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Brief evaluation of the quality of the thesis and of the dissertation structure: 

The Ph.D thesis titled “Asymptotic models of coupled geomechanics / fluid mechanics phenomena of 

hydraulic fracture growth” prepared by E. Kanin presents new work within the overall topic of growth of 

hydraulic fractures. It builds on a now sizable body of work spelling out the peculiar nature of hydraulic 

fractures resulting from the coupling of fracture mechanics and fluid mechanics, which has been steadily 

growing since the seminal work of Spence and Turcotte (1985), Lister (1990) and Desroches et al. (1994), 

and is adding novel contributions to that body of knowledge. 

The structure of the thesis is clear and easy to follow. It starts with presenting the two hydraulic fracture 

geometries that are recognized to bring insight into the hydraulic fracturing process, that of a semi-

infinite fracture, which can be used to construct asymptotic solutions capturing the peculiarities of the 

fracture / fluid mechanics coupling, and that of a radial fracture, which is the simplest form of a real 

hydraulic fracture and thus amenable to judge of the relevance of a particular phenomenon in practice.   

Two particular physical phenomena are then studied and presented in a dedicated chapter, that of 

pressure-dependent fluid leak-off into the formation, a complex and relevant extension of the classic 

Carter leak-off, and that of turbulent flow coupled to Carter fluid leak-off into the formation.  

Finally, based on a preferred method developed through the previous two chapters, the consideration 

of the presence of a yield-stress in the fracturing fluid is studied and presented in the last chapter, 

before a concluding chapter. 

The text is clearly written, references are mostly exhaustive, and particular care has been taken to 

present the results graphically, which I want to highlight as they are fairly difficult to present in such a 

way. Small modifications / propositions are included in the annotated PDF manuscript uploaded as a 

supplementary file.  

 

Relevance of the topic of dissertation work to its actual content: 

The work presented in the dissertation goes actually beyond what the title may suggest, insofar that the 

work reported is not limited to asymptotic models but includes maps of the relevance of the various 

studied phenomena in parameters’ space, the likely evolution as time evolves (and the considered 

hydraulic fracture grows) from one special regime to the next as a function of specially derived 

evolution parameters, as well as the relevance of these identified special regimes in practice – in the 

case of radial hydraulic fractures.  

 

Relevance of the methods used in the dissertation: 

The methods used in the dissertation have been honed during the last ten year period and their 

relevance to the problems studied is clear. They span analytical methods – through the use of 

specialized scaling, the construction of asymptotic solutions – especially for a semi-infinite hydraulic 

fracture, numerical techniques to find numerical pre-factors to the analytical solutions when impossible 

to determine them analytically, and the building of numerical models of the complete solution – 

especially for the case of a radial hydraulic fracture. All the methods are adequately mastered as 

evidenced by detailed and clear descriptions of the method and how it has been used, as well as the 

various hypotheses underlying its use. Note that, although the presented work builds extensively on 

pre-existing work to clearly extend it, none of these methods in itself is particularly simple to master, 



nor is their combination. The work presented in the dissertation clearly presents the goals of a particular 

investigation and then makes full use of these methods in a rational, clear and effective way. 

I would have a comment on the last chapter, whose goals are very ambitious – considering both a 

fracturing fluid modelled as a Herschel-Bulkley fluid and leak-off into the formation, and tackling the 

existence of a plug zone in the center of the fracture channel head-on without more classical 

regularization methods. The author uses a direct numerical approach with Gauss-Chebyshev quadrature 

and barycentric Lagrange interpolation to validate a more approximate solution based on the truncation 

of a semi-infinite asymptotic solution. It is specified in the thesis that the mesh of the full numerical 

approach is sufficiently fine to capture the adequate behaviour close to the fracture tip without 

resorting to implementing the tip asymptote as a propagation criterion. Though I am inclined to believe 

it, as the full numerical solution is being used to benchmark the approximate solution, I would have 

liked to see if the computed behaviour at the fracture tip does indeed match the corresponding 

asymptotic solutions. I strongly believe that a numerical solution should be benchmarked with an 

analytical solution prior to using it to benchmark an approximate solution.  

Similarly, I would have appreciated a check of the output of the radial model developed for studying the 

effect of turbulent flow with known solutions for the case of laminar flow, just to be complete. 

 

Scientific significance of the results obtained – compliance with international level and state of 

the art 

The dissertation work is inserting itself in a large, international, loosely coordinated effort to map out 

the significance of various physical phenomena on the growth of hydraulic fractures. There is no 

question that it has its place in that international panel of efforts. It does incorporate and builds upon 

the most recent findings and methods and can indeed be considered on par with state of the art work in 

this field. 

The results obtained participate to what one would call the ultimate question in studying hydraulic 

fracturing, namely which phenomena should be considered when to predict the growth of hydraulic 

fractures. Note that this is not a trivial question and that it has not been answered completely by far, 

especially because so many coupled phenomena can take place. 

The dissertation takes great care in deciphering when the studied phenomena should be taken into 

account and when they can be omitted – and this is to be commended. For example, the conditions for 

which the effect of pressure-dependent leak-off should be included are highlighted, as well as how it 

modifies both character and evolution of the solution: the scientific significance is not that pressure-

dependent leak-off may matter (as a community, we knew it does), but when and how. Furthermore, as 

the results show that the studied phenomenon is of some importance, they open the way to study the 

same phenomenon beyond the simplifying assumption that the viscosity of the fracturing fluid is the 

same as that of the pore fluid in the surrounding formation. Once it’s been show that the assumption of 

Carter leak-off,  which greatly simplifies the problem, should be relaxed, further investigation is 

warranted. 

Similarly, jointly considering both the possibility of turbulent flow and Carter leak-off paves the way on 

the necessity to further the investigation: leak-off increases the domain where turbulent flow is 

important, meaning that pressure-dependent leak-off should be added in case it further extends this 

domain extension. Comparison between the behaviour of drag-reducing fluids and water shows the 

importance of drag-reduction, which was modelled with Virk’s asymptote. It is, however, known that 

drag-reducing fluids cannot follow Virk’s asymptote forever – they do fall back on a classical turbulent 

branch because the drag reducing polymer is broken by the turbulence. The results presented in the 



dissertation open up the need to check how much this effect might negate what has been found 

assuming maximum drag reduction throughout the entire range of shear rate. 

The results of the evolution of a hydraulic fracture driven by a HB fluid are possibly the most surprising – 

at least to me, insofar that, in some cases, the final state is not dominated by fracture toughness. These 

are thought-provoking results that beg for example the question of what is happening when injection is 

stopped – which is obviously of importance as fluid injection will eventually stop, be it for natural of 

man-created hydraulic fractures. 

 

Relevance of obtained results to applications: 

As mentioned earlier, great care is taken to show the influence of the considered phenomena through 

parametric maps. Even if real hydraulic fractures are more complex than what is being modelled, this 

dissertation provides clear tool to assess if a particular phenomenon will be important and how it might 

modify the behaviour of the hydraulic fracture compared to not taking it into account. This is of 

particular importance i) when having to use a hydraulic fracturing simulator that does not incorporate 

the corresponding physics (e.g. presence of a yield-stress) and ii) when to turn on that particular physics 

description, as one is better off using tailored and targeted models for hydraulic fracturing. 

Furthermore, the work presented in the dissertation will be useful to implement these phenomena in 

models of more complex fracture geometry / injection history, especially Planar3D models – which 

might in turn be used to validate more engineering oriented hydraulic fracturing design models. 

 

Quality of publications 

Three papers, two corresponding to the third chapter and one for the fifth chapter, have been published 

in high-ranked peer-reviewed journals. I have no doubt that a fourth paper corresponding to the fourth 

chapter will be coming out of this dissertation. 

The dissertation PDF is uploaded in a separate file and is annotated with the following codification: M: 

mandatory, P: proposition, C: comment, Q: question. Most proposed changes are minor and do not 

warrant being listed here. 

The only add-on that I would mention here is the request to add a nomenclature per chapter, which is 

always useful, but particularly here as the same symbol may take different meanings from one chapter 

to the next. Even though this might be unfortunate, it has been a common issue in the body of 

knowledge that this work is inserting itself into, so that it is not a major issue. However, clarifying 

notations per chapter will make the work clearer and more easily built upon. 

As a final comment, I want to share that the reading of this dissertation has been a pleasant experience 

not only because of the quality of the work and its presentation, but also because I could realize how far 

we’ve gone – collectively - from the early 1990s. Some of my long-standing questions have been 

answered by this work (e.g. p. 39 about how to prescribe pressure at the fluid front of a radial fracture), 

which shows my long-standing interest in this topic and allows me to congratulate the author for his 

contribution. 
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 I recommend that the candidate should defend the thesis by means of a formal thesis defense 

 

 I recommend that the candidate should defend the thesis by means of a formal thesis defense only after 

appropriate changes would be introduced in candidate’s thesis according to the recommendations of the 

present report 

 

 The thesis is not acceptable and I recommend that the candidate be exempt from the formal thesis 

defense 
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Abstract

The present thesis considers the fluid-driven fracture propagating in permeable rock.
The main aim of the work is to investigate the impact of various hydrodynamical
phenomena on hydraulic fracture growth. We utilise two crack models for the anal-
ysis: semi-infinite and penny-shaped. The former describes the near-tip region of
a finite crack controlling its propagation and accurately resolving the coupling be-
tween the physical processes realised in the vicinity of the moving front. The latter
model is an example of a finite fracture occurring in nature which allows obtaining
demonstrable results linked with the phenomena under consideration.

Firstly, we look at the pressure-dependent fluid exchange between the crack
and ambient porous media. The pressure-independent Carter’s law governs the
leak-off process in most existing models. We modify this mechanism by including
the dependence of the fluid-exchange rate on the fluid pressure inside the fracture
channel. The proposed approach allows the liquid to flow out along the bulk part
of the fracture and leak in along the region adjacent to the moving front forming a
pore fluid circulation cell there. We obtain the general numerical solution for the
aperture and pressure for the semi-infinite fracture, assuming that the fracturing
and pore fluids are the same; moreover, the solution is fully characterised within the
parameter space of the problem. We assess the impact of the pore fluid leak-in on
the crack properties and explore the limitations of the near-tip region model with
Carter’s leak-off. Afterwards, the developed fracture tip model is embedded into a
radial crack model as a propagation condition. The main aspect of the analysis of a
penny-shaped fracture is a comparison of different crack properties computed by the
proposed model with that provided by a radial fracture model in which the pressure-
independent mechanism governs the fluid exchange. Based on the comparison, we
identify the parameter ranges for which the effect of the pressure-dependent fluid
exchange mechanism is essential and, on the other hand, outline zones for which
Carter’s leak-off model provides accurate results.

Secondly, we build the models for semi-infinite and radial cracks driven by slick-
water, i.e., water solution with polymeric additives reducing the fluid flow friction
in the wellbore and fracture in reservoir field applications. This part of the thesis
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focuses on the flow regime transformation inside the fracture channel from laminar
to turbulent with distance from the moving front. We assume that the turbulent
friction of slickwater is described by the maximum drag reduction asymptote. The
main objectives of the examination are to analyse the influence of the leak-off process
on the laminar-to-turbulent transition and investigate turbulent flow effects during
hydraulic fracture evolution. The numerical solution for a semi-infinite fracture
reveals that leak-off enhances the turbulent flow impact by shifting the transition
between laminar and turbulent flow regimes closer to the fracture front compared to
the impermeable rock case. The numerical solution for a radial fracture correspond-
ing to the typical field cases demonstrates a significant impact of the turbulent flow
regime during the initial few minutes of propagation, leading to the shorter radius
and broader maximum aperture than the laminar model provides. In addition, fluid
pressure has higher values at the wellbore within tens of minutes of the start of the
injection leading to a more significant hydraulic pumping power requirement than
the laminar model predicts. We analyse the parameter spaces for both semi-infinite
and radial cracks in which the limiting propagation regimes are identified, and their
applicability domains are highlighted. We also mark the regions where the turbulent
flow affects fracture growth significantly.

Finally, we analyse the influence of fluid yield stress on the propagation of a
penny-shaped fracture. Herschel–Bulkley rheological model describes the fracturing
fluid properties since it includes yield stress and non-linearity of the shear stress. We
implement two numerical approaches to compute the problem solution, accurate and
approximate. We present examples corresponding to typical field applications and
demonstrate that the yield stress can lead to a shorter radius and wider opening
than the corresponding case with simpler power-law fluid rheology. Further, we
quantify the limiting propagation regimes and investigate the parametric space of
the problem, in which the applicability domains of the limiting solutions are framed.
The regime maps allow one to quickly determine the cases in which yield stress
provides a strong influence.

The near-tip region models developed in the present thesis can be utilised within
the finite fracture models, e.g., radial, KGD, EPKN, Planar3D, EP3D as a tip
module. The latter plays the role of a propagation criterion, i.e., determines the
front location at each time moment. Moreover, the fracture tip solution accurately
describes the finite fracture properties near its front. All physical processes imple-
mented in the tip model must be accounted for along the bulk part of the finite
fracture. In turn, proposed radial crack models can be used as a benchmark solu-
tion for the numerical simulators of more realistic (complex) fracturing problems,
e.g., Planar3D, including the same set of the physical processes as a penny-shaped
model possesses.
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5-7 Results for a radial hydraulic fracture driven by the Bingham fluid (𝑛 = 1)
with non-zero yield stress (𝜓 > 0) in an impermeable rock (𝜑 = 0). The
regime map (a) is presented in the coordinates (𝜏, 𝜓), and the coloured
regions denote the applicability domains of the limiting regimes. The time-
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and pressure at the half-radius (d)) normalised by the storage-viscosity
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5-11 The parameter space of the model for a radial hydraulic fracture driven
by Herschel–Bulkley fluid with 𝑛 = 0.3 in a permeable rock (𝜑 > 0). The
regime maps are depicted in the coordinates (𝜏, 𝜑) for several values of the
dimensionless yield stress: 𝜓 =
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10−10, 10−5, 1, 105

}︀
. The applicability

domains of the limiting propagation regimes are filled by different colours,
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sented by coloured dashed lines. In figure (c), the grey dash-dotted lines
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Chapter 1

Introduction

Hydraulic fractures are fluid-filled tensile cracks propagating in a solid material, such

as Earth’s crust, and their dynamics is driven by the high-pressure fluid injection.

Hydraulic fractures exist in nature in the form of magma-filled dykes [Spence and

Turcotte, 1985, Lister, 1990, Rubin, 1995, Rivalta et al., 2015, Dontsov, 2016b] and

fluid-filled cracks in glacier beds [Tsai and Rice, 2010, van der Veen, 2007]. However,

most often they are human-made and are utilised in the oil and gas fields to enhance

production of hydrocarbons [Economides et al., 1989, 2002]. Horizontal wells with

multistage hydraulic fracturing have quickly become popular in low permeability

formations because, in this case, the connection between the reservoir and wellbore

has large area [Vishkai and Gates, 2019].

From the petroleum industry perspective, hydraulic fracturing is a complicated

technique. It requires a large amount of water, multiple pump trucks, different

proppants, and polymeric additives for the water base, ensuring the required fluid

rheology [Osiptsov, 2017]. For this reason, there is a value in constructing numer-

ical models that aim to optimise treatment design and increase the efficiency of

operations. The hydraulic fracturing cycle consists of several phases: crack growth

[Detournay, 2016], proppant placement [Isah et al., 2021], flowback period [Osiptsov

et al., 2019], and production [Economides, 2013]. The current thesis deals with the

first phase, namely, the dynamics of fracture growth.

Various numerical models have been developed over time to simulate hydraulic

fracture growth, and their geometric complexity increases gradually. The first
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Chapter 1. Introduction

models have simple two dimensional geometries: Perkins-Kern-Nordgren (PKN)

[Perkins et al., 1961, Nordgren et al., 1972], Khristianovich-Zheltov-Geertsma-De

Klerk (KGD) [Khristianovic and Zheltov, 1955, Geertsma et al., 1969] and penny-

shaped (or radial) [Abe et al., 1976]. Recent two decades saw both analytical and nu-

merical development of the KGD and radial models to correctly account for the mul-

tiphysical processes and their non-trivial coupling (see review of Detournay [2016]

and discussion later) and provide blueprints and benchmarks for physically sound

numerical three dimensional models of more realistic hydraulic fractures: pseudo-3D

[Settari et al., 1986, Adachi et al., 2010, Dontsov and Peirce, 2015a] and planar-3D

[Lee and Lee, 1990, Vandamme and Curran, 1989, Peirce and Detournay, 2008,

Peirce, 2015, Dontsov and Peirce, 2017c]. Further, numerical models for simultane-

ous growth of multiple hydraulic fractures were proposed [Lecampion and Desroches,

2015, Suarez-Rivera et al., 2019, Dontsov et al., 2019a]. A more extended overview

of hydraulic fracture propagation models and insights about the utilised numerical

techniques are given in the following review papers [Adachi et al., 2007, Detournay,

2016, Lecampion et al., 2018, Nguyen et al., 2020].

Generally, linear elastic fracture mechanics (LEFM) theory is assumed to gov-

ern hydraulic fracture propagation in the numerical models, although its limitations

have been recently highlighted in Garagash [2019], Liu and Lecampion [2021]. Ac-

cording to its basics, the crack advances when the stress intensity factor exceeds

the critical value known as the rock toughness [Irvin, 1957]. An alternative for-

mulation of this criterion is the square-root behaviour of the crack opening profile

near the moving front (known as the toughness asymptote). In the general case, it

describes the opening profile along the limited region adjacent to the front [Bunger

and Detournay, 2008] because of the realisation of other physical phenomena during

propagation besides the brittle rock failure: viscous fluid flow in the crack channel

and fluid exchange between the ambient reservoir and fracture. Typical mesh in the

numerical hydraulic fracturing simulators is relatively coarse in order to save compu-

tation time. That is why the specialised near-tip region models can be preferred over

the LEFM asymptote to increase the accuracy of the numerical calculations. The

fracture tip model determines the fracture front location for each time instance,
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Chapter 1. Introduction

describes the fracture characteristic profiles (opening, pressure) near the tip, and

resolves the impact of all physical processes on the crack propagation (multiscale

model). The tip region is investigated via a semi-infinite fracture model, in which

the fracture is moving with a constant velocity that corresponds to an instanta-

neous local velocity of the finite (parent) fracture front. The viscosity and leak-off

tip asymptotic solutions for a hydraulic fracture driven by a power-law fluid were

obtained by Desroches et al. [1994] and Lenoach [1995], respectively. The effects of

the vapour lag presence at the fracture tip are investigated in works [Rubin, 1993,

Garagash and Detournay, 2000]. The multiscale tip solution incorporating tough-

ness, viscosity and leak-off limiting regimes is investigated in Garagash et al. [2011],

and, afterwards, Dontsov and Peirce [2015b] proposed its approximate version which

can be easily integrated into planar-3D models, e.g., as it is done in [Dontsov and

Peirce, 2017c]. In the majority of the models, the fluid exchange process between

the fracture and permeable reservoir is governed by Carter’s leak-off law. How-

ever, the tip model can also be considered with a more complex pressure-dependent

formulation as in [Detournay and Garagash, 2003, Kovalyshen, 2010]. In the afore-

mentioned near-tip region models, the fluid flow in the fracture channel is assumed

to be laminar. The impact of the laminar-to-turbulent flow regime transition inside

the fracture channel is analysed by Dontsov [2016c], Lecampion and Zia [2019]. The

generalised asymptotic solutions for a hydraulic fracture driven by a non-Newtonian

fluid are developed in the following works: [Dontsov and Kresse, 2018, Bessmert-

nykh et al., 2021] for the power-law rheology, [Moukhtari and Lecampion, 2018] for

the Carreau model and [Bessmertnykh and Dontsov, 2019] for the Herschel-Bulkley

model. The influence of cohesive zone and analysis of the LEFM usage constraints

in the hydraulic fracture tip problem are examined by Garagash [2019]. The near-

tip region of a hydraulic fracture with proppant particles is studied in the paper

[Bessmertnykh et al., 2020].

The near-tip region models have also been applied for the development of approx-

imate solutions for a finite crack. The following idea is the basis of the approximate

approaches: the fracture width profile is a continuation of the corresponding char-

acteristic near the moving front. Further, given the width solution, the dynamics of
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Chapter 1. Introduction

the finite fracture is retrieved from the global fluid balance. This concept is applied

for a radial and plane-strain fracture models [Dontsov, 2016a, 2017, Garagash, 2019],

as well as for a more general case of an elliptic fracture Dontsov et al. [2019b].

The current work considers two types of models for hydraulic fracture propaga-

tion. The first is a semi-infinite fracture model, and we have already discussed its

variety. The second one is a penny-shaped model for a fluid-driven fracture, and

now, we review its development over time. In a radial hydraulic fracture model, the

crack is formed in a pre-defined plane, and its geometry is axisymmetric relative to

the injection point. The numerical model for a penny-shaped fracture in an imper-

meable rock driven by laminar flow of a Newtonian fluid is investigated by Savitski

and Detournay [2002]. The toughness dominated regime, i.e. when the fluid viscos-

ity can be neglected, of a radial fracture in a permeable rock is analysed by Bunger

et al. [2005] based on the earlier studies for the plane-strain fracture [Garagash,

2000, 2006b]. The early-time solution for a plane-stain fracture with a vapour lag is

constructed by Garagash [2006c], and, further, extended to the radial fracture ge-

ometry by Bunger and Detournay [2007]. The numerical model for a radial fracture

taking into account the rock toughness, fluid viscosity and leak-off is presented in

[Madyarova, 2004] for Newtonian fluid. The limiting cases of a penny-shaped frac-

ture model with three dimensional pore pressure diffusion and poroelastic effects

are considered by [Kovalyshen, 2010, Kovalyshen et al., 2013]. The occurrence of

turbulent flow regime inside the radial fracture channel is explored by Dontsov and

Peirce [2017a], Zolfaghari and Bunger [2019] for pure water and by Lecampion and

Zia [2019] for slickwater cases. The impact of the power-law fluid rheology on the

fracture propagation is firstly studied by Adachi and Detournay [2002], Garagash

[2006a] for the plane-strain geometry, and, afterwards, for the penny-shaped fracture

in works [Peck et al., 2018a,b]. The same problem is addressed from scaling point

of view in [Dontsov, 2019]. The power-law dependence of fracture toughness with

fracture length is embedded into a radial fracture model by Liu et al. [2019]. It is

important to highlight that Liu et al. [2019] utilise a numerical algorithms based

on Gauss-Chebyshev quadrature and Barycentric Lagrange interpolation techniques

discussed earlier by Viesca and Garagash [2018], which allows one to construct an
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Chapter 1. Introduction

accurate numerical solution of the multi-scale problem without explicit implemen-

tation of the near-tip asymptotic solutions.

The main aim of the present thesis is to investigate the impact of various hydro-

dynamical phenomena on the propagation of a hydraulic fracture. We rely on the

models for semi-infinite and penny-shaped cracks for the analysis. Chapter 2 out-

lines their classical problem formulations supplemented by the governing equations.

In the subsequent chapters, we describe how the assumptions and equations of each

model are modified adjusting them to the particular study. Chapter 3 examines the

pressure-dependent fluid exchange between the crack and ambient permeable reser-

voir, and it is a refinement of widely used pressure-independent Carter’s leak-off

law. Further, Chapter 4 looks at the laminar-to-turbulent flow regime transforma-

tion inside the fracture channel, which is more likely to be realised in the water-based

fracturing rather than the fully laminar flow regime. Finally, Chapter 5 presents how

the non-zero fracturing fluid yield stress influences the crack evolution, and here, we

apply the Herschel–Bulkley rheological model. The common elements of Chapters

3 – 5 are the construction of the numerical solution for fracture tip and/or radial

crack, exploration of the problem parametric space and alteration of the fracture

properties due to the embedding of the phenomenon under consideration. However,

in each examination, we pursue different objectives. That is why we discuss them

separately in the preambles of Chapters 3 – 5.
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Chapter 2

Models for hydraulic fracture

propagation

The present chapter revisits the model formulations, i.e., problem definitions and

governing equations, for a near-tip region of a fluid-driven fracture and penny-shaped

hydraulic fracture. One can call the formulations below as classic since they contain

the most common assumptions faced in the literature. The subsequent chapters (3 –

5) will outline the main alterations in the considered formulations compared to the

classic ones allowing us to describe the one or the other analysed fluid mechanics

phenomenon.

2.1 Semi-infinite fluid-driven fracture

2.1.1 Problem definition

The near-tip region of a fluid-driven fracture is considered as the problem of a semi-

infinite plane strain fracture (Figure 2-1) propagating with constant velocity 𝑉 ,

which is understood as the instantaneous local tip velocity of the parent hydraulic

fracture. Since the propagation velocity is constant, it is possible to introduce

moving coordinate 𝑥 denoting distance from the moving fracture front, and in this

coordinate system, the problem is steady-state.

The host permeable linear-elastic rock is characterised by Young’s modulus 𝐸
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Chapter 2. Models for hydraulic fracture propagation

Figure 2-1: Schematic picture of the fracture tip model with the classical set of assump-
tions.

and Poisson’s ratio 𝜈. Small scale yielding [Rice et al., 1968], i.e., the rock dam-

age/yielding zone at the advancing fracture front small compared to the lengthscales

of other physical processes active near the tip (e.g., dissipation in the viscous fluid

flow inside the fracture channel, fluid exchange between the crack and ambient for-

mation) is assumed. Linear elastic fracture mechanics (LEFM) theory is therefore

utilised for the modelling of the quasi-static propagation of the fracture in the rock

characterised by the fracture toughness 𝐾𝐼𝑐.

The fracture faces are loaded internally by the fluid pressure 𝑝𝑓 (𝑥) while the

rock is subjected to the far-field confining stress 𝜎𝑜. The net pressure function

𝑝(𝑥) = 𝑝𝑓 (𝑥) − 𝜎𝑜 and the aperture profile 𝑤(𝑥) completely characterise a semi-

infinite fracture solution. The fracturing fluid is a Newtonian liquid of viscosity

𝜇. The fluid flow inside the fracture channel is laminar, and it is described by

the lubrication theory [Batchelor, 1967]. Fluid lag is absent in the classic problem

formulation since one can assume that its maximum length ∼ 𝜇𝑉 𝐸2𝜎−3
𝑜 is small

compared to the near-tip length scales of the fluid-driven fracture [Garagash and

Detournay, 2000, Detournay and Garagash, 2003]. In other words, the crack and

fracturing fluid fronts coincide in the model.

The fluid exchange between the host rock with porosity 𝜑𝑟 and permeability 𝑘,

and the fracture is taken in the form of Carter’s law [Carter, 1957] implying the

fluid exchange rate to be proportional to the inverted square root of the ‘expo-

sure’ time (the interval between the current time and the moment when the frac-

ture front reaches the considered point of the fracture plane). The proportionality
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Chapter 2. Models for hydraulic fracture propagation

coefficient 𝐶𝐿, or Carter’s leak-off coefficient, can be expressed as [Collins, 1976]:

𝐶𝐿 = 𝑘(𝜎𝑜 − 𝑝𝑜)/(𝜇
√
𝜋𝑐), where 𝑐 = 𝑘/(𝜑𝑟𝑐𝑡𝜇) is the diffusivity coefficient (𝑐𝑡 is the

fluid compressibility) and 𝑝𝑜 is the far-field pore pressure, when the cake-building

(deposition of the polymer additives onto the fracture walls) is neglected, and for-

mation fluid has similar properties to that of the fracturing fluid in the context of

the flow through the porous rock.

2.1.2 Governing equations

Let us introduce the moving coordinate system (𝑥, 𝑦) linked with the fixed coordi-

nates (𝑋, 𝑌 ) by the relations: 𝑥 = 𝑉 𝑡−𝑋, 𝑦 = 𝑌 ; the problem is stationary in the

coordinates (𝑥, 𝑦). The system of governing equations is formulated for unknown

opening 𝑤(𝑥) and net fluid pressure 𝑝(𝑥) profiles with distance 𝑥 ∈ (0,+∞) from

the moving tip, and the set of material parameters:

𝐸 ′ =
𝐸

1 − 𝜈2
, 𝐾 ′ = 4

√︂
2

𝜋
𝐾𝐼𝑐, 𝜇′ = 12𝜇, 𝐶 ′ = 2𝐶𝐿, (2.1)

where 𝐸 ′ is the plane strain elastic modulus, 𝐾 ′ and 𝜇′ are the toughness and

viscosity parameters, and 𝐶 ′ is the leak-off parameter.

2.1.2.1 Fracture propagation

LEFM fracture propagation criteria under quasi-static conditions states that the

stress intensity factor at the crack tip matches the rock toughness: 𝐾𝐼 = 𝐾𝐼𝑐, e.g.,

[Kanninen and Popelar, 1985]. This condition prescribes the asymptotic behaviour

of the fracture opening near its front [Irvin, 1957]:

𝑤(𝑥) =
𝐾 ′

𝐸 ′

√
𝑥. (2.2)
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Chapter 2. Models for hydraulic fracture propagation

2.1.2.2 Crack elasticity

The net pressure 𝑝(𝑥) in the fracture could be expressed as the crack line integral

of the opening 𝑤(𝑥) using the elasticity equation [Bilby and Eshelby, 1968]:

𝑝(𝑥) =
𝐸 ′

4𝜋

∫︁ ∞

0

𝑑𝑤(𝑠)

𝑑𝑠

𝑑𝑠

𝑥− 𝑠
. (2.3)

Equation (2.3) can be inverted [Garagash and Detournay, 2000] to aid in the nu-

merical implementation of the problem solution:

𝑤(𝑥) =
𝐾 ′

𝐸 ′

√
𝑥+

4

𝜋𝐸 ′

∫︁ ∞

0

𝐾(𝑥, 𝑠)𝑝(𝑠)𝑑𝑠, (2.4)

where the integral kernel is: 𝐾(𝑥, 𝑠) = ln
⃒⃒⃒√

𝑥+
√
𝑠√

𝑥−
√
𝑠

⃒⃒⃒
− 2
√︀

𝑥
𝑠
.

2.1.2.3 Fluid flow

The flow of incompressible fluid in the crack channel is described by the continuity

equation averaged across the fracture aperture, which, upon transforming to the

moving coordinate system, is given by:

𝑉
𝑑𝑤

𝑑𝑥
− 𝑑(𝑤𝑣)

𝑑𝑥
+ 𝑔 = 0, (2.5)

where 𝑔 is the leak-off rate governed by Carter’s law [Carter, 1957]:

𝑔(𝑥) = 𝐶 ′

√︂
𝑉

𝑥
. (2.6)

Substituting equation (2.6) into (2.5) and integrating from the tip (𝑥 = 0) to

some coordinate 𝑥, we obtain

𝑤𝑣 = 𝑤𝑉 + 𝑞⊥. (2.7)

Here, we take into account the boundary conditions: 𝑤(0) = 0 and (𝑤𝑣)|𝑥=0 = 0.

Equation (2.7) signifies that the local fluid volumetric flow rate at distance 𝑥 from the

fracture tip 𝑤(𝑥)𝑣(𝑥) is partitioned between the fluid stored in the fracture 𝑤(𝑥)𝑉
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and in the rock via the cumulative rate of fluid leak-off 𝑞⊥(𝑥). In the Carter’s leak-off

case, the latter term has the following form:

𝑞⊥ = 2𝐶 ′
√
𝑉 𝑥. (2.8)

Finally, Poiseuille’s law for laminar flow of Newtonian fluid along the crack chan-

nel

𝑣 =
𝑤2

𝜇′
𝑑𝑝

𝑑𝑥
, (2.9)

completes the fluid flow description.

2.2 Radial fluid-driven fracture

2.2.1 Problem definition

The second model of a fluid-driven fracture examined in the present thesis describes

the evolution of a crack with a radial (penny-shaped) geometry, and its sketch is

shown in Figure 2-2. The crack grows along the plane perpendicular to the far-

field confining stress due to fluid injection through a point source. The fracture is

axisymmetric, i.e. there is a symmetry relative to the axis passing through the source

and perpendicular to the fracture plane. Therefore, all fracture characteristics are

the functions of the distance to the source 𝑟 and time 𝑡.

Figure 2-2: A radial fracture model with the classical set of assumptions.
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The volumetric rate of fluid injection is constant and is denoted by 𝑄0, so that

the injected volume equals: 𝑉inj(𝑡) = 𝑄0𝑡. The ambient rock is taken as linear elastic

with Young’s modulus 𝐸 and Poisson’s ratio 𝜈. We assume that the size of the zone,

where the dissipation processes associated with the rock failure happen, is small

compared to other length scales realised in the model, e.g., linked with the viscous

fluid flow and fluid exchange, which is generally true when the in situ confining stress

𝜎𝑜 is much smaller than the rock tensile strength [Garagash, 2019]. Consequently,

the linear elastic fracture mechanics (LEFM) theory can be applied to model quasi-

static fracture propagation in a solid medium with toughness 𝐾𝐼𝑐. The fracture

surface is exerted by the fluid pressure 𝑝𝑓 (𝑟, 𝑡) from the internal side. The radial

fracture model is fully characterised by the opening profile 𝑤(𝑟, 𝑡), radius 𝑅(𝑡), net

pressure profile 𝑝(𝑟, 𝑡) = 𝑝𝑓 (𝑟, 𝑡)−𝜎𝑜 and efficiency parameter 𝜂(𝑡) = 𝑉crack(𝑡)/𝑉inj(𝑡),

where 𝑉crack(𝑡) is the fracture volume. The latter allows evaluating the partition of

the injected fluid volume 𝑉inj(𝑡) between that of the crack 𝑉crack(𝑡) and the fluid

volume leaked into the rock 𝑉fluid−exchange(𝑡).

The injected fracturing fluid is taken as a Newtonian liquid with viscosity 𝜇.

The fluid flow inside the fracture channel is controlled by lubrication theory [Batch-

elor, 1967], and its velocity and the flow rate are denoted by 𝑣(𝑟, 𝑡) and 𝑞(𝑟, 𝑡) =

𝑤(𝑟, 𝑡)𝑣(𝑟, 𝑡), respectively. The fracture and fluid fronts are assumed to coincide in

classic formulation of a radial hydraulic fracture model meaning that the lag filled

by the vapour [Garagash and Detournay, 2000] or pore fluid [Detournay and Gara-

gash, 2003] adjacent to the fracture front is negligibly small compared to the fracture

radius.

The ambient reservoir is characterised by porosity 𝜑𝑟 and permeability 𝑘. Carter’s

leak-off law [Carter, 1957] governs the fluid exchange process between the crack chan-

nel and formation. According to this law, the leak-off rate 𝑔(𝑟, 𝑡) is proportional to

the inverted square root of the ’exposure’ time, i.e., the period between the current

time moment and when the crack tip passes the considered point on the fracture

plane. In the case of the identical properties of the pore and fracturing fluids,

i.e., they have the same viscosity 𝜇 and compressibility 𝑐𝑡, the proportionality (or

Carter’s) coefficient has the following form [Collins, 1976]: 𝐶𝐿 = 𝑘(𝜎𝑜−𝑝𝑜)/(𝜇
√
𝜋𝑐),
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Chapter 2. Models for hydraulic fracture propagation

where 𝑝𝑜 is the far-field pore pressure, and 𝑐 = 𝑘/(𝜑𝑟𝑐𝑡𝜇) is the diffusivity coefficient.

When it is required to take into account the filter-cake building or (and) the differ-

ent properties of the HF and pore fluids in the pressure-independent approximation

of the fluid exchange process, one can find the appropriate expressions for Carter’s

coefficient in [Economides et al., 1989].

2.2.2 Governing equations

Let us discuss the system of governing equations. It is formulated for the unknown

crack radius 𝑅(𝑡), opening 𝑤(𝑟, 𝑡) and net fluid pressure 𝑝(𝑟, 𝑡) profiles. The fracture

characteristics depend on time 𝑡, distance from the point source 𝑟, the set of material

parameters:

𝐸 ′ =
𝐸

1 − 𝜈2
, 𝐾 ′ = 4

√︂
2

𝜋
𝐾𝐼𝑐, 𝑀 ′ = 12𝜇, 𝐶 ′ = 2𝐶𝐿, (2.10)

and the injection rate 𝑄0. In equation (2.10), 𝐸 ′ is the plane strain elastic modulus,

𝐾 ′ and 𝑀 ′ are toughness and viscosity parameters, and 𝐶 ′ is the leak-off parameter.

2.2.2.1 Crack elasticity

The elasticity equation expresses the net fluid pressure 𝑝(𝑟, 𝑡) in terms of the crack

aperture 𝑤(𝑟, 𝑡) and radius 𝑅(𝑡) [Arin and Erdogan, 1971, Cleary and Wong, 1985,

Savitski and Detournay, 2002]:

𝑝(𝑟, 𝑡) = − 𝐸 ′

2𝜋𝑅(𝑡)

∫︁ 𝑅(𝑡)

0

𝐺

(︂
𝑟

𝑅(𝑡)
,
𝑠

𝑅(𝑡)

)︂
𝜕𝑤(𝑠, 𝑡)

𝜕𝑠
𝑑𝑠, (2.11)

The integral kernel 𝐺(𝜌, 𝑠) in equation (2.11) has the following form:

𝐺(𝜌, 𝑠) =

⎧⎪⎨⎪⎩
1
𝜌
K
(︁
𝑠2

𝜌2

)︁
+ 𝜌

𝑠2−𝜌2 E
(︁
𝑠2

𝜌2

)︁
, 𝜌 > 𝑠,

𝑠
𝑠2−𝜌2 E

(︁
𝜌2

𝑠2

)︁
, 𝜌 < 𝑠,

(2.12)

where K(𝑥) and E(𝑥) are the complete elliptic integrals of the first and the second

kind, respectively.
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Chapter 2. Models for hydraulic fracture propagation

2.2.2.2 Fluid flow

Based on lubrication theory [Batchelor, 1967], we write out the width-averaged mass

conservation equation for the fluid flow inside the crack channel:

𝜕𝑤

𝜕𝑡
+

1

𝑟

𝜕(𝑟𝑞)

𝜕𝑟
+ 𝑔(𝑟, 𝑡) = 0, 𝑞(𝑟, 𝑡) = 𝑤(𝑟, 𝑡)𝑣(𝑟, 𝑡). (2.13)

The equation for the leak-off rate 𝑔(𝑟, 𝑡) is provided by Carter’s law:

𝑔(𝑟, 𝑡) =
𝐶 ′√︀

𝑡− 𝑡0(𝑟)
, (2.14)

where 𝑡0(𝑟) is the inverse fracture radius function: 𝑡0(𝑟) = 𝑅−1(𝑡) or 𝑅(𝑡0(𝑟)) = 𝑟,

i.e., it indicates the time moment at which the fracture front was at the distance 𝑟

from the source.

The expression for the fluid velocity inside the crack channel is given by Poiseuille’s

law for Newtonian fluid:

𝑣 = −𝑤2

𝑀 ′
𝜕𝑝

𝜕𝑟
. (2.15)

By combining the continuity equation (2.13), Poiseuille’s law (2.15) and the

formula for the leak-off rate (2.14), we obtain the Reynolds equation:

𝜕𝑤

𝜕𝑡
=

1

𝜇′
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟𝑤3𝜕𝑝

𝜕𝑟

)︂
− 𝐶 ′√︀

𝑡− 𝑡0(𝑟)
, (2.16)

which is one of the key equations determining behaviour of hydraulic fracture growth

dynamics.

2.2.2.3 Fracture propagation

The LEFM theory states that for quasi-static propagation of a hydraulic fracture,

the stress intensity factor matches rock toughness: 𝐾𝐼 = 𝐾𝐼𝑐. The alternative form

to this condition can be expressed in terms of the near-tip asymptotic behaviour of

the fracture opening 𝑤(𝑟, 𝑡) [Irvin, 1957]:

𝑤 =
𝐾 ′

𝐸 ′

√
𝑅− 𝑟, 𝑟 → 𝑅. (2.17)
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Chapter 2. Models for hydraulic fracture propagation

2.2.2.4 Boundary conditions

At the fracture inlet, the volumetric flow rate should be equal to the specified value

𝑄0:

lim
𝑟→0

2𝜋𝑟𝑞(𝑟, 𝑡) = lim
𝑟→0

2𝜋𝑟𝑤(𝑟, 𝑡)𝑣(𝑟, 𝑡) = 𝑄𝑜. (2.18)

In turn, the crack tip is characterised by zero opening and no-flux condition:

𝑤(𝑅, 𝑡) = 0, 𝑞(𝑅, 𝑡) = 0. (2.19)

2.2.2.5 Global fluid volume balance

By integrating the continuity equation (2.13) with respect to time and distance and

taking into account the boundary conditions (2.18), (2.19), we derive the global fluid

balance equation:

𝑄0𝑡⏟ ⏞ 
𝑉inj

= 2𝜋

∫︁ 𝑅

0

𝑟𝑤(𝑟, 𝑡)𝑑𝑟⏟  ⏞  
𝑉crack

+ 2𝜋

∫︁ 𝑡

0

𝑑𝑠

∫︁ 𝑅(𝑠)

0

𝑟𝑔(𝑟, 𝑠)𝑑𝑟⏟  ⏞  
𝑉fluid−exchange

. (2.20)

The fluid exchange term has the following form in Carter’s leak-off case:

𝑉fluid−exchange = 4𝜋𝐶 ′
∫︁ 𝑅

0

𝑟
√︀
𝑡− 𝑡0(𝑟)𝑑𝑟 (2.21)

Equation (2.20) can be interpreted as the injected volume (𝑉inj) is distributed be-

tween the crack volume (𝑉crack) and the volume leaked into the permeable formation

(𝑉fluid−exchange).
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Chapter 3

Fluid-driven fracture with

pressure-dependent leak-off

3.1 Preamble

This chapter revisits the nature of the fluid exchange between the crack channel and

the host permeable rock and its coupling to the fluid flow in the fracture and the

fracture propagation. As the fluid exchange affects the crack volume and the level of

fluid pressurisation in the fracture, it exerts a first-order impact on the crack aperture

profile and fracture evolution. The fluid exchange between the pressurised fracture

and the rock can be complicated by a priori unknown time-and-space varying fluid

pressure in the fracture and that of the resulting process of the pore pressure dif-

fusion in the permeable rock, time-dependent poroelastic effects, and the filter cake

building (deposition of fracturing fluid solids at the fracture walls). As a result,

many modelling attempts resorted to the use of a phenomenological Carter’s model

[Carter, 1957], which suggests that the local rate of fluid exchange (leak-off) at the

fracture wall can be approximated by the inverse of the square root of the exposure

time (the time since the fracture front has arrived at the considered location along

the fracture path). The underpinnings of the Carter’s relation is the assumption

of the invariant (constant in space and time) fluid pressure differential between the

fracture wall and the far-field ambient pore pressure in the rock, 𝑝𝑓 − 𝑝𝑜 ≈ const.

The latter assumption often justified on the grounds that the fluid pressure in the
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

fracture scales with the far-field confining stress 𝜎𝑜 (in order for the fracture to

stay open), 𝑝𝑓 ≈ 𝜎𝑜, while the latter assumed to be distinctly larger than the pore

fluid pressure, i.e. 𝜎𝑜 > 𝑝𝑜, leading to approximately constant pressure differential

between the fracture and the rock, 𝑝𝑓 − 𝑝𝑜 ≈ 𝜎𝑜 − 𝑝𝑜. This reasoning, may it be

justifiable on average along the fracture length, it does not stand the scrutiny locally

when the fluid pressure drop in the flow towards the fracture front is considered.

Indeed, near tip solutions for fully-fracturing-fluid-filled hydraulic fracture in im-

permeable rock [Desroches et al., 1994] and permeable rock with Carter’s leak-off

[Lenoach, 1995, Garagash et al., 2011] lead to infinite fluid suction at the tip, which

not only invalidates the Carter’s leak-off assumptions in the vicinity of the fracture

tip, but actually calls for the separation (lagging) of the fracturing fluid behind the

fracture front [Rubin, 1993, Garagash and Detournay, 2000], and pore fluid leak-in

(not fracturing fluid leak-off) into the vacant volume of the (fracturing) fluid lag

[Detournay and Garagash, 2003]. A number of recent numerical studies of hydraulic

fracture propagation in permeable rock which account for the pore pressure diffu-

sion, e.g., [Carrier and Granet, 2012, Sarris and Papanastasiou, 2011, Golovin and

Baykin, 2018], do not show pore fluid leak-in, as a possible consequence of the spa-

tially under-resolved fracture tip region in these simulations. The consideration of

the pressure-dependent fluid exchange is also required in the bulk of the hydraulic

fracture where the fluid pressure exceeds the value of the confining stress.

Section 3.2 deals with the near-tip region of a fluid-driven fracture propagating

in a permeable rock, while allowing for the pressure-dependent fluid leak-off and

leak-in and associated pore pressure diffusion in the host rock. In formulating the

problem, we build on the original model framework of [Detournay and Garagash,

2003], further generalised by [Kovalyshen, 2010]. The fracture tip is considered as a

stationary plane-strain problem of a semi-infinite fracture moving at constant speed.

Firstly, we formulate the problem and present the governing equations. After that,

we discuss various asymptotic limits of the solution, including the reduction to the

Carter’s leak-off case [Garagash et al., 2011], which then allows us to frame the

general structure of the sought solution and its parametric dependence. Next, we

introduce the characteristic scalings of the solution as they pertain to correspond-
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

ing limiting regimes of the fracture propagation, and the general non-dimensional

problem parametric space. The rest of the section is devoted to the analytical and

numerical exploration of the solution in the parametric space, including an analysis

of the relative importance of the pressure-dependent effects in the fluid exchange

process between the fracture and the reservoir.

In Section 3.3, we implement a numerical model for the radial fracture, which ac-

counts for the pressure-dependent fluid exchange. For the accurate description of the

processes occurring near the fracture tip, we use the fracture tip model developed in

the previous section. The main aim of this part of the thesis is to compare the radial

fracture characteristics (opening, pressure, radius and efficiency profiles) obtained

via the developed model with the results calculated by the radial fracture model

with Carter’s leak-off [Madyarova, 2004, Dontsov, 2016a] in order to specify cases,

in which the pressure-dependent effects are essential and could not be neglected.

Firstly, we outline governing equations for the developed radial hydraulic fracture

model. Then, we describe how the near-tip region model is utilised as a propagation

criterion for the simulation of fracture growth and enumerate the main components

of the numerical algorithm for calculating the dynamics of the crack characteris-

tics with time. Finally, we present the obtained numerical results, comparison with

Carter’s leak-off case, as well as the analytical analysis that demonstrates for which

cases the pressure-dependent leak-off is essential.

3.2 The near-tip region of a hydraulic fracture

3.2.1 Model formulation

Let us discuss the problem formulation for the near-tip region of a hydraulic fracture

with the pressure-dependent fluid exchange between the crack channel and ambient

permeable formation. Figure 3-1 shows the schematics of the investigated problem.

The assumptions and governing equations of the fracture tip model given in Sec-

tion 2.1 remain the same except those related to the fluid exchange. We focus on

them in the current part of the thesis.
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

Figure 3-1: Schematic picture of the fracture tip model with the pressure-dependent fluid
exchange between the fracture and permeable saturated rock.

The analysed fluid exchange is driven by the pressure difference between the

crack channel, 𝑝𝑓 (𝑥), and permeable reservoir, 𝑝𝑜. The fluid exchange process is

modelled by one-dimensional pressure-dependent leak-off/leak-in (PDL) driven by

pore pressure diffusion in the rock [Detournay and Garagash, 2003, Kovalyshen,

2010, Kovalyshen et al., 2013]. This model is a convenient approximation of a full

two-dimensional leak-off and associated diffusion problem [Detournay and Garagash,

2003] based on the assumption that the characteristic thickness of the diffusive

boundary layer around the crack is small compared to the characteristic lengthscale

of the fracture tip problem. We also assume that the pore and fracturing fluids have

similar (identical in the model) properties.

Fluid pressure 𝑝𝑓 (𝑥) diminishes in the fluid flow along the fracture towards the

tip. If its value at the tip, 𝑝𝑓 (0), drops below 𝑝𝑜, there exists a near-tip zone of some

length 𝜆𝑜, 𝑥 ∈ [0, 𝜆𝑜], along which the pore fluid flows into the fracture from the

surrounding rock. For distance larger than 𝜆𝑜, the fluid pressure recovers enough to

enable the leak-off of the formation fluid from the fracture back into the rock. Due

to the steady crack propagation (problem is stationary in the coordinate system 𝑥

moving with the crack tip), all of the formation fluid leaked-in along 𝑥 ∈ [0, 𝜆𝑜] has to

circulate (leak-off) back into the formation, thus defining the pore-fluid circulation

zone of some length 𝜆 > 𝜆𝑜 near the fracture tip (Figure 3-1). The crack channel

within the interval [𝜆,+∞) is filled by the hydraulic fracturing fluid which, due to

pressure continuity, is also expected to leak-off into the rock.

Local rate of fluid exchange 𝑔(𝑥) between the fracture and the rock (𝑔 > 0 for
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

leak-off and 𝑔 < 0 for leak-in) is given by the following expression in the pressure-

dependent leak-off model:

𝑔(𝑥) = 𝑄′
√
𝑉

(︂
𝑝(0) + 𝜎′

𝑜

2
√
𝑥

+

∫︁ 𝑥

0

𝑑𝑝

𝑑𝑥′
𝑑𝑥′

2
√
𝑥− 𝑥′

)︂
, (3.1)

where 𝑄′ = 4𝑘
𝜇
√
𝜋𝑐

is a leak-in coefficient defined in terms of the pore pressure diffu-

sivity coefficient 𝑐, reservoir permeability 𝑘 and fluid viscosity 𝜇, 𝑝(0) = 𝑝𝑓 (0) − 𝜎𝑜

is the net fluid pressure value at the fracture front, and 𝜎′
𝑜 = 𝜎𝑜 − 𝑝𝑜 is the ambient

value of the effective confining stress. Derivation of (3.1) is written in Appendix A

of the paper [Kanin et al., 2020d].

Integrating (3.1) from the tip 𝑥 = 0 to some distance 𝑥 > 0, we obtain the

formula for the cumulative rate of fluid exchange:

𝑞⊥(𝑥) = 𝑄′
√
𝑉

∫︁ 𝑥

0

𝑝(𝑠) + 𝜎′
𝑜

2
√
𝑥− 𝑠

𝑑𝑠 = 𝐶 ′
√
𝑉 𝑥+𝑄′

√
𝑉

∫︁ 𝑥

0

𝑝(𝑠)

2
√
𝑥− 𝑠

𝑑𝑠. (3.2)

Here 𝐶 ′ = 𝑄′𝜎′
𝑜 = 4𝑘𝜎′

𝑜/(𝜇
√
𝜋𝑐) is the Carter’s leak-off coefficient, and it is twice

as much than that of in the classic problem definition (Subsection 2.1.2). We define

the leak-off coefficient in such a way to be in accordance with 𝐶 ′ definition in paper

[Garagash et al., 2011] utilised for the comparison of the fracture tip solutions with

pressure-dependent fluid exchange and Carter’s leak-off.

The first term in the right hand side of (3.2) corresponds to the classical Carter’s

leak-off expression strictly valid only when 𝑝𝑓 (𝑥) = 𝜎𝑜 (or 𝑝(𝑥) = 0), while the second

term is the pressure-dependent correction. Since the net fluid pressure 𝑝(𝑥) < 0

(or 𝑝𝑓 (𝑥) < 𝜎𝑜) in semi-infinite hydraulic fracture (e.g., Garagash and Detournay

[2000]), the corrective pressure-dependent term is always negative, or, in other words,

corresponds to a corrective leak-in.

3.2.2 Asymptotes and structure of general solution

3.2.2.1 Vertex solutions

Two different mechanisms govern the propagation regime of a finite hydraulic frac-

ture, (e.g., Garagash et al. [2011]). The first one is the partitioning of the injected
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

fluid between the fracture and the reservoir as a result of the leak-in and leak-off

processes (fracture storage vs fluid exchange with the rock). The second mecha-

nism is the partitioning of the total dissipated energy between the creation of the

new fracture surfaces and flow of the viscous fluid along the fracture (toughness vs

viscosity).

In the process of fracture growth, the partition of the fracturing fluid and the

partition of the dissipated energy change over time, which can lead to the reali-

sation of different limiting regimes dominated by one storage and one dissipation

mechanisms at different time. In the context of a semi-infinite hydraulic fracture,

the change in the partitioning of the fluid and energy with time can be recast in the

change with the distance from the fracture tip.

One can suggest four limiting propagation regimes that are characterised by

the dominance of one storage/exchange and one dissipation mechanisms: toughness

dominated (𝜇′ = 0), storage-viscosity dominated (𝐶 ′ = 𝑄′ = 0, 𝐾 ′ = 0), leak-

off-viscosity dominated (𝐶 ′ → ∞, 𝐾 ′ = 0), storage-leak-in-viscosity dominated

(𝐾 ′ = 0, 𝐶 ′ > 0, 𝑄′ < +∞). The corresponding solutions are referred to as ‘vertex’

solutions in a problem parametric space.

While the leak-in (𝑄′) and the leak-off (𝐶 ′) coefficients define the partitioning

of the fluid, viscosity 𝜇′ and toughness 𝐾 ′ parameters are responsible for the parti-

tioning of the dissipated energy.

The first three vertex solutions (𝑘, 𝑚, ̃︀𝑚) are given, e.g., by Garagash et al.

[2011], and summarised in table 3.1 for completeness, in terms of the following three

characteristic length scales:

ℓ𝑘 =

(︂
𝐾 ′

𝐸 ′

)︂2

, ℓ𝑚 = 𝑉
𝜇′

𝐸 ′ , ℓ̃︀𝑚 =

(︂
𝐶 ′

√
𝑉
𝜇′

𝐸 ′

)︂2/3

.

