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Dimitry Chuprakov 

 

1. For derivation of pressure dependent leak-off in a near tip region author uses 1D diffusion equation. 

How 1D flow in a near-tip region can be justified, which, seems, must exhibit 2D flow more likely?  

Section 3.2.4.4 of the present thesis is devoted to the discussion of the applicability limits of 1D 

mechanism. Here, we say, referring to paper [1], that 1D approach can be used in the “large velocity 

limit” that in terms of physical parameters is written as 𝜆 ≫ ℓ𝑑 = 𝑐 𝑉⁄ , where 𝜆 is the size of the 

circulation zone, ℓ𝑑 is the diffusion lengthscale (ℓ𝑑 ∼ √𝑐𝑡 and 𝑡 ∼ 𝜆 𝑉⁄ ), 𝑐 is the diffusivity coefficient, 

and 𝑉 is the fracture tip propagation velocity. In other words, 1D mechanism is approximately valid when 

the pore pressure perturbation introduced by a hydraulic fracture is located inside the boundary layer of 

size ℓ𝑑 that is thin compared to the characteristic lengthscale of fluid pressure change along the part of 

the fracture where the fluid exchange process is important, i.e., 𝜆. Using the maps provided by Figure 3-

14, one can identify where the proposed fracture tip solution is valid. E.g., when 𝜒 𝜁3⁄ = 0.1 the condition 

𝜆 ≫ ℓ𝑑 is satisfied for all analyzed 𝜒. Similarly, in the case of 𝜒 𝜁3⁄ = 1 and 𝜒 𝜁3⁄ = 10, 1D approach is 

correct for 𝜒 < 0.1  and 𝜒 < 5, respectively, where 𝜒 = 𝑄′𝜎𝑜
′ 𝐸′ (𝐾′√𝑉)⁄ , 𝜁 = 𝐸′(𝑀′𝑄′√𝑉)

1/3
𝐾′⁄ . 

Moreover, using table 3.5, one can compare dimensionless length of the circulation zone with ℓ𝑑 ≈
0.01𝜁6 and find out that the condition 𝜆 ≫ ℓ𝑑 is satisfied for the low-permeability formation case.  

When the pressure wave spreads inside the formation on distance much larger than the circulation zone 

length, i.e., 𝜆 ≪ ℓ𝑑 , it is necessary to compute the near-tip region solution with 2D pressure-dependent 

leak-off. By comparing it with the 1D model outcome, it is possible to identify how exactly the 2D 

mechanism of the fluid exchange impacts on the semi-infinite crack properties. 

In the present thesis, 1D mechanism is applied to simplify the problem formulation. In the case of 1D fluid 

exchange, the fracture tip solution, i.e., opening, and net pressure profiles, is governed by two parameters 

(dimensionless leak-off and leak-in numbers) in the normalized form. However, three parameters 

(dimensionless permeability, pore pressure, and velocity number) control the solution when the pressure-

dependent leak-off is two-dimensional resulting in much more complex exploration of the problem 

parametric space where we would like to highlight domains where Carter’s leak-off (1D, pressure-

independent) provides non-accurate outcome.    

2. On page 27, the parameter 𝑐𝑡, which is conventionally denoted in literature as a total compressibility, is 

called fluid compressibility in the thesis. If this is indeed only a fluid component of compressibility as 



written, then why author neglects a rock skeleton compressibility component, and what 𝑡 index stands for 

in such case?  

In the present thesis, 𝑐𝑡 means the total compressibility of the saturated porous reservoir, i.e., it equals the 

sum of pore fluid and rock formation compressibility. The terminology is corrected throughout the 

manuscript.  

3. Semi-infinite fracture is introduced for convenient representation of a near-tip region of any finite 

fracture. As author works with both geometries, I would expect that author discusses which region of a 

radial fracture corresponds to the region of validity of the semi-infinite fracture analog.  

One can discuss this issue based on the example of a radial hydraulic fracture model with Carter’s leak-

off. The semi-infinite hydraulic fracture describes its properties near the tip. By considering the near-tip 

region model, it is possible to determine three limiting propagation regimes, and the conditions of their 

realization can be written in terms of the comparison of the transition length scales ℓ𝑚𝑘, ℓ𝑚�̃�, ℓ�̃�𝑘 with 

radius 𝑅: storage–viscosity regime (max(ℓ𝑚𝑘, ℓ𝑚�̃�) ≪ 𝑅), leak-off-viscosity regime (ℓ�̃�𝑘 ≪ 𝑅 < ℓ𝑚�̃�), 

and toughness (min(ℓ𝑚𝑘 , ℓ�̃�𝑘) > ℓ). In the first case, the semi-infinite hydraulic fracture corresponds to 

a boundary layer of thickness 𝑑 = max(ℓ𝑚𝑘, ℓ𝑚�̃�) adjacent to the moving front of the parent fracture 

provided that 𝑑 ≪ 𝑅. The effects linked with the rock toughness and leak-off exhibit inside the tip 

boundary layer, while m-vertex solution, i.e., far-field asymptote of the boundary layer solution, captures 

the behaviour of the outer solution near the tip. In other words, the boundary layer solution matches the 

outer solution for the parent fracture in the range of distances from the tip, 𝑑 ≪ 𝑥 ≪ 𝑅, where both 

solutions are represented by m-asymptote. In the second case, the semi-infinite hydraulic fracture 

corresponds also to a boundary layer but its thickness equals 𝑑 = ℓ�̃�𝑘. It is characterized by the 

dominance of leak-off, while the effect of the rock toughness exhibits inside the boundary layer. Here, 

along the spatial domain 𝑑 ≪ 𝑥 ≪ 𝑅, the outer solution near the fracture tip matches the far-field 

asymptotic behaviour of the boundary layer solution, where both solutions possess �̃�-asymptote. Finally, 

in the third case, rock toughness dominates in the energy dissipation. There is not boundary layer solution 

structure near the fracture tip, and the finite (radial) fracture solution is characterized by k-asymptote 

(LEFM asymptote) at the tip. 

