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Abstract

Knowledge graphs such as DBpedia, Freebase or Wikidata always contain a taxo-
nomic backbone that allows the arrangement and structuring of various concepts
in accordance with the hypo-hypernym (“class-subclass”) relationship. With the
rapid growth of lexical resources for specific domains, the problem of automatic
extension of the existing knowledge bases with new words is becoming more and
more widespread. In this thesis, we address the problem of Taxonomy Enrichment
which aims at adding new words to the existing taxonomy.

We formulate two task settings on the automatic taxonomy extension. The first
one aims at predicting hypernyms from taxonomy given a predefined list of new
words with no definition. The second task setting considers taxonomy enrichment
with no predefined candidates. We assume that the huge amount of knowledge from
pre-trained models like BERT can be leveraged to predict new words missing in
taxonomic resources.

We suggest multiple approaches and datasets for each task setting. First, we
present a new method called DWRank which allows achieving high results on
this task with little effort. It uses the resources which exist for the majority of
languages, making the method universal. We extend our method by incorporating
deep representations of graph structures like node2vec, Poincaré embeddings, GCN
and many more, which have recently demonstrated promising results on various NLP
tasks. Furthermore, combining these representations with word embeddings allows
us to achieve the state of the art results.

Secondly, propose the Cross-modal Contextualized Hidden State Projection
(CHSP) method that combines graph-, and text-based contextualized representations
from transformer networks to predict new entries to the taxonomy. We have evaluated
the method suggested for this task against text-only baselines based on BERT and
fastText representations. The results demonstrate that the incorporation of graph
embeddings is beneficial for the task of hyponym prediction using contextualized
models.

Additionally, we conduct a comprehensive study of the existing approaches to
taxonomy enrichment based on word and graph vector representations and their
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fusion approaches. We also explore the ways of using deep learning architectures to
extend the taxonomic backbones of knowledge graphs. We create several datasets
for taxonomy extension for English and Russian. We achieve state-of-the-art results
across different datasets and provide an in-depth error analysis of mistakes. We
hope the new challenging tasks presented in this work will foster further research in
automatic taxonomy construction methods.
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Chapter 1

Introduction

“You shall know a word by the company it keeps”

John Rupert Firth, linguist, (1957)

Natural Language Processing (NLP) is a vast subfield of Artificial Intelligence (AI)

which aims at understanding and generating natural language. Even though modern

intelligent systems and large-scale models are making good progress in imitating

natural speech and demonstrating good results in Turing’s test [French, 2000], we

still cannot conclude that Artificial Intelligence (AI) has evolved. Moreover, it is

expected that AI will not only be able to understand and generate phrases in natural

language, but also have larger knowledge about the world than people do.

That is why people often try to build up words and phrases into some structure like

Knowledge Base, ontology or taxonomy. Such structures are aimed at storing world

knowledge (relationships between objects) in a machine-readable format. Knowledge

Bases, in particular ontologies and taxonomies, are widely used in multiple NLP tasks

as the main source of knowledge. It is expected that the machine (and the Artificial

Intelligence one day) will use such structures for understanding relationships between

objects, searching for information for Question Answering and storing the acquired

knowledge as the background for language understanding and generation.

The amount of data that can be used to construct such objects are usually quite

large. For instance, it could be Wikipedia where the nodes are the Wikipedia pages

and the relations between them are interlinked pages. Moreover, we can think of
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all words in a language that should be organised in a hierarchical structure starting

from the most abstract to the most concrete entities. The last but not the least is

the Common Crawl that could also be organised in a machine-interpretable structure

which is the central idea of the Semantic Web. For that, web pages should be linked

to ontologies [Berners-Lee et al., 2001, Gómez-Pérez and Corcho, 2002] — databases

which contain information on classes of objects, their properties, and relations between

the classes. The relations between objects are particularly important in an ontology,

as they form its structure. These relations can be of different types corresponding to

different types of relationships between real-world objects. One of the most important

relationships is the class-subclass relation. It allows the organization of entities into

a taxonomy — a tree structure where entities are represented as nodes and the edges

between are denoted as subclass-of or instance-of relationships. The class-subclass

relations and taxonomies built from them are crucial for understanding the place,

the purpose of an object or a concept in the world. This relation and the hierarchical

structure also constitute a basis of many Knowledge Bases and Knowledge Graphs

— a particular type of Knowledge Base in which objects are organised in a graph

structure. There, the nodes of a graph are objects, and the edges of a graph are

relations between the objects.

To support the use of specific Knowledge Base structures, such as thesauri

or taxonomies, there exist specifications and standard classification schemes. For

instance, Knowledge Organization Systems (SKOS)1 define several types of lexical-

semantic relations in the terms of the Semantic Web, e.g. “has broader/narrower”,

“has exact match”, and “is in mapping relation with”. For instance, SKOS are used

to create structures like thesauri.

However, SKOS do not fully comply with our taxonomy. The class-subclass

relation which is the basis of taxonomies is a relation between objects X and Y such

that the sentence “X is a kind of Y” is acceptable for native speakers. On the other

hand, the closest SKOS analogue of taxonomic class-subclass relation is the “broader

term relation”. It is different from the class-subclass relation because it is less specific.

For example, it can include part-whole relations.
1https://www.w3.org/2004/02/skos/intro
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The usefulness of an ontology or a Knowledge Base depends largely on its

completeness and its ability to fully reflect the real world. However, since the world is

changing, ontologies need to be constantly updated to stay relevant. There currently

exist comprehensive Knowledge Bases such as Freebase, DBPedia or Wikidata as well

as ontologies for specific domains. Many areas of knowledge require their Knowledge

Bases, and all of them need to be maintained and extended. This is an expensive and

time-consuming process which can only be conducted by an expert who is proficient

in the discipline and understands the structure of a Knowledge Base. Thus, in order

to speed up and simplify this task, it becomes more and more important to develop

systems that could automatically enrich the existing Knowledge Bases with new

words or at least facilitate their manual extension process. The task of automatically

or semi-automatically adding new entities to hierarchical structures is referred to as

Taxonomy Enrichment (TE).

Taxonomy is a graph structure where words are nodes and the edges between

them are the hypo-hypernym relations between them. We choose taxonomies as

the topic of our research because they are still not fully investigated. There exist

papers on extending Knowledge Bases, but very few papers implement or test graph

methods on taxonomic structures. The specificity of taxonomies has been described

in Carper and Snizek [1980] which implies that we might contribute to the field by

proposing taxonomy-specific methods for graph extension.

The state-of-the-art Taxonomy Enrichment methods have two main drawbacks.

First of all, they often use unrealistic formulations of the task. For example, SemEval-

2016 task 14 [Jurgens and Pilehvar, 2016a] which was the first effort to evaluate this

task in a controlled environment, provided definitions of the query words (words to

be added to a taxonomy). This is a very informative resource, so the majority of the

presented methods heavily depends on those definitions [Tanev and Rotondi, 2016,

Espinosa-Anke et al., 2016]. However, in real-world scenarios, such information is

usually unavailable, which makes the developed methods inapplicable. We tackle

this problem by testing our new methods and state-of-the-art methods in a realistic

setting.

Another gap in the existing research is that the majority of methods use infor-
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mation from only one source. Namely, some researchers use the information from

distributional word embeddings, whereas others consider graph-based models which

represent a word based on its position in a taxonomy. Our intuition is that the

information from these two sources is complementary, so combining them can improve

the performance of Taxonomy Enrichment models. Therefore, we propose a number

of ways to incorporate various sources of information.

First, we propose the new DWRank method. Analogously to many existing

methods, it uses only distributional information. Then, we enable this method to

incorporate the different sources of graph information. We compare the various ways

of getting the information from a Knowledge Graph. Finally, we present another

modification of our method which allows for the successful combination of information

from different sources, beating the current SOTA.

To place our models in the context of the research on Taxonomy Enrichment, we

compare them with several state-of-the-art models. To the best of our knowledge,

this is the first large-scale evaluation of Taxonomy Enrichment methods. We are

also the first to evaluate the methods on datasets of different sizes and in different

languages.

1.1 Task Formulation

In this thesis, we focus on the idea of keeping valuable resources up-to-date and

extending the existing taxonomies with automatic methods. In order to have a

better understanding of the task, let us consider an example of taxonomy. Figure 1-1

demonstrates a subgraph for the word “Papuan” retrieved from WordNet. There, each

concept has one or more parents (concepts which it is derived from). The parents in

their turn have their own parents, and one can trace the word affiliation to the most

abstract root concepts of the taxonomy. Here, the word “Papuan” is attached to the

synsets “Indonesian” and “natural_language” as it can mean both an ethnicity and a

language. Note that words can have multiple parents for different reasons. Two or

more parents can point to the fact that a word has multiple meanings (as is the case

with “Papuan”). Alternatively, a word meaning can be a combination of meanings of
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two higher-level concepts.

Figure 1-1: Example of adding a new word “Papuan” to the taxonomy

indonesian.n.01 natural_language.n.01

Papuan

language.n.01 asian.n.01

Therefore, in order to add a word to a taxonomy, we need to find its hypernym

among the entities (synsets in case of wordnets) of this taxonomy. Here, we refer

to a word absent from the taxonomy (a word that we would like to add) as a query

word. Our task is to attach query words to an existing taxonomic tree.

