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Abstract

In this work, we study the Sachdev-Ye-Kitaev (SYK) model in the presence of
quadratic perturbation. The original SYK model describes a system of strongly in-
teracted electrons. This model is analytically solvable i.e., we can find the behaviour
of the Green function for all ranges of times. The Green function demonstrates non-
Fermi liquid behaviour. The perturbation "tries" to restore Fermi-liquid properties,
i.e., suppress the interaction’s influence. In this thesis, we describe the scenario
of this suppression. Firstly, we have shown that due to strong fluctuations, the
property of the SYK model is stable with respect to small perturbation. Increasing
the strength of the perturbation, we can observe the suppression of the fluctuation
due to phase transition. This transition is connected with the appearance of the
bound states of the Hamiltonian of the 1D quantum mechanical problem, which
effectively decreases the fluctuation’s behaviour. We also studied behaviour of the
green function in the case of the big number of bound states.
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Chapter 1

Introduction

The Sachdev-Ye-Kitaev (SYK) model describes a system of strongly interacted

fermions. Let us briefly discuss the reasons to study such systems.

We want to start with the history of fermion systems. The most famous fermion

particle is an electron. Metals contain many electrons, so their properties, such as

conductivities (electric and thermal) and heat capacity at sufficiently low temper-

atures, are determined by the behavior of electrons. The theory which describes

quantitative properties of metal was suggested by Enrico Fermi [14]. He considered

many non-interacting fermions in the free space and showed that the thermodynamic

properties of such systems are similar to those of metals.

This result sounds wonderful. Since the school, we know about Coulomb interac-

tion between charged particles. Why is this interaction not important? Lev Landau

obtained the answer to this question. He showed that weak interaction does not

change Fermi’s results qualitatively. The model proposed by Fermi is called Fermi

gas. The theory suggested by Landau is called Fermi Liquid (FL) [23]. According

to this theory, we can describe low-energy excitation of the interacted systems using

a non-interacting system of "quasi-particles"—the difference between parameters of

particles and quasi-particles caused by the interaction.

The Landau Fermi liquid theory is not the end of the study of fermionic systems.

As was mentioned, interaction should be weak and repulsive. Weak attractive inter-

actions lead to superconductivity [7]. In this case, we can also describe the system’s

behavior using quasi-particles, but their spectrum (dependence of energy on the
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momentum) will be different.

What should we expect in the case of a strong interaction? There is no such

classification of phases of matter in this regime, and the analytical description of such

theories is very poor. Several years ago, Alexei Kitaev suggested SYK model [1]. The

model has several interesting properties: behavior of the fermionic green function is

not Fermi liquid-like, the Lyapunov exponent is maximal for the interacted systems,

the low-energy effective action of the model is similar to the action of the so-called

JT gravity [18, 31, 22]. Since the properties of these models are interesting, it is

reasonable to ask a question about their stability with respect to perturbations.

The original SYK model describes a zero-dimensional system with 𝑁 ≫ 1 degen-

erate levels occupied by Majorana fermions with random interaction. The character-

istic scale of the interaction is 𝐽 . We assume that perturbation lifts this degeneracy

and tries to restore FL. The characteristics scale of the perturbation is Γ. In our

analysis, we will show that for Γ ≪ 𝐽
𝑁

SYK behavior is stable, whereas in the

opposite case, FL behavior is restored.

1.1 Literature review

As was mentioned above, the original model was presented by Kitaev [1]. The de-

scription of the mean-filed solution, fluctuation around this solution, and calculation

of the out-of-time ordered correlation function (OTOC) could be found in [21, 26].

This result shows that the fluctuation is important for sufficiently large times or low

temperatures, and we should not limit by the saddle-point approximation. The ap-

proach which lets to obtain results for such times was initially developed by Bagrets,

Altland and Kamenev [4]. They have shown that the model at zero temperature

could be described using Liouville quantum mechanics. This result was extended

to the case of non-zero temperature in the work [28] using methods of conformal

field theory. Work [22] also extends the results to finite temperatures and provides

quasi-classical intuition: the low-energy action of the SYK model is equivalent to the

action of the particle with an imaginary charge which diffuses over the hyperbolic

plane.
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The extension of the SYK model was studied in a large amount of work. The

most important work for us is [30] where SYK model was extended to the higher

dimensions. The author considered the lattice of quantum dots, the dynamic inside

dots are covered by the SYK Hamiltonian, and there is tunnelling between them.

The authors showed that in the limit of small tunnelling conductivity and high tem-

perature, the conductivity of the model is proportional to the inverse temperature,

and one can observe the crossover to the Fermi-liquid regime with decreasing of the

temperature. All these results were obtained in the saddle-point approximation.

It was mentioned above that saddle-point approximation is not applicable for

sufficiently large times or law temperatures. So the question about crossover is not

answered in the strong fluctuation regime. We will try to answer this question for

the simplified model in this thesis.

1.2 Thesis objectives

This thesis aims to study the influence of the quadratic (in fermions) perturbation

on the property of the SYK model for various ranges of temperatures. We will show

that the presence of quadratic perturbation leads to the phase transition. These

results are important in the study of fermionic systems with strong interaction.

1.3 Research methodology

The main method of research used in this work is a functional integral approach. We

use the technique developed in the work [4] to study the case of the zero temperature.

The essence of one is to map the problem to the 1D quantum mechanical problem

known as Liouville quantum mechanics. We also extend this technique to the case

of non-zero temperature using results of the work [22].
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1.4 Scientific novelty

All results obtained in the work are new. They were published in the refereed

journal [25, 24]. Particularly, the question about the influence of the fluctuation

on the crossover to the Fermi-liquid behavior was firstly asked at our work. The

stability of the model at a small but non-zero area of parameters was shown firstly

in our work [25]. The existence of the phase transition between the region with

strong fluctuations and fermi-liquid behavior was first observed in the work [24].

1.5 Thesis structure

In the section "SYK model" one can find introduction in the topic and review of the

technique from the [4]. In the section "SYK model with quadratic perturbations:

the route to a non-Fermi-liquid." we will consider the effect of the perturbation

for the system with zero temperature using perturbation theory. In the section

"Perturbed Sachdev-Ye-Kitaev model: a polaron in the hyperbolic plane." we are

considering the self-consistent approach to the study of the problem with non-zero

temperature. The last section is conclusion. We also included two appendices with

technical details.
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Chapter 2

SYK model

In this chapter we will consider the pure SYK model and its main properties. The

material from this chapter is taken from [21, 26, 4]

2.1 The SYK Hamiltonian and action

The Hamiltonian of the SYK model has the following form:

𝐻 =
1

4!

𝑁∑︁
𝑖𝑗𝑘𝑙=0

𝐽𝑖𝑗𝑘𝑙𝜒𝑖𝜒𝑗𝜒𝑘𝜒𝑙. (2.1)

Here 𝜒𝑖 are Majorana fermion operator. They satisfies the following commutation

relation:

{𝜒𝑖, 𝜒𝑗} = 1. (2.2)

There is an extension of the SYK model for the case of real fermions [16] but it is

not sufficient for our conclusions.

Couplings 𝐽𝑖𝑗𝑘𝑙 are Gaussian random variables with zero mean and the following

variance:

𝐽2
𝑖𝑗𝑘𝑙 =

6𝐽2

𝑁3
. (2.3)

Here𝑁 is a number of different operators. These coupling are also anti-symmetric
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in indices.

Our main interest is a fermionic Green function. To calculate one, let us intro-

duce an action for the problem using imaginary times. The action has a form:

𝑆𝑆𝑌 𝐾 =

∫︁ 𝛽

0

𝑑𝜏

(︃
1

2

∑︁
𝑖

𝜒𝑖(𝜏)𝜕𝜏𝜒𝑖(𝜏) +𝐻

)︃
. (2.4)

We will perform several transform to make the action simpler. The first step

is to perform average over disorder. We will take an average of the partition func-

tion instead taking average of free-energy as we plan to work above temperature of

the glass transition [21]. More over, the existence of this transition is a debatable

question [17]. After average, the action will be:

𝑆𝑆𝑌 𝐾 =

∫︁ 𝛽

0

𝑑𝜏1𝑑𝜏0

⎛⎝1

2

∑︁
𝑖

𝜒𝑖(𝜏1)𝜎(𝜏1, 𝜏0)𝜒𝑖(𝜏0)−
𝐽2

8𝑁3

[︃∑︁
𝑖

𝜒𝑖(𝜏1)𝜒𝑖(𝜏0)

]︃4⎞⎠ . (2.5)

Here we introduced 𝜎(𝜏1, 𝜏0) ≡ 𝛿′(𝜏1 − 𝜏0). We also would like to work with field

𝐺(𝜏1, 𝜏0) defined as:

𝐺(𝜏1, 𝜏0) = − 1

𝑁

∑︁
𝑙

𝜒𝑙(𝜏1)𝜒𝑙(𝜏0). (2.6)

To make this field independent we need to introduce a Lagrangian multiplier

Σ(𝜏1, 𝜏0) using these new fields we can write an action of the problem as:

𝑆𝑆𝑌 𝐾 =
𝑁

2

∫︁ 𝛽

0

𝑑𝜏1𝑑𝜏0

(︁
{−𝜎(𝜏1, 𝜏0) + Σ(𝜏1, 𝜏0)}𝐺(𝜏1, 𝜏0)

−𝐽
2

4
𝐺4(𝜏1, 𝜏0) + Σ(𝜏1, 𝜏0)

∑︁
𝑙

𝜒𝑙(𝜏1)𝜒𝑙(𝜏0)
)︁
.

(2.7)

As one can see, the action is quadratic with respect to fermion operators and we can

take functional integral over fields 𝜒. As a result the action for the problem would

be written in terms of fields 𝐺 and Σ and has the following form:

14



𝑆𝑆𝑌 𝐾 =
𝑁

2
𝑡𝑟 ln(−Σ̂) +

𝑁

2

∫︁ 𝛽

0

𝑑𝜏1𝑑𝜏0

(︂
{−𝜎(𝜏1, 𝜏0) + Σ(𝜏1, 𝜏0)}𝐺(𝜏1, 𝜏0)−

𝐽2

4
𝐺4(𝜏1, 𝜏0)

)︂
.

(2.8)

As 𝑆 ∼ 𝑁 and𝑁 ≫ 1 we can use mean-field approximation to take the functional

integral.

2.2 Mean-field equations and symmetries.

For this chapter we would like to change our time variable 𝜏 to a dimensional one.

So we would introduce new coordinate 𝜃 defined as

𝜃 ≡ 2𝜋𝜏

𝛽
. (2.9)

It is also convenient to rescale fields:

𝐺(𝜏1, 𝜏0) ≡
(︁

2𝜋
𝛽𝐽

)︁1/2
𝐺(𝜃1, 𝜃0), Σ(𝜏1, 𝜏0) ≡ 𝐽2

(︁
2𝜋
𝛽𝐽

)︁3/2
Σ(𝜃1, 𝜃0),

𝜎(𝜏1, 𝜏0) ≡ 𝐽2
(︁

2𝜋
𝛽𝐽

)︁3/2
𝜎(𝜃1, 𝜃0). (2.10)

As a result we can write an action (2.8) in the form:

𝑆𝑆𝑌 𝐾 =
𝑁

2
𝑡𝑟 ln(−Σ̂) +

𝑁

2

∫︁ 2𝜋

0

𝑑𝜃1𝑑𝜃0

(︂
{−𝜎(𝜃1, 𝜃0) + Σ(𝜃1, 𝜃0)}𝐺(𝜏1, 𝜏0)−

1

𝑞
𝐺𝑞(𝜃1, 𝜃0)

)︂
.

(2.11)

Here we also introduced a parameter 𝑞 in our case 𝑞 = 4 but sometimes it is rea-

sonable to consider other value of this parameter [26, 21]. In the limit 𝑁 ≫ 1 we

can consider a mean-field approximation as fluctuations are suppressed as 1
𝑁

. These

equations have a form:

∫︁
𝑑𝜃Σ(𝜃1, 𝜃)𝐺(𝜃, 𝜃0) = −𝛿(𝜃1 − 𝜃0),

Σ(𝜃1, 𝜃0) = 𝐺𝑞−1(𝜃1, 𝜃0) + 𝜎(𝜃1, 𝜃0). (2.12)
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In the limit 𝛽𝐽 ≫ 1 we can neglect by 𝜎(𝜃1, 𝜃0) for 𝜃1 − 𝜃0 ≫ 1
𝛽𝐽

. As a result, the

mean-field equations in the low-temperature limit will be:

Σ(𝜃1, 𝜃0) = 𝐺𝑞−1(𝜃1, 𝜃0)

∫︁
𝑑𝜃,Σ(𝜃1, 𝜃)𝐺(𝜃, 𝜃0) = −𝛿(𝜃1 − 𝜃0). (2.13)

This equation has quite big symmetry group. Particularly, we can consider any

diffeomorphism of the unit circle i.e periodic, monotonic function 𝜙(𝜃) (𝜙(𝜃) =

𝜙(𝜃+2𝜋)). Using this function and arbitrary solution of the above equation 𝐺(𝜃1, 𝜃0)

we can construct a new solution using the following transform:

𝐺(𝜃1, 𝜃2) ↦→ [𝜙′(𝜃1)𝜙
′(𝜃0)]

Δ
𝐺(𝜙(𝜃1), 𝜙(𝜃2)). (2.14)

Here Δ = 1
𝑞
.

Among all solution we need translation invariant which has the form:

𝐺𝑠(𝜃1, 𝜃0) = −𝑏Δ|𝜃210|−Δ𝑠𝑔𝑛(𝜃10) where 𝜃10 = 2 sin

(︂
𝜃1 − 𝜃0

2

)︂
, 𝑏 =

(1− 2Δ) tan(𝜋Δ)

2𝜋
.

(2.15)

The symmetry group of this solution is much smaller than the symmetry group

of the equation. This group can be described by the transformations which can be

written as:

𝑒𝑖𝜙(𝜃) ≡ 𝑎𝑒𝑖𝜃 + 𝑏

�̄�𝑒𝑖𝜃 + �̄�
, |𝑎|2 − |𝑏|2 = 1. (2.16)

As we see the symmetry group of equations is smaller then the symmetry group

of equations (2.13). It is an indicator of the presence of the Goldstone mode in the

problem. Our case is slightly different. We used approximated equations so our

symmetry is not exact. It reminds us the case of 𝜎-model (for introduction in the

topic see [12]). So, in this problem we should not take an integral over all function 𝐺.

We should consider only ones which is solution of the saddle-point equations (2.13),

such fields can be obtained by the application of diffeomorphism to the saddle-point

solution (2.14). The fluctuation along this manifold is enhanced by the parameter
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𝛽𝐽 [21]. As a result for 𝛽𝐽 ∼ 𝑁 we can not suppose that fluctuation are small and we

should consider full action for the fields from these manifolds. Fields parametrized

by the function 𝜙(𝜏) and we can rewrite action for the fields from this manifold

using this function. The action has the form:

𝑆𝑠𝑜𝑓𝑡 = −𝛼𝑆𝑁

𝐽

𝛽∫︁
0

𝑆𝑐ℎ
{︀
𝑒𝑖𝜙(𝜏), 𝜏

}︀
𝑑𝜏, 𝑆𝑐ℎ {𝑓(𝜏), 𝜏} =

(︂
𝑓 ′′

𝑓 ′

)︂′
− 1

2

(︂
𝑓 ′′

𝑓 ′

)︂2

.

(2.17)

Here 𝛼𝑆 ≈ 0.05 could be found numerically. This result was obtained in works

[21, 26].

2.3 Green function for 𝛽 = ∞.

In this section we will consider the case with 𝛽 = ∞. The idea of this section was

presented at the work [4]. For zero temperature we should not consider diffeomor-

phisms of the circle instead we should consider monotonic re-paramtrizations of the

real axis: 𝜏 ↦→ 𝑓(𝜏). The action is defined as:

𝑆𝑠𝑜𝑓𝑡 = −𝛼𝑆𝑁

𝐽

∞∫︁
−∞

𝑆𝑐ℎ {𝑓(𝜏), 𝜏} 𝑑𝜏. (2.18)

The field 𝐺 is parameterised as:

𝐺𝜏1,𝜏0 [𝑓(𝜏)] = −𝑏Δ𝑠𝑔𝑛(𝜏1 − 𝜏0)

[︂
𝑓 ′(𝜏1)𝑓 ′(𝜏0)

𝐽2|𝑓(𝜏1)− 𝑓(𝜏0)|2

]︂Δ
. (2.19)

It is convenient to introduce new field defined as:

𝑓(𝜏)′ ≡ 𝑒𝜑(𝜏). (2.20)

We are interested in the behaviour of the Green function of fermions which is the

average of the field 𝐺. So we need to calculate the following average (we assume
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that 𝜏1 > 𝜏0):

⟨(𝐺𝜏1,𝜏0 [𝑓(𝜏)])
𝑛⟩ =

(︂
− 𝑏Δ

𝐽2Δ

)︂𝑛 ∫︁
𝒟𝜑

[︃
𝑒𝜑(𝜏1)𝑒𝜑(𝜏0)

|
∫︀ 𝜏1
𝜏0
𝑒𝜑(𝜏)𝑑𝜏 |2

]︃𝑛Δ
×

exp

{︂
−𝑀

2

∫︁ ∞

−∞
(𝜑′)2𝑑𝜏

}︂
(2.21)

here we introduced 𝑀 ≡ 𝛼𝑆𝑁/𝐽 .