The pressure-dependency of the fluid exchange between the fracture and the

rock is coupled with the fluid pressure drop in the flow toward the crack tip (when

viscosity is non negligible: 𝜇′ > 0). This fact suggests that the leak-in dominates

near the fracture front. In other words, we anticipate that in the vicinity of the

fracture tip the newly created crack volume (storage) is accommodated entirely by
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

Limiting solutions opening 𝑤(𝑥) net pressure 𝑝(𝑥) velocity 𝑣(𝑥)
k Toughness (𝜇′ = 0) ℓ

1/2
𝑘 𝑥1/2 0 𝑉 + 𝐸′𝐶′√𝑉

𝐾′

m Storage-viscosity (𝐾 ′ = 0, 𝐶 ′ = 𝑄′ = 0) 𝛽0ℓ
1/3
𝑚 𝑥2/3 𝛿0𝐸

′ ℓ1/3𝑚

𝑥1/3
𝑉̃︀m Leak-viscosity (𝐾 ′ = 0, 𝐶 ′ → ∞) ̃︀𝛽0ℓ3/8̃︀𝑚 𝑥5/8 ̃︀𝛿0𝐸′ ℓ

3/8̃︀𝑚
𝑥3/8

𝑉̃︀𝛽0 ℓ
9/8̃︀𝑚

ℓ𝑚𝑥1/8

Coefficients: 𝛽0 = 21/335/6, 𝛿0 = 𝛽0𝑓(2/3), ̃︀𝛽0 = 2.534, ̃︀𝛿0 = ̃︀𝛽0𝑓(5/8), with 𝑓(𝜆) = 𝜆 cot(𝜋𝜆)/4

Table 3.1: Three limiting solutions of a semi-infinite hydraulic fracture for the identified
limiting values of problem parameters.

the pore fluid leaking-in from the rock (while the fluid flow towards the fracture tip

along the crack channel is negligible there, 𝑣 ≈ 0). However, this dominance of the

leak-in has to be limited to a finite near tip region, since crack elasticity requires

that 𝑝(𝑥) vanishes as 𝑥 → ∞, or 𝑝𝑓 (𝑥) → 𝜎𝑜 > 𝑝𝑜, thus eventually giving a way to

the leak-off process.

Vertices 𝑘, 𝑚, ̃︀𝑚 (table 3.1) are the solutions for the entire semi-infinite frac-

ture for the corresponding limiting values of governing parameters. They can be

determined from the monomial solution to the crack elasticity equation (2.3):

𝑤𝜆(𝑥) = 𝐵𝑥𝜆; 𝑝𝜆(𝑥) = 𝐸 ′𝐵𝑓(𝜆)𝑥𝜆−1, 𝑓(𝜆) =
𝜆 cot(𝜋𝜆)

4
, 0 < 𝜆 < 1,

where particular values of the prefactor 𝐵 and the exponent 𝜆 are constrained by the

lubrication equation when setting parameters (𝐶 ′, 𝜇′ and 𝐾 ′) to the corresponding

limiting values, as detailed by Garagash et al. [2011]. In the 𝑘−vertex, viscosity is

negligible (𝜇′ = 0), and the solution follows from the propagation condition (2.2).

In the 𝑚−vertex, the fluid exchange (𝐶 ′ = 𝑄′ = 0) and toughness (𝐾 ′ = 0) are

negligible, and the solution is recovered by balancing the fluid flux in the crack

𝑤(𝑥)𝑣(𝑥) with the storage term 𝑤(𝑥)𝑉 in the continuity equation. We anticipate

that in the general parametric case (i.e. not limited to the stated values of 𝐾 ′ and

other parameters) the 𝑚−vertex solution provides the far-field solution asymptote,

(e.g., Garagash et al. [2011]). In the ̃︀𝑚−vertex, the fluid storage (𝐶 ′ → ∞), and

toughness (𝐾 ′ = 0) are negligible. In this case, the fluid flux in the crack is balanced

with the Carter’s leak-off term. In general case, the ̃︀𝑚−vertex can be realised as an

intermediate field solution [Garagash et al., 2011].

The new storage-leak-in-viscosity vertex ̃︀𝑜 emerges as a particular case of the

38



Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

viscosity-dominated (𝐾 ′ = 0) behaviour linked to the dominance of the fluid leak-in

(rather than the leak-off) in the near-field (𝑥 → 0). It corresponds to the classical

zero-toughness behaviour of the crack opening, 𝑤 = 𝐵̃︀𝑜𝑥3/2, and the non-singular

pressure: 𝑝 = −𝜎′
0− 3

2
𝐵̃︀𝑜 𝑉 1/2

𝑄′ 𝑥. The first term in the expression for the net pressure is

obtained from balancing the leak-in and leak-off terms in the continuity equation. On

the other hand, the second term arises from the matching the leak-in and the fracture

storage terms, gains particular importance in/near the zero-leak-off limit (𝜎′
0 = 0).

This vertex solution contains prefactor 𝐵̃︀𝑜 (with units 1/
√
𝑚) that is unknown and

a part of the overall solution. This betrays the fact that the ̃︀𝑜−asymptote can be

realised only as a near or intermediate field of the fracture, as it can not satisfy

the elasticity equation over the full semi-infinite crack extent. The second term in

the net pressure is found with the assumption that the ̃︀𝑜−vertex solution is realised

in the near-field, and in this case, the left-hand side of the continuity equation

(∼ 𝑤3(𝑥)𝑝′(𝑥)) for this vertex solution is negligible as compared to the terms in the

right-hand side (storage, leak-off and leak-in).

For non-zero fracture toughness 𝐾 ′ > 0, the near-field (𝑥 → 0) behaviour of

the fracture opening is given by the 𝑘−vertex solution (table 3.1), as stems from

the propagation condition (2.2). Corresponding asymptotic expression for the net

pressure 𝑝(𝑥 → 0) = −𝜎′
0 − 𝐾′𝑉 1/2

𝐸′𝑄′ follows from the fluid continuity equation (2.7)

by balancing the fluid exchange (the leak-in pore fluid volume) with the fracture

storage. (We note that the fluid flux along the crack 𝑤𝑣 is negligibly small in the

near field fluid balance). The obtained finite net pressure value at the fracture tip

is drastically different from the one in the Carter’s, pressure-independent leak-off

model [Garagash et al., 2011], where the pressure sustains a negative singularity as

the fracturing fluid is assumed to reach the tip of the fracture. When reformulated

in terms of the fluid pressure, 𝑝𝑓 (𝑥 → 0) = 𝑝𝑜 − 𝐾 ′
√
𝑉 /(𝐸 ′𝑄′), this asymptote

suggests that the fluid pressure at the crack tip is reduced from its drained value

given by the ambient pore pressure 𝑝𝑜 by the amount 𝐾 ′
√
𝑉 /(𝐸 ′𝑄′). The latter,

undrained pressure change vanishes for slowly propagating cracks (𝑉 → 0) or/and

zero rock toughness (𝐾 ′ → 0).

The obtained near-field 𝑘 (𝐾 ′ > 0) and ̃︀𝑜 (𝐾 ′ = 0) asymptotes are summarised
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in table 3.2.

opening 𝑤(𝑥) net pressure 𝑝(𝑥) velocity 𝑣(𝑥)
k Toughness (𝐾 ′ > 0) ℓ

1/2
𝑘 𝑥1/2 −𝜎′0 − 𝐾′𝑉 1/2

𝐸′𝑄′ 0̃︀o Storage-leak-in-viscosity (𝐾 ′ = 0) 𝐵̃︀𝑜 𝑥3/2 −𝜎′0 − 3
2𝐵̃︀𝑜 𝑉 1/2

𝑄′ 𝑥 −3
2𝐵

3̃︀𝑜 𝑉 1/2

𝑄′𝜇′ 𝑥
3

Coefficients: 𝐵̃︀𝑜 is a part of the solution.

Table 3.2: Near-field (𝑥→ 0) of semi-infinite hydraulic fracture.

3.2.2.2 Structure of solution and scaling

The general solution of the considered problem can be tracked within the parametric

triangular pyramid 𝑚̃︀𝑚̃︀𝑜𝑘 formed by four aforesaid vertices. The schematic picture

of this pyramid is represented in figure 3-2.

Figure 3-2: Parametric diagram (pyramid 𝑚̃︀𝑚̃︀𝑜𝑘) and corresponding four limiting faces
corresponding to the dominance of one energy dissipation or one fluid storage mechanism.
Few solution trajectories parameterised by the leak-off 𝜒 and leak-in 𝜁 numbers (or their
ratio 𝜓 = 𝜒/𝜁) are also shown.

Four triangular faces of pyramid 𝑚̃︀𝑚̃︀𝑜𝑘 correspond to either the dominance

of one of the three fluid storage/exchange mechanisms or one of the dissipation
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

mechanisms:

• storage-leak-off face 𝑚̃︀𝑚𝑘: leak-in process is negligible, 𝑄′ = 0

• storage-leak-in face 𝑚̃︀𝑜𝑘: leak-off process is negligible, 𝐶 ′ ∝ 𝜎′
𝑜 = 0

• leak-face ̃︀𝑚̃︀𝑜𝑘: fluid storage in the fracture is negligible, 𝐶 ′ → ∞

• viscosity-face 𝑚̃︀𝑚̃︀𝑜: toughness is negligible, 𝐾 ′ = 0

Six edges of the pyramid 𝑚̃︀𝑚̃︀𝑜𝑘 correspond to the intersection of the corresponding

two faces, and thus, reflect the dominance of one of the three fluid storage/exchange

mechanisms and one of the dissipation mechanisms. For example, ̃︀𝑚̃︀𝑜 is the leak-

viscosity edge (𝐶 ′ → ∞ and 𝐾 ′ = 0), bounding the leak ̃︀𝑚̃︀𝑜𝑘 (𝐶 ′ → ∞) and the

viscosity 𝑚̃︀𝑚̃︀𝑜 (𝐾 ′ = 0) faces, and, thus, corresponds to the negligible storage and

toughness.

Proposed pyramidal parametric space𝑚̃︀𝑚̃︀𝑜𝑘 for the fracture tip with the pressure-

dependent leak-off is a direct generalisation of the triangular parametric space, face

𝑚̃︀𝑚𝑘, for Carter’s (pressure-independent) leak-off [Garagash et al., 2011], by the

addition of the new vertex ̃︀𝑜. The emergent edges ̃︀𝑜𝑘, ̃︀𝑚̃︀𝑜, and 𝑚̃︀𝑜 are expected

to describe the transitions of the corresponding limiting solutions with distance

from the crack tip between the corresponding vertices (from the 2nd to the 1st,

i.e. ̃︀𝑚̃︀𝑜−edge corresponds to the transition from the near-field ̃︀𝑜 to the far-field ̃︀𝑚,

etc). As discussed in the above, the ̃︀𝑜−vertex solution can be realised only in the

near-field of a semi-infinite fracture, thus, suggesting that the ̃︀𝑜𝑘−edge may in fact

corresponds to the near-field expansion of the 𝑘−vertex (𝑤 ∝ 𝑥1/2) which includes

the next order correction given by ̃︀𝑜−vertex solution (𝑤 ∝ 𝑥3/2), and this correction

may come to eventually dominate (over the 𝑘−term) with increasing distance from

the tip.

In the case of the other two edges involving the ̃︀𝑜−vertex as the fracture near-

field, i.e. ̃︀𝑚̃︀𝑜 (𝐾 ′ = 0, 𝐶 ′ → ∞) and 𝑚̃︀𝑜 (𝐾 ′ = 0, 𝐶 ′ ∝ 𝜎′
𝑜 = 0), they should in

principle provide solutions for the entire semi-infinite HF under the corresponding

limiting values of the parameters. Before attempting these (and other edge) solu-

tions, let us attempt to constrain the a priori unknown near-field coefficient 𝐵̃︀𝑜 in
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

the ̃︀𝑜 expression for the opening 𝑤 = 𝐵̃︀𝑜𝑥3/2 (𝑥 → 0). Using the inverted form of

the elasticity equation (2.4) with 𝐾 ′ = 0, and formally passing to the asymptotic

limit 𝑥→ 0 under the integral, we get

𝐵̃︀𝑜 =
8

3𝜋𝐸 ′

∫︁ ∞

0

𝑝(𝑠)

𝑠3/2
𝑑𝑠. (3.3)

Since 𝑝(𝑠 → 0) = −𝜎′
0 − 3

2
𝐵̃︀𝑜 𝑉 1/2

𝑄′ 𝑠 (Table 3.2), the above integral expression for 𝐵̃︀𝑜
converges (finite) for the 𝑚̃︀𝑜−edge (when 𝜎′

𝑜 = 0) and diverges for the ̃︀𝑚̃︀𝑜−edge.

This suggests that the underlining formal limit-taking procedure to arrive to (3.3)

is not applicable to the latter (̃︀𝑚̃︀𝑜−edge), while conversely (3.3) can be used to

constrain coefficient 𝐵̃︀𝑜 in the former case (𝑚̃︀𝑜−edge). Specifically, we observe for

the 𝑚̃︀𝑜−edge that if the net pressure is negative in the entire crack coordinate

domain (𝑝(𝑠) < 0 for all 𝑠 > 0), which is suggested by the negative net pressure

values in the both near-field and far-field, then (3.3) results in 𝐵̃︀𝑜 < 0 or, in other

words, negative crack opening near the tip. This contradiction rules out the existence

of the 𝑚̃︀𝑜−edge solution (under plausible assumption of the negative net pressure in

the crack), which implies that the general solution to the problem does not have well-

defined limiting solution when both toughness and leak-off (or, conversely, ambient

effective stress) equal zero.

General solution of the fracture tip problem within the parametric pyramid tran-

sitions with increasing distance from the tip from the near-field 𝑘 to the far-field

𝑚−vertex, and in different limiting cases can collapse onto or be attracted to the se-

ries of faces and/or edges, as apparent from their parametric definitions. To identify

non-dimensional parameters which fix a given solution trajectory in the parametric

space, we follow the methodology of Garagash et al. [2011], and introduce character-

istic scales for the transition distance ℓ*, opening 𝑤*, and pressure 𝑝* closely related

to the evolution of the solution along a given edge in the parametric space between

the two corresponding vertices, or the ‘edge-scalings’.

Edge-scalings 𝑚𝑘, ̃︀𝑚𝑘, and 𝑚̃︀𝑚 are defined after Garagash et al. [2011] such

that the solutions for either 𝑝(𝑥) or 𝑤(𝑥) for the corresponding two vertices forming

the edge in question ‘intersect’ at 𝑥 ∼ ℓ*. For example, in the case of the storage
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𝑚𝑘−edge, we find the characteristic length by contrasting the 𝑘 and 𝑚 asymptotes

for the opening, 𝑤* = ℓ
1/2
𝑘 ℓ

1/2
* = ℓ

1/3
𝑚 ℓ

2/3
* , while 𝑝* follows from the elastic scaling

constraint 𝑤*/ℓ* = 𝑝*/𝐸
′. Edge-scalings which involve vertex ̃︀𝑜 (i.e. ̃︀𝑚̃︀𝑜 and ̃︀𝑜𝑘)

are obtained similarly but also recognising that the ̃︀𝑜−asymptote depends on the

solution trajectory (via a priori unknown prefactor). In the ̃︀𝑚̃︀𝑜−case, the transition

lengthscale ℓ* is found by contrasting the leading order ̃︀𝑜−asymptote for the net

pressure (i.e. 𝑝 ≈ −𝜎′
𝑜) with that of the ̃︀𝑚−vertex, i.e. 𝑝* = 𝜎′

𝑜 = 𝐸 ′(ℓ̃︀𝑚/ℓ*)3/8,
while 𝑤* follows from the elastic constraint. In the ̃︀𝑜𝑘−scaling the characteristic

pressure is taken equal to 𝑝* = 𝜎′
0. Using 𝑝*, elastic scaling constraint and balancing̃︀𝑜 and 𝑘 vertex solutions, we find ℓ* = 𝐾 ′2/𝜎′2

𝑜 and 𝑤* = 𝐾 ′2/𝐸 ′𝜎′
𝑜. All of the above

edge-scalings are recorded in Table 3.3.

Scaling ℓ* 𝑤* 𝑝*

𝑚𝑘 ℓ𝑚𝑘 = ℓ3𝑘/ℓ
2
𝑚 ℓ2𝑘/ℓ𝑚 𝐸′ ℓ𝑚/ℓ𝑘

𝑚̃︀𝑚 ℓ𝑚̃︀𝑚 = ℓ9̃︀𝑚/ℓ8𝑚 ℓ6̃︀𝑚/ℓ5𝑚 𝐸′ (ℓ𝑚/ℓ̃︀𝑚)3̃︀𝑚𝑘 ℓ̃︀𝑚𝑘 = ℓ4𝑘/ℓ
3̃︀𝑚 ℓ

5/2
𝑘 /ℓ

3/2̃︀𝑚 𝐸′ (ℓ̃︀𝑚/ℓ𝑘)3/2̃︀𝑚̃︀𝑜 ℓ̃︀𝑚̃︀𝑜 = (𝐸′/𝜎′𝑜)
8/3 ℓ̃︀𝑚 (𝐸′/𝜎′0)

5/3 ℓ̃︀𝑚 𝜎′0̃︀𝑜𝑘 ℓ̃︀𝑜𝑘 = (𝐾 ′/𝜎′0)
2 𝐾 ′2/(𝐸′𝜎′0) 𝜎′0

Table 3.3: Characteristic distance from the tip ℓ*, pressure 𝑝*,and opening 𝑤* = (𝑝*/𝐸
′)ℓ*,

corresponding to the five scalings of the problem.

Comparing three transition (edge) lengthscales within a given parametric face of

the pyramid 𝑚̃︀𝑚̃︀𝑜𝑘 allows to identify a ‘trajectory number’ parameterising that face

solution. Considering, for example, the zero-leak-in face 𝑚̃︀𝑚𝑘, one can introduce

a single number expressible as a ratio of any two of the this face’s three transition

lengthscales (ℓ𝑚𝑘, ℓ𝑚̃︀𝑚, and ℓ̃︀𝑚𝑘) [Garagash et al., 2011]

𝜒 =

(︂
ℓ𝑚̃︀𝑚
ℓ𝑚𝑘

)︂1/6

=

(︂
ℓ𝑚𝑘
ℓ̃︀𝑚𝑘
)︂1/2

=

(︂
ℓ𝑚̃︀𝑚
ℓ̃︀𝑚𝑘

)︂1/8

=
𝐶 ′𝐸 ′

𝐾 ′𝑉 1/2
. (3.4)

This number, which can be interpreted as a dimensionless leak-off or ambient

effective stress (since 𝐶 ′ = 𝑄′𝜎′
𝑜), or non-dimensional reciprocal of toughness, pa-

rameterises solution trajectory within the 𝑚̃︀𝑚𝑘−face. The limiting case 𝜒 → 0

43



Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

corresponds to the storage-dominated 𝑚𝑘−edge solution

zero leak-in, 𝜒 = 0 : 𝑘 →
ℓ𝑚𝑘

𝑚, (3.5)

which transitions from the 𝑘 to the 𝑚 vertex with distance from the tip over length-

scale ℓ𝑚𝑘 (shown by blue-colour trajectory in figure 3-2). While the other limiting

case 𝜒→ ∞ corresponds to the separation of the corresponding transitional scales,

ℓ̃︀𝑚𝑘 ≪ ℓ𝑚̃︀𝑚, (3.4), leading to the nested solution structure corresponding to the

succession of the two edge solutions (̃︀𝑚𝑘 and 𝑚̃︀𝑚)

zero leak-in, 𝜒→ ∞ : 𝑘 →
ℓ ̃︀𝑚𝑘

̃︀𝑚 →
ℓ𝑚 ̃︀𝑚 𝑚, (3.6)

signifying transition with distance from the tip first from the 𝑘 to ̃︀𝑚−vertex over

lengthscale ℓ̃︀𝑚𝑘 and then from the ̃︀𝑚 to 𝑚 vertex over lengthscale ℓ𝑚̃︀𝑚 (shown by

brown-colour trajectory in figure 3-2).

Similarly, for the zero-storage face ̃︀𝑚̃︀𝑜𝑘, 𝜒 → ∞, we define another number in

terms of ratios of any two of the corresponding three edge lengthscales (ℓ̃︀𝑜𝑘, ℓ̃︀𝑚̃︀𝑜,
and ℓ̃︀𝑚𝑘)

𝜁 =

(︂
ℓ̃︀𝑜𝑘
ℓ̃︀𝑚𝑘
)︂1/6

=

(︂
ℓ̃︀𝑚̃︀𝑜
ℓ̃︀𝑜𝑘
)︂1/2

=

(︂
ℓ̃︀𝑚̃︀𝑜
ℓ̃︀𝑚𝑘
)︂1/8

=
𝐸 ′

𝐾 ′

(︀
𝜇′𝑄′𝑉 1/2

)︀1/3
, (3.7)

which can be interpreted as dimensionless leak-in or a reciprocal of toughness. This

number parameterises solution trajectory within the ̃︀𝑚̃︀𝑜𝑘−face. The limiting case

𝜁 → 0 corresponds to the leak-off-dominated ̃︀𝑚𝑘−edge solution, also a part of

the limiting trajectory (3.6) in the 𝑚̃︀𝑚𝑘−face. While 𝜁 → ∞ corresponds to the

separation of the relevant transitional scales, ℓ̃︀𝑜𝑘 ≪ ℓ̃︀𝑚̃︀𝑜, (3.7), leading to the nested

solution structure corresponding to the succession of the two edge solutions (̃︀𝑜𝑘 and̃︀𝑚̃︀𝑜) with distance from the tip

𝜒→ ∞, 𝜁 → ∞ : 𝑘 →
ℓ̃︀𝑜𝑘 ̃︀𝑜 →

ℓ ̃︀𝑚̃︀𝑜 ̃︀𝑚. (3.8)

For the the zero-toughness face 𝑚̃︀𝑚̃︀𝑜, 𝜒→ ∞, we can define another number in
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terms of ratio of the ̃︀𝑚̃︀𝑜 and 𝑚̃︀𝑚−edge lengthscales

𝜓 =

(︂
ℓ𝑚̃︀𝑚
ℓ̃︀𝑚̃︀𝑜

)︂1/8

= 𝜎′
𝑜

(︂
𝑄′

𝜇′1/2𝑉

)︂2/3

, (3.9)

which can be interpreted as, e.g., dimensionless effective confining stress. Note that

𝜓 is not an independent parameter, but expressible in terms of the previously in-

troduced leak-off 𝜒 and leak-in 𝜁 numbers, 𝜓 = 𝜒/𝜁. This number parameterises

solution trajectory within the 𝑚̃︀𝑚̃︀𝑜−face, such that 𝜓 → ∞ corresponds to the sep-

aration of the two lengthscales, ℓ̃︀𝑚̃︀𝑜 ≪ ℓ𝑚̃︀𝑚, (3.9), resulting in the solution comprised

of the two edge solutions (𝑚̃︀𝑜 and 𝑚̃︀𝑚)

𝜒→ ∞, 𝜓 = 𝜒/𝜁 → ∞ : ̃︀𝑜 →
ℓ ̃︀𝑚̃︀𝑜 ̃︀𝑚 →

ℓ𝑚 ̃︀𝑚 𝑚. (3.10)

The other limit, 𝜓 = 0, corresponding to the viscosity-leak-in 𝑚̃︀𝑜−edge, is not ex-

pected to exist per discussion in the above. The behaviour of the solution within the

𝑚̃︀𝑚̃︀𝑜 and particularly how it approaches the non-existing𝑚̃︀𝑜−edge with diminishing

value of 𝜓 is to be explored numerically.

We note that in the case when the parametric conditions in (3.8) and (3.10) are

combined, i.e. when 𝜒→ ∞, 𝜁 → ∞, and 𝜓 = 𝜒/𝜁 → ∞, the three scales separate,

ℓ̃︀𝑜𝑘 ≪ ℓ̃︀𝑚̃︀𝑜 ≪ ℓ𝑚̃︀𝑚, and the ‘triple-nested’ solution structure is realised

𝜒→ ∞, 𝜁 → ∞, 𝜓 = 𝜒/𝜁 → ∞ : 𝑘 →
ℓ̃︀𝑜𝑘 ̃︀𝑜 →

ℓ ̃︀𝑚̃︀𝑜 ̃︀𝑚 →
ℓ𝑚 ̃︀𝑚 𝑚, (3.11)

as shown by the green-colour trajectory in figure 3-2.

For the fourth and final face of the pyramid, the zero-leak-off face 𝑚̃︀𝑜𝑘, 𝜒 = 0, we

can use the previously defined non-dimensional leak-in number 𝜁 to track solution

trajectories, such that 𝜁 = 0 corresponds to the storage 𝑚𝑘−edge, and 𝜁 → ∞

corresponds to the non-existing limit of either 𝑚̃︀𝑜−edge or the ̃︀𝑜𝑘−edge. (Note

that the ̃︀𝑜𝑘−edge can only be realised as the near or near-to-intermediate field

of a given solution, thus, non-existence of the 𝑚̃︀𝑜 solution, which would form the

intermediate-to-far-field solution in the limit 𝜁 → ∞, implies the absence of the

near-to-intermediate-field, ̃︀𝑜𝑘−edge, solution within the zero-leak-off face 𝑚̃︀𝑜𝑘).
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3.2.2.3 Asymptotic expansions of the vertices

Some insight into how the solution departs from the vertices in the parametric space

in response to small perturbation of problem parameters and distance from the

fracture tip can be afforded by constructing corresponding asymptotic expansions.

3.2.2.3.1 Expansion near 𝑘−vertex

The near-field 𝑘−vertex expression (table 3.2) for the net pressure is simply given

by the value at tip set by the balance between incipient fluid exchange and crack

opening, respectively, and thus independent of the fluid flow along the crack chan-

nel. The latter becomes more important when moving away from the tip, and can

be accounted for by incorporating next order terms in the 𝑘−vertex asymptotic

expansion. The 𝑘−expansion for the net fluid pressure is given by

𝜁 > 0 :
𝑝

𝐸 ′ =
ℓ
1/2
𝑘

ℓ
1/2
1

[︃
− 1

𝜁3
+

1

𝛾(𝜁)

(︂
𝑥

𝑥𝑜

)︂𝛾(𝜁)]︃
, (3.12)

𝜁 = 0 :
𝑝

𝐸 ′ =
ℓ
1/2
𝑘

ℓ
1/2
1

ln

(︂
𝑥

𝑥𝑜

)︂
(3.13)

in the general 𝜁 > 0 case and in the Carter’s 𝜁 → 0 limit [Garagash et al., 2011],

respectively. Lengthscale ℓ1 is defined in terms of a pair of transitional lengthscales

ℓ1 = (ℓ
−1/2
𝑚𝑘 + ℓ

−1/2̃︀𝑚𝑘 )−2.

Exponent 𝛾 = 𝛾(𝜁) in (3.12) is provided implicitly by

2√
𝜋

Γ
(︀
𝛾 + 3

2

)︀
Γ(𝛾)

= 𝜁3,

and 𝑥𝑜 is a priori unknown part of the solution. One can directly confirm that

(3.12) reduces to (3.13) in the Carter’s limit 𝜁 → 0 in view of the vanishing power-

law exponent 𝛾(𝜁 → 0) ∼ 𝜁3.

We again point out the marked difference in the net pressure behaviour near

the fracture tip between the general (pressure dependent leak-off case 𝜁 > 0) and

46



Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

the Carter’s limit. In the former, the net pressure at the tip is bounded 𝑝(0) =

−𝐸 ′(ℓ𝑘/ℓ0)
1/2 = −(𝜎′

𝑜 +𝐾 ′𝑉 1/2/𝐸 ′𝑄), while in the latter - logarithmically singular.

Corresponding 𝑘-vertex expansion for the crack opening is

𝜁 > 0 : 𝑤 = ℓ
1/2
𝑘 𝑥1/2 +

ℓ
1/2
𝑘

ℓ
1/2
1

[︃
4 tan𝜋𝛾

𝛾(1 + 𝛾)

𝑥𝛾+1

𝑥𝛾𝑜
+
𝑥3/2

𝑥
1/2
1

]︃
, (3.14)

𝜁 = 0 : 𝑤 = ℓ
1/2
𝑘 𝑥1/2 +

ℓ
1/2
𝑘

ℓ
1/2
1

4𝜋𝑥, (3.15)

where 𝑥𝑜 and 𝑥1 are a priori unknown parts of the solution. Once again, the Carter’s

expression (3.15), identical to that of [Garagash et al., 2011] follows from the general

expression (3.14) when taking the limit 𝜁 → 0 in the latter. We observe that

the choice of the next order term (after the leading term ∼ 𝑥1/2) in the opening

expansion depends on the value of 𝛾(𝜁). Specifically, it is given by 𝑥𝛾+1 term when

𝛾(𝜁) + 1 < 3/2, corresponding to 𝜁 < 0.862, and by the 𝑥3/2 term otherwise (when

𝜁 > 0.862). In relation to the problem parametric diagram, the 𝜁-dependent form of

the next order term in (3.14) determines how the solution trajectory emanates from

the 𝑘−vertex along a given 𝜁 trajectory. For example, considering the zero-storagẽ︀𝑚̃︀𝑜𝑘−face, the zero-leak-in (𝜁=0) trajectory exits the 𝑘-vertex along the ̃︀𝑚𝑘−edge

described by the linear correction 𝑥𝛾(0)+1 (𝛾(0) = 0) to the opening, and the zero-

leak-off (𝜁 = ∞) trajectory exits the 𝑘-vertex along the ̃︀𝑜𝑘−edge described by the

𝑥3/2 correction to the opening.

3.2.2.3.2 Expansion near 𝑚−vertex

The 𝑚−vertex solution does not depend on the rock toughness and the parameters

defining fluid-exchange processes. Moving away from the far-field region, where

the 𝑚−vertex dominates, towards the crack tip, the latter effects start to influence

the solution. These higher-order effects can be captured in the 𝑚-vertex expansion

which can be obtained using the procedure of Garagash et al. [2011] in the following
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form:

𝑤 = ℓ1/3𝑚 𝑥2/3

⎡⎣𝛽0 +
3∑︁
𝑗=1

𝛽−𝑗

(︂
ℓ𝑚̃︀𝑚
𝑥

)︂𝑗/6
+ 𝛽−3

(︂
ℓ𝑚̃︀𝑜
𝑥

)︂1/2

............................

+ (𝛽−4)*(𝜒, 𝜁)

(︂
ℓ𝑚*

𝑥

)︂2/3−ℎ
⎤⎦ ,

(3.16)

𝑝

𝐸 ′ = ℓ1/3𝑚 𝑥−1/3

⎡⎣𝛿0 +
3∑︁
𝑗=1

𝛿−𝑗

(︂
ℓ𝑚̃︀𝑚
𝑥

)︂𝑗/6
+ �̊�−3

(︂
ℓ𝑚̃︀𝑜
𝑥

)︂1/2

............................

+ (𝛿−4)*(𝜒, 𝜁)

(︂
ℓ𝑚*

𝑥

)︂2/3−ℎ
⎤⎦ ,

(3.17)

where coefficients 𝛽−𝑗 are

𝛽0 = 21/335/6, 𝛽−1 =
1

2
, 𝛽−2 = −31/6

27/3
, 𝛽−3 =

27/3

35/3
, 𝛽−3 = −27/3

35/3

9Γ
(︀
2
3

)︀
Γ
(︀
5
6

)︀
2
√
𝜋

,

and 𝛿−𝑗 = 𝛽−𝑗𝑓
(︀
2
3
− 𝑗

6

)︀
for 𝑗 = 0, 1, 2, 3, �̊�−3 = 𝛽−3𝑓(7/6), (𝛿−4)* = (𝛽−4)*𝑓(ℎ) with

ℎ = 0.138673.

The terms in equation (3.16) and (3.17) underlined by a single line are scaled by

characteristic length ℓ𝑚̃︀𝑚 and represent leak-off corrections to the 𝑚-vertex solution.

The term underlined by the double line can be scaled by either of the three pertinent

transitional lengthscales (i.e., ℓ𝑚* is given by either ℓ𝑚𝑘, ℓ𝑚̃︀𝑚, or ℓ𝑚̃︀𝑜) since the

coefficient 𝛽−4(𝜒, 𝜁) in front of it can be found only from the complete numerical

solution. As a result, this term can be interpreted as correction in either toughness,

leak-off, or leak-in. The corresponding expressions for the coefficient (𝛽−4)* are

linked by the following relations: (𝛽−4)𝑘 = 𝜒4−6ℎ(𝛽−4)̃︀𝑚 = 𝜁4−6ℎ(𝛽−4)̃︀𝑜.
The structure of the derived 𝑚−vertex expansion differs from that in the case of

the Carter’s leak-off [Garagash et al., 2011] by a single term, underlined in the above

by a dotted line and corresponding to the pressure-dependent, leak-in correction,

scaled by the ℓ𝑚̃︀𝑜 = (𝐸 ′/𝜎′
𝑜)

2(𝜇′𝑄′𝑉 1/2)2/3 transitional lengthscale.

3.2.2.3.3 Expansion near ̃︀𝑚−vertex

The ̃︀𝑚−vertex solution may arise at intermediate distances max (ℓ̃︀𝑚𝑘, ℓ̃︀𝑚̃︀𝑜) ≪ 𝑥 ≪

ℓ̃︀𝑚𝑚 from the fracture tip, when the featured transitional lengthscales separate,
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within one of the corresponding limiting solution trajectories given by 𝑘 → ̃︀𝑚→ 𝑚,

(3.6), ̃︀𝑜 → ̃︀𝑚 → 𝑚, (3.10), or the combination thereof 𝑘 → ̃︀𝑜 → ̃︀𝑚 → 𝑚, (3.11),

and shown by brown and green colour in figure 3-2. The essential condition for the

existence of the intermediate ̃︀𝑚-asymptote is therefore 𝜒 ≫ 1 and 𝜓 = 𝜒/𝜁 ≫ 1,

where the latter is always satisfied along the zero-leak-in (Carter’s) edge, 𝜁 = 0,

previously explored by Garagash et al. [2011].

The asymptotic expansion about the ̃︀𝑚−vertex solution, including small cor-

rections due to toughness, storage, and pressure-dependent leak-off effects is given

by

𝑤 = ℓ
3/8̃︀𝑚 𝑥5/8

⎡⎣̃︀𝛽0 +
3∑︁
𝑗=1

̃︀𝛽𝑗 (︂ 𝑥

ℓ𝑚̃︀𝑚
)︂𝑗/8

+ ̃̊︀𝛽−3

(︂
ℓ̃︀𝑚̃︀𝑜
𝑥

)︂ 3
8

............................

+ (̃︀𝛽−1)*(𝜒, 𝜁)

(︂
ℓ̃︀𝑚*

𝑥

)︂ 5
8
−̃︀ℎ⎤⎦ ,
(3.18)

𝑝

𝐸 ′ = ℓ
3/8̃︀𝑚 𝑥−3/8

[︂̃︀𝛿0 +
2∑︁
𝑗=1

̃︀𝛿𝑗 (︂ 𝑥

ℓ𝑚̃︀𝑚
)︂𝑗/8

+ ̃︀𝛿3(︂ 𝑥

ℓ𝑚̃︀𝑚
)︂3/8

ln

(︂
𝑥̃︀𝑥0
)︂

+

+ ̃̊︀𝛿−3

(︂
ℓ̃︀𝑚̃︀𝑜
𝑥

)︂ 3
8

............................

+ (̃︀𝛿−1)*(𝜒, 𝜁)

(︂
ℓ̃︀𝑚*

𝑥

)︂ 5
8
−̃︀ℎ]︂

, (3.19)

where ̃︀ℎ = 0.0699928 and known coefficients are given by ̃︀𝛽0 = 2.53356, ̃︀𝛽1 =

1.30165, ̃︀𝛽2 = −0.451609, ̃̊︀𝛽−3 = −0.524805, and by ̃︀𝛿𝑗 = ̃︀𝛽𝑗𝑓 (︀58 + 𝑗
8

)︀
for 𝑗 = 0, 1, 2;̃̊︀𝛿−3 = ̃̊︀𝛽−3𝑓(1/4); ̃︀𝛿−1 = ̃︀𝛽−1𝑓(̃︀ℎ); and ̃︀𝛿3 = ̃︀𝛽3/4𝜋. Parameters ̃︀𝛽−1 and ̃︀𝑥0 are a

priori not known and are a part of the general numerical solution.

The terms underlined by the dotted and double lines correspond to the leak-

in and toughness/leak-in corrections to the leading order (̃︀𝑚−vertex) term within

the ̃︀𝑚̃︀𝑜𝑘−face solution, appropriately scaled with that face transitional lengthscales.

The single line designates corrections due to fracture storage effects in the 𝑚̃︀𝑚−edge

solution, appropriately scaled by that edge transitional lengthscale. In the zero

storage case (ℓ̃︀𝑚𝑚 = ∞), the leading term and terms underlined by the double line

yield the far-field (𝑥≫ ℓ̃︀𝑚𝑘) of the ̃︀𝑚𝑘−edge solution. Further, in the zero toughness

case (ℓ̃︀𝑚𝑘 = 0), the leading term and terms underlined by the single line compose
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the near-field (𝑥≪ ℓ̃︀𝑚𝑚) of the ̃︀𝑚𝑚−edge solution.

3.2.3 Solution

In this section, we will first introduce normalised governing equations based on

different ‘edge’ scalings (table 3.3), followed by exploration of solutions in the prob-

lem parametric space (figure 3-2): (i) the parameterless edge-solutions, (ii) one-

parametric solution families of solutions for the faces of the parametric pyramid,

and (iii) representative examples of two-parametric solution trajectories within the

pyramid.

3.2.3.1 Normalised equations

Upon introducing the normalised coordinate 𝜉 = 𝑥/ℓ*, fracture opening Ω = 𝑤/𝑤*

and net pressure Π = 𝑝/𝑝*, the corresponding normalised governing equations in

different edge-scalings (table 3.3) are given in table 3.4.

Scaling Lubrication (2.7), (3.2), (2.9) Elasticity (2.3) Propagation (2.2)
𝜉 → 0

𝑚𝑘 Ω3 dΠ
d𝜉 = Ω+ 𝜒 𝜉1/2 + 𝜁3

∫︀ 𝜉
0

Π(𝑠)𝑑𝑠

2
√
𝜉−𝑠 Ω = 𝜉1/2

𝑚̃︀𝑚 Ω3 dΠ
d𝜉 = Ω+ 𝜉1/2 + 𝜓−3

∫︀ 𝜉
0

Π(𝑠)𝑑𝑠

2
√
𝜉−𝑠 Ω = 𝜒−1 𝜉1/2

̃︀𝑚𝑘 Ω3 dΠ
d𝜉 = 𝜒−1Ω+ 𝜉1/2 + 𝜁3

∫︀ 𝜉
0

Π(𝑠)𝑑𝑠

2
√
𝜉−𝑠 Π(𝜉) = 1

4𝜋

∫︀∞
0

𝑑Ω(𝑠)
𝜉−𝑠 Ω = 𝜉1/2

̃︀𝑚̃︀𝑜 Ω3 dΠ
d𝜉 = 𝜓−1Ω+ 𝜉1/2 +

∫︀ 𝜉
0

Π(𝑠)𝑑𝑠

2
√
𝜉−𝑠 Ω = 𝜁−1 𝜉1/2

̃︀𝑜𝑘 𝜁−3Ω3 dΠ
d𝜉 = 𝜒−1Ω+ 𝜉1/2 +

∫︀ 𝜉
0

Π(𝑠)𝑑𝑠

2
√
𝜉−𝑠 Ω = 𝜉1/2

Table 3.4: Normalised governing equations for the scaled opening Ω = 𝑤/𝑤* and net
pressure Π = 𝑝/𝑝* as a function of the scaled position 𝜉 = 𝑥/ℓ* in different scalings
(ℓ*, 𝑤*, 𝑝*) from table 3.3.

Normalised equations are parameterised by a pair of the non-dimensional num-

bers; which, depending on the used scaling, are either (𝜒, 𝜁) or (𝜓, 𝜁), as defined in

(3.4), (3.7) and (3.9).

When presenting the overall solution, we will make the most use of the𝑚𝑘−scaling,

as it is based on the transition between the near 𝑘 and the far 𝑚 field behaviour

of the general solution. In the limiting cases, when either one of the dissipation
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mechanisms or one of the storage mechanisms is negligible, corresponding to the

four different (one-parametric) faces of the parametric pyramid 𝑚̃︀𝑚̃︀𝑜𝑘, we will use

the scaling pertinent to the corresponding near-to-far transition. For example, the

zero-leak-in face 𝑚̃︀𝑚𝑘 (𝑄′ = 0) and the zero-leak-off face 𝑚̃︀𝑜𝑘 (𝐶 ′ ∝ 𝜎′
𝑜 = 0), are

both conveniently solved in the 𝑚𝑘−scaling with 𝜁 = 0 (parameterised by 𝜒) and

with 𝜒 = 0 (parameterised by 𝜁), respectively. The zero-storage face ̃︀𝑚̃︀𝑜𝑘 (𝐶 ′ = ∞),

is conveniently solved in the ̃︀𝑚𝑘−scaling with 𝜒 = ∞ (parameterised by 𝜁). Finally,

for the zero-toughness face 𝑚̃︀𝑚̃︀𝑜 (𝐾 ′ = 0) and since the 𝑚̃︀𝑜−edge solution does not

exist, we will use the ̃︀𝑚̃︀𝑜−scaling with 𝜁 = ∞ (parameterised by 𝜓 = 𝜒/𝜁).

To compute the numerical solution, we extend the numerical algorithm of Gara-

gash et al. [2011], their Appendix F, to accommodate for the distinctive features of

our model, which include the drastically different, non-singular near field compared

to the singular one in the Carter’s HF tip analysed in the previous work. The details

of the numerical algorithm are given in section 3 of the supplementary material of

paper [Kanin et al., 2020d].

3.2.3.2 Edge solutions

The 𝑚𝑘, ̃︀𝑚𝑘, ̃︀𝑚𝑚−edge solutions have been previously obtained by Garagash et al.

[2011], see their figure 3 for the opening and net pressure profiles in the respective

edge scalings. The solution for the new ̃︀𝑚̃︀𝑜−edge in its respective scaling is shown

in figure 3-3. For the latter, we estimate 𝐵̃︀𝑜 ≈ 3.322 · 𝑤̃︀𝑚̃︀𝑜/ℓ3/2̃︀𝑚̃︀𝑜 for the dimensional

coefficient 𝐵̃︀𝑜 of the ̃︀𝑜−vertex (𝑤 = 𝐵̃︀𝑜𝑥3/2) realised in the near-field of this edge.

As stipulated earlier, the edge solutions detail the transition with distance from the

tip between the corresponding pair of the vertex solutions describing the near and

the far field, respectively. For example, figure 3-3 shows such a transition between

the near, ̃︀𝑜−vertex, and the far, ̃︀𝑚−vertex, fields for the ̃︀𝑚̃︀𝑜−edge solution.

3.2.3.3 Face solutions

One-parametric families of solutions for the crack opening and net-pressure corre-

sponding to 𝑚̃︀𝑚𝑘, 𝑚̃︀𝑜𝑘, ̃︀𝑚̃︀𝑜𝑘 and 𝑚̃︀𝑚̃︀𝑜−faces of the parametric pyramid (figure

3-2) are shown in figures 3-4-3-7 in their preferred scalings, (a), and also in the
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Figure 3-3: Fracture opening (left) and net fluid pressure (right) profiles with distance
from the crack tip for the ̃︀𝑚̃︀𝑜−edge in the pertinent scaling (table 3.3). Vertex solutions
corresponding to the near and far-field asymptotes are also shown.

(a)

(b)

Figure 3-4: Zero-leak-in (𝜁 = 0) 𝑚̃︀𝑚𝑘−face solution for the fracture opening (left) and net
fluid pressure (right) profiles in the 𝑚𝑘−scaling for various values of the leak-off number 𝜒.
Solutions are shown in (a) the explicit form and (b) normalised by the 𝑚−vertex solution.
The ̃︀𝑚𝑘−, 𝑚̃︀𝑚−edges, and 𝑘, 𝑚 and ̃︀𝑚−vertices are also shown in (b).

52



Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

form normalised by the respective far-field asymptote, (b). In these plots, we also

show the vertex solutions, as correspond to the near, far, and (where appropriate)

intermediate fields of a given face solution.

The Carter’s, zero-leak-in (𝜁 = 0), 𝑚̃︀𝑚𝑘−face solution is shown in figure 3-4

for various values of the leak-off number 𝜒 from 𝜒 = 0 to 𝜒 = 100. The former

corresponds to the storage 𝑚𝑘−edge solution trajectory (𝑘 → 𝑚), while the latter

closely approximates the two-edge (̃︀𝑚𝑘 and 𝑚̃︀𝑚) solution trajectory marked by the

emergence of the intermediate ̃︀𝑚−vertex asymptote (𝑘 → ̃︀𝑚 → 𝑚). This face

solution has been obtained previously by Garagash et al. [2011] and shown here for

completeness.

The zero-leak-off (𝜒 = 0), 𝑚̃︀𝑜𝑘−face solution is shown in figure 3-5 in the

𝑚𝑘−scaling for various values of the leak-in number 𝜁 from 𝜁 = 0 to 𝜁 = 20. The

former, once again, corresponds to the storage 𝑚𝑘−edge solution, while the latter

signals large leak-in conditions. The solution is seen to evolve with increasing leak-in

number such that the region dominated by the near-field 𝑘−asymptote expands out-

wards from the fracture tip, while the transition to the far-field 𝑚−asymptote takes

place in increasingly abrupt fashion, as particularly evident for the crack opening

(figure 3-5 left). The net pressure near field behaviour is dominated by the nearly

constant (tip) value, which domain is seen to expand outward from the tip with

increasing leak-in number. For large values of 𝜁, the net pressure initially decreases

with the distance from the tip (signalling the dominance of leak-in and the reversed

direction of the fluid flow inside the crack channel there), passes through the mini-

mum, and eventually recover towards the zero value, as solution transitions towards

the far-field 𝑚−asymptote. The net-pressure minimum becomes increasingly abrupt

with increasing 𝜁, marking effective pinching of the fracture there and spatially cor-

relating with the maximum crack opening gradient. The crack is effectively closed

over the enlarging with 𝜁 region adjacent to the fracture tip, such that its effective

tip corresponds to the ‘pinching’ at the net-pressure minimum. No emergent in-

termediate ̃︀𝑜−vertex (3/2 opening slope) is evident with increasing 𝜁 (which would

have led to the two-edge limiting solution trajectory 𝑘 → ̃︀𝑜→ 𝑚), underscoring the

previous assertion that the 𝑚̃︀𝑜-edge solution does not exist in the limit 𝜁 ≫ 1 limit.
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(a)

(b)

Figure 3-5: Zero-leak-off (𝜒 = 0) 𝑚̃︀𝑜𝑘−face solution for the fracture opening (left) and
net fluid pressure (right) profiles in the 𝑚𝑘−scaling for various values of the leak-in number
𝜁: (a) explicit form and (b) normalised by the 𝑚−vertex solution. The 𝑘 and 𝑚−vertices
are also shown in (b).

The zero-storage (𝜒 = ∞), ̃︀𝑚̃︀𝑜𝑘−face solution is shown in figure 3-6 in thẽ︀𝑚𝑘−scaling for various values of the leak-in number 𝜁 from 𝜁 = 0 to 𝜁 = 10.

As previously, the former corresponds to the 𝑚𝑘−edge solution, while the increas-

ing leak-in leads to somewhat similar evolution of the solution to that within the

𝑚̃︀𝑜𝑘−face considered in the above (figure 3-5). I.e. increasing leak-in leads to the

expansion of the near 𝑘 field outward from the crack tip, seen as the nearly constant

net pressure (tip) value in figure 3-6a (left), with one important distinction from

the 𝑚̃︀𝑜𝑘−face in that the net-pressure is now monotonically increasing everywhere

along the crack, without developing a pinching point (the local minimum). As a

result, the intermediate ̃︀𝑜 behaviour is seen to emerge at large leak-in (𝜁 = 10),

indicating the convergence of the solution trajectory towards the two-edge (̃︀𝑜𝑘 and
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̃︀𝑚̃︀𝑜) trajectory, 𝑘 → ̃︀𝑜→ ̃︀𝑚.

The zero-toughness (𝜒 = ∞), 𝑚̃︀𝑚̃︀𝑜−face solution is shown in figure 3-7 for

various values of the effective-stress number 𝜓 = 𝜒/𝜁 from 𝜓 = 0.5 to 𝜓 = 100.

The small 𝜓 value solution is approaching the non-existing 𝑚̃︀𝑜−edge limit, which

is, as discussed previously in the context of approaching 𝑚̃︀𝑜−edge from within thẽ︀𝑚̃︀𝑜𝑘−face, characterised by the net pressure minimum and the crack pinching point.

Large 𝜓 solution approaches the limit of the two-edge (̃︀𝑚̃︀𝑜 and 𝑚̃︀𝑚) solution tra-

jectory ̃︀𝑜 → ̃︀𝑚 → 𝑚 which is realised over very wide range of distances from the

tip.

(a)

(b)

Figure 3-6: Zero-storage (𝜒 = ∞) ̃︀𝑚̃︀𝑜𝑘−face solution for the fracture opening (left) and
net fluid pressure (right) profiles in the ̃︀𝑚𝑘−scaling for various values of the leak-in number
𝜁: (a) explicit form and (b) normalised by the ̃︀𝑚−vertex solution. The ̃︀𝑚̃︀𝑜−, ̃︀𝑜𝑘−edges,
and 𝑘, ̃︀𝑚 and ̃︀𝑜−vertices are also shown in (b).
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(a)

(b)

Figure 3-7: Zero-toughness (𝜒 = ∞) 𝑚̃︀𝑚̃︀𝑜−face solution for the fracture opening (left)
and net fluid pressure (right) profiles in the 𝑚̃︀𝑜−scaling for various values of the leak-off-
to-leak-in ratio 𝜓 = 𝜒/𝜁: (a) explicit form and (b) normalised by the 𝑚−vertex solution.
The ̃︀𝑚̃︀𝑜−, 𝑚̃︀𝑚− edges, and ̃︀𝑜, 𝑚 and ̃︀𝑚−vertices are also shown in (b).

3.2.3.4 Examples of the general solution inside the parametric pyramid

For the presentation of particular solution trajectories within the parametric pyra-

mid (i.e. when 0 < 𝜒, 𝜁 < ∞), we choose several values of the leak-off parame-

ter: 𝜒 = 0.1, 1 and 10, and values of the leak-in parameter 𝜁 are selected so that

to maintain constant 𝑂(1) non-dimensional leak-off-to-leak-in ratio 𝜒/𝜁3 = 1, i.e.

𝜁 = 𝜒1/3 = 0.46, 1, 2.15, respectively. Fracture opening and net fluid pressure

profiles for the aforesaid cases are shown in the 𝑚𝑘−scaling in figure 3-8 and nor-

malised by the 𝑚-vertex solution in figure 3-9. The corresponding Carter’s leak-off

solutions (𝜁 = 0) are also shown by dashed black lines for comparison. Additionally,

in figure 3-9, we show the near-field (𝑘), the far-field (𝑚) and the intermediate-
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field (̃︀𝑚) vertex-solutions and their expansions (Section 3.2.2.3) by coloured dashed

lines in order to underscore the corresponding asymptotic domains and degree of

approximation for the solution afforded by the asymptotic expansions.

One of the distinguishing features of the obtained profiles as compared to the

Carter’s leak-off case is the finite value of the net fluid pressure at the fracture tip.

In the 𝑚𝑘−scaling, it is defined by the equation: 𝑝(0)/𝑝𝑚𝑘 = −(𝜒 + 1)/𝜁3 (table

3.2). From figures 3-8a, 3-9a one can find out that the departure of the solution

from the Carter’s one is small for 𝜒 = 0.1 case, but it becomes more considerable

for 𝜒 = 1 (figures 3-8b, 3-9b) and 𝜒 = 10 (figures 3-8c, 3-9c).

The applicability zone of the 𝑚−expansion shrinks when the value of the leak-off

parameter 𝜒 increases. At the same time, the coordinate range, where 𝑘−expansion

approximates the numerical solution, expands, and its length is much larger than

in the Carter’s leak-off case. Neither ̃︀𝑚 nor ̃︀𝑜−vertex solutions are realised as in-

termediate asymptotes in the solutions for the parametric choices in figures 3-8-3-9,

i.e. 𝜒 ≤ 10 and 𝜁 ≤ 2.15, since the conditions for these intermediate behaviours call

for 𝜒, 𝜓 = 𝜒/𝜁 ≫ 1 and 𝜒, 𝜁 ≫ 1, respectively (see (3.10) and (3.8)). However,

the intermediate ̃︀𝑚−expansion (3.18), (3.19) does appear to closely approximate

the numerical solution in the intermediate field in the case of 𝜒 = 10 (figure 3-9c)

signalling the emergent intermediate asymptotic behaviour. Indeed, this trend per-

sists in figure 3-10, where we show the normalised solutions for higher values of the

leak-off and leak-in numbers, 𝜒 = 100, 𝜁 = 4.64 and 𝜒 = 1000, 𝜁 = 10. We observe

that the solution is closely approximated by (i) the ̃︀𝑚̃︀𝑜𝑘−face solution (𝜒 = ∞,

see figure 3-6) and (ii) the 𝑚̃︀𝑚−edge solution matched over intermediate distances

from the tip. In other words, corresponding solution trajectories are approaching

the limit of 𝑘 → (̃︀𝑜) → (̃︀𝑚) → 𝑚 (see green-coloured trajectory in figure 3-2) where

parenthesised intermediate vertices are emergent within the considered solutions.

In order to further highlight the dependence of the general numerical solution on

the leak-in number 𝜁, we plot two series of solutions in figures 3-11 and 3-12 for fixed

values of the leak-off number, 𝜒 = 1 and 𝜒 = 100, respectively, and variable leak-in

number 𝜁. We confirm the significant departure of the solution from the zero leak-in

Carter’s case with increasing 𝜁, which can be in part attributed to (i) the near-field
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(a) 𝜒 = 0.1, 𝜁 = 0.46

(b) 𝜒 = 1, 𝜁 = 1

(c) 𝜒 = 10, 𝜁 = 2.15

Figure 3-8: Solution for the fracture opening (left) and net fluid pressure (right) shown in
the 𝑚𝑘−scaling for fixed ratio 𝜒/𝜁3 = 1 and different values of 𝜒: (a) 𝜒 = 0.1, 𝜁 = 0.46,
(b) 𝜒 = 1, 𝜁 = 1, (c) 𝜒 = 10, 𝜁 = 2.15. The corresponding Carter’s solutions (𝜁 = 0) are
shown by dashed lines for comparison.

behaviour (∼
√
𝑥 for the opening and constant value for the net pressure) reaching

further away from the fracture tip; and (ii) significant reduction in the net-pressure
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(a) 𝜒 = 0.1, 𝜁 = 0.46

(b) 𝜒 = 1, 𝜁 = 1

(c) 𝜒 = 10, 𝜁 = 2.15

Figure 3-9: Solution for the fracture opening (left) and net fluid pressure (right) from
figure 3-8 normalised by the far-field 𝑚-vertex solution. Near-, intermediate- (𝜒 = 10) and
far-field asymptotic expansions are shown by dashed coloured lines.

and crack opening in the intermediate-field with increasing 𝜁.
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Figure 3-10: Fracture opening and net fluid pressure profiles normalised by the 𝑚−vertex
solution for cases: 𝜒 = 100, 𝜁 = 4.64 and 𝜒 = 1000, 𝜁 = 10.

