mapping, 2021) ... 38

Figure 1-4. Sample Image sample from Corona Spy Satellite System, The Pentagon, 25

September 1967 (Corona (satellite), 2021) ... 41

Figure 1-5. Simplified DSM (red) and DTM (blue) comparison (Digital Elevation Model,

2021). .. 41

Figure 1-6. DSM samples were produced with airborne and spaceborne data, respectively

left and right images.. 42

Figure 1-7. Top view for building and surroundings: 3D irregular point cloud (left) and

DSM, colorized based on the height (blue: lower, green: higher). 44

Figure 1-8. Visualization of central projection adapted from Gomarasca (2009). 45

Figure 1-9. Photogrammetric stereo pair geometry overview, adapted from Linder (2009).

... 46

Figure 1-10. Image and object coordinates relations adapted from Kraus (2007). 47

Figure 1-11. Examples for nadir (left) and oblique (right) images from the 3DOMCity

benchmark (Özdemir et al., 2019b). ... 48

21

Figure 1-12. Building model generation example. From left to right: image of the building,

point cloud extracted with classification and randomly colorized for each extracted planar

segment, point cloud and derived 3D model of the building together, 3D model of the

building. .. 51

Figure 1-13. Classification tasks are shown on the image domain. Figure retrieved from

Liu et al. (2020). (a) image object classification, (b) object detection and localization, (c)

semantic segmentation, (d) instance segmentation. .. 52

Figure 1-14. Example on classified (a) and unclassified (b) point clouds from the

3DOMCity Benchmark (Özdemir et al., 2019b) .. 54

Figure 2-1. Rule-based systems, ML, representation learning, and DL methods are shown.

Figure adapted from Goodfellow et al. (2016). .. 62

Figure 2-2. Relationship between AI approaches with example algorithms. Adapted from

Goodfellow et al. (2016). .. 63

Figure 2-3. Interest over time for support vector machine (blue) and convolutional neural

networks (red) between January 2004 and June 2021 (Google Trends, 2021). 64

Figure 2-4. Pipelines for DL and ML approaches for geospatial point cloud classification.

Dark blue boxes represent modules that can learn.. 65

Figure 2-5. A brief look to the literature. TONIC: efficienT classification Of urbaN poInt

Clouds framework (Özdemir et al., 2021). ... 76

Figure 3-1. TONIC framework. .. 79

Figure 3-2. Voxel-grid filtering: the unevenly distributed points (blue) in the voxel (black

cube); the centroid of the input points (red), which is the output of the filtering. 81

22

Figure 3-3. Original (left) and after (right) voxel-grid filtering. Black circles highlight the

eliminated density variation, red circles highlight the overall data reduction. 82

Figure 3-4. Local elevation change (a), local planarity (b), vertical angle (c), height above

ground (d) are shown on the ISPRS Vaihingen Dataset. Colors scaled as blue-green-

yellow-red, from lower to higher values. .. 86

Figure 3-5. Workflow of the proposed classification framework based on DL. 87

Figure 3-6. The matrix structure generated for each point: Pn denotes points, dx,y,z denotes

matrix-wise scaled coordinates (blue cells), and Fm represents the features (green cells).

... 88

Figure 3-7. Network structure of the 2DCNN (BN: batch normalization). 89

Figure 3-8. Sample matrices, rendered as images for visualization. Matrices are transposed

for better illustration. .. 89

Figure 3-9. Network structure of the 3DCNN (BN: batch normalization). 90

Figure 3-10. Sample tensors, rendered as color images for visualization. Transposed for

better illustration. .. 91

Figure 3-11. An example of classification result, 2DCNN method on the ISPRS Vaihingen

dataset. .. 91

Figure 3-12. Instance segmentation workflow for buildings. ... 92

Figure 3-13. Building instances (randomly colored) and the other objects (gray), ISPRS

Vaihingen evaluation dataset. ... 93

Figure 4-1. Visualization of true positive, true negative, false positive, and false negative.

... 96

23

Figure 4-2. Intersection over union visualization, where the blue rectangle shows prediction

and the green rectangle shows the ground truth.. 97

Figure 4-3. The ISPRS Vaihingen dataset, training data shown alone for better

visualization. ... 100

Figure 4-4. The DALES Dataset, a tile from the training set shown. 101

Figure 4-5. The LASDU point cloud with five classes (a). The parts for training and testing,

red and blue respectively (b). .. 103

Figure 4-6. The Bordeaux point cloud with five classes (a). The parts for training and

testing, red and blue respectively (b). ... 104

Figure 4-7. The 3DOMCity point cloud with six classes (a). The parts for training and

testing, red and blue respectively (b). ... 106

Figure 4-8. Relation between nearest neighborhood and resolution on the image. The pixels

y are the nearest neighbors of the pixel x, at 1-pixel resolution. The red circle is the smallest

circle to cover the nearest neighbors; the thick blue line is the distance from the border of

pixel x to the red circle, which is sqrt(12 + 12) ≈ 1.41 pixels.. 108

Figure 4-9. The ISPRS Vaihingen dataset as used for density analysis. Training (red),

validation (green), and rest (blue) of the dataset... 110

Figure 4-10. Classification results of the ISPRS Vaihingen dataset with proposed DL

methods and ML method. ... 115

Figure 4-11. Building instances (randomly colored) and the other objects (gray), the ISPRS

Vaihingen evaluation dataset. ... 116

24

Figure 4-12. Classification results of the DALES dataset with proposed DL methods and

ML method. Two of the tiles shown as samples. .. 118

Figure 4-13. Building instances (randomly colored) and the other objects (gray). Two of

the tiles shown as samples. ... 119

Figure 4-14. Classification results of the LASDU dataset with proposed DL methods and

ML method.. 121

Figure 4-15. Building instances (randomly colored) and the other objects (gray), LASDU

evaluation dataset. ... 122

Figure 4-16. Classification results of the Bordeaux dataset with proposed DL methods and

ML method.. 124

Figure 4-17. Building instances (randomly colored) and the other objects (gray), Bordeaux

evaluation dataset. ... 125

Figure 4-18. Classification results of the 3DOMCity dataset with proposed DL methods

and ML method. .. 127

Figure 5-1. Classification results of the ISPRS Vaihingen dataset on models trained with

the DALES dataset. ... 133

Figure 5-2. Classification results of Bordeaux dataset on models trained with the DALES

dataset. .. 135

Figure 5-3. Classification results of the Bordeaux dataset on models trained with the ISPRS

Vaihingen dataset. ... 137

Figure 5-4. EfficientNetB7 implementation via TensorFlow library. 138

25

26

List of Tables

Table 3-1. Formulas of the handcrafted features. ... 85

Table 4-1. Formulas of accuracy assessment metrics (N: total number of points in the point

cloud; c: number of classes; ni: number of points in class i; F1i: F1 score for the class i;

IoUi: IoU score for class i). ... 97

Table 4-2. Summary of the validation datasets (L: LiDAR, OP: oblique photogrammetry,

Lab: laboratory, Res: Resolution, IR-R-G: Infrared-red-green) 99

Table 4-3. Class distribution for training and validation point clouds of the ISPRS

Vaihingen dataset. ... 100

Table 4-4. Class distribution for training and validation point clouds of the DALES dataset.

... 102

Table 4-5. Class distribution for training and validation point clouds of the LASDU dataset.

... 103

Table 4-6. Class distribution for training and validation point clouds of the Bordeaux

dataset. .. 105

Table 4-7. Class distribution for training and validation point clouds of the Bordeaux

dataset. .. 106

Table 4-8. Density analysis on the ISPRS Vaihingen dataset. 111

Table 4-9. Density analysis on the LASDU dataset. .. 111

Table 4-10. Density Analysis on the Bordeaux dataset. ... 112

Table 4-11. Feature extraction and downsampling times for the Bordeaux Dataset times are

given in terms of seconds. ... 113

27

Table 4-12. The number of points in each dataset before and after the downsampling

procedure... 113

Table 4-13. Per-class accuracy assessment for the ISPRS Vaihingen dataset. Bold values

highlight higher scores among classifiers. LV: Low Vegetation. 114

Table 4-14. Average F1, class weighted average F1, and OA for the ISPRS Vaihingen

dataset. .. 114

Table 4-15. Per-class accuracy assessment for the DALES dataset. Bold values highlight

higher scores among classifiers. ... 117

Table 4-16. Average F1, class weighted average F1, and OA for the DALES dataset. . 117

Table 4-17. Per-class accuracy assessment for the LASDU dataset. Bold values highlight

higher scores among classifiers. LV: Low Vegetation. .. 120

Table 4-18. Average F1, class weighted average F1, and OA for the LASDU dataset. . 120

Table 4-19. Per-class accuracy assessment for the Bordeaux dataset. Bold values highlight

higher scores among classifiers. ... 123

Table 4-20. Average F1, class weighted average F1, and OA for the Bordeaux dataset.

... 123

Table 4-21. Per-class accuracy assessment for the 3DOMCity dataset. Bold values

highlight higher scores among classifiers. .. 126

Table 4-22. Average F1, class weighted average F1, and OA for the 3DOMCity dataset.

... 126

Table 5-1. Original feature spaces and modifications for generalization experiments. .. 131

28

Table 5-2. Corresponding classes between the DALES and the ISPRS Vaihingen datasets,

along with their distributions, are shown. ... 132

Table 5-3. F1 and IoU scores for 2DCNN and 3DCNN classifiers trained on the DALES

dataset and predicting on the ISPRS Vaihingen dataset. .. 132

Table 5-4. Average F1, class weighted average F1, and OA for 2DCNN and 3DCNN

classifiers trained on the DALES dataset and predicting on the ISPRS Vaihingen dataset.

... 132

Table 5-5. Corresponding classes between the DALES and Bordeaux datasets, along with

their distributions, are shown. ... 134

Table 5-6. F1 and IoU scores for 2DCNN and 3DCNN classifiers trained on the DALES

dataset and predicting on Bordeaux dataset. ... 134

Table 5-7. Average F1, class weighted average F1, and OA for 2DCNN and 3DCNN

classifiers trained on the DALES dataset and predicting on Bordeaux dataset. 135

Table 5-8. Corresponding classes between the ISPRS Vaihingen and the Bordeaux datasets,

along with their distributions, are shown. ... 136

Table 5-9. F1 and IoU scores for 2DCNN and 3DCNN classifiers trained on the ISPRS

Vaihingen dataset and predicting on the Bordeaux dataset. ... 136

Table 5-10. Average F1, class weighted average F1, and OA for 2DCNN and 3DCNN

classifiers trained on the ISPRS Vaihingen dataset and predicting on the Bordeaux dataset.

... 137

Table 5-11. Comparison of the performances between TONIC framework and recent

papers, ordered by OA. TFLOPS indicates the computational power of the GPU for single-

29

precision floating-point (FP32) operations. Training times are given in hours. Differences

from the highest OA score in the table are shown with asterisk. 139

Table 5-12. Comparison of the performance between different GPUs, running the same

model... 140

Table 5-13. IoU per class and OA scores on the DALES dataset with respect to current

state-of-the-art methods. ... 141

Table 5-14. F1 scores and OA scores on the LASDU dataset with respect to current state-

of-the-art methods. .. 141

Table 6-1. Summarized OA achieved in distinct datasets. ... 145

Table 6-2. Summarized OA for the generalization tests. .. 146

Table 6-3. Average OA per model. DD: Distinct Datasets, Gen.: Generalization 146

30

31

List of Algorithms

Algorithm 3-1. Multi-scale knn search implementation. 84

Algorithm 3-2. Identification of the possible lowest point. 86

32

33

Introduction

Objects on maps or in databases connected to the Earth’s surface by locations

(coordinates, addresses, or different methods) are considered geospatial information,

composing ~80% of all the data (Bossler et al., 2010). There are various use cases for

geospatial data, including but not limited to 2D/3D cadaster, navigation, urban studies,

flight simulation, and oceanography.

The type of the required geospatial data for a project depends on the purpose, so

does the platform for acquiring the data. For instance, for cadaster purposes, the required

accuracy for the final map is commonly fixed by the regulations, and frequently, it is in

terms of centimeters, which is not possible to be achieved with spaceborne data by today’s

technology. Another example can be global land cover mapping (such maps include

thematic information representing the type of the land, such as water, forest, or soil), which

does not require the same geometric accuracy as cadaster. Considering the scale, it is more

feasible to use spaceborne data for such purposes. As seen in these two examples, shown

34

in Figure 1-1, different types of geospatial data can be used for different purposes and can

be considered complementary.

Keeping the focus on the scope of this study, the following sections will be detailing

motivations, geospatial data acquisition techniques, point cloud generation and processing

methods, goal and research objectives, and the structure of the thesis.

Figure 1-1. Land cover map (Pulvirenti et al., 2020) and cadastral map examples (Comune

di Trento, 2021), respectively left and right images.

1.1. Motivations

In recent years, point cloud processing techniques are extensively investigated by

the research community for various applications (Grilli et al., 2017; Liu et al., 2019; Bello

et al., 2020). Among these, geospatial point cloud classification methods hold an important

place, as assigning semantic information to these point clouds allows for the widespread

use of such geospatial data (Rottensteiner et al., 2012). Such enriched point cloud could be

35

preparatory for change detection (Qin et al., 2016), 3D building modeling (Özdemir and

Remondino, 2018), planning (Urech et al., 2020), and so on.

Being an important and challenging task, semantic enrichment of geospatial point

clouds is also one of the main topics in the research community. There are many studies

presented in the literature focusing on a semantic interpretation of 3D point clouds with

different techniques (Su et al., 2015; Kanezaki et al., 2018; Wang et al., 2019) and for

various approaches (Becker et al., 2018; Bittner et al., 2018; Huang et al., 2018; Maltezos

et al., 2019), as presented in Chapter 2.

To the best of my knowledge, many of the current point cloud classification

solutions are confined to either specific data (e.g., only for LiDAR acquisitions) or

scenarios (indoor, outdoor, terrestrial, or aerial). This is due to (i) the complexity of the

point cloud classification process, (ii) differences in the data structure, (iii) the need for

specific training data, as well as (iv) generalization problems. Despite these challenges,

various studies in the literature have demonstrated to achieve high accuracies (≿80%) in

geospatial benchmark datasets. However, it was noticed that these studies are not

developed to cope with data from different data sources, density variations, generalization,

and low GPU memory at once. Therefore, these challenges are considered as open research

issues to be faced in the PhD work. Most of the existing solutions for point cloud

classification are considered impracticable for daily applications (such as city-scale or

country-scale applications of a national mapping agency), which roots the motivations for

developing TONIC framework (Chapter 3), i.e., a practical and powerful AI-based solution

36

for geospatial point cloud classification which tried to tackle the aforementioned challenges

and open issues.

In summary, the overall motivations of this PhD work are as follows:

- Need for a sensor independent classification framework: the tools commonly

used for daily purposes by the mapping agencies are sensor dependent, which

means that the software can process data coming from a specific sensor (i.e.,

LiDAR), but not from an alternative (i.e., photogrammetry).

- Large-scale applicability: national mapping agencies usually deal with

enormous datasets; hence memory usage, computational power, generalization

capabilities, and varying data structures are all important issues.

- Time and cost optimization: many geospatial point cloud classification tasks

are handled manually, whereas the automation of these steps in the mapping

pipeline will speed up map-making, therefore reducing the overall cost.

1.2. Geospatial Data Acquisition Techniques

The geospatial data acquisition techniques can be categorized by the platform used,

such as terrestrial, airborne, and spaceborne. In the following sections, geospatial data

acquisition techniques will be detailed in these three categories.

1.2.1. Terrestrial

The history of terrestrial mapping with land surveys dates back to the Babylonian

era to specify the property borders with stones (Brinker and Minnick, 1995). Since then,

37

terrestrial surveying has come a long way by using current technologies like total stations

and laser scanners (Figure 1-2). Terrestrial geospatial data acquisition techniques can reach

accuracies below a centimeter while providing fast data acquisition (Gopi et al., 2018;

Stenz et al., 2020).

Figure 1-2. Trimble C5 total station (Trimble, 2021) and TLS (Riegl, 2021), respectively

left and right images.

In a land surveying study, which can be considered the most basic terrestrial data

acquisition, the workflow includes planning the survey, data collection in the field, post-

processing of the acquired data with computers, and delivering the data (most commonly

to a GIS database). Typical applications with the data acquired using terrestrial techniques

include but are not limited to; cadaster, construction, topographic map production, mine

surveying, GCP surveying for photogrammetry/remote sensing studies, cultural heritage

modeling with terrestrial photogrammetry, and mobile mapping applications.

38

Figure 1-3. Example of fieldwork for GCP surveying (Ground Control Points for Drone

Mapping, 2021)

1.2.2. Airborne

The first airborne data acquisition dates back to 1858 by Gaspard Tournachon using

a manned balloon over Paris. Ever since, airborne data acquisition techniques have adapted

the use of balloons, pigeons, kites, rockets, helicopters, airplanes, and UAVs (Eisenbeiß,

2009). Such airborne data are used for photogrammetry and remote sensing studies.

Photogrammetry and remote sensing are defined by Gomarasca (2009) as follows:

“Art, science and technology to obtain valid information about physical objects and the

environment, through the processes of collection, measure and interpretation of images

(photographic or digital) and analog or digital representation of the models of electromagnetic

energy derived from survey systems (photographic cameras or scanning systems), without contact

with the objects.”

In order to understand the major difference between photogrammetry and remote

sensing, one may prefer the definition of photogrammetry made by Luhmann et al. (2019)

39

as follows: “Photogrammetry encompasses methods of image measurement and interpretation in

order to derive the shape and location of an object from one or more photographs of that object.”.

This definition suggests the main focus of photogrammetry as metric information (“shape

and location”) extraction using photographs. On the other hand, the definition for remote

sensing made by Konecny (2014) clarifies the difference: “Remote sensing can be considered

as the identification or survey of objects by indirect means using naturally existing or artificially

created force fields.”. It can be inferred from this definition that the remote sensing

technique’s primary focus is on thematic information (“identification or survey objects”)

extraction.

The abovementioned techniques utilize images for metric and semantic information

extraction. In addition to these two, LiDAR (light detection and ranging), utilizes laser

light. The laser light is used for ranging, which means the main focus of the technique is

again on the metric information, generating a collimated light beam (Gomarasca, 2009).

The LiDAR technique has different advantages and disadvantages compared to

photogrammetry. On the one hand, a primary advantage can be seen as the delivery of the

3D point cloud without image processing, while on the other hand, a common disadvantage

can be seen as the missing color information. One of the most recent trends in this field is

using an acquisition system combining these two techniques (LiDAR and

photogrammetry) to take advantage of both, which is named hybrid, and an example sensor

can be Leica CityMapper-2 Hybrid Airborne Sensor (2021). A point cloud produced in

this way includes color information from photogrammetry along with additional LiDAR

features.

40

Besides these introductory discussions, photogrammetry and LiDAR techniques

will be discussed under Section 1.3 Point Cloud Generation Methods.

1.2.3. Spaceborne

The roots of spaceborne geospatial data date back to the Cold-War era, based on

the reconnaissance needs. The Soviet Union used the Zenit satellites system, while the

USA used the Corona system in the early 1960s (Figure 1-4). The actual data acquisition

steps were analog, based on retrieving the films from the orbiting satellites (Pelton et al.,

2017).

Shifting the focus to the present day, it is not only the technology evolutions

pushing spaceborne techniques but also the evolutions in the needs and common use cases.

In addition to original motivations, spaceborne techniques have been one of the main data

sources for modern map-making studies. The most common applications of spaceborne

geospatial data are thematic maps produced with remote sensing techniques. Being

acquired from space, two of the main advantages for such data can be considered large

coverage (orbits covering the most if not all the Earth’s surface) and high temporal

resolution (due to continuous orbiting of satellites). With the recent advances in

technology, spaceborne systems can achieve very high spatial resolutions such as 1 meter

or better (Tapete and Cigna, 2018).

41

Figure 1-4. Sample Image sample from Corona Spy Satellite System, The Pentagon, 25

September 1967 (Corona (satellite), 2021)

Spaceborne data are also becoming increasingly popular for DSM generation,

taking advantage of high-resolution satellite imagery and photogrammetry techniques.

DSM, being a grid-based height representation (structured as an image, where pixel values

are the heights) of the Earth’s surface (Figure 1-5) with all the objects on it, can be used

for 3D city modeling purposes as well asw many other GIS studies.

Figure 1-5. Simplified DSM (red) and DTM (blue) comparison (Digital Elevation Model,

2021).

42

Spaceborne DSM generation technique will be further discussed in Section 1.3

Point Cloud Generation Methods. As an example, Figure 1-6 shows two DSMs generated

using airborne LiDAR (Vaihingen, Germany (Cramer, 2010)) and spaceborne imagery

(Trento, Italy (Poli et al., 2013)), where both are rendered via hillshade with 45.0° altitude

and 315.0° azimuth using open-source GIS software QGIS (QGIS.org, 2021).

Figure 1-6. DSM samples were produced with airborne and spaceborne data, respectively

left and right images.

In addition to the abovementioned techniques, GNSS is another spaceborne data

acquisition technique. GNSS technique, in brief, can be described as a spaceborne radio

navigation system. Due to the scope of the thesis, it is not discussed in detail, yet, readers

may refer to a related book, such as the one from Hofmann-Wellenhof et al. (2012).

43

1.3. Point Cloud Generation Methods

Point clouds can be simply defined as a group of data points in space. In geospatial

science, a 3D point cloud is defined in a projected -Cartesian- coordinate system such as

UTM. As the coordinate systems are not within the scope of this study, readers may refer

to a related book, such as the one from Maling (1992).

There are two common data types representing 3D geospatial data; 3D point clouds

and DSMs. On the one hand, 3D point clouds have irregular distribution in space. In other

words, they are not in a grid structure. On the other hand, DSMs can be described as 2.5D

representations of the 3D point clouds in a grid structure. This means, to produce a DSM,

the 3D point cloud is projected to a 2D grid (like an image), where each grid’s value

represents the height. This procedure is also known as rasterization. In Figure 1-7, a 3D

irregular point cloud (Dortmund, Germany (Gerke et al., 2016)) and a DSM (Imst, Austria

(Toschi et al., 2021)) are shown side-by-side. The point cloud generation techniques

described in the upcoming sections are used for generating 3D point clouds. Then, based

on the necessity, a DSM can be produced. DSMs have been a popular product for many

mapping agencies as they include very similar geometric data yet, easier to process with

the GIS techniques.

Geospatial point cloud generation methods can be named as photogrammetry and

LiDAR, and the platform use can be terrestrial, airborne, and spaceborne. For the sake of

content integrity, airborne and spaceborne photogrammetry, as well as airborne LiDAR

techniques, will be further discussed in this section.

44

Figure 1-7. Top view for building and surroundings: 3D irregular point cloud (left) and

DSM, colorized based on the height (blue: lower, green: higher).

1.3.1. Airborne and Spaceborne Photogrammetry

To describe photogrammetry, in addition to the definitions made in Section 1.2.2,

one may look in detail at the word ‘photogrammetry’. The word is derived from three Greek

words ‘photos’, ‘gramma’ and ‘metron’, which mean ‘light’, ‘drawn’, and ‘measure’,

respectively. Therefore, ‘photogrammetry’ can be inferred as the art and science of

measuring with photographs.

The geometric basis of photogrammetry is central perspective geometry, as shown

in Figure 1-8.

45

Figure 1-8. Visualization of central projection adapted from Gomarasca (2009).

Using a single photograph with photogrammetry technique will result in a scaled

version of that photograph, which means the result will be in a 2D object space. Thus, in

order to achieve a 3D object space, there should be at least two images to make a stereo

pair, as seen in Figure 1-9. Such a stereo pair is expected to include photographs of the

same objects from different locations, enabling the photogrammetric evaluation of

acquired data. The object point Pxyz is observed from both images with image points P’ and

P” through a line passing through C. Therefore, P’, C and Pxyz are collinear points, as well

as P”, C and Pxyz. This collinearity condition brings Epipolar Plane when combined with

the base vector. This is known as the coplanarity condition in photogrammetry.

46

Figure 1-9. Photogrammetric stereo pair geometry overview, adapted from Linder (2009).

The mathematical model of photogrammetry is based on central projection,

collinearity, and coplanarity conditions mentioned above. All these allow the relationship

between the images and the objects to be defined as shown in Figure 1-10, where FC is the

center of the image coordinate system, PP is where the imaginary axis of the optical center

passes through the image plane and the others are as described in the figure.

47

Figure 1-10. Image and object coordinates relations adapted from Kraus (2007).

The relationship shown in Figure 1-10 is explained using Equation (1), where rij

are the elements of the rotation matrix of the image calculated based on the exterior

orientation parameters defining the angular position of the image around the X, Y, Z axes.