The task of finding a single suitable hypernym synset is difficult for a machine

because the number of nodes in the existing taxonomy can be very large (e.g. in

WordNet the number of noun synsets is around 29,000). Thus, a model trained to

solve this task will inevitably return many false answers if asked to provide only

one synset candidate. Moreover, as we can see from Figure 1-1, a word may have

multiple hypernyms.

Thus, in the majority of works on Taxonomy Enrichment, the requirement of

providing a single correct answer is relaxed. Instead, a common approach is to

provide k (typically 10 to 20) most suitable candidates. This list is more likely to

contain correct synsets. This setting is also consistent with manual computer-assisted

annotation. Presenting an annotator with a small list of candidates will facilitate the

taxonomy extension process: annotators will only have to look through a short list

of high-probability hypernym candidates instead of searching hypernyms in a list of

all synsets of the taxonomy. Thus, we formulate the task of taxonomy extension as a

soft ranking problem, where the synsets are ranked according to their suitability for

a given word.

This is an established approach to tackle this task. The same formulation was
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also used in research works on Taxonomy Enrichment and in Taxonomy Enrichment

shared tasks [Jurgens and Pilehvar, 2016a, Nikishina et al., 2020a].

1.2 Terminology

In this section, we provide several definitions crucial for the understanding of this

work.

Knowledge Base (KB) is a data structure used to store knowledge which com-

prises concepts and relations (known as TBox-es) and individuals, concepts, and

relation instantiations (also known as ABox-es) [De Giacomo and Lenzerini, 1996].

Knowledge Graph (KG) is a Knowledge Base that uses a graph-structured

data model to represent data. Formally, a Knowledge Graph G is a set of triplets

{h, r, t} ⊆ E ×R× E where E is the entity set and R is the relation set. Normally,

Knowledge Graphs comprise multiple types of relations R.

Synset set is a set S ⊆ {s1, ..., sn} of words or phrases corresponding to a concept

or a Knowledge Base entity in the set E. Synset is the major element which denotes

a node in a Knowledge Graph G, therefore, in our case S equals E.

Hypernymy relation is a relation r ∈ R. According to Miller [1998b], hyper-

nymy relation exists between objects X and Y if native speakers accept sentences

constructed using such patterns as “An X is a (kind of) Y”. Hypernymy is transitive

and asymmetrical. Such relations are central organizing relations for nouns and

verbs in WordNet [Miller, 1998b]. In fact, hypernymy relations comprise class (or

subsumption) relations and instantiation relations considered in ontology studies

and description logics [McGuinness and Borgida, 1995].

Taxonomy is a special case of a Knowledge Graph G. It is a tree-based structure

where nodes from the set E are connected with the hypernymy relation r (R = {r}).

Elements included in set E are words or concepts. In taxonomy G, they are arranged
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in a hierarchical structure from the most abstract concept (root) to the most specific

concepts (leaves).

Query words (new words) — words to be added to the taxonomy T , usually

manually collected by experts. In this work, we use the following notation for this

set Q ⊆ {q1, ..., qn}. Note that words may be ambiguous: single qi can correspond to

multiple synsets si.

Taxonomy enrichment can be considered as a special case of the Knowledge

Base completion task. This task aimed at associating each new word q ∈ Q, which is

not yet included in the taxonomy T , with the appropriate hypernyms from it.

1.3 Research Questions

The current thesis presents the research efforts which share the common topic

of extending an existing taxonomy with new words. Together, they demonstrate

the diversity of approaches for predicting hypernyms as well as the diversity of

perspectives from which the task of Taxonomy Enrichment can be solved. The

present thesis addresses several specific research questions which are presented below.

R1: The primary research question of this work asks whether it is possible to

predict hypernym for new words from an existing taxonomy. We

propose a new task setting in which new words come without definitions in

comparison to SemEval-2016 task 14. It makes the prediction task more

challenging and requires a range of experiments to investigate the problem.

R2: The secondary research question investigates whether graph-based em-

beddings are beneficial for attaching new words to the taxonomy.

There exist multiple approaches making use of word embeddings, whereas the

advantage of using graph embeddings has not been investigated.

R3: The tertiary research question is about predicting new nodes using a

pre-trained language model and an existing taxonomy. We aim at
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extending the existing taxonomy without predefined candidates. We want

to test, whether the pre-trained language models contain enough pre-trained

information to be able to predict new hyponyms at a certain place of the

taxonomy.

We elaborate on these research questions in the next section while discussing

objectives and contributions and in Conclusion (Chapter 9), where we summarise

our answers to them.

1.4 Contributions

This thesis provides the following contributions:

1. We present a new open Taxonomy Enrichment method DWRank which com-

bines distributional information and the information extracted from Wiktionary

(Chapter 5).

2. We present an extension of DWRank called DWRank-Graph which uses

various graph-based representations via a common interface (Section 5.2).

3. We conduct a large-scale computational study of various approaches to Tax-

onomy Enrichment, which features multiple methods (including ours as well

as state-of-the-art (SOTA) approaches), multiple datasets and languages (Sec-

tion 6.3).

4. We present open datasets for studying the diachronic evolution of wordnets for

English and Russian (Chapter 3).

5. We explore the benefits of combinations of embeddings and graph embeddings

for the task of Taxonomy Enrichment (Section 5.3).

6. We provide an in-depth error analysis of different types of errors in the state-

of-the-art models (Section 6.4).

7. We provide mappings to WordNet Linked Open Data (LOD) Inter-Lingual

Index (ILI) [Bond et al., 2016] from Russian to English synsets. A dataset of
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multilingual hypernyms opens possibilities for various use cases for cross-lingual

operations on taxonomies (Subsection 3.2.1).

8. We propose a method for incorporating graph information into pretrained

language models based on hidden contextualized state projection, aiming to

predict candidates in a certain place in the taxonomy (Chapter 7).

1.5 Thesis Outline

The thesis is structured as follows.

Chapter 2 (Related Work) starts with the description of previous approaches to

Taxonomy Enrichment in Chapter 2. It also describes the datasets used for

the task and their shortcomings in terms of task formulation. Moreover, it sets

the scene for our methods and approaches derived from previous experience.

Section 2.4 (Background) outlines the current state of the field concerning

taxonomies and graph-based approaches. It continues with the overview of

the adjacent taxonomy-related tasks, like Taxonomy Induction and hypernym

prediction. This chapter both positions our work in the broad academic context

and proposes foundations for structuring the field itself by determining the

axes along which the research on the topic can be meaningfully compared.

Chapter 3 (Diachronichal Dataset Construction) describes the process of the

creation and annotation of our new datasets. We present datasets for studying

the evolution of wordnets for English and Russian, extending the monolingual

setup of the RUSSE’2020 shared task with a larger Russian dataset and similar

English versions. We provide mappings to WordNet LOD ILI from Russian to

English synsets.

Chapter 4 (Baseline Systems) introduces baselines for attaching new words to

the existing taxonomy. This chapter considers approaches both developed

during the current research and the approaches proposed by other researchers

tested on our dataset.
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Chapter 5 (Distributional Wiktionary-based synset Ranking (DWRank))

explores an approach for attaching new words to the taxonomy based on

embedding similarity features. We also describe various DWRank modifications,

such as DWRank-Graph and DWRank-Meta, which are tested on a wide range

of text and graph embeddings, as well as their combination.

Chapter 6 (DWRank Experiments) describes metrics used for the Taxonomy

Enrichment task and the issues of ranking and evaluating predicted candidates

amplified by the taxonomic structure. We compare the DWRank performance

(as well as DWRank-Graph and DWRank-Meta perfomrances) to the baselines

and provide error analysis to evaluate whether the graph structure information

is beneficial for the hypernym prediction.

Chapter 7 (Cross-modal Contextualized Hidden State Projection

for Candidate-free Taxonomy Enrichment) addresses the problem of

Taxonomy Enrichment from another viewpoint. First, it inverts the process of

attaching new words to the taxonomy. We assume that the list of predefined

candidates is excessive and new words can emerge from the pre-trained language

models at a certain place in the taxonomy. Moreover, we provide a set of

experiments and baselines and conclude candidate-free Taxonomy Enrichment

to be a promising direction for further research.

Chapter 8 (System Description) presents the online service for searching and

predicting words and synsets and visualising them in the taxonomic context.

By taxonomic context, we imply the closest synsets located with two hops

above and below the target node in the taxonomy tree.

Chapter 9 (Conclusion) is dedicated to a discussion of our results obtained and a

detailed description of the contributions of each chapter. Moreover, we outline

our future work directions. We also list all publicly available code, trained

models and datasets produced in the course of work on the thesis.

26

Douglas Teodoro



Chapter 2

Related Work

This chapter sets the scene for our experiments in the field by describing previous

research on Taxonomy Enrichment. We outline the existing task settings, datasets

and approaches and demonstrate the limitations of previous setups.

2.1 Taxonomy Enrichment

Until recently, the only dataset for the Taxonomy Enrichment task was created under

the scope of SemEval-2016. Moreover, all the existing approaches for the task are

developed during the competition.

SemEval-2016 Task 14 [Jurgens and Pilehvar, 2016a] is an evaluation framework

for automatic Taxonomy Enrichment techniques by measuring the placement of a

new concept into an existing taxonomy. Given a new word and its definition, systems

were asked to attach or merge the concept into an existing WordNet concept. Five

teams submitted 13 systems to the task, all of which were able to improve over the

random baseline system. However, only one participating system outperformed the

second, more competitive baseline that attaches a new term to the first word in its

synset with the appropriate part of speech, which indicates that techniques must be

adapted to exploit the structure of synsets.

