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Abstract 

 

Heavy oil and bitumen resources are the most abundant hydrocarbon energy 

source worldwide. However, thermal enhanced oil recovery (EOR) methods are 

frequently applied to enhance their mobility and production due to their high 

viscosity. In addition, owing to the chemical dissimilarity of oils and various 

temperatures these oils are exposed to, as well as LF-NMR equipment limitations, 

the commonly used models fail to perform at a satisfactory level, making them 

impractical for use in heavy oil and bitumen reservoirs, and in environments with 

large temperature variability (e.g., mechanical systems). Information about the 

distribution of oil viscosity within the reservoir can be used to help manage the 

thermal EOR projects. Nuclear magnetic resonance (NMR) downhole tools provide 

a non-destructive way to determine the oil viscosity without recovering samples 

(core or produced oil) from the well.  

 

A new analytical NMR viscosity model was developed and tested on a suite of 23 

Canadian heavy oils recovered from various reservoirs. The model was based on 

two NMR parameters – T2 logarithmic mean and relative hydrogen index. 

Subsequently, the model was tested on a single bitumen sample at the 

temperature range from 26-200 ℃. Results were compared to nine well-known 

NMR viscosity models described in the literature, and in both cases, the proposed 

model got the most favorable statistical scores. Furthermore, a simple model 

optimization procedure was presented, employing nonlinear least squares (NLS) 

regression. Experiments were carried out at temperatures corresponding to those 

in the hot steam injection EOR treatments. The same methodology can be 

extended for use in cyclic solvent injection (CSI), where the NMR model can detect 

oil viscosity changes when the solvent vapor dissolves in oil. 

 

To improve the viscosity forecast, we developed a framework that combines 

supervised learning algorithms with domain knowledge for synthesizing new 

features using only one NMR parameter – the T2 logarithmic mean. Two principal 
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methods were considered, support vector regression (SVR) and gradient boosted 

trees (GBRT). Models were trained using the experimental data from our previous 

studies and literature data combining conventional oils, heavy oils, and bitumens 

from various reservoirs in Canada and the USA. The models' performance was 

compared against four other intelligent algorithms and four well-known empirical 

NMR models against which the SVR and GBRT-based models achieved the highest 

statistical scores. The proposed framework can also be applied to determine other 

physicochemical properties of oils by LF-NMR, where supervised learning is 

usually impractical due to the limited volume of data. 

 

Finally, water saturation determination in heavy oil sands is one of the most 

important tasks in petrophysical well-logging, and it directly impacts the decision-

making process in hydrocarbon exploration and production. However, 

quantifying oil and water volumes is problematic when their NMR signals are not 

distinct. We developed two machine learning frameworks to predict relative 

water content in oil-sand samples using LF-NMR spin-spin (T2) relaxation and 

bulk density data to derive a model based on Extreme Gradient Boosting. The NMR 

T2 distributions were obtained for 82 Canadian oil-sands samples at ambient and 

reservoir temperatures (164 data points). The actual water content was 

determined by Dean-Stark extraction. The results of the statistical analysis 

confirm the strong generalization ability of the feature engineering LF-NMR model 

and indicate that this approach can be extended for the improved in-situ water 

saturation evaluation by LF-NMR and bulk density measurements. 
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INTRODUCTION 

This work studied different types of unconventional hydrocarbons, namely oil 

sands, heavy oils, and bitumens. These hydrocarbons represent the most 

abundant unconventional hydrocarbon resources worldwide. Due to their high 

viscosity, thermally enhanced oil recovery (EOR) methods are often required for 

their economic production, followed by extensive refining processes for their 

downstream distribution. Therefore, the breakeven price for developing such 

resources is very high, which stimulates the major oil producers to constantly 

invest in developing new technologies to decrease their exploration and recovery 

prices. Petrophysical well-logging involves optimizing and developing new 

methods for the improved in-situ characterization of these hydrocarbons.  

 

In light of the foregoing, I focused my research on advancing conventional and 

establishing new analytical and data-driven methods for in-situ characterization 

of heavy oil and bitumen resources, primarily using LF-NMR measurements. 

Special attention is paid to developing new workflows and models for predicting 

oil viscosity and water saturation, two critical factors for the recovery of 

hydrocarbons.  

 

 

 

 

 

 

 

 

 



24 

  

1.1. Heavy oil and bitumen resources 

Bitumens and heavy oils usually form deposits in shallower geological settings, 

where due to the cold temperatures and a lack of the caprocks, they are being 

subjected to bacterial biodegradation. The depth of these deposits usually does 

not exceeds 4 km, while the temperatures are most often lower than 80 ℃1. In 

such conditions, the biodegradation process spans over geological periods, where 

hydrocarbon-degrading bacteria use lighter oil fractions for the metabolic 

processes, which gradually reduces the viscosity, initial mass, and gas-to-oil ratio 

(GOR) of the oil.  

 

Figure 1: Estimated worldwide heavy oil reserves by Country (copyright Schlumberger). 

Heavy oil and bitumen are among the most abundant hydrocarbon resources 

worldwide. They differ from other hydrocarbon resources because of their high 

viscosity, density, and increased concentration of heavy components such as 

asphaltenes, resins, and wax. Along with these components, heavy oils and 

bitumens often contain various heavy metals, sulfur, and nitrogen. Due to these 

factors, their economic value is considerably smaller than their lighter 

counterparts, as their recovery and refinement require the deployment of costly 
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technologies and time-demanding processing. However, their large in-place 

volumes and high oil market prices allow their profitable extraction and 

refinement, so major oil companies acquire licenses for their development as an 

alternative to conventional oil resources. 

Studies estimate that heavy oil and bitumen reserves today amount to about 55% 

of the total world reserves (nearly 9 trillion barrels), while the most extensive 

deposits were found in Canada, Venezuela, and Russia1.  

 

1.2. Enhanced Oil Recovery (EOR) methods for heavy oil fields 

Heavy oils and bitumens have distinctively high viscosities, so their recovery from 

the reservoir rocks is often performed using various thermal Enhanced Oil 

Recovery (EOR) techniques such as hot steam injection or in-situ combustion, 

where the heat exchange process reduces oil viscosity in the formation of 

interest2. In heavy oil reservoirs, the viscosity may vary up to a hundred times in 

vertical and horizontal directions. Therefore information about the spatial 

distribution of viscosity can affect not only the well placement and injection or 

production rates but mathematical reservoir simulations as well3. 

 

In literature, the EOR methods are generally divided into two groups: cold and 

thermal production. The cold production methods are economically and 

technically convenient recovery methods; however, they are limited to shallow 

deposits since they involve open-pit mining. Waterflooding was also occasionally 

used with some success, but in fields where oil viscosity was not more than 100 

cP, the sweeping efficiency of the waterfront reduces with an increase of viscosity, 

most notably due to the viscous fingering1. Vapor-assisted extraction (VAPEX) is 

another cold production method that proved efficient for reservoirs with oil 

viscosities ranging from 100 cP up to 130,000 cP 4,5. It is based on miscible solvent 

vapor injection into parallel stacked horizontal wells. The miscible solvent vapor 

is injected into the upper well, where the vapor chamber is produced around the 

well. This causes the dilution of solvent vapor into surrounding heavy oil and 
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bitumen, which leads to viscosity reduction and drainage of the hydrocarbons to 

the extraction well beneath, with the help of gravity. This process is energy 

efficient since it is not based on thermal exchange and does not require the 

infrastructure for generating hot steam or water.  

 

In thermal methods, on the other hand, increasing the temperature in the well or 

reservoir causes viscosity to decrease, thus improving the heavy oil and bitumen 

mobility. For instance, in steam-assisted gravity drainage (SAGD), the placement 

of the injection and producer wells is almost identical to the one in the VAPEX 

method; however, instead of the solvent vapor, hot steam is injected. After the 

hydrodynamic linking between wells is obtained by the initial steam treatment of 

both wells, steam injection is continued in the injection well, where hydrocarbons 

are affected by the steam expansion. The temperatures of this treatment can be 

over 200 ℃, thus initiating a highly mobile gravitational drainage of bitumen and 

heavy oil towards the underlying producing well. This method and its’ variations 

were successfully utilized in numerous projects, most notably in Canadian heavy 

oil reservoirs where viscosities vary from a couple of hundreds up to 3∙106 cP 6. In 

addition to the SAGD, cyclic steam stimulation (CSS) is used, where the same well 

is used for injection and production. In this approach, hot steam is injected into 

the targeted formation and left to soak up to heat the oil, followed by the 

production cycle. Reports in the literature show that CSS is suitable for oil 

viscosities from 50 cP to 350,000 cP 7. As a follow-up to CSS, steam flooding is 

usually performed, where steam is continuously injected into the targeted 

formation without a soaking period. Since this process is heavily influenced by 

horizontal and vertical sweep efficiency, much attention is given to monitoring 

steam fingering and channeling, which is why steam flooding has shown to be 

most successful for reservoirs with oil viscosity ranging from 20 – 20,000 cP 8.  

Another well-known thermal method is in-situ combustion (ISC) or fire flooding, 

where an oxidizing gas (i.e., air) is injected into the formation, which causes the 

ignition of heavy oil in-situ. In this set-up, the portion of the hydrocarbon’s heavier 

components is utilized as a fuel for further propagation of the combustion front, 
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where exothermal reaction heats the surrounding rocks and thus lowers the oil 

viscosity. An added benefit of ISC is that the heavier components are being 

consumed due to the thermal cracking, which results in upgraded oil. Although 

there were many pilot studies for ISC between the 1960s - 1980s in heavy oil 

reservoirs with oil viscosities from 40∙103 to 1∙106 cP, the commercially successful 

ISC projects were performed in reservoirs with oil viscosity between 20 – 8000 cP 

9. 

 

The success of the EOR project in heavy oil and bitumen deposits is dictated 

mainly by the initial viscosity of the hydrocarbons and their spatial distribution in 

the field. In steam EOR, for instance, monitoring of the steam front is often 

performed using periodic or permanent four-dimensional (4D) seismic surveying 

by collecting pressure and fluid saturation data within the field10. Monitoring 

based on logging is also commonly implemented by fiber-optic distributed 

temperature sensing (DTS), which provides constant temperature monitoring 

along the wellbore. NMR measurements have been considered for monitoring the 

fluid saturation changes and wettability alteration assessing10,11. If this technology 

is used for reservoir monitoring, NMR logging could also be used as a continuous, 

non-invasive technique for monitoring viscosity variations and changes caused by 

temperature variation in the reservoir. The NMR equipment can be used in-situ in 

observation wells, online, or inline for the heavy oil viscosity monitoring during a 

thermal EOR project with a 200 ℃ upper-temperature limit, which corresponds 

to steam injection temperatures, and other EOR methods such as solvent or 

miscible gas injection 12.  

 

1.3. NMR theory review 

1.3.1. Spin-lattice (T1) and spin-spin (T2) relaxation 

The hydrogen atom in its core contains a single proton with a positive charge (H+). 

Protons have spins and exhibit magnetic behavior, which is why an external 
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magnetic field can control the orientation of their spins. For instance, if a magnetic 

field (B0) is introduced to the H+ proton-containing system, the proton spins will 

tend to align along the direction of the B0. The quantum theory posits that the 

protons will be distributed to a low or high energy state corresponding to spins -

½ and ½. The difference between the number of protons in high and low energy 

states will generate the total or bulk magnetization M0 that NMR tools can 

measure. 

 M0 = N
γ2ℏ2I(1 + I)

3(4π2)kT
B0 (1) 

where N is the number of protons in a unit volume, γ is a gyromagnetic ratio, I is 

the quantum spin number, T is the temperature in Kelvins, and k and ℏ are 

Boltzmann’s and Planck’s constants, respectively. The polarization of protons is 

not immediate but grows by a specific time constant. This constant is called spin-

lattice or longitudinal relaxation time (T1). As the polarization is exponential, and 

under the assumption that the polarization orientation transpires along the z-axis 

in 3D space, then: 

 Mz(t) = M0 (1 − e
−t
T1) (2) 

where t is polarization time, and Mz(t) is polarization magnitude along the z-axis 

at the time t. The T1 time represents a moment at which ~63% of the 

magnetization is reached. At three T1, about 95% of magnetization is reached 

(Figure 2).  
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Figure 2: The proton polarization in a B0 static magnetic field 13. T1 curve is presented as 
a function of time. 

 

For nuclear magnetic resonance to occur, it is necessary to perform the pulse 

tipping of the protons (Figure 3). While protons are polarized along the B0, an 

additional short radio-frequency oscillating pulse (B1) is applied to the system. 

The B1 Larmor frequency (f) must correspond to the Larmor frequency of the 

spins to achieve the resonance. The total magnetic moment or the tipping angle 

(θ) is defined as:  

 θ = γB1τ (3) 

where τ is the period when the B1 is applied to the system. The tipping angle can 

be controlled by both B1 and τ.  
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Figure 3: Tipping process by 90- and 180-degree pulse. The angle is controlled by B1 

field and τ time period of B1 application 14. 

 

In practice, the first B1 pulse tips the proton system into the perpendicular plane 

(x, y) relative to the B0 (z), thus θ = 90o. At this point, the protons are precessing 

about B0 and are in phase, and the NMR device can detect their signal. However, 

immediately as the B1 stops, the protons start to dephase due to the B0 magnetic-

field inhomogeneity and molecular tumbling, usually at an exponential rate. 

Therefore, their signal decays at the particular time constant (T2*) and is called 

free induction decay (FID). 

 

Fortunately, the dephasing due to the B0 inhomogeneity can be reversed by adding 

the B1 pulse (θ = 180o) after τ time elapsed from the first pulse (θ = 90o). The 

second pulse flips the protons, which reverses the dephasing process, meaning 

that the protons will return to the same phase after τ time elapsed from the second 

pulse. This subsequent pulse is referred to as a ‘refocusing pulse.’ When spins 

return to the same phase, the ‘spin echo’ signal is produced. Generation of one spin 

echo is illustrated on Figure 4. The NMR device can be configured to produce a 

series of refocusing pulses, thus generating a series of spin echoes. This series or 

sequence of refocusing 180o pulses is known as Carr-Purcell-Meiboom-Gill 

(CPMG) pulse sequence, while the recorded sequence of echoes is called the ‘spin 

echo train’ 13.  
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Figure 4: Spin echo generation steps. (1) A 90° B1 pulse, (2) spin dephasing, (3) 180° 

pulse after τ time flips the spins, (4) rephrasing, (5) spins in phase generate an echo at 

2τ 13. 

Although the CPMG pulse sequence can reverse the effect of B0 field 

inhomogeneity, the dephasing of spins due to molecular tumbling and diffusion is 

irreversible. Since the dephasing is mainly due to the interaction of spins, the 

decay of magnetization in the horizontal plane (x, y) is called spin-spin relaxation, 

or transversal relaxation, as the magnetization is in the transversal plane relative 

to B0. The time constant associated with the decay rate is T2 relaxation time.  

 Mxy(t) = Mxy(0) e
−t
T2 (4) 

where Mxy(0) is magnetization magnitude at t=0. According to Equation 4, for one 

T2 time constant, the magnitude of Mxy will drop to ~37% of its initial value, and 

after three T2 constants to ~95%. 
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1.3.2. Spin-spin (T2) relaxation mechanisms of fluids in pore space 

There are three separate T2 relaxation mechanisms that fluids experience in pore 

space –T2 bulk relaxation, T2 surface relaxation, and T2 diffusion-induced 

relaxation due to the gradients in the magnetic field: 

 

 1

T2
=

1

T2bulk
+

1

T2surface
+

1

T2diffusion
 (5) 

 

Here, T2 is the spin-spin relaxation time of fluids in pores and results from a sum 

of T2bulk and T2surface relaxation and relaxation due to T2diffusion. The T2bulk is an 

intrinsic spin-spin relaxation component mainly dependent on fluids’ viscosity 

and chemical structure. To quantify it, one can place a fluid sample into a large 

vessel, expose it to a homogenous magnetic field, and perform a CPMG pulse 

sequence. In such a set-up, a vessel behaves like a large pore; therefore, surface 

relaxation has a negligible contribution to total T2 relaxation. Some other factors 

which can affect the rate of T2bulk in practice are pressure and temperature 

oscillations. It has been shown that T2bulk relaxation of water and dead oil are 

generally13,15: 

Water 
1

T2bulk
≅
298𝜂

3𝑇𝑘
 (6) 

Dead oil 
1

T2bulk
≅ 

𝜂

0.00713𝑇𝑘 
 (7) 

where η is viscosity and Tk is the temperature in °K. 

T2surface relaxation mechanism occurs in pore space, and it takes place at the 

interface of the pore wall and fluid. It can be calculated as: 

 1

T2surface
= ρ2 (

𝑆

𝑉
) (8) 

where ρ2 is the T2 surface relaxivity of the pore wall, S is the pore surface, and V is 

the fluid volume. Since surface relaxivity is a property of a pore wall, its value 

depends on the mineralogy of the sample. These estimates are most often 

determined in laboratory experiments. The upside of T2surface relaxation is that it 
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is not affected by temperature and pressure, meaning that additional calibrations 

for reservoir conditions are not necessary after lab experiments under ambient 

conditions. 

The T2diffusion relaxation is significant mainly for gas, water, and oils of low and 

medium viscosity when exposed to a magnetic field with gradients and CPMG 

pulse sequence with long echo spacing. If the gradient in the field is substantial, 

additional dephasing can occur due to molecular diffusion, resulting in faster T2 

relaxation. T2diffusion can be expressed as: 

 1

T2diffusion
= 
𝐷(𝛾𝐺𝑇𝐸)2

12
 (9) 

where D is molecular diffusion, γ is proton gyromagnetic ratio, G is a field strength 

(gauss/cm), and TE is echo spacing.  

1.3.3. CPMG pulse sequence configuration and NMR data processing 

The CPMG pulse sequence consists of a 90° initial pulse that tips the polarized 

protons into an x, y-plane, followed by several refocusing 180° pulses. The quality 

of the obtained CPMG decay data, its inversion, and the quality of interpretation 

are strongly dependent on the configuration of the CPMG sequence. The principal 

controlling parameters include the time between two pulses or echo spacing (TE), 

the polarization time or waiting time (TW), the number of pulses or the number 

of echoes (NE), and a number of CPMG trains (NT).  

 

Setting an NMR tool to a short echo spacing (TE) will influence the signal-to-noise 

ratio (SNR) twofold; first, the density of spin-echoes within a train will increase; 

second, the echoes will be recorded earlier. Consequently, this leads to increased 

SNR. However, the experiment time will increase proportionally when the number 

of echoes (NE) increases. The same is true for the number of trains (NT) and 

waiting time (TW). It should be noted that TW should be configured according to 

the sample or reservoir interval and the purpose. If the goal is to characterize 

heavy oil and clay-bound water, the TW can be decreased since protons will return 

to equilibrium much faster than pure water or light oil.  
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The representation of the decaying echo train in the time domain is usually 

obtained by the Laplace Inverse Transform (ILT)16, whereas the output of a T2 

distribution is obtained (Figure 3). However, the inversion of the NMR signal 

represents the ill-posed problem since minor perturbations (i.e., noise) in the 

measurements can substantially impact the T2 distribution form, that is, the 

stability of the solution. A stable and unique solution can be obtained if the 

inversion of the signal is performed numerically. In such a case, the representation 

of the T2 decay is achieved from echo-fitting. To simplify the echo-fitting, the 

discretization of the T2 decay signal can be performed, where the predefined 

number of discrete T2i relaxation times correspond to individual exponential 

decay. Then, the set of echo trains can be expressed as a system of linear equations 

where each equation corresponds to an individual echo train. Since the fitting is 

performed to the sum of multi-exponentials, the stable solution can be obtained 

by solving non-negative least squares. The standard approaches are Lawson-

Hanson and Tikhonov regularization17.  
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Figure 5: (A) Raw T2 NMR relaxation data and (B) T2 data after inversion. 

In NMR petrophysical practice, the essential consideration is tuning the tool's 

configuration for the specific reservoir and hydrocarbon type and choosing the 

adequate inversion procedure; the processes which significantly impacts the form 

of T2 relaxation distribution. Reports in the literature show that this is particularly 

important for unconventional reservoirs such as shales and heavy oil sands. For 

instance, the non-negative least squares inversion by the Lawson-Hanson 

approach has been shown to generally converge to very smooth T2 distributions, 

which may lead to the merging of amplitudes, and a loss of valuable information 

17. In addition, shales and heavy oils produce a considerable amount of T2 signal at 

fast relaxing parts of T2 distribution where measurability is low. That is why 

parameters such as echo-spacing, waiting time, number of pulses, and trains must 
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be carefully tuned to achieve a balanced tradeoff between signal-to-noise ratio, 

the shape of T2 distribution, and measurement time.  

