
Thesis Changes Log

Name of Candidate: Vladimir Fanaskov
PhD Program: Mathematics and Mechanics
Title of Thesis: Statistical inference and machine learning in numerical linear

algebra
Supervisor: Associate Professor Aslan Kasimov

The thesis document includes the following changes in answer to the external review process.

We express gratitude to the reviewers for careful proofreading and helpful recommen-
dations. In all but rare cases, we followed the suggestions and introduced appropriate
changes.

Introduction

This text below includes rebuttal and description of changes introduced to the thesis
in answer to the external review process.

Notation

When we need to provide a quote from the review, we use a bold font as follow:

Name of the reviewer: “This part represents a quote from the
review.”

Horizontal lines as above are used to separate quotes.

1



Rebuttal

Nikolai Brilliantov: “Please make a careful proofreading of the
thesis text. There exist misprints and errors. For instance,
in Eq. (10.11) the factor (1

�
h2) is missed [. . . ]. Besides, the

meaning of Eq. (10.17) is questionable: for both cases, i = 1, 2
the same result is obtained..”

• The factor 1
�
h2 is not missing from Eq. (1.16) (former Eq. (10.11)). This

equation is finite-element discretization, so the weak form is used, meaning
in D = 2 there are two integrals

R
dx,

R
dy and two first derivatives (after

integration by parts). On the isotropic grid this gives h2 from integrals and
1
�
h2 from derivatives so, overall, the factor is 1, not 1

�
h2.

• The meaning of Eq. (1.22) (former Eq. (10.17)) is quite clear, it certainly does
not give the same results for i = 1, 2. Indeed, if one look at the equation

gi(x, y) =

(
(2� i)� + (i� 1), if (x� 0.5)(y � 0.5) � 0;

(i� 1)� + (2� i), if (x� 0.5)(y � 0.5) < 0.
(14.4)

One gets for i = 1

g1(x, y) =

(
�, if (x� 0.5)(y � 0.5) � 0;

1, if (x� 0.5)(y � 0.5) < 0,
(14.5)

and for i = 2 one has

g2(x, y) =

(
1, if (x� 0.5)(y � 0.5) � 0;

�, if (x� 0.5)(y � 0.5) < 0.
(14.6)

In our applications � � 1, so g1(x, y) is large in the first and the third quadrant
whereas g2(x, y) is large in the second and fourth quadrants.

Anh-Huy Phan: “Page 135, Algorithm 11 What is outcome of
Algorithm 11?”

2



The set of actions (that is, the policy) is the outcome. This outcome is implicit
in a sense that it is not returned as some object.

To provide an example that the situation is normal in reinforcement learning, we
include here the bandit algorithm from [SB98, Section 2.4]:

As we can see, the algorithm above return nothing, and the policy is implicitly
specified in the same way as in our algorithm.

Anh-Huy Phan: “Why does the agent go with her on page
183?”

The agent is a word that is not gender-specific. The same is true for most of the
nouns in English (see the article https://dictionary.cambridge.org/grammar/british-
grammar/nouns-and-gender). This mean we are at liberty to pick up a gender we
prefer.

Anh-Huy Phan: “- Page 87 ”instationary”: should be ”nonsta-
tionary”””

The term “instationary” is routinely used in the literature on iterative methods.
We provide several examples from classical book [Hac16]:

1. Page 172 after equation (7.55): “For a fixed (or variable) step size �t, recursion
(7.55) describes the stationary (or instationary) Richardson method.”

2. Page 204 after Exercise 8.43.: “A general convergence result of this kind (also
for instationary ADI methods) is due to Alefeld [1]. Here, we call the method
stationary if ! is constant during the iteration and instationary if it varies
(as, e .g., it is assumed throughout the following section).”

3

https://dictionary.cambridge.org/grammar/british-grammar/nouns-and-gender
https://dictionary.cambridge.org/grammar/british-grammar/nouns-and-gender


3. Page 207 after Remark 8.47.: “Hence, the instationary ADI method permits
not only halving of the order (for the case m = 1, compare also with Exercise
8.43b), but any arbitrarily small (and hence very favourable) order can be
reached for su�ciently large m.”