The goal of Task-14 is to evaluate systems that enrich semantic taxonomies

with new word senses drawn from other lexicographic resources. The task provides

systems with a set of word senses that are not defined in WordNet. Each word sense
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comprises three parts: a lemma, part of speech tag, and definition. For example,

the noun “geoscience” is a word sense in our dataset which is associated with the

definition “Any of several sciences that deal with the Earth”. The word sense is drawn

from Wiktionary. For each of these word senses, a system’s task is to identify a point

in the WordNet’s subsumption (i.e., is-a) hierarchy which is the most plausible point

for placing the new word sense. In other words, a system’s task is to find the most

semantically similar WordNet synset to the given new word sense. Operations Once

the target synset is identified, a system has to decide how to integrate the new word

sense. For a given new word sense s and a target synset S we define two possible

operations:

• MERGE: when s refers to the same concept that is conceptualized by the synset

S. As a result of this operation s is added to the set of synonymous word senses

in S.

• ATTACH: when s refers to a more specific concept than S. In other words, S is

a generalization of the new word sense s (i.e., its hypernym). This operation

creates a new synset containing the sole word sense s and attaches the new

synset as a hyponym of S in the WordNet’s subsumption hierarchy.

For each item in our datasets, we provide the source dictionary from which

the corresponding word sense (i.e., a word and its definition) is obtained. The

participating systems were allowed to use the source dictionary in order to draw

additional information or exploit its structural properties. Based on their usage of

the source dictionary, we classify the participating systems into two categories:

• Resource-aware: the participating systems could use the URLs provided in

the dataset to gather additional information (e.g., hyper- links, wiki-markup)

for performing the integration and may use additional information from any

dictionary, including the one from which the target word sense had been

obtained, e.g., Wiktionary.

• Constrained: the system might use any re- source other than dictionaries.
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As the task setting suggests using definitions for the new words to predict the

parent synset from the WordNet, all the participating teams made use of definitions

in their approaches. Nevertheless, we describe all of them to get a full picture of

previous work done for the task discussing whether they could or could not be applied

to the task we formulate in the present thesis.

Deftor team [Tanev and Rotondi, 2016] compute the definition vector for the input

word, comparing it with the vector of the candidate definitions from WordNet

using cosine similarity. In order to compute the WordNet synset vector, the

authors concatenate non-stop words from the definition with lemmas from their

glosses. TFIDF weights calculated on definitions are used as values for such

definition vectors.

The synset with the highest similarity is attached as its hyponym if the cosine

similarity is higher than a certain threshold. Otherwise, the query word is

skipped.

TALN team [Espinosa-Anke et al., 2016] also makes use of the definition by extract-

ing noun and verb phrases for candidate generation. The authors exploit the

mapping from BabelNet [Navigli and Ponzetto, 2010] to WordNet to obtain

SensEmbed [Iacobacci et al., 2015] embeddings. Those embeddings are used

to select candidates from WordNet. The following strategy is applied:

1. first, the definition of the query word is pre-processed: noun phrases are

allocated with to each other, forming the multiword expression and stop

words are excluded.

2. Then, the authors calculate the centroid vector for all found senses by

simply averaging and normalizing all vectors.

3. As the first candidate, the closest to the centroid sense is selected (µwn ).

4. As the second candidate, they select the word appearing at the first

position of the definition sentence with the correct POS (firstBest).

5. The third candidate is the closest sense according to the cosine similarity

(highestBest).
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6. The last candidate is obtained by recalculating centroids, keeping only

relevant senses according to the cosine similarity µwnbest}.

As a result, they have the following candidates:

C = C
⋃
{µwn, firstBest , highestBest , µwnbest}, (2.1)

where C contains matching lemmas from synset and definition.

In order to rank candidates, the authors applied the following methods:

• RunHeads — they select the first word which has the same POS as the

correct answer. If WordNet does not have this word, they select the one

which is the closest to the centroid.

• RunSenses — selects the best candidate according to the voting system:

it may occur that the first word is the most similar, which means that its

weight is larger than the one from the similarity of SensEmbed embeddings.

At the same time, if all candidates are equal, the closest (defined by cosine

similarity) sense is selected.

• RunHyps— chooses the most general sense according to the tree structure

of the taxonomy among candidates.

The authors did not manage to outperform the first-word baseline, however,

they computed the upper bound which is 0.7, which means that the developed

methods still demonstrate decent results.

The authors did not outperform the first word-based baseline. However, their

experiments report the upper bound of 0.7, which means that developed

methods still demonstrate decent results.

MSejrKU team [Schlichtkrull and Mart́ınez Alonso, 2016] presents an algorithm

based on the Gaussian-kernel SVM and using both lexical and syntactic features.

Additionally, the authors have used the following distributional features:

• word position,
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• word shape for the query words and the WordNet senses,

• POS-tag for the query words and the WordNet senses,

• dependency structure for the WordNet senses,

• binary feature representing the description word appearing in the target

term,

• some features are used only for direct classification:

– overlap between the synset and the term description,

– the length of the shortest path to the description;

• the following pairwise features are used for ranking systems:

– relative distance and position in the description sentence,

– relative distance and position in the dependency tree,

– difference in the number of overlapping lemmas between the descrip-

tion sentence and the senses which appear to be the most similar,

– cosine distance between the query word (or phrase) and the most

similar senses: Mikolov et al. [2013d] train a SkipGram model on a

corpus of glosses based on WordNet and the Wikipedia entries for

each term and the English part of the PolyGlot corpus [Al-Rfou’ et al.,

2013]. The embeddings of the multi-word expressions are obtained by

averaging the word embeddings from a term or a synset.

MSejrKU team tests two strategies: direct classification and ranking approach.

The first strategy provides correct integration for the query term. Then the

synsets are sorted according to the prediction probabilities. The top-1 synset

is considered as the answer. The authors use Logistic Regression and a Single

Layer Feed-Forward Neural Network for classification. The second strategy

utilizes the Gaussian kernel SVM to learn the relationships between the query

term and words from the description sentence. Using the classifier predictions,

we can reorder the candidates and choose the best candidate for the query

term.
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The results outperform most of the other approaches, as well as the simple

baseline. They have the same (or slightly better) performance as the strong

baseline.

VCU team [McInnes, 2016] relies on word overlapping and the dictionary features

along with the word and synset definitions. The authors propose three VCU

systems: VCU-Run-1 with the Lesk measure [Lesk, 1986]; VCU-Run-2 which

uses the First-order vector measure; and VCU-Run-3 which uses the Second-

order vector measure.

The Lesk measure [Lesk, 1986] counts the number of overlaps between two

definitions of two terms. The final measure is calculated as:

Lesk =
∑
i∈O

o2i , (2.2)

where O = [o1, o2, ..., oN ] is the list of overlaps, N is the number of overlaps

between the definitions of two terms.

Duluth team [Pedersen, 2016] presents four systems built upon each other. Duluth

approaches use scoring of the overlaps between WordNet and new word input

(OtherDict) glosses. To provide the final score, they calculate the square of

the number of words in the overlap, and then all the overlaps between a pair

of glosses are summed. The authors do simple preprocessing — converting to

lowercase and keeping only alphanumeric symbols.

Duluth2 represents each word sense as its preprocessed gloss with stop words

and single-character words excluded. The same is done for the input word and

its gloss to compute the overlap score.

Duluth1 is an extension of Duluth2, where each WordNet gloss is expanded by

concatenating to it the glosses of the hypernyms, hyponyms, derived forms and

meronyms of the sense. That the size of such combined descriptions can be too

long and dramatically increase the computation time. Therefore, the authors

limit the number of words in the gloss to nine and remove words consisting

of four or less characters. However, in comparison to Duluth2, they do not

32

Douglas Teodoro
However, the … (?)

Douglas Teodoro



exclude stop words during preprocessing. The same procedure is applied to

the query words with glosses from OpenDict.

Duluth4 can be viewed as a modification of the two previous approaches. First,

it excludes stop words like Duluth2. Second, it expands the main gloss only

with hypernym and hyponym glosses rather than glosses of other related synsets.

As a result, the final WordNet gloss (also limited to nine tokens) becomes more

specific.

The last method Duluth3 splits both WordNet and OpenDict glosses into

trigrams (spaces are excluded beforehand) in order to allow matches of subwords.

In this setup, stopwords are not taken into account and the authors restrict

the number of trigrams to 250.

All these models do outperform the random baseline. However, they all yield

the strong baseline on using the first word as the correct answer.

UMNDuluth team [Rusert and Pedersen, 2016] describes an approach based on

definition overlaps and does not rely on sophisticated machine learning or deep

learning approaches.

The authors iterate through each word in the query word definition and retrieve

information about this word from WordNet (definition, synset, hyponyms,

hypernyms, etc.). Then they check the overlap between the words in the query

word definition and the definitions where this word presents, as well as in

hypernyms and hyponyms of this word. The final score of the sense is the

number of overlaps divided by the total length of the query word definition

(glossLength):

finalScore =
synsetO + hypernymO + hyponymO + lemmaO + bonusO

glossLength
,

(2.3)

where synsetO stands for overlaps in the synset gloss, hypernymO stands for

overlaps in the hypernym(s) gloss(es), hyponymO stands for overlaps in the

hyponym(s) gloss(es), lemmaO stands for sense gloss. Bonus is calculated as
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follows: 2 × lemmaLength, where lemmaLength is the length of the lemma

from the query word gloss making part of a candidate sense.