Due to content integrity, rotation matrix and further calculations are not introduced here,

yet, readers may refer to a photogrammetry book, such as Kraus (2007) or McGlone (2013).

 =
0
− 𝑐

𝑟11(𝑋 − 𝑋0) + 𝑟21(𝑌 − 𝑌0) + 𝑟31(𝑍 − 𝑍0)

𝑟13(𝑋 − 𝑋0) + 𝑟23(𝑌 − 𝑌0) + 𝑟33(𝑍 − 𝑍0)

(1)

 =
0
− 𝑐

𝑟12(𝑋 − 𝑋0) + 𝑟22(𝑌 − 𝑌0) + 𝑟32(𝑍 − 𝑍0)

𝑟13(𝑋 − 𝑋0) + 𝑟23(𝑌 − 𝑌0) + 𝑟33(𝑍 − 𝑍0)

48

One of the most recent trends in airborne photogrammetry is the adoption of oblique

imagery. In airborne photogrammetric applications, the typical data acquisition approach

used to be based on nadir-only imagery, in which a single image is acquired with a camera

fixed at nadir direction (-Z in Figure 1-10). With the oblique image acquisition (Figure

1-11) technique, five images are acquired simultaneously: one in the nadir direction and

four in the left, right, front and back directions (i.e., ±45º from ZX and ZY planes). The

additional oblique images provide visibility on the facades of the buildings and other

objects, increasing the completeness and the captured details of the acquired data.

Figure 1-11. Examples for nadir (left) and oblique (right) images from the 3DOMCity

benchmark (Özdemir et al., 2019b).

Spaceborne photogrammetry can be seen as an extension to airborne

photogrammetry, where the significant changes are in the data acquisition. These changes

49

can be summarized as image acquisition equipment, acquisition network, acquisition time

interval, and atmospheric effects (Qin, 2019). In airborne systems, commonly, a camera

captures a photograph with a central perspective, as shown in Figure 1-8. In comparison to

these systems, in spaceborne photogrammetry, remote sensing satellite systems acquire the

images. Such systems do not have a camera with a central perspective geometry. Instead,

they commonly use multiple central perspective types of sensors (push broom or whisk

broom). The acquisition network (positions of the camera centers for image acquisition)

for airborne photogrammetry is designed by the experts during flight planning, where the

flight altitude and overlap ratios of images are considered. In spaceborne, however, the

satellites follow their orbit at a certain speed which does not allow image acquisition

planning by experts. Due to the same reason, the experts cannot decide the image

acquisition time intervals either.

Last but not least, another significant difference is the atmospheric effects. As the

satellites used in spaceborne systems fly at a much higher altitude than airborne systems,

the atmospheric effects will affect the images more. For further discussions on spaceborne

photogrammetric systems, readers may refer to the articles such as Poli et al. (2015), Qin

(2019), or Han et al. (2020), while for further information about spaceborne systems,

readers may refer to a remote sensing book, such as the one from Konecny (2014).

50

1.3.2. Airborne LiDAR

As mentioned in the previous section, LiDAR utilizes laser light for distance

measuring (ranging). LiDAR systems use one of the two common methods; time-of-flight

(TOF) or phase measurement.

TOF method follows these simplified steps:

(i) emitting laser radiation and starting the time counter;

(ii) counting the time till the laser radiation returns;

(iii) stopping the time counter once the sent laser radiation is returned (detection);

(iv) distance covered by the laser radiation is calculated based on how much time

it spent during the travel, as the speed is known a priori.

The alternative approach, named phase measurement, shares the same steps for

emitting laser radiation and detecting its return. The difference is that the receiving sensor

measures the phase difference between the sent laser radiation and the received one. The

measured phase difference is then used for calculating the distance the laser radiation has

traveled.

Among these two methods, the acquired data reflect the differences in the working

mechanisms as well. The few major differences in the acquired data can be summarized as

TOF systems expected to produce fewer points per second and operate at higher ranges

than phase difference measuring systems. For further details, readers may refer to books

on this topic, such as Vosselman and Maas (2010) or Shan and Toth (2018).

51

1.4. Point Cloud Classification

Point clouds are one of the most common products of geospatial studies. However,

they are not necessarily the final product. Point clouds can provide a highly detailed and

high-resolution 3D representation, yet, they are not very feasible when using them for map-

making. One of the main reasons for that is a point cloud can give only the answer to the

question ‘where?’, but not to ‘what?’. Another reason is that a point cloud per se does not

include information such as faces or edges of the represented geometry. In order to get an

answer to the question of ‘what?’, a point cloud should be enriched with semantic

information, which is possible by semantic segmentation (also known as classification).

For generating further geometric information, a mesh model should be generated. Example

usage of semantic information and model generation from Bergamo / Italy can be seen in

Figure 1-12. The building model is generated after corresponding points are extracted from

a city-scale point cloud using classification approach (Özdemir and Remondino, 2018).

Figure 1-12. Building model generation example. From left to right: image of the building,

point cloud extracted with classification and randomly colorized for each extracted planar

segment, point cloud and derived 3D model of the building together, 3D model of the

building.

52

Classification can be defined as assigning a class label to each given data point. A

data point can be an image, a pixel of an image, a point cloud, or a point in a point cloud.

Depending on the task, classification can be referred to with different names. For instance,

assigning a class label to a point cloud (Liu et al., 2019) or an image (Liu et al., 2020) can

be referred to as object classification. The terminology for the classification tasks is

commonly defined as shown in Figure 1-13.

(a) (b)

(c) (d)

Figure 1-13. Classification tasks are shown on the image domain. Figure retrieved from

Liu et al. (2020). (a) image object classification, (b) object detection and localization, (c)

semantic segmentation, (d) instance segmentation.

As shown in Figure 1-13, image object classification refers to assigning a label (or

labels) to a single input (image), where the locations of the object(s) within the input are

unknown. Object detection and localization also provide the location of each object within

53

the input using a bounding box. Taking a step further with semantic segmentation, a class

label is assigned to each part of the input (pixel in the image), which enables the extraction

of the exact location within the input (borders of the objects within the image, instead of a

bounding box), yet, the information about individual objects is possible only with the

instance segmentation technique.

Various studies focus on different perspectives of deep learning (DL)-based point

cloud processing, including 3D shape classification, 3D object detection (Yan et al., 2020),

and 3D point cloud classification (Hackel et al., 2017). The main differences among these

tasks are similarly represented in Figure 1-13. In order to clarify in the 3D point cloud

domain, the definitions in the literature are given below based on Guo et al. (2020) and Liu

et al. (2019):

- 3D shape classification is where the deep neural network (DNN) learns the

global shape of the given point cloud objects (i.e., a teapot, a car).

- 3D object detection is where the DNN is fed with an entire scene and returns

the bounding boxes for each one of the detected objects (i.e., pedestrians, trees,

and cars in the street).

- 3D point cloud classification is where the DNN is, again, fed with an entire

scene and returns class probabilities for each point. Commonly the class label

with the highest probability is assigned to each one of the points. The challenge

here is that the network needs to learn both global and local geometric structures

in order to succeed.

54

Keeping the focus on the geospatial point clouds, the term ‘classification’ in this

domain is commonly used for the task where a class label is assigned to each point in the

point cloud. Therefore, the closest task definition from Figure 1-13 could be the semantic

segmentation, which is widely used by the community. Figure 1-14 shows a classified-

versus-unclassified point cloud.

For further reading on the topic, readers may refer to a DL book (Goodfellow et al.,

2016) or a survey article (Guo et al., 2020).

(a) (b)

Figure 1-14. Example on classified (a) and unclassified (b) point clouds from the

3DOMCity Benchmark (Özdemir et al., 2019b)

1.5. Goal and Research Objectives

Given the motivations (Section 1.1) and the recent developments in the state-of-

the-art (Chapter 2) the goal of this study is to develop a point cloud classification

framework for geospatial point clouds that achieves better or similar accuracies compared

to the state-of-the-art (≿80%) with a more efficient (in terms of computational time and

hardware requirements) methodology. In this way, the developed framework can be a

55

feasible solution for daily applications with large datasets (i.e., city-scale or country-scale).

This feasibility is considered as a step forward from research projects, where the datasets

are significantly smaller, towards daily applications.

The observed challenges (as mentioned Section 1.1) in the literature (Chapter 2)

root the motivations to develop a framework with the following objectives in order to

address these challenges more effectively:

(i) Invariant to different data sources: A framework designed for adapting any

data source, including photogrammetry (oblique or nadir-only acquisitions),

LiDAR, or their combination;

(ii) Generalizable: Point clouds acquired with different sensors in different

locations have varying characteristics such as density. Therefore, a high

generalization capability is required for being able to handle such dataset

variety;

(iii) Invariant to point cloud density variations: A point cloud may have density

variations, which changes the local geometry within the dataset and hampers

classification;

(iv) Low computational cost and hardware requirement: The DL frameworks

commonly require GPUs with high memory, which increases the hardware

cost (also energy consumption in many cases). A deep neural network that

cannot be used without a high-memory GPU creates a bottleneck for

usefulness, especially for large-scale applications (such as nationwide

mapping);

56

(v) Accuracy better or similar than the current state-of-the-art methods (≿80%).

Based on the way the handcrafted features treated (Section 3.1.2) with CNNs, this

work can be categorized as architectural innovation. To my knowledge, no other methods

use this approach. The patches are generated (a 2D matrix or a 3D array per point) using

handcrafted features and coordinates of the neighboring points, and then processes as

images aiming to predict a class label per point. Therefore, in terms of innovation, this

approach can be considered as a new relationship between geospatial point clouds and

CNNs (Henderson and Clark, 1990).

The novelty of this PhD work can be considered as the entire point cloud

classification framework which links aerial point clouds with CNN methods. The

developed methodology, named TONIC, is able to process aerial point clouds acquired

with different sensors and at different densities. It achieves accuracy values in the same

order as current state-of-the-art methods. It can be generalized to process unseen datasets

and requires low computational resources compared to other existing methods. Therefore,

for the first time, a geospatial point cloud classification framework can efficiently achieve

high accuracies with a proven generalization capability, which supports the method

towards being a feasible solution for daily applications as it would not need separate

training dataset for each distinct dataset.

57

1.6. Thesis Structure

The thesis is structured in six chapters starting with this introductory chapter,

followed by a literature review, proposed frameworks, results, validation of the proposed

framework, and finalized with discussions and conclusion.

The introduction chapter is focused on motivations, geospatial data acquisition

methods, point cloud generation, and processing methods, as well as discussing the goal

and research objectives of the study.

The literature review chapter discusses the classification and semantic

segmentation methods used for geospatial data in the state-of-the-art. Therefore, the

artificial intelligence methods will be addressed initially, then, various ML and DL

approaches will be reviewed, focusing on geospatial point cloud data. The section will be

ended with a brief look to the state-of-the-art.

In the proposed framework chapter, geospatial point cloud classification framework

will be discussed in detail, including point cloud preprocessing, feature extraction, DL

approach, and post-processing for instance segmentation.

In the results chapter, the datasets to be used for validating the developed

methodology will be explained and the proposed framework will be evaluated on these

datasets.

In the validation chapter, the developed methodology will be evaluated for

generalization. Furthermore, it will be compared to the state-of-the-art in terms of accuracy

as well as hardware requirements and computation time.

58

In the discussions and conclusion chapter, the results will be further discussed along

with the limitations of the proposed frameworks and the future works, and a conclusion

will be made.

In the appendices, some codes related to the thesis are shared.

59

60

Literature Review

In this section, firstly, artificial intelligence (AI) will be discussed with the phases

it has been through over the decades, along with some basic descriptions. Afterward, the

literature will be reviewed for AI studies focused on geospatial point cloud classification

and a summary of the state-of-the-art will be given.

2.1. An Overview of Artificial Intelligence

AI can be described as techniques allowing computers to simulate the intelligence

of the human. These techniques can be as simple as a hard-coded knowledge base

implementation (i.e., early AI studies with rule-based systems) or complex artificial neural

networks (i.e., more recent AI studies with DL). The first studies in the AI domain date

back to the early 1900s, when manually designed basic statistical methods were used for

identification (Garson, 1900). Throughout the decades, AI methods evolved into different

61

phases of rule-based systems, classic machine learning, representation learning, and -most

recently- DL:

- Rule-based systems depends on a knowledge base, which can be seen as a

collection of hard-coded information. Received data is then evaluated based on

these set of rules.

- Classic Machine Learning (ML) is a sort of capability, which enables the

machines to gain knowledge by learning the patterns from the data itself. In this

case, the data machine learns is typically the representation of the data (rather

than the raw data), which is formulated by the experts and commonly named as

handcrafted features.

- Representation Learning is the method in which the machine learns the

representations from the data itself. In this way, the machine learns connections

not only between the data and its representation but also between the

representation and the output.

- Deep Learning (DL) method, like representation learning, can derive

representations from the data. Moreover, this method is also capable of deriving

representations of the representations, which makes it deep.

DL method being the most recent among these, is more complex. However, this

complexity enables solving more difficult tasks with higher accuracies, meaning more

useful results. Figure 2-1 shows the AI methods side-by-side in order to compare them in

an easier way.

62

Figure 2-1. Rule-based systems, ML, representation learning, and DL methods are shown.

Figure adapted from Goodfellow et al. (2016).

As Figure 2-1 represents the basic differences of these approaches, Figure 2-2

demonstrates the relations between them. It can be seen AI is the broad discipline covering

all rule-based systems, ML, representation learning, and DL.

63

Figure 2-2. Relationship between AI approaches with example algorithms. Adapted from

Goodfellow et al. (2016).

To clarify the relationships between AI approaches and better understand them, the

example algorithms of random forest, autoencoders, and multi-layer perceptron (MLP) are

briefly explained below:

- Random Forest (RF) is one of the most popular ML algorithms. The idea behind

this algorithm is to utilize multiple decision trees on a randomly generated

subspace of the given data.

- Autoencoder is a kind of neural network capable of deriving representation (also

known as code or feature) from the given input data. This kind of network

consists of two functions: encoder and decoder. The encoder function learns the

representation generation from the data, while the decoder learns how to create

the original data from these representations. This process of mapping is also

64

called reconstruction. The autoencoders include a hidden layer between the

input and output layers, which contains the description of the representation.

Earlier applications of autoencoders focused on data reduction and feature

learning, while recent studies focused on generative modeling.

- Multi-Layer Perceptron is one of the most typical examples of DL. The

objective of an MLP is to approximate a mathematical function. Such networks

structures do not have any connection from their outputs back to themselves

(known as feedback connections), and therefore, MLPs are also called

feedforward neural networks.

For further reading on autoencoders, MLPs, and DL in general, readers may refer

to a DL book such as Goodfellow et al. (2016), and for RF and other topics in ML to a

book such as Burkov (2019).

DL is a more recent and popular research field (Figure 2-3), it is supported by

researchers with various backgrounds (i.e., engineers, mathematicians, computer scientists,

architects, and so on).

Figure 2-3. Interest over time for support vector machine (blue) and convolutional neural

networks (red) between January 2004 and June 2021 (Google Trends, 2021).

65

Typical pipelines for geospatial point cloud classification with DL and ML can be

summarized in Figure 2-4. As it can be seen, DNN usage eliminates the need for

handcrafted feature extraction, while this is not the case for ML.

Figure 2-4. Pipelines for DL and ML approaches for geospatial point cloud classification.

Dark blue boxes represent modules that can learn.

Since this framework (Chapter 3) can be considered between ML and DL, in the

following subsections, the studies in the literature with ML and DL techniques for

geospatial point cloud classification will be reviewed.

2.2. Geospatial Point Cloud Classification with Classic Machine Learning

ML methods for geospatial point cloud classification focus on labeling each point

individually by processing their features. These features, which are defined by the expert

who handcrafts them, are extracted for each one of the points individually. Handcrafted

66

features typically describe local (i.e., planarity, linearity) or global geometry (i.e., height

above ground level, surface normal).

On the one hand, handcrafting features bring a few considerable advantages for

point cloud classification with ML:

(i) The expert knowledge can be reflected in the designed approach, which is

expected to ensure desired outcomes while making use of the expertise;

(ii) The handcrafted features are case-specific. Therefore, the number of

features does not need to be too high (compared to representation learning

methods) in most cases;

(iii) As a result of using fewer features, commonly, algorithms used for the task

do not need to be very complex. Thus, short processing times are expected.

On the other hand, handcrafting features may also bring some limitations:

(i) Having fewer features can lead to poor accuracy in complex tasks and

complex scenes. One cannot formulate too many features (especially

compared to DL methods);

(ii) Case-specific feature handcrafting may lead to poor generalization

capability;

(iii) For complex problems, features derived from more abstract features (as in

the DL, Figure 2-1) can be needed, which are not feasible to be handcrafted.

In many cases, the computational efficiency of the ML algorithms makes it

preferable, and some problems can be solved with high accuracy as well (Matrone et al.,

67

2020). However, as Heipke and Rottensteiner (2020) state, there is a limit to the extent of

feature handcrafting, and therefore, how good the results can be.

ML has been a popular research domain with various research studies carried on

with different perspectives. Weinmann et al. (2013) analyzed impact of the features in the

classification of terrestrial laser scanning (TLS) data. Their findings indicate few and

sophisticated features can achieve better performance measures compared to the use of an

increased number of features. The performance measures do not only include memory

consumption and computational efficiency but also accuracy. This is proving the

importance of expert knowledge in handcrafting features as mentioned above. Hackel et al.

(2016) suggest point density variations cause difficulties in terms of describing local

geometry as well as computational efficiency. Therefore, they present a TLS classification

method that can handle varying point densities. Their approach is based on downsampling

the entire point cloud and extracting features with a multi-level pyramid approach. They

implemented the nearest neighbor search for each level of the pyramid separately. In this

way, although the retrieved neighbor points are not exactly within the same radius for each

point, it is stated to be efficient for feature extraction. Thomas et al. (2018) focused on

utilizing multiscale spherical neighborhoods for indoor and outdoor LiDAR point clouds.

The spherical neighborhood, in comparison to the alternative k-nearest neighbors (knn),

has the advantage of ensuring the retrieved neighboring points to be within a given radius.

In contrast, the knn approach delivers a fixed number of points without any restrictions on

the distance. Based on this advantage, the authors indicate their classification framework -

using an RF classifier- can achieve accuracies such as 62% mean intersection-over-union

68

(mIoU) on the Paris-Lille-3D dataset. Pârvu et al. (2020) implemented a region growing

algorithm for the neighborhood retrieval of the feature extraction step. Their proposed

method utilizes region growing for each point in the given point cloud, and the extracted

segment is then used for computing the handcrafted features for representing the local

geometry. The proposed method is demonstrated to improve the classification accuracy for

ground and vegetation classes. Zhang et al. (2013) developed a classification method that

combines surface growing along with support vector machine (SVM) for LiDAR point

cloud classification. Their approach uses an object-based approach, which utilizes

segments (in other words, clusters) derived with surface growing as objects. Features are

extracted at a segment level, then, the SVM classifier is used for the classification of these

segments. The authors also implemented connected components-based refinement to cope

with noises in classification results. Vosselman et al. (2017) proposed a method

implementing multiple segmentation methods which allow context-based classification.

The proposed segmentation approach includes planar segmentation using Hough transform

(Illingworth and Kittler, 1988) as well as feature-based segmentation. The eliminated

points, which do not fit within the segmentation parameters during segmentation, are then

assigned to a class based on their neighborhood. Isolated points with no neighbors can be

left as unclassified. Li et al. (2019) applied label smoothing as a post-processing step in

order to improve classification results. Taking advantage of the graph-structured

framework by Landrieu et al. (2017), the authors initially generate an optimal graph using

the points’ coordinates. Afterward, they apply probabilistic label relaxation to improve the

consistency of the labels. In the final step, the data produced in the previous steps are used

69

as inputs for a graph-structured regularization, which forms the ultimate labels for the

points.

As seen, the studies in the literature focus on different challenges such as features

to extract (finding more related features), the scale of the local neighborhood for feature

extraction (multi-scale versus single scale), alternative ways to retrieve nearest points

(search radius versus knn), and post-processing of the classification results. Although some

of these studies present their methodologies on terrestrial datasets, they indicate common

issues which are also valid on airborne point clouds: feature selection, neighborhood

selection for feature extraction, and multi-scale feature extraction.

The current challenges and limitations of ML methods for geospatial point cloud

classification include feature engineering (especially for irregular/noisy point clouds as the

local geometry variety is high within the point cloud), solving complex problems (i.e., more

classes), being able to exploit more data, generalization, and transfer learning adaptation.

These challenges and limitations are considered to be rooted in the nature of ML methods,

as the algorithms are typically less complex (i.e., decision trees versus MLPs) than DL

methods.

2.3. Geospatial Point Cloud Classification with Deep Learning

As Wang et al. (2020) indicates, DL is becoming increasingly popular for different

data processing necessities. The two major reasons reported are the recent developments

in technology and the increase in the available datasets. The recent developments in

technology enabling realizing deeper (i.e., more layers) and wider (layers with more

70

parameters/filters) neural networks, while accessing more data for training and validation

helps to exploit these algorithms. Unlike ML methods, which are incapable of handling

(Wang, 2015). Being able to learn -the representation- from input data (Figure 2-1) and

achieve better results with better generalization ability (Wang et al., 2020), DL methods

are the current state-of-the-art in many applications, including geospatial point cloud

classification.

Point cloud classification methods have been developed with different approaches

based on convolutional neural networks (CNN), graph recursive neural networks (RNN),

point convolutions, point-wise MLPs, and so on (Guo et al., 2020). In this section, the

studies in the current state-of-the-art about geospatial point cloud classification with DL

will be detailed.

Geospatial point cloud classification has been studied by many researchers with

varying approaches. Charles et al. (2017) proposed PointNet, which consumes 3D point

clouds directly (nx3 input, where n is the number of points), and their proposed method is

capable of semantic segmentation. The proposed network utilizes several MLP networks

to extract global and local features from the given point set. Qi et al. (2017) developed

PointNet++ based on the previously mentioned PointNet. The network processes the point

cloud with varying neighborhoods for learning the local geometry better. The major

difference between PointNet and PointNet++ can be seen as the varying neighborhood

implementation for feature extraction. PointNet++, with this improvement, increased the

classification performance and has been a benchmark network since then. Yousefhussien

et al. (2018) developed a 1D-CNN-based method that can learn global and local geometric

71

features from a given point cloud for classification. Their method implements a multi-scale

approach. The network is capable of consuming the available spectral data (i.e., color data

from photogrammetric point clouds, or intensity LiDAR features) in addition to the 3D

coordinates. Özdemir et al. (2019a) proposed a method combining handcrafted features

with DL. In the proposed method, handcrafted features (namely covariance features and

height above ground using DEM, which are extracted within the framework) are used as

supplementary data along with the 3D point coordinates to boost the classification process.

Their results indicate that ML methods are not capable of exploiting all the additional

information, while DL is. The shared results also indicate the inclusion of handcrafted

features enables designing a shallower DNN, which allows faster computations. Li et al.

(2020a) developed a geometry-attentional DNN for airborne laser scanning (ALS). The

proposed method is based on geometry-aware convolutions with a dense hierarchical

architecture, including elevation-attention. Geometry-awareness can be described as the

extraction of the local pattern for a given point neighborhood using convolutional layers as

well as MLPs. The dense hierarchical architecture is based on implementing several skip

connections (the output of one layer is passed as the input of at least two layers: the next

layer and another further layer) between downsampling and upsampling blocks. Elevation-

attention is handled by feeding an MLP structure with the input points’ z coordinates as a

vector. Wen et al. (2021) developed a graph-attention-based approach that includes graph

local and graph global attentions. The graph local attention consists of edge and density

attentions using MLPs. Similarly, graph global attention also uses MLPs. However, the

graph here takes advantage of the Euclidean distances between every point, which is not

72

taken into consideration by other methods, according to the authors. Huang et al. (2020)

developed their DL method based on PointNet++. Their proposed approach includes

hierarchical data augmentation, which is not implemented in the original PointNet++

framework. The framework uses a nonlinear manifold-based joint learning approach and

removes redundant and disruptive information. The learned hierarchical deep features are

globally optimized and embedded into a low-dimensional space. In order to achieve global

optimization of the initial classification results, a graph-structured optimization based on

the Markov random fields approach is used. Li et al. (2020b) proposed Dance-Net, which

introduces a density-aware convolution module that approximates typical convolutions on

irregular 3D point clouds. The proposed density-aware convolution module reweights the

learnable weights of the convolution kernels based on the point-wise density. The module

approximates to a continuous convolution and is implemented in downsampling and

upsampling blocks, also called as the multi-scale approach. Winiwarter et al. (2019)

developed their method based on PointNet++ implementing a batching framework, which

enables processing larger (i.e., geospatial) point clouds. Another structural modification

they implemented is the ability to include additional features of the point cloud (i.e., colors,

LiDAR features) in computation. Chen et al. (2021) proposed other modifications to

PointNet++. The first proposed modification is about the treatment of the local

neighborhood points. The authors suggest the way the original network handles the local

neighborhood ignores the centroids of the local neighborhoods at different scales. In this

way, the authors report, irrelevant information may be learned by the network. Therefore,

they propose an alternative approach that takes centroids into consideration during the

73

processing of the local neighborhood points. The second proposed modification is the loss

function. The authors implemented a modified version of the focal (Lin et al., 2017) loss

function. The original focal loss function, in short, is designed to handle the class imbalance

for the classification task by weighting the misclassified samples. The authors’ modified

implementation explicitly executes computations based on the number of points in each

category. Another modification, the authors reported, is focused on increasing the

importance of the elevation data along with distance-based interpolation. Increasing the

importance of the elevation is expected to increase the ability to derive features

representing the geometry better. Laupheimer et al. (2020) proposed an association-based

method, where the point cloud and the mesh model are associated in order to transfer

features and class labels between them. The proposed method relies on the classification

of the mesh model rather than the point cloud. The feature extraction is computed on the

mesh model, while LiDAR features (i.e., intensity) are retrieved from the associate points.