1.4. Oil viscosity 

1.4.1. Conventional measurements of oil viscosity  

Viscosity is a physical fluid property that reflects the amount of internal friction of 

a fluid. In other words, the fluid's viscosity indicates the magnitude of the 

resistance to flow. Mobilizing a fluid requires a certain amount of force, and the 

rate of change of the induced deformation can be measured in function of time. 

Since viscous forces control the flow velocity in fluids, we measure the flow 

velocity for the applied amount of force or applied amount of shear stress. Bryan 

et al., in their work, link the relationship of rheological viscosity measurements 

with Eyring’s theory of viscosity, which is also consistent with the Bloembergen-

Purcell-Pound (BPP) NMR relaxation model18,19. As the fluid undergoes shearing 

deformation, the rate of shearing is proportional to the applied shear stress 

(Equation 10). 

 τ𝑠𝑠 =  η ∙  γ𝑠𝑟 (10) 

where τss presents the amount of shear stress applied to the fluid, γsr stands for the 

shear rate, and η is the fluid viscosity. Based on the Eyring’s theory of viscosity, 

molecules in fluids are structured in lattices, while intermolecular space remains 

vacant but not spacious enough for other molecules to shift through readily20. 

However, if force is applied, the molecules will reconfigure their positions until 

the vacant space becomes large enough for another molecule to enter.  Eyring 

proposed an analytical model for such behavior (Equation 11) 

 𝜂 = (
𝛿

𝑎
)
2

∙
𝑁ℏ

𝑉
∙ 𝑒(

∆𝐺0
𝑅𝑇

) (11) 

where δ is intermolecular layer distance, a is the distance between the vacant 

space and a molecule, N is Avogadro’s number, ℏ is Planck’s constant, and V is a 

fluid's molar volume G0 activation energy, R is the universal gas constant, and T is 

the absolute temperature. Heavy oils and bitumens comprise long chain-like 
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molecules, cyclic paraffin, and branches from heavy components. To mobilize 

these molecules, more activation energy is required (G0) since the attractive forces 

of surrounding molecules hinder the movement of molecules attempting to 

occupy the vacant space. In rheological measurements of heavy oils by a cone and 

plate viscometers, this resistance to flow translates to high shear stresses. From 

Equation 11, it can be observed that the temperature is in an exponential 

relationship with viscosity. If we apply heat to the heavy oil, the heavy components 

will gain more energy while the intermolecular distance will increase, enabling the 

less restricted motion of molecules. This is also consistent with rheological 

viscosity measurements, where for fixed shear stress and with an increase in 

temperature, we observe increased shear rate18. Equation 6 can be re-written by 

substituting constants (Equation 12). 

 η = A ∙ e(
Ea
RT

) (12) 

where A is a constant and Ea is the viscous free energy of activation. In this 

Arrhenius-type equation, the values of Ea and A vary for different oil samples. 

These variations are associated with molecular weight variation of different oil 

components and their chemical composition and structure20. These variations 

may be substantial since the composition of heavy oils and bitumen, in particular, 

can be significantly different, indicating that derivation of the general viscosity 

model is challenging.  

1.4.2. Oil viscosity by LF-NMR measurements 

The oil is a blend of a diverse range of liquid hydrocarbons with inconsistent 

molecular structure 21. When it has a higher proportion of complex high molecular 

weight compounds such as asphaltenes and resins, oil viscosity will be higher, 

signifying that viscosity reflects oil's chemical complexity22. This natural 

inconsistency of oil compositions elicits a constant demand for the development 

of new techniques for their efficient characterization. In recent years, the wave of 

innovation has led to the application of low-field nuclear magnetic resonance (LF-

NMR) tools to characterize hydrogen-bearing liquids due to their ability to rapidly 
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convey a series of contactless, non-invasive experiments. In NMR petrophysical 

logging, the pulsed NMR tools typically generate magnetic fields between 120 to 

550 gauss (0.012 to 0.055 tesla) 23. In this work, low-field NMR is defined by fields 

below 550 gauss.  

 

To relate a fluid viscosity to NMR relaxation, it is necessary to comprehend and 

model the molecular interactions. Equations 11 and 12 demonstrate that viscosity 

can be expressed without macroscopic flow or shearing (Equation 10). These 

findings are consistent with a theoretical Bloembergen-Purcell-Pound (BPP) NMR 

relaxation model, associated Debye-Einstein-Stokes spherical molecules model, 

which anticipates different rotational correlation times (τc) for various molecule 

sizes 19,24,25. The correlation time represents the mean time required for a 

molecule to rotate one radian and is a crucial parameter for determining 

microviscosity. It is also a fundamental component of the BPP relaxation model. 

Based on this relationship, one can study the association of T2 relaxation with 

viscosity25. The physics of this relationship is discussed in section 2.2.  

 

As previously mentioned, the T2 relaxation distribution after mathematical 

inversion can be represented in a time domain. Distributions of T2 relaxation 

between different fluids can be compared using a mean T2 distribution time, such 

as T2 logarithmic mean (T2lm). When fluids are measured in a bulk state, the 

primary relaxation mechanism will be bulk relaxation (T2B), which is due to the 

energy exchange of the H spins and diffusion. Straley et al.23 and Coates et al.13 

have experimentally shown that the T2B is proportional to the ratio of temperature 

(T) and viscosity (η): 

 
1

𝑇2𝐵
∝
η

T
 (13) 

Since the relaxation times of light oils, water and gases are long, and high viscosity 

fluids such as heavy oils have short relaxation times, the T2B and T2lm can be 

correlated with oil viscosity23,26,27. Although this relationship is used as a 

foundation for nearly all existing NMR viscosity models, it only works well for the 
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light and medium viscous oils (~1-800 сP)28 composed of lighter hydrocarbons 

with a less complex chemical structure. In the case of heavier oils, the T2 relaxation 

deviates from the classical BPP model, and the relationship described in Equation 

13 alters significantly.  

In the past 30 years, many analytical NMR viscosity models have been proposed 

for characterizing crude oil. However, the reports in the literature show 

inconsistency in the prediction accuracy of these models due to three main 

reasons: use of the light oil NMR models for the prediction of heavy oil 

viscosity15,23,27,29, use of models (including heavy oil models) without prior tuning 

for a given reservoir or a suit of oils, and due to use of ambiguous mathematical 

procedures for model tuning3,30,31. Moreover, there were several attempts to 

develop a “universal model” for in-situ heavy oil viscosity prediction aiming to 

estimate viscosity in the formations with weak prior knowledge about the oil 

properties30–33. These models have default parameters derived for heavy oils from 

a particular oil field. However, when applied to different heavy oils, they generate 

significant prediction errors, in some cases over a factor of three31. To develop a 

universal analytical NMR viscosity model for systems with oils of various 

compositions would be contradictory to Debye-Stokes-Einstein’s findings stating 

that different correlation times are expected for different molecule sizes 24. 

However, for the order-of-magnitude in-situ viscosity evaluation, existing 

analytical models can be improved to a degree where more reliable estimates can 

be utilized to optimize the decision-making process for viscosity variation 

monitoring during EOR projects.  

 

Although LF-NMR technology has been proved to be a viable tool for observing 

differences in variable viscosity oils, numerous constraints arise as a consequence 

of not only the embedded chemical complexity of oils and limitations of LF-NMR 

devices but also from analytical tools and models used for the interpretation of 

experimental results 31,33–37. Since the former two are technologically challenging 

to change, one can attempt to improve the analytical tools and frameworks using 

new mathematical approaches. In such circumstances, the supervised learning 
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(SL) methods have been proven helpful in developing more reliable mathematical 

models in many relevant fields such as fuel processing, petrophysical studies of 

porous mediums, and oil viscosity monitoring equipment in mechanical systems 

38–42. 

1.4.3. LF-NMR oil viscosity measurements in other industrial fields 

The application of NMR viscosity models is not relevant only for petrophysical 

well-logging. One potential application is in fuel processing, where there has been 

a surge for the last few years in the development of fast methods for the 

characterization of petroleum fractions by LF-NMR43. Among many studied 

physicochemical properties, the oil viscosity showed to be of the principal 

importance in determining the rate of interaction with fuel during combustion 

processes in internal combustion engines 44,45. In these studies, the LF-NMR 

predictive models were typically derived using multivariate calibration with 

partial least squares (PLS) regression or artificial neural networks (ANN), which 

proved efficient. However, in nonlinear datasets, the reports in the literature show 

that PLS did not provide satisfactory accuracy, whereas ANN tended to overfit the 

data, thus leading to poor model generalization46,47. In the LF-NMR examination of 

petroleum fractions, this nonlinearity can occur due to their chemical intricacy, 

leading to the degradation of model forecasting performance24. 

 

Moreover, in mechanical systems (tribosystems), viscosity reflects the oil's 

capacity to render the sufficient thickness of the lubricating film between the 

surfaces exposed to friction. In order to efficiently buffer the rate of machinery 

wear, the oil selection is made under the speed-load and temperature conditions 

of the system48. The prevention of malfunctions in tribosystems is usually 

performed by monitoring oil viscosity, where its relative increase may indicate 

excessive oxidation or contamination of the oil by other fluids. In contrast, its 

decrease may indicate the beginning of a thermal cracking process, occurring at 

high temperatures49. In earlier studies, LF-NMR measurements were proposed as 

an alternative to conventional monitoring approaches that involve direct-contact 
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instruments based on vibration, acoustic, and micro-displacement methods 42. In 

circumstances where these instruments would be difficult to utilize, the LF-NMR 

tools could be used instead for non-invasive, real-time viscosity monitoring42,50,51. 

As the operating conditions of these systems may lead to significant oil viscosity 

fluctuations, the robust data-driven or analytical NMR model could be used to 

measure the fluctuations accurately and, in that manner, help in the early 

detection of equipment failure. 

 

 

1.5. Water saturation 

1.5.1. Water saturation by resistivity measurements 

One of the primary purposes of petrophysical formation evaluation is the 

quantification of hydrocarbon and water saturations. To properly evaluate the 

volume of hydrocarbons, it is necessary to determine water saturation 

beforehand, since generally, for pressures above the bubble point: 

  𝑆𝑜 = 1 − 𝑆𝑤 (14) 

where So is oil saturation and Sw is water saturation. Conventionally, in well-

logging practice, the water saturation was determined using resistivity logs, and 

depending on the reservoir type, resistivity data would be used in combination 

with other standard logs such as density (RHOB) and neutron (NPHI)52. The 

widely used empirical model for water saturation estimation in conventional 

hydrocarbon reservoirs was developed by Archie53 (Equation 17).  

 F =
R0

Rw
= 

a

φm
 (15) 

 Ir =
Rt

R0
= 

1

Swn
 (16) 

 Sw = √
aRw

Rtφm

n

 (17) 
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In Equation 15, F is a formation factor, R0 fully water-saturated rock resistivity, Rw 

brine resistivity, φ fractional porosity, a and m are tortuosity coefficient and 

cementation exponent, respectively. In Equation 16, Ir is the resistivity index, Rt is 

rock resistivity, R0 is the resistivity of fully water-saturated rock resistivity, Sw is 

fractional water saturation of the formation, and n is the saturation exponent. 

Finally, Equation 17 presents Archie’s water saturation model, which is obtained 

by combining Equations 15 and 16. The m, n, and a are known as rock resistivity 

parameters. While most of the parameters can be obtained from conventional logs, 

particular attention is required to calibrate a, m, n. These are obtained from 

laboratory-controlled resistivity tests and subsequent least squares regression.  

 

Archie’s equation was successfully used in systems with simple, uniform pore 

space saturated by water54. However, issues arise in reservoirs with large 

amounts of clay-bound and capillary-bound water, strong variations of salinity 

with depth, and formations containing clays or conductive minerals such as 

pyrite55,56. This is also true for Canadian oil-sands57. In these terms, the presence 

of bound water and clays will cause the underprediction of OOIP, while the 

variable salinity can cause either overprediction or underprediction of OOIP.  

 

1.5.2. Water saturation by LF-NMR measurements – T2 cutoff 

approach 

Since the LF-NMR tools measure the response H+ protons of the fluids, many of the 

issues relevant for resistivity logging can be avoided. Another advantage of NMR 

measurements is differentiating between irreducible water saturation (capillary 

and clay bound water) and producible fluids. The primary assumption is that 

larger pores are saturated by producible fluids, where the flow can occur in the 

presence of pressure gradient, while smaller pores contain fluids trapped by 

capillary forces or are bound within the lattice of clay minerals. If this condition is 

true, a T2 cutoff value (location in T2 distribution) can be defined, separating the 

T2 distribution to signals corresponding to clay-bound, capillary-bound and 
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producible fluids. Integration of the separated regions can be performed and 

related to producible and bound fluid volumes.  Straley et al.,23 were the first to 

empirically identify the universal T2 cutoff for clay-bound water at 3 ms in 

conventional sandstones. The cutoff value was determined by comparing the clay-

bound water calculated from the ratio of cation exchange capacity and pore 

volume (Qve) with cumulative T2 distribution porosity, using sandstone core plugs 

from 45 American and European oilfields. To evaluate the producible porosity or 

free-fluid index (FFI), it was necessary to perform NMR T2 measurements on core 

samples in two states – cleaned and fully saturated state (Sw 100%) and after 

centrifuging to the irreducible water saturation (Swirr). These experiments were 

performed for the suit of 86 sandstone samples, and the universal cutoff was found 

to be at 33 ms23.  

 

Figure 6: An example of the determination of T2 cutoff value by LF-NMR and centrifuge. 

The orange curve presents the T2 distribution of the 100% water-saturated sample (Sw 

100%). The purple curve presents the T2 distribution of the sample centrifuged to 

irreducible water saturation (Swirr). 
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Although these universal cutoff times work for conventional sandstone reservoirs 

where porosity and permeability are generally uniform, many recent studies have 

shown that T2 cutoff values vary dramatically for reservoirs of other lithologies, 

such as shales, carbonates, oil-sands, coals, and tight sandstones58. In addition, 

even if the T2 cutoffs are determined experimentally, it is not recommended to use 

a single T2 cutoff for the same well or oilfield since the T2 distribution can vary 

drastically both vertically along the well and laterally, which would potentially 

cause erroneous estimation of OOIP58.  

 

1.5.3. Water saturation by LF-NMR measurements in oil-sands 

The T2 cutoff determination for oil-sands is even more problematic for two 

principal reasons. First, the centrifuging to Swirr cannot be adequately performed 

since the sand exposed to severe centrifugal forces will lose its structure and 

native filtration properties, rendering the subsequent NMR experiments 

inadequate. Second, the heavy oil and bitumen in oil-sands have a fast T2 

relaxation time and produce a signal in the same region as capillary and clay-

bound water, causing a significant overlap. One of the well-known approaches that 

had considerable success in addressing this effect is based on NMR spin-spin 

relaxation (T2) distribution peak deconvolution59. The principal assumption 

behind this approach is that bitumen relaxes faster in an NMR distribution than 

surface-bound water, so early T2 signals are attributed to bitumen, and later T2 

signals correspond to the capillary bound and free water saturation in the rock. 

For reference, Canadian bitumens produce a T2 signal at approximately 0.1 – 4 ms 

range 60,61, the same as clay bound water in sandstones, while capillary bound 

water produces a signal roughly from 3 – 33 ms in sandstones 23. Consequently, 

deconvolution approach works best for oil sands with low clay and capillary 

bound water content, where the overlapping of bitumen and water signals is not 

extensive.  
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Assuming that the oil-sands are largely water-wet, water will generally be found 

in the corners of connected sand grains and potentially as a thin film over the grain 

surface. The principal relaxation mechanism of hydrogen protons in high viscosity 

oils and bitumen would be bulk relaxation, while water would strongly influence 

surface relaxation, with bulk relaxation playing a minor role in the water T2 values. 

Bulk relaxation and surface relaxation times of water and oils are unique for the 

most part, that is, the heavy oil molecules generally relax quicker relative to the 

water molecules. When their relaxation rates differ, the NMR T2 distribution will 

display distinct oil and water responses (Figure 7A), and a simple visual cutoff 

method can be applied to separate their amplitudes and quantify their volumes.  
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Figure 7: Representative NMR T2 distributions of two oil-sand samples. (A) An example 

of distinct oil and water signals where a simple cutoff method can be used for oil-water 

separation. (B) An example of NMR T2 distribution with overlapped oil and water signals 

where deconvolution with T2 cutoff cannot provide a satisfactory solution. Black vertical 

dashed lines present potential cutoff times. DS-w and DS-o are percentages of water and 

oil by Dean-Stark, respectively, relative to solids. 

However, in fines and clays, where pores are tiny, the water protons relax faster 

due to the surface relaxation at the water-rock interface, thus generating the signal 

in the fast-relaxing part of distribution where it can overlap with the signal 

originating from heavy oil and bitumen (Figure 7B). In addition to that, the 

diffusion coupling effect may further decrease the interpretability of the oil and 

water signals. This effect occurs in saturated and connected micro- and 

macropores when water is in diffusional exchange, causing the change in the 

relationship between T2 relaxation and pore size distribution62. In strong 

diffusive-coupling conditions, macro- and micropore water signals will merge into 

a single peak, rendering the single T2 cutoff and deconvolution approach 

inaccurate63. Another limitation of this approach is that it requires the separate 

determination of water and oil NMR amplitudes and the independent 

measurement of their volume or mass.  

 

Alternative methods involve 2D LF-NMR measurements, where instead of using 

one NMR parameter (i.e., T2 relaxation), additional parameters are employed (i.e., 

T1 relaxation or diffusion) to obtain so-called 2D NMR maps64–66, which can 

theoretically help to separate these overlapping bitumen and water signals. 

Application of 2D maps showed considerable success in fluid saturation 

evaluation, compared to 1D T2 relaxation distribution analysis, since T1 relaxation 

or diffusion of reservoir fluids can be sufficiently different, thus enabling relatively 

simple separation of their signals. Unfortunately, 2D NMR is slower and more 

expensive to run, and there can still be instances where these signals are not 

distinct, in which case estimation of fluid types and fluid volumes can be 

challenging and require advanced analysis involving blind-source signal 
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separation (BSS), clustering algorithms, and a certain degree of knowledge in 2D 

NMR maps interpretation67. 
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Chapter 2 Heavy oil viscosity prediction at high temperatures 

by low-field NMR relaxometry and nonlinear least squares 

 

2.1. MOTIVATION 

Evaluation of crude oil viscosity from LF-NMR data has proven to be a viable 

alternative to laborious and time-consuming conventional measurements 

requiring sample recovery. However, this work shows that for most heavy oil 

correlations10,12–14, accuracy degrades dramatically with the temperature increase 

due to the loss of magnetization in protons (Curie effect), making them unreliable 

for continuous viscosity monitoring in oil wells. Another problem commonly seen 

in practice is vertical and horizontal anisotropy of the oil viscosity within the same 

heavy oil reservoir and sometimes the same well3,69, meaning that the NMR model 

must be robust enough to provide satisfactory predictions within the group of 

chemically different heavy oil samples.  

In this work, we derived a new enhanced NMR viscosity model and three key 

improvements: 

• Enhanced prediction of viscosity for the suite of 23 heavy oils with 

viscosities ranging from 70–21,600 cP; 

• Enhanced prediction of viscosity for the bitumen sample at elevated and 

high temperatures (26-200 ℃), for viscosity range from 10 to 170,000 

cP; 

• Nonlinear least squares (NLS) regression procedure for obtaining the 

optimal fitting parameters of NMR viscosity models (tuning); 

 

Two separate datasets were used in the study. The first consisted of 

measurements on 23 heavy oil samples recovered from a heavy oil sand reservoir. 

The second one consisted of measurements made on a single bitumen sample, 

which is referred to as ‘JC bitumen’ further in the text. The dynamic viscosities (η) 

were determined by rheological experiments. The spin-spin relaxation time (T2-



49 

  

relaxation) and relative hydrogen index (RHIv) were measured for all samples and 

were used as model inputs, while model tuning was achieved by NLS regression. 

To quantify the effect of tuning on the reduction of prediction errors, we evaluated 

the performance of models both in their default form (reported fitting 

parameters) and after tuning by NLS regression (fitting parameters used in this 

work).  

Model performance was evaluated using root mean square error (RMSE), 

maximum absolute error (MaAE), and adjusted coefficient of determination (adj. 

R2). 

2.2. THEORY AND EXPERIMENTS 

2.2.1. SPIN-SPIN RELAXATION (T2) 

As mentioned before, the oil reservoirs contain various fluids rich in hydrogen. 