Anh-Huy Phan: “- Page 136 Provide applications where we
need to solve the same linear system more than once.”

The whole page was devoted to the examples of when one needs to solve the same
linear system more than once. The quote is as follows:

There are plenty of situations in scientific computing when precisely the
same linear system (or a family of related linear systems) is solved re-
peatedly for di↵erent right-hand sides. The following list contains a few
relevant examples:

1. Chorin’s projection method [Cho67].

In this splitting scheme, the Poisson equation needs to be solved
during each time step to recover pressure from auxiliary velocity.

2. Crank-Nicholson scheme for heat equation Section 1.3.10.

As in the case of any implicit scheme, one needs to solve a linear
system to obtain an approximation for the next time step.

3. Quasi-geostrophic omega equation [BS10].

This anisotropic elliptic equation is solved during time marching
when weather forecasts are performed.

4. PDE constrained optimization [Bie+03].

In this scenario, one requires to solve the same PDE for di↵erent in-
put data (boundary conditions, initial conditions, right-hand-side,
values of parameters, etc), which typically requires the solution of
linear systems. See [RDW10] for a concrete example where the con-
straints are formed by elliptic PDE.

5. Inverse problems [Tar05].

The usual strategy to solve inverse problems includes Monte Carlo
techniques [Tar05, Chapter 2], which require repeated solutions to
forward problems. In the case of certain discretization of PDE, this,
again, leads to large sparse linear systems.

4



6. More examples can be found in literature on Krylov subspace recy-
cling techniques (see [Par+06] and references therein).

In addition, we introduced one more example from the present thesis. The added
text reads

There is also a simple example of this situation in the present thesis.
Namely, the optimal heating problem discussed in Section 4.4.3 leads to
the situation when the heat equation needs to be solved multiple times.

Anh-Huy Phan: “-Page 109, (6.14) What are the di↵erences
between matrices Sl, for l = 1,2,...? The same question is for
matrices Il.”

The definitions of Sl and I l read

(Sl)ij = �ij+1, (I l)ij = �ij, i, j = 1, . . . , 2l,

So l defines the number of elements in the matrix (Sl is of size 2l ⇥ 2l).

Anh-Huy Phan: “-Page 56 Why is the factor s common?”

The explanation can be found on the same page

Common factor s appears in Lemma 4.3.2 because if we take ⌃0 =
V V T + s , posterior distribution for the scale p

�
s|W TAx = W Tb

�

coincides with IG (s|↵, �), that is available information is insu�cient to
fix the scale.

Anh-Huy Phan: “- Page 38, results shown in Figure 2.4. Why
is GaBP robust? GaBP does not converge faster than Gauss-
Seidel. GaBp(k) with di↵erent sweeps k = 1, 2, 3 do not have
the same or comparable complexity to update xm per iteration.
Hence it is nonsense to compare converge of GaBP(k) with dif-
ferent k and Gauss-Seidel.”

5



We can not agree with this comment.
First, it is explained in the text why GaBP is more robust. The relevant fragment

reads

First, from results in Fig. 3.4 we can see that GaBP is robust, unlike
line Gauss-Seidel smoothers the performance of which depends on the
direction of anisotropy.

To recapitulate, GaBP is considered more robust, because one does not need
manually select the direction of anisotropy. For more general anisotropy patterns,
GaBP will perform better that both line Gauss-Seidel smoothers.

Second, the claim that “GaBP does not converge faster than Gauss-Seidel” is not
supported by the presented numerical experiment. On the contrary, we can see in
both pictures that the one-directional variant of Gauss-Seidel smoother stagnates.
It can be estimated from the pictures that one variant of Gauss-Seidel drops relative
error by a factor of 10 after roughly 50 iterations. It means, one will need ' 14⇥50 =
700 iterations to achieve error comparable to GaBP converged within 50 iterations.