This functional integral could be calculated exactly using 1D quantum mechanics

but firstly we need to fix a gauge to not worry about zero modes of the functional

integral. One can note that theory is symmetric under transform 𝜑 ↦→ 𝜑+𝑎. We can

fix a gauge assuming that 𝜑(𝜏0) = 0. Now we need to use next auxiliary integral:

𝑎−𝑝 =
1

Γ(𝑝)

∫︁ ∞

0

𝑑𝑥𝑥𝑝−1𝑒−𝑎𝑥. (2.22)

Here Γ(𝑝) is the gamma-function. Using the auxiliary integral we can re-write our

average in the form:

⟨(𝐺𝜏1,𝜏0 [𝑓(𝜏)])
𝑛⟩ =

(︂
− 𝑏Δ

𝐽2Δ

)︂𝑛 ∫︁ ∞

0

𝑑𝑥

Γ(2𝑛Δ)
𝑥2𝑛Δ−1 ×∫︁

𝒟𝜑𝑒𝑛Δ𝜑(𝜏1)𝑒𝑛Δ𝜑(𝜏0) exp

{︂
−
∫︁ ∞

−∞

𝑀

2
(𝜑′)2𝑑𝜏 − 𝑥

∫︁ 𝜏1

𝜏0

𝑒𝜑(𝜏)𝑑𝜏

}︂
. (2.23)

To take this functional integral we would like to introduce a Hamiltonian:

�̂�𝑥 = −
𝜕2𝜑
2𝑀

+ 𝑥𝑒𝜑. (2.24)

The quantum mechanical problem with this Hamiltonian is called Liouville quantum

mechanics. The spectrum of this Hamiltonian is continuous . The wave function

could be written as:

⟨𝜑|𝑝, 𝑥⟩ =
√︁

2𝑝 sinh(2𝑝𝜋)
𝜋

𝐾2𝑖𝑝(
√
8𝑥𝑀𝑒𝜑) =√︁

2𝑝 sinh(2𝑝𝜋)
𝜋

𝑖∞+0∫︀
−𝑖∞+0

𝑑𝑠
2𝜋𝑖

Γ (𝑠− 𝑖𝑝) Γ (𝑠+ 𝑖𝑝)
[︀
2𝑥𝑀𝑒𝜑

]︀−𝑠
. (2.25)

It is wave function with quantum number 𝑝 for the potential with parameter 𝑥. We
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use Mellin transform to write the last form in the above expression. The energy of

such functions is 𝐸𝑝 =
𝑝2

2𝑀
. This function are eigenfunction of the above Hamiltonian

and we also normalized them. As a result we can write average using evolution

operator of this Hamiltonian in the following form:

⟨(𝐺𝜏1,𝜏0 [𝑓(𝜏)])
𝑛⟩ =

(︂
− 𝑏Δ

𝐽2Δ

)︂𝑛 ∫︁ ∞

0

𝑑𝑥

Γ(2𝑞Δ)
𝑥2𝑛Δ−1⟨0, 0|𝑒𝑛Δ𝜑�̂�𝑥(𝜏1, 𝜏0)|0⟩. (2.26)

Here |0⟩ = 𝛿(𝜑), we use this representation due to choice of the gauge. The evolution

operator has a form:

�̂�𝑥(𝜏1, 𝜏0) =

∫︁ ∞

0

𝑑𝑝

2𝜋
|𝑝, 𝑥⟩⟨𝑝, 𝑥|𝑒−

𝑝2

2𝑀
(𝜏1−𝜏0). (2.27)

Taking almost all integrals we obtain an integral representation for our average:

⟨(𝐺𝜏1,𝜏0 [𝑓(𝜏)])
𝑛⟩ =

(︂
− 𝑏Δ

𝐽2Δ

)︂𝑛 ∫︁ ∞

0

𝑑𝑝
𝑝 sinh(2𝜋𝑝)

2𝜋2
Γ2 (𝑛Δ+ 𝑖𝑝) Γ2 (𝑛Δ− 𝑖𝑝) 𝑒−

𝑝2

2𝑀
(𝜏1−𝜏0).

(2.28)

We see that there is the scale 𝑀 in the problem. For 𝜏1 − 𝜏0 ≪ 𝑀 , this average

could be calculated using saddle-point approximation over 𝑝. For the opposite case,

we see that the leading contribution comes from the area with 𝑝≪ 1, as a result:

⟨(𝐺𝜏1,𝜏0 [𝑓(𝜏)])
𝑛⟩ ≈

(︂
− 𝑏Δ

𝐽2Δ

)︂𝑛

Γ4 (𝑛Δ)
1√
2𝜋

(︁ 𝜏
𝑀

)︁−3/2

(2.29)

As a conclusion of this part we see that 𝑆𝑌 𝐾 model has two qualitatively dif-

ferent regimes: short time behaviour, defined by mean field equations and long-time

behaviour which is defined by strong fluctuations. Both regimes demonstrates non-

Fermi-liquid behaviour. In the next chapters we will consider the stability of these

properties.
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Chapter 3

SYK model with quadratic

perturbations: the route to a

non-Fermi-liquid.

The material for this part of the thesis is taken from our paper [25].

3.1 Introduction

The SYK model seems to be a very promising starting point to approach a theory

of non-Fermi-liquid ground state. Few problems arise, however: i) the absence

of a quadratic term in the Hamiltonian makes pure SYK Hamiltonian unrealistic

for electronic systems; ii) original SYK model contains Majorana fermions, which

are quite scarce in Nature (see however few relevant proposals in Refs.[9, 29, 8]); iii)

most interesting properties of a non-Fermi-liquid state are those related to transport

phenomena, while SYK is a random-matrix-type model without spatial coordinates.

Quite a number of recent publications address the issues listed above [6, 11, 20, 30].

In particular, generalisation of the SYK model for complex fermions was developed

in Refs. [11, 30]. A sequence of SYK "quantum dots" connected by weak (quadratic)

tunnelling was considered in Refs. [20, 30], making it possible to define and study

transport quantities like resistance, thermal resistance, etc; see also very recent

extensive study in the same direction [10].
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However, all (known to us) studies of stability of SYK behavior w.r.t. to quadratic

perturbations, indicate its runaway instability. As it was shown in Refs. [6, 20, 30, 10]

in the framework of the self-consistent approximation, the scaling dimension of the

SYK2 perturbation is negative when estimated within the conformal limit, corre-

sponding to the time-scales 1/𝐽 ≪ 𝜏 ≪ 𝑡𝑐 ∼ 𝑀 . The papers [30, 10] demonstrate

an interesting non-Fermi-liquid behavior in the intermediate temperature region

𝑇 * < 𝑇 ≪ 𝐽 , but still obtain Fermi-liquid behavior in the lowest 𝑇 range below 𝑇 *.

In the present chapter we reconsider the problem of the SYK4 stability w.r.t.

quadratic perturbations, going beyond the saddle-point approximation. We study

fermionic Green function in the region 𝜏 ≫ 𝑡𝑐 by means of perturbation theory in

the amplitude of SYK2 terms, using the infra-red asymptotic solution [26, 4] as a

starting point. We show analytically that a weak SYK2 perturbation does not change

the 𝐺(𝜏) ∝ 1/𝜏 3/2 asymptotics of the Green function, but simply renormalizes the

coefficient. This result proves the existence of a domain of stability, with a non-zero

area in the parameter space of Hamiltonians, where a non-Fermi-liquid is realized

as a ground-state.

3.2 The model

We consider the model defined by the following Hamiltonian

𝐻 =
1

4!

∑︁
𝑖,𝑗,𝑘,𝑙

𝐽𝑖,𝑗,𝑘,𝑙𝜒𝑖𝜒𝑗𝜒𝑘𝜒𝑙 +
𝑖

2!

∑︁
Γ𝑖,𝑗𝜒𝑖𝜒𝑗. (3.1)

where 𝜒𝑖 are Majorana fermions and all indices run from 1 to 𝑁 . The matrix

elements 𝐽𝑖𝑗𝑘𝑙 and Γ𝑖,𝑗 are fully anti-symmetric and independent random Gaussian

variables with zero mean and the variances ⟨𝐽2
𝑖𝑗𝑘𝑙⟩ = 3!𝐽2

𝑁3 , ⟨Γ2
𝑖𝑗⟩ = Γ2

𝑁
. The functional

integral representation of this theory is described by the action 𝑆 = −𝑁
2
(𝑆1 + 𝑆2)

with two contributions[26, 4]:

𝑆1 = 𝑡𝑟 log(𝜕𝜏 − Σ𝜏𝜏 ′) +

∫︁
𝑑𝜏𝑑𝜏 ′

(︂
𝐽2

4
𝐺4

𝜏𝜏 ′ − Σ𝜏𝜏 ′𝐺𝜏 ′𝜏

)︂
, (3.2)
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and

𝑆2 =

∫︁
𝑑𝜏𝑑𝜏 ′

Γ2

2
𝐺2

𝜏𝜏 ′ . (3.3)

In the limit 𝑁 ≫ 1 the mean-field analysis is appropriate and the corresponding

saddle-point equations read

𝜕𝜏𝐺𝜏𝜏 ′ −
∫︁
𝑑𝜏 ′′Σ𝜏𝜏 ′′𝐺𝜏 ′′𝜏 ′ = 𝛿(𝜏 − 𝜏 ′), (3.4)

Σ𝜏𝜏 ′ = 𝐽2𝐺3
𝜏𝜏 ′ + Γ2𝐺𝜏𝜏 ′ . (3.5)

We are going to study corrections to the SYK model Green function 𝐺(𝜏) assuming

dimensionless parameter 𝛾 = Γ/𝐽 to be small. Within applicability range of the

saddle-point Eqs. (3.4), (3.5), the scaling dimension of the perturbation is negative,

Δ𝛾 = −1
2
. As a result, 𝐺(0)

𝑆𝑌 𝐾(𝜏) ∝ (𝐽𝜏)−1/2 (the mean-field solution at 𝛾 = 0) is

unstable w.r.t. the perturbation: at 𝜏 ≥ 𝜏 * ∼ 1/𝐽𝛾2 it is replaced by the usual

Fermi-liquid behavior 𝐺(𝜏) ∝ (𝐽𝛾𝜏)−1. On the other hand, at sufficiently long

times 𝑡 ≫ 𝑡𝑐, soft re-parametrization modes [1, 21, 26] become relevant and the

Green function of the pure SYK4 model acquires different scaling [4]

𝐺(𝜏) =
Γ4(1

4
)

√
2𝑀𝐽𝜋5/4

(︂
𝑀

𝜏

)︂ 3
2

. (3.6)

For sufficiently weak perturbation 𝛾 ≪ 1/
√
𝑁 , the crossover timescale 𝜏 * be-

comes larger than 𝑡𝑐 and loses its relevance: the analysis of the SYK solution sta-

bility should now be performed using the asymptotic behaviour (3.6) as a starting

point.

First of all we need to write action for new problem which take perturbations

into account. This action has a form:

𝑆𝑠𝑜𝑓𝑡 = 𝑆𝜑 + 𝑆2[𝜑] where 𝑆𝜑 = −𝛼𝑆𝑁

𝐽

𝛽∫︁
0

𝑆𝑐ℎ {𝑓(𝜏), 𝜏} 𝑑𝜏,

𝑆2[𝜑] =
𝑁Γ2

2
𝑏2Δ
∫︁
𝑑𝜏1𝑑𝜏0

[︂
𝑓 ′(𝜏1)𝑓 ′(𝜏0)

𝐽2|𝑓(𝜏1)− 𝑓(𝜏0)|2

]︂2Δ
. (3.7)

We have limited ourselves by fields that lie in the manifold of soft modes as only
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they determine the behavior of the system at small energies.

3.3 Perturbation theory.

First-order correction to the Green’s function 𝐺(𝜏) due to the quadractic term 𝑆2

in the action can be found (see Appendix A for more details) in a straightforward

way as follows (notation ⟨..⟩0 means the average over 𝜑 field with the action 𝑆𝜑, see

Eq. (3.7)):

𝛿𝐺(𝜏) = −⟨𝐺𝜏,0[𝜑]𝑆2[𝜑]⟩0 + ⟨𝐺𝜏,0⟩0⟨𝑆2⟩0. (3.8)

Substituting here Eq. (3.3), we find that the first term of Eq. (3.8) contains an aver-

age (over 𝜑(𝜏) fluctuations) of the product of three functionals like (2.19), with the

time arguments 0, 𝜏 and 𝜏1, 𝜏2, where further integration over 𝜏1,2 is implied. Func-

tional integration over 𝜑(𝜏) with the action (3.7) should be performed separately in

6 different time regions with the following order of time arguments:

1 2 3 4 5 6

𝜏2, 𝜏1, 0, 𝜏 𝜏2, 0, 𝜏1, 𝜏 𝜏2, 0, 𝜏, 𝜏1 0, 𝜏2, 𝜏1, 𝜏 0, 𝜏2, 𝜏, 𝜏1 0, 𝜏, 𝜏2, 𝜏1

Domains 1 & 6 have trivial structure and their contributions are canceled com-

pletely by the second term in Eq. (3.8). Combining other contributions with the

corresponding parts of the second term in Eq.(3.8), we find

𝛿𝐺(𝜏) =
𝑁
√
𝑀𝐽

4𝜋5/4
𝛾2

[︃
5∑︁

𝑖=2

𝑓𝑖(
𝜏

2𝑀
)− 𝑓𝑍(

𝜏

2𝑀
)

]︃
. (3.9)

where functions 𝑓𝑖(𝑥) (for 𝑖 = 2, 3, 4, 5) and 𝑓𝑍(𝑥) are defined and calculated in the

Appendix A. In total, in the long-time limit 𝜏 ≫𝑀 we have:

𝛿𝐺(𝜏) = 𝑐𝑁
√
𝑀𝐽𝛾2(𝜏/𝑀)−

3
2 . (3.10)

with 𝑐 ≈ 108. Comparing with Eq. (3.6), we find 𝛿𝐺/𝐺 ≈ 3.7𝐽𝑀𝑁𝛾2 As a result

𝛿𝐺/𝐺 ≈ 0.081𝑁2𝛾2. (3.11)
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Equation (3.11) demonstrates that relevant parameter of the perturbation theory

in the infrared limit is actually 𝛾𝑁 ≡ 𝑏, and perturbation of the SYK2 type only

modifies the numerical prefactor in 𝐺(𝜏).

3.4 Conclusion

Schematically, our results for the zero-temperature phase diagram of the combined

SYK4 - SYK2 model are shown in the Fig. 3-1. We emphasize somewhat unusual

scaling limit of large 𝑁 that is employed here. Namely, we consider 𝑁 ≫ 1 as

some finite number, but we neglect exponentially small many-body level spacing

𝜖𝑀𝐵 ∼ 2−𝑁/2. Then our results demonstrate the presence of a phase transition

between fully chaotic non-Fermi-liquid (NFL) ground state realized at 𝑏 ≡ 𝛾𝑁 < 𝑏𝑐,

and Fermi-liquid ground state existing at 𝑏 > 𝑏𝑐, with 𝑏𝑐 ∼ 1. We emphasize that

the corresponding critical value of the amplitude of the quadratic perturbation Γ

equals Γ𝑐 = 𝑏𝑐𝐽/𝑁 . In other terms, the effect of this perturbation in the infrared

limit is much stronger than one could naively expect considering its effect at short

times 𝑡 ≤ 𝑡𝑐 where relevant Γ scales as 1/
√
𝑁 .

Note that 1/𝑡3/2 long-time asymptotics of the Green function in pure SYK model

can be understood (We thank the referee of our paper for mentioning to us this

relation.) as a result of the square-root edge singularity of the full many-body

DoS [5, 15], together with chaotic non-structured nature of matrix elements that

enter Lehman expansion for the Green function. Then, the phase transition we

found upon increase of quadratic perturbation 𝑏 can be understood as a transition

to non-chaotic state, with matrix elements aquiring nontrivial structure leading to

Fermi-liquid type of behavior 𝐺(𝑡) ∼ 1/𝑡.
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Figure 3-1: Sketch of the Green function 𝐺(𝜖) in log-log scale, in the limit of 𝑁 ≫ 1
for several values of 𝑏 = 𝛾𝑁 ordered as 𝑏1 < 𝑏2 < 𝑏𝑐 < 𝑏3 < 𝑏4, with critical 𝑏𝑐 of the
order unity. NFL-FL transition occurs between blue (2) and grey (3) lines. Light-
blue line (4) corresponds to large 𝑏 ≥

√
𝑁 when 4-fermion interaction is relevant at

high energies above 𝜖𝛾 ≫ 1/𝑡𝑐 only.
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Chapter 4

Perturbed Sachdev-Ye-Kitaev model:

a polaron in the hyperbolic plane.

The material for this part of the thesis is taken from our paper [24].

4.1 Introduction

In the present chapter, we extend the results of the previous chapter and works [2, 3]

in two important directions. First, we present a method to analyse the SYK4+SYK2

model beyond perturbation theory or its RG-like variant. Second, our new method

works at a finite temperature. In particular, we study a previously unexplored range

of intermediate strengths of the SYK2 term, 𝐽/𝑁 ≪ Γ ≪ 𝐽/
√
𝑁 . In this regime,

the quadratic perturbation is weak at the time scale 𝑡 ≤ 𝑡0 ∼ 𝑁/𝐽 , where the

saddle-point (conformal) solution 𝐺𝑠𝑝 is applicable. Paradoxically, we find that the

perturbation stabilizes the conformal solution 𝐺𝑠𝑝(𝑡) ∼ 1/
√
𝑡 for extended times,

𝑡 ≫ 𝑡0, where the Green function of the pure SYK4 model is modified by the soft

mode fluctuations. Only at the longest time scale, 𝑡 ≥ 𝐽/Γ2 ≫ 𝑡0, the conformal

solution 𝐺𝑠𝑝 gives way to the Fermi-liquid solution 𝐺𝑠𝑝(𝑡) ∝ 1/𝑡.