Figure 3-11: Fracture opening and net fluid pressure profiles with distance from
the crack tip in 𝑚𝑘−scalings (table 3.3) for 𝜒 = 1 and the set of 𝜁 values: 𝜁 =
0, 0.27, 0.43, 0.68, 1.08, 1.71, 2.71. By dashed line the Carter’s leak-off solution is plotted.

3.2.4 Discussion

3.2.4.1 Representative values of problem parameters

In order to frame the discussion of the obtained solutions to the hydraulic fracture

tip problem, we consider estimates for typical values/ranges of dimensional prob-

lem parameters, as pertain to the application of hydraulic fracturing in petroleum

reservoir stimulation field, and the corresponding ranges of the non-dimensional HF

tip parameters 𝜒 and 𝜁 (or their ratio 𝜒/𝜁3). We base parametric estimates on two

types of hydrocarbon reservoir rock: low-permeability formation and sandstone,

which typify the lower and higher limits of reservoir rock volumetric and filtration
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Figure 3-12: Fracture opening and net fluid pressure profiles with distance from the
crack tip in 𝑚𝑘−scalings (table 3.3) for 𝜒 = 100 and the set of 𝜁 values: 𝜁 =
0, 0.27, 0.58, 1.26, 2.71, 5.85, 12.6. By dashed line the Carter’s leak-off solution is plotted.

properties, respectively while having similar geomechanical properties. Specifically,

we take the following value ranges:

• for the geomechanical properties and stress - plane-strain elastic modulus 𝐸 ′ =

30 GPa, pore volume total compressibility 𝑐𝑡 = 1/GPa (water in pore space);

rock fracture toughness 𝐾𝐼𝑐 between 0.3 and 1 MPa·
√

m [Chandler et al.,

2016], and confining stress 𝜎𝑜 = 30 MPa;

• for the formation reservoir properties and pore pressure - permeability in the

range 𝑘 = 0.1÷ 100 mD [Li et al., 2016], porosity 𝜑 = 5÷ 25% [Magara, 1980,

Manger, 1963], and pore-pressure-to-stress-ratio 𝑝𝑜/𝜎𝑜 = 0.95 ÷ 0.4 [Walsh,

1981] - where the bounds correspond to a low-permeability formation and

sandstone type reservoir (the latter is assumed to be at the hydrostatic pore

pressure, while the former is overpressured)

• fluid characteristics: 𝜇 = 1 cP (water), 5 cP (slick water);

• fracture propagation velocity: 𝑉 between 0.1 and 1 m/s.

Figure 3-13 shows the parametric domain in the space of the HF tip non-

dimensional parameters 𝜒 and 𝜒/𝜁3 when the dimensional parameters are indepen-

dently varied within the ranges described in the above (e.g., allowing for overpres-

sured reservoirs with sandstone properties and normally pressured reservoirs with
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low-permeability formation properties, etc.). At each boundary of shown polygon

one or two dimensional parameters are varied while others remain fixed at their

lower or upper bound (as applicable). The sense of change of (𝜒, 𝜒/𝜁3) with an

increase of a given dimensional parameter are shown by arrows.

Figure 3-13: Parametric domain in terms of the non-dimensional leak-off number 𝜒 and
leak-off-to-leak-in ration 𝜒/𝜁3 representative of the field range estimates of the problem
parameters. Symbols show particular field cases (sandstone vs. low-permeability formation
and slick-water vs. water fracturing fluid) from table 3.5.

In addition, we consider four specific limiting parametric choices corresponding

to the overpressured / normally-pressured reservoir types (with parametric values

given by the lower/upper bounds of the assumed ranges), water / slick-water fluid

types, while taking 𝐾𝐼𝑐 = 1 MPa·
√

m and 𝑉 = 1 m/s. The corresponding four

parametric points (𝜒, 𝜁, 𝜒/𝜁3) are recorded in table 3.5 and shown by symbols on

the map of figure 3-13.

3.2.4.2 Asymptotic fields and fluid-exchange domains

Now we consider the applicability boundaries of various asymptotic fields (vertex

solutions) within the general HF tip solution. An asymptotic bound is defined

here as a distance from the fracture tip where the crack opening solution deviates

from the considered asymptote (e.g., 𝑘, 𝑚, etc. vertex) by 5%. Specifically, we
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Sandstone Low-permeability formation
HF tip parameter Water Slick water Water Slick water

𝜒 61 27.3 0.07 0.03
𝜁 1.8 4 0.03 0.06

𝜒/𝜁3 17 3.4 1.4 0.3
𝜆/ℓ𝑚𝑘 6 · 10−5 0.01 0.02 2.2
𝑥𝐶/ℓ𝑚𝑘 0.5 32 174 2 · 104

Table 3.5: Values of non-dimensional leak-off 𝜒, leak-in 𝜁 parameters, and of ratio 𝜒/𝜁3

for sandstone/low-permeability reservoir, and water/slick-water fluid, as specified in the
text. The corresponding solutions for the size of the near tip pore fluid circulation zone 𝜆
and the boundary 𝑥𝐶 of the Carter’s leak-off domain (𝑥 > 𝑥𝐶) are also shown normalised
by the 𝑚𝑘 transitional lengthscale (ℓ𝑚𝑘 ≈ 9 m for water and 0.4 m for slick-water).

refer to 𝑥0 as the upper boundary of the 𝑘−vertex asymptotic region 0 < 𝑥 < 𝑥0,

and 𝑥∞ as the lower boundary of the 𝑚−vertex asymptotic region 𝑥∞ < 𝑥 < ∞.

Similarly, we define the 5% asymptotic thresholds corresponding to the intermediatẽ︀𝑚, ̃︀𝑥∞ < 𝑥 < ̃︀𝑥0, and ̃︀𝑜, ̃︀𝑥𝑜∞ < 𝑥 < ̃︀𝑥𝑜0, asymptotes, whenever either of them is

realised in the solution.

Furthermore, to characterise the effect of the fluid-exchange on the hydraulic

fracture tip solution, we introduce the boundary 𝑥𝑆 of the ‘crack-storage-domain’

𝑥𝑆 < 𝑥 < ∞ where the rate of the cumulative fluid exchange between the fracture

and the rock 𝑞⊥ constitutes 5% of the crack storage 𝑤𝑉 , 𝑞⊥(𝑥𝑆) = 0.05 · 𝑤(𝑥𝑆)𝑉 .

In the complimentary domain 0 < 𝑥 < 𝑥𝑆, the fluid exchange is non-negligible,

and the relative significance of Carter’s leak-off and leak-in correction terms in the

expression for 𝑞⊥ can be gauged by their ratio as a function of the distance from the

tip,

PDI(𝑥) = − 1

𝜎′
𝑜

√
𝑥

∫︁ 𝑥

0

𝑝(𝑠)

2
√
𝑥− 𝑠

𝑑𝑠,

which we refer to as the pressure-dependent leak-off index (PDI). We can use this

function to evaluate the extent 𝜆 of the near tip pore fluid circulation zone in the

fracture, 0 < 𝑥 < 𝜆, (figure 3-1), for which

PDI(𝜆) = 1,

and the boundary 𝑥𝐶 of the far-field fracture domain dominated by Carter’s leak-

off, 𝑥𝐶 < 𝑥 < ∞, defined as distance from the tip where the cumulative leak-in
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correction is at 5% of the cumulative Carter’s leak-off, i.e.

PDI(𝑥𝐶) = 0.05.

Figure 3-14 shows maps of the asymptotic fields (left) and various fluid-exchange

domains (right) along the fracture (𝑥/ℓ𝑚𝑘) as a function of the leak-off number 𝜒

for four fixed values of the leak-off-to-leak-in ratio 𝜒/𝜁3 = 0.1, 1, 10, and 1000 (a-d).

For each of the above four cases, the corresponding range of 𝜒 representative of the

field conditions (see parametric domain in figure 3-13) is indicated by a thick-line

interval on the 𝜒-axis.

When considering the asymptotic vertex domains within the general solution

(figure 3-14 (left)), we observe that the near-field 𝑘 domain expands with increasing

leak-in (corresponding to the decreasing leak-off-to-leak-in ratio 𝜒/𝜁3 from the case

with 𝜒/𝜁3 = 1000, (d), to 𝜒/𝜁3 = 0.1, (a)) over most of the shown leak-off 𝜒

range (vertical axis in figure 3-14). In turn, the far-field 𝑚 domain dependence

on 𝜒/𝜁3 is non-monotonic, as it is seen to expand from the case with 𝜒/𝜁3 = 10,

(c), to 𝜒/𝜁3 = 1, (b), and then shrink to the case with 𝜒/𝜁3 = 0.1, (a). The

former expansion of the 𝑚 and 𝑘 domains with diminishing 𝜒/𝜁3 is likely linked

to diminishing leak-off effects and the disappearance of the intermediate Carter’s

leak-off ̃︀𝑚 behaviour, while the further 𝑚−domain contraction may be caused by

proliferation of the pressure-dependent leak-in effects at the smallest value of the

ratio considered here 𝜒/𝜁3 = 0.1, figure 3-14(a). (This can be further substantiated

by expanding size 𝜆 of the pore-fluid circulation zone with diminishing 𝜒/𝜁3, as

seen in figure 3-14 (right)). The intermediate field ̃︀𝑚−domain appears only in the

case 𝜒/𝜁3 = 1000, (d), when the pressure dependent leak-in effects are small, and,

additionally, the leak-off is large (𝜒 > 50). The intermediate viscosity-leak-in ̃︀𝑜
domain does not appear in all considered cases since the conditions of its existence

(𝜒, 𝜁 ≫ 1) are not met.

Let us now consider the effects of the fluid exchange between the fracture and the

rock onto the solution summarised in the PDI maps in figure 3-14 (right). We observe

that the crack-storage-dominated domain in the semi-infinite fracture (𝑥 > 𝑥𝑆)
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shrinks, or migrates further away from the tip, with both (i) increasing leak-off 𝜒

at fixed leak-off-to-leak-in ratio 𝜒/𝜁3 and (ii) increasing pressure-dependent leak-in

effects corresponding to diminishing value of the ratio 𝜒/𝜁3, from 𝜒/𝜁3 = 1000, (d),

to 𝜒/𝜁3 = 0.1, (a). The increasing influence of the leak-in with diminishing value of

𝜒/𝜁3 is also reflected by overall increase of the pressure-dependent-index PDI (hotter

colours in figure 3-14 (right)), corresponding growth of the near tip circulation zone

𝜆, and shrinkage, or migration away from the tip, of the Carter’s leak-off domain

(𝑥 > 𝑥𝐶).

The importance of the pressure-dependent fluid exchange effects to the propaga-

tion of a finite hydraulic fracture (for which we have provided the near tip solution

here) can be gauged by comparing the Carter’s leak-off boundary 𝑥𝐶 in the near

tip solution with the representative lengthscale ℓ of the finite fracture, e.g., the ra-

dius of a penny-shape hydraulic fracture or the half-length of a plane-strain KGD

fracture, etc. If 𝑥𝐶 ≪ ℓ, then the pressure-dependent fluid exchange effects are not

important on the scale of the finite parent fracture, as they are confined to the very

small near tip region effectively shielded by Carter’s leak-off domain from the rest

of the fracture. In this case, Carter’s leak-off model is an appropriate approxima-

tion. Otherwise, i.e. when 𝑥𝐶 comparable or larger than ℓ, the pressure-dependent

fluid exchange effects are prominent in the finite fracture propagation, and Carter’s

model should be abandoned. Since, the Carter’s bound 𝑥𝐶 = ℓ𝑚𝑘 𝜉𝐶(𝜒, 𝜁) is a dy-

namic lengthscale (i.e. it depends on the fracture tip propagation velocity 𝑉 = 𝑑ℓ/𝑑𝑡

via the tip lengthscale ℓ𝑚𝑘 and via the non-dimensional tip parameters 𝜒 and 𝜁, see

corresponding definitions in table 3.2 and equations (3.4) and (3.7)), the regime of

the fluid exchange (pressure-dependent vs. Carter’s), as it corresponds to the ratio

𝑥𝐶/ℓ may change during the propagation.

To underscore the above discussion, consider a particular example of the HF

propagation with 𝜒 = 𝜁 = 1, which, according to the parametric estimates in figure

3-13 and table 3.5, corresponds to a slick-water HF in a reservoir with intermedi-

ate values of hydraulic properties (roughly geometric mean of the ‘low-permeability

formation’ and ‘sandstone’ cases in table 3.5). Figure 3-14b indicates that 𝜆 ≈ ℓ𝑚𝑘

and 𝑥𝐶 ≈ 3 × 103 ℓ𝑚𝑘, while lengthscale ℓ𝑚𝑘 is in the range from 0.4 to 40 me-
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ters for the range of the propagation velocity 𝑉 from 1 to 0.1 m/s, respectively,

(𝐾𝐼𝑐 = 1 MPa×m 1/2 and 𝐸 ′ = 30 GPa). Thus, in this case, the tip circula-

tion cavity is of metric size, while the effects of the pressure-dependent fluid ex-

change are always prominent unless impractically long, kilometric in length and

larger (ℓ > 𝑥𝐶), fractures are considered. If we are now to consider the limiting

cases of the ‘low-permeability’ and ‘sandstone’ reservoirs from table 3.5, we observe

that similar conclusions about the general inadequacy of the Carter’s approximation

(which calls for unrealistically long fracture) to slick-water fracture apply. However,

in the case of a ‘low-permeability reservoir’, the fracture tends to propagate in the

storage-dominated regime (𝜒 < 0.1), which allows one to reasonably neglect the

fluid exchange altogether.

3.2.4.3 Some limitations of the model

3.2.4.4 1D pore pressure diffusion

Our model of the pressure-dependent leak-off is hinged on the assumption of the 1D

pore pressure diffusion in the permeable rock surrounding the fracture. As pointed

out by Detournay and Garagash [2003], the 1D assumption is approximately valid

when the pore pressure perturbation introduced by fracturing is contained to a

boundary layer abating the fracture that is thin compared to the characteristic

lengthscale of fluid pressure change along the part of the fracture where the fluid

exchange process is important. Taking for the latter the size 𝜆 of the near-tip pore

fluid circulation zone, and for the former the corresponding thickness of the pore

pressure boundary layer
√
𝑐𝑡 built up over the time 𝑡 = 𝜆/𝑉 it takes for the fracture

tip to propagate distance 𝜆, the 1D condition reads

𝜆≫ ℓ𝑑, ℓ𝑑 = 𝑐/𝑉.

Detournay and Garagash [2003] refer to this condition as the ‘large velocity limit’ of

the circulation cavity problem in reference to the inverse dependence of the ‘diffusion

lengthscale’ ℓ𝑑 on the fracture propagation velocity.

When evaluating the above 1D condition, it is convenient to express diffusion
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Figure 3-14: Regime maps showing spatial domains of the fracture dominated by the
vertex solutions (left) and the Pressure-Dependent Leak-off Index (PDI) maps with several
characteristic boundaries of the fluid exchange process (𝜆, ℓ𝑑, 𝑥𝐶 , 𝑥𝑆) (right) as a function
of the leak-off number 𝜒 for the fixed values of leak-off-to-leak-in-ratio 𝜒/𝜁3 = 0.1 (a), 1
(b), 10 (c), and 1000 (d). (The 𝜒-ranges representative of the field fracture are highlighted
on the axis).

lengthscale ℓ𝑑 in the 𝑚𝑘−scaling, ℓ𝑑/ℓ𝑚𝑘 = 𝑐𝐸 ′4𝜇′2𝑉/𝐾 ′6 = (𝜋/16)(𝑆𝐸 ′)−2 𝜁6. In

the latter, the non-dimensional product 𝐸 ′𝑆 of the rock elastic modulus 𝐸 ′ and rock
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pore space storativity 𝑆 = 𝜑𝑐𝑡 is weakly dependent on the rock type and can be

estimated based on the previously discussed typical values of these parameters as

𝐸 ′𝑆 ∼ 3, resulting in ℓ𝑑/ℓ𝑚𝑘 ∼ 0.01𝜁6. This estimate is shown in the maps in figures

3-14(right) where it can be directly compared to the circulation zone length 𝜆/ℓ𝑚𝑘.

We observe that 1D fluid-exchange condition is satisfied for all considered values of

𝜒 in the case 𝜒/𝜁3 = 0.1, figure 3-14(a), for 𝜒 . 0.1 in the case 𝜒/𝜁3 = 1, figure

3-14(b), and finally, for 𝜒 . 5 in the case 𝜒/𝜁3 = 10, figure 3-14(c). In other words,

the 1D approximation of the pore pressure diffusion is more readily justified when

the pressure-dependent leak-in effects are more prominent (i.e. smaller values of the

leak-off-to-leak-in ratio 𝜒/𝜁3 and correspondingly larger circulation zone size 𝜆).

3.2.4.5 Sameness of the formation and fracturing fluids

The assumption that the formation and fracturing fluids have identical properties is

a restrictive one, in that it limits practical applications of this analysis (as a result,

we focused here on the slick-water fracturing parametric examples, as the latter vis-

cosity ∼ 5 cP may be similar to that of the light oil). The future work will consider

relaxing this assumption in order to extend the analysis to conventional fracturing

fluids (polymeric gells) with the viscosity orders of magnitude larger than that of

the formation fluid, and possibly to the ‘cake building’ due to leak-off (i.e. deposi-

tion of fracturing fluid solids and polymers into a thin, semi-solid, low-permeability

‘cake’ at the fracture wall). Kovalyshen et al. [2013] provide a workable theoretical

framework to include these effects by distinguishing between the pore and fractur-

ing fluid viscosities in the fluid flow in the fracture and tracking the ‘cake’ build-up,

while reasonably assuming that the leaked-off filtrate (i.e. the base of the fracturing

fluid when stripped from the solids and polymers) displacing the pore fluid in the

permeable rock abating the fracture has properties identical to that of the formation

pore fluid.

3.2.4.6 Potential vaporisation of the pore fluid at the fracture tip

The near tip region of the fracture dominated by the pore fluid leak-in corresponds

to the absolute fluid pressure below the ambient field value 𝑝𝑜. Specifically at the
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tip, we have (table 3.2)

𝑝𝑓 (0) = 𝑝𝑜 − ∆𝑝und, ∆𝑝und =
𝐾 ′𝑉 1/2

𝐸 ′𝑄′ =
𝜎′
𝑜

𝜒
,

where ∆𝑝und corresponds to the undrained value of the pressure drop. The fluid

will vaporise and form so-call ‘fluid lag’ adjacent to the fracture tip if pressure

drops below the saturated vapour value. Taking the latter to be small compared to

the reservoir ambient pore pressure value, the incipient fluid lag condition requires

𝑝𝑜 < ∆𝑝und, which in view of (3.2.4.6) can be rewritten in terms of the leak-off

number

fluid lagging: 𝜒 < 𝜒vapour =
𝜎′
𝑜

𝑝𝑜
=
𝜎𝑜
𝑝𝑜

− 1.

The above threshold value of 𝜒 can be estimated as 𝜒vapour ≈ 1.5 for the normally-

pressurised and ≈ 0.05 for the overpressured reservoirs. The normally-pressurised

reservoir value of 𝜒vapour is indicated on the parametric maps of figure 3-14. The

vaporisation at the fracture tip, when predicted, does not necessarily invalidate the

considered solutions, as long as the vapour-filled region (fluid lag) remains small

compared to the predicted circulation zone size 𝜆.

3.3 A radial hydraulic fracture

3.3.1 Model formulation

The present section outlines the problem formulation for a radial hydraulic fracture

with the pressure-dependent fluid exchange between the crack channel and ambi-

ent permeable reservoir. The schematics of the radial fracture model is shown in

Figure 3-15a. Most of the model assumptions and governing equations provided by

Section 2.2 remain the same, and we will not repeat them for brevity. However, the

fluid exchange mechanism is modified, and we will focus on it in the current part of

the thesis.

The distinctive feature of the proposed model is a dependence of the fluid ex-

change between the fracture and ambient permeable rock on the fluid pressure in-
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(a)

(b)

Figure 3-15: A radial fracture model (a) with the pressure-dependent fluid exchange and
its near-tip region (b) described by a semi-infinite fracture model.

side the fracture. For the simplification of the fluid exchange description, firstly, we

suppose that the pore and fracturing fluids are Newtonian liquids with the same

properties, i.e., viscosity 𝜇 and compressibility 𝑐𝑡 are identical; secondly, we apply a

one-dimensional approach. The fluid exchange rate 𝑔(𝑟, 𝑡) is coupled with the frac-

ture propagation history and the history of fluid pressure. In addition, it depends

on pore fluids properties, porosity 𝜑𝑟, reservoir permeability 𝑘, and the far-field pore

fluid pressure 𝑝𝑜. By including the pressure dependence of the fluid exchange, we

potentially allow pore fluid to inflow into the fracture in the near-tip region under

the condition that the fluid pressure 𝑝𝑓 (𝑟, 𝑡) becomes less than the pore pressure 𝑝𝑜

in that zone. The pore fluid volume flowed into the fracture eventually leaks out

from the fracture. This leads to the establishment of the circulation zone, in which

the total leak-in and leak-off are balanced. Since the pore fluid is allowed to flow into

dynamically depressurised fracture tip region, the fluid and fracture fronts coincide,

i.e. there is no near-tip lag filled by saturated vapour [Garagash and Detournay,

2000].

Further, we move on to the discussion of the alterations in the system of gov-

erning equations given in Section 2.2.2. In the current model, the problem solution

consisting of radius dynamics 𝑅(𝑡), opening 𝑤(𝑟, 𝑡) and net pressure 𝑝(𝑟, 𝑡) profiles

depends on time 𝑡, distance from the source 𝑟, injection rate 𝑄0, and the expanded

set of material parameters:

𝐸 ′ =
𝐸

1 − 𝜈2
, 𝐾 ′ = 4

√︂
2

𝜋
𝐾𝐼𝑐, 𝑀 ′ = 12𝜇, 𝑄′ =

2𝑘

𝜇
√
𝜋𝑐
, 𝐶 ′ = 𝑄′𝜎′

𝑜, (3.20)
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

where 𝑄′ is the pressure-dependent leak-off (PDL) coefficient (𝑐 is the diffusivity

coefficient defined as 𝑐 = 𝑘/(𝜑𝑟𝑐𝑡𝜇)), and 𝐶 ′ is Carter’s leak-off coefficient (𝜎′
𝑜 =

𝜎𝑜 − 𝑝𝑜 is the effective confining stress).

We define the local fluid exchange rate 𝑔(𝑟, 𝑡) corresponding to the pressure-

dependent leak-off as:

𝑔(𝑟, 𝑡) =
𝐶 ′√︀

𝑡− 𝑡0(𝑟)
+𝑄′

∫︁ 𝑡

−∞

𝜕

𝜕𝑠
[𝐻(𝑠− 𝑡0(𝑟))𝑝(𝑟, 𝑠)]

𝑑𝑠√
𝑡− 𝑠

. (3.21)

Here 𝐻(𝑥) is Heaviside step function, 𝑡0(𝑟) is the inverse radius function: 𝑡0(𝑟) =

𝑅−1(𝑡). As can be seen from the equation (3.21), the fluid exchange process is

controlled by two coefficients 𝐶 ′ and 𝑄′. The Carter’s leak-off coefficient 𝐶 ′ is

commonly utilised in many hydraulic fracturing models. The PDL coefficient 𝑄′

was introduced in Section 3.2, and it scales the level of the fluid exchange pressure

dependence, i.e. the departure from Carter’s law given by the first term in equation

(3.21). Derivation of (3.21) is provided by Kanin et al. [2020c] in Appendix A.

Using the continuity equation (2.13), Poiseuille’s law (2.15), and the expression

(3.21) for the fluid exchange rate, we obtain the Reynolds equation:

𝜕𝑤

𝜕𝑡
=

1

𝑀 ′
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟𝑤3𝜕𝑝

𝜕𝑟

)︂
− 𝐶 ′√︀

𝑡− 𝑡0(𝑟)
−𝑄′

∫︁ 𝑡

−∞

𝜕

𝜕𝑠
[𝐻(𝑠− 𝑡0(𝑟))𝑝(𝑟, 𝑠)]

𝑑𝑠√
𝑡− 𝑠

.

(3.22)

Finally, we should write out the formula for 𝑉fluid−exchange term taken part in the

global fluid balance equation (2.20):

𝑉fluid−exchange = 4𝜋𝐶 ′
∫︁ 𝑅

0

𝑟
√︀
𝑡− 𝑡0(𝑟)𝑑𝑟⏟  ⏞  

𝑉C

+ 2𝜋𝑄′
∫︁ 𝑅

0

𝑟𝑑𝑟

∫︁ 𝑡

𝑡0(𝑟)

𝑝(𝑟, 𝑠)𝑑𝑠√
𝑡− 𝑠⏟  ⏞  

𝑉PDL

. (3.23)

One can notice that the volume 𝑉fluid−exchange is comprised of Carter’s cumulative

leaked volume 𝑉C and PDL volume correction 𝑉PDL.
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3.3.2 Summary of the fracture tip model with pressure-dependent

fluid exchange

It is known that the square-root asymptotic behaviour (2.17) for the fracture open-

ing is valid only in a small region adjacent to the fracture front [Garagash and

Detournay, 2000, Garagash et al., 2011]. In fracture simulators, the numerical grid

is typically not sufficiently fine to capture the square-root asymptote along the tip

element. To deal with the problem and to increase the accuracy of the numerical

calculations, the fracture tip models are utilised, since they allow us to describe frac-

ture characteristics near its front accurately [Peirce and Detournay, 2008, Dontsov

and Peirce, 2017c, Zia and Lecampion, 2020].

Schematics of the fracture tip model with the pressure-dependent fluid exchange

is presented in figure 3-15b. The detailed description of this model is provided

in Section 3.2, while here, we resemble the main findings relevant to the current

study for the completeness. Fracture tip model is represented by a semi-infinite

fracture propagating with a constant velocity 𝑉 . Since the propagation velocity is

constant, it is possible to convert the whole problem to a stationary form in which all

characteristics of the semi-infinite fracture, namely, opening 𝑤𝑎, net fluid pressure

𝑝𝑎 and fluid exchange rate 𝑔𝑎, depend only on the distance 𝑥 from the crack front

and do not depend on time explicitly (see Figure 3-15b). In addition to the distance

𝑥, the near-tip region solution is influenced by the propagation velocity 𝑉 and the

set of the dimensional parameters defined in (3.20) which we denote here as 𝒬.

A distinguishing feature of the near-tip region model with the pressure-dependent

fluid exchange is the presence of the circulation zone (see Figure 3-15b). It is a region

near the crack front along which the cumulative fluid exchange rate is equal to zero:

the pore fluid flows into this zone near the tip and afterwards leaks-off. Since the

fracture tip model is steady-state, the circulation zone length is fixed.

The system of governing equations for a semi-infinite hydraulic fracture with the

pressure-dependent fluid exchange consists of the following relations:

• Elasticity: 𝑝𝑎(𝑥) = 𝐸′

4𝜋

∫︀∞
0

𝑑𝑤𝑎(𝑠)
𝑑𝑠

𝑑𝑠
𝑥−𝑠 ;
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

• Lubrication: 𝑤𝑎𝑣𝑎 = 𝑤𝑎𝑉+𝑞⊥, 𝑞⊥ =
∫︀ 𝑥
0
𝑔𝑎(𝑠)𝑑𝑠 = 2𝐶 ′

√
𝑉 𝑥+𝑄′

√
𝑉
∫︀ 𝑥
0

𝑝𝑎(𝑠)√
𝑥−𝑠𝑑𝑠.

The fluid exchange rate 𝑔𝑎(𝑥) and its cumulative value 𝑞⊥(𝑥) are derived in

Appendix A of the paper [Kanin et al., 2020c]. Note that the definitions of

the PDL coefficient 𝑄′ and Carter’s coefficient 𝐶 ′ are different from those in

Section 3.2 by a factor of two;

• Poiseuille’s law: 𝑣𝑎 = 𝑤2
𝑎

𝑀 ′
𝑑𝑝𝑎
𝑑𝑥

;

• Crack propagation: 𝑤𝑎 = 𝐾′

𝐸′

√
𝑥, 𝑥→ 0.

To reduce the number of parameters, the solution is written in terms of nor-

malised variables. In particular, we utilise the so-called 𝑚𝑘−scaling, so that:

𝜉 =
𝑥

ℓ𝑚𝑘
, Ω𝑎 =

𝑤𝑎
𝑤𝑚𝑘

, Π𝑎 =
𝑝𝑎
𝑝𝑚𝑘

. (3.24)

The characteristic length, fracture width and fluid pressure scales are set accord-

ing to the following equations [Garagash et al., 2011]:

ℓ𝑚𝑘 =
ℓ3𝑘
ℓ2𝑚

=
𝐾 ′6

𝐸 ′4𝑉 2𝑀 ′2 , 𝑤𝑚𝑘 =
ℓ2𝑘
ℓ𝑚

=
𝐾 ′4

𝐸 ′3𝑉𝑀 ′ , 𝑝𝑚𝑘 = 𝐸 ′ ℓ𝑚
ℓ𝑘

=
𝐸 ′2𝑉𝑀 ′

𝐾 ′2 ,

(3.25)

where we utilise the complimentary length scales ℓ𝑘 = (𝐾 ′/𝐸 ′)2 and ℓ𝑚 = 𝑉𝑀 ′/𝐸 ′.

In the normalised variables, solution for the problem of the semi-infinite fracture

depends on the dimensionless coordinate 𝜉 and two dimensionless numbers:

𝜒 =
2𝐶 ′𝐸 ′

𝐾 ′
√
𝑉
, 𝜁 =

𝐸 ′

𝐾 ′

(︁
𝑀 ′𝑄′

√
𝑉
)︁1/3

, (3.26)

where the first parameter 𝜒 is related to dimensionless leak-off and the second pa-

rameter 𝜁 reflects the normalised strength of PDL effects.

The near-tip solution described above is used as a propagation condition of the

parent (finite) hydraulic fracture in this study in lieu of (2.17). The near-tip be-

haviour for the finite fracture can then be formulated as:

𝑤(𝑟, 𝑡, 𝑄0,𝒬) = 𝑤𝑎(𝑅− 𝑟, 𝑉,𝒬) = 𝑤𝑚𝑘 · Ω𝑎

(︂
𝑅− 𝑟

ℓ𝑚𝑘
, 𝜒, 𝜁

)︂
, 𝑅− 𝑟 ≪ 𝑅, (3.27)
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where the dimensionless function Ω𝑎 is known from the solution of the semi-infinite

fracture problem described above.

We also utilise the fracture-tip model for calculating the cumulative fluid ex-

change rate for the fracture tip element. For this purpose, we express leak-off flux

𝑞⊥(𝑥) in terms of the dimensionless function that comes from the solution of the

semi-infinite fracture problem as:

𝑞⊥(𝑅− 𝑟, 𝑉,𝒬) = 𝑤𝑚𝑘𝑉 · Υ

(︂
𝑅− 𝑟

ℓ𝑚𝑘
, 𝜒, 𝜁

)︂
,

Υ(𝜉, 𝜒, 𝜁) = 𝜒
√︀
𝜉 + 𝜁3

∫︁ 𝜉

0

Π𝑎(𝑠, 𝜒, 𝜁)𝑑𝑠√
𝜉 − 𝑠

, 𝑅− 𝑟 ≪ 𝑅. (3.28)

In the above equation, the dimensionless function Υ is provided by the tip solution,

𝑤𝑚𝑘 is the scale for the fracture width defined in (3.25), while the tip velocity

𝑉 = 𝑑𝑅/𝑑𝑡 is obtained from the solution of the coupled problem for the whole

fracture.

3.3.3 Numerical implementation

In the current section, we outline the main features of the numerical algorithm for

calculating the general solution for the radial fracture model. The implemented

algorithm is similar to the scheme used in Dontsov [2016a].

The algorithm can be divided into several stages:

• discretisation of the system of governing equations specified in Section 3.3.1;

• description of the tip element using the tip asymptotic solution outlined in

Section 3.3.2;

• combination of the discretised equations into a single system of equations;

• numerical solution of the system of equations.

To proceed with the numerical solution, we first utilise the normalised spatial

coordinate 𝜌 = 𝑟/𝑅(𝑡). Since 𝜌 depends on time, it is necessary to rewrite the time
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and spatial derivatives in terms of 𝜌 and 𝑡:

𝜕

𝜕𝑡

⃒⃒⃒⃒
𝑟

=
𝜕

𝜕𝑡

⃒⃒⃒⃒
𝜌

− 𝜌𝑉 (𝑡)

𝑅(𝑡)

𝜕

𝜕𝜌

⃒⃒⃒⃒
𝑡

,
𝜕

𝜕𝑟

⃒⃒⃒⃒
𝑡

=
1

𝑅(𝑡)

𝜕

𝜕𝜌

⃒⃒⃒⃒
𝑡

, (3.29)

where we used the following expressions for the time and spatial derivatives of nor-

malised distance: 𝜕𝜌
𝜕𝑡

= −𝜌𝑉 (𝑡)
𝑅(𝑡)

, 𝜕𝜌
𝜕𝑟

= 1
𝑅
.

Further, we rewrite the elasticity (2.11) and Reynolds (3.22) equations by ac-

counting for the derivatives transformation (3.29):

• Elasticity:

𝑝(𝜌, 𝑡) = − 𝐸 ′

2𝜋𝑅(𝑡)

∫︁ 1

0

𝐺 (𝜌, 𝑠)
𝜕𝑤(𝑠, 𝑡)

𝜕𝑠
𝑑𝑠, (3.30)

where the integral kernel 𝐺(𝜌, 𝑠) is given by equation (2.12);

• Reynolds:

𝜕𝑤

𝜕𝑡
− 𝑉 (𝑡)

𝑅(𝑡)
𝜌
𝜕𝑤

𝜕𝜌
=

1

𝑀 ′𝑅(𝑡)2
1

𝜌

𝜕

𝜕𝜌

(︂
𝜌𝑤3𝜕𝑝

𝜕𝜌

)︂
− 𝐶 ′√︀

𝑡− 𝑡0(𝜌𝑅)
−

−𝑄′
∫︁ 𝑡

−∞

𝜕

𝜕𝑠
[𝐻(𝑠− 𝑡0(𝜌𝑅(𝑡)))𝑝(𝜌, 𝑠)]

𝑑𝑠√
𝑡− 𝑠

+

+𝑄′
∫︁ 𝑡

−∞

𝜌𝑉 (𝑠)

𝑅(𝑠)

𝜕[𝐻(𝑠− 𝑡0(𝜌𝑅(𝑡)))𝑝(𝜌, 𝑠)]

𝜕𝜌
· 𝑑𝑠√

𝑡− 𝑠
. (3.31)

The discretisation involves setting up the mesh for time and spatial coordinate.

The time is discretised on a logarithmic scale using 𝐾 steps as: 𝑡𝑖 = 𝑡min+10𝑖Δ𝑇 , 𝑖 =

1, . . . , 𝐾, where ∆𝑇 = log10(𝑡max/𝑡min)/𝐾, while 𝑡min corresponds to the initial con-

dition time, and 𝑡max is the maximum simulation time. The spatial coordinate 𝜌 is

divided linearly into 𝑁 segments with length ∆𝜌 = 1/𝑁 . The spatial mesh nodes

are located in the middle of the segments: 𝜌𝑗 = (𝑗 − 0.5)∆𝜌, 𝑗 = 1, . . . , 𝑁.

With regard to the problem variables, the radial fracture radius 𝑅(𝑡) and the

propagation velocity 𝑉 (𝑡) are taken as piecewise constant functions of time, i.e.

𝑅(𝑡) = 𝑅𝑖, 𝑉 (𝑡𝑖) = 𝑉𝑖 for 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖], 𝑖 = 1, . . . , 𝐾. Similarly, the crack opening

𝑤(𝜌, 𝑡) and net fluid pressure 𝑝(𝜌, 𝑡) are discretised as piecewise constant functions

of time and normalised coordinate: 𝑤(𝜌, 𝑡) = 𝑤𝑖𝑗, 𝑝(𝜌, 𝑡) = 𝑝𝑖𝑗 for 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖], 𝑖 =

1, . . . , 𝐾 and 𝜌 ∈ [𝜌𝑗−1/2, 𝜌𝑗+1/2], 𝑗 = 1, . . . , 𝑁 , where 𝜌𝑗−1/2 = 𝜌𝑗 − ∆𝜌/2, 𝜌𝑗+1/2 =
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

𝜌𝑗+∆𝜌/2 are boundaries of the segment with sequence number 𝑗. We also introduce

w𝑖 as the column with fracture width values in each spatial segment for the time

interval 𝑖 and p𝑖 as the column containing the net fluid pressure values.

Let us start with the discretised form of the elasticity equation (3.30):

p𝑖 =
C𝐸 ′

𝑅𝑖

w𝑖, 𝐶𝑚𝑛 =
1

2𝜋

[︂
𝐺(𝜌𝑚, 𝜌𝑛+1/2)−𝐺(𝜌𝑚, 𝜌𝑛−1/2)

]︂
;𝑚,𝑛 = 1, . . . , 𝑁, 𝑖 = 1, . . . , 𝐾,

(3.32)

where C is the dimensionless elasticity matrix for the problem.

Further, we move on to the discretisation of the Reynolds equation (3.31).

Firstly, we perform the integration over the time interval 𝑖 : [𝑡𝑖−1, 𝑡𝑖], and after-

wards, we average the Reynolds equation over the circle 𝒜𝜌 with boundary 𝒞𝜌:

𝑟 ∈ [𝜌𝑗−1/2, 𝜌𝑗+1/2], 𝜃 ∈ [0, 2𝜋]. The averaging is carried out in the following way:

2𝜋
∫︀ 𝜌𝑗+1/2

𝜌𝑗−1/2
𝜌𝑓(𝜌)𝑑𝜌

𝜋(𝜌2𝑗+1/2 − 𝜌2𝑗−1/2)
≈

∫︀ 𝜌𝑗+1/2

𝜌𝑗−1/2
𝜌𝑓(𝜌)𝑑𝜌

𝜌𝑗∆𝜌
. (3.33)

By applying the averaging procedure, the discretised system of equations becomes

w𝑖 −w𝑖−1 = Bw𝑖 +
(︁
A(w𝑖) + Ŝ𝑖

)︁
p𝑖 + S𝑖, 𝑖 = 1, . . . , 𝐾. (3.34)

see Appendix B of the paper [Kanin et al., 2020c] for details. Here the term on the

left hand side represents the time derivative of the width, the matrix B captures

the term proportional to the tip velocity originating from using the moving mesh,

the matrix A describes the flux term, the vector S𝑖 contains all the source and leak-

off terms that are independent of the solution at the time instant 𝑡𝑖 (i.e. the fluid

injection, Carter’s leak-off, history of the pressure-dependent fluid exchange except

for the current time step), and the matrix Ŝ𝑖p𝑖 signifies the pressure-dependent part

of leak-off that includes the pressure value at the current time step. The presented

numerical scheme (3.34) differs from that for Carter’s leak-off case [Dontsov, 2016a]

by the presence of the term Ŝ𝑖p𝑖 and the components of S𝑖 that are related to

PDL. Expressions for the matrices A,B,S𝑖, Ŝ𝑖 are given by Kanin et al. [2020c] in

Appendix B.

Equation (3.34) has a special form for the tip element since the propagation
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condition is imposed there. In particular, the penultimate element (i.e. 𝑗 = 𝑁 − 1)

is used to compute the fracture tip propagation velocity 𝑉 . With the reference to

figure 3-16 and results in section 3.3.2, the propagation velocity for the considered

time interval 𝑖 is given implicitly as

𝑤𝑖𝑁−1 = 𝑤𝑎

(︂
3

2
∆𝜌𝑅𝑖, 𝑉𝑖,𝒬

)︂
, (3.35)

where 𝑤𝑎 is the tip asymptotic solution for the fracture width (see previous section),

the distance from the fracture front is taken to the middle of the 𝑁−1th element,

and the set 𝒬 specifies material parameters. Equation (3.35) allows us to compute

propagation velocity for a given value of width 𝑤𝑖𝑁−1. Once the velocity is computed,

the radius is updated as:

𝑅𝑖 = 𝑅𝑖−1 + 𝑉𝑖∆𝑡, ∆𝑡 = 𝑡𝑖 − 𝑡𝑖−1, (3.36)

where ∆𝑡 is the 𝑖th time step. In addition, since the tip asymptotic solution is

imposed via the 𝑁−1th element, the fracture width in the tip, i.e. 𝑁th element,

should follow the same tip asymptote as well. As a result, width of the tip element

can be computed by integration of the width solution as

𝑤𝑖𝑁 =
1

𝑅𝑖∆𝜌

∫︁ Δ𝜌𝑅𝑖

0

𝑤𝑎(𝑠, 𝑉𝑖,𝒬)𝑑𝑠. (3.37)

Note that to compensate for the fact that 𝑤𝑖𝑁 is not an independent parameter

anymore, pressure at the tip, i.e. 𝑝𝑖𝑁 is treated as an unknown.

It is also necessary to estimate the cumulative fluid exchange volume along the

tip element which we denote as 𝑉 𝑁
fluid−exchange. This quantity is calculated with the

help of the tip asymptotic solution via equation (3.28):

𝑉 𝑁
fluid−exchange = ∆𝑡 · 2𝜋

∫︁ 𝑅𝑖

𝑅𝑖(1−Δ𝜌)

𝑠𝑔𝑎(𝑅𝑖 − 𝑠)𝑑𝑠 ≈ ∆𝑡 · 2𝜋𝜌𝑁𝑅𝑖𝑞⊥(∆𝜌𝑅𝑖) =

= ∆𝑡 · 2𝜋𝜌𝑁𝑅𝑖

[︂
𝐾 ′4

𝐸 ′3𝑀 ′ · Υ

(︂
∆𝜌𝑅𝑖

ℓ𝑚𝑘
, 𝜒𝑖, 𝜁𝑖

)︂
+ 2𝑄′

√︀
𝑉𝑖
√︀

∆𝜌𝑅𝑖𝛿𝑝
𝑖

]︂
.

It is known that the validity of the pressure asymptote is smaller than that for the
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width. Therefore we introduce a correction to the pressure 𝛿𝑝𝑖:

𝛿𝑝𝑖 = 𝑝𝑖𝑁−1 − 𝑝𝑎

(︂
3

2
∆𝜌𝑅𝑖, 𝑉𝑖,𝒬

)︂
= 𝑝𝑖𝑁−1 −

𝐸 ′2𝑉𝑖𝜇
′

𝐾 ′2 · Π𝑎

(︂
3

2

∆𝜌𝑅𝑖

ℓ𝑚𝑘
, 𝜒𝑖, 𝜁𝑖

)︂
,

which results in an additional component in the cumulative fluid exchange rate.

Note that the volume 𝑉 𝑁
fluid−exchange is related to the column element [S𝑖]𝑁 via the

following relation: [S𝑖]𝑁 = −𝑉 𝑁
fluid−exchange/(2𝜋𝜌𝑁∆𝜌𝑅2

𝑖 ). Appendix B of [Kanin

et al., 2020c] summarises the details.

Figure 3-16: Schematics of the discretised near-tip region of a hydraulic fracture.

To summarise, the numerical solution for a radial hydraulic fracture is governed

by the nonlinear system of 𝑁 equations. Since the width of the tip segment is

governed by the specific model within the frame of the numerical algorithm, it is

convenient to split the variables into the channel (internal) elements and the tip

element [Peirce and Detournay, 2008], so that

w𝑖 = [w𝑖
𝑐, 𝑤

𝑖
𝑁 ], p𝑖 = [p𝑖𝑐, 𝑝

𝑖
𝑁 ], (3.38)

where the arrays w𝑖
𝑐 and p𝑖𝑐 denote the width and pressure for all the internal nodes

(i.e. 𝑗 = 1, . . . , 𝑁 − 1), while 𝑤𝑖𝑁 and 𝑝𝑖𝑁 are their counterparts at the tip (i.e.

𝑗 = 𝑁). Further, the system of governing equations is linearised, and it is solved for

w𝑖
𝑐 and 𝑝𝑖𝑁 by an application of a standard solver for the system of linear equations

and the fixed point iteration method.

3.3.4 Results and discussion

This section focuses on the implications of using the pressure-dependent leak-off in a

hydraulic fracture model. In particular, a general numerical solution for the problem

of a radial fracture is computed for different sets of parameters and behaviour of
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the solution in the dimensionless parametric space is investigated. In addition, the

radial crack characteristics are compared to the corresponding solution that utilises

Carter’s leak-off model, thus, allowing one to understand better the level of influence

of the pressure-dependent leak-off.

The main characteristics of the radial fracture that are used for the comparison

in this study are the width value at the wellbore 𝑤(0, 𝑡), net fluid pressure in the

middle of the fracture 𝑝(𝑅(𝑡)/2, 𝑡), its radius 𝑅(𝑡), and efficiency 𝜂(𝑡) defined as a

ratio between the fracture volume and the volume injected into the fracture:

𝜂(𝑡) =
𝑉crack
𝑉inj

=
2𝜋

𝑄0𝑡
·
∫︁ 𝑅

0

𝑟𝑤(𝑟, 𝑡)𝑑𝑟. (3.39)

Fracture efficiency is an important quantity and allows us to quickly determine

whether the leak-off is important or not.

3.3.4.1 Examples for field parameters

We consider two sets of the problem parameters which differ by the fluid viscosity:

𝜇1 = 1 cP and 𝜇2 = 10 cP. All other parameters are kept the same, namely:

𝐸 ′ = 30 GPa, 𝐾 ′ = 3.19 MPa ·
√

m, 𝑄0 = 0.01 m3/s, 𝑡end = 6000 𝑠,

𝜎𝑜 = 8 MPa, 𝑝𝑜 = 0.48 MPa, 𝑘 = 10 mD, 𝜑𝑟 = 20%, 𝑐𝑡 = 10−3MPa−1.

(3.40)

Further, we calculate Carter’s leak-off and PDL coefficients based on the parameters

above as:

1) 𝑄′
1 = 5.1 · 10−2 mm/(

√
s · MPa), 𝐶 ′

1 = 1.63 · 10−1 mm/
√

s,

2) 𝑄′
2 = 1.6 · 10−2 mm/(

√
s · MPa), 𝐶 ′

2 = 5.2 · 10−2 mm/
√

s. (3.41)

Figure 3-17 shows results of the numerical simulation in terms of the fracture

aperture at the wellbore, pressure in the middle of the crack, radius and efficiency

profiles versus time. In addition to the results of the radial fracture model with

PDL (solid lines), we also depict the corresponding profiles computed by the model
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

with Carter’s leak-off (dashed lines), i.e. for 𝑄′ = 0. We utilise blue colour lines

for the lower viscosity 𝜇1 and green ones for the case with a more viscous fluid 𝜇2.

Results demonstrate that both the fracture radius and width are overestimated for

the Carter’s leak-off cases. This is because the efficiency (and hence the fracture

volume) is different. The pressure profiles are much closer to each other. The relative

difference at the end of pumping in the first case (𝜇1 = 1 cP) is 2% for the fracture

width at the wellbore, 4.2% for the radius, 1.9% for the pressure in the middle, and

10.8% for the efficiency, and in the second case (𝜇2 = 10 cP) is 2.4% for 𝑤(0, 𝑡end),

4.3% for 𝑅(𝑡end), 1.5% for 𝑝(𝑅(𝑡end)/2, 𝑡end), and 11.8% for 𝜂(𝑡end). This observation

demonstrates that there might be an observable difference between the solution with

the PDL and Carter’s leak-off. Next sections provide a more systematic analysis of

the difference between the two models.

Figure 3-17: Numerical solution for the problem of a radial hydraulic fracture in terms of
the fracture width at the wellbore 𝑤(0, 𝑡), pressure in the middle of the fracture 𝑝(𝑅(𝑡)/2, 𝑡),
radius 𝑅(𝑡), and efficiency 𝜂(𝑡) versus time 𝑡 computed for the problem parameters (3.40)
and (3.41). Blue lines correspond to the case with 𝜇 = 1 cP, while the green lines represent
the higher viscosity case 𝜇 = 10 cP. The pressure-dependent fluid exchange cases are
depicted by solid lines, while dashed lines plot the results for Carter’s leak-off.
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3.3.4.2 Representative parameters in the parametric space

To reduce number of the problem parameters, it is convenient to reformulate the

radial fracture model in the dimensionless form. By following the 𝑚𝑘-scaling for the

radial fracture with Carter’s leak-off [Detournay, 2004, 2016], we can normalise the

problem parameters as follows:

𝜌 =
𝑟

𝑅
, 𝜏 =

𝑡

𝑡𝑚𝑘
, 𝛾(𝜏) =

𝑅

𝐿
, Ω(𝜌, 𝜏) =

𝑤

𝜖𝐿
, Π(𝜌, 𝜏) =

𝑝

𝜖𝐸 ′ , (3.42)

where the timescale 𝑡𝑚𝑘, the lengthscale 𝐿, and the scale for strain 𝜖 are defined by

𝑡𝑚𝑘 =

(︂
𝑀 ′5𝐸 ′13𝑄3

0

𝐾 ′18

)︂1/2

, 𝐿 =

(︂
𝑄3

0𝐸
′𝑡4𝑚𝑘

𝑀 ′

)︂1/9

, 𝜖 =

(︂
𝑀 ′

𝐸 ′𝑡𝑚𝑘

)︂1/3

. (3.43)

The solution depends on the dimensionless time 𝜏 , coordinate 𝜌, and two dimen-

sionless numbers representing Carter’s leak-off 𝜑 and PDL 𝜓 defined as

𝜑 =
𝐶 ′4𝐸 ′11𝑀 ′3𝑄0

𝐾 ′14 , 𝜓 =
𝑄′4𝐸 ′5𝑀 ′

𝐾 ′2𝑄0

. (3.44)

The PDL number 𝜓 characterises the strength of pressure dependence of the fluid

exchange process. The system of governing equations written in the normalised form

is presented by Kanin et al. [2020c] in Appendix C.

In order to place the results of this investigation in the framework of the previous

studies, it is useful to outline parametric space for the problem of a radial hydraulic

fracture with Carter’s leak-off. As presented in a review paper Detournay [2016],

there are four limiting cases: storage-viscosity 𝑀 , leak-off-viscosity �̃� , storage-

toughness 𝐾, and leak-off-toughness �̃�. These four cases correspond to dominance

of either fluid viscosity or fracture toughness as the primary dissipation mechanism,

and either fracture (small leak-off) or permeable rock (large leak-off) as the primary

storage for the injected fluid. Figure 3-18(a) presents the parametric space for

the problem in terms of the dimensionless time 𝜏 and leak-off 𝜑 [Dontsov, 2016a].

The dashed coloured lines indicate zones of applicability of the limiting solutions,

which are defined as the zones in which the relative difference between the general
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solution and the limiting solutions is below 1%, see [Dontsov, 2016a] for more details.

Note that the vertex solutions for the radial fracture with Carter’s leak-off were

obtained earlier in Savitski and Detournay [2002], Madyarova [2004], Bunger et al.

[2005]. Figure 3-18(b) depicts conceptual representation of the problem parametric

space (the same as in Figure 3-18(a)) with a rectangular shape and several solution

trajectories in time parameterised by the dimensionless leak-off coefficient 𝜑. Each

trajectory starts from the viscosity-storage regime (vertex 𝑀) and ends at the leak-

off toughness regime (vertex ̃︀𝐾). In other words, 𝑀 and ̃︀𝐾 regimes always represent

the early and large time solutions. In turn, the remaining two vertices (𝐾 and ̃︀𝐾)

can be realised at intermediate times, which is determined by the value of 𝜑. Three

cases of 𝜑 are considered and are shown on both the conceptual rectangular diagram

and in the parametric space. For small values of 𝜑, the solution originates in the

𝑀 vertex, passes near the 𝐾 vertex, and ends in the �̃� vertex. For intermediate

values of 𝜑, the solution transitions from 𝑀 to �̃� directly. And for large values of

𝜑, solution starts from 𝑀 , transitions near �̃� , and ends at �̃� vertex.

Figure 3-18: Parametric space for the problem of a radial fracture with Carter’s leak-
off in the (𝜏, 𝜑) coordinates (a) and conceptual representation (b). Panel (a) shows the
applicability domains of 𝑀 (dashed blue), 𝐾 (dashed black), ̃︁𝑀 (dashed green) and ̃︀𝐾
(dashed magenta) vertex solutions. Solution trajectories for different dimensionless leak-off
𝜑 are indicated for the reference.

Having established the parametric space for the problem of Carter’s leak-off, i.e.

when the PDL number 𝜓 = 0, we proceed with the estimate of typical values for 𝜓

representative of field applications. In order to do this, some problem parameters

that do not vary significantly are kept fixed, while the other are varied. In particular,
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let us consider the following parameters:

• geomechanics:

∘ plane-strain elastic modulus: 𝐸 ′ = 30 GPa;

∘ fracture toughness: 𝐾𝐼𝑐 = 0.3 ÷ 1 MPa ·
√

m;

∘ far-field confining stress: 𝜎𝑜 = 10 ÷ 30 MPa;

• reservoir:

∘ permeability: 𝑘 = 0.1 ÷ 100 mD;

∘ porosity: 𝜑𝑟 = 5 ÷ 25%;

∘ ratio of the pore pressure and confinement stress: 𝑝𝑜/𝜎𝑜 = 0.95 ÷ 0.4;

• fluid:

∘ viscosity 𝜇 = 1 ÷ 5 cP;

∘ compressibility 𝑐𝑡 = 10−3 MPa−1;

• injection:

∘ 𝑄0 = 0.01 ÷ 0.1 m3/𝑠;

The above problem parameters are varied independently within their respective

ranges. We calculate parameters 𝜑 and 𝜓 by using equation (3.44) and the definitions

of 𝐶 ′ and 𝑄′ provided by equation (3.20). As a result, we obtain the parametric

domain depicted in figure 3-19(a), in which the blue coloured area represents all

possible combinations of problem parameters within the considered ranges. From

this figure, one can notice that the values of governing parameters are located within

the intervals: 𝜑 ∈ [7.1 · 10−8, 3.1 · 1015] and 𝜓 ∈ [2.4 · 10−9, 33.5]. Black circular

and square markers in figure 3-19(a) identify two particular parametric cases that

were discussed in Section 3.3.4.1. Both of them are located in the upper half of the

(𝜑, 𝜓) parametric space.