Next, the authors verify that the chosen sense is more suitable than the other

senses of the same lemma. They proceed by checking whether the candidate

sense overlaps with the lemma gloss. In the case it does not, the most common

sense is chosen.

The choice between merging or attaching the new word is made according

to the frequency of the selected candidate sense (attach if freq = 0, merge

otherwise).

2.1.1 WordNet Path Prediction

A completely different approach to make use of fastText embeddings is presented

in the work of Cho et al. [2020]. The authors experiment with encoder-decoder

models in order to solve the task of direct hypernym prediction. They use a

standard LSTM-based sequence-to-sequence model [Sutskever et al., 2014] with

Luong attention [Luong et al., 2015]. First, they average fastText embeddings for

the input word or phrase and put it through the encoder. The decoder sequentially

generates a chain of synsets from the encoder hidden state, conditioned on the

previously generated ones. The authors consider two different setups:

• hypo2path — given the input word, generate a sequence of synsets starting from

the root synset and going down the taxonomy to the closest hypernym;

• hypo2path reverse — given the input word, generate a sequence of synsets

starting from the closest hypernym up to the root entity.

To be able to apply this sequence-to-sequence architecture to our data, we build

new datasets similar to the ones described in Cho et al. [2020]. We generate a

path from the WordNet starting from the root node to the target synset or word.

Analogously to the original work, we include multiple paths from the root to the

parents of the query word. We filter the validation set to only include queries that

do not occur anywhere in the full taxonomy paths of the training data. To sort
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candidates generated by the decoder, we enumerate the generated hypo2path sequence

from the right to the left or the hypo2path reverse from the left to the right and get

the first 10 synsets.

Additionally, we extend this approach by replacing the LSTM with attention

architecture with the Transformer architecture [Vaswani et al., 2017a]. During the

training, we provide an embedding of a synset as input to the Transformer and expect

the model to generate a sequence of synsets starting from the hypernym of the input

synset. During inference, we provide embeddings of query words as input and expect

the model to output sequences of synsets starting with the direct hypernyms.

This scenario may be unrealistic for manual annotation because linguists or

domain experts write definitions for new words and add them to the taxonomy at

the same time. Having a list of candidates would not only speed up the annotation

process but also identify the range of possible senses. Moreover, it is possible that

not yet included words may have no definition in any other sources: they could be

very rare (“apparatchik”, “falanga”), relatively new (“selfie”, “hashtag”) or come from

a narrow domain (“vermiculite”).

2.2 Taxonomy Induction

The Taxonomy Induction (TI) problem [Bordea et al., 2015, 2016b, Velardi et al.,

2013] is about the creation of taxonomy from scratch. This task aims to extract

hypernym-hyponym relations {vi, r, vj} ⊆ V ×R×V (where R is the hypo-hypernym

relation set) between a given list of domain-specific terms V ⊆ {v1, ..., vn} and then

construct a domain taxonomy T based on them.

The authors of the most famous papers on the topic Pocostales [2016], Aly et al.

[2019] solve the SemEval-2016 Task 13 on Taxonomy Induction relying on word

embeddings: they compute the vector offset as the average offset of all the pairs

generated and exploit it to predict hypernyms for the new data.

Another task, which is closely related to taxonomy creation, is the Knowledge Base

construction. There exist multiple approaches to solving the problem: Text2Onto

[Cimiano and Völker, 2005] a pillar language-independent approach which applies
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user interaction or fully automated methods [Dess̀ı et al., 2021, Osborne and Motta,

2015] which apply text-mining tools and external sources, which are mostly applied

for the scholarly domain. However, the KB completion task assumes a generic graph

while the Taxonomy Enrichment task deals with tree structures and some specific

methods of tree processing are commonly used in this field. In this thesis, we focus

on this specific task and narrow down our scope to enrichment and the population of

taxonomic structures. It should be noted however that the majority of the ontologies

and knowledge bases possess some kind of taxonomic backbone and therefore the

task of constructing and maintaining such a semantic structure is fundamental.

Bordea et al. [2016a,c] evaluate taxonomy construction models based on the

extracted hypernym relations. The evaluation is performed for several domains. Gold

standard datasets are collected from WordNet and EUROVOC thesaurus1. The

authors suggest several metrics tailored for taxonomy evaluation. Levy et al. [2015]

suggest that the results achieved in classification settings of hypernym extraction

are mainly explained by the so-called “lexical memorization phenomenon” — a

situation when models learn that in a relation “x is-a y” a word y is a prototypical

hypernym. For example, if a classifier obtains many positive examples with the word

y = animal , it may learn that anything that appears with y=animal should generate

a positive answer. Camacho-Collados [2017] argue that hypernym classification is

not a realistic scenario. Instead, hypernym-oriented evaluation should be organized

as a Hypernym Discovery (HD) task, i.e. given a word dog, the system should be

able to discover its hypernyms mammal or animal among a large number of other

possible candidates. The author suggests evaluating performance of the models in

this task with information-retrieval evaluation measures such as mean reciprocal

rank (MRR) or mean average precision (MAP).

2.3 Hypernym Discovery Problem

Compared to the above mentioned competitions, RUSSE’2020 is closely related to

the SemEval-2016 Taxonomy Enrichment Task [Jurgens and Pilehvar, 2016b] and
1Eurovoc: http://eurovoc.europa.eu/drupal
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SemEval-2018 Hypernym Discovery Task [Camacho-Collados et al., 2018b]. As in the

mentioned SemEval tasks, in the competition the participants are asked to attach

new words to the existing synsets, to create a ranked list of hypernym candidates,

and the performance is evaluated using MAP and MRR metrics.

Formally, the Hypernym Discovery (HD) task aims to identify all hypernym terms

y1, ..., yk, y ∈ Y for a given hyponym x ∈ X, that make (x, y) a hypernymy relation.

The Hypernym Discovery (HD) problem [Camacho-Collados et al., 2018a] for-

mulates the task as follows: given a word and a text corpus, the task is to identify

hypernyms in the text. However, in this task, the participants are not given any

predefined taxonomy to rely on.

In the Hypernym Discovery task at SemEval 2018 [Camacho-Collados et al.,

2018b], the organizers attempt to improve the quality of evaluation and formulated

the hypernym extraction task as a ranking task. They create a list of hypernym

candidates — these are all unigrams, bigrams, and trigrams that occurred more

than N times (for example, 5 times in the corpus). For each of the new words

and phrases, the participants are asked to rank the hypernym candidates by their

relevance. Moreover, the participants have to find as many hypernyms as possible.

The gold standard list of answers contains hypernyms of all hierarchy levels excluding

only the most abstract concepts such as “entity”. for each input (word or phrase),

hypernyms are extracted at all hierarchy levels of gold-standard resources with the

exclusion of the most abstract concepts such as “entity”.

2.4 Background

This section is devoted to the theoretical background of the tools we apply in our

methods for Taxonomy Enrichment. We discuss the most important technical details,

as they do not make any contribution to the thesis, however, they are still important

for immersing in the topic and understanding the approach. We omit some advanced

derivations and refer the reader to the original papers.

This section is divided in two parts. The first subsection describes machine learn-

ing models and neural network architectures used in the paper: Logistic Regression,
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Feed-Forward Neural Network, BERT. The second subsection, focuses on the history

of embeddings and some technical details on vector representations for texts and

graphs.

2.4.1 Neural Networks

Nowadays, deep neural networks have become a standard tool for natural language

processing. In numerous NLP tasks, such as named-entity recognition (NER),

semantic role labeling (SRL), and POS tagging, the deep learning architecture

surpasses most techniques that involve shallow machine learning models and hand-

crafted features [Young et al., 2018]. We provide a comprehensive overview of deep

learning models and approaches used in the Taxonomy Enrichment task. We start

with the most basic neural network architecture: Feed-Forward Neural Network

(FFNN). Then we provide an overview of the most popular modern architectures

that are used in many state-of-the-art works – Transformers.

Feed-forward neural network

Neural networks first introduced to the field of language modeling were based on

a feed-forward architecture [Bengio et al., 2003]. Schwenk [2012] has shown that

a feed-forward neural network can be used successfully in phrase-based statistical

machine translation, which achieved better performance than baseline statistical

machine learning (SMT) system [Koehn et al., 2007].

A Feed-Forward Neural Network (FFNN) is an artificial neural network in which

the connections between nodes do not form cycles or loops. The information in this

network flows in forward direction: from the input nodes to the output nodes, passing

through hidden nodes. Two types of FFNNs are usually distinguished: Single- and

Multi-Layer Perceptron. They are both illustrated in Figure 2-1.

In a Single-layer Preceptron (SLP) inputs are multiplied by learnable weights as

soon as they enter a network. Then their weighted sum is compared to a threshold

value to produce an output (0/1 or −1/1). SLPs are only capable of operating on

linearly separable data and are often used in simple classification tasks.
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Figure 2-1: Two types of feed-forward neural network.