Third, the claim that “GaBp(k) with di↵erent sweeps k = 1, 2, 3 do not have
the same or comparable complexity to update xm per iteration” is, again, not true.
GaBP and Gauss-Seidel methods are comparable because both of them have the
same asymptotic complexity O(N). Moreover, we know exactly how to compare
both solvers because we have a table with computational complexities (Table 3.1).

For example, consider GaBP(1). It has a complexity of 24N per iteration, whereas
line Gauss-Seidel has a complexity of 9N per iteration. Now, we computed that
Gauss-Seidel, if the wrong direction is chosen, needs ' 700 iterations, and GaBP(1)
 50. So, if we take into account the computational budget, one iteration of GaBP(1)
corresponds to three iterations of line Gauss-Seidel. This means we can divide 700
iterations by 3 and find that they correspond to ' 230 iterations of GaBP(1). Since
50 < 230, line Gauss-Seidel is much less e�cient in this case.

Anh-Huy Phan: “There is no sweep parameter k in Algorithms
1 and 2.”

The sweep parameter k is present in Algorithm 3 and the explanation in Sec-
tion 3.5 suggests that k refers to the number of sweeps of GaBP as smoother. Be-
sides, the number of iterations k is presented in mentioned algorithms implicitly in
the part “while not converge do”. The meaning of this phrase is also discussed after
Algorithm 1.

6



Anh-Huy Phan: “- Summary on page 43 ”Red-black has bet-
ter convergence rate than other solvers” Again, since di↵erent
solvers have di↵erent complexity per iteration, the number of
iterations is not an appropriate measure for the convergence
rate. For example GaBP(3) with k = 3 sweeps should demand
lower number of ”outer” iterations than GaBP(2), but it does
not mean that GaBP(3) converges faster than GaBP(2).”

There are a few inaccurate statements in this comment.
First, the number of iterations (required to drop the norm of error by a certain

amount) is the appropriate measure of the convergence rate. In fact, for symmetric
positive definite matrices, the number of iterations required to drop the norm of error
by a certain factor is directly related to the convergence rate. For more information
see [Hac16, Section 2.2.6]. Presumably, what reviewers meant is that the convergence
rate does not define the e�ciency of the solver.

Second, it is common knowledge that it is pointless to compare the number of
iterations required for convergence without considering the number of floating point
operations required for each iteration. Precisely for that reason, we discussed in
detail the e↵ective amount of work at the beginning of Section 3.6 and list these
metrics in all tables in the section with numerical results.

Anh-Huy Phan: “-Parallel version (implementation) of the pro-
posed GabP algorithm, pages 28. Do the two implementations
converge to the same solution? Is the parallel version faster
than Algorithm 1?”

The di↵erent meanings of parallel implementation are discussed after the Al-
gorithms, right before Theorem 3.3.1, and in Section 3.6.1. The discussion section
contains explanation on the speed of convergence, e�ciency and degree of parallelism
for GaBP solvers considered in the chapter.

Presented proofs for the convergence of GaBP ensure that all schedules that cover
all edges of the graph converge to the same solution.

Changelog

Major changes

7



Evgeny Burnaev: “First, the belief propagation for nonsymmet-
rical systems in the second chapter lacks statistical interpreta-
tion. Surely, it is impossible to construct a normal Markov
random field with a nonsymmetric matrix. I suggest to briefly
discuss the interpretation or the lack of it.”

We supplied Section 3.3.4 with the requested interpretation. In this section we
briefly explain that GaBP for non-symmetric matrices is related to Monte Carlo
inversion algorithm of matrix introduced by John von Neumann.

Evgeny Burnaev: “Second, Chapter 7 is a little light on con-
sidered architectures. It seems that the main advantage of the
method is flexibility, so more experiments for architectures with
more aggressive coarsening and larger interpolation/relaxation
stencils would be helpful for understanding.”