Our results are best understood using the geometric interpretation [22] of the

Schwarzian theory in terms of an auxiliary particle whose trajectories are closed

curves in the hyperbolic plane. The quadratic perturbation is then described as the

particle being coupled to a free scalar Bose field. For sufficiently strong coupling,
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Γ ≫ 𝐽/𝑁 , a polaron-type bound state is formed, resulting in increased rigidity of

the curve and the suppression of its fluctuations.

4.2 Geometric interpretation and the polaron anal-

ogy.

The following picture is conceptually important, but we will do most calculations by

a different method. Therefore, this section will be brief; more details can be found

in the Appendix B. The duality between the Schwarzian action and JT gravity was

discussed in Ref. [22] as well as in the papers [19, 27, 13]

The geometric interpretation of the Schwarzian action [22] is based on a corre-

spondence between functions 𝜙 as described above and closed curves on the hyper-

bolic plane. Such curves may be parametrized by the proper length ℓ = 𝐽𝜏 , which

will be used instead of 𝜏 for the purpose of this discussion. In the Poincare disk

model with metric 𝑑𝑠2 = 4
(1−𝑟2)2

(𝑑𝑟2 + 𝑟2𝑑𝜙2), the curve is given by the equations

𝜙 = 𝜙(ℓ) and 𝑟 = 1 − 𝜙′(ℓ). This representation is valid if 𝜙′′(ℓ) ≪ 𝜙′(ℓ) ≪ 1,

which is true for a typical curve of length 𝐿 = 𝐽𝛽 ≫ 1 in the statistical ensemble.

Under the same conditions, we have 𝑆𝑐ℎ(𝑒𝑖𝜙(ℓ), ℓ) = 𝐾 − 1, where 𝐾 is the extrinsic

curvature of the curve at the given point. This allows for an elegant representation

of the Schwarzian action 𝑆𝑆𝑐ℎ = −𝛼𝑠𝑁
∫︀ 𝐿

0
𝑆𝑐ℎ(𝑒𝑖𝜙(ℓ), ℓ) 𝑑ℓ (here 𝐿 = 𝛽𝐽) in terms

of the length of the curve and the enclosed area; however, some regularization is

necessary in order to define the functional integral [22]. Replacing the function 𝜙

with the curve 𝑋, we may rewrite Eq. (3.7) as follows:

𝑆[𝑋] = 𝑆𝑆𝑐ℎ[𝑋]− 𝑁Γ2

4𝐽2
𝑏2Δ
∫︁
𝐺2

Φ

(︀
𝑋(ℓ1), 𝑋(ℓ2)

)︀
𝑑ℓ1 𝑑ℓ2, (4.1)

where 𝐺Φ(𝑟1, 𝜙1; 𝑟2, 𝜙2) ∝ |𝜙12|−2Δ(1 − 𝑟1)
Δ(1 − 𝑟2)

Δ near the disk boundary. The

function 𝐺Φ can be identified with the propagator of a scalar boson Φ. Thus, the

nonlocal interaction between different points of the curve is decoupled, such that
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the action (4.1) is obtained from

𝑆[𝑋,Φ] = 𝑆𝑆𝑐ℎ[𝑋] + 𝑆Φ[Φ] +

∫︁ 𝐿

0

Φ(𝑋(ℓ)) 𝑑ℓ (4.2)

where 𝑆Φ = 1
4𝑔𝛼𝑠𝑁

∫︀
𝑑𝜇Φ(𝑥)(−∇2 − 1

4
+ 𝛿2)Φ(𝑥), by integrating out Φ.

The action (4.2) is similar to the polaron problem, where an electron in a crystal

interacts with an elastic deformation. By analogy with the heavy polaron, we will

look for a mean-field solution where the field Φ forms a potential well close to the

boundary of the Poincare disk. The general form of Φ in this region is Φ(𝑟, 𝜙) =

Λ(𝜙)(1 − 𝑟)Δ, and the solution in question is Λ(𝜙) = 𝑐𝑜𝑛𝑠𝑡. The curve roughly

follows the circle 𝑟 = 1− 2𝜋
𝐿

and slightly wiggles. This behavior may be understood

as a localized state of a quantum particle, whose coordinate is conveniently defined

as 𝜉 = − ln(𝛼𝑠𝑁(1− 𝑟)).

4.3 Adiabatic action.

We proceed with a formal solution for the polaron. It is convenient to rescale time

as 𝜏 → 𝐽𝜏
𝛼𝑠𝑁

and to introduce a similarly rescaled inverse temperature 𝛽 and a new

coupling constant 𝑔:

𝛽 =
𝐽𝛽

𝛼𝑆𝑁
, 𝑔 =

𝑏2Δ

2

𝑁Γ2

𝐽2
(𝛼𝑆𝑁)2−4Δ =

𝛼𝑆𝑁
2

4
√
𝜋

Γ2

𝐽2
. (4.3)

Then the action (3.7) reads:

𝑆[𝜙] = −
𝛽∫︁

0

𝑆𝑐ℎ(𝑒𝑖𝜙(𝜏), 𝜏) 𝑑𝜏 − 𝑔

2

∫︁ (︂
𝜙′
1𝜙

′
2

𝜙2
12

)︂1/2

𝑑𝜏1 𝑑𝜏2. (4.4)

Now we reduce the path integral with this action to some solvable quantum

mechanical problem. To implement this idea, we introduce new time-dependent

variables 𝜉(𝜏) = − ln (𝜙′(𝜏)) and Ξ(𝜏) = [𝜙′(𝜏)]1/2, and the corresponding Lagrange

multipliers 𝜆(𝜏) and Λ(𝜏). This means inserting 𝛿(𝜙′ − 𝑒−𝜉) =
∫︀ +𝑖∞
−𝑖∞ exp

(︀
𝜆(𝜙′ −

𝑒−𝜉)
)︀

𝑑𝜆
2𝜋𝑖

and 𝛿(Ξ − 𝑒−𝜉/2) (expressed likewise using Λ) in the functional integral.
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Thus, the action takes the form

𝑆[𝜙, 𝜉, 𝜆,Ξ,Λ] =
∫︀ 𝛽

0

(︁
𝜉′2

2
− 𝜆

(︀
𝜙′ − 𝑒−𝜉

)︀
− 1

2
𝑒−2𝜉 − Λ

(︀
Ξ− 𝑒−𝜉/2

)︀)︁
𝑑𝜏

−𝑔
2

∫︀∫︀ Ξ(𝜏1)Ξ2(𝜏2)
|𝜙12| 𝑑𝜏1 𝑑𝜏2. (4.5)

We assume that 𝛽 ≫ 1 so that the term 1
2
𝑒−2𝜉 is relatively small. It will be

neglected in our analysis.

We treat action (4.5) using adiabatic approximation, with 𝜉 being the fast vari-

able. That is, the functional integral of 𝑒−𝑆 over 𝜉 is performed under the assump-

tion that 𝜙′(𝜏), 𝜆(𝜏), Ξ(𝜏), and Λ(𝜏) are constant at a suitable time scale 𝜏* (to be

determined later). The result has the form 𝑒−𝑆𝑒𝑓𝑓 , where

𝑆𝑒𝑓𝑓 [𝜙, 𝜆,Ξ,Λ] =

∫︁ 𝛽

0

(︀
𝐸0(𝜆,Λ)− 𝜆𝜙′ − ΛΞ

)︀
𝑑𝜏

− 𝑔

2

∫︁
|𝜙12|−1Ξ(𝜏1)Ξ(𝜏2) 𝑑𝜏1 𝑑𝜏2

(4.6)

and 𝐸0(𝜆,Λ) is the ground state of the effective Hamiltonian for the variable 𝜉,

�̂�𝜆,Λ = −1

2
𝜕2𝜉 + Λ𝑒−𝜉/2 + 𝜆𝑒−𝜉. (4.7)

This Hamiltonian has bound states with energies

𝐸𝑛 = −(𝜅− 1− 2𝑛)2

32
, 𝑛 = 0, . . . ,

⌊︂
𝜅− 1

2

⌋︂
, (4.8)

where 𝜅 = −
√︁

8
𝜆
Λ. The corresponding eigenfunctions 𝜓𝑛(𝜉) are provided in the Ap-

pendix B. The characteristic time for the adiabatic approximation can be estimated

as 𝜏* ∼ (𝐸1 − 𝐸0)
−1 = 8

𝜅−2
. Such an estimate is certainly correct for a harmonic

oscillator, where the oscillation period is the only relevant time scale. The Hamilto-

nian (4.7) is similar if 𝜅≫ 1. We will see that the last condition actually guarantees

adiabaticity, i.e. that 𝜑′, 𝜆, Ξ, Λ do not fluctuate at the time scale 𝜏*. In fact, the

fluctuations at all time scales are small enough to be considered Gaussian. Our next

goal is to derive an effective action for 𝜙. To this end, we find the saddle point of
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the action (4.6) with respect to the other variables. The saddle point conditions for

𝜆, Λ, and Ξ read:

𝜙′ = 𝜕𝐸0

𝜕𝜆
= 𝜅−1

32
𝜅
𝜆
, Ξ = 𝜕𝐸0

𝜕Λ
= −𝜅−1

16
𝜅
Λ
, (4.9)

Λ(𝜏1) = −𝑔
∫︀
𝑑𝜏2

Ξ(𝜏2)
|𝜙12| . (4.10)

Eqs. (4.9) allow one to eliminate 𝜆 and Λ from various formulas; in particular, the

definition of 𝜅 is equivalent to the relation Ξ2 = 𝜅−1
𝜅
𝜙′. The integrand in the first

term of the action (4.6) can be written as

𝐸0(𝜆,Λ)− 𝜆𝜙′ − ΛΞ =
𝜅− 1

32
, (4.11)

and Eq. (4.10) becomes an equation for 𝜅(𝜏):

𝜅2(𝜏1) 𝜂(𝜏1) = 16𝑔

∫︁
𝑑𝜏2

𝜂(𝜏2)
√︀
𝜙′(𝜏1)𝜙′(𝜏2)

|𝜙12|
, (4.12)

where 𝜂(𝜏) =
√︀
1− 𝜅−1(𝜏). Finally, the effective action is reduced to

𝑆 =

∫︁ 𝛽

0

𝜅− 1

32
𝑑𝜏 − 𝑔

2

∫︁
𝑑𝜏1𝑑𝜏2

𝜂(𝜏1)𝜂(𝜏2)
√︀
𝜙′(𝜏1)𝜙′(𝜏2)

|𝜙12|
. (4.13)

Now, let 𝜅 ≫ 1 so that 𝜂(𝜏) ≈ 1. Furthermore, we will assume (and later

verify) that the fluctuations are small, and hence, both 𝜙′ ≈ 2𝜋/𝛽 and 𝜅 are nearly

constant. Then Eq. (4.12) is simplified as follows:

𝜅2 = 16𝑔

∫︁
𝑑𝜙(𝜏2)⃒⃒⃒

2 sin
(︁

𝜙(𝜏1)−𝜙(𝜏2)
2

)︁⃒⃒⃒ ≈ 32𝑔 ln

(︂
𝜅𝛽

16𝜋

)︂
, (4.14)

where we have used the cutoff |𝜏1 − 𝜏2| > 𝜏* ≈ 8
𝜅

for the logarithmic integral. As

for the effective action (4.13), its first term may be neglected (see Appendix B).

Expressing 𝜙′ as a function of 𝜙, namely, 𝜙′(𝜏) = 𝜀(𝜙), we get:

𝑆 ≈ −𝑔
2

∫︁ 2𝜋

0

∫︁ 2𝜋

0

𝑑𝜙1

𝜀(𝜙1)

𝑑𝜙2

𝜀(𝜙2)

(︂
𝜀(𝜙1)𝜀(𝜙2)

𝜙2
12

)︂1/2

. (4.15)
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4.4 Saddle point solution.

The action (4.15) attains its minimum at the constant field configuration, 𝜀(𝜙) =

2𝜋/𝛽, as well as all configurations related to it by 𝑃𝑆𝐿(2, 𝑅) symmetries. The

minimum value of the action, 𝑆min ≈ −𝛽𝜅2/32, determines a correction to the SYK

free energy: 𝐹 ≈ 𝐸0 − 𝑁𝑠0𝑇 − 𝐽
𝛼𝑠𝑁

𝜅2

32
. Differentiating it and using Eq.(4.14), we

find the entropy of the system:

𝑆(𝑇 ) ≈ 𝑁𝑠0 −
𝑔𝐽

𝛼𝑠𝑁𝑇
. (4.16)

Note that the entropy vanishes at 𝑇 ∼ Γ2/𝐽 , which is roughly the temperature at

which the 𝑆𝑌 𝐾4 conformal Green function 𝐺𝑠𝑝(𝜏, 0) ∼ −(𝐽𝜏)−1/2 gives way to the

Fermi liquid behavior, 𝐺(𝜏, 0) ∼ −(Γ𝜏)−1. At lower temperatures, 𝑇 ≤ Γ2/𝐽 , we

need to modify our polaron solution. Namely, we should introduce an upper cutoff

in Eq. (4.14), |𝜏1 − 𝜏2| < 𝐽/Γ2. Thus, the equation for 𝜅 becomes

𝜅2 = 32𝑔 ln

(︂
𝜅𝛽

16𝜋

)︂
, 𝛽 =

𝐽

𝛼𝑠𝑁
min

(︂
𝛽,

𝐽

Γ2

)︂
. (4.17)

Fluctuations. Let us estimate the fluctuation of 𝜀(𝜙) around 𝜀0 = 2𝜋/𝛽 and

show that they are small. We assume that 𝑇 ≫ Γ2/𝐽 . In addition to the adiabatic

action 𝑆 given by Eq. (4.15), we need the first non-adiabatic correction. The latter is

identical to the Schwarzian action (see Appendix B). We consider the Fourier series

𝜀(𝜙) = 𝜀0 +
1
2𝜋

∑︀
𝑛 𝛿𝜀𝑛𝑒

𝑖𝑛𝜙, expand the effective action 𝑆𝑆𝑐ℎ + 𝑆 up to the second

order in 𝛿𝜀𝑛 with 𝑛 ̸= 0, and calculate the Gaussian expectation values ⟨𝛿𝜀𝑛𝛿𝜀−𝑛⟩.

(Note that 𝛿𝜀0 is determined by the equation
∫︀

𝑑𝜙
𝜀(𝜙)

= 𝛽.) This calculation, which

can be found in the Appendix, gives the following result:

𝐾𝜀(𝑛) ≡
⟨𝛿𝜀𝑛𝛿𝜀−𝑛⟩

𝜀20
=

2𝜋𝜀0

𝜀20(𝑛
2 − 1) + (𝑔/2)𝜓(𝑛)

(4.18)

where 𝜓(𝑛) = 𝜓(𝑛 + 1
2
) − 𝜓(−1

2
) and 𝜓(𝑥) is the digamma function; thus, 𝜓(𝑛) ≈

ln(𝑛) for 𝑛 ≫ 1. Eq. (4.18) is accurate for 𝑛 ≪ 𝑛* ≡ (𝜀0𝜏*)−1 = 𝜅𝛽/(16𝜋) because

it was derived from the effective action that is valid at sufficiently long times, 𝜏 ≫
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𝜏* = 8/𝜅. However, no inconsistency occurs at greater values of 𝑛: for 𝑛 & 𝑛*, the

first term in the denominator of (4.18) starts to dominate over the second one, and

the fluctuations are suppressed. The summation of the r.h.s. of Eq. (4.18) over all

𝑛, or just those with |𝑛| ≤ 𝑛*, leads to the estimate

⟨(𝛿𝜀)2⟩
𝜀20

≈ 1

𝜖0𝑛*
=

8

𝜅
≪ 1. (4.19)

Thus, the fluctuations of 𝜀(𝜙) are much smaller than its typical value if 𝜅≫ 8.

4.5 Phase diagram.

As parameter 𝜅 decreases toward unity, the fluctuations become strong and the

adiabatic approximation breaks down. At 𝜅 ∼ 1, we expect a transition into another

phase of our model, where the 𝑆𝑌 𝐾2 term is irrelevant at all time scales [25]. In

terms of the original parameters of the model, the transition occurs when Γ becomes

smaller than its critical value given by the equations

Γ𝑐 ∼
𝐽√︁

𝛼𝑠𝑁2 ln 𝛽
16𝜋

, 𝛽 =
𝐽

𝛼𝑠𝑁
min

(︂
1

𝑇
,
𝐽

Γ2
𝑐

)︂
, (4.20)

Note that the critical value Γ𝑐 = Γ𝑐(𝑇 ) decreases logarithmically with the decrease of

the physical temperature 𝑇 while 𝑇 & Γ2
𝑐(𝑇 )
𝐽

. At lower temperatures, Γ𝑐(𝑇 ) remains

constant. The lines Γ = Γ𝑐(𝑇 ) and 𝑇 = 𝐽/(𝛼𝑠𝑁) (see Figure 4-1) separate the

region with strong fluctuations, characterized by the Green function 𝐺𝑓𝑙𝑢𝑐(𝜏, 0) ∼

𝛼𝑠𝑁(𝐽𝜏)−3/2 for sufficiently large 𝜏 (but still much less than 𝛽), from regions where

the saddle point solution is valid.

4.6 Higher-order Green functions.

Conformal solution (2.15) describes single-particle fermion Green function of the

original problem with Hamiltonian (2.1). Additional information on its quantum dy-

namics is provided by higher-order fermion Green functions defined as 𝐺(𝑝)(𝜏, 𝜏 ′) ≡(︀
− 1

𝑁

∑︀
𝑖 𝜒𝑖(𝜏)𝜒𝑖(𝜏

′)
)︀𝑝. It can be shown (see Appendix B, sec.III) that the functions
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Figure 4-1: Regions with different Green function behaviors at large 𝜏 . The phase
boundaries are not sharp, except for the boundary between the fluctuation region
and saddle point regions (the solid line). The latter is well-defined asymptotically,
under the condition 𝑇 ≪ 𝐽/(𝛼𝑠𝑁). Hence, the termination point of the solid line,
given by the condition 𝑇 ∼ 𝐽/(𝛼𝑠𝑁), is fuzzy.