(a) Single-layer perceptron.
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(b) Multi-layer perceptron.
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Multi-layer Preceptron (MLP) consists of three types of layers: input, output

and one or more hidden layers. Each node in a layer is directly connected to all

other neurons in a next one. The units of these networks have a linear activation

function, which can be interpreted as an abstract representation of the (biological)

neuron’s rate of action potential firing. Hornik et al. [1989] have proven that MLP

with as little as one layer can arbitrarily closely approximate any continuous function.

Moreover, MLP can work with not linearly separate data.

Transformers

RNNs are sequential in nature, which inhibits parallelization. The authors have

addressed this bottleneck in Vaswani et al. [2017b] by introducing a new architecture

called Transformer, which became groundbreaking in the field of NLP. The key idea

of the model is to get rid of recurrence completely and rely solely on a new type

of attention known as self-attention. Self-attention relates distinct positions within

a sequence to compute a representation of it. In comparison to Recurrent Neural

Networks, this mechanism is capable of higher parallelization and can model longer

contexts because each token attends to all the tokens in the input sequence. As a

result, Transformers can be trained comparatively faster on larger amounts of data.

Transformers have classic encoder-decoder architecture. It is illustrated in Figure

2-2. The encoder consists of stacked identical two-part layers. The first part is a

multi-head attention mechanism, the second – fully connected feed-forward network.

Moreover, each block contains a residual connection. The decoder is composed of
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Figure 2-2: Encoder-decoder architecture of transformer model.
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stacked identical three-part layers. The additional sub-layer is masked multi-head

attention, which attends only to previously generated parts of the output sequence

and masks subsequent positions. This is done to ensure that the new prediction is

based only on known output that was predicted before it. In Vaswani et al. [2017b]

encoder and decoder contain 6 multi-part layers each. In following paragraphs we

will look into detail of each encoder/decoder “building block”.

Scaled dot-product attention is an attention sub-type invented by Vaswani et al.

[2017b]. It is illustrated in Figure 2-3a. The encoder takes embeddings matrix X as

input and multiplies it by learnable weight matrices WQ,WK ,W V to get Q (query),

K (key), and V (value) matrices. This triplet is an input to scaled dot-product

attention. Queries and keys have dimension dk, and values have dimension dv. The

square root of the former is used as a scaling factor in order to counteract vanishing

gradient problem that might appear while applying softmax function on matrices
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Figure 2-3: The transformer building blocks.
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with large dk values. The output of the scaled dot-product attention is computed as

follows:

| Attention(Q,K, V ) =| softmax
(
QKT

√
dk

)
V. (2.4)

Furthermore, the authors propose repeating the same projection and passing

through scaled dot-product attention. This mechanism is called multi-head attention.

It is illustrated in Figure 2-3b. The idea is to simultaneously calculate several

attentions for different representation subspaces. Each attention head is represented

by a set of three weight matrices
(
WQ
i ,W

K
i ,W

V
i

)
, i ∈ h. This means that the layer

is able to attend to relevant tokens at different definitions of relevance. In Vaswani

et al. [2017b] following formula is given:

|MultiHead(Q,K, V ) =| Concat (| head1, . . . , head h)WO

where head =| Attention
(
QWQ

i , KW
K
i , V W

V
i

) (2.5)

Since transformers have discarded recurrence from the architecture, the model

processes all tokens in a sentence simultaneously and has no way of knowing their

order. Authors of Vaswani et al. [2017b] have proposed a way of injecting back this

knowledge into the model by summing positional encoding with the input embeddings.
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The authors propose the following formula:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

)
,

(2.6)

where pos is the position in an input sequence and i is the dimension of the output

embedding space in range dmodel. These formulas map each position to a vector

of alternating sine and cosine functions. The proposed method has a number of

advantages:

• the values of both sine and cosine functions are bounded, hence the encoding

can be generalized to longer sequences;

• each time-step gets a unique encoding;

• since the distance between two positions is consistent, the positional encoding

provides a way of measuring similarity between words.

Nowadays, the vast majority of NLP solutions involve transformers. A variety of

architectures has been proposed since: XLNet [Yang et al., 2019], RoBERTa [Liu

et al., 2019], ALBERT [Lan et al., 2020], BART [Lewis et al., 2020], GPT Brown

et al. [2020], etc. In our research we use the classical Bidirectional Transformer

architecture called BERT [Devlin et al., 2019]. The detailed overview of BERT can

be found in 2.4.1.

Bidirectional Encoder Representations from Transformers (BERT)

Peters et al. [2018] gave rise to contextualized embeddings with their model called

Embeddings from Language Model (ELMo). Although it uses bidirectional language

models, the final concatenation of representations results in limited ability to leverage

both right and left contexts simultaneously. This constraint was alleviated in Devlin

et al. [2019]. The authors have proposed Bidirectional Encoder Representations

from Transformers (BERT). The major advantage of BERT is that after pre-training

phase it can be easily fine-tuned using labeled data for a variety of downstream tasks.

The overall pre-training and fine-tuning procedures are illustrated in Figure 2-4.
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Figure 2-4: Pre-training and fine-tuning procedures for BERT (image source: Devlin
et al. [2019]).

BERT input and output are represented using WordPiece embeddings Wu et al.

[2016]. Intuitively, this approach is somehow similar to dividing words into n-grams.

However, WordPiece starts with initializing the vocabulary as all the characters

present in the data and gradually learns a given number of merge rules for symbols.

After separating a word into wordpieces each token is represented by its vocabulary id.

Moreover, each sequence starts with special classification token [CLS] and different

sentences are separated by special [SEP] token.

BERT is based on transformer architecture. It is trained successively on two

unsupervised tasks: Masked Language Modelling (MLM) and Next Sentence Pre-

diction (NSP). The MLM task involves masking random tokens in the input, and

the goal of the model is predicting them. Intuitively, this task allows training of

deep bidirectional representations that are aware of the whole sentence. Specifically,

the id of a masked token is calculated by feeding the final hidden representation

of the token into a softmax over the vocabulary. The NSP task is used to improve

BERT’s performance on tasks that are based on understating of relationships between

sentences (e.g., question answering). In this task, the objective is to predict a binary

label (IsNext/NotNext) whether two sentences are successive. For this prediction

only the hidden representation of [CLS] is used. The authors have performed sepa-

rate experiments which proved that both MLM and NSP training is important and

absence of one of them hurts performance significantly.

When BERT was published, it achieved state-of-the-art performance on eleven
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natural language understanding tasks. Pre-trained on massive amounts of unlabeled

data configurations of BERT were made available for public. It can be used both as

is to create text embeddings or finetuned with less resources on smaller datasets for

a downstream task. BERT has become a common baseline in NLP experiments in

just over a year, and it has prompted multiple research examining the model and

proposing various enhancements Rogers et al. [2020].

2.4.2 Word Vector Representations for Taxonomies

Approaches using word vector representations are the most popular choice for all

tasks related to taxonomies. When solving the Hypernym Discovery problem in

SemEval-2018 Task 9 [Camacho-Collados et al., 2018a] most of the participants use

word embeddings. For instance, Bernier-Colborne and Barrière [2018] predict the

likelihood of the relationship between an input word and a candidate using word2vec

embeddings. Berend et al. [2018] use Word2vec vectors as features of a Logistic

Regression classifier. Maldonado and Klubička [2018] simply consider the top-10

closest associates from the Skip-gram word2vec model as hypernym candidates.

Pre-trained GloVe embeddings [Pennington et al., 2014] are also used to initialize

embeddings for an LSTM-based Hypernymy Detection model [Shwartz et al., 2016].

Participants also solve the SemEval-2016 Task 13 on Taxonomy Induction with

word embeddings [Pocostales, 2016]: they compute the vector offset as the average

offset of all the pairs generated and exploit it to predict hypernyms for the new data.

Afterwards, in Aly et al. [2019] the authors apply word2vec embeddings similarity to

improve the approaches of the SemEval-2016 Task 13 participants.

The vast majority of participants of SemEval-2016 task 14 [Jurgens and Pilehvar,

2016a] and RUSSE’2020 [Nikishina et al., 2020a] also apply word embeddings to

find the correct hypernyms in the existing taxonomy. For instance, the participants

compute a definition vector for the input word by comparing it with the definition

vectors of the candidates from the wordnet using cosine similarity [Tanev and Rotondi,

2016]. Another option is to train word2vec embeddings from scratch and cast the

task to the classification problem [Kunilovskaya et al., 2020b]. Some participants

compare the approach based on the XLM-R model [Conneau et al., 2020] with the
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word2vec “hypernyms of co-hyponyms” method [Arefyev et al., 2020]. It considers

nearest neighbours as co-hyponyms and takes their hypernyms as candidate synsets.

Summing up, the usage of distributed word vector representations is a simple

yet efficient approach to taxonomy-related tasks and should be considered a strong

baseline [Camacho-Collados et al., 2018a, Nikishina et al., 2020a]. In the following

paragraphs, we describe three word vector representation models that we further use

in our experiments.

Word2vec

The main goal of Mikolov et al. [2013b] is the development of simple and fast

architectures for learning word embeddings. The authors propose two models:

• Continuous Bag-of-Words (CBOW) model: predicts the target word given its

context;

• Skip-gram model: predicts the context given the target word.