Modern LF-NMR logging devices measure the response of H+ protons in fluids and 

provide information about petrophysical properties of rocks and physiochemical 

properties of fluids in-situ. In the case of hydrocarbons, the rate of T2 relaxation 

shows a strong correlation with viscosity, which is why T2 relaxation was used as 

a theoretical foundation for nearly all NMR viscosity models. Since the relaxation 

times of oil vary significantly with its chemical composition and temperature, a T2 

logarithmic mean relaxation time is calculated to characterize the whole NMR 

spectra: 

 
T2lm=Exp [∑

Ai

A
⋅ ln(T2i)] 

(18) 

where Ai is the amplitude from i-th corresponding T2i response.  
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2.2.2. MOLECULAR SIZE AND INTRAMOLECULAR DISTANCE 

Dynamic viscosity correlation with T2-relaxation time can be inferred from 

Bloembergen-Purcell-Pound’s (BPP) model, describing T1 and T2-relaxation rate 

dependency with dipole-dipolar interaction19: 

 1

T1
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τc

1+ω0
2 τc

2
+

4τc

1+4ω0
2 τc

2
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(

μ
0
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)
2 ℏ

2γ4

b6  
(21) 

where τc is molecule correlation time, and ω0 is a Larmor frequency. The 

parameter C is defined for the ½ spin by gyromagnetic ratio γ, the magnetic 

permittivity of space μ0, reduced Planck constant ℏ, and interproton distance b.  

Molecular collisions lead to a time-dependent change in molecule orientation and 

interproton distances. From Equation 19 and Equation 20, it is evident that proton 

relaxation rates are primarily influenced by correlation time for the liquid 

substance. Random change of the molecule orientation can be described by a 

rotational diffusivity Dr, a function of viscosity, temperature, and molecular size. 

By employing a Debye-Stokes-Einstein (DSE) model for spherical molecules, we 

can express τc as 

 
τc=

1

6Dr
 

 
(22) 

 
Dr=

kT

8πηa3
 

 
(23) 

where k is Boltzmann constant, a is the radius of the spherical particle and η is the 

dynamic viscosity of the medium. The BPP model and DSE equations were 

developed for pure homogeneous substances, while crude and heavy oils have a 

complex chemical composition and molecular structures that contain multiple 

bonds, chains, solid asphaltene agglomerates, and clusters. Consequently, we can 

anticipate variability in molecule sizes and interproton distances, which causes 

fluctuation of parameters a and b (Equation 23 and Equation 21). In that sense, for 
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any universal NMR viscosity model, discrepancies in predictive ability will grow 

with the complexity of the chemical composition 24,32,70. 

 

2.2.3. T2-RELAXATION MECHANISMS IN HEAVY OILS  

Recall that in the porous medium the total T2 relaxation represents the sum of 

three relaxation components (Equation 5). The total spin-spin relaxation is 

governed by a sum of bulk relaxation T2bulk, relaxation influenced by the pore 

surface T2surface, and relaxation caused by the gradients of magnetic field T2diffusion. 

In the case of water-wet porous media, surface relaxation is dominant for water 

and bulk relaxation for oil. Since the bulk relaxation remains a primary mechanism 

in such scenario, it can be considered that for heavy oil T2 ≅ T2bulk.   

According to the nuclear spin relaxation theory71, there are two extreme cases:  

1. Fast motion or extreme narrowing case (ω0τc≪1), characteristic for 

small molecules, low viscosities, or high temperatures. In such cases, 

T1≈T2 (Figure 8).  

2. Slow-motion case (ω0τc≫1) characteristic for relaxation of large 

molecules in high viscous substances or at low temperatures.  

In both cases, the 1/T2 relaxation rate is proportional to correlation time τc and 

η/T ratio, respectively. 
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Figure 8: T1 (black) and T2 (red) dependence on correlation time (τc), according to the 

BPP relaxation model. 

Equations 19-23 describe the molecular relaxation processes governed by a single 

exponential function which explains why the viscosity models for short 

correlation times (Figure 8) provide sufficiently accurate predictions for light 

oils15,23,27,29. Solid-like components in heavy oils induce various relaxation rates as 

opposed to light oils, and the cumulative spin-echo decay can exhibit non-

exponential behavior. This behavior can be approximated by the stretched-

exponential function, also known as the Kohlrusch-Williams-Watts function33: 

 G(τ)=〈F(0)2〉e-(τ
τc⁄ )

γ

 (24) 

Function F(t) is a time-dependent function of molecule location and orientation. 

G(τ) describes a relationship between function F(t) in different time steps, and (τ/ 

τc)γ is a stretch parameter. Equation 24 does not have an analytical Fourier 

transform, but a modified Cole-Davidson function approach31,72 can be used 

instead.  

 
T2~ (

𝜂

𝑇
)
−𝛽

 (25) 

where β ~ (τ/ τc)γ and is 0≤β≤1. The detailed derivation of Equation 25 is described 

in detail by Cheng et al 33. This approach was confirmed to be effective by several 
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authors3,25,31,73. It should be noted that T1 dependence on correlation time also 

does not follow the classical BPP model for heavy oils and bitumen in the slow-

motion case, which was experimentally proved by several authors25,60, most 

recently by Singer et al.35. In Figure 8, instead of the anticipated increase, T1 

plateaus to 3 ms value on a frequency-normalized scale for various viscosity 

samples. The authors explained the observed plateau effect by combining the 

dipole-dipole interaction model for intramolecular interactions and the modified 

Lipari-Szabo model for internal motions of the non-rigid structure. 

 

2.2.4.   ECHO SPACING (TE) AND RELATIVE HYDROGEN INDEX (RHIV) 

Due to the presence of solid-like components in heavy oils (e.g., paraffin and 

asphaltene), the T2-relaxation is often so fast that many LF-NMR logging tools 

cannot measure the whole relaxation spectrum the sample25,31,74. The parameter 

that expresses the NMR tool’s signal sampling rate is known as echo spacing (TE), 

where TE ≥ 0.1 ms. Consequently, for heavy oils with a very short mean T2 

relaxation time (T2lm), the logging devices cannot capture the fast-relaxing part of 

the NMR T2 distribution. The result is that the tools fail to accurately reflect the 

actual number of hydrogen atoms (HI) and output HI that is too small since part 

of the fast-relaxing signal is not measured. Many authors tried to address this issue 

by adjusting TE using correction coefficient or integrating some form of hydrogen 

index into the model 18,30,31,68,74,75. 
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Figure 9: NMR signal amplitude of a single bitumen sample (JC bitumen) in the function 

of the temperature. The slope of the NMR signal decreases with temperature rise, and 

approximately at >100 ℃, the slope becomes negative due to the Curie effect. 

From Figure 9, it can be observed that at temperatures above 100 ℃, the NMR 

amplitude decreases. This is known as a Curie effect60,76, where magnetization loss 

(NMR signal loss) occurs due to the high temperature of the sample. One of the 

means to account for this loss is the implementation of the relative hydrogen index 

(RHI). The RHI represents the relative amount of measured (detectable) hydrogen 

protons by the NMR device in the oil sample. It is expressed as the ratio of oil and 

water NMR signal amplitudes per unit mass77. In the case of using NMR tools at 

elevated temperatures, it is compulsory to implement temperature correction for 

RHI to account for the magnetization loss: 

 RHI= (
A0mw

Awm0
) (

T(°K)

Tamb(°K)
) (26) 

where Ao and Aw are the amplitudes of the oil and water signal respectively, mo and 

mw are masses of oil and water respectively, and T/Tamb is a temperature 

correction term in kelvins. Also, note that T is a sample temperature while Tamb is 
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the temperature at which water sample was measured (ambient). If the RHI is 

normalized to the sample volume, a relative hydrogen index for a defined sample 

volume can be obtained (RHIv). This normalization is consistent with Curie’s 

expression for magnetic susceptibility, where magnetization is expressed per unit 

volume75. Also, RHIv is more suitable for application to well logs because the NMR 

tool detects a defined volume of the formation68. Burcaw et al. proposed a simple 

approach for conversion of RHI to HI68:   

 RHI𝑣=
ρ
o

ρ
w

⋅RHI (27) 

where ρo and ρw are densities of oil and water, respectively. Note that Equation 27 

should be valid under the assumption that sample volume change due to the 

temperature change is negligible. It should also be noted that Equation 27 

represents the hydrogen proton response detected by the NMR device, and it is 

not to be associated with a true HI of the sample.  

 

 

Figure 10: Relative hydrogen index for a defined volume of JC bitumen sample in the 

function of temperature with implemented correction (red) and without correction for 

the Curie effect (black).  
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HI reflects the number of H protons in a liquid, which is a finite value. However, in 

Figure 10, it is evident that even with Curie correction, RHIv for JC bitumen 

changes with the temperature. This is due to the hardware limitation of the LF-

NMR tools and in the presence of solid-like components (e.g., asphaltenes), which 

relax faster than an echo spacing (TE), which essentially means that for heavy oils 

and bitumens, a significant part of oil signal (i.e., H protons) remains invisible in 

the T2 distribution28,76,78. 

 

2.2.5.   ENHANCED NMR VISCOSITY MODEL  

The RHIv works as a correction factor by compensating the magnetization loss 

(Curie effect) at high temperatures. The RHIv also accounts to a degree for the long 

TE, meaning that the correction coefficient for the TE term is redundant. For 

longer correlation times characteristic for very viscous oils (ωoτc>>1), the right 

addend in Equation 28 contains the stretching parameter d (or β in Equation 25), 

which accounts for non-exponential relaxation, i.e., the power-law relationship 

with T2lm. Lastly, the enhanced model contains a T2lm term, inversely proportional 

to viscosity, which properly works for light oils. This model is expected to mitigate 

the following known pitfalls in NMR viscosity prediction:  

• Magnetization loss due to the high temperature (Curie effect). 

• Long echo times (TE) which hinder the detection of solid-like components 

in heavy oils. 

• Non-exponential relaxation (i.e., glass transition) in viscous oils where 

ωoτc>>1. 

Taking into account Equations 19-27, an analytical form of the enhanced NMR 

viscosity prediction model can be derived as:  

 η=
a

RHI𝑣
b T2lm

+ c T2lm
 -d  (28) 

where a, b, c, and d are obtained from the nonlinear least squares (NLS) regression. 

The left-hand addend of Equation 28 is adapted from the Bryan et al. model18, 
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which correlates measured hydrogen content and T2 logarithmic mean with oil 

viscosity.  

2.2.6. PREPARATION OF OIL SAMPLES 

Twenty-three heavy oils were analyzed in this study. All the samples were 

recovered from different oil formations and wells from the heavy oil reservoirs in 

Alberta, Canada. All the samples except one were previously used in another NMR 

study by Bryan et al.,79, and the same methodology was used for sample 

preparation as described previously. Oil samples were extracted from the core 

samples by spinning in the Ultracentrifuge Beckman 18-M at 15,000 rpm at 40 °C 

for approximately 60 minutes. After extraction, the water content levels were 

reduced below 1.0 wt% using decantation with gravitation for one hour.   

The JC bitumen selected for the high-temperature tests had a residual emulsified 

water content of the oil determined using the Dean-Stark distillation method. The 

emulsified water and solid impurities were removed from the oil through a 

proprietary oil-cleaning system developed by the In-Situ Combustion Research 

group at the University of Calgary. Following the cleaning procedure, the 

emulsified water content was 0.78 wt%, and there was no dissolved gas (dead oil).  
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Figure 11: Flowchart representation of experimental program for 23 heavy oil samples 

and JC bitumen sample 

 

2.2.7. RHEOLOGICAL MEASUREMENTS – 23 HEAVY OIL SAMPLES 

Rheological measurements were executed on 23 heavy oils to obtain a reference 

dataset compared with predictions from NMR viscosity models. Previous studies 

have shown that cone and plate rotational viscometers provide higher accuracy in 

measuring viscous fluids than glass-capillary and oscillating-piston viscometers79. 

The Brookfield DV-II-Pro cone and plate viscometer was used, which meets ASTM 

D4287 industry standard for oil viscosity measurement80. As previously described 

by Bryan et al.32, the cone diameter was 12 mm with an angle of 1.5°. Shear rate 
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accelerated from 0.8 s-1 to 100 s-1 while shear stress was continuously logged. 

Three milliliters (3 ml) of oil were used for each experiment at two fixed 

temperatures – 30 °C and 50 °C. By measuring at two temperatures rather than 

one, we increased the number of data points. However, four heavy oils had a 

limited supply, and their measurements were taken only at 50 °C, making 42 data 

points in total. The viscosity was expressed as a ratio between shear stress and 

shear rate. 

 

2.2.8. RHEOLOGICAL MEASUREMENTS AT HIGH TEMPERATURE– JC BITUMEN 

The most viscous heavy oil sample (JC bitumen) was selected for assembling the 

high-temperature viscosity dataset. Since Brookfield DV-II-Pro viscometer is 

equipped with a thermal bath, measurements were made from 30 °C to 80 °C on 

every 5 °C making 11 data points. For the reliability of the measurements, the 

experiment was repeated three times at each temperature. Extrapolation of 

viscosities to from 26 ℃ to 200 ℃ was carried out using the dynamic viscosity 

model for gas-free Athabasca bitumens defined by Khan et al.20: 

 ln ln (η ) = A· ln(Tabs)+ B  (29) 

where A and B are empirical constants calculated as a slope and intercept of 

absolute temperature and measured dynamic viscosity, respectively. The 

relationship between JC bitumen viscosity and temperature is depicted in Figure 

12.  
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Figure 12: Dynamic viscosity of JC bitumen in 26 ℃ – 200 ℃ temperature range. 

Extrapolation and interpolation was performed using a model by Khan et al.20   

 

2.2.9. NMR EXPERIMENTS – 23 HEAVY OIL SAMPLES 

The suite of 23 samples was tested as a part of the previous two studies by Bryan 

et al.,32,77. The NMR experiments were carried out at 30 ℃ and 50 ℃ using a 1.1-

MHz LF-NMR Corespec 1000TM relaxometer. The Carr-Meiboom-Purcell-Gill 

(CPMG) pulse sequence parameters were tuned to reduce the effect of the 

temperature decrease within a single experiment – TE was 0.3 ms, with 2,600 

pulses and a wait time 2,400 ms. Measured data were transformed into T2 

relaxation distribution in the time domain using NNLS inversion software 

ExpFit77. To be consistent with the rheological viscosity dataset, the two samples 

left out from viscosity measurements at 30 ℃ were also left out from NMR 

measurements at 30 ℃. In total, 42 data points were obtained. 
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2.2.10. NMR EXPERIMENTS AT HIGH TEMPERATURE – JC BITUMEN  

NMR experiments on the JC bitumen were carried out at the temperature range 

from 26 °C to 200 °C using a 2.66-MHz LF-NMR PERM Labmeter. The sample was 

stored in a polyether-ether-ketone (PEEK) thermoplastic polymer vessel with an 

integrated non-magnetic thermocouple for continuous temperature logging. The 

vessel with the oil was heated in the oven up to 200 °C and then inserted into the 

NMR device. The highest cooling temperature gradient occurred at 170-200 oC 

(~0.7 oC/min). Since heavy oils in this study had very fast relaxation at ambient 

conditions (1-2 ms), the CPMG sequence had to be configured to capture the 

earliest signals at ambient temperatures, while capturing the oil signal at 200 °C 

with high SNR. To achieve this, the shortest echo spacing limited by the equipment 

was selected (TE=0.24 ms). The number of pulses was 5,000, and the wait time 

was 5,000 ms, which enabled sufficiently quick experiments (<1 minute per 

experiment) with SNR>100. Experiments were performed consecutively until the 

sample reached ambient temperature. A total of 136 data points were used for the 

regression analysis.  

 

It should be noted that PEEK plastic can produce an NMR signal in some instances, 

and its contribution depends on the shape of the vessel, whether it was extruded 

or molded, and whether PEEK contains impurities. In this study, the PEEK signal 

can be observed on NMR spectra, between T2 ~ 10-20 ms, representing <1% of 

the total signal produced by the bitumen sample, which is negligible. Similar 

reports can be found in the literature81. 

 

2.2.11. NONLINEAR LEAST SQUARES (NLS) REGRESSION – MODEL TUNING 

The NLS regression was performed in Origin Pro software version 2018b to tune 

the NMR models, that is, to obtain optimal values for their empirical constants 

(parameters). Where it was possible, the data population were split into the 

calibration set and the prediction set in the proportion of 70-30%, respectively, 

minimizing the overfitting. A calibration set was used to tune the model 
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parameters and subsequently applied to the prediction set. The model calibration 

was evaluated by comparing predicted NMR viscosity with rheological viscosity.  

 

The NLS regression was performed using Levenberg – Marquardt (M-L) iteration 

algorithm82. 

 β̂ 𝑎𝑟𝑔𝑚𝑖𝑛β S(β) ≡  𝑎𝑟𝑔𝑚𝑖𝑛β  ∑[𝑦𝑖 − 𝑓(𝑥𝑖, β)
2]

𝑚

𝑖=1

 (30) 

where β = (β1, β2,…, βi) are fitting parameters to be obtained from the minimization 

of the sum of the squared residuals S(β) from fitted model f(xi, β) for the given set 

of independent variables (xi) and target output (yi). This is a step-wise (iterative) 

approach, where initial parameter values are set manually. To avoid convergence 

to a local minimum, different initial parameters were used and constrained to a 

specific range in some instances. For each new iteration, the parameter vector β is 

updated by the new estimate β + δ, where δ can be linearly approximated from 

function f (xi, β + δ) as: 

 𝑓(𝑥𝑖, β + δ) ≈ 𝑓(𝑥𝑖, β) + 𝐽𝑖δ  (31) 

where Ji is a gradient of function f with respect to parameter vector β: 

 𝐽𝑖= 
𝜕𝑓(𝑥𝑖 , β)

𝜕β
 (32) 

Like in Tikhonov regularization, a damping factor λ is added to regulate the 

reduction rate of S and for more efficient discovery of a gradient direction. For the 

initialization of L-M, the λ was set to 0.001, and after each successive iteration was 

automatically increased or decreased by a factor of 10 relative to the gradient 

direction, depending on whether the squared residuals were reduced or 

increased. The L-M algorithm converges when the sum of squared residuals 

remains unchanged relative to the set tolerance or is equal to zero. The tolerance 

parameter was reduced chi-square (χ²), which can be calculated by dividing a sum 

of squared residuals (RSS) by degrees of freedom.  The tolerance was set to χ² 

<1·10-9.  
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The results of NLS tuning were assessed using root mean square error (RMSE). 

(Equation 33). RMSE is a useful statistic for evaluating model prediction accuracy 

based on the new data. 

 RMSE= √
∑ (Pi- Oi)

2n
i=1

n
 (33) 

where Pi is the predicted value, Oi is the observed value, and n is the number of 

samples.  

 

In the existing literature, the NMR model accuracy is usually assessed visually on 

cross-plots relative to the prediction bands and by comparing coefficients of 

determination - R2 3,30,33,73,74,77. In this study, an adjusted coefficient of 

determination and standard coefficient of determination is used for the evaluation 

of prediction variation captured by the model 

 R̄2= 1 − (1 − R2) ⋅
n − 1

n − p − 1
 (34) 

 R2= 1 −
SSres
SStot

 (35) 

where R̄2 is the adjusted coefficient of determination (COD), n is the number of 

observations, and p is the number of independent variables (inputs). The standard 

COD (R2) is calculated as a difference between the unity and ratio of the sum of 

squared prediction residuals (SSres) and the total sum of squared residuals (SStot). 

Since viscosity may vary up to six orders of magnitude in thermal EOR projects, 

besides using RMSE and R2, the maximum absolute error (MaAE) of the 

predictions was calculated as an additional statistical metric. The MaAE 

represents the maximum absolute difference between predicted and observed 

viscosity values. RMSE and MaAE are negatively-oriented statistics expressed in 

source units (i.e., centipoises.) 
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2.3. RESULTS AND DISCUSSION 

 

2.3.1. NMR VISCOSITY PREDICTION – 23 VARIOUS HEAVY OIL SAMPLES 

The models tested in this study are listed in Table 1, describing input parameters 

and the number of fitting (free) parameters.  

 

Table 1: Tested literature NMR viscosity correlations 

Model Input data Fitting parameters 

Straley, 1997 T2lm 2 

LaTorraca, 1999 T2lm, TE, T 2 

Bryan, 2003 T2lm, RHI 2 

Nicot, 2007 T2lm, proton radius (a), 

inter proton distance (b) 

1 

Burcaw, 2008 T2lm, HI 3 

Cheng, 2009 T2lm 3 

Ahmed, 2014 T2lm, TE, T 2 

Musin, 2016 T2lm 3 

Sandor, 2016 T2lm, TE, T 2 

Markovic, 2019 T2lm, RHIv 4 

Figure 13 shows NMR viscosity predictions and observed viscosity for a suite of 

23 heavy oil samples at 30 ℃ and 50 ℃ with viscosities ranging from 70 – 21,600 

cP. The NMR viscosity predictions generated by nine well-known literature 

models by Ahmed et al.30, LaTorraca et al.74, Sandor et al.31, Bryan et al.18, Burcaw 

et al.68, Cheng et al.33, Nicot et al.25, Straley et al.23, and Musin et al.3. Predictions 

made by the enhanced model are shown in Figure 13j. To emphasize the effect of 

NLS regression, predictions were produced with NLS tuned parameters (red) and 

with default model form, where used parameter values were reported by the 

authors (black). The analytical form of models with fitting parameters obtained by 

nonlinear least squares (NLS) regression is depicted in the lower right corners. 
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The NLS regression was applied without splitting the data into the calibration and 

prediction sets due to the small number of data points (42 in total). Since the oils 

were sampled from different locations, independent variables (T2lm and RHIv) 

show high variability compared to JC bitumen dataset. This is also reflected in 

varied adj. R2 scores (Figure 14a), indicating that models captured different 

amounts of variability related to the response variable (i.e., viscosity).  Compared 

statistical scores are shown in Figure 14. 

