

Сколковский институт науки и технологий

Автономная некоммерческая образовательная организация высшего образования «Сколковский институт науки и технологий»

Программное обеспечение

стека протоколов уровня L3

базовой станции RAN 5G RUS

УСТАНОВКА И ЗАПУСК

Страница проекта: <u>https://iot.skoltech.ru</u>

© Сколковский институт науки и технологий, 2022. Все права защищены

содержание

1.	Требования к аппаратному обеспечению централизованного модуля
ба	зовой станции 5G для запуска функций ПО L3 3
2.	Схема эталонного стенда для проведения испытаний
це	нтрализованного модуля базовой станции 5G5
3.	Подготовка среды для обеспечения запуска на централизованном
MC	дуле функций ПО L36
	Требования к ОС 6
	Настройка операционной системы7
	Настройка сервисов операционной системы
4.	Установка9
5.	Установка лицензии9
6.	Настройка и запуск ПО10
	Запуск12
	Логи13
Ка	онтактная информация14

1. Требования к аппаратному обеспечению централизованного модуля базовой станции 5G для запуска функций ПО L3

- 1. Сервер централизованного модуля базовой станции 5G (далее централизованного модуля) на базе платформы Intel:
 - о Процессор на Intel Xeon Scalable 2-го поколения или выше (2 шт)
 - Минимально рекомендуемые процессоры Intel Xeon Gold 6240R
 - Необходима поддержка инструкций процессора AVX512
 - о Оперативная память с рекомендуемым объемом не менее 192 Гб
 - о Твердотельный накопитель (SSD), с минимальным объёмом 256 Гб
 - о Сетевой адаптер Intel X710-DA4
 - Аппаратный ускоритель Intel QAT 8970 для ускорения функций криптографии, построенный на технологии Intel® QuickAssist (также подходит Intel QAT c628)
- 2. В качестве распределенного модуля базовой станции 5G (далее распределенного модуля) рекомендуется использовать ПО L1-HighPHY/L2 разрабатываемое Сколковским институтом науки и технологий на базе платформы Intel:
 - о Процессор на Intel Xeon Scalable 2-го поколения или выше (2 шт)
 - Минимально рекомендуемые процессоры Intel Xeon Gold 6240R
 - Необходима поддержка инструкций процессора AVX512
 - о Оперативная память с рекомендуемым объемом не менее 192 Гб
 - о Твердотельный накопитель (SSD), с минимальным объёмом 256 Гб
 - о Сетевой адаптер Intel X710-DA4
 - Аппаратный ускоритель FEC (Forward Error Correction Acceleration Card) Intel ACC 100 для ускорения операций цифровой обработки сигналов ПО L1-HighPHY (функций FEC: LDPC Decoding/Encoding, RateMatching, HARQ)

- 3. Сетевое оборудование
 - о Ethernet коммутатор 1Gb Base-T (Gigabit Ethernet)
 - Комплект UTP патч-кордов категории 5е для организации доступа и передачи данных плоскости управления
 - Коммутатор с необходимым количеством SFP+ портов при подключении более одного распределённого или централизованного модулей
 - Комплект SFP+ трансиверов, либо соответствующих DAC кабелей для подключения канала передачи данных пользовательской плоскости в сторону ядра сети, а также в сторону распределённого модуля выполняющего функции ПО L2
- 4. Оборудование системы синхронизации
 - Сервер синхронизации Microsemi TP4100 или аналогичный с поддержкой профилей PTP IEEE1588v2 (PTP Profile: G.8275.1 и G.8275.2) и поддержкой внешнего источника сигнала синхронизации от ГНСС ГЛОНАСС/GPS
- 5. Приёмопередающий модуль базовой станции 5G открытым с стандартизированным интерфейсом взаимодействия с DU (ORAN 7.2 CUS). В частности, на январь 2022 года протестирована работоспособность со следующими приемопередающими модулями 5G:
 - Radio Gigabit/Skoltech 5G O-RU 8T8R Band 79
 - Foxconn 5G O-RU RPQN-78XX (4T4R Indoor pRRU Band n78)
 - Foxconn 5G O-RU RHON-78XX (8T8R Outdoor pRRU Band n78)
 - Foxconn 5G O-RU RPQN-79XX (4T4R Indoor pRRU Band n79)
 - o Foxconn 5G O-RU RHON-79XX (8T8R Outdoor pRRU Band n79)

6. Ядро сети 5GC (5G Standalone Core).