Both models operate on word-context pairs (w,C), where w – target word, C =

{ct−k, . . . , ct−1, ct+1, . . . , ct+k} — set of all w’s context words. Figure 2-5 depicts

the difference between the architectures. The CBOW takes 2k (size of the context

window) 1× V one-hot vectors (V — size of the vocabulary) and produces one V × 1

vector. The skip-gram performs a reverse process. The weights between input and

hidden layers is a V ×N matrix W (N — dimension of embeddings), between hidden

and output layers — N × V matrix W ′. Then the posterior multinomial distribution

of words can be obtained using softmax:

p (wO | wI) =
exp

(
v′wO

>vwI

)∑V
j=1 exp

(
v′j
>vwI

) , (2.7)

where wI — input word, wO — target word, vw is a vector representation of word w

from rows of W and v′w is a vector representation of word from columns of W ′. After

the training process, the matrix W is repurposed as a source of word embeddings.

The denominator of the Equation 2.7 contains sum over all vocabulary, which

is extremely inefficient. Initially, Mikolov et al. [2013a] proposed using hierarchical
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Figure 2-5: word2vec architectures.
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softmax for computation optimization. Subsequently, they came up with a simpler

solution — negative sampling. The idea is to minimize similarity of words in different

contexts over a handful of words, not the whole dictionary. For a pair of two

words (w, c) the probability that they came from training data is p(D = 1|w, c).

Consequently, the opposite probability would be p(D = 0|w, c) = 1− p(D = 1|w, c).

Denote model’s trainable weights as θ and data-points out of training data as D′.

Then, the optimization function is:

arg max
θ

∏
(w,c)∈D

p(D = 1 | w, c; θ)
∏

(w,c)∈D′

p(D = 0 | w, c; θ) (2.8)

Converting products to sums of logarithms and substituting the probability coming

not from training data yields:

arg max
θ

∑
(w,c)∈D

log p(D = 1 | w, c; θ) +
∑

(w,c)∈D′

log(1− p(D = 1 | w, c; θ)) (2.9)

The probability p(D = 1|w, c; θ) can be computed using sigmoid function:

p(D = 1 | w, c; θ) = σ (vc · vw) =
1

1 + e−vc·vw
(2.10)
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Furthermore, the Equation 2.9 takes form:

arg max
θ

∑
(w,c)∈D

log σ (vc · vw) +
∑

(w,c)∈D′

log (σ (−vc · vw)) (2.11)

Rewriting the Equation 2.11 for one pair (w, c) ∈ D and k pairs (w, cj) ∈ D′:

log σ
(
v′wO

TvwI

)
+

k∑
i=1

Ewi∼Pn(w)

[
log σ

(
−v′wi

TvwI

)]
, (2.12)

where Pn(w) – noise distribution from which negative samples are drawn. Maximiza-

tion of the Equation 2.12 leads to increasing similarity between words in the same

context and decreasing similarity between words from different contexts. Since the

computation is performed only over k negative samples, the training process is much

faster as opposed to summing the whole vocabulary.

In practice, Skip-gram is more suitable for small monolingual datasets, while

CBOW is faster and more convenient for larger datasets Mikolov et al. [2013c].

According to Mikolov et al. [2013a] word2vec achieved much higher semantic and

syntactic accuracy than other neural network language models such as Collobert

and Weston [2008] and Turian et al. [2010]. Moreover, Mikolov et al. [2013a] provide

evidence that learning high-quality word vectors from a 1.6 billion-word data set

takes CBOW less than a day.

FastText

Word2vec has an important drawback – its vocabulary is fixed. Moreover, many

languages contain rare word-forms that are often underrepresented in datasets. This

problem is called word sparsity and affects word2vec representations negatively, too.

These issues were addressed by Bojanowski et al. [2017]. Their algorithm, called

fastText, is basically an extension of skip-gram with negative sampling described

in Mikolov et al. [2013d]. The authors argue that the internal structure of words

contains a lot of useful information, and in order to account for that they propose

learning n-grams representations. In this setting, each word is represented by a set of

character n-grams. For example, with n = 3 the word apple will become {<ap, app,
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ppl, ple, le>, <apple>}, where <> are special symbols that are used to distinguish

prefixes and suffixes from whole words (in this example app 6= <app>). Note, that

the word itself is included in the set, too. In practice, for each word, all n-grams of

lengths from 3 to 6 are extracted. Furthermore, the similarity between two word

representations can no longer be expressed by a simple dot-product. Instead, the

new measure is proposed:

s(w, c) =
∑
g∈Gw

z>g vc, (2.13)

where (w, c) – word-context pair, Gw – set of all w’s n-grams, zg – vector representation

of an n-gram g, vc – vector representation of a context word. Thus, both whole

words’ and n-grams’ representations are learned during training. This method allows

building semantic similarity between words through shared n-grams. Moreover,

out-of-vocabulary (OOV) words can be represented as an average of n-grams.

The authors report significant improvements over baselines that do not take

into account sub-word information. Overall, the method is simple, fast and does

not require any pre-processing. Moreover, fastText has gained a lot of popularity

because the open-source library was released among pre-trained embeddings for 157

languages2.

2.4.3 Meta-Embedding Approaches to Word Representation

Vector representations can be learned on various datasets and using various models.

It has been shown that combining word embeddings is beneficial for NLP tasks, e.g.

dependency parsing [Bansal et al., 2014], and in the medical domain [Chowdhury

et al., 2019].

Coates and Bollegala [2018] show that simple vector combining approaches, such

as concatenation or averaging, can significantly improve the overall performance for

several tasks. For instance, Singular Value Decomposition (SVD) demonstrates good

results with the ability to control the final dimension of vectors [Yin and Schütze,

2016]. Autoencoders [Bollegala and Bao, 2018] further promote the idea of creating

meta-embeddings. The authors propose several algorithms for combining various
2https://fasttext.cc/
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word vectors into one vector by encoding initial vectors into some meta-embedding

space and then decoding backwards.

As for the CAEME approach, all word vectors are encoded into meta-vectors

and then concatenated. Then, the decoding step uses a concatenated representation

to predict the original vector representations. The AAEME approach is similar to

CAEME, except that each vector is mapped to a fixed-size vector and all encoded

representations are averaged, but not concatenated. An obvious advantage of this

approach is the ability to control the dimension of meta-embeddings.

For any AAEME approach, they experiment with different loss functions: MSE

loss, KL-divergence loss, cosine distance loss and also their combinations. In Neill

and Bollegala [2018] the authors investigated the performance of the autoencoders

depending on the loss function. They discover that there is no evident winner across

tasks and that different loss functions are defined by different tasks.

Meta-embeddings are already used in such machine learning tasks as dependency

parsing [Bansal et al., 2014], classification in healthcare [Chowdhury et al., 2019],

named-entity recognition [Winata et al., 2019, Neill and Bollegala, 2018], sentiment

analysis [Neill and Bollegala, 2018], word similarity and analogy tasks [Coates and

Bollegala, 2018, Bollegala and Bao, 2018, Yin and Schütze, 2016]. To the best of our

knowledge, meta-embeddings have not been applied to the Taxonomy Enrichment

task, especially for the fusion of texts and graph embeddings.

2.4.4 Graph-based Representations for Taxonomies

Taxonomies can be represented as graphs and there exist various approaches to

learning graph-based representations. They are thoroughly compared in Makarov

et al. [2021] on the link prediction task, which is closely related to Taxonomy

Enrichment. The paper also demonstrates that the combination of text and graph

embeddings gives a boost to the link prediction task. Most of those methods

listed in Makarov et al. [2021] have also been tested on tasks related to Taxonomy

Enrichment.

For instance, node2vec embeddings [Grover and Leskovec, 2016] are used for

Taxonomy Induction among other network embeddings [Liu et al., 2018]. In Aly
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et al. [2019], the authors perform the same task. They use hyperbolic Poincaré

embeddings to enhance automatically created taxonomies. The SemEval-2016 subtask

of reattaching query words to the taxonomy is quite similar to Taxonomy Enrichment

which we perform. However, the datasets of the SemEval-2016 Task 13 are restricted

to specific domains, which leaves an open question of the efficiency of Poincaré

embeddings for the general domain and larger datasets. Moreover, Aly et al. [2019]

use Hearst Patterns to discover hyponym-hypernym relationships. This technique

operates on words, and cannot be transferred to word-synset relations without extra

manipulation.

As for the Knowledge Graph Construction task, which is a more general task in

relation to the Taxonomy Induction, the vast majority of approaches also use word

embeddings as node representations. Several approaches like Luan et al. [2018] and

apply ELMO embeddings [Peters et al., 2018] to predict entities and their relations

to the Knowledge Graph. Other approaches [Han et al., 2020] utilize a combination

of ELMO, Poincaré and node2vec embeddings to enhance the Knowledge Graph

build upon Wikipedia.

Graph convolutional networks (GCNs) [Kipf and Welling, 2016a] as well as graph

autoencoders [Kipf and Welling, 2016b] are mostly applied to the link prediction task

on large knowledge bases. For example, in Rossi et al. [2020] the authors present

an expanded review of the field and compare a wide variety of existing approaches.

Graph embeddings are also often used for other taxonomy-related tasks, e.g. entity

linking [Pujary et al., 2020]. As for the Taxonomy Enrichment task, we are only aware

of a recent approach TaxoExpan [Shen et al., 2020] which applies position-enhanced

graph neural networks (GCN [Kipf and Welling, 2017] and GAT [Velickovic et al.,

2018]) that we also evaluate on our datasets3.

