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Abstract

Additive manufacturing opened a new vision of design. This manufacturing tech-
nology provides more freedom in possible shapes and structures. However, new
opportunities arose new challenges for design tools. Existing problems with preci-
sion, correctness, interoperability and standards became more sensitive. Moreover,
this freedom forces people to choose from more design options. This leads to a new
need that is addressed to modeling systems. Users wants software to help them with
the choice.

The core of this work consists in the development of computer aided design and
manufacturing system suitable for needs of additive manufacturing. We analysed ex-
isting solutions and their problems and proposed our own architecture of the system
and its prototype. It exploits fast algorithms to prepare parts for manufacturing.
They are flexible for different scales and structure complexity of the models. More-
over, the system uses a reliable modeling technique that provides modeling freedom
required for additive manufacturing. Finally, we proposed the efficient structural
optimization algorithm compatible with the geometric core of the system.

The developed system was applied for design and manufacturing of several cases.
We performed mechanical tests of manufactured parts to validate the developed
system.
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Chapter 1

Introduction

Additive Manufacturing (AM) is a perspective manufacturing technology with 20.24%

compound annual growth rate from 2019 to 2025 [Altıparmak and Xiao, 2021]. This

technology attracts attention of industries because it provides lightweight prod-

ucts, low volume production, high design complexity, the ability to change designs

frequently are needed [Abdulhameed et al., 2019], supply chain management for

mass customization and promising healthcare opportunities of bioprintig applica-

tions. AM is already used in aerospace, automotive industry, medicine, architecture

and jewelry. Several trends of AM development appeared among these industries.

One of the common directions of AM development is a design of metamaterials

[Palani and Kannan, 2022]. This term defines different types of inner structures.

The problem of their design appears in many applications, including thermoelectrics

[Zhang et al., 2022a], implants and scaffolds [Sezer et al., 2021]. Moreover, we can

see that researchers want to make a design more automated. It leads to development

of structural optimization in architecture [Liu et al., 2022] and general studies of

topology optimization [Liu et al., 2018].

AM breathed new life into topology optimization. Topology optimization was

not quite attractive for conventional manufacturing processes because it required

manual verification of obtained designs and their remodeling [Meng et al., 2020].

Topology optimization algorithms can not carefully work with limitations of these

manufacturing processes. AM provides more design freedom and, therefore, many

automatically generated designs are appropriate for this technology. However, there
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Chapter 1. Introduction

are still some challenges for topology optimization used for AM. The optimization

algorithm can result with parts violating resolution of a 3D printer or its acceptable

overhang angle [Prathyusha and Babu, 2022]. The first option to solve these prob-

lems is to incorporate these constraints into the topology optimization algorithm.

The second option is to include supports into the design process [Amir and Amir,

2021]. This way introduces a new branch of modeling tasks, modeling of lattice

structures. These structures can work as supports of overhang regions of parts. We

can also use lattices for lightweight by filling them into inner volumes of parts. These

lattice structures are one more subject of topology optimization. Topology optimiza-

tion algorithms have more fundamental challenges except we mentioned above. One

of them is the performance for large scale applications [Mukherjee et al., 2021]. It

seems that Central Processing Unit (CPU) and Graphics Processing Unit (GPU)

parallel computing and Artificial Intelligence (AI) methods can solve this problem.

There is one more challenge of topology optimization algorithms that can still re-

quire remodeling the part. It is different representations of the geometry for the

optimization, manual design and generation of Computer Numerical Control (CNC)

programs. The most widely used topology optimization method, Solid Isotropic Ma-

terial with Penalization (SIMP), uses voxel representation, Computer Aided Design

(CAD) systems work on the hybrid geometric model based on Constructie Solid

Geometry (CSG) and Boundary Representation (BRep), and, finally, .STL format

is the de facto standard for CNC generation software.

This thesis proposes an architecture of a modeling system for additive man-

ufacturing with efficient rendering, slicing, topology and parameter optimization

algorithms based on the unique geometry representation. All mentioned compo-

nents of the system are crucial. The rendering algorithm provides drawing facilities

that show a preview of the modeled object. Slicing means procedures for generating

CNC programs required for manufacturing. Topology and parameter optimization

components make the design process simpler through automatic design suggestions

for an arbitrary functional problem.

Concrete realization of the above mentioned components depends on the geome-

try representation used in the CAD system. Table 1.1 shows popular CAD products
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Chapter 1. Introduction

and geometry representations they used (you can find more detailed analysis of listed

and some other systems in [Pakhomova et al., 2020]). However, we can see even from

this table that the majority of mentioned systems work with boundary or hybrid

representations.

Why do we see this picture? BRep is the oldest approach for describing solid

bodies used in CAD systems. However, it collected many problems during its long

history. Two main problems of BRep are size of the models and their accuracy.

The first problem become obvious when BRep model were applied for manufactur-

ing and especially AM. Relatively compact representation applied for visualization

transformed into huge .STL files which describe complex shapes with heterogeneous

infill structures. However, we could touch the complexity and huge sizes of BRep

early in movie visual effects applications. That is why some systems chose hybrid

geometry representation. It basically means that we use different representations

for different tasks of CAD/Computer Aided Manufacturing (CAM) system. Many

systems with hybrid representations operate with CSG trees for objects built of

simple primitives by applying set-theoretic operations, and extend these tools with

more complex modeling tools, e.g. blending, which requires converting to BRep.

However, this transformations from one representation to another arise issues with

accuracy. We think that the younger modeling approach based on Function Repre-

sentation (FRep) (see Section 2.1) can provide CAD/CAM framework with unique

representation.

We believe that FRep can become a new trend in the development of AM and

CAD industries. According to Table 1.1, we have found only one commercial system

nTopology, Inc. [2022] that operates with geometry in FRep. There are some systems

which support it via plugins, e.g. Robert McNeel & Associates [2022], or enthusiastic

research platforms, e.g. HyperFun Team [2022]. However, such a modest position

in the market can be explained by the novelty of FRep as a modeling technique.

Thus, the main research problem is developing of a CADCAM system with topol-

ogy and parameter optimization algorithms based on FRep. This system addresses

the drawbacks of existing modeling systems. Especially, there are huge size of mod-

els, issues with their accuracy and errors in BRep geometry and the need of geometry
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Chapter 1. Introduction

transformation during the process from modeling to manufacturing.

Therefore, the main research objective is providing the prototype of the FRep-

based CAD/CAM system. This task consists of several sub tasks. There are the

developing of FRep geometric core of the modeling system, providing of efficient ren-

dering algorithm, developing of the slicing routines for direct AM of FRep objects,

developing of optimization algorithms for topology and parameter optimization of

the FRep objects. The solution of these goals allow us to check the following hy-

potheses.

The biggest hypothesis is if FRep can be the geometry representation that re-

sponses for all modeling and manufacturing requirements. Moreover, we need to

check if the performance of rendering and slicing algorithms based on FRep is com-

parable with classical methods. Finally, two hypotheses about optimziation algo-

rithms are if they such efficient as SIMP and if the performance of optimized parts

can be successfully predicted in terms of displacements under applied loads.

The rest of the thesis is organized as a coherent manuscript that studies research

questions arose above. It starts from the research background in Chapter 2 where

we discuss the current state of theories and concepts we use in the research. Chap-

ter 3 provides us with more detailed description of thesis objectives and its novelty.

Starting from Chapter 4, FRep-based modeling system, the thesis delivers results

we obtained in our research. Section 4.2, Section 4.3, Chapter 6, Chapter 5 describe

components of the developed system. Section 5.8 tells about the algorithm for mul-

timaterial topology optimization. The last Chapter 7 provides a short summary of

the conducted research.

We used FRep, level set method and Finite Element Method (FEM) with ersatz

material model in the theoretical part of the conducted research. Implementation

of the proposed algorithms mainly relies on Object-Oriented Programming (OOP)

[Stroustrup, 1988] and parallel computing. Let us overview these concepts in the

following chapter.
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Chapter 1. Introduction

# CAD name Geometry
representation Comment

1
Autodesk Auto-
CAD Autodesk
Inc. [2022a]

Boundary
representation

AutoCAD has closed standard for
the internal geometry representation
but we can suppose that it is based
on the BRep because of its modeling
tools

2

Dassault Sys-
tèmes SOLID-
WORKS Das-
sault Systèmes
[2022c]

Boundary
representation

SOLIDWORKS documentation says
that the system uses reference geom-
etry but its description is similar to
BRep

3

Dassault Sys-
tèmes CATIA
Dassault Sys-
tèmes [2022a]

Boundary
representation

CATIA documentation does not
provide a public information about
its internal geometry representation
but it is likely BRep because of its
modeling tools

4
PTC Creo Para-
metric PTC
[2022a]

Boundary
representation

We can read about representation
used in Creo Parametric in its doc-
umentation

5
FreeCAD The
FreeCAD Team
[2022]

Boundary
representation

FreeCAD is the open source project
and the information about its geom-
etry representation is available in the
documentation

6
Autodesk Inven-
tor Autodesk
Inc. [2022c]

Boundary
representation

The documentation of Autodesk In-
ventor reefers to geometry represen-
tation used in Autodesk AutoCAD

7 Siemens NX
Siemens [2022b]

Hybrid
representation

The geometry representation of
Siemens NX is not a public informa-
tion but we can assume that Siemens
NX uses both BRep and CSG from
the Shih’s book [Shih, 2022]

8
Autodesk Fusion
360 Autodesk
Inc. [2022e]

Boundary
representation

The documentation of Autodesk Fu-
sion 360 says that it uses BRep

9

Rhinoceros
Rhino Robert
McNeel & Asso-
ciates [2022]

Boundary
representation

Rhino uses a geometric kernel based
on BRep but it has plugins whose
can operate with other kind of rep-
resentations: CSG, voxels and FRep

Table 1.1: Geometry representations in CAD systems.
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Chapter 1. Introduction

10 PTC Onshape
PTC [2022b]

Boundary
representation

We did not find available informa-
tion about geometry representation
used in PTC Onshape. However,
we can suppose that this web-based
CAD system inherited the repre-
sentation from its desktop ancestor,
PTC Creo Parametric

11
Siemens Solid
Edge Siemens
[2022a]

Boundary
representation

Public documentation of Siemens
Solid Edge describes its geometry
representation

12

Bentley Systems
MicroStation
Bentley Systems
Inc. [2022]

Hybrid
representation

The documentation of Bentley Sys-
tems MicroStation says that it works
with BRep and has utilities to oper-
ate with voxel representation

13
OpenSCAD
Marius Kintel
[2022]

Hybrid
representation

OpenSCAD is an open source
project. It uses CSG and BRep ac-
cording its documentation

14
Autodesk Revit
Autodesk Inc.
[2022d]

Boundary
representation

Revit documentation says that it
uses BRep

15 BricsCAD Bric-
sys NV [2022]

Boundary
representation

BricsCAD documentation does not
provide a public information about
its internal geometry representation
but it is likely BRep because of its
modeling tools

16
LibreCAD The
LibreCAD Team
[2022]

Boundary
representation

LibreCAD is an open source project.
It uses BRep according its documen-
tation

17

IMSI Design
TurboCAD
IMSI Design
LLC [2022]

Boundary
representation

TurboCAD documentation does not
provide a public information about
its internal geometry representation
but it is likely BRep because of its
modeling tools

18 nanoCAD
Nanosoft [2022]

Boundary
representation

nanoCAD documentation does not
provide a public information about
its internal geometry representation
but it is likely BRep because of its
modeling tools

19

IntelliCAD
IntelliCAD
Technology
Consortium
[2022]

Boundary
representation

IntelliCAD documentation does not
provide a public information about
its internal geometry representation
but it is likely BRep because of its
modeling tools

Table 1.1: Geometry representations in CAD systems (Continued).
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20
IRONCAD
IronCAD, LLC
[2022]

Boundary
representation

IRONCAD documentation does not
provide a public information about
its internal geometry representation
but it is likely BRep because of its
modeling tools

21

Dassault Sys-
tèmes Draft-
Sight Das-
sault Systèmes
[2022b]

Boundary
representation

DraftSight documentation does not
provide a public information about
its internal geometry representation
but it is likely BRep because of its
modeling tools. This system has a
powerful tools for rather 2D than 3D
modelling

22
Alibre Design
Alibre, LLC
[2022]

Boundary
representation

DraftSight documentation does not
provide a public information about
its internal geometry representation
but it is likely BRep because of its
modeling tools

23

Graphisoft
Archicad
Graphisoft
[2022]

Boundary
representation

Archicad documentation says that it
uses BRep

24 progeCAD pro-
geSOFT [2022]

Boundary
representation

DraftSight documentation does not
provide a public information about
its internal geometry representation
but it is likely BRep because of its
modeling tools

25
Gstarsoft Gstar-
CAD Gstarsoft
Co.,Ltd [2022]

Boundary
representation

GstarCAD documentation does not
provide a public information about
its internal geometry representation
but it is likely BRep because of its
modeling tools

26
TrueCAD Jytra
Technology So-
lutions [2022]

Boundary
representation

GstarCAD documentation does not
provide a public information about
its internal geometry representation
but it is likely BRep because of its
modeling tools

27
ZWCAD ZW-
SOFT CO.,
LTD. [2022]

Boundary
representation

ZWCAD documentation says that it
uses BRep

28
cadwork cad-
work Software
[2022]

Hybrid
representation

cadwork documentation says that it
uses both BRep and CSG

29
SolveSpace
SolveSpace con-
tributors [2022]

Boundary
representation

SolveSpace documentation says that
it uses BRep

Table 1.1: Geometry representations in CAD systems (Continued).
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30
Ansys Space-
Claim ANSYS,
Inc [2022]

Hybrid
representation

SpaceClaim uses BRep and finite el-
ements similar to voxels for simula-
tions

31
CorelCAD Corel
Corporation
[2022]

Boundary
representation

GstarCAD documentation does not
provide a public information about
its internal geometry representation
but it is likely BRep because of its
modeling tools

32
Top Systems T-
FLEX CAD Top
Systems [2022]

Boundary
representation

T-FLEX CAD documentation does
not provide a public information
about its internal geometry repre-
sentation but it is likely BRep be-
cause of its modeling tools

33 LeoCAD Leo-
CAD.org [2022]

Constructive
Solid Geometry

LeoCAD is an open source CAD sys-
tem for 3D modeling with LEGO
bricks

34
Vectorworks
Vectorworks,
Inc. [2022]

Boundary
representation

Vectorworks documentation does
not provide a public information
about its internal geometry repre-
sentation but it is likely BRep be-
cause of its modeling tools

35

Autodesk Auto-
CAD Architec-
ture Autodesk
Inc. [2022b]

Hybrid
representation

AutoCAD Architecture documenta-
tion does not provide a public infor-
mation about its internal geometry
representation but it is likely BRep
and CSG with primitives suitable for
architecture

37
Vizerra Revizto
Vizerra SA
[2022]

Boundary
representation

Revizto documentation does not
provide a public information about
its internal geometry representation
but it is likely BRep because of its
modeling tools

38

BRL-CAD
Army Research
Laboratory
[2022]

Hybrid
representation

Open-source software by United
States Army Research Laboratory.
Its documentation says the it uses
both BRep and CSG

39 VariCAD Vari-
CAD [2022]

Boundary
representation

VariCAD documentation says that
it uses BRep

40
nTopology
nTopology, Inc.
[2022]

Hybrid
representation

nTopology blog says that it uses
FRep, BRep, CSG and voxel repre-
sentation

Table 1.1: Geometry representations in CAD systems (Continued).
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"if I have seen further it is by stand-

ing on the shoulders of Giants."

Isaac Newton, 1675

Chapter 2

Background

2.1 Function representation

FRep is a technique of geometric modeling [Pasko et al., 1995], [Kambampati et al.,

2021], [Tereshin et al., 2021], [Zhang et al., 2022b]. From a practical perspective, its

ability to precisely describe two- and three-dimensional shapes is more attractive.

However, this theory covers modeling sets in any finite dimension. The three key

concepts of FRep are objects, operations, and relations.

2.1.1 Objects

Objects in FRep are closed subsets of the n-dimensional Euclidean space E𝑛. They

are defined through inequalities:

𝑓(𝑥1, ..., 𝑥𝑛) ≥ 0, (2.1)

where 𝑓(𝑥1, ..., 𝑥𝑛) is a real continuous function defined in E𝑛. This function is

named a defining function.

The defining function introduces a ternary classification for all points in the

Euclidean space E𝑛. The function is positive in the open set of the interior of the

object. The boundary of the object is the zero-level set of 𝑓 . The function is negative

in the open set of the exterior of the object.

This property of the defining function allows us to use it for interactions with
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Chapter 2. Background 2.1. Function representation

shapes. First, we can create rendering algorithms to draw objects with arbitrary

precision. Second, it is possible to slice objects for their 3D printing [Song et al.,

2018]. Finally, we can introduce operations and relations on objects.

2.1.2 Operations

We can consider FRep as an extension to "implicit" models, which are based sim-

ply on equations of new primitives. FRep exploits the tree structure produced by

applying of operations. Tracing of this structure generates the function value at the

point.

Since the defining function introduces the ternary classification of the space, set-

theoretic operations correspond to a three-valued logic. Research in this area led to

the theory of R-functions [Rvachev, 1982], [Rvachev et al., 2001], [Kravchenko et al.,

2020], [Kravchenko et al., 2021].

Table 2.1 contains a list of possible some R-functions used for set-theoretic union,

intersection, and subtraction:

Group Operation Equation

R𝛼

Union 1
1+𝛼

(︁
𝑓1 + 𝑓2 +

√︀
𝑓 2
1 + 𝑓 2

2 − 2𝛼𝑓1𝑓2

)︁
Intersection 1

1+𝛼

(︁
𝑓1 + 𝑓2 −

√︀
𝑓 2
1 + 𝑓 2

2 − 2𝛼𝑓1𝑓2

)︁
Subtraction 1

1+𝛼

(︁
𝑓1 − 𝑓2 −

√︀
𝑓 2
1 + 𝑓 2

2 + 2𝛼𝑓1𝑓2

)︁
R𝑚

0

Union
(︁
𝑓1 + 𝑓2 +

√︀
𝑓 2
1 + 𝑓 2

2

)︁
(𝑓 2

1 + 𝑓 2
2 )

𝑚
2

Intersection
(︁
𝑓1 + 𝑓2 −

√︀
𝑓 2
1 + 𝑓 2

2 )(𝑓
2
1 + 𝑓 2

2

)︁𝑚
2

Subtraction
(︁
𝑓1 − 𝑓2 −

√︀
𝑓 2
1 + 𝑓 2

2

)︁
(𝑓 2

1 + 𝑓 2
2 )

𝑚
2

R
𝑝

Union 𝑓1 + 𝑓2 + (|𝑓1|𝑝 + |𝑓2|𝑝)
1
𝑝

Intersection 𝑓1 + 𝑓2 − (|𝑓1|𝑝 + |𝑓2|𝑝)
1
𝑝

Subtraction 𝑓1 − 𝑓2 − (|𝑓1|𝑝 + |𝑓2|𝑝)
1
𝑝

R𝐶

Union
(︀
𝑓1+𝑓2

2

)︀𝑚
𝑠𝑖𝑔𝑛(𝑓1 + 𝑓2)

𝑚+1 +
(︀
𝑓1−𝑓2

2

)︀𝑚
𝑠𝑖𝑔𝑛(𝑓1 − 𝑓2)

𝑚

Intersection
(︀
𝑓1+𝑓2

2

)︀𝑚
𝑠𝑖𝑔𝑛(𝑓1 + 𝑓2)

𝑚+1 −
(︀
𝑓1−𝑓2

2

)︀𝑚
𝑠𝑖𝑔𝑛(𝑓1 − 𝑓2)

𝑚

Subtraction
(︀
𝑓1−𝑓2

2

)︀𝑚
𝑠𝑖𝑔𝑛(𝑓1 − 𝑓2)

𝑚+1 −
(︀
𝑓1+𝑓2

2

)︀𝑚
𝑠𝑖𝑔𝑛(𝑓1 + 𝑓2)

𝑚

Table 2.1: Equations for set-theoretic operations.

The equations in Table 2.1 have three parameters. The first is 𝛼. It is a function

such that −1 < 𝛼(𝑓1, 𝑓2) ≤ 1. Two more parameters are the constants 𝑚 > 0 and
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𝑝 > 1.