Thomas et al. (2019) proposed Kernel Point Convolution (KPConv), which processes the

point clouds without generating a voxel or other transitional representations. The proposed

network uses a search radius (rather than knn) to retrieve local neighborhoods. The kernel

is designed with the capability of learning the local shifts by implemented deformation to

the kernel itself. The network is designed with grid subsampling and pooling layers. Grid

subsampling ensures invariance against density variations while confirming positional

stability of the input points, while pooling layers increase the receptive field. Zhang et al.

(2020) proposed a framework for instance segmentation of LiDAR point clouds. The

developed instance segmentation method relies on horizontal midpoint as well as the height

74

limits of an object. This information is then used for grouping the points forming candidate

objects and noise removal. The candidate objects’ midpoints are then compared with a

30cm threshold in order to merge them to a single object or leave them as separate objects.

The authors report their method achieves higher accuracy than the state-of-the-art on a

terrestrial dataset, which they introduce. Zhang et al. (2021) proposed an unsupervised

instance segmentation for building extraction from airborne LiDAR point clouds. The

proposed method divides building point clouds using a tree structure and computing

geometric features. The decision is made whether it is a single building or multi-building

instance.

Both ML and DL studies in the current state-of-the-art (on point cloud

classification) deal with similar challenges, including data irregularity, density variations,

and neighborhood retrieval techniques. Each study focuses on different challenges with

different perspectives, trying to improve the state-of-the-art. The challenges and limitations

of DL methods for geospatial point cloud classification include density variations,

noise/outlier presence, availability of larger data sets, generalization, and explainability.

Among these challenges, noise/outlier presence in the point cloud can also be dealt with

during the generation step, where many improvements happened (Gruen, 2012; Haala,

2013). The availability of larger data sets for different purposes are also increasing in recent

years (Guo et al., 2020). Generalization capabilities are observed to be increasing (Liu et

al., 2019; Xie et al., 2020b), as well as studies on explainability are becoming more popular

(Xie et al., 2020a).

75

2.4. Summary of the Chapter

In this section, an overview of artificial intelligence is given along with geospatial

point cloud classification studies in the literature. It is seen that although the techniques

and approaches may differ, the challenges are similar: irregular structure of the 3D point

clouds, density variations within a dataset, and neighborhood definitions (local versus

global, multi-scale, knn versus radius neighborhood retrieval). A summarized view of the

literature is represented in Figure 2-5, which is clustered by challenges and this work is

compared to the current state-of-the-art.

Another challenge in the geospatial point cloud domain is instance segmentation.

The instance segmentation techniques with DL require much more data (Zhang et al., 2020)

and such datasets are not available in the geospatial domain yet. For this reason, urban-

scale studies are focusing on unsupervised, geometric-analysis-based approaches for

instance segmentation (Xia et al., 2021; Zhang et al., 2021).

As crucial as the abovementioned challenges are, the following two key factors

could be considered as essential while designing a geospatial point cloud classification

framework: computational efficiency (in terms of computational power and memory

requirements) and generalization (being able to process point clouds acquired with

different sensors and at different densities) capability. These two key factors can be critical

for implementations and deployment in large-scale applications, such as the daily

procedures of mapping agencies.

In the upcoming chapter, the proposed method will be explained in detail, which is

aims to cope with all these challenges.

76

Figure 2-5. A brief look to the literature. TONIC: efficienT classification Of urbaN poInt

Clouds framework (Özdemir et al., 2021).

77

78

Proposed Framework

In this section, first, a brief introduction to the framework will be given. This will

be followed by detailed discussions for each step of this framework, including

downsampling (Section 3.1), feature extraction (Section 3.2), and classification with DL

using image representation (Section 3.3). The overall structure of the framework is shown

in Figure 3-1. Besides these main framework steps, instance segmentation for buildings

will also be introduced in Section 3.4.

The framework’s design started with previous works (Özdemir and Remondino,

2019; Özdemir et al., 2019a), setting the foundations of it. This last iteration is focused on

increasing the performance and reliability, computational efficiency, and enhancing

generalization capabilities, which are further discussed in the next chapters (Chapters 4 and

5). The feature extraction approach and deep neural network design are discussed in detail

in this section.

79

Figure 3-1. TONIC framework.

The framework receives 3D point clouds and outputs class labels per-point. If these

point clouds include any radiometric data (i.e., RGB color) or LiDAR features (i.e.,

intensity, number of returns) these data are exploited, as well.

During development and testing, used open-source libraries are used including

C++14 Standard Library (ISO, 2014), libLAS (Butler, 2021), Point Cloud Library (Rusu

and Cousins, 2011) for point cloud processing, TensorFlow v2.5.0 (Martín et al., 2015)

with Keras (Chollet and others, 2015) for DL implementation, Pandas (McKinney, 2010;

Reback et al., 2020) and NumPy (Harris et al., 2020) for data manipulation, and Scikit-

Learn (Pedregosa et al., 2011) packages for ML.

3.1. Point Cloud Preprocessing with Downsampling

The overall density of a point cloud is one of its most important characteristics. The

deviations in the overall density may cause by data acquisition (i.e., flight height, camera

80

and lens setup, LiDAR sensor, and so on) as well as data processing options (i.e., parameter

settings for dense image matching, filtering, and so on). The overall density of a point cloud

can be as low as 1 pts/m2 or as high as 1000 pts/m2. Such overall density discrepancies

hamper the classification task. For example, at ~1 pts/m2 overall density, it is unfeasible or

at least problematic to extract some high level-of-detail classes (i.e., traffic lights, cars).

Besides the overall density, density variation within a point cloud is another critical

characteristic to be considered. Density within a point cloud can be as low as 1 pts/m2 and

as high as 1000 pts/m2, which indicates a high density variation. Higher density variations

can lead to less consistency in terms of level-of-detail in a point cloud. It also makes it hard

to extract local geometry (Özdemir and Remondino, 2019).

As the local geometry (utilizing handcrafted features (Section 3.2) as well as DL

(Section 3.3)) needs to be extracted, density variation has a substantial impact on this

framework’s performance. The handcrafted and learned features become less consistent as

the density variety increases. Based on these density-related challenges, downsampling is

implemented, expecting the following advantages:

(i) Downsampling reduces the total amount of data. As a result of data

reduction, the entire process speeds up significantly;

(ii) Density within the point cloud to become more consistent (low density

variation). Thus, the features;

(iii) Ensure that distinct point clouds have similar density characteristics, and

therefore maximizing the generalization capabilities;

(iv) Reducing the noise.

81

Point Cloud Library’s voxel-grid filter is used for the downsampling. A critical

advantage of this method is that it outputs the coordinates of the centroid for the points

falling into the same voxel instead of the center of the voxel (Figure 3-2). In this way, the

original geometry is altered less compared to voxelation.

Figure 3-2. Voxel-grid filtering: the unevenly distributed points (blue) in the voxel (black

cube); the centroid of the input points (red), which is the output of the filtering.

Using the voxel-grid filtering, also the noise is reduced, as output is the voxel

centers instead of the points’ centroid (red point in Figure 3-2). As the output of the filtering

is not selected among the input points, but rather a new point is generated, the output point

itself does not keep the original sensor data (i.e., colors or LiDAR features). These sensor

data is then retrieved for each point from their nearest neighbors in the full resolution

original input point cloud, after the filtering. The voxel size decision and its impact on the

classification results will be further discussed in the next chapter (Section 4.1).

In Figure 3-3, it can be seen the original point cloud’s (ISPRS Vaihingen point

cloud (Niemeyer et al., 2014)) density variation is very high, while the filtered cloud is

82

much more homogeneous. Besides the homogeneity, there are fewer points representing

the same scene preserving the objects in the scene.

Figure 3-3. Original (left) and after (right) voxel-grid filtering. Black circles highlight the

eliminated density variation, red circles highlight the overall data reduction.

3.2. Feature Extraction

The first thing to consider for handcrafted feature extraction is the neighborhood

retrieval approach. There are two alternatives as mentioned before: knn and radius search.

Knn method retrieves the nearest k number of points, which assures there will always be a

constant number of points for computing the features. This assurance prevents undoable

feature extraction, which happens whenever there are insufficient points (i.e., less than 3

for principal component analysis or plane fitting) in the search neighborhood. However,

the problem with this approach is the coverage of the neighborhood points. Considering

the density variations within a point cloud, the coverage of the nearest 10 points will vary

from region to region. On the contrary, with the radius search, the points falling within a

83

certain search radius will be retrieved, which assures a more stable geometry

representation. The problem in this case occurs:

(i) when there are very few points (i.e., 2 points) within the defined search

radius (i.e., 40cm), which prevents the computation of features, or

(ii) when there are too many points (i.e., 195 points), which slows down the

computations.

Due to these issues, neighborhood selection has always been a challenging decision

when it comes to feature extraction, as also mentioned in Chapter 2.

As mentioned in Section 3.1, one of the advantages of the downsampling

implementation is the ensured low density variation within the point cloud, which assures

consistency of the geometry in the points’ local neighborhood. In this way, the problem

with coverage when knn used is overcome. Therefore, knn method is used for local

neighborhood queries for the feature extraction. In order to extract the differences in the

local geometry better, a multi-scale feature extraction approach is applied with three

different scales.

So as to improve computational performance by triggering fewer search queries (of

local neighborhood points), the implementation triggers the search with the largest scale

only once per point. As the used knn search algorithm (of Point Cloud Library) outputs the

points sorted by their distances to the query point, this information is exploited by

computing the features starting from the nearest n points, followed by 2n, and so on, as

shown in Algorithm 3-1.

84

Extracted features include eigenvalues (λ1 > λ2 > λ3) derived from the principal

component analysis (Wold et al., 1987) implementation of Point Cloud Library,

eigenvectors-based surface normal estimations (the last three elements of the eigenvectors),

covariance features (linearity, sphericity, omnivariance), as well as geometrically

computed features (local elevation change, local planarity, vertical angle, and height above

ground).

Algorithm 3-1. Multi-scale knn search implementation.

Input: 3D Point Cloud

Initialization: Not applicable.

Output: Multi-scale features per point.

1: for each point in the point cloud do

2: retrieve the highest-scale (3n, n points for 3 scales) local neighborhood points

 retrieved points are sorted by distance by the search algorithm as default

3: for each scale do

4: compute the features with the related batch of points (n, 2n, 3n)

5: end for

6: end for

The covariance features are computed following the formulation of Hackel et al.

(2016). The others are computed based on direct geometrical computations rather than

principal component analysis derived eigenvalues or eigenvectors. Formulas for the used

features are as shared in Table 3-1.

85

Table 3-1. Formulas of the handcrafted features.

Linearity (𝜆1 − 𝜆2) / 𝜆1

Sphericity 𝜆2 / 𝜆1

Omnivariance (𝜆1 ∗ 𝜆2 ∗ 𝜆3)
1/3

Local Elevation Change 𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛

Local Planarity
1

𝑛
∑ 𝐿2(𝑝𝑘 , �⃗�)

𝑛

𝑘=0

Vertical Angle cos−1(
�⃗� 𝑥𝑦 ∙ 𝑝

(||�⃗� 𝑥𝑦||) ∗ (||𝑝 ||)
)

Height Above Ground 𝑝𝑟𝑧 − 𝑝𝑙𝑧

The employed non-covariance features are listed below (visualized in Figure 3-4):

(i) Local elevation change is the difference in the minimum and maximum z-

coordinates in the neighborhood;

(ii) Local planarity is the mean distance between the neighboring points (𝑝𝑘) to

the best-fit plane (�⃗�) of these points. Computed with Point Cloud Library’s

built-in Sample Consensus (SAC) segmentation class using Random

Sample Consensus method (RANSAC, (Fischler and Bolles, 1981));

(iii) Vertical angle is the angle between the normal vector of a point (𝑝) and xy-

plane (�⃗� 𝑥𝑦);

(iv) Height above ground is the difference between z-coordinates of the point

(prz) and the possible lowest point (plz). The possible lowest point is a

hypothetical point representing the ground level and is extracted as shown

in Algorithm 3-2.

86

The feature extraction tool is built using Point Cloud Library and written in C++

programming language. The implementation is designed with a multi-threading method

allowing to utilize as many CPU threads as preferred. Therefore, the feature extraction step

can be executed quickly on almost any modern hardware and operating system.

Algorithm 3-2. Identification of the possible lowest point.

Input: 3D Point Cloud

Initialization: Iterate through the input point cloud, get the lowest z-coordinate (zmin).

Output: Possible lowest point, to be used for calculating height above ground feature.

1: for each point in the cloud (pr: {prx, pry, prz}) do

2: generate a pseudo point (pp: {prx, pry, zmin})

3: retrieve the nearest neighboring point for pp from the input cloud

4: retrieve the z-coordinate of the found point (fpz)

5: change the z-coordinate of the pp with fpz

6: search for the nearest neighbor point for pp in the input cloud

 the found point is the possible lowest point (pl: {plx, ply, plz})

7: end for

High

Low
 (a) (b) (c) (d)

Figure 3-4. Local elevation change (a), local planarity (b), vertical angle (c), height above

ground (d) are shown on the ISPRS Vaihingen Dataset. Colors scaled as blue-green-

yellow-red, from lower to higher values.

87

3.3. Classification with Deep Learning and Machine Learning

The proposed classification framework (Figure 3-1) relies on the handcrafted

features (Section 3.2) as well as self-learned ones. Moreover, if they are available,

additional sensor data is also utilized as features (i.e., intensity, number of returns and

return number for LiDAR point clouds, color information for photogrammetric ones), and

coordinates of the local neighborhood points. The handcrafted feature implementation

allows designing a shallower DNN. This is because some of the features the network would

need to learn are already handcrafted and given. The framework includes both 2DCNN and

a 3DCNN which are applied depending on the data and tasks reported in the discussions

(Chapter 6). The proposed approach’s workflow is shown in Figure 3-5.

Figure 3-5. Workflow of the proposed classification framework based on DL.

As seen in Figure 3-5, in addition to the handcrafted features, the downsampled

point cloud is also fed to the network inside the image representation. The image

representation mentioned here is a 2D data table (a matrix) formed for each point with their

neighboring points. The matrix includes the features as well as the coordinates of the local

neighborhood points (Figure 3-6).

88

Figure 3-6. The matrix structure generated for each point: Pn denotes points, dx,y,z denotes

matrix-wise scaled coordinates (blue cells), and Fm represents the features (green cells).

The coordinates of the local neighborhood points are centered around the point of

interest and divided by maximum coordinates values in the matrix for normalization

purposes. The coordinates are then clipped to the minimum and maximum values of 0 and

1, respectively. Handcrafted features and sensor data are globally normalized rather than

matrix-wise. The matrix is then sorted by x- and z- coordinates respectively, which is

observed to provide fractionally better results. The prepared matrix is classified with an

image object classification approach by the network.

The network used for the data structure described above is based on 2D

convolutions, as shown in Figure 3-7. The network receives the 2D matrices (Figure 3-6)

and processes them like an image object classification, outputting the class probabilities.

The network is schematized with layer parameter settings, aside from the last Dense layer

that has the output dimension set to number classes per dataset.

89

Figure 3-7. Network structure of the 2DCNN (BN: batch normalization).

Unlike rendering-based or voxel-based methods (Guo et al., 2020), TONIC’s CNN

methods use pseudo images, as shown in Figure 3-8.

Figure 3-8. Sample matrices, rendered as images for visualization. Matrices are transposed

for better illustration.

Besides the 2DCNN, a 3DCNN structure is also implemented, due to their

demonstrated performances in the image processing domain. A 3DCNN model has the

advantage of exploiting inter-channel correlation as well as spatial correlation (Koundinya

90

et al., 2018). The 2D matrices are reshaped along the features’ axis (vertical axis in Figure

3-6) in order to adapt the abovementioned 2D matrices for a 3DCNN.

Figure 3-9. Network structure of the 3DCNN (BN: batch normalization).

This reshaping of 2D matrices produces 3D arrays (also known as tensors by the

DL community), the shape of input a 3DCNN requires. In this way, a 2D matrix with

dimensions of, e.g., 45x15 converted to 45x5x3. The applied 3DCNN architecture (Figure

3-9) is a slightly modified version of the 2DCNN architecture presented in Figure 3-7.

Visualizing the 3D patches gives the color images shown in Figure 3-10.

An example of the classification result is shown in Figure 3-11 for qualitative

representation. The results will be further discussed in Chapters 4 and 5.

In addition to the developed DL methods, a Random Forests (RF) classifier is also

utilized for comparison with ML. The input for the RF classifier is the feature vector for

each point, including all the features explained in Section 3.2.

91

Figure 3-10. Sample tensors, rendered as color images for visualization. Transposed for

better illustration.

Figure 3-11. An example of classification result, 2DCNN method on the ISPRS Vaihingen

dataset.

3.4. Post-Processing for Instance Segmentation of the Buildings

The classification of geospatial point clouds in urban scenes is commonly needed

for 3D city or building modeling applications. However, a classified point cloud cannot be

92

directly used for model generation. Objects need to be separated into instances (i.e.,

individual buildings) for such applications. Therefore, this step is implemented as post-

processing to achieve instance-segmentation results.

The instance segmentation workflow is shown in Figure 3-12. The method relies

on clustered roofs instead of facades or their combination. Since the facade points may not

exist in all datasets or may not be as complete as roofs (i.e., nadir only acquisitions).

Figure 3-12. Instance segmentation workflow for buildings.

As seen in Figure 3-12, the input of this step is the classified point cloud. The point

cloud is first separated by the classes, which outputs a file for each class in the point cloud.

This step is followed by Euclidean distance clustering of the roofs, which is applied using

the built-in functions of Point Cloud Library. Clustering the roofs delivers separated

buildings (building instances). The points in the class of facade (if exists) are then retrieved

to the nearest roof cluster, which forms the separated buildings, as shown in Figure 3-13.

For further reading on clustering methods, readers may refer to the overview by

Madhulatha (2012).

93

Figure 3-13. Building instances (randomly colored) and the other objects (gray), ISPRS

Vaihingen evaluation dataset.

3.5. Summary of the Chapter

In this chapter, the proposed methodology is introduced step-by-step: preprocessing

with downsampling, multi-scale handcrafted feature extraction, DL implementation, and

post-processing for instance segmentation.

In the next chapter, the accuracy assessment methodology will be explained,

datasets used for validation will be introduced, downsampling experiments will be

discussed, and classification results will be reported.

94

95

Results and

Accuracy Assessment

In this chapter, the following topics will be discussed: the accuracy assessment

methodology, datasets used, downsampling approach and its effects, and quantitative

results for the proposed TONIC classification framework.

4.1. Accuracy Assessment Methodology

Accuracy assessment of the classification results are done with the F1 score (also

known as Sørensen–Dice coefficient), overall accuracy (OA), and intersection over union

(IoU, also known as Jaccard index), along with weighted versions of them with the

formulas shown in Table 4-1 (Verma and Aggarwal, 2020). Before these metrics, true

positive (TP), true negative (TN), false positive (FP) and false negative (FN) terms are

illustrated in Figure 4-1, which are the core elements to calculate the aforementioned

accuracy metrics.

96

Figure 4-1. Visualization of true positive, true negative, false positive, and false negative.

As it can be seen in Figure 4-1, where the example is a binary classification (i.e.,

the prediction can indicate either class true or class false):

- TP is when the classification is true, and it is correct;

- FP is when the classification is true, and it is wrong;

- TN is when the classification is false, and it is correct;

- FN is when the classification is false, and it is wrong.

Among those metrics, a visual representation of the IoU can be made for better

understanding, while the others are hard to visualize. This is because the IoU metric

represents an area, as shown in Figure 4-2.

97

Table 4-1. Formulas of accuracy assessment metrics (N: total number of points in the point

cloud; c: number of classes; ni: number of points in class i; F1i: F1 score for the class i;

IoUi: IoU score for class i).

Precision
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Recall

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1 Score 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 IoU

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

Weighted F1

Score

1

𝑁
∑(𝑛𝑖 ∗ 𝐹1𝑖)

𝑐

𝑖=0

 Weighted IoU
1

𝑁
∑(𝑛𝑖 ∗ 𝐼𝑜𝑈𝑖)

𝑐

𝑖=0

Overall Accuracy

(OA)

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Figure 4-2. Intersection over union visualization, where the blue rectangle shows prediction

and the green rectangle shows the ground truth.

As shown in Figure 4-2, IoU represents the ratio of the two areas: the overlapped

area between the ground truth and the prediction, and the union of these two areas. Scikit-

Learn library (Pedregosa et al., 2011) is used for calculation of all the accuracy metrics.

For the training of DL models, the F1 score is preferred as a loss function as it is

commonly used for assessing the performance of a classifier. However, the F1 score is not

suitable as a loss function. In fact, the F1 score is based on counted metrics (TP, TN, FP,

FN), which prevents its implementation as a loss function. Therefore, an approximation to

98

F1 score is implemented based on the predicted probabilities, rather than counted

classification results. The chosen optimizer is stochastic gradient descent (SGD) due to its

performance. The patience is set to 15 epochs for early stopping, observing the validation

loss. The learning rate is set to 0.001 and the training is limited to 100 epochs. Besides, in

order to handle class imbalance in datasets, the training samples are weighted (i.e., reducing

the weight of classes which are represented more in the dataset depending on the

occurrences).

4.2. Validation Datasets

Based on the generalization, density, and data-source invariance objectives

(Section 1.5), the framework is tested with five different datasets. The datasets include

ISPRS Vaihingen, DALES, LASDU, Bordeaux, and 3DOMCity (Table 4-2). Except for

the Bordeaux, all datasets are publicly available with ground truth labels. The differences

between datasets are density, resolution, source, available sensor data, and the number of

classes. The definitions of the terms density and resolution are considered as given below:

- Density is the average number of points per m2 on the ground;

- Resolution is the average of the distances between each point and its nearest

neighbor.

For further reading in benchmarking in photogrammetry and remote sensing,

readers may refer to the review by Bakuła et al. (2019).

99

Table 4-2. Summary of the validation datasets (L: LiDAR, OP: oblique photogrammetry,

Lab: laboratory, Res: Resolution, IR-R-G: Infrared-red-green)

Dataset Source Points
Density

(pts/m2)

Res.

(m)

Area

(m x m)
Color Classes

ISPRS Vaihingen

(Cramer, 2010;

Niemeyer et al.,

2014)

L 1,165,598 4 0.258
383 x 405 +

374 x 402
IR-R-G 9

DALES (Varney et

al., 2020)
L 497,632,442 35 0.116

500 x 500

(40 tiles)
No 8

LASDU (Cheng et

al., 2013; Ye et al.,

2020)

L 3,080,856 3 0.484 1071 x 1285 No 5

Bordeaux (Toschi

et al., 2021)
L + OP 10,230,941 25 0.173 704 x 739 RGB 5

3DOMCity

(Özdemir et al.,

2019b)

OP

(Lab)
22,825,024 14000

0.158m

m
0.813 x 0.811 RGB 6

4.2.1. ISPRS 3D Semantic Labeling Contest Dataset (ISPRS Vaihingen)

ISPRS 3D Semantic Labeling Contest Dataset of Vaihingen (hereinafter ISPRS

Vaihingen for the sake of readability) has been one of the most popular datasets for urban-

scale geospatial point cloud classification benchmarking (Cramer, 2010; Niemeyer et al.,

2014). The point cloud is acquired with the Leica ALS50 LiDAR scanner over Vaihingen,

Germany. In the dataset, the training (753,876 points) and testing (411,722 points) point

clouds are labeled for nine classes as follows: powerline, low vegetation (grass),

impervious surface (ground), car, fence, roof, facade, shrub, and tree (Figure 4-3). The

dataset includes LiDAR points, intensities, the number of returns and return numbers are

provided within the classification benchmark dataset. Besides these, IR-R-G orthophotos

100

(infrared, red, green channels) are also provided, which we exploited in our experiments.