In the numerical model of a radial hydraulic fracture, it is assumed that the near-tip region model is valid 

along two spatial elements adjacent to the moving front (Figure 3-16). The closest to the front element is 

called the "tip element", and using the fracture tip model, we compute its width and the fluid volume 

participating in the fluid exchange process along the tip element. Moreover, the fracture tip model should 

be also applicable in the penultimate element (also known as the "ribbon element") since based on the 

fracture opening value in the ribbon element, the tip propagation velocity is determined via eq. (3.35). In 

the present model, the length of a spatial cell equals 1/50 of the fracture radius in the considered time 

moment (now, this value is mentioned in the manuscript in Section 3.3.3). In other words, the semi-infinite 

fracture model is valid along the distance R/25 from the moving front. Generally, the mesh size should be 

determined as a result of the convergence study in which different cases from fine mesh to coarse mesh are 

considered, and the model outcomes are compared with known solutions, e.g., with the analytical 

solutions in the limiting propagation regimes. The cell size value used in the present thesis was taken from 

paper [2] devoted to the radial fracture model with Carter’s leak-off.   

4. Estimates of errors due to the PDL effect look diverse and vague in different parts of the work. For 

example, on page 91, in the description of the most severe effect of PDL with 𝜓=0.1, the maximum error 

for the width is 38%, for the radius it is 61 %, and 13% for opening and pressure. At the same time, page 

98 speaks about 5% for 𝜓=0.1, which is much smaller. In conclusions, author talks about 10% deviation 

for realistic parameters corresponding to field values.  

In Section 3.3.4.3 (containing page 91), we performed a comparison of the dimensionless solutions 

corresponding to the pressure-dependent leak-off and Carter’s leak-off in order to identify values of the 

governing parameters 𝜙 and 𝜓 for which the pressure-dependent effects are important. We considered 

𝜓 = 10−5 and 𝜓 = 0.1, computed the relative differences between crack properties in two cases and 

plotted them in the form of color maps in the coordinates (𝜏, 𝜙). Then, the results were summarized in 

Table 3.6, where we wrote the average and maximum deviations, which, in the case of 𝜓 = 0.1 reach 61% 

for radius and 38% for maximum opening. 

In Section 3.3.4.5 (containing page 98), we computed values 𝜓𝛼 depending on 𝜏 and 𝜙 starting from 

which the ratio 𝑉𝑃𝐷𝐿/𝑉𝑖𝑛𝑗 (pressure-dependent leak-off volume correction and injected volume) is above 



5% meaning that the PDL impact on the problem solution becomes noticeable. In other words, here, we 

provide a simplified approach which will help a reader to determine whether pressure-dependent leak-off 

is important or not: (𝜏, 𝜙) → 𝜓𝛼 = 𝜓𝛼(𝜏, 𝜙) → 𝜓 vs 𝜓𝛼 → if 𝜓 >  𝜓𝛼  PDL effect should be included into 

the model, else (𝜓 <  𝜓𝛼) Carter’s leak-off can be used. 

In Conclusions, the metric is related to the example for field parameters (given in Section 3.3.4.1), where 

the relative difference between fracture efficiencies in PDL and Carter’s cases reach 10 %.     

5. In Conclusions, it is very desirable to see quantitative estimates of such errors. It has many qualitative 

conclusions, e.g., “the yield stress potentially results in notable deviations of the fracture parameters from 

the outcomes of the zero-yield stress model”. Such “notable deviations” could be either subjective or 

depend on the case. I suggest writing conclusions in a more measurable sense.  

Since the impact of the analyzed fluid mechanics phenomenon strongly depends on the values of the input 

parameters, it is difficult to summarize quantitatively the results using just several values. In the main 

body of the thesis, we provided various maps built the dimensionless variables supplemented by tables 

using which a reader can easily estimate the importance of a hydrodynamical effect for the interested 

cases and decide whether it is necessary to implement this phenomenon into his/her hydraulic fracture 

model or not. However, in Conclusions, we can mention the quantitative value obtained in the example for 

field parameters (a particular case). We have added additional sentences into the manuscript expanded 

the mentioned phrase: 

For example, in the impermeable rock case, we obtained 9 % relative difference between the crack radius 

values at the end of injection period in the case of Herschel–Bulkley fluid and power-law fluid; this metric 

for the maximum opening property equals 20 %. When the leak-off with Carter’s coefficient  

𝐶′ = 3 ⋅ 10−5 𝑚/√𝑠 was introduced into the model, the deviation for radius comprises 3 %, while for the 

fracture opening near the wellbore, it is about 16 %.  

6. The model is not simple and will require quite a bit of work for implementation of the PDL effect into 

existing simulators. Is it possible to elaborate a convenient workaround or approximation of the PDL 

effect, for example, by the modification of the Carter leak-off coefficient? 

Pressure-dependent fluid exchange rate (Appendix A.1) depends on fluid pressure which is a function of 

time and distance from the source. Moreover, pressure profile is an unknow fracture property, i.e., it is a 

part of the problem solution. That is why, it is rather difficult to put into a radial fracture model with 

Carter’s leak-off some effective value of Carter’s coefficient which allows one to approximately reproduce 

the solution with the pressure-dependent leak-off without preliminary estimates.  