The most widely used group of set-theoretic operations is R𝛼. The researchers

exploit the equations of this group with 𝛼 ≡ 0 and 𝛼 ≡ 1. The last value of 𝛼 ≡ 1

led to the following set of equations:

𝑓1 ∨0 𝑓2 = 𝑚𝑎𝑥(𝑓1, 𝑓2),

𝑓1 ∧0 𝑓2 = 𝑚𝑖𝑛(𝑓1, 𝑓2),

𝑓1 ∖0 𝑓2 = 𝑚𝑖𝑛(𝑓1,−𝑓2).

Set-theoretic operations belong to more broad class of binary operations, but

unary operation exist in FRep as well. The simplest example of such an operation is

the negation E𝑛∖Ω of a subset Ω. In terms of FRep, it is −𝑓 , where 𝑓 = 𝑓(𝑥1, ..., 𝑥𝑛)

is the defining function of Ω.

However, most unary operations in FRep are space mapping operations [Pasko

et al., 1999], [Schmitt et al., 1999], [Savchenko et al., 1995], [Fryazinov et al., 2013].

This means that the defining function is still the same, but some mapping E𝑛 → E𝑛

is applied to the points of the initial Euclidean space. Table 2.2 shows a list of

commonly used space mapping operations:

One more wide-spread operation is blending [Hsu, 2018], [Bhooshan et al., 2018],

[Corker-Marin et al., 2018], [You, 2022], [Tereshin et al., 2020]. It can be used with

set-theoretic union, intersection, or subtraction:

𝑓1 ∨ 𝑓2 + 𝑑(𝑓1, 𝑓2),

𝑓1 ∧ 𝑓2 + 𝑑(𝑓1, 𝑓2),

𝑓1 ∖ 𝑓2 + 𝑑(𝑓1, 𝑓2),

where 𝑑(𝑓1, 𝑓2) in the displacement introduced by the blending operation:
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Operation Equation Parameters

Scaling
(︁

𝑥1

𝑠1
, ..., 𝑥𝑛

𝑠𝑛

)︁ 𝑠1, ..., 𝑠𝑛 are scaling factors
along corresponding direc-
tions

Translation (𝑥1 − 𝑥0
1, ..., 𝑥𝑛 − 𝑥0

𝑛)
(𝑥0

1, ..., 𝑥
0
𝑛) is the new origin

point of the object

Rotation (n=2)
(𝑥1 cos 𝜃 + 𝑥2 sin 𝜃,

−𝑥1 sin 𝜃 + 𝑥2 cos 𝜃)
𝜃 is a rotation angle

Global tapering
(︁

𝑥1

𝑠1(𝑥𝑛)
, ..., 𝑥𝑛−1

𝑠𝑛−1(𝑥𝑛)
, 𝑥𝑛

)︁ 𝑠1(𝑥𝑛), ..., 𝑠𝑛−1(𝑥𝑛) are scal-
ing factors along corre-
sponding directions, those
depend on the 𝑥𝑛

Global axis twist (n=3)
(𝑥1 cos 𝜃 + 𝑥2 sin 𝜃,

−𝑥1 sin 𝜃 + 𝑥2 cos 𝜃,

𝑥3)

𝜃 = 𝜃(𝑥3) is a function
depending on 𝑥3, that de-
fines rotation angle. It shall
be continuous for a smooth
twist

Table 2.2: Equations for space mapping operations.

𝑑(𝑓1, 𝑓2) =
𝑎0

1 +
(︁

𝑓1
𝑎1

)︁2

+
(︁

𝑓2
𝑎2

)︁2 ,

where 𝑎0, 𝑎1, and 𝑎2 are constants. The sign of the parameter 𝑎0 controls whether the

material will be added or removed from the result object. The parameters 𝑎1 > 0

and 𝑎2 > 0 are responsible for the amount of material added or removed around

each of the initial objects.

One more exotic, but quite useful operation is bounded blending [Pasko et al.,

2005]. This is an example of a ternary operation. The bounded blending has the

same form as simple blending, but with more complicated displacement function

𝑑 = 𝑑(𝑓1, 𝑓2, 𝑓3):
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𝑑(𝑟) =

⎧⎪⎨⎪⎩
(1−𝑟2)

3

1+𝑟2
, 𝑟 < 1

0, 𝑟 ≥ 1

,

𝑟 =
𝑟21

𝑟11 + 𝑟22
,

𝑟21(𝑓1, 𝑓2) =

(︂
𝑓1
𝑎1

)︂2

+

(︂
𝑓2
𝑎2

)︂2

,

𝑟22(𝑓3) =

⎧⎪⎨⎪⎩
(︁

𝑓3
𝑎3

)︁2

, 𝑓3 > 0

0, 𝑓3 ≤ 0

.

This operation uses the object defined by 𝑓3 to constrain the added or removed

material with its volume, and the new parameter 𝑎3 more sensitively controls the

amount of material changes.

All the above mentioned examples are not a complete set of possible operations

of FRep. New operations can appear in specific modeling applications. The main

requirement to the operation is that it generates new continuous function

2.1.3 Relations

The last key concept of FRep is relations [Tereshin et al., 2021]. They serve to

verify the hypothesis about the modeled objects. The mathematical formalization

of relations is predicates. Let us consider three useful examples.

The fist one is inclusion relation. This relation checks the hypothesis to see

whether the object Ω1 is included in the object Ω2 or not. It can be written as a

bi-valued predicate using the respective defining functions 𝑓1 and 𝑓2:

𝑃1(Ω1,Ω2) =

⎧⎪⎨⎪⎩0, if ∃(𝑥1, ..., 𝑥𝑛) : 𝑓2(𝑥1, ..., 𝑥𝑛) < 0 and 𝑓1(𝑥1, ..., 𝑥𝑛) ≥ 0,

1, if 𝑓2(𝑥1, ..., 𝑥𝑛) ≥ 0 ∀(𝑥1, ..., 𝑥𝑛) : 𝑓1(𝑥1, ..., 𝑥𝑛) ≥ 0.

One more example of relations is the point membership:
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𝑃2((𝑥1, ..., 𝑥𝑛),Ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if 𝑓(𝑥1, ..., 𝑥𝑛) < 0,

1, if 𝑓(𝑥1, ..., 𝑥𝑛) = 0,

2, if 𝑓(𝑥1, ..., 𝑥𝑛) > 0,

where 𝑓(𝑥1, ..., 𝑥𝑛) is a defining function of object Ω. Simple rendering algorithms

can exploit this relation to draw objects.

The next relation can be used for collision detection. Collision detection is an

important procedure for CAM systems and game development. The intersection

relation can help with construction of a collision detection algorithm:

𝑃1(Ω1,Ω2) =

⎧⎪⎨⎪⎩0, if 𝑓1(𝑥1, ..., 𝑥𝑛) ∧ 𝑓2(𝑥1, ..., 𝑥𝑛) < 0 ∀(𝑥1, ..., 𝑥𝑛) ∈ E𝑛,

1, if ∃(𝑥1, ..., 𝑥𝑛) : 𝑓1(𝑥1, ..., 𝑥𝑛) ∧ 𝑓2(𝑥1, ..., 𝑥𝑛) ≥ 0,

where ∧ is an FRep operation for the set-theoretic intersection, e.g., from Table 2.1.

FRep is a technique used in different fields. Particularly, it found applications

in level set methods.

2.2 Topology Optimization Based on Level Set Meth-

ods

Topology optimization algorithms based on level set methods [Osher and Sethian,

1988], [Fedkiw and Osher, 2002] exploit the concept of FRep defining function. These

methods consider continuous and differentiable defining functions 𝑓(𝑥1, ...𝑥𝑛) with

𝑛 = 2 or 𝑛 = 3. Moreover, these functions depend on the pseudo-time variable, i.e.

𝑓 = 𝑓(𝑡, 𝑥1(𝑡), ..., 𝑥𝑛(𝑡)).

The descent series of a topology optimization algorithm based on level set meth-

ods consists of functions 𝑓(𝑡𝑖, 𝑥1(𝑡𝑖), ..., 𝑥𝑛(𝑡𝑖)). These values come from the solution

of the Hamilton-Jacobi-like partial differential equation:
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𝜕𝑓

𝜕𝑡
= 𝑉 |∇𝑓 |, (2.2)

where 𝑉 is a velocity orthogonal to the boundary of the object and 𝑡𝑖 are samples

increased in time, usually defined by a numerical solution algorithm [Wang et al.,

2003], [Allaire et al., 2004], [Burger et al., 2004].

The specific optimization problem defines the magnitude of velocity 𝑉 . There

are dynamic optimization problems for stiffness ([Wang et al., 2007], [Takezawa

et al., 2010], [Wei et al., 2010], [Vogiatzis et al., 2017]), frequency response ([Shu

et al., 2011]), thermal ([Yaji et al., 2015], [Xia et al., 2018], [Yu et al., 2019]) and

fluids ([Amstutz and Andrä, 2006], [Zhou and Li, 2008], [Challis and Guest, 2009]).

However, we focus on the compliance minimization problem in current research.

We use the following notation to introduce the problem statement. The displace-

ment of a point (𝑥1, ..., 𝑥𝑛) is 𝑢; 𝐸𝑖𝑗𝑘𝑙 is the Hook elasticity tensor; 𝜀𝑖𝑗(𝑢) and 𝜀𝑘𝑙(𝑢)

are linearized strain tensors:

𝑢 =

⎛⎜⎜⎜⎝
𝑢𝑥

𝑢𝑦

𝑢𝑧

⎞⎟⎟⎟⎠ , 𝜀𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥
, 𝜀𝑦𝑦 =

𝜕𝑢𝑦

𝜕𝑦
, 𝜀𝑧𝑧 =

𝜕𝑢𝑧

𝜕𝑧
,

𝜀𝑥𝑦 =
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
, 𝜀𝑥𝑧 =

𝜕𝑢𝑥

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑥
, 𝜀𝑦𝑧 =

𝜕𝑢𝑦

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑦
,

There are several options for the optimization objective functions. Two possible

choices are listed below:

𝐽1(Ω) =

∫︁
Ω

𝐸𝑖𝑗𝑘𝑙𝜀𝑖𝑗(𝑢)𝜀𝑘𝑙(𝑢)𝑑Ω,

𝐽2(Ω) =

(︂∫︁
Ω

𝑤(𝑥1, ..., 𝑥𝑛)|𝑢− 𝑢𝑜𝑏𝑗|𝛼𝑑Ω
)︂ 1

𝛼

,

where 𝑢𝑜𝑏𝑗 is the target displacement, 𝛼 ≥ 2 is a constant and 𝑤(𝑥1, ..., 𝑥𝑛) is a

given non-negative weighting factor.

Formally, the considered compliance minimization problem for an elastic body
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with mixed boundary conditions can be written as following:

min
𝑓

∫︁
Ω

𝐸𝑖𝑗𝑘𝑙𝜀𝑖𝑗(𝑢)𝜀𝑘𝑙(𝑢)𝑑Ω,

s.t. 𝑎(𝑢,𝑣, 𝑓) = 𝑙(𝑣, 𝑓), ∀𝑣 ∈ 𝑈,

𝑢|Γ1 = 𝑢0,

𝐸𝑖𝑗𝑘𝑙𝜀𝑖𝑗(𝑢)|Γ2 = 𝑝,∫︁
Ω

𝑑Ω ≤ 𝑉0,

(2.3)

where

𝑎(𝑢,𝑣, 𝑓) =

∫︁
Ω

𝐸𝑖𝑗𝑘𝑙𝜀𝑖𝑗(𝑢)𝜀𝑘𝑙(𝑣)𝑑Ω,

𝑙(𝑣, 𝑓) =

∫︁
Ω

𝑔𝑣 +∇(𝑝𝑣𝑛)𝑑Ω,

𝑢0, 𝑝 and 𝑔 are the constant vectors that represent the displacement, traction, and

body force given, respectively; 𝑎(𝑢,𝑣, 𝑓) is the linear elastic equilibrium equation

written in its weak variational form and 𝑙(𝑣, 𝑓) is the linear form of the load, with

𝑣 denotes a virtual displacement field in the space 𝑈 of kinematically admissible

displacement fields; 𝑉0 is the maximum allowable volume.

It is not the only way for introducing the topology optimization problem. Some

papers work with the dual problem where the volume
∫︀
Ω
𝑑Ω is an objective functions.

Optimization algorithms can vary for different forms of the problem statements. The

proposed level set method used in this research is described in Chapter 5.

2.3 Finite element method with ersatz material model

FEM is a powerful tool used in many applications, but for our research, we focus on

its particular formulation. You can find a comprehensive description of the method

in the existing literature, e.g. [Zienkiewicz et al., 2005], [Dhatt et al., 2012], [Rao,

2017], and [Reddy, 2019]. However, here we will discuss only its application for

elastic solids with isotropic material model.
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Chapter 2. Background 2.3. Finite element method with ersatz material model

We used FEM to simulate mechanical properties of solids. Since we consider an

elastic isotropic model, we can write Hooke’s law:

𝜎 = 𝑐𝜀,

where

𝜎 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧

𝜎𝑦𝑧

𝜎𝑥𝑧

𝜎𝑥𝑦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝜀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

𝜀𝑦𝑧

𝜀𝑥𝑧

𝜀𝑥𝑦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

𝑐 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐸(1−𝜈)
(1−2𝜈)(1+𝜈)

𝐸𝜈
(1−2𝜈)(1+𝜈)

𝐸𝜈
(1−2𝜈)(1+𝜈)

0 0 0

𝐸𝜈
(1−2𝜈)(1+𝜈)

𝐸(1−𝜈)
(1−2𝜈)(1+𝜈)

𝐸𝜈
(1−2𝜈)(1+𝜈)

0 0 0

𝐸𝜈
(1−2𝜈)(1+𝜈)

𝐸𝜈
(1−2𝜈)(1+𝜈)

𝐸(1−𝜈)
(1−2𝜈)(1+𝜈)

0 0 0

0 0 0 𝐸𝜈
2(1+𝜈)

0 0

0 0 0 0 𝐸𝜈
2(1+𝜈)

0

0 0 0 0 0 𝐸𝜈
2(1+𝜈)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and 𝜎 is a vector of stress components at an elementary volume as shown in Figure 2-

1(a); 𝜀 is a vector of corresponding strain components; 𝐸 is a Young’s modulus and

𝜈 is a Poison’s ratio.

We used uniform square (Figure 2-1(b)) and cubic (Figure 2-1(c)) finite elements

for approximations. Green numbers mark elements, and numbered circles show

nodes in Figure 2-1. Bilinear and trilinear interpolations approximate components

of the displacement vector 𝑢 within an element in 2D and 3D, respectively.

We chose the plane stress model for simulation in 2D. Thus, the Hook elasticity

tensor 𝐸𝑖𝑗𝑘𝑙 used in Equation 2.3 for 2D case has the following form:
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Figure 2-1: Components of the mechanical simulation scheme: (a) elementary cubic
volume with stress components; (b) square finite element grid placed over the solid
Ω with numbered nodes and elements; (c) cubic finite element grid with numbered
nodes and elements.

𝐸𝑖𝑗𝑘𝑙 =
𝐸

1− 𝜈2

⎛⎜⎜⎜⎝
1 𝜈 0

𝜈 1 0

0 0 1−𝜈
2

⎞⎟⎟⎟⎠ .

We can find the element stiffness matrix 𝑘𝑒 for square grid for this elasticity

tensor 𝐸𝑖𝑗𝑘𝑙. It is introduced as following for the first element in Figure 2-1(b):

𝑘𝑒 =

∫︁
𝑉𝑒

𝐵𝑇𝐸𝑖𝑗𝑘𝑙𝐵𝑑𝑉, (2.4)

where

𝐵 =

⎛⎜⎜⎜⎝
𝜕
𝜕𝜉

0

0 𝜕
𝜕𝜂

𝜕
𝜕𝜉

𝜕
𝜕𝜂

⎞⎟⎟⎟⎠
⎛⎝𝑁1 0 𝑁4 0 𝑁5 0 𝑁2 0

0 𝑁1 0 𝑁4 0 𝑁5 0 𝑁2

⎞⎠ ,
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𝑁1 =
1

4
(1− 𝜉)(1− 𝜂),

𝑁4 =
1

4
(1 + 𝜉)(1− 𝜂),

𝑁5 =
1

4
(1 + 𝜉)(1 + 𝜂),

𝑁2 =
1

4
(1− 𝜉)(1 + 𝜂).

𝑁1, 𝑁4, 𝑁5 and 𝑁2 are shape functions for displacement approximation within

this element. Subscript numbers refer to corresponding nodes. Equations for the

shape functions are provided in local coordinate system 𝜉, 𝜂 with origin in the cen-

ter of cubic element and its boundaries located at 𝜉 = ±1, 𝜂 = ±1. Thus, the

displacement approximation 𝑢 within the first element is:

𝑢 =
(︁
𝑢1 𝑢4 𝑢5 𝑢2

)︁
⎛⎜⎜⎜⎜⎜⎜⎝
𝑁1

𝑁4

𝑁5

𝑁2

⎞⎟⎟⎟⎟⎟⎟⎠
where 𝑢1,𝑢4,𝑢5 and 𝑢2 are displacement vectors at the corresponding nodes.

The element stiffness matrix Equation 2.4 is the same for all uniform square

elements as in Figure 2-1(b). It can be explicitly calculated by symbolic integration

of the Equation 2.4. Special software, such as The MathWorks, Inc. [2022], can

perform the integration and the result matrix will be the same as one used in the

classical topology optimization paper [Sigmund, 2001].

We used the ersatz material model to avoid re-meshing of solids during opti-

mization. It means that instead of deforming the square elements, we vary Young’s

modulus of the material. For example, we use the exact value of the material

Young’s modulus for elements 1, 2, 3, 4, 5 and 6 in Figure 2-1(b), but it is reduced

proportionally to the volume occupied by the solid body Ω for elements 7 and 8.
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Chapter 3

Thesis Objectives And Novelty

Objectives of this thesis rely on the identified drawbacks of the CAD/CAM and

topology optimization software for AM.

3.1 Goals

The main goal is to propose the system with a unique representation for modeling

and optimization. We consider FRep as a good candidate for this role. The proposed

system should satisfy specific requirements for the CAD software applied to AM

design. Two key points of such a special challenges are complexity of the designed

shapes and their parametrization. Thus, we need to study if FRep can cope with

there tasks.

FRep is not a panacea for all modeling and manufacturing tasks. Its implemen-

tation in CAD/CAM systems has several bottlenecks those should be investigated.

The first one is slow rendering facilities of this representation. Since functions

define solids in FRep, their drawing requires significant number of their evaluations.

It is a time consuming task when functions are complex. Therefore, we need to in-

vestigate existing rendering techniques exploiting parallel computations and propose

an efficient drawing procedure.

The second important algorithm we need to consider is slicing. It is a procedure of

CNC program generation. However, FRep is not only representation where slicing

can be challenging. It implies conversion of 3D representation to so-called 2.5D
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Chapter 3. Thesis Objectives And Novelty 3.2. Novelty

representation which is challenging except you use 2.5D representation, e.g. layered

depth-normal images [Chen and Wang, 2011], as a geometric kernel. Nonetheless,

we need to propose an efficient and competitive slicing algorithm as well.

The last issue connected with FRep efficiency is the implementation of mechan-

ical simulation algorithms. The problem in this aspect has the same nature as two

previously mentioned points. The classical FEM requires solid partition into ele-

ments which also relies on the boundary extraction. We tried to avoid this step by

using FEM with the ersatz material model in the thesis.

This approach for simulations came from level set methods used in different appli-

cations. One more goal of the thesis is establishing more connections between FRep

and level set methods to improve modeling, simulation and optimization facilities.

Finally, we want to realize direct manufacturing tools in the developed CAD/

CAM software.

3.2 Novelty

The proposed system has two essentially novel aspects.

The first one is the uniqueness of the geometry representation for all modeling

and manufacturing tasks. You can find the proposed FRep based system for CAD,

e.g. [Pasko et al., 1995], nTopology, Inc. [2022] and ephtracy [2021]. The are also

simulation systems based on FRep with simple design facilities, e.g. [Shapiro and

Tsukanov, 2002] or even older Soviet Ukraine system called "Pole" [Rvachev, 1982].

The paper [Song et al., 2018] proposes FRep-based CAM tools. However, there was

no FRep-based system that aggregates all three components: CAD, simulations and

CAM.