We introduced Section 8.6.4 where the requested experiments with di↵erent sten-
cils are performed. Here we also discussed the results for more aggressive coarsening.

Evgeny Burnaev: “Third, Chapter 8 contains incomplete re-
sults and lacks theoretical justifications. I understand that in
general, it is a di�cult task to provide guarantees for online op-
timization of the solver for a su�ciently general linear system,
but I suggest the author discuss possible lines of attack on the
problem, or some back-of-the-envelope estimations, or heuris-
tics explanations on why algorithms are going to converge.”

We introduced Section 9.5 with a discussion of convergence of proposed algo-
rithms.

Lei Zhang (comment): “I have a general question on the per-
formance of probablistic and machine learning algorithms on
more di�cult and more practical problems, for example, ellit-
pic problem with high contrast/highly oscillatory coe�cients,
Helmholtz equation with high wave numbers, and convection
dominated flows, or even high Reynolds Navier-Stokes equa-
tions, to name a few. I can see there are some brief discussions

8



in the context of e.g., BPX preconditioners, but usually the con-
dition number is not so large. It would be helpful to point out
the di�culties and discuss the possible remedies in the thesis,
for example, through one example, such as the dependence on
the contrast of elliptic coe�cient.”

Nikolai Brilliantov: “It would be worth to add a special sec-
tion where the discussion about the limitations of the applied
methods should be given. I admit that such a discussion is
distributed piecewise through the thesis, however I suggest ac-
cumulating them in one place, possibly in the conclusion.”

We rewrote the conclusion with a specific emphasis on the limitations of the
proposed approaches. We also included examples of di�culties ML approaches usu-
ally encounter when dealing with practical problems and possible remedies to those
di�culties.

Several reviewers suggested rewriting the introduction and altering the structure
of the thesis:

Anh-Huy Phan: “- Introduction section presents the goal of
the research, e.g., study relations between statistical inference,
machine learning and iterative algorithms, study probabilistic
numerical algorithms for solving sparse linear systems. The goal
and contribution of the thesis are clear. However, the motiva-
tion of the research and formulation of the studied problems
are missing. Why are the studied problems important, e.g.,
probabilistic algorithms and generalization of BPX condition-
ers using machine learning methods, applying Bayesian analysis
to solving linear systems? What are the benefits of the proposed
algorithms, e.g., the probabilistic Richardson algorithm?”

Anh-Huy Phan: “- Appendices 9 and 10 should be presented
in the Introduction or Preliminary section or a section for for-
mulated problems. This will help the readers to understand
an overview of the challenging problems considered in the the-
sis. Important concepts should be presented in the preliminary
section, e.g., existing probabilistic algorithms, well and poorly
calibrated system, ”instationary” Richardson algorithm, multi-
grid method based on Deep NNs.”

9



Nikolai Brilliantov: “I suggest expand ing the introduction adding
a more detailed explanation, how di↵erent approaches used in
the the sis a re related to each other and to the solution of linear
problems in general. Mor eove r, the author shoul d invest for
e↵orts to make the intro duction chapter more read able for non
experts, probably adding more simple explanatory examples.”

Luiz Faria: “Can the background material in chapter 9 be
moved to the introduction, or earlier in the manuscript? I found
it uncomfortable to have many forward references when reading
the first sections, and I would have found it useful to read that
review in e.g. the introduction.”

In response to that, we completely rewrote the introduction. The main changes
are as follows:

1. Material from appendices 9 and 10 now appears in the introduction.

2. We provided a general explanation of the goals of the research.

3. We introduced more clearly the motivation behind the proposed method and
explained what these methods achieve.

4. We added a more accessible summary of the results of the thesis.

Minor changes

Nikolai Brilliantov: “in Eq. (10.17) there is a misprint “y2””

“y2” was changed on y

Alexey Zaytsev: “P. 1: the title has 2021 year instead of 2022”

Anh-Huy Phan: Frontpage “Moscow 2021” � > “2022”

The year on the frontpage was changed from 2021 to 2022.