Для проведения испытаний необходимо обеспечить подключение к ядру сети 5GC через интерфейс NG, соответствующий спецификации ETSI TS 138 413 Release 16.3. Командой тестирования и интеграции Сколковского

ПО стека протоколов уровня L3 базовой станции RAN 5G RUS Установка и запуск

института науки и технологий подтверждена совместимость с ядрами сети 5G следующих вендоров:

- о Amarisoft (продукт: AMF/MME)
- о Altran (продукт: ViNGC)
- о Radisys (продукт: 5GCN)
- о Huawei (продукт: UNC)
- Open5GCore
- о Cumucore (продукт: 5GC)

Стоит отметить, что для максимальной совместимости с коммерческими абонентскими устройствами, ядро сети 5G должно иметь мультимедиа подсистему (IMS) для обеспечения функций VoNR.

2. Схема эталонного стенда для проведения испытаний централизованного модуля базовой станции 5G

3. Подготовка среды для обеспечения запуска на централизованном модуле функций ПО L3

Требования к ОС

Для функционирования ПО требуется использовать Linux CentOS version 7.8.2003, версия ядра Linux 3.10.0-1127.19.1.rt56.1116.el7.x86_64

По умолчанию из дистрибутива устанавливается обычное ядро.

Чтобы получить необходимую версию ядра, требуется выполнить следующие команды:

sudo yum --enablerepo=extras install epel-release sudo yum install -y wget atool cd /tmp wget https://buildlogs.centos.org/c7.1804.u.x86_64/tuned/20180820184932/2.9.0-1.el7_5.2.x86_64/tuned-2.9.0-1.el7_5.2.noarch.rpm --no-check-certificate sudo yum remove tuned sudo rpm -i tuned-2.9.0-1.el7_5.2.noarch.rpm wget http://linuxsoft.cern.ch/cern/centos/7/rt/CentOS-RT.repo wget http://ftp.riken.jp/Linux/cern/slc58/x86_64/RPM-GPG-KEYs/RPM-GPG-KEY-cern sudo cp CentOS-RT.repo /etc/yum.repos.d/CentOS-RT.repo sudo cp RPM-GPG-KEY-cern /etc/pki/rpm-gpg/RPM-GPG-KEY-cer

Чтобы получить необходимую версию ядра 7.8.2003(3.10.0-1127.19.1.rt56.1116.el7.x86_64), требуется выполнить следующие команды:

sudo yum install -y kernel-rt-3.10.0-1127.19.1.rt56.1116.el7.x86_64 sudo yum install -y kernel-rt-devel-3.10.0-1127.19.1.rt56.1116.el7.x86_64 После чего выполнить перезагрузку машины.

Настройка операционной системы

Для корректной работы ПО необходимо установить и настроить библиотеки hugepages.

Настройка страниц **hugepages** производится путем конфигурирования загрузчика операционной системы.

Для установки и настройки нужно выполнить следующие действия: sudo yum -y install libhugetlbfs libhugetlbfs-utils hugeadm --page-sizes-all

В результате должны получить следующий вывод:

2097152 (2Mb)

1073741824 (1Gb)

Проверить поддержку со стороны процессора 1G Hugepages: *cat /proc/cpuinfo | grep pdpe1gb | head -n 1*

Далее необходимо заполнить конфигурационный файл /etc/default/grub следующим содержимым, а затем выполнить grub2-mkconfig -o /boot/efi/EFI/centos/grub.cfg, пример приведён ниже:

GRUB_TIMEOUT=5 GRUB_DISTRIBUTOR="\$(sed 's, release .*\$,,g'/etc/system-release)" GRUB_DEFAULT=saved GRUB_DISABLE_SUBMENU=true GRUB_TERMINAL_OUTPUT="console" GRUB_CMDLINE_LINUX="crashkernel=auto spectre_v2=retpoline rd.lvm.lv=centos/root rd.lvm.lv=centos/swap rhgb quiet intel_iommu=on iommu=pt usbcore.autosuspend=-1 selinux=0 enforcing=0 nmi_watchdog=0 softlockup_panic=0 audit=0 intel_pstate=disable cgroup_memory=1 cgroup_enable=memory mce=off idle=poll hugepagesz=1G hugepages=50 hugepagesz=2M hugepages=20 default_hugepagesz=1G processor.max_cstate=1 intel_idle.max_cstate=0 isolcpus=1-14, rcu_nocbs=1-14 kthread_cpus=0,15 irqaffinity=0,15 nohz_full=1-14 skew_tick=1 nohz=on nosoftlockup" GRUB DISABLE RECOVERY="true" **ВНИМАНИЕ!** В строке выше необходимо указать достаточное количество ядер для параметров **isolcpus**, **nohz_full**, **rcu_nocbs**. Выше, в качестве примера указано 1-15 для 16 ядерного процессора. При использовании альтернативной конфигурации количество ядер выбирается в зависимости от конфигурации сервера.

По завершении настройки, нужно перезапустить машину.

После перезапуска выполнить команду:

hugeadm --pool-list

Вывод должен содержать следующее: Size Minimum Current Maximum Default 1073741824 16 16 16 *

Настройка сервисов операционной системы

Для корректной работы функций ПО, необходимо выполнить следующие действия.

Отключить сервис firewalld, выполнив следующие команды: sudo systemctl stop firewalld sudo systemctl disable firewalld Oтключить cepвиc NetworkManager, выполнив следующие команды: sudo systemctl stop NetworkManager sudo systemctl disable NetworkManager Oтключить cepвиc irqbalance, выполнив следующие команды: sudo systemctl stop irqbalance sudo systemctl stop irqbalance

4. Установка

- 1. Запросить архив с ПО L3 у представителей Сколковского института науки и технологий
- 2. Распаковать архив 13.tar.gz

tar -xzvf l3.tar.gz

3. Запустить установку ПО L3 выполнив следующие команды

cd l3 && ./install.sh .

4. Дождаться завершения выполнения, при успешном завершении будет выведено следующее сообщение

Installation script complete successfully.

5. Убедиться в отсутствии ошибок время выполнения скрипта установки.

5. Установка лицензии

1. Перейти в директорию с установленным ПО:

cd /usr/local/bin

 Для генерации файла лицензии, необходимо получить файл с уникальными идентификаторами аппаратной платформы распределенного модуля, выполнив следующую команду:

sudo ./hardware_info /tmp/hwinfo.txt

3. В результате, в директории /tmp будет создан текстовый файл с именем *hwinfo.txt* приблизительно следующего содержания:

BOARD SN=L1HF879019T

MACHINE ID=88bbd12a7f484f03b6485a1a2d5e6d30

PRODUCT_SN=PC0WBQJ7

PRODUCT_UUID=467f59cc-2df6-11b2-a85c-a4b61e3a629e

- 4. Передать файл hwinfo.txt представителям Сколковского института науки и технологий, в ответ будет выслан файл лицензии *license.lic*.
- 5. Скопировать license.lic в директорию *с /usr/local/cu/bin*.

6. Настройка и запуск ПО

- 1. Убедиться, что централизованный модуль запущен.
- 2. Открыть консоль и установить ssh-соединение сервером ПО L3. Для установки соединения использовать следующие параметры:
 - Login user_name (имя пользователя),
 - Password user_password (пароль пользования),
 - Host_ip ПО L3 host IP Address (IP-адрес централизованного модуля).
- 3. Включить режим администратора:
 - Ввести в консоли команду sudo su, используя пароль, указанный в п. 2.
 - Об успешном выполнении команды можно понять по ключевому слову **root** в консоли.
- 4. Установить необходимые файлы конфигурации, скопировав их в папку /usr/local/cu/config/
- 5. Перейти в директорию /usr/local/cu/config/ с помощью команды:

cd /usr/local/cu/config

6. Проверить PCI-адрес аппаратного ускорителя криптографии Intel QuickAssist, установленного в систему с помощью команды:

lspci / grep C62x

[root@kontron-cu config]# lspci | grep C62x b5:00.0 Co-processor: Intel Corporation C62x Chipset QuickAssist Technology (rev 04) b6:00.0 Co-processor: Intel Corporation C62x Chipset QuickAssist Technology (rev 04) b7:00.0 Co-processor: Intel Corporation C62x Chipset QuickAssist Technology (rev 04)