The second novel aspect of the proposed FRep system is its collaboration ca-

pabilities. The architecture proposed in Section 4.1 describes a web application

with common space of objects and modeling tools exploiting users computational

resources. There are CAD systems based on the BRep, e.g. PTC [2022b]. However,

the current thesis is the first research, which delivers such a system based on FRep.

One more novel point of this research is the study of interconnections between
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FRep and level set methods. Chapter 5 delivers with results on control of optimiza-

tion process via FRep modeling techniques.

Moreover, Section 5.8 proposes a new multimaterial topology optimization algo-

rithm based on the model with dominant material.
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Chapter 4

FRep-based modeling system

4.1 Architecture of the system

Figure 4-1 shows main components of the proposed CAD/CAM FRep-based system.

It consists of three key parts: CAD component, CAM component and Computer

Aided Engineering (CAE) component.

Figure 4-1: Main components of the CAD/CAM FRep-based system.

The CAD component includes tools for basic modeling activities. Primitive mod-

eling, operation definition and complex models construction blocks make up FRep

geometric gore of the modeling system. The primitive modeling tool realizes the

concept of FRep objects. It stores defining functions of solids in symbolic form and

its parameters, e.g. dimensions. The complex model construction tool realizes the
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processing of tree-like structures made of existing primitives. The operation defini-

tion tool introduces operations that can be used for constructing of these structures.

The last part of these components is the visualization tool that supports the design

process.

The CAD component was implemented with JavaScript, PHP and GLSL lan-

guages. JavaScript code supports the main functionality of the system and user

interactions with its interface. You can see its class diagram in the Figure 4-2. The

Element class and its children classes Primitive and Structure provide fields and

methods for work with solid objects. Their FRep defining functions are arranged as

codes in JavaScript saved in jscode field. The class Structure stores more com-

plex objects made of several primitives in a JSON format. Methods loadFromCloud,

saveToFromCloud and removeFromCloud realize interactions with MySQL database

exploiting Lumen Taylor Otwell [2022] PHP framework. Visualization routines ex-

ploit WebGL The Khronos Group Inc [2022] Application Programming Interface

(API) running shaders written in GLSL (see Section 4.3).

The CAM component is responsible for slicing, CNC program generation and

interaction with 3D printing hardware. Since, AM is a layer by layer manufacturing

technique, slicing means extraction of a layer from the modeled object. As soon

as layers are extracted, the system must prepare the whole CNC program that

defines manufacturing process. Usually, it is a G-Code file with predefined list of

interpretative machine commands. Finally, CAM component of the system has to

deliver the generated control program to the user or a 3D printer directly.

We implemented the CAM component of the system for several types of AM

machines available in Additive Manufacturing Laboratory of Skoltech Center For

Materials Technologies. Routines of this component depend on the type of equip-

ment used for 3D printing. It can prepare a G-Code for Wanhao Duplicator 7,

Zortrax Inkspire and Liquid Crystal Pro Digital Light Processing (DLP) printers

exploiting saveLayers method of WebGLPlotter class. We also realized G-Code

generation procedures for Insstek MX-1000, Ultimaker S5 and Picaso DesignerXPro

printers. However, implementation of CAM routines for these printers differ from

DLP-oriented scheme (for more detailed discussion see Chapter 6).
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Figure 4-2: The class diagram of the frontend part of the system.

The CAE component of the system performs topology and parametric optimiza-

tion of solids based on mechanical simulations. Topology optimization and para-

metric optimization (see Chapter 5) algorithms solve the compliance minimization

problem for given domain and loads. Mechanical simulations exploit FEM with

ersatz material model (see Section 2.3).

Chapter 5 describes the realization of CAE component with references to MAT-

LAB implementation. This component is a suite of programs for generation of an

FRep defining function that can be processed by CAD and CAM components of the
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system.

We chose between two options of the system implementation. The form of a

cloud-based service seems more preferable than a desktop application for several

reasons. The first one is opportunities of collaboration provided by web-oriented re-

alization. Users can have access to the shared models and work with them exploiting

their local computational resources. The second reason of choosing the cloud-based

solution is absence of the installation step. Finally, we wanted to show that the

development of tools, e.g. The Khronos Group Inc [2022], for web-oriented pro-

gramming is reached the point when a complete CAD/CAM system can be created.

Following chapters provide more details on the implementation of the system.
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4.2 FRep geometric core of the modeling system

The geometric core includes three parts of the CAD system component. There are

primitive modeling, operation definition and complex model construction. Primitive

modeling part is responsible for creation of new primitives, their storage and mod-

ification. The main routines of this part are implemented as the Primitive class

shown in Figure 4-2. These primitives transform into more complex object, called

Structures in Figure 4-2, via modeling operations. Several basics operations can be

used to create a structure: set-theoretic union, difference, intersection and blended

union. User can introduce some specific operations within the primitive definition.

Since FRep exploits defining functions to describe solids, the geometric core needs

to operate with symbolic information. The user writes JavaScript code to introduce

a new primitive that can be used for visualization and slicing. The system analyzes

this code to extract parameters of the primitive and prepare it for further usage.

We used Esprima Ariya Hidayat [2022] to process JavaScript code. It allows

us to parse the code and handle its statements in a specific way. Surely, we need

to introduce some rules for the code writing if the user wants to obtain a pre-

dictable result. Thus, user must specify primitive parameters with the let state-

ment. Then, the system extracts them with Esprima and will use the assigned

values as default for parameters. Moreover, the special comment construction can

be used to specify limits of parameter values. User can add a comment in format of

//SLIDER;[a];[b];[step] with explicit numerical values instead of [a],[b] and

[step]. Then, the system restricts the possible range of the defined parameter with

[a] from the bottom and [b] from the top. In this case, the parameter can change

its value within this range with the specified step [step].

Let us consider an example of a ball primitive definition. One of the possible

ball defining functions is:

𝑓(𝑥, 𝑦, 𝑧) = 𝑅−
√︀

𝑥2 + 𝑦2 + 𝑧2,

where 𝑅 is the radius parameter of the ball, and we suppose that the ball is in the

origin.
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The JavaScript code corresponding this primitive looks as follows:

let R = 1,

ball = R - Math.sqrt(X*X + Y*Y + Z*Z);

return ball;

The system identifies R as a parameter in the above written code. Since, there is

no explicit definition of limits, the system applies the default range for the parameter

𝑅 ∈ [0; 2].

Figure 4-3: Defining of the ball primitive via user interface of the system.

Figure 4-3 shows the above primitive definition in the developed system. The

left upper window has a code editor, where user can write the defining function.

Its parameters appear in the right control panel after processing. The range slider

placed in this panel allows user to change radius parameter 𝑅 within [0; 2] with the

default step. It equals 0.01.

The system has several builtin operations that are used for constructing complex

objects. For example, users can exploit blending union:

𝑏(𝑓1, 𝑓2) = 𝑓1 + 𝑓2 +
√︁

𝑓 2
1 + 𝑓 2

2 +
𝑎0

1 +
(︁

𝑓1
𝑎1

)︁2

+
(︁

𝑓2
𝑎2

)︁2 .

The code of this operation looks like:
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float Blend(float obj1, float obj2, float a0, float a1, float a2){

float un = obj1 + obj2 + sqrt(obj1 * obj1 + obj2 * obj2);

float displacement = a0 / (1. +

(obj1 / a1) * (obj1 / a1) + (obj2 / a2) * (obj2 / a2));

return un + displacement;

}

where obj1 and obj1 are values of defining functions 𝑓1 and 𝑓2, and 𝑎0, 𝑎1, 𝑎2 are

control parameters of the blending operation.

You can see how these parameters affect the result solid in Figure 4-4. This

figure shows the result of blending union applied to two balls defined by 𝑓1 and 𝑓2

with equal radii and different center points. Figure 4-4(a) presents the result of

pure union operation. You can see how extra material appears between the balls

when we assign 𝑎0 with a positive value in Figure 4-4(b). The bigger this value, the

more material added to the result object as you can see in Figure 4-4(c). User can

control material contribution of each primitive by changing 𝑎1 and 𝑎2 as shown in

Figure 4-4(d).

Figure 4-4: The blending union operation with different parameters: (a) 𝑎0 = 0,
thus it is equivalent to simple union; (b) 𝑎0 = 0.03, 𝑎1 = 0.1, 𝑎2 = 0.1; (c) 𝑎0 =
0.16, 𝑎1 = 0.1, 𝑎2 = 0.1; (d) 𝑎0 = 0.03, 𝑎1 = 0.1, 𝑎2 = 0.46.

The developed system actively uses GPU and, therefore, the main goal of the
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geometric core is a translation of defining functions written in JavaScript into proper

GLSL codes. One of the constantly used algorithms is rendering which is applied

for object visualization.
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4.3 Rendering of FRep objects

Figure 4-5 shows the general scheme of the proposed rendering algorithm. It in-

troduces the 3D modeling space ℳ which includes FRep objects. The following

description of the rendering algorithm operates with entities in this space.

Figure 4-5: Rendering scheme.

The yellow star in the center of Figure 4-5 is a point of view or a camera. It

looks at the center of the rectangle 𝐴𝐵𝐶𝐷. This rectangle limits the projection

plane used for the rendering process. It has the same number of attraction points as

the number of pixels in the HTML canvas element used for drawing, and it preserves

its proportions in vertical and horizontal directions.

The rendering algorithm suppose a marching procedure along a bunch of rays

emitted from the point of view until tracing points reach the boundary of the ren-

dered object. The line between the point of view and an attraction point at the

projection plane shows one of rays in Figure 4-5.

The step size of this process is quite important. We can use a constant step

size for rendering but it leads to the trade-off between accuracy of the rendering

and time efficiency. The smaller step size is, the larger number of steps is required

to process the same line segment. The constant step size approach is more stable

and obvious, however, it is more reasonable to use an adaptive step size from the

practical perspective. We use the step size depending on the FRep defining function
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in the proposed system. The chosen step size equals the minus value of the defining

function at the current point.

It leads to several consequences. The first one is that for infinite number of

steps the algorithm stops at the boundary of object because its defining function

is equal to zero there. Since one object can be described via unlimited number of

defining functions, we can chose a function that provides better rendering results.

For example, we can affect the speed of marching via multiplying the function by

a constant. Moreover, the practice shows that functions with properties similar to

signed distances allow rendering algorithm to find the boundary faster.

Moreover, we can improve efficiency of rendering for complex objects by tuning

the defining functions of used primitives. For example, if the result defining function

𝑓 includes primitive defining functions 𝑓1, ..., 𝑓𝑚, then we can introduce constant

multiplies 𝑎1, ..., 𝑎𝑚 and use modified primitive functions 𝑎1𝑓1, ..., 𝑎𝑚𝑓𝑚 to improve

rendering efficiency. These techniques allow us to obtain the boundary detection in

convenient number of steps. The implemented rendering algorithm in the proposed

system performs 30 steps of the ray marching procedure. It appears enough for an

appropriate rendering of currently modeled objects.

When the rendering algorithm finds the intersection point with a boundary, it

chooses the color of the corresponding pixel. We can draw closer boundary points

with more bright colors (see Figure 4-6(a)), or we can numerically calculate the

gradient of the defining function at a boundary point to simulate the reflection of a

surface (see Figure 4-6(b)).

Figure 4-6: Rendering results of a ring model: (a) without reflection; (b) with
reflection.
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We used WebGL The Khronos Group Inc [2022] library for running GLSL ren-

dering codes. WebGL is a part of the HTML canvas element since HTML5 (Tim

Berners-Lee [2022]) standard issued. It serves to draw 2D and 3D shapes in the

canvas element with GPU. This tool assumes that the drawn objects consist of tex-

tured portions of surfaces, e.g. triangles, as in classical BRep. There are two GLSL

programs exploited by WebGL. The first one is a vertex shader which operates with

portions of the boundary. The second one is a fragment shader which performs

texturing of these portions.

Figure 4-7 shows how this tool works. It starts from processing JavaScript code

which defines the geometrical primitives being processed with a vertex shader. It

can process points, lines and triangles. The left part of the Figure 4-7 shows the

definition of a triangle as a set of its 3D vertices. The vertex shader works in the

coordinate system of the clip space. This space is a 2× 2× 2 cube with coordinates

changing form−1 to 1. You can see how the vertex shader placed the defined triangle

into the clip space 𝒞 in the middle of Figure 4-7. Finally, WebGL plots textured

geometry in the HTML canvas element. A fragment shader performs texturing of

shapes created by the vertex shader as shown in the right part of Figure 4-7.

Figure 4-7: WebGL operation scheme.

These two shaders have two spaces associated with them. The vertex shader

works in the 3D clip space 𝒞 described above. The 2D picture space 𝒫 is associated

with the fragment shader. The HTML canvas element defines its limits: 𝑥𝒫 ∈ [0, 𝑁𝑥]

and 𝑦𝒫 ∈ [0, 𝑁𝑦], where 𝑁𝑥 is the width and 𝑁𝑦 is the height of the canvas. Moreover,
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𝑥𝒞 and 𝑦𝒞 coordinates of the space 𝒞 have the following connection with coordinates

𝑥𝒫 and 𝑦𝒫 of the picture space 𝒫 :

𝑥𝒞 =
𝑥𝒫 − 𝑁𝑥

2
𝑁𝑥

2

, 𝑥𝒫 = (𝑥𝒞 + 1)
𝑁𝑥

2
,

𝑦𝒞 =
𝑦𝒫 − 𝑁𝑦

2
𝑁𝑦

2

, 𝑦𝒫 = (𝑦𝒞 + 1)
𝑁𝑦

2
,

e.g. a point with 𝑥𝒞 and 𝑦𝒞 coordinates equal to (−1,−1) of the clip space 𝐶

corresponds to the point (0, 0) of the picture space 𝒫 ; and a point with 𝑥𝒞 and 𝑦𝒞

coordinates equal to (1, 1) of the clip space 𝐶 corresponds to the point (𝑁𝑥, 𝑁𝑦) of

the picture space 𝒫 .

Since WebGL is oriented to BRep geometry we specially adapted it for FRep

rendering. The vertex shader performs mapping of the projection plane 𝐴𝐵𝐶𝐷

onto the plane with coordinates (−1, 1, 0), (1, 1, 0), (1,−1, 0) and (−1,−1, 0) in the

clip space 𝒞 as shown in Figure 4-5. This plane serves as a canvas for drawing the

isometric projection of objects which the fragment shader performs.

One more thing should be encountered during constructing a rendering algorithm

is the discrete nature of the picture. The HTML canvas element consists of pixels.

Thus, the work of shaders has visible results only in discrete number of space points.

For example, the bottom left pixel of the canvas has coordinate (0.5, 0.5) in the

picture space 𝒫 coordinates by the default.
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Chapter 5

Optimization of FRep objects

The biggest advantage of AM is, probably, freedom in shapes that can be manufac-

tured. FRep itself has huge power in the designing of complex objects. However,

there is one more source of not only complex but also functional geometry. This is

topology optimization (see Section 2.2). FRep can be successfully used with this

method.

This chapter delivers the results mainly presented in [Popov et al., 2021a]. Here

we discuss the connection of level set method for topology optimization with FRep

and propose an efficient topology optimization algorithm for the compliance mini-

mization problem.

5.1 The proposed topology optimization algorithm

The developed system uses the modified topology optimization algorithm presented

in [Wei et al., 2018]. The compliance minimization problem used in the system can

be expressed as follows:

46



Chapter 5. Optimization of FRep objects 5.1. The proposed topology optimization algorithm

min
𝑓

∫︁
𝐷

𝐸𝑖𝑗𝑘𝑙𝜀𝑖𝑗(𝑢)𝜀𝑘𝑙(𝑢)𝐻(𝑓)𝑑Ω,

s.t. 𝑎(𝑢,𝑣, 𝑓) = 𝑙(𝑣, 𝑓), ∀𝑣 ∈ 𝑈,

𝑢|Γ1 = 𝑢0,

𝐸𝑖𝑗𝑘𝑙𝜀𝑖𝑗(𝑢)|Γ2 = 𝑝,∫︁
𝐷

𝐻(𝑓)𝑑Ω ≤ 𝑉0,

(5.1)

where

𝑎(𝑢,𝑣, 𝑓) =

∫︁
Ω

𝐸𝑖𝑗𝑘𝑙𝜀𝑖𝑗(𝑢)𝜀𝑘𝑙(𝑣)𝐻(𝑓)𝑑Ω,

𝑙(𝑣, 𝑓) =

∫︁
Ω

(︀
𝑔𝑣 +∇ (𝑝𝑣𝑛)

)︀
𝐻(𝑓)𝑑Ω,

𝐷 is the design domain including the optimized body Ω; 𝐻(𝑓) is the Heaviside

function that represents the presence of material at a point of the level-set function

𝑓 :

𝐻(𝑓) =

⎧⎪⎨⎪⎩1 if 𝑓 ≥ 0,

0 if 𝑓 < 0.

This problem statement uses the level-set function 𝑓 which, at the same time, is

an FRep defining function (Equation 2.1).

Let us consider the 2D optimization case. The proposed topology optimization

algorithm incorporates a free-form defining function with bilinear basis functions:

𝜑(𝑥, 𝑦) =

⎧⎪⎨⎪⎩(1− |𝑥|)(1− |𝑦|) if |𝑥| ≤ 1 and |𝑦| ≤ 1,

0 otherwise.
(5.2)

This function defines a surface drawn in Figure 5-1(a). Moreover, in general

case, we need to use this equation with constants ℎ1 and ℎ2 to define a rectangular

non-zero region of the spline basis function, as follows:
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𝜑′(𝑥, 𝑦) =

⎧⎪⎨⎪⎩(1− 1
ℎ1
|𝑥|)(1− 1

ℎ2
|𝑦|) if |𝑥| ≤ ℎ1 and |𝑦| ≤ ℎ2,

0 otherwise.

(a) (b)

(c)

Figure 5-1: Bilinear spline construction: (a) the surface defined by the bilinear spline
basis function (Equation 5.2); (b) the surface produced by two spline basis functions
and its zero-level set (boundary); (c) rectangular domain D with 90 × 25 elements
and 91 × 26 knots.

However, the form (Equation 5.2) can be used here without the loss of generality.

This form of the spline basis function is well suited for the further discussion. Space

mapping is used to locate spline basis function at some portion of the domain. The

bilinear spline basis function with the center of the non-zero region at (𝑥𝑖, 𝑦𝑖) is:

𝜑𝑖(𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1− |𝑥− 𝑥𝑖|)(1− |𝑦 − 𝑦𝑖|) if |𝑥− 𝑥𝑖| ≤ 1

and |𝑦 − 𝑦𝑖| ≤ 1

0 otherwise.

Therefore, the free-form defining function used here can be expressed as follows:

𝑓(𝑥, 𝑦) =
𝑁∑︁
𝑖=1

𝛼𝑖𝜑𝑖(𝑥, 𝑦) (5.3)

with constants 𝛼𝑖.
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The main steps of the proposed modified algorithm are shown in Algorithm 1.

Algorithm 1: The proposed topology optimization algorithm
Step 1. Define the number of grid elements in the domain 𝐷;
Step 2. Initialize coefficients of the free-form function;
Step 3. Define boundary conditions for FEM analysis;
Step 4. Initialize parameters of the optimization loop;
Step 5. Perform FEM analysis of the domain;
Step 6. If the algorithm converges, then quit, else update coefficients of the
free-form function and go to Step 5.

The algorithm uses Equation 2.2 to update the free-form function defined by

Equation 5.3. The equation for updating 𝛼𝑖 is as follows:

𝛼𝑖(𝑡𝑗+1) = 𝛼𝑖(𝑡𝑗) + ∆𝑡Φ−1𝐵(𝛼𝑖(𝑡𝑗), 𝑡𝑗),

where

𝛼𝑖(𝑡𝑗) =
𝛼𝑖(𝑡𝑗)

𝑚𝑒𝑎𝑛(|𝑓(𝑥1, 𝑦1, 𝑡𝑗)|, |𝑓(𝑥2, 𝑦2, 𝑡𝑗)|, ..., |𝑓(𝑥𝑟, 𝑦𝑟, 𝑡𝑗)|
,

Φ =

⎛⎜⎜⎜⎝
𝜑1(𝑥1, 𝑦1) · · · 𝜑𝑁(𝑥1, 𝑦1)

... . . . ...