 
Figure 13 shows that models by Burcaw et al., and Musin et al., do not contain 

predictions from the default configuration (black points) because their authors 

did not propose parameter values explicitly. Moreover, Figure 13 shows that 

generally, model predictions improve after NLS regression compared to the 

predictions generated by general model forms to various extent. However, in 

Figure 14, the effect of tuning and variation in prediction accuracy between 

models is clearly illustrated. For example, Bryan et al. show RMSE and MaAE 

scores to be 4.5 and 8 times lower after tuning, respectively, while adj. R2 score is 

marginally increased.  

 
Heavy oil models by LaTorraca et al., Ahmed et al., and Sandor et al. show a similar 

performance since they are based on TE correction and temperature. Sandor et al., 

and Ahmed et al., proposed multiple models in their work, but for this work were 

selected the ones with the highest reported score. After NLS regression, the model 

by Sandor et al. (Figure 13c) shows that most predictions fall within a factor of one 

and two at the viscosity range between 30 and 3,000 cP. However, at viscosities 

>3,000 cP, predictions scatter into a factor of two and three, causing the inflation 

of RMSE and MaAE scores. (Figure 14). The models by LaTorraca et al. and Ahmed 

et al. have less variance in >3,000 cP domain after NLS regression but tend to 

overpredict viscosity in the <6,000 cP domain, with most predictions falling within 

a factor of two and three. This is due to the cost function minimization, where the 

iteration algorithm minimizes larger squared errors in the higher viscosity 

domain at the expense of accuracy in the <6,000 cP domain. 
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Figure 13: Rheological viscosities compared to NMR viscosities of 23 heavy oils. The 

Markovic et al. (j) model demonstrates the highest accuracy. A solid black line (x=y) 

presents a perfect prediction.  

The models by Nicot et al., and Cheng et al. are heavy oil models, while Straley et 

al. is a light oil model. All three are based on the power-law T2lm, which accounts 

for long TE (echo spacing) and have similar performance. Figure 13 and Figure 14 

show that the models are affected by NLS to a different extent but generally 

achieve considerably improved scores after NLS. Most of the predictions in the 

>600 cP domain fall within a factor of one and two. Recall that Nicot et al., Cheng 

et al., and Straley et al. models produce large prediction residuals in the domain 

<600 cP after NLS regression. Again, this is caused by minimizing squared errors 

in the higher viscosity domain at the expense of accuracy in the lower viscosity 

domain. This issue can be solved either by constraining fitting parameters to a 

specific range, at the expense of the accuracy at higher viscosities, or by using 

these models for oilfields or wells where the viscosity varies no more than three 

orders of magnitude.  

 

Figure 14 shows the segregation of the three models (Markovic et al., Bryan et al., 

and Burcaw et al.), which perform substantially better than the remaining seven 

based on all three statistics. Predictions by Markovic et al. fall within a factor of 

one and two along with the whole range, with only four exceptions in the <600 cP 

domain. The most accurate predictions are distributed in the >1,000 cP domain. 

Also, Bryan et al. and Burcaw et al. perform almost on par with the enhanced 

model. The new model has a marginally better score than the latter two. This 

marginal improvement is due to the power-law parameter, which was not 

considered in the models by Bryan et al., and Burcaw et al.  
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Figure 14: Compared bar chart of adjusted R2 (a), Root-MSE (b), and MaAE (c) for tuned 

and default NMR model predictions of 23 heavy oils. Markovic et al. model demonstrate 

the highest accuracy.  

These results demonstrate that the integration of RHIv, into the correlation, 

substantially improves the prediction accuracy of heavy oil models in the 70–

21,600 cP viscosity range at 30 ℃ and 50 ℃, especially in the >3,000 cP domain, 

as demonstrated by correlations from Bryan et al., Burcaw et al., and the newly 

proposed model from Markovic et al. (Figure 13d, Figure 13e, Figure 13j). This 

finding complements the adj. R2 scores in Figure 14a show that these three models 

have the highest explained variability (>96 %). In addition to the RHIv, the 

enhanced model contains the power-law term in T2lm, which marginally improves 

prediction capacity by rectifying the non-exponential relaxation effect of heavy 

components, for which T2lm and measured RHIv cannot account. 

In conclusion, the new model (Markovic et al.) achieved the most favorable 

statistical scores, while the models by Sandor et al., Bryan et al., Burcaw et al., and 

Musin et al. have satisfactory performance only after the NLS regression. The 

prediction capacity of the models in high temperatures is discussed in the 

following section. 

 

2.3.2. NMR VISCOSITY PREDICTION AT HIGH TEMPERATURES – JC BITUMEN 

To validate the enhanced NMR viscosity model for use in steam EOR projects, it 

was necessary to examine how its prediction capacity is affected by the 

temperature increase, by testing it on a JC bitumen sample, with a viscosity range 

of 10–170,000 cP, for the temperature range 26–200 ℃. Apart from the enhanced 

model, five literature correlations were selected to compare based on their 

performance in the previous section. These are Straley et al., Cheng et al., Bryan et 

al., Burcaw et al., and Sandor et al. To avoid overfitting, the JC bitumen dataset was 

divided into the training set the test set in proportions of 70–30%, respectively. 
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Figure 15: T2 distribution curves of a single bitumen sample (JC bitumen) in the function 

of temperature. 

Figure 15 presents the T2 spectrum of JC bitumen, in the time domain, obtained 

using Tikhonov regularization18. The NMR relaxation spectra shift to the right-

hand side (slow-relaxing part) with increasing temperature, and the NMR signal 

amplitude varies with temperature. The distribution curve at 200 ℃ shows four 

distinct peaks, which might indicate oil separation to several relaxometry 

components, possibly heavy and light fractions of the bitumen83.  
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Figure 16: Rheological viscosities compared to NMR viscosities for the JC bitumen 

dataset. The temperature scale (top axis) is shown for clarity. A solid black line (x=y) 

presents a perfect prediction. 
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Figure 16 compares predicted and observed viscosity over the 26–200 ℃ 

temperature range. The predictions were generated from three model 

configurations: using default parameter values (black), using parameters from the 

previous section (magenta), and applying the NLS regression to the JC bitumen 

training set to calculate the new parameter values (red). The models in the 

analytical form after NLS regression are depicted in the lower right-hand corners 

of the plots.  

 

Figure 17 shows three statistical scores used to compare the model forecasting 

performance. Note that the y-axis in Figure 17a is truncated for convenience. The 

first observation comes from Figure 17a, where high adj. R2 scores indicate a low 

variability of response data (i.e., viscosity predictions), which was expected since 

only one sample was analyzed. However, the RMSE scores in Figure 17b and MaAE 

scores in Figure 17c show that NMR models achieve substantially different scores. 

In this way, using the adj. R2 alone for the model performance evaluation is not 

sufficient.  

 

The majority of the predictions by the Sandor et al. model (Figure 16f) fall outside 

the prediction bands for all three configurations. After NLS regression, the model 

improves accuracy in the >10,000 cP domain. It should be noted that Sandor et al., 

for the given dataset, cannot be used with default fitting parameters because the 

denominator in this correlation becomes negative for the high values of the T2lm, 

(i.e., high viscosities). This limitation was addressed by changing the constant in 

the denominator from -0.69 to -0.3 for NLS tuned predictions. Due to the absence 

of predictions for the mentioned interval, Figure 17 only contains statistics of 

Sandor et al. correlation for the predictions generated after NLS regression. 
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Figure 17: Compared bar chart of adjusted R2 (a), Root-MSE (b), and MaAE (c) of NMR 

model predictions for JC bitumen using three model configurations. The model by 

Markovic et al. demonstrates the highest accuracy after NLS regression. 

The Cheng et al. model (Figure 16e) with default fitting parameters reproduces 

the most accurate predictions compared to the other two correlations with default 

parameters by Bryan et al. and Straley et al., whose predictions fall within a factor 

one and two in the 10–10,000 cP interval. Accuracy deteriorates at >10,000 cP, 

which induces high RMSE and MaAE scores (Figure 17b, 17c, Cheng). In 

comparison, Cheng et al. underpredicts the viscosity <1,000 cP domain after NLS 

regression, especially in the 10–60 cP interval where predictions approach 0 cP, 

while accuracy is improved in the >10,000 cP domain. As expected, similar 

prediction behavior is exhibited by the model from Straley et al. This behavior can 

be attributed to the Curie effect and NLS regression.  

 

The Curie effect manifests through NMR signal loss with temperature increase. 

Figure 9 shows that the slope of the JC bitumen NMR signal gradually decreases 

with rising temperature until the inflection point at 100 ℃, after which the slope 

becomes negative. This effect is illustrated in a varying degree for all models in 

Figure 16 (particularly in Figure 16d, 16e in the <1,000 cP, or >70 ℃ domains); 

Sandor et al. overpredict the viscosity in this domain due to the TE coefficient, 

which overcompensates for Curie effect. However, the NLS regression process 

affects this further. During NLS regression, the iteration algorithm minimizes the 

squared residuals in the domain where the highest errors occur (i.e., >10,000 cP), 

causing the prediction accuracy to decline in the 10–1,000 cP range. After NLS 

regression, this shift in accuracy explains why all models work better in the high 

viscosity domain.  

 

The combination of heavy oil chemical complexity, signal loss due to long TE (i.e., 

echo spacing), and the Curie effect represent the main challenge for developing a 

single NMR model for predicting viscosity in both low and high viscosity systems 

and for the same oil (JC bitumen) at various temperatures. Each heavy oil and 
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bitumen component relaxes exponentially, resulting in a complex total echo decay 

depending on temperature and each component’s phase state. The proposed 

enhanced model addresses these problems by integrating the RHIv and T2lm 

power-law term into the correlation. Stretched-exponential derived power-law 

term considers a smooth distribution of relaxation times for fast-relaxing 

components. The RHIv compensates for signal loss since it is in the corrected form 

while simultaneously accounting for the long echo times (TE). The power-law 

term in these conditions has two functions: it improves the accuracy in the >1,000 

cP domain, and it supplements the measured RHIv at high temperatures (>100 ℃) 

in correcting the predictions in the <1,000 cP domain (e.g., Bryan et al., vs. 

Markovic et al. in >100 ℃ domain in Figure 16, red points).  

 

Alternatively, the accuracy of any model presented in this paper can be improved 

for datasets with smaller viscosity and temperature ranges using the NLS 

regression or by splitting the calibration set into two or three subsets (e.g., low, 

medium, and high viscosity subsets), and performing NLS regression individually 

for each subset.  

 

Although the newly proposed model generally produces better forecasts in the 

case of a suite of heavy oil samples and a single bitumen sample at a wide 

temperature range, certain aspects could be improved in further work.  

• Evaluation of the model performance on the set of different heavy oil and 

bitumen samples from other heavy oil reservoirs would serve as an 

additional validation, further reducing the forecasts' uncertainty and 

enabling us to verify whether the proposed model is overfitted. 

• In this work, we used non-linear least squares regression which strongly 

penalizes squared residuals in the high viscosity range, giving less weight 

to lower viscosity samples. Depending on a task, other cost functions which 

give less weight to large residuals (mean absolute error) could be 

minimized. Another option for model optimization could be orthogonal 
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distance regression (ODR) which proved to work well in instances with 

asymmetric distribution of observations by providing a less biased fit84. 

Note that ODR was also tested in Chapter 3. 

 

2.4. SUMMARY 

This study demonstrates that LF-NMR relaxometry can be applied for viscosity 

prediction in a broad viscosity range and at a broad range of temperatures (26-

200 ℃). The results show that published NMR viscosity models cannot accurately 

predict heavy oil viscosity at this range of temperatures. The enhanced NMR 

model was associated with an NLS regression (parameter tuning) and used to 

predict the viscosity of two distinct datasets: 23 heavy oils at 30℃ and 50℃ from 

several wells and reservoirs in Alberta and a single bitumen sample (JC bitumen 

dataset) at 26–200 ℃. The prediction quality was evidenced by the root mean 

square error (RMSE), maximum absolute error (MaAE), and adjusted coefficient 

of determination (adj. R2). The new model scored an RMSE of 1,286 cP for the JC 

bitumen sample compared to the RMSE of 23,837 cP generated by the first runner-

up model in default calibration from the literature. For the suite of 23 heavy oils, 

the enhanced model scored an RMSE of 2,036 cP compared to the RMSE of 15,934 

cP generated by the first runner-up literature model. The results also indicate that 

the new heavy oil NMR viscosity model can be configured for monitoring purposes 

in high-temperature conditions for order-of-magnitude viscosity monitoring.  
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Chapter 3  IMPROVED OIL VISCOSITY PREDICTION BY LOW-FIELD NMR USING 

FEATURE ENGINEERING AND SUPERVISED LEARNING METHODS 

 

3.1. MOTIVATION 

In the previous section, it was shown that LF-NMR data could be used for viscosity 

evaluation of various crude oils by using the enhanced NMR viscosity model, 

which can account for chemical complexity and a wide span of temperatures with 

the help of NMR derived parameters such as relative hydrogen index (RHIv) and 

T2 logarithmic mean. However, the determination of RHI or RHIv requires a 

recovery of the representative oil sample from the given formation, preferably 

with preserved gas content, for subsequent laboratory measurements, which is 

often a technically challenging and expensive task61,85. Moreover, oil saturation 

volumes must be determined independently, which is necessary to normalize the 

measured oil NMR response by the amplitude of an equal quantity of water 32. 

Unfortunately, in the circumstances like these, the empirical NMR models without 

RHI do not perform satisfactorily for predicting accurate viscosities in heavy oil 

and bitumen systems86,87,88. The theoretical and empirical evidence presented in 

previous sections shows that T2-relaxation strongly correlates with oil viscosity 

23,29. However, in heavier, more viscous oils, the T2 relaxation behavior deviates 

from conventional models, changing the T2 correlation with viscosity. Although 

studies are being conducted to understand better the underlying physics of H 

proton relaxation behavior in heavy oils34,35, there is enough scientific evidence to 

confirm that these variations are associated with the presence of heavy 

components and their complex molecular structures (e.g., asphaltenes and 

resins)24. 

 

This work introduced a supervised learning framework to improve the oil 

viscosity characterization by LF-NMR relaxometry, using only a single NMR 

parameter – T2 logarithmic mean. Although the emphasis has been made on 

gradient boosting regression trees (GBRT)89 and support vector regression 
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(SVR)90, several other machine learning algorithms were tested as well, including 

decision trees (DT)91, random forests (RF)92, and k-nearest neighbors (KNN)93. 

Multiple linear regression (MLR)94 was also used.  A feature engineering (FE) 

approach was integrated to maximize the forecasting capacity of the models by 

deriving new features using the empirical findings from the NMR oil 

characterization domain 95. The study results indicate that this strategy can be 

successfully applied even to small datasets. As most of the underlying 

mathematical principles of tested algorithms are substantially different, we could 

observe the study task from different perspectives. The database used for 

calibration of models in the study was formed from the previously published LF-

NMR crude oil data, containing over 130 light and heavy oil samples recovered 

from various reservoirs in Canada and the USA18,60,86. The database consisted of 

282 observations in total. The study was segmented into two stages. In the first 

stage, the feature engineering was performed, and the dataset was randomly 

shuffled and split into training and testing sets in the 0.75:0.25 proportion. A split 

seed was selected randomly (random_state=42) and fixed for the reproducibility 

of the results. Therefore, the training set consisted of 211 observations and a test 

set of 71. The generalization ability of the models was assessed by the K-fold cross-

validation, while model performance was recorded using root mean squared error 

(RMSE), mean absolute error (MAE), mean square log error (MSLE) mean absolute 

percentage error (MAPE) and coefficient of determination (R2). In the second 

stage, the performance of models was compared against another four well-known 

empirical NMR viscosity models that were trained using the same framework. The 

code and the data have been uploaded to the GitHub repository and are available 

for use.  
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3.2. METHODOLOGY 

3.2.1. GRADIENT BOOSTED REGRESSION TREES  

In supervised learning, gradient boosting represents an ensemble (additive) 

model that can be used for solving supervised regression and classification 

problems. The main idea is to derive a model from a set of weak learners, typically 

decision trees (DTs) or their simplified versions known as decision tree stumps. 

The construction of the viscosity model �̂� = 𝐹(𝑥), evolves in sequences or 

boosting iterations (m). For each iteration, a new decision tree (h) is added to the 

existing model to minimize the loss function further. This way, an updated and 

improved version of the model is obtained 𝐹𝑚+1(𝑥). This process is repeated until 

the specified number of boosting iterations is reached 91,96,97.  

As the goal is to estimate the vector of viscosities η from the training set (𝑥), which 

consists of input features from the Table 2, and Table 3, the model can be 

expressed in the forward stage-wise form as: 

 𝐹𝑚(𝑥𝑖) =  𝐹𝑚−1(𝑥𝑖) + ℎ𝑚(𝑥𝑖) = 𝜂𝑖  (36) 

where ℎ𝑚(𝑥𝑖) is the underlying model at m-th iteration for i-th observation. This 

equation can be rewritten as: 

 ℎ𝑚(𝑥𝑖) = 𝜂𝑖 − 𝐹𝑚(𝑥𝑖) (37) 

From Equation 37, it can be observed that each added h is fitted to prediction 

residuals. In gradient boosting regression, the residuals are integrated into the 

concept of negative gradients, enabling the use of other loss functions such as 

absolute loss and Huber loss91. When dealing with datasets with a large number 

of outliers, the commonly used squared error loss function 𝐿 = 𝛴(𝑦𝑖 − 𝐹(𝑥𝑖))
2 will 

emphasize the larger residuals. Absolute loss function is not squaring the errors 

𝐿 = 𝛴|(𝑦𝑖 − 𝐹(𝑥𝑖)|, making it therefore more resistant to outliers. The negative 

gradient with an absolute loss function can be denoted as: 

 −
𝜕𝐿 (𝜂𝑖 , 𝐹𝑚−1(𝑥𝑖))

𝜕𝐹𝑚−1(𝑥𝑖)
=  𝑠𝑖𝑔𝑛 (𝜂𝑖 − 𝐹𝑚−1(𝑥𝑖)) (38) 

since the loss function is minimized by adding a new DT and fitting it to 𝐹𝑚−1. The 

number of DTs can become excessively large, which can result in overfitting the 
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training data. To prevent it, a shrinkage coefficient (𝜈) is introduced in the 

calculation of 𝐹𝑚(𝑥), which gauges the contribution of each tree ℎ𝑚(𝑥𝑖).  

 𝐹𝑚(𝑥𝑖) =  𝐹𝑚−1(𝑥𝑖) + 𝜈ℎ𝑚(𝑥𝑖) (39) 

This coefficient is also known as the "learning rate," and its optimal value can be 

estimated using some of the parameter search techniques 98.  It should be noted 

that learning rate 𝜈 is in the strong inverse relationship with number of DTs, that 

is the number of boosting iterations (M). Usually, lower values of 𝜈 lead to a 

smoother convergence if used with larger values of M 91. A more detailed 

explanation of gradient boosting concepts can be found elsewhere 89,96,97,99. 

3.2.2.  SUPPORT VECTOR MACHINES FOR REGRESSION (SVR) 

The SVR is a sophisticated and straightforward supervised learning (SL) algorithm 

used in classification and regression tasks. The SVR is based on the structural risk 

minimization (SRM) principle, which was confirmed to have better performance 

compared to empirical risk minimization (ERM) used, for instance, in neural 

networks. In simpler terms, SRM prevents the overfitting of the model by 

balancing two inversely related hyperparameters and consequently making a gap 

between the training set errors and test set errors smaller while reducing model 

complexity. In contrast, in ERM, a single objective minimizes the training error. 

What made support vector machines so famous was the introduction of kernels – 

the arbitrary functions whose purpose is to map the dot product of input features 

into the higher-dimension feature space. This functionality enables the utilization 

of hyperplanes, which are particularly useful in non-linear classification problems. 

Fortunately, the same concept was generalized for regression tasks 100. In 

addition, SVR has been proven to be an effective method even in application to 

small datasets, which is a necessary implication for the task at hand. 