- 7. Проверить содержимое файла service.ini:
 - pci_addr_crypto=0000:b6:00.0 должен быть указан PCI-адрес, выведенный вторым в списке из п.6.
- 8. Выполнить команду для создания виртуальных функций криптографического ускорителя:

echo 16 > /sys/bus/pci/devices/{pci_addr}/sriov_numvfs, где **{pci_addr}** – PCI-адрес из п.7

9. Выполнить команду:

ПО стека протоколов уровня L3 базовой станции RAN 5G RUS Установка и запуск

lspci | grep 37c9 | head -n3 | tail -n2 | awk '{print \$1}',

в результате выполнения которой будут выведены два PCI-адреса виртуальных функций, созданных в п.8:

10. Отредактировать файл sys_config.txt (/usr/local/cu/config/sys_config.txt), изменив значения параметров PCI_ADDRESS для настроек криптографического ускорителя [FAST_CRYPTO_PORT_0] и [FAST_CRYPTO_PORT_1] на PCI-адреса из п.9:

11. Отредактировать файл *netconf_cu.xml* (/usr/local/cu/config/netconf_cu.xml), изменив значения параметров localIpAddress и remoteIpAddress для интерфейсов NG в сторону ядра сети, секции EP_NgC и EP_NgU для control plane и user plane соответственно:

<localIpAddress>5.5.3</localIpAddress> <localVlanId>007</localVlanId> <remoteAddress>5.5.1</remoteAddress> </EP_NgC> <EP_NgU> <id>0</id> <objectClass>EP_NgU</objectClass> <objectInstance>0</objectInstance> <userLabel>EP_NgU</userLabel> <farEndEntity>1</farEndEntity> localIpAddress>5.5.3 <localVlanId>007</localVlanId> <remoteAddress>5.5.1</remoteAddress> </EP_NgU>

Запуск

1. Запуск ПО L3 осуществляется с помощью команды:

service gnb_cu_sa_dpdk_crypto restart

2. Убедиться, что сервис успешно запущен можно с помощью команды:

service gnb_cu_sa_dpdk_crypto status

Вывод команд должен отображать состояние active (running):

[root@kontron-cu config]# service gnb_cu_sa_dpdk_crypto status			
Redirecting to /bin/systemctl status gnb_cu_sa_dpdk_crypto.service			
gnb_cu_sa_dpdk_crypto.service - New Radio Standalone Central Unit Package			
Loaded: loaded (/etc/systemd/system/gnb_cu_sa_dpdk_crypto.service; enabled; vendor preset: disabled)			
Active: active (running) since Чт 2021-12-16 15:13:16 MSK; 35s ago			
Process: 38625 ExecStart=/bin/screen -dmS onb cu sa dpdk crypto /usr/local/cu/scripts/run in screen (code=exited, status=0/SUCCESS)			
Main PID: 38626 (screen)			
Tasks: 30			
CGroup: /system.slice/anb_cu_sa_dpdk_crypto.service			
H38626 /bin/SCREEN -dmS onb cu sa dodk crypto /usr/local/cu/scripts/run in screen			
-38627 /bin/bash /usr/local/cu/scripts/run in screen			
-38632 / anh cu			
-38633 tee /dev/fd/63			
-38635 /bin/bash /us/local/cu/scripts/run in screen			
38636 rotatelogs -n5 /var/log/56-gNB/Console.log 10M			
gex 16 15:13:17 kontron-cu fast_pkt_app[38632]: CRYPTODEV: Initialisation parameters - name: 0000:b6:01.1_qat_sym,socket id: 0, max queue pairs: 0			
gek 16 15:13:17 kontron-cu fast_pkt_app[38632]: CRYPTODEV: Creating cryptodev 0000:b6:01.1_qat_asym			
gex 16 15:13:17 kontron-cu fast_pkt_app[38632]: CRYPTODEV: Initialisation parameters - name: 0000:b6:01.1_qat_asym,socket id: 0, max queue pairs: 0			
дек 16 15:13:17 kontron-cu fast_pkt_app[38632]: EAL: Probe PCI driver: qat (8086:37c9) device: 0000:b6:01.2 (socket 0)			
дек 16 15:13:17 kontron-cu fast_pkt_app[38632]: CRYPTODEV: Creating cryptodev 0000:b6:01.2_gat_sym			
gek 16 15:13:17 kontron-cu fast_pkt_app[38632]: CRYPTODEV: Initialisation parameters - name: 0000:b6:01.2_qat_sym,socket id: 0, max queue pairs: 0			
gek 16 15:13:17 kontron-cu fast_pkt_app[38632]: CRYPTODEV: Creating cryptodev 0000:b6:01.2_qat_asym			
дек 16 15:13:17 kontron-cu fast_pkt_app[38632]: CRYPTODEV: Initialisation parameters - name: 0000:b6:01.2_gat_asym,socket id: 0, max queue pairs: 0			
дек 16 15:13:17 kontron-cu fast_pkt_app[38632]: EAL: No legacy callbacks, legacy socket not created			
gex 16 15:13:17 kontron-cu fast_pkt_app[38632]: CRYPTODEV: elt_size 0 is expanded to 208			