10



Alexey Zaytsev: “P. 145: proposed algorithms we on a more
serious examples � > proposed algorithms on more serious ex-
amples”

Anh-Huy Phan: page 145 “we on a more serious examples we
perform a series of . . . ”

We followed the suggestion of Alexey Zaytsev.

Alexey Zaytsev: “P. 188: prove it’s form � > prove its form”

We followed the suggestion.

Nikolai Brilliantov: “I believe that the reference to the Boltz-
mann distribution in Eq. (2.6) is misleading (there are no im-
portant parameter temperature there). Hence it should be ei-
ther explained in more detail or removed.”

Eq. (3.6) (former Eq. (2.6)) explains the relation of graphical models to statistical
physics. The temperature parameter is not of practical value for graphical models,
but the relation itself is heavily exploited. We add relevant references in the footnote
in the paragraph after Eq. (3.6).

Anh-Huy Phan: “we drawn 50 matrices” (page 138) (drew)

Anh-Huy Phan: “This parameters” (page 137)

Anh-Huy Phan: “are already present” on page 137

Anh-Huy Phan: “Both of this routes” page 14

Anh-Huy Phan: “Algorithm 4 simply perform an additional
run”

We corrected these grammatical errors.

11



Anh-Huy Phan: “- Inconsistent notation for matrices, vectors
[. . . ]”

In general our notation for matrices is that we denote the matrix by boldface
(e.g., A), and matrix element goes with the light font (e.g., Aij).

Anh-Huy Phan: “+ Boldface for matrices on page 16, but italic
font on pages 14, 23, (2.32) on page 33, Algorithm 2, error
propagation matrix M on page 37”

Suggested cases

• pages 14

• page 23

• Eq. (3.33) (former (2.32))

• Algorithm 2

are consistent with our rules so we have nothing to correct here. Note that in
Eq. (3.33) the matrix consists of the matrix blocks, so A11 is itself a matrix and
should come in boldface.

The “error propagation matrix M on page 37” was not in boldface, so we corrected
this part.

There were other cases with the same problem:

Anh-Huy Phan: “- Page 50: W TAW A should be A.”

Anh-Huy Phan: “- Page 65 G = I should be denoted as two
matrices.”

Anh-Huy Phan: “- Page 78 Check notation of v0 and matrices
A, V”

Anh-Huy Phan: “- Page 87 N = I should be denoted as matri-
ces”

Anh-Huy Phan: “- Page 88 Check notation for vector µ and
matrix ⌃ in (4.48) and (4.49)”

12



Anh-Huy Phan: “- Page 105 Check notation for the matrices R
and A in section 6.1.2: here R is an easy invertible approxima-
tion to A”

In these cases, we corrected fonts as the reviewer suggested.

Anh-Huy Phan: “- Contribution ”Neural architecture is equiv-
alent to the multigrid solver” and Section 7 ”Neural architec-
ture” is not a research topic, but neural architecture search or
neural architecture design for a specific task.”

The part in the introduction that lists contributions of the thesis was there for
the convenience of the reviewers:

To help the reviewers of this manuscript, we end the introduction with a
list of main contributions of the present work.

This part was removed for the final version of the thesis.
Current introduction better reflects the idea, that we study “neural architecture

design”.

Anh-Huy Phan: “+ Normal distribution on page 79 N(µ, ⌃)
and page 13 N(µ, ⌃).”

We corrected the normal distribution on page 79.

Anh-Huy Phan: “”Lanczost algorithm” shall be ”Lanczos” al-
gorithm.”

We introduced requested changes.

Anh-Huy Phan: “-Page 58, definition of S-statistic in Lemma
3.3.5 The first term (x� ex) misses a transpose operator.”

We introduced transpose operator.

13



Anh-Huy Phan: “- Page 139, Algorithms 12 and 13 M(✓) de-
notes the error propagation matrix, but in Algorithm 12, the
same notation represents the iterative method.”