To better understand the influence of various problem parameters on the location

inside the non-dimensional parametric space (𝜑, 𝜓) in figure 3-19(a), we also analyse
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a set of subdomains with bounds corresponding to the limiting (minimum and max-

imum) values of a given dimensional parameter. The polygon coloured by orange

in figure 3-19(a) corresponds to the maximum value of the permeability (𝑘 = 100

mD), while the green coloured polygon contains points related to the minimum

value (𝑘 = 0.1 mD). Hence, the limiting values of the dimensionless PDL number

𝜓 are governed by the predefined permeability range. Further, the polygon for a

particular permeability value consists of two hexagons corresponding to the limiting

values of the rock toughness. For example, there are two hexagons corresponding to

𝐾𝐼𝑐 = 0.3MPa·
√

m (dashed red line) and 𝐾𝐼𝑐 = 1MPa·
√

m (dashed blue line) inside

the orange polygon (maximum permeability case). Similarly, we draw such hexagons

inside the green polygon by dash-dotted lines (minimum permeability case). The

final part of the parametric domain analysis is concerned with the hexagon structure

presented by figure 3-19(b). It shows locations of data points corresponding to the

minimum and maximum values of other parameters (𝜇, 𝜑𝑟, 𝑝𝑜/𝜎𝑜, 𝑄0, 𝜎𝑜) by red

and blue colours, correspondingly. Such a representation allows us to find the range

of possible values of the dimensionless parameters 𝜑 and 𝜓 for practical values of

physical parameters.

In addition to 𝜑 and 𝜓, the solution also depends on the dimensionless time 𝜏 ,

defined in (3.42). By taking the characteristic injection period equal to one hour,

we can estimate the interval for the dimensionless time corresponding to the various

combinations of other dimensional parameters discussed above as 𝜏 ∈ [10−6, 102].

Note that the range of considered values for fluid viscosity is relatively narrow, since

we assumed that the viscosities of the reservoir fluid and the fracturing fluid have

the same properties. Wider range of fracturing fluid viscosities would lead to a wider

range for the dimensionless time 𝜏 .

3.3.4.3 Numerical solution inside the parametric space

The scope of this section is to identify values of the governing parameters for which

the pressure-dependent effects are crucial, i.e. we define zones where the use of

Carter’s leak-off model leads to the inaccurate results. On the other hand, the

analysis allows us to identify regions in which the traditional approach yields results
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Figure 3-19: Parametric domain in terms of the leak-off parameter 𝜑 and PDL parameter
𝜓 which corresponds to typical field parameters (blue polygon on panel (a)). Orange and
green polygons on the left-hand side show locations of data points corresponding to the
maximum and minimum permeability values. We also highlight regions (hexagons) related
to the maximum and minimum values of the fracture toughness by the blue and red colours
correspondingly (dashed line in case of the maximum permeability and dash-dotted line in
case of the minimum permeability). The right-hand panel (b) shows the structure of the
hexagon cell by considering variation of each individual parameters. By black square and
circle markers, we mark cases discussed in section 3.3.4.1 corresponding to 𝜇 = 1 cP and
𝜇 = 10 cP respectively.

with acceptable accuracy, and the refinement of the fluid-exchange mechanism is

unnecessary.

Based on the diagram shown in figure 3-19, we choose the following intervals for

the dimensionless parameters for the analyses:

• normalised time: 𝜏 ∈ [10−5, 104] ,

• leak-off number: 𝜑 ∈ [10−10, 102],

• PDL number: 𝜓 ∈ 𝜓{} = {10−5, 10−3, 10−1, 101}.

The selected ranges for 𝜑 and 𝜓 correspond to the top left corner of the field pa-

rameters shown in figure 3-19. This is the zone, for which the PDL parameter is

relatively large, but the leak-off parameter is relatively small so that there is the

highest chance to observe the effect of the pressure-dependent leak-off.

Once the target interval of the problem parameters is established, we carry out

numerical modelling of the radial fracture growth in the case of different combi-
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nations of governing parameters 𝜑 and 𝜓 for the pressure-dependent fluid exchange

mechanism and for Carter’s leak-off law. We consider each value of the PDL number

in the list 𝜓{} separately and vary 𝜑 on a logarithmic scale between the minimum

and maximum values. After that, the relative difference between the two solutions

is computed as

𝛿𝜑,𝜓𝐴 (𝜏) = |𝐴− 𝐴𝑐|/|𝐴𝑐|, 𝐴 = {Ω(0, 𝜏), Π(1/2, 𝜏), 𝛾(𝜏), 𝜂(𝜏)}, (3.45)

where the subscript ‘𝑐’ denotes solution for Carter’s case, and the quantities with-

out the subscript correspond to the solution with the pressure-dependent leak-off.

Specifically, we evaluate the relative difference between the two solutions for the

fracture width at the wellbore Ω(0, 𝜏), net pressure in the middle of the fracture

Π(1/2, 𝜏), fracture radius 𝛾(𝜏), and efficiency 𝜂(𝜏) defined in (3.39). The values of

𝛿𝜑,𝜓𝐴 (𝜏) can be used to quantitatively demonstrate applicability of the Carter’s leak-

off model by plotting the maps in the coordinates (𝜏, 𝜑) for the considered value of

𝜓.

As a starting point, the smallest value of the PDL number from the set 𝜓 = 10−5

is considered. Figure 3-20 shows numerical solution for the normalised fracture

width, pressure, radius, and efficiency versus dimensionless time for different values

of the leak-off number 𝜑 for the pressure-dependent and Carter’s leak-off cases. Solid

lines correspond to the solution with the pressure-dependent leak-off, while dashed

lines represent the corresponding cases for Carter’s leak-off. Results demonstrate

that the difference between two models is relatively small, but present. Recall, that

this is the case for the smallest value of the PDL coefficient 𝜓. To better quantify the

difference, figure 3-21 shows the relative difference between the models computed

using (3.45) for an extended range of the parameters 𝜏 and 𝜑. Results in figure 3-21

demonstrate that the difference between the two solutions is distributed approxi-

mately uniformly, except for the case of small efficiencies, for which error decreases

and the solution approaches Carter’s model. In addition, there are intersections

between the two solutions in terms of pressure and radius values, which are clearly

visible on the plots and correspond to the concentrated zones of small error. Based
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

Figure 3-20: Solution profiles for the normalised fracture opening at the wellbore (top
left), net pressure (top right), radius (bottom left), and efficiency (bottom right) versus
dimensionless time 𝜏 for different values of the leak-off parameter 𝜑 in the case of 𝜓 = 10−5.
Solid lines show the solution for the pressure-dependent leak-off and dashed lines show the
corresponding solution with Carter’s leak-off.

on the calculated 𝛿𝜑,𝜓𝐴 (𝜏) values depicted in figure 3-21, it is possible to quantify

the averaged (across the considered time and leak-off number intervals) deviations

of various fracture characteristics. The aperture near the wellbore and radius differ

by approximately 2.5% and 2.9% respectively, while the variation of the net fluid

pressure in the middle of the fracture is equal to 2.8%. Since both fracture width at

the wellbore and radius affect on the fracture efficiency, its mean deviation is higher

and is equal to 8.7%. Moreover, we can also determine the maximum values for the

relative difference: 6.9% for Ω(0, 𝜏), 13.6% for 𝛾(𝜏), 8.4% for Π(0.5, 𝜏) and 30.3%

for 𝜂(𝜏).

Then, we consider the dimensionless PDL number 𝜓 = 10−1. The solution

profiles computed for this 𝜓 value are presented in figure 3-22 while figure 3-23

depicts maps that show the deviation from the Carter’s leak-off case. The effect

of the pressure-dependent leak-off is much more pronounced in this case. Fracture

efficiency is noticeably lower for the case of the pressure-dependent fluid exchange

and, as a result, the width and radius are smaller as well. At this point, we would like

87



Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

Figure 3-21: Relative difference between the solution with the pressure-dependent leak-off
and the one that uses Carter’s leak-off model inside (𝜏, 𝜑) parametric space for 𝜓 = 10−5.
The applicability domains of the limiting solutions for the radial fracture model with
Carter’s leak-off are shown by dashed coloured lines [Dontsov, 2016a].

to note that the pressure-dependent mechanism of the fluid exchange process leads

to the higher values of the leak-off rate as compared to Carter’s leak-off case, which

results in the lower fracture efficiency and smaller fracture size. This is because

the net fluid pressure 𝑝(𝑟, 𝑡) inside the fracture is mostly positive (𝑝𝑓 (𝑟, 𝑡) > 𝜎𝑜),

in which case the pressure-dependent leak-off correction in the Reynolds equation

(3.22) has the same sign as Carter’s leak-off term and adds to the total leak-off.

The described behaviour of the net fluid pressure is qualitatively different from that

for the near-tip region model [Kanin et al., 2020d], where it is negative throughout

the fracture. Consequently, the pressure-dependent term in the cumulative fluid

exchange reduces the total leaked-off volume near the tip. It is interesting to observe

that the efficiency, width, and radius computed for the solution with the pressure-

dependent leak-off reach an asymptotic behaviour for small dimensionless times for

all values of 𝜑 considered. This asymptotic behaviour is different from that for
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

Figure 3-22: Solution profiles for the normalised fracture opening at the wellbore (top
left), net pressure (top right), radius (bottom left), and efficiency (bottom right) versus
dimensionless time 𝜏 for different values of the leak-off parameter 𝜑 in the case of 𝜓 = 10−1.
Solid lines show the solution for the pressure-dependent leak-off and dashed lines show the
corresponding solution with Carter’s leak-off.

Carter’s leak-off case. At the same time, the difference between the models reduces

for larger times, for which the fracture efficiency gets reduced due to leak-off. Results

in figure 3-23 reveal that the solution profiles behaviour is approximately the same

as in the previous case, but the magnitude of the difference is increased substantially.

The mean values of the relative differences of the fracture opening at the wellbore

and pressure are equal to 13.6%. At the same time, the deviations for the radius

and efficiency are 22.9% and 49.4%, respectively. The maximum values for these

quantities are 38% for the width at the wellbore; 62.9% for the pressure at the

middle of the crack, 61.9% for the radius and 91% for the efficiency. As before, the

difference reduces towards the leak-off viscosity regime, for which the efficiencies are

small. This result is consistent with the observations in figure 3-22.

To summarise the average and maximum discrepancies between the two models,

Table 3.6 shows values of the average and maximum variations for the fracture

width, pressure, radius, and efficiency for different values of 𝜓. All four values of

the PDL coefficient are considered for completeness. Clearly, the difference increases
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Chapter 3. Fluid-driven fracture with pressure-dependent leak-off

Figure 3-23: Relative difference between the solution with the pressure-dependent leak-off
and the one that uses Carter’s leak-off model inside (𝜏, 𝜑) parametric space for 𝜓 = 10−1.
The applicability domains of the limiting solutions for the radial fracture model with
Carter’s leak-off are shown by dashed coloured lines [Dontsov, 2016a].

substantially for larger values of 𝜓 and becomes nearly negligible for the small values

of the dimensionless PDL number 𝜓.

Deviation (%)
Average Maximum

𝜓 Ω(0, 𝜏) Π(0.5, 𝜏) 𝛾(𝜏) 𝜂(𝜏) Ω(0, 𝜏) Π(0.5, 𝜏) 𝛾(𝜏) 𝜂(𝜏)
10−5 2.5 2.8 2.9 8.7 6.9 8.4 13.6 30.3
10−3 5.9 4.6 8.4 23.3 18.5 23.6 34.0 64.6
10−1 13.6 13.6 22.9 49.4 38.0 62.9 61.9 91.0
101 26.8 42.5 47.0 78.1 56.6 134.0 81.5 98.5

Table 3.6: Average and maximum relative differences between solutions of the pressure-
dependent and Carter’s radial fracture models.
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3.3.4.4 Radial fracture model with a simplified tip asymptote

We have demonstrated that the PDL affects the propagation of the radial hydraulic

fracture. This effect manifests itself by i) diminishing the leak-off intensity in the

tip region of the HF compared to the model with Carter’s leak-off, where the fluid

pressure is below the confining stress 𝜎𝑜, and ii) increasing the leak-off compared

to Carter’s baseline away from the fracture tip where the fluid pressure exceeds

𝜎𝑜. The latter effect of the enhanced leak-off dominates over the former leak-off

reduction in the tip region and leads to overall larger leak-off compared to Carter’s

case. To evaluate the relative importance of the near and away from the tip PDL,

we carry out an alternative radial HF solution which accounts for the pressure-

dependency of the leak-off away from the fracture tip, in all spatial elements other

than the tip element, while use Carter’s leak-off near-tip solution [Garagash et al.,

2011] for the latter. Particularly, in this alternative numerical solution for radial HF

we implement the approximate Carter’s tip solution [Dontsov and Peirce, 2015b],

which offers advantages of the simpler implementation and faster computation times

as compared to the full Carter’s tip solution [Garagash et al., 2011].

The developed numerical solution for the radial hydraulic fracture utilises the

pressure-dependent leak-off within the fracture and also employs the correspond-

ing solution for the tip as a propagation condition. The latter tip solution comes

from solving the problem of a semi-infinite hydraulic fracture [Kanin et al., 2020d].

At the same time, there is a possibility to use the tip solution corresponding to

Carter’s leak-off together with the pressure-dependent leak-off inside the fracture.

The advantage of such an approach is that there is an approximate tip solution for

Carter’s model [Dontsov and Peirce, 2015b], and therefore the computation of the

propagation condition using such a solution is simpler and quicker. This approach

is especially relevant for planar or multi-planar fracture cases [Dontsov and Peirce,

2017c, Zia and Lecampion, 2020], for which the tip asymptote is used throughout

the fracture front. Therefore, the purpose of this section is to evaluate the error

caused by using the simplified tip asymptote on the radial solution.

To compare effectiveness of the proposed approximation, as was done previously,
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we introduce the relative difference as 𝛿𝜑,𝜓𝐴 (𝜏) = |𝐴 − 𝐴𝑠|/|𝐴|, where the subscript

‘𝑠’ denotes the solution that is calculated by the simplified approach with the tip

asymptote with Carter’s leak-off. The comparison is performed in terms of the

fracture aperture Ω(0, 𝜏) and radius 𝛾(𝜏). As in the previous section, we present

deviation maps for two cases 𝜓 = 10−5 and 10−1, and the mean and maximum

variations for all values of the PDL number are provided in the tabular form.

Figure 3-24 shows a comparison between the full and simplified solutions inside

the parametric spaces. Colour filling indicates the relative difference between the

exact and simplified solutions. The top row (figures (a) and (b)), corresponds to the

case with the PDL number 𝜓 = 10−5, and the bottom row (figures (c) and (d)) is

for 𝜓 = 10−1. The left figures ((a) and (c)) compare fracture width at the wellbore

and the right figures ((b) and (d)) compare radius. As can be seen from the figure,

the maximum difference between the solutions occurs for smaller and larger values

of the dimensionless time 𝜏 in the case of small 𝜑 and only at the initial stage of

the fracture growth for large values of the Carter’s coefficient. Summary of the

maximum and average relative difference between the full and simplified solutions

is presented in table 3.7. All four values of 𝜓 are considered for completeness.

One can see that the deviations increase for larger values of 𝜓. These values need

to be taken in relation to the corresponding numbers presented in table 3.6, which

indicate the overall influence of the pressure-dependent leak-off. Using the presented

values in table 3.7, one can find out that for the PDL number 𝜓 < 10−3 the effect

can be captured without the correct tip asymptote. However, the contribution of

the tip solution for larger values of the PDL coefficient is non-negligible and can

contribute up to 40% of the overall difference between the full solution with the

pressure-dependent leak-off and that with Carter’s model. Given the above results,

we can summarise the following: 1) by increasing the value of 𝜓, we observe the

growing importance of the PDL tip asymptote (figure 3-24 and table 3.7), so it is

expected that for the large enough values of 𝜓 Carter’s tip model no longer results

in good approximation for the radial HF; 2) the error depends on time, namely, the

large error values are seen at both small and large times, so the “goodness” of the

tip with Carter’s leak-off as an approximation embedded into the radial crack with
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the PDL will depend in practice on the problem parameters (which scale time) and

time of relevance in the application.

Figure 3-24: Relative difference between the radial fracture solution with the pressure-
dependent leak-off and the simplified solution that uses Carter’s tip asymptote together
with the pressure-dependent leak-off inside the fracture. Figures (a) and (b) present results
in the case of 𝜓 = 10−5, while (c) and (d) are related to 𝜓 = 10−1. Figures (a) and (c)
compare fracture width at the wellbore, while (b) and (d) compare the fracture radius. The
applicability domains of the limiting solutions for the radial fracture model with Carter’s
leak-off are shown by dashed coloured lines [Dontsov, 2016a].

3.3.4.5 Estimation of the effect of the pressure-dependent leak-off based

on the solution with Carter’s leak-off

The purpose of this section is to determine the domain in the parametric space

(𝜏, 𝜑) in which the PDL solution is substantially different from Carter’s solution for

a certain value of the PDL number 𝜓 . We begin with the analyses of the whole

parametric space (𝜏, 𝜑) by using the complete Carter’s solution proposed by Dontsov

[2016a]. After that, we perform estimations for the limiting propagation regimes 𝑀 ,̃︁𝑀 , 𝐾 and ̃︀𝐾 utilising their exact solutions.
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Deviation (%)
Average Maximum

𝜓 Ω(0, 𝜏) 𝛾(𝜏) Ω(0, 𝜏) 𝛾(𝜏)
10−5 1.1 1.6 3.9 5.0
10−3 1.7 2.5 4.8 7.9
10−1 2.5 4.9 7.8 14.1
101 3.2 8.9 16.3 38.4

Table 3.7: Average and maximum relative differences between the full and simplified
solutions.

Let us define 𝜓𝛼 = 𝜓𝛼(𝜏, 𝜑) as the value of the PDL number 𝜓 for which the

pressure-dependent leak-off volume correction 𝑉PDL at given time 𝜏 and Carter’s

leak-off number 𝜑 comprises a small fraction of the injected volume 𝑉inj: 𝛼 =

𝑉PDL/𝑉inj. The values of 𝜓𝛼 for a choice of a small 𝛼 allow us to illustrate re-

gions inside the parametric space (𝜏, 𝜑), which are more susceptible to the PDL

effects.

By using an approximate solution for the radial fracture with Carter’s leak-

off [Dontsov, 2016a], we numerically evaluate 𝑉PDL(𝜏, 𝜑, 𝜓) and the corresponding

𝜓𝛼(𝜏, 𝜑) for 𝛼 = 5%, see figure 3-25a. The maximum value of 𝜓𝛼 is set at 100, thus

(𝜏, 𝜑) subdomain with 𝜓𝛼 > 100 in figure 3-25a appears ‘blank’. In figure 3-25a, we

also show a set of isolines 𝜓𝛼(𝜏, 𝜑) = 𝜓 for fixed 𝜓 = 10−9, 10−7, 10−5, 10−3, 10−1, 10.

For a particular value of 𝜓, for example 𝜓 = 10−5 in figure 3-25a, the corresponding

isoline shown by black line defines domain 𝜓𝛼(𝜏, 𝜑) ≥ 𝜓 extending from the isoline

in the direction of the gradient of 𝜓𝛼 (as shown by the arrows). This domain is

interpreted as a parametric region where Carter’s leak-off solution provides results

with an acceptable accuracy for the chosen value of the PDL number 𝜓. In contrast,

outside of this zone, i.e. where 𝜓𝛼(𝜏, 𝜑) < 𝜓 it is essential to take into account for

the pressure-dependent leak-off since it has a significant impact on the solution.

Further, we derive asymptotic expressions for 𝜓𝛼 when the complete Carter’s

solution reduces to one of four limiting regimes of fracture propagation: storage-

toughness 𝐾, leak-off-toughness �̃�, storage-viscosity 𝑀 , and leak-off-viscosity �̃� .

In figure 3-25a, the applicability domains of the limiting regimes of Carter’s solution

are outlined by dashed lines. The corresponding limiting solutions for the pressure
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profile Π and crack radius 𝛾 in the 𝑚𝑘-scaling are [Savitski and Detournay, 2002,

Madyarova, 2004, Bunger et al., 2005]:

Π𝑘 =
𝜋
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√
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where 𝐴1 = 0.3581, 𝐴2 = 2.479, 𝐴3 = 0.09269, 𝐵1 = 0.2596, 𝐵2 = 0.0169, 𝐵3 =

0.1403.

To proceed, we substitute each limiting case from the above equations into the

formula for the PDL volume. By presenting the dimensionless pressure Π and radius

𝛾 in the form Π = 𝐴𝑓(𝜌)𝜏𝛼𝜑𝛽, 𝛾 = 𝐵𝜏 𝛿𝜑𝜖 suitable for each vertex solution and

putting them into equation (3.23), we obtain the following expression for 𝑉PDL:

𝑉PDL = 2𝜋𝜓1/4·𝐴𝐵2𝜏𝛼+1/2+2𝛿𝜑𝛽+2𝜖

∫︁ 1

0

𝜌𝑓(𝜌)

[︂√
𝜋

Γ(𝛼 + 1)

Γ
(︀
𝛼 + 3

2

)︀−𝐵(︂𝜌1/𝛿;𝛼 + 1,
1

2

)︂]︂
𝑑𝜌,

(3.46)

where we utilise the Euler gamma function Γ(𝑥) and the incomplete beta function

𝐵(𝑥; 𝑎, 𝑏). We should note that the spatial integral is calculated analytically for

the toughness dominated regimes, while numerical integration is performed for the

viscosity dominated regimes.

By letting 𝑉PDL = 𝛼𝑉inj, we arrive to:

𝐾 − vertex : 𝛼𝜏 = 1.04𝜓1/4𝜏 11/10 =⇒ 𝜓𝛼 = 0.845𝛼4𝜏−2/5,̃︀𝐾 − vertex : 𝛼𝜏 = 0.43𝜓1/4𝜏 7/8𝜑−3/16 =⇒ 𝜓𝛼 = 27.8276𝛼4𝜏 1/2𝜑3/4,

𝑀 − vertex : 𝛼𝜏 = 1.32𝜓1/4𝜏 19/18 =⇒ 𝜓𝛼 = 0.33𝛼4𝜏−2/9,̃︁𝑀 − vertex : 𝛼𝜏 = 0.82𝜓1/4𝜏 13/16𝜑−5/32 =⇒ 𝜓𝛼 = 2.25𝛼4𝜏 3/4𝜑5/8. (3.47)
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In order to ensure the validity of the numerically calculated 𝜓𝛼 values when

a solution trajectory is passing (with time) through the vertex solution domains,

we plot figure 3-25b. In this chart, we present 𝜓𝛼 evolution with dimensionless

time 𝜏 for three solution trajectories with 𝜑 = 10−24, 10−6, and 106, respectively.

The corresponding curves obtained from the vertex solutions (3.47) are depicted

by dashed lines. One can observe that the compete solution coincides with the

asymptotic behaviour within the corresponding asymptotic time domain.

Using the map in figure 3-25a, we can notice that the problem solution inside the

storage-toughness (𝐾) domain differs from Carter’s solution at already very small

values of the PDL parameter 𝜓, on the order of 10−9. Moreover, 𝜓𝛼 is a decreasing

function on 𝜏 in this region. The viscosity-storage (𝑀) regime becomes affected by

the PDL for 𝜓 on the order of 10−5. Similarly to the toughness-storage regime, 𝜓𝛼

decreases with 𝜏 . In contrast, the limiting solutions corresponding to high leak-off,

namely ̃︁𝑀 and ̃︀𝐾, become affected by the pressure dependency only for much larger

values of 𝜓. In addition, there is a strong gradient towards the direction of smaller

efficiencies. It is also interesting to observe that the 𝑀 , ̃︁𝑀 , and ̃︀𝐾 vertices are

gradually displaced with the increase of 𝜓, but are still present in the limiting cases.

At the same time, the 𝐾 vertex solution disappears after exceeding a relatively

small 𝜓 value. This is because 𝜓𝛼 decreases with 𝜏 and is independent of 𝜑 for the

𝐾 vertex. As a result, the maximum value of 𝜓 at which 𝐾 vertex can be still

partially realised corresponds to 𝜓𝛼 at the vertical boundary of applicability (red

dashed line). Consequently, once 𝜓 exceeds this value, the 𝐾 vertex disappears.

In addition, we notice that 𝜓𝛼 decreases with dimensionless time for small 𝜏 , then

reaches a minimum, and eventually increases with 𝜏 . Depending on the value of 𝜑

this minimum shifts from very large values of 𝜏 (see 𝜑 = 10−24 case, for which the

minimum has not been reached), to intermediate values (𝜑 = 10−6), and eventually

to small values of 𝜏 (𝜑 = 106).

The analysis presented in this section is consistent with the previously obtained

numerical results shown in figure 3-23, for which 𝜓 = 10−1 is used. In this case,

the relative difference between the PDL and Carter’s solutions is greater than 5%

for almost all (𝜏, 𝜑), i.e. they differ considerably (apart from the domain with large
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(a) (b)

Figure 3-25: (a) Values of the parameter 𝜓 as a function of normalised time 𝜏 and
leak-off number 𝜑 for which the PDL provides a contribution of 𝛼 = 0.05 to the vol-
ume balance: 𝜓𝛼(𝜏, 𝜑) computed based on the approximate solution for the radial frac-
ture with Carter’s leak-off [Dontsov, 2016a]. The boundaries of the asymptotic regions
where the limiting solutions for the radial fracture model with Carter’s leak-off are ap-
plicable are shown by dashed coloured lines in (a) for reference. Particular set of isolines
𝜓𝛼 = {10−9, 10−7, 10−5, 10−3, 10−1, 101} are shown by solid grey/black lines. Domain
𝜓𝛼(𝜏, 𝜑) ≥ 𝜓 bounded by a particular isoline and extending in the direction of the gra-
dient of 𝜓𝛼 (as indicated by arrows) corresponds to the region of approximate validity of
the Carter’s leak-off for the given value of 𝜓. (b) Variation of 𝜓𝛼 with time 𝜏 for the
cases of 𝜑 = {10−24, 10−6, 106} computed using Carter’s solution [Dontsov, 2016a] (black
solid lines) and the corresponding curves computed from the vertex solutions [Savitski and
Detournay, 2002, Madyarova, 2004, Bunger et al., 2005] (coloured dashed lines).

𝜑). Indeed, with the reference to figure 3-25a, it is clear that most of the points

inside the parametric space correspond to the 𝜓𝛼 values that are below 10−1. The

contribution of PDL reduces for larger values of leak-off, which is again consistent

with earlier observations.

Figure 3-25a can be used to judge whether to include the PDL effects into the

analysis or not. In order to do so, one needs to compute the dimensionless parameters

𝜏 , 𝜑, and 𝜓 by using equations (3.42)–(3.44) for the given problem parameters. The

values of 𝜏 and 𝜑 provide a location inside the parametric space (𝜏, 𝜑). Then, 𝜓𝛼

can be determined from figure 3-25a for this particular combination of 𝜏 and 𝜑.

If the value of 𝜓 for the given problem parameters is above 𝜓𝛼, then the effect of

PDL is above 5%, and it is recommended to include it in computations. On the

other hand, if 𝜓 is smaller than 𝜓𝛼, then PDL effects can be neglected and Carter’s

leak-off model can be used.
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Turbulent flow effects in a slickwater

fracture propagation

4.1 Preamble

When the water-based fracturing fluid is used in reservoir stimulation, the injection

rate can be set relatively high. It is required to compensate for the undesirable effect

of the relatively low viscosity (1 - 10 cP) of the fracturing fluid on the proppant

settling and in order to create a crack aperture sufficiently large for the proppant

placement [Barati and Liang, 2014]. High injection rate of low-viscous fluid leads

to the onset of the turbulent flow regime in the part of the fracture adjacent to the

wellbore. The remaining part of the fracture, i.e., the region from the transition

boundary to the fracture front, is occupied by laminar flow. Since Reynolds number

for the plane channel flow depends on the aperture, the laminar flow regime always

exists near the fracture front where the aperture value tends to zero.

Turbulent flow effects were first discussed in the context of hydraulic fracture

propagation by Perkins et al. [1961] for the PKN fracture geometry. Further, Nil-

son [1981] analysed a model for a plane strain gas-driven fracture, and this work

discusses the flow regime transformation inside the crack channel from turbulent

to laminar in the direction of the fracture front. The limiting propagation regimes

associated with turbulent flow inside magma dykes were studied by Emerman et al.

[1986], Lister and Kerr [1991]. Tsai and Rice [2010] considered a plane strain crack
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

with fully turbulent flow in application to natural water-driven fracture in glaciers.

Different aspects of the turbulent flow regime impact on the fracture growth with

PKN geometry have been investigated in the following works [Kano et al., 2015, Zia

and Lecampion, 2017, Zolfaghari et al., 2017]. The analyses of either fully turbulent

or turbulent-laminar flow influence on the crack propagation have also been carried

out for fractures with different geometries including a plane strain [Tsai and Rice,

2012, Zolfaghari et al., 2018], radial [Zolfaghari and Bunger, 2018, 2019, Lecampion

and Zia, 2019], planar 3D [Dontsov and Peirce, 2017b] fracture, and a semi-infinite

fracture [Dontsov, 2016c, Lecampion and Zia, 2019].

The fluid injection into the reservoir at a relatively high volumetric flow rate

requires significant energy consumption for fluid pumping [Yang et al., 2019], espe-

cially during the simultaneous growth of multiple cracks, i.e., multistage hydraulic

fracturing treatment. The limitation of the operational costs can be achieved by

adding the specific polymers to pure water resulting in a mixture called slickwater.

The used additives slightly increase the fluid viscosity and considerably decrease the

friction, up to 70% compared to that of the pure water [Nieuwstadt et al., 2016].

The experiments of Virk [1971, 1975] demonstrate how the flow friction factor de-

clines depending on the used polymer additive type and its concentration. It was

also determined in this work that the friction reduction has a so-called maximum

drag reduction (MDR) or Virk’s asymptote, which can be achieved at a relatively

small concentration of the polymers.

Section 4.2 examines the near-tip region of a hydraulic fracture propagating in

a permeable reservoir. We take into account the possible transfer of the flow regime

from laminar to turbulent at some distance from the fracture front where Reynolds

number of the fluid flow inside the crack becomes higher than the critical value.

The hydraulic fracturing fluid in our model is slickwater, and we assume that the

MDR asymptote governs its friction factor during the turbulent flow regime. For

the problem formulation, we will rely on the original model framework of Lecampion

and Zia [2019], where the authors investigate a similar problem in the case of an

impermeable reservoir. In this work, we analyse how the presence of the leak-off

process governed by Carter’s law affects the transition to the turbulent flow regime.
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

Firstly, we provide the problem formulation and main equations. Secondly, we

outline the limiting propagation regimes. Thirdly, we present particular solution

profiles for the fracture opening and fluid pressure and carry out a comparison

with an impermeable reservoir case [Lecampion and Zia, 2019]. Finally, we analyse

the parametric space of the problem by constructing the regime maps showing the

applicability domains of the limiting solutions and examine the behaviour of the

transition boundary between the flow regimes.

Section 4.3 considers a radial hydraulic fracture propagating in a permeable

reservoir and driven by turbulent-laminar slickwater flow. The main aim of the

exploration is to analyse the combined effects of the laminar-turbulent flow of the

fracturing fluid with drag reduction agents and the fluid leak-off into the ambient

rock on the propagation of a finite hydraulic fracture. Firstly, we outline the problem

formulation relied on Lecampion and Zia [2019], system of equations and introduces

the numerical scheme. Next, the solution examples corresponding to the typical

field cases are considered. Further, we investigate the limiting propagation regimes,

namely, revisit the existing limiting solutions and derive the new ones. Finally, we

describes the results of the problem parameter space investigation.

4.2 Semi-infinite fracture model

4.2.1 Model formulation

We begin with the problem formulation for the near-tip region of a hydraulic fracture

driven by turbulent-laminar flow. Figure 4-1 shows the schematics of the investigated

problem. The assumptions and governing equations of the fracture tip model given

in Section 2.1 remain the same except those linked with the fluid flow inside the

fracture channel. We will discuss the latter in detail in the current section.

In the current problem, fracturing fluid is slickwater which can be characterised

as Newtonian liquid with viscosity 𝜇 and density 𝜌 in the laminar flow regime, while

the rheological response from the onset of the transition to turbulent flow will be

described further.
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

Figure 4-1: Schematics of the fracture-tip model with turbulent flow and leak-off.

Let us define Reynolds number for the channel flow as 𝑅𝑒 = 𝜌𝑣𝑤/𝜇, where 𝑣

is the fluid velocity. Reynolds number grows from 0 to infinity if we move away

from the tip. We suppose that 𝑅𝑒 is less than the critical value 𝑅𝑒𝑐 along the

fracture region 𝑥 ∈ (0, 𝜆) (Figure 4-1) resulting in the laminar flow regime there.

The onset of the flow regime transition to turbulence is located at point 𝑥 = 𝜆, and

the flow regime along the domain 𝑥 ∈ (𝜆,+∞) is non-laminar (from transient to

fully-turbulent). In the model, the flow regime transition is captured via the friction

factor 𝑓 usage.

Next, we consider the width-averaged momentum conservation equation:

𝑣2 =
𝑤

𝜌𝑓

𝑑𝑝

𝑑𝑥
, (4.1)

where 𝑓 is the Fanning friction factor. In the case of the laminar flow regime, equa-

tion (4.1) has the form of Poiseuille’s law given by (2.9). By comparing equations

(4.1) and (2.9), one can obtain the friction factor expression for the laminar flow

regime: 𝑓 lam = 12/𝑅𝑒. In turn, the Fanning friction factor for pipe laminar flow

equals 𝑓 lam
𝑑 = 16/𝑅𝑒𝑑, where 𝑅𝑒𝑑 = 𝜌𝑣𝑑/𝜇 is Reynolds number for pipe flow sug-

gesting 𝑅𝑒𝑑 = 4/3 · 𝑅𝑒. This formula is essential for translating the friction factor

curves established for the pipe flow, e.g., see [Brill and Mukherjee, 1999]), to the

case of the channel flow (in the fracture), i.e. 𝑓 = 𝑓(𝑅𝑒𝑑) = 𝑓(4/3 ·𝑅𝑒) [Lecampion

and Zia, 2019]. Further, we introduce the normalised friction factor 𝑓 = 𝑓/𝑓 lam
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

[Dontsov, 2016c] and rewrite equation (4.1) in the form:

𝑣 =
𝑤2

𝜇′𝑓

𝑑𝑝

𝑑𝑥
, (4.2)

We have already described the flow behaviour during the laminar flow regime.

Now, we move on to the discussion of turbulent flow. Since fracturing fluid is

slickwater, we consider the friction factor 𝑓 governed by the MDR asymptote: a

phenomenological relation proposed by Virk [1971, 1975], when 𝑅𝑒 > 𝑅𝑒𝑐 (non-

laminar flow):
1√
𝑓

= 19 log10

(︁
𝑅𝑒𝑑

√︀
𝑓
)︁
− 32.4, (4.3)

To facilitate the solution of the fracture tip problem, we will utilise a power-law

approximation of (4.3) proposed by Lecampion and Zia [2019]:

𝑓 = 𝑓0𝑅𝑒
−𝑛
𝑑 = 𝑓

′

0𝑅𝑒
−𝑛, (4.4)

where 𝑓0 = 1.78, 𝑛 = 0.7 and 𝑓 ′
0 = 𝑓0(4/3)−𝑛 = 1.46.

Figure 4-2 presents the function 𝑓(𝑅𝑒) during laminar and turbulent regimes in

traditional (a) and Prandtl-Karman (b) coordinates. Apart from the MDR asymp-

tote (green line), we also show Blasius asymptote for turbulent pipe flow (smooth

walls case) of pure water adjusted to the channel geometry in order to demonstrate

quantitatively how the slickwater drag reduction agents decrease friction. The MDR

approximation (4.4) closely approximates Virk’s asymptote (4.3) within the range

𝑅𝑒 ∈ (103, 1.5 · 104) with the relative deviation less than 5%.

Further, we define the friction factor function for the whole range of Reynolds

numbers, i.e. from the laminar regime to the turbulent one, similar to Lecampion

and Zia [2019]:

𝑓 =

⎧⎪⎨⎪⎩12/𝑅𝑒, 𝑅𝑒 ≤ 𝑅𝑒𝑐,

𝑓
′
0𝑅𝑒

−𝑛, 𝑅𝑒 > 𝑅𝑒𝑐,

(4.5)

where 𝑅𝑒𝑐 is the critical Reynolds number for slickwater case. The critical value is

defined as an intersection of the laminar and turbulent (equation (4.4)) branches in

order to ensure the function 𝑓(𝑅𝑒) continuity: 𝑅𝑒𝑐 = (12/𝑓 ′
0)

1/(1−𝑛) = 1132.6. The
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

Figure 4-2: Friction factor depending on Reynolds number in ordinary (a) and Prandtl-
Karman (b) coordinates. The laminar branch is shown by blue colour, MDR asymptote
(4.3) and its approximation (4.4) are depicted by solid green and red lines, correspondingly.
Blasius asymptote (pure water, smooth walls) is plotted by solid orange line. Dashed lines
present functions continuation beyond the intersection point between laminar and MDR
simplified curves.

defined 𝑓(𝑅𝑒) by equation (4.5) is shown in figure 4-2 by the combination of blue

(laminar part) and red (turbulent part) solid lines.

Similarly to equation (4.5), we write out the expression for the scaled friction

factor 𝑓 :

𝑓 =

⎧⎪⎨⎪⎩1, 𝑅𝑒 ≤ 𝑅𝑒𝑐,

𝑓
′′
0 ·𝑅𝑒1−𝑛, 𝑅𝑒 > 𝑅𝑒𝑐,

(4.6)

where 𝑓 ′′
0 = 𝑓

′
0/12 = 0.122.

Finally, one can compare the critical Reynolds number value for slickwater with

the pure water case. It is known that the discussed value for the pipe flow is

approximately 𝑅𝑒𝑐𝑑 ≈ 2100 meaning that for channel flow it is equal to 𝑅𝑒𝑐 =

3/4 ·𝑅𝑒𝑐𝑑 ≈ 1575. As a result, the laminar-to-turbulent transition for the slickwater

occurs at smaller Reynolds number.

4.2.2 Limiting propagation regimes of a semi-infinite fracture

with leak-off and laminar/turbulent flow

It is known that two different mechanisms govern the propagation regime of a finite

hydraulic fracture (see review of Detournay [2016] and references there in). The
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first one is concerned with the distribution of the total dissipated energy between the

creation of new fracture surfaces (toughness) and viscous fluid flow inside the fracture

channel (viscosity). The second mechanism is related to the distribution of the total

injected fluid between the fracture (storage) and the reservoir (leak-off). During

fracture propagation, the partitioning of the dissipated energy and injected fluid

changes over time, resulting in the realisation of various limiting propagation regimes

dominated by toughness/viscosity and storage/leak-off mechanisms. E.g., in the

case of penny-shaped/KGD cracks these regimes (also called as vertex solutions) are

described by Savitski and Detournay [2002], Bunger et al. [2005], Garagash [2006d],

Adachi and Detournay [2008], and their applicability domains are determined by

Madyarova [2004], Hu and Garagash [2010] and Dontsov [2016a, 2017]. The similar

concept can be applied when we study a semi-infinite fracture propagating with

constant velocity, e.g., Garagash et al. [2011], in which case the partitions of the

dissipated energy and that of the injected fluid evolve with the distance for the

moving fracture tip.

The leak-off parameter 𝐶 ′ controls the partitioning of the injected fluid, 𝜇′ and

𝐾 ′ have an influence on the dissipated energy distribution, and Reynolds number

indicates the occurring flow regime. Five limiting propagation regimes can be dis-

tinguished in the model: three of them are related to laminar flow and the remaining

two for turbulent flow:

𝑘: toughness (𝜇′ = 0);

𝑚: laminar-storage-viscosity (𝐶 ′ = 0, 𝐾 ′ = 0, 𝑅𝑒 < 𝑅𝑒𝑐);

�̃�: laminar-leak-off-viscosity (𝐶 ′ → ∞, 𝐾 ′ = 0, 𝑅𝑒 < 𝑅𝑒𝑐);

𝑡: turbulent-storage-viscosity (𝐶 ′ = 0, 𝐾 ′ = 0, 𝑅𝑒 > 𝑅𝑒𝑐);

𝑡: turbulent-leak-off-viscosity (𝐶 ′ → ∞, 𝐾 ′ = 0, 𝑅𝑒 > 𝑅𝑒𝑐).

We begin with the laminar flow regime case: 𝑘, 𝑚 and �̃� vertices. The detailed

description of this fracture tip model is provided by Garagash et al. [2011], and here

we summarise the main points for the completeness. These limiting propagation

regimes are the solutions for the entire semi-infinite fracture, and they can be found

in the form of a monomial solution of the elasticity equation (2.3) [Kanninen and
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Limiting solutions opening 𝑤(𝑥) net pressure 𝑝(𝑥) velocity 𝑣(𝑥)

k Toughness (𝜇′ = 0) ℓ
1/2
𝑘 𝑥1/2 0 𝑉 + 𝐸′𝐶 ′√𝑉 /𝐾 ′

m Storage-viscosity (𝐾 ′ = 𝐶 ′ = 0) 𝛽0ℓ
1/3
𝑚 𝑥2/3 𝛿0𝐸

′(ℓ𝑚/𝑥)
1/3 𝑉

m̃ Leak-off-viscosity (𝐾 ′ = 0, 𝐶 ′ → ∞) 𝛽0ℓ
3/8
�̃� 𝑥5/8 𝛿0𝐸

′(ℓ�̃�/𝑥)
3/8 𝑉/𝛽0 · (ℓ9�̃�/(ℓ8𝑚𝑥))1/8

Coefficients: 𝛽0 = 21/335/6, 𝛿0 = 𝛽0𝑓(2/3), 𝛽0 = 2.534, 𝛿0 = 𝛽0𝑓(5/8).

Table 4.1: Laminar vertex solutions of a semi-infinite hydraulic fracture with Carter’s
leak-off.

Popelar, 1985]:

𝑤𝜆(𝑥) = 𝐵𝑥𝜆, 𝑝𝜆(𝑥) = 𝐸 ′𝐵𝑓(𝜆)𝑥𝜆−1; 𝑓(𝜆) = 𝜆 cot(𝜋𝜆)/4, 𝜆 ∈ (0, 1), (4.7)

where coefficients 𝐵 and 𝜆 are determined from the lubrication equation (2.7) with

the corresponding values of governing parameters (𝐶 ′, 𝜇′, 𝐾 ′) mentioned above.

In toughness dominated regime (𝑘), the fluid viscosity can be neglected (𝜇′ = 0)

leading to zero pressure and the fracture opening profile in accordance with the

propagation condition (2.2). In the storage-viscosity case (𝑚), the leaked-off volume

and toughness are null (𝐶 ′ = 𝐾 ′ = 0), and the solution can be derived by balancing

the fluid flow velocity 𝑣 (2.9) with the propagation velocity 𝑉 . In the leak-off-

viscosity dominated case (�̃�), the leaked-off volume is much larger than the stored

in the fracture (𝐶 ′ → ∞), and the toughness is negligible (𝐾 ′ = 0). That is why, the

�̃�-vertex solution is found by comparing the fluid flux velocity 𝑣 (2.9) with Carter’s

leak-off term. All three vertex solutions are written out in table 4.1 through the

following length scales:

ℓ𝑘 = (𝐾 ′/𝐸 ′)
2
, ℓ𝑚 = 𝑉 𝜇′/𝐸 ′, ℓ�̃� =

(︁
𝐶 ′

√
𝑉 𝜇′/𝐸 ′

)︁2/3
. (4.8)

As it is shown in [Garagash et al., 2011], in the general case when 𝐾 ′, 𝐶 ′ and

𝜇′ have finite non-zero values, the 𝑘-vertex solution is applicable in the near-field of

the general solution, while �̃� and 𝑚 emerge in the intermediate (for large leak-off)

and far-field correspondingly. However, when we introduce into the model the flow

regime transition from laminar to turbulent, the region occupied by the laminar

flow regime is bounded and locates near the fracture front (since 𝑅𝑒→ 0 when 𝑥→
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

0). Hence, the applicability domain of the laminar-storage-viscosity (𝑚) solution is

expected to shift to the intermediate field.

Further, we move on to the turbulent-storage-viscosity (𝑡) and turbulent-leak-off-

viscosity (𝑡) regimes. These vertex solutions have been derived by Dontsov [2016c]

for pure water case, and 𝑡-asymptote is presented by Lecampion and Zia [2019] for

slickwater (MDR asymptote). In the further discussion, we write out the 𝑡-vertex

solution and derive formulas for the 𝑡-vertex for Virk’s asymptote.

Using the expression for the scaled friction factor 𝑓 for turbulent flow (4.6) and

substitute it into lubrication equation (4.2) combined with (2.7), we obtain the

following formula that is similar to power-law fluid case [Desroches et al., 1994]:

(︃
𝑉 + 2𝐶 ′

√
𝑉 𝑥

𝑤

)︃𝑚

=
𝑤𝑛+1

𝑐

𝑑𝑝

𝑑𝑥
, (4.9)

where 𝑚 = 2 − 𝑛 and 𝑐 = 𝑓
′
0𝜇

𝑛𝜌1−𝑛.

Based on the reasoning similar to that of Garagash et al. [2011] for the lami-

nar flow case, the turbulent-storage-viscosity (𝑡) regime is expected to provide the

asymptotic behaviour of the general solution in the far-field. In order to derive the

analytical solution for this vertex, we should substitute the monomial solution (4.7)

into equation (4.9) and balance 𝑉 𝑚 with the right-hand-side. As a result, we obtain

the vertex solution previously identified by Lecampion and Zia [2019]:

𝑤𝑡 = 𝛽𝑡ℓ
𝑛/(𝑛+2)
𝑡 𝑥2/(𝑛+2), 𝑝𝑡 = 𝛿𝑡𝐸

′ (ℓ𝑡/𝑥)𝑛/(𝑛+2) ; ℓ𝑡 = (𝑐𝑉 𝑚/𝐸 ′)
1/𝑛

, (4.10)

where ℓ𝑡 is the characteristic length scale associated with 𝑡-asymptote, and prefactors

are given by:

𝛽𝑡 =

(︂
2(𝑛+ 2)2

𝑛
tan

(︂
−2𝜋

𝑛+ 2

)︂)︂1/(𝑛+2)

, 𝛿𝑡 = 𝛽𝑛𝑓

(︂
2

𝑛+ 2

)︂
. (4.11)

Using equations (4.10) and (4.11), one can notice that the 𝑡-asymptote takes a form

of the 𝑚-vertex solution (table 4.1) when 𝑛 = 𝑚 = 1 and 𝑐 = 𝜇′ (powers and

coefficients correspond to the laminar flow regime).

Now, we consider the turbulent-leak-off-viscosity
(︀
𝑡
)︀

asymptote which is expected
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to be realised in the intermediate-field of the general solution when both turbulent

and leak-off effects are large (these are to be formally quantified by corresponding

non-dimensional numbers 𝜒 and ℛ introduced in the next Section). To derive this

limiting solution, we balance the Carter’s term on the left-hand-side of equation

(4.9) with its right hand side, and look for the solution in the monomial form (4.7)

with the following result:

𝑤𝑡 = 𝛽𝑡ℓ
(𝑚+2𝑛)/(2(𝑚+𝑛+2))

𝑡
𝑥(𝑚+4)/(2(𝑚+𝑛+2)), 𝑝𝑡 = 𝛿𝑡𝐸

′ (ℓ𝑡/𝑥)(𝑚+2𝑛)/(2(𝑚+𝑛+2)) ;

(4.12)

where ℓ𝑡 =
(︀
2𝑚𝑐𝐶 ′𝑚𝑉 𝑚/2/𝐸 ′)︀2/(𝑚+2𝑛) is the newly introduced length scale (𝑤𝑡(𝑡) ∼

ℓ𝑡) and coefficients:

𝛽𝑡 =

(︂
24(𝑚+ 𝑛+ 2)2

(𝑚+ 4)(𝑚+ 2𝑛)
tan

(︂
− 𝜋(𝑚+ 4)

2(𝑚+ 𝑛+ 2)

)︂)︂1/(𝑚+𝑛+2)

, 𝛿𝑡 = 𝛽𝑛𝑓

(︂
𝑚+ 4

2(𝑚+ 𝑛+ 2)

)︂
.

(4.13)

If we substitute values of 𝑐, 𝑛,𝑚 responsible for laminar flow into equations (4.12),

(4.13), we obtain �̃�-vertex solution (table 4.1).

4.2.3 Solution

4.2.3.1 Normalisation of governing equations

In this section, we discuss the normalised variables and the dimensionless form of

governing equations. The normalisation is required for reducing the number of

problem parameters, and we will calculate the general numerical solution in the

dimensionless form. We choose the 𝑚𝑘-scaling proposed by Garagash et al. [2011]

for which the characteristic length, width and pressure scales have the following

form:

ℓ𝑚𝑘 =
ℓ3𝑘
ℓ2𝑚

=
𝐾 ′6

𝐸 ′4𝑉 2𝜇′2 , 𝑤𝑚𝑘 =
ℓ2𝑘
ℓ𝑚

=
𝐾 ′4

𝐸 ′3𝑉 𝜇′ , 𝑝𝑚𝑘 =
𝐸 ′ℓ𝑚
ℓ𝑘

=
𝐸 ′2𝑉 𝜇′

𝐾 ′2 , (4.14)

This scaling characterises the transition between the toughness (𝑘) and storage-

viscosity (𝑚) propagation regimes in laminar flow case. Further, we introduce the
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normalised distance to the tip, opening and fluid net pressure, respectively,

𝜉 = 𝑥/ℓ𝑚𝑘, Ω = 𝑤/𝑤𝑚𝑘, Π = 𝑝/𝑝𝑚𝑘. (4.15)

Using the set of parameters (4.15), we rewrite the system of governing equations

in the normalised form:

• Propagation:

Ω =
√︀
𝜉, 𝜉 → 0. (4.16)

• Elasticity:

Π(𝜉) =
1

4𝜋

∫︁ ∞

0

𝑑Ω

𝑑𝑠

𝑑𝑠

𝜉 − 𝑠
. (4.17)

• Lubrication:
Ω2

𝑓

𝑑Π

𝑑𝜉
= 1 +

𝜒
√
𝜉

Ω
, (4.18)

where we introduce the dimensionless Carter’s leak-off coefficient (factor of two

larger than that in [Garagash et al., 2011]):

𝜒 =
2𝐶 ′𝐸 ′
√
𝑉 𝐾 ′

, (4.19)

and the normalised friction factor 𝑓 :

𝑓 =

⎧⎪⎨⎪⎩1, 𝜉 ≤ Λ,

𝑓
′′
0 · ℛ1−𝑛(Ω + 𝜒

√
𝜉)1−𝑛, 𝜉 > Λ,

(4.20)

In equation (4.20), we utilise the characteristic Reynolds number introduced by

Lecampion and Zia [2019]:

ℛ = 12𝜌𝐾 ′4/(𝐸 ′3𝜇′2) (4.21)

and the notation Λ(𝜒,ℛ) = 𝜆/ℓ𝑚𝑘 for the transition point between the laminar and

the turbulent flow regimes which is a solution of the following equation:

Ω(Λ) + 𝜒
√

Λ = 𝑅𝑒𝑐/ℛ. (4.22)
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As it can be seen from the system of equations (4.16) – (4.20), the problem

solution, i.e. the crack opening and net fluid pressure profiles, depends on two

parameters 𝜒 and ℛ, and the normalised distance from the tip 𝜉: Ω(𝜉, 𝜒,ℛ) and

Π(𝜉, 𝜒,ℛ). The present model has two limiting cases: 1) when 𝜒 → 0 it reduces to

the tip model of Lecampion and Zia [2019], and 2) when ℛ → 0, it has the form of

Garagash et al. [2011] model.

The general solution to the problem (4.16) – (4.20) is computed numerically by

using the algorithm described in [Garagash et al., 2011]. This approach utilises the

exact form of the near- and far-field asymptotic behaviour of the solution, and, in

this case, they are toughness (𝑘) and turbulent-storage-viscosity (𝑡) regimes. Using

the 𝑚𝑘-scaling (equation (4.15) with (4.14)), we write out their exact forms (since

the ‘zero’-order term of the pressure profile at 𝑘-vertex is zero, we utilise the next

order term from the asymptotic expansion [Garagash et al., 2011]):

Near-field (𝑘): Ω𝑘 = 𝜉1/2, Π𝑘 = (1 + 𝜒) ln (𝜉/𝜉0);

Far-field (𝑡): Ω𝑡 = 𝛽𝑡𝜉
2/(𝑛+2)ℛ(1−𝑛)/(𝑛+2)𝑓

′′ 1/(2+𝑛)
0 ,Π𝑡 = 𝛿𝑡𝜉

−𝑛/(𝑛+2)ℛ(1−𝑛)/(𝑛+2)𝑓
′′ 1/(2+𝑛)
0 ;

(4.23)

where the coefficient 𝜉0 is a part of the numerical solution.

Before presenting the solution results, we provide the typical values for the gov-

erning parameters 𝜒 and ℛ corresponding to field applications. We utilise the tech-

nique described by Kanin et al. [2020d] in which several dimensional parameters

are varied independently according to their representative value ranges while other

are fixed. The field domains of the parameters are taken from [Kanin et al., 2020d]

with the addition of the value for the HF fluid density 𝜌 = 103 kg/m3. Further, we

compute the field domains of the dimensionless parameters ℛ and 𝜒 in the paramet-

ric space (𝜒,ℛ), and it has approximately the rectangular shape with the following

boundaries: ℛ ∈ (0.1, 320.2) and 𝜒 ∈ (0.007, 2032.4). It is also possible to highlight

that the rock toughness 𝐾𝐼𝑐 has the largest impact (among other parameters) on

the boundary values of the characteristic Reynolds number ℛ, while the reservoir

permeability 𝑘 defines the leak-off number 𝜒 variations.
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

4.2.3.2 Examples of the general solution

In this part of the thesis, we present the numerically calculated fracture opening

Ω and net fluid Π pressure profiles for various values of the governing parameters

𝜒 and ℛ. We begin with the discussion of the case in which the Carter’s leak-off

number equals to 𝜒 = 500 and the characteristic Reynolds number is ℛ = 100.