𝐺(𝑝)(𝜏, 𝜏 ′) with 𝑝 ≪ 𝜅 can be calculated by means of the effective action (4.15)

and its propagator (4.18). To find them, we need just to average 𝑝-power of the

conformal solution (2.15) over fluctuations of variables 𝜉 and 𝜙 described by the po-

laron bound-state: 𝐺(𝑝)(𝜏1, 𝜏2) = (−1)𝑝⟨
[︀
𝑏𝑒−𝜉1−𝜉2 sin−2(1

2
(𝜙1 − 𝜙2))

]︀𝑝/4⟩. The result

of calculations (provided in the Appendix B, sec.III) reads (remember that 𝜅≪ 𝑁):

𝐺(𝑝)(𝜏1 − 𝜏2)

[𝐺(𝜏1 − 𝜏2)]𝑝
= exp

[︂
𝑝2

4𝜅
(1 + 𝑓(𝜃12))

]︂
(4.21)

where 𝜃12 = 2𝜋𝑇 (𝜏1 − 𝜏2) and function 𝑓(𝜃) is provided below (𝑛*𝜀0 = 𝜅/8):

𝑓(𝜃) = 2+𝑛*𝜃
(𝑛*𝜃)2

[︀
2𝑛*𝜃 cosh

(︀
𝑛*𝜃
2

)︀
− 4 sinh

(︀
𝑛*𝜃
2

)︀]︀
exp

{︀
−𝑛*𝜃

2

}︀
=

=

⎧⎪⎨⎪⎩1 𝑛*𝜃 ≫ 1

𝜃𝑛*
3

𝑛*𝜃 ≪ 1

(4.22)

Two terms in the exponent of Eq.(4.21) come from the averaging over fluctuations

of 𝜉1,2 (1st term) and angular variables 𝜙1,2.
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4.7 Conclusion

We have shown that a moderate quadratic perturbation to the SYK4 model with 𝑁

Majorana modes can be described in terms of a self-consistent polaron-type solution.

The presence of such a perturbation with strength Γ in the interval 𝐽/𝑁 ≤ Γ ≤

𝐽/
√
𝑁 stabilizes conformal saddle-point solution for the Majorana Green function

within a broad range of energies and temperatures. The SYK4 mean-field Green

function 𝐺(𝜖) ∼ 1/
√
𝐽𝜖 (defined at Matsubara frequencies 𝜖 = 𝑖 · 2𝜋𝑇

(︀
𝑛 + 1

2

)︀
)

is valid down to 𝑇* ∼ Γ2/𝐽 , where a crossover to a Fermi liquid at 𝜀 . 𝑇* occurs.

Schematic “phase diagram” of the model is shown in 4-1. At low temperatures, there

is a genuine phase transition at Γ = Γ𝑐, where Γ𝑐 is defined in (4.20). Specifically at

𝑇 = 0, the 𝜖→ +0 asymptotic changes from 𝐺(𝜖) ∝
√
𝜖 for Γ < Γ𝑐 to 𝐺(𝜀) ≃ 1/Γ for

Γ > Γ𝑐. Note that higher-order Green functions 𝐺(𝑝)(𝜏) display exponential growth

with 𝑝, Eq.(4.21).
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Chapter 5

Conclusion

In conclusion, we would like to repeat the problem we investigated and the result.

We have considered the SYK model, where interactions play a crucial role due to

the degeneration of the one-particle energy levels. This model has two qualitatively

different regimes: for short times, the model is described by the mean-field equa-

tion, and we need to take fluctuations into account for long times. Both regimes

demonstrate non-Fermi-liquid behavior.

We have studied the influence of the perturbation which lifts the degeneracy. The

perturbation is important on the mean-field level, but we need to take into account

strong fluctuations for weak perturbations. These fluctuations can be described by

the Hamiltonian of the Liouville quantum mechanics. This Hamiltonian does not

have bound states, and it is the origin of strong fluctuations. Our analysis showed

that in the limit Γ → 0, where Γ is a typical scale of perturbation, perturbation

does not change the asymptotic behaviour. For a particular value of perturbation

strength ( Γ = Γ𝑐), the bound state will appear in the Hamiltonian, and fluctuations

will be suppressed. According to this scenario, we have plotted a phase diagram of

our system: 4-1. This diagram is the main result of the thesis.

The more the amplitude of perturbations, the more bound states in the effective

Hamiltonian. We have shown that the fluctuation correction to the Green function

is suppressed for the system with large numbers of bound states.

The following questions could be investigated connected to our conclusion. Are

these results applicable for the description of the extended system such as mentioned
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in the work [30]? Are energy levels of the bound states of the effective Hamiltonian

observable?
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Appendix A

Calculation of the correction to the

Green function in the presence of the

quadratic perturbation.

A.1 Plan of calculation

We will present method for evaluation of various correlation function for general

SYK𝑞 model with 𝑞 simultenously interacting fermions; then we will put 𝑞 = 4 in

the end of the calculations. The low-energy limit of SYK𝑞 model is described by the

"sigma-model" action over the manifold of monotonic functions 𝑓(𝜏), which corre-

sponds to the re-parametrization symmetry of the mean-field solution in the scaling

limit. The functions defined on this manifold can be conveniently parametrised

in terms of the field 𝜑(𝜏), which is defined according to 𝑓 ′(𝜏) = 𝑒𝜑(𝜏). In such a

representation, the action reduces to the simple form

𝑆 = −𝑀
2

∫︁
(𝜑′)2𝑑𝜏, (A.1)

where parameter 𝑀 depends on the number of fermions 𝑁 and on the value of

𝑞. In such a parametrization the measure of the functional integration is flat. Note

that here and below in the Appendix A we put interaction strength 𝐽 = 1. The field

𝐺(𝜏, 𝜏 ′), which becomes equal to the fermionic Green function upon integrating over
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𝜑(𝜏), reads in the parametrization as follows:

𝐺(𝜏, 𝜏 ′) = 𝑠𝑖𝑔𝑛(𝜏 − 𝜏 ′)𝑏Δ
𝑒Δ𝜑(𝜏)𝑒Δ𝜑(𝜏 ′)

|
∫︀ 𝜏

𝜏 ′
𝑒𝜑(𝜏)𝑑𝜏 |2Δ

(A.2)

with Δ = 1
𝑞

and 𝑏 = (1
2
− Δ) tan(𝜋Δ)

𝜋
. To simplify the notation in the following,

we will consider averaging of the objects like 𝐺
𝑛
Δ . The average Green function will

come up as a specific result at 𝑛 = Δ.

Below in Sec. II we re-derive some results from Ref.[[4]] in a slightly different

way; namely, we show how to reduce evaluation of the Green function (A.2) with

the action (A.1) to the calculation of matrix elements of the Liouville quantum

mechanics.

In Sec. III we evaluate correlation functions of the products of various powers of

Green functions 𝐺
𝑛
Δ which are necessary to calculate the corrections to the Green

function generated by the perturbation of the SYK2 type:

𝛿⟨𝐺𝑛/Δ
𝜏1,𝜏2

⟩ = −⟨𝐺𝑛/Δ
𝜏1,𝜏2

𝑆𝑖𝑛𝑡⟩+ ⟨𝐺𝑛/Δ
𝜏1,𝜏2

⟩⟨𝑆𝑖𝑛𝑡⟩. (A.3)

𝑆𝑖𝑛𝑡 = −Δ𝑁Γ2

2𝑚

∫︁
𝑑𝜏1𝑑𝜏2𝐺

𝑚/Δ(𝜏1, 𝜏2). (A.4)

Finally we will be interested in the case 𝑚 = 1
2

and 𝑛 = 1
4
, Δ = 1

4
.

To simplify further formulae, we switch to dimensionless time units 𝑡 = 𝜏
2𝑀

and

introduce new notation for the Green function:

𝑔𝑛(𝑡, 𝑡
′) =

(︂
1

Γ(2𝑛)

𝑏𝑛

(2𝑀)2𝑛

)︂−1

𝐺𝑛/Δ(𝜏, 𝜏 ′). (A.5)

Therefore Eq.(A.3) with 𝑆𝑖𝑛𝑡 from Eq.(A.4) can now be rewritten in the form

𝛿⟨𝐺𝑛/Δ
𝜏1,𝜏2

⟩ = 𝑁Γ2Δ

𝑚

𝑏(𝑛+𝑚)

Γ(2𝑛)Γ(2𝑚)(2𝑀)2(𝑛+𝑚)−2
×∫︁

𝑡3>𝑡4

𝑑𝑡3𝑑𝑡4 [⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩ − ⟨𝑔𝑛(𝑡1, 𝑡2)⟩⟨𝑔𝑚(𝑡3, 𝑡4)⟩] . (A.6)

To evaluate expression (A.6) one has to calculate the average ⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩.
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The difficulty of this calculation is due to the absence of Wick contraction rules, so

all possible time orderings have to be considered explicitly. Symmetry of Green

function allows us to fix relations 𝑡1 > 𝑡2 and 𝑡3 > 𝑡4, leaving 6 possible time

orderings: 1) 𝑡1 > 𝑡2 > 𝑡3 > 𝑡4, 2) 𝑡1 > 𝑡3 > 𝑡2 > 𝑡4, 3)𝑡3 > 𝑡1 > 𝑡2 > 𝑡4, 4)

𝑡1 > 𝑡3 > 𝑡4 > 𝑡2, 5) 𝑡3 > 𝑡1 > 𝑡4 > 𝑡2 and 6) 𝑡3 > 𝑡4 > 𝑡1 > 𝑡2. The orderings 1 and

6 are trivial [4]:

⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩ = ⟨𝑔𝑛(𝑡1, 𝑡2)⟩⟨𝑔𝑚(𝑡3, 𝑡4)⟩. (A.7)

In Sec. III we present evaluation of the average values corresponding to the re-

maining four variants of time ordering. In the remaining Secs. IV - VI we combine

various contributions in the long-time limit and derive the final result.

A.2 Averaging various powers of the Green function

First of all, we re-derive some results from Ref. [4] in a slightly different way. We

start from the formula for average power of the Green function

⟨𝐺𝑛/Δ(𝜏, 𝜏 ′)⟩ =
∫︁
𝐷𝜑 𝑏𝑛Δ

𝑒𝑛𝜑(𝜏)𝑒𝑛𝜑(𝜏
′)

|
∫︀ 𝜏

𝜏 ′
𝑒𝜑(𝜏)𝑑𝜏 |2𝑛

𝑒−
𝑀
2

∫︀
(𝜑′)2𝑑𝜏 . (A.8)

Switching to dimensionless time, we write

⟨𝐺𝑛/Δ(𝑡, 𝑡′)⟩ =
∫︁
𝐷𝜑

𝑏𝑛

(2𝑀)2𝑛
𝑒𝑛𝜑(𝑡)𝑒𝑛𝜑(𝑡

′)

|
∫︀ 𝑡

𝑡′
𝑒𝜑(𝑡)𝑑𝑡|2𝑛

𝑒−
1
4

∫︀
(𝜑′)2𝑑𝑡. (A.9)

Using identity 1
𝑎2𝑛

=
∫︀∞
0

𝛼𝑛−1

Γ(2𝑛)
𝑒−𝛼𝑎𝑑𝛼 one can rewrite above expression as follows:

⟨𝐺𝑛(𝑡, 𝑡′)⟩ =
∫︁ ∞

0

𝛼2𝑛−1𝑑𝛼

Γ(2𝑛)

∫︁
𝐷𝜑

𝑏𝑛

(2𝑀)2𝑛
𝑒𝑛𝜑(𝑡)𝑒𝑛𝜑(𝑡

′)𝑒−
1
4

∫︀
(𝜑′)2𝑑𝑡−𝛼

∫︀ 𝑡
𝑡′ 𝑒

𝜑(𝑡)𝑑𝑡. (A.10)

Functional integral over 𝜑(𝑡) can be interpreted as a quantum mechanical ampli-

tude and evaluated explicitly. There is a technical problem however: the field 𝜑(𝑡)

in Eq. (A.9) can be shifted by a constant: 𝜑(𝑡) → 𝜑(𝑡) + 𝜑0, producing a divergent

integral. In the calculation provided in Ref. [4], this zero mode appeared as an
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infinite multiplicative constant, coming from divergent integration over parameter

𝛼. This divergence was argued [4] to be irrelevant since it is related to the symmetry

of the action. Slightly different formulation of the same approach is to put 𝛼 equal

to 1 instead of integration over 𝛼. Here we first check this idea by using another

method. Namely, we fix the "gauge condition" by putting the value of 𝜑(𝑡) equal to

𝜑0 and then integrate over 𝛼; we obtain then the same result as in Ref.[4]. Therefore

in our further calculations we will follow the approach of Ref. [4] which is simpler

in implementation.

Rewriting formulae in terms of 𝑔𝑛(𝑡, 𝑡′), we find

⟨𝑔𝑛(𝑡, 𝑡′)⟩ =
∫︁ ∞

0

𝛼2𝑛−1𝑑𝛼

∫︁
𝑑𝜑1⟨𝜑0|𝑒𝑛𝜑𝑈𝛼(𝑡, 𝑡

′)𝑒𝑛𝜑|𝜑1⟩, (A.11)

where 𝑈𝛼(𝜏, 𝜏
′) is the evolution operator corresponding to the Liouville’s Hamilto-

nian 𝐻 = −1
4
𝜕2𝜑 + 𝛼𝑒𝜑. It can be written as

𝑈𝛼(𝑡, 𝑡
′) =

∫︁ ∞

0

𝑑𝑘

2𝜋
𝑒−𝑘2(𝑡−𝑡′)|𝑘, 𝛼⟩⟨𝑘, 𝛼| (A.12)

with eigenstates

⟨𝜑|𝑘, 𝛼⟩ = 2

Γ(2𝑖𝑘)
𝐾2𝑖𝑘(2

√
𝛼𝑒𝜑). (A.13)

It is more convenient to work with Mellin transformed eigenfunctions

2

Γ(2𝑖𝑘)
𝐾2𝑖𝑘(2

√
𝑥) =

∫︁ 𝑐+𝑖∞

𝑐−𝑖∞

Γ(𝑝− 𝑖𝑘)Γ(𝑝+ 𝑖𝑘)

Γ(2𝑖𝑘)
𝑥−𝑝 𝑑𝑝

2𝜋𝑖
. (A.14)

We now introduce the "matrix element" 𝐺(𝑝, 𝑘) as follows:

𝐺(𝑝, 𝑘) =
Γ(𝑝− 𝑖𝑘)Γ(𝑝+ 𝑖𝑘)

Γ(2𝑖𝑘)
. (A.15)
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Then Eq. (A.11) becomes

⟨𝑔𝑛(𝑡, 𝑡′)⟩ =
∫︀∞
0

𝑑𝑘
2𝜋
𝑒−𝑘2(𝑡−𝑡′)

∫︀∞
0
𝛼2𝑛−1𝑑𝛼

∫︀∞
−∞ 𝑑𝜑1𝑒

𝑛𝜑0𝑒𝑛𝜑1⟨𝜑0|𝑘, 𝛼⟩⟨𝑘, 𝛼|𝜑1⟩ =

=
∫︀∞
0

𝑑𝑘
2𝜋
𝑒−𝑘2(𝑡−𝑡′)

∫︀∞
0
𝛼2𝑛−1𝑑𝛼

∫︀∞
−∞ 𝑑𝜑1𝑒

𝑛𝜑0𝑒𝑛𝜑1
∫︀

𝑑𝑝1
2𝜋𝑖

𝑑𝑝1
2𝜋𝑖

×

𝐺(𝑝1, 𝑘)𝐺(𝑝1,−𝑘)𝛼−𝑝1𝑒−𝑝1𝜑0𝛼−𝑝2𝑒−𝑝2𝜑1 =

=
∫︀∞
0

𝑑𝑘
2𝜋
𝑒−𝑘2(𝑡−𝑡′)𝐺(𝑛, 𝑘)𝐺(𝑛,−𝑘). (A.16)

In the limit of 𝑡≫ 1 we find

⟨𝑔𝑛(𝑡, 𝑡′)⟩ =
∫︁ ∞

0

𝑑𝑘

2𝜋
𝑒−𝑘2(𝑡−𝑡′)Γ4(Δ𝑛)(4𝑘2) =

Γ4(𝑛)

2
√
𝜋(𝑡− 𝑡′)

3
2

. (A.17)

which coinsides with the result of Ref. [4].

A.3 Averaging the products of various powers of

Green function.

We now turn to the calculation of the averages of the type ⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩.