We clarified that the error propagation matrices M (✓) that define the family of
iterative methods should be supplied to the algorithm.

Anh-Huy Phan: “Line 4 and Line 11, kx� y| should be kx� yk”

We introduced requested changes.

Anh-Huy Phan: “Page 135, Algorithm 11 The running index j
changes inside the for loop at Line 6 or Line 8. This a↵ects the
output at line 11.”

We fixed the outer index that represent the round to j.

Anh-Huy Phan: “Page 134, what are R1, ..., RN in (8.2)?”

These are rewards. We added the explanation under the equation.

Anh-Huy Phan: “MDS?”

MDS was changed to MDP.

Anh-Huy Phan: “- Page 103 What does BBPX in (6.5) improve
the pre-conditioner over that in (6.4)?”

We reformulated the sentence as follows:
“To introduce additional parameters to BPX preconditioner and later use them

in optimization of condition number we replace tent function with empirical basis
functions [. . . ]”

This clarifies the end of the proposed parametrization.

Anh-Huy Phan: “- Page 140, Figure 8.1 Dashed and solid lines
in Figure 8.1 and Figure 8.2 are not distinguished.”

14



For each figure that contains dashed lines we clarified that “For each method, the
mean execution time is specified with the dashed line in the legend”. With this the
visibility of dashed line becomes irrelevant.

Anh-Huy Phan: “Where is Figure 6.3a? There is a table with
caption Figure 6.3 on page 114 but no figure.”

Anh-Huy Phan: “Figures 6.3 6.4 and 6.5 are tables without cap-
tion. Check the captions or provide figures instead of tables.”

Anh-Huy Phan: “Similar to Figures in Chapter 6, Figures 7.3,
7.4, 7.5 and 7.6 are tables. Move theses tables to the appro-
priate places. Captions of theses tables or figures should be
self-contained”

We made sure tables are named appropriately in the text and the caption. We
also supplied them with the caption that makes them self-contained:

“Comparison of three metrics for classical BPX preconditioners and optimized
BPX preconditioners for selected equations. Spectral radius of error propagation
matrix I � NA (N is BPX preconditioner A is a matrix of the original linear
operators) denoted by ⇢, condition number of preconditioned matrix , and number
of iterations needed to drop and error by a factor of 10.”

Anh-Huy Phan: “Move theses tables to the appropriate places.”

We decided not to relocate tables because, currently, they are gathered on three
separate pages in the middle of the section with the discussion of numerical results,
which arguably is already an appropriate place.

Anh-Huy Phan: “- Part 2, page 101 ”The rest part ... provides
more examples on how machine learning can be used in numeral
linear algebra”” What examples? please be more specific.”

These examples were presented in the initial version. Now we reformulated the
text as follows:

15



The rest of the present part provides more examples of how machine
learning can be used in numerical linear algebra. Namely, we start in
Chapter 7 with a general explanation of unsupervised training suitable
for the construction of solvers and preconditioners for numerical linear
algebra. The whole endeavor is based on the introduction of appropri-
ate stochastic losses and the minimization of them with gradient-based
methods. That is, we apply classical approaches from machine learning
to the construction of preconditioners. The models for preconditioners
under the study are given by parametric families of generalized BPC mul-
tilevel preconditioners with overall architectures resembling U-Net. Next,
in Chapter 8 we study the connection between multigrid and neural net-
works. In this chapter, we apply techniques from Chapter 7 to access the
generalization capabilities of proposed approaches. That is, we show that
one can train (perform optimization) on problems with a small number
of unknowns and later use the same method on problems with a large
number of unknowns without the loss in performance. Finally, in Chap-
ter 9 we turns to the online setup. Namely, we show that it is possible
to improve the iterative method on the flight using auxiliary information
available as a byproduct of iterations. This is done with a help of k-armed
bandits and Bayesian optimization.

We hope that the text clarifies what examples of machine learning approaches we
have in mind.