𝜑1(𝑥𝑁 , 𝑦𝑁) · · · 𝜑𝑁(𝑥𝑁 , 𝑦𝑁)

⎞⎟⎟⎟⎠ ,

(5.4)

(𝑥1, 𝑦1), ..., (𝑥𝑟, 𝑦𝑟) are the points near the solid boundary, (𝑥1, 𝑦1), ..., (𝑥𝑁 , 𝑦𝑁) are

the knot points of the free-form function (Equation 5.3), 𝐵(𝛼𝑖(𝑡𝑗), 𝑡𝑗) is the velocity

vector at the time step 𝑡𝑗:

𝐵(𝛼𝑖(𝑡𝑗), 𝑡𝑗) =

⎛⎜⎜⎜⎝
𝑉 (𝑥1, 𝑦1, 𝑡𝑗)𝛿(𝑓(𝑥1, 𝑦1, 𝛼𝑖(𝑡𝑗)))

...

𝑉 (𝑥𝑁 , 𝑦𝑁 , 𝑡𝑗)𝛿(𝑓(𝑥𝑁 , 𝑦𝑁 , 𝛼𝑖(𝑡𝑗)))

⎞⎟⎟⎟⎠ . (5.5)

For the compliance minimization problem (Equation 5.1), the normal velocity 𝑉

can be derived as follows:

𝑉 = 𝐸𝑖𝑗𝑘𝑙𝜀𝑖𝑗(𝑢)𝜀𝑘𝑙(𝑢)− 𝜆
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where 𝜆 is the Lagrange multiplier to deal with the constraint of the volume fraction,

which is calculated using the following augmented Lagrangian updating scheme:

𝜆𝑘+1 =

⎧⎪⎨⎪⎩𝜇𝐺𝑘 𝑘 ≤ 𝑛𝑅

𝜆𝑘 + 𝛾𝑘𝐺 𝑘 > 𝑛𝑅

, (5.6)

where 𝜇 and 𝛾𝑘 are parameters in the 𝑘-th iteration of the optimization, and 𝛾𝑘 is

updated using the following scheme:

𝛾𝑘+1 = 𝑚𝑖𝑛(𝛾𝑘 +∆𝛾, 𝛾𝑚𝑎𝑥) 𝑘 > 𝑛𝑅.

where ∆𝛾 is the increment and 𝛾𝑚𝑎𝑥 is the upper limit of the parameter 𝛾. Since

the volume fraction of initial design usually does not meet the prescribed volume

fraction, the volume constraint is relaxed in the first 𝑛𝑅 iterations as below:

𝐺𝑘 =

∫︁
𝐷

𝐻(𝑓)𝑑Ω−
(︂
𝑉0 − (𝑉0 − 𝑉𝑚𝑎𝑥)

𝑘

𝑛𝑅

)︂
𝑘 ≤ 𝑛𝑅. (5.7)

To avoid the unbounded growth of the free-form function, an approximate 𝛿(𝑓)

function is inserted into the velocity vector of (Equation 5.5), defined as follows:

𝛿(𝑓) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 𝑓 < −∆

3
4
(1− 𝑓2

Δ2 ) −∆ ≤ 𝑓 ≤ ∆

0 𝑓 > ∆

,

where the parameter ∆ is used to control the magnitude of the upper and lower

bounds of the free-form function. The ersatz material model (see Section 2.3) is used

in the finite element analysis to obtain the naturally extended velocity field from the

strain energy density in the whole design domain. The MATLAB implementation

of the proposed optimization algorithm is given in [Popov et al., 2021a].
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5.2 Modifications of the algorithm

The free-form function (Equation 5.3) uses bilinear basis functions instead of mul-

tiquadric basis proposed in the original algorithm [Wei et al., 2018]. The use of

bilinear basis functions has several advantages. First, the 𝛼𝑖 from Equation 5.3 has

a simple interpretation. The only spline basis function placed at some point (𝑥𝑖, 𝑦𝑖)

with positive coefficient 𝛼𝑖 means that its non-zero region [𝑥𝑖−1, 𝑥𝑖+1], [𝑦𝑖−1, 𝑦𝑖+1]

is filled with material. Otherwise, if 𝛼𝑖 is negative, no material is present in

[𝑥𝑖 − 1, 𝑥𝑖 + 1], [𝑦𝑖 − 1, 𝑦𝑖 + 1]. Two spline basis functions 𝜑𝑖(𝑥, 𝑦) and 𝜑𝑗(𝑥, 𝑦)

with shared non-zero regions and corresponding 𝛼𝑖 and 𝛼𝑗 of opposite signs define a

portion of the body in the shared region with the boundary defined by the equation:

𝛼𝑖(1− |𝑥− 𝑥𝑖|)(1− |𝑦 − 𝑦𝑖|) = −𝛼𝑗(1− |𝑥− 𝑥𝑗|)(1− |𝑦 − 𝑦𝑗|). (5.8)

Equation 5.8 defines a conic section in 2D. Figure 5-1(b) shows the case of two

bilinear spline basis functions with the shared region and corresponding 𝛼𝑖 and 𝛼𝑗

of opposite signs. The black region on the right of this picture is the domain where

the considered function is positive.

Second, the algorithm proposed in [Wei et al., 2018] works with a rectangular

domain 𝐷 and the bilinear spline (Equation 5.3) can accurately describe it. Consider

the domain as shown in Figure 5-1(c) covered by 91 × 26 spline basis functions.

Three non-zero regions of the bilinear spline basis functions are shown in green,

seven shared non-zero regions of the bilinear spline basis functions are shown in

red. Grid knots are the centers of their non-zero regions. Every non-zero region

of a spline basis function covers four white regions. However, it is not the case

for the basis functions placed at the boundary of 𝐷. One can define the whole

rectangular domain 𝐷 by a finite number of spline functions in the form proposed

in Equation 5.3.

Two conditions hold for all these functions. The 𝛼𝑖 values corresponding to all

spline basis functions placed at the boundary, equal zero, and others are positive.

The optimization algorithm requires the free-form function (Equation 5.3) to have

properties of a signed distance function near the boundary. Therefore, for example,
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for the basis functions placed at the boundary, 𝛼𝑖 can be initialized with zeros, and

in other cases — with ones.

One more reason to use bilinear splines in Equation 2.1 is the FEM step. At this

step, we approximate the Young’s modulus of the rectangular element proportionally

to the element’s density. For the elements with no material, the Young’s modulus

is assumed to be zero. Young’s modulus of elements filled with material is assumed

to be equal to that of proposed material. The algorithm estimates the density of

elements partially located at the boundary. It uses exact values of the bilinear spline

(Equation 5.3).

Another modification of the algorithm from [Wei et al., 2018] relates to Steps 2

and 6 of the initial optimization algorithm. In the examples from [Wei et al., 2018],

the defining function initially has positive values at the boundary of the domain 𝐷.

From the FRep perspective, it means that the body has a surface somewhere outside

𝐷. However, it is not correct. Mathematically, 𝛼𝑖 at the boundary of the domain 𝐷

has to be zero or negative.

Suppose at some iteration i of the algorithm we obtained the defining function

𝑓𝑖(𝑥, 𝑦). The idea above can be written as:

𝑓𝑖(𝑥𝑗, 𝑦𝑗) = 𝑚𝑖𝑛(𝑓𝑖−1(𝑥𝑗, 𝑦𝑗), 0) (5.9)

where (𝑥𝑗, 𝑦𝑗) is a boundary point of 𝐷.

The rule introduced above has an exception. Consider the boundary conditions

for the case shown in Figure 5-2(a), left. The shown body has three special points.

There are two points where the body touches rollers and the point where force 𝐹

is applied. Let us suppose that another body produces this force. Therefore, near

these three points, we have a region where we cannot easily separate optimized

body and external bodies. These points always contain a portion of material. Thus,

Equation 5.9 does not hold for them.

One implementation issue should be noted (see the MATLAB code in Popov

[2022b]). Consider the initialization of the bilinear spline defining the body shown

in Figure 5-2(a), right. It is a meaningful option of the body design, but it has holes

at the boundary of 𝐷. Small negative values are used in Equation (Equation 5.9)
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(a)

(b)

(c)

(d) (e)

Figure 5-2: Optimization cases and initial assumptions: (a) the three-point bending
beam case; (b) the beam is supported horizontally in two bottom points, and equal
loads applied vertically in upper corners; (c) the cantilever beam case; (d) the beam
is fixed along the bottom side, and the horizontal load linearly distributed along the
left side of the beam; (e) the beam is fixed horizontally in two bottom points, and
equal loads applied horizontally in upper corners.

instead of zero to allow the algorithm to go over similar shapes.

This modification of Equation 5.9 is also useful in one more situation. During

the optimization process, at some iteration 𝑖, we can obtain the defining function

(Equation 5.3) with all positive 𝛼𝑗. It is true for all points except ones mentioned

in (Equation 5.9). Replacement of zero with some small negative value prevents

the algorithm error at the normalization step (Equation 5.4). The above-mentioned
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modifications make the algorithm more robust.

We compared the proposed modified topology optimization algorithm with the

original one [Wei et al., 2018]. The laptop with the following characteristics was

used for tests: Windows 10 Enterprise 64-bit operating system, x64-based processor

Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz 1.80 GHz, and 8.00 GB (7.86 GB

usable) of installed memory (RAM). Both algorithms, the original one and the

modified one, were run 10 times with following initial data sets. The domain grid is

as shown in Figure 5-1(c). The initial geometry is as shown in Figure 5-2(a), right.

Boundary conditions are taken from Figure 5-2(a), left (see details in Appendix A

of [Popov et al., 2021a]). The desired volume, 𝑉0, was chosen as 45% of the volume

of the entire 𝐷. The Young’s modulus of stainless steel, 𝐸0, is assumed to be 205

𝐺𝑃𝑎, and the Poisson’s ratio, 𝜈, is assumed to be 0.27. Stainless steel is a material

obtained of the powder used for 3D printing. The properties of material were studied

in [Kuzminova et al., 2019]. In the original algorithm all parameters of the updating

scheme for 𝑓𝑖(𝑥, 𝑦) were preserved, except the time step. The time step was changed

to 0.2. These parameters were also used for the modified algorithm.

Both algorithms exploit an isotropic material model at the FEM step. However,

the research [Kuzminova et al., 2019] showed that 3D printed parts have anisotropy.

Nevertheless, the validation results (see Section 5.3) showed that the isotropic model

of material is suitable for the considered cases.

Results of the computational test are shown in Table 5.1. We can see that the

modified algorithm is approximately twice as fast as the original one. It can be

easily explained using different spline basis functions. When the bilinear spine is

used instead of the multiquadric-spline, the time-consuming operation of matrix

inversion is not needed. Two obtained optimized bodies are shown in Figure 5-3(a).

Four more optimization cases shown in Figure 5-2 were considered to check the

observed tendency. Figure 5-3 shows the results of optimization algorithms testing.

Efficiency of the algorithms for these cases is compared in Table 5.2. The results

show that the modified algorithm is faster.

The difference in efficiency is much higher for finer grids of basis functions in the

domain. The original algorithm became 20 times slower than the modified algorithm
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Test Number Modified Algorithm, sec Wei’s Algorithm, sec
1 36.8 80.8
2 35.2 77.3
3 36.1 81.7
4 35.9 75.8
5 35.2 76.6
6 35.9 77.3
7 35.4 76.2
8 35.5 76.4
9 35.9 76.1
10 36.3 76.8

Average time, sec 35.8 77.5
Number of iterations 213 179
Objective function 1.71 × 105 1.71 × 105

Volume 0.45 0.45

Table 5.1: Results of algorithms comparison.

Figure 5-3: Optimal geometries obtained with modified algorithm (left) and original
algorithm (right: (a) the three-point bending beam optimization case; (b) the opti-
mization case where the beam is supported horizontally in two bottom points, and
equal loads applied vertically in upper corners; (c) the cantilever beam optimization
case; (d) the optimization case where the beam is fixed along the bottom side, and
the horizontal load linearly distributed along the left side of the beam; (e) the opti-
mization case where the beam is fixed horizontally in two bottom points, and equal
loads applied horizontally in upper corners.

at the case shown in Figure 5-3(c), which can be explained by the matrix inversion

used in the Wei’s optimization.
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Case
Time Objective Function

Modified
Algorithm,
sec

Wei’s
Algorithm,
sec

Modified
Algorithm

Wei’s
Algorithm

Figure 5-2(b) 21.9 51.9 1.06 × 106 1.06 × 106

Figure 5-2(c) 22.2 448.6 6.00 × 105 6.02 × 105

Figure 5-2(d) 165.2 14902.2 1.47 × 1010 1.59 × 1010

Figure 5-2(e) 24.4 437.1 2.48 × 107 2.48 × 107

Table 5.2: Efficiency of algorithms for four additional cases.

At the same time, both algorithms produce similar values of the objective func-

tion, differing in the third significant digit, depending on the optimization case.

Small modifications of the algorithm listed in Appendix A of [Popov et al., 2021a]

were used to produce models shown in Figure 5-3. These modifications are listed in

Appendix B of [Popov et al., 2021a].

More accurate optimization takes more time and requires more RAM installed.

Both tasks, slicing and optimization, lead to the solution of the trade-off between

precision and time. Although calculations on the mentioned laptop provide valid

data.

5.3 Algorithm validation

We printed the part shown in Figure 5-3(a) left, and conducted its mechanical testing

to validate the proposed algorithm. Dimensions of the printed part (see Figure 5-

4(a)) are 86× 25× 20 𝑚𝑚. The part was cut from the substrate and tested in the

three-point bending mode (see Figure 5-4(b)) at the Instron 5969 testing machine.

Results of the experimental validation are presented as load-displacement curves

for several control points. The vertical component of displacement is used in these

curves. The obtained load-displacement curve for point P3 (see Figure 5-4(c)) is pre-

sented as red dots in Figure 5-4(f). Computed results for the same load are presented

as the solid red line. One can clearly see the disagreement between computational

and experimental data.

This discrepancy between the analytical and experimental results of the red lines

can be attributed to flutes (see Figure 5-4(c)) manufactured to increase the stability
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Figure 5-4: (a) The manufactured part attached to the cylindrical substrate. (b)
The image from Digital Image Correlation System. (c) The location of tracked
points on the part. (d) The test photos of the part under loads 0 and 15 𝑘𝑁 . (f)
The test and calculation results of vertical displacement for points P1 and P2. (e)
The test and calculation results of vertical displacement for point P3.

of the part during the test. A sagging was observed in their areas (see Figure 5-

4(d)) during the testing process. It influenced the load-displacement curve with the

displacement value of the whole printed part. The vertical displacement of point P3

was calculated relative to point P0 (see Figure 5-4(c)) for subtracting the influence

of sagging from the load-displacement test curve. Figure 5-4(f) shows the load-

displacement curves relative to point P0 as green patterns. The correlation between
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the experimental and predicted results holds up to a load of 15 𝑘𝑁 .

During the compression test, it was possible to achieve local plastic deformations.

Depending on the distance from P0, the contribution of plastic deformation to the

vertical displacement differs. Therefore, additional points, P1 and P2 (see Figure 5-

4(c)), were considered. The computational results for those points are presented in

Figure 5-4(e). The correlation between the experimental and computational results

for the point P2 is preserved up to the load of 10 𝑘𝑁 . For the point P1 the correlation

with computational results can be observed up to the load of 5 𝑘𝑁 .

We can conclude that the contribution of plastic deformation is the highest in

the vicinity of the point P0. The deflection from the elasticity is observed for point

P1. It influences the vertical displacements of points P2 and P3. We can conclude

that mechanical testing results repeat the theoretical results within the elastic field

region, where the computational model was applied. At the loads exceeding 15 𝑘𝑁 ,

the contribution of plasticity starts to grow, and it becomes impossible to compare

the computational and experimental results obtained during optimization. At the

same time, this experimental validation showed that the proposed approach can be

freely used for 3D printed parts that are made up of ceramics [Safonov et al., 2020]

and other materials without plastic deformation.

Moreover, we can compare the experimental value of the work done by the applied

force and the theoretical values of elastic deformation energy. The upper limit of

elastic deformations was observed at the point P3 at the load of 15 𝑘𝑁 . This point

lies in the vicinity of the loaded point of the body. Therefore, we can calculate an

approximate value of the work done by the applied force as follows:

𝐴 =
𝐹𝑑

2
(5.10)

where 𝐹 is the load and 𝑑 is the deformation at a given point. The load equals

15 𝑘𝑁 , 𝑑 equals 0.053 𝑚𝑚. Thus, the work 𝐴 equals 0.4 𝐽 . The FEM routine of

Algorithm 1 provides the same value of elastic energy at these load and dimensions

of the printed part.
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5.4 Topology optimization in 3D case

Let us consider the 3D case topology optimization. Thus, the FRep defining function

is 𝑓(𝑥, 𝑦, 𝑧). It is a continuous function with the following properties:

𝑓(𝑥, 𝑦, 𝑧)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
> 0 (𝑥, 𝑦, 𝑧) ∈ Ω,

= 0 (𝑥, 𝑦, 𝑧) ∈ 𝜕Ω,

< 0 (𝑥, 𝑦, 𝑧) /∈ Ω,

where Ω is an open set of points belonging to a solid body, Ω ⊂ 𝐷 ⊂ R3.

Therefore, the free-form functions for 3D case has the following form:

𝑓(𝑥, 𝑦, 𝑧) =
𝑚∑︁
𝑖=1

𝑐𝑖𝜑𝑖(𝑥, 𝑦, 𝑧), (5.11)

where 𝑐𝑖 are constants and 𝜑𝑖(𝑥, 𝑦, 𝑧) are basis functions. Equation 5.11 is a trilinear

spline [Wei et al., 2021] here.

The basis function of the trilinear spline Equation 5.11 is:

𝜑(𝑥, 𝑦, 𝑧) =

⎧⎪⎨⎪⎩(1− |𝑥|)(1− |𝑦|)(1− |𝑧|) if |𝑥| ≤ 1, |𝑦| ≤ 1 and |𝑧| ≤ 1,

0 otherwise.

The plot of this function is shown in Figure 5-5. The basis function of the

trilinear spline is mirror symmetric. One of its planes of symmetry is 𝑂𝑥𝑧.

Figure 5-5: Level sets of the bilinear spline basis function.
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Functions 𝜑𝑖(𝑥, 𝑦, 𝑧) from Equation 5.11 have the following form:

𝜑𝑖(𝑥, 𝑦, 𝑧) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− 1
ℎ𝑥
|𝑥− 𝑥𝑖|)· if |𝑥− 𝑥𝑖| ≤ ℎ𝑥,

(1− 1
ℎ𝑦
|𝑦 − 𝑦𝑖|)· |𝑦 − 𝑦𝑖| ≤ ℎ𝑦

(1− 1
ℎ𝑧
|𝑧 − 𝑧𝑖|) and |𝑧 − 𝑧𝑖| ≤ ℎ𝑧,

0 otherwise.

(5.12)

Therefore, the constants 𝑐𝑖 from the equation Equation 5.11 have a simple mean-

ing. Separately positive value of 𝑐𝑖 indicates that the box occupying (𝑥𝑖−ℎ𝑥;𝑥𝑖+ℎ𝑥),

(𝑦𝑖 − ℎ𝑦; 𝑦𝑖 + ℎ𝑦) and (𝑧𝑖 − ℎ𝑧; 𝑧𝑖 + ℎ𝑧) along the axes x, y and z, respectively, is

full of material. The negative value of 𝑐𝑖 means the absence of material in the same

box. Two overlapping non-zero regions of functions 𝜑𝑖(𝑥, 𝑦, 𝑧) and 𝜑𝑗(𝑥, 𝑦, 𝑧) with

coefficients 𝑐𝑖 and 𝑐𝑗 having different signs define the body surface in this region.

Moreover, this surface is a cubic surface.

Consider the free-form function (Equation 5.11) with knot points arranged as

shown in Figure 5-6. Figure 5-6(a) shows the rectangular domain 𝐷 covered with

non-zero regions of basis functions (Equation 5.12). They are drawn with dashed

lines. A cubic portion of the domain is shown in Figure Figure 5-6(b). It contains

eight overlapping non-zero regions of the basis functions. Their arrangement is

drawn in Figure 5-6(c). All of them overlap at the center of the cubic portion. This

pattern repeats throughout the domain 𝐷.