Following the same steps as in the Sec. II we obtain

⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩ =
∫︁ ∞

0

𝛼2𝑛−1𝑑𝛼

∫︁ ∞

0

𝛽2𝑚−1𝑑𝛽

∫︁
𝐷𝜑𝑒𝑛𝜑1𝑒𝑛𝜑2𝑒𝑚𝜑3𝑒𝑚𝜑4 ×

𝑒−
1
4

∫︀
(𝜑′)2𝑑𝑡−𝛼

∫︀ 𝑡1
𝑡2

𝑒𝜑(𝑡)𝑑𝑡−𝛽
∫︀ 𝑡3
𝑡4

𝑒𝜑(𝑡)𝑑𝑡,(A.18)

with shorthand notation 𝜑𝑖 = 𝜑(𝑡𝑖). Like in Sec. II, we interpreter the functional

integral over 𝜑(𝑡) as a quantum-mechanical amplitude. It is convenient to fix the

"gauge" by setting 𝛼 → 1, to simplify calculations. The result of averaging depends

crucially on the specific time ordering (see discussion in Sec. I). We present here

details of the calculation for the cases 2 and 3. Results for the cases 4 and 5 can be

obtained in similar way, so we will provide the results only.
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A.3.1 Time-ordering 2: 𝑡1 > 𝑡3 > 𝑡2 > 𝑡4

Quantum mechanical representation of the problem corresponds to the free particle

motion at times 𝑡 < 𝑡4. In the range of times 𝑡4 < 𝑡 < 𝑡2 the exponential potential

𝑒𝜑 with the magnitude equal to 𝛽 is turned on, so the evolution during this time

interval is described by 𝑈𝛽(𝑡2, 𝑡4) (see Sec. II for the definition of 𝑈(𝑡, 𝑡′)). Next,

in the time region between 𝑡2 and 𝑡3, the evolution is governed by 𝑈1+𝛽(𝑡3, 𝑡2), and

between 𝑡1 and 𝑡3 it is given by 𝑈1(𝑡1, 𝑡3). Finally, at 𝑡 > 𝑡1 the particle is free again.

Than quantum-mechanical average is of the following form (hereafter we use

Roman subscripts to denote specific time ordering, which is the 2nd one currently):

⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝐼𝐼 =
∫︁ ∞

0

𝛽2𝑚−1𝑑𝛽

∫︁
𝑑𝜑1𝑑𝜑2𝑑𝜑3𝑑𝜑4𝑒

𝑛𝜑1𝑒𝑛𝜑2𝑒𝑚𝜑3𝑒𝑚𝜑4

⟨𝜑1|𝑈1(𝑡1, 𝑡3)|𝜑3⟩⟨𝜑3|𝑈1+𝛽(𝑡3, 𝑡2)|𝜑2⟩⟨𝜑2|𝑈𝛽(𝑡2, 𝑡4)|𝜑4⟩. (A.19)

Using explicit representation for 𝑈 we find

⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝐼𝐼 =
∫︁ ∞

0

𝑑𝑘1𝑑𝑘2𝑑𝑘3
(2𝜋)3

𝑒−𝑘21𝑡1,3𝑒−𝑘22𝑡3,2𝑒−𝑘23𝑡2,4

∫︁ ∞

0

𝛽2𝑚−1𝑑𝛽∫︁
𝑑𝜑1𝑑𝜑2𝑑𝜑3𝑑𝜑4𝑒

𝑛𝜑1𝑒𝑛𝜑2𝑒𝑚𝜑3𝑒𝑚𝜑4⟨𝜑1|𝑘1, 1⟩ ×

⟨𝑘1, 1|𝜑3⟩⟨𝜑3|𝑘2, 1 + 𝛽⟩⟨𝑘2, 1 + 𝛽|𝜑2⟩⟨𝜑2|𝑘3, 𝛽⟩⟨𝑘3, 𝛽|𝜑4⟩. (A.20)

The integration over 𝜑 are factorized. Integration over 𝜑1 and 𝜑4 are trivial:

∫︁
𝑑𝜑1𝑒

𝑛𝜑1⟨𝜑1|𝑘1, 1⟩ =
∫︁
𝑑𝜑1𝑒

𝑛𝜑1

∫︁ 𝑐+𝑖∞

𝑐−𝑖∞
𝐺(𝑝, 𝑘1)𝑒

−𝑝𝜑1
𝑑𝑝

2𝜋𝑖
= 𝐺(𝑛, 𝑘1). (A.21)

∫︀
𝑑𝜑4𝑒

𝑚𝜑4⟨𝑘3, 𝛽|𝜑4⟩ =
∫︀
𝑑𝜑4𝑒

𝑚𝜑4
∫︀ 𝑐+𝑖∞
𝑐−𝑖∞ 𝐺(𝑝,−𝑘3)𝑒−𝜑4𝑝𝛽−𝑝 𝑑𝑝

2𝜋𝑖

= 𝐺(𝑚,−𝑘3)𝛽−𝑚. (A.22)
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Integration over 𝜑3 and 𝜑2 are more involved. Integrating over 𝜑3 we find

∫︀
𝑑𝜑3𝑒

𝑚𝜑3𝛽𝑚⟨𝑘1, 1|𝜑3⟩⟨𝜑3|𝑘2, 1 + 𝛽⟩ =∫︀
𝑑𝜑3𝑒

𝑚𝜑3𝛽𝑚
∫︀ 𝑐+𝑖∞
𝑐−𝑖∞ 𝐺(𝑝1,−𝑘1)𝐺(𝑝2, 𝑘2)𝑒−𝜑3(𝑝2+𝑝1)(1 + 𝛽)−𝑝2 𝑑𝑝1𝑑𝑝2

(2𝜋𝑖)2
=

𝛽𝑚
∫︀ 𝑐+𝑖∞
𝑐−𝑖∞ 𝐺(𝑚− 𝑝,−𝑘1)𝐺(𝑝, 𝑘2)(1 + 𝛽)−𝑝 𝑑𝑝

2𝜋𝑖
=

(1 + 𝛽)𝑖𝑘2𝛽𝑚 Γ(2𝑖𝑘1)
Γ(2𝑖𝑘2)

𝐺(𝑚+ 𝑖𝑘2, 𝑘1)𝐺(𝑚− 𝑖𝑘2,−𝑘1)𝐹 (𝑚+ 𝑖𝑘2 − 𝑖𝑘1,𝑚+ 𝑖𝑘2 + 𝑖𝑘1, 2𝑚,−𝛽) =

(1 + 𝛽)𝑖𝑘2 Γ(2𝑖𝑘1)
Γ(2𝑖𝑘2)

𝐺(𝑚− 𝑖𝑘2,−𝑘1)
∫︀ 𝑐𝑚+𝑖∞
𝑐𝑚−𝑖∞ 𝐺(𝑝+ 𝑖𝑘2, 𝑘1)

Γ(𝑚−𝑝)
Γ(𝑚+𝑝)

𝛽𝑝 𝑑𝑝
2𝜋𝑖

(A.23)

with 𝐹 (𝑎, 𝑏, 𝑐, 𝑧) for the normalized Hyperheometric function, 𝑐 > 0 and 𝑐𝑚 ∈ (0,𝑚).

Integration over 𝜑2 can be performed in the similar manner. We note a useful

identity:

∫︁
𝑑𝜑𝛽𝑚𝑒𝑚𝜑⟨𝑘𝐿, 𝛼|𝜑⟩⟨𝜑|𝑘𝑅, 𝛼+ 𝛽⟩ =

∫︁
𝑑𝜑𝛽𝑚𝑒𝑚𝜑⟨−𝑘𝑅, 𝛼+ 𝛽|𝜑⟩⟨𝜑| − 𝑘𝐿, 𝛼⟩

(1 +
𝛽

𝛼
)𝑖𝑘𝑅

Γ(2𝑖𝑘𝐿)

Γ(2𝑖𝑘𝑅)
𝐺(𝑚− 𝑖𝑘𝑅,−𝑘𝐿)

∫︁ 𝑐𝑚+𝑖∞

𝑐𝑚−𝑖∞
𝐺(𝑝+ 𝑖𝑘𝑅, 𝑘𝐿)

Γ(𝑚− 𝑝)

Γ(𝑚+ 𝑝)

(︂
𝛽

𝛼

)︂𝑝
𝑑𝑝

2𝜋𝑖
.

.(A.24)

With this identity, we find

⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝐼𝐼 =
∫︁ ∞

0

𝑑𝑘1𝑑𝑘2𝑑𝑘3
(2𝜋)3

𝑒−𝑘21𝑡1,3𝑒−𝑘22𝑡3,2𝑒−𝑘23𝑡2,4

∫︁ ∞

0

𝛽−1𝐺(𝑛, 𝑘1)𝐺(𝑚,−𝑘3)𝑑𝛽

(1 + 𝛽)𝑖𝑘2
Γ(2𝑖𝑘1)

Γ(2𝑖𝑘2)
𝐺(𝑚− 𝑖𝑘2,−𝑘1)

∫︁ 𝑐𝑚+𝑖∞

𝑐𝑚−𝑖∞
𝐺(𝑝+ 𝑖𝑘2, 𝑘1)

Γ(𝑚− 𝑝)

Γ(𝑚+ 𝑝)
𝛽𝑝 𝑑𝑝

2𝜋𝑖

𝛽𝑖𝑘2(1 + 𝛽)−𝑖𝑘2
Γ(−2𝑖𝑘3)

Γ(−2𝑖𝑘2)
𝐺(𝑛+ 𝑖𝑘2, 𝑘3)

∫︁ 𝑐𝑛+𝑖∞

𝑐𝑛−𝑖∞
𝐺(𝑞 − 𝑖𝑘2,−𝑘3)

Γ(𝑛− 𝑞)

Γ(𝑛+ 𝑞)
𝛽−𝑞 𝑑𝑞

2𝜋𝑖
.

(A.25)

The last integration over 𝛽 gives:

⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝐼𝐼 =
∫︁ ∞

0

𝑑𝑘1𝑑𝑘2𝑑𝑘3
(2𝜋)3

𝑒−𝑘21𝑡1,3𝑒−𝑘22𝑡3,2𝑒−𝑘23𝑡2,4

𝐺(𝑛, 𝑘1)𝐺(𝑚,−𝑘3)
Γ(2𝑖𝑘1)

Γ(2𝑖𝑘2)

Γ(−2𝑖𝑘3)

Γ(−2𝑖𝑘2)
𝐺(𝑛+ 𝑖𝑘2, 𝑘3)𝐺(𝑚− 𝑖𝑘2,−𝑘1)∫︁ 𝑐min(𝑚,𝑛)+𝑖∞

𝑐min(𝑚,𝑛)−𝑖∞
𝐺(𝑝+ 𝑖𝑘2, 𝑘1)

Γ(𝑚− 𝑝)

Γ(𝑚+ 𝑝)
𝐺(𝑝,−𝑘3)

Γ(𝑛− 𝑝− 𝑖𝑘2)

Γ(𝑛+ 𝑝+ 𝑖𝑘2)

𝑑𝑝

2𝜋𝑖
. (A.26)
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A.3.2 Time-ordering 3: 𝑡3 > 𝑡1 > 𝑡2 > 𝑡4

Following the same steps as above we come to

⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝐼𝐼𝐼 =
∫︁ ∞

0

𝛽2𝑚−1𝑑𝛽

∫︁
𝑑𝜑1𝑑𝜑2𝑑𝜑3𝑑𝜑4𝑒

𝑛𝜑1𝑒𝑛𝜑2𝑒𝑚𝜑3𝑒𝑚𝜑4

⟨𝜑3|𝑈𝛽(𝑡3, 𝑡1)|𝜑1⟩⟨𝜑1|𝑈1+𝛽(𝑡1, 𝑡2)|𝜑2⟩⟨𝜑2|𝑈𝛽(𝑡2, 𝑡4)|𝜑4⟩. (A.27)

With explicit expression for 𝑈 , we find

⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝐼𝐼𝐼 =
∫︁ ∞

0

𝑑𝑘1𝑑𝑘2𝑑𝑘3
(2𝜋)3

𝑒−𝑘21𝑡3,1𝑒−𝑘22𝑡1,2𝑒−𝑘23𝑡2,4

∫︁ ∞

0

𝛽2𝑚−1𝑑𝛽∫︁
𝑑𝜑1𝑑𝜑2𝑑𝜑3𝑑𝜑4𝑒

𝑛𝜑1𝑒𝑛𝜑2𝑒𝑚𝜑3𝑒𝑚𝜑4⟨𝜑3|𝑘1, 𝛽⟩⟨𝑘1, 𝛽|𝜑1⟩ ×

⟨𝜑1|𝑘2, 1 + 𝛽⟩⟨𝑘2, 1 + 𝛽|𝜑2⟩⟨𝜑2|𝑘3, 𝛽⟩⟨𝑘3, 𝛽|𝜑4⟩.

(A.28)

Using the identity in Eq. (A.24) we integrate over 𝜑:

⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝐼𝐼𝐼 =
∫︁ ∞

0

𝑑𝑘1𝑑𝑘2𝑑𝑘3
(2𝜋)3

𝑒−𝑘21𝑡3,1𝑒−𝑘22𝑡1,2𝑒−𝑘23𝑡2,4

∫︁ ∞

0

𝛽−1𝑑𝛽𝐺(𝑚, 𝑘1)𝐺(𝑚,−𝑘3)

(1 +
1

𝛽
)−𝑖𝑘2

Γ(−2𝑖𝑘3)

Γ(−2𝑖𝑘2)
𝐺(𝑛+ 𝑖𝑘2, 𝑘3)

∫︁ 𝑐𝑛+𝑖∞

𝑐𝑛−𝑖∞
𝐺(𝑞 − 𝑖𝑘2,−𝑘3)

Γ(𝑛− 𝑞)

Γ(𝑛+ 𝑞)

(︂
1

𝛽

)︂𝑞
𝑑𝑞

2𝜋𝑖

(1 +
1

𝛽
)𝑖𝑘2

Γ(2𝑖𝑘1)

Γ(2𝑖𝑘2)
𝐺(𝑛− 𝑖𝑘2,−𝑘1)

∫︁ 𝑐𝑛+𝑖∞

𝑐𝑛−𝑖∞
𝐺(𝑝+ 𝑖𝑘2, 𝑘1)

Γ(𝑛− 𝑝)

Γ(𝑛+ 𝑝)

(︂
1

𝛽

)︂𝑝
𝑑𝑝

2𝜋𝑖
.

(A.29)

Finally, 𝛽-integration gives

⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝐼𝐼𝐼 =
∫︁ ∞

0

𝑑𝑘1𝑑𝑘2𝑑𝑘3
(2𝜋)3

𝑒−𝑘21𝑡3,1𝑒−𝑘22𝑡1,2𝑒−𝑘23𝑡2,4𝐺(𝑚, 𝑘1)𝐺(𝑚,−𝑘3)

Γ(−2𝑖𝑘3)

Γ(−2𝑖𝑘2)

Γ(2𝑖𝑘1)

Γ(2𝑖𝑘2)
𝐺(𝑛− 𝑖𝑘2,−𝑘1)𝐺(𝑛+ 𝑖𝑘2, 𝑘3)

∫︁ 𝑐𝑛+𝑖∞

𝑐𝑛−𝑖∞
𝐺(−𝑝− 𝑖𝑘2,−𝑘3)𝐺(𝑝+ 𝑖𝑘2, 𝑘1)

𝑑𝑝

2𝜋𝑖
.

(A.30)

In fact, for time-ordering 3 we can go even further and calculate one of the

momentum integrals analytically: 𝑝-integration gives the momentum conservation
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law 2𝜋𝛿(𝑘1 − 𝑘3) and as a result:

⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝐼𝐼𝐼 =
∫︁ ∞

0

𝑑𝑘1𝑑𝑘2
(2𝜋)2

𝑒−𝑘21𝑡3,1𝑒−𝑘22𝑡1,2𝑒−𝑘21𝑡2,4 ×

𝐺(𝑚, 𝑘1)𝐺(𝑚,−𝑘1)𝐺(𝑛− 𝑖𝑘1,−𝑘2)𝐺(𝑛+ 𝑖𝑘1, 𝑘2). (A.31)

A.3.3 Results for time-orderings 4 and 5

For the orderings 4 and 5 we provide only the results:

⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝐼𝑉 =

∫︁ ∞

0

𝑑𝑘1𝑑𝑘2
(2𝜋)2

𝑒−𝑘21𝑡1,3𝑒−𝑘22𝑡3,4𝑒−𝑘21𝑡4,2 ×

𝐺(𝑛, 𝑘1)𝐺(𝑛,−𝑘1)𝐺(𝑚− 𝑖𝑘1,−𝑘2)𝐺(𝑚+ 𝑖𝑘1, 𝑘2). (A.32)

⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝑉 =

∫︁ ∞

0

𝑑𝑘1𝑑𝑘2𝑑𝑘3
(2𝜋)3

𝑒−𝑘21𝑡3,1𝑒−𝑘22𝑡1,4𝑒−𝑘23𝑡4,2

𝐺(𝑚, 𝑘1)𝐺(𝑛,−𝑘3)
Γ(2𝑖𝑘1)

Γ(2𝑖𝑘2)

Γ(−2𝑖𝑘3)

Γ(−2𝑖𝑘2)
𝐺(𝑚+ 𝑖𝑘2, 𝑘3)𝐺(𝑛− 𝑖𝑘2,−𝑘1)∫︁ 𝑐min(𝑚,𝑛)+𝑖∞

𝑐min(𝑚,𝑛)−𝑖∞
𝐺(𝑝+ 𝑖𝑘2, 𝑘1)

Γ(𝑛− 𝑝)

Γ(𝑛+ 𝑝)
𝐺(𝑝,−𝑘3)

Γ(𝑚− 𝑝− 𝑖𝑘2)

Γ(𝑚+ 𝑝+ 𝑖𝑘2)

𝑑𝑝

2𝜋𝑖
. (A.33)

A.4 Cancellation of infra-red singularities for 3rd

and 4th time orderings

We need to calculate integrals like the one indicated in Eq.(9) of the main text:

𝑓(𝑡1 − 𝑡2) =

∫︁
𝑡3<𝑡4

(⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩ − ⟨𝑔𝑛(𝑡1, 𝑡2)⟩⟨𝑔𝑚(𝑡3, 𝑡4)⟩). (A.34)

We introduce the following notations for the integrands corresponding to different

variants of the time ordering:

𝑓𝑖(𝑡1 − 𝑡2) =

∫︁
𝑇𝑖

𝑑𝑡3𝑑𝑡4⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝑖

𝑓𝑍 =

∫︁
𝑡3<𝑡4,𝑡2<𝑡4,𝑡3<𝑡1

⟨𝑔𝑛(𝑡1, 𝑡2)⟩⟨𝑔𝑚(𝑡3, 𝑡4)⟩ (A.35)
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Here 𝑇𝑖 is the area of integration which satisfies the 𝑖th order of times. Using these

functions we can write: 𝑓(𝑡) =
∑︀𝑉

𝑖=𝐼𝐼 𝑓𝑖(𝑡) − 𝑓𝑍(𝑡). The correction to the Green

function can be expressed via 𝑓(𝑡) as it is present in Eq.(10) of the main. Note that

the functions 𝑓𝐼𝐼𝐼 , 𝑓𝐼𝑉 and 𝑓𝑍 are not well-defined since the integrals in Eq. (A.35)

diverge. Fortunately, these divergencies cancel each other. To demonstrate with

fact, we write these function explicitly

𝑓𝐼𝐼𝐼(𝑡1 − 𝑡2) = 𝛿𝐼𝐼𝐼⟨𝑔𝑛(𝑡1, 𝑡2)⟩ =
∫︁ 𝑡2

−∞
𝑑𝑡4

∫︁ ∞

𝑡1

𝑑𝑡3⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝐼𝐼𝐼 =∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘22(𝑡1−𝑡2)

𝑘41
𝐺(𝑚, 𝑘1)𝐺(𝑛+ 𝑖𝑘1, 𝑘2)𝐺(𝑛− 𝑖𝑘1,−𝑘2)𝐺(𝑚,−𝑘1)

(A.36)

and

𝑓𝐼𝑉 (𝑡1 − 𝑡2) = 𝛿𝐼𝑉 ⟨𝑔𝑛(𝑡1, 𝑡2)⟩ =∫︀ 𝑡1
𝑡2
𝑑𝑡3
∫︀ 𝑡3
𝑡2
𝑑𝑡4⟨𝑔𝑛(𝑡1, 𝑡2)𝑔𝑚(𝑡3, 𝑡4)⟩𝐼𝑉 =∫︀∞

0
𝑑𝑘1
2𝜋

𝑑𝑘2
2𝜋

𝑒−𝑘22(𝑡1−𝑡2)−𝑒−𝑘21(𝑡1−𝑡2)(1+(𝑘21−𝑘22)(𝑡1−𝑡2))

(𝑘21−𝑘22)
2 𝐺(𝑛, 𝑘1)𝐺(𝑚+ 𝑖𝑘1, 𝑘2)𝐺(𝑚− 𝑖𝑘1,−𝑘2)𝐺(𝑛,−𝑘1).