Firstly, it is required to mention that in Sections 3.3.4.3 and 3.3.4.5 we identify regions of the problem 

parameter space where the solution corresponding to the pressure-dependent fluid-exchange reduces to 

the outcome of the model with Carter’s leak-off, namely, it is the domain with large values of the leak-off 

number 𝜙 and large time moments 𝜏. Here, the radial fracture model with Carter’s leak-off can be applied 

with the same value of Carter’s coefficient as it is taken in the pressure-dependent case. In turn, in the 

opposite domain, the discussed solutions differ significantly. In the case of large 𝜙, perhaps, the effective 

Carter’s coefficient will allow obtaining similar fracture dynamics during the propagation period where 

pressure-dependent leak-off influence on the fracture evolution is tangible. However, this solution does 

not tend to the correct behaviour at large time moments. When the leak-off number 𝜙 is small, pressure-

dependent and Carter’s solutions are very different along the considered time span, and one can use the 

approach with effective value of Carter’s coefficient.  

I suppose that it is possible to solve the inverse problem of finding the effective Carter’s coefficient. E.g., 

we can determine the effective leak-off number �̃� in the model with Carter’s leak-off which provides 

approximately the same fracture efficiency that of in the model with the pressure-dependent leak-off 

characterizing by the leak-off number 𝜙 and leak-in number 𝜓. Further, it is required to analyze different 

values of 𝜙 and 𝜓 leading to a database containing the accordance: 𝜙, 𝜓 → �̃�. Next, a regression 

problem should be solved. I suppose that this approach is time consuming; however, it will allow utilizing 

the well-known radial crack model with Carter’s leak-off to estimate the crack properties corresponding 

to more realistic physics.           

7. In the dissertation, author decided to omit derivations of key equations and solutions. Instead, he 

included references to the published papers, e.g., Eqns. (2.5) - (2.6) on page 28, Eqn. (3.1) on page 38, 

Eqn. (3.16) - (3.17) on page 50. The most interesting for me numerical model of radial HF (e.g., Eqn. 



(3.34) on page 78) is referred to the paper for details. The dissertation is a self-dependent work, without 

limitation in size (as opposed to some journals) and can freely contain all necessary derivations used in the 

work for convenience of a reader.  

Final version of PhD thesis contains derivations of equations (2.5) and (2.6) in Section 2.1.2.3. Derivation 

of formula (3.1) is written in Appendix A.1, while the details of the numerical scheme applied for 

calculating the solution for a radial hydraulic fracture with pressure dependent leak-off are described in 

Appendix A.2. Expansions near the vertex solutions 𝑚 and �̃�, equations (3.16) - (3.19), are derived using 

the approach provided by paper [3] that is why, in the manuscript, the final expressions are written only. I 

suppose that a reader can easily use these formulas without knowing certain details, which, in turn, he/she 

can look through in [3] at desire.  

 

Gennady Mishuris 

 

1. In field applications, HF surfaces are rather rough. Does the roughness impact the flow regime 

transition inside the fracture channel from laminar to turbulent? 

 

The roughness of the crack surface strongly affects the fracture characteristics when the turbulent flow 

dominates inside the crack channel. The authors of papers [4-6] considered PKN/radial/KGD fractures driven 

by pure water turbulent flow in channel with rough surface, derived rough and smooth turbulent limiting 

propagation regimes, and analysed problem solution evolution between them. Since the friction factor in 

turbulent flow in rough channel is higher than in the smooth channel, the crack radius should be even smaller, 

while maximum opening is even larger compared to the laminar model outcomes than the crack model with 

smooth channel provides. Mentioned behaviour can be observed in papers [6, 7]. 

 

The focus of Chapter 4 of the present thesis is aimed at the slickwater fracturing case for which the 

approximation of the experimental data [8], suitable for the implementation into the numerical model, is 

available for the smooth pipe flow only (in work, we recalculate the results for pipe flow to the plane channel 

flow). That is why the analyses of the turbulent-laminar flow in the crack channel with rough surface was not 

included in the thesis. Moreover, it is impossible to derive semi-analytically the limiting propagation regimes 

in which turbulent flow occupies approximately the entire fracture channel if friction factor is not governed 

by the power-law function of flow Reynolds number. 

 

However, the examination of a radial crack with rough surface is among plans for the further continuation of 

the work performed during PhD study. It is possible to approximate Virk’s experiments on slickwater flow in 

a rough pipe and implement such dependencies into a hydraulic fracture model. One can assume that the 

behaviour of the crack properties in the compared models, i.e., rough vs. smooth crack channels, will be 

qualitatively similar to the pure water case analysed in [6, 7].    

 

2. The author has applied two numerical approaches, identified as accurate and approximate, 

when he analyses an impact of the fracturing fluid yield stress on a radial crack propagation. 

However, the comparison between those numerical solutions is omitted. I believe such 

comparison (with clear estimation of the errors) would be a valuable addition for practitioners. 

Validation of an approximate approach using in the model for a radial crack driven by Herschel–Bulkley fluid 

is written in Appendix A.6. Here, I compare the proposed solvers in terms of radius, maximum opening, 

pressure at the half radius, and efficiency for different values of flow behaviour index (𝑛 = 0.3, 0.75, 1) and 

1. yield-stress number (𝜓 = 10−10, 10−5, 1, 105) for the impermeable formation case, i.e., 𝜙 = 0,  

2. leak-off number (𝜙 = 10−20, 10−10, 10−5, 1, 105, 1010) and yield-stress number values  

𝜓 = 0 and 1. 

The results are presented in the form of average and maximum relative differences between accurate 

(“numer”) and approximate (“appr”) solutions, 𝛿𝐴 = |𝐴𝑛𝑢𝑚𝑒𝑟 − 𝐴𝑎𝑝𝑝𝑟| |𝐴𝑛𝑢𝑚𝑒𝑟|⁄ , where A is one of the 

fracture properties enumerated above, computed for a considered time span. 