3. Убедиться, что запуск ПО L3 произошел успешно можно, проверив наличие сообщения "CU is UP" в логе сервиса, при помощи команды:

cat /var/log/5G-gNB/Console.log | grep 'CU is UP'

[root@kontron-cu config]# cat /var/log/5G-gNB/Console.log | grep 'CU is UP' Stack Bringup - **CU is UP** _

Проверка успешного запуска ПО L3 так же может включать в себя проверку обмена сообщениями между ПО стека протоколов L3 и ядром сети 5G по протоколу NGAP. Цепочка обмена сообщениями должна включать в себя:

- передачу сообщения NG SETUP REQUEST от ПО L3 в сторону ядра сети 5G по протоколу NGAP,
- в случае успешной операции, ядро сети 5G передаёт сообщение NG SETUP RESPONSE в сторону ПО L3 по протоколу NGAP.

Логи

Для вывода консольного лога запущенного сервиса ПО L3 необходимо выполнить следующие команды:

Для просмотра логов ПО L3 выполнить команды:

tail -f /var/log/5G-gNB/Console.log -n100 tail -f /var/log/5G-gNB/boot_log_cu_YY_MM_DD_hh_mm_ss_part_0.log n100

tail -f /usr/local/cu/bin/cu_YY_MM_DD_hh_mm_ss_part_0.log -n100

Для просмотра логов confD выполнить команды:

tail -f /var/log/5G-gNB/confd_ gnb_cu_sa_dpdk.log -n100 tail -f /var/log/5G-gNB/netconf_ gnb_cu_sa_dpdk.log -n100

Контактная информация

Автономная некоммерческая	Autonomous Non-Profit Organization
образовательная организация	for Higher Education
высшего образования	"Skolkovo Institute of Science and
«Сколковский институт науки и	Technology"
технологий»/	
121205, г. Москва, территория	121205, Moscow, territory of
инновационного центра «Сколково»,	innovation center "Skolkovo", Bolshoy
Большой бульвар, д. 30 стр.1	Boulevard 30, bld. 1
ОГРН 1115000005922	OGRN 1115000005922
ИНН/КПП/ 5032998454/773101001	INN/KPP 5032998454/773101001
Тел.: +7 (495) 280-14-81	Tel.: +7 (495) 280-14-81
Эл. почта: wireless@skoltech.ru	E-mail: wireless@skoltech.ru
Документация для скачивания, а	Documents and product details are
также информация по продукту	available on the page:
размещена на сайте:	https://www.skoltech.ru/ofis-transfera-
https://www.skoltech.ru/ofis-transfera-	znaniy/programmnoe-obespechenie/
znaniy/programmnoe-obespechenie/	