In terms of viscosity prediction by NMR parameters, SVR has to be associated with 

our input features (T2lm, TE, and T(°K)) and output vector η (Tables 2 and 3). 

Suppose we arrange all the preprocessed input features in a matrix form as 𝑥 =

[𝑥1, 𝑥2, 𝑥3… 𝑥𝑛], where xn are column vectors of inputs. The measured viscosity 

instances can be rewritten into a response vector 𝜂 = [𝜂1, 𝜂2, 𝜂3, … , 𝜂𝑛]. Thus the 
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dataset can be defined then as {(𝑥𝑖, 𝜂𝑖)}𝑖=1
𝑛 . Where n is the number of oil samples. 

The support vector machine regression between input and response vector can be 

written as:  

 𝜂: 𝑓(𝑥) = 𝑊 ·  𝜙(𝑥) + 𝑏  (40) 

Here, 𝜙(𝑥) is the interpretation of an input matrix x in the higher-dimension space, 

while W and b are weight vector and bias terms. The latter two are obtained by 

minimizing the risk function: 

 𝑀𝑖𝑛: 
‖𝑊‖2

2
 +  𝐶

1

𝑛
∑𝐿𝜀(𝜂𝑖

𝑛

𝑖=1

, 𝑓(𝑥𝑖))  (41) 

   

 
𝐿𝜀(𝜂𝑖 , 𝑓(𝑥𝑖)) {

0                            𝑖𝑓 |𝜂𝑖 −  𝑓(𝑥𝑖)| ≤ 𝜀
|𝜂𝑖 −  𝑓(𝑥𝑖)| − 𝜀                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   
 (42) 

where, the ||W|| term is a magnitude of a vector of feature weights, which reduces 

the function's sensitivity to the perturbations in input x (i.e., flatness), thus 

gauging the robustness of a model. The right-hand side term quantifies the 

prediction error, measured by the 𝐿𝜀 loss function (Equation 42). The magnitude 

of residuals |𝜂𝑖 −  𝑓(𝑥𝑖)| is compared with the predefined value of ε, so that the 

residuals smaller than ε are ignored, but residuals larger than ε are 

penalized. Since any ε can be defined, the C parameter is introduced to regulate 

the tradeoff between the flatness of the 𝑓(𝑥𝑖) and penalty size for residuals larger 

than ε 100. The optimization of Equations 41 and 42 can be simplified by 

introducing slack variables (𝜉𝑖, 𝜉𝑖
∗) instead of prediction residuals 90: 

 𝑀𝑖𝑛: 
‖𝑊‖2

2
 +  𝐶

1

𝑛
∑(𝜉

𝑛

𝑖=1

+ 𝜉∗)  (43) 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {

𝜂𝑖 −  𝑊 ·  𝜙(𝑥𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖                        

 𝑊 · 𝜙(𝑥𝑖)  + 𝑏 − 𝑌𝑖 ≤ 𝜀 + 𝜉𝑖
∗,   𝑖 = 1,… , 𝑛

𝜉𝑖 ≥ 0                    𝜉𝑖
∗ ≥ 0                  

   

 

(44) 

 

To find the local minimum with respect to the given constraints, one can introduce 

Lagrange multipliers, in which case Equation 40 is transformed into:  
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 𝜂: 𝑓(𝑥) = ∑(𝛼 − 𝛼𝑖
∗) · 𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏

𝑛

𝑖=𝑖

  (45) 

where 𝛼 and 𝛼𝑖
∗ are Lagrange multipliers and 𝐾(𝑥𝑖 , 𝑥𝑗) is the kernel function, 

which maps the input features into the higher-dimension space. Further details 

about support vector machine regression can be found elsewhere 90,100. 

 

3.2.3. DATABASE OF RHEOLOGICAL AND NMR MEASUREMENTS 

The oil data were collected from our previous research and other published works 

18,60,86. In all studies, the experimental procedure was similar: the dynamic 

viscosity of oils was determined using conventional laboratory instruments (i.e., 

cone and plate rheometers), whereas the T2-relaxation spectra of the samples 

were obtained after raw materials data mathematical inversion from the 

measurements made by LF-NMR relaxometers. For this study, 282 data points 

were used for model development.  

 

3.2.4. PREPROCESSING AND ANALYSIS OF THE DATASET 

The preprocessing and analysis of all rheological and NMR data were performed 

using Python environment version 3.7.2 with the scikit-learn package and 

OriginPro 2019b 98. The feature dataset consists of T2lm, TE, and T(°K), while 

viscosity observations were stored as output vectors.  The data was divided into 

the training set and a test set in the 3:1 proportion, respectively. This way, we 

obtained a training set of 211 data points and a test set (unseen data) of 71 data 

points, which was used to estimate model accuracy only. 

 

3.2.5. FEATURE ENGINEERING AND TRANSFORMATION 

Feature engineering (FE) is a process in which domain knowledge is applied to 

perform appropriate transformations of the inputs and to extract new information 

from their known empirical relationships. This strategy proved to be effective in 
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reducing the complexity of SL models, which in turn led to an increase in 

prediction performance95. In our case, this entailed: (1) the transformation of 

inputs T2lm, TE, T(°K), and target output η, and (2) deriving new inputs from 

empirical relationships of T2lm, TE, and T(°K) with target output η. 

 

Table 2 shows that the ranges of inputs and outputs are out of scale, which implies 

that a particular transformation should be applied to normalize the data. Also, the 

observed viscosity data has a long-tailed distribution as it is skewed to the right-

hand side of Figure 18a, with over 95 % of samples distributed between 0.8 – 

100,000 cP range. In the field of statistics, the observations outside three standard 

deviations (outliers) typically degrade the forecasting performance of the models 

and can be, therefore, omitted 101. In our case, however, the outliers correspond to 

extra-heavy oils and bitumens (e.g., > 180,000 cP). In practice, the natural 

reservoirs in which these oils reside are often thermally treated in order to 

facilitate their recovery 102. Therefore, if these samples were omitted from the 

training data, the valuable information about their T2-relaxation behavior at high 

temperatures would be lost. This information was preserved by applying a simple 

logarithmic transformation to all features, which normalized the distribution of 

the data. The effect of log-transformation is illustrated in Figure 18b, on the 

example of target output η. Also, the log-transformation reduced nonlinearity of 

the dataset, which, in theory, should improve the performance of the SL regression 

models, which are efficient in solving linear problems (i.e., multiple linear 

regression and support vector regression).  
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Figure 18: Distribution of oil viscosity η before (a), and after the log transformation (b). 

Note that η is a target variable. 

 

In the second stage, we derived the new features by employing the findings from 

previous studies31,33,103. To evaluate the importance of newly derived features, we 

employed the GBRT algorithm.  One of the benefits of ensemble models such as 

GBRT is their capability of feature ranking by their relative contribution to the 
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prediction accuracy, thus making the interpretation and selection of new features 

more convenient. It should be noted that there are some downsides to feature 

ranking. For instance, two or more features may have a comparable correlation 

with the output. During feature ranking, one feature will be assigned a higher rank, 

which will lead others to get a lower rank, thus potentially leaving out a strong 

predictor 104. Figure 19a shows the ranking of the seven new features, alongside 

with T2lm, TE, and T(°K), with the bottom ones being the most relevant. The 

ranking is achieved by assessing the reduction of the training error generated 

from splitting the nodes of the DTs. Therefore, the features which reduce the 

training error more frequently during splitting will be ranked higher. Note in 

Figure 19a that T2lm-related features (log(T2lm)/TE, log(T2lm), and T2lm) capture 

most of the variability (~72 %), while T(°K)-derived features (log(T)/TE, log(T), 

and T) capture about 25% of the variability. This variability distribution was 

expected, considering that the T2lm strongly correlates with η, whereas T2-related 

features become more important at high temperatures when severe NMR signal 

loss occurs.  

 

In contrast, the TE-related features (1/TE, log(TE)/TE, TE, and log(TE)) affect 

prediction accuracy negligibly, with each being less than 1%. This is because the 

NMR measurements used as inputs for this study were all acquired to optimize the 

signal of fast relaxing fluids, i.e., through the use of small TE values.  If this dataset 

were to be expanded to systems with larger TE values (0.6 – 1.2 ms), TE's impact 

would be higher. Within this dataset, the impact of TE was removed from further 

consideration. However, even with the perceived insignificance of TE, it should be 

noted that features that include the TE in the denominator demonstrate higher 

relevance (e.g., log(T)/TE and log(T2lm)/TE). Figure 19b illustrates the relative 

importance of the remaining six features used for the training of the SL models. 

Finally, Table 3 summarizes the statistical description of log-transformed 

viscosity (i.e., target output) and engineered inputs used for SL viscosity 

forecasting alongside original features (T2lm, TE, and T(°K)). 
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Figure 19: Training set relative feature importance (ranking) by GBRT model of all input 

features, (a) before, and (b) after removal of redundant TE-derived features with less 

than <1% relative contribution. 
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Table 2: Descriptive statistics of six input features (input variables) used for training of 

SL models, and a log-transformed viscosity (Log(η)) which is a target variable. 

Features  Range Mean 
Standard  

deviation 
Count 

Log(η)* -0.13 - 13.67 6.00 2.93 282 

Log(T2lm) -1.46 - 7.12 2.08 1.91 282 

Log(T) 5.70 - 6.15 5.81 0.12 282 

Log(T)/TE  19.04 - 57.14 34.55 16.25 282 

Log(T2lm)/TE -14.69 - 71.22 14.74 19.23 282 

T2lm (ms) 0.23 – 1239.90 59.38 165.58 282 

T (°K) 299.15 – 468.15 337.43 45.15 282 

*target variable 

3.2.6. EVALUATION METRICS 

Five statistical metrics were chosen for the evaluation of the prediction 

performance of the models, including root mean square error (RMSE), mean 

absolute error (MAE), mean square logarithmic error (MSLE), mean absolute 

percentage error (MAPE), and adjusted coefficient of determination (R̄2). All 

metrics are negatively oriented statistical measures (i.e., smaller values are 

favorable), except R̄2, which is positively oriented.  

 

The RMSE is regularly employed in scientific studies to evaluate model 

performance 44,105. In this study, the RMSE is the square root of the average of 

squared differences between predicted viscosity and observed viscosity and is 

expressed in the centipoises: 

 RMSE= √
1

𝑛
 ∑  (𝜂𝑖 − 

𝑛

𝑖=1

�̂�𝑖)
2  (46) 

where n is a number of samples, 𝜂𝑖 is a predicted and �̂�𝑖 is the observed viscosity. 

However, this metric can be sensitive to outliers, which can inflate the value of 

RMSE 106. To address this issue, MAE is introduced for the calculation of averaged 

prediction errors of the models, in centipoises: 
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 MAE=
1

𝑛
∑ |𝜂𝑖 − 

𝑛

𝑖=1

�̂�𝑖| (47) 

In contrast to RMSE, MAE does not square the differences between predicted and 

observed viscosity, making MAE less sensitive to outliers 107. In this manner, the 

MAE score gives less weight to the large prediction residuals and, therefore, can 

be used as a control measure in RMSE interpretation. The shared disadvantage of 

RMSE and MAE is that both metrics do not provide any information about 

percentual differences between predictions and observations. MSLE accounts for 

this by associating squared differences between log-scaled predictions and 

observations: 

 MSLE= 
1

𝑛
 ∑  (𝑙𝑜𝑔(𝜂𝑖 + 1) − 𝑙𝑜𝑔(

𝑛

𝑖=1

�̂�𝑖  + 1))
2 (48) 

In this manner, the MSLE avoids the heavy penalization of prediction errors in the 

high viscosity domain, as is the case with RMSE and MAE. Instead, it considers the 

relative percentual difference between observation and prediction rather than the 

size of their residual108. In addition to MSLE, MAPE illustrated the relative 

percentual difference between sums of errors. MAPE represents the mean of the 

sums of absolute percentage errors of viscosity predictions. This metric enabled a 

more intuitive interpretation of the model forecasts since the errors are expressed 

in percentages109: 

 MAPE=
1

𝑛
∑ 

𝑛

𝑖=1

|
𝜂𝑖 − �̂�

𝑖

�̂�
| · 100% (49) 

Lastly, the proportion of model variance is typically expressed by the coefficient 

of determination (R2) which is a standard measure of goodness-of-fit for the 

regression models: 

 R2= 1 −
∑  (𝜂𝑖 − 
𝑛
𝑖=1 �̂�𝑖)

2

∑  (𝜂𝑖 − �̅� 𝑛
𝑖=1 )2

= 1 −
SSres
SStot

 (50) 

Although this metric provides a fast and straightforward evaluation, it might 

inflate due to the addition of new variables obtained from feature engineering. 
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This inflation is a well-known problem that can be addressed by adding a term 

that penalizes the score with each additional predictor 110: 

 R̄2= 1 − (1 − 𝑅2) ⋅
𝑛 − 1

𝑛 − 𝑝 − 1
 (51) 

where p is a number of features. Note that R̄2 < R2. 

 

3.2.7. GBRT OPTIMIZATION 

As mentioned in section 3.2.1, a choice of an arbitrary differentiable loss function 

('loss' parameter), can be made according to the statistical properties of the 

dataset. The NMR viscosity dataset contains a substantial number of outliers, 

which implied using an outlier-resistant loss function, such as the least absolute 

deviation (LAD)101. To test this premise, 5-fold cross-validation was executed for 

four commonly used loss functions: Huber loss, least squares, least absolute 

deviation, and quantile loss. The rest of the parameters and hyperparameters 

were fixed to default values. Based on the lowest mean validation error, it was 

found that the GBRT configuration with LAD loss function generated the most 

stable predictions in terms of all error metrics (Table 4). 

 

Table 3: The five-fold cross validation training set scores for different GBRT loss 

functions. The LAD loss exhibits the best performance based on MAEcv, RMSEcv, MSLEcv, 

R̄2
cv cross-validation (CV) scores.  

Test scores 
'Loss' parameter 

LAD Huber LS Quantile 

MAEcv 6332 7319 9072 6969 

RMSEcv 17,714 22,289 34,305 29,480 

MSLEcv 0.198 0.251 0.26 0.464 

R̄cv
2

 0.58 0.348 -0.54 -0.14 

The 'criterion' parameter can be determined in the same manner. This parameter 

allows a user to select the function that will estimate the DT node split quality. 

Usually, in regression tasks with DTs, the difference between the observed and 
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predicted value is quantified by mean squared error (MSE). Subsequently, the 

node splitting for a particular DT will be achieved so that the lowest MSE value is 

obtained. Since MSE heavily penalizes outliers, MAE was expected to perform the 

splitting task more efficiently (Table 5).  

 

Table 4: The five-fold cross validation training set scores for different GBRT criterion 

hyperparameters. Node splits by MAE criterion achive best scores in terms of MAEcv, 

RMSEcv, MSLEcv, R̄2cv cross-validation (CV) scores. 

Test scores 
'Criterion' parameter  

MAE MSE Friedman-MSE 

MAEcv 3666 5756 5757 

RMSEcv 9925 16286 16287 

MSLEcv 0.149 0.183 0.183 

R̄cv
2

 0.86 0.66 0.64 

The next step was to find the optimal hyperparameter values for the GBRT model. 

According to 91,99, five hyperparameters have a considerable impact on GBRT 

model performance:  

• Number of trees (M): maximum number of estimators or boosting 

iterations (n_estimators). 

• Learning rate (ν): shrinkage coefficient, which regulates the individual tree 

prediction contribution, where each tree is being scaled by 0 < ν < 1. 

• Subsample (λ): the proportion of the data for fitting to the individual trees. 

• Max depth (J): maximum depth (size) of a tree. This value constrains the 

number of nodes in the tree.  

• Max features (ψ): number of features used in the search for the optimal 

split of a tree node.  

Mathematically speaking, these hyperparameters are mutually dependent (also 

observable from Equation 39), which is why it was required to use a more 

sophisticated optimization technique other than pure trial-and-error. Therefore, 
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these were evaluated simultaneously with the help of GridSearchCV (GS-CV), an 

exhaustive search cross-validation algorithm available in a scikit-learn package 98. 

From the computer science standpoint, this metaheuristic approach iteratively 

optimizes an algorithm by searching for an appropriate combination of 

hyperparameters in multidimensional real-valued parameter space (grid), 

relative to some measure of accuracy (e.g., R2). This approach captures the 

interaction between the hyperparameters, therefore significantly reducing the 

optimization time. However, due to discrete data (i.e., TE) and other distributions 

in the input data, the grid-search optimization may fail to discover the best 

hyperparameter configuration, even with the appropriate transformations 

applied to the dataset. Also, with a growing number of hyperparameters, its' 

utilization becomes computationally intensive. Hence, optimization was assessed 

further using error curves. Table 6 shows the hyperparameters and their value 

range, which were optimized using the GS-CV approach. Recall that 'loss' and 

'criterion' parameters were fixed according to results in Tables 4 and 5.  

 

Table 5: Training set GBRT hyperparameter optimization by grid-search based on 5-fold 

cross-validation 

GBRT hyperparameters 
Value 

range/method 

Optimal values Score 

n_estimators (M) [1-500] [220] RMSE: 8704 

learning_rate (ν) [0.01-1.0] [0.03] MAE: 3377 

subsample (λ) [0.1-1.0] [1.0] MSLE: 0.136 

max_depth (J) [1-8] [4] MAPE: 29 

max_features (ψ) [auto, sqrt, log2] [log2] R̄2: 0.91 
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Figure 20: The test set GBRT model performance in terms of least absolute deviations 

(LAD) for various learning rates (a), and subsample sizes (b) relative to the number of 

trees M. Bottom plot (c) illustrates the model accuracy evaluation as a function of M, in 

terms of MAE, RMSE, and MSLE. 

Figure 20a shows how the GBRT model deviance evolves with different learning 

rates (ν) as a function of a number of trees M. The GBRT loss is expressed in the 

least absolute deviations. Larger values of ν (e.g., ν=1) lead to faster convergence, 

that is, smaller values of M are needed for the deviance to converge.  However, 

when a value is decreased (ν=0.01), the contribution of every additional estimator 

is reduced further, leading M to increase to ensure smooth convergence, which 

also means an increase in computational cost. Since the apparent tradeoff exists 

between these two parameters, the parameter grid-search cross-validation was 

used as a strategy for obtaining their appropriate values. 

 

Additionally, subsampling λ is a parameter that enforces the variance reduction of 

the sample population. In GBRT applications for large datasets, this technique 

proved helpful for improving computing performance and accuracy 91. Figure 20b, 

however, shows that no subsampling (λ =1) leads to the smoothest and lowest 

deviance for the given input, possibly due to the small number of data points. Also, 

alternating the λ parameter has only a minor effect on deviance magnitude. In fact, 

the variations are so minor that one must zoom in on the y-axis to observe this 

behavior (note y-axis scales of Figure 20b). 

 

Finally, the maximum depth of all trees was restricted to the same size (J=4), as 

determined by the GS-CV, which agrees with recommendations in literature 91.  

The optimal number of features for the best split of the tree node was found to be 

ψ=2 (i.e., max_features = "log2"). It should be noted that the value of the latter has 

the least impact on the prediction performance of the GBRT model, and therefore, 

using the default value (i.e., "auto") is also acceptable. 
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3.2.8. SVR OPTIMIZATION 

In Equation 45, the term K (xi, xj) represents the kernel function. The standard 

kernel functions used in SVR are linear, polynomial, sigmoid, and Gaussian. The 

NMR input parameters are in the nonlinear relationship with the oil viscosity; 

therefore, the kernel must capture this relationship once the input features are 

mapped into a higher dimension space. In these circumstances, the Gaussian, or 

radial basis function (RBF) kernel has proven to be effective 111. From Equation 

45, the kernel function can be expressed as: 

  𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (𝛾 · ‖𝑥𝑖 − 𝑥𝑗‖
2
)  

 

(52) 

where 𝛾 is the width hyperparameter of the RBF kernel. Hence, there are three 

main hyperparameters which need to be optimized: 

• Gamma (γ): RBF kernel specific parameter which defines the support 

vector's radius of impact. 

• Epsilon (ε): the insensitivity radius-ε within which the prediction residuals 

are ignored (loss=0). This value controls the number of support vectors 

(SVs) and the smoothness of the function. 

• Regularization parameter (C): hyperparameters, which affects the size of 

the penalty applied to model predictions. If too large, the model may store 

an excessively large number of SVs and cause overfitting.   

Literature findings show that the behavior of these hyperparameters is 

interrelated, which should be considered during their optimization100. Thus, the 

GS-CV approach was used to simultaneously approximate C, ε, and RBF kernel 

parameter 𝛾 (Table 7). Also, their in-depth assessment was performed from the 

analysis of the error curves (Figure 21).  
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Table 6: Training set SVR hyperparameter optimization by grid-search based on 5-fold 

cross-validation. Note that radial basis function (RBF) kernel was used.  