 

 

 

 

 



 

Aleksey Vishnyakov 

 

1. I really recommend that the novelty and the significance of the work as a separate section: what is actually 

done that was not done before and how it affects the science in general and the practice of hydraulic fracturing. 

This will greatly benefit the thesis. If there is a sense to introduce the “statements brought to defence” this 

should be done as well.  

 

In the final version of the thesis, introduction chapter is divided into two sections. The first one includes a 

literature review consisting of the following items: (i) description how the complexity of the numerical models 

of hydraulic fracture growth has been developed over time; (ii) enumeration of the large variety of the near-

tip region models; (iii) description of various radial hydraulic fracture models. In items (ii) and (iii), we would 

like to outline what has been published in literature relatively to the examination how various fluid and solid 

mechanics phenomena impact on the propagation of a semi-infinite and radial fractures. The second section 

is devoted to the objectives of each study, their novelty compared to the existing literature sources considering 

similar physics in a hydraulic fracture propagation problem, and question of the significance of the work, 

namely, how a potential reader can utilize the presented results for the determination of the cases for which 

the interested fluid mechanics phenomenon strongly impacts on the crack evolution and where the constructed 

models can be applied, e.g., fracture tip models can be embedded into a finite fracture model as a propagation 

criterion, and radial crack models can be used as a benchmark solution for numerical simulators, i.e., for their 

verification.   

 

2. How the outcome of the modelling can be experimentally verified? Either by means of smaller laboratory 

experiments of even from the results of actual hydraulic fracturing practice? 

 

I think that it is possible to validate the constructed radial crack models using laboratory experiments. In lab 

conditions, one can organize the mechanical experiment in such a way that a penny-shaped hydraulic fracture 

is formed. During the experiment, we can measure fluid pressure at the source, track the fracture footprint, 

i.e., radius position, via acoustic signal, and measure rock deformations within time which can be used for 

calculating the crack aperture. As a result, one can compare the measured radius, maximum opening, and 

pressure near the source with the corresponding properties provided by the numerical model. For the 

verification of the radial fracture model with the pressure-dependent fluid exchange, we should be able to 

create a hydraulic fracture in a permeable rock sample. Regarding the radial crack model driven by turbulent-

laminar flow, we should inject fluid at large rate leading to the turbulent flow regime realization during the 

initial period of the propagation. The last model, i.e., penny-shaped crack driven by Hershel-Bulkley fluid, 

requires a laboratory experiment with viscoplastic fluid. It is required to highlight that the laboratory 

experiment should be a model [9], i.e., we should create the conditions at which various physical processes 

neglected in the numerical model do not realize, e.g., presence of the cohesion zone, lag saturated by vapour, 

damage zone ahead of the fracture. In other words, if some physical effect dominates in the lab experiment but 

is not accounted for in the model, we cannot obtain similar fracture properties provided experimentally and 

numerically. However, sometimes, the physical processes which dominate in lab conditions are not manifested 

in the field conditions where the fracture size is considerably large. I am not sure that field data is suitable for 

the numerical model validation. Usually, model calibration is performed using the field data, e.g., 

determination of Carter’s coefficient via interpretation of the leak-off test, and the estimated value is utilized 

for the subsequent fracture design. It is crucial to apply the model whose assumptions are close to real field 

conditions; otherwise, the interpretation outcomes will be incorrect. E.g., in the work [10], the authors 

performed PKN crack model calibration on the field data. The authors highlighted that using the fully laminar 

model, one can estimate Carter’s coefficient incorrectly if the fracture was created by fully turbulent flow. It 

happened because the laminar model overpredicts crack radius and underpredicts pressure. 

 

The paragraph devoted to the validation of the constructed numerical models using laboratory experiments is 

added into Conclusions section.   

 

3. The author mentions foams as fracturing fluids. It is true the foams are non-Newtonian (of course) and can 

be described with the Herschel-Bulkley formalism, but the foams have many features, like inherent instability, 

Poisson ratio and compressibility, which are out of the intervals the author continues. 

 



Section 5 considers radial hydraulic fracture driven by the fluid with Hershel-Bulkley rheology. According to 

this rheological model, the fluid properties are described by three parameters: yield stress 𝜏0, consistency 

index 𝑀 and flow behaviour index 𝑛. We suggest that during fracture propagation these parameters do not 

change, and this assumption allows performing not only numerical calculations but also analytical derivations 

of the limiting propagation regimes.  

 

However, the foam rheology is more complex, and, according to literature, e.g., [11-12], the flow behaviour 

index and consistency index depend on the foam quality 𝑄 and pressure 𝑝. We should mention when the foam 

rheology is governed by the power-law model, Hershel-Bulkley model is also applicable, since power-law 

rheological model is a particular case of Hershel-Bulkley model. Pressure inside the fracture channel varies 

in space and time, while the foam quality can also alter within time [13]. Consequently, M and n are functions 

of time and distance from the source. When the foam quality 𝑄 is approximately constant, and fluid pressure 

inside the fracture channel alters slightly along the fracture and over time, we can carry out simulations using 

the constructed radial fracture model by taking 𝑛 = 𝑛(𝑄, 𝜎𝑜) and 𝑀 = 𝑀(𝑄, 𝜎𝑜), where 𝜎𝑜 is the far-field 

confining stress. We suppose that the model outcomes will demonstrate correct qualitative effects linked with 

the impact of the foam rheology on the hydraulic fracture propagation. Nevertheless, fracture properties 

corresponding to the correct foam rheology, i.e., 𝑛 = 𝑛(𝑄, 𝑝) and 𝑀 = 𝑀(𝑄, 𝑝), can differ. Since in the radial 

fracture model, the momentum conservation equation is taken from the steady-state channel flow, i.e., the fluid 

flow inside the fracture channel is assumed to be quasi-steady-state, we can account for variations of 𝑀 and 

𝑛 without modifications of the problem formulation outlined in the thesis; however, the closure relations for 

𝑛 = 𝑛(𝑄, 𝑝), 𝑀 = 𝑀(𝑄, 𝑝), 𝑄 = 𝑄(𝑡) should be supplemented.  