Anh-Huy Phan: “- Numerical examples and the whole Chapter
6, it is not clear how Machine learning methods are applied to
find the optimal preconditioner. Does the author mean that
minimization of spectral conditional number uses ML meth-
ods?”

The same fragment quoted above also answers this question. The techniques
used to find optimal preconditioners are ML-based since we define stochastic loss,
architecture (modified BPX preconditioner) and use stochastic optimization to find
optimal parameters of the model (in this context, parameters that lead to the small
condition number of the preconditioned linear system).

Besides, we provide additional comments on the matter in the introduction.

Anh-Huy Phan: “- Table 2.3: What are the numbers shown in
each cell in Table 2.3?”

16



We agree that this was not clarified enough. Section 3.6 starts with the description
of measures we use to compare iterative methods. The one measure is the spectral
radius of the error propagation matrix. The other is the e↵ective amount of work
that takes into account the number of floating point operations performed by solver
or preconditioner.

To clarify that we provide the e↵ective amount of work is the mentioned tables
we introduced a phrase in brackets:

Table 3.3, Table 3.4, Table 3.5, Table 3.6, Table 3.7 contain results (spec-
tral radius ⇢ 2 [0, 1), which is located in the upper half of each cell, and
the e↵ective amount of work which is situated in the lower half of each
cell) for multigrid used as a stand-alone solver (the left part of the ta-
ble) as well as a preconditioner (the right part of the table). Table 3.8
contains results for stand-alone solvers.

Anh-Huy Phan: “- Confusing notation:
��� eR

��� in Theorem 2.3.2

can be understood as determinant of the matrix eR.”

We introduced a footnote that clarifies this notation.

Anh-Huy Phan: “- Chapter 8 The over-relaxation parameter
! is not defined yet on page 132. What is the role of ! in
the SOR? Section 8.1 should formulate the problem with SOR
before introducing the task of finding accurate approximation
to !.”

SOR is now defined in Eq. (1.4) in Chapter 1.

Anh-Huy Phan: “- Part 1 misses a section for conclusion. What
is the benefit of the probabilistic algorithm over deterministic
algorithms? When can the proposed algorithm be applied?”

Part I and Part II share the same conclusion. The end of the probabilistic algo-
rithms is emphasized in a novel version of the introduction.

17



Anh-Huy Phan: “- Page 48: What is the problem of probabilis-
tic reconstruction?”

In the current version the meaning of probabilstic reconstruction is also clarified
in the introduction.

Anh-Huy Phan: “- Theorem 28. Does �ij denote the Kronecker
delta? The notation is not defined in Chapter 2.”

We clarified the notation in the footnote.

Anh-Huy Phan: “- Page 88 What does the symbol ⌦ stand
for?”

There was a reference there [GN18, Definition 2.2.1] but we also clarified that ⌦
stands for the Kronecker product.

18


	Introduction
	What this thesis is about
	Classical iterative methods
	Relaxation methods
	Projection methods
	Multigrid

	Model equations
	Finite difference discretization
	Finite element discretization
	Poisson equation
	Mixed derivative
	Anisotropic problems
	Helmholtz equation
	Convection-diffusion problems
	Biharmonic equation
	Diffusion with discontinuous coefficients
	Implicit scheme for the heat equation

	Outline of the thesis
	Gaussian belief propagation
	Probabilistic projection methods
	Hidden representation
	Black-box optimization of BPX preconditioners
	Neural multigrid architectures
	Relaxation methods in the multi-armed bandit setting


	I Statistical inference
	Linear problems and statistical inference
	Gaussian belief propagation
	Linear problems and multivariate normal distribution
	Belief propagation
	Gaussian belief propagation
	Message update rules for Gauss-Markov models
	Elimination perspective
	Gaussian belief propagation for non-symmetric linear systems
	Statistical interpretation of belief propagation for non-symmetric linear systems