SVR hyperparameters Range/method Optimal values Score 

Gamma (𝛾) 

 

['scale', 0.1-1·10-5] 

 

[5·10-4] 

 

RMSE: 8704 

MAE: 3377 

Epsilon (𝜀) [1-1·10-5] 

 

[1·10-4] MSLE: 0.136 

MAPE: 29  

Regularization (C) [1-500] [25] R̄2: 0.91 
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Figure 21: Test set SVR model performance in terms of log-normalized RMSE for various 

values of ε (a), and γ (b) with respect to regularization C. Bottom plot (c) illustrates the 

accuracy of optimized SVR model as a function of C, in terms of three error metrics; 

log(RMSE), log(MAE) and MSLE.  

Figure 21a presents how SVR model prediction accuracy behaves for various 

values of radius-ε in the function of C. For the ε=10-4 obtained by GS-CV, it was 

found that the SVR model utilized over 70 % of the data samples as support 

vectors, which indicates overfitting112. For values of ε=10-3 and ε=10-2, the 

deviance converged smoothly at C=30. The number of SVs was reduced by 

increasing ε to 10-3 (Figure 21a, black) while preserving nearly identical accuracy.  

 

Figure 21b shows deviance for the fixed ε and various radii of individual SV impact 

γ. The smoothest convergence and lowest deviation are achieved when 𝛾=' scale,' 

which is the value when an inverse of the number of features is scaled by their 

standard deviation. Interestingly, the GS-CV obtained γ= 5·10-4, but according to 

its' plot (black curve), the deviance converges when C>50, at which point the SVR 

model attempts to perfectly predict each entry from the training set (hard-margin 

SVM behavior). Since this might lead to overfitting and increased model 

complexity, the γ was set to '0.001.'  

 

As a final step, the model with fixed ε and γ hyperparameters was evaluated in 

Figure 21c, where three metrics were utilized to evaluate the tuned SVR model. 

While both RMSE and MAE follow the same decreasing trend, the MSLE error 

decreases until the C=12 inflection point, after which it starts increasing. This 

behavior is due to the inflation of residuals in the low viscosity domain. To restrict 

the further growth of residuals and to preserve the overall model performance, 

the regularization was set to C=25, in line with the grid-search results (see Table 

7).  
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3.3. RESULTS AND DISCUSSION 

This section is divided into two parts. In the first part, we compare SVR and GBRT 

model performance against four other popular regression models, whereas in the 

second part, a performance of four well-known empirical NMR viscosity models 

was considered. The models are compared using the five error metrics introduced 

in chapter 3.2.6. Also, the cross-plots with predicted and observed viscosities are 

provided for the in-depth analysis. 

 

3.3.1. SUPERVISED LEARNING MODELS  

The performance of the GBRT and SVR was evaluated against an additional four 

SL algorithms, including multiple linear regression (MLR) 94, K-nearest neighbors 

(K-NN) 93, decision trees (DTs) 91, and random forests (RF) 92. Their optimization 

was performed with GS-CV, similarly as for GBRT and SVR. Recall that the dataset 

contains 282 observations which were shuffled and split into train and test set in 

0.75:025 proportion, making a training and test set of 211 and 71 observations, 

respectively.  
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Table 7: Training set GS-CV hyperparameter optimization results for all supervised 

learning algorithms which were tested in this work. 

Model Hyperparameters Range/method 
Optimal 

values 

Decision trees 

(DTs) 91 

criterion ['mse', 'mae'] ['mse'] 

max_features 

max_depth 

min_samp_leaf 

min_samp_split 

splitter 

[1, 2, 3, 'sqrt', 'log2', 'auto'] 

[1-4] 

[1-4] 

[1-4] 

[‘best’, ‘random’] 

[3] 

[4] 

[3] 

[2] 

[‘best’] 

K-Nearest 

Neighbors 

(KNN) 93  

n_neighbors [1-50] [3] 

weights ['uniform', 'distance'] ['uniform'] 

algorithm ['ball_tree', 'kd_tree', 'brute'] ['ball_tree'] 

p [1, 2]  [1] 

Random forests 

(RF) 92 

n_estimators [1-80] [7] 

criterion ['mse', 'mae'] ['mae'] 

Support vector 

machines for 

regression 

(SVR) 100 

gamma ['scale', 0.0005-0.1] [0.01] 

epsilon [1-0.0001] [0.001] 

C  [1-500] [25] 

Gradient 

boosted 

regression 

trees (GBRT) 91 

loss ['ls', 'lad', 'huber', 'quantile'] [‘lad’] 

n_estimators [1-500] [220] 

criterion ['mse',' mae',' friedman_mse'] ['mae'] 

learning_rate [0.01-0.1] [0.03] 

max_features [auto, sqrt, log2] [log2] 

max_depth [1-8] [4] 

subsample [0.1-1.0] [1.0] 



100 

  

 

Figure 22: Comparison of NMR SL viscosity model test set predictions and observations. 

Note that the grayscale points are predictions of models generated without FE, while 

warm color points are predictions with FE. Lighter colors indicate lower temperatures 
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(from 25 ℃/299 K), and more intense, darker colors indicate higher temperatures (up 

to 200 ℃/466 K). GBRT and SVR models with integrated FE demonstrate the best 

performance. 

 

 

Figure 23: Compared test set statistical scores of SL models without FE (a) and SL 

models with integrated FE (b). SVR-FE and GBRT-FE demonstrate the best statistical 

performance. 

When Figures 19 and 20 are examined together, one can note that the overall 

performance of each model improves after the integration of FE. This effect is, 

however, not proportionally pronounced for all models. For instance, the MLR-FE 
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model's prediction variance has reduced dramatically after employing FE (Figure 

22b). Interestingly, for GBRT and RF models, the variance-reducing effect from FE 

is much smaller than in the latter's case (Figures 22e and 22c). The same 

observation applies to the DT model, the base estimator of GBRT, and RF models .  

 

This difference in performance comes from the difference in the underlying 

mathematical principles of these models. As the MLR model is linear, the 

nonlinearity reduction from the log transformation naturally improved the 

model's generalization and stability. Additionally, the integration of new features 

reduced the variance of the predictions, which resulted in a further shrinking of 

residuals. A similar is valid for the SVR model, though to a smaller extent (Figure  

22f) 113. However, in the case of RF, GBRT, and DT models, the log transformation 

did not impact the performance because the background tree-branching process 

does not rely on numerical values of the features but instead uses the rank of the 

features, which remained the same after transformations 91. Thus, the variance 

reduction came solely from capturing more variability from the new features 

derived in the second step of FE. Furthermore, when we compare the DT scores in 

Figure 23, with those by GBRT, we observe a massive gap in performance, which 

perfectly illustrates the advantage of ensembles of DTs over a single DT. One of the 

reasons for the poor performance of single DT models is their 'habit' of overfitting 

the training data, making them unstable with unseen data. Therefore, ensembles 

of DTs generate a variance that minimizes the overfitting 91.  

 

Lastly, the KNN is a simple algorithm where the output values are forecasted based 

on the similarity between the input features. This similarity is calculated as a 

distance (e.g., Euclidian, Manhattan, etc.) from k-instances, defined by the user 93. 

Feature engineering improves KNN scores almost proportionally to RF and GBRT 

models, however not enough to minimize the large residuals in the high viscosity 

domain, which causes the RMSE and MAE scores to rise (Figures 20a and 20b).  
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Another remark is that the significant temperature variations seem to have a 

negligible effect on the performance of all supervised learning algorithms. The 

predictions in the highest temperature domain overlap with the x=y line in all six 

cases, demonstrating that each algorithm has appropriately captured the 

relationship between observed oil viscosity and NMR signal loss that occurs at 

high temperatures. In comparison, empirical models tested in this work23,31,33,103, 

exhibit poor performance in these conditions 86, as seen in the following chapter. 

 

3.3.2. EMPIRICAL NMR MODELS  

The performances of GBRT-FE and SVR-FE models are compared with four well-

known empirical NMR viscosity models based on T2lm, TE, and T. These models 

were developed by Straley et al. 23., Nicot et al. 103, Cheng et al. 33, and Sandor et al. 

31. Previous research showed that tuning by non-linear least squares (NLS) 

improves the performance of empirical models 86. However, the viscosity dataset 

in the present study has long-tailed distribution with many outliers at higher 

viscosities, which dominate the sum of squares minimization, thus ultimately 

leading to erroneous model fit and misleading statistical scores 114,115. Hence, the 

model fitting was performed using the orthogonal distance regression (ODR), 

proved to be a successful technique for dealing with outliers 116. Figure 24 and 

Figure 25 demonstrate the superior performance of both SVR-FE and GBRT-FE 

models in terms of all statistical metrics. The curvature of the viscosity forecasts 

by empirical models in Figure 24 reflects the combined influence of NMR signal 

loss due to the Curie effect, which occurs at high temperatures, and fast relaxation 

by solid-like components in heavy oil, which led to poor model generalization.  
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Figure 24: Performance comparison of empirical NMR viscosity model test set 

predictions (a, b, c, and d) with SVR-FE (e) and GBRT-FE (f) models. GBRT-FE and SVR-

FE demonstrate significantly better statistical performance. 
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Figure 25: Compared test set statistical scores of four empirical NMR viscosity models 

and SVR-FE and GBRT-FE supervised learning models in terms of RMSE, MAE, and 

MSLE. SVR-FE and GBRT-FE demonstrate significantly better statistical performance. 
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3.3.3. SVR-FE VS. GBRT-FE 

When cross-plots from Figure 22 and Figure 24 are analyzed along with scores in 

Figure 23, Figure 25, one can conclude that SVR-FE and GBRT-FE models have 

superior test performance than any other SL model. For instance, in the case of 

MLR-FE, K-NN-FE, and RF-FE, the SVR-FE model, on average, scores 2.5 times 

lower RMSE and MAE, while GBRT-FE achieves nearly two times lower scores. 

When their performance is compared to empirical models, the difference in 

performance is even more substantial; the SVR-FE model has about 4.5 times 

lower RMSE and MAE scores, whereas GBRT-FE achieves nearly 3.5 times lower 

scores.  

 

The principal difference in the performance of these two models is related to their 

precision (i.e., variance), which is evidenced by their different MSLE and MAPE 

scores. For instance, the SVR-FE model has a better MSLE score than empirical 

models (~4.5 times lower) but compared to SL models, KNN-FE and RF-FE 

marginally outperform SVR-FE. The same is true for MAPE scores and percentage 

error box plots when further examined in Figure 26. The GBRT-FE model, on the 

other hand, scored the best MSLE and MAPE scores in this work. These results 

imply that SVR-FE has the highest accuracy but somewhat lower precision (i.e., 

variance), relative to GBRT-FE, KNN-FE, and RF-FE models. For more convenience, 

all evaluation scores are summarized in Table 9. 
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Figure 26: Test set percent error box plots (a) and MAPE scores (b) for six supervised 

learning models with feature engineering, and four empirical models. Note that in the 

plot (a) the y-axis is in log-scale. GBRT-FE model demonstrates the best performance in 

terms of MAPE. 
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Table 8: Compared view of test set statistical scores for all SL and empirical models. 

Bolded values correspond to the best score. 

Model 
Test set scores 

RMSE (сP) MAE (сP) MSLE MAPE (%) R2 

DT 20,712 7968 0.368 55 0.49 

MLR 30,282 10,858 3.443 282 -0.08 

KNN 25,044 8642 0.369 47 0.26 

RF 21,725 6989 0.293 44 0.63 

SVR 26,266 7858 0.749 93 0.40 

GBRT 10,587 3331 0.168 32 0.85 

DT-FE 20688 7409 0.359 55 0.49 

MLR-FE 15,808 5447 0.319 56 0.70 

KNN-FE 14,559 4182 0.210 39 0.74 

RF-FE 18,285 5979 0.232 43 0.79 

SVR-FE 5418 1671 0.257 50 0.96 

GBRT-FE 8704 3377 0.136 29 0.91 

Straley 28,910 9638 1.014 54 0.58 

Sandor 25,012 8066 0.831 50 0.83 

Nicot 21,489 7306 0.712 67 0.46 

Cheng 21,371 7085 0.990 95 0.59 

 

3.3.4. PHYSICAL IMPLICATIONS OF SVR-FE AND GBRT-FE PERFORMANCE 

From the physical point of view, meaningful insight can be extracted from the 

models' fundamental understanding. Although SVR-FE is moderately stable and 

achieves good accuracy, it struggles with capturing additional variability from the 

oil samples' diverse chemical compositions. This behavior can be observed in 

Figure 24f, where SVR-FE predictions favor the high-temperature heavy oil 

sample over the other samples. This occurs due to the structural risk minimization 

principle, which balances model complexity to avoid overfitting the training data 

and ensures the best possible generalization of new data. In other words, the 

model can be adapted to perform with more precision, but that would likely 
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deteriorate its generalization ability. However, two possible strategies could 

rectify this; firstly, SVR heavily relies on feature engineering, which implies that 

the SVR training on a set of lighter or more chemically alike oils would improve 

the forecasts' precision by preserving good generalization. The second strategy 

would be to expand the database by adding more NMR data from new samples. 

 

On the other hand, GBRT-FE effectively handles the discrepancies from chemically 

diverse set oil samples and a wide span of temperature and viscosity. This is due 

to its stage-wise estimator addition principle, where overfitting is controlled by 

tuning the learning rate and restriction of tree sizes. In this way, the GBRT 

hyperparameters limit individual trees' contribution, but by adding many 

estimators, the model manages to "learn" nuanced relationships that stem from 

mixed oil chemistry, thus outperforming the SVR approach. As a result, GBRT-FE 

achieves the best tradeoff between variance and bias for the task at hand at a 

negligible increase in computational costs. 

 

On another note, models presented in this study have certain limitations 

originating from (a) NMR hardware configuration and (b) data availability. 

a) One of the limitations of the presented SL models is that they were trained 

on NMR oil data acquired with echo-spacing (TE) ranging from 0.1-0.3 ms. 

Thus, the NMR data acquired using older NMR tools where echo-spacing 

(TE) values are hardware-limited to longer TE (0.3-1.2 ms) might have less 

reliable predictions. Reliability might be particularly problematic for heavy 

oils and bitumens, where due to the fast relaxation of solid-like 

constituents, the NMR device fails to measure the whole T2-relaxation 

spectra, which would cause the models to underpredict the real viscosity 

31,74,103. However, by adding new NMR data to the dataset acquired using 

longer TE, preferably from heavy oil samples, the SL algorithm could 

capture the relationship between long TE and viscosity, compensating for 

the undetected part of the T2 spectra.   
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b) Small datasets are very common in petrophysics, especially NMR data, due 

to the confidentiality regulations of oil companies and high well-logging 

costs, making the application of artificial intelligence challenging. 

Additional data acquired from heavier oils and at various temperatures 

would make these models more robust to the chemical diversity of oils and 

various temperature conditions. 

 

3.4. SUMMARY 

In this study, we used SVR and GBRT algorithms to develop NMR models for oil 

viscosity prediction using NMR T2-relaxation time, echo-spacing and temperature 

as an input, and dynamic oil viscosity as the target output. Also, a strategy to 

reduce the variance of the forecasts was introduced, where domain knowledge 

was used to implement feature engineering. Model performance was assessed 

against four other popular SL algorithms and another four analytical models from 

the literature. The SVR-FE and GBRT-FE have achieved statistically most favorable 

scores in the study in terms of five error metrics: RMSE, MAE, MSLE, MAPE, and 

R̄2.  

 

In summary, GBRT-FE demonstrated the best overall generalization ability, thus 

producing predictions with a well-balanced variance-bias tradeoff. Consequently, 

the use of GBRT-FE might prove as a viable solution in circumstances where a wide 

span of oil types (light oils, heavy oils, and bitumens) is being tested at various 

temperatures. Environments like these correspond to heavy oil reservoirs 

undergoing or being screened for thermal treatment and other EOR approaches 

such as solvent injection or a miscible gas injection 12. On the other hand, the SVR-

FE model exhibited a high accuracy but could not account for the variability 

originating from the diverse chemical composition of the oils at the level that the 

GBRT-FE model did. These findings indicate that SVR-FE would be a better choice 

when sets of chemically more similar oils are being studied (e.g., only light or only 

heavy oils) at various temperatures. In such conditions, the variance of SVR-FE 



111 

  

predictions would reduce to the degree where high accuracy and precision come 

into play, such as in laboratory NMR characterization of petroleum fractions or 

contactless non-invasive oil viscosity monitoring in mechanical systems. 

 

Finally, the proposed strategy for supervised learning application proved to be 

effective even for a small dataset, suggesting that this approach can be extended 

to characterize other physicochemical properties of oils, fuels, and petroleum 

distillates where researchers work with relatively smaller datasets. 
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Chapter 4  APPLICATION OF XGBOOST MODEL FOR IN-SITU WATER 

SATURATION DETERMINATION IN CANADIAN OIL-SANDS BY LF-NMR AND 

BULK DENSITY MEASUREMENTS  

 

4.1. MOTIVATION 

As discussed in section 1.5.3, the main issues related to the determination of water 

content in oil-sands by LF-NMR are: 

• Insufficient understanding of dominating T2 relaxation mechanism in fine 

pore-space saturated by fluid (T2 bulk + T2 surface);  

• The diffusive-coupling phenomenon associated with the water relaxation 

between macro- and micro-pores, and; 

• Resultant overlapping of water and oil signals in T2 distribution. 

As these issues are intertwined, the determination of T2 cutoffs for splitting the T2 

distribution to producible and bound fluids and interpretation of fluid types 

becomes a laborious task in which seemingly minor errors can lead to erroneous 

predictions of water saturation and, therefore of OOIP. 

 

In this work, we postulated that the combination of LF-NMR T2 data and bulk 

density data could be used to effectively separate the contributions of oil and 

water signals to a degree at which an accurate determination of relative water 

fraction is possible. For model derivation, two machine learning approaches based 

on Extreme Gradient Boosting (XGB) were employed. The first modeling approach 

is based on a feature engineering process that reduces the number of inputs while 

maximizing model generalization capacity. This was achieved by deriving new 

features using empirical knowledge from the T2 distribution analysis domain and 

a feature extraction technique based on information theory. In contrast, the 

second approach considers as input the whole NMR T2 distribution of the sample, 

aiming to preserve all available information originating from fluids residing in the 

sample pore space. The dataset comprised 82 oil-sands core samples recovered 
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from northern Alberta in Canada. The NMR T2 relaxation distribution of samples 

was obtained at ambient and reservoir conditions, comprising dataset of 164 

observations. Water content percentage relative to of the total mass of the sample 

was determined by Dean-Stark extraction (%DS-w). The model training and 

prediction test scores of the models were evaluated using three statistical metrics 

and a leave-one-out cross-validation (LOOCV). These scores were compared with 

water content predictions based on the previously published deconvolution 

method. Deconvolution was performed according to Bryan et al  32,61. 

4.2. THEORY 

4.2.1. LF-NMR MEASUREMENTS FOR WATER SATURATION DETERMINATION  

Three main processes comprise the total T2 relaxation; bulk relaxation, surface 

relaxation, and diffusion relaxation due to the gradient in a magnetic field. In this 

work, the benchtop LF-NMR relaxometer was used in which the gradient is absent, 

thus the diffusion term can be neglected. In such case, in the Equation 5 the 

T2diffusion term can be omitted: 

Recall that T2Bulk represents the relaxation occurring in bulk fluids or fluids in large 

pores, and T2Surface generally quantifies the relaxation of fluids in smaller pores. 

Also recall that ρ2 is T2 surface relaxivity, and S/V is a ratio of the fluid volume and 

surface of the pore. Each of these mechanisms will contribute to the total 

relaxation in varied proportions depending on reservoir rock properties and 

physicochemical properties of the fluids, such as rock wettability, pore size and 

pore surface area, fluid viscosity and chemical composition.   

4.2.2. XGBOOST PRINCIPLES 

XGBoost stands for Extreme Gradient Boosting (XGB), and it presents an 

implementation of the gradient boosting decision trees117. The main principle of 

gradient boosting is to utilize the individual weak learner, such as a decision tree, 
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and in a stage-wise manner, add iteratively new trees, to minimize further the 

objective function. This process continues for the specified number of boosting 

iterations, after which the prediction model is obtained in a final form. The 

algorithm uses gradient descent to minimize the loss function by finding the 

direction of the “steepest” descent. The loss function is minimized by finding a new 

best model (tree), and fitting it to the prediction residual. As this is performed in 

the step-wise manner, the size of the step is controlled by learning rate. If the step 

is too small the gradient descent will be slow, or may just converge to the local 

minimum. If it is too large, it will diverge. To find a minimum, the gradient descent 

uses a first order approximation which assumes that the loss surface is planar in 

the direction of the descent (i.e., in 3D, a plane tangent to the error surface). If the 

loss surface is not planar but convex, the gradient descent will ignore information 

about convexity, which may lead to a slow convergence or convergence to a local 

minimum. XGBoost, on the other hand, behaves much like Newton’s method118, 

which uses a second order approximation (i.e., in 3D, a convex quadratic surface 

with greater overlap with error surface) which assumes that the loss function is 

twice differentiable. The second order approximation allows considering the 

curvature of the loss function, and therefore ensures a faster convergence to the 

loss function minimum compared to the gradient descent. Although, Newton’s 

method requires calculating the Hessian matrix for storing the quadratic term 

coefficients of local second order function, the XGBoost instead computes the 

second partial derivative of the loss function (element-wise), which is less 

computationally demanding.  