 

Foam is also compressible liquid meaning that the equation of state should be embedded into the model. On 

the one hand, based on the work [14] and my examination of hydraulic fracture propagation due to injection 

of super-critical 𝐶𝑂2, fluid compressibility does not play an important role because fluid pressure inside the 

fracture varies slightly within time. On the other hand, in the foam case, compressibility can influence on the 

fracture characteristics more significant because the equation of state is more complex 𝜌 = 𝜌(𝑝, 𝑄, 𝜌𝑔, 𝜌𝑙), 

i.e., density can also depend on foam quality, density of gas and liquid phases. I think that additional analyses 

are required to answer precise to the question about the importance of accounting for the fluid compressibility 

in the problem of a hydraulic fracture driven by foam.              

 

 

Brice Lecampion 

 

1. I feel that some future perspectives are lacking in the final Conclusions of the thesis – what in 

the eyes of the candidate are the important problems to be tackled in the field of hydraulic fracture 

mechanics in the near future?  

 

The paragraph devoted to possible directions for future research in the numerical modelling of hydraulic 

fracture growth is added into Conclusions section: 

 

Finally, we would like to provide possible directions for future research in the numerical modelling of 

hydraulic fracture growth related to the topics discussed in the thesis. In recent times, examination of a 

hydraulic fracture arrest and closure in a permeable formation after injection shutdown has become popular. 

E.g., in the work [15], the authors considered the arrest of a radial crack, while in paper [16], the investigation 

includes not only the arrest but also the recession dynamics of a deflating radial fracture. In these studies, the 

fluid exchange process between the fracture and ambient permeable formation is taken in the form of Carter's 

leak-off law. However, fluid exchange plays an important role after injection stopping and has a significant 

impact on hydraulic fracture dynamics during the arrest and recession stages. That is why the consideration 

of a hydraulic fracture arrest and closure after shut-in accounting for more sophisticated pressure-dependent 

mechanism of the fluid exchange is of interest. Next, one can mention the problem in which natural hydraulic 

fractures are formed inside the subducting oceanic slab due to metamorphic dehydration reactions [17]. 

Dehydration can lead to pore fluid pressure buildup over the minimum principal stress and result in natural 

hydraulic fracturing. In this case, the fracture driving mechanism is the influx of pore fluid into the fracture 

channel from the surrounding porous media until the buoyancy force influence becomes significant. The influx 

should be described by the pressure-dependent leak-in mechanism in the numerical models. Further, in Section 

3.2.4.3 we enumerated several limitations of the constructed fracture tip model with pressure-dependent leak-



off, e.g., application of 1D mechanism for the fluid-exchange description and sameness of fracturing and pore 

fluids. We suppose that in the future research, it is possible to remove these restrictions and analyze how 2D 

pressure-dependent leak-off and presence of fracturing and pore fluids with different properties influence on 

the propagation of hydraulic fractures with semi-infinite and finite (e.g., radial, KGD, PKN) geometries. Let 

us move on to the topics related to the fluid flow inside the fracture channel, namely, non-laminar flow and 

non-Newtonian fracturing fluid rheology. We can propose that it will be interesting to analyze a hydraulic 

fracture driven by turbulent-laminar slickwater flow accounting for the roughness of the crack channel 

surface. It can be done via an approximation of Virk’s experiments on slickwater flow in a rough pipe [8]. 

Next, we should mention the problem of waterless hydraulic fracturing which requires careful examination. In 

this reservoir treatment the utilized fracturing fluid is either foam or supercritical CO2 or liquefied N2, i.e., 

compressible liquid with complex rheology. The last proposition is the study of a hydraulic fracture 

propagation accounting for the proppant transport inside the fracture channel, i.e., the flow of slurry 

governing by non-Newtonian rheological model. 

 

 
 Sergey Stanchits 

 

1. Evgenii carried out modelling of fluid flow, taking into account two different crack models: semi-infinite 

and penny-shaped. How close do these idealized models correspond to the real hydraulic cracks created in 

the field conditions? Where can each of these models be applied?  

 

Semi-infinite hydraulic fracture model accurately describes the near-tip region of a finite fracture and helps 

resolve the contribution of physical processes realizing in the vicinity of the crack front to its movement. Using 

the fracture tip model, one can determine a finite fracture front location for each time instance. For that 

purpose, the near-tip region model should be numerically implemented into a module for the growth of a finite 

fracture in the form of a so-called tip element, used to match the fracture opening in the near tip 

zone between the global numerical solution and the local near-tip asymptote and invert for the local fracture 

front velocity. In literature, the approach based on “tip logic” was applied inside the penny-shaped fracture 

model, KGD model, enhanced PKN model and more complex planar crack models based on the 

enhanced Pseudo3D and Planar3D approached. In Section 3 of the present thesis, we built the fracture tip 

model accounting for the pressure-dependent fluid exchange and then embedded it into a radial hydraulic 

fracture model. As a result, the proposed fracture tip models (Sections 3 and 4) can be applied as a propagation 

criterion in various finite fracture models.  