Points per class distribution of the dataset are given in Table 4-3.

Figure 4-3. The ISPRS Vaihingen dataset, training data shown alone for better

visualization.

Table 4-3. Class distribution for training and validation point clouds of the ISPRS

Vaihingen dataset.

Class
Training Validation

Number of Points Percentage Number of Points Percentage

Cables 527 0.07% 600 0.15%

Grass 180,792 23.98% 98,690 23.97%

Ground 193,824 25.71% 101,986 24.77%

Car 4,610 0.61% 3,708 0.90%

Fence 12,081 1.60% 7,422 1.80%

Roof 152,064 20.17% 109,048 26.49%

Facade 27,192 3.61% 11,224 2.73%

Shrub 47,612 6.32% 24,818 6.03%

Tree 135,174 17.93% 54,226 13.17%

Total 753,876 100.00% 411,722 100.00%

101

4.2.2. DALES Dataset

Dayton Annotated LiDAR Earth Scan (DALES) dataset is a new, large-scale

benchmark dataset for semantic segmentation of point clouds (Varney et al., 2020). The

data acquisition is done with a Riegl Q1560 airborne laser scanner with an altitude of 1300

meters over the Surrey City in British Columbia, Canada. Being large-scale, the dataset is

distributed with 500m-by-500m tiles, each containing ~12 million points, >500 million

points in total. There are 29 tiles for training and 11 for testing. The point cloud is labeled

for eight classes -excluding unknown- as follows ground, vegetation, car, truck, cable,

fence, pole and building. The dataset includes number of returns and return numbers as

LiDAR features, yet it lacks LiDAR intensity and color information. (Figure 4-4). Points

per class distribution of the dataset is given in Table 4-4.

Figure 4-4. The DALES Dataset, a tile from the training set shown.

102

Table 4-4. Class distribution for training and validation point clouds of the DALES dataset.

Class
Training Validation

Number of Points Percentage Number of Points Percentage

Unknown 6,997,560 1.90% 681,571 0.50%

Ground 178,021,561 48.29% 68,871,897 50.40%

Vegetation 120,818,120 32.77% 41,464,228 30.34%

Car 2,583,281 0.70% 1,070,554 0.78%

Truck 748,890 0.20% 154,142 0.11%

Cable 799,886 0.22% 230,412 0.17%

Fence 1,512,927 0.41% 624,069 0.46%

Pole 276,924 0.08% 92,724 0.07%

Building 56,908,533 15.44% 23,454,294 17.16%

Total 368,667,682 100.00% 136,643,891 100.00%

4.2.3. LASDU Dataset

Large-Scale Aerial LiDAR Point Clouds of Highly-Dense Urban Areas (LASDU)

is also a newer classification benchmark and focuses on the urban scenarios (Ye et al.,

2020). The data acquisition for this dataset is made with Leica ALS70 over the Heihe River

area in the northwest of China. The dataset is divided into four sections by the directions

of north-south and east-west and divided equally for training and testing. The point cloud

has >3 million points in total, covering >1 km2 area. The point cloud is labeled for five

classes: ground, building, tree, low vegetation, and artifact (Figure 4-5). The dataset

provides LiDAR features yet, does not include orthophoto or any color information. Points

per class distribution of the dataset are given in Table 4-5.

103

 (a) (b)

Figure 4-5. The LASDU point cloud with five classes (a). The parts for training and testing,

red and blue respectively (b).

Table 4-5. Class distribution for training and validation point clouds of the LASDU dataset.

Class
Training Validation

Number of Points Percentage Number of Points Percentage

Ground 704,425 41.56% 637,257 45.98%

Building 508,479 30.00% 395,109 28.51%

Tree 204,775 12.08% 108,466 7.83%

Low Veget. 210,495 12.42% 192,051 13.86%

Artifact 66,738 3.94% 53,061 3.83%

Total 1,694,912 100.00% 1,385,944 100.00%

4.2.4. Bordeaux Dataset

The Bordeaux Dataset is recently produced for another study on point cloud

registration refinement (Toschi et al., 2021). Two more classes are added (namely

104

vegetation and others) to the original classes before using the dataset. The data acquisition

is made with a Leica CityMapper hybrid sensor. The sensor is hybrid as it contains both a

Hyperion LiDAR unit and an oblique photogrammetric multi-camera system. The multi-

camera system consists of one nadir and four 45° tilted cameras. The data was acquired

over the City of Bordeaux in France. It covers an area of ~700m-by-700m with ~10 million

points. The point cloud is labeled for five classes as follows ground, facade, roof,

vegetation, and others (cars, bus stops, fences, and other artificial objects). The point cloud

is separated for training and testing by 70% and 30%, respectively (Figure 4-6). The dataset

includes both LiDAR features and colors. Points per class distribution of the dataset are

given in Table 4-6.

 (a) (b)

Figure 4-6. The Bordeaux point cloud with five classes (a). The parts for training and

testing, red and blue respectively (b).

105

Table 4-6. Class distribution for training and validation point clouds of the Bordeaux

dataset.

Class
Training Validation

Number of Points Percentage Number of Points Percentage

Ground 1,434,895 19.75% 917,446 30.94%

Facade 1,180,663 16.25% 386,237 13.03%

Roof 4,351,748 59.89% 1,445,553 48.76%

Veget. 242,121 3.33% 195,607 6.60%

Others 56,610 0.78% 20,061 0.68%

Total 7,266,037 100.00% 2,964,904 100.00%

4.2.5. 3DOMCity Dataset

3DOMCity is our initiative and includes several benchmark tasks, such as image

orientation, dense image matching, and point cloud classification (Özdemir et al., 2019b).

The data acquisition is made with a Nikon D750 digital camera with a 50mm focal length

lens. Oblique aerial image acquisition is simulated by five different shots at camera stations

for nadir (~0.124mm GSD) and oblique (~0.128-0.273mm GSD) views. Initially, only a

small portion of the point cloud was labeled for ground truth use. For this study, the entire

point cloud is labeled for the classification task. The point cloud is labeled for six classes:

ground, grass, shrub, tree, facade, and roof. Dataset is separated ~70-30% for training and

testing, respectively (Figure 4-7). Points per class distribution of the dataset are given in

Table 4-7.

106

 (a) (b)

Figure 4-7. The 3DOMCity point cloud with six classes (a). The parts for training and

testing, red and blue respectively (b).

Table 4-7. Class distribution for training and validation point clouds of the Bordeaux

dataset.

Class
Training Validation

Number of Points Percentage Number of Points Percentage

Ground 2,250,516 13.62% 682,212 10.82%

Grass 1,037,156 6.28% 800,733 12.70%

Shrub 628,953 3.81% 307,602 4.88%

Tree 3,414,501 20.67% 1,584,805 25.13%

Facade 6,635,080 40.17% 1,917,940 30.41%

Roof 2,552,885 15.45% 1,012,641 16.06%

Total 16,519,091 100.00% 6,305,933 100.00%

4.3. Point Cloud Preprocessing for Density Analysis

As mentioned in Section 3.1, downsampling the point cloud is expected to have

some benefits: the reduced total amount of data for better computing speed; lower density

variations for more consistent features; bringing similar overall density characteristics

107

among distinct point clouds for better generalization; and reduced noise. The

downsampling method implemented here is voxel-grid filtering, which outputs the centroid

of the points in the same voxel.

Downsampling, in case overdone, can eliminate too many points. This over-

downsampling may cause two major effects: loss of detail and insufficient data for training

a network. These effects can lead to low accuracy and not useful results. On the contrary,

if downsampling is kept minimal, it may not be supportive for reaching the aforementioned

objectives. For these reasons, experiments were held in order to get an understanding of

the process and decide optimal downsampling to achieve optimal results.

The voxel dimensions are the critical parameters for voxel-grid downsampling.

Here, the voxel dimensions are calculated with a leaf coefficient parameter and the original

resolution of the point cloud. As mentioned before (Section 3.5), the resolution here is the

average of the distances between each point and their nearest neighbors. However, the

resolution is not sufficient alone to represent the density characteristics, as it does not

represent the density variations. For this reason, the density characteristics are measured

via minimum, mean, median, maximum, and standard deviation of the number of nearest

neighboring points. The nearest neighboring points are retrieved with a radius search

instead of a knn, as the goal is to measure the geometric consistency (Hermosilla et al.,

2018). Influenced by the neighboring distance in the image domain (Figure 4-8), the radius

is calculated as 1.45 times the resolution.

108

y

y y

 y x y

 y y y

Figure 4-8. Relation between nearest neighborhood and resolution on the image. The pixels

y are the nearest neighbors of the pixel x, at 1-pixel resolution. The red circle is the smallest

circle to cover the nearest neighbors; the thick blue line is the distance from the border of

pixel x to the red circle, which is sqrt(12 + 12) ≈ 1.41 pixels.

As seen in Figure 4-8, from the borders of a pixel to cover its nearest neighbors, the

distance is ~1.41 times the resolution. Considering the irregularities in the point cloud, this

value is taken as 1.45 in order to expand the coverage by a small margin without changing

it significantly. Here, the distance from the border of pixel x is considered, as the points in

the point cloud do not have borders.

Instead of theoretically verifying the effects of downsampling via comparing

statistics of the computed feature spaces (i.e., minimum, maximum, mean, median,

standard deviation, or any other statistical measure), a more practical validation

methodology is preferred. Therefore, in order to compare these feature spaces, the

109

classification results obtained using them are compared. For these experiments, the

concentration is on the classification results achieved with feature spaces coming from

downsampling with varying voxel dimensions. For classification, a Random Forests

(Breiman, 2001) classifier is preferred because of its fast prediction abilities. Moreover, in

this way, the DL methods can be compared with an ML method. The classification results

are evaluated in terms of weighted F1 score and OA.

ISPRS Vaihingen, LASDU, and Bordeaux datasets are used for experimenting with

the downsampling effects. The parameter in focus here is the leaf coefficient. Starting from

1, meaning no downsampling, the parameter is set to multiplies of two. The coefficient is

increased till the resolution reaches ~1.0 m in order to keep the level-of-detail represented

by the point cloud at a significant level for classification purposes. For this reason, and as

the initial resolutions differ among distinct datasets, the number of experiments varies for

each dataset.

The ISPRS Vaihingen dataset used for density analysis includes training,

validation, and the rest of the tile, as shown in Figure 4-9. This decision is to include a

larger area to have a more realistic analysis. It can be seen from the figure the training and

validation parts are small areas compared to the tile. Therefore, the density analysis would

be affected by the noise easily.

110

Figure 4-9. The ISPRS Vaihingen dataset as used for density analysis. Training (red),

validation (green), and rest (blue) of the dataset.

The test results shown in Table 4-8 indicate the best accuracy is achieved with a

leaf coefficient of 2, ending up with 0.796 OA at 0.434 m resolution. However, as it can

be seen neither weighted F1 nor OA score shows a significant change between leaf

coefficients 2 and 4. On the contrary, the standard deviation is minimum with leaf

coefficient 4. The minimum standard deviation means more homogeneous point

distribution and less density variation, especially compared to the original point cloud’s

12.99s. Regarding data reduction, using leaf coefficient 4, downsampled point cloud

contains one-fifth of the original while using leaf coefficient 2 has half of it.

111

Table 4-8. Density analysis on the ISPRS Vaihingen dataset.

Leaf

coefficient

% of

points

Reso.

(m)

Min

knn

Mean

knn

Median

knn

Max

knn

Std.

knn

Weigh.

F1 OA

1 100 0.258 2 11 5 106 12.99 0.788 0.788

2 50 0.434 2 4 5 15 1.51 0.798 0.796

4 20 0.732 2 4 4 13 1.31 0.776 0.788

6 11 1.07 2 4 3 13 1.37 0.768 0.770

For the LASDU dataset, the downsampling is performed on the entire point cloud,

and the test results are shown in Table 4-9.

Table 4-9. Density analysis on the LASDU dataset.

Leaf

coefficient

% of

points

Reso.

(m)

Min

knn

Mean

knn

Median

knn

Max

knn

Std.

knn

Weigh.

F1 OA

1 100 0.484 2 4 4 83 1.45 0.826 0.814

2 48 0.792 2 5 4 12 1.24 0.823 0.821

4 15 1.440 2 5 5 14 1.31 0.805 0.816

As seen in Table 4-9, classification results reached with the original dataset

fractionally better in terms of weighted F1 score, while it is vice-versa for the OA. Using

a leaf coefficient of 2: achieves better OA, reduces the point cloud to less than half of the

original, and minimizes the standard deviation.

The downsampling analysis tests for the Bordeaux dataset were also held on the

entire dataset. The results are shown in Table 4-10.

As shown in Table 4-10, not only does OA improve significantly after

downsampling compared to the original cloud, but the weighted F1 score improves as well.

Reducing the data almost to a tenth of the original, density variation is also minimized

using a leaf coefficient of 6, resulting in 0.737 m resolution.

112

Table 4-10. Density Analysis on the Bordeaux dataset.

Leaf

coefficient

% of

points

Reso.

(m)

Min

knn

Mean

knn

Median

knn

Max

knn

Std.

knn

Weigh.

F1 OA

1 100 0.173 2 6 2 61 6.01 0.930 0.928

4 23 0.528 2 4 2 14 1.44 0.922 0.942

6 12 0.737 2 4 4 12 1.31 0.940 0.940

8 8 0.946 2 4 4 12 1.32 0.935 0.935

Bearing in mind the achieved results of F1 score, the standard deviation for knn,

and data reduction represented in the tables above, a resolution of 0.7–0.8m can be

considered the most suitable for all datasets. This can be considered as the optimal

compromise balancing accuracy, density variation, and data amount. Besides, the

generalization capability should be taken into consideration (Section 5.1).

One may worry about the time spent on the downsampling as it is an additional

step. However, it can be seen from Table 4-11 that downsampling saves a significant

amount of time during feature extraction instead of expanding it. The computations shown

in Table 4-11 are held on Intel i9-8950HK Mobile CPU using 4 CPU threads. As seen, the

feature extraction step alone takes more than 47 times without downsampling. The

downsampling step takes ~11 seconds to complete, yet, it saves ~2858 seconds from

feature extraction for a point cloud with ~10,200,000 points. As the downsampling results

a point cloud without the sensor data (i.e., color or intensity). Therefore, these data are

retrieved from the nearest neighboring points in the original cloud. This retrieval time is

also included in the given times. Considering the original point cloud has ~8 times the

points, the time differences are understandable.

113

Table 4-11. Feature extraction and downsampling times for the Bordeaux Dataset times are

given in terms of seconds.

 Full Cloud

Downsampled

Cloud

Ratio (Full /

Downsampled)

Feature Extraction 2919.47 61.70 47.32

Downsampling* 10.82 - -

of points 10,230,941 1,264,690 8.09

*Downsampling time includes retrieval of the sensor data.

Based on these experiments, downsampling is applied to all datasets using a fixed

0.75m voxel dimension. In Table 4-12, the number of points and the ratio of kept points

before and after downsampling are shown for all the datasets used.

Table 4-12. The number of points in each dataset before and after the downsampling

procedure.

Dataset

ISPRS

Vaihingen DALES LASDU Bordeaux 3DOMCity

of original points 1,165,598 497,632,442 3,080,856 10,230,941 22,825,024

of downsampled points 236,603 27,652,837 1,465,068 1,264,690 2,075,937

Ratio of kept points 0.203 0.056 0.476 0.124 0.091

The ratio of eliminated points reported in Table 4-12 differs between 52-94%. This

variety of ratios are due to the differences among the original point clouds’ resolutions.

In order to have a correct and fair accuracy assessment, the classification outputs

are projected back to the original point clouds based on nearest neighbors.

4.4. Results on Validation Datasets

In this section, the classification results of the framework on the validation datasets

will be reported using the accuracy metrics mentioned in Section 4.1.

114

4.4.1. ISPRS Vaihingen

 The accuracy metrics per class and the OA analysis are given in the tables below

for quantitative assessment. For the qualitative assessment, the classification results are

represented in the figure below. Instance segmentation results are then shared for the

qualitative assessment without quantitative assessment due to lack of ground truth.

Table 4-13. Per-class accuracy assessment for the ISPRS Vaihingen dataset. Bold values

highlight higher scores among classifiers. LV: Low Vegetation.

 Cables LV Ground Car Fence Roof Facade Shrub Tree

2DCNN - F1 0.000 0.795 0.904 0.733 0.213 0.929 0.583 0.451 0.817

3DCNN - F1 0.301 0.781 0.896 0.688 0.207 0.902 0.536 0.413 0.802

RF - F1 0.393 0.771 0.881 0.547 0.143 0.895 0.574 0.434 0.742

2DCNN - IoU 0.000 0.660 0.825 0.579 0.119 0.867 0.411 0.291 0.690

3DCNN - IoU 0.177 0.641 0.811 0.525 0.116 0.822 0.367 0.261 0.670

RF - IoU 0.244 0.627 0.787 0.376 0.077 0.810 0.403 0.277 0.590

Table 4-14. Average F1, class weighted average F1, and OA for the ISPRS Vaihingen

dataset.

 Average F1 Weigh. Av. F1 OA

2DCNN - F1 0.603 0.822 0.826

3DCNN - F1 0.614 0.804 0.806

RF - F1 0.598 0.788 0.786

2DCNN - IoU 0.494 0.719 0.826

3DCNN - IoU 0.488 0.693 0.806

RF - IoU 0.466 0.670 0.786

As seen in tables above, DL classifiers achieved higher accuracies (≿80% goal) in

terms of F1 scores and OA. The RF classifier failed to achieve 80% OA goal by 1.4%.

115

2DCNN

3DCNN

RF

Legend

Figure 4-10. Classification results of the ISPRS Vaihingen dataset with proposed DL

methods and ML method.

116

2DCNN

3DCNN

RF

Figure 4-11. Building instances (randomly colored) and the other objects (gray), the ISPRS

Vaihingen evaluation dataset.

117

4.4.2. DALES

 The accuracy metrics per class and the OA analysis are given in the tables below

for quantitative assessment. For the qualitative assessment, the classification results are

represented in the figure below. Instance segmentation results are then shared for the

qualitative assessment without quantitative assessment due to lack of ground truth.

Table 4-15. Per-class accuracy assessment for the DALES dataset. Bold values highlight

higher scores among classifiers.

 Ground Veget. Car Truck Cable Fence Pole Building

2DCNN - F1 0.962 0.927 0.666 0.000 0.903 0.530 0.468 0.911

3DCNN - F1 0.958 0.923 0.682 0.000 0.914 0.490 0.547 0.905

RF - F1 0.962 0.866 0.355 0.042 0.812 0.291 0.353 0.962

2DCNN - IoU 0.926 0.863 0.499 0.000 0.823 0.360 0.306 0.837

3DCNN - IoU 0.919 0.857 0.517 0.000 0.841 0.325 0.377 0.826

RF - IoU 0.928 0.764 0.216 0.021 0.684 0.170 0.214 0.928

Table 4-16. Average F1, class weighted average F1, and OA for the DALES dataset.

 Average Weigh. Av. F1 OA

2DCNN - F1 0.671 0.937 0.938

3DCNN - F1 0.677 0.932 0.934

RF - F1 0.571 0.884 0.899

2DCNN - IoU 0.577 0.884 0.938

3DCNN - IoU 0.583 0.876 0.934

RF - IoU 0.474 0.843 0.899

As seen in tables above, DL classifiers achieve higher OA as in the previous dataset

results. However, for this dataset, the OA gaps between the classifiers are less.

118

2DCNN

3DCNN

RF

Legend

Figure 4-12. Classification results of the DALES dataset with proposed DL methods and

ML method. Two of the tiles shown as samples.

119

2DCNN

3DCNN

RF

Figure 4-13. Building instances (randomly colored) and the other objects (gray). Two of

the tiles shown as samples.

4.4.3. LASDU

 The accuracy metrics per class and the OA analysis are given in the tables below

for quantitative assessment. For the qualitative assessment, the classification results are

represented in the figure below. Instance segmentation results are then shared for the

qualitative assessment without quantitative assessment due to lack of ground truth.

120

Table 4-17. Per-class accuracy assessment for the LASDU dataset. Bold values highlight

higher scores among classifiers. LV: Low Vegetation.

 Ground Building Tree LV Artifact

2DCNN - F1 0.887 0.935 0.860 0.691 0.360

3DCNN - F1 0.885 0.915 0.858 0.673 0.322

RF - F1 0.869 0.920 0.845 0.597 0.318

2DCNN - IoU 0.796 0.878 0.754 0.527 0.220

3DCNN - IoU 0.793 0.843 0.751 0.507 0.192

RF - IoU 0.768 0.852 0.731 0.426 0.189

Table 4-18. Average F1, class weighted average F1, and OA for the LASDU dataset.

 Average Weigh. Av. F1 OA

2DCNN - F1 0.746 0.851 0.846

3DCNN - F1 0.730 0.840 0.837

RF - F1 0.710 0.823 0.821

2DCNN - IoU 0.635 0.757 0.846

3DCNN - IoU 0.617 0.741 0.837

RF - IoU 0.593 0.720 0.821

As seen in the tables above, 2DCNN achieves the highest per-class accuracies,

which is also reflected in the OA. Rankings of the per-class accuracies, average F1 scores

and OA show similar characteristics to the results represented for ISPR Vaihingen dataset

in Table 4-13 and Table 4-14.

121

2DCNN

3DCNN

RF

Legend

Figure 4-14. Classification results of the LASDU dataset with proposed DL methods and

ML method.

122

2DCNN

3DCNN

RF

Figure 4-15. Building instances (randomly colored) and the other objects (gray), LASDU

evaluation dataset.

123

4.4.4. Bordeaux

The accuracy metrics per class and the OA analysis are given in the tables below

for quantitative assessment. For the qualitative assessment, the classification results are

represented in the figure below. Instance segmentation results are then shared for the

qualitative assessment without quantitative assessment due to lack of ground truth.

Table 4-19. Per-class accuracy assessment for the Bordeaux dataset. Bold values highlight

higher scores among classifiers.

 Ground Facade Roof Veget. Others

2DCNN - F1 0.972 0.819 0.956 0.986 0.708

3DCNN - F1 0.966 0.807 0.951 0.985 0.682

RF - F1 0.969 0.821 0.954 0.972 0.567

2DCNN - IoU 0.945 0.694 0.916 0.972 0.548

3DCNN - IoU 0.934 0.676 0.907 0.970 0.517

RF - IoU 0.940 0.696 0.912 0.946 0.396

Table 4-20. Average F1, class weighted average F1, and OA for the Bordeaux dataset.

 Average F1 Weigh. Av. F1 OA

2DCNN - F1 0.888 0.943 0.944

3DCNN - F1 0.878 0.937 0.938

RF - F1 0.857 0.940 0.940

2DCNN - IoU 0.808 0.897 0.944

3DCNN - IoU 0.801 0.887 0.938

RF - IoU 0.778 0.891 0.940

124

2DCNN

3DCNN

RF

Legend

Figure 4-16. Classification results of the Bordeaux dataset with proposed DL methods and

ML method.

125

2DCNN

3DCNN

RF

Figure 4-17. Building instances (randomly colored) and the other objects (gray), Bordeaux

evaluation dataset.

4.4.5. 3DOMCity

 The accuracy metrics per class and the OA analysis are given in the tables below

for quantitative assessment. For the qualitative assessment, the classification results are

represented in the figure below. Instance segmentation results are not shared for this

dataset, as this is in a different scale compared to the geospatial point clouds.

126

Table 4-21. Per-class accuracy assessment for the 3DOMCity dataset. Bold values

highlight higher scores among classifiers.

 Ground Grass Shrub Tree Facade Roof

2DCNN - F1 0.945 0.936 0.798 0.878 0.864 0.906

3DCNN - F1 0.954 0.938 0.777 0.864 0.866 0.887

RF - F1 0.927 0.908 0.725 0.807 0.827 0.848

2DCNN - IoU 0.897 0.880 0.664 0.782 0.761 0.828

3DCNN - IoU 0.913 0.883 0.635 0.760 0.763 0.796

RF - IoU 0.863 0.831 0.569 0.676 0.705 0.737

Table 4-22. Average F1, class weighted average F1, and OA for the 3DOMCity dataset.

 Average F1 Weigh. Av. F1 OA

2DCNN - F1 0.888 0.889 0.889

3DCNN - F1 0.881 0.883 0.883

RF - F1 0.840 0.841 0.841

2DCNN - IoU 0.802 0.802 0.889

3DCNN - IoU 0.792 0.793 0.883

RF - IoU 0.730 0.729 0.841

127

2DCNN

3DCNN

RF

Legend

Figure 4-18. Classification results of the 3DOMCity dataset with proposed DL methods

and ML method.