Figure 5-6(d) shows an example of a free-form body defined by the spline function

with only eight basis functions (as shown in Figure 5-6(b)). Seven coefficients in

this body are equal 𝑐1 = 𝑐2 = · · · = 𝑐7. The eighth coefficient is negative and has

the same absolute value 𝑐8 = −𝑐1. The non-zero region of the basis function with

negative coefficient is colored green in Figure 5-6 (b) and (c).

The optimization algorithm (see Algorithm 1) for 3D case works as shown for

the example body in Figure 5-7. The MATLAB realization of this optimization

algorithm is published in the GitHub repository Popov [2022a]. It has two files and

three folders. The optimization algorithm is written in 3D_FRep_optimizer.mlx

live editor script. The file elemM.mat contains element stiffness matrix for the 3D
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Figure 5-6: Construction of the free-form body: (a) rectangular domain 𝐷 covered
with non-zero regions of spline basis functions; (b) cubic portion of the domain 𝐷
with eight overlapping non-zero regions of spline basis functions; (c) arrangement of
the eight overlapping non-zero regions of spline basis functions; (d) an example of
free-form body with seven positive and one negative coefficients.

Figure 5-7: Geometry evolution by level set topology optimization method: (a)
boundary conditions of the optimization task. where the load is marked with green
arrow and fixed portions of the boundary are shown in red; (b) obtained geometries.

finite element method implementation. The MATLAB live editor script Cubic_-

Elastic_element.mlx is placed in Cubic_element_matrix folder. This script was

used to calculate the element stiffness matrix saved in elemM.mat.
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The second folder Drawing_scripts contains the script for drawing the geometry

in FRep. It generates contours of a body layer by layer and produces the images as

shown in Figure 5-7(b).

The 3D_FRep_optimizer.mlx live editor script has the following structure. The

first line defines dimensions of the domain 𝐷 and the volume constraint 𝑉0. The

next section consists of the initialization of the geometry. Then the script has a

block to prepare for FEM step. It sets up loaded and fixed nodes and assigns the

value of Equation 5.11 at boundary points except these nodes with small negative

value (−109). We set this value as the upper limit of the defining function at these

points to preserve Ω ⊂ 𝐷. Moreover, the algorithm creates variables to store FEM

data at this step. It defines elastic properties of a material, i.e. Young’s modulus

(𝐸0 = 1) and Poisson ratio (𝜈 = 0.3). The initialization ends with defining boundary

conditions.

The last part of the script is the optimization loop. We define the maximum

number of iterations, relaxation number 𝑛𝑅, parameters 𝜇 and 𝛾 for the Lagrangian

multiplier updating scheme (Equation 5.6), time step ∆𝑡 for the coefficient updating

scheme and parameter ∆ of the approximate function 𝛿(𝑓) (Equation 5.7). Then

the iterative optimization algorithm starts. Each iteration begins with FEM step.

We use the ersatz material model, where the element Young’s modulus is defined

as:

𝐸 = 𝐸𝑚𝑖𝑛 + (𝐸0 − 𝐸𝑚𝑖𝑛)𝜌𝑒, (5.13)

where 𝐸𝑚𝑖𝑛 is a small number (𝐸𝑚𝑖𝑛 = 10−9) used to preserve numerical stability

outside the optimized body ((𝑥, 𝑦, 𝑧) /∈ Ω), 𝜌𝑒 is an element density calculated using

values of 𝑓 at 11 points of the element.

The optimal criterion of the algorithm consists of three conditions. The first one

is 𝑘 > 𝑛𝑅, where 𝑘 is the number of the iteration, and 𝑛𝑅 is the relaxation number.

The second one is 𝑉𝑘

𝑉0
= 1± 10−3, where 𝑉𝑘 is a volume of the optimized body at the

𝑘-th iteration. The last condition is 𝐽𝑗
0 (𝑢)

𝐽𝑘
0 (𝑢)

= 1± 10−3, where 𝐽𝑘
0 (𝑢) is a compliance

energy of deformation in the 𝑘-th iteration, and 𝐽 𝑗
0(𝑢) is a compliance energy of

deformation in the iteration 𝑗 = 𝑘 − 9, . . . , 𝑘 − 1.
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The last step of the optimization loop is the free-form function update according

to Equation 5.7. Additionally, we control values of the function at the boundary

points in this step. As during the initialization, we assign them with a small negative

value, e.g. 10−9.

The published version of the algorithm performs the optimization shown in Fig-

ure 5-7. It can be modified for different applications. Two examples of such modifi-

cations are placed in the Examples folder in Popov [2022a].

One of possible applications for the proposed algorithm is the topology optimiza-

tion of the oil platform support [Tian et al., 2019] (see Figure 5-8). It is a massive

structure that holds equipment for the extraction of petroleum. On the one hand,

it shall be durable enough. On the other hand, it is cheaper to use less material for

its construction.

We considered this task as an optimization problem in the rectangular domain

𝐷 with a volume constraint equal to 35% of the total volume of the domain. The

domain 𝐷 has the following dimensions: 20×20×64. The pressure of the petroleum

equipment corresponds to the uniform vertical load. It is applied to the top nodes.

The construction is fixed at four bottom corner nodes along all directions.

The modified optimization script for the oil platform optimization case is placed

into Examples\3D_platform_optimizer.mlx

The proposed optimization algorithm can be combined with FRep-based model-

ing for more complex cases of optimization.
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Figure 5-8: Topology optimization of the oil platform support.
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5.5 Shape constraints

Previously mentioned optimization cases supposed that optimization algorithm can

freely modify the whole domain. This chapter considers cases when this assumption

is wrong. It means that the optimized body has some regions that cannot be modified

or they have some restrictions on their modification. Let us start from the example,

where we forbid optimization of some domain portions.

We need to modify Algorithm 1 for taking into account some constraints on

shape changes. Two extra actions appear as follows:

Algorithm 2: The topology optimization algorithm with shape constraints
Step 1. Define the number of grid elements in the domain 𝐷;
Step 2. Initialize coefficients of the free-form function;
Step 3. Initialize and apply shape constraints to the FRep
defining function;

Step 4. Define boundary conditions for FEM analysis;
Step 5. Initialize parameters of the optimization loop;
Step 6. Perform FEM analysis of the domain;
Step 7. If the algorithm converges, then quit, else update coefficients of the
free-form function, apply shape constraints and go to Step 6.

These modifications formally affect the FRep defining functions used in the op-

timization algorithm. We use complex FRep defining function 𝑓 = 𝑓(𝑥, 𝑦, 𝑓𝑜) or

𝑓 = 𝑓(𝑥, 𝑦, 𝑧, 𝑓𝑜) instead of the free-form function 𝑓𝑜 defined by Equation 5.3 or

Equation 5.11. The free-form function is incorporated into the result defining func-

tion using FRep operations (see Subsection 2.1.2). Thus, the applying of shape

constraints at Step 7 of Algorithm 2 means that the function 𝑓 does not change

except updating of 𝑓𝑜 coefficients.

We discuss this feature of the proposed optimization framework on the example

of a femoral implant. While stiff implants can lead to bone loss, complex revision

surgery, and strain shielding, the topology optimization technique aims to develop

more compliant implant designs [Tan and van Arkel, 2021]. It has been proven

that optimized implants bring the stress as close as in an intact femur, especially

along the length of implants [Shuib et al., 2005]. According to [Al-Tamimi et al.,

2020], the combined use of optimization techniques and additive technologies can
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help manufacture lightweight personalized orthopedic implants with minimal stress

shielding. However, this type of designed product need to fit some features of the

human body in contrast with the previously considered examples.

We consider the topology optimization of the femoral implant steam as a rep-

resentative example of the complex optimization task (see Figure 5-9). The goal

was to lighten the most massive portion of the implant that is marked with green

rectangles in Figure 5-9.

Figure 5-9: Topology optimization of the hip implant.

This area serves as an optimization domain 𝐷 in the optimization algorithm with

volume restriction equal to 45% of the total volume of the domain. However, the

domain 𝐷 has several features. We subtracted material from the circular area of

the domain near the bottom left edge. The upper left edge area has material only
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in the cylindrical area. These restrictions of the geometry were preserved during

optimization.

We used R-functions to incorporate the restrictions into the domain. The opti-

mized body can be written in terms of Boolean operations as

Ω = ((Ω𝑜∖Ω𝑐)∖Ω𝑡) ∪ Ω𝑠

where Ω𝑜 is a free-form body defined by Equation 5.11, Ω𝑐 is a circular area near

the bottom left edge, Ω𝑡 is a triangular area near the upper left edge and Ω𝑠 is

cylindrical steam. Similarly, the defined function of the result body can be written

as:

𝑓(𝑥, 𝑦, 𝑧) = ((𝑓𝑜(𝑥, 𝑦, 𝑧)∖𝑓𝑐(𝑥, 𝑦, 𝑧))∖𝑓𝑡(𝑥, 𝑦, 𝑧)) ∨ 𝑓𝑠(𝑥, 𝑦, 𝑧)

where 𝑓0(𝑥, 𝑦, 𝑧), 𝑓𝑐(𝑥, 𝑦, 𝑧), 𝑓𝑡(𝑥, 𝑦, 𝑧) and 𝑓𝑠(𝑥, 𝑦, 𝑧) are defining functions of cor-

responding bodies, ∖ and ∨ are R-functions for subtraction and union operations

respectively. The optimization algorithm modifies only the free-form part 𝑓𝑜(𝑥, 𝑦, 𝑧)

of the defining function 𝑓(𝑥, 𝑦, 𝑧) in this optimization case. The MATLAB imple-

mentation of the optimization algorithm (see Examples \3D_femur_optimizer.mlx

in Popov [2022a]) uses 𝑚𝑖𝑛 and 𝑚𝑎𝑥 versions of R-functions for Boolean union and

subtraction.

5.6 Parameter optimization

The second option of non free-form optimization is a parameter optimization. It

works with parameters of FRep objects to find the optimal configuration with re-

spect to a considered problem. Parameter optimization has much less freedom in

topological changes in comparison with topology optimization. Thus, more straight-

forward algorithms can be applied for its solution.

We propose using the parameter optimization algorithm based on the gradient

descent method listed in Algorithm 3. Let us consider how it works on the exam-

ple. We took the optimization task as shown in Figure 5-2(a) left and proposed

the following parameter optimization task. We put a circular hole of the constant
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radius 𝑅 inside the domain and want to optimize its position inside the domain with

respect to the compliance minimization problem. Figure 5-10 shows this problem

configuration.

Algorithm 3: The parameter optimization algorithm for FRep objects
Step 1. Define the number of grid elements in the domain 𝐷 to perform
FEM analysis;

Step 2. Initialize the FRep defining function;
Step 3. Define boundary conditions for FEM analysis;
Step 4. Initialize parameters of the optimization loop;
Step 5. Perform FEM analysis of the domain;
Step 6. If the algorithm converges, then quit, else go to Step 8;
Step 7. Find the descent direction of parameters for the optimization
problem;

Step 8. Update parameters according to the descent direction;
Step 9. Apply constraints defined for parameters and go to Step 5.

Figure 5-10: One hole parameter optimization problem statement.

The red dashed rectangular area in Figure 5-10 defines the region of allowed

positions for the hole center. That means that we do not want the hole escape from

the design domain.

We can specify steps of Algorithm 3 referring the considered example. We use

the same FEM with ersatz material (see Section 2.3) model to perform mechanical

simulations as we used for the topology optimization. It is independent from the

shape of the optimized body and do not require re-meshing. At the same time, this

approach provide us with reliable results as we can see from Section 5.3.

Step 8 includes a search of descent direction for parameters variation. The pro-

posed implementation of the algorithm use numerical differentiation of the objective
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function for this purpose. There are two partial derivatives needed to be calculated

for the example in Figure 5-10. They are responsible for vertical and horizontal

movements of the hole location.

This differentiation gives us the decent direction with respect to the compliance

energy. The update of parameters happening at Step 9 depends on the obtained

direction. In the proposed algorithm we used the constant gradient descent step 𝛾.

It is equal to 10−5 for the considered example shown in Figure 5-10.

Step 10 of the algorithm prevents parameters from violation of given limitations.

It is the hole escaping for the considered example. We need to limit values of the

hole coordinate with 𝑅 from the bottom and with 𝑁𝑖 − 𝑅 from the top. 𝑁𝑖 are

two dimensions of the domain 𝐷. It is easy to keep coordinates within this range

by forced setting them equal to 𝑅 or 𝑁𝑖 − 𝑅 when they violate the bottom or top

limitations respectively.

Figure 5-11 shows the results of the example optimization. It has three cases

of initial designs. They led for different optimization results where the first one is

the closest to the global optimum. However, all of them can be considered as good

enough because their values of objective functions differ just in the third significant

figure. It is possible to run the algorithm for different initial designs and choose the

best optimized option if it is crucial to obtain the best solution.

Figure 5-11: One hole parameter optimization results for tree different initial designs.

Figure 5-12 helps us to understand why the optimization algorithm can stuck at

these configurations of the FRep object. It shows the surface in 3D generated by
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values of the objective function depending on coordinates of the hole. As you can

see from the picture there are thee regions with optima. Two of them are local in

the left and right sides of the domain and the third one is the global optimum in

the center region.

Figure 5-12: The plot of the objective function values for the one hole parameter
optimization problem.

It is difficult to propose more specific and formal algorithm for parameter opti-

mization than Algorithm 3. For example, Step 10 has constraints processing which

strictly depend on the formulation of the optimization problem. Moreover, even the

simple case considered above has non-convex objective function. Therefore, each

specific parameter optimization task or each class of parameter optimization task

requires its own approach to solution. For example, we can use coordinate descent

or random coordinate descent when the number of parameters is big.

Figure 5-13 shows more complex example of parameter optimization. The do-

main 𝐷 has several holes with varying coordinates of their centers and radii equal

to fixed value 𝑅. In this case, we need to control not only escaping holes from the

domain but also prevent their merging.

We can formally define the optimization algorithm as shown in Algorithm 4. It

uses acceptable function error 𝜀𝐽 and position error 𝜀𝑥 for stopping criteria. The

while loop condition exploits them in the algorithm. However, this condition can be

updated with the requirement that it should be violated several times, e.g. 10. It

allows the algorithm to overcome regions where the objective function is "flat".
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Figure 5-13: Parameter optimization problem statement for the case of several holes.

Algorithm 4: Optimization placing of several holes into the rectangular
domain
𝑘 ← 0 ; /* iteration number */
𝑡← 0;
𝛾 ← 10−5 ; /* constant updating step */
𝜀𝐽 ← 10−8;
𝜀𝑥 ← 10−3 ; /* 10−5, 10−8 and 10−3 are example values */
∀𝑖 = 1, . . . ,𝑚: randomly generate (𝑥𝑐, 𝑦𝑐)

𝑘
𝑖 ;

∀𝑖 = 1, . . . ,𝑚: (𝑥𝑐, 𝑦𝑐)
𝑘+1
𝑖 ← (0, 0);

while ∀𝑖 = 1, . . . ,𝑚:
⃦⃦⃦⃦(︁

Δ𝐽0
Δ𝑥𝑖

, Δ𝐽0
Δ𝑦𝑖

)︁𝑘

𝑖

⃦⃦⃦⃦
2

≥ 𝜀𝐽 and⃦⃦
(𝑥𝑐, 𝑦𝑐)

𝑘+1
𝑖 − (𝑥𝑐, 𝑦𝑐)

𝑘
𝑖

⃦⃦
2
≥ 𝜀𝑥 do

∀𝑖 = 1, . . . ,𝑚:

(𝑥𝑐, 𝑦𝑐)
𝑘
𝑖 ←

(︁
𝑚𝑖𝑛

(︀
𝑅,𝑚𝑎𝑥 (𝑥𝑐, 𝑁𝑥 −𝑅)

)︀
,𝑚𝑖𝑛

(︀
𝑅,𝑚𝑎𝑥 (𝑦𝑐, 𝑁𝑦 −𝑅)

)︀)︁𝑘

𝑖
;

forall 𝑖 ̸= 𝑗 do
𝑡←

⃦⃦
(𝑥𝑐, 𝑦𝑐)

𝑘
𝑖 − (𝑥𝑐, 𝑦𝑐)

𝑘
𝑗

⃦⃦
2
;

if 𝑡 < 2𝑅 then
if 𝑅 < 𝑥𝑗

𝑐 + 2𝑅𝑥𝑖
𝑐−𝑥𝑗

𝑐

𝑡
< 𝑁𝑥 −𝑅 and 𝑅 < 𝑦𝑗𝑐 + 2𝑅 𝑦𝑖𝑐−𝑦𝑗𝑐

𝑡
< 𝑁𝑦 −𝑅

then

(𝑥𝑐, 𝑦𝑐)
𝑘
𝑖 ← (𝑥𝑐, 𝑦𝑐)

𝑘
𝑗 + 2𝑅

(𝑥𝑐,𝑦𝑐)𝑘𝑖 −(𝑥𝑐,𝑦𝑐)𝑘𝑗
𝑡

;
else

(𝑥𝑐, 𝑦𝑐)
𝑘
𝑗 ← (𝑥𝑐, 𝑦𝑐)

𝑘
𝑖 + 2𝑅

(𝑥𝑐,𝑦𝑐)𝑘𝑗−(𝑥𝑐,𝑦𝑐)𝑘𝑖
𝑡

;

∀𝑖 = 1, . . . ,𝑚: (𝑥𝑐, 𝑦𝑐)
𝑘+1
𝑖 ← (𝑥𝑐, 𝑦𝑐)

𝑘
𝑖 − 𝛾

(︁
Δ𝐽0
Δ𝑥𝑖

, Δ𝐽0
Δ𝑦𝑖

)︁𝑘

𝑖
;

𝑘 ← 𝑘 + 1;

The variable t serves as an indicator of holes merging. We applied a relaxed

routing to prevent it. Each iteration of the optimization loop checks the merging

of holes pairwise and spread them. Thus, there are iterations when the proposed

design violates the merging constraint. However, the second loop condition prevents
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optimization finish while the holes configuration is not stable.

Figure 5-14 shows three examples of the proposed algorithm results. We can see

that the difference in values of the objective function appears in the second significant

figure. Moreover, more symmetric initial design resulted with better solution. Thus,

for more complex parameter optimization task we can see bigger difference between

global and local optima. It means that for such cases it is more attractive to run the

optimization algorithm several times with different initial guesses. One more thing

we can notice in Figure 5-14 is that the third case has similar pattern in the holes

distribution as voids of the optimized free-form body (see Figure 5-3).

Figure 5-14: Parameter optimization results for the case of several holes.

5.7 Structural optimization

Structural optimization means the process that includes both topology and para-

metric optimizations. We can construct a structural optimization algorithm by

combining the topology optimization algorithm with shape constraints listed in Sec-

tion 5.5 and the parameter optimization algorithm proposed in Section 5.6. The

result is shown in Algorithm 5.

As in the case of optimization with constraints (see Section 5.5), an FRep defining

function used in this algorithm consists of two parts. We can similarly write is as 𝑓 =

𝑓(𝑥, 𝑦, 𝑓𝑜) or 𝑓 = 𝑓(𝑥, 𝑦, 𝑧, 𝑓𝑜). It includes a free-form function 𝑓𝑜 those coefficients
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Algorithm 5: The structural optimization algorithm
Step 1. Define the number of grid elements in the domain 𝐷;
Step 2. Initialize the FRep defining function;
Step 3. Define boundary conditions for FEM analysis;
Step 4. Initialize parameters of the optimization loop;
Step 5. Perform FEM analysis of the domain;
Step 6. If the algorithm converges, then quit, else go to Step 7;
Step 7. Update coefficients of the free-form function;
Step 8. Find the descent direction of parameters for the optimization
problem;

Step 9. Update parameters according to the descent direction;
Step 10. Apply constraints defined for parameters and go to Step 5.

evolve during the topology optimization routine applied at Step 7. However, the

rest part of the defining function has changing parameters.

Figure 5-15 shows results of structural optimization for tree cases of initial design.

These results are solutions of the problem shown in Figure 5-2(a) left. However, we

added the ring into this design and considered its location as a parameter. Values

of the objective function for these cases differ in the second significant digit as in

the case of parameter optimization. Therefore, we again face with the problem of

local minima and we need to run the optimization algorithm several times to obtain

a better result.

Figure 5-15: Results of structural optimization.
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5.8 Multimaterial optimization of FRep objects

The topology optimization algorithm described in Section 5.1 can be applied for the

case of several materials. We can apply it for each of material separately and set the

values of volume constraints to obtain a desired proportion in the result material

distribution.