 

The second crack model utilized in the thesis is a penny-shaped hydraulic fracture model. It is an example of 

a finite fracture which allows obtaining demonstrable results linked with the fluid mechanics phenomena under 

consideration. A radial crack occurs in nature, e.g., during the initial propagation period, hydraulic fracture 

growing due to the injection from the point source has penny-shaped geometry until the influence of 

heterogeneity of rock mechanical properties and/or buoyancy force become significant.  Moreover, the 

penny-shaped hydraulic fracture model can be used as a benchmark solution for the numerical simulators of 

more realistic (complex) fracturing problems including the same physics. In other words, if the numerical 

simulator for modeling the hydraulic fracture propagation accounts for pressure-dependent leak-off or 

laminar-turbulent flow inside the fracture channel or fracturing fluid with Herschel-Bulkley rheology, one can 

apply the radial crack models constructed in the present thesis for its verification. 

 

2. Is it possible to give at least a few examples of hydraulic fractures, in which the consideration of the fluid 

exchange related to the fluid pressure inside the fracture is particularly important?  

 

One can give an example of a problem in which natural hydraulic fractures are formed inside the subducting 

slab due to metamorphic dehydration reactions. Dehydration can lead to pore fluid pressure buildup in 

excess of the minimum principal stress and result in natural hydraulic fracturing. In this case, fracture 

driving mechanism is the influx of pore fluid into the fracture channel from the surrounding porous media 

until the buoyancy force influence becomes significant. During numerical modelling, this influx should be 

described by the pressure-dependent leak-in mechanism.  

 



3. Evgenii implemented two numerical approaches for the Herschel–Bulkley rheological model of the 

penny-shaped fracture: accurate and approximate. Why were two numerical algorithms proposed? What are 

the limitations of each approach? Which one can be considered best?  

 

We proposed two numerical algorithms for calculating the solution for a radial crack driven by Herschel–

Bulkley fluid. The first approach is a direct numerical solver allowing one to compute the fracture 

characteristics accurately, and it is based on Gauss-Chebyshev quadrature and Barycentric Lagrange 

interpolation techniques. The second approach helps us to construct the simplified approximate solution 

based on the full-crack continuation of the near-tip region asymptote and the global fluid balance equation.  

 

In addition to calculating the accurate solution, the first method has been used for tuning parameter 𝜆 inside 

the simplified method and for its validation. We have also performed the quantitative analysis of the plug 

zone formation inside the fracture channel using the accurate approach. The computation process via the 

accurate solver is not fast especially near the leak-off and yield stress dominated regimes, in which it is slow 

or even breaks down due problems with convergence.  

 

In turn, the simplified approach is computationally efficient and allows us to rapidly calculate the problem 

solution for any values of the input parameter, i.e., using the approximate method, we can simulate the 

fracture propagation corresponding to large leak-off and/or large yield stress values. Overall, rapid 

approximate solution is more beneficial to perform estimations for the whole problem parametric space 

which include massive calculations, which was one of the primary goals of Chapter 4. From a practical 

point of view, it will be easier for a reader to implement the simplified approach. 
 

4. Some important details are omitted in the manuscript, such as the derivation of the pressure-dependent 

leak-off rate and how this fluid exchange mechanism fits into the numerical algorithm for a radial hydraulic 

fracture. They are given as references, but I recommend Evgenii to add them into the thesis for the 

completeness.  

 

Derivation of the relation governed the pressure-dependent fluid exchange rate is given by Appendix A.1. 

Most important features of the numerical scheme applying in the model for a radial crack with pressure-

dependent leak-off are outlined in Section 3.3.3, while the details of the discretization of governing equations 

are presented in Appendix A.2. 

 

5. Finally, I would recommend Evgenii to add to his thesis, for example, in the Conclusions section, some 

ideas regarding how the developed models can be validated using laboratory and/or field data. I assume that 

verified models may be of a higher value for possible industrial application than unverified ones.  

 

The paragraph devoted to the validation of the constructed numerical models using laboratory experiments is 

added into Conclusions section: 

 

Constructed radial crack models can be verified using laboratory experiments. In lab conditions, mechanical 

experiment can be organized in such a way that a penny-shaped hydraulic fracture is formed. During the 

experiment, one can measure fluid pressure at the source, track the fracture footprint via acoustic signal, and 

measure rock deformations within time which can be used for calculating the crack aperture. As a result, it is 

possible to compare the measured radius, maximum opening, and pressure near the source with the 

corresponding properties provided by the numerical model. For the verification of the radial fracture model 

with the pressure-dependent fluid exchange, we should be able to create a hydraulic fracture in a permeable 

rock sample. Regarding the radial crack model driven by turbulent-laminar flow, we should inject fluid at 

large rate leading to the turbulent flow regime realization during the initial period of the propagation. The 

third model, i.e., penny-shaped crack driven by Hershel-Bulkley fluid, requires a laboratory experiment with 

viscoplastic fluid. It is required to highlight that the laboratory experiment should be a model [9], i.e., we 

should create the conditions at which various physical processes neglected in the numerical model do not 

realize, e.g., presence of the cohesion zone, lag saturated by vapour, damage zone ahead of the fracture. In 

other words, if some physical effect dominates in the lab experiment but is not accounted for in the model, we 

cannot obtain similar fracture properties provided experimentally and numerically. However, sometimes, the 

physical processes which dominate in lab conditions are not manifested in the field conditions where the 

fracture size is considerably large. In turn, field data can be used for model calibration, e.g., determination of 



Carter’s coefficient via interpretation of the leak-off test. Thereafter, the estimated value is utilized for the 

design of a hydraulic fracture which can be created in the same rock formation. It is crucial to apply the model 

whose assumptions are close to real field conditions; otherwise, the interpretation outcomes will be incorrect. 