(A.37)

Finally,

𝑓𝑍(𝑡1 − 𝑡2) = 𝛿𝑍⟨𝑔𝑛(𝑡1, 𝑡2)⟩ =
∫︁
𝑡3>𝑡4,𝑡4<𝑡1,𝑡3>𝑡2

𝑑𝑡3𝑑𝑡4⟨𝑔𝑛(𝑡1, 𝑡2)⟩⟨𝑔𝑚(𝑡3, 𝑡4)⟩ =∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘21(𝑡1−𝑡2)(1 + 𝑘22(𝑡1 − 𝑡2))

𝑘42
𝐺(𝑛, 𝑘1)𝐺(𝑛,−𝑘1)𝐺(𝑚, 𝑘2)𝐺(𝑚,−𝑘2).

(A.38)

It is convenient to split 𝑓𝑍 in two parts:

𝑓𝑍,𝐼𝐼𝐼(𝑡) =

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘22𝑡

𝑘41
𝐺(𝑛, 𝑘2)𝐺(𝑛,−𝑘2)𝐺(𝑚, 𝑘1)𝐺(𝑚,−𝑘1), (A.39)

𝑓𝑍,𝐼𝑉 =

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘21𝑡𝑡

𝑘22
𝐺(𝑛, 𝑘1)𝐺(𝑛,−𝑘1)𝐺(𝑚, 𝑘2)𝐺(𝑚,−𝑘2). (A.40)
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The following combinations are free from divergencies upon integration: 𝑓𝐼𝐼𝐼(𝑡) =

𝑓𝐼𝐼𝐼(𝑡) − 𝑓𝑍,𝐼𝐼𝐼(𝑡) and 𝑓𝐼𝑉 (𝑡) = 𝑓𝐼𝑉 (𝑡) − 𝑓𝑍,𝐼𝑉 (𝑡). In the next Section, we evaluate

the asymptotic behaviour of the result of this integration.

A.5 Contribution from the regions III and IV.

In this Section we calculate contributions to the Green function correction coming

from the time orderings 3 and 4. They can be represented explicitely as some

coefficient mutiplying ⟨𝑔𝑛(𝑡)⟩. To calculate it, we find the asymptotic behavior of

𝑓𝐼𝐼𝐼(𝑡) and 𝑓𝐼𝑉 (𝑡) in the limit of long time 𝑡. We start from 𝑓𝐼𝐼𝐼(𝑡). We use here the

fact that for 𝑡≫ 1 one has 𝑘2 ≪ 1 and 𝑘1 ∼ 1:

𝑓𝐼𝐼𝐼(𝑡) =

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘22𝑡

𝑘41
𝐺(𝑚, 𝑘1)𝐺(𝑚,−𝑘1)×

(𝐺(𝑛+ 𝑖𝑘1, 𝑘2)𝐺(𝑛− 𝑖𝑘1,−𝑘2)−𝐺(𝑛, 𝑘2)𝐺(𝑛,−𝑘2)) ≈
Γ(𝑛)4

2
√
𝜋𝑡

3
2

∫︁ ∞

0

𝑑𝑘1
2𝜋

𝐺(𝑚, 𝑘1)𝐺(𝑚,−𝑘1)(Γ2(𝑛+ 𝑖𝑘1)Γ
2(𝑛− 𝑖𝑘1)− Γ4(𝑛))

Γ(𝑛)4𝑘41
≡ 𝐶𝐼𝐼𝐼(𝑛,𝑚)⟨𝑔𝑛(𝑡)⟩.

(A.41)

To evaluate the contribution of the 4th time ordering it is convenient to split it

into two parts. The first one is

𝑓𝐼𝑉,1(𝑡) =

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘22𝑡 − 𝑒−𝑘21𝑡

(𝑘21 − 𝑘22)
2
𝐺(𝑛, 𝑘1)𝐺(𝑚+ 𝑖𝑘1, 𝑘2)𝐺(𝑚− 𝑖𝑘1,−𝑘2)𝐺(𝑛,−𝑘1) =∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘22𝑡 − 𝑒−𝑘21𝑡

(𝑘21 − 𝑘22)
2

Γ2(𝑛+ 𝑖𝑘1)Γ
2(𝑛− 𝑖𝑘1)Γ(𝑚+ 𝑖𝑘1 + 𝑖𝑘2)Γ(𝑚+ 𝑖𝑘1 − 𝑖𝑘2)Γ(𝑚− 𝑖𝑘1 + 𝑖𝑘2)Γ(𝑚− 𝑖𝑘1 − 𝑖𝑘2)

Γ(2𝑖𝑘1)Γ(−2𝑖𝑘1)Γ(−2𝑖𝑘2)Γ(−2𝑖𝑘2)
.

(A.42)

We symmetrize it over interchange of 𝑘1,2:

𝑓𝐼𝑉,1(𝑡) =
1

2

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘22𝑡 − 𝑒−𝑘21𝑡

(𝑘21 − 𝑘22)
2

Γ2(𝑛+ 𝑖𝑘1)Γ
2(𝑛− 𝑖𝑘1)− Γ2(𝑛+ 𝑖𝑘2)Γ

2(𝑛− 𝑖𝑘2)

Γ(−2𝑖𝑘1)Γ(2𝑖𝑘1)
𝐺(𝑚+ 𝑖𝑘1, 𝑘2)𝐺(𝑚− 𝑖𝑘1,−𝑘2).

(A.43)
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As a result:

𝑓𝐼𝑉,1(𝑡) =

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘22𝑡

(𝑘21 − 𝑘22)
2

Γ2(𝑛+ 𝑖𝑘1)Γ
2(𝑛− 𝑖𝑘1)− Γ2(𝑛+ 𝑖𝑘2)Γ

2(𝑛− 𝑖𝑘2)

Γ(−2𝑖𝑘1)Γ(2𝑖𝑘1)
×

𝐺(𝑚+ 𝑖𝑘1, 𝑘2)𝐺(𝑚− 𝑖𝑘1,−𝑘2) ≈
Γ(𝑛)4

2
√
𝜋𝑡

3
2

∫︁ ∞

0

𝑑𝑘1
2𝜋

Γ2(𝑛+ 𝑖𝑘1)Γ
2(𝑛− 𝑖𝑘1)− Γ4(𝑛)

𝑘41Γ(𝑛)
4

𝐺(𝑚,−𝑘1)𝐺(𝑚, 𝑘1) =

= 𝐶𝐼𝐼𝐼(𝑛,𝑚)⟨𝑔𝑛(𝑡)⟩.

(A.44)

To calculate the remaining terms from the 4th time ordering, we need to consider

the following expression

𝑓𝐼𝑉,𝑈(𝑡) =

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘21𝑡𝑡

𝑘22 − 𝑘21
𝐺(𝑛, 𝑘1)𝐺(𝑛,−𝑘1)𝐺(𝑚, 𝑘2)𝐺(𝑚,−𝑘2). (A.45)

Let us evaluate 𝑓𝐼𝑉,2 − 𝑓𝐼𝑉,𝑈 :

𝑓𝐼𝑉,2(𝑡)− 𝑓𝐼𝑉,𝑈(𝑡) =

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘21𝑡𝑡

𝑘22 − 𝑘21
𝐺(𝑛, 𝑘1)𝐺(𝑛,−𝑘1)×

(𝐺(𝑚+ 𝑖𝑘1, 𝑘2)𝐺(𝑚− 𝑖𝑘1,−𝑘2)−𝐺(𝑚, 𝑘2)𝐺(𝑚,−𝑘2)).

(A.46)

For 𝑡≫ 1 one has 𝑘1 ≪ 1 and

𝑓𝐼𝑉,2(𝑡)− 𝑓𝐼𝑉,𝑈(𝑡) =

− Γ4(𝑛)

2
√
𝜋𝑡

3
2

∫︁ ∞

0

𝑑𝑘2
2𝜋

3Γ2(−𝑖𝑘2 +𝑚)Γ2(𝑖𝑘2 +𝑚)(𝜓′(𝑚− 𝑖𝑘2) + 𝜓′(𝑚+ 𝑖𝑘2)) sinh(2𝑘2𝜋)

𝜋𝑘2
=

≡ 𝐶𝐼𝑉,1(𝑛,𝑚)⟨𝑔𝑛(𝑡)⟩,

(A.47)

where 𝜓 is digamma function. The next step is to evaluate

𝑓𝐼𝑉,𝑈(𝑡)− 𝑓𝑍,𝐼𝑉 (𝑡) =

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘21𝑡𝑡𝑘21
(𝑘22 − 𝑘21)𝑘

2
2

𝐺(𝑛, 𝑘1)𝐺(𝑛,−𝑘1)𝐺(𝑚, 𝑘2)𝐺(𝑚,−𝑘2).

(A.48)
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In this integral 𝑘1 ≪ 1 and

𝑓𝐼𝑉,𝑈(𝑡)− 𝑓𝑍,𝐼𝑉 (𝑡) ≈
∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘21𝑡4𝑡𝑘41Γ
4(𝑛)

(𝑘22 − 𝑘21)𝑘
2
2

𝐺(𝑚, 𝑘2)𝐺(𝑚,−𝑘2). (A.49)

To calculate the asymptotic, we add and subtract the following expression (below

we will see that it is equal to zero):

𝛿 =

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘21𝑡4𝑡𝑘41Γ
4(𝑛)

(𝑘22 − 𝑘21)𝑘
2
2

Γ4(𝑚)4𝑘22. (A.50)

This gives:

𝑓𝐼𝑉,𝑈(𝑡)− 𝑓𝑍,𝐼𝑉 (𝑡)− 𝛿 =

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘21𝑡4𝑡𝑘41Γ
4(𝑛)

(𝑘22 − 𝑘21)𝑘
2
2

(𝐺(𝑚, 𝑘2)𝐺(𝑚,−𝑘2)− Γ4(𝑚)4𝑘22).

(A.51)

Here we can expand in 𝑘1 and obtain

𝑓𝐼𝑉,𝑈(𝑡)− 𝑓𝑍,𝐼𝑉 (𝑡)− 𝛿 = Γ4(𝑛)

2
√
𝜋𝑡

3
2

∫︀∞
0

𝑑𝑘2
2𝜋

3
2𝑘42

(𝐺(𝑚, 𝑘2)𝐺(𝑚,−𝑘2)− Γ4(𝑚)4𝑘22)

≡ 𝐶𝐼𝑉,2(𝑛,𝑚)⟨𝑔𝑛(𝑡)⟩ (A.52)

The last step to do is the calculation of 𝛿:

𝛿 = 16𝑡Γ4(𝑛)Γ4(𝑚)

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘21𝑡𝑘41
𝑘22 − 𝑘21

=

8𝑡Γ4(𝑛)Γ4(𝑚)

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘21𝑡𝑘41 − 𝑒−𝑘22𝑡𝑘42
𝑘22 − 𝑘21

=

8𝑡Γ4(𝑛)Γ4(𝑚)𝜕2𝑡

∫︁ ∞

0

𝑑𝑘1
2𝜋

∫︁ ∞

0

𝑑𝑘2
2𝜋

𝑒−𝑘21𝑡 − 𝑒−𝑘22𝑡

𝑘22 − 𝑘21
=

8𝑡Γ4(𝑛)Γ4(𝑚)𝜕2𝑡

∫︁ ∞

0

𝑑𝑥

2𝜋

∫︁ ∞

0

𝑑𝑦

2𝜋

𝑒−𝑥2 − 𝑒−𝑦2

𝑥2 − 𝑦2
= 0. (A.53)

Finally we have:

𝑓𝐼𝑉 (𝑡) ≡ 𝑓𝐼𝑉 (𝑡)− 𝑓𝑍(𝑡) = (𝐶𝐼𝐼𝐼(𝑛,𝑚) + 𝐶𝐼𝑉,1(𝑛,𝑚) + 𝐶𝐼𝑉,2(𝑛,𝑚))⟨𝑔𝑛(𝑡)⟩ (A.54)

where coefficients 𝐶𝑖(𝑛,𝑚) are defined in Eqs.(A.41,A.47,A.52).
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A.6 Contributions from regions II and V and the

final result

The time regions II and V provides equal corrections to the Green function, so we

will consider the region II only. Here the correction to the Green function is

𝑓𝐼𝐼(𝑡) =

∫︁ 𝑡

0

𝑑𝑡3

∫︁ 0

−∞
⟨𝑔𝑛(𝑡, 0)𝑔𝑚(𝑡3, 𝑡4)⟩𝑑𝑡3𝑑𝑡3 =∫︁ ∞

0

𝑑𝑘1𝑑𝑘2𝑑𝑘3
(2𝜋)3

𝑒−𝑘22𝑡 − 𝑒−𝑘21𝑡

𝑘21 − 𝑘22

𝐺(𝑛, 𝑘1)𝐺(𝑚,−𝑘3)𝐺(𝑛+ 𝑖𝑘2, 𝑘3)𝐺(𝑚− 𝑖𝑘2,−𝑘1)
Γ(2𝑖𝑘2)Γ(−2𝑖𝑘2)

×𝐺2,4
4,4

(︀⃒⃒
1−𝑖𝑘2−𝑖𝑘1 1−𝑖𝑘2+𝑖𝑘1 1−𝑖𝑘3 1+𝑖𝑘3

𝑚 𝑛−𝑖𝑘2 1−𝑚 1−𝑖𝑘2−𝑛

⃒⃒
, 1
)︀
.

(A.55)

Here 𝐺2,4
4,4 is Meijer G-function. In the limit 𝑡 → ∞ we can obtain the following

asymptotic formula for this function:

𝑓𝐼𝐼(𝑡) = ⟨𝑔𝑛(𝑡)⟩(𝐶𝐼𝐼,1(𝑛,𝑚) + 𝐶𝐼𝐼,2(𝑛,𝑚)) (A.56)

where coefficients 𝐶𝑖(𝑛,𝑚) are given by

𝐶𝐼𝐼,1(𝑛,𝑚) =
∫︀∞
0

𝑑𝑘2𝑑𝑘3
𝑘2𝑘3𝜋4Γ(𝑛)2

Γ(−𝑖𝑘2 +𝑚)2Γ(𝑚− 𝑖𝑘3)Γ(𝑚+ 𝑖𝑘3)Γ(𝑛+ 𝑖𝑘2 − 𝑖𝑘3)Γ(𝑛+ 𝑖𝑘2 + 𝑖𝑘3)

×𝐺2,4
4,4

(︀⃒⃒
1−𝑖𝑘2 1−𝑖𝑘2 1−𝑖𝑘3 1+𝑖𝑘3
𝑚 𝑛−𝑖𝑘2 1−𝑚 1−𝑖𝑘2−𝑛

⃒⃒
, 1
)︀
,

𝐶𝐼𝐼,2(𝑛,𝑚) =
∫︀∞
0

𝑑𝑘1𝑑𝑘3
𝑘1𝑘3𝜋4Γ(𝑛)4

Γ(𝑚− 𝑖𝑘1)Γ(𝑚+ 𝑖𝑘1)Γ(𝑚+ 𝑖𝑘3)Γ(𝑚− 𝑖𝑘3)Γ(𝑛− 𝑖𝑘1)Γ(𝑛+ 𝑖𝑘1)

×𝐺2,4
4,4

(︀⃒⃒
1−𝑖𝑘1 1+𝑖𝑘1 1−𝑖𝑘3 1+𝑖𝑘3
𝑚 𝑛 1−𝑚 1−𝑛

⃒⃒
, 1
)︀
.