128

4.5. Summary of the Chapter

In this chapter, accuracy assessment methodology, datasets, downsampling

approach and experiments, and the results from the TONIC framework are reported for

distinct datasets. In the next chapter, validation of the framework will be discussed through

generalization experiments and comparisons with the current state-of-the-art methods.

129

130

Validation

of the Framework

In this chapter, the following topics will be discussed: generalization performance

of the framework with further experiments, and comparison of the results with the state-

of-the-art methods.

5.1. Generalization Experiments

To test the framework for understanding its generalization capabilities, several

experiments performed with training and predicting on separate datasets. Specifically, the

classifier models trained for the experiments in Section 4.3 are used for classifying other

datasets. In this way, the generalization ability of the framework could be analyzed.

One adaptation needed to be applied here is matching of the feature spaces. For

instance, if a model is trained without the number of returns, but the prediction dataset

contains this feature, that feature is simply removed from the prediction dataset to match

131

the feature spaces. This process can be summarized as selecting the feature space of the

prediction dataset with respect to the training dataset used for the model. To clarify, a

sample is shown in Table 5-1 for the DALES-ISPRS Vaihingen datasets.

Table 5-1. Original feature spaces and modifications for generalization experiments.

Feature

DALES

(Train)

ISPRS Vaihingen

(Predict) Intersection

Color - IR + R + G -

Intensity - Yes -

Number of Returns Yes Yes Yes

Return Number Yes Yes Yes

Handcrafted Yes Yes Yes

As seen in Table 5-1, in the case of the DALES-ISPRS Vaihingen experiment, color

and intensity features are removed from the ISPRS Vaihingen dataset to use it as prediction

data for the model trained on the DALES dataset. The handcrafted features are always kept

as they are computed, yet, the feature space matching via intersection needs to be applied

for sensor data. Feature space matching modifications will be mentioned for each

experiment. For clarification, no computations are performed on the feature spaces. This

step is only removing some sensor features to match the spaces, when needed.

Aside from matching the feature spaces, the class structures are needed to be

matched. This is due to re-arranging the ground truth for accuracy assessment. An example

is shown in Table 5-2. Changes applied to match the classes, along with point distributions

within the datasets, will be reported for each generalization experiment. To clarify, the

models are not re-trained. The models are used as is without any change. Only the class

labels are re-arranged to match them for accuracy assessment.

132

Table 5-2. Corresponding classes between the DALES and the ISPRS Vaihingen datasets,

along with their distributions, are shown.

DALES
Points

(Train)
ISPRS Vaihingen

Points

(Predict)

Cable 29.7% Powerline 0.2%

Ground 50.0% Low veget. / Imp. Surface 38.9%

Car / Truck 1.2% Car 0.8%

Fence 0.6% Fence 1.9%

Building / Pole 0.9% Roof / Facade 22.7%

Vegetation 17.6% Shrub / Tree 35.5%

Table 5-3. F1 and IoU scores for 2DCNN and 3DCNN classifiers trained on the DALES

dataset and predicting on the ISPRS Vaihingen dataset.

 Cable Ground Car Fence Building Vegetation

2DCNN DALES F1 0.130 0.926 0.399 0.001 0.759 0.397

3DCNN DALES F1 0.230 0.929 0.347 0.000 0.758 0.318

RF DALES F1 0.123 0.916 0.168 0.039 0.767 0.429

2DCNN DALES IoU 0.069 0.862 0.249 0.000 0.611 0.247

3DCNN DALES IoU 0.130 0.867 0.210 0.000 0.610 0.189

RF DALES IoU 0.065 0.846 0.092 0.020 0.622 0.273

Table 5-4. Average F1, class weighted average F1, and OA for 2DCNN and 3DCNN

classifiers trained on the DALES dataset and predicting on the ISPRS Vaihingen dataset.

 Average F1 Weigh. Av. F1 OA

2DCNN DALES F1 0.435 0.753 0.779

3DCNN DALES F1 0.430 0.739 0.774

RF DALES F1 0.407 0.755 0.761

2DCNN DALES IoU 0.340 0.649 0.779

3DCNN DALES IoU 0.334 0.639 0.774

RF DALES IoU 0.319 0.647 0.761

133

2DCNN

3DCNN

RF

Legend

Figure 5-1. Classification results of the ISPRS Vaihingen dataset on models trained with

the DALES dataset.

134

The second generalization experiment is with the same classifiers as the first one,

tested on the Bordeaux dataset. Color data (from photogrammetry), as well as the intensity

feature (from LiDAR), is removed for these runs. Firstly the corresponding classes, then

the results are reported in the following tables.

Table 5-5. Corresponding classes between the DALES and Bordeaux datasets, along with

their distributions, are shown.

DALES
Points

(Train)
Bordeaux

Points

(Predict)

Ground 29.7% Ground 13.9%

Building / Cable / Pole 50.0% Roof / Facade 80.2%

Vegetation 2.1% Vegetation 5.0%

Car / Truck / Fence 18.2% Others 1.0%

Table 5-6. F1 and IoU scores for 2DCNN and 3DCNN classifiers trained on the DALES

dataset and predicting on Bordeaux dataset.

 Ground Building Vegetation Others

2DCNN DALES F1 0.965 0.978 0.947 0.434

3DCNN DALES F1 0.956 0.972 0.937 0.462

RF DALES F1 0.948 0.945 0.618 0.203

2DCNN DALES IoU 0.931 0.958 0.900 0.277

3DCNN DALES IoU 0.916 0.945 0.882 0.300

RF DALES IoU 0.901 0.895 0.447 0.113

135

Table 5-7. Average F1, class weighted average F1, and OA for 2DCNN and 3DCNN

classifiers trained on the DALES dataset and predicting on Bordeaux dataset.

 Average F1 Weigh. Av. F1 OA

2DCNN DALES F1 0.831 0.968 0.969

3DCNN DALES F1 0.832 0.961 0.961

RF DALES F1 0.678 0.926 0.914

2DCNN DALES IoU 0.766 0.941 0.969

3DCNN DALES IoU 0.761 0.927 0.961

RF DALES IoU 0.589 0.871 0.914

2DCNN

3DCNN

RF

Legend

Figure 5-2. Classification results of Bordeaux dataset on models trained with the DALES

dataset.

136

The third generalization experiment is with the ISPRS Vaihingen classifiers, tested

on the Bordeaux dataset. For this experiment, the color data of the Bordeaux dataset (RGB)

are kept, although the models are trained on the color-space of the ISPRS Vaihingen dataset

(IR-R-G). This is due to:

(i) the input dimensions of the models are fixed and cannot be changed;

(ii) experimenting the generalization capability of the models also with some

noisy data, assuming the differences in the color spaces as noise.

Corresponding classes and the results are reported in the following tables.

Table 5-8. Corresponding classes between the ISPRS Vaihingen and the Bordeaux datasets,

along with their distributions, are shown.

ISPRS Vaihingen
Points

(Train)
Bordeaux

Points

(Predict)

Ground 18.1% Ground 13.9%

Roof 26.9% Roof 43.6%

Facade 5.1% Facade 36.6%

Low Veget. / Shrub / Tree 46.1% Vegetation 5.0%

Cables / Car / Fence 3.7% Others 1.0%

Table 5-9. F1 and IoU scores for 2DCNN and 3DCNN classifiers trained on the ISPRS

Vaihingen dataset and predicting on the Bordeaux dataset.

 Ground Facade Roof Vegetation Others

2DCNN ISPRS F1 0.921 0.690 0.923 0.759 0.400

3DCNN ISPRS F1 0.882 0.743 0.878 0.832 0.331

RF ISPRS F1 0.178 0.589 0.824 0.218 0.000

2DCNN ISPRS IoU 0.854 0.527 0.857 0.612 0.250

3DCNN ISPRS IoU 0.789 0.591 0.782 0.712 0.198

RF ISPRS IoU 0.098 0.418 0.700 0.123 0.000

137

Table 5-10. Average F1, class weighted average F1, and OA for 2DCNN and 3DCNN

classifiers trained on the ISPRS Vaihingen dataset and predicting on the Bordeaux dataset.

 Average F1 Weigh. Av. F1 OA

2DCNN ISPRS F1 0.739 0.878 0.882

3DCNN ISPRS F1 0.733 0.855 0.855

RF ISPRS F1 0.362 0.548 0.506

2DCNN ISPRS IoU 0.620 0.793 0.882

3DCNN ISPRS IoU 0.614 0.751 0.855

RF ISPRS IoU 0.268 0.434 0.506

2DCNN

3DCNN

RF

Legend

Figure 5-3. Classification results of the Bordeaux dataset on models trained with the ISPRS

Vaihingen dataset.

138

5.2. Comparisons with the State-of-the-Art

In this section, the proposed framework is compared against the current state-of-

the-art methods. Besides the accuracy metrics, training timings are also reported, which are

acquired from the original research publications.

The state-of-the-art comparisons include not only point cloud classification

frameworks but also an alternative CNN to classify using TONIC’s data matrix structure

(Figure 3-6): EfficientNet, B7 version specifically (Tan and Le, 2019). The EfficientNetB7

is reported as the most accurate among the other EfficientNets. Therefore, only this version

is used for comparison here.

 The network is implemented in the TensorFlow library, and it is applied as shown

in Figure 5-4. Due to its network architecture, the EfficientNetB7 cannot be fed with

images smaller than 32x32 pixels dimension. For this reason, the matrices are zero-padded

in order to fulfill this.

Figure 5-4. EfficientNetB7 implementation via TensorFlow library.

Table 5-11 represents the comparisons for the ISPRS Vaihingen dataset in terms of

computational efficiency and accuracy. It can be seen TONIC is faster than the state-of-

139

the-art methods, on par with them in terms of accuracy, and it consumes less energy and

memory.

Table 5-11. Comparison of the performances between TONIC framework and recent

papers, ordered by OA. TFLOPS indicates the computational power of the GPU for single-

precision floating-point (FP32) operations. Training times are given in hours. Differences

from the highest OA score in the table are shown with asterisk.

Method

GPU

TFLOPS

Training

Time

GPU

Watt

GPU

Memory OA GPU

Li et al. (2020b) 8.73 10 250 24 GB 0.839 Tesla K80

Li et al. (2020a) 2 x 12.15 7 2 x 250 2 x 12 GB 0.835 2 x Titan Xp

Wen et al. (2021) 12.15 10 250 12 GB 0.832 Titan Xp

Chen et al. (2021) 14.13 2 250 32 GB 0.832 Tesla V100

EfficientNetB7

Tan and Le (2019)
13.45 1 250 11 GB

0.748
(−9.1%*)

RTX 2080Ti

Ours (2DCNN) 13.45 0.15 250 11 GB
0.826

(−1.3%*)
RTX 2080Ti

Ours (3DCNN) 13.45 0.5 250 11 GB
0.806

(−3.3%*)
RTX 2080Ti

In terms of prediction timings performance for the ISPRS Vaihingen dataset,

TONIC framework requires ~9.5 seconds on Nvidia RTX 2080Ti GPU. For comparison,

EfficientNetB7 takes ~23 seconds for this dataset with the same hardware configuration.

Feature extraction for the dataset takes less than 10 seconds on Intel i9-8950HK Mobile

CPU using 12 threads. As a result, even with the combination of a mid-level laptop CPU

140

and a decent GPU, both of the DL models of TONIC are faster and more accurate than the

EfficientNet, while achieving accuracies on par with the current state-of-the-art methods.

The RF model is not reported in the table as it is not a DL-based approach. Yet, it takes

less than 1 minute to train the RF model on the same Mobile CPU while consuming less

than 2 GB of system memory.

TONIC framework is also implemented for AMD GPUs, using PlaidML (PlaidML,

2019), which is a Python library enables running Keras on OpenCL (Stone et al., 2010), as

well as Apple’s Metal API (Apple, 2021). The performance comparison of the same

2DCNN model running on different GPUs is given in Table 5-13. In order to fit into a

smaller GPU memory, batch size is reduced. The training on Nvidia GPU utilizes CUDA

(Nickolls et al., 2008) drivers, while the training on AMD GPU utilizes Metal API.

Table 5-12. Comparison of the performance between different GPUs, running the same

model

Method

GPU FP32

TFLOPS

Training

Time

GPU

Watt

GPU

Memory GPU

Ours (2DCNN) 13.45 0.15 250 11 GB
Nvidia RTX

2080Ti

Ours (2DCNN) 2.46 1.0 60 4 GB
AMD Radeon

Pro 560X Mobile

Other accuracy comparisons are held with the DALES dataset comparing the

TONIC’s networks with IoU metrics with respect to the current state-of-the-art methods in

Table 5-13. Both of the KPConv and PointNet++ outperform the proposed method by 3–

4% in terms of OA.

141

Table 5-13. IoU per class and OA scores on the DALES dataset with respect to current

state-of-the-art methods.

Method Ground Veget. Car Truck Cable Fence Pole Building OA

KPConv

(Thomas et al.)
0.971 0.941 0.853 0.419 0.955 0.635 0.750 0.966 0.978

PointNet++

(Qi et al., 2017)
0.941 0.912 0.754 0.303 0.799 0.462 0.400 0.891 0.957

Ours (2DCNN) 0.926 0.863 0.499 0.000 0.823 0.360 0.306 0.837 0.938

Ours (3DCNN) 0.919 0.857 0.517 0.000 0.841 0.325 0.377 0.826 0.934

For the LASDU dataset, comparisons of the classification accuracy between the

proposed framework and available references are given in Table 5-14. The proposed

models outperform the reference methods (PointNet++ and HDA-PointNet++) by 1–4% in

average F1 score and 1–3% OA.

Table 5-14. F1 scores and OA scores on the LASDU dataset with respect to current state-

of-the-art methods.

Method Ground Building Tree LV Artifact Avg. F1 OA

PointNet++

(Qi et al., 2017)
0.877 0.906 0.820 0.632 0.313 0.710 0.828

HDA-PointNet++

(Huang et al., 2020)
0.887 0.932 0.822 0.652 0.369 0.733 0.844

Ours (2DCNN) 0.887 0.935 0.860 0.691 0.360 0.746 0.846

Ours (3DCNN) 0.885 0.915 0.858 0.673 0.322 0.730 0.837

5.3. Summary of the Chapter

In this chapter, generalization experiments along with the comparisons with the

current state-of-the-art methods are discussed. The comparisons were held not only in

142

terms of accuracy but also computational efficiency. In the next chapter, these results will

be discussed, limitations of the framework will be debated along with future work, and a

conclusion will be made.

143

144

Discussion and Conclusions

In this chapter, the results (Chapters 4 and 5) will be discussed for distinct dataset

performances as well as generalization performances. These discussions will be followed

by summary of the achievements, limitations, future works, and conclusion, respectively.

6.1. Discussion

The reported results (Chapters 4 and 5) indicated that 2DCNN and 3DCNN models

achieve more accurate classification results than RF classifier with the feature space

defined in Section 3.2. A summary of these results for each dataset can be seen in Table

6-1. One exception is observed with the Bordeaux dataset where RF outperforms 3DCNN

by 0.2% while being outperformed by 2DCNN by 0.4%. The differences in OA in distinct

datasets (Table 6-1) are not very high, especially among DL methods. Specifically, the

most significant gap observed in distinct datasets is 4.8% in the 3DOMCity dataset between

2DCNN and RF models. Aside from these, in some cases (Table 4-13 cables, Table 4-15

145

car, pole, building, Table 4-19 facade, Table 4-21 ground, grass), it is observed that some

models may outperform the others for a specific class in a specific dataset. These are

considered insignificant cases with small margins, as they are not consistent.

Table 6-1. Summarized OA achieved in distinct datasets.

Model

ISPRS

Vaihingen DALES LASDU Bordeaux 3DOMCity

2DCNN 0.826 0.938 0.846 0.944 0.889

3DCNN 0.806 0.934 0.837 0.938 0.883

RF 0.786 0.899 0.821 0.940 0.841

Based on the accuracies of the models in Table 6-1 and the computational

performances reported in Table 5-11, the 2DCNN model can be considered as the best

performing one for distinct datasets, followed by 3DCNN. Although the RF is the fastest,

it falls behind the other two models in terms of accuracy for all the datasets between 0.4-

4.8% OA.

As for the density variations, the framework achieved the targeted accuracy on

point clouds with varying resolutions between 0.116m to 0.484m (Table 4-2). Based on

these results, the framework is expected to operate successfully on geospatial point clouds

with resolutions up to ~0.7m, due to the decided downsampling resolution indicated in

Section 4.3.

In addition to the distinct dataset experiments, the generalization experiments are

similarly very critical. In Table 6-2, these generalization experiments (Section 5.1) are

summarized for discussion.

146

Table 6-2. Summarized OA for the generalization tests.

Trained on Predicted on Model OA

DALES ISPRS Vaihingen 2DCNN 0.779

DALES ISPRS Vaihingen 3DCNN 0.774

DALES ISPRS Vaihingen RF 0.761

DALES Bordeaux 2DCNN 0.969

DALES Bordeaux 3DCNN 0.961

DALES Bordeaux RF 0.914

ISPRS Vaihingen Bordeaux 2DCNN 0.882

ISPRS Vaihingen Bordeaux 3DCNN 0.855

ISPRS Vaihingen Bordeaux RF 0.506

As it can be seen, the 2DCNN method outperforms the others also in the

generalization experiments. The RF model is the worst performing in the experiments.

Especially in the ISPRS Vaihingen-Bordeaux experiment, the RF classifier had strong

confusions between ground and vegetation, which can be seen in Table 5-9 as well as in

Figure 5-3.

To consider both distinct dataset experiments and generalization experiments, these

results are summarized in Table 6-3 with their averages. As it can be seen, 2DCNN

outperforms the others for both usages.

Table 6-3. Average OA per model. DD: Distinct Datasets, Gen.: Generalization

Model Avg OA on DD Avg OA on Gen. Avg OA

2DCNN 0.889 0.877 0.883

3DCNN 0.880 0.863 0.871

RF 0.857 0.727 0.792

The reported results indicate that the TONIC framework can outperform the current

state-of-the-art methods by a few percent of OA (Table 5-14), while requiring less memory

147

and energy consumption due to its design (Table 5-11). These few percent differences are

not expected to lead to significant changes in the usefulness of AI methods in terms of daily

use. A manual quality control will be required for any of these methods. A few percent OA

difference is not expected to change the manual labor needed for the corrections

significantly. However, it may not be possible to make similar claims for computational

efficiency. Aside from the energy consumption, which might be neglected with the use of

environmentally friendly energy sources, the significant impact of the TONIC can be seen

in the lower computational power and lower memory requirements reported in Table 5-12.

The main methodological differences between TONIC framework and the current

state-of-the-art methods can be seen as the following two:

(i) downsampling with voxel-grid filtering with predefined voxel dimensions,

(ii) multi-scale handcrafted feature extraction before passing the data to DNN.

These pre-processing steps, especially the feature extraction, allow designing a

shallower DNN compared to the state-of-the-art methods, supporting the efficiency

objective. A shallower DNN does not only run faster but also requires less memory by its

nature. During the experiments, 1024 points-per-batch were fitted using a GPU with 11 GB

memory. Needless to say, lower hardware requirements lower the hardware costs and speed

up the process, which are favorable characteristics for a method, especially for daily

deployments on large (i.e., city-scale or country-scale) datasets.

The reported generalization experiment results (summarized in Table 6-2) are

promising, as the proposed methods reach accuracies as high as distinct dataset

classification results. A fundamental challenge for generalization is to make the feature

148

spaces of distinct datasets share similar characteristics. The density variations between

distinct datasets cause challenges in the local geometry definitions, as also mentioned in

the literature several times (Sections 2.2 and 2.3) and encouraged researchers to develop

different approaches to deal with this problem. TONIC framework includes a simple and

efficient solution -downsampling- to cope with this while bringing several advantages,

including data reduction for efficiency, reducing the density variations for better

generalization capability, and noise reduction.

The reported results in Table 6-1 and Table 6-2 indicate the fact that there is a high

correlation between the dataset used for prediction and the achieved accuracy. For

example, on the ISPRS Vaihingen dataset, TONIC achieved OA 79-83%. Training the

models on the DALES dataset, the achieved OAs are 76-78%. Similarly, on the Bordeaux

dataset, TONIC achieves OA ~94%, training them on the DALES dataset the achieved

OAs are 91-97%, training them on the ISPRS Vaihingen they can (excluding RF) reach up

to 88% OA. Comparable observations can also be made with the state-of-the-art methods:

PointNet++ achieves 96% OA on the DALES (Table 5-13) dataset while it reaches 83%

on the LASDU (Table 5-14) dataset. Based on these results, it can be concluded that there

is a high correlation between the used datasets for prediction and the achieved OA. The

reason for this can be the noise in the ground truth labels (i.e., wrong labeled points), noise

in the point cloud (i.e., isolated points), and structure of classes in the data (more and

complex classes versus simpler and fewer classes).

149

6.2. Summary of the Achievements

The developed methodology’s novel approach of implementing, pre-processing

with downsampling, multi-scale handcrafted feature extraction, and DL integration defines

a new relationship between aerial 3D point clouds and CNNs. This innovative methodology

is proven to achieve all the objectives mentioned in Section 1.5:

(i) Process point clouds from different sensors with high accuracy (Sections

4.3 and 4.4 or Table 6-1 for summary);

(ii) Generalization (Section 5.1 or Table 6-2 for summary);

(iii) Being invariant to the density variations: both within distinct datasets

(Section 4.4) and among different datasets (Section 5.1);

(iv) Lower computational costs and hardware requirements compared to the

state-of-the-art (Tables 5-11 and 5-12);

(v) Achieving better or similar accuracies compared to the current state-of-the-

art (Section 5.2, Tables 5-11, 5-13, and 5-14).

6.3. Limitations and Future Work

The main limitation of the developed method is that it is tailored for urban

scenarios, where the data acquisition is made using aerial sensors (photogrammetry or

LiDAR). Due to the used handcrafted features, TONIC might not be competitive in

alternative cases other than geospatial point cloud classification. It can be seen as a

purpose-built kind of method rather than a one-fits-for-all kind.

150

Another limitation is the isolated noise in the point clouds. The framework expects

the received point cloud to be free from such isolated points. Although the implemented

downsampling is helpful with reducing the noisy points on surfaces, isolated points are yet

to be considered.

Several open issues can be addressed in the future:

- UAV point clouds to be examined. The handcrafted features are proven for

typical airborne geospatial data (LiDAR or photogrammetry), yet, UAVs are

used for geospatial data acquisitions, as well. Due to the use of different

platforms with lower flight altitudes, these point clouds are expected to have

other characteristics (i.e., geometry, density, visible objects).

- Satellite-based point clouds to be explored. 3D point clouds can be derived

with the current state-of-the-art high-resolution multi-view satellite imagery.

The exploitation of such data can be helpful, especially for isolated areas,

where it is not feasible to plan a flight with an aircraft loaded with

photogrammetric equipment due to high costs. An example of satellite derived

data is given in Chapter 1 (Figure 1-6), where it is seen that the spaceborne

data can come with challenging geometry. Therefore, the TONIC framework

could be tested on such data for further development.

- Data augmentation is a de facto standard when it comes to image processing

with DL. Various types of augmentation are applied during training in order to

increase the data amount as well as improving the overall performance of the

networks. The data augmentation is not implemented for TONIC.

151

- 3D building model generation is an essential task for 3D city models. The use

of the classified point clouds coming from TONIC can be examined. The 3D

model generation can be seen as the next step of map making with geospatial

point clouds. The classification step brings the semantics, so that the 3D data

can be used in GIS for more advanced analysis.

6.4. Conclusions

In this thesis, a novel methodology for geospatial point cloud classification is

proposed, which takes advantage of multi-scale handcrafted features and DL together. In

this way, it not only reaches better or similar accuracies with the current state-of-the-art

models but also becomes a more efficient alternative to the existing solutions, requiring

less computational resources and computational time (as demonstrated in Table 5-11 and

Table 5-12). Besides, the proposed framework is tested on different datasets acquired by

various sensors with different resolutions.

The developed methodology experimented for generalization as well. The reported

results suggest that TONIC can process data from different sources (photogrammetry or

LiDAR) without compromising neither accuracy nor computational efficiency.

Considering the amount of data available in the real world -compared to benchmark

datasets- and the computational density of the state-of-the-art methods, it will not be

surprising to see more research approaching with the efficiency perspective in the future.

Based on the accuracies reported in Chapters 4 and 5, TONIC can be helpful for building

152

extraction (for 3D city modeling), powerline mapping, digital terrain model generation,

and other geospatial studies relying on point clouds.