E.g., in the work [10], the authors performed PKN crack model calibration on the field data, and they 

highlighted that using the fully laminar model, one can estimate Carter’s coefficient incorrectly if the fracture 

was created by fully turbulent flow. It happened because the laminar model overpredicts crack radius and 

underpredicts pressure.   

 

 Dmitry Koroteev 

 

1. Talking practical application of his study, I would like to see some kind of ranking of the importance of the 

studied effects for the actual success of HF job in various geological formations with various HF fluids, 

proppants etc. This would make a better fit for the petroleum engineering direction of Evgeny’s thesis and may 

act as some kind of the recommendations list for advanced HF designers. 

 

In the present thesis, we examined the influence of three fluid mechanics phenomena on hydraulic fracture 

propagation. Among them are pressure-dependent fluid exchange between the fracture and ambient permeable 

formation, laminar-turbulent flow inside the fracture channel, and non-zero fracturing fluid yield stress. Since 

these effects are quite different, I think that it makes sense to consider them separately. For each fluid 

mechanics effect, a reader would like to find out in which cases, i.e., rock and fluid properties, injection rate, 

etc., it is crucial to account for the hydrodynamic phenomenon inside the numerical model for a hydraulic 

fracture growth.  

 

Let us consider an example of a permeable formation. In a hydraulic fracture model, we can apply most 

common Carter’s law, i.e., pressure-independent mechanism, for the leak-off description. However, more 

sophisticated pressure-dependent mechanism should govern the fluid-exchange process. In Section 3, we 

determined the value ranges of the input parameters of a radial crack model for which the effects linked with 

the pressure-dependent leak-off impact on the fracture evolution significantly. Using Figure 3-25 given in 

Section 3.3.4.5, a reader can estimate the importance of the pressure-dependent fluid exchange for the 

required values of input parameters. The procedure can be outlined as: (𝜏, 𝜙) → 𝜓𝛼 = 𝜓𝛼(𝜏, 𝜙) →
𝜓 𝑣𝑠 𝜓𝛼 → 𝑖𝑓 𝜓 >  𝜓𝛼  PDL effect should be included into the model, else (𝜓 <  𝜓𝛼) Carter’s leak-off can 

be used. Next, results of Section 3.3.4.3 will help to estimate quantitively the difference between the solution 

corresponding to the pressure-dependent fluid exchange and the one corresponding to Carter’s leak-off law.                

 

Further, we move on to the case of fracturing fluid with low viscosity. Fluid injection should be carried out 

with large rate leading to the turbulent flow regime realization inside the crack channel. Using the results 

presented in Section 4.3.6, a reader can estimate how long turbulent flow impacts on the crack growth for 

certain values of the input parameters. If the considered case is located out of the domain of the parameter 

space where the solution is fully-laminar, hydraulic fracture design should be performed accounting for the 

turbulent flow inside the fracture and its transformation to laminar flow in the vicinity of the front. E.g., in 

the work [10], the authors performed PKN crack model calibration on the field data (pressure at the 

wellbore and crack size from microseismic data). The authors highlighted that using the fully laminar model, 

one can estimate the Carter’s coefficient incorrectly if the fracture was created by fully turbulent flow. It is 

happened because the laminar model overpredicts crack radius and underpredicts pressure. 

 

Finally, when fracturing fluid has non-zero yield stress, a reader has a question whether it is still possible to 

use the power-law fluid model, or the yield stress has a significant impact on the crack properties. Using the 

maps shown in Section 5.5.2, a reader can determine how far inside the parameter space the interested case 

is located from the regimes characterized by the dominance of the yield stress. If the required case is close to 

the applicability domains of T and �̃� regimes, it is necessary to carry out the fracture design accounting for 

the correct fluid rheology, i.e., use Herschel–Bulkley rheological model which includes the yield stress and 

non-linearity of shear stress. 

 

The reflections discussed here is added into Section 1.2 of the final version of the thesis. 



 

Jean Desroches 

 

1. Though I am inclined to believe it, as the full numerical solution is being used to benchmark the approximate 

solution, I would have liked to see if the computed behaviour at the fracture tip does indeed match the 

corresponding asymptotic solutions. I strongly believe that a numerical solution should be benchmarked with 

an analytical solution prior to using it to benchmark an approximate solution.  

 

Appendix A.3 presents the comparison between the numerical solution based on Gauss-Chebyshev quadrature 

and Barycentric Lagrange interpolation techniques and analytical asymptotic solutions near the fracture tip 

(viscosity, leak-off, and toughness asymptotes).   

 

2. Similarly, I would have appreciated a check of the output of the radial model developed for studying the 

effect of turbulent flow with known solutions for the case of laminar flow, just to be complete. 

 

The verification results of the numerical approach based on Gauss-Chebyshev quadrature and Barycentric 

Lagrange interpolation are shown in Appendix A.3 on the example of a radial fracture driven by laminar flow 

of Newtonian fluid in a permeable rock. Here, we demonstrate the comparison of the algorithm outcomes with 

several reference solutions (numerical and semi-analytical).    

 

3. The only add-on that I would mention here is the request to add a nomenclature per chapter, which is always 

useful, but particularly here as the same symbol may take different meanings from one chapter to the next.  

 

The nomenclature is added into the thesis. 

 

4. Should the side �̃�𝑘 of triangle 𝑚�̃�𝑘 be green, like in the zero-storage case, or not (Figure 3-2)? 

 

This side is shown by dashed black line because in the 𝑚�̃�𝑘-face solution, the intermediate asymptote �̃� is 

never realized. According to the discussion in Section 3.2.2.2, 𝑚�̃�-edge solution does not exist leading to the 

absence of �̃� asymptote and the emergence of �̃�𝑘-edge solution when the leak-off number equals 0, and leak-

in number is large (𝜁 → ∞).  