Another advantage of XGBoost is implementation of L1 and L2 regularization in 

the penalty function (Equation 57) which reduce the model complexity and 

overfitting. The XGBoost model which uses K additive functions (trees) can be 

expressed as: 

where ŷi is predicted Dean-Stark water content (%DS-w), xi is a vector of input 

features and fk is an independent tree of the k-th instance. In contrast to decision 
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𝐾
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trees, in XGBoost, trees contain a continuous prediction residual (score) in each i-

th leaf (wi). By summing up the score in corresponding leaves we can calculate the 

final prediction. In order for trees to learn, a regularized loss function (L) has to 

be minimized. 

where l is convex loss function which represents the difference between 

prediction ŷi and a target yi. The right-hand side term Ω penalizes the complexity 

of the tree, and can be donated as: 

Here, γ is L1 and λ is L2 regularization parameters, T is the number of leaf nodes 

in a tree, and wj2 are the squared scores of leaves. Equation 57 shows that 

γ penalizes the growing complexity of the model (large T), while λ serves as a 

smoothing parameter for the learnt scores wi to prevent overfitting. Like in 

gradient boosting regression trees, the model is trained by adding new trees in a 

stage-wise manner. For the prediction ŷi(t) at i-th instance and t-th stage: 

 

where ft represents a new tree at t-th stage. The Equation 56 can be then expanded 

such that the minimization of the loss function is performed with respect to 

penalty term Ω: 
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To enable a quicker minimization of the Equation 62, we can expand it to a second 

order approximation (Taylor expansion) in which case it will become: 

where gi is the first order gradient and hi is a second order gradient. The Equation 

63 can be further improved by removing constant terms and expanding the 

penalty term. These details can be found in the work of Chen et al. 117. 

 

4.3. METHODOLOGY 

4.3.1. EXPERIMENTAL PROCEDURE AND DATA PREPROCESSING 

Oil-sand samples were collected in northern Alberta in Canada from a single 

delineation well. Two sets of 82 whole core samples were recovered. The first set 

was used for laboratory LF-NMR measurements, and a second set represented 

sister samples used in Dean-Stark extraction for determining the relative fraction 

of water, oil, and solids. Samples for NMR experiments were stored in glass vials 

and measured using a Corespec 1000TM benchtop LF-NMR relaxometer at 

reservoir temperature (6 ℃) and ambient temperature (25 ℃). The Carr-Purcell-

Meiboom-Gill (CPMG) pulse sequence was used for obtaining T2-relaxation 

distribution. The CPMG parameters were predetermined after a series of test NMR 

experiments on different oil-sand samples. There were two aspects which had to 

be taken into account. The first was to tune the CPMG parameters to detect the fast 

relaxing heavy oil and clay-bound water signals. This was achieved by setting the 

shortest echo time TE that the equipment allowed (0.2 ms). The second aspect was 

achieving a lower signal-to-noise ratio (SNR) to simulate the well-logging in-situ 

NMR tool output by reducing the number of trains, which in turn resulted in a 

noisier signal. After trial rounds of measurements, the following parameters 

produced optimal T2 distribution and SNR (Table 10). 
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Table 9: Optimal CPMG pulse sequence parameters for detection of fast relaxing clay-

bound water and heavy oil signals. 

CPMG pulse parameters Values 

Echo time, TE (ms) 0.2 

Number of pulses, Np  5000 

Wait time/post train delay (ms) 6500 

Number of trains, NT 10 

 

For the dataset, the range of SNR varied from 5 to 56, with an average of 23. The 

ExpFit in-house software for multi-exponential analysis of the NMR signal was 

used. The representation of the signal after Inverse Laplace Transform (ILT) was 

obtained using Tikhonov regularization119. The practice has shown that the 

regularization parameter helps avoid oscillations in solution associated with noise 

and provides smooth T2 distributions17. The regularization parameter can be 

determined by direct and indirect methods such as Butler-Reed-Dawson, L-curve, 

or generalized cross-validation17. In the case of oil-sands, after initial analysis, the 

regularization parameter was determined directly and α=0.05 was found to 

provide the most stable solution for most samples. The density values of these 

samples were measured beforehand by X-ray Computed Tomography (X-ray CT) 

using GE 9800 CT scanner as a substitute for the density logging data. 

 

The experimental program for Dean-Stark extraction, LF-NMR measurements, 

and X-ray CT density measurements is illustrated in the flowchart (Figure 27). 
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Figure 27: Flowchart representing the experimental program for oil-sands samples by 

X-Ray CT, LF-NMR T2 measurements, and Dean-Stark extraction. 

The final size of the dataset comprised 164 data points – 82 T2 distributions at 

ambient temperature and 82 T2 distributions at reservoir temperature, with 

corresponding density data and Dean-Stark sample composition. To compare the 

performance of machine learning models with the well-known peak 

deconvolution approach, the prediction of water content by LF-NMR 

measurements was also performed using the T2 cutoff approach developed by 

Bryan et al. 59.  

 

The data processing and model training was performed in Python 3.9 

environment, while figures were produced using OriginPro 2019b software. For 

XGBoost model development and training, the dataset was randomly split into a 

training set and a test set in 0.75:0.25 proportion, respectively. To ensure the 

reproducible split of the data, a random split seed was fixed to random_state = 2. 

The XGBoost models were optimized using Bayesian Optimization (BO), while the 

training quality was evaluated by leave-one-out cross-validation (LOOCV). The 

forecasting performance of the models was evaluated using three error metrics 
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and residual distribution analysis. These steps will be discussed in detail in the 

following sections.  

 

4.3.2. XGBOOST MODEL BASED ON FEATURE ENGINEERING (XGB-FE) 

Feature engineering (FE) is a process in a part of a machine learning pipeline 

where domain knowledge is utilized to extract the most relevant information from 

the raw data. In this work, we used feature engineering to extract information 

from the NMR T2-relaxation distribution. The complete FE model derivation 

procedure is illustrated in Figure 28.  

 

 

Figure 28: Flowchart for XGB-FE model development. 

In petrophysics, the T2-relaxation is regularly analyzed by geoscientists to 

determine fluid saturations in reservoirs, differentiate between different types of 

fluids, study pore size distribution, and evaluate the physicochemical properties 

of fluids. However, depending on the task, some parts of the T2 distribution may 

have more relevance than others. In the context of studying the water content in 

oil-sands by NMR, we use feature engineering to reduce the amount of 

unnecessary information while preserving the data carrying the most information 

about the water in samples. A time-domain distribution of the T2-relaxation was 

obtained by processing the spin-echo signal decay using a mathematical inversion. 
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As the T2 distribution has a form of a continuous function, the discretization was 

performed for data binning which simplifies the input of data into the machine 

learning model. After the discretization, the T2 data was presented as a 

distribution of 52 bins, with each bin corresponding to a particular T2i relaxation 

time in milliseconds. We defined five new NMR T2 features to limit the number of 

inputs.  

 

As the T2 distribution of relaxation times is represented on the semi-logarithmic 

scale, the standard parameter for representing the average T2 relaxation is T2 

logarithmic mean (T2lm): 

 
𝑇2𝑙𝑚 = 𝑒𝑥𝑝 [∑

𝐴𝑖
𝐴
⋅ 𝑙𝑛(𝑇2𝑖)] 

 
(64) 

where Ai is an amplitude at the corresponding T2i bin, and A is a total NMR 

amplitude. Empirical evidence shows the strong relationship between viscosity of 

fluids and T2lm, implying that in a water-oil system where distribution tends to be 

multimodal due to their different relaxation properties, the T2lm provides a better 

measure of central tendency favoring both fast and slow relaxing parts of the 

distribution.  

 

To account for the variation in T2 distribution (i.e. narrow vs. wide peaks), the T2 

standard deviation was defined as: 

 𝑇2𝑠𝑡𝑑 = √
∑(𝐴𝑖 −  𝜇)

𝑁
 (65) 

where μ is the T2 distribution mean, and N is the number of the T2 bins.  

 

The T2p was defined as a location of a maximum value (peak) of the T2 amplitude 

on T2i axis. This parameter is used in the petrophysical practice for the separation 

of bound and producible fluids and fluid typing since T2p gives an indication of 

whether the largest amplitude portion of the signal corresponds to low or high T2 

values. 
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 𝑇2𝑝 = max (𝑓(𝑇21), … , 𝑓(𝑇2𝑛)) (66) 

Intelligent algorithms like XGBoost have gained popularity due to their ability to 

generalize complex data dependencies in large datasets and achieve state-of-the-

art forecasting results. However, a small dataset is used in this study, where the 

overlapping of water and oil T2 signals are likely to remain hidden or poorly 

represented. So, instead of allowing the algorithm to search through the whole 

NMR T2 distribution, we can ‘show’ it where to look for the patterns and changes 

in the amplitude. One of the essential parts of the T2 distribution in sandstones is 

the empirical clay-bound water T2 cutoff located at 3 ms, which presents the 

boundary between capillary-bound and clay-bound fluids in a water-saturated 

core13,120. In order to capture the possible T2 response of clay-bound water and 

monitor its signal variation with different training samples, we defined a T2 bound 

fluid (T2bf) interval as: 

However, this parameter cannot be used on its own to describe the changes in 

water content since the oil signal may also be located in the relevant interval. The 

true T2 cutoff value in petrophysical practice is usually determined by performing 

lab tests on the saturated core samples (i.e., centrifuging), and even then, the use 

of a fixed or averaged T2 cutoff value leads to the erroneous prediction of 

producible fluids. Instead, we attempt to obtain insights into the true T2 cutoffs 

using a feature extraction technique called Mutual Information (MI) regression, 

based on the information entropy between variables. In classical regression 

analysis, statistical tests like F-test are carried out to study the degree of the linear 

association or continuous analysis of covariance (CANOVA) for the non-linear 

association between variables. However, mutual information is not ‘concerned’ 

whether the variables have apparent linear correlation or covariance of zero, and 

they may still be stochastically dependent. This is the case in studying the changes 

in the conditional probability of one variable when another is modified121. In other 

words, by using MI regression, one can measure the level of association of the 

 𝑇2𝑏𝑓 = ∑ 𝐴𝑖

3.0(𝑚𝑠)

0.1(𝑚𝑠)

  (67) 
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specific parts of T2 distribution with the target output (i.e., water content by Dean-

Stark), regardless of their correlation or covariance. The score is measured in 

natural units of information or ‘nats’ based on natural logarithms and powers of e. 

The MI regression was performed on the training set using a Python library 

sklearn.feature_selection class mutual_info_regression.  

 

Figure 29: The mutual information regression results applied to the training set T2 

distributions of the oil-sand samples relative to the Dean-Stark water content (DS-w). 

The shaded area presents the continuous cluster of T2 responses with a strong mutual 

association with DS-w, which were used to calculate the T2 cutoff range parameter – T2cr.  

Figure 29 shows the relative mutual information scores of T2 responses, where 

higher values indicate a stronger association with water content by Dean-Stark. 

For this dataset, the responses from 1.99-6.30 ms have the highest association 

with the water signal and form a continuous cluster between 100 and 101 decades 

along the T2 semi-log scale, suggesting that most theoretical T2 cutoff values lie in 

this interval. Therefore, the T2 cutoff range (T2cr), was defined as:  

 𝑇2𝑐𝑟 = ∑ 𝐴𝑖

6.30(𝑚𝑠)

1.99 (𝑚𝑠)

  (68) 

As previously mentioned, the T2 surface relaxation and diffusive coupling play a 

vital role in identifying clay-bound water, which causes the overlapping of the 

water and oil signals. Unfortunately, to determine their contribution, a sample 
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recovery for the subsequent lab experiments is required. However, a common 

practice in well-logging is to combine NMR and bulk density logs to improve 

interpretation. Therefore, the bulk density was used as an additional parameter 

which we postulate is associated with T2 surface relaxation and diffusive coupling.   

 

Figure 30: The diagonal correlation matrix shows the linear dependence between six 

input features with Dean-Stark water content (DS-w) in the training set. Scores 

represent Pearson’s correlation coefficient and are color-coded (heatmap). 
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Figure 31: Mutual information regression train set scores for five NMR parameters and 

bulk density (input features) relative to the Dean-Stark water content (DS-w). 

The correlation matrix (Figure 30) shows the linear dependence between the 

input features and target output. According to the Pearson score, T2 cutoff range 

and T2 peak, and T2 logarithmic mean features exhibit the strongest positive 

correlation with the water content by Dean-Stark (DS-w). The T2 standard 

deviation shows a moderate degree of positive correlation, while T2 bound fluid 

and density features show moderate to low negative correlation with DS-w. 

Interestingly, when compared with mutual information scores from Figure 31, it 

can be observed that all features are ranked by score accordingly to Pearson’s 

scores except for density which has the highest MI score (0.86 nats), indicating its 

strong stochastic (nonlinear) dependence with DS-w, thus justifying integration of 

density measurements into the model. Therefore, the XGB-FE model was trained 

using the six features presented in Table 10. The target variable is presented in 

Table 11 (DS-Sw). 
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Table 10: Descriptive statistics of six input features used for XGB-FE model training. 

Statistic T2std 

(a.u.) 

T2p 

(ms) 

T2lm 

(ms) 

T2cr 

(a.u.) 

T2bf 

(a.u.) 

ρ 

(kg/m3) 

Count 164 164 164 164 164 164 

Mean 0.016 11.57 1.84 0.18 0.31 1626 

Std 0.005 4.54 1.22 0.13 0.10 80 

Min 0.006 1.00 0.32 0.00 0.10 1442 

25% 0.013 8.00 0.90 0.07 0.23 1581 

50% 0.016 13.00 1.61 0.18 0.30 1634 

75% 0.019 15.25 2.49 0.29 0.38 1677 

Max 0.032 20.00 8.59 0.50 0.54 1842 

 

Table 11:  Descriptive statistics of the target variable Dean-Stark water saturation (DS-

Sw). 

Statistic DS-Sw 

(%) 

Count 164.0 

Mean 6.20 

Std 2.16 

Min 2.50 

25% 4.20 

50% 6.40 

75% 8.10 

Max 10.0 

 

4.3.3. XGBOOST MODEL BASED ON THE FULL T2 RELAXATION DISTRIBUTION 

(XGB-FS) 

The second modeling method facilitates the complete sample T2 distribution. 

There are two main incentives for this approach. First, the T2 relaxation 

distribution contains a large amount of information about the fluids residing in 

the pore space, indicating that using a single or even a few features to characterize 
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the whole distribution may lead to significant information loss and, therefore to 

poor model forecasting performance73. By using the entire T2 distribution, 

variations such as changes in slope or local minima can implicitly be used to help 

separate oil and water signals. Secondly, predictions generated by the full-T2 

distribution model provide a good baseline for comparison with the feature 

engineering and conventional deconvolution approaches. Therefore, the input 

features were arranged as X = [A1, A2, A3,…, A52, ρi], where Ai is the i-th column 

vector of the amplitudes at the corresponding T2i bin, and ρi is a column vector of 

density measurements. The water content by Dean-Stark (DS-w) was arranged 

as Y = [DS-w1, DS-w2,…, DS-wn], thus defining the dataset as {(𝑋𝑖, 𝑌𝑖)}𝑖=1
𝑛  where 𝑛 is 

the number of oil-sands samples. The complete XGB-FS model derivation the 

procedure is illustrated in Figure 32. Statistical description of input features is 

summarized in Table 12, and the target variable description is in Table 11. 

 

 

Figure 32: Flowchart for XGB-FS model development. 
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Table 12: Descriptive statistics of 52 discrete T2 responses used as an input features for 

XGB-FS model training. Table is truncated for convenience. 

 1 2 … 51 52 

Statistic T2(0.10ms) 

(a.u.) 

T2(0.12ms) 

(a.u.) 

… T2(7943.3) 

(a.u.) 

T2(10,000) 

(a.u.) 

Count 164 164 … 164 164 

Mean 0.0074 0.0103 … 0.0005 0.0014 

Std 0.0091 0.0122 … 0.0011 0.0036 

Min 0.0000 0.0000 … 0.0000 0.0000 

25% 0.0000 0.0000 … 0.0000 0.0000 

50% 0.0036 0.0068 … 0.0000 0.0000 

75% 0.0121 0.0158 … 0.0002 0.0003 

Max 0.0395 0.0567 … 0.0059 0.0192 

 

4.3.4. MODEL OPTIMIZATION 

The XGBoost algorithm contains many hyperparameters which enable fine model 

tuning. From the standpoint of statistical learning, the tuning usually involves the 

use of iterative algorithms which search for a suitable combination of 

hyperparameters in real-valued parameter space relative to the specified measure 

of model forecasting performance (e.g., mean squared error). However, as the 

number of parameters grows, the optimization becomes computationally 

expensive due to the combinatorial explosion, making the manual optimization or 

exhaustive grid searching techniques inefficient. In contrast, Bayesian 

Optimization (BO) sets a probabilistic approach where each successive 

combination of hyperparameters is selected based on the information obtained in 

the previous optimization step, thus avoiding the redundant calculations for 

unlikely parameter combinations and reducing the number of required iterations 

to reach the global minimum of the objective function.  
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The BO was performed in Python using scikit-optimize package class 

skopt.BayesSearchCV. The hyperparameters and their optimal values are 

presented in Table 12. 

 

Table 12: Results of Bayesian Optimization on training set with 5-fold cross-validation, 

for XGB-FS and XGB-FE models. 

XGBoost 

hyperparameters 

Search range XGB-FS  

optimal  

XGB-FE  

optimal 

n_estimators [50-1000] [650] [300] 

learning_rate [0.004-0.1] [0.008] [0.053] 

subsample [0.7-1.0] [0.7] [0.6] 

max_depth [6-12] [8] [7] 

objective [‘squared_error’, 

‘pseudo_huber’] 

[‘pseudo_huber’] [‘squared_error’] 

grow_policy [‘depthwise’, ‘lossguide’] [‘lossguide’] [‘lossguide’] 

booster [‘gbtree’, ‘dart’] [‘gbtree’] [‘gbtree’] 

4.3.5. PERFORMANCE METRICS AND MODEL VALIDATION  

The forecasting performance of the models was evaluated using three 

performance metrics, including coefficient of determination (R2), root mean 

squared error (RMSE), and mean absolute error (MAE). The R2 is the positively 

oriented metric used in regression for representing the amount of model variance, 

and how well the model predictions generalize the observations. However, R2 

alone does not provide information on prediction errors. The RMSE is another 

regularly employed error metric, used alongside R2, but under the assumption that 

residuals follow the normal distribution122. As a result of the heavy penalization 

of larger residuals, the RMSE is a convenient metric for revealing the differences 

in performance between multiple models with normally distributed residuals. At 

the same time, large residuals can cause the inflation of the RMSE score, which is 

why MAE can be used for additional evaluation. The MAE measures the mean 

magnitude of model prediction errors, but in contrast to RMSE, the errors are not 
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squared. Therefore, RMSE scores are generally higher than MAE scores. These two 

metrics can be used together to estimate the variation in errors. Recall that both 

RMSE and MAE are negatively oriented scores (smaller values are preferred) 

expressed in %DS-w. 

 R2 = 1 −
∑  (yi − 
n
i=1 ŷi)

2

∑  (yi − y̅ n
i=1 )2

  (69) 

 RMSE = √
1

n
 ∑  (yi − 

n

i=1

ŷi)
2  (70) 

 MAE =
1

n
∑ |yi − 

n

i=1

ŷi| (71) 

where 𝑦𝑖  is predicted %DS-w, �̂�𝑖 is observed %DS-w, �̅� the sample mean, and n 

presents the number of samples.  

 

The further model performance evaluation and validation were performed using 

leave-one-out cross-validation (LOOCV) due to its convenience for use on small 

datasets (Figure 33). Cross-validation is a resampling method in which the sample 

subsets are drawn repeatedly from the training set, followed by model refitting 

for each subset, thus providing information on model fitting variability. In LOOCV, 

the samples are drawn for one observation at a time, while the rest of the data is 

used for model training. Therefore, this process has a number of iterations equal 

to the number of samples, making it computationally expensive for large datasets.  