However, we need to somehow prevent regions from appearing with a mixture

of material. We propose to assign one material as a dominant one and allow it to

occupy these common areas.

Two free-form defining functions 𝑓1 and 𝑓2 in the form of Equation 5.3 or Equa-

tion 5.11 are suitable for describing portions of the body made of two different mate-

rial. Then, we can can define 𝑓1 as the dominant one. In this case, the optimization

algorithm includes the resolving step 𝑓2 = 𝑓2 ∖ 𝑓1. The subtraction operation

used here can be chosen as some of 𝑅-functions proposed in Subsection 2.1.2. We

propose to use its 𝑚𝑖𝑛 version, i.e. 𝑓2 = 𝑚𝑖𝑛(𝑓2,−𝑓1), to preserve the efforts made

to restrict the unbound growth of defining functions.

The same strategy can be applied for bigger number of materials. However, in

this case we need to define a material hierarchy instead of a single dominant material.

The same routine of material subtraction can be applied for several materials in the

consequent manner. Thus, the proposed topology optimization algorithm can be

stated as listed in Algorithm 6.

Algorithm 6: The proposed topology optimization algorithm
Step 1. Define the number of grid elements in the domain 𝐷;
Step 2. Initialize coefficients of the free-form functions for each material;
Step 3. Define materials and their hierarchy;
Step 4. Define boundary conditions for FEM analysis;
Step 5. Initialize parameters of the optimization loop;
Step 6. Perform FEM analysis of the domain;
Step 7. If the algorithm converges, then quit, else update coefficients of the
free-form functions, perform the common areas resolving and go to Step 6.

The term material means concrete values of the Young’s modulus 𝐸 and the

Poisson’s ratio 𝜇 for the considered compliance minimization problem. Therefore,

Step 3 of the proposed algorithm sets these values and the consequence which be
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used to apply pairwise subtraction operation.

Figure 5-16 shows the results of an example multimaterial optimization. It was

performed for the problem shown in Figure 5-2(a) left. The total volume constraint

used here is 50% of the initial domain volume. Each of the material must occupy

25% of the domain in this setting. Both materials have the same Poisson’s ratio

𝜇 = 0.3 and Young’s modulus 𝐸1 = 1 and 𝐸2 = 3. The first material is shown in

red color and the second one – in the blue color. Tiny white contours between two

materials in this picture do not show the real material distribution but just issues

of drawing.

Figure 5-16: Results of multimaterial optimization.

The proposed algorithm does not guarantee the solution of the problem in the

sense of the global optimum. It results with local solutions as algorithms considered

before. Moreover, it requires more computation time because of processing of several

materials. It can be updated similarly as the previously considered algorithm to

capture 3D, shape constraints, parametric and structural optimization cases.
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Chapter 6

Slicing of FRep objects

This chapter delivers the results on developing CAM component of the proposed

system. These results were published in papers [Popov et al., 2020b] and [Maltsev

et al., 2021].

The first paper studies contouring algorithms that can be applied for AM. Con-

touring is the most time expensive step of generating CNC program for FRep model.

However, we proposed efficient algorithms for solving this task and recommendations

of their choice.

The second paper considers the question, how we can use specific forms of FRep

defining functions to speed up contouring. In this paper ([Maltsev et al., 2021]) we

proposed efficient methods of CNC program generation for models with cell repe-

tition and, more generally, for models operating with huge number of defined knot

points. The proposed algorithms work well with free-form functions (Equation 5.3

and Equation 5.11) used for topology optimization.

6.1 Adaptive contouring algorithms

We used the 2.5 representation of models or slices to generate the toolpath of a

3D printer. This representation is based on a layer-by-layer description of a model,

where each layer consists of one or several disjoint contours. The number of layers

depends on the resolution of the machine and on the level thickness.

Contouring the geometric models depends on the geometry type. We can for-
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mally define contours of FRep models on level 𝑧 = 𝑧0 as the 2D point set 𝐻 = {(𝑥, 𝑦)

| 𝑓(𝑥, 𝑦, 𝑧0) = 0}. In our text, we denote 2D objects built of contours on level 𝑧0 as

𝑓𝑧0(𝑥, 𝑦) = 𝑓(𝑥, 𝑦, 𝑧0). It can be seen that the contour set for the given layer is a

zero-level set of a functionally represented model in 2D, which is called an implicit

curve in some works. Additionally, note that each level in this formal approach has

zero thickness, and intra-level connectivity is assumed by the AM process.

The resolution of the machine in both the XY and Z directions is important in

this process because it affects the quality of the final result. The resolution in the Z

direction defines how many slices have to be produced and sent to the machine to

define the layers. It should be noted that there are methods with a variable z-step

[Attene et al., 2018], but in this work, we only consider methods with a constant

z-step. The resolution in XY, on the other hand, defines the quality of the contours

in each layer, which in functionally represented geometry means the quality of the

approximation. Higher approximation quality requires longer processing times for

the approximation process, which very often makes the contouring process time-

consuming.

The topology of the implicit curve defined by the function 𝑓𝑧0(𝑥, 𝑦) = 0 depends

on the function itself, and for models with microstructures, this curve can contain

hundreds, if not thousands, of disjoint contours per layer. The goal of the proposed

system is to efficiently approximate the set 𝐻 for the given resolution of the tar-

get AM hardware. Moreover, it shall ensure that all contours are included in the

toolpath for the current layer.

6.1.1 Conventional contour extraction for AM

Conventional methods for extracting the 2D contours of a model defined in an

implicit form can be classified as follows:

1. Exhaustive enumeration or contour extraction on a regular grid [Lorensen and

Cline, 1987], [Theußl et al., 2001], [Carr et al., 2003].

2. Adaptive subdivision of the space on adjacent cells [Herzen and Barr, 1987],

[Duff, 1992], [Stolte and Kaufman, 1998].
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3. Surface tracking or numerical continuation [Wyvill et al., 2005], [Rangan et al.,

1997], [Levinski and Sourin, 2002].

The methods in the third category essentially perform contour extraction based

on moving according to implicit surface using piecewise-linear methods or predictor-

corrector methods with incremental partitioning [Bloomenthal, 1988]. Continuity-

based methods tend to extract contours by taking into account the tangent and

curvature of implicit curves. It takes a point on the implicit curve as the starting

point and then moves forward at a certain distance along the tangent of the implicit

curve at the starting point to predict the position of the new point. Then, the

new point is corrected for closing to the curve along the direction of the gradient of

the field defined by the implicit function. In the case of a layer containing a very

large number of contours, it requires finding a seed point on every single component,

which is a tedious task that requires solving the problem of component analysis for an

implicitly defined curve [Bloomenthal and Wyvill, 1997]. Because of the described

limitation, this method will be excluded from discussion. Below, we discuss the

conventional methods from the first two categories.

Contour extraction on a regular grid

The methods of contour extraction on a regular grid, mainly based on the marching

squares algorithm [Lorensen and Cline, 1987], are widely used in many applications

dealing with implicitly defined curves and surfaces.

The basic idea of this approach is to split the contouring domain into a regular

grid, then check the edges of these cells for a sign change in the vertices and find

the points of the target curve or surface. There are cells of 16 types (see Figure 6-

1) defined by the sign values in the cell vertices. Fourteen of these types mean

that a cell contains a piece of the resulting contour. In the implementation of this

method, the traversal starts from the bottom left cell. The traversing direction is

from bottom to top and left to right.

The algorithm operates on objects such as line segments and polylines. A polyline

is an oriented chain of segments. The result of the algorithm is a set of polylines.

These polylines are closed for correct FRep models and a proper bounding box.
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FRep model is correct if it is defined by a continuous function. The bounding box

here is a rectangular domain where the regular grid is constructed.

Figure 6-1: Look-up table for marching squares.

Therefore, the process of contour creation includes two tasks: to process cells

and to connect resulting segments properly. However, two types of cells, 7 and 10,

produce ambiguous configurations, which need to be resolved separately. There are

several ways to resolve this issue. For example, in [Uchibori, 2004], ambiguity is

avoided by local subdivision of ambiguous cells. In this case, however, significant

extra time can be spent on this splitting process, and the resulting grid is not regular,

which can potentially result in a broken contour and the process going beyond the

calculation tolerance.

The second approach to the problem solving is to calculate the additional value

of the function at the centre of a cell [de Araújo et al., 2015], [Wyvill et al., 1986].

An example of resolving ambiguity inside cell number 7 is illustrated in Figure 6-2.
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If the function value of the cell centre is positive, then this cell has the same type

as in Figure 6-2(a); otherwise, the cell has the same type as in Figure 6-2(b). This

method relies on scalar field regularity and can lead to an incorrect conclusion in

the case that a field is non-symmetrical with respect to the cell in question.

Figure 6-2: Variants of ambiguity resolution inside cell number 7.

In our method, we approximate the defining function 𝑓𝑧0(𝑥, 𝑦) with a bilinear

function:

ℎ(𝑥, 𝑦) = 𝑓𝑧0(𝑥1, 𝑦1)
𝑥2 − 𝑥

𝑥2 − 𝑥1

+ 𝑓𝑧0(𝑥2, 𝑦1)
𝑥− 𝑥1

𝑥2 − 𝑥1

𝑦2 − 𝑦

𝑦2 − 𝑦1
+

+ 𝑓𝑧0(𝑥1, 𝑦2)
𝑥2 − 𝑥

𝑥2 − 𝑥1

+ 𝑓𝑧0(𝑥2, 𝑦2)
𝑥− 𝑥1

𝑥2 − 𝑥1

𝑦 − 𝑦1
𝑦2 − 𝑦1

for the considered cell (see Figure 6-3). Here, (𝑥1,𝑦1) is the lower left and (𝑥2,𝑦2) is

the upper right vertices of the cell. Similar approach is described in [Pasko et al.,

1988] for 3D surfaces. The proposed approximation resolves the ambiguity. It

works better for smooth defining functions. Moreover, this method does not require

refinement of the grid.

The function ℎ(𝑥, 𝑦) is an implicit description of a hyperbola. Its centre has the

following coordinates:

𝑥𝑐 =
𝑥2𝑓𝑧0(𝑥1, 𝑦1) + 𝑥1𝑓𝑧0(𝑥2, 𝑦2)− 𝑥1𝑓𝑧0(𝑥2, 𝑦1)− 𝑥2𝑓𝑧0(𝑥1, 𝑦2)

𝑓𝑧0(𝑥2, 𝑦2) + 𝑓𝑧0(𝑥1, 𝑦1)− 𝑓𝑧0(𝑥1, 𝑦2)− 𝑓𝑧0(𝑥2, 𝑦1)
, (6.1)

𝑦𝑐 =
𝑦2𝑓𝑧0(𝑥1, 𝑦1) + 𝑦1𝑓𝑧0(𝑥2, 𝑦2)− 𝑦1𝑓𝑧0(𝑥1, 𝑦2)− 𝑦2𝑓𝑧0(𝑥2, 𝑦1)

𝑓𝑧0(𝑥2, 𝑦2) + 𝑓𝑧0(𝑥1, 𝑦1)− 𝑓𝑧0(𝑥1, 𝑦2)− 𝑓𝑧0(𝑥2, 𝑦1)
. (6.2)

In addition, it can be seen that for ambiguous cells with 𝑥1 ≤ 𝑥𝑐 ≤ 𝑥2 and
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Figure 6-3: Bilinear approximation of the defining function.

𝑦1 ≤ 𝑦𝑐 ≤ 𝑦2, two possible configurations of the hyperbola are possible. For example,

for 𝑦 = 𝑦1, one can obtain 𝑥0 ≤ 𝑥𝑐 or 𝑥𝑐 ≤ 𝑥′
0, where the value of the defining function

is zero. The first option leads to the “blue” cell configuration and the second to the

“green” configuration in Figure 6-2.

It should be noted that this approach can also produce the wrong result in the

meaning of the true shape of the model. Nevertheless, it does not require to calculate

function values at any extra point.

In the context of AM, the parameters for a regular grid are defined by the target

precision of the machine. For example, the precision r defines the minimal length

of the cell in the X or Y direction, and for fused filament fabrication, this value

is 30-300 𝜇𝑚. This means r is the minimal distance that can guarantee that two

different points will not be merged.

Contour extraction using adaptive subdivision of the space

It is clear that for very small resolution, conventional methods are not efficient

because of the necessity to calculate the value of the defining function at very

large number of points. To avoid this limitation, an adaptive subdivision is used.

The main idea is to increase the resolution locally, i.e., to localize the areas where

𝑓(𝑥, 𝑦, 𝑧) = 0 and subdivide these areas up to the required precision to optimize

the time by decreasing the number of calculations. The contour extraction for one
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Z-layer is performed using a marching squares algorithm with adaptive subdivision

using the quadtree [Bloomenthal, 1988].

The quadtree is built from the root node, which is the bounding box of the

implicit curve. Then, it is divided into four equal regions, which form the child

nodes. Every child node can be recursively divided further.

The process of contour extraction using the quadtree for one Z-layer and for the

whole model is shown in Figure 6-4(a-d). The equations for the functionally defined

model for these pictures are presented in Appendix B of the [Popov et al., 2020b].

Figure 6-4: The process of contour extraction using the quadtree.

The simplest approach to build an adaptive subdivision is to use the marching

squares algorithm with rough resolution to understand the topology of the implicit

curve. The marching squares algorithm checks the sign differences in the corners

of the processed cell for contour detection. However, this criterion is not robust

and can miss several cases. Figure 6-5 shows examples of these cases [Bloomenthal,

1988], [Kalra and Barr, 1989].

Another method to identify the cells that need to be subdivided is to use Interval
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Figure 6-5: Errors of the marching squares algorithm.

Arithmetic (IA). IA is an extension of real arithmetic defined on the set of real

intervals [Moore, 1966], [Sunaga, 2009], [Warmus, 1956]. In IA, every quantity is

represented by an interval of real numbers. An interval [𝑎, 𝑏] is a set of 𝑥 ∈ R

such that 𝑎 ≤ 𝑥 ≤ 𝑏. During functions processing in IA, each quantity is replaced

by its interval extension, and all computations are executed on intervals. There

are extensions of the usual operations (+, –, ×, /) for intervals. These operations

guarantee that each computed interval includes the whole range of function values on

the defined argument range. A more detailed description can be found in Appendix

A of [Popov et al., 2020b].

IA allows us to estimate the upper and lower bounds of the range of the func-

tion values for each cell of the quadtree. The axis-aligned boundaries of processed

quadtree cells are the intervals used as function arguments. The result of the com-

putation of the defining function in IA is also an interval. If the upper and lower

bounds of the interval are on opposite sides of zero, then the defining function

changes signs inside the interval. This means that the processed quadtree cell may

contain contours of the curve and should be divided [Bühler, 2002], [Duff, 1992].

An example of an interval estimation for a function with one variable is shown in

Figure 6-6.

The green line in Figure 6-6 is the contour 𝑓(𝑥, 𝑦, 𝑧 = 𝑐𝑜𝑛𝑠𝑡) = 0. The estimation

of the function value 𝑓(𝑥, 𝑦, 𝑧 = 𝑐𝑜𝑛𝑠𝑡) in the quadtree cell with intervals X and Y is

the calculated interval of 𝐹 (𝑋, 𝑌, 𝑍 = 𝑐𝑜𝑛𝑠𝑡), where 𝐹 (𝑋, 𝑌, 𝑍 = 𝑐𝑜𝑛𝑠𝑡) is a natural

interval extension for the function 𝑓(𝑥, 𝑦, 𝑧 = 𝑐𝑜𝑛𝑠𝑡). The natural interval extension

for a function is the interval extension with intervals as function arguments and the
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Figure 6-6: An example of an interval estimation.

interval arithmetic operations performed on them.

The model with union of spheres contoured using the IA criterion is shown in

Figure 6-7(b). However, using IA in contour extraction results in the overestimation

of the function interval values, especially if the function includes a large number of

nonlinear operations. As a result, it leads to an increase in the number of calculations

[Fryazinov et al., 2010].

6.1.2 New approach to contour extraction for AM

We used IA for contouring of FRep [Song et al., 2018], [Mochizuki, 2004]. However,

using the IA approach with the adaptive subdivision algorithm has the drawbacks

mentioned above. Thus, we decided to apply an improved version of IA, Affine Arith-

metic (AA). Its main purpose is to improve the accuracy of the interval estimation

in comparison to IA.

The main ideas of AA can be found in Stolfi and Figueeirdo’s introduction [Stolfi

and de Figueiredo, 2003]. In AA, all quantities are represented in affine form as first-

degree polynomials with coefficients and symbols for unknown real-valued variables.

These variables are independent and are called noise symbols. The affine forms

are constructed for each quantity and operation in the defining function. Then,

84



Chapter 6. Slicing of FRep objects 6.1. Adaptive contouring algorithms

Figure 6-7: The quadtree construction and the contouring process for one layer of
the sphere-union model using: (a) the affine arithmetic criterion, (b) the interval
arithmetic criterion.

the computations are performed with the affine forms of the defining function. This

allows us to obtain an interval estimation of the defining function with more accurate

ranges than by using interval arithmetic.

The more detailed description can be found in Appendix A of [Popov et al.,

2020b]. AA was revised in [Vu et al., 2004], and several approximations for non-

affine operations were improved. Many applicable approximations were collected

in [Rump and Kashiwagi, 2015]. Furthermore, AA was used for the purposes of

performing spatial enumeration of implicit surfaces (𝑛 is the number of arguments

of the defining function, i.e., the dimension [Fryazinov et al., 2010]).

The revised affine form of a real-valued quantity x̂ consists of two parts. There

are the standard affine part of the length 𝑛 and the interval part:

�̂� = 𝑥0 +
𝑛∑︁

𝑖=1

𝑥𝑖𝜀𝑖 + 𝑒𝑥[−1, 1], 𝑒𝑥 ≥ 0,
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where the 𝑥𝑖s are finite real numbers and 𝜀𝑖 are unknown real-valued variables lo-

cated within the interval 𝑈 = [-1;1]. The coefficient 𝑥0 is called the central value

of the affine form �̂�, and the coefficients 𝑥𝑖 are called the partial deviations. 𝜀𝑖

are called the noise symbols. 𝑒𝑥[−1, 1] is a cumulative error, which represents the

maximum absolute error of non-affine operations. One of the main constraints of

pure AA is that noise symbols increase dramatically during computations. 𝑒𝑥[−1, 1]

accumulates the noise symbols that are present in pure AA and are not dependent

on the input values. This means that the length of the revised affine form does

not exceed the number of input variables during computation. In the interrogation

methods for contouring the implicit curve, three coordinates of 3D space are used

as input variables.

If two quantities 𝑥 and 𝑦 are represented in revised affine forms:

�̂� = 𝑥0 + 𝑥1𝜀1 + 𝑥2𝜀2 + ...+ 𝑥𝑛𝜀𝑛 + 𝑒𝑥[−1, 1], (6.3)

𝑦 = 𝑦0 + 𝑦1𝜀1 + 𝑦2𝜀2 + ...+ 𝑦𝑛𝜀𝑛 + 𝑒𝑥[−1, 1], (6.4)

then, the affine operation 𝑓(�̂�, 𝑦) ≡ 𝛼�̂� + 𝛽𝑦 + 𝛾 using the revised affine form

can be written as follows:

𝑓(�̂�, 𝑦) = (𝛼𝑥0 + 𝛽𝑦0 + 𝛾) +
𝑛∑︁

𝑖=1

(𝛼𝑥𝑖 + 𝛽𝑦𝑖)𝜀𝑖 + (|𝛼|𝑒𝑥 + |𝛽|𝑒𝑦)[−1, 1], (𝛼, 𝛽, 𝛾 ∈ R),

(6.5)

where 𝛼, 𝛽, 𝛾 are real-valued coefficients; 𝑥0, 𝑦0 are the central values of the revised

affine forms �̂� and 𝑦, respectively; the coefficients 𝑥𝑖 are the partial deviations of the

revised affine forms; the 𝜀𝑖s are the noise symbols; and 𝑒𝑥, 𝑒𝑦 are cumulative errors.