(A.57)

We combine now Eqs.(A.41,A.54,A.56,A.57) to obtain the complete result for

the relative correction to the Green function:

𝛿⟨𝐺 𝑛
Δ ⟩

⟨𝐺 𝑛
Δ ⟩

=
𝑁Γ2Δ

𝑚

𝑏𝑚

Γ(2𝑚)(2𝑀)2𝑚−2
×

[2𝐶𝐼𝐼𝐼(𝑛,𝑚) + 𝐶𝐼𝑉,1(𝑛,𝑚) + 𝐶𝐼𝑉,2(𝑛,𝑚) + 2(𝐶𝐼𝐼,1(𝑛,𝑚) + 𝐶𝐼𝐼,2(𝑛,𝑚))] . (A.58)

Now we set 𝑛 = 1
4
, 𝑚 = 1

2
and Δ = 1

4
in the above Eq.(A.58) and obtain the result
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for the first order correction to the Green function of the 𝑆𝑌 𝐾4 model in presence

of 𝑆𝑌 𝐾2 perturbation, as it is presented in Eq.(11) of the main text.
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Appendix B

Polaron Hamiltonian its eigenvalues

and eigenfunctions.

B.1 The effective action

In this part, we will describe the solution of the problem using a geometrical ap-

proach. The logic will be the same as in the main text. We derive the effective

action in adiabatic approximation and then the first non-adiabatic correction. Full

action is provided in Eq.(B.22).

B.1.1 Adiabatic approximation

The action of the SYK model at the Hyperbolic plane (we use Poincaré disk model)

was presented at the main text. After proper regularization it has the form:

𝑆 =

∫︁ 𝛽

0

{︂
1

2
𝑔𝜇𝜈�̇�

𝜇�̇�𝜈 − 𝛾𝜔𝜇�̇�
𝜇

}︂
𝑑𝜏 − 𝑔𝛾

4

∫︁ 𝛽

0

𝑑𝜏1𝑑𝜏2𝜒
1/2
𝑧(𝜏1),𝑧(𝜏2)

(B.1)

Here 𝑔𝜇𝜈 is a metric tensor and 𝜔𝜇 is the spin connection. And 𝛾 = 𝛼𝑆𝑁 We also

introduced the following notations:

𝛽 =
𝐽𝛽

𝛾
, 𝑔 =

𝑏2Δ

2

𝑁Γ2

𝐽2
𝛾2−4Δ =

𝑁𝛾

4
√
𝜋

Γ2

𝐽2
. 𝜒 =

(1− |𝑧1|2)(1− |𝑧2|2)
|1− 𝑧*1𝑧2|2

(B.2)
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Here 𝑧 is a complex coordinate of the point at the model. We will use coordinates 𝜉

and 𝜙 which are defined as 𝑧 = tanh(𝜉/2)𝑒𝑖𝜙 to solve our problem. We also perform

Hubbard–Stratonovich transformation, as a result the action of the problem will be:

𝑆𝑆𝑌 𝐾 = 1
2

∫︀ 𝛽

0

[︁
𝜉2

2
+ sinh2(𝜉) �̇�

2

2
− 𝛾 cosh(𝜉)�̇�

]︁
𝑑𝜏

𝑆Φ = 1
4𝑔𝛾

∫︀
𝑑𝜇Φ(𝑥)(−𝐿− 1

4
+ 𝛿2)Φ(𝑥)

𝑆𝑖𝑛𝑡 =
∫︀ 𝛽

0
Φ(𝑥(𝜏))𝑑𝜏 (B.3)

Here 𝐿 is the Laplace operator and 𝑑𝜇 is the invariant measure on the hyperbolic

plane and we should take a limit 𝛿 → 0. If we integrate the bosonic field Φ we will

obtain the previous action. We employ an adiabatic approximation, assuming that

the motion along the phase 𝜙 is much slower than along radial coordinate 𝜉. Then

functional integral over trajectories 𝜉(𝜏) can be done at fixed value of 𝜙, which is the

way to find an effective action for �̇�(𝜏). Since parameter 𝛾 ≫ 1, we can use saddle

point approximation for �̇�, which leads to the relation �̇� = 𝛾 cosh(𝜉)

sinh2(𝜉)
. The effective

action is then defined in the following way:

𝑆𝑒𝑓𝑓 [𝜙(𝜏)] = ln

(︂∫︁
𝐷Φ𝐷𝜉𝛿

(︂
�̇�− 𝛾 cosh(𝜉)

sinh2(𝜉)

)︂
𝑒−𝑆

)︂
(B.4)

A Lagrange variable 𝜆(𝜏) is used to remove the 𝛿-function. Then we need to calculate

the functional integral with the action dependent of trajectories 𝜉(𝜏) and 𝜆(𝜏):

𝑆 = 𝑆Φ + 𝑆𝑖𝑛𝑡 +

∫︁ 𝛽

0

[︃
𝜉2

2
− 1

2
𝛾2

cosh2(𝜉)

sinh2(𝜉)
− 𝜆(𝜏)

(︂
�̇�− 𝛾 cosh(𝜉)

sinh2(𝜉)

)︂]︃
𝑑𝜏 (B.5)

≃ 𝑆Φ + 𝑆𝑖𝑛𝑡 +

∫︁ 𝛽

0

[︂
1

2
𝜉2 − 𝜆(𝜏)

(︀
�̇�− 2𝛾𝑒−𝜉(𝜏)

)︀]︂
𝑑𝜏 −

∫︁ 𝛽

0

2𝛾2𝑒−2𝜉(𝜏)𝑑𝜏

(B.6)

Representation (B.6) follows from Eq.(B.5) since the condition 𝛾 ≫ 1 leads also to

𝜉 ≫ 1; we also omit irrelevant constant 𝛾2/2. Now calculation of the functional

integral over 𝜉(𝜏) is reduced to the solution of the 1D quantum-mechanical problem
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with the Hamiltonian

𝐻 = −
𝜕2𝜉
2

+ 2𝛾𝜆(𝜏)𝑒−𝜉 + Φ(𝜉, 𝜙(𝜏)) (B.7)

It is the same Hamiltonian as one presented in the main text. Its eigenfunctions and

eigenvalues will be presented below. Last term in the action (B.6) was neglected

in the Hamiltonian (B.7) due to its smallness w.r.t. other terms; however, we will

need this term later. The term Φ(𝜉, 𝜙) in Eq.(B.7) came from 𝑆𝑖𝑛𝑡 term in Eq.(B.6).

Explicit form of Φ(𝜉, 𝜙) is to be obtained variationally. Variation of the full action

over Φ leads to the relation

Φ0(𝜙, 𝜉) = −
∫︁
𝐺Φ(𝜉, 𝜙|𝜉′, 𝜙′)𝜓2

𝑔(𝜉
′, 𝜙′)

𝑑𝜙′

𝜀(𝜙′)
𝑑𝜉′ (B.8)

where 𝐺Φ is the Green function of the operator −𝐿 − 1
4
+ 𝛿2, and the limit 𝛿 → 0

is implied. Full analysis of this Green function is provided in Sec.IV below; here

we need its asymptotic expression only (it coincides with Eq.(B.50) in the end of

Sec.IV). 𝐺Φ(𝜉1, 𝜙1|𝜉2, 𝜙2) = 2𝑔𝛾
(︁

𝑒−𝜉1−𝜉2

𝜙2
12

)︁1/2
, where 𝜙12 = 2 sin(𝜙1−𝜙2

2
).

Using Eq.(B.8) and the result of variation of the full action over 𝜆(𝜏), we obtain,

as explained in the main text:

Φ0(𝜉, 𝜙) = −𝜅
√
𝜆𝛾

2
𝑒−𝜉/2 where 𝜆(𝜏) =

𝜅(𝜅− 1)

32�̇�
and 𝜅2 = 32𝑔 ln

(︂
𝜅𝛽

16𝜋

)︂
(B.9)

We start our analysis of Eq.(B.7)) from the simplest case of �̇� = 𝜀0 ≡ 2𝜋/𝛽. Then

Schrodinger equation (B.7) with potential (B.9) allows for exact ground-state 𝜓𝑔

and excited bound-state solutions 𝜓𝑛. We provide these functions below together

with corresponding eigenvalues, assuming 𝜅 > 1:

𝜓𝑔(𝜒) =
𝑒−𝜒/2𝜒𝜅/2−1/2√︀

2Γ(𝜅− 1)
; 𝐸𝑔 = −(𝜅− 1)2

32
(B.10)

𝜓𝑛(𝜒) =
1√︁

2Γ(𝑛+1)Γ(𝜅−𝑛)
𝜅−2𝑛−1

𝑒−𝜒/2𝜒(−1−2𝑛+𝜅)/2𝑈(−𝑛,−2𝑛+ 𝜅, 𝜒) ;

𝐸𝑛 = −(1 + 2𝑛− 𝜅)2

32
(B.11)
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where 𝜒 = 8
√
𝛾𝜆𝑒−𝜉/2 and 𝑈(𝑛,𝑚, 𝜒) is confluent hypergeometric function; line

(B.11) is valid for 1 + 2𝑛 < 𝜅.

Now we need to generalize the above result for non-constant but slowly varying

�̇� ≡ 𝜀(𝜙). Our goal is to determine effective action 𝑆𝑒𝑓𝑓 [𝜙(𝜏)]; equivalent repre-

sentation can be obtained in terms of 𝑆𝑒𝑓𝑓 [𝜀(𝜙)], since it is always assumed that

�̇� ≡ 𝜀(𝜙) > 0. Formally, this functional can be written as

𝑆𝑒𝑓𝑓 [𝜙(𝜏)] =

[︂
𝑆Φ +

∫︁ 𝛽

0

𝐸𝑔(𝜆(𝜏),Φ)𝑑𝜏 −
∫︁ 𝛽

0

𝜆(𝜏)�̇�𝑑𝜏

]︂
𝑠𝑎𝑑𝑑𝑙𝑒

(B.12)

where "saddle" means that Φ and 𝜆 should be determined from the saddle point

equations.

To find the energy of the ground state for a general choice of 𝜀(𝜙) it is convenient

to consider three terms in the Hamiltonian (B.7) separately and notice that the term

which contains 𝜆(𝜙) is canceled out in the effective action (B.12). Then we need to

calculate the average of the two other terms in the Hamiltonian over the deformed

( dependent on 𝜀(𝜙)) ground state:

�̃�𝑔 =
𝜅− 1

32
−
∫︁
𝐺Φ(𝜉, 𝜙|𝜉′, 𝜙′)𝜓2

𝑔(𝜉
′, 𝜙′)𝜓2

𝑔(𝜉, 𝜙)
𝑑𝜙′

𝜀(𝜙′)
𝑑𝜉′𝑑𝜉 (B.13)

The first term in (B.13) comes from kinetic term in the Hamiltonian (B.7), its

dependence on 𝜀(𝜙) is weak and we neglect it in the following. We will estimate its

influence below. The second term, together with 𝑆Φ term in Eq.(B.12), combine to

our final result for the action in the adiabatic approximation:

𝑆𝑒𝑓𝑓 = −1

2

∫︁
𝐺Φ(𝜉, 𝜙|𝜉′, 𝜙′)𝜓2

𝑔(𝜉
′, 𝜙′)𝜓2

𝑔(𝜉, 𝜙)
𝑑𝜙′𝑑𝜙

𝜀(𝜙′)𝜀(𝜙)
𝑑𝜉′𝑑𝜉 =

−𝑔
2

∫︁
𝜅− 1

𝜅

(︂
𝜀(𝜙1)𝜀(𝜙2)

𝜙2
12

)︂1/2
𝑑𝜙1𝑑𝜙2

𝜀(𝜙1)𝜀(𝜙2)
(B.14)

For the applicability of our adiabatic approximation strong inequality 𝜅 ≫ 1 is

needed, thus 𝜅−1
𝜅

≈ 1.
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B.1.2 Main non-adiabatic correction

The aim of this Section is to find the first non-adiabatic correction to the action.

This correction is due to virtual transitions between the levels of the 1D quantum

mechanical problem with the Hamiltonian (B.7) which describes motion along co-

ordinate 𝜉. General form of such a correction to 𝑆𝑒𝑓𝑓 is

𝛿𝑆𝑒𝑓𝑓 =

[︃∑︁
𝑛

∫︁ 𝛽

0

𝑑𝜏
(𝜕𝜏𝐻)𝑛𝑔(𝜕𝜏𝐻)𝑔𝑛
(𝐸𝑛(𝜏)− 𝐸𝑔(𝜏))3

]︃
𝑠𝑎𝑑𝑑𝑙𝑒

(B.15)

Here 𝐸𝑛 is an energy of the excited state 𝑛 which adiabatically depends on 𝜏 and

(𝜕𝜏𝐻)𝑛𝑔 is a matrix element of the operator 𝜕𝜏𝐻 between ground state and 𝑛-th

state. Equation (B.15) can be obtained applying quantum-mechanical perturbation

theory with respect to time-dependent terms in the Hamiltonian. The expression

(B.15) comes in the next order after the Berry phase term.

To employ general form (B.15) for our purpose, it is convenient to introduce the

following notations:

𝑀𝑛𝛼 =
∫︀∞
0
𝜓𝑛(𝜒)𝜓𝑔(𝜒)𝜒

𝛼 2𝑑𝜒
𝜒

=
1√︁

Γ(𝑛+1)Γ(𝜅−𝑛)Γ(𝜅−1)
𝜅−2𝑛−1

Γ(−1− 𝑛+ 𝜅+ 𝛼)Γ(𝛼 + 𝑛)

Γ(𝛼)

(B.16)

In the limit 𝜅 ≫ 1 we have: 𝑀𝑛𝛼 = Γ(𝑛+𝛼)
Γ(𝛼)

𝜅𝛼−𝑛/2. Time derivative 𝜕𝐻/𝜕𝜏 can be

written in the form

𝜕𝜏𝐻 = 2𝛾𝜕𝜏𝜆𝑒
−𝜉 − 𝜅

√
𝛾𝜆𝜕𝜏𝜆

4𝜆
𝑒−𝜉/2 =

𝜕𝜏𝜆

32𝜆

(︀
𝜒2 − 𝜅𝜒

)︀
(B.17)

Using Eq.(B.17) and notations (B.16) we write:

(𝜕𝜏𝐻)𝑔𝑛 =
1

32

𝜕𝜏𝜆

𝜆
(𝑀𝑛2 − 𝜅𝑀𝑛1) =

1

32

𝜕𝜏𝜆

𝜆
𝑛𝜅2−𝑛/2

√︀
Γ(𝑛+ 1) (B.18)

Here the limit of large 𝜅 was used to obtain the last result. As 𝐸𝑛 = − 1
32
(−𝜅+2𝑛+1)2

and 𝜅 ≫ 1 the leading contribution to the 𝑆𝑒𝑓𝑓 comes from the first term in the
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sum. It brings us to the following expression:

𝛿𝑆𝑒𝑓𝑓 =
1

2

∫︁ 𝛽

0

(︂
𝜕𝜏𝜆

𝜆

)︂2

𝑑𝜏 =
1

2

∫︁ 2𝜋

0

𝑑𝜙

𝜀(𝜙)
(𝜕𝜙𝜀(𝜙))

2 (B.19)

The last expression follows from the expression for 𝜆 in (𝐵.9).

Now we recall the last term in the action (B.6), which was not taken into account

in the adiabatic approximation. In the limit of large 𝜅 the contribution of this term

into the ground-state energy can be evaluated as −2𝛾2
∫︀
𝑑𝜉𝜓2

𝑔(𝜉)𝑒
−2𝜉. Thus its

contribution to the effective action is

𝛿𝑆 = −1

2

∫︁ 𝛽

0

∫︁
𝑑𝜉𝜓2

𝑔(𝜉)(2𝛾𝑒
−𝜉)2 ≈ −1

2

∫︁ 2𝜋

0

𝑑𝜙

𝜀(𝜙)
𝜀2(𝜙) (B.20)

Combining the terms in Eqs.(B.19,B.20) we find total non-adiabatic contribution to

the action

𝛿𝑆𝑒𝑓𝑓 = −
∫︁ 𝛽

0

𝑆𝑐ℎ
{︀
𝑒𝑖𝜙(𝜏), 𝜏

}︀
𝑑𝜏 (B.21)

which exactly reproduces the Schwarzian action known for the SYK4 theory. Full

action is given by the sum of Eq.(B.21) and Eq.(B.14):

𝑆𝑒𝑓𝑓 =
1

2

∫︁ 2𝜋

0

𝑑𝜙

𝜀(𝜙)

(︀
(𝜕𝜙𝜀(𝜙))

2 − 𝜀(𝜙)2
)︀
− 𝑔

2

∫︁ (︂
𝜀(𝜙1)𝜀(𝜙2)

𝜙2
12

)︂1/2
𝑑𝜙1𝑑𝜙2

𝜀(𝜙1)𝜀(𝜙2)

(B.22)

In the next Section we will evaluate fluctuations of 𝜀(𝜙) controlled by the action

(B.22).