153

154

Acknowledgments for the Used Datasets

The Vaihingen data set was provided by the German Society for Photogrammetry,

Remote Sensing and Geoinformation (DGPF). The authors would like to acknowledge

Hexagon/Leica Geosystem for providing the Bordeaux dataset. The data set presented in

this thesis contains information licensed under the Open Government License City of

Surrey. Special thanks to the City of Surrey for generously providing the raw data presented

in this paper. For more information about the raw data and other data sources like it please

see their Open Data Site.

155

Bibliography

Apple. Metal | Apple Developer Documentation 2021 [Available from:

https://developer.apple.com/documentation/metal/.

Bakuła, K, Mills, JP, Remondino, F. A Review of Benchmarking in Photogrammetry and

Remote Sensing. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2019 XLII-1/W2:1-8.

Becker, C, Rosinskaya, E, Häni, N, D'Angelo, E, Strecha, C. Classification of Aerial

Photogrammetric 3D Point Clouds. Photogrammetric Engineering & Remote Sensing.

2018 84(5):287-295.

Bello, SA, Yu, S, Wang, C, Adam, JM, Li, J. Review: Deep Learning on 3D Point Clouds.

Remote Sensing. 2020 12(11).

Bittner, K, d’Angelo, P, Körner, M, Reinartz, P. DSM-to-LoD2: Spaceborne Stereo Digital

Surface Model Refinement. Remote Sensing. 2018 10(12).

Bossler, JD, Campbell, JB, McMaster, RB, Rizos, C. Manual of Geospatial Science and

Technology: CRC Press; 2010.

Breiman, L. Random Forests. Machine Learning. 2001 45(1):5-32.

Brinker, RC, Minnick, R. The Surveying Handbook: Springer Science & Business Media;

1995.

Burkov, A. The Hundred-Page machine Learning Book: True Positive Inc.; 2019.

Butler, H. LibLAS LAS 1.0/1.1/1.2 ASPRS LiDAR Data Translation Toolset 2021

[Available from: https://liblas.org/start.html.

Charles, RQ, Su, H, Kaichun, M, Guibas, LJ, editors. PointNet: Deep Learning on Point

Sets for 3D Classification and Segmentation. 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR); 2017 21-26 July 2017.

https://developer.apple.com/documentation/metal/
https://liblas.org/start.html

156

Chen, Y, Liu, G, Xu, Y, Pan, P, Xing, Y. PointNet++ Network Architecture with Individual

Point Level and Global Features on Centroid for ALS Point Cloud Classification. Remote

Sensing. 2021 13(3).

Cheng, G, Li, X, Liu, S, Xiao, Q, Ma, M, Jin, R, Che, T, Liu, Q, Wang, W, Qi, Y, Wen, J,

Li, H, Zhu, G, Guo, J, Ran, Y, Wang, S, Zhu, Z, Zhou, J, Hu, X, Xu, Z. Heihe Watershed

Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and

Experimental Design. Bulletin of the American Meteorological Society. 2013 94(8):1145-

1160.

Chollet, F, others. Keras: GitHub; 2015 2015.

Comune di Trento. 2021 [Available from:

http://webapps.comune.trento.it/mapaccel/?project=generale&view=base.

Corona (satellite). Wikipedia: The Free Encyclopedia2021 [18.06.2021]. Available from:

https://en.wikipedia.org/wiki/Corona_(satellite).

Cramer, M. The DGPF-Test on Digital Airborne Camera Evaluation Overview and Test

Design. Photogrammetrie - Fernerkundung - Geoinformation. 2010 2010(2):73-82.

Digital Elevation Model. Wikipedia: The Free Encyclopedia2021 [18.06.2021]. Available

from: https://en.wikipedia.org/wiki/Digital_elevation_model.

Eisenbeiß, H. UAV Photogrammetry: ETH Zurich; 2009.

Fischler, MA, Bolles, RC. Random Sample Consensus: A Paradigm for Model Fitting with

Applications to Image Analysis and Automated Cartography. Communications of the

ACM. 1981 24(6):381-395.

Garson, JG. The Metric System of Identification of Criminals, as Used in Great Britain and

Ireland. The Journal of the Anthropological Institute of Great Britain and Ireland. 1900

30:161-198.

http://webapps.comune.trento.it/mapaccel/?project=generale&view=base
https://en.wikipedia.org/wiki/Corona_(satellite
https://en.wikipedia.org/wiki/Digital_elevation_model

157

Gerke, M, Nex, F, Remondino, F, Jacobsen, K, Kremer, J, Karel, W, Hu, H, Ostrowski, W.

Orientation of Oblique Airborne Image Sets-Experiences from the ISPRS/EuroSDR

Benchmark on Multi-Platform Photogrammetry. ISPRS - International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences. 2016 XLI-B1:185-

191.

Gomarasca, MA. Basics of Geomatics: Springer Science & Business Media; 2009.

Goodfellow, I, Bengio, Y, Courville, A. Deep Learning: MIT press; 2016 2016.

Google Trends. 2021 [Available from:

https://trends.google.com/trends/explore?date=all&q=support%20vector%20machine,con

volutional%20neural%20network.

Gopi, S, Sathikumar, R, Madhu, N. Advanced Surveying: Total Station, GPS, GIS and

Remote Sensing: Pearson; 2018.

Grilli, E, Menna, F, Remondino, F. A Review of Point Clouds Segmentation and

Classification Algorithms. ISPRS - International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences. 2017 XLII-2/W3:339-344.

Ground Control Points for Drone Mapping. 2021 [17.06.2021]. Available from:

https://www.groundcontrolpoints.com/mapping-contour-lines-using-gcps.

Gruen, A. Development and Status of Image Matching in Photogrammetry. The

Photogrammetric Record. 2012 27(137):36-57.

Guo, Y, Wang, H, Hu, Q, Liu, H, Liu, L, Bennamoun, M. Deep Learning for 3D Point

Clouds: A Survey. IEEE Trans Pattern Anal Mach Intell. 2020 PP:1-1.

Haala, N. The Landscape of Dense Image Matching Algorithms. 54th Photogrammetric

Week; 9-13 September 20132013. p. 271-284.

https://trends.google.com/trends/explore?date=all&q=support%20vector%20machine,convolutional%20neural%20network
https://trends.google.com/trends/explore?date=all&q=support%20vector%20machine,convolutional%20neural%20network
https://www.groundcontrolpoints.com/mapping-contour-lines-using-gcps

158

Hackel, T, Savinov, N, Ladicky, L, Wegner, JD, Schindler, K, Pollefeys, M.

Semantic3d.Net: A New Large-Scale Point Cloud Classification Benchmark. ISPRS

Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. 2017 IV-

1/W1:91-98.

Hackel, T, Wegner, JD, Schindler, K. Fast Semantic Segmentation of 3D Point Clouds with

Strongly Varying Density. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial

Information Sciences. 2016 III-3:177-184.

Han, Y, Qin, R, Huang, X. Assessment of Dense Image Matchers for Digital Surface Model

Generation Using Airborne and Spaceborne Images – An Update. The Photogrammetric

Record. 2020 35(169):58-80.

Harris, CR, Millman, KJ, van der Walt, SJ, Gommers, R, Virtanen, P, Cournapeau, D,

Wieser, E, Taylor, J, Berg, S, Smith, NJ, Kern, R, Picus, M, Hoyer, S, van Kerkwijk, MH,

Brett, M, Haldane, A, Del Rio, JF, Wiebe, M, Peterson, P, Gerard-Marchant, P, Sheppard,

K, Reddy, T, Weckesser, W, Abbasi, H, Gohlke, C, Oliphant, TE. Array Programming

with NumPy. Nature. 2020 585(7825):357-362.

Heipke, C, Rottensteiner, F. Deep learning for geometric and semantic tasks in

photogrammetry and remote sensing. Geo-spatial Information Science. 2020 23(1):10-19.

Henderson, RM, Clark, KB. Architectural Innovation: The Reconfiguration of Existing

Product Technologies and the Failure of Established Firms. Administrative Science

Quarterly. 1990 35(1):9-30.

Hermosilla, P, Ritschel, T, Vázquez, P-P, Vinacua, À, Ropinski, T. Monte Carlo

Convolution for Larning on Non-Uniformly Sampled Point Clouds. ACM Trans Graph.

2018 37(6):Article 235.

Hofmann-Wellenhof, B, Lichtenegger, H, Collins, J. Global Positioning System: Theory

and Practice: Springer Science & Business Media; 2012.

159

Huang, R, Xu, Y, Hong, D, Yao, W, Ghamisi, P, Stilla, U. Deep point embedding for urban

classification using ALS point clouds: A new perspective from local to global. ISPRS

Journal of Photogrammetry and Remote Sensing. 2020 163:62-81.

Huang, X, Cao, R, Cao, Y. A Density-Based Clustering Method for the Segmentation of

Individual Buildings from Filtered Airborne LiDAR Point Clouds. Journal of the Indian

Society of Remote Sensing. 2018 47(6):907-921.

Illingworth, J, Kittler, J. A Survey of the Hough Transform. Computer Vision, Graphics,

and Image Processing. 1988 44(1):87-116.

ISO. ISO/IEC 14882-2014: Information Technology–Programming Languages–C++. ISO

Working Group (Dec 2014)(cit on p 76). 2014.

Kanezaki, A, Matsushita, Y, Nishida, Y, editors. RotationNet: Joint Object Categorization

and Pose Estimation Using Multiviews from Unsupervised Viewpoints. 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition; 2018 2018/06/18/23.

Konecny, G. Geoinformation: Remote Sensing, Photogrammetry and Geographic

Information Systems, Second Edition (2nd ed.): cRc Press; 2014.

Koundinya, S, Sharma, H, Sharma, M, Upadhyay, A, Manekar, R, Mukhopadhyay, R,

Karmakar, A, Chaudhury, S, editors. 2D-3D CNN Based Architectures for Spectral

Reconstruction from RGB Images. 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW); 2018 2018/06/18/22.

Kraus, K. Photogrammetry: de Gruyter; 2007.

Landrieu, L, Raguet, H, Vallet, B, Mallet, C, Weinmann, M. A structured regularization

framework for spatially smoothing semantic labelings of 3D point clouds. ISPRS Journal

of Photogrammetry and Remote Sensing. 2017 132:102-118.

160

Laupheimer, D, Shams Eddin, MH, Haala, N. On the Association of Lidar Point Clouds

and Textured Meshes for Multi-Modal Semantic Segmentation. ISPRS Ann Photogramm

Remote Sens Spatial Inf Sci. 2020 V-2-2020:509-516.

Leica CityMapper-2 Hybrid Airborne Sensor. 2021 [Available from: https://leica-

geosystems.com/en-us/products/airborne-systems/leica-citymapper-2.

Li, N, Liu, C, Pfeifer, N. Improving LiDAR classification accuracy by contextual label

smoothing in post-processing. ISPRS Journal of Photogrammetry and Remote Sensing.

2019 148:13-31.

Li, W, Wang, F-D, Xia, G-S. A Geometry-Attentional Network for ALS Point Cloud

Classification. ISPRS Journal of Photogrammetry and Remote Sensing. 2020a 164:26-40.

Li, X, Wang, L, Wang, M, Wen, C, Fang, Y. DANCE-NET: Density-aware convolution

networks with context encoding for airborne LiDAR point cloud classification. ISPRS

Journal of Photogrammetry and Remote Sensing. 2020b 166:128-139.

Lin, T, Goyal, P, Girshick, R, He, K, Dollár, P, editors. Focal Loss for Dense Object

Detection. 2017 IEEE International Conference on Computer Vision (ICCV); 2017 22-29

Oct. 2017.

Linder, W. Digital Photogrammetry: Springer; 2009.

Liu, L, Ouyang, W, Wang, X, Fieguth, P, Chen, J, Liu, X, Pietikäinen, M. Deep Learning

for Generic Object Detection: A Survey. International Journal of Computer Vision. 2020

128(2):261-318.

Liu, W, Sun, J, Li, W, Hu, T, Wang, P. Deep Learning on Point Clouds and Its Application:

A Survey. Sensors (Basel). 2019 19(19).

Luhmann, T, Robson, S, Kyle, S, Boehm, J. Close-Range Photogrammetry and 3D

Imaging: De Gruyter; 2019.

https://leica-geosystems.com/en-us/products/airborne-systems/leica-citymapper-2
https://leica-geosystems.com/en-us/products/airborne-systems/leica-citymapper-2

161

Madhulatha, TS. An Overview on Clustering Methods. IOSR Journal of Engineering. 2012

2:719-725.

Maling, DH. Coordinate Systems and Map Projections: Pergamon Press; 1992.

Maltezos, E, Doulamis, A, Doulamis, N, Ioannidis, C. Building Extraction From LiDAR

Data Applying Deep Convolutional Neural Networks. IEEE Geoscience and Remote

Sensing Letters. 2019 16(1):155-159.

Martín, A, Ashish, A, Paul, B, Eugene, B, Zhifeng, C, Craig, C, Greg, SC, Andy, D, Jeffrey,

D, Matthieu, D, Sanjay, G, Ian, G, Andrew, H, Geoffrey, I, Michael, I, Jia, Y, Rafal, J,

Lukasz, K, Manjunath, K, Josh, L, Dandelion, M, Rajat, M, Sherry, M, Derek, M, Chris,

O, Mike, S, Jonathon, S, Benoit, S, Ilya, S, Kunal, T, Paul, T, Vincent, V, Vijay, V,

Fernanda, V, Oriol, V, Pete, W, Martin, W, Martin, W, Yuan, Y, Xiaoqiang, Z.

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems2015 2015.

Matrone, F, Grilli, E, Martini, M, Paolanti, M, Pierdicca, R, Remondino, F. Comparing

Machine and Deep Learning Methods for Large 3D Heritage Semantic Segmentation.

ISPRS International Journal of Geo-Information. 2020 9(9).

McGlone, C. Manual of Photogrammetry, Sixth Edition: ASPRS; 2013.

McKinney, W, editor Data Structures for Statistical Computing in Python2010.

Nickolls, J, Buck, I, Garland, M, Skadron, K. Scalable Parallel Programming with CUDA:

Is CUDA the parallel programming model that application developers have been waiting

for? Queue. 2008 6(2):40–53.

Niemeyer, J, Rottensteiner, F, Soergel, U. Contextual Classification of Lidar Data and

Building Object Detection in Urban Areas. ISPRS Journal of Photogrammetry and Remote

Sensing. 2014 87:152-165.

162

Özdemir, E, Remondino, F. Classification of Aerial Point Clouds with Deep Learning.

ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences. 2019 XLII-2/W13:103-110.

Özdemir, E, Remondino, F. Segmentation of 3D Photogrammetric Point Cloud for 3D

Building Modeling. ISPRS - International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences. 2018 XLII-4/W10:135-142.

Özdemir, E, Remondino, F, Golkar, A. Aerial Point Cloud Classification with Deep

Learning and Machine Learning Algorithms. ISPRS - International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019a XLII-

4/W18:843-849.

Özdemir, E, Remondino, F, Golkar, A. An Efficient and General Framework for Aerial

Point Cloud Classification in Urban Scenarios. Remote Sensing. 2021 13(10).

Özdemir, E, Toschi, I, Remondino, F. A Multi-Purpose Benchmark for Photogrammetric

Urban 3d Reconstruction in a Controlled Environment. ISPRS - International Archives of

the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019b XLII-

1/W2:53-60.

Pârvu, IM, Özdemir, E, Remondino, F. Aerial Point Cloud Classification Using an

Alternative Approach for the Dynamic Computation of K-Nearest Neighbors. Journal of

Applied Engineering Sciences. 2020 10(2):155-162.

Pedregosa, F, Varoquaux, G, Gramfort, A, Michel, V, Thirion, B, Grisel, O, Blondel, M,

Prettenhofer, P, Weiss, R, Dubourg, V, Vanderplas, J, Passos, A, Cournapeau, D, Brucher,

M, Perrot, M, Duchesnay, É. Scikit-Learn: Machine Learning in Python. J Mach Learn

Res. 2011 12(null):2825-2830.

Pelton, JN, Madry, S, Camacho-Lara, S. Handbook of Satellite Applications: Springer;

2017.

163

PlaidML. PlaidML 2019 [updated 2019. Available from:

https://github.com/plaidml/plaidml.

Poli, D, Remondino, F, Angiuli, E, Agugiaro, G. Evaluation of Pleiades-1a Triplet on

Trento Testfield. ISPRS - International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences. 2013 XL-1/W1:287-292.

Poli, D, Remondino, F, Angiuli, E, Agugiaro, G. Radiometric and Geometric Evaluation

of GeoEye-1, WorldView-2 and Pléiades-1A Stereo Images for 3D Information Extraction.

ISPRS Journal of Photogrammetry and Remote Sensing. 2015 100:35-47.

Pulvirenti, L, Squicciarino, G, Fiori, E, Fiorucci, P, Ferraris, L, Negro, D, Gollini, A,

Severino, M, Puca, S. An Automatic Processing Chain for Near Real-Time Mapping of

Burned Forest Areas Using Sentinel-2 Data. Remote Sensing. 2020 12(4):674.

QGIS.org. QGIS Geographic Information System: QGIS Association; 2021 [Available

from: http://www.qgis.org.

Qi, CR, Yi, L, Su, H, Guibas, LJ. Pointnet++: Deep Hierarchical Feature Learning On Point

Sets In A Metric Space. arXiv preprint arXiv:170602413. 2017:5099-5108.

Qin, R. A Critical Analysis of Satellite Stereo Pairs for Digital Surface Model Generation

and Matching Quality Prediction Model. ISPRS Journal of Photogrammetry and Remote

Sensing. 2019 154:139-150.

Qin, R, Tian, J, Reinartz, P. 3D change detection – Approaches and applications. ISPRS

Journal of Photogrammetry and Remote Sensing. 2016 122:41-56.

Reback, J, jbrockmendel, McKinney, W, Van den Bossche, J, Augspurger, T, Cloud, P,

Hawkins, S, gfyoung, Sinhrks, Roeschke, M, Klein, A, Petersen, T, Tratner, J, She, C, Ayd,

W, Hoefler, P, Naveh, S, Garcia, M, Schendel, J, Hayden, A, Saxton, D, Gorelli, ME,

Shadrach, R, Jancauskas, V, McMaster, A, Li, F, Battiston, P, Seabold, S, attack68, Dong,

K. pandas-dev/pandas: Pandas. Zenodo; 2020.

https://github.com/plaidml/plaidml
http://www.qgis.org/

164

Riegl. RIEGL - Produktdetail 2021 [17.06.2021]. Available from:

http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/30/.

Rottensteiner, F, Sohn, G, Jung, J, Gerke, M, Baillard, C, Benitez, S, Breitkopf, U. The

ISPRS Benchmark on Urban Object Classification and 3D Building Reconstruction. ISPRS

Ann Photogramm Remote Sens Spatial Inf Sci. 2012 I-3:293-298.

Rusu, RB, Cousins, S, editors. 3D is here: Point Cloud Library (PCL). 2011 IEEE

International Conference on Robotics and Automation; 2011 2011/05/09/13.

Shan, J, Toth, CK. Topographic Laser Ranging and Scanning: Principles and Processing:

CRC Press; 2018.

Stenz, U, Hartmann, J, Paffenholz, J-A, Neumann, I. High-Precision 3D Object Capturing

with Static and Kinematic Terrestrial Laser Scanning in Industrial Applications—

Approaches of Quality Assessment. Remote Sensing. 2020 12(2):290.

Stone, JE, Gohara, D, Shi, G. OpenCL: A Parallel Programming Standard for

Heterogeneous Computing Systems. Computing in Science & Engineering. 2010 12(3):66-

73.

Su, H, Maji, S, Kalogerakis, E, Learned-Miller, E, editors. Multi-view Convolutional

Neural Networks for 3D Shape Recognition. Proceedings of the IEEE international

conference on computer vision; 2015 2015.

Tan, M, Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural

Networks. In: Kamalika C, Ruslan S, editors. Proceedings of the 36th International

Conference on Machine Learning; Proceedings of Machine Learning Research: PMLR;

2019. p. 6105--6114.

Tapete, D, Cigna, F. Appraisal of Opportunities and Perspectives for the Systematic

Condition Assessment of Heritage Sites with Copernicus Sentinel-2 High-Resolution

Multispectral Imagery. Remote Sensing. 2018 10(4):561.

http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/30/

165

Thomas, H, Goulette, F, Deschaud, J, Marcotegui, B, LeGall, Y, editors. Semantic

Classification of 3D Point Clouds with Multiscale Spherical Neighborhoods. 2018

International Conference on 3D Vision (3DV); 2018 2018/09/05/8.

Thomas, H, Qi, CR, Deschaud, J-E, Marcotegui, B, Goulette, F, Guibas, LJ, editors.

KPConv: Flexible and Deformable Convolution for Point Clouds2019 2019.

Toschi, I, Farella, EM, Welponer, M, Remondino, F. Quality-Based Registration

Refinement of Airborne LiDAR and Photogrammetric Point Clouds. ISPRS Journal of

Photogrammetry and Remote Sensing. 2021 172:160-170.

Trimble. Total Stations | Trimble Geospatial 2021 [17.06.2021]. Available from:

https://geospatial.trimble.com/products-and-solutions/total-stations.

Urech, PRW, Dissegna, MA, Girot, C, Grêt-Regamey, A. Point Cloud Modeling as a

Bridge Between Landscape Design and Planning. Landscape and Urban Planning. 2020

203:103903.

Varney, N, Asari, VK, Graehling, Q, editors. DALES: A Large-Scale Aerial LiDAR Data

Set for Semantic Segmentation2020 2020/06//.

Verma, V, Aggarwal, RK. A comparative analysis of similarity measures akin to the

Jaccard index in collaborative recommendations: empirical and theoretical perspective.

Social Network Analysis and Mining. 2020 10(1):43.

Vosselman, G, Coenen, M, Rottensteiner, F. Contextual Segment-Based Classification of

Airborne Laser Scanner Data. ISPRS Journal of Photogrammetry and Remote Sensing.

2017 128:354-371.

Vosselman, G, Maas, H-G. Airborne and Terrestrial Laser Scanning: CRC Press; 2010.

Wang, X. Learning from Big Data with Uncertainty – editorial. Journal of Intelligent &

Fuzzy Systems. 2015 28:2329-2330.

https://geospatial.trimble.com/products-and-solutions/total-stations

166

Wang, X, Zhao, Y, Pourpanah, F. Recent Advances in Deep Learning. International

Journal of Machine Learning and Cybernetics. 2020 11(4):747-750.

Wang, Y, Sun, Y, Liu, Z, Sarma, SE, Bronstein, MM, Solomon, JM. Dynamic Graph CNN

for Learning on Point Clouds. ACM Transactions on Graphics. 2019 38(5):1-12.

Weinmann, M, Jutzi, B, Mallet, C. Feature relevance assessment for the semantic

interpretation of 3D point cloud data. ISPRS Annals of Photogrammetry, Remote Sensing

and Spatial Information Sciences. 2013 II-5/W2(W2):313-318.

Wen, C, Li, X, Yao, X, Peng, L, Chi, T. Airborne LiDAR Point Cloud Classification with

Global-Local Graph Attention Convolution Neural Network. ISPRS Journal of

Photogrammetry and Remote Sensing. 2021 173:181-194.

Winiwarter, L, Mandlburger, G, Schmohl, S, Pfeifer, N. Classification of ALS Point

Clouds Using End-to-End Deep Learning. PFG – Journal of Photogrammetry, Remote

Sensing and Geoinformation Science. 2019 87(3):75-90.

Wold, S, Esbensen, K, Geladi, P. Principal Component Analysis. Chemometrics and

Intelligent Laboratory Systems. 1987 2(1):37-52.

Xia, S, Xu, S, Wang, R, Li, J, Wang, G. Building Instance Mapping From ALS Point

Clouds Aided by Polygonal Maps. IEEE Transactions on Geoscience and Remote Sensing.

2021:1-13.

Xie, N, Ras, G, van Gerven, M, Doran, D. Explainable Deep Learning: A Field Guide for

the Uninitiated. arXiv preprint arXiv:200414545. 2020a.

Xie, Y, Tian, J, Zhu, XX. Linking Points With Labels in 3D: A Review of Point Cloud

Semantic Segmentation. IEEE Geoscience and Remote Sensing Magazine. 2020b 8(4):38-

59.

167

Yan, Y, Yan, H, Guo, J, Dai, H. Classification and Segmentation of Mining Area Objects

in Large-Scale Spares Lidar Point Cloud Using a Novel Rotated Density Network. ISPRS

International Journal of Geo-Information. 2020 9(3).

Ye, Z, Xu, Y, Huang, R, Tong, X, Li, X, Liu, X, Luan, K, Hoegner, L, Stilla, U. LASDU:

A Large-Scale Aerial LiDAR Dataset for Semantic Labeling in Dense Urban Areas. ISPRS

International Journal of Geo-Information. 2020 9(7).