Graph representation learning methods can be divided into two categories: non-

inductive and inductive. Non-inductive (or transductive) approaches require the

presence of all nodes in the graph during training. Inductive frameworks allow to

generalize to work with the new input data. In the following paragraphs we briefly
3The results achieved on our datasets are significantly lower than the baseline, probably because

of the incorrect model launching.
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outline the main ideas of each graph-based representation model used in our research.

Non-inductive Node Representation Models

In this paragraph we review six non-inductive node representation models: DeepWalk

[Perozzi et al., 2014], TADW [Yang et al., 2015], node2vec [Grover and Leskovec,

2016], Poincaré embeddings [Nickel and Kiela, 2017], GNN [Scarselli et al., 2009]

and GCN [Kipf and Welling, 2017]. The first three methods explore the same idea

of using random walks for learning node representation. Poincaré method, unlike

all others, models tree data in hyperbolic space. GNN and its extension, GCN, are

applying deep learning framework for graph embedding learning.

Perozzi et al. [2014] are the first to apply Skip-Gram method towards learning

graph node representations. Their method, DeepWalk, uses truncated random walks

to acquire information about the local neighbourhood. This information is then

utilized to learn latent representations by treating walks as the equivalent of sentences.

Given an undirected graph, a random walk is a stochastic process that starts at a

vertex u and then randomly chooses which next vertex from u’s neighbourhood to

visit. Given a graph G = (V,E), where V – set of all vertices and E – set of all edges,

let NS(u) ⊂ V be a neighborhood of node u generated with a neighborhood sampling

strategy S. NS(u) can also be viewed as a multiset of nodes (that can occur several

times) that were visited during random walks that started at u. Then the embedding

optimization is performed with the goal of maximization of the likelihood of random

walk co-occurrences. Thus, the loss for embedding zu of node u and embedding zv

of node v in NS(u) is:

L =
∑
u∈V

∑
v∈NS(u)

− log(Pr(v|zu)), (2.14)

where Pr(v|zu) is parameterized with softmax:

Pr(v|zu) =
exp(zu

ᵀzv)

exp(
∑

n∈V zuᵀzn)
, (2.15)
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which results in updated Equation 2.14:

L =
∑
u∈V

∑
v∈NS(u)

− log(
exp(zu

ᵀzv)

exp(
∑

n∈V zuᵀzn)
). (2.16)

Optimization of Equation 2.16 is computationally expensive and gives O(|V 2|) com-

plexity. Same as in word2vec Mikolov et al. [2013a], DeepWalk uses negative sampling

on order to speed up computation. The new formulation implies normalizing only

against k random “negative samples” instead of all vertices in a graph.

Yang et al. [2015] provides a matrix-factorization view of DeepWalk which inspires

them to propose a Text-Associated Deep Walk (TADW) algorithm. Denote a sequence

of nodes generated by random walks as S =
{
v1, v2, . . . , v|S|

}
. Then for a central

node vi a context with window-size t are nodes v ∈ {vi−t, . . . , vi+t} \vi. Let rvi and

cvj be representation vectors of the center node vi and its context node vj. Thus,

each node gets two representations: rv when the node is central and cv when the

node is inside a context. Suppose for a graph G = (V,C) random walks produce a

vertex-context set D, that consists of pairs (v, c). Denote VC as the set of context

vertices. DeepWalk generates an embedding vector rv ∈ Rk for a node v. Similarly,

for a context node v ∈ VC a context embedding is generated: cv ∈ Rk. In the

majority of cases V = VC . Authors of Yang et al. [2015] prove that DeepWalk

performs following factorization:

M = W TH, (2.17)

where ith column of matrix W ∈ Rk×|V | is vector rvi , and jth column of matrix

H ∈ Rk×|VC | is vector cvj . Each entry in matrix M ∈ R|VC |×|VC | can be viewed as a

logarithm of the average probability that random walk from node i arrives at a node

j in t steps. Furthermore, the proposed update has a following form:

M = W THT, (2.18)

where T ∈ Rft×|V | – text feature matrix, and matrix H has changed dimensions to

Rk×ft . Thus, the new factorization form allows fusion of textual information into
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Figure 2-6: Illustration of random walk in node2vec.

the learning of node representations. The authors provide empirical evidence that

their method outperforms both classic DeepWalk as well as direct concatenation of

DeepWalk generated network representations with text features.

The node2vec algorithm was suggested by Grover and Leskovec [2016]. It can be

viewed as an update of DeepWalk with different and less constrained random walk

sampling for neighbourhood generation. The notion of network neighbourhood in

node2vec is flexible and is defined as a combination of two sampling strategies:

• Breadth-first Sampling (BFS): neighbourhood consists only of immediate neigh-

bours of the source node;

• Depth-first Sampling (DFS): neighbourhood consists of a sequential chain of

neighbours that is spread as far as possible from the source node along the

graph.

The neighbourhoods are generated using fixed-length biased random walks along the

graph. They are parameterized by:

• Return parameter p, that controls likelihood of instantly returning back to the

previous node;

• In-out parameter q, that can be seen as a “ratio” between BFS and DFS and

controls moving inwards or outwards.

For example, refer to Figure 2-6. A random walk has transitioned from the node s1

to the node w. From there it can go back to s1 with unnormalized probability 1/p,

go to s2 and stay at the same distance from s1, or go to s3 or s4 with unnormalized
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probabilities 1/q. The lower value of p makes the strategy more BFS-like, the lower

value of q – more DFS-like. Thus, the overall steps performed by node2vec algorithm

are:

1. Pre-compute all the transition probabilities;

2. For each node u simulate r length l random walks;

3. Optimize the objective with Stochastic Gradient Descent.

The ability to model complex data of embeddings in Euclidean space is bounded by

their dimensionality. Thus, for large graph-structured data, representation capacity

must be increased. This issue is addressed in Nickel and Kiela [2017]. They focus

on large graph-structured datasets with hierarchical structure. Authors propose

computing embeddings in hyperbolic space, specifically using the Poincaré ball model.

The hyperbolic space naturally fits for representation of a tree (which can even be

though of as a “discreet hyperbolic space”). Leaves that are the furthest from the

root (l levels below it) are placed on a surface of a sphere in hyperbolic space with

radius proportional to the number of levels, while everything that is less than l levels

under the root is placed within the sphere and the root itself – in the center. The

distance from the center to nodes at different levels expands exponentially, and as a

result, in hyperbolic space, we can fit an arbitrary number of levels with substantially

fewer dimensions than in Euclidean space. The optimized loss function is

L(Θ) =
∑

(u,v)∈D

log
e−d(u,v)∑

v′∈N (u) e
−d(u,v′)

, (2.19)

where Θ – set of embeddings, u and v – two nodes, D – set of observed hierarchical

relations (edges), N (u) = {v | (u, v) /∈ D} ∪ {u} – set of negative examples (random

nodes that do not have relationships with u). Also, d(u,v) is a Poincaré distance

defined as:

d(u,v) =| arcosh
(

1 + 2
‖u− v‖2

(1− ‖u‖2) (1− ‖v‖2)

)
. (2.20)

The Equation 2.19 is optimized via Riemann Gradient Descent. In Nickel and

Kiela [2017] empirical evidence was provided that Poincaré embeddings outperform
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Euclidean embeddings at reconstruction and link prediction on network data. The

method has shown good results for hyponymy-hypernymy prediction on WordNet.

From a deep learning perspective, all methods described above are considered

“shallow”. There are no hidden layers and the output vectors are optimized directly.

Furthermore, different class of graph representation learning approaches has emerged

– Graph Neural Network (GNN). In recent years, many variations of GNNs have been

developed, one of them – Graph Convolutional Network (GCN) Kipf and Welling

[2017]. The GCN takes two matrices as an input:

• X – N ×D feature description matrix (N – number of nodes in a graph, D –

size of input feature vectors);

• A – graph adjacency matrix.

As an output GCN produces a N×F feature description matrix Z (F – size of output

feature vectors). Furthermore, every layer (total number – L) of neural network can

be represented as one of following:

H0 = X

H l+1 = f(H l, A)

HL = Z

(2.21)

Kipf and Welling [2017] propose following layer-wise propagation rule:

f
(
H l, A

)
= σ

(
D̂−

1
2 ÂD̂−

1
2H lW l

)
, (2.22)

where σ – non-linear activation function (e.g., ReLU), Â = A + I (I – identity

matrix), D̂ – diagonal node degree matrix of Â, W l – l-th neural network layer

weight matrix. The addition of an identity matrix to the adjacency matrix is done

to sum a feature vector of a node with feature vectors of its neighbourhood during

multiplication, essentially enforcing self-loops in the graph. The D̂−
1
2 ÂD̂−

1
2 part

represents a symmetric normalization of Â.
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Figure 2-7: Graph-BERT model architecture (image source: Zhang et al. [2020]).

Inductive Node Representation Models

In this subsection we are going to review two inductive node representation models:

Graph Attention Network (GAT) Velickovic et al. [2018] and Graph-based BERT

(Graph-BERT) Zhang et al. [2020]. They all are based on deep learning approaches,

and each consecutive method can be seen as an evolution of the previous one.