Figure 4-3 shows the obtained results. Fracture opening and net fluid pressure

profiles in the 𝑚𝑘-scaling are presented in (a) and (b), while these characteristics

normalised by the far-field asymptote (𝑡-vertex) are depicted in (c) and (d). Apart

from the solution with leak-off (solid black line), we also plot the corresponding

profiles with zero leak-off (dashed black line). For comparison purposes, we show

the laminar solution with leak-off by a dotted black line. In addition, in figures

4-3(c) and (d), we also present the asymptotic regimes by coloured dashed lines.

Let us look at the opening profiles. Using the numerical calculations account-

ing for the laminar-to-turbulent transition, we can notice that both profiles (with

and without leak-off) have the same asymptotic behaviour in the near- (red dashed

line) and far-field (brown dashed line) governing by 𝑘 and 𝑡-vertex solutions, respec-

tively. From figure 4-3(c), one can find out that the applicability domains of the

toughness and turbulent-storage-viscosity regimes are much larger for 𝜒 = 0 than

for the case with 𝜒 = 500 implying shrinkage of storage dominated domains with

increasing leak-off number 𝜒. Two considered solutions differ significantly in the

intermediate-field, namely, the fracture aperture is larger for all distances 𝜉 in the

shown coordinate range for the non-zero leak-off case. When 𝜒 = 0, we observe the

laminar-storage-viscosity (𝑚) asymptote in the intermediate-field (blue dashed line)

which is in the agreement with results of Lecampion and Zia [2019]. In turn, in

the intermediate-field of the solution with 𝜒 = 500, we obtain two different limiting

regimes: laminar-leak-off-viscosity (�̃�) closer to the tip and then turbulent-leak-

off-viscosity (𝑡) depicted by green and magenta dashed lines, respectively. Using

figure 4-3, one can also determine that the laminar-to-turbulent transition point for

the solution with leak-off is located much closer to the moving fracture tip com-

pared to the solution with zero leak-off (Λ(500, 100) ≈ 5 · 10−4 and Λ(0, 100) ≈ 6.7).
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Figure 4-3: Solution for the fracture opening (a) and net fluid pressure (b) is shown in
the 𝑚𝑘-scaling for 𝜒 = 500 and ℛ = 100. These characteristics normalised by 𝑡-vertex
solution are presented in (c) and (d). The corresponding solution without leak-off (𝜒 = 0)
is depicted by a dashed black line. The laminar solution with leak-off (𝜒 = 500) is presented
by a dotted black line. In (c) and (d), different vertex solutions are depicted by coloured
dashed lines. In (d), the 𝑘 asymptotic expansion (red dashed line) is plotted twice: for
both solutions (with and without leak-off) individually. By red circle dots, we mark the
locations of laminar-to-turbulent transition points for laminar-turbulent solutions with and
without leak-off.

Comparing the opening profiles of the purely laminar (𝑛 = 1, 𝑓 ′′
0 = 1) and laminar-

turbulent (ℛ = 100) fracture solutions with leak-off (𝜒 = 500), one can observe

that they coincide in the laminar flow region (𝜉 < Λ(500, 100)), while the opening in

the laminar-turbulent fracture exceeds that in the purely laminar solution past the

transition point 𝜉 > Λ(500, 100). In the intermediate-field of the laminar solution

with leak-off, the laminar-leak-off-viscosity regime (�̃�) is realised (figure 4-3(c)).

Further, we move on to the net pressure profiles (figures 4-3(b) and (d)). One

can observe that the pressure solutions with ℛ = 100 for Carter’s leak-off and
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

impermeable reservoir cases are different in the near and intermediate-fields, and

they have the same 𝑡-asymptote in the far-field. Since the net pressure is zero for 𝑘-

vertex, we utilise the next-order term of the asymptotic expansion [Garagash et al.,

2011] which depends on 𝜒 (in this step, we assume that the 𝑘-vertex is located inside

the region with laminar flow). As a result, there are two different red dashed lines in

figure 4-3 (d) corresponding to respective value of the leak-off parameter. From this

figure, it can also be noticed that the appearance of the intermediate asymptotes

(𝑚, �̃� and 𝑡), and their applicability domains are smaller as compared to those

for the crack aperture. Similar to the opening profiles, we notice that the pressure

profiles for the laminar and turbulent cases with leak-off are the same along the zone

with laminar flow but its length is much smaller than Λ: 𝜉 < 10−6.

Dependence of the problem solution on the governing parameters 𝜒 and ℛ is

further explored in figure 4-4. In figure 4-4(a), we exemplify how the crack opening

Figure 4-4: Solutions for the fracture opening in the 𝑚𝑘-scaling corresponding to (a):
ℛ = 100 and 𝜒 = 0, 10, 102, 103 and (b): 𝜒 = 100 and ℛ = 1, 102, 104, 106.

profile varies with the leak-off intensity 𝜒 while the characteristic Reynolds number

value is fixed. One can find out that all profiles start from the near-field asymptote,

and, in the far-field, they approach the 𝑡-vertex solution. In the intermediate-field,

the crack aperture is seen to increase with the Carter’s number 𝜒. Figure 4-4(b)

examines the dependence of the fracture aperture on Reynolds number at a fixed

leak-off value. The profiles have the same near-field and different far-field asymptotic

behaviour since Ω𝑡 ∼ ℛ(1−𝑛)/(𝑛+2) in the latter, i.e. higher values of the characteristic
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

Reynolds number ℛ lead to larger aperture in the far-field. Overall, and across

scales, figures 4-4(a) and (b) illustrate the increase of the fracture opening with

increase of either leak-off (𝜒) or turbulence (ℛ) intensities.

4.2.4 Discussion

4.2.4.1 Examination of the transition length

In this section, we determine how the laminar-to-turbulent transition length depends

on the governing parameters which is expressed in the 𝑚𝑘−scaling as Λ(𝜒,ℛ). This

characteristic distance is a solution of the non-linear equation (4.22), and we calcu-

late it from the numerical solution for crack opening profile.

When we introduce the leak-off process into the tip model, we effectively increase

the fluid flow velocity 𝑣(𝑥) by the value of Carter’s term, and Reynolds number

becomes higher than the critical value 𝑅𝑒𝑐 much closer to the moving tip. This

concept is confirmed by the numerical results presented in the previous section in

which Λ(500, 100) = 5 · 10−4 and Λ(0, 100) = 6.7 indicating that the crack region

with the laminar flow regime in the case of 𝜒 > 0 has smaller size as compared to an

impermeable reservoir case, or, in other words, the turbulent flow regime occupies

the wider fracture domain.

Further, we move on to the investigation the whole parametric space (𝜒,ℛ). In

figure 4-5(a), we present the colour map with the values of Λ(𝜒,ℛ) function. In turn,

figure 4-5(b) shows the dependence the transition length on the leak-off number when

the characteristic Reynolds number is constant, and figure 4-5(c) depicts the opposite

situation (𝜒 is constant, and ℛ varies). In other worlds, figures 4-5(b) and (c) are

slices of figure 4-5(a) along 𝜒 (OX) and ℛ (OY) axes, correspondingly. Using figures

4-5(a) and (b), one can notice that for each ℛ, the transition length remains constant

until certain value of 𝜒, i.e. the leak-off does not impact the flow regime transition

until some threshold value of 𝜒. If we continue to increase the leak-off number 𝜒, the

transition length eventually decreases, meaning that the fracture domain with the

laminar flow regime shrinks. Looking at the profiles depicted in figure 4-5(c), we find

out that the transition length is a decaying function on the characteristic Reynolds at
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

Figure 4-5: Transition length (i.e. distance from the moving tip where the laminar flow
regime transforms to the turbulent one) depending on the leak-off 𝜒 and characteristic
Reynolds ℛ numbers (equation (4.22)). The colour map with Λ(𝜒,ℛ) values is presented
in (a). Several cross-section of (a) figure are shown in: (b), where the characteristic
Reynolds number is fixed, and (c), in which the leak-off coefficient is constant. Using
coloured dashed lines, we present analytical asymptotes for Λ(𝜒 ≫ 1,ℛ = const) in (b)
and for Λ(0,ℛ) in (c).

fixed leak-off. We also determine that the transition length is closely approximated

by Λ ∼ 𝑅𝑒2𝑐(ℛ𝜒)−2 for 𝜒≫ 1 stemming from neglecting the storage term, i.e. Ω(Λ),

compared to the leak-off in (4.22) (coloured dashed lines in figure 4-5(b)). It is also

possible to notice that Λ(0,ℛ) (constant values in figure 4-5(b) for small 𝜒 or red

curve in figure 4-5(c)) can be approximated by Λ ∼ 𝑅𝑒
3/2
𝑐 (𝛽0ℛ)−3/2 = 6826ℛ−3/2 for

ℛ < 104 (dashed red line in figure 4-5(c)). This result is obtained by neglecting the

leak-off term in equation (4.22) and substituting 𝑚-vertex solution for the opening.

Lecampion and Zia [2019] utilise this power law, i.e. ∼ ℛ−3/2, to fit the transition

length Λ(0,ℛ) in the whole range of the characteristic Reynolds numbers in their

zero-leak-off solution and obtain Λ ∼ 5000ℛ−3/2.

4.2.4.2 Applicability domains of the vertex solutions

In the present section, we consider spatial domains where the general numerical

solution can be approximated by the limiting (vertex) solutions. Similar to Garagash
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et al. [2011], we define an asymptotic bound as a distance from the moving tip at

which the crack opening profile deviates from the considered vertex solution (Table

4.1 and equations (4.10), (4.12)) by 1%. Let us denote the upper bound of the

𝑘-vertex asymptotic domain by 𝑥𝑘, i.e. this regime is located inside the interval

𝑥 ∈ (0, 𝑥𝑘), and by 𝑥𝑡, we define the lower bound of the 𝑡-vertex asymptotic region:

𝑥 ∈ (𝑥𝑡,+∞). In the same way, one can define the domains of the vertices that

realise in the intermediate field: 𝑥 ∈ (𝑥0𝑚, 𝑥
∞
𝑚 ) for the 𝑚-vertex, 𝑥 ∈ (𝑥0�̃�, 𝑥

∞
�̃� ) for

the �̃�-vertex, 𝑥 ∈ (𝑥0
𝑡
, 𝑥∞

𝑡
) for the 𝑡-vertex. Similar to Kanin et al. [2020d], we

define the storage domain boundary 𝑥𝑆 = 𝜉𝑆ℓ𝑚𝑘: Ω(𝜉𝑆) = 𝜒
√
𝜉𝑆/0.05 such that the

cumulative leaked-off volume is a small fraction (5%) of the fracture storage when

𝑥 > 𝑥𝑆. Since the approximation of the MDR asymptote (equation (4.4)) has limited

applicability domain (𝑅𝑒 < 1.5 · 104), we also introduce the boundary 𝑥𝐵 = 𝜉𝐵ℓ𝑚𝑘

connected with this limit: Ω(𝜉𝐵) + 𝜒
√
𝑥𝐵 = 1.5 · 104/ℛ which defines the validity

region 𝑥 < 𝑥𝐵 of our approximation of the slickwater turbulent behaviour.

Figure 4-6 shows the regime maps in the parametric space (𝜒,ℛ) for 𝜒 =

0, 0.1, 1, 10, 50, 100, 500 and 1000. By coloured lines, we present the domain

boundaries of the vertex solutions, the laminar-to-turbulent transition length is

shown by black dashed line; 𝑥𝑆 and 𝑥𝐵 lengths are depicted by dashed-dotted and

dotted lines, respectively.

Figure 4-6(a) presents the zero leak-off case, and the results are in agreement

with the regime map constructed by Lecampion and Zia [2019]. Let us consider

the near-field (𝑘) and far-field (𝑡) asymptotes first. Based on figures 4-6(a)–(h), one

can observe that 𝜉𝑘 = 𝑥𝑘/ℓ𝑚𝑘 (red lines) is a function of the leak-off number only

(in the considered range of ℛ), i.e. the characteristic Reynolds number does not

affect this limiting solution, and 𝜉𝑘(𝜉) coincides with that of Garagash et al. [2011]

for the laminar flow regime. Such observation can be explained by the fact that 𝑘-

vertex is always realised in the crack region with laminar flow within the parametric

region shown in the figure 4-6; however, for large enough ℛ > 106 (not shown),

the upper boundary of the 𝑘-vertex skirts the turbulent zone and is expected to

depend on the value of the characteristic Reynolds number there. The near-field

asymptotic domain shrinks with increase in the leak-off intensity, i.e. 𝑥𝑘 moves
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Figure 4-6: Regime maps presenting the boundaries of the spatial domains corresponding
to the various limiting propagation regimes (vertex solutions) (Table 4.1 and equations
(4.10), (4.12)) in coordinates (𝑥/ℓ𝑚𝑘,ℛ) for various values of 𝜒. We show the laminar-
to-turbulent transition length 𝜆 by a dashed line, the storage domain boundary 𝑥𝑆 by a
dashed-dotted line and the applicability limit of the approximation of the MDR asymptote
𝑥𝐵 by a dotted line.

towards the fracture tip. In turn, the lower bound of the 𝑡-vertex domain (brown

lines) moves away from the tip when 𝜒 grows (in figures 4-6(g) and (h), it is out of
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the computational domain). The boundary 𝜉𝑡 = 𝑥𝑡/ℓ𝑚𝑘 is a non-linear function on

both governing parameters. In figures 4-6(a) and (b), we find out the presence of the

laminar-storage-viscosity (𝑚) regime (blue line), it can be noticed for 𝜒 < 0.5 for

the chosen range of the characteristic Reynolds number. Starting from 𝜒 = 80, we

observe the �̃�-vertex in the intermediate-field (figures 4-6(f)–(g), green line), and

for the leak-off number values 𝜒 > 120, the turbulent-leak-off-viscosity (𝑡) regime

also approximates the general numerical solution (magenta line). When we increase

𝜒 value, the asymptotic domains of �̃� and 𝑡 expands.

Let us move on to the discussion of the characteristic boundaries presented in

figure 4-6. The transition boundary between the laminar and turbulent flow regimes

(𝜆) is shown by dashed black line. Based on the results, we find out that the crack

zone occupied by laminar flow decreases when the leak-off number 𝜒 grows, i.e. the

transition boundary moves closer to the fracture front. As a result, in the permeable

reservoir case, the turbulent flow regime has a more significant impact on the crack

tip characteristics since it is realised on the larger part of a semi-infinite fracture

as compared to the zero-leak-off case [Lecampion and Zia, 2019]. By dotted-dashed

line, we present the boundary of the crack-storage-domain (𝑥𝑆) which is on the

right-hand side of this line (𝑥 > 𝑥𝑆). The leak-off process can be neglected in this

region, and from figure 4-6, we observe that the crack-storage-domain shrinks (𝑥𝑆

migrates away from the tip) with 𝜒 growth. The final boundary (𝑥𝐵) is marked by

dotted line, and it depicts the upper limit of the applicability region of the MDR

asymptote approximation (4.4). One can remark that the proposed near-tip solution

is correct along the spatial region 𝑥 ∈ (0, 𝑥𝐵), and for larger distances from the tip

(i.e. 𝑥 > 𝑥𝐵), it provides a semi-infinite fracture characteristics corresponding to

the fluid flow inside the crack channel with an underestimated friction (figure 4-2).

From figure 4-6, we notice that 𝑥𝐵 boundary is parallel (in double logarithmic scale)

to the transition length, and the size of the crack domain with the ‘correct’ solution

diminishes with increasing leak-off.

Further, we determine the orientation of various boundaries of the asymptotic

domains in figure 4-6 using analytical considerations, i.e. we approximate the bound-

aries using power law function ℛ ∼ 𝜉𝛼 and calculate the exponents 𝛼 (the propor-
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tionality coefficients can be estimated from the numerical solution). It is known

that the boundaries orientation is governed by the characteristic length scales of the

transitions between various limiting propagation regimes.

In figures 4-6(a) and (b), the boundary 𝑥0𝑚 is located inside the region with

laminar flow meaning, and it does not depend on ℛ (vertical line). The same ex-

planation can be applied for the �̃�-vertex boundaries (figures 4-6(f) – (h)): 𝑥0�̃�

and 𝑥∞�̃� (segments below the transition boundary). Let us consider the boundaries

𝑥∞𝑚 and 𝑥𝑡 (segments: ℛ < 100 for 𝜒 = 0 and 0.1; ℛ < 1 for 𝜒 = 1), and they

have the certain inclination angle which we determine according to the following

derivations. The lengthscale ℓ𝑡𝑚 which characterises the 𝑡𝑚-transition can be found

from the comparison of the opening profiles: 𝑤𝑚(ℓ𝑡𝑚) ∼ 𝑤𝑡(ℓ𝑡𝑚), and it is pro-

portional to ℓ𝑡𝑚 ∼ ℛ−3/2ℓ𝑚𝑘. Such transitions between vertices are also called as

edge-solutions [Garagash et al., 2011]. Each considered boundary corresponds to

constant value of 𝑥/ℓ𝑡𝑚, and these constants can be found from the numerical solu-

tion. Using the determined expression for the length scale ℓ𝑡𝑚, we obtain that the

boundaries 𝑥∞𝑚 and 𝑥𝑡 (ℛ < 100 for 𝜒 = 0 and 0.1; ℛ < 1 for 𝜒 = 1) are described

by: ℛ ∼ 𝜉−2/3. Further, we consider the 𝑡𝑘-transition, and the characteristic length

scale in this case is ℓ𝑡𝑘 ∼ ℛ(2𝑛−2)/(2−𝑛)ℓ𝑚𝑘. Using this formula and the calculations,

we determine that the boundary 𝑥𝑡 (ℛ > 104 for 𝜒 = 0 and 0.1; ℛ > 100 for 𝜒 = 1;

𝜒 = 10, 50, 100) corresponds to certain constant 𝑥/ℓ𝑡𝑘, and it is governed by the

equation ℛ ∼ 𝜉−(2−𝑛)/(2−2𝑛). Furthermore, it is possible to assume that 𝑥𝑘 boundary

is also have this form when it is located inside the region with the turbulent flow

regime, e.g. for ℛ > 106 and 𝜒 = 0, . . . , 1000. Further, we move on to the transition

𝑡𝑘, and the characteristic length scale is proportional to ℓ𝑡𝑘 ∼ ℛ(2𝑛−2)/(2−𝑛)𝜒−2ℓ𝑚𝑘.

As a result, the boundary 𝑥0
𝑡

for ℛ > 104 (figure 4-6(g) and (h)) has the form:

ℛ ∼ 𝜉−(2−𝑛)/(2−2𝑛) (𝜒 is fixed on each map and is not accounted in the formula).

Moreover, if we consider the 𝑡𝑡-edge, we obtain ℓ𝑡𝑡 ∼ ℛ(2𝑛−2)/(2−𝑛)𝜒−2(𝑛+2)/(2−𝑛)ℓ𝑚𝑘

meaning that 𝑥∞
𝑡

is parallel the boundary 𝑥0
𝑡

(ℛ > 104). Next, we can derive the in-

clination angle related to the boundaries 𝑥0
𝑡

(ℛ < 104) and 𝑥∞�̃� (the segment which

coincides with the transition length). For its determination, we look at the 𝑡�̃�-

transition whose length scale is ℓ𝑡�̃� ∼ ℛ−2𝜒−2ℓ𝑚𝑘. By taking into account that each
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

considered boundary corresponds to constant value of 𝑥/ℓ𝑡�̃�, we obtain: ℛ ∼ 𝜉−1/2.

4.3 A penny-shaped fracture model

4.3.1 Model formulation

Let us discuss the model formulation for a radial hydraulic fracture driven by the

turbulent-laminar flow. The sketch of the model is presented in Figure 4-7. In

contrast to the classic model for a penny-shaped crack (Section 2.2) in which it was

assumed that the flow of Newtonian fluid inside the fracture channel is laminar, the

current model accounts for the possible flow regime transformation from laminar to

turbulent moving away from the fracture front. We will discuss the latter in the

current part of the thesis. The model assumptions and governing equations which

we will not mention here remain the same as in Section 2.2.

Figure 4-7: A radial hydraulic fracture model with the laminar-turbulent channel flow
and leak-off.

We consider a radial hydraulic fracture driven by slickwater flow. Slickwater

has viscosity 𝜇, density 𝜌, and behaves like a Newtonian fluid in the laminar flow

regime. When turbulent flow occurs, slickwater rheological response is modelled by

the maximum drag reduction (MDR) asymptote. Reynolds number for the plane

channel flow, 𝑅𝑒 = 𝜌𝑣𝑤/𝜇, is increasing with distance from the crack front where

𝑅𝑒 = 0. The laminar-to-turbulent flow regime transformation happens at distance

𝜆 from the tip (this value is a part of the solution), where Reynolds number equals
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to the critical value, 𝑅𝑒 = 𝑅𝑒𝑐. Consequently, the laminar flow domain of extent 𝜆

is adjacent to the front, i.e., observed within the interval 𝑟 ∈ (𝑅−𝜆,𝑅) along which

𝑅𝑒 < 𝑅𝑒𝑐, while the non-laminar flow, i.e., transient and fully turbulent, happens

inside the domain 𝑟 ∈ (0, 𝑅 − 𝜆) characterised by 𝑅𝑒 > 𝑅𝑒𝑐. We implement the

flow regime transformation into the model via the usage of the fluid friction factor

𝑓(𝑅𝑒).

Using the width-averaged momentum conservation equation in which the inertial

terms are neglected [Lecampion and Zia, 2019], we determine the expression for

velocity of the fluid flow 𝑣(𝑟, 𝑡):

𝑣 |𝑣| = − 𝑤

𝜌𝑓

𝜕𝑝

𝜕𝑟
, (4.24)

where 𝑓 is the Fanning friction factor.

As we know from Section 4.2.1, the friction factor for laminar flow (𝑅𝑒 < 𝑅𝑒𝑐) in

plane channel equals 𝑓 lam = 12/𝑅𝑒. Using the definition of the normalised friction

factor 𝑓 = 𝑓/𝑓 lam, we rewrite equation (4.24) in the form:

𝑣 = − 𝑤2

𝑀 ′𝑓

𝜕𝑝

𝜕𝑟
. (4.25)

The combination of the continuity (2.13) and momentum conservation (4.25)

together with the Carter’s law (2.14) yields Reynolds equation:

𝜕𝑤

𝜕𝑡
=

1

𝑀 ′
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟𝑤3

𝑓

𝜕𝑝

𝜕𝑟

)︂
− 𝐶 ′√︀

𝑡− 𝑡0(𝑟)
. (4.26)

In the turbulent flow regime (𝑅𝑒 > 𝑅𝑒𝑐), the slickwater frictional behaviour is

governed by the MDR asymptote. We have already discussed the MDR asymptote

in Section 4.2.1, and its exact and approximate forms were given by equations (4.3)

and (4.4), respectively.

Using the analysis of Section 4.2.1, here, we summarise the behaviour of the

friction 𝑓 and normalised friction 𝑓 = 𝑓/𝑓 lam in the entire range of Reynolds number
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values:

𝑓 =

⎧⎪⎨⎪⎩12/𝑅𝑒, 𝑅𝑒 ≤ 𝑅𝑒𝑐,

𝑓
′
0𝑅𝑒

−𝑛, 𝑅𝑒 > 𝑅𝑒𝑐,

𝑓 =

⎧⎪⎨⎪⎩1, 𝑅𝑒 ≤ 𝑅𝑒𝑐,

𝑓
′′
0 ·𝑅𝑒1−𝑛, 𝑅𝑒 > 𝑅𝑒𝑐,

(4.27)

with prefactor 𝑓 ′′
0 = 𝑓

′
0/12. 𝑅𝑒𝑐 value for the slickwater case can be estimated from

the intersection of the laminar and turbulent branches, to ensure the continuity of

𝑓(𝑅𝑒): 𝑅𝑒𝑐 = (12/𝑓 ′
0)

1/(1−𝑛).

Finally, we provide the numerical values of the parameters in rheological relations

(4.4), (4.27) for the slickwater (power-law approximation of MDR) and pure water

(Blasius correlation) cases based on [Lecampion and Zia, 2019] and [Blasius, 1913],

correspondingly:

slickwater: 𝑓0 = 1.78, 𝑛 = 0.7, 𝑓
′

0 = 1.46, 𝑓
′′

0 = 0.122, 𝑅𝑒𝑐 = 1132.6;

water: 𝑓0 = 0.079, 𝑛 = 0.25, 𝑓
′

0 = 0.074, 𝑓
′′

0 = 0.006, 𝑅𝑒𝑐 = 1650. (4.28)

The critical Reynolds number for the channel flow of Newtonian fluid (pure water) is

evaluated from the corresponding parameter for the pipe flow and equals 𝑅𝑒𝑐 = 1650.

4.3.2 Solution approach

The current section describes the numerical algorithm utilized in the solution of the

radial hydraulic fracture propagation problem. The method is based on the Gauss-

Chebyshev quadrature and Barycentric Lagrange interpolation techniques. Viesca

and Garagash [2018] review these techniques and apply them to the solution of

various fracture propagation problems with coupled physics. Liu et al. [2019] adapt

the methodology to the radial fracture propagation. It is important to mention

that the numerical scheme does not require an explicit implementation of the near

tip region asymptote (if different from the classical LEFM one) compared to other

approaches which use the ’tip logic’, e.g., [Peirce and Detournay, 2008, Peirce, 2015,

Dontsov, 2016a, Dontsov and Peirce, 2017c, Zia and Lecampion, 2020]. In present

work, we follow the method developed by Liu et al. [2019] and extend it to account
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for different HF fluid rheology and for the fluid leak-off.

Firstly, we introduce the dimensionless distance from the source as 𝜉 = 𝑟/𝑅(𝑡),

𝜉 ∈ [0, 1], and rewrite the system of governing equations through 𝜉 variable us-

ing the transformation of the time and coordinate derivatives: 𝜕/𝜕𝑡|𝑟 = 𝜕/𝜕𝑡|𝜉 −

[𝜉𝑉 (𝑡)/𝑅(𝑡)] · 𝜕/𝜕𝜉|𝑡, 𝜕/𝜕𝑟|𝑡 = 𝑅(𝑡)−1𝜕/𝜕𝜉|𝑡, 𝑉 = 𝑑𝑅/𝑑𝑡 = �̇�. The application

of Gauss-Chebyshev quadrature implies the problem consideration on the spatial

coordinate segment 𝜉 ∈ [−1, 1]. In this regard, the spatiotemporal fracture charac-

teristics and governing equations are extended symmetrically to negative 𝜉. Such

modified form of the elasticity equation (2.11) is given by:

𝑝(𝜉, 𝑡) = − 𝐸 ′

4𝜋𝑅(𝑡)

∫︁ 1

−1

𝐺 (𝜉, 𝑠)
𝜕𝑤(𝑠, 𝑡)

𝜕𝑠
𝑑𝑠, 𝜉 ∈ [−1, 1], (4.29)

where the corresponding form of the integral kernel is provided by Liu et al. [2019]:

𝐺(𝜉, 𝑠) =

⎧⎪⎨⎪⎩sign(𝜉𝑠)
[︁
1
𝜉
K
(︁
𝑠2

𝜉2

)︁
+ 1

𝑠−𝜉E
(︁
𝑠2

𝜉2

)︁]︁
, |𝜉| > |𝑠|,

1
𝑠−𝜉E

(︁
𝜉2

𝑠2

)︁
, |𝜉| < |𝑠|.

(4.30)

Spatial derivative of the opening profile is written as:

𝜕𝑤

𝜕𝜉
= 𝒲(𝜉)𝐹 (𝜉, 𝑡), 𝒲(𝜉) =

1√︀
1 − 𝜉2

, 𝜉 ∈ [−1, 1],

where the singular weight function 𝒲(𝜉) is chosen in accordance with the fracture

opening behavior near the tip, i.e., 𝜕𝑤/𝜕𝜉 ∼ 1/
√︀

1 − |𝜉|, 𝜉 → ±1, and 𝐹 (𝜉, 𝑡) is

an unknown regular function. Since 𝑤(𝜉, 𝑡) and 𝒲(𝜉) are even functions, function

𝐹 (𝜉, 𝑡) should be odd.

Next, the coordinate domain 𝜉 ∈ [−1, 1] is discretized using two sets of nodes

connected with the selected weight function (the details are provided by Viesca and

Garagash [2018]): primary s = {𝑠𝑗}𝑁𝑗=1 = {cos [𝜋(𝑗 − 1/2)/𝑁 ]}𝑁𝑗=1 and complemen-

tary z = {𝑧𝑖}𝑀𝑖=1 = {cos (𝜋𝑖/𝑁)}𝑀𝑖=1 , 𝑀 = 𝑁 − 1, sets. Hereafter we utilize bold

symbols for vectors. Primary and complementary nodes are the roots of the Cheby-

shev’s polynomials of the first and the second kind. We further make use of the

values of 𝐹 (𝜉, 𝑡) at the primary nodes: F = {𝐹 (𝑠𝑗, 𝑡)}𝑁𝑗=1, while the crack aper-
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

ture 𝑤(𝜉, 𝑡), net pressure 𝑝(𝜉, 𝑡) and fluid flow velocity 𝑣(𝜉, 𝑡) are evaluated at the

complementary nodes: w = {𝑤(𝑧𝑖, 𝑡)}𝑀𝑖=1, p = {𝑝(𝑧𝑖, 𝑡)}𝑀𝑖=1, v = {𝑣(𝑧𝑖, 𝑡)}𝑀𝑖=1.

Let us turn to the discretization of the governing equations. We focus on the

Reynolds and global fluid balance equations since the remaining equations (elasticity,

propagation criterion, and boundary conditions) are identical to those in [Liu et al.,

2019] and given by their equations (3), (10), (8). Integrating Reynolds equation

(4.26) in space from a given position along the crack 𝜉 to the tip 𝜉 = 1, apply-

ing discretization and substituting discretized elasticity (equation (41) of Liu et al.

[2019]), we arrive to

− z2

2

𝜕w

𝜕𝑡
+

1

2

𝜕

𝜕𝑡

[︀
S× (s2F)

]︀
+
𝑉

𝑅
(S× (s2F)) − zwv

𝑅
+ 𝐶 ′R× z√︀

𝑡− 𝑡0(z𝑅)
= 0, w = S× F,

v = − w2

𝑀 ′𝑓𝑅
p𝜉, p𝜉 =

𝐸 ′

4𝑅
D× (G2 × F), 𝑓 =

⎧⎪⎨⎪⎩1, Re ≤ 𝑅𝑒𝑐,

𝑓
′′
0Re1−𝑛, Re > 𝑅𝑒𝑐,

, Re =
12𝜌wv

𝑀 ′ .

Here, we utilize the sign ’×’ for the matrix multiplication. Components of the

matrices S,D,G2 are provided by Liu et al. [2019] in their equations (34), (39), (43),

while matrix R is given by:

R = {𝑅𝑖𝑖′} =

{︃
𝑀−1∑︁
𝑘=0

[Ψ𝑘(1) − Ψ𝑘(𝑧𝑖)]𝐵𝑘𝑖′

}︃
, Ψ𝑘(𝑧) = cos [(𝑘 + 1)𝜃]/(𝑘 + 1), 𝜃 = arccos 𝑧,

𝐵𝑘𝑖′ = 2/𝑁 · sin (𝜋𝑖′/𝑁) sin (𝜋𝑖′(𝑘 + 1)/𝑁).

The rate form of the global fluid balance equation (2.20) can be discretized as

follows:

𝑄0

𝜋

(︂
1

𝑅2
− 2𝑡𝑉

𝑅3

)︂
= −S𝐻 × (s2�̇� ) + 2𝐶 ′R𝐻 × z√︀

𝑡− 𝑡0(z𝑅)
− 2𝐶 ′𝑉

𝑅3

∫︁ 𝑡

0

𝑅2(𝑠)𝑑𝑠√
𝑡− 𝑠

,

where the matrix S𝐻 is defined by Liu et al. [2019] in their equation (38), while R𝐻

is given by:

R𝐻 =

{︃
𝑚−1∑︁
𝑘=0

[Ψ𝑘(1) − Ψ𝑘(0)]𝐵𝑘𝑖′

}︃
.

In the right-hand-side of the global fluid balance equation we have the integral with
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

respect to time, and it can be evaluated via application of the Simpson’s rule.

The discretized Reynolds equations (with the elasticity equation and boundary

conditions already taken into account in it) together with the global fluid balance

and propagation condition can be combined into a system of ordinary differential

equations (ODEs):

A(X, 𝑡)
𝑑X

𝑑𝑡
= B(X, 𝑡), X = {𝑅,F},

where X is the solution vector. Once the above system of ordinary differential

equations is integrated, the crack radius evolution is known, 𝑅 = 𝑅(𝑡), while the

solution for opening, net pressure profiles, and efficiency is evaluated from 𝐹 (𝜉, 𝑡)

using the following representation:

w = S× F, p =
𝐸 ′

4𝑅
G2 × F, 𝜂(𝑡) = −𝜋𝑅

2

𝑄0𝑡

{︀
S𝐴 × (s2F)

}︀
,

where matrix S𝐴 is defined in [Liu et al., 2019] by their equation (37).

Due to the form of the elasticity equation [Liu et al., 2019], the number of pri-

mary nodes 𝑁 should be odd. Since function 𝐹 (𝜉, 𝑡) is odd, the target vector F has

the form: F = {𝐹1, . . . 𝐹(𝑁−1)/2, 0,−𝐹(𝑁−1)/2, . . . ,−𝐹1}. The total number of the

independent unknown parameters is (𝑁 − 1)/2 + 1 which constrains the system of

governing ODEs to be composed of the Reynolds equations at the complementary

nodes 𝑧1, . . . , 𝑧(𝑁−1)/2−1, the global fluid balance equation and the propagation con-

dition. We choose 𝑁 = 101, and the initial condition is represented by the storage-

viscosity-turbulent limiting propagation regime originally developed by Lecampion

and Zia [2019], and further discussed in Section 4.3.4. The time computational do-

main is discretized on a logarithmic scale, and we apply ODE solver for each time

step. The numerical algorithm is implemented in Python programming language,

the system of ODEs is solved via solve_ivp function of SciPy library.
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

4.3.3 Solution examples for typical field applications

In this section, we demonstrate the results of the simulations for a radial hydraulic

fracture growth in which the model parameters are close to the typical field cases.

We would like to achieve the following objectives. First of all, we investigate how the

laminar-to-turbulent flow regime transformation inside the fracture channel changes

the problem solution compared to the fully laminar flow case for both impermeable

and permeable reservoirs. Moreover, we perform calculations not only for slickwater

but also for pure water driven cracks to examine the influence of the frictional

behavior on the fracture parameters.

The injection volumetric flow rate is assumed to be a fairly high 𝑄0 = 0.1 m3/s

(e.g, see representative ranges in the reviews [Barati and Liang, 2014, Barbati et al.,

2016]). For simplicity, we consider a situation when the polymer molecules do not

change the solvent (pure water) viscosity, i.e., they modify the frictional behavior

during turbulent flow only (the MDR asymptote instead of the Blasius approxima-

tion). The following rock and fluid properties are chosen:

𝐸 ′ = 20 GPa, 𝐾𝐼𝑐 = 1 MPa ·
√

m, 𝜎𝑜 = 10 MPa, 𝑝𝑜 = 6 MPa,

𝜇 = 1 cP, 𝑐𝑡 = 10−3 MPa−1, 𝜌 = 103 kg/m3,

𝑘 = 10 mD (permeable rock), 𝜑 = 20%. (4.31)

Using the set of parameters (4.31), one can estimate the Carter’s leak-off number

corresponding to the permeable rock case, 𝐶 ′ = 2.04 · 10−4 m/
√

s, while 𝐶 ′ = 0 for

impermeable rock.

Figures 4-8(a), (b) and (c) present the turbulent-laminar solutions for the evo-

lution of the fracture radius 𝑅(𝑡), opening at the wellbore 𝑤(0, 𝑡) and net pressure

𝑝(0.1, 𝑡) at the distance 𝑟 = 0.1 m normalized by the corresponding laminar solu-

tions (Figure 4-9). As a result, the laminar solutions in these charts are simply unity

along the entire time domain. The choice of the location for the pressure monitoring

is conditioned by the pressure singularity at 𝑟 = 0 in the point fluid source model

and by the value of a typical borehole radius. We also note that, with exception
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

of very early propagation time (not shown), 𝑅(𝑡) ≫ 0.1 m, and the point source

modeling is deemed appropriate.

Figure 4-8: Evolution of fracture radius 𝑅(𝑡), (a), opening at the wellbore 𝑤(0, 𝑡), (b),
and net pressure 𝑝(0.1, 𝑡) at the distance 𝑟 = 0.1 m, (c), in the turbulent-laminar solu-
tions, normalized by the corresponding solutions of the fully-laminar model (Figure 4-9).
Evolution of length 𝜆(𝑡) of the laminar flow domain, (d), normalized by fracture radius
𝑅(𝑡) (the laminar flow domain extends distance 𝜆 from the crack tip, see Figure 4-7). The
slickwater (water) solutions are presented by blue (red) color, while solid (dashed) lines
indicate impermeable (permeable) rock case.

Figure 4-9: Evolution of the fracture radius 𝑅(𝑡), (a), maximum opening 𝑤(0, 𝑡), (b), and
net pressure 𝑝(0.1, 𝑡) at the distance 𝑟 = 0.1𝑚 in the laminar solutions. The solid (dashed)
lines indicate the impermeable (permeable) rock case.

Using these figures, one can notice that the laminar-to-turbulent flow regime
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

Table 4.2: The table contains the time moments (in seconds) starting from which the
relative differences between the fracture characteristics 𝑅(𝑡), 𝑤(0, 𝑡), 𝑝(0.1, 𝑡) estimated
by the turbulent-laminar and fully-laminar solutions are less than 5%.

𝑡*, s
HF fluid slickwater water
rock type impermeable permeable impermeable permeable

𝒜

𝑅(𝑡) 0.03 0.02 0.7 0.5
𝑤(0, 𝑡) 5.5 14.2 70.5 745.3
𝑝(0.1, 𝑡) 308 8933 1079 67383

transformation inside the crack channel affects the fracture parameters during an

initial period of the propagation, leading to a shorter radius, larger opening at the

wellbore, and pressure values compared to the fully-laminar model. Turbulent effects

eventually become negligible, and the turbulent-laminar and fully-laminar solutions

become nearly identical. It is important to highlight that the threshold time is

different for radius, opening, and pressure for a particular choice of the governing

parameters of the model.

Let us define a time moment 𝑡* when a time-dependent fracture characteristic

𝒜(𝑡) (radius, opening, pressure) corresponding to the turbulent-laminar solution

can be closely approximated by 𝒜lam(𝑡) from the fully-laminar solution as follows:

|𝒜(𝑡*)−𝒜lam(𝑡*)|/|𝒜lam(𝑡*)| = 5%. We summarize the values 𝑡* for the crack param-

eters depicted in Figure 4-8 for all considered cases, namely, slickwater (blue lines)

and pure water (red lines) fracturing in the impermeable (solid lines) and permeable

(dashed lines) reservoirs, in Table 4.2.

It is evident from Table 4.2 that the noticeable difference in the fracture radius

values 𝑅(𝑡) and 𝑅lam(𝑡) appears on the timescale less than one second, suggesting

that in practice, the deviation of the fracture size in the turbulent-laminar solution

from that assuming fully-laminar flow can be neglected. The flow regime transfor-

mation impacts opening at the wellbore during approximately 5 and 15 seconds for

slickwater fracturing in an impermeable and permeable rock, correspondingly. These

quantities for pure water fracturing are around 1 and 12 minutes, respectively. The

interpretation of the results for 𝑤(0, 𝑡) leads to the following conclusions: (i) the

leak-off process prolongs the duration of the turbulent flow regime influence on the

crack aperture near the wellbore, and (ii) the turbulence effects are more pronounced
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

for the pure water case since they continue during much longer period of time. How-

ever, even when the crack geometries (radius and aperture) are approximately the

same in the turbulent-laminar and fully-laminar models, the pressure values near the

wellbore (𝑟 = 0.1 m) can still differ significantly. This observation means that larger

amount of energy is required to create a hydraulic fracture driven by turbulent-

laminar flow compared to the value predicted by the fully-laminar model. From

Figure 4-8 and Table 4.2, we identify for the slickwater case that 𝑝 ≈ 𝑝lam (less 5%

difference) after 5 minutes from the fracture initiation in an impermeable formation,

while in a permeable rock, this period reaches 2.5 hours. In turn, when the HF fluid

is pure water, the alignment of the pressure values occurs after 0.5 and 18 hours

(beyond typical HF treatment duration in the field), correspondingly.

Figure 4-8(d) shows the extent 𝜆(𝑡) of the region 𝑟 ∈ (𝑅 − 𝜆,𝑅) with laminar

flow as a fraction of the crack radius 𝑅(𝑡). It is an increasing function on time

evolving from 𝜆/𝑅 ≈ 0 at early time and approaching 𝜆/𝑅 ≈ 1 at large time.

In other words, the turbulent flow regime is realized along the entire fracture at

the beginning of the propagation, while the laminar regime is spatially dominant

at large time. For example, we observe in the permeable rock case that near the

end of a typical fluid injection (𝑡 ∼ 104 s) only a small part of the crack ∼ 0.1𝑅

near the wellbore is occupied by turbulent flow, whereas the remainder of the crack

∼ 0.9𝑅 supports laminar flow. Turbulent flow spatial extent is yet smaller for the

case of impermeable rock. By comparing slickwater and water injection cases in

Figure 4-8(d), we notice that the spatial domain with turbulent flow is larger for

slickwater HF, i.e., 𝜆/𝑅 at all times is smaller, yet the water HF corresponds to

larger deviations of 𝑅(𝑡), 𝑤(0, 𝑡), 𝑝(0.1, 𝑡) from the laminar solution.

We now discuss how the spatial distributions of the fracture aperture and net

pressure along the fracture evolve with time. These distributions are shown in Figure

4-10 for three time moments 𝑡 = {1, 10, 100} s. As it has been already mentioned,

a radial crack driven by turbulent-laminar flow has a shorter radius compared to

the fully-laminar model, at early time, the opening and pressure profiles for 𝑡 = 1

s in Figure 4-10 confirm this fact. In the subsequent time moments, i.e., 𝑡 = 10

and 100 s, the difference between 𝑅(𝑡) and 𝑅lam(𝑡) values is imperceptible. The
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

turbulent-laminar solutions become very close to their laminar ’analogs’ starting

from a certain distance from the fluid source. In turn, in the remainder of the crack,

i.e., along the zone adjacent to the wellbore, a considerable difference, decreasing

over time, is observed where the turbulent-laminar crack has a wider opening and

larger net pressure. In general, the HF in a permeable rock (Figures 4-10(b) and

(d)) has a smaller volume due to the leak-off compared to the crack propagation in

the impermeable reservoir, which is manifested in a shorter radius and aperture in

the leak-off cases. On the other hand, the net pressure profile has greater values in

the cases with leak-off.

Using Figures 4-10(c) and (d), one can observe the presence of the pressure sin-

gularities at the wellbore and the fracture front. For example, the pressure behavior

near the wellbore (𝑟 ≪ 𝑅) is governed by 𝑝 ∼ | log 𝑟| for the fully-laminar crack,

while 𝑝 ∼ 𝑟−3/10 and 𝑝 ∼ 𝑟−3/4 are applicable for slickwater and pure water fractur-

ing, respectively, in the turbulent-laminar model. The near-tip region of a hydraulic

fracture (𝑅 − 𝑟 ≪ 𝑅) has multiscale nature (see, e.g., [Garagash et al., 2011]) such

that the dominant tip singularity depends on both fracture length and propagation

speed. It can take form of either toughness asymptote 𝑝 ∼ −| log 𝑟| or storage-

viscosity asymptote [Garagash et al., 2011]. The latter is given by 𝑝 ∼ −(𝑅− 𝑟)−1/3

[Desroches et al., 1994] in the laminar flow regime and by 𝑝 ∼ −(𝑅−𝑟)−7/27 for slick-

water or 𝑝 ∼ −(𝑅 − 𝑟)−1/9 for pure water in the turbulent flow regime [Lecampion

and Zia, 2019, Kanin et al., 2020b].

4.3.4 Limiting propagation regimes

Two different mechanisms control the propagation regime of a finite hydraulic frac-

ture. The first one regulates the total dissipated energy distribution between the

creation of new fracture surfaces at the tip and viscous fluid flow inside the fracture

channel. The second mechanism is related to the partitioning of the injected fluid

volume between the fracture and host permeable rock (due to leak-off). During

the crack growth, the allocation of the dissipated energy and injected volume can

change over time resulting in the realization of the limiting propagation regimes

characterized by one dissipation (out of two) and one fluid balance (out of two)
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

Figure 4-10: The spatial variations of the fracture opening (top raw) and net fluid pressure
(bottom raw) at the time moments 𝑡 = {1, 10, 100} s. The figures (a) and (c) are related
to the impermeable rock case, while (b) and (d) show the discussed crack characteristics
during the growth at the permeable formation. The solution profiles for the slickwater
(water) fracturing are depicted by solid blue (red) lines. The fully-laminar solutions are
presented by black dashed lines.

mechanisms. The partitioning of the dissipated energy is influenced by the viscos-

ity 𝑀 ′ and toughness 𝐾 ′ parameters, while the leak-off parameter 𝐶 ′ affects the

distribution of the injected volume.

In the present radial fracture model, we distinguish six limiting propagation

regimes (also known as the vertex solutions or vertices). Four of them can be

observed in the penny-shaped HF model with laminar flow realized along the whole

fracture channel (see a review paper of Detournay [2016] and references therein):

• M – storage-viscosity-laminar – 𝐶 ′ = 𝐾 ′ = 0, 𝑅𝑒 ≤ 𝑅𝑒𝑐;

• �̃� – leak-off-viscosity-laminar – 𝐶 ′ → +∞, 𝐾 ′ = 0, 𝑅𝑒 ≤ 𝑅𝑒𝑐;

• K – storage-toughness – 𝐶 ′ = 𝑀 ′ = 0;

• �̃� – leak-off-toughness – 𝐶 ′ → +∞, 𝑀 ′ = 0.
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The toughness dominated regimes 𝐾 and �̃� do not depend on the flow regime type.

Therefore, the remaining two limiting regimes emerge in the viscosity-dominated

case, when the entire fracture is occupied by turbulent flow:

• T – storage-viscosity-turbulent – 𝐶 ′ = 𝐾 ′ = 0, 𝑅𝑒 > 𝑅𝑒𝑐;

• 𝑇 – leak-off-viscosity-turbulent – 𝐶 ′ → +∞, 𝐾 ′ = 0,, 𝑅𝑒 > 𝑅𝑒𝑐.

Although the laminar flow always exists near the hydraulic fracture front, the above

two regimes correspond to the limit when the laminar domain becomes negligibly

small.

Savitski and Detournay [2002] derived solutions for 𝑀 and 𝐾 vertices, while �̃�

and �̃� solutions are given by Bunger et al. [2005], and by [Madyarova, 2004, Peirce

and Detournay, 2008], respectively. Moreover, Dontsov [2016a] present approximate

solutions for all laminar limiting regimes. The semi-analytical and approximate so-

lutions for the storage-viscosity-turbulent regime, 𝑇 -vertex, are found by Lecampion

and Zia [2019].

Further, we summarize scalings in different limiting regimes of the solution fol-

lowing [Detournay, 2016] for the laminar regimes and [Lecampion and Zia, 2019] for

the turbulent ones. Firstly, we introduce the dimensionless radius 𝛾, opening Ω, net

pressure Π and fluid velocity 𝒱 as follows:

𝑅(𝑡) = 𝐿(𝑡)𝛾(𝒫), 𝑤(𝑟, 𝑡) = 𝜖(𝑡)𝐿(𝑡)Ω(𝜉,𝒫),

𝑝(𝑟, 𝑡) = 𝐸 ′𝜖(𝑡)Π(𝜉,𝒫), 𝑣(𝑟, 𝑡) = 𝐿(𝑡)𝒱(𝜉,𝒫)/𝑡, (4.32)

where 𝜉 = 𝑟/𝑅(𝑡) is the normalized distance from the source, 𝒫 = {𝒫1,𝒫2,𝒫3} are

dimensionless evolution parameters depending on time, material parameters (2.10),

fluid density 𝜌 and injection rate 𝑄0. 𝐿(𝑡) is a lengthscale of the same order as the

crack radius, and 𝜖(𝑡) is a small dimensionless parameter.

Next, we substitute formulas (4.32) into the governing equations and obtain their

normalized form:

• Elasticity:

Π = − 1

2𝜋𝛾

∫︁ 1

0

𝐺 (𝜉, 𝑠)
𝜕Ω

𝜕𝑠
𝑑𝑠; (4.33)

131

jdesroches1@outlook.fr
Sticky Note
single comma after 0 ^^



Chapter 4. Turbulent flow effects in a slickwater fracture propagation

• Reynolds:

𝒢𝑣

(︃[︃
�̇�𝑡

𝜖
+
�̇�𝑡

𝐿

]︃
Ω + Ω̇𝑡− 𝜉

(︃
�̇�𝑡

𝐿
+
�̇�𝑡

𝛾

)︃
𝜕Ω

𝜕𝜉

)︃
+

𝒢𝑐√︀
1 − 𝜏0 (𝜉𝐿𝛾)

= − 1

𝛾𝜉

𝜕
(︁
𝜉Ω𝒱

)︁
𝜕𝜉

;

𝒱 = 𝐺𝑣𝒱 =

⎧⎪⎨⎪⎩−(𝒢 lam
𝑚 )−1Ω2𝛾−1∇Π, ℛ|𝒱|Ω ≤ 𝑅𝑒𝑐,

−(𝒢turb
𝑚 )−1sign (∇Π) [Ω𝑛+1𝛾−1|∇Π|]1/(2−𝑛) , ℛ|𝒱|Ω > 𝑅𝑒𝑐;

(4.34)

• Propagation condition:

Ω = 𝒢𝑘
√
𝛾
√︀

1 − 𝜉, 𝜉 → 1; (4.35)

• Boundary conditions:

lim
𝜉→0

𝜉Ω𝒱 =
𝒢−1
𝑣

2𝜋𝛾
, Ω(1, 𝑡) = 0, Ω(1, 𝑡)𝒱(1, 𝑡) = 0; (4.36)

• Global fluid balance:

1

𝜋𝛾2
= 2𝒢𝑣

∫︁ 1

0

Ω𝜉𝑑𝜉 + 4𝒢𝑐
∫︁ 1

0

√︀
1 − 𝜏0 (𝜉𝛾𝐿)𝜉𝑑𝜉; (4.37)

where 𝜏0(𝑡) = 𝑡0(𝑟)/𝑡 is the dimensionless inverse radius function, ∇Π = 𝜕Π/𝜕𝜉 is

the pressure gradient, and ℛ = 12𝜌𝜖𝐿2/(𝑀 ′𝑡) is the characteristic Reynolds number.

We also introduce five dimensionless groups:

𝒢𝑣 =
𝜖𝐿3

𝑄0𝑡
, 𝒢𝑐 =

𝐶 ′𝐿2

𝑄0

√
𝑡
, 𝒢𝑘 =

𝐾 ′

𝐸 ′𝜖
√
𝐿
, 𝒢 lam

𝑚 =
𝑀 ′𝑄0

𝐸 ′𝐿3𝜖4
,

𝒢turb
𝑚 =

(︂
𝑓

′′
0 (12𝜌)1−𝑛𝑀 ′𝑛𝑄2−𝑛

0

𝐸 ′𝐿4−𝑛𝜖4

)︂1/(2−𝑛)

=
(︁
𝑓

′′

0 𝒢 lam
𝑚 (ℛ/𝒢𝑣)1−𝑛

)︁1/(2−𝑛)
. (4.38)

Numbers 𝒢𝑣 and 𝒢𝑐 quantify the fluid volume stored inside the fracture and

leaked into the rock, respectively, in reference to the total injected volume. Numbers

𝒢𝑘, 𝒢 lam
𝑚 , and 𝒢turb

𝑚 with the meaning of the non-dimensional rock toughness, fluid

viscosity, and equivalent viscosity of turbulent flow, correspondingly, relate to the
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partition of the dissipated energy between solid and fluid.

To derive scalings linked to the limiting regimes (i.e., lengthscale 𝐿(𝑡) and factor

𝜖(𝑡) in equation (4.32)), we assign one out of two storage numbers (𝒢𝑣, 𝒢𝑐) and one

out of three dissipation numbers (𝒢 lam
𝑚 , 𝒢turb

𝑚 , 𝒢𝑘) equal to one. The remaining three

groups constitute the evolution parameters 𝒫 . When all three of these parameters

tend to zero in a given scaling, one can observe the emergence of the corresponding

vertex solution.