There is a special tight form of the product of two revised affine forms x̂ and ŷ

of length n:

�̂� * 𝑦 = (𝑥0𝑦0 +
1

2

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖) +
𝑛∑︁

𝑖=1

(𝑥0𝑦𝑖 + 𝑥𝑖𝑦0)𝜀𝑖 + 𝑒𝑥𝑦[−1, 1], (6.6)
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where

𝑒𝑥𝑦 = 𝑒𝑥𝑒𝑦+𝑒𝑦(|𝑥0|+𝑢)+𝑒𝑥(|𝑦0|+𝑣)+𝑢𝑣−1

2

𝑛∑︁
𝑖=1

|𝑥𝑖𝑦𝑖|, 𝑢 =
𝑛∑︁

𝑖=1

|𝑥𝑖| 𝑣 =
𝑛∑︁

𝑖=1

|𝑦𝑖|. (6.7)

In this work, the revised AA was implemented to calculate the adaptation crite-

rion for quadtree space division. This means that for our defining function f, we have

to obtain its AA version, which we do by replacing all non-linear operations by their

AA counterparts with the techniques explained in the relevant literature discussed

above. To define whether a cell needs to be subdivided, we calculate its AA function

and analyse the interval containing the zero value, skipping the cells that do not

contain it. On the last level of subdivision, we calculate the defining function value

and process the cells in the same way as marching squares does. The result of this

algorithm is a polyline, which we use as a toolpath in our direct fabrication process

for the given layer. The resulting algorithm is listed in Algorithm 7.

Algorithm 7: Contouring with adaptation criteria
Step 1. 𝐵𝑢𝑖𝑙𝑑𝑄𝑢𝑎𝑑𝑇𝑟𝑒𝑒(𝑥0, 𝑦0, 𝑧0, 𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐵𝑜𝑥𝐿𝑒𝑛𝑔𝑡ℎ);
Step 2. Create the topology of the curve;
Step 3. Calculate values of 𝑓(𝑥, 𝑦, 𝑧) on edges;
Step 4. Create a polyline using marching squares;

Procedure BuildQuadTree(𝑥, 𝑦, 𝑧, 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ)
if 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ > 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 then

if 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑥, 𝑦, 𝑧, 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ) contains 0 then
𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ← 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ/2;
𝐵𝑢𝑖𝑙𝑑𝑄𝑢𝑎𝑑𝑇𝑟𝑒𝑒(𝑥, 𝑦, 𝑧, 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ) ;
𝐵𝑢𝑖𝑙𝑑𝑄𝑢𝑎𝑑𝑇𝑟𝑒𝑒(𝑥+ 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ, 𝑦, 𝑧, 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ);
𝐵𝑢𝑖𝑙𝑑𝑄𝑢𝑎𝑑𝑇𝑟𝑒𝑒(𝑥, 𝑦 + 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ, 𝑧, 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ);
𝐵𝑢𝑖𝑙𝑑𝑄𝑢𝑎𝑑𝑇𝑟𝑒𝑒(𝑥+ 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ, 𝑦 + 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ, 𝑧, 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ);

else
Reject Cell

else
Add a cell as a quadtree leaf;

Step 2 of this algorithm uses the connected component labeling algorithm [Shapiro,

1996]. It exploits the bisection method for extracting polyline edges at Step 4.
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AdaptationCriterion(x,y,z,CellLength) here is AA or IA extension of the FRep

defining function Equation 2.1.

The model with union of spheres contoured using the AA criterion is shown in

Figure 6-7(a). Here we obtained 29781 cells for IA in 250 ms and 11021 cells for AA

in 100 ms for a given resolution of 0.01 mm. IA and AA provide us with the same

contours, although AA works 2.5 times faster and reduces the number of explored

cells for this model.

6.1.3 Experimental results of contouring algorithms

We compared contouring algorithms on models of different complexity. Models were

prepared with our approach for direct fabrication, i.e., sliced by using contouring

methods, and every contour defined a path for 3D printing hardware. Table 6.1

shows different models with respect to the dimensions of their fabricated versions.

Algorithms were implemented and tested on a PC with an Intel Core i5-8250U

CPU @1.60 GHz, 1.80GHz, 8 Gb RAM, with multi-threading through OpenMP

OpenMP [2022]. We used the template-based Boost library Melquiond et al. [2006]

for IA and the authors’ implementation of the revised AA [Fryazinov et al., 2010].

We used algebraic surfaces (see Figure 6-8) along with more complex non-algebraic

surfaces (see Figure 6-9) with procedural microstructures and set-theoretic opera-

tions, which are based on R-functions (see Table 2.1). The defining functions of the

models can be found in Appendix B of [Popov et al., 2020b].

Figure 6-8: Algebraic surfaces.
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Figure 6-9: Non-algebraic surfaces.

To test contouring with various resolutions for the models presented in Table 6.1,

we used the following values of XY precision: 0.2 mm, 0.1 mm, 0.05 mm, 0.02 mm

and 0.01 mm. These values were chosen to reflect the most common resolutions of

AM devices.

Model Width, mm Length, mm Height, mm
Sphere 9 9 9

Decocube 4 4 4
Orthocircle 4 4 4

Union of two spheres 7 7 5
Cylinder with a lattice 60 60 60

Gear with a lattice 134 134 30
Microstructure 32 32 20

Table 6.1: Bounding boxes for contouring.

Figure 6-10 and Figure 6-11 allow us to see correlations in timings. For a more

accurate comparison of the experimental results, statistics were used. F-tests for
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variance and t-tests for mean values were performed. All tests were performed with

a p-value equal to 0.01 and a number of experiments equal to 20. Analysis of the

plots and related statistics led us to the conclusions below.

Figure 6-10: Contouring results for algebraic surfaces.
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Figure 6-11: Contouring results for non-algebraic surfaces.

It can be seen that for algebraic surfaces with a relatively simple defining func-

tion, the adaptive techniques and conventional methods provide similar results on

a rough resolution (see Figure 6-10). However, for a finer resolution, exhaustive

enumeration is no longer efficient.

For the sphere model and a resolution of 0.2 mm (200 𝜇m), exhaustive enu-

meration and adaptive algorithms are the same with respect to time consumption.

However, starting from a resolution of 100 𝜇m, adaptive algorithms perform better.

For the slightly complex algebraic model of the decocube, the exhaustive enumer-

ation algorithm shows the same contouring time as adaptive algorithms until the
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resolution reaches 50 𝜇m. For the orthocircle model, exhaustive enumeration works

faster than the adaptive algorithm with IA for resolutions coarser than or equal to

20 𝜇m. Its performance is relatively the same as that of the adaptive algorithm with

revised AA up to a resolution of 50 𝜇m and becomes worse for finer grids.

For the union of two balls, which is the simplest non-algebraic model considered,

conventional contouring with exhaustive enumeration is faster when the resolution

is above 0.05 mm. With grid sizes of 20 𝜇m and 10 𝜇m, adaptive methods work

better. Note that only one non-algebraic operation is used in this model, which is the

square-root operation. A more complex model of the cylinder with a lattice includes

trigonometric functions in its definition in addition to the square-root operation.

The exhaustive enumeration algorithm shows better results on this model for all

considered resolutions. The same conclusions can be drawn for the microstructure

and for the gear model (see implementations in Appendix B of [Popov et al., 2020b]).

For all considered resolutions, the algorithm with a regular grid works faster. The

performance of both adaptive algorithms are the same.

One additional calculation with a 5 𝜇m resolution was performed for the cylinder

model (see Figure 6-11, bottom plot). It showed that the adaptive algorithm with

IA is the best option in these conditions. It should be noted that such computations

have a large cost in terms of both time and memory.

Thus, the efficiency of adaptive criteria such as IA and AA increases with in-

creasing precision of the calculated curve in one layer. Additionally, we can say

that IA and AA work better with algebraic surfaces, especially with quadratic ones.

However, the error of overestimation increases when we use transcendental func-

tions or loops for describing complex models. The efficiency of adaptive contouring

techniques appears with high XY resolution.

Our recommendations for using algorithms for contouring functionally defined

3D objects are summarized in Table 6.2. Note that the selected threshold (10 𝜇m,

50 𝜇m) changes depending on the model complexity and its original size. It moves

to a more accurate XY resolution (smaller step size) with a more complex or smaller

model. This means that with increasing model complexity, the use of adaptive

methods become reasonable only with finer accuracy. Concerning the choice between
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adaption criteria, the adaptive subdivision with revised AA is preferred in general.

Implicit 3D objects XY resolution Recommended contour-
ing methods

Algebraic surface with-
out loops or conditions > 50 𝜇m exhaustive enumeration or

adaptive algorithms
≤ 50 𝜇m AND > 20
𝜇m

adaptive algorithms are
more preferable

≤ 20 𝜇m only adaptive algorithms
Non-algebraic complex
surfaces > 10 𝜇m exhaustive enumeration

≤ 10 𝜇m adaptive algorithms

Table 6.2: Recommended contouring methods for implicit 3D objects.

Our results and recommendations are applicable to Fused Deposition Modelling

(FDM) and Direct Metal Deposition (DMD) printing of complex models. Both

methods (exhaustive enumeration and adaptive algorithms) can be used until the

precision reaches 60 𝜇m. Adaptive algorithms are preferable for selective laser sin-

tering and selective laser melting and stereolithography with DLP due to their high

resolution near 10 𝜇m.

6.2 Feature-based contouring

This section delivers the results mainly provided in [Maltsev et al., 2021]. It considers

the contouring algorithm that can be used for FRep models of special form.

We focus on FRep models with complex geometry as microstructures built via

the replication of unit cells. The defining function of such FRep models can be

described by the following statement:

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑔(𝑥1, 𝑥2, . . . , 𝑥𝑛)). (6.8)

In this equation, 𝑔(𝑥1, 𝑥2, . . . , 𝑥𝑛) defines a feature of the initial model that can

be represented by:

𝑔(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝛾[𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑛)].
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where 𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑛) defines a basis object, which is replicated over the modeling

domain and is generally transformed by the operation 𝛾. Further, we will call

𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑛) a unit cell function or just a unit cell. For the operator 𝛾 a function

Γ with the following properties should exist. The function Γ defines a sequence 𝐵𝑖 =

(𝑋1, 𝑋2, . . . , 𝑋𝑛)𝑖, 𝑖 = 1,𝑚 of bounding boxes for all replicated and transformed

𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑛) inside the considered domain. 𝑋1, 𝑋2, . . . , 𝑋𝑛 are intervals along

coordinate axes, which define the bounding boxes. The bounding boxes must not

overlap, hence: 𝐵𝑖

⋂︀
𝐵𝑗 = ∅ for any 𝑖, 𝑗 = 1,𝑚, 𝑖 ̸= 𝑗. The consideration of unit

cells with L-shape is beyond the scope.

We propose an accelerated contouring algorithm for such FRep models satisfying

Equation 6.8. The algorithm applies a new compound adaptive criterion and a new

acceleration criterion.

The criteria are based on binary search trees (B-trees), k-dimensional (k-d) trees

and R-trees. The result structures, called spatial indexes, allow for the significant

acceleration of the contouring process.

6.2.1 Search trees

B-trees assign a spatial index to each part of the 3D model. The indexes can be

adapted to the scene geometry. It allowing the proper arrangement of 3D model

elements and enabling fast access to, insertion of or removal of particular elements

to/from the B-tree. Spatial indexes such as k-d trees, R-trees or bounding volume

hierarchies are broadly used in 3D graphics, in particular, in ray-tracing algorithms

[Havran and Bittner, 2002]. In [Foley and Sugerman, 2005], a k-d tree is used as an

acceleration structure of the ray-tracing algorithm on a GPU. In [Wen et al., 2006],

a k-d tree is used for surface reconstruction from a point cloud. R-trees are also used

to accelerate the ray-tracing algorithm in [Feldmann, 2015] with results comparable

to using k-d trees. Some tree-based representations have been used to allow efficient

computation of multiscale vector volumes based on signed distance functions [Wang

et al., 2011]. Trees in the form of bounding volume hierarchies have been previously

used to accelerate the direct rendering of meta-balls [Gourmel et al., 2010].

A k-d tree is a space-partitioning data structure used for organizing data in k-
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dimensional space. They offer spatial querying methods such as a nearest neighbour

search or a range search [Bentley, 1975]. A typical k-d tree is constructed hierarchi-

cally via division of the space with axis-aligned hyperplanes. Such a division allows

for the reduction of the search range in the space. The performance of k-d trees

depends on the strategy selected for space partitioning during k-d tree construction.

Several strategies help in choosing a divider hyperplane to split the space: 1) the

largest side of the bounding box 2) the median (the middle element of a sorted array)

3) the middle of each coordinate side of the bounding box, and 4) the surface area

heuristic. The last one is a strategy developed for finding the best splitting plane for

the optimal k-d tree construction [MacDonald and Booth, 1990]. A typical dataset

for using a k-d tree is a point cloud, but the extension of a structure of a k-d tree

allows for processing a set of k-dimensional rectangles (representing the bounding

boxes of scene objects) [Havran et al., 1998].

An R-tree is a height-balanced tree [Guttman, 1984] similar to a binary search

tree. This type of trees handles minimal Axis-Aligned Bounding Boxes (AABB) in

n-dimensional space. The R-trees support spatial queries such as obtaining the near-

est neighbourhood, checking for the intersection/containment of bounding boxes,

inserting elements, and removing elements. An R-tree provides the equal depth for

each leaf node and maintains a certain number of elements between the minimum

and maximum at each node (excluding the root node) of the tree. Each leaf node

contains an AABB of a single object. The construction of an R-tree is usually per-

formed with the help of the insert operation. The tree construction strategy is based

on maintaining the height of the tree branches and minimizing the overlap between

the bounding boxes and the empty space. It includes a choice between a subtree

insertion point and the division of overflowing nodes. These two criteria influence

the performance of an R-tree. They were improved in the R+-tree for avoiding over-

lapping bounding rectangles [Sellis, 1987], and in the R*-tree, where the overlapping

of nodal regions of the tree was minimized, as shown in [Beckmann et al., 1990] and

[Beckmann and Seeger, 2009].

K-d trees and R-trees are similar data structures, they both split nodes with

respect to locations in space determined by some heuristic. But the R-trees partition
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scenes with respect to the objects using their minimal AABBs, whereas k-d trees

partition the underlying space.

However, the resulting partitions in the R-tree are not necessarily strictly binary

partitions of the underlying space, as is the case with k-d trees. In addition, unlike

the k-d tree, the R-tree is height-balanced and can be constructed incrementally by

sequentially inserting data.

6.2.2 Feature-based contouring algorithm

The proposed feature-based contouring algorithm for the FRep models consists of

the quadtree construction and the marching squares algorithm with the adaptive

criteria. The marching squares algorithm is used to construct the contour topology,

quadtrees and adaptive criteria are used to speed up calculations.

The quadtree is built from the root node, which is the bounding box of the

implicit curve. Then, it is divided into four equal regions, which form the child

nodes. Every child node can be recursively divided further. The process of con-

tour extraction using the quadtree for one Z-layer is shown in Figure 6-12(a). The

contouring process requires to calculate the value of the defining function of FRep

model at very large number of points. An adaptive subdivision is used for decreas-

ing the number of calculations of the defining function by localize the areas (cells

of quadtree) which contain the implicit curve. Adaptive subdivision can employ an

interval [Moore, 1966],[Sunaga, 2009] or affine arithmetic [Stolfi and de Figueiredo,

2003] as common adaptive criteria [Stolte and Kaufman, 1998], which allows you to

evaluate the upper and lower bounds of the range of values of the defining function

for each cell of the quadtree and decide whether to split the cell or not. In interval

arithmetic, every quantity is represented by an interval of real numbers. An interval

[𝑎, 𝑏] is a set of 𝑥 ∈ R such that 𝑎 ≤ 𝑥 ≤ 𝑏. During functions processing in interval

arithmetic, each quantity is replaced by its interval extension, and all computations

are executed on intervals. If the upper and lower bounds of the interval are on

opposite sides of zero, this means that the processed quadtree cell contains contours

of the curve and should be divided.

In most cases, FRep models is constructed using the loop operation. Their
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Figure 6-12: The contour extraction process for one layer of the FRep model: (a)
building a quadtree, (b) contouring of one layer using the quadtree.

contouring is a computationally complex task. There are two main problems with

2D contour extraction from FRep models equipped with the loop operation. The

first problem is that common adaptive criteria (interval, affine or revised affine

arithmetic) do not work properly with such models due to interval overestimations

(see Figure 6-13(a)). The intervals of values of the defining function becomes wide,

and the algorithm divides all the cells of the quadtree without adaptivity. The

second problem is the slow performance of the loop operation.

Figure 6-13: The contour extraction of one layer of the FRep model (contours -
green lines, quadtree cells – black lines): (a) using a common adaptive criterion (b)
using the compound adaptive criterion.

The proposed solution to both problems is to use an acceleration method based

98



Chapter 6. Slicing of FRep objects 6.2. Feature-based contouring

on the spatial indexes. We present the accelerated contouring algorithm, which uses

this technique.

The accelerated slicing algorithm for FRep models satisfying Equation 6.8 con-

tains the following steps:

Algorithm 8: The accelerated slicing algorithm
Step 1. Cut the 3D model into layers with a certain step;
Step 2. Layer contouring;
Step 3. Post-processing the obtained contours with support and hatching;
Step 4. Generate CNC program for a specific 3D printer;

An acceleration of the proposed slicing algorithm is reached by applying the

contouring algorithm, which consists of the following steps:

Algorithm 9: The feature-based contouring algorithm
Step 1. Construct 2D bounding boxes 𝐵𝑖 = (𝑋1, 𝑋2, . . . , 𝑋𝑛)𝑖, 𝑖 = 1,𝑚 for
all unit cells 𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑛) of the FRep model (see Figure 6-12(a) red
rectangles);

Step 2. Build the spatial index structure with calculated bounding boxes of
unit cells in each layer of the sliced 3D model (Figure 6-12);

Step 3. Apply the compound adaptive criterion based on the spatial query
during quadtree construction for the FRep model (see Figure 6-14(a));

Step 4. Applying the acceleration criterion based on the spatial search
during calculating the defining function at every point of interest in the
space;

Step 5. Create the topology of the curve using the marching squares
algorithm and the connected component labelling algorithm [Shapiro,
1996];

Step 6. Calculating the exact values of the implicit curve on the edges of
adjacent cells using numerical methods for solving nonlinear equations;

Thus, the proposed feature based contouring algorithm is similar to Algorithm 7.

However its BuildQuadTree procedure uses condition CompoundAdaptiveCriteria

(𝑥, 𝑦, 𝑧, 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ) == TRUE instead of AdaptationCriterion (𝑥, 𝑦, 𝑧, 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ)

contains 0. CompoundAdaptiveCriteria is listed below. Intersections func-

tion mentioned in this algorithm performs spatial search of point intersections with

bounding boxes of unit cells.

The detailed description of the compound adaptive criterion and the acceleration

criterion is given in Subsection 6.2.3 and Subsection 6.2.4. The connected compo-
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Figure 6-14: The process of k-d tree and R-tree construction for one layer of the
FRep model: (a) bounding boxes of the unit cells (green lines – extracted contours,
red rectangles – bounding boxes), (b) k-d tree construction, division of the space
(purple lines), (c) kd-tree, (d) R-tree construction (max. number of elements in the
node = 8 and min. number of elements in the node = 2), (e) R-tree.
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Function CompoundAdaptiveCriteria(𝑥, 𝑦, 𝑧, 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ)
if 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑥, 𝑦, 𝑧, 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ) contains 0 then

return TRUE ;
else

if 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑥, 𝑦, 𝑧, 𝐶𝑒𝑙𝑙𝐿𝑒𝑛𝑔𝑡ℎ) > 0 then
return TRUE ;

return FALSE ;

nent labelling algorithm was implemented according to [Shapiro, 1996]. The simple

bisection method is used for solving the nonlinear equation (the defining function of

the FRep model in the contouring process).

The process of constructing the spatial index (k-d tree) with 2D rectangles is

shown in Figure 6-14(b) and (c). The median threshold strategy is used for the

space division by a splitting plane. Every construction step divides the space at the

median point of the arranged bounding boxes by X- and Y-aligned planes alternately.

Unit cells on the left side of the median point are stored in the left subtree, and

those on the right side of the median point are stored in the right subtree. The

process stops after all the unit cells have been arranged or the width of the box of

the leaf node is minimized. Every leaf of the k-d tree stores only one unit cell.