In addition to LOOCV, the permutation tests were conducted to assess the 

significance of 5-fold cross-validated model prediction scores with 150 random 

permutations. This enabled the evaluation of the statistical significance of model 

predictions and their inputs by a permutation test P-value. 

 

4.4. RESULTS  

In this section, the performance of three models is presented, including the XGB-

FE model based on the XGBoost algorithm with feature engineering, the XGB-FS 
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model based on the XGBoost algorithm using the whole sample T2 distribution, 

and a peak deconvolution approach (Bryan et al7). To assess the model 

performance in more detail, residual plots (Figures 33-2, 33-5, and 33-8) and 

quantile-quantile plots (Figures 33-3, 33-6, and 33-9) are used for the analysis of 

the residual normality, and model variance and bias. All results are summarized in 

Figures 33-34. 

 

Analysis and comparison of error statistics, cross-plots, and distribution of 

residuals indicate that the XGB-FE model achieves the highest accuracy and 

generalization ability in the prediction of water content in oil-sand samples. Figure 

33-1 shows that apart from slight overprediction in the 3-5% DS-w range, all XGB-

FE predictions spread along the x=y line with low variance, achieving the highest 

R2 score in the study (R2=0.90). Figure 33-2 shows the constant low variance of 

the residuals, indicating that the model inputs capture variation in the data 

correctly. Finally, the Q-Q plot (Figure 33-3) confirms the residual normality and 

thereby the underlying assumption that XGB-FE model residuals follow the normal 

distribution (low bias, low variance). Finally, the XGB-FE model achieves 1.5-3 

times lower RMSE and MAE scores compared to the XGB-FS and Bryan et al.7 

models indicating the best generalization ability of the three. 
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Figure 33: Residual analysis from test set predictions by XGB-FE, XGB-FS, and Bryan et 

al.7. Cross-plots between the model test set predictions and observed saturation in %DS-

w (1, 4, 7), distribution of regular residuals (2, 5, 8), and quantile-quantile plots for 

comparing distributions between test predictions and observations and evaluating 

normality of residuals (3, 6, 9). 
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Figure 34: Comparison of RMSE and MAE test prediction scores for the three models 

(‘random_state=2’). 

As for the XGB-FS model predictions, Figures 33-4, 33-5, and 33-6 show a similar 

residual distribution to XGB-FE (normality and bias). However, the residual 

variance is increased but constant, therefore achieving a somewhat lower R2 score 

(R2=0.85) and 1.5 times higher RMSE and MAE than XGB-FE. From Figure 33-7, it 

can be observed that the Bryan et al.7 model generally tends to underpredict the 

water content in samples. In addition, Figures 33-8 and 33-9 show inflated but the 

constant variance in the distribution of residuals, while residual normality still 

holds with some local perturbing. As a result, Bryan et al.7 model RMSE and MAE 

scores are the highest (Figure 34).  
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Figure 35: Leave-one-out cross-validation (LOOCV) scores for XGB-FS and XGB-FE 

machine learning models for the training set with fixed random split seed 

‘random_state=2’. Note y-axis was truncated for convenience.  

 

4.5. DISCUSSION 

The two machine learning models in this study were designed to test two principal 

hypotheses. First, to confirm that the integration of density measurements into 

the machine learning models can help separate the contribution from overlapping 

oil and water signals. Second, to show that the derivation of new LF-NMR T2 

features can improve the generalization ability of the machine learning model to 

the degree that can enable the accurate forecasting of water content by LF-NMR 

in oil wells (in-situ).  
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Table 13: Comparison of XGB-FS model test set prediction scores with and without bulk 

density parameter. 

XGB-FS 

Statistic 
wo/ 

Density 
w/ Density 

RMSE (%DS-w) 1.08 0.96 

MAE (%DS-w) 0.86 0.79 

R2 0.72 0.85 

 

Table 14: Comparison of XGB-FE model test set prediction scores with and without bulk 

density parameter.  

XGB-FE 

Statistic 
wo/ 

Density  
w/ Density 

RMSE (%DS-w) 0.91 0.67 

MAE (%DS-w) 0.73 0.53 

R2 0.81 0.90 

 

Bulk density measurements are used together with LF-NMR measurements in 

petrophysical practice to improve the interpretation of well logs28,123. LF-NMR 

measures the response of the fluids in the rock pore space, therefore carrying 

information about the fluids and pore size distribution of the rock. On the other 

hand, density logging equipment measures the response of the solids (rock 

matrix) together with fluids. The two are related in terms of T2 surface relaxation, 

which depends on the rock pore to surface ratio with the fluid volume and the 

diffusive-coupling effect. This dependence can also be observed from the 

prediction test scores of the XGB-FS and XGB-FE models with and without bulk 

density as one of the model inputs. Prediction scores from Tables 13 and 14 

indicate that models achieve better scores with the integration of bulk density, 
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therefore confirming the relationship between Dean-Stark water content and 

density discovered by mutual information regression.   

 

To affirm the second hypothesis: when XGB-FS and XGB-FE are compared (Figure 

33), it can be observed that XGB-FE achieves better performance, especially in 

terms of prediction variance. The XGB-FE variance reduction supports two 

premises. First, the engineered features properly capture all the relevant 

information from the T2 distribution, indicating negligible information loss. 

Secondly, in the feature engineering case, the XGBoost algorithm generalized the 

variability in the data with the output more effectively, suggesting that for smaller 

datasets, the appropriate feature engineering enables the XGBoost algorithm to 

discover dependencies within the data more effectively than for a large number of 

raw information (53 features in case of XGB-FS), due to the high dimensionality. In 

other words, the new features contain all the relevant parts of the T2 distribution 

compressed into a few values, which reduces the XGB-FE model complexity and 

enables better generalization of the relationship between inputs and a target 

variable (DS-Sw).  

 

According to Figure 31, along with a bulk density (MI=0.86 nats), the T2 cutoff 

range feature ranks second by MI score (0.60 nats), indicating the variability of the 

sum of T2 responses between 1.99 – 6.30 ms has a strong relationship with water 

signal. The location of the T2 peak (T2p), T2 standard deviation of the spectrum 

(T2std), and T2 logarithmic mean (T2lm) achieve similar MI scores (0.27 and 0.30 

nats, respectively), signifying that these features alone do not capture enough 

information about the water content. Finally, the sum of T2 responses 

representative of the empirical clay-bound water part of the T2 distribution (0.1-

3.0 ms) shows the least association with the target (DS-w). Although these features 

alone cannot explain variance in data effectively, their mutual interaction can 

improve it. Since MI does not consider this mutual interaction between features 

relative to the target output, the correlation matrix can be used. For instance, 

Figure 30 shows that the T2cr vs. T2p and T2cr vs. T2lm have a strong positive 
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correlation (0.76 and 0.63, respectively), while T2bf vs. T2lm have a moderate 

negative correlation. These interactions are likely to be generalized in the XGB-FE 

model training process, thus explaining improved performance. Furthermore, the 

permutation test score of XGB-FE using 150 permutations generated a P-value of 

0.001, compared to the XGB-FS P-value of 0.007. In both cases, the P-value is well 

below 0.05, showing a very low likelihood of obtaining such model performance 

purely by chance. 

 

As for the deconvolution approach (Bryan et al.7), the main challenge lies in 

separating overlapping fluid contributions in T2 distribution. Even under the 

assumption that T2 cutoff and deconvolution are performed such that a precise 

distinction between fluid signals is possible, the issue of how to associate the 

amplitudes with respect to mass persists. This approach leads to underprediction 

of water content for the given dataset, indicating that the oil and water signals are 

not sufficiently separated. The machine learning-based approach is more robust 

because it removes the necessity to manually identify peak separation and the 

errors associated with visually separating oil and water signals, especially in the 

case of NMR measurements acquired at low SNR. 

 

It is essential to point out the limitations of these models, which are related to 

reservoir lithology (a) and SNR of the measurements (b): 

(a) The models presented in this study were derived for the oil-sands 

reservoir, so their application is limited only to similar reservoir types. 

However, the presented approach can be extended for use in other types 

of oil reservoirs under the assumption that a sufficiently large amount 

of observations is available. 

(b) The SNR achieved by the benchtop LF-NMR relaxometers can be up 

to 30 times higher than the SNR values obtained using well-logging 

tools. In this study, the NMR signal-to-noise ratio was, on average 20, 

which can still be considered high relative to the logging tools where the 

SNR of 3-5 is considered satisfactory124. Although the recent research 
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demonstrated that the XGBoost algorithm is sufficiently robust even 

with noisy data125, an additional validation using the data obtained by 

the LF-NMR logging tools would be desirable. It is worth noting that, in 

lower SNR samples, the deconvolution approach will be even more 

challenging, and the value of using just the general properties of the T2 

distribution and XGBoost may be even further enhanced. 

 

The XGB-FS method which uses all T2 discrete responses as an input, is not optimal 

approach as it has been shown, due to the high dimensionality of inputs. It is worth 

noting that dimensionality reduction techniques could be used such as principal 

component analysis, non-negative matrix factorization, linear discriminant 

analysis and other methods, which would enable construction of less complex 

models. This is planned to be done as a follow-up study. In addition, the procedures 

for NMR measurements with a controlled saturation and desaturation of samples, 

similar to those reported in recent literature66, would enable deeper sensitivity 

analysis of the features derived in this work and further improvement XGB-FE 

model. In such a setup, the Dean-Stark measurements could be replaced by the 

more cost and time-effective mass-volume measurements, ultimately allowing the 

collection of a larger database, at which point the application of artificial neural 

networks (ANNs) would be possible.   

 

It is also worth noting that logging equipment configuration can be substantially 

different from desktop NMR relaxometers, which may cause inconsistencies 

between NMR T2 distributions obtained in the lab and the field. This can cause the 

variable performance of proposed NMR data-driven model, which is why the 

parameters of the NMR logging device, such as TW, TE and number of trains, 

should be relatively consistent to the values reported in this study. 
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4.6. SUMMARY 

This study presents the approach which integrates extreme gradient boosting with 

LF-NMR measurements and bulk density data for the water saturation 

determination in oil-sands. Two models were developed using full NMR T2 

distribution (XGB-FS), and feature engineering (XGB-FE). It is concluded that; 

• Feature extraction methods such as mutual information regression can 

effectively select the most relevant information from NMR T2 distribution. 

• Integrating bulk density data as a model input notably improves the XGB-

FS and XGB-FE forecasting performance. 

• XGB-FE achieved RMSE = 0.67%, MAE = 0.53% and R2 = 0.90 in predicting 

relative water content by Dean-Stark, a substantial improvement compared 

to deconvolution method.  

These results suggest that the XGB-FE model can be extended for the improved in-

situ water saturation determination.  
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Chapter 5 CONCLUSIONS 

 

This thesis focuses on nonlinear problems in petrophysical logging, such as 

characterization of bitumen and heavy oil viscosity and water saturation 

quantification, on the example of Canadian oil-sands by LF-NMR relaxometry data. 

We employed various statistical and machine learning tools to model the 

relationship between the NMR outputs and experimental data, which reduced 

uncertainties associated with data interpretation and enabled us to capitalize on 

new, previously unknown relationships. In conclusion, we found that: 

• Heavy oil and bitumen viscosity can be analytically approximated from T2 

relaxation data, even in high-temperature conditions, by integrating T2 

logarithmic mean, relative hydrogen index per unit volume (RHIv), and 

power-law corrected T2lm. The statistical scores of the new analytical 

model demonstrate a better generalization ability compared to all 

approaches in the literature to date.  

• Machine learning-based predictive modeling of oil viscosity (gradient 

boosting and support vectors in particular) using only one NMR parameter 

(T2lm) along with suitable feature engineering can provide highly accurate 

predictions of oil viscosity. These models work well even for a set of 

chemically diverse light, heavy and extra-heavy oils. It also overcomes 

issues related to NMR hardware limitation (finite echo spacing), 

magnetization loss at high temperatures (Curie effect), and additional costs 

and uncertainties associated with determining RHIv. 

• The Extreme Gradient Boosting algorithm can be utilized for improved 

water and oil saturation evaluation with only T2 relaxation and bulk 

density data required as an input. This approach bypasses issues stemming 

from a poor understanding of dominating T2 relaxation processes in micro 

and macro-pores, diffusive coupling, and consequential oil and water signal 

overlapping. It also does not require determining the T2 cutoff value and 

associated laboratory tests. 
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Even though a large number of experimental data was used for this work 

(hundreds of observations), the obtained datasets are considered small from the 

machine learning point of view (tens of thousands of observations). This work 

demonstrates that even relatively small datasets such as those characteristic for 

petrophysical laboratory tests can be used for machine learning modeling by 

performing feature engineering, given that understanding the problem and 

associated processes is sufficiently understood.  

 

This work also lays the foundations for further research. The following 

recommendations can be made: 

 

1. Integrating bulk density measurements into the machine learning models 

for viscosity determination to perform additional validation for in-situ 

applications. 

2. Additional LF-NMR and bulk density measurements (dataset expansion) 

would further improve the understanding of T2 surface relaxation and 

diffusive coupling in connected micro- and macropores. This would also 

enable us to use artificial neural networks with more success.  

3. Performing a deeper study on the effect of bulk density data on the water 

saturation prediction by LF-NMR measurements and studying the effects 

of noise. Another interesting study would be the application of 

dimensionality reduction methods on NMR T2 distribution.  

4. The combination of other conventional logging data with NMR data for 

machine learning modeling shows excellent potential for other in-situ 

applications such as rock wettability characterization or quantification of 

saturates, aromatics, resins, and asphaltenes in hydrocarbons.  
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Appendix A 

 

A.1 Appendix to Chapter 4 – Prediction performance of 

other machine learning models  

 

 

A 1.1 Summary 

Machine learning models tested in this section include Random Forests (RF), 

Gradient Boosted Regression Trees (GBRT), Gaussian Process (GP), Support 

Vector Regression (SVR), and Elastic Net (EL). Also, XGBoost was retrained by 

constraining ‘n_estimators’ and ‘max_depth’ hyperparameters to a smaller range 

during optimization to reduce the complexity of the model. It should be noted that 

all machine learning models were optimized using the Bayesian Optimization 

approach (scikit-optimize package class skopt.BayesSearchCV). 

Lastly, as discussed previously, using full T2 distribution for model training is not 

viable due to the high dimensionality. Therefore, only the approach with 

engineered features and feature extraction was applied.  

 

A 1.2 Feature scaling 

Feature scaling is a regular step in the machine learning pipeline used to 

normalize the distribution of input features to a common scale. Although tree-

based methods such as XGBoost, do not require normalization, other intelligent 

algorithms may not work correctly without previous normalization. To predict 

water saturation by LF-NMR and bulk density data, I selected the Robust Scaler 

method from sklearn.preprocessing, which considers the feature quantile range 

to remove the scale and median of the data. Given the set of inputs, the algorithm 

calculates statistics for each input. These statistics are applied independently to 

each input for centering and scaling. An added benefit of Robust Scaler is that it 

effectively works on datasets with outliers, which is particularly useful when 
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working with small datasets. Descriptive statistics of scaled inputs and targets are 

presented in Tables 15-17. 

 

Table 15: Training set descriptive statistics of six input features after scaling.  

Statistic T2std T2p T2lm T2cr T2bf ρ 

Count 123 123 123 123 123 123 

Mean 0,05 -0,14 0,11 0,03 -0,07 0,07 

Std 0,75 0,55 0,79 0,57 0,79 0,67 

Min -1,47 -1,50 -0,88 -0,74 -1,95 -1,38 

25% -0,47 -0,63 -0,49 -0,47 -0,54 -0,45 

50% 0,00 0,00 0,00 0,00 0,00 0,00 

75% 0,53 0,38 0,51 0,53 0,46 0,55 

Max 2,31 0,88 4,44 1,56 2,07 1,80 

 

 

Table 16: Test set descriptive statistics of six input features after scaling.  

Statistic T2std T2p T2lm T2cr T2bf ρ 

Count 41,00 41,00 41,00 41,00 41,00 41,00 

Mean -0,11 -0,30 0,06 -0,10 -0,19 0,26 

Std 0,58 0,59 0,78 0,46 0,85 0,77 

Min -1,22 -1,38 -0,82 -0,74 -1,91 -1,36 

25% -0,47 -0,75 -0,59 -0,49 -0,75 -0,41 

50% -0,11 -0,25 -0,11 -0,14 -0,03 0,34 

75% 0,16 0,25 0,62 0,29 0,23 0,86 

Max 1,40 0,75 2,48 0,98 1,84 1,48 
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Table 17: Train and test set descriptive statistics of the target feature (Dean-Stark water 

saturation) after scaling.  

 

Target-Train set 

Statistic DS-Sw 

Count 123,00 

Mean -0,08 

Std 0,54 

Min -1,05 

25% -0,63 

50% 0,00 

75% 0,38 

Max 0,83 

 

Target-Test set 

Statistic DS-Sw 

Count 41,00 

Mean -0,25 

Std 0,53 

Min -0,95 

25% -0,68 

50% -0,43 

75% 0,28 

Max 0,73 
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A 1.3 Random forests 

 

Figure 36: Cross-plot of Random Forest model train and test predictions  

 

Table 18: Hyperparameters for Random Forest model by Bayesian Optimization  

Random forest 

hyperparameters 

Search range BO search  

optimal  

n_estimators [20-200] [133] 

criterion [‘mse’, ‘mae’] [‘mse’] 

max_depth [2-7] [5] 

max_features [‘sqrt’, ‘log2’, ‘auto’] [‘auto’] 

min_samples_leaf [1-4] [1] 

min_samples_split [2-8] [2] 

 

 

 

 

 

 

 

 

 



145 

  

A 1.4 Gradient Boosting Regression Trees 

 

Figure 37: Cross-plot of Gradient Boosting Regression model train and test predictions  

 

Table 19: Hyperparameters for Gradient Boosting Regression model by Bayesian 

Optimization  

GBRT 

hyperparameters 

Search range BO search  

optimal  

n_estimators [20-200] [128] 

criterion [‘mse’, ‘mae’] [mse] 

max_depth [2-6] [3] 

loss [‘mse’, ‘ls’, ‘mae’, ‘lad’] [‘ls’] 

subsample [0.6-1] [1] 

min_samples_leaf [1-4] [2] 

min_samples_split [2-6] [5] 
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A 1.5 Gaussian Process Regression 

 

Figure 38: Cross-plot of Gaussian Process model train and test predictions  

 

Table 20: Hyperparameters for Gaussian Process model by Bayesian Optimization  

Gaussian Process 

hyperparameters 

Search range BO search  

optimal  

kernel* 
[‘RBF’, ‘DotProduct’, ‘Matern’, 

‘RationalQuadratic’, ‘ConstantKernel’] 
[‘RBF’] 

alpha [1e-5 - 1e-9] [1e-7] 

*each kernel was run with the addition of WhiteKernel (noise_level=0.1)  
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A 1.6 Elastic Net 

 

Figure 39: Cross-plot of Elastic Net model train and test predictions  

 

Table 20: Hyperparameters for Elastic Net model by Bayesian Optimization 

Elastic Net 

hyperparameters 

Search range BO search  

optimal  

alpha [0-1] [0.003] 

l1_ratio [0-1] [1] 

 

 

 

 

 

 

 

 

 

 

 

 



148 

  

A 1.7 Support Vector Regression 

 

Figure 40: Cross-plot of Support Vector Regression model train and test predictions  

 

Table 21: Hyperparameters for Support Vector Regression model by Bayesian 

Optimization 

SVR 

hyperparameters 

Search range BO search  

optimal  

alpha [0-1] [0.003] 

l1_ratio [0-1] [1] 
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A 1.8 XGBoost (constrained)  

 

Figure 41: Cross-plot of Support Vector Regression model train and test predictions  

 

Table 22: Hyperparameters for XGBoost model by Bayesian Optimization 

XGBoost 

hyperparameters 

Search range XGB 

optimal  

n_estimators [50-250] [132] 

learning_rate [0.02-0.1] [0.045] 

subsample [0.6-1.0] [0.6] 

max_depth [2-6] [3] 

objective [‘squared_error’, 

‘pseudo_huber’] 

[‘squared_error’] 

grow_policy [‘depthwise’, ‘lossguide’] [‘lossguide’] 

booster [‘gbtree’, ‘dart’] [‘dart’] 
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A 1.9 Results summary 

 

Figure 42: Comparison of RMSE and MAE test set prediction scores for seven models. 

 

Table 23: Test set model prediction scores 

Model 
Metric  

RMSE MAE R2 

Random Forest 0,67 0,55 0.90 

GBRT 0,76 0,56 0.87 

Gaussian Process 0,80 0,65 0.86 

Elastic Net 0,92 0,79 0.81 

SVR 0,82 0,68 0.85 

XGBoost (constrained) 0,70 0,55 0.89 

XGBoost (reported) 0,67 0,53 0.90 
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