Yousefhussien, M, Kelbe, DJ, Ientilucci, EJ, Salvaggio, C. A Multi-Scale Fully

Convolutional Network for Semantic Labeling of 3D Point Clouds. ISPRS Journal of

Photogrammetry and Remote Sensing. 2018 143:191-204.

Zhang, F, Guan, C, Fang, J, Bai, S, Yang, R, Torr, PHS, Prisacariu, V, editors. Instance

Segmentation of LiDAR Point Clouds. 2020 IEEE International Conference on Robotics

and Automation (ICRA); 2020 31 May-31 Aug. 2020.

Zhang, J, Lin, X, Ning, X. SVM-Based Classification of Segmented Airborne LiDAR Point

Clouds in Urban Areas. Remote Sensing. 2013 5(8):3749-3775.

Zhang, Y, Yang, W, Liu, X, Wan, Y, Zhu, X, Tan, Y. Unsupervised Building Instance

Segmentation of Airborne LiDAR Point Clouds for Parallel Reconstruction Analysis.

Remote Sensing. 2021 13(6):1136.

168

169

Appendices A

In this appendix, the codes of the developed framework are shared, including

feature extraction tool, deep learning tool, accuracy assessment tool, and instance

segmentation tool.

The codes shared in this thesis are not meant to be used for any purpose without an

official agreement with Skoltech and Bruno Kessler Foundation.

A.1. Feature Extraction Tool

// feature extraction tool (C++)

// author emre özdemir

// multi-threading implementation: alessandro torresani

#define PCL_NO_PRECOMPILE

//#include <boost/make_shared.hpp>

#include <chrono>

#include <cmath>

#include <Eigen/Core>

#include <liblas/liblas.hpp> //laz implementation

#include <pcl/common/pca.h>

#include <pcl/features/normal_3d_omp.h>

#include <pcl/filters/voxel_grid.h>

#include <pcl/io/ply_io.h>

#include <pcl/io/pcd_io.h>

#include <pcl/ModelCoefficients.h>

#include <pcl/point_types.h>

#include <pcl/sample_consensus/method_types.h>

#include <pcl/sample_consensus/model_types.h>

#include <pcl/search/kdtree.h>

170

#include <pcl/segmentation/sac_segmentation.h>

#include <thread>

#include <time.h>

#include <vector>

#include <math.h>

// global variables for multi-scale feature extraction

const int scale = 3; //5

const int scale_multiplier = 2; //2

int numpt = 3;

int scale_vals[scale+1] = {0, 6, 20, 38};

//argv 1 input cloud

//argv 2 project name

//argv 3 project path

//argv 4 number of cores

// custom point cloud type, to keep the necessary features

struct Point_custom

{

 PCL_ADD_POINT4D;

 float class_id;

 float is_train; //

 float ei_va_3[scale*3]; //eigen values 1-2-3

 float shp_ft_3[scale*3]; // elevation change, local

planarity, vertical angle

 float ei_ft_3[scale*3]; //eigen features in order:

surface variation, sphericity, omnivariance

171

 float ei_nrmls_3[scale*3]; //last 3 eigen vectors from

each scale, the first six are ignored (these are the

normals..)

 float h6; // height above "ground"

 float intensity;

 float number_of_returns;

 float return_num;

 PCL_ADD_NORMAL4D;

 PCL_ADD_UNION_RGB;

 EIGEN_MAKE_ALIGNED_OPERATOR_NEW // make sure our new

allocators are aligned

} EIGEN_ALIGN16; // enforce SSE padding

for correct memory alignment

POINT_CLOUD_REGISTER_POINT_STRUCT

(Point_custom,

 (float, x, x)

 (float, y, y)

 (float, z, z)

 (float, class_id, class_id)

 (float, is_train, is_train)

 (float[scale*3], ei_va_3, ei_va_3)

 (float[scale*3], shp_ft_3, shp_ft_3)

 (float[scale*3], ei_ft_3, ei_ft_3)

 (float[scale*3], ei_nrmls_3, ei_nrmls_3)

 (float, h6, h6)

 (float, intensity, intensity)

 (float, number_of_returns, number_of_returns)

 (float, return_num, return_num)

172

 (float, normal_x, normal_x) //to receive the original

normals if exists

 (float, normal_y, normal_y)

 (float, normal_z, normal_z)

 (float, rgb, rgb) //to receive the colors

)

// an object to keep feature group names and number of

features in each group

struct fields_struct

{

 const std::string category[4] = {" ei_va_", " shp_ft_",

" ei_ft_", " ei_nrmls_"};

 const int features[4] = {3,3,3,3};

} fields;

// functions //

// to split point cloud indices for multi-threading

std::vector<std::vector<int>> split_to_indices(const int

num_threds, size_t size_pc, size_t elemPerList);

// compute shape features:

void computeShapeFeatures4(int pt_idx,

pcl::PointCloud<Point_custom>::Ptr pcl_in,

pcl::search::Search<Point_custom>::Ptr kdTree,

pcl::SACSegmentation<Point_custom> plnFitter,

pcl::PCA<Point_custom> PCA);

// compute eigen features (covariance features)

173

void ComputeMyEigenFeatures3(int pt_idx,

pcl::PointCloud<Point_custom>::Ptr pcl_in);

// compute height above groundd

void computeHF5 (int pt_idx,

pcl::PointCloud<Point_custom>::Ptr pcl_in,

pcl::search::Search<Point_custom>::Ptr tree, float minz);

// to run all the feature computations, this function is

triggered per-thread

void RunComputeMyFeatures(std::vector<int> pointIndices,

pcl::PointCloud<Point_custom>::Ptr pcl_in,

pcl::search::Search<Point_custom>::Ptr tree, float minz);

// prepare a header line based on the available sensor

feautres

void prepare_head5(pcl::PointCloud<Point_custom>::Ptr

cloud, std::string *heady, bool *rgb, bool *nxyz, bool

*intensiti, bool *numret, bool *retnum);

// brings scalar fields from one point cloud to another

with the nearest neighbor points

void bring_sf(pcl::PointCloud<Point_custom>::Ptr

cloud_missing, pcl::PointCloud<Point_custom>::Ptr

cloud_full, size_t missing_size,

pcl::search::Search<Point_custom>::Ptr tree, bool rgb, bool

nxyz, bool intensiti, bool numret, bool retnum);

//reads laz files into a pcl point cloud object

174

void laz2pcl(std::string fname,

pcl::PointCloud<Point_custom>::Ptr cloud);

int main (int argc, char** argv)

{

 std::cout<<"feature extraction tool is

running"<<std::endl;

 std::string infilename = argv[1]; // input point cloud

 std::string suffix = argv[2]; // project name, suffix

 std::string prj_dir = argv[3]; // project directory for

outputs

 const int numberOfThreads = std::stoi(argv[4]);

 // this is the downsampled cloud

 pcl::PointCloud<Point_custom>::Ptr pcl_in (new

pcl::PointCloud<Point_custom>);

 // laz file will be read into this object

 pcl::PointCloud<Point_custom>::Ptr pcl_in0 (new

pcl::PointCloud<Point_custom>);

 // downsampling object

 pcl::VoxelGrid<Point_custom> grid;

 // search kd-tree object, multi-thread safe,

downsampled cloud will be passed to this

 pcl::search::Search<Point_custom>::Ptr tree =

pcl::shared_ptr<pcl::search::Search<Point_custom> > (new

pcl::search::KdTree<Point_custom>);

 // string holding the header line, will be filled

175

 std::string heady;

 // bool variables for header object

 bool rgb, nxyz, intensiti, numret, retnum;

 // output file

 std::ofstream outfile;

 // report file

 std::ofstream repout;

 repout.open(prj_dir+"/" + suffix +

"_feature_extraction_report.txt");

 //start chronometer

 std::chrono::steady_clock::time_point begin =

std::chrono::steady_clock::now();

 //read laz file

 laz2pcl(infilename, pcl_in0);

 //report file reading time

 std::chrono::steady_clock::time_point end =

std::chrono::steady_clock::now();

 repout << "file reading time: " <<

std::chrono::duration_cast<std::chrono::microseconds>(end -

begin).count()*0.000001 << "\n";

 //get the original point cloud size (number of points)

and export to report

 size_t pc_size = pcl_in0->points.size();

176

 repout << "number of points before downsampling: " <<

pc_size << "\n";

 // header line of the output file prepared here

 prepare_head5(pcl_in0, &heady, &rgb, &nxyz, &intensiti,

&numret, &retnum);

 // reset the chrono before downsampling

 begin = std::chrono::steady_clock::now();

 //gridding (downsampling the data)

 grid.setLeafSize (0.75f, 0.75f, 0.75f);

 grid.setInputCloud (pcl_in0);

 grid.filter (*pcl_in);

 // report time ıf downsampling

 end = std::chrono::steady_clock::now();

 repout << "downsampling time: " <<

std::chrono::duration_cast<std::chrono::microseconds>(end -

begin).count()*0.000001 << "\n";

 // reset the chrono before scalar field bringing

 begin = std::chrono::steady_clock::now();

 //need to get pc_size and build the tree after

gridding, also need to fill missing scalar fields (of

sensor) after downsampling

 pc_size = pcl_in->points.size();

 bring_sf(pcl_in, pcl_in0, pc_size, tree, rgb, nxyz,

intensiti, numret, retnum);

 tree->setInputCloud(pcl_in);

177

 //clear the original point cloud

 pcl_in0->clear();

 // prepare a list of lists, each list contains the

point indices, number of lists = number of threads

 size_t elemPerList = pc_size / numberOfThreads;

 std::vector<std::vector<int>> pointThreadIndices;

 pointThreadIndices = split_to_indices(numberOfThreads,

pc_size, elemPerList);

 // report time for scalar field bringing

 end = std::chrono::steady_clock::now();

 repout << "scalar field bringing time: " <<

std::chrono::duration_cast<std::chrono::microseconds>(end -

begin).count()*0.000001 << "\n";

 // reset the chrono before feature extraction

 begin = std::chrono::steady_clock::now();

 // get global min-z for height above ground feature

 float hmin = 9999999.0f;

 for (size_t i=0; i<pc_size; ++i)

 {

 hmin = hmin > pcl_in->points[i].z ? pcl_in-

>points[i].z : hmin;

 }

 // Compute features on multiple threads

 std::vector<std::thread> threads;

 for (int i=0; i<numberOfThreads; ++i)

178

 threads.push_back(std::thread(RunComputeMyFeatures,

pointThreadIndices[i], pcl_in, tree, hmin)); //ADD NEW

THINGS HERE

 // wait for all threads to complete

 for (int i=0; i<numberOfThreads; ++i)

 threads[i].join();

 end = std::chrono::steady_clock::now();

 repout << "feature extraction time: " <<

std::chrono::duration_cast<std::chrono::microseconds>(end -

begin).count()*0.000001 << "\n";

 begin = std::chrono::steady_clock::now();

 // export the point cloud to a csv file, checking the

available scalar fields

 outfile.open(prj_dir + "/" + suffix +

"_features_cloud.txt");

 outfile << heady;

 int s=0; // counter of the scales

 int k=0; // counter of feature in each feature group

for each scale

 std::string str; //each line is prepared into this

object, then printed for some speed gain

 for (size_t i = 0; i < pc_size; ++i)

 {

 str =

 (std::to_string(pcl_in->points[i].x) +"

"+ std::to_string(pcl_in->points[i].y) +" "+

std::to_string(pcl_in->points[i].z) + " "

179

 + std::to_string(pcl_in->points[i].class_id)

+" ");//+ pcl_in->points[i].is_train +" ";

 for (s=0; s<scale; ++s) {

 for (k = 0; k<fields.features[0] ; ++k) // k

for each feature no under the feature category, there are 3

features under categories: i=0 and i=3

 str += (std::to_string(pcl_in-

>points[i].ei_va_3[s*fields.features[0]+k]) + " "); //feat

0 is ei_va_3

 }

 for (s=0; s<scale; ++s) {

 for (k = 0; k<fields.features[1] ; ++k) // k

for each feature no under the feature category, there are 3

features under categories: i=0 and i=3

 str += (std::to_string(pcl_in-

>points[i].shp_ft_3[s*fields.features[1]+k]) + " "); //feat

1 is shp_ft_3

 }

 for (s=0; s<scale; ++s) {

 for (k = 0; k<fields.features[2] ; ++k) // k

for each feature no under the feature category, there are 3

features under categories: i=0 and i=3

 str += (std::to_string(pcl_in-

>points[i].ei_ft_3[s*fields.features[2]+k]) + " "); //feat

2 is ei_ft_3

 }

 for (s=0; s<scale; ++s) {

180

 for (k = 0; k<fields.features[3] ; ++k) // k

for each feature no under the feature category, there are 3

features under categories: i=0 and i=3

 str += (std::to_string(pcl_in-

>points[i].ei_nrmls_3[s*fields.features[3]+k]) + " ");

//feat 3 is ei_nrmls_3

 }

 str += (std::to_string(pcl_in->points[i].h6) +" ");

 if (intensiti)

 str += (std::to_string(pcl_in-

>points[i].intensity) +" "); // 65536.0f //

normalization&standardization computations will be held in

python

 if (numret)

 str += (std::to_string(pcl_in-

>points[i].number_of_returns) +" ");

 if (retnum)

 str += (std::to_string(pcl_in-

>points[i].return_num) +" ");

 if (nxyz)

 str += (std::to_string(pcl_in-

>points[i].normal_x) +" "+ std::to_string(pcl_in-

>points[i].normal_y) +" "+ std::to_string(pcl_in-

>points[i].normal_z) +" ");

 if (rgb)

 str += (std::to_string(pcl_in->points[i].r) +"

"+ std::to_string(pcl_in->points[i].g) +" "+

std::to_string(pcl_in->points[i].b) +" ");

181

 // normalization&standardization computations will

be held in python /255.f

 str += "\n";

 outfile << str;

 str.clear();

 }

 outfile.close();

 end = std::chrono::steady_clock::now();

 repout << "file export time: " <<

std::chrono::duration_cast<std::chrono::microseconds>(end -

begin).count()*0.000001;

 repout.close();

 std::cout << "Done!" << std::endl;

}

void RunComputeMyFeatures(std::vector<int> pointIndices,

pcl::PointCloud<Point_custom>::Ptr pcl_in,

pcl::search::Search<Point_custom>::Ptr tree, float minz)

{

 // this function is triggered for each thread.

 // plane fitting (sac segmentation) object passed to

each thread defined here

 pcl::SACSegmentation<Point_custom> plnFitter;

 plnFitter.setModelType (pcl::SACMODEL_PLANE);

 plnFitter.setMaxIterations(2);

 plnFitter.setDistanceThreshold(1000);

 plnFitter.setMethodType (pcl::SAC_RANSAC);

 plnFitter.setInputCloud(pcl_in);

 //principal component analysis object defined here

182

 pcl::PCA<Point_custom> PCA;

 PCA.setInputCloud(pcl_in);

 // for each thread a point indices vector is passed,

loop below triggered for each point

 for (int i : pointIndices)

 {

 computeShapeFeatures4(i, pcl_in, tree, plnFitter,

PCA);

 ComputeMyEigenFeatures3(i, pcl_in);

 computeHF5(i, pcl_in, tree, minz);

 }

}

void laz2pcl (std::string fname,

pcl::PointCloud<Point_custom>::Ptr cloud)

{

 //to be used as laz has 16-bit color coding.

 float color_bitter = 256.0f/65536.0f;

 // reading laz files into a pcl object

 std::ifstream ifs;

 ifs.open(fname, std::ios::in | std::ios::binary);

 liblas::ReaderFactory f;

 liblas::Reader reader = f.CreateWithStream(ifs);

 liblas::Header const& header = reader.GetHeader();

 // pcl object setting

 cloud->width = header.GetPointRecordsCount();

 cloud->height = 1;

183

 cloud->points.resize(cloud->width);

 int count = 0;

 // any other field to be read from the laz file must be

included in this loop

 // each point is read one by one from the laz object

with GetPoint()

 while (reader.ReadNextPoint())

 {

 liblas::Point const& p = reader.GetPoint();

 cloud->points[count].x =

static_cast<float>(p.GetX());

 cloud->points[count].y =

static_cast<float>(p.GetY());

 cloud->points[count].z =

static_cast<float>(p.GetZ());

 cloud->points[count].r =

static_cast<float>(p.GetColor().GetRed()*color_bitter);

//color_bitter = 256.0f/65536.0f

 cloud->points[count].g =

static_cast<float>(p.GetColor().GetGreen()*color_bitter);

 cloud->points[count].b =

static_cast<float>(p.GetColor().GetBlue()*color_bitter);

 cloud->points[count].number_of_returns =

static_cast<float>(p.GetNumberOfReturns());

 cloud->points[count].return_num =

static_cast<float>(p.GetReturnNumber());

 cloud->points[count].class_id =

static_cast<float>(p.GetClassification().GetClass());

184

 cloud->points[count].intensity =

static_cast<float>(p.GetIntensity());

 ++count;

 }

}

void computeShapeFeatures4(int pt_idx,

pcl::PointCloud<Point_custom>::Ptr pcl_in,

pcl::search::Search<Point_custom>::Ptr kdTree,

pcl::SACSegmentation<Point_custom> plnFitter,

pcl::PCA<Point_custom> PCA)

{

 // shape features computations

 // plane coefficients and indices objects

 pcl::ModelCoefficients::Ptr plne_cff (new

pcl::ModelCoefficients);

 pcl::PointIndices::Ptr pln_indc (new

pcl::PointIndices);

 // nearest-neighbor search tool outputs into these

vectors

 std::vector<int> neighborsIndices; // Indices of the

points belonging to the neighborhood

 std::vector<int> neighbors; // Indices of the points

belonging to the neighborhood

 std::vector<float> neighborsDistances; // Distance of

the neighborhood points from srcPoints

185

 // planarity feature starts from 0, each point's

distance to plane to be added to this variable

 float tempPLN = 0.0f;

 // pca output objects

 Eigen::Matrix3f eigenvectors; // Eigenvectors

 Eigen::Vector3f eigenvalues; // Eigenvalues

 //hmin&hmax values for local elevation change feature

 float hmint = 999999.0f;

 float hmaxt = -999999.0f;

 // kdtree search is triggered for the largest scale

 kdTree->nearestKSearch(pcl_in->points[pt_idx],

scale_vals[scale], neighborsIndices, neighborsDistances);

 // using the scales vector (global variable), feature

extraction is done from smallest scale to largest

 for (int s=0; s<scale; ++s)

 {

 for(size_t mm = scale_vals[s]; mm <

scale_vals[s+1]; ++mm)

 {

 // indices for each scale is passed to another

vector, this will be passed to plane fitting object and pca

object

 neighbors.push_back(neighborsIndices[mm]);

 hmint = hmint > pcl_in-

>points[neighborsIndices[mm]].z ? pcl_in-

>points[neighborsIndices[mm]].z : hmint;

186

 hmaxt = hmaxt < pcl_in-

>points[neighborsIndices[mm]].z ? pcl_in-

>points[neighborsIndices[mm]].z : hmaxt;

 }

 // set indices for pca and plane fitting objects

PCA.setIndices(pcl::make_shared<std::vector<int>>(neighbors

));

plnFitter.setIndices(pcl::make_shared<std::vector<int>>(nei

ghbors));

 //get eigenvalues and eigenvectors from pca

 eigenvalues = PCA.getEigenValues();

 eigenvectors = PCA.getEigenVectors();

 //pass eigenvalues to eigenvalues feature

 pcl_in-

>points[pt_idx].ei_va_3[s*fields.features[0]+0] =

eigenvalues(0);

 pcl_in-

>points[pt_idx].ei_va_3[s*fields.features[0]+1] =

eigenvalues(1);

 pcl_in-

>points[pt_idx].ei_va_3[s*fields.features[0]+2] =

eigenvalues(2);

 // if z-component of the vector is negative, revert

the vector

187

 if (eigenvectors(8) < 0)

 {

 eigenvectors(6) *= -1.0f;

 eigenvectors(7) *= -1.0f;

 eigenvectors(8) *= -1.0f;

 }

 // pass last 3 eigen vectors to eigen normals

feature

 pcl_in-

>points[pt_idx].ei_nrmls_3[s*fields.features[3]+0] =

eigenvectors(6);

 pcl_in-

>points[pt_idx].ei_nrmls_3[s*fields.features[3]+1] =

eigenvectors(7);

 pcl_in-

>points[pt_idx].ei_nrmls_3[s*fields.features[3]+2] =

eigenvectors(8);

 // fit the plane and check if it failed,

 plnFitter.segment(*pln_indc, *plne_cff);

 tempPLN = 0.0f;

 if (isnan(plne_cff->values[0]) || isnan(plne_cff-

>values[1]) || isnan(plne_cff->values[2]) ||

isnan(plne_cff->values[3]))

 {

 //check if plane fitting went well, if not, put

0 for plane-based features.

 pcl_in-

>points[pt_idx].shp_ft_3[s*fields.features[1]+1] = 0.0f;

188

 }

 // if succeded compute the average of the

distances,

 else

 {

 for(int mm = 0; mm < scale_vals[s+1]; ++mm)

 {

 //sum the absolute distances from each

point to the best fit plane

 tempPLN += (abs(plne_cff->values[0]*pcl_in-

>points[neighborsIndices[mm]].x + plne_cff-

>values[1]*pcl_in->points[neighborsIndices[mm]].y +

plne_cff->values[2]*pcl_in->points[neighborsIndices[mm]].z

+ plne_cff->values[3]) / sqrt(pow(plne_cff->values[0],2.0)

+ pow(plne_cff->values[1],2.0) + pow(plne_cff-

>values[2],2.0)));

 }

 //local planarity shp_ft_3[1], take the average

 pcl_in-

>points[pt_idx].shp_ft_3[s*fields.features[1]+1] =

tempPLN/static_cast<float>(scale_vals[s+1]);

 }

 //elevation change shp_ft_3[0]

 pcl_in-

>points[pt_idx].shp_ft_3[s*fields.features[1]+0] = hmaxt-

hmint;

 //vertical angle calculation

189

 float result = acos(pcl_in-

>points[pt_idx].ei_nrmls_3[s*fields.features[3]+2]) *

200.0f / M_PI;

 // check if nan, make it 0 if it is, then pass the

value

 result = isnan(result) ? 0.0f : result;

 pcl_in-

>points[pt_idx].shp_ft_3[s*fields.features[1]+2] = result;

 }

}

void ComputeMyEigenFeatures3(int pt_idx,

pcl::PointCloud<Point_custom>::Ptr pcl_in)

{

 // compute eigen features based on the eigenvalues

 // eigen features in order: surface variation,

sphericity, omnivariance

 for (int i = 0; i<scale; ++i)

 {

 pcl_in-

>points[pt_idx].ei_ft_3[i*fields.features[2]] = (pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+0] - pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+1]) / pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+0];

 pcl_in-

>points[pt_idx].ei_ft_3[i*fields.features[2]+1] = pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+2] / pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+0];

 pcl_in-

>points[pt_idx].ei_ft_3[i*fields.features[2]+2] =

190

std::cbrt(pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+2] * pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+1] * pcl_in-

>points[pt_idx].ei_va_3[i*fields.features[0]+0]);

 }

}

void computeHF5 (int pt_idx,

pcl::PointCloud<Point_custom>::Ptr pcl_in,

pcl::search::Search<Point_custom>::Ptr tree, float minz)

{

 // Indices of the points belonging to the neighborhood

 std::vector<int> neighborsIndices;

 // Distance of the neighborhood points from srcPoints

 std::vector<float> neighborsDistances;

 //locally lowest point around the point of interest

 float lowest;

 // z stays the same as pre defined, 1 for lowest, 2 for

highest points in the cloud

 Point_custom temp_point1; //from min z

 temp_point1.x = pcl_in->points[pt_idx].x;

 temp_point1.y = pcl_in->points[pt_idx].y;

 temp_point1.z = minz;

 // get the lowest z within the neighbourhood

 tree->nearestKSearch(temp_point1, 1, neighborsIndices,

neighborsDistances);

 temp_point1.z = pcl_in->points[neighborsIndices[0]].z;

191

 tree->nearestKSearch(temp_point1, 1, neighborsIndices,

neighborsDistances);

 lowest = pcl_in->points[neighborsIndices[0]].z;

 // pass the difference as height above ground

 pcl_in->points[pt_idx].h6 = pcl_in->points[pt_idx].z -

lowest;

}

std::vector<std::vector<int>> split_to_indices(const int

num_threds, size_t size_pc, size_t elemPerList)

{

 std::vector<std::vector<int>> pointThreadIndices;

 std::vector<int> v;

 for (int i=0; i < size_pc; ++i)

 {

 v.push_back(i);

 if (pointThreadIndices.size() == num_threds - 1)

 { // Last chunk case (to handle <numberOfPoints> %

numberOfThreads != 0)

 if (i == size_pc - 1)

 { // Last point case

 pointThreadIndices.push_back(v);

 v.clear();

 }

 }

 else

 {

 if (((i+1) % elemPerList) == 0)

 { // Split point

192

 pointThreadIndices.push_back(v);

 v.clear();

 }

 }

 }

 return pointThreadIndices;

}

void prepare_head5(pcl::PointCloud<Point_custom>::Ptr

cloud, std::string *heady, bool *rgb, bool *nxyz, bool

*intensiti, bool *numret, bool *retnum)

{

 std::string temp;

 *heady = "x y z class_id";// is_train"; //this part is

fixed

 for (int i = 0; i<4; ++i) // i for each feature

category, there are 4 feature categories.