B.2 Fluctuation corrections

In the Section we analyze Gaussian fluctuations of the function 𝜀(𝜙) using the ac-

tion provided in Eq.(B.22), and estimate corrections to the fermion Green function

related to these fluctuations.
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B.2.1 Gaussian fluctuations of the 𝜀(𝜙) function

Consider the 2nd-order expansion of the action over Fourier-components 𝛿𝜀𝑚 defined

as

𝜀(𝜃) = 𝜀0 +
1

2𝜋

∑︁
𝑚

𝛿𝜀𝑚𝑒
𝑖𝑚𝜃 (B.23)

We will assume 𝛿𝜀(𝜃) ≪ 𝜀0; equivalently, we write 𝜙 = 𝜃 + 𝑢(𝜃) and 𝑢(𝜃) ≪ 1. Do

derive the action up to quadratic terms in fluctuations, we need to expand 𝜀(𝜙) up

to a second order:

𝜀(𝜙) = 𝜀0
𝑑𝜙

𝑑𝜃
= 𝜀0(1 + 𝑢′(𝜃)) ≈ 𝜀0(1 + 𝑢′(𝜙)− 𝑢(𝜙)𝑢′′(𝜙)) (B.24)

The first term in Eq.(B.22) leads to:

1

2

∫︁ 2𝜋

0

𝑑𝜙

𝜀(𝜙)

(︀
(𝜕𝜙𝜀(𝜙))

2 − 𝜀(𝜙)2
)︀
≈ 𝜀0

2

∫︁ 2𝜋

0

𝑑𝜙
(︁
(𝑢′′)

2 − (1 + 𝑢′𝑢′)
)︁

=
1

4𝜋𝜀0

∑︁
𝑚

𝛿𝜀𝑚𝛿𝜀−𝑚(𝑚
2 − 1) (B.25)

The second term in Eq.(B.22) is not quite trivial to handle, since the integral over

(𝜙1−𝜙2) formally diverges, so some regularization is needed. Explicit regularization

with invariant short-scale cut-off 𝜙2
12/𝜀(𝜙1)𝜀(𝜙2) > 𝑙 can be used to demonstrate

that higher harmonics 𝜀𝑚 are free from this log-divergence. Since this calculation

is relatively cumbersome, we present here simpler derivation based on dimensional

regularization. Namely, we replace power 1
2

in the 2-nd term in (B.22) by some 𝑑 < 1
2

and then take the limit 𝑑→ 1
2
−0. At 𝑑 < 1

2
straightforward Fourier-transformation

leads to (with the accuracy up to terms quadratic in 𝜀𝑚):

𝑔
4𝛾

∫︀ (︁ 𝜀(𝜙)𝜀(𝜙′)
𝜙12

)︁𝑑
𝑑𝜙′𝑑𝜙

𝜀(𝜙′)𝜀(𝜙)
=

1
2

𝑔
4𝛾

∑︀
𝑚 ̸=0

𝑢𝑚𝑢−𝑚

𝑚2

∫︀ 2𝜋

0
𝑑𝜙
2𝜋
2(𝑑− 1)𝜀2𝑑−4

0

(︁
1

4 sin2(𝜙)

)︁𝑑
((𝑑− 1) cos(2𝑚𝜙) + 𝑑)

(B.26)

61



Then last integral in Eq.(B.26) can be calculated using the following formula:

∫︁ 2𝜋

0

𝑑𝜙

2𝜋

(︂
1

4 sin2(𝜙)

)︂𝑑

𝑒2𝑖𝑚𝜙 =
1

2 cos(𝜋𝑑)

Γ(𝑚+ 𝑑)

Γ(2𝑑)Γ(1 +𝑚− 𝑑)
(B.27)

where 𝑚 is any integer number. We are interested in the 𝑚-dependent coefficients

which are obtained by derivative of the ratio Γ(𝑚+𝑑)/Γ(𝑚+1−𝑑) over 𝑑, evaluated

in the limit 𝑑→ 1
2
. The result reads

𝑆𝑒𝑓𝑓 ≈ 1

4𝜋𝜀0

∑︁
𝑚

𝛿𝜀𝑚𝛿𝜀−𝑚(𝑚
2 − 1) +

𝑔

2

∑︁
𝑚

𝜓(𝑚)

4𝜋𝜀30
𝛿𝜀𝑚𝛿𝜀−𝑚 (B.28)

Here 𝜓(𝑥) = Ψ(𝑥+1/2)−Ψ(−1/2) and Ψ(𝑥) = (ln Γ(𝑥))′ is the digamma function.

This action leads to the following correlation function:

⟨𝛿𝜀𝑚𝛿𝜀−𝑚⟩ =
2𝜋𝜀30

𝜀20(𝑚
2 − 1) + 𝑔

2
𝜓(𝑚)

(B.29)

We use it below for calculations of the corrections to fermion Green function.

B.2.2 Estimation of the fluctuations of the kinetic term

The contribution to the action from the kinetic term has the form:

𝑆𝑘𝑖𝑛 =

∫︁
𝜅

32
𝑑𝜏 𝜅2 = 32𝑔 ln

(︂
𝜅

8𝜀(𝜙)

)︂
(B.30)

Assuming smallness of fluctuations we can write 𝜅 = 𝜅0 + 𝛿𝜅 where 𝜅0 is defined by

𝜀(𝜙) = 𝜀0. We will also define a parameter 𝛼 = 32𝑔
𝜅2
0
≪ 1. The connection between

𝛿𝜅 and 𝛿𝜀 can be obtained from the definition of 𝜅 and has the form:

𝛿𝜅 =
𝜅0
2

(︃
𝛼

2

(︂
𝛿𝜀

𝜀0

)︂2

− 𝛼
𝛿𝜀

𝜀0

)︃
(B.31)

This expression leads to the following form of the above action:

𝑆𝑘𝑖𝑛 =
1

2𝜋

𝑔

2𝜅0

∑︁
𝑛

𝛿𝜀𝑛𝛿𝜀−𝑛

𝜀20
(B.32)
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One can see smallness of this part due to the factor 1
𝜅𝜀0

≪ 1 with respect to the

second term in the (𝐵.28)

B.2.3 Correction to the Green function

Fermion Green function can be obtained as an average of the field �̂�(𝜃1, 𝜃2), evalu-

ated with the effective action (B.22), where

�̂�(𝜃1, 𝜃2) = −

⎛⎝𝑏𝛾2 𝜀(𝜃1)𝜀(𝜃2)

4 sin2
(︁

𝜙(𝜃1)−𝜙(𝜃2)
2

)︁
⎞⎠Δ

(B.33)

The saddle point approximation (𝜙(𝜃) = 𝜃) leads to ⟨�̂�(𝜃1, 𝜃2)⟩ = 𝐺𝑐 = −
(︁
𝑏𝛾2

𝜀20
𝜃212

)︁Δ
.

We are interested in the quadratic correction to the Green’s function. So we need

to find the second-order correction by 𝛿𝜀 to �̂� :

𝛿�̂�(𝜃1,𝜃2)
𝐺𝑐(𝜃1,𝜃2)

= 1
2

∑︀
�̸�=±1,0⟨𝛿𝜀𝑚𝛿𝜀−𝑚⟩𝑂𝑚(𝜃1 − 𝜃2)

𝑂𝑚(𝜃) = − Δ

(2𝜋)2 sin2( 𝜃
2)𝜀20𝑚2

((Δ(1−𝑚2) + 1) cos(𝑚𝜃)

+ cos(𝜃) ((Δ− 1)𝑚2 −Δ+Δ(𝑚2 + 1) cos(𝑚𝜃))

−Δ(𝑚2 + 1) +𝑚2 + 2Δ𝑚 sin(𝜃) sin(𝑚𝜃)− 1)

For large 𝜅 only terms with large 𝑚 will be important. In this case: 𝑂𝑚(𝜃) =

2Δ
(2𝜋𝜀0)2

(Δ− 1 + Δcos(𝑚𝜃)) ∼ 2Δ
(2𝜋𝜀0)2

so we can write

𝛿�̂�(𝜃1, 𝜃2)

𝐺𝑐(𝜃1, 𝜃2)
∼ 1

2

2Δ

(2𝜋𝜀0)2

∑︁
𝑚 ̸=±1,0

⟨𝛿𝜀𝑚𝛿𝜀−𝑚⟩ =
1

2

2Δ

2𝜋

∑︁
𝑚 ̸=±1,0

𝜀0

𝜀20(𝑚
2 − 1) + 𝑔

2
𝜓(𝑚)

∼ Δ

𝜋

1

𝜀0𝑚*

(B.34)

Here 𝑚* is defined us 𝜀20(𝑚2
*−1) = 𝑔

2
𝜓(𝑚*). For large 𝜅 we can write, using Eq.(B.9):

𝜀0𝑚* =
𝜅
8
, thus corrections to fermion Green function are small at any 𝜃.
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B.3 Higher orders of the fermionic Green function.

The major object of our theory is the Majorana Green function 𝐺(𝜏) averaged over

disorder variables which enter the Hamiltonian, Eq.(1) of the main text. However,

local Majorana Green function 𝐺𝑖(𝜏, 𝜏
′) = −⟨𝜒𝑖(𝜏)𝜒𝑖(𝜏

′)⟩ contains more information

about system’s dynamics.

One of the methods to extract this additional information is to consider higher-

order Green functions, defined below:

𝐺(𝑝)(𝜏, 𝜏 ′) ≡ ⟨

(︃
− 1

𝑁

∑︁
𝑖

𝜒𝑖(𝜏)𝜒𝑖(𝜏
′)

)︃𝑝

⟩ (B.35)

Here we restrict ourselves by the region of moderately high 𝑝 ≪ 𝑁 , where it is

easy to show that

𝐺(𝑝)(𝜏1, 𝜏2) = (−1)𝑝

⟨[︂
𝑏

𝑒−𝜉1−𝜉2

sin2(1
2
(𝜙1 − 𝜙2))

]︂Δ𝑝
⟩

= (−1)𝑝𝐶2
Δ𝑝

⟨[︂
𝑏

4𝛾

𝜀(𝜙1)𝜀(𝜙2)

sin2(1
2
(𝜙1 − 𝜙2))

]︂Δ𝑝
⟩

𝑆𝜙

(B.36)

Angular brackets in the middle formula of the above equation mean averaging over

quantum action 𝑆𝑒𝑓𝑓 , see Eq.(11) of the main text. Formula in the R.H.S. of (B.36)

is obtained after we take average over fluctuations of 𝜉1 and 𝜉2 over the polaron

ground state 𝜓𝑔(𝜉), where 𝐶𝛼 is defined below:

𝐶𝛼 =

(︂
2𝛾

𝜀(𝜙)

)︂𝛼 ∫︁
𝑒−𝛼𝜉𝜓2

𝑔(𝜉, 𝜙)𝑑𝜉 =
Γ(𝜅+ 2𝛼− 1)

Γ(𝜅− 1)
𝜅−𝛼(𝜅− 1)−𝛼 ≈ exp

(︂
2𝛼2

𝜅

)︂
(B.37)

We used assumption 𝛼 ≪ 𝜅 to make the last approximation. Final averaging over

𝑆𝜙 in the R.H.S. of Eq.(B.36) should be done with the full phase-dependent action

given by Eq.(B.22). Last expression in Eq.(B.37) is valid in the main order of

approximation for 𝜅≫ 1 and 𝛼 ≫ 1.

Consider now the effect of integration over fluctuations of angular modes 𝜀(𝜙)
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and define relevant measure for these fluctuations

𝑔𝑝(𝜏1, 𝜏2) =
⟨𝐺(𝑝)(𝜏1, 𝜏2)⟩
𝐶2

Δ𝑝𝐺
𝑝
𝑐(𝜏1, 𝜏2)

= ⟨exp [Δ𝑝𝛿𝑔(𝜃1, 𝜃2)]⟩ = exp

(︂
(Δ𝑝)2

2
⟨(𝛿𝑔(𝜃1, 𝜃2))2⟩

)︂
(B.38)

where 𝐺𝑐(𝜏1, 𝜏2) is the conformal saddle-point Green function, while the function

𝛿𝑔(𝜃1, 𝜃2) is defined via the relation

𝜀(𝜙1)𝜀(𝜙2)

4 sin2(𝜙1−𝜙2

2
)
·

[︃
𝜀0𝜀0

4 sin2( 𝜃1−𝜃2
2

)

]︃−1

≡ 1 + 𝛿𝑔(𝜃1, 𝜃2) =

1 + 𝑢′(𝜃1) + 𝑢′(𝜃2) + cot

(︂
𝜃1 − 𝜃2

2

)︂
(𝑢(𝜃2)− 𝑢(𝜃1)) (B.39)

We use here definitions 𝜙 = 𝜃 + 𝑢(𝜃) and 𝜀(𝜙) = 𝜀0
𝑑𝜙
𝑑𝜃

. To calculate the average

in the R.H.S. of Eq.(B.38) we need to expand the R.H.S. of Eq.(B.39) up to linear

terms in 𝑢(𝜃) and then use Fourier series:

𝛿𝑔(𝜃1, 𝜃2) =
1

2𝜋

∑︁
𝑚

(︂
𝑖𝑚𝑒𝑖𝑚𝜃1 + 𝑖𝑚𝑒𝑖𝑚𝜃1 + cot

(︂
𝜃1 − 𝜃2

2

)︂(︀
𝑒𝑖𝑚𝜃2 − 𝑒𝑖𝑚𝜃1

)︀)︂
𝑢𝑚

(B.40)

Now we can average R.H.S. of Eq.(B.38) in the Gaussian approximation, using rep-

resentation (B.40) and correlation function defined in (B.29). Correlation function

in the 𝜃-representation is (below 𝜃 = 𝜃1 − 𝜃2):

⟨𝛿𝑔2(𝜃1, 𝜃2)⟩ = 1
(2𝜋)2

∑︀
𝑚

(︀
2𝑚 cos

(︀
𝑚𝜃
2

)︀
− 2 cot

(︀
𝜃
2

)︀
sin
(︀
𝑚𝜃
2

)︀)︀2 ⟨𝑢𝑚𝑢−𝑚⟩ (B.41)

≈ 1
2𝜋𝜀0

ℜ
∑︀

𝑚 ̸=0,±1
1
𝑚2

1
𝑚2+𝑚2

*

[︀
2𝑚2

(︀
1 + 𝑒𝑖𝑚𝜃

)︀
+ 4𝑖𝑚 cot

(︀
𝜃
2

)︀
𝑒𝑖𝑚𝜃

+2 cot2
(︀
𝜃
2

)︀ (︀
1− 𝑒𝑖𝑚𝜃

)︀]︀
(B.42)

= 1
𝜀0

(2+𝑚*𝜃)
𝑚3

*𝜃
2

[︀
2𝑚*𝜃 cosh

(︀
𝑚*𝜃
2

)︀
− 4 sinh

(︀
𝑚*𝜃
2

)︀]︀
exp

{︀
−𝑚*𝜃

2

}︀
≡ 8

𝜅
𝑓(𝜃)

where 𝜀0𝑚* = 𝜅/8 and last equality just defines a convenient notation. Asymptotic
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limits for the function 𝑓(𝜃) are given by

𝑓(𝜃) =

⎧⎪⎨⎪⎩1 𝑚*𝜃 ≫ 1

𝜃𝑚*
3

𝑚*𝜃 ≪ 1

(B.43)

Finally, combining Eqs.(B.36,B.37,B.38,B.41) and replacing Δ → 1
4

we obtain

𝐺(𝑝)(𝜏1, 𝜏2)

[𝐺(𝜏1, 𝜏2)]𝑝
= exp

[︂
𝑝2

4𝜅
(1 + 𝑓(𝜃12))

]︂
(B.44)

B.4 The Green function of the boson field on the

hyperbolic plane.

The action of the bosonic field is

𝑆Φ =
1

2𝑔

∫︁
𝑑𝜇Φ(𝑥)(−𝐿− 1

4
+ 𝛿2)Φ(𝑥) (B.45)

Here 𝐿 is the Laplace operator and 𝑑𝜇 is an invariant measure on the hyperbolic

plane and 𝛿 → 0. We use the Poincaré disk model. The Green function of the

bosonic field satisfy the following equation:

(−𝐿− 1

4
+ 𝛿2)𝐺(𝑧1, 𝑧0) = 𝑔

𝛿(𝑧1 − 𝑧0)√︀
𝑔(𝑥0)

(B.46)

All objects here are invariant under 𝑆𝐿(2, 𝑅) transformations so let us use transforms

which maps 𝑧0 ↦→ 0 in this case 𝑧1 ↦→ 𝑧1−𝑧0
1−𝑧1𝑧0

. In new coordinates the form of equation

will be the same but 𝛿 function will be localized in the origin of the hyperbolic plane

so we expect the rotation invariant solution. It leads us to the equation:

[︂
−(1− 𝑢)2(𝑢𝜕2𝑢 + 𝜕𝑢)−

1

4
+ 𝛿2

]︂
𝐺(𝑧) = 𝑔

𝛿(𝑢)

4𝜋
(B.47)

Here 𝑢 = |𝑧|2. This equation can be written as the homogeneous equation with

boundary conditions: the Green function should decay faster than (1 − 𝑢)1/2 at

𝑢 → 1, while at 𝑢 ≪ 1 it should behave as 𝐺(𝑢) → − ln(𝑢)
4𝜋

. Then we come to the
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following result:

𝐺(𝑢) = 𝑔
1

4
(1− 𝑢)

1
2
+𝛿

2𝐹1

(︂
1

2
+ 𝛿,

1

2
+ 𝛿, 1 + 2𝛿, 1− 𝑢

)︂
(B.48)

Here 2𝐹1(𝑎, 𝑏, 𝑐;𝑥) is a hypergeometric function. In the limit 𝛿 → 0

𝐺(𝑧1, 𝑧0) = 𝑔

√
𝑤𝐾(𝑤)

2𝜋
where 𝑤 =

(1− |𝑧1|2)(1− |𝑧0|2)
(1− 𝑧1𝑧0)(1− 𝑧0𝑧1)

(B.49)

Here 𝐾(𝑤) is the complete elliptic integral of the first kind. In the limit 𝑤 → 0 we

have:

𝐺Φ(𝑧1, 𝑧0) ≈
𝑔

4
𝑤1/2 (B.50)

It is the last form (B.50) for the Bose field Green function 𝐺Φ, which we use in the

main text and in Sec.I above.
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