 

5. Why the error is that large around the K vertex? (Figure 3-21) 

 

Applicability domain of the storage-toughness limiting propagation regime (K-vertex) of a radial crack with 

Carter’s leak-off is located in the zone of parametric space characterized by low values of the leak-off number 

𝜙 < 10−16 and large values of the dimensionless time 𝜏 > 106. When 𝜙 values are so small, Carter’s leak-

off term in equation (3.21) does not contribute to the fluid exchange rate at all. However, we have the pressure-

dependent correction in equation (3.21) which becomes important already at small values of the dimensionless 

leak-in number 𝜓. E.g., at the map for 𝜓 = 10−5, we observe the largest difference in efficiency values 

between the solution with the pressure-dependent leak-off and the one that uses Carter’s leak-off model in the 

discussed part of the parametric domain (Figure 3-21). The deviation increases when the leak-in number 

equals 𝜓 = 0.1 (Figure 3-23). Moreover, in Section 3.3.4.5, we performed simplified analyses of the pressure-

dependent leak-off influence including the determination of the critical values of the dimensionless leak-in 

number as a function of the dimensionless time and leak-off number, i.e., 𝜓𝛼 = 𝜓𝛼(𝜏, 𝜙), starting from which, 

the pressure-dependent leak-off effects cannot be neglected. Based on the analyses, we obtained that for 𝜙 <
10−16 and 𝜏 > 106, 𝜓𝛼 is about 10−8 meaning that deviation of the radial crack solution with the pressure-

dependent leak-off from the solution with Carter’s leak-off in that zone is tangible for 𝜓 > 10−8 supporting 

the results shown in Figures 3-21 and 3-23.     

 

6. You may want to highlight somewhere that there is no transitional regime (or that it is lumped with the 

turbulent portion) (Figure 4-1). 

 

Figure 4-1 is modified. Here, it is highlighted that in the vicinity of boundary between laminar and non-laminar 

flow (𝑥 = 𝜆), the flow regime is transient, and, afterward, it becomes fully turbulent.  

 



7. The mixture of numerical computation and analytical results is unclear (p. 133). 

 

A clarification sentence is added into this paragraph: 

In expressions (4.41) for radius 𝑅𝑡(𝑡), maximum opening 𝑤𝑡(0, 𝑡), and pressure at the half radius 𝑝𝑡(𝑅𝑡/2, 𝑡), 

coefficients are determined from the fitting of the full numerical solution by analytical dependencies (4.32) 

supplemented by formulas for the length scale 𝐿𝑡 and small parameter 𝜖𝑡 (4.39). 

 

8. Why is there a kink? It looks unphysical - though it may be real for the mathematical formulation. It might 

deserve a comment. (Figure 4-8) 

 

The kink is a result of pressure evolution representation, namely, here, the ratio of pressure values near the 

wellbore in the turbulent-laminar 𝑝 and fully laminar 𝑝𝑙𝑎𝑚 case is depicted. However, p(t) corresponding to 

the pure water fracturing and 𝑝𝑙𝑎𝑚(𝑡) (shown in Figure 4-9) are rather smooth. But 𝑝𝑤𝑎𝑡𝑒𝑟(t) (red line) tends 

to 𝑝𝑙𝑎𝑚(𝑡) more sharply compared to 𝑝𝑠𝑙𝑖𝑐𝑘−𝑤𝑎𝑡𝑒𝑟(𝑡) (blue line). 

 

9. For figure 4-8 and 4-9, I would very strongly suggest that you add efficiency, as it is needed to understand 

where the "permeable" case sits; furthermore, efficiency is a primary concern for field cases. 

 

Figure with efficiency evolution supplemented by description is added into the manuscript: 

Figure 4-10 demonstrates how the fracture efficiency 𝜂 changes over time in the permeable reservoir case. 

Here, we present turbulent-laminar solutions for slickwater (dashed blue line), and pure water (dashed red 

line) fracturing and compare them with 𝜂 obtained in the fully laminar model (solid grey line). One can notice 

that both turbulent-laminar solutions become indistinguishable from fully laminar solution after 100 seconds 

of fluid injection. The main differences are observed during the first few seconds of radial crack propagation: 

here, the fracture efficiency in the turbulent-laminar model is greater than that of in the fully laminar model. 

Moreover, crack efficiency corresponding to slickwater solution is smaller than the similar characteristic is 

the pure water case.  

 

10. Is this "hump" becoming a-physical, or not? (Figure 5-3)     

 

Approximate solutions for the yield-stress dominated regimes (𝑇 and �̃�) are inaccurate as it can be noticed 

from panel (c) in Figure 5-3. It is a result of utilized opening profile approximation which was initially 

proposed for smaller values of 𝛿̅ and 𝜆 corresponding to Newtonian fluids. Pressure profile was computed via 

the integral given by eq. (5.22). I suppose that the unphysical pressure behaviour near the wellbore in the form 

of “hump” is a result of the inaccurate opening profile. 

 

11. You show same R, same 𝜂, but larger width and pressure, which should result in larger overall width 

profile; that can't be the case if R and 𝜂 are the same. Why (I guess a rather different width profile, that might 

be worth showing?) 

 

Solution for a permeable rock case is recalculated and now corresponds to formation permeability equals 1 

mD. In the new version, the difference in radius and efficiency between Herschel–Bulkley fluid case and power-

law fluid case becomes distinguishable, namely, radius is smaller and efficiency is larger when fracturing fluid 

has Herschel–Bulkley rheology, and relative differences comprise 3% and 8%, respectively. 
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