We consider the storage-viscosity-turbulent scaling 𝒢𝑣 = 𝒢turb
𝑚 = 1. The following

formulas for the lengthscale and small parameter follow:

𝐿𝑡 =

(︂
𝐸 ′𝑡4𝑄𝑛+2

0

(12𝜌)1−𝑛𝑓
′′
0𝑀

′𝑛

)︂1/(8+𝑛)

, 𝜖𝑡 =
𝑄0𝑡

𝐿3
𝑡

. (4.39)

while three non-dimensional evolution parameters 𝒫 (i.e., toughness 𝒢𝑘, leak-off 𝒢𝑐,

and laminar-viscosity 𝒢 lam
𝑚 ) are:

𝒦𝑡 = 𝐾 ′
(︂

𝑡4−2𝑛

(12𝜌)5−5𝑛(𝑓
′′
0 )5𝐸 ′11+2𝑛𝑀 ′5𝑛𝑄6−3𝑛

0

)︂1/(16+2𝑛)

,

𝒞𝑡 = 𝐶 ′
(︂

𝐸 ′4𝑡8−𝑛

(12𝜌)4−4𝑛(𝑓
′′
0 )4𝑀 ′4𝑛𝑄8−2𝑛

0

)︂1/(16+2𝑛)

,

ℳ𝑡 =

(︂
𝐸 ′1−𝑛𝑀 ′8−8𝑛𝑡4−4𝑛

(12𝜌)9−9𝑛(𝑓
′′
0 )9𝑄6−6𝑛

0

)︂1/(8+𝑛)

. (4.40)

The solution in the storage-viscosity-turbulent regime (𝑇 -vertex) is then obtained

from the normalized equations (4.33)–(4.37) in the above scaling when the evolution

parameters (4.40) are set to zero. The solution is computed numerically using the

method defined in Section 4.3.2, and is given below for the time evolution of the

fracture radius, opening at the wellbore, and pressure at the half-radius:

𝑅𝑡(𝑡) = 0.759𝐿𝑡, 𝑤𝑡(0, 𝑡) = 1.11

(︂
(𝑓

′′
0 )2(12𝜌)2−2𝑛𝑀 ′2𝑛𝑄4−𝑛

0 𝑡𝑛

𝐸 ′2

)︂1/(8+𝑛)

,

𝑝𝑡(𝑅𝑡(𝑡)/2, 𝑡) = 0.5

(︂
(𝑓

′′
0 )3𝐸 ′𝑛+5𝑀 ′3𝑛(12𝜌)3−3𝑛𝑄2−2𝑛

0

𝑡4−𝑛

)︂ 1
𝑛+8

. (4.41)

The storage-viscosity-laminar scaling 𝒢𝑣 = 𝒢 lam
𝑚 = 1 and corresponding scales

𝐿𝑚 and 𝜖𝑚 can be alternatively obtained by setting 𝑛 = 𝑓
′′
0 = 1 in expressions (4.39)
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Chapter 4. Turbulent flow effects in a slickwater fracture propagation

for 𝐿𝑡, 𝜖𝑡. Fracture characteristics in the 𝑀 -vertex solution (𝒢𝑘 = 𝒢𝑐 = 𝒢turb
𝑚 = 0)

have the following form [Savitski and Detournay, 2002]:

𝑅𝑚(𝑡) = 0.699

(︂
𝐸 ′𝑄3

0𝑡
4

𝑀 ′

)︂1/9

, 𝑤𝑚(0, 𝑡) = 1.188

(︂
𝑀 ′2𝑄3

0𝑡

𝐸 ′2

)︂1/9

,

𝑝𝑚(𝑅𝑚(𝑡)/2, 𝑡) = 0.62

(︂
𝐸 ′2𝑀 ′

𝑡

)︂1/3

, (4.42)

where, as before, the numerical prefactors are evaluated from the full numerical

solution of the problem.

Next, we look at the leak-off-viscosity-turbulent scaling 𝒢𝑐 = 𝒢turb
𝑚 = 1 and

derive the formulas for the lengthscale and small parameter provided below:

𝐿𝑡 = 𝑡1/4
√︂
𝑄0

𝐶 ′ , 𝜖𝑡 =
(12𝜌)(1−𝑛)/4(𝑓

′′
0 )1/4𝐶 ′(4−𝑛)/8𝑀 ′𝑛/4

𝐸 ′1/4𝑄
𝑛/8
0 𝑡(4−𝑛)/16

. (4.43)

Fracture characteristics in the 𝑇 -vertex solution for the leak-off-viscosity-turbulent

regime (𝒢𝑣 = 𝒢𝑘 = 𝒢 lam
𝑚 = 0) can be obtained in the following form:

𝑅𝑡(𝑡) =

√
2

𝜋
𝐿𝑡, 𝑤𝑡(0, 𝑡) =

(12𝜌)
1−𝑛
4 (𝑓

′′
0 )1/4𝑀 ′𝑛/4𝑄

(4−𝑛)/8
0 𝑡𝑛/16

𝐸 ′1/4𝐶 ′𝑛/8 ,

𝑝𝑡(𝑅𝑡(𝑡)/2, 𝑡) = 0.75

(︂
𝐸 ′12(𝑓

′′
0 )4𝐶 ′8−2𝑛𝑀 ′4𝑛(12𝜌)4−4𝑛

𝑄2𝑛
0 𝑡

4−𝑛

)︂1/16

, (4.44)

where the numerical prefactors (for opening and pressure) are computed from the full

numerical solution of the governing equations (4.33)–(4.37) in the 𝑇 -scaling when

the evolution parameters equal zero; the coefficient for the fracture radius is found

analytically (exact).

The substitution 𝑛 = 𝑓
′′
0 = 1 in equations (4.43) for 𝐿𝑡, 𝜖𝑡 leads to the leak-off-

viscosity-laminar scaling 𝒢𝑐 = 𝒢 lam
𝑚 = 1 and corresponding scales 𝐿�̃� and 𝜖�̃�. The

fracture properties in the �̃� -vertex solution (𝒢𝑘 = 𝒢𝑣 = 𝒢turb
𝑚 = 0) are given below:

𝑅�̃�(𝑡) = 𝑅𝑡(𝑡), 𝑤�̃�(0, 𝑡) = 1.05

(︂
𝑀 ′4𝑄6

0𝑡

𝐶 ′2𝐸 ′4

)︂1/16

,

𝑝�̃�(𝑅�̃�(𝑡)/2, 𝑡) = 0.84

(︂
𝐸 ′12𝐶 ′6𝑀 ′4

𝑄2
0𝑡

3

)︂1/16

, (4.45)
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where the numerical coefficients for the opening and pressure are calculated from

the full numerical solution of the problem.

The toughness dominated vertex solutions (𝐾 and �̃�) do not depend on the

realized flow regime inside the fracture channel since the corresponding energy dissi-

pation in the fluid flow is assumed negligibly small. For the completeness, we write

out expressions for the radius, opening at the wellbore and pressure (uniform along

the whole crack) in these regimes [Savitski and Detournay, 2002, Bunger et al.,

2005]:

𝑅𝑘 =

(︂
3√
2𝜋

)︂2/5(︂
𝐸 ′𝑄0𝑡

𝐾 ′

)︂2/5

, 𝑤𝑘(0, 𝑡) =

(︂
3

8𝜋

)︂1/5(︂
𝐾 ′4𝑄0𝑡

𝐸 ′4

)︂1/5

,

𝑝𝑘(𝑡) =

(︂
𝜋6

2173
· 𝐾 ′6

𝑡𝐸 ′𝑄0

)︂1/5

; (4.46)

𝑅𝑘(𝑡) = 𝑅𝑡(𝑡), 𝑤𝑘(0, 𝑡) =
1

21/4
√
𝜋

(︂
𝐾 ′8𝑄2

0𝑡

𝐶 ′2𝐸 ′8

)︂1/8

, 𝑝𝑘(𝑡) =
𝜋3/2

215/4

𝐶 ′1/4𝐾 ′

𝑄
1/4
0 𝑡1/8

.

(4.47)

4.3.5 Normalization of the governing equations

Normalized solution (4.32) in one of the vertex-scalings of Section 4.3.4 depends on

three non-dimensional evolution parameters which quantify the departure from the

corresponding vertex solution. Either of these three parameters can be regarded as

non-dimensional ’time’ in the problem. Alternative, so-called ’mixed’ scalings have

also been used [Madyarova, 2004, Bunger et al., 2005, Adachi and Detournay, 2008,

Dontsov, 2016a] to compute solution evolution in time between the limiting regimes

(vertices).

One of such scalings, the 𝑚𝑘-scaling [Detournay, 2016], is defined in terms of the

timescale 𝑡𝑚𝑘 quantifying the solution transition period between 𝑀 and 𝐾 regimes.

Specifically, 𝑡𝑚𝑘 is the time moment when the 𝐾−vertex and 𝑀−vertex lengthscales

are the same, i.e., 𝐿𝑘(𝑡) = 𝐿𝑚(𝑡) at 𝑡 = 𝑡𝑚𝑘. The corresponding length 𝐿𝑚𝑘 =

𝐿𝑚(𝑡𝑚𝑘) = 𝐿𝑘(𝑡𝑚𝑘) and non-dimensional small parameter 𝜖𝑚𝑘 = 𝜖𝑚(𝑡𝑚𝑘) = 𝜖𝑘(𝑡𝑚𝑘)
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are used to define the 𝑚𝑘-scaling:

𝜉 =
𝑟

𝑅
, 𝜏 =

𝑡

𝑡𝑚𝑘
, 𝛾 =

𝑅

𝐿𝑚𝑘
, Ω =

𝑤

𝜖𝑚𝑘𝐿𝑚𝑘
, Π =

𝑝

𝐸 ′𝜖𝑚𝑘
, 𝒱 =

𝑣

𝐿𝑚𝑘/𝑡𝑚𝑘
, (4.48)

where the characteristic scales evaluated as:

𝑡𝑚𝑘 =

√︂
𝐸 ′13𝑀 ′5𝑄3

0

𝐾 ′18 , 𝐿𝑚𝑘 =

(︂
𝐸 ′𝑄3

0𝑡
4
𝑚𝑘

𝑀 ′

)︂1/9

, 𝜖𝑚𝑘 =

(︂
𝑀 ′

𝐸 ′𝑡𝑚𝑘

)︂1/3

. (4.49)

We note that either vertex scalings (Section 4.3.4) or the alternative ’mixed’

𝑚𝑘-scaling can be utilized to obtain general solution and its evolution in time. In

the following, we apply the 𝑚𝑘-scaling, since it allows for more direct interpretation

of the normalized solution (since the scales 𝐿𝑚𝑘 and 𝜖𝑚𝑘 are constants compared to

the time-dependent vertex scales 𝐿(𝑡) and 𝜖(𝑡)).

The substitution of (4.48), (4.49) into the system of the governing equations

yields their normalized form:

• Elasticity:

Π = − 1

2𝜋𝛾

∫︁ 1

0

𝐺 (𝜉, 𝑠)
𝜕Ω

𝜕𝑠
𝑑𝑠;

• Reynolds:

𝜕Ω

𝜕𝜏
− 𝜉�̇�

𝛾

𝜕Ω

𝜕𝜉
+

1

𝜉𝛾

𝜕

𝜕𝜉
(𝜉Ω𝒱) +

𝜑1/4√︀
𝜏 − 𝜏0 (𝜉𝐿𝑚𝑘𝛾)

= 0,

𝒱 = −Ω2

𝑓𝛾

𝜕Π

𝜕𝜉
,

𝑓 =

⎧⎪⎨⎪⎩1, ℛΩ|𝒱| ≤ 𝑅𝑒𝑐,

𝑓
′′
0 (ℛΩ|𝒱|)1−𝑛, ℛΩ|𝒱| > 𝑅𝑒𝑐;

• Propagation condition:

Ω =
√
𝛾
√︀

1 − 𝜉, 𝜉 → 1;
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• Boundary conditions:

lim
𝜉→0

𝜉Ω𝒱 =
1

2𝜋𝛾
, Ω(1, 𝑡) = 0, Ω(1, 𝑡)𝒱(1, 𝑡) = 0;

• Global fluid balance:

𝜏

𝜋𝛾2
= 2

∫︁ 1

0

𝜉Ω𝑑𝜉 + 4𝜑1/4

∫︁ 1

0

𝜉
√︀
𝜏 − 𝜏0(𝜉𝛾𝐿𝑚𝑘)𝑑𝜉.

The normalized solution of the above set of equations depends on non-dimensional

spatial coordinate 𝜉, time 𝜏 , and two dimensionless numbers, leak-off 𝜑 and charac-

teristics Reynolds number ℛ:

𝜑 =
𝐶 ′4𝐸 ′11𝑀 ′3𝑄0

𝐾 ′14 , ℛ =
12𝐾 ′4𝜌

𝐸 ′3𝑀 ′2 . (4.50)

Let us evaluate the ranges for the governing parameters 𝜑 and ℛ corresponding

to typical field applications. We choose the following intervals for the dimensional

model parameters:

• geomechanics:

∘ plane-strain elastic modulus: 𝐸 ′ = 10 ÷ 50 GPa;

∘ rock toughness: 𝐾𝐼𝑐 = 0.5 ÷ 2.5 MPa ·
√

m;

∘ far-field confining stress: 𝜎𝑜 = 10 ÷ 30 MPa;

• reservoir:

∘ permeability: 𝑘 = 0.1 ÷ 100 mD;

∘ porosity: 𝜑 = 5 ÷ 25%;

∘ ratio of the pore pressure and confining stress: 𝑝𝑜/𝜎𝑜 = 0.4 ÷ 0.95;

• fluid:

∘ viscosity: 𝜇 = 1 ÷ 5 cP;

∘ total compressibility: 𝑐𝑡 = 10−3 MPa−1;
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∘ density: 𝜌 = 103 kg/m3;

• volumetric injection rate:

∘ 𝑄0 = 0.01 ÷ 0.1 m3/s

We vary each parameter independently and evaluate the ranges: 𝜑 ∈ [1.1 ·10−18, 6.7 ·

1014], ℛ ∈ [0.2, 3.4 ·105]. The plane-strain modulus and fracture toughness have the

most considerable impact on the dispersion of 𝜑 and ℛ. Typical duration of the fluid

injection 𝑡end = 1 hour, which results in the following range for the non-dimensional

injection time: 𝜏end ∈ [2.5 · 10−6, 3 · 108].

4.3.6 Problem parameter space analyses

Let us investigate the parametric space of the model for a radial crack driven by

turbulent-laminar flow of slickwater in both impermeable and permeable reservoirs.

We perform the analyses using the problem formulation in the dimensionless form

(Section 4.3.5) where the parameter space is three dimensional with the axes: time

𝜏 , leak-off number 𝜑, and characteristics Reynolds number ℛ.

Firstly, we determine the applicability domains of the limiting propagation regimes

(Section 4.3.4) and present them as the regime maps. Such analysis is useful to frame

the general solution inside the parameter space resulting in better understanding of

the propagation conditions as a function of time. Similar to Dontsov [2016a], we

utilize the following criterion for the determination of the validity zone of the con-

sidered limiting solution 𝑖:√︃(︂
1 − Ω𝑖(0, 𝜏)

Ω(0, 𝜏)

)︂2

+

(︂
1 − 𝛾𝑖(𝜏)

𝛾(𝜏)

)︂2

< 0.01, (4.51)

where the subscript 𝑖 can be 𝑀, �̃�, 𝐾, �̃�, 𝑇, 𝑇 . In other words, the measure

of the relative difference between the general numerical solution and given limiting

case 𝑖 is taken to be less than 1%, (4.51), for the limiting solution to be considered a

valid approximation, and the fracture to be said to propagate in the corresponding

limiting regime.
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Further, we demonstrate the solution series for different time-dependent crack

characteristics such as 𝛾(𝜏), Ω(0, 𝜏), Π(0.5, 𝜏), 𝜂(𝜏) by fixing one (out of two) control

parameters (e.g., ℛ) while the remaining (e.g., 𝜑) is varied.

Figure 4-11: The problem solution for a radial fracture in an impermeable rock (𝜑 = 0)
driven by turbulent-laminar flow of slickwater. Panel (a) illustrates the regime map in the
coordinates (𝜏, ℛ), where the colored zones denote the validity domains of the limiting
propagation regimes. Two supplemental time bounds are shown: (i) time 𝜏0(ℛ) (dashed
black line) at which the transition between laminar and turbulent flow within the crack
channel is located at small distance 𝜆0 = 𝑅/25 from the tip (such that laminar flow
spatial domain is small 𝜆 < 𝜆0 for 𝜏 < 𝜏0(ℛ)), and (ii) time 𝜏∞(ℛ) (dotted black line)
past which the fracture radius and opening are approximately given by the fully-laminar
solution. The time-dependent fracture characteristics (radius 𝛾(𝜏), opening at the wellbore
Ω(0, 𝜏), and pressure at the half-radius Π(1/2, 𝜏)) normalized by the storage-viscosity-
laminar limiting solution (𝑀 -vertex) are shown in panels (b) – (d) for the set of values of
ℛ = {1, 102, 104, 106}. The fully-laminar solution is depicted by dashed grey line, and
the colored dotted lines present the vertex solutions. In panel (a), the grey dash-dotted
lines underline the ℛ-trajectories demonstrated in (b)–(d).

4.3.6.1 Zero leak-off case (impermeable rock)

Lecampion and Zia [2019] has already considered a radial crack propagation in an
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impermeable formation; however, the authors did not include the regime map for

the corresponding reduced parameteric space (𝜏, 𝜑 = 0,ℛ), and we would like to fill

this gap. Figure 4-11(a) presents the applicability domains of the vertex solutions

observed in the current model, i.e., storage-viscosity-turbulent (𝑇 ), storage-viscosity-

laminar (𝑀), and toughness (𝐾) regimes. The problem solution evolves from the 𝑇 -

to 𝐾- vertex, and the 𝑀 -vertex emerges during an intermediate propagation time if

ℛ < 102. For larger values of the characteristic Reynolds number, the validity zone

of the 𝑇 -vertex expands, while the 𝑀 -region shrinks. The laminar-to-turbulent flow

transformation affects the boundary of the toughness-dominated regime (𝐾) in the

range ℛ > 106, leading to its shift to larger time.

Further, we would like to clarify how exactly we determine the applicability

boundaries shown in Figure 4-11(a). We estimate the borders numerically via crite-

rion (4.51) at sample points at small and large ℛ and then fit the evaluated points

by the appropriate analytical functions derived from the transition timescales be-

tween the limiting regimes. As an example, let us consider the validity zone of

the 𝑇 -vertex solution shown by orange color in Figure 4-11(a). It is bounded by

two power-law functions of time which are straight lines in the log-log scale. The

first boundary located in the region ℛ < 104 relates to the 𝑇𝑀 -transition, i.e.,

between 𝑇 and 𝑀 vertices. We expect that it corresponds to 𝑡 ∼ 𝑡𝑚𝑡, where the

time-scale 𝑡𝑚𝑡 is the solution of 𝐿𝑡(𝑡) = 𝐿𝑚(𝑡). This boundary expressed in the

normalized time is 𝜏 ∼ 𝑡𝑚𝑡/𝑡𝑚𝑘 = ℛ9/4, where the proportionality coefficient is

found from the fitting procedure at small ℛ. The functional dependence for the

second curve is obtained from the 𝑇𝐾 transition analysis and has the following

form: 𝜏 ∼ 𝑡𝑡𝑘/𝑡𝑚𝑘 = ℛ(5𝑛−5)/(2𝑛−4), where the numerical prefactor is found from a

similar fitting procedure at large ℛ. Both curves are extended until the intersection

point, bounding the domain depicted in Figure 4-11(a). The full usage of criterion

(4.51) in the entire parametric space of the solution yields a very similar region

but with a smoother boundary (without sharp corner point evident in the domain

approximation shown in Figure 4-11(a)).

We also display two time bounds in Figure 4-11(a). The first one 𝜏0(ℛ, 𝜑 = 0)

(dashed black line) indicates the time moment when the spatial extent of the laminar
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flow domain is a small fraction 𝜆 = 𝜆0 = 𝑅/25 of the fracture radius. As a result,

the crack can be approximately considered as fully-turbulent for 𝜏 < 𝜏0(ℛ, 𝜑 = 0)

(and 𝜆 < 𝜆0). One can observe that 𝜏0(ℛ, 𝜑 = 0) is an increasing function of

the characteristic Reynolds number ℛ, i.e., the time interval, within which the

length of the laminar flow region is small, and turbulent effects dominate, grows

with an increase of ℛ. For ℛ < 103, the dashed line is very close to the border

of the 𝑇 -vertex validity domain. The second bound 𝜏∞(ℛ, 𝜑 = 0) (dotted black

line) corresponds to the time moment following which the crack geometry (radius

and aperture) in the turbulent-laminar case is approximately the same as the fully-

laminar model provides. In other words, one can interpret the fracture as fully-

laminar for 𝜏 > 𝜏∞(ℛ, 𝜑 = 0). This bound is computed via equation (4.51) where 𝑖

should be understood as a fully-laminar solution. The function 𝜏∞(ℛ, 𝜑 = 0) is an

increasing one (similarly to 𝜏0(ℛ, 𝜑 = 0)), and for ℛ < 102, the dotted line coincides

with the boundary of the 𝑀 -vertex domain.

Next, we discuss the time bound 𝜏0(ℛ, 𝜑 = 0) in the context of the tip element

concept. Many numerical models for hydraulic fracture growth are based on the

’tip logic’ [Peirce and Detournay, 2008, Peirce, 2015, Dontsov, 2016a, 2017, Zia

and Lecampion, 2020]. It means that specialized near-tip region model is applied

within such algorithms to determine the fracture front position at each time step

(propagation criterion) and to describe crack characteristics (aperture, pressure)

near the tip. The fracture tip model should include all physical phenomena that

can be realized during the fracture evolution and resolve their influence on the

propagation. It is assumed that the near-tip region model is valid along small

distance from the fracture front, and in the case of 1D models (plane strain or penny-

shaped) the typical tip element length equals 𝜆0. When we analyze the turbulent-to-

laminar flow transformation within the crack channel, two different options for the

near-tip region model exist. Firstly, when 𝜆 > 𝜆0 or for 𝜏 > 𝜏0(ℛ, 𝜑 = 0) laminar

flow occurs along the entire tip element, one can apply the model of Garagash et al.

[2011] or its approximate and computationally efficient version [Dontsov and Peirce,

2015b]. On the other hand, when 𝜆 < 𝜆0 or for 𝜏 < 𝜏0(ℛ, 𝜑 = 0), it is recommended

to utilize the laminar-turbulent tip model developed by Lecampion and Zia [2019].
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Figures 4-11(b) – (d) demonstrate the time-dependent fracture characteristics

such as radius 𝛾(𝜏), opening at the wellbore Ω(0, 𝜏), and pressure at the half-radius

Π(1/2, 𝜏) normalized by the storage-viscosity-laminar limiting solution (𝑀 -vertex).

The turbulent-laminar solutions for ℛ = {1, 102, 104, 106} are contrasted to the

fully-laminar solution profiles shown by grey lines. The flow regime transformation

inside the fracture channel leads to a shorter radius, wider aperture, and greater

pressure values at the beginning of the propagation compared to the fully-laminar

case. The time span when the turbulent-laminar and the fully-laminar solutions

differ significantly grows with an increase of the characteristic Reynolds number.

4.3.6.2 Non-zero leak-off case (permeable rock)

Figure 4-12 shows the regime map for the fully-laminar model (ℛ = 0) with non-

zero leak-off 𝜑 in the coordinates (𝜏, 𝜑), while Figure 4-13 demonstrates its mod-

ifications for the turbulent-laminar model for different values of the characteristic

Reynolds number: ℛ = {1, 102, 104, 106}. In the latter case, the problem solution

evolves from the storage-viscosity-turbulent (𝑇 ) solution at early time to the leak-off-

toughness (�̃�) limiting solution at large time. Moreover, the solution can approach

𝑀, 𝐾, �̃� , or 𝑇 vertices at intermediate times depending on the values of the gov-

erning parameters 𝜑, ℛ (e.g., see trajectories 𝜑 = const in Figure 4-13(b) shown

by dash-dotted grey lines). By looking at panels (a) and (b) in Figure 4-13, one

can notice that the validity regions of the turbulent limiting propagation regimes, 𝑇

and 𝑇 , expand with an increase of ℛ and gradually reduce the applicability zones of

the laminar regimes, 𝑀 and �̃� , until their complete disappearance (see panels (c)

and (d) in Figure 4-13). Similar behavior is observed for the toughness-dominated

regimes, 𝐾 and �̃�, from the regime map in Figure 4-13(d); however, they do exist

for all ℛ and large enough 𝜏 .

In Section 4.3.6.1, we have already discussed the physical meaning of the tempo-

ral bounds 𝜏0 and 𝜏∞, and here, we analyze their behavior with the alteration of the

governing parameters ℛ and 𝜑 (see Figure 4-13). For ℛ = const, both timescales

are independent of 𝜑 when it is small. However, for large values of the leak-off num-

ber 𝜑, we determine that 𝜏0, 𝜏∞ ∼ 𝜑2. When the characteristic Reynolds number
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Figure 4-12: The parameter space of the model for a radial hydraulic fracture driven by
laminar flow (ℛ = 0) in a permeable rock (𝜑 > 0). The coordinate system (𝜏, 𝜑) is applied
to build the regime map in which the applicability domains of the limiting propagation
regimes are filled by different colors. The grey dash-dotted lines highlight the considered
solution trajectories discussed in the current section.

grows, the bounds shift towards larger time since the turbulent flow regime prevails

inside the fracture channel during longer time period for greater values of ℛ. We

should also mention that it is recommended to apply the turbulent-laminar fracture

tip model [Kanin et al., 2020b] as a propagation criterion in more complex numerical

models for HF growth (such as Planar3D) to simulate the crack evolution when the

laminar flow domain is small, corresponding to the parametric zone bounded by the

dashed black line in Figure 4-13, i.e., when 𝜏 < 𝜏0(ℛ, 𝜑).

Figure 4-14 demonstrates the crack characteristics in the turbulent-laminar (ℛ =

102) and fully-laminar (dashed grey lines) cases for different values of the leak-off

number 𝜑 = {10−20, 10−5, 105, 1010}. Since the characteristic Reynolds number

is constant, we focus on the impact of the leak-off on the propagation of a radial

crack driven by turbulent-laminar flow. The storage-viscosity-laminar (𝑀) limiting

solution is utilized to normalize the time-dependent properties such as the radius

𝛾(𝜏), opening at the wellbore Ω(0, 𝜏) and pressure at the half-radius Π(1/2, 𝜏) in
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Figure 4-13: The parameter space of the model for a radial hydraulic fracture driven by
turbulent-laminar flow of slickwater in a permeable rock (𝜑 > 0). The regime maps are
shown in the coordinates (𝜏, 𝜑) for different values of the characteristic Reynolds number
ℛ = {1, 102, 104, 106}. The colored zones denote the applicability regions of the vertex
solutions. For comparison purposes, we add to the plot the regime boundaries correspond-
ing to the fully-laminar model by using the dashed colored lines. The dashed black lines
illustrate the time 𝜏0(ℛ, 𝜑) at which the flow regime transformation inside the crack chan-
nel occurs at small distance 𝜆0 = 𝑅/25 from the tip, i.e., the length of the laminar flow
spatial domain is small 𝜆 < 𝜆0 for 𝜏 < 𝜏0(ℛ, 𝜑). The dotted black lines show the time
𝜏∞(ℛ, 𝜑) starting from which the fracture radius and aperture is approximated by the
fully-laminar solution. In panel (b), the grey dash-dotted lines emphasize the considered
solution trajectories discussed in the current section.

panels (a) – (c) in Figure 4-14. It is evident from Figure 4-14(a) that larger values

of leak-off number 𝜑 lead to shorter time duration over which the fracture radius

differs significantly from the fully-laminar case (i.e., when turbulent effects on the

fracture run-out are significant). The situation is opposite for the opening at the

wellbore and pressure at the half-radius (see Figures 4-14(b) and (c)) for which

increase of the leak-off extends the influence of the turbulent flow effects. Finally,

the fracture efficiency is roughly independent of the laminar-to-turbulent flow regime
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transformation in all considered cases, as exposed in Figure 4-14(d).

Figure 4-14: The time-dependent characteristics of a radial hydraulic fracture driven by
turbulent-laminar flow of slickwater in a permeable rock (𝜑 > 0): (a) radius 𝛾(𝜏), (b) open-
ing at the wellbore Ω(0, 𝜏), (c) pressure at the half-radius Π(1/2, 𝜏), and (d) efficiency 𝜂(𝜏).
The properties in panels (a) – (c) are normalized by storage-viscosity-laminar (𝑀) limiting
solution. The solution profiles corresponding to ℛ = 102 and 𝜑 = {10−20, 10−5, 105, 1010}
are shown. The analogous profiles from the fully-laminar solutions are depicted by the grey
dashed lines. We plot the vertex solutions by the colored dotted lines; in panel (a), the
leak-off dominated regimes (�̃�, �̃� , 𝑇 ) have the same color since the fracture radii in these
regimes are governed by the same relation (e.g., see equation (4.44)).
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Chapter 5

Hydraulic fracture driven by a

Herschel–Bulkley fluid

5.1 Preamble

A number of parameters can be adjusted to optimise the fracturing treatment, such

as volumetric injection rate and hydraulic fracturing fluid properties. Besides break-

ing the rock, the hydraulic fracturing fluid also carries proppant inside the crack

channel, which prevents complete crack closure after shut-in. The fracturing fluid

rheology and pumping schedule are typically engineered to achieve the following

goals [Economides et al., 1989, Barbati et al., 2016]: creation of the sufficient crack

aperture for proppant placement, minimisation of proppant particle settling [Os-

iptsov, 2017], reducing the risk of the bridging [Garagash et al., 2019], reduction of

fluid leak-off rate into the permeable reservoir.

The fracturing fluid is a complex mixture that contains specific additives, e.g.,

polymeric substances, which allows one to achieve the desired rheological properties

[Osiptsov, 2017]. Typical fracturing fluid exhibits non-Newtonian shear-thinning

behaviour within the specific range of the shear rate values, i.e. the fluid viscosity

declines with the shear rate growth, while for small and large shear rates, the fluid

viscosity reaches constant values [Moukhtari and Lecampion, 2018]. At the same

time, the fracturing foams [Gu and Mohanty, 2015, Faroughi et al., 2018, Fu and

Liu, 2019], emulsions, suspensions with proppant and fibers [Stickel and Powell,
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2005, Osiptsov, 2017] have the shear-thinning rheology with yield stress.

Various rheological models are established for describing the fracturing fluid

properties. In the case of pure water or slickwater, Newtonian fluid model is often

applied for which the shear stress is linearly proportional to the shear rate. When

fracturing fluid has shear-thinning behaviour, we can utilise power-law model [Bird

et al., 1987]. However, it overestimates and underestimates the fluid viscosity at low

and high shear rates correspondingly. This discrepancy can be fixed with the help of

the more complex rheological models such as Cross fluid [Cross, 1965], Carreau fluid

[Carreau, 1972], truncated power-law model [Lavrov, 2015], or Ellis fluid [Brodkey

and Brodkey, 1967]. The rheological models mentioned above do not take into

account yield stress, whose impact on the flow behaviour can be significant for some

fracturing fluids. Herschel–Bulkley rheological model [Herschel and Bulkley, 1926]

is a generalisation of the power-law model, and it includes the yield stress. The

limiting cases of Herschel–Bulkley model are Newtonian, power-law and Bingham

plastic [Bingham, 1922] models.

Since the primary focus of the present chapter is non-Newtonian fluids, we should

mention the work of Garagash and Sarvaramini [2012] investigating the conditions

for the onset of the plain-strain fracture propagation with plastic fluid, the papers

of Wrobel [2020], Wrobel et al. [2020] where the authors consider the models of

PKN and KGD hydraulic fractures filled by the fluid with the truncated power-law

rheology, and the paper of Pereira and Lecampion [2021] devoted to the analysis of

the KGD crack driven by the shear thinning fluid with a Carreau rheology.

The vast majority of previous studies do not consider the impact of fluid yield

stress on propagation of a finite hydraulic fracture, so we would like to fill the gap

and discuss this topic on the example of a radial fracture. To take into account

the required parameter, we assume that the Herschel-Bulkley model governs the

fracturing fluid rheological behaviour. The main aims of the current exploration

are the following: (i) to implement a solver for calculating an accurate numerical

solution for the radial fracture, (ii) to construct an approximate computationally

efficient solution for rapid estimations, (iii) to derive limiting propagation regimes

occurring in the model, (iv) to explore the problem parametric space and (v) to
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Chapter 5. Hydraulic fracture driven by a Herschel–Bulkley fluid

analyse variations of the fracture characteristics depending on the yield stress and

leak-off intensity for different values of the flow index.

This chapter is organised as follows. Firstly, we outline the problem formulation

and the governing equations. Secondly, we describe the methodology for calculating

the numerical solution, and, after that, we provide insights into getting the simplified

approximate solution. Further, we revisit the known limiting propagation regimes

for a radial crack in a permeable rock and introduce the new members associated

with the dominance of yield stress. Finally, we present the analysis of the results,

including estimation of the admissible ranges for the dimensionless parameters, ex-

tensive exploration of the parameter space, and discuss examples for several typical

field cases.

5.2 Model formulation

In the current section, we will formulate the problem of a penny-shaped hydraulic

fracture driven by the fluid characterised by the non-zero yield stress and non-

linear behaviour of the shear stress. Figure 5-1 shows the sketch of the considered

model. Compared to the classic problem statement for a radial hydraulic fracture

(Section 2.2), assumptions and relations linked with the fracturing fluid flow inside

the fracture channel are modified. We will discuss them in detail here, while we will

not repeat the remaining items for brevity.

Figure 5-1: A radial fracture model driven by a Herschel–Bulkley fluid.

We assume that the fracturing fluid rheology is governed by Herschel-Bulkley
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Chapter 5. Hydraulic fracture driven by a Herschel–Bulkley fluid

model, and it is described by the following constitutive relation:

𝜏𝑚 = 𝜏0 +𝑀�̇�𝑛, (5.1)

where 𝜏𝑚 is the shear stress, 𝜏0 is the yield stress, �̇� is the shear rate, 𝑀 is the

consistency index, and 𝑛 is the flow index. When the yield stress is non-zero (𝜏0 > 0),

and the shear stress is less than the yield stress (𝜏𝑚 < 𝜏0), the unyielded (or plug)

zone is formed where the fluid behaves like a solid. Since the shear stress is linear

across the aperture and equals zero at the centerline, the plug zone is formed in the

middle of the crack channel, and its width 2𝑦𝜏 (𝑟, 𝑡) is apriori unknown function of

position and time (Figure 5-1). The Herschel-Bulkley rheological model has three

limiting cases: (i) Newtonian fluid when 𝜏0 = 0 and 𝑛 = 1 (𝑀 corresponds to the

dynamic viscosity), (ii) power-law fluid when the yield stress is zero 𝜏0 = 0, and,

finally, (iii) it reduces to Bingham model when 𝜏0 ̸= 0 and 𝑛 = 1.

We simulate the fluid exchange process between the crack channel and ambient

permeable rock by Carter’s leak-off law. Since the hydraulic fracturing fluid has

Herschel-Bulkley rheology, the leak-off process can be more complex than that de-

scribed by Carter’s model. However, Carter’s law can be acceptable assuming that

the filter cake forms along the surface of the fracture and restrains all heavy polymer

molecules contained in the fracturing fluid. As a result, the fracturing fluid filtrate

with properties close to that of water (viscosity 𝜇 and compressibility 𝑐𝑡) is leaked

into the formation. When there is no filter-cake, and the leaked fluid properties are

identical to the pore fluid characteristics, the Carter’s coefficient is calculated from

[Collins, 1976]: 𝐶𝐿 = 𝑘(𝜎𝑜−𝑝𝑜)/(𝜇
√
𝜋𝑐), where 𝑝𝑜 is the far-field pore pressure, and

𝑐 = 𝑘/(𝜑𝑟𝑐𝑡𝜇) is the diffusivity coefficient. This expression provides an upper bound

value for the case realised in the current model.

The problem solution, namely, radius 𝑅(𝑡), opening 𝑤(𝑟, 𝑡) and net fluid pressure

𝑝(𝑟, 𝑡) profiles, depends on time 𝑡, distance from the point source 𝑟, injection rate

𝑄0, yield stress 𝜏0, and the set of material parameters:

𝐸 ′ =
𝐸

1 − 𝜈2
, 𝐾 ′ = 4

√︂
2

𝜋
𝐾𝐼𝑐, 𝑀 ′ =

2𝑛+1(2𝑛+ 1)𝑛

𝑛𝑛
𝑀, 𝐶 ′ = 2𝐶𝐿, (5.2)
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Chapter 5. Hydraulic fracture driven by a Herschel–Bulkley fluid

where the viscosity parameter 𝑀 ′ accounts for the non-linearity of the shear stress

(5.1).

Let us consider the momentum conservation equation. By looking at the problem

of a Herschel-Bulkley fluid flow under a constant pressure gradient inside a constant

width channel, one can derive the velocity profile from the combination of the mo-

mentum conservation equation and the constitutive relation (5.1). Averaging the

latter across the channel [Bessmertnykh and Dontsov, 2019], the following equation

for the fluid flow velocity is obtained:

𝑣 = −𝑤
1+1/𝑛

𝑀 ′1/𝑛
𝜕𝑝

𝜕𝑟

⃒⃒⃒⃒
𝜕𝑝

𝜕𝑟

⃒⃒⃒⃒1/𝑛−1(︂
1 − 2𝑦𝜏

𝑤

)︂1+1/𝑛(︂
1 +

𝑛

𝑛+ 1

2𝑦𝜏
𝑤

)︂
, 𝑦𝜏 = 𝜏0

⃒⃒⃒⃒
𝜕𝑝

𝜕𝑟

⃒⃒⃒⃒−1

,

(5.3)

where 𝑦𝜏 is the half-size of the plug zone. One can notice that at the fluid source

and at the tip 𝑦𝜏 (0, 𝑡) = 𝑦𝜏 (𝑅(𝑡), 𝑡) = 0 since the pressure gradient is singular there.

Therefore, the spatial profile 𝑦𝜏 (𝑟, 𝑡) always has an intermediate maximum value as

shown schematically in Figure 5-1.

Equation (5.3) reduces to Poiseuille’s law for Newtonian fluid case when 𝜏0 = 0

and 𝑛 = 1:

𝑣 = −𝑤2

𝑀 ′
𝜕𝑝

𝜕𝑟
.

and to the power-law fluid case when 𝜏0 = 0 [Economides et al., 1989]:

𝑣 = −𝑤1+ 1
𝑛

𝑀 ′1/𝑛
𝜕𝑝

𝜕𝑟

⃒⃒⃒⃒
𝜕𝑝

𝜕𝑟

⃒⃒⃒⃒ 1
𝑛
−1

.

The Reynolds equation is obtained by substitution of the fluid velocity (5.3) into

the continuity equation (2.13) combined with Carter’s leak-off law (2.14).

5.3 Solution methodology

This section outlines methods used to compute numerical solution of the posed

problem. We utilise two different approaches. The first one is a direct numerical

approach that allows us to evaluate the crack parameters accurately, and it is based

on Gauss-Chebyshev quadrature and Barycentric Lagrange interpolation techniques.
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It was first proposed for solving hydraulic fracture propagation problems by Viesca

and Garagash [2018]. Liu et al. [2019] expanded this methodology for modelling the

propagation of finite fractures (radial and KGD), and here, we use their approach

and adjust it to capture Herschel–Bulkley rheology and leak-off. Interestingly, due

to fine resolution near the tip, the calculation procedure does not require explicit

implementation of the full tip asymptotic solution, which differentiates the method

from the commonly used approach in which the near tip model is used as a prop-

agation criterion, e.g., [Peirce and Detournay, 2008, Peirce, 2015, Dontsov, 2016a,

Dontsov and Peirce, 2017c, Zia and Lecampion, 2020]. The second approach helps

us to construct the simplified approximate solution based on the full-crack contin-

uation of the near-tip region asymptote and the global fluid balance equation (see

[Dontsov, 2016a] for radial crack and [Dontsov, 2017] for KGD crack). The sim-

plified approach is computationally efficient and allows us to rapidly calculate the

problem solution for any values of the input parameters. In addition, using the ap-

proximate method, we can simulate the fracture propagation corresponding to large

leak-off and/or large yield stress values. In contrast, the fully numerical method

has difficulties to converge for such cases. Overall, the rapid approximate solution

is more beneficial to perform estimations for the whole problem parametric space,

which is one of the primary goals of this study. It is important to mention that there

is an alternative approach to build an approximate solution. For instance, Kanaun

[2017a] proposed three-parametric model based on the assumption that the pressure

distribution is a linear function of ln(𝑟/𝑅(𝑡)) with the time-dependent coefficients

determined from the global fluid balance equation together with the inlet boundary

condition and a propagation criterion. As is shown in the papers [Kanaun, 2017a,

Kanaun and Markov, 2017, Kanaun, 2017b], this model provides accurate estimate

for the crack radius evolution in an impermeable rock with certain values of the

elastic properties and toughness larger than 1 MPa ·
√

m.

Before moving to the description of algorithms, we introduce the normalised

distance to the source: 𝜌 = 𝑟/𝑅(𝑡). It depends on time, which results in the
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Chapter 5. Hydraulic fracture driven by a Herschel–Bulkley fluid

following transformation of the derivatives:

𝜕

𝜕𝑡

⃒⃒⃒⃒
𝑟

=
𝜕

𝜕𝑡

⃒⃒⃒⃒
𝜌

− 𝜌𝑉 (𝑡)

𝑅(𝑡)

𝜕

𝜕𝜌

⃒⃒⃒⃒
𝑡

,
𝜕

𝜕𝑟

⃒⃒⃒⃒
𝑡

=
1

𝑅(𝑡)

𝜕

𝜕𝜌

⃒⃒⃒⃒
𝑡

, (5.4)

where 𝑉 = 𝑑𝑅/𝑑𝑡 = �̇� is the crack tip velocity. Further, we re-write the elasticity

(2.11), Reynolds (2.13), (2.14), (5.3), and the global fluid balance (2.20) equations,

as well as the propagation condition (2.17) in terms of 𝜌:

• Elasticity:

𝑝(𝜌, 𝑡) = − 𝐸 ′

2𝜋𝑅(𝑡)

∫︁ 1

0

𝐺 (𝜌, 𝑠)
𝜕𝑤(𝑠, 𝑡)

𝜕𝑠
𝑑𝑠. (5.5)

For implementation of the numerical solution, we utilise the elasticity equation

with an extended interval:

𝑝(𝜌, 𝑡) = − 𝐸 ′

4𝜋𝑅(𝑡)

∫︁ 1

−1

𝐺𝑒 (𝜌, 𝑠)
𝜕𝑤(𝑠, 𝑡)

𝜕𝑠
𝑑𝑠, 𝜌 ∈ [−1, 1], (5.6)

where the opening profile 𝑤(𝜌, 𝑡) continues symmetrically to negative 𝜌, and

the integral kernel has the following form:

𝐺𝑒(𝜌, 𝑠) =

⎧⎪⎨⎪⎩sign(𝜌𝑠)
[︁
1
𝜌
K
(︁
𝑠2

𝜌2

)︁
+ 1

𝑠−𝜌E
(︁
𝑠2

𝜌2

)︁]︁
, |𝜌| > |𝑠|,

1
𝑠−𝜌E

(︁
𝜌2

𝑠2

)︁
, |𝜌| < |𝑠|.

(5.7)

It can be easily shown that this formulation of the elasticity equation is iden-

tical to (2.11).

• Reynolds:
𝜕𝑤

𝜕𝑡
− 𝑉

𝑅
𝜌
𝜕𝑤

𝜕𝜌
+

1

𝑅𝜌

𝜕(𝜌𝑤𝑣)

𝜕𝜌
+

𝐶 ′√︀
𝑡− 𝑡0(𝜌𝑅)

= 0, (5.8)

where the fluid velocity:

𝑣 = − 𝑤1+1/𝑛

𝑀 ′1/𝑛𝑅1/𝑛

𝜕𝑝

𝜕𝜌

⃒⃒⃒⃒
𝜕𝑝

𝜕𝜌

⃒⃒⃒⃒1/𝑛−1(︂
1 − 2𝑦𝜏

𝑤

)︂1+1/𝑛(︂
1 +

𝑛

𝑛+ 1

2𝑦𝜏
𝑤

)︂
, 𝑦𝜏 = 𝜏0𝑅

⃒⃒⃒⃒
𝜕𝑝

𝜕𝜌

⃒⃒⃒⃒−1

.

(5.9)
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Chapter 5. Hydraulic fracture driven by a Herschel–Bulkley fluid

• Global fluid balance:

𝑄0𝑡

𝜋𝑅2
= 2

∫︁ 1

0

𝜌𝑤𝑑𝜌+ 4𝐶 ′
∫︁ 1

0

𝜌
√︀
𝑡− 𝑡0(𝜌𝑅)𝑑𝜌. (5.10)

• Propagation condition:

𝑤 =
𝐾 ′

√
𝑅

𝐸 ′

√︀
1 − 𝜌, 𝜌→ 1. (5.11)

5.3.1 Numerical solution

By following the approach of Liu et al. [2019], we present gradient of the fracture

opening profile in the form:

𝜕𝑤

𝜕𝜌
= 𝒲(𝜌)𝐹 (𝜌, 𝑡), 𝒲(𝜌) =

1√︀
1 − 𝜌2

, 𝜌 ∈ [−1, 1],

where 𝐹 (𝜌, 𝑡) is the required unknown function, and the weight function 𝒲(𝜌) in-

cludes the tip behaviour of 𝜕𝑤/𝜕𝜌, i.e. 𝜕𝑤/𝜕𝜌 ∼ 1/
√︀

1 − |𝜌|, 𝜌→ ±1. The function

𝐹 (𝜌, 𝑡) is odd, which ensures that the fracture opening profile 𝑤(𝜌, 𝑡) is symmetric.

Further, we perform discretisation of the computational domain 𝜌 ∈ [−1, 1] by in-

troducing two systems of nodes corresponding to the chosen weight function [Viesca

and Garagash, 2018]: primary s = {𝑠𝑗}𝑁𝑝

𝑗=1 = {cos [𝜋(𝑗 − 1/2)/𝑁𝑝]}𝑁𝑝

𝑗=1 and comple-

mentary z = {𝑧𝑖}𝑁𝑐
𝑖=1 = {cos (𝜋𝑖/𝑁𝑝)}𝑁𝑐

𝑖=1 , 𝑁𝑐 = 𝑁𝑝− 1. The bold symbols designate

vectors, and𝑁𝑝 and𝑁𝑐 are the number of primary and complementary nodes, respec-

tively. The primary and complementary nodes are the roots of Chebyshev polyno-

mials of the first 𝜑𝑁𝑝(𝜌) = cos (𝑁𝑝𝜃) and the second 𝜓𝑁𝑐(𝜌) = sin [(𝑁𝑐 + 1)𝜃]/ sin (𝜃)

kind, where 𝜃 = arccos 𝜌. Values of the function 𝐹 (𝜌, 𝑡) are defined at the primary

nodes: F = {𝐹 (𝑠𝑗, 𝑡)}𝑁𝑝

𝑗=1, while the crack aperture 𝑤(𝜌, 𝑡) and the net pressure

𝑝(𝜌, 𝑡) are defined at the complementary nodes: w = {𝑤(𝑧𝑖, 𝑡)}𝑁𝑐
𝑖=1, p = {𝑝(𝑧𝑖, 𝑡)}𝑁𝑐

𝑖=1.

Now, we move on to the discretisation of the governing equations. For brevity,

the matrix notation is utilised. Using the derivations of Liu et al. [2019], we write
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out the discretised form of the elasticity equation (5.6):

p =
𝐸 ′

4𝑅
G× F, G = H+

1

2z
T×H+ ∆G, (5.12)

where “×" denotes matrix multiplication; G is the elasticity quadrature matrix, and

its representation composed of the following matrices:

• H =
{︁

1
𝑁𝑝

1
𝑧𝑖−𝑠𝑗

}︁
;

• T = {𝑇𝑖𝑖′} =
{︁∑︀𝑁𝑐−1

𝑘=0 [Ψ𝑘(𝑧𝑖) − Ψ𝑘(0)]𝐵𝑘𝑖′

}︁
, Ψ𝑘(𝑧) = cos [(𝑘 + 1)𝜃]/(𝑘 +

1), 𝜃 = arccos 𝑧,

𝐵𝑘𝑖′ = 2/𝑁𝑝 · sin (𝜋𝑖′/𝑁𝑝) sin (𝜋𝑖′(𝑘 + 1)/𝑁𝑝)

(in this section, symbol 𝑘 is a summation index, not formation permeability);

• ∆G =
{︁

1
𝑁𝑝

∆𝐺(𝑧𝑖, 𝑠𝑗)
}︁

, ∆𝐺(𝑧, 𝑠) = 𝐺𝑒(𝑧, 𝑠) − 1
𝑧−𝑠 −

ln |𝑧−𝑠|
2𝑧

.

Let us now focus on the discretisation of Reynolds equation (5.8), (5.9). Similarly

to Liu et al. [2019], we integrate equation (5.8) with respect to 𝜌 from each node 𝑧𝑖

to the tip, i.e. 𝜌 = 1. As a result, we obtain the following discretised form:

− z2

2

𝜕w

𝜕𝑡
+

1

2

𝜕

𝜕𝑡

[︀
S× (s2F)

]︀
+
𝑉

𝑅
(S× (s2F)) − zwv

𝑅
+ 𝐶 ′R× z√︀

𝑡− 𝑡0(z𝑅)
= 0,

w = S× F,

v = − w1+1/𝑛

𝑀 ′1/𝑛𝑅1/𝑛
p𝜌 |p𝜌|1/𝑛−1

(︂
1 − 2y𝜏

w

)︂1+1/𝑛(︂
1 +

𝑛

𝑛+ 1

2y𝜏
w

)︂
,

y𝜏 =
𝜏0𝑅

|p𝜌|
, p𝜌 =

𝐸 ′

4𝑅
D× (G× F), (5.13)

where vector |p𝜌| contains the absolute values of the pressure gradient at the com-

plementary nodes, and the following matrices are introduced [Liu et al., 2019]:

• S = {𝑆𝑖𝑗} =
{︁∑︀𝑁𝑐

𝑘=0 [Φ𝑘(𝑧𝑖) − Φ𝑘(1)]𝐵𝑘𝑗

}︁
, where Φ𝑘(𝑧) = − sin (𝑘𝜃)/𝑘, 𝜃 =

arccos 𝑧 and

𝐵𝑘𝑗 = 1/𝑁𝑝 for 𝑘 = 0 and 2/𝑁𝑝 · cos [𝜋𝑘(𝑗 − 1/2)/𝑁𝑝] for 𝑘 > 0;

• R = {𝑅𝑖𝑖′} =
{︁∑︀𝑁𝑐−1

𝑘=0 [Ψ𝑘(1) − Ψ𝑘(𝑧𝑖)]𝐵𝑘𝑖′

}︁
;
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• D = {𝐷𝑖𝑖′} =
{︁
𝜔𝑖′/𝜔𝑖

𝑧𝑖−𝑧𝑖′
for 𝑖 ̸= 𝑖′; −

∑︀𝑚
𝑖′=1,𝑖′ ̸=𝑖𝐷𝑖𝑖′ for 𝑖 = 𝑖′

}︁
, where 𝜔𝑖 = (−1)𝑖 sin2 (𝜋𝑖/𝑁𝑝).

To account for the boundary condition at the source, we should embed the

global fluid balance into the discretised system. For that purpose, equation (5.10)

is differentiated with respect to time:

𝑄0

𝜋

(︂
1

𝑅2
− 2𝑡𝑉

𝑅3

)︂
= −S𝐻 × (s2Ḟ) + 2𝐶 ′R𝐻 × z√︀

𝑡− 𝑡0(z𝑅)
− 2𝐶 ′𝑉

𝑅3

∫︁ 𝑡

0

𝑅2(𝑠)𝑑𝑠√
𝑡− 𝑠

,

(5.14)

where the matrices S𝐻 and R𝐻 are:

• S𝐻 =
{︁∑︀𝑁𝑐

𝑘=0 [Φ𝑘(1) − Φ𝑘(0)]𝐵𝑘𝑗

}︁
;

• R𝐻 =
{︁∑︀𝑁𝑐−1

𝑘=0 [Ψ𝑘(1) − Ψ𝑘(0)]𝐵𝑘𝑖′

}︁
.

In equation (5.14), the last term on the right-hand-side, i.e., the integral with respect

to time, is computed using Simpson’s rule.

Finally, we write out the propagation condition in the matrix form (see details

in [Liu et al., 2019]) and differentiate it with respect to time:

Q× Ḟ = − 𝐾 ′𝑉

2
√

2𝑅𝐸 ′
, (5.15)

where Q = {𝑄𝑗}𝑁𝑝

𝑗=1 =
{︁

(−1)𝑗+1 cot (𝜃𝑗/2)

𝑁𝑝

}︁𝑁𝑝

𝑗=1
, where 𝜃𝑗 = arccos 𝑠𝑗 = 𝜋(𝑗 − 1/2)/𝑁𝑝.

Here, we should make a comment regarding the application of the propagation

condition (5.15). The LEFM asymptote (5.11) is always valid near the fracture

tip. In certain situations, e.g., vanishingly small toughness, its spatial applicability

domain can be tiny. Even when the vanishing LEFM region can not be accurately

resolved by the method, Chebyshev’s nodes high density near the tip accurately

captures the dominant asymptotic behaviour.

Further, we combine equations (5.13), (5.14), (5.15) into the system of ordinary

differential equations (ODEs) which can be written as:

A(X, 𝑡)
𝑑X

𝑑𝑡
= B(X, 𝑡), X = {𝑅,F}, (5.16)

where the vector X consists of the unknown parameters, and we use the fact that
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Chapter 5. Hydraulic fracture driven by a Herschel–Bulkley fluid

𝑉 = �̇�.

The value of 𝑁𝑝 should be odd since the opposite choice leads to the presence of

the infinite components in the elasticity matrix G (5.12) (see z in the denominator).

The function 𝐹 (𝜌, 𝑡) is odd, and the the vector F has in the following form [Liu

et al., 2019]: F = {𝐹1, . . . 𝐹(𝑁𝑝−1)/2, 0,−𝐹(𝑁𝑝−1)/2, . . . ,−𝐹1}. The total number of

the independent unknown parameters is (𝑁𝑝−1)/2+1, i.e., radius and independent

components of the vector F, meaning that the system of ODEs should be composed

of the first (𝑁𝑝 − 1)/2− 1 discretised Reynolds equations (5.13), i.e., corresponding

to the complementary nodes 𝑧1, . . . , 𝑧(𝑁𝑝−1)/2−1, the global fluid balance equation

(5.14), and the propagation condition (5.15). We choose 𝑁𝑝 = 101, and the storage-

viscosity dominated regime (𝑀 -vertex) for the power-law fluid is taken as an initial

condition for all considered values of the flow index (the fracture properties in this

regime are provided by Section 5.4.1). Despite the fact that for 𝑛 < 0.5 the early

time solution corresponds to the storage-toughness regime (𝐾-vertex, see details

in Section 5.4.1), the algorithm works fine with the selected initial condition, even

though requiring a certain time-span to adjust the solution to the actual trajectory.

The specified time interval is discretised uniformly on a logarithmic mesh, and the

solver is applied within each time segment. Python programming language is used

for implementation of the numerical algorithm, and the system of resulting ODEs

is solved via “solve_ivp" function of SciPy library [Virtanen et al., 2020].