 {

 for (int j = 0; j<scale; ++j) //j is for scale,

defined globally

 { // k for each feature no under the feature

category, there are 3 features under categories: i=0 and

i=3

 for (int k = 0; k<fields.features[i] ; ++k)

 { //feature_category_$scale_$feature_no

 temp = fields.category[i] +

std::to_string(j+1) + "_" + std::to_string(k+1);

 (*heady) += temp;

 }

 }

193

 }

 (*heady) += " height_6p";

 *intensiti = true;

 if (cloud->points[0].intensity == 0 && cloud-

>points[1].intensity == 0 && cloud->points[2].intensity ==

0)

 *intensiti = false;

 if (*intensiti==true)

 (*heady) += " intensity";

 *numret = true;

 if (cloud->points[0].number_of_returns == 0 && cloud-

>points[1].number_of_returns == 0 && cloud-

>points[2].number_of_returns == 0)

 *numret = false;

 if (*numret==true)

 (*heady) += " num_returns";

 *retnum = true;

 if (cloud->points[0].return_num == 0 && cloud-

>points[1].return_num == 0 && cloud->points[2].return_num

== 0)

 *retnum = false;

 if (*retnum==true)

 (*heady) += " retr_numb";

 *nxyz = true;

 if (cloud->points[0].normal_x == 0 && cloud-

>points[0].normal_y == 0 && cloud->points[0].normal_z == 0)

194

 *nxyz = false;

 if (*nxyz==true)

 (*heady) += " nx ny nz";

 *rgb = true;

 if (cloud->points[0].r == 0 && cloud->points[0].g == 0

&& cloud->points[0].b == 0)

 *rgb = false;

 if (*rgb==true)

 (*heady) += " r g b";

 (*heady) += "\n";

}

void bring_sf(pcl::PointCloud<Point_custom>::Ptr

cloud_missing, pcl::PointCloud<Point_custom>::Ptr

cloud_full, size_t missing_size,

pcl::search::Search<Point_custom>::Ptr tree, bool rgb, bool

nxyz, bool intensiti, bool numret, bool retnum)

{

 for (size_t i = 0; i<missing_size; i++)

 {

 // create a temporary point from the point cloud

with missing scalar fields

 Point_custom tempPoint;

 tempPoint.x = cloud_missing->points[i].x;

 tempPoint.y = cloud_missing->points[i].y;

 tempPoint.z = cloud_missing->points[i].z;

 // search returns outputs into these vectors

 std::vector<int> pointIdxSearch;

195

 std::vector<float> pointSquaredDistance;

 // run the search, retrieve only the available

features

 tree->nearestKSearch(tempPoint, 1, pointIdxSearch,

pointSquaredDistance);

 {

 cloud_missing->points[i].class_id = cloud_full-

>points[pointIdxSearch[0]].class_id;

 if (rgb)

 {

 cloud_missing->points[i].r = cloud_full-

>points[pointIdxSearch[0]].r;

 cloud_missing->points[i].g = cloud_full-

>points[pointIdxSearch[0]].g;

 cloud_missing->points[i].b = cloud_full-

>points[pointIdxSearch[0]].b;

 }

 if (nxyz)

 {

 cloud_missing->points[i].normal_x =

cloud_full->points[pointIdxSearch[0]].normal_x;

 cloud_missing->points[i].normal_y =

cloud_full->points[pointIdxSearch[0]].normal_y;

 cloud_missing->points[i].normal_z =

cloud_full->points[pointIdxSearch[0]].normal_z;

 }

 if (intensiti)

 {

196

 cloud_missing->points[i].intensity =

cloud_full->points[pointIdxSearch[0]].intensity;

 }

 if (numret)

 {

 cloud_missing->points[i].number_of_returns

= cloud_full->points[pointIdxSearch[0]].number_of_returns;

 }

 if (retnum)

 {

 cloud_missing->points[i].return_num =

cloud_full->points[pointIdxSearch[0]].return_num;

 }

 }

 }

}

197

A.2. 2DCNN Classification Tool

#!/usr/bin/env python3

-*- coding: utf-8 -*-

#@author: emrozdmr

classication tool (Python 3)

import the used libraries

import os

import tensorflow as tf

import numpy as np

import pandas as pd

from sklearn.utils import class_weight

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout,

Flatten, LeakyReLU

from tensorflow.keras.layers import Conv2D, MaxPooling2D,

BatchNormalization

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.optimizers import SGD

from tensorflow.keras.callbacks import EarlyStopping,

ModelCheckpoint

198

from tensorflow.keras.models import model_from_json

import tensorflow.keras.backend as K

from scipy.spatial import cKDTree

from sklearn.metrics import f1_score, accuracy_score,

confusion_matrix

import gc

#tf.function decoration makes it as-if tensorflow

functions, enables to run efficiently inside the model

@tf.function

def f1_loss(true, pred):

 # weighted f1 loss function, to experiment.

 ground_positives = K.sum(true, axis=0) # = TP +

FN

 pred_positives = K.sum(pred, axis=0) # = TP +

FP

 true_positives = K.sum(true * pred, axis=0) # = TP

 precision = (true_positives + K.epsilon()) /

(pred_positives + K.epsilon())

 recall = (true_positives + K.epsilon()) /

(ground_positives + K.epsilon())

 f1 = 2 * (precision * recall) / (precision + recall +

K.epsilon())

 weighted_f1 = f1 * ground_positives /

K.sum(ground_positives)

 weighted_f1 = K.sum(weighted_f1)

 return 1 - weighted_f1 #for metrics, return only

'weighted_f1'

199

@tf.function

def f1_lossAVG(true, pred):

 #average f1 loss functions

 ground_positives = K.sum(true, axis=0) # = TP +

FN

 pred_positives = K.sum(pred, axis=0) # = TP +

FP

 true_positives = K.sum(true * pred, axis=0) # = TP

 precision = (true_positives + K.epsilon()) /

(pred_positives + K.epsilon())

 recall = (true_positives + K.epsilon()) /

(ground_positives + K.epsilon())

 f1 = 2 * (precision * recall) / (precision + recall +

K.epsilon())

 f1 = K.mean(f1)

 return 1 - f1

@tf.function

def f1_acc(y_true, y_pred):

 #taken from old keras source code

 #f1 accuracy is used as metric

 true_positives = K.sum(K.round(K.clip(y_true * y_pred,

0, 1)))

 possible_positives = K.sum(K.round(K.clip(y_true, 0,

1)))

 predicted_positives = K.sum(K.round(K.clip(y_pred, 0,

1)))

 precision = true_positives / (predicted_positives +

K.epsilon())

200

 recall = true_positives / (possible_positives +

K.epsilon())

 f1_val =

2.0*(precision*recall)/(precision+recall+K.epsilon())

 return f1_val

def get_data(mydataFrame):

 # parse the input pandas dataframe

 # output separated sub-parts of it

 labels = mydataFrame['class_id'].copy()

 del mydataFrame['class_id']

 data_array = mydataFrame.values

 coordi = data_array[:,0:3]

 return labels, data_array, coordi

def get_patches3_2d(dataframe, knn, num_feat):

 # the 2d patches to be passed to the network

 labels_arr, dataa, coordie = get_data(dataframe)

 #ckdtree is faster

 trie = cKDTree(coordie, leafsize=1)

 big_arr = np.zeros((labels_arr.shape[0], num_feat,

kk,1), dtype=np.float32)

 #labels_arr.shape[0] is number of points

 for x in range(labels_arr.shape[0]):

 #search for each point

 idx = trie.query(coordie[x,:],k=knn)

 #retrieve the neighboring points

 id_arr = idx[1]

 id_arr = np.sort(id_arr)

201

 #get the data for these nighboring points into the

2d array

 temp = dataa[id_arr,:]

 #patch-wise coordinates, centered aroind the point

of interest

 temp[:,0:3] = temp[:,0:3] - coordie[x,:]

 #divide coordinates to patch_max, replace nan

values with zeros, which may occur during division

 temp[:,0:3] = temp[:,0:3] / np.amax(temp[:,0:3],

axis=0)

 temp[:,0:3] = np.nan_to_num(temp[:,0:3])

 #clip coordinates to [0,1], and sort by x and z

 temp[:,0:3] = np.clip(temp[:,0:3],0,1)

 temp = temp[temp[:,0].argsort(kind='mergesort'),:]

 temp = temp[temp[:,2].argsort(kind='mergesort'),:]

 temp = np.reshape(temp,(num_feat,knn,1))

 big_arr[x,:,:,:]=temp

 return big_arr, labels_arr, labels_arr.shape[0]

input parameters

root directory: the outputs will be there

root_dir = '/home/emrozdmr/projects/bordo_new_tf2/'

input file

all_file_name = 'br6_f12p_features_cloud_normd.txt'

os.chdir(root_dir)

202

project name

suffix = 'bordo_noth_2d'

#read csv file into a pandas object, force float32s

all_data = pd.read_csv(root_dir+all_file_name, sep="

",index_col=False, dtype=np.float32)

sorting is fast and helps with the kdtree search

all_data = all_data.sort_values(by=['x'])

#in case a nan column exists, remote it

try: del all_data['nan']

except: print('no nan col')

#optional, remove some sensor features for experimenting

#del all_data['intensity']; del all_data['retr_numb'];

del all_data['num_returns']

#del all_data['r']; del all_data['g']; del all_data['b']

#split training and validation data based on the is_train

train = all_data[all_data['is_train']==1].copy()

evald = all_data[all_data['is_train']==0].copy()

remove is_train column and the original dataframe, they

are not needed anymore

del train['is_train'], evald['is_train'], all_data

15 points to create 2d matrices

kk=15

203

#number of features are dynamic, because of the availabe

sensor features

num_feat = train.shape[1] - 1

get the tensor holind 2d arrays, class_id ground truths

and number of points for training and validation data

x_train3, my_lbls_arr, num_pts_train =

get_patches3_2d(train, kk, num_feat) #get training data

x_eval, my_lbls_arr_evl, num_pts_eval =

get_patches3_2d(evald, kk, num_feat) #get validation data

#remove the dataframes, not necessary anymore, and force-

clean the memory

del train, evald

gc.collect()

get number of classes and class weights

ua,uind=np.unique(my_lbls_arr,return_inverse=True)

counts=np.bincount(uind)

cls_wghs =

class_weight.compute_class_weight(class_weight='balanced',

classes=ua, y=my_lbls_arr)

#print class weights

print(ua)

print("weights: ", cls_wghs)

print("weights max: ",cls_wghs.max())

print("weights max: ",cls_wghs.min())

204

push class weights into a dict, required by newer TF

versions

myclass_weights = {}

for x in range(cls_wghs.shape[0]): myclass_weights[x] =

cls_wghs[x]

create the model

model = Sequential()

model.add(Conv2D(32, (3, 3), padding='same',

input_shape=(num_feat,kk,1)))

model.add(BatchNormalization())

model.add(LeakyReLU())

model.add(Conv2D(64, (3, 3), padding='same'))

model.add(BatchNormalization())

model.add(LeakyReLU())

model.add(MaxPooling2D(pool_size=(2, 2), padding='valid'))

model.add(Conv2D(128, (3, 3), padding='same'))

model.add(BatchNormalization())

model.add(LeakyReLU())

model.add(Conv2D(256, (3, 3), padding='same'))

model.add(BatchNormalization())

model.add(LeakyReLU())

model.add(Conv2D(512, (3, 3), padding='same'))

model.add(BatchNormalization())

model.add(LeakyReLU())

model.add(MaxPooling2D(pool_size=(2, 2)))

205

model.add(Flatten())

model.add(Dense(36, activation='relu'))

model.add(Dropout(0.25))

model.add(Dense(len(myclass_weights),

activation='softmax'))

training parameters, optimizer definitions

my_epochs = 100

learning_rate = 0.001

decay_rate = learning_rate / my_epochs # LearningRate

= LearningRate * 1/(1 + decay * epoch)

my_batch_size = 1024

sgd = SGD(learning_rate=learning_rate, decay=decay_rate,

nesterov=False, momentum=0.95)

#compile the model with the specified, optimizer, loss, and

metric functions

model.compile(loss=f1_lossAVG, optimizer=sgd,

metrics=[f1_acc])

export model structure to json

model_json = model.to_json() # serialize model to JSON

with open(root_dir+suffix+"_2dcnn.json", "w") as json_file:

json_file.write(model_json)

set callbacks for training, and force-clean memory before

the training

my_callbacks = [EarlyStopping(patience=15,

min_delta=0.0001, restore_best_weights=True),

206

ModelCheckpoint(filepath=suffix+'_model.h5',

save_best_only=True, verbose=1)]

gc.collect()

run the training, export the losses and accuracies for

training and validation into my_history variable

my_history = model.fit(x_train3,

to_categorical(my_lbls_arr,

num_classes=len(myclass_weights)),

batch_size=my_batch_size,

validation_data=(x_eval,to_categorical(my_lbls_arr_evl,

num_classes=len(myclass_weights))), epochs=my_epochs,

 class_weight=myclass_weights,

shuffle=True, callbacks=my_callbacks)

export the traning history into a csv file

pd.DataFrame.from_dict(my_history.history).to_csv(root_dir+

suffix+'_2dcnn_history.csv',index=False)

#export model weights, clean history object

model.save_weights(root_dir+suffix+"_2dcnn_weights.h5")

serialize weights to HDF5

del my_history

"""

OPTIONAL BITS

207

#read validation data, and predict on it,

as the coordinates are not kept above, it is necessary to

read again to get the coordinates for exporting the

classification results

all_data = pd.read_csv(root_dir+all_file_name, sep="

",index_col=False, dtype=np.float32, usecols=[0,1,2,3,4])

#del all_data['intensity']; del all_data['retr_numb'];

del all_data['num_returns']

#del all_data['r']; del all_data['g']; del all_data['b']

all_data = all_data.sort_values(by=['x'])

evald = all_data[all_data['is_train']==0].copy()

del all_data

coords_eval = evald.iloc[:,0:3].values

del evald

predicted_eval =

model.predict(x_eval,batch_size=my_batch_size,verbose=1)

prd_evl = np.argmax(predicted_eval, axis=1)

res_eval = np.column_stack((coords_eval,prd_evl,

np.amax(predicted_eval, axis=1)))

np.savetxt(root_dir+suffix+'_clsfd_eval_probs.txt',res_eval

,fmt='%1.3f %1.3f %1.3f %d %1.3f')

del predicted_eval, res_eval, coords_eval

gc.collect()

read another dataset to run prediction on

all_data =

pd.read_csv('/full/path/to/pointcloudwithfeatures.txt',

sep=" ",index_col=False, dtype=np.float32)

208

#del all_data['intensity']; del all_data['retr_numb'];

del all_data['num_returns']

#del all_data['r']; del all_data['g']; del all_data['b']

all_data = all_data.sort_values(by=['x'])

coords_eval = all_data.iloc[:,0:3].values

x_eval, my_lbls_arr_evl, num_pts_eval =

get_patches3_2d(all_data, kk, num_feat)

del all_data

predicted_eval =

model.predict(x_eval,batch_size=my_batch_size,verbose=1)

prd_evl = np.argmax(predicted_eval, axis=1)

res_eval = np.column_stack((coords_eval,prd_evl,

np.amax(predicted_eval, axis=1)))

np.savetxt('/full/path/to/exported_classification_result.tx

t',res_eval,fmt='%1.3f %1.3f %1.3f %d %1.3f')

del predicted_eval, res_eval, coords_eval

gc.collect()

"""

209

A.3. Accuracy Assessment Tool

#!/usr/bin/env python3

-*- coding: utf-8 -*-

@author: emre özdemir

#imports

import sys

import pandas as pd

import numpy as np

import os

from sklearn.metrics import accuracy_score, f1_score,

confusion_matrix, jaccard_score

accuracy assessment tool

recieves a single file with ground truth and prediction

class ids, outputs the accuracy assessment report

control the passed inputs, give a message if something is

wrong

assert len(sys.argv) == 2, print("Please give the file name

to the grount truth and prediction.\n \

 the text file is expected in order of x y z

class_id_gt class_id_predicted, can have a header line\n \

210

 Example use of this tool:\n \

 'python acc_calc.py full/path/to/your_file.txt

'\n \

 Come back with the required file!")

read the data, print number of points

all_data = pd.read_csv(sys.argv[1], sep="

",index_col=False, usecols=[3, 4])

print("Number of points ",all_data.shape[0])

compute accuracy metrics

overall_acc = accuracy_score(all_data.iloc[:,0],

all_data.iloc[:,1])

f1_scores = f1_score(all_data.iloc[:,0],

all_data.iloc[:,1], average=None)

f1_score_weighted = f1_score(all_data.iloc[:,0],

all_data.iloc[:,1], average='weighted')

con_mat = confusion_matrix(all_data.iloc[:,0],

all_data.iloc[:,1])

iou_per_class = jaccard_score(all_data.iloc[:,0],

all_data.iloc[:,1], average=None)

iou_global = jaccard_score(all_data.iloc[:,0],

all_data.iloc[:,1], average='micro')

iou_weighted = jaccard_score(all_data.iloc[:,0],

all_data.iloc[:,1], average='weighted')

#export the report

report_fname = os.path.dirname(sys.argv[1]) + "/report_" +

os.path.basename(sys.argv[1])

np.set_printoptions(precision=4)

211

file = open(report_fname,"w")

file.write("F1 Scores per class\n\n")

file.write(str(f1_scores))

file.write("\n\nWeighted F1 Score\n\n")

file.write('{:.4f}'.format(f1_score_weighted))

file.write("\n\nAverage F1 Score\n\n")

file.write('{:.4f}'.format(f1_scores.mean()))

file.write("\n\nIOU per class\n\n")

file.write(str(iou_per_class))

file.write("\n\nIOU Global\n\n")

file.write('{:.4f}'.format(iou_global))

file.write("\n\nIOU Weighted\n\n")

file.write('{:.4f}'.format(iou_weighted))

file.write("\n\nAverage IOU\n\n")

file.write('{:.4f}'.format(iou_per_class.mean()))

file.write("\n\nOverall Accuracy\n\n")

file.write('{:.4f}'.format(overall_acc))

file.write("\n\nConfusion Matrix\n\n")

file.write(str(con_mat))

file.close()

print("Find the report next to the input file.")

212

A.4. Instance Segmentation Tool

// clusterings tool (C++)

// author emre Özdemir

#define PCL_NO_PRECOMPILE

#include <pcl/ModelCoefficients.h>

#include <pcl/point_types.h>

#include <pcl/filters/extract_indices.h>

#include <pcl/filters/voxel_grid.h>

#include <pcl/features/normal_3d.h>

#include <pcl/search/kdtree.h>

#include <pcl/sample_consensus/method_types.h>

#include <pcl/sample_consensus/model_types.h>

#include <pcl/segmentation/sac_segmentation.h>

#include <pcl/segmentation/extract_clusters.h>

#include <pcl/io/ply_io.h>

// argv[1] input file

// argv[2] output directory

// custom point cloud type for clusters

struct Point_custom

{

 PCL_ADD_POINT4D;

213

 float class_id;

 float cluster_id;

 EIGEN_MAKE_ALIGNED_OPERATOR_NEW // make sure our new

allocators are aligned

} EIGEN_ALIGN16; // enforce SSE padding

for correct memory alignment

POINT_CLOUD_REGISTER_POINT_STRUCT

(Point_custom,

 (float, x, x)

 (float, y, y)

 (float, z, z)

 (float, class_id, class_id)

 (float, cluster_id, cluster_id)

)

int main (int argc, char** argv)

{

 std::cout<<"Euclidean clustering is

running"<<std::endl;

 // input file, ply

 std::string indir = argv[1];

 // output directory

 std::string outdir = argv[2];

 // point cloud object definition and reading with

control

214

 pcl::PointCloud<Point_custom>::Ptr cloud (new

pcl::PointCloud<Point_custom>);

 if (pcl::io::loadPLYFile <Point_custom> (indir,

*cloud) == -1)

 {

 std::cout << "Cloud reading failed." << std::endl;

 return (-1);

 }

 std::cout << "File successfully read\nIt is processing,

hold on for a while..." << std::endl;

 // creating the kdtree object for the search method of

the extraction

 pcl::search::Search<Point_custom>::Ptr tree =

pcl::shared_ptr<pcl::search::Search<Point_custom> > (new

pcl::search::KdTree<Point_custom>);

 tree->setInputCloud (cloud);

 // vector for exported cluster indices

 std::vector<pcl::PointIndices> cluster_indices;

 // euclidean distance clustering object definition

 // and parameter setting

 pcl::EuclideanClusterExtraction<Point_custom> ec;

 ec.setClusterTolerance(1.50f); //3.5

 ec.setMinClusterSize(100);

 ec.setMaxClusterSize(1600000);

 ec.setSearchMethod(tree);

 ec.setInputCloud(cloud);

215

 ec.extract(cluster_indices);

 // counter to keep cluster_id

 int k = 1;

 //commented lines in the loop are useful for exporting

each cluster in individual filess

 for (std::vector<pcl::PointIndices>::const_iterator it

= cluster_indices.begin (); it != cluster_indices.end ();

++it)

 {

// pcl::PointCloud<Point_custom>::Ptr cloud_cluster

(new pcl::PointCloud<Point_custom>);

 for (std::vector<int>::const_iterator pit = it-

>indices.begin (); pit != it->indices.end (); ++pit) {

 cloud->points[*pit].cluster_id = k;

// cloud_cluster->points.push_back (cloud-

>points[*pit]);

 }

 ++k;

// cloud_cluster->width = cloud_cluster->points.size

();

// cloud_cluster->height = 1;

// cloud_cluster->is_dense = true;

// pcl::io::savePLYFileBinary(outdir + "/cluster_" +

std::to_string(k) + ".ply",*cloud_cluster);

 }

 //export the cloud with cluster_ids

216

 pcl::io::savePLYFileBinary(outdir + "/clustered_" +

std::to_string(k) + ".ply",*cloud);

 std::cout << "Done!" << std::endl;

}

217

	Chapter 1. Introduction
	1.1. Motivations
	1.2. Geospatial Data Acquisition Techniques
	1.2.1. Terrestrial
	1.2.2. Airborne
	1.2.3. Spaceborne

	1.3. Point Cloud Generation Methods
	1.3.1. Airborne and Spaceborne Photogrammetry
	1.3.2. Airborne LiDAR

	1.4. Point Cloud Classification
	1.5. Goal and Research Objectives
	1.6. Thesis Structure

	Chapter 2. Literature Review
	2.1. An Overview of Artificial Intelligence
	2.2. Geospatial Point Cloud Classification with Classic Machine Learning
	2.3. Geospatial Point Cloud Classification with Deep Learning
	2.4. Summary of the Chapter

	Chapter 3. Proposed Framework
	3.1. Point Cloud Preprocessing with Downsampling
	3.2. Feature Extraction
	3.3. Classification with Deep Learning and Machine Learning
	3.4. Post-Processing for Instance Segmentation of the Buildings
	3.5. Summary of the Chapter

	Chapter 4. Results and Accuracy Assessment
	4.1. Accuracy Assessment Methodology
	4.2. Validation Datasets
	4.2.1. ISPRS 3D Semantic Labeling Contest Dataset (ISPRS Vaihingen)
	4.2.2. DALES Dataset
	4.2.3. LASDU Dataset
	4.2.4. Bordeaux Dataset
	4.2.5. 3DOMCity Dataset

	4.3. Point Cloud Preprocessing for Density Analysis
	4.4. Results on Validation Datasets
	4.4.1. ISPRS Vaihingen
	4.4.2. DALES
	4.4.3. LASDU
	4.4.4. Bordeaux
	4.4.5. 3DOMCity

	4.5. Summary of the Chapter

	Chapter 5. Validation of the Framework
	5.1. Generalization Experiments
	5.2. Comparisons with the State-of-the-Art
	5.3. Summary of the Chapter

	Chapter 6. Discussion and Conclusions
	6.1. Discussion
	6.2. Summary of the Achievements
	6.3. Limitations and Future Work
	6.4. Conclusions