	Generalized Gaussian belief propagation
	Set-decompositions and the region graph
	Message update rules for the generalized Gaussian belief propagation
	Elimination perspective
	Generalized Gaussian belief propagation for nonsymmetric linear systems

	Gaussian belief propagation as a smoother for multigrid method
	Gaussian belief propagation in the error correction scheme
	Reducing computational complexity

	Numerical examples
	Notes about solvers and smoothers
	Summary of results


	Probabilistic projection methods
	Projection methods and statistical inference
	Fixing prior distribution
	General form of prior distribution
	Uncertainty calibration for abstract projection methods
	Construction of covariance matrices

	Difficulties with probabilistic projection methods
	Uncertainty calibration for Krylov subspace methods
	Comparison with A probabilistic numerical extension of the conjugate gradient method

	Numerical examples
	Comparison with Probabilistic linear solvers: a unifying view
	Comparison with A probabilistic numerical extension of the conjugate gradient method
	Uncertainty quantification for PDE-constraint optimization


	Hidden representation
	Probability, uncertainty and numerical methods
	Uncertainty is in the representation
	Transformation-based examples
	Examples based on the hidden subgrid dynamics

	Iterative methods for sparse linear systems
	Variational approximation

	Probabilistic instationary Richardson iteration
	The covariance matrix is intractable
	Concentration of measure and alignment
	Algorithm
	Connection with other iterative methods
	Calibration of the uncertainty
	Acceleration of iteration by projection



	II Machine learning
	Linear problems and machine learning
	Black-box optimization of BPX preconditioners
	Automatic construction of preconditioners and solvers
	Direct optimization of spectral radius
	Direct optimization of spectral condition number

	Modified BPX preconditioners
	Numerical examples
	Poisson equation
	Helmholtz equation
	Anisotrpoic Poisson equation
	Biharmonic equation
	Convection-diffusion equation
	Diffusion with discontinuous coefficients
	Mixed derivative
	Implicit scheme for heat equation


	Neural multigrid architectures
	Multigrid and neural networks
	Matrix-free multigrid architecture
	Loss function and training
	Restriction on architecture for linear iterative methods
	Architectures and the baseline solver
	LMG
	s1MG(rs)
	s1MG(s)
	s3MG(s)
	U-Net
	fMG

	Numerical examples
	Poisson equation
	Anisotropic Poisson equation
	Mixed derivative
	Influence of smoother's stencil size


	Relaxation methods in the multi-armed bandit setting
	Adaptive linear solvers
	Reinforcement learning
	Markov Decision Processes
	Multi-armed bandits

	Linear iterative methods and reinforcement learning
	Linear iterative methods and bandits
	Naive epsilon-greedy algorithm
	Restarted epsilon-greedy algorithm
	Arm exclusion with Bauer-Fike upper bound
	Rediscretization

	On convergence of proposed algorithms
	Numerical examples

	Conclusion

	III Proofs
	Gaussian belief propagation
	GaBP consistency
	GaBP convergence
	Generalized GaBP consistency
	Generalized GaBP convergence
	Walk structure on a tree
	Walk-sums and the graph refinement


	Probabilistic projection methods
	Extended prior
	Existence of prior
	Coverage of prior
	Perfect uncertainty calibration
	Alignment
	Simplified uncertainty
	Orthogonal projector
	Hierarchical modelling
	Cheap UQ
	Expensive UQ
	Covariance for Reid
	Simplified S-statistic
	Invariance
	Equivalence with Reid
	New norm
	Trefethen

	Hidden representation
	Probabilistic Richardson iteration
	Positive definiteness
	Finite time UQ
	Necessary and sufficient
	Sufficient
	Practical sufficient
	Approximate sufficient
	Alignment

	Black-Box optimization of BPX preconditioners
	BPX matrix
	Drichlet-Neumann boundary conditions
	Neumann-Dirichlet boundary conditions
	Neumann-Neumann boundary conditions
	Drichlet-Dirichlet boundary conditions

	Neural multigrid architectures
	Rho refinement

	Bibliography