5.3.2 Rapid approximate solution

This section outlines a rapid approximate solution for the problem. This approach

is based on the idea that the near-tip region behaviour predominantly determines

the finite fracture characteristics. As a result, the crack opening profile is presented

in the following form [Dontsov, 2016a]:

𝑤(𝜌, 𝑡) =

(︂
1 + 𝜌

2

)︂𝜆
(1 − 𝜌)𝛿𝑤𝑎(𝑅), (5.17)

where 𝑤𝑎(𝑠) is the opening asymptote near the fracture tip stemming from the

solution for the semi-infinite geometry, and it is a function of the distance from
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Chapter 5. Hydraulic fracture driven by a Herschel–Bulkley fluid

the front 𝑠, material parameters (5.2), yield stress 𝜏0 and time 𝑡 (through 𝑅(𝑡) and

�̇�(𝑡)). In equation (5.17), we also utilise parameters 𝜆 and 𝛿: the first one originates

from comparisons with the accurate solution for limiting cases (will be defined later),

and the second one is a slowly varying parameter from the tip asymptotic solution,

i.e. 𝑤𝑎(𝑠) ∝ 𝑠𝛿. Since the fracture radius is a power-law function of time in the

known limiting propagation regimes (see e.g. a review paper [Detournay, 2016]), we

assume that 𝑅(𝑡) ∝ 𝑡𝛼, where 𝛼 is a slowly varying function of time. Consequently,

the inverse radius function is expressed in the form: 𝑡0(𝜌𝑅) = 𝑡𝜌1/𝛼. By substituting

the opening profile (5.17) and 𝑡0(𝜌𝑅) into the global fluid balance equation (5.10),

we obtain:

𝑄0𝑡

2𝜋𝑅2
= 𝑤𝑎(𝑅)

∫︁ 1

0

𝜌

(︂
1 + 𝜌

2

)︂𝜆
(1 − 𝜌)𝛿𝑑𝜌+ 2𝐶 ′√𝑡

∫︁ 1

0

𝜌
√︀

1 − 𝜌1/𝛼𝑑𝜌. (5.18)

The integrals in the above equation can be estimated using special functions, and

the result becomes:

𝑄0𝑡

2𝜋𝑅2
= 𝑤𝑎(𝑅)ℬ(𝜆, 𝛿) + 2𝐶 ′√𝑡𝛼𝐵

(︂
2𝛼,

3

2

)︂
,

ℬ(𝜆, 𝛿) = 21+𝛿

[︂
𝐵0

(︂
1

2
;𝜆+ 2, 𝛿 + 1

)︂
−𝐵0

(︀
1/2;𝜆+ 1, 𝛿 + 2

)︀]︂
, (5.19)

where 𝐵0(𝑥; 𝑎, 𝑏) = 𝐵(𝑎, 𝑏) − 𝐵(𝑥; 𝑎, 𝑏), 𝐵(𝑎, 𝑏) is the beta function, and 𝐵(𝑥; 𝑎, 𝑏)

is the incomplete beta function.

As can be seen from the above result, one of the building blocks in the ap-

proximate solution is the tip asymptote 𝑤𝑎(𝑅). We utilise an approximate near-tip

region solution developed in Bessmertnykh and Dontsov [2019], which is computed

using a combination of the yield stress dominated tip solution (𝑤𝜏 ) and the one

corresponding to the power-law fluid (𝑤pl):

𝑤𝑎(𝑅) =
(︁
𝑤𝜁pl(𝑅) + 𝑤𝜁𝜏 (𝑅)

)︁1/𝜁
, 𝑤𝜏 (𝑅) =

√︂
8𝜋𝜏0
𝐸 ′ 𝑅, 𝜁 = −0.3107𝑛+ 1.9924,√︂

𝑅

ℓ
= ℋ

(︂
𝑤pl𝐸

′

𝐾 ′
√
𝑅
,

2𝐶 ′𝐸 ′
√
𝑉 𝐾 ′

)︂
, ℓ =

(︂
𝐾 ′𝑛+2

𝑀 ′𝑉 𝑛𝐸 ′𝑛+1

)︂2/(2−𝑛)

, 𝑉 = �̇� =
𝛼𝑅

𝑡
,

(5.20)
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Chapter 5. Hydraulic fracture driven by a Herschel–Bulkley fluid

where the function ℋ( ̃︀𝑤, 𝜒) is defined as follows [Dontsov and Kresse, 2018]:

ℋ( ̃︀𝑤, 𝜒) =

(︂
𝛿1( ̃︀𝑤, 𝜒)�̃�(2+𝑛)/(1+𝜃)

{︁
𝛿1+𝜃𝑚 𝛽2+𝑛

𝑚 + 𝛿1+𝜃�̃� 𝛽2+2𝑛
�̃�

[︁(︁
1 +

𝜒

�̃�

)︁𝑛
− 1
]︁}︁−1/(1+𝜃)

)︂(1+𝜃)/(2−𝑛)

;

𝛿1( ̃︀𝑤, 𝜒) =
𝛿𝑚𝛿�̃�𝑉𝑚𝑉�̃�

[︁
𝛽
(2+𝑛)/𝑛
𝑚 𝑉

(1+𝜃)/𝑛
�̃� + 𝜒

�̃�
𝛽
(2+2𝑛)/𝑛
�̃� 𝑉

(1+𝜃)/𝑛
𝑚

]︁
𝛿�̃�𝑉�̃�𝛽

(2+𝑛)/𝑛
𝑚 𝑉

(1+𝜃)/𝑛
�̃� + 𝛿𝑚𝑉𝑚

𝜒
�̃�
𝛽
(2+2𝑛)/𝑛
�̃� 𝑉

(1+𝜃)/𝑛
𝑚

;

𝑉𝑚 = 1 − �̃�−(2+𝑛)/(1+𝜃), 𝑉�̃� = 1 − �̃�−(2+2𝑛)/(1+𝜃);

𝛽𝑚 =

[︂
2(2 + 𝑛)2

𝑛
tan

(︂
𝜋𝑛

2 + 𝑛

)︂]︂1/(2+𝑛)
, 𝛽�̃� =

[︂
64(1 + 𝑛)2

3𝑛(4 + 𝑛)
tan

(︂
3𝜋𝑛

4 + 4𝑛

)︂]︂1/(2+2𝑛)

;

𝛿𝑚 =
2 − 𝑛

2 + 𝑛
, 𝛿�̃� =

2 − 𝑛

2 + 2𝑛
;

𝜃 = 0.0452𝑛2 − 0.1780𝑛+ 0.1753. (5.21)

The parameter 𝛿 in the global fluid balance equation (5.19) can be computed from

the following relation:

𝛿 =
𝛿 + 1

2
, 𝛿 =

𝑤𝜁pl𝛿1 + 𝑤𝜁𝜏

𝑤𝜁pl + 𝑤𝜁𝜏
,

where the function 𝛿1 is defined in the equation (5.21), and it enters approximation

for the power-law solution: 𝑤pl(𝑠) ∝ 𝑠(𝛿1+1)/2, where 𝑠 is the distance from the tip.

Further, we solve the non-linear algebraic system of equations composed of

the global fluid balance (5.19) and the tip asymptote (5.20). Let us discuss the

overall approach in more details. Initially, the desired time interval is discretised

uniformly on a logarithmic scale, and the target parameters 𝒳 = {𝛼,𝑅,𝑤𝑎} are

computed iteratively step-by-step for each time instant. Let us consider the ex-

ample of time step 𝑡𝑖. From the previous result at 𝑡𝑖−1, we know the values of

𝒳𝑖−1 = {𝛼𝑖−1, 𝑅𝑖−1, (𝑤𝑎)𝑖−1}, and they are used as an initial guess for the current

computation. We calculate the solution for two time instants: 𝑡𝑖 and 𝑡*𝑖 , where

the latter is a fraction of the current time moment, e.g., it can be 𝑡*𝑖 = 0.9 · 𝑡𝑖.

Further, the value of 𝛼𝑖 initially taken as 𝛼𝑖−1 is updated by using the equation:

𝛼𝑖 = 𝑑 log (𝑅)/𝑑 log (𝑡) = [log (𝑅𝑖) − log (𝑅*
𝑖 )] / [log (𝑡𝑖) − log (𝑡*𝑖 )]. After that, the

system is solved again with the new initial guess presented by the parameters from

this iteration. The process continues until the convergence in the value of 𝛼𝑖 is

reached. It is also necessary to mention that for the first time step (𝑖 = 1), we
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take the initial guess 𝛼0 = (2𝑛 + 2)/(3𝑛 + 6), 𝑅0 and (𝑤𝑎)0 corresponding to the

storage-viscosity dominated limiting propagation regime (Section 5.4.1).

Once the solution 𝒳 is computed, the fracture opening profile 𝑤(𝜌, 𝑡) is evaluated

using equation (5.17), while the pressure 𝑝(𝜌, 𝑡) profile is calculated based on the

transformed elasticity (5.5) equation [Dontsov, 2016a]:

𝑝 =
𝐸 ′𝑤𝑎(𝑅)

𝑅
ℱ(𝜌, 𝜆, 𝛿), ℱ(𝜌, 𝜆, 𝛿) =

1

2𝜆+1𝜋

∫︁ 1

0

𝜕𝐺(𝜌, 𝑠)

𝜕𝑠
(1+𝑠)𝜆(1−𝑠)𝛿𝑑𝑠, (5.22)

where the function ℱ is evaluated numerically. Finally, we also compute the fracture

efficiency as:

𝜂 =
2𝜋𝑅2𝑤𝑎(𝑅)ℬ

𝑄0𝑡
, (5.23)

where the function ℬ is introduced in equation (5.19).

The exact functional form of the function 𝜆 is given in Appendix A.1. We have

built it following the two steps: (i) we estimated the values of 𝜆 for the specific

cases called limiting propagation regimes by fitting the result to the fully-numerical

solution (see all details in Section 5.4.1) (these computations are performed once);

(ii) we created an interpolation function that allows us to compute 𝜆 for any values

of the input parameters, i.e., for both limiting cases and in between them.

5.4 Conceptual representation of the solution

5.4.1 Limiting propagation regimes

Two different physical mechanisms govern the propagation regime of a finite hy-

draulic fracture (see a review paper Detournay [2016] and references therein). The

first one is related to the distribution of the total dissipated energy between the

creation of new fracture surface and viscous fluid flow including the movement of

the solid plug inside the fracture channel. The latter energy component, namely

movement of the solid plug, is included since the fracturing fluid has non-zero yield

stress. In this case, the whole fracture can be filled with the un-yielded solid mate-

rial. The second mechanism is the partitioning of the injected fluid volume between
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Chapter 5. Hydraulic fracture driven by a Herschel–Bulkley fluid

the fracture and the host permeable rock (due to leak-off). When the fracture grows,

the partitioning of the dissipated energy and the injected volume change over time,

leading to the emergence of the various limiting propagation regimes with one dis-

sipation (out of two) and one storage (out of two) mechanisms at different time

moments. The leak-off parameter 𝐶 ′ influences distribution of the injected fluid

volume, while the viscosity 𝑀 ′, toughness 𝐾 ′, and the yield stress 𝜏0 have an effect

on the partitioning of the dissipated energy.

Six limiting regimes (also known as the vertex solutions or vertices) can be

distinguished in the current radial fracture model. Four of them correspond to the

propagation of a penny-shaped crack filled by a fluid with the power-law rheology

(𝜏0 = 0):

• M – storage-viscosity – 𝐾 ′ = 𝐶 ′ = 𝜏0 = 0;

• M̃ – leak-off-viscosity – 𝐾 ′ = 𝜏0 = 0, 𝐶 ′ → +∞;

• K – storage-toughness – 𝑀 ′ = 𝐶 ′ = 𝜏0 = 0;

• K̃ – leak-off-toughness – 𝑀 ′ = 𝜏0 = 0, 𝐶 ′ → +∞.

The remaining two regimes correspond to the dominance of the yield stress:

• T – storage-yield-stress – 𝐾 ′ = 𝐶 ′ = 𝑀 ′ = 0, 𝜏0 > 0;

• T̃ – leak-off-yield-stress – 𝐾 ′ = 𝑀 ′ = 0, 𝜏0 > 0, 𝐶 ′ → +∞.

Let us now consider scalings associated with the limiting propagation regimes.

First of all, we present the main crack characteristics as:

𝑤(𝑟, 𝑡) = 𝜖(𝑡)𝐿(𝑡)Ω(𝜌,𝒫), 𝑝(𝑟, 𝑡) = 𝜖(𝑡)𝐸 ′Π(𝜌,𝒫), 𝑅(𝑡) = 𝐿(𝑡)𝛾(𝒫), (5.24)

where we utilise the notations for the dimensionless coordinate 𝜌 = 𝑟/𝑅(𝑡), radius 𝛾,

opening Ω, and pressure Π; 𝒫 = {𝒫1,𝒫2,𝒫3} are dimensionless evolution parameters

depending on 𝑡, material parameters (5.2), 𝑄0 and 𝜏0; 𝐿(𝑡) is the length scale and

𝜖(𝑡) is a small dimensionless parameter with the meaning of a characteristic strain

in the rock. The explicit expressions for 𝐿(𝑡), 𝜖(𝑡), and 𝒫 are derived below for each
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of the considered scalings. We apply the representation of fracture radius in the

form (5.24) because for each scaling, 𝛾(𝒫) ∼ 𝑂(1) in the limiting regime governed

the given scaling, i.e., 𝑅(𝑡) is of same order as the lengthscale 𝐿(𝑡) for the selected

scaling; however, it is important to note that 𝛾(𝒫) can take both large and small

values outside the limiting regime.

Further, we substitute the expressions from equation (5.24) into the system of

governing equations written in terms of the normalised distance from the source 𝜌,

i.e. the elasticity (5.5), Reynolds (5.8), (5.9), global fluid balance (5.10) equations

and the propagation condition (5.11):

• Elasticity:

Π = − 1

2𝜋𝛾

∫︁ 1

0

𝐺 (𝜌, 𝑠)
𝜕Ω

𝜕𝑠
𝑑𝑠;

• Reynolds:

𝒢𝑣

(︃[︃
�̇�𝑡

𝜖
+
�̇�𝑡

𝐿

]︃
Ω + Ω̇𝑡− 𝜌

(︃
�̇�𝑡

𝐿
+
�̇�𝑡

𝛾

)︃
𝜕Ω

𝜕𝜌

)︃
+

𝒢𝑐√
1 − 𝜃0

=

=
1

𝒢𝑚
1

𝛾𝜌

𝜕

𝜕𝜌

[︂
𝜌

𝛾1/𝑛
Ω2+1/𝑛𝜕Π

𝜕𝜌

⃒⃒⃒⃒
𝜕Π

𝜕𝜌

⃒⃒⃒⃒1/𝑛−1
(︃

1 − 𝒢𝑡
2𝛾

Ω

⃒⃒⃒⃒
𝜕Π

𝜕𝜌

⃒⃒⃒⃒−1
)︃1+1/𝑛

×

×

(︃
1 + 𝒢𝑡

2𝛾

Ω

⃒⃒⃒⃒
𝜕Π

𝜕𝜌

⃒⃒⃒⃒−1
𝑛

𝑛+ 1

)︃]︂
;

• Global fluid balance:

1

𝜋𝛾2
= 2𝒢𝑣

∫︁ 1

0

Ω𝜌𝑑𝜌+ 4𝒢𝑐
∫︁ 1

0

√︀
1 − 𝜃0𝜌𝑑𝜌;

• Propagation condition:

Ω = 𝒢𝑘
√
𝛾
√︀

1 − 𝜌, 𝜌→ 1.

Here, we utilise the function 𝜃0(𝜌, 𝑡) = 𝑡0(𝑟)/𝑡 and introduce five dimensionless
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numbers:

𝒢𝑣 =
𝜖𝐿3

𝑄0𝑡
, 𝒢𝑐 =

𝐶 ′𝐿2

𝑄0

√
𝑡
, 𝒢𝑚 =

𝑄0𝑀
′1/𝑛

𝐿3𝐸 ′1/𝑛𝜖2+2/𝑛
, 𝒢𝑡 =

𝜏0
𝜖2𝐸 ′ , 𝒢𝑘 =

𝐾 ′

𝐸 ′𝜖
√
𝐿
.

(5.25)

𝒢𝑣 and 𝒢𝑐 parameters quantify the fluid volume stored in the fracture and the volume

leaked into the ambient permeable rock, respectively. In turn, the numbers (𝒢𝑚,𝒢𝑡)

and 𝒢𝑘 are related to the energy dissipation in the fluid flow inside the crack channel

in overcoming fluid viscosity and solid plug yield strength and in the brittle rock

failure, correspondingly.

To derive various scalings, i.e., 𝐿(𝑡) and 𝜖(𝑡) in (5.24), we set one out of two fluid

storage parameters (𝒢𝑣,𝒢𝑐) be equal to one. Similarly, among the three parameters

responsible for energy dissipation (𝒢𝑚,𝒢𝑡,𝒢𝑘), one should be made equal to one.

The remaining three dimensionless groups are the evolution parameters 𝒫 mentioned

earlier. When the evolution parameters are approximately zero in a given scaling, the

corresponding limiting propagation regime is realised. From the scaling analysis, we

can determine only the dimensional multipliers for the radial crack characteristics,

𝑅,𝑤, 𝑝, in a given ’i-th’ scaling. In order to approximately quantify the opening and

pressure profiles, we rely on the approximations of Section 5.3.2:

𝑅𝑖(𝑡) = 𝑅*
𝑖𝐿𝑖, 𝑤𝑖(𝜌, 𝑡) = 𝑤*

𝑖 𝜖𝑖𝐿𝑖⏟  ⏞  
(𝑤𝑎)𝑖(𝑅)

(︂
1 + 𝜌

2

)︂𝜆𝑖
(1 − 𝜌)𝛿𝑖 , 𝑝𝑖(𝜌, 𝑡) =

𝑤*
𝑖

𝑅*
𝑖

𝐸 ′𝜖𝑖ℱ(𝜌, 𝜆𝑖, 𝛿𝑖),

(5.26)

where the subscript 𝑖 indicates the particular limiting regime, and the function ℱ is

defined in equation (5.22). In order to express the prefactors values 𝑅*
𝑖 , 𝑤*

𝑖 through

𝜆𝑖, we substitute 𝑅𝑖(𝑡) and (𝑤𝑎)𝑖(𝑅) into the global fluid balance equation (5.19)

(accounting the conditions inherent to the analysed regime) and the appropriate

near-tip region asymptote for the crack opening. Further, the parameter 𝜆𝑖 can be

found with the help of the accurate numerical solution (Section 5.3.1).

Before discussing different scalings and limiting propagation regimes, we intro-

duce the relative errors in the estimation of the radius, opening, and pressure charac-

teristics provided by the simplified approach (5.26) compared to the fully numerical
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solution:

∆(𝑅𝑖) =
⃒⃒
�̄�𝑖(𝑡) −𝑅𝑖(𝑡)

⃒⃒
/�̄�𝑖(𝑡), (5.27)

∆(𝑤0
𝑖 ) = |�̄�𝑖(0, 𝑡) − 𝑤𝑖(0, 𝑡)| /�̄�𝑖(0, 𝑡), (5.28)

∆(𝑤𝜌𝑖 ) = max
𝜌

[|�̄�𝑖(𝜌, 𝑡) − 𝑤𝑖(𝜌, 𝑡)|/�̄�𝑖(0, 𝑡)] , (5.29)

∆(𝑝0𝑖 ) = |𝑝𝑖(0.5, 𝑡) − 𝑝𝑖(0.5, 𝑡)| /𝑝𝑖(0.5, 𝑡), (5.30)

where ∆(𝑅𝑖) is the radius error, ∆(𝑤0
𝑖 ) is the error of width at the inlet, ∆(𝑤𝜌𝑖 ) is the

maximum relative width error, and ∆(𝑝0𝑖 ) is the error of pressure at the half-radius.

The subscript 𝑖 denotes the considered limiting regime, and the bar symbol means

the fully numerical solution.

We begin with the storage-viscosity scaling and the𝑀−vertex solution (subscript

“𝑚”). We set 𝒢𝑣 = 𝒢𝑚 = 1 and obtain the following formulas for the length scale

and the small parameter:

𝐿𝑚 =

(︂
𝐸 ′𝑄𝑛+2

0 𝑡2𝑛+2

𝑀 ′

)︂1/(3𝑛+6)

, 𝜖𝑚 =
𝑄0𝑡

𝐿3
𝑚

. (5.31)

Further, we substitute 𝐿𝑚 and 𝜖𝑚 into the remaining dimensionless groups:

𝒞𝑚 = 𝐶 ′
(︂
𝐸 ′4𝑡5𝑛+2

𝑀 ′4𝑄2𝑛+4
0

)︂1/(6𝑛+12)

, 𝒯𝑚 = 𝜏0

(︂
𝑡2𝑛

𝑀 ′2𝐸 ′𝑛

)︂1/(𝑛+2)

,

𝒦𝑚 = 𝐾 ′
(︂

𝑡4𝑛−2

𝑀 ′5𝐸 ′6𝑛+7𝑄𝑛+2
0

)︂1/(6𝑛+12)

, (5.32)

where we reassign 𝒢𝑐,𝒢𝑡,𝒢𝑘 as the dimensionless leak-off 𝒞𝑚, yield stress 𝒯𝑚 and

toughness 𝒦𝑚. After that, we obtain formulas for the prefactors 𝑅*
𝑚, 𝑤

*
𝑚:

𝑅*
𝑚 =

(︀
2𝜋𝛽𝑚𝛼

𝑛/(𝑛+2)
𝑚 ℬ𝑚

)︀−1/3
, 𝑤*

𝑚 =

(︃
𝛽2
𝑚𝛼

2𝑛/(𝑛+2)
𝑚

2𝜋ℬ𝑚

)︃1/3

, (5.33)

where 𝛼𝑚 = (2𝑛 + 2)/(3𝑛 + 6), ℬ𝑚 = ℬ(𝜆𝑚, 𝛿𝑚) (see equation (5.19)), the value of

𝛽𝑚 is provided by equation (5.21), and 𝛿𝑚 = 2/(2 + 𝑛) is taken from the storage-

viscosity tip asymptote [Dontsov and Kresse, 2018]. The parameter 𝜆𝑚 is obtained
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by fitting the approximate solution above (5.26) and (5.33) to the full numerical

solution (Section 5.3.1) in terms of 𝑅𝑚 and 𝑤𝑚(0, 𝑡). We computed 𝜆𝑚 for different

values of flow indexes 𝑛 ∈ [0.25, 1], and the obtained curve is shown in Figure 5-2(a).

The relative errors defined by equations (5.27)-(5.30) are depicted in Figure 5-2(b),

where ∆(𝑅𝑚) is shown by the solid line, ∆(𝑤0
𝑚) is shown by the dashed line, ∆(𝑤𝜌𝑚)

is shown by the dash-dotted line, and ∆(𝑝0𝑚) is shown by the dotted line.

Figure 5-2: Figure (a) presents the dependence of 𝜆𝑚 on the flow index 𝑛. The red dot
corresponds to the 𝜆𝑚(1) value obtained by Dontsov [2016a]. In Figure (b), we demonstrate
the relative errors in the calculation of the radius, opening, and pressure parameters for
the 𝑀−vertex with the help of the simplified approach (Section 5.3.2).

Figures 5-3(a) and 5-3(d) present comparison of the approximate normalised pro-

files of 𝑤𝑚(𝜌, 𝑡), 𝑝𝑚(𝜌, 𝑡) (dashed lines) with the corresponding properties evaluated

by the fully numerical solution (solid lines) for 𝑛 = 1 (light-blue colour) and 𝑛 = 0.3

(blue colour). We use the normalisation of the width by 𝜖𝑚(𝑡)𝐿𝑚(𝑡), pressure by

𝜖𝑚(𝑡)𝐸 ′ as per (5.24) and of the radial distance from the source by 𝐿𝑚(𝑡) scale; these

scales account for the 𝑀 limiting solution dependence on time and largely on the

flow behaviour index 𝑛. The characteristics for the Newtonian fluid are very close

to each other, while the accurate and approximate profiles for 𝑛 = 0.3 intersect for

both opening and pressure; moreover, there is a noticeable difference for the pressure

values near the fracture front.

Let us consider the case of the leak-off-viscosity scaling and the corresponding

�̃�−vertex solution (subscript ̃︀𝑚). This scaling corresponds to 𝒢𝑐 = 𝒢𝑚 = 1. Hence,

𝐿�̃� = 𝑡1/4
√︂
𝑄0

𝐶 ′ , 𝜖�̃� =

(︂
𝐶 ′6𝑀 ′4/𝑛

𝑄2
0𝑡

3𝐸 ′4/𝑛

)︂ 𝑛
8𝑛+8

. (5.34)
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Figure 5-3: The spatial variations of the crack opening (upper line) and net fluid pressure
(bottom line) in the limiting propagation regimes 𝑀 (panels (a) and (d)), �̃� (panels (b)
and (e)), 𝑇 and 𝑇 (panels (c) and (f)) calculated by the fully numerical (solid lines) and
approximate (dashed lines) approaches. We apply 𝜖𝑖(𝑡)𝐿𝑖(𝑡), 𝜖𝑖(𝑡)𝐸′ and 𝐿𝑖(𝑡) dimensional
prefactors for the normalisation of 𝑤(𝜌, 𝑡), 𝑝(𝜌, 𝑡) profiles, and distance from the source,
and here, the subscript 𝑖 denotes the analysed regime. In the case of 𝑀 and �̃� vertex
solutions, we look at 𝑛 = 1 or 𝑛 = 0.3 and show the computed properties in plots (a),
(d) and (b), (e) by the light-blue or light-green and blue or green colours, correspondingly.
The normalisation coefficients take into account the value for the flow behaviour index.
We use olive and maroon colours for the yield stress dominated regimes 𝑇 and 𝑇 in the
charts (c), (f).

The evolution parameters have the meaning of the dimensionless storage 𝒮�̃�, yield

stress 𝒯�̃� and toughness 𝒦�̃�:

𝒮�̃� =

(︂
𝑀 ′4𝑄2𝑛+4

0

𝐸 ′4𝑡5𝑛+2𝐶 ′6(𝑛+2)

)︂1/(8+8𝑛)

, 𝒯�̃� = 𝜏0

(︂
𝑄2

0𝑡
3

𝑀 ′4/𝑛𝐶 ′6𝐸 ′4

)︂𝑛/(4+4𝑛)

,

𝒦�̃� = 𝐾 ′
(︂
𝐶 ′2−4𝑛𝑡2𝑛−1

𝑀 ′4𝑄2
0𝐸

′8𝑛+4

)︂1/(8+8𝑛)

. (5.35)

For the �̃�−vertex, we derive the following prefactors 𝑅*
�̃�, 𝑤

*
�̃�:

𝑅*
�̃� =

√
2

𝜋
, 𝑤*

�̃� = 𝛽�̃�

(︂
𝛼𝑛�̃�22+3𝑛

𝜋4+2𝑛

)︂1/(4+4𝑛)

, (5.36)

where 𝛼�̃� = 1/4, 𝛽�̃� is given by equation (5.21), and we also utilise 𝛿�̃� = (4 +

𝑛)/(4 + 4𝑛) known from the leak-off-viscosity near-tip region asymptote [Dontsov

and Kresse, 2018]. The parameter 𝜆�̃� featured in the 𝑤�̃� profile is found from the
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comparison of 𝑤�̃�(0, 𝑡) (equation (5.26) combined with (5.36)) with the numerical

solution (Section 5.3.1). This approach yields to the values of 𝜆�̃�(𝑛) presented in

Figure 5-4(a). Moreover, we also estimate the relative errors of the fracture aperture

𝑤�̃�(𝜌, 𝑡) and pressure evaluated at the half-radius 𝑝�̃�(0.5, 𝑡), provided by equations

(5.17), (5.22), respectively, with 𝜆�̃�(𝑛) (Figure 5-4(b)). We utilise equations (5.28),

(5.29), (5.30) for computing ∆(𝑤0
�̃�), ∆(𝑤𝜌�̃�), ∆(𝑝0�̃�), correspondingly.

Figure 5-4: Figure (a) shows the values of the function 𝜆�̃�(𝑛) computed numerically.
Here, we mark 𝜆�̃�(1) obtained by Dontsov [2016a] by the red dot. Figure (b) presents the
relative errors in the estimation of the opening profile and the pressure evaluated at the
half-radius for the �̃�−vertex via the simplified approach (Section 5.3.2).

In the panels (b), (e) of Figure 5-3, we demonstrate the spatial variations of the

width and pressure calculated by the accurate solution (solid lines) and provided

by the approximate approach (dashed lines), i.e., 𝑤�̃�(𝜌, 𝑡), 𝑝�̃�(𝜌, 𝑡), for two cases of

the flow behaviour index 𝑛 = 1 (light-green colour) and 𝑛 = 0.3 (green colour). The

dimensional prefactors 𝜖�̃�(𝑡)𝐿�̃�(𝑡), 𝜖�̃�(𝑡)𝐸 ′, 𝐿�̃�(𝑡) are applied for the normalisation

of the aperture, pressure and distance from the source, and they include the value of

the flow behaviour index. We can mention that for both analysed values of the flow

index, the accurate and approximate opening and pressure profiles are very close to

each other.

Next, we discuss the storage-toughness scaling that corresponds to the 𝐾−vertex

solution (subscript “𝑘”). Here, we require 𝒢𝑣 = 𝒢𝑘 = 1 leading to:

𝐿𝑘 =

(︂
𝐸 ′𝑄0𝑡

𝐾 ′

)︂2/5

, 𝜖𝑘 =

(︂
𝐾 ′6

𝐸 ′6𝑄0𝑡

)︂1/5

, (5.37)

and the evolution parameters can be interpreted as the dimensionless leak-off 𝒞𝑘,
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yield stress 𝒯𝑘 and viscosity ℳ𝑘:

𝒞𝑘 = 𝐶 ′
(︂
𝐸 ′8𝑡3

𝐾 ′8𝑄2
0

)︂1/10

, 𝒯𝑘 = 𝜏0

(︂
𝐸 ′7𝑄2

0𝑡
2

𝐾 ′12

)︂1/5

, ℳ𝑘 =

(︂
𝑀 ′5𝐸 ′6𝑛+7𝑄𝑛+2

0 𝑡2−4𝑛

𝐾 ′6(𝑛+2)

)︂1/(5𝑛)

.

(5.38)

The LEFM asymptote governs the tip behaviour in the storage-toughness limiting

propagation regime, i.e. 𝛿𝑘 = 1/2. Moreover, in this case, the crack opening profile

is elliptical [Savitski and Detournay, 2002]. Consequently, the simplified form of the

radius crack opening profile (5.17) allows describing it accurately by taking 𝜆𝑘 =

1/2. Using the global fluid balance equation (5.19) and the “square-root” asymptote

[Irvin, 1957], we find out the following coefficient in the radius and opening profiles:

𝑅*
𝑘 =

(︂
3√
2𝜋

)︂2/5

, 𝑤*
𝑘 =

(︂
3√
2𝜋

)︂1/5

. (5.39)

Next, we construct the leak-off-toughness scaling and focus on the �̃�−vertex

solution (subscript “𝑘”). We put 𝒢𝑐 = 𝒢𝑘 = 1, and get the expressions for the length

scale 𝐿𝑘 and the small parameter 𝜖𝑘:

𝐿𝑘 = 𝑡1/4
√︂
𝑄0

𝐶 ′ , 𝜖𝑘 =

(︂
𝐶 ′2𝐾 ′8

𝐸 ′8𝑄2
0𝑡

)︂1/8

. (5.40)

The evolution parameters are identified as the dimensionless storage 𝒮𝑘, yield stress

𝒯𝑘 and viscosity ℳ𝑘:

𝒮𝑘 =
𝐾 ′𝑄

1/4
0

𝐶 ′5/4𝐸 ′𝑡3/8
, 𝒯𝑘 = 𝜏0

𝐸 ′𝑄
1/2
0 𝑡1/4

𝐶 ′1/2𝐾 ′2 , ℳ𝑘 =

(︃
𝑀 ′𝑄

1/2
0 𝐸 ′1+2𝑛𝐶 ′𝑛−1/2𝑡1/4−𝑛/2

𝐾 ′2+2𝑛

)︃1/𝑛

.

(5.41)

Similarly to the 𝐾−limiting propagation regime, the crack opening behaviour near

the tip is described by the LEFM asymptote (𝛿𝑘 = 1/2), while the whole profile is

elliptical (𝜆𝑘 = 1/2). The derivation of the prefactors for the radius and opening

leads to:

𝑅*
𝑘

=

√
2

𝜋
, 𝑤*

𝑘
=

21/4

√
𝜋
. (5.42)

We should highlight that the approximate solution reproduces all fracture properties

(radius, opening, and pressure) precisely for both toughness dominated regimes 𝐾
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and �̃�.

Finally, next we reach the cases that correspond to dominance of yield stress.

The storage-yield-stress scaling (subscript “𝑡”) corresponds to the case: 𝒢𝑡 = 𝒢𝑚 = 1,

which results to:

𝐿𝑡 =

(︃
𝑡𝐸 ′1/2𝑄0

𝜏
1/2
0

)︃1/3

, 𝜖𝑡 =

√︂
𝜏0
𝐸 ′ . (5.43)

In turn, the evolution parameters are the dimensionless leak-off, viscosity and tough-

ness:

𝒞𝑡 = 𝐶 ′
(︂
𝐸 ′√𝑡
𝑄0𝜏0

)︂1/3

, ℳ𝑡 =

√
𝐸 ′𝑀 ′1/𝑛

𝑡𝜏
(𝑛+2)/(2𝑛)
0

, 𝒦𝑡 =
𝐾 ′

(𝐸 ′7𝑄2
0𝑡

2𝜏 50 )
1/12

. (5.44)

Further, we should determine the prefactors 𝑅*
𝑡 , 𝑤

*
𝑡 from the global fluid balance

(5.19) and the yield stress dominated near-tip region asymptote [Bessmertnykh and

Dontsov, 2019]:

𝑅*
𝑡 =

1

25/6
√
𝜋ℬ1/3

𝑡

, 𝑤*
𝑡 =

22/3

ℬ1/3
𝑡

, (5.45)

where ℬ𝑡 = ℬ(𝜆𝑡, 𝛿𝑡) and 𝛿𝑡 = 1. Using the radius and wellbore opening charac-

teristics computed via the accurate numerical solution (Section 5.3.1), we find out

that 𝜆𝑡 = 1.029 provides the most accurate approximation. This value together

with equations (5.17), (5.22), (5.45) result in ∆(𝑅𝑡) = 2.8% (equation (5.27)),

∆(𝑝0𝑡 ) = 12.2% (equation (5.30)), while the opening at the wellbore 𝑤𝑡(0, 𝑡) is cap-

tured precisely. At the same time, the absolute difference between the fully nu-

merical and approximate opening profiles 𝑤𝑡(𝜌, 𝑡) normalised by 𝑤𝑡(0, 𝑡) can reach

∆(𝑤𝜌𝑡 ) = 5% (equation (5.29)), which demonstrates that the accuracy of the ap-

proximation (5.26) reduces for such values of 𝜆.

The last case is the leak-off-yield-stress scaling and the 𝑇−vertex solution asso-

ciated with it. We set 𝒢𝑐 = 𝒢𝑡 = 1, which results in the following parameters:

𝐿𝑡 = 𝑡1/4
√︂
𝑄0

𝐶 ′ , 𝜖𝑡 =

√︂
𝜏0
𝐸 ′ . (5.46)

Here, the evolution parameters are identified as the dimensionless storage 𝒮𝑡, vis-
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cosity ℳ𝑡 and toughness 𝒦𝑡:

𝒮𝑡 =

(︂
𝑄0𝜏0

𝐶 ′3𝐸 ′
√
𝑡

)︂1/2

, ℳ𝑡 =
𝐶 ′3/2𝐸 ′𝑀 ′1/𝑛

√
𝑄0𝑡3/4𝜏

(𝑛+1)/𝑛
0

, 𝒦𝑡 = 𝐾 ′
(︂

𝐶 ′

𝐸 ′2𝑄0

√
𝑡𝜏 20

)︂1/4

.

(5.47)

Then, we retrieve the coefficients for the radius and opening (equation (5.26)) based

on the global fluid balance (5.19) and the tip asymptote [Bessmertnykh and Dontsov,

2019]:

𝑅*
𝑡 =

√
2

𝜋
, 𝑤*

𝑡 =
4√
𝜋
. (5.48)

Similarly to the �̃�−vertex solution, we estimate 𝜆𝑡 via the tuning of the simplified

opening profile (5.17) to the accurate numerical solution (Section 5.3.1). We com-

pute 𝜆𝑡 = 1.077, and it provides the best approximation which reproduces precisely

the fracture opening at the wellbore 𝑤𝑡(0, 𝑡) and gives the error in the spatial varia-

tion 𝑤𝑡(𝜌, 𝑡) (in relation to 𝑤𝑡(0, 𝑡)) up to ∆(𝑤𝜌
𝑡
) = 6% (equation (5.29)). Pressure

evaluated at the half-radius is reproduced by the approximate solution with the

relative error of ∆(𝑝0
𝑡
) = 11% (equation (5.30)).

Figures 5-3(c) and 5-3(f) depict the aperture and pressure profiles obtained by

the accurate method (solid lines) and that computed by the approximate one (dashed

lines) for the yield stress dominated regimes 𝑇 (olive colour) and 𝑇 (maroon colour).

For both vertices, we observe the intersection between the fully numerical and sim-

plified solutions and a noticeable difference between them, which is caused by the

loss of accuracy of the width approximation utilised to construct the simplified solu-

tion (5.26). One possible mitigation of this issue is to introduce a more sophisticated

expression for fracture width that captures such behaviour for the 𝑇 and 𝑇 limits.

The existing approximation was initially proposed for smaller values of 𝛿 and 𝜆 that

correspond to Newtonian fluids. However, for the purpose of this study, i.e., for ex-

ploring the problem parameter space, such accuracy is acceptable, especially since

the boundaries of the limiting solutions vary on a logarithmic scale.

The fracture characteristics observed in the limiting propagation regimes are

summarised in Appendix A.2. In addition to the dimensional form, we also present

the solutions in the normalised form obtained by the application of the 𝑚𝑘-scaling
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introduced in Section 5.5.1.

5.4.2 Representation of the problem solution space

The parametric space of solutions for the discussed radial fracture model can be

conceptually presented in the form of a hexahedral pyramid, and the limiting prop-

agation regimes are located at its vertices. The sketch of the pyramid 𝑀�̃��̃�𝐾𝑇𝑇

is shown in Figure 5-5. Each edge of the pyramid links two vertex solutions, e.g., 𝑖

Figure 5-5: Parametric space 𝑀�̃��̃�𝐾𝑇𝑇 for a radial hydraulic fracture in a permeable
rock driven by a fluid with Herschel-Bulkley rheology. The vertex solutions are located at
its corners. The evolution parameters are specified near the edges for each propagation
regime. The solution trajectories examples in the general case (𝜑 > 0, 𝜓 > 0) are depicted
for two values of the flow index: 𝑛 > 0.5 (dashed line) and 𝑛 < 0.5 (dotted line).

and 𝑗, and it is possible to introduce a characteristic transition time between them

𝑡𝑖𝑗 by solving the following equation: 𝜖𝑖(𝑡) = 𝜖𝑗(𝑡) → 𝑡 = 𝑡𝑖𝑗. Furthermore, the

evolution along the edge is controlled by a single evolution parameter, which can be

expressed as a function of normalised time 𝜏𝑖𝑗 = 𝑡/𝑡𝑖𝑗 (two evolution parameters are

related to each edge). Let us consider the 𝑀𝑇 -edge as an example. The transition

time scale is 𝑡𝑚𝑡 =
√
𝐸 ′𝑀 ′1/𝑛𝜏

−(𝑛+2)/(2𝑛)
0 , while 𝒯𝑚(𝑡) and ℳ𝑡(𝑡) are evolution pa-

rameters related to this edge. By introducing the dimensionless time 𝜏𝑚𝑡 = 𝑡/𝑡𝑚𝑡,

we can write out the relations: 𝒯𝑚 = 𝜏
2𝑛/(𝑛+2)
𝑚𝑡 , ℳ𝑡 = 𝜏−1

𝑚𝑡 .

In the current problem, we have 9 transition time scales, and only 3 of them are

independent, e.g., 𝑡𝑚𝑘, 𝑡𝑚�̃�, 𝑡𝑚𝑡. Consequently, location of the solution inside the

parametric space can be expressed as a function of the three dimensionless times

𝜏𝑚𝑘 = 𝑡/𝑡𝑚𝑘, 𝜏𝑚�̃� = 𝑡/𝑡𝑚�̃�, 𝜏𝑚𝑘 = 𝑡/𝑡𝑚𝑡. Further, we introduce the parameters 𝜑
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and 𝜓 as:

𝜑 =

(︂
𝑡𝑚𝑘
𝑡𝑚�̃�

)︂(10𝑛+4)/(3𝑛+6)

= 𝐶 ′4
(︂
𝑀 ′3𝐸 ′10𝑛+1𝑄2−𝑛

0

𝐾 ′10𝑛+4

)︂1/(2𝑛−1)

,

𝜓 =

(︂
𝑡𝑚𝑘
𝑡𝑚𝑡

)︂2𝑛/(𝑛+2)

= 𝜏0

(︂
𝐸 ′4𝑄0𝑀

′1/𝑛

𝐾 ′6

)︂𝑛/(2𝑛−1)

, (5.49)

and they can be interpreted as the dimensionless leak-off and yield stress numbers.

By taking the set of parameters {𝜏 = 𝜏𝑚𝑘, 𝜑, 𝜓}, we can express 𝜏𝑚�̃� and 𝜏𝑚𝑡

in terms of them in order to characterise the solution trajectories. Along each

trajectory, the numbers 𝜑 and 𝜓 are constant while 𝜏 varies.

When the flow index is greater than one-half (𝑛 > 0.5), all solution trajectories

start from the 𝑀 limiting propagation regime (early-time asymptote) since all the

dimensionless groups (5.32) vanish when time tends to zero. However, their desti-

nation points (large-time asymptote) can be different: (i) 𝜑 = 𝜓 = 0 – 𝐾-vertex,

(ii) 𝜑 > 0, 𝜓 = 0 – �̃�-vertex, (iii) 𝜑 = 0, 𝜓 > 0 – 𝑇 -vertex and (iv) 𝜑 > 0, 𝜓 > 0 –

𝑇 -vertex. One can explain the endpoints of the solution trajectories by looking at

the evolution parameters of the corresponding regimes (e.g., (5.38), (5.41), (5.44),

(5.47)) which go to zero when time tends to infinity or they are identically zero

due to values of 𝜑, 𝜓. For intermediate time intervals, the solution trajectory can

be attracted to either of the vertices, and its behaviour strongly depends on the

values of 𝜑 and 𝜓. For example, when the yield stress is absent (𝜓 = 0), 𝐾 and

�̃� regimes can be considered in the general solution as intermediate asymptotes

when the leak-off is small (𝜑 ≪ 1) and large (𝜑 ≫ 1), correspondingly. As another

example, we can take zero leak-off case (𝜑 = 0) with the yield stress (𝜓 > 0), and

𝐾-vertex attracts the solution trajectory when 𝜓 ≪ 1.

The situation changes for 𝑛 < 0.5. Here, the trajectories start at the 𝐾-vertex

(see the corresponding evolution parameters (5.38) turn to zero when 𝑡 = 0), and

the final point can be: (i) 𝜑 = 𝜓 = 0 – 𝑀 -vertex, (ii) 𝜑 > 0, 𝜓 = 0 – �̃� -vertex, (iii)

𝜑 = 0, 𝜓 > 0 – 𝑇 -vertex and (iv) 𝜑 > 0, 𝜓 > 0 – 𝑇 -vertex (similarly to the previous

discussion, it is required to draw attention to the parameters provided by equations

(5.32), (5.35), (5.44), (5.47)).

171



Chapter 5. Hydraulic fracture driven by a Herschel–Bulkley fluid

We want to emphasise that in the general case when the dimensionless numbers

𝜑 and 𝜓 are both non-zero, the large time asymptotic behaviour is always dominated

by leak-off and yield stress, i.e., 𝑇 -vertex, regardless of the value of the flow index

𝑛. The examples of the solution trajectories for 𝑛 > 0.5 and 𝑛 < 0.5 are shown in

Figure 5-5 by dashed and dotted lines, respectively.

Finally, we should mention that the chosen set of parameters, i.e. {𝜏 = 𝜏𝑚𝑘, 𝜑, 𝜓},

is not applicable for the description of the solution trajectories behaviour for 𝑛 = 0.5

since they are not properly defined in this case. One possibility to mediate this issue

is to introduce another set of variables, e.g.,{︀
𝜏 = 𝜏𝑚�̃�, 𝜑

′ = (𝑡𝑚𝑘/𝑡𝑚�̃�)(1−2𝑛)/(3𝑛+6), 𝜓′ = (𝑡𝑚�̃�/𝑡𝑚𝑡)
2𝑛/(𝑛+2)

}︀
, where 𝜑′ is the di-

mensionless toughness, and 𝜓′ is the dimensionless yield stress. Nevertheless, since

the problematic region consists of solely a single point, we proceed with the chosen

set of parameters {𝜏 = 𝜏𝑚𝑘, 𝜑, 𝜓}.

5.5 Results and discussion

5.5.1 Admissible ranges of the dimensionless problem param-

eters.

Let us start by rewriting the problem formulation in terms of the dimensionless

variables. For the normalisation of the governing equations, we rely on the 𝑚𝑘-

scaling consisting on the following parameters [Detournay, 2016]:

𝜌 =
𝑟

𝑅
, 𝜏 =

𝑡

𝑡𝑚𝑘
, 𝛾 =

𝑅

𝐿𝑚𝑘
, Ω =

𝑤

𝜖𝑚𝑘𝐿𝑚𝑘
, Π =

𝑝

𝐸 ′𝜖𝑚𝑘
, (5.50)

where the dimensionless distance to the source 𝜌, time 𝜏 , radius 𝛾, opening Ω, and

pressure Π are introduced; 𝑡𝑚𝑘 is the transition timescale between 𝑀 and 𝐾 limiting

regimes (Section 5.4.2), 𝐿𝑚𝑘 = 𝐿𝑚(𝑡𝑚𝑘) is the lengthscale, and 𝜖𝑚𝑘 = 𝜖𝑚(𝑡𝑚𝑘) is the
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small parameter (see equation (5.31)):

𝑡𝑚𝑘 =

(︂
𝑀 ′5𝐸 ′6𝑛+7𝑄𝑛+2

0

𝐾 ′6(𝑛+2)

)︂1/(4𝑛−2)

, 𝐿𝑚𝑘 =

(︂
𝑀 ′𝐸 ′2𝑛+1𝑄𝑛

0

𝐾2(𝑛+1)

)︂1/(2𝑛−1)

,

𝜖𝑚𝑘 =

(︂
𝐾 ′6𝑛

𝑀 ′𝐸 ′6𝑛−1𝑄𝑛
0

)︂1/(4𝑛−2)

. (5.51)

The elasticity (5.5), Reynolds (5.8), (5.9), global fluid balance (5.10) equations

and the propagation condition (5.11) written in terms of the dimensionless distance

𝜌 and using (5.50) and (5.51) can be written in the normalised form as:

• Elasticity:

Π = − 1

2𝜋𝛾

∫︁ 1

0

𝐺 (𝜌, 𝑠)
𝜕Ω

𝜕𝑠
𝑑𝑠;

• Reynolds:

𝜕Ω

𝜕𝜏
− 𝜌�̇�

𝛾

𝜕Ω

𝜕𝜌
+

𝜑1/4

√
𝜏 − 𝜃0

=

=
1

𝛾𝜌

𝜕

𝜕𝜌

⎡⎣𝜌Ω2+1/𝑛

𝛾1/𝑛
𝜕Π

𝜕𝜌

⃒⃒⃒⃒
𝜕Π

𝜕𝜌

⃒⃒⃒⃒1/𝑛−1
(︃

1 − 2𝜓
𝛾

Ω

⃒⃒⃒⃒
𝜕Π

𝜕𝜌

⃒⃒⃒⃒−1
)︃1+1/𝑛(︃

1 + 2𝜓
𝛾

Ω

⃒⃒⃒⃒
𝜕𝑝

𝜕𝜌

⃒⃒⃒⃒−1
𝑛

𝑛+ 1

)︃⎤⎦ ,
where the dimensionless leak-off 𝜑 and yield stress 𝜓 are defined in equation

(5.49), and the dimensionless inverse radius function is given by 𝜃0(𝜌, 𝜏) =

𝑡0(𝑟)/𝑡𝑚𝑘. For completeness, we also provide the definitions of 𝜑 and 𝜓 through

the characteristics of the 𝑚𝑘-scaling:

𝜑 =

(︂
𝐶 ′√𝑡𝑚𝑘
𝐿𝑚𝑘𝜖𝑚𝑘

)︂4

, 𝜓 =
𝜏0

𝐸 ′𝜖2𝑚𝑘
;

• Global fluid balance:

𝜏

𝜋𝛾2
= 2

∫︁ 1

0

𝜌Ω 𝑑𝜌+ 4𝜑1/4

∫︁ 1

0

𝜌
√︀
𝜏 − 𝜃0 𝑑𝜌;

• Propagation condition:

Ω =
√
𝛾
√︀

1 − 𝜌, 𝜌→ 1.
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We can use the numerical schemes presented in Sections 5.3.1 and 5.3.2 for the

solution of the normalised system of governing equations assuming 𝐸 ′ = 𝐾 ′ = 𝑀 ′ =

𝑄0 = 1, 𝐶 ′ = 𝜑1/4, 𝜏0 = 𝜓, and 𝑡 = 𝜏 .

Further, it is useful to estimate the realistic ranges of the dimensionless governing

parameters 𝜑 and 𝜓. To obtain the desired ranges, some input parameters are kept

fixed, while the remaining ones are altered within their own intervals. We consider

the following values/spans:

• geomechanics:

∘ plane-strain elastic modulus: 𝐸 ′ = 10 ÷ 50 GPa;

∘ rock toughness: 𝐾𝐼𝑐 = 0.5 ÷ 2.5 MPa ·
√

m;

∘ far-field confining stress: 𝜎𝑜 = 10 ÷ 30 MPa;

• reservoir:

∘ permeability: 𝑘 = 0 ÷ 100 mD;

∘ porosity: 𝜑𝑟 = 5 ÷ 25%;

∘ ratio of far-field pore pressure and far-field confining stress: 𝑝𝑜/𝜎𝑜 =

0.4 ÷ 0.95;

• Fracturing fluid:

∘ flow behaviour index: 𝑛 = 0.5 ÷ 1;

∘ consistency index: 𝑀 = 10−3 ÷ 2 Pa · sn;

∘ yield stress: 𝜏0 = 0 ÷ 15 Pa;

• pore fluid:

∘ viscosity: 𝜇 = 1 ÷ 5 cP;

∘ total compressibility: 𝑐𝑡 = 10−3 MPa−1;

• volumetric injection rate:

∘ 𝑄0 = 0.01 ÷ 0.1 m3/s.
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We take three values of the flow behaviour index 𝑛 = {0.6, 0.8, 1} and compute

the intervals for the governing parameters 𝜑 and 𝜓 by varying each of the aforemen-

tioned dimensional input parameters independently. We illustrate the evaluated

domains in Figure 5-6(a). It can be noticed that the domain for 𝑛 = 0.6 (green

Figure 5-6: The panel (a) provides the domains in the coordinates (𝜑, 𝜓) corresponding
to 𝑛 = {0.6, 0.8, 1} and typical field parameters by green, red, and blue colours. In the
panel (b), the yellow decagon shows the locus for 𝑛 = 1 and 𝜏0 = 15 Pa, while the octagons
framed by the red and blue dash-dotted lines are related to the minimum and maximum
values of the plane-strain elastic modulus. The structure of the octagon cell is presented
in the panel (c) (for 𝐸′ = 10 GPa) where the red and blue dashed lines limit the hexagons
corresponding to the minimum and maximum values of rock toughness. On the chart (d),
we analyse the internal structure of the hexagon (using the case for 𝐾𝐼𝑐 = 2.5 MPa ·

√
m)

by identifying the locations of data points belonging to the minimum and maximum values
of the consistency index (red and blue dotted boundaries) and rock permeability (domains
with red and blue line fill).

one) includes the analogous zone for 𝑛 = 0.8 (red one) which, in turn, includes the

region for 𝑛 = 1 (blue one). To understand the structure of the non-dimensional

parametric domain for a fixed 𝑛 (how different dimensional input parameters affect

the locations inside it) we look closely at the example of the Bingham fluid (𝑛 = 1)

with the yield stress 𝜏0 = 15 Pa (yellow decagon in Figure 5-6(b); such decagons

for different 𝜏0 ∈ [0, 15 Pa] fill completely the whole blue domain). We identify two
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sub-domains (octagons) corresponding to the minimum and maximum values of the

plane-strain elastic modulus and frame them by coloured dash-dotted lines (Figure

5-6(b)); the octagons belonging to the intermediate values of 𝐸 ′ are located between

them. Consequently, the resultant interval for the dimensionless leak-off number is

controlled by the predefined range for 𝐸 ′, while the interval for 𝜓 is primary gov-

erned by the yield stress parameter and then by 𝐸 ′. Next, each octagon is limited

by two hexagons corresponding to the limiting values of the rock toughness. In

Figure 5-6(c), we show the octagon related to the minimum value of the plane-stain

elastic modulus (𝐸 ′ = 10 GPa) by the orange colour and highlight the sub-domains

for the minimum and maximum values of 𝐾𝐼𝑐 by the coloured dashed lines. One

can also examine the interior of each hexagon and reveal the parallelograms cor-

responding to the extreme values of the consistency index and rock permeability

which we emphasise by the coloured dotted boundaries and the coloured line fill in

Figure 5-6(d) using the hexagon for 𝐾𝐼𝑐 = 2.5 MPa ·
√

m. Finally, we can mention

that the lower and upper sides of each parallelograms (Figure 5-6(d)) are locuses

of the points represented by the minimum and maximum values of the volumetric

fluid injection rate, and the structure of each side includes the alterations of the

remaining parameters (𝜎𝑜, 𝜑𝑟, 𝑝𝑜/𝜎𝑜).

5.5.2 Analysis of the parametric space

This section considers analysis of the parametric space for a radial crack driven by a

fluid with Herschel-Bulkley rheology. We utilise the dimensionless problem formu-

lation (Section 5.5.1) in which the crack characteristics governed by the following

dimensionless variables: time (𝜏), distance from the source (𝜌), leak-off (𝜑) and yield

stress (𝜓).

In this section, we focus on the results related to the following values of the flow

behaviour index: 𝑛 = 1 and 𝑛 = 0.3, and the examination includes the following

two main components. Firstly, we identify the applicability domains of the limiting

propagation regimes inside the parameter space and draw them as the regime maps.