Instead of a k-d tree, an R-tree can also be used as the spatial index in Figure 6-

14(d) and (e). There are linear and quadratic R-tree creation algorithms. The

quadratic algorithm splits an overflow node by the two nodes with a minimal area

of bounding boxes. The linear algorithm uses a splitting strategy based on the

maximal distance between bounding boxes. We used the quadric R-tree creation

algorithm, where the maximal number of elements in the node equals 8 and minimal

number of elements in the node equals 2. This algorithm was chosen because of the

simplicity of its implementation and the availability of non-commercial libraries with

this algorithm. Also, hierarchical structures such as bounding volume hierarchies

(BVHs) [Gourmel et al., 2010] can be used as the spatial index.
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6.2.3 The proposed compound adaptive criterion

Application of the common adaptive criteria for contouring of FRep models with the

loop operations faces the problem of the overestimation of the intervals [Fryazinov

et al., 2010]. It leads to the processing of almost all the quadtree cells in the space.

In this case the adaptive contouring approach becomes the exhaustive enumeration

method (see Figure 6-13(a)). In the accelerated contouring algorithm during the

quadtree construction process, the decision of dividing each cell of the quadtree is

made based on the proposed compound adaptive criterion.

Let us divide the initial FRep model by the boundary part and the microstructure

part consisted of unit cell repetition. The proposed compound adaptive criterion

consists of the common adaptive criterion for the boundary of the 3D model (interval

or affine arithmetic) and the spatial queries, which are applied to the microstructure.

It works as an adaptive criterion for each quadtree cell in the following way: if the

interrogated quadtree cell contains at least one bounding box of the microstructure

unit cell, this criterion returns true. The spatial query (intersection of the bounding

boxes) is used for verification. Thus, the proposed compound adaptive criterion

obtains its value from the common adaptive criteria for the boundary of the 3D

model and from the intersection operation with the spatial search. If at least one of

these two conditions is true, the quadtree cell is divided for further computations.

The proposed compound adaptive criterion optimizes calculation of the FRep

defining function. It reduces the number of processed cells as shown in Figure 6-

13(b). More details about the efficiency of the proposed compound adaptive criterion

are shown in Subsection 6.2.5.

6.2.4 The proposed acceleration criterion

Applying the spatial search solves the performance problem for the loop operation

by reducing the number of iterations. It allows for the evaluation only of a part of

an FRep model.

The distance field calculation at every point of interest in the space leads to the

computation of all the loop operations to build all the parts of the microstructure.
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It performs, even if these parts are very far from the point of interest and do not

influence its distance field value (see Figure 6-15(a)). Applying the spatial index

allows for processing of only the unit cell closest to the point of interest. The

Euclidean distance to the bounding box is used to find the nearest unit cell. Thus,

the loop operation is replaced by a spatial search of the unit cell closest to the

contours construction. During the calculation of the defining function of the FRep

model, only the nearest unit cell (channel number 1 in Figure 6-15(b)) is taken into

account for the computation, replacing the loop operation.

Figure 6-15: The process of contour extraction in one layer of the FRep model with
the proposed compound adaptive and acceleration criteria: green lines – extracted
contours, black lines – quadtree structure, red rectangles – precalculated bounded
boxes of each channel of microstructure, blue point – point of interest.

The computational complexity of the search of the nearest elements to the point

of interest is close to O (log 𝑛) using a spatial index, in contrast to performing the

full loop operation with complexity O (𝑛). The spatial index based on the k-d tree or

R-tree is constructed for every layer of the sliced 3D model and is used to calculate

the distance field value for 2D contour construction. It should be noted that the

performance can be further improved by applying interval or affine arithmetic to the

found unit cells.

Using this criterion makes the defining function of the FRep model discontinuous.

It does not affect the contouring process, but the obtained model cannot be used

as a primitive in further modeling process. This means that this criterion has to be

applied at the end of the modeling process.

The accelerated contouring algorithm was implemented using C++17. The

103



Chapter 6. Slicing of FRep objects 6.2. Feature-based contouring

template-based Boost library was used for R-tree construction with the quadric cre-

ation algorithm Gehrels et al. [2009]. ALGLIB 3.16.0 was used to construct the k-d

tree with the median threshold strategy for space division ALGLIB-Project [1999].

Two examples of the application of the accelerated contouring algorithm will be

given in the following sections. The tests for these case studies were performed using

the following hardware: a laptop with Intel Core i5-8250U CPU @ 1.80 GHz and 8

GB RAM.

6.2.5 Results of feature-based contouring

Case study 1: Contouring of a filter model

The first studied model is a filter for natural gas separation (see Figure 6-16). This

model can be used in optimization tasks, where the new geometry of the filter can

be obtained by changing its parameters (see Figure 6-16(c)). The reason for using

the loop operation in the filter model is the complicated topology of its channels.

Every channel should be placed in a specific area and rotated at different angles to

reach the required density of the channels and the porosity of the whole filter. When

the diameter of the channels is very tiny, the number of ones increases dramatically.

This phenomenon leads to an increase in the contouring time. The unit cell in this

model is one channel.

The filter model has 13 parameters: the filter height; filter radius; channel radius;

N-pointed star channel; Maximal angle channel rotation; distance between channels;

thickness shell; shift of the channel from the centre; maximal number of channels;

type filling for the channels; shape of the channel entry hole; and the shape of the

channel Z line. Different shapes of channels are shown in Figure 6-17.

The unit cell function 𝑢(𝑥, 𝑦, 𝑧) defines one channel of the filter FRep model.

It is built from the profile function 𝜔(𝑥, 𝑦). The set of used profiles is shown in

Figure 6-18. The simplest circle shape (see Figure 6-18(a)) is defined by

𝜔(𝑥, 𝑦) = 𝑅2 − 𝑥2 − 𝑦2

The result 𝑢(𝑥, 𝑦, 𝑧) has the following form

𝑢(𝑥, 𝑦, 𝑧) = 𝜔(𝑥′, 𝑦′),
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(a) (b)

(c) (d)

Figure 6-16: The filter model with channels: (a) the 3D object of the filter model;
(b) cross-section of the 3D model with zoom; (c) Cross-sections of the filter model
with parameterization examples; (d) the 3D object of the filter model with an X-Y
cross-section.

Figure 6-17: Different shapes of channels.

where the space mapping 𝑥′, 𝑦′ is defined by one of the following equations. For

a sinusoidal mapping, it is

𝑥′ = 𝑥,
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Figure 6-18: The shapes of the entry holes: (a) circle, (b) circle with petals, (c)
square, (d) gear, (e) star, (f) hexagon.

𝑦′ = 𝑦 + sin(𝜃) * 𝛼.

For a twisting mapping, it is

𝑥′ = 𝑥 * cos(𝜃) + 𝑦 * sin(𝜃),

𝑦′ = −𝑥 * sin(𝜃) + 𝑦 * cos(𝜃).

For a zigzag mapping, it is

𝑥′ = 𝑥,

𝑦′ = 𝑦 + 2*arcsin(sin(𝜃))
𝜋

* 𝛼.

In all the above-mentioned equations

𝑡 = 𝑧−𝑧1
𝑧2−𝑧1

,

𝜃 = (1− 𝑡) * 𝜃1 + 𝑡 * 𝜃2,

where 𝑧1 and 𝑧2 are the bottom and top z coordinates of a channel, respectively;

𝜃1 and 𝜃2 are the rotation angles at the end points; 𝛼 is the amplitude of the space

mapping.

The operator of unit cell replication 𝛾 is

𝛾 [𝑢(𝑥, 𝑦, 𝑧)] =
⋁︀𝑚

𝑖=1 𝑢(𝑥− 𝑥𝑖, 𝑦 − 𝑦𝑖, 𝑧)

where 𝑥𝑖 and 𝑦𝑖 are the centres of the channels in the loop operation and
⋁︀

denotes the set-theoretic union.

The application of the feature-based contouring algorithm to the filter model

with 2200 unit cells allows the reduction in the number of processed cells by 30%

due to the proposed compound adaptive criterion. The contouring time was sped up

100-fold due to using the proposed compound adaptive criterion with the proposed

acceleration criterion.

The tests were conducted 20 times for each filter model with different parameters

(see Table 6.3) with an XY-resolution of 0.05 mm. The average values were calcu-
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lated. The results of contouring the one layer of the filter model with a different

number of channels and different shapes of the channel’s entry holes are presented

in Table 6.4, Table 6.5 and Figure 6-19. It should be noted that the shape of the

channels (sinusoidal, twisting, zigzag) almost does not affect the contouring time.

Parameter Value
Height of the filter 20 mm

Diameter of the filter 50 mm
Channel diameter 0.9-1.8 mm

Number of channels 500-2200

Table 6.3: The filter model parameters.

Number of
unit cells
(channels)

Number of processed cells Reducing %
of the pro-
cessed cells

Common
adaptive
criterion

The
proposed
compound
adaptive
criterion

500 362479 244989 33
1000 362479 249269 32
2200 362479 250129 31

Table 6.4: The number of processed cells of one layer of the filter model.

Figure 6-19: Plot of the experimental results with the filter model (the shape of the
channel’s entry holes: a circle with petals).

Table 6.5 shows that the use of spatial indexes significantly reduces the contour-

ing time. At the same time, the R-tree and k-d tree data structures show almost

107



Chapter 6. Slicing of FRep objects 6.2. Feature-based contouring

Channel
diameter,

mm

Number
of

channels

Slicing time, msec

Slicing with
the full loop
operation

Accelerated slicing
algorithm

R-tree k-d tree
circle

1.8 500 63 552 1 273 1 222
1.5 1000 99 944 1 351 1 310
0.9 2200 297 326 1 683 1 779

circle with petals
1.8 500 200 530 1 651 1 754
1.5 1000 367 219 2 042 2 230
0.9 2200 936 803 2 550 3 145

square
1.8 500 82 073 1 432 1 875
1.5 1000 124 205 1 550 2 107
0.9 2200 390 451 1 970 2 584

gear
1.8 500 1 063 341 2 794 3 328
1.5 1000 1 947 765 3 001 3 719
0.9 2200 4 454 432 4 214 5 205

star
1.8 500 1 076 432 2 487 2 957
1.5 1000 1 971 207 2 703 3 436
0.9 2200 4 509 271 3738 4 411

hexagon
1.8 500 129 222 1 436 1 906
1.5 1000 214 078 1 698 2 147
0.9 2200 634 755 2 008 2 591

Table 6.5: Experimental results of the filter model contouring step.

the same performance. The shape of the channel entry hole affects the contouring

time due to additional calculations of the channel shape.

Case study 2: Contouring of a free-form model

Here we consider contouring of 2D free-form object defined via Equation 5.3. For

this FRep model the following function Γ = Γ(𝑥𝑖, 𝑦𝑖) exists:

Γ(𝑥𝑖, 𝑦𝑖) = {([𝑥𝑖 − ℎ𝑥;𝑥𝑖], [𝑦𝑖; 𝑦𝑖 + ℎ𝑦]), ([𝑥𝑖;𝑥𝑖 + ℎ𝑥], [𝑦𝑖; 𝑦𝑖 + ℎ𝑦]), ([𝑥𝑖 −

ℎ𝑥;𝑥𝑖], [𝑦𝑖 − ℎ𝑦; 𝑦𝑖]), ([𝑥𝑖;𝑥𝑖 + ℎ𝑥], [𝑦𝑖 − ℎ𝑦; 𝑦𝑖])}.
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This function Γ(𝑥𝑖, 𝑦𝑖) : 𝑅 × 𝑅 → 𝑋 ×𝑋, where 𝑋 ⊆ 𝑅 is a set of intervals in

𝑅, returns the bounding boxes 𝐵𝑗 which are quarters of the supports of the basis

function 𝜑𝑖(𝑥, 𝑦).

The unit function for the bounding box 𝐵𝑗 is:

𝑢𝑗 =
∑︁
𝑘

𝛼𝑘𝜑𝑘(𝑥, 𝑦)

where 𝜑𝑘 are basis functions with the supports that include 𝐵𝑗. There can be one

to four 𝜑𝑘 functions in the sum.

Free-form functions are widespread in the task of topology optimization. The

compliance minimization problem with boundary conditions shown in Figure 5-2(a)

left was solved. The free-form function with plot presented in Figure 6-20(a) is a

solution of this problem. It defines the solid body shown in Figure 6-20(b).

(a)

(b)

Figure 6-20: An example of a free-form model obtained via topology optimization
algorithm: (a) the plot for the obtained free-form function 𝑓(𝑥, 𝑦) and (b) the opti-
mized shape defined by the free-form function 𝑓(𝑥, 𝑦).

The proposed contouring algorithm is successfully applied to process the free-
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form FRep model. Its performance is 2-fold higher for the free-form model with

100x200 points if compared with the standard contouring algorithm (see Table 6.6

and Figure 6-21).

Number
of points

Contouring time, msec

Slicing with
all loop iter-
ations

Accelerated slicing algorithm

R-tree k-d tree
1250 1004 1000 960
5000 1699 1102 1143
20000 2800 1425 1300

Table 6.6: Experimental results for the free-form model.

Figure 6-21: Plot of the experimental results for the free-form model.

6.3 3D printing of modeled parts

Test models were fabricated using FDM, DMD and DLP printing processes. The

open-source project CuraEngine Ultimaker [2013] was used for the generation of

supports, infill and GCODE for our FDM and DMD additive manufacturing equip-

ment. In general, this software is applied for the FDM printing process; however,

the strategies of FDM printing and DMD printing are different. Therefore, a spe-

cific AM profile was created for the 3D laser-aided Direct Metal Tooling (DMT)
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printer Insstek MX-1000. This profile includes the generation of specific GCODE

commands for managing the feed speed of the metal powder, the gas shield and

the laser beam. Additionally, DMT printing with the stainless steel metal powder

requires printing the shells twice; only after that does the infill process start. The

printed part using the 3D DMT printer Insstek MX-1000 is shown in Figure 6-22(a).

The same software was used for the fabrication of the gear model using the 3D FDM

printer Ultimaker S5 (see Figure 6-22(b)). The 3D DLP printer Wanhao Duplica-

tor 7 was used for the fabrication of the microstructure model (see Figure 6-22(c)).

Raster slices and GCODE for this model were prepared using our software module

in CWS format.

Figure 6-22: Printed models: (a) the cylinder with lattice (radius 30 mm, height
60 mm) printed using the 3D DMT printer Insstek MX-1000; (b) the gear (radius
67 mm, height 30 mm) printed using the 3D FDM printer Ultimaker S5; (c) the
microstructure (radius 16 mm, height 20 mm) printed using the 3D DLP printer
Wanhao Duplicator 7.

Similarly, we manufactured parts considered in Section 6.2. Ultimaker S5 FDM

3D printer was used to manufacture the filter model with radius equals 25𝑚𝑚 and
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height equals 20𝑚𝑚 (see Figure 6-23(a)). Wanhao Duplicator 7 DLP 3D printer was

used to manufacture the free-form FRep model with length equals 100𝑚𝑚, width

equals 50𝑚𝑚 and height equals 20𝑚𝑚 (see Figure 6-23(b)).

Figure 6-23: Printed models: (a) the filter model printed using an Ultimaker S5 3D
FDM printer, (b) the free-form FRep model printed using a Wanhao Duplicator 7
DLP 3D printer.
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"If you optimize everything, you will

always be unhappy."

Donald Knuth

Chapter 7

Conclusion

This thesis studied opportunities of FRep in CAD, CAM and optimization for AM.

We proposed the architecture and implementation of the CAD/CAM system based

on FRep, established the connection between FRep and the level set methods for

structural optimization. Finally, we performed experimental validation of the pro-

posed system.

Its main component is the FRep geometric core. It allows users to perform

symbolic modeling of parameterized bodies. Fast rendering routines support the

geometric core. We implement them using parallel computations on GPU.

One more aspect of the proposed system is its compatibility with optimization

algorithms. We showed and discussed the connection between FRep and level-set

optimization methods. The thesis proposes efficient and robust topology optimiza-

tion algorithm and parameter optimization algorithm and their modifications. We

showed how we can capture shape constraints during the topology optimization and

how to perform structural optimization that includes both topology and parameter

optimization. The proposed algorithms can be extended to multimaterial objects.

The main part of the proposed CAM component is the efficient slicing algorithm.

It appears that the classical approach based on marching squares is the most con-

venient choice for common cases of AM. We compared it with algorithms exploiting

interval arithmetic and affine arithmetic, but these algorithms work significantly

faster when the ratio of object size to slicing precision is greater than 105. For ex-

ample, this ratio holds for parts with 10 mm size and 3D printing accuracy about
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1 𝜇m. Nowadays, you can meet such a case only in cutting edge AM equipment.

Nevertheless, we know what should we use when the machines will become better.

More practical cases were considered in the paper devoted to FRep-based CAM

development [Maltsev et al., 2021]. Slicing become a problem when the object has

a significant number of repeating structures such as pores, channels or balks. We

showed that these objects have a specific form of FRep defining functions, and this

form can be exploited for fast slicing. The proposed algorithm based on K-d trees

and R-trees can be up to 100 faster for the considered objects.

FRep-based approach for design and manufacturing was applied to implants

prototyping. We designed several structures those satisfy 3D printing requirements

and performed their mechanical tests and simulations. This research showed that

FRep-based methodology can be successfully applied for AM.

Delivered results allow us to propose the integrated CAD/CAM system based on

FRep. The system can interact with developed topology optimization algorithm and

use its output as a new FRep object. Designed models with incorporated optimized

parts can be directly manufactured with 3D printers. We used printed parts for

validation of the developed simulation algorithms with mechanical testing and this

validation was successful.

However, the proposed system and its core technology have several limitations.

We studied slicing techniques for FRep objects and proposed efficient algorithms

for the generation of CNC programs, but unfortunately they are useless for some

AM equipment. This happens because of their closed architecture and ".stl" file

format as the only option for model upload. An open program interfaces provided

by manufacturers of 3D printers can resolve this limitation.

Fortunately, most AM machines have these interfaces. They allow us to upload

CNC programs generated by our system to 3D printers. However, the size of the

programs for objects with complex structure can exceed file limits of the equipment.

The complete CNC program can be split into several parts to overcome this obstacle.

One more limitation comes from the proposed optimization algorithm. The

optimization problem is not convex. Thus, any proposed algorithm can guarantee

only local optimum. If it is crucial to obtain the best solution, then one can try
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to provide different initial geometries for the optimization algorithm or run it with

several samples of optimization parameters, such as the time step or the number

of relaxation steps. Despite these limitations the proposed approach for design,

optimization and manufacturing seems promising for further researches.

One of the possible direction of future work is considering more optimization ob-

jectives, e.g. heat conduction and fatigue problems. New physical tasks are not the

only source of new optimization tasks. Future works can be addressed to technolog-

ical constraints of AM and their influence to the optimization algorithm. Therefore,

works on structural optimization have unlimited source of research problems.

All completed and proposed future studies are fascinating. However, their attrac-

tiveness is commensurate with their complexity, and we need to adequately assess

their demand.

115

FortinClement
Sticky Note
an almost unlimited???



Glossary

AA Affine Arithmetic. 84–88, 93, 94

AABB Axis-Aligned Bounding Boxes. 96, 97

AI Artificial Intelligence. 13

AM Additive Manufacturing. 6, 12–15, 31, 35, 46, 76, 77, 81, 113–115

API Application Programming Interface. 35

BRep Boundary Representation. 13, 14, 16–19, 32, 44, 45

CAD Computer Aided Design. 8, 11, 13–19, 31, 32, 34–38, 113, 114

CAE Computer Aided Engineering. 34, 36

CAM Computer Aided Manufacturing. 8, 14, 15, 25, 31, 32, 34–37, 76, 113, 114

CNC Computer Numerical Control. 13, 31, 35, 76, 99, 114

CPU Central Processing Unit. 13, 104

CSG Constructie Solid Geometry. 13, 14, 16–19

DLP Digital Light Processing. 10, 35, 94, 110–112

DMD Direct Metal Deposition. 94, 110

DMT Direct Metal Tooling. 10, 110, 111

FDM Fused Deposition Modelling. 10, 94, 110, 111

FEM Finite Element Method. 15, 27, 28, 32, 36, 49, 65, 68, 73, 74

FRep Function Representation. 6, 8–10, 14–16, 19–22, 24, 25, 31–114

GPU Graphics Processing Unit. 13, 40, 44, 113

IA Interval Arithmetic. 82–84, 88, 93

OOP Object-Oriented Programming. 15

SIMP Solid Isotropic Material with Penalization. 13, 15
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