The construction of such kind of maps helps to understand the crack propagation

conditions for the given problem parameters. The validity zones of the vertices are
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defined according to the following criterion (the same was used in Dontsov [2016a]):

√︃(︂
1 − Ω𝑖(0, 𝜏)

Ω(0, 𝜏)

)︂2

+

(︂
1 − 𝛾𝑖(𝜏)

𝛾(𝜏)

)︂2

< 0.01, 𝑖 = 𝑀, �̃�, 𝐾, �̃�, 𝑇, 𝑇 . (5.52)

Equation (5.52) states that the combination of the relative differences of the opening

at the wellbore and of the fracture radius between the numerical solution and the

𝑖-th limiting regime should be less than 1% for the solution being considered at the

vertex.

It is important to highlight that for the purpose of this section we apply the

simplified approach (Section 5.3.2) for calculations due to its computational effi-

ciency. Kanin et al. [2021b] presented the validation of the approximate solution in

Appendix C. Its predictions was compared to that provided by the accurate numer-

ical method (Section 5.3.1). We apply criterion (5.52) to estimate the applicability

boundaries of all vertex solutions numerically. Moreover, to provide quick analytic

estimates, we fit the obtained points by the appropriate analytical functional depen-

dencies that are derived from the consideration of the transition timescales between

the limiting regimes. As an example, let us consider the validity boundaries of the

storage-viscosity (𝑀) and storage-yield-stress (𝑇 ) regimes framing the 𝑀𝑇 transi-

tion (another interpretation of the transition is the 𝑀𝑇 -edge of the solution space

outlined in Section 5.4.2). The time 𝑡 normalised by the transition timescale 𝑡𝑚𝑡

has the form: 𝜏𝑚𝑡 = 𝜏𝜓(2+𝑛)/(2𝑛), providing the following relation for the discussed

boundaries: 𝜓 ∝ 𝜏−2𝑛/(2+𝑛). The prefactors are estimated numerically via the fitting

procedure for 𝑀 and 𝑇 vertices separately. We summarise all possible relationships

arising in the model as the applicability boundaries of the limiting solutions in Table

5.1.

The second element of the analysis is the examination of the variations of the

main time-dependent crack characteristics such as radius 𝛾(𝜏), opening at the well-

bore Ω(0, 𝜏), pressure at the half-radius Π(1/2, 𝑡), and efficiency 𝜂(𝜏) with the di-

mensionless leak-off and yield stress parameters.
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Table 5.1: The validity boundaries of the limiting regimes obtained by setting 𝜏edge =
const.

Transition 𝜏edge =
𝑀𝐾 𝜏

𝑀�̃� 𝜏𝜑(3𝑛+6)/(10𝑛+4)

𝑀𝑇 𝜏𝜓(2+𝑛)/(2𝑛)

𝐾�̃� 𝜏𝜑5/6

𝐾𝑇 𝜏𝜓5/2

�̃��̃� 𝜏/
√
𝜑

�̃�𝑇 𝜏𝜓(4𝑛+4)/(3𝑛)/
√
𝜑

�̃�𝑇 𝜓4𝜏/
√
𝜑

𝑇𝑇 𝜏𝜑3/2/𝜓2

5.5.2.1 Impermeable rock

Bingham fluid (𝑛 = 1)

We start with a radial crack driven by the Bingham fracturing fluid (𝑛 = 1) in an

impermeable formation (𝜑 = 0). The regime map is shown in Figure 5-7(a) in the

coordinates (𝜏, 𝜓). Generally, when the leak-off number 𝜑 = 0, only three storage

vertices can be realised: viscosity (𝑀), toughness (𝐾), and yield stress (𝑇 ). For the

flow behaviour index 𝑛 > 0.5, the problem solution evolves from 𝑀 to 𝑇 (𝜓 > 0) or

to 𝐾 (𝜓 = 0) as it is confirmed by Figure 5-7(a) for 𝑛 = 1. Moreover, for 𝑛 > 0.5 and

non-zero yield stress, the solution passes through the toughness dominated regime

(𝐾) over an intermediate time range if yield stress (𝜓) is small enough. For example,

the 𝐾-vertex approximates the general solution along certain time intervals when

𝜓 . 10−6 for 𝑛 = 1, while the solution is dominated by dissipation in the fluid at

all times, i.e., solution is given by 𝑀 to 𝑇 transition bypassing 𝐾-vertex, when the

yield stress is large enough, e.g., 𝜓 & 1 for 𝑛 = 1 (Figure 5-7(a)). The time domain

of the storage-viscosity regime gradually shrinks with increasing 𝜓 & 10−1 for 𝑛 = 1

(Figure 5-7(a), whereas the time domain of the storage-yield-stress regime expands.

Further, we look at the solution trajectories in the parameter space for 𝑛 = 1 and

𝜑 = 0 corresponding to the following values of the dimensionless yield stress num-

ber: 𝜓 = {10−10, 10−5, 1, 105} (the grey dash-dotted lines in Figure 5-7(a)). We

calculate evolution of the time-dependent crack parameters (radius 𝛾(𝜏), wellbore

opening Ω(0, 𝜏), and pressure Π(1/2, 𝜏)) and plot them normalised by the 𝑀 -vertex
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Figure 5-7: Results for a radial hydraulic fracture driven by the Bingham fluid (𝑛 = 1)
with non-zero yield stress (𝜓 > 0) in an impermeable rock (𝜑 = 0). The regime map
(a) is presented in the coordinates (𝜏, 𝜓), and the coloured regions denote the applica-
bility domains of the limiting regimes. The time-dependent crack characteristics (radius
(b), opening at the wellbore (c), and pressure at the half-radius (d)) normalised by the
storage-viscosity limiting solution (𝑀) are depicted for the yield stress number values:
𝜓 =

{︀
10−10, 10−5, 1, 105

}︀
. In figure (a), the grey dash-dotted lines highlight the consid-

ered solution trajectories, while the coloured dotted lines in (b) – (d) correspond to the
limiting solutions.

solution in Figures 5-7(b) – (d). One can notice that the solutions are approxi-

mately independent of the yield stress 𝜓 and given by the 𝑀 -vertex solution during

an initial time period which duration depends on the magnitude of 𝜓. After that

initial propagation stage, the presence of the non-zero yield stress leads to a radial

crack with the smaller radius (slower fracture growth), larger wellbore opening and

higher pressure compared to the 𝜓 = 0 case (see panels (b) – (d) in Figure 5-7 where

the solution for 𝜓 = 10−10 coincides with the 𝜓 = 0 case within the chosen time

interval). Moreover, the relative differences between the computed properties for

Newtonian (𝜓 = 0) and Bingham 𝜓 > 0 fluids grow with the increase of the mag-

nitude of the dimensionless yield stress number 𝜓. Various asymptotic regimes of

the solution as discussed above with the help of the parametric map (Figure 5-7(a))

can also be identified with corresponding 𝑀, 𝐾 and 𝑇 limiting solutions (Appendix
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A.2) shown in Figures 5-7(b) – (d) by coloured dotted lines.

Herschel–Bulkley fluid with 𝑛 = 0.3

Now we proceed with the discussion of a radial crack driven by the Herschel–Bulkley

fluid with 𝑛 = 0.3 in an impermeable rock. The problem solution is demonstrated in

Figure 5-8. For 𝑛 < 0.5, the solution trajectories start at the storage-toughness (𝐾)

Figure 5-8: Results for a radial hydraulic fracture driven by the fluid with the flow
behaviour index 𝑛 = 0.3 and non-zero yield stress in an impermeable rock (𝜑 = 0). The
regime map (a) is presented in the coordinates (𝜏, 𝜓), and the coloured regions denote the
applicability domains of the limiting regimes. The time-dependent crack characteristics
(radius (b), opening at the wellbore (c), and pressure at the half-radius (d)) normalised
by the storage-viscosity limiting solution (𝑀) are depicted for the yield stress number
values: 𝜓 =

{︀
10−10, 10−5, 1, 105

}︀
. In figure (a), the grey dash-dotted lines highlight

the considered solution trajectories, while the coloured dotted lines in (b) – (d) mean the
limiting solutions.

regime and finish at the storage-viscosity (𝑀) regime for the Newtonian fluid (𝜓 = 0)

or storage-yield-stress (𝑇 ) regime for the Herschel–Bulkley fluid (𝜓 > 0) (panel (a)

in Figure 5-8). The general solution can be approximated by the 𝑀 -vertex solution

during the intermediate time intervals for 𝜓 > 0, e.g., it is realised along certain

time ranges when 𝜓 . 10−4 for 𝑛 = 0.3. The validity zone of the storage-toughness

limiting solution (𝐾) diminishes with increasing yield stress number 𝜓, while the
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𝑇 -vertex domain expands. Similarly to the Bingham fluid case, we examine four

solution trajectories inside the parameter space for 𝑛 = 0.3 and 𝜑 = 0 correspond-

ing to the set of values of the yield stress number: 𝜓 = {10−10, 10−5, 1, 105} (the

grey dash-dotted lines in Figure 5-8(a)), and plot time-dependent crack character-

istics normalised by the storage-viscosity limiting solution in Figures 5-8(b) – (d).

The results demonstrate that the non-zero yield stress affects radial fracture growth

qualitatively similar to the Bingham fluid case: (i) the non-zero yield stress impacts

the crack properties after a definite time range from the initiation which duration

is governed by the yield stress number value; (ii) when the solution for the Her-

schel–Bulkley fluid deviates from that of for the Newtonian fluid, it is characterised

by the reduced crack radius and increased maximum opening and pressure; (iii) the

relative difference between the compared solutions, i.e., for 𝜓 > 0 and 𝜓 = 0, grows

with increasing 𝜓.

5.5.2.2 Permeable rock

Next, consider the radial crack problem in a permeable reservoir (𝜑 > 0). Here,

we vary both governing parameters 𝜑 and 𝜓 to fully explore the problem parameter

space. For each selected value of the flow behaviour index, i.e., 𝑛 = 1, 0.3, we carry

out calculations for the following values of the dimensionless yield stress number:

𝜓 = {10−10, 10−5, 1, 105} and construct the regime maps in the coordinates (𝜏, 𝜑).

Then, we investigate variations of the major time-dependent crack properties for

𝜓 = 1 and different values of 𝜑.

Bingham fluid (𝑛 = 1)

Figure 5-9 shows regime maps for a radial crack driven by fluid with 𝑛 = 1 and

various values of yield stress. When the flow behaviour index 𝑛 > 0.5, the problem

solution evolves from the storage-viscosity (𝑀) to the leak-off-toughness (�̃�) regime

for the power-law fluid (𝜓 = 0) or to the leak-off-yield-stress (𝑇 ) vertex for the fluid

with yield stress (𝜓 > 0). The applicability domains of the limiting propagation

regimes for 𝜓 > 0 are shown by various colours in Figure 5-9, while the boundaries

of the vertices for 𝜓 = 0 are depicted by coloured dashed lines. When the yield
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Figure 5-9: The parameter space for the problem of a radial hydraulic fracture driven
by Bingham fluid (𝑛 = 1) in a permeable rock (𝜑 > 0). The regime maps are depicted
in the coordinates (𝜏, 𝜑) for several values of the dimensionless yield stress number: 𝜓 ={︀
10−10, 10−5, 1, 105

}︀
. The applicability domains of the limiting propagation regimes are

indicated by different colours, and the boundaries corresponding to 𝜓 = 0, i.e., Newtonian
fluid case, are presented by the coloured dashed lines. In figure (c), the grey dash-dotted
lines highlight the considered solution trajectories discussed in the current section.

stress is absent, the storage-toughness (𝐾) and the leak-off-viscosity (�̃�) regimes

are realised as the intermediate asymptotes, and for 𝑛 = 1, they emerge along the

intervals 𝜑 . 10−15 and 𝜑 & 103, respectively (see the coloured dashed lines in

Figure 5-9). For a non-zero yield stress, the yield stress dominated regimes 𝑇 , 𝑇

emerge earlier in the solution with an increase of 𝜓 (see the shifting of corresponding

domains from Figure 5-9(b) to (d)). In other words, the larger value of yield stress

𝜏0 (resulting in larger values of 𝜓) leads to reaching the condition 𝜏0 ≫𝑀�̇�𝑛 quicker,

if the remaining input parameters of the model remain the same. As a result, the

validity zones of the toughness dominated regimes 𝐾, �̃� shrink with growing 𝜓,

and eventually, they disappear completely (see Figure 5-9(a) versus (b) – (d)). The

latter observation can be reformulated in the following way: for 𝜓 & 10−5 and

arbitrary 𝜑 the conditions for the realisation of the toughness dominated limiting

propagation regimes 𝐾, �̃� can not be met since the values of evolution parameters
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𝒯𝑘 and 𝒯𝑘 (equations (5.38), (5.41)) never tend to zero. Moreover, the domains

belonging to the viscosity dominated regimes 𝑀 , �̃� recede after a certain value

of the dimensionless yield stress (see Figures 5-9(c), (d) as compared to (a), (b));

however, they always exist in the model for certain values of 𝜏 and 𝜑, and for all

𝜓. To summarise, during the intermediate time intervals, the general solution is

approximated by 𝐾, �̃�, �̃�, 𝑇 vertex solutions depending on the values of the

governing parameters 𝜑 and 𝜓. The boundaries between 𝐾𝑇 , �̃�𝑇 , 𝑇𝑇 transitions

do not depend on the flow behaviour index in the range 𝑛 > 0.5 since this parameter

affects only the regions of the parameter space where the dissipation effects related

to the viscous fluid flow are significant, i.e., viscosity-toughness and viscosity-yield-

stress transitions. Further, we compared the applicability regions of the limiting

regimes for 𝑛 = 1 and 𝑛 = 0.75 (not shown) and found that the reduction of the

flow behaviour index within the interval 𝑛 ∈ (0.5, 1] leads to further separation of

𝑀, �̃�,𝐾, �̃� regimes from the “center” of the map, i.e., the boundaries of 𝑀 and

𝐾 vertices framing the 𝑀𝐾 transition move to the left (i.e., smaller times) and to

the right (i.e., larger times), respectively, while the boundaries of �̃� and �̃� regimes

framing the �̃��̃� transition shift up-left and down-right, correspondingly. The value

of 𝑛 starts to influence locations of the boundaries of 𝑇 and 𝑇 regimes related to

𝑀𝑇 and �̃�𝑇 transitions only for large values of 𝜓.

Further, we take a closer look at variations of the time-dependent properties

of the radial crack driven by Bingham fluid (𝑛 = 1) with respect to parameters

𝜑 and 𝜓. (At this point, we should note that the following analyses are qualita-

tively applicable to the other values of the flow behaviour index inside the interval

0.5 < 𝑛 ≤ 1.) We consider the following set of the dimensionless leak-off values

𝜑 = {10−20, 10−10, 1, 1010} and perform computations for both zero (Newtonian

fluid) and non-zero (Bingham fluid) yield stress (𝜓 = 1). The obtained results are

demonstrated in Figure 5-10. The solid black lines show the solution with 𝜓 = 1,

while the case 𝜓 = 0 is presented by the dashed grey lines. First, we discuss the

dependence of the solution on the leak-off number 𝜑 for a fixed value of the yield

stress number (𝜓 = 0 or 𝜓 = 1). We observe that the solution is independent of

𝜑 (and thus given by the impermeable case, 𝜑 = 0) during an initial time period
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Figure 5-10: The time-dependent characteristics of a radial crack propagating in a per-
meable rock (𝜑 > 0) due to the injection of Bingham fluid: (a) radius 𝛾(𝜏), (b) opening
at the wellbore Ω(0, 𝜏), (c) pressure at the half-radius Π(1/2, 𝜏), and (d) efficiency 𝜂(𝜏).
The properties in charts (a) – (c) are normalised by the storage-viscosity (𝑀) limiting
solution. The profiles corresponding to 𝜑 =

{︀
10−20, 10−10, 1, 1010

}︀
and 𝜓 = 1 are shown

by the solid black lines. The solutions for the same values of leak-off and zero yield stress
are depicted by the dashed grey lines for comparison. The vertex solutions are presented
by the dashed coloured lines. In graph (a), the asymptotic behaviour of the radius in the
leak-off dominated regimes �̃�, �̃� , 𝑇 are represented by the orange colour due to the same
functional relationships 𝛾�̃�(𝜏), 𝛾�̃� (𝜏), 𝛾𝑇 (𝜏) for all of them. Similarly, in graph (c), we
apply cyan colour for the pressure behaviour in the the yield stress dominated regimes 𝑇, 𝑇
(Π𝑇 (1/2, 𝜏), Π𝑇 (1/2, 𝜏)) which are very close to each other.

of fracture propagation which duration depends on 𝜑 and 𝜓 values. Outside this

initial time span, the increase of leak-off leads to smaller radius, opening at the

wellbore, and crack efficiency, whereas the pressure becomes larger (Figure 5-10).

However, the pressure behaviour can differ from the description provided above for

the non-zero yield stress case in which pressure for all 𝜑 values tends to reach the

same yield stress dominated asymptote (see the cyan line in Figure 5-10(c)).

Next, we focus on the effect of the yield stress by comparing the solutions for

Newtonian (𝜓 = 0) and Bingham (𝜓 = 1) fluids at a fixed value of the leak-off

number (Figure 5-10). These solutions are insensitive to the fluid yield stress and

thus coincide at the early stages of crack growth. Moreover, when the leak-off is very

large (𝜑 = 1010), two solutions match in the entire time domain for the radius and
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efficiency (Figures 5-10(a), (d)). At larger time the fluid yield stress (𝜓 = 1) leads

to the reduced value of the radius and increased opening at the wellbore, pressure,

and efficiency compared to the Newtonian fluid case (𝜑 = 0).

The time domains where the fracture propagation is dominated by different lim-

iting regimes can be identified in Figure 5-10 by comparing the computed fracture

properties with the vertices (Appendix A.2) shown by the coloured dashed lines. We

note that the limiting solutions for the radius are identical in all leak-off dominated

regimes and thus shown in Figure 5-10(a) by a single (orange) colour. Similarly, the

limiting solutions for pressure is all yield stress dominated regimes in Figure 5-10(c)

are depicted by same colour (cyan) line.

Herschel–Bulkley fluid with 𝑛 = 0.3

We now turn to the discussion of the parametric dependence of the solution

for a radial crack propagation in a permeable rock (𝜑 > 0) due to the injection of

Herschel–Bulkley fluid with the flow behaviour index 𝑛 = 0.3. Figure 5-11 shows

the computed propagation regime maps. When the flow behaviour index 𝑛 < 0.5,

the problem solution starts at the storage-toughness (𝐾) regime and finishes at the

leak-off-viscosity (�̃�) regime for the power-law fluid (𝜓 = 0) or at the leak-off-

yield-stress (𝑇 ) regime for Herschel–Bulkley fluid (𝜓 > 0). The validity zones of the

limiting regimes corresponding to 𝜓 > 0 cases are shown by various colours in Figure

5-11, where we also plot the boundaries of the corresponding zones for the power-law

fluid case 𝜓 = 0 by dashed lines for comparison purposes. The general solution may

approach the leak-off-toughness (�̃�), storage-viscosity (𝑀), leak-off-viscosity (�̃�),

and/or storage-yield-stress (𝑇 ) regimes at an intermediate time depending on the

values of 𝜑 and 𝜓. The behaviour of the yield stress dominated regimes with an

increase of 𝜓 is qualitatively similar to the already discussed case of the Bingham

fluid, namely, 𝑇 and 𝑇 domains expand towards smaller times. This shift leads

to shrinking and, eventually, vanishing time domains of the viscosity dominated

regimes as it can be noticed for 𝑛 = 0.3 from Figures 5-11(a), (b) as compared to

the panels (c), (d), and to the shrinking of the toughness regimes time domains

(see Figure 5-11(d)). In contrast to 𝑛 > 0.5 case, for 𝑛 < 0.5 the change of the

185



Chapter 5. Hydraulic fracture driven by a Herschel–Bulkley fluid

Figure 5-11: The parameter space of the model for a radial hydraulic fracture driven
by Herschel–Bulkley fluid with 𝑛 = 0.3 in a permeable rock (𝜑 > 0). The regime maps
are depicted in the coordinates (𝜏, 𝜑) for several values of the dimensionless yield stress:
𝜓 =

{︀
10−10, 10−5, 1, 105

}︀
. The applicability domains of the limiting propagation regimes

are filled by different colours, and the boundaries corresponding to 𝜓 = 0, i.e., power-law
fluid, are presented by coloured dashed lines. In figure (c), the grey dash-dotted lines
highlight the considered solution trajectories discussed in the current section.

dimensionless yield stress does not affect the boundaries framing the 𝑇𝑇 transition.

We also should comment on the alterations of the regime map with the variation

of the flow behaviour index inside the interval 𝑛 ∈ [0, 0.5) (not shown). When we

increase the value of 𝑛, the boundaries of 𝐾 and 𝑀 vertex solutions framing the

𝐾𝑀 transition move to the left (i.e., smaller times) and to the right (i.e., larger

times) respectively, whereas the boundaries of �̃� and �̃� domains framing the �̃��̃�

transition go up-left and down-right, correspondingly. Similarly to 𝑛 > 0.5, the flow

behaviour index affect the boundaries of the yield stress dominated regimes framing

𝐾𝑇 and �̃�𝑇 transitions only for the large values of the dimensionless yield stress.

Figure 5-12 illustrates the evolution of fracture characteristics with time for the

Herschel–Bulkley fluid (𝑛 = 0.3, 𝜓 = 1) for various values of the leak-off number:

𝜑 = {10−20, 10−10, 1, 1010, 1025} (see the corresponding dash-dotted trajectories

in the parametric map in Figure 5-11(c)). The solutions for the power-law fluid case
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(𝑛 = 0.3, 𝜓 = 0) are also shown for comparison by grey dashed lines. (Note that the

solutions for the radius, maximum opening, and pressure at the half-radius in panels

(a)–(c) in Figure 5-12 are normalised by the storage-viscosity limiting solution (𝑀).)

One can notice that the fluid yield stress impacts the problem solution qualitatively

Figure 5-12: The time-dependent characteristics of a radial crack propagating in a per-
meable rock (𝜑 > 0) due to the injection of Herschel–Bulkley fluid with 𝑛 = 0.3: (a) radius
𝛾(𝜏), (b) maximum opening Ω(0, 𝜏), (c) pressure at the half-radius Π(1/2, 𝜏), and (d) effi-
ciency 𝜂(𝜏). The properties in charts (a) – (c) are normalised by the storage-viscosity (𝑀)
limiting solution. The profiles corresponding to 𝜑 =

{︀
10−20, 10−10, 1, 1010, 1025

}︀
and

𝜓 = 1 are shown by the solid black lines. The solutions for the same values of leak-off and
zero yield stress case are depicted by the dashed grey lines for comparison. The vertex so-
lutions are presented by the dashed coloured lines. In graph (a), the asymptotic behaviour
of radius in the leak-off dominated regimes �̃�, �̃� , 𝑇 are represented by the orange colour
due to the same functional relationships 𝛾�̃�(𝜏), 𝛾�̃� (𝜏), 𝛾𝑇 (𝜏) for all of them. Similarly, in
graph (c), we apply the cyan colour for the pressure behaviour in the yield stress dominated
regimes 𝑇, 𝑇 (Π𝑇 (1/2, 𝜏), Π𝑇 (1/2, 𝜏)) which are very close to each other.

similar to the Bingham fluid case: (i) for the fixed yield stress number, the increase of

leak-off results in the fracture with smaller radius, maximum opening, and efficiency,

but higher fluid pressure; (ii) when we fix the leak-off number and raise the yield

stress number, we observe the reduction of the radius and increase of opening at

the wellbore, pressure, and efficiency. The tendencies (i) and (ii) are applicable

for the large enough time when the solutions for Herschel–Bulkley fluid (𝜓 > 0)

and Newtonian fluid (𝜓 = 0) are distinct. For a better perception of the crack
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propagation regimes realised at different time in the demonstrated solutions, we

plot the limiting (vertex) solutions (Appendix A.2) by the dashed coloured lines in

Figure 5-12.

5.5.3 Quantitative estimations of the plug zone

In the current model for the hydraulic fracture driven by Herschel–Bulkley fluid,

the plug zone is formed inside the regions where the shear stress 𝜏𝑚 is less than

the yield stress 𝜏0, and its width is equal to 𝑤plug(𝜌, 𝑡) = 2𝑦𝜏 = 2𝜏0𝑅 |𝜕𝑝/𝜕𝜌|−1. To

track evolution of the unyielded zone, we introduce the time-dependent character-

istic Υ(𝑡) defined as volumetric fraction of the plug within the crack, i.e., Υ(𝑡) =

𝑉plug(𝑡)/𝑉crack(𝑡) =
∫︀ 1

0
𝜌𝑤plug𝑑𝜌/

[︁∫︀ 1

0
𝜌𝑤𝑑𝜌

]︁
. Further, we express Υ(𝑡) through the

dimensionless crack properties (5.50) and the governing parameters 𝜑, 𝜓 (5.49) as:

Υ(𝜏, 𝜑, 𝜓) = 2𝜓𝛾

∫︀ 1

0
𝜌
⃒⃒⃒
𝜕Π
𝜕𝜌

⃒⃒⃒−1

𝑑𝜌∫︀ 1

0
𝜌Ω𝑑𝜌

. (5.53)

Equation (5.53) can be also simplified for the impermeable rock case as follows:

Υ(𝜏, 0, 𝜓) =
4𝜋𝜓𝛾3

𝜏

∫︁ 1

0

𝜌

⃒⃒⃒⃒
𝜕Π

𝜕𝜌

⃒⃒⃒⃒−1

𝑑𝜌.

The fully numerical solution (Section 5.3.1) is utilised for calculating Υ(𝜏, 𝜑, 𝜓)

time histories for various 𝜑, 𝜓 since the approximate approach (Section 5.3.2) pro-

vides the pressure gradient profiles with a reduced accuracy. The results are shown

in Figure 5-13 in the form of the isolines (the dashed black lines) Υ(𝜏, 𝜑, 𝜓) = const

where the constant can be varied within the segment [0, 1] and, in our case, takes

values 0.1, 0.5, and 0.9. The plug fraction isolines are shown for two values of the

flow behaviour index 𝑛 = 1 (the left column) and 𝑛 = 0.3 (the right column) for

both impermeable (the top row) and permeable (the bottom row) formation cases.

We demonstrate the results in the parameter space (𝜏, 𝜓) when 𝜑 = 0 and in the

space (𝜏, 𝜑) for the fixed yield stress of 𝜓 = 1 for non-zero leak-off 𝜑 > 0. To better

understand positions of the isolines relatively to the limiting regimes, we add their

validity zones using the same colour palette as in the regime maps in Figures 5-7,
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Figure 5-13: The charts present the isolines for ϒ(𝜏, 𝜑, 𝜓) = 𝑉plug/𝑉crack (the dashed
black lines) corresponding to the quantities 10%, 50%, and 90%. Two cases of the flow
behaviour index are analysed: 𝑛 = 1 (panels (a) and (c)) and 𝑛 = 0.3 (panels (b) and (d)).
The top row reflects the impermeable reservoir case, while the bottom figures correspond
to simulations with leak-off and for the yield stress number 𝜓 = 1. The regime maps
demonstrated in Figures 5-7, 5-8, 5-9, 5-11 are applied as background in the diagrams.

5-8, 5-9, 5-11.

The selected isolines Υ(𝜏, 𝜑, 𝜓) = const are predominantly located in the tran-

sition regions between the limiting propagation regimes. For a crack driven by

Bingham fluid in an impermeable rock (panel (a) in Figure 5-13), 𝑀𝑇 and 𝐾𝑇

transitions contain the contour lines within the time intervals 𝜏 . 10−2 and 𝜏 & 106,

respectively. The reversed situation is observed for the Herschel–Bulkley fluid with

𝑛 = 0.3 (panel (b) in Figure 5-13) in which the isolines are located inside the 𝐾𝑇

and 𝑀𝑇 transition zones for 𝜏 . 10−18 and 𝜏 & 107, correspondingly. The isoline

Υ = 0.1 passes closely to the applicability domains of the storage limiting regimes,

i.e., viscosity 𝑀 and toughness 𝐾, in which Υ = 0. In turn, the level Υ = 0.9 lies

near the validity region of the 𝑇 vertex associated with Υ = 1.

Generally, the function Υ(𝜏, 𝜑, 𝜓) for the fixed values of the governing parameters

𝜑 and 𝜓 grows smoothly with time from 0 to 1 evolving from the viscosity 𝑀, �̃�
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or toughness 𝐾, �̃� limiting regimes to the yield-stress 𝑇, 𝑇 vertices. In the model

with the non-zero leak-off (panels (c) and (d) in Figure 5-13), we observe that the

isolines belong to 𝑀𝑇 (𝐾𝑇 ) and �̃�𝑇 (�̃�𝑇 ) transitions when the leak-off number

𝜑≪ 1 and 𝜑≫ 1, respectively, and 𝑛 = 1 (𝑛 = 0.3). Moreover, one can notice that

the contour lines are parallel to the boundaries of the applicability domains of the

vertex solutions framing the transition zones enclosing the isolines.

Finally, we focus on the behaviour of the isolines near the toughness dominated

limiting regimes when the leak-off number 𝜑 is fixed, and the yield stress number 𝜓

is small (for 𝑛 > 0.5) or large (for 𝑛 < 0.5). Using the panels (a) and (b) in Figure

5-13 for 𝜑 = 0 cases, it is possible to observe that the contour lines for Υ = 0.1, 0.5

penetrate into the validity zone of the storage-toughness regime. This phenomenon

can be explained in the following way: the unyielded region starts to form when the

crack geometry (radius and aperture) corresponds to the 𝐾 vertex solution in which

the energy is spent primarily on the brittle rock failure and is independent of the

fluid flow process inside the crack channel where the coexistence of both liquid and

solid (plug) states can occur.

5.5.4 Simulations of the crack growth for typical field cases

This subsection outlines results of the radial crack propagation in terms of the di-

mensional variables. We choose the values of the input parameters representative

of typical field applications, and they consist of the geomechanical and filtration-

storage properties of the porous rock, fluids (pore and hydraulic fracturing) char-

acteristics, and the injection rate. The main aim of the analysis is to examine the

impact of non-zero yield stress on the problem solution quantitatively for particular

cases relevant to the field.

We consider fracture propagation during the first 6 ·103 seconds of injection with

the volumetric rate of 𝑄0 = 0.01 m3/s. The set of the geomechanical parameters

is: plane-strain elastic modulus 𝐸 ′ = 30 GPa, rock toughness 𝐾𝐼𝑐 = 1 MPa ·
√

m,

far-field confining stress 𝜎𝑜 = 10 MPa. We take the fracturing fluid with the flow be-

haviour index 𝑛 = 0.7, consistency index 𝑀 = 1 Pa · sn providing 𝑀 ′ = 7.7 Pa · sn,

and the yield stress value is 𝜏0 = 10 Pa (since we estimate the yield stress influ-
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ence, the reference solution corresponds to the power-law fluid with the same 𝑛

and 𝑀 but 𝜏0 = 0). We analyse the crack propagation in both impermeable and

permeable formations. In the latter case, we consider the pore fluid and formation

characteristics to be the following: far-field pore pressure 𝑝𝑜 = 6 MPa, permeability

𝑘 = 10 mD, porosity 𝜑𝑟 = 20 %, viscosity 𝜇 = 5 cP (Newtonian fluid), compressibil-

ity 𝑐𝑡 = 10−4 atm−1. For simplicity, it is assumed that the filtrate of the fracturing

fluid has the same properties as the pore fluid. Consequently, the leak-off param-

eter is equal to 𝐶 ′ = 9.1 · 10−5 m/
√

s in the permeable reservoir case. In terms of

the dimensionless governing parameters (𝜏, 𝜑, 𝜓) introduced in Section 5.4.2, the

analysed cases can be written as: 𝜏 ∈ (0, 1.04 · 10−10), 𝜑 = 0 (impermeable rock)

or 𝜑 = 4.7 · 1014 (permeable rock), 𝜓 = 5.8 · 104 (Herschel–Bulkley fluid) or 𝜓 = 0

(power-law fluid).

Figure 5-14 shows evolution in time of the fracture radius 𝑅(𝑡), opening at the

wellbore 𝑤(0, 𝑡), net pressure at the half-radius 𝑝(𝑅(𝑡)/2, 𝑡), and efficiency 𝜂(𝑡) cal-

culated using fully numerical solution (see Section 5.3.1). The results for a radial

crack driven by the Herschel–Bulkley fluid are depicted by the solid lines, for a crack

driven by power-law fluid by the dashed lines. We utilise the blue colour for the

zero leak-off case and the green one for when the rock formation is permeable.

We observe that the non-zero yield stress 𝜏0 = 10 Pa leads to the reduction of

the crack radius, increase of the opening at the wellbore, pressure, and efficiency

(there is no alteration in efficiency for the impermeable formation case) (see the solid

lines versus the dashed ones of the same colour in Figure 5-14). Therefore, these

findings are in the agreement with the analyses stated in Section 5.5.2. To charac-

terise the discrepancies between two compared solutions, i.e., for Herschel–Bulkley

(“hb”) and power-law (“pl”) fluids, quantitatively, we calculate the relative differences

between the crack properties for the time moment 𝑡 = 6000 s using the following

formula: 𝛿𝐴 = |𝐴hb − 𝐴pl|/𝐴hb, where 𝐴 is an analysed parameter. The obtained

metrics are summarised in Table 5.2. One can notice that the variations between

the two compared solutions are more substantial during the fracture propagation in

an impermeable rock. Here, 𝛿𝐴 for the radius and maximum aperture parameters

is approximately 9 % and 20%, correspondingly. When leak-off is introduced into
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Figure 5-14: The figure illustrates various time-dependent radial crack parameters com-
puted using fully numerical solution (Section 5.3.1). The left column shows the radius 𝑅(𝑡)
and aperture near the wellbore 𝑤(0, 𝑡) evolutions, while the right column shows the net
pressure 𝑝(𝑅(𝑡)/2, 𝑡) and the efficiency 𝜂(𝑡) variations. The solid lines correspond to the
cases of the crack driven by the Herschel–Bulkley fluid, and the dashed lines are utilised
for the solutions corresponding to the fluid with power-law rheology. The blue and green
colours denote the impermeable and permeable formation cases, respectively.

Table 5.2: The relative differences (𝛿𝐴) between various radial fracture parameters (A)
corresponding to the fracturing fluids with the Herschel–Bulkley (“hb”) and power-law
(“pl”) rheologies that are calculated at 𝑡 = 6000 s.

𝛿𝐴 = |𝐴hb − 𝐴pl|/𝐴hb (in %)
Parameter (A) 𝜑 = 0 𝜑 = 5.8 · 104

𝑅(𝑡) 9.4 0.8
𝑤(0, 𝑡) 19.9 11.4

𝑝(𝑅(𝑡)/2, 𝑡) 27.2 12.6
𝜂(𝑡) 0 8.4

the model, the radius values are almost indistinguishable, while the opening at the

wellbore and crack efficiency are higher for Herschel–Bulkley fluid by 11.4 % and

8.4 %, respectively. Finally, 𝛿𝐴 for the net pressure at the half-radius reaches ap-

proximately 27 % and 13 % for 𝜑 = 0 and 𝜑 > 0. All these clearly demonstrate the

importance of yield stress for modelling practical cases of hydraulic fracturing.
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Chapter 6

Conclusions

In the present thesis, we investigated the influence of various fluid mechanics phe-

nomena on the evolution of a fluid-driven fracture. Within this work, we considered

three different effects:

1. pressure-dependent fluid exchange between the fracture and ambient perme-

able formation,

2. turbulent-laminar flow of water-based liquid with friction reducing agents in-

side the crack channel,

3. fracturing fluid rheology characterised by the non-zero yield stress and non-

linearity of the shear stress.

We carried out the analysis applying two crack geometries: semi-infinite and radial.

The first one accurately describes the near-tip region of a finite fracture and helps

resolve the contribution of physical processes realising in the vicinity of the crack

front to its movement. The second one is an example of a model of a finite hydraulic

fracture that occurs in nature and allows observing the impact of the hydrodynamical

effect under the interest on the crack properties visibly.

Chapter 3 examined the effect of the pressure-dependent leak-off (PDL) on the

hydraulic fracture propagation in a permeable reservoir. Carter’s leak-off law gov-

erns the pressure-independent fluid exchange process in most of existing models. In

the current study, we refine the fluid exchange mechanism by utilising the actual
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Chapter 6. Conclusions

fluid pressure inside the crack channel. In our modelling framework, the leak-off

intensity becomes (i) less than Carter’s value in the near-tip region (𝑝𝑓 < 𝜎𝑜) lead-

ing to leak-in process and (ii) more than Carter’s value away from the fracture tip

(𝑝𝑓 > 𝜎𝑜). The distinguishing feature of the hydraulic fracture model with the

PDL is the presence of the circulation zone adjacent to the front filled by the pore

fluid. We performed the asymptotic analysis of the limiting propagation regimes for

the fracture tip framing the general structure of the solution (opening and pressure

profiles) and its parametric dependence within the space of two non-dimensional

parameters: leak-off 𝜒 and leak-in 𝜁 numbers. We observed that the tip solution

differs significantly from Carter’s one (𝜁 = 0) with an increase of the leak-in num-

ber. The full numerical solution provides a practical framework to understand the

coupling of the physical processes near the fracture tip and its evolution with the

crack tip velocity. The constructed maps allow one to assess the propagation regime

of a finite hydraulic fracture by contrasting the asymptotic domain boundaries to

the length of a finite fracture. Further, we constructed a penny-shaped hydraulic

fracture model with the PDL and embedded into it the fracture tip model for an

accurate description of the near-tip region. We demonstrated that the PDL effect

can change the problem solution (radius, opening, pressure, efficiency) by more than

10% for realistic parameters corresponding to field values. In the PDL case, a radial

fracture is smaller in terms of aperture and radius as compared to Carter’s case

since the PDL increases the total leaked-off volume along the major part of the frac-

ture. Next, we converted the problem formulation into the dimensionless form in

which the solution depends on Carter’s leak-off number 𝜑 and PDL number 𝜓 apart

from time and distance to the source. The PDL number 𝜓 describes the magnitude

of the PDL. To quantify the PDL effect, we compared the radial crack properties

computed with the PDL and with simplified Carter’s leak-off law for various cases

inside the parametric space (𝜑, 𝜓). The results demonstrated that relatively small

PDL numbers influence the high-efficiency cases, while the large PDL numbers are

required to provide a noticeable influence for the cases of small fracture efficiencies.

Chapter 4 analysed how the turbulent-laminar flow inside the fracture chan-

nel impacts the propagation of either semi-infinite or radial hydraulic fracture in a
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Chapter 6. Conclusions

permeable formation. We accounted for the flow regime transformation from the

laminar to turbulent moving away from the fracture tip. The fluid exchange process

between the fracture and ambient rock is modelled using Carter’s leak-off law. The

hydraulic fracturing fluid is slickwater, i.e., the water-based fluid with polymeric

additives increasing the solvent viscosity and significantly modifying the turbulent

flow frictional behaviour. The latter is governed by the phenomenological maxi-

mum drag reduction (Virk’s) asymptote. We found the general solution (opening

and pressure profiles) for the fracture tip and explored its behaviour in the problem

parametric space of two dimensionless parameters: leak-off number 𝜒 and character-

istic Reynolds number ℛ. We enumerated limiting regimes realised in the tip model

and plotted regime maps with their applicability domains. We paid attention to

the transition boundary between the flow regimes and concluded that the laminar

domain shrinks towards the tip with an increase of the leak-off number 𝜒 (while

ℛ is fixed) as compared to the zero leak-off case. Consequently, turbulence has a

greater impact on the fracture tip solution when the leak-off exits (while the rest

of the problem parameters and the propagation velocity are kept the same). Next,

we developed the numerical model for a radial hydraulic fracture. Simulations of a

radial crack growth for the values of the model parameters corresponding to typical

field cases demonstrated that turbulence changes the crack characteristics near the

wellbore zone during the initial propagation period. E.g., in the slickwater fractur-

ing, the turbulent-laminar solution differs significantly from the fully-laminar one

during a couple of seconds, tens of seconds, and several minutes in terms of the

radius, opening at the wellbore, and pressure, respectively. We revealed that the

leak-off process prolongs the turbulence effects. Although the fracture geometries in

the models with and without turbulent flow are practically the same after several

minutes of the propagation, the pressure near the wellbore has larger values in the

turbulent-laminar case during tens of minutes, meaning a greater amount of power is

required for the fluid pumping than the laminar model predicts. We performed the

exploration of the problem solution inside the non-dimensional problem parameter

space of the leak-off number 𝜑 and characteristic Reynolds number ℛ. We derived

the limiting propagation regimes, determined their applicability domains, identified
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Chapter 6. Conclusions

how the fracture properties vary with the change of the values of the governing

parameters.

In Chapter 5, we constructed a numerical model for a radial hydraulic fracture

driven by a Herschel–Bulkley fluid in a permeable rock and carried out extensive

analysis of the combined impact of the fluid yield stress and leak-off on the crack

propagation. In most existing models, the fracturing fluid is taken as Newtonian

or power-law; however, certain fracturing fluids, such as gels and foams, demon-

strate shear-thinning rheology with the yield stress that Herschel–Bulkley rheolog-

ical model can describe. The system of governing equations is formulated in the

dimensional and non-dimensional forms, and, for the latter, all crack characteristics

are governed by two dimensionless parameters: the leak-off number 𝜑 and the yield

stress number 𝜓. Two different approaches are used to obtain the problem solu-

tion: accurate and simplified algorithms. We investigated the problem parametric

space using the dimensionless formulation by looking at the validity domains of the

limiting propagation regimes and variations of different time-dependent crack char-

acteristics versus the dimensionless problem parameters. The regime maps allow us

to rapidly detect the dominance of various physical processes in a hydraulic fracture

for certain values of the governing parameters without running numerical simula-

tions. Using the obtained results, we concluded that the non-zero yield stress leads

to a radial crack with a smaller radius, larger crack opening at the wellbore, pressure,

and efficiency (for a permeable rock case) as compared to the power-law fluid case.

Further, we simulated the radial fracture growth by taking the input parameters

close to typical field applications and revealed that the yield stress could potentially

result in notable deviations of the fracture parameters from the outcomes of the zero

yield stress model.

The developed fracture tip models (Section 3.2, Section 4.2) allows one to ac-

curately describe the interplay between the physical processes in the vicinity of

the crack front and their combined impact on the transient propagation of a fi-

nite hydraulic fracture, e.g., in the context of the penny-shaped fracture model,

KGD model, enhanced PKN model or more complex planar crack models using the

Pseudo3D and Planar3D approached. In doing so, the proposed near-tip solutions
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Chapter 6. Conclusions

may be numerically implemented into a module for the growth of a finite fracture in

the form of a so-called tip element, used to match the fracture opening in the near-

tip zone between the global numerical solution and the local near-tip asymptote and

invert for the local fracture front velocity. Actually, we carried out this procedure in

Section 3.3 constructing a radial crack model with the PDL. In turn, the proposed

penny-shaped hydraulic fracture models (Section 3.3, Section 4.3, Chapter 5) can be

used as a benchmark solution for the numerical simulators of more realistic (com-

plex) fracturing problems including the same physics, i.e., PDL / laminar-turbulent

flow / fracturing fluid with Herschel-Bulkley rheology.
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Appendix

A.1 Calculation of 𝜆 for the approximate numerical

solution (Section 5.3.2)

In Section 5.4.1, we outline the values of 𝜆 for all limiting propagation regimes

realised in the model: 𝜆𝑚 = 𝜆𝑚(𝑛) (see Figure 5-2(a)), 𝜆�̃� = 𝜆�̃�(𝑛) (see Figure 5-

4(a)), 𝜆𝑘 = 𝜆𝑘 = 0.5, 𝜆𝑡 = 1.029, and 𝜆𝑡 = 1.077. As it was demonstrated in Section

5.5.2, the validity regions of the vertex solutions strongly depend on time and the

governing parameters. Consequently, based on the values of 𝜆 for the vertices, it is

necessary to construct an interpolation scheme allowing one to determine 𝜆 for all

possible values of input parameters.

Let us define the auxiliary set of parameters:

Ξ𝑖 = 𝑤𝑖(0, 𝑡)/𝑅𝑖(𝑡), 𝜂pl =
2𝜋𝑅2𝑤𝑎(𝑅)ℬ(0.5, 𝛿)

𝑄0𝑡
, 𝜂𝜏0 =

2𝜋𝑅2𝑤𝑎(𝑅)ℬ(1.05, 𝛿)

𝑄0𝑡
,

(A.1)

where the subscript 𝑖 denotes the considered limiting regime, and it can take values

𝑖 =
{︁
𝑚, �̃�, 𝑘, 𝑘, 𝑡, 𝑡

}︁
. The radius 𝑅𝑖(𝑡) and wellbore opening 𝑤𝑖(0, 𝑡) evolution in

the vertex solutions are defined by the equations (5.26), and the function ℬ(𝜆, 𝛿)

given by equation (5.19). The parameter 𝜂pl can be interpreted as the approximate

efficiency for the crack filled by the power-law fluid, and the similar interpretation

can be done for 𝜂𝜏0 which is more suitable for the yield-stress dominated regimes

𝑇, 𝑇 .

Using the variables (A.1), we can construct the following interpolation function
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for 𝜆:

𝜆 =
𝜆𝑚(Ξ𝑚𝜂pl)

𝜅 + 𝜆𝑘(Ξ𝑘𝜂pl)
𝜅 + 𝜆�̃�[Ξ�̃�(1− 𝜂pl)]

𝜅 + 𝜆�̃�[Ξ�̃�(1− 𝜂pl)]
𝜅 + 𝜆𝑡(Ξ𝑡𝜂𝜏0)

𝜅 + 𝜆𝑡[Ξ𝑡(1− 𝜂𝜏0)]
𝜅

(Ξ𝑚𝜂pl)𝜅 + (Ξ𝑘𝜂pl)𝜅 + [Ξ�̃�(1− 𝜂pl)]𝜅 + [Ξ�̃�(1− 𝜂pl)]𝜅 + (Ξ𝑡𝜂𝜏0)
𝜅 + [Ξ𝑡(1− 𝜂𝜏0)]

𝜅
,

(A.2)

where 𝜅 is a fitting parameter which is the current study is set 3. We also should

mention that for the zero leak-off case Ξ�̃� = Ξ𝑘 = Ξ𝑡 = 0. Similarly, when we

simulate the radial crack driven by the power-law fluid, we set Ξ𝑡 = Ξ𝑡 = 0.

A.2 Limiting propagation regimes (summary of Sec-

tion 5.4.1)

𝑀-vertex

Dimensional form:

𝑅𝑚(𝑡) = 𝑅*
𝑚

(︂
𝐸 ′𝑄𝑛+2

0 𝑡2𝑛+2

𝑀 ′

)︂1/(3𝑛+6)

,

𝑤𝑚(𝜌, 𝑡) = 𝑤**
𝑚

(︂
𝑀 ′2𝑄𝑛+2

0 𝑡2−𝑛

𝐸 ′2

)︂1/(3𝑛+6)

(1 + 𝜌)𝜆𝑚 (1 − 𝜌)𝛿𝑚 ,

𝑝𝑚(𝜌, 𝑡) = 𝑝*𝑚

(︂
𝑀 ′𝐸 ′𝑛+1

𝑡𝑛

)︂1/(2+𝑛)

ℱ(𝜌, 𝜆𝑚, 𝛿𝑚).

Normalised form:

𝛾𝑚(𝜏) = 𝑅*
𝑚𝜏

(2𝑛+2)/(3𝑛+6), Ω𝑚(𝜌, 𝜏) = 𝑤**
𝑚 𝜏

(2−𝑛)/(3𝑛+6),

Π𝑚(𝜌, 𝜏) = 𝑝*𝑚𝜏
−𝑛/(2+𝑛).

Parameters:

𝑅*
𝑚 =

(︀
2𝜋𝛽𝑚𝛼

𝑛/(𝑛+2)
𝑚 ℬ𝑚

)︀−1/3
, 𝑤**

𝑚 =

(︃
𝛽2
𝑚𝛼

2𝑛/(𝑛+2)
𝑚

2𝜋ℬ𝑚

)︃1/3

2−𝜆𝑚 , 𝑝*𝑚 = 𝛽𝑚𝛼
𝑛

𝑛+2
𝑚 ,

𝛽𝑚 =

[︂
2(2 + 𝑛)2

𝑛
tan

(︂
𝜋𝑛

2 + 𝑛

)︂]︂1/(2+𝑛)
, 𝛿𝑚 =

2

2 + 𝑛
, 𝛼𝑚 =

2𝑛+ 2

3𝑛+ 6
,

ℬ𝑚 = ℬ(𝜆𝑚, 𝛿𝑚) (equation (5.19)), 𝜆𝑚 = 𝜆𝑚(𝑛) is shown in Figure 5-2(a).

�̃�-vertex
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Dimensional form:

𝑅�̃�(𝑡) = 0.4502𝑡1/4
√︂
𝑄0

𝐶 ′ , 𝑤�̃�(𝜌, 𝑡) = 𝑤**
�̃�

(︂
𝑀 ′4𝑄2𝑛+4

0 𝑡2−𝑛

𝐸 ′4𝐶 ′4−2𝑛

)︂1/(8+8𝑛)

(1 + 𝜌)𝜆�̃� (1 − 𝜌)𝛿�̃� ,

𝑝�̃�(𝜌, 𝑡) = 𝑝*�̃�

(︂
𝑀 ′4𝐶 ′6𝑛𝐸 ′8𝑛+4

𝑄2𝑛
0 𝑡

3𝑛

)︂1/(8+8𝑛)

ℱ(𝜌, 𝜆�̃�, 𝛿�̃�).

Normalised form:

𝛾�̃�(𝜏) = 0.4502𝜏 1/4𝜑−1/8, Ω�̃�(𝜌, 𝜏) = 𝑤**
�̃�

(︀
𝜏𝜑−1/2

)︀(2−𝑛)/(8+8𝑛)
(1 + 𝜌)𝜆�̃� (1 − 𝜌)𝛿�̃� ,

Π�̃�(𝜌, 𝜏) = 𝑝*�̃�
(︀
𝜑1/2/𝜏

)︀3𝑛/(8+8𝑛) ℱ(𝜌, 𝜆�̃�, 𝛿�̃�).

Parameters:

𝑤**
�̃� = 𝛽�̃�

(︂
2

𝜋2

)︂(𝑛+2)/(4𝑛+4)

2−𝜆�̃� , 𝑝*�̃� = 𝛽�̃�

(︂
𝜋2

2

)︂𝑛/(4𝑛+4)

,

𝛽�̃� =

[︂
64(1 + 𝑛)2

3𝑛(4 + 𝑛)
tan

(︂
3𝜋𝑛

4 + 4𝑛

)︂]︂1/(2+2𝑛)

, 𝛿�̃� =
4 + 𝑛

4 + 4𝑛
,

𝜆�̃� = 𝜆�̃�(𝑛) is shown in Figure 5-4(a).

𝐾-vertex

Dimensional form:

𝑅𝑘(𝑡) = 0.8546

(︂
𝐸 ′𝑄0𝑡

𝐾 ′

)︂2/5

, 𝑤𝑘(𝜌, 𝑡) = 0.6537

(︂
𝐾 ′4𝑄0𝑡

𝐸 ′4

)︂1/5√︀
1 − 𝜌2,

𝑝𝑘(𝑡) = 0.3004

(︂
𝐾 ′6

𝐸 ′𝑄0𝑡

)︂1/5

.

Normalised form:

𝛾𝑘(𝜏) = 0.8546𝜏 2/5, Ω𝑘(𝜌, 𝜏) = 0.6537𝜏 1/5
√︀

1 − 𝜌2,

Π𝑘(𝜏) = 0.3004𝜏 1/5.

�̃�-vertex
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Dimensional form:

𝑅𝑘(𝑡) = 0.4502𝑡1/4
√︂
𝑄0

𝐶 ′ , 𝑤𝑘(𝜌, 𝑡) = 0.4744

(︂
𝐾 ′8𝑄2

0𝑡

𝐶 ′2𝐸 ′8

)︂1/8√︀
1 − 𝜌2,

𝑝𝑘(𝑡) = 0.4139

(︂
𝐶 ′2𝐾 ′8

𝑄2
0𝑡

)︂1/8

.

Normalised form:

𝛾𝑘(𝜏) = 0.4502𝜏 1/4𝜑−1/8, Ω𝑘(𝜌, 𝜏) = 0.4744𝜏 1/8𝜑−1/16
√︀

1 − 𝜌2,

Π𝑘(𝜏) = 0.4139𝜏−1/8𝜑1/16.

𝑇 -vertex

Dimensional form:

𝑅𝑡(𝑡) = 0.6349

(︃
𝑡𝐸 ′1/2𝑄0

𝜏
1/2
0

)︃1/3

, 𝑤𝑡(𝜌, 𝑡) = 1.5598

(︂
𝑄0𝜏0𝑡

𝐸 ′

)︂1/3

(1 + 𝜌)1.029 (1 − 𝜌),

𝑝𝑡(𝜌, 𝑡) = 5.0133
√︀
𝜏0𝐸 ′ℱ(𝜌, 1.029, 1).

Normalised form:

𝛾𝑡(𝜏) = 0.6349𝜏 1/3𝜓−1/6, Ω𝑡(𝜌, 𝜏) = 1.5598𝜏 1/3𝜓1/3 (1 + 𝜌)1.029 (1 − 𝜌),

Π𝑡(𝜌, 𝜏) = 5.0133
√︀
𝜓ℱ(𝜌, 1.029, 1).

𝑇 -vertex

Dimensional form:

𝑅𝑡(𝑡) = 0.4502𝑡1/4
√︂
𝑄0

𝐶 ′ , 𝑤𝑡(𝜌, 𝑡) = 1.0697

(︂
𝑄0

√
𝑡𝜏0

𝐶 ′𝐸 ′

)︂1/2

(1 + 𝜌)1.077 (1 − 𝜌),

𝑝𝑡(𝜌, 𝑡) = 5.0128
√︀
𝐸 ′𝜏0ℱ(𝜌, 1.077, 1).
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Normalised form:

𝛾𝑡(𝜏) = 0.4502𝜏 1/4𝜑−1/8, Ω𝑡(𝜌, 𝜏) = 1.0697𝜏 1/4𝜑−1/8𝜓1/2 (1 + 𝜌)1.077 (1 − 𝜌),

Π𝑡(𝜌, 𝜏) = 5.0128𝜓1/2ℱ(𝜌, 1.077, 1).
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