Inspired Vaswani et al. [2017b] a further advancement of GNN emerged – Graph

Attention Network (GAT) Velickovic et al. [2018]. The advantages of this new

approach are: computational efficiency due to parallelization across node-neighbour

pairs, possibility of application to graph nodes with different degrees and generaliza-

tion towards unseen nodes. An input a GAT layer is a set of N graph node features

h =
{
~h1,~h2, . . . ,~hN

}
,~hi ∈ RF , where F is a size of each node’s feature vector. The

layer outputs a set of new feature vectors h′ =
{
~h′1, ~h′2, . . . , ~h′N

}
, ~h′i ∈ RF ′ , where

F ′ indicates a potential change of cardinality. Similar to the attention mechanism,

an alignment model eij is computed. However, GATs use masked self-attention,

which means that the coefficients are computed between a pair of feature vectors

from the same layer and the vectors have to represent first-order neighbouring nodes

in a graph. With such mechanism, each edge is being assigned a different importance

attention coefficient.

Furthermore, recent advancement of language representation models motivated

other architectures that leverage same power. One of the most popular language

representation models, Bidirectional Encoder Representations from Transformers
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(BERT) Devlin et al. [2019]. Utilization of context and attention mechanism in

transformers led Zhang et al. [2020] to introduction of a new GNN model – Graph-

based BERT (Graph-BERT) that is based on the attention mechanism without any

graph convolution or aggregation operators. The Figure 2-7 shows the architecture

of Graph-BERT. The original graph is sampled into linkless subgraphs that represent

nodes’ local neighbourhoods. Each subgraph in a batch consists of a target node and

its learning context. Using the extended graph-transformer layers Graph-BERT can

effectively learn the representations of the target node. The subgraphs are sampled

using top-k intimacy sampling approach, which is based on the graph intimacy matrix

S ∈ R|V|×|V|. In Zhang et al. [2020] matrix S is defined based on pagerank algorithm

Page et al. [1998] and is defined as such:

S = α · (I− (1− α) ·A)−1, (2.23)

where α ∈ [0, 1] – factor that is usually set at 0.15, A = AD−1 is a column-normalized

adjacency matrix, A – input graph adjacency matrix, and D – its corresponding

diagonal matrix (where D(i, i) =
∑

j A(i, j)). Furthermore, four types of feature

vector embeddings are computed: (1) raw feature vector embeddings, (2) Weisfeiler-

Lehman (WL) Niepert et al. [2016] absolute role embeddings, (3) intimacy based

relative positional embeddings and (4) hop based relative distance embeddings. The

first type embeds node’s raw feature vector into a shared vector space with its

raw features (images, texts, etc.). The second type embeddings, can capture the

global node role information in the representations. The third, extracts the local

information in the subgraph. The last type of embedding is somewhat between the

absolute role embedding (that capture global information) and intimacy based relative

positional embedding (that capture local information). Afterward, all embeddings

are aggregated and passed to the transformer-based encoder.

Graph-BERT can be pre-trained with two tasks: node attribute reconstruction,

and graph structure recovery. In our work we explore both options and compare

them via intrinsic evaluation (see 7.4.1). The node attribute reconstruction task

aims at capturing the node attribute information in the learned representations. The
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graph structure recovery task focuses more on the graph connection information.

2.5 Conclusion

In this section we have reviewed the evolution of Taxonomy Enrichment task from

its first formulation [Jurgens and Pilehvar, 2016a] to the recent research [Shen et al.,

2020, Cho et al., 2020]. It is clear that the trend has shifted from sole application

of distributional word embeddings to incorporation of graph representations. The

intuition behind this shift is clear, as the WordNet taxonomy itself can be viewed as

a graph which structure might become a source of valuable information. Moreover, it

is noticeable that an increasing effort is being put towards leveraging deep language

models’ linguistic capabilities and knowledge of lexical semantic relations in a context

of hypo-hypernym relationships.

To the best of our knowledge, our work is the first computational study of Tax-

onomy Enrichment task which aggregates and considers different existing and new

approaches for Taxonomy Enrichment. We compare graph- and word-based repre-

sentations computed from the synsets and hypo-hypernym relations for hypernym

prediction demonstrating state-of-the-art results.

After the discussion of the current status of the field, we move on to the dataset

creation, duscussed in Chapter 3.
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Chapter 3

Diachronichal Dataset Construction

This chapter presents the datasets generated from the existing versions of the English

WordNet and RuWordNet for the Russian language. However, it should be mentioned

that query words for the RUSSE’2020 test set were selected manually from a larger

list of new words to be added to the current version of WordNet.

The important part of our study is the observation that one can learn from the

history of the development of lexical resources through time. More specifically, we

make use of the various historical snapshots (versions) of WordNet lexical graphs

and set up a task for their automatic completion assuming the manual update of

the ground truth. This diachronic analysis – similar to diachronic lexical analysis

of word meanings – is used to build two datasets in our study: one for English and

another one for Russian, based respectively on Princeton WordNet [Miller, 1995]

and RuWordNet taxonomies. It is important to mention that by using the word

“diachronic” we do not imply lexical diachrony, e.g., semantic shifts of words over

time [Schlechtweg et al., 2020], but the temporal extension of Wordnet stored in its

versions. Each dataset consists of a taxonomy and a set of novel words to be added

to this resource. The statistics are provided in Table 3.1.

3.1 English Dataset

As gold standard hypernyms, we use not only the immediate hypernyms of each

lemma but also the second-order hypernyms: hypernyms of the hypernyms. We
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Table 3.1: Statistics of two diachronic WordNet datasets used in this study.

Dataset Nouns Verbs

WordNet1.6 - WordNet3.0 17 043 755
WordNet1.7 - WordNet3.0 6 161 362
WordNet2.0 - WordNet3.0 2 620 193

RuWordNet1.0 - RuWordNet2.0 14 660 2 154
RUSSE’2020 2 288 525

include them in order to make the evaluation less restricted. According to our

empirical observations, the task of automatically identifying the exact hypernym

might be too challenging, and finding the region where a word belongs (“parents”

and “grandparents”) can already be considered a success.

To compile the dataset, we choose two versions of WordNet and then select words

which appear only in a newer version. For each word, we get its hypernyms from

the newer WordNet version and consider them as gold standard hypernyms. We

add words to the dataset if only their hypernyms appear in both versions. We do

not consider adjectives and adverbs, because they often introduce abstract concepts

and are difficult to interpret by context. Besides, the taxonomies for adjectives and

adverbs are more sparse than those for nouns and verbs. Therefore, it makes the

task more difficult.

In order to find the most suitable pairs of releases, we compute WordNet statistics

(see Table 3.2). New words demonstrate the difference between the current and the

previous WordNet version. For example, it shows that the dataset generated by

“subtraction” of WordNet 2.1 from WordNet 3.0 would be too small, they differ by

678 nouns and 33 verbs. Therefore, we create several datasets by skipping one or

more WordNet versions. The statistics for the datasets we selected for our study are

provided in Table 3.1. In order to understand the relationship between the datasets

and the wordnets, you may refer to Figure 3-1.

As gold standard hypernyms, we use not only the immediate hypernyms of each

lemma (an initial form of a word — infinitive for a verb, single number and the

nominative case for a noun, etc.) but also the second-order hypernyms: hypernyms

of the hypernyms. We include them in order to make the evaluation less restricted.
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Figure 3-1: The display of relationships between different WordNet versions and
the created datasets. WordNet-2.1 is not depicted, as it is not used for the dataset
compilation.
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Table 3.2: Statistics of the English WordNet taxonomies used in this study.

Taxonomy Synsets Lemmas New words
Nouns Verbs Nouns Verbs Nouns Verbs

WordNet 1.6 66 025 12 127 94 474 10 319 - -
WordNet 1.7 75 804 13 214 109 195 11 088 11 551 401
WordNet 2.0 79 689 13 508 114 648 11 306 4 036 182
WordNet 2.1 81 426 13 650 117 097 11 488 2 023 158
WordNet 3.0 82 115 13 767 117 798 11 529 678 33

According to our empirical observations, the task of automatically identifying the

exact hypernym might be too challenging and finding the “region” where a word

belongs (“parents” and “grandparents”) can already be considered a success.

This method of dataset construction does not use any language-specific or

database-specific features, so it could be transferred to other wordnets or taxonomies

with timestamped releases.

All datasets1 created for this research and the code2 for their construction are

publicly available.

3.2 Russian Datasets

Our method of dataset construction does not use any language-specific or database-

specific features. We show how it can be transferred to other wordnets or taxonomies
1https://zenodo.org/record/4279821
2https://github.com/skoltech-nlp/diachronic-wordnets
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Table 3.3: Examples of Russian nouns with translation mapped to English WordNet.

Word Translation RuWordNet hypernyms RuWordNet hypernym names WordNet hypernyms

абсентеизм absenteeism
["147309-n",
"117765-n",
"117017-n"]

[’неучастие, отказ от участия’,
’уклониться (отказаться)’,
’отказаться, не согласиться’]

["non-engagement.n.01",
"evasion.n.03",
"rejection.n.01"]

кибертерроризм cyber terrorism
["7334-n",
"4590-n",
"2400-n"]

[’преступление против
общественной безопасности’,
’компьютерное преступление’,

’терроризм’]

[null,
"cybercrime.n.01",
"terrorism.n.01"]

метропоезд subway train ["141975-n",
"7133-n"]

[’электрическое
транспортное средство’,

’электропоезд’]

[null,
null]

with timestamped releases for Russian.

In order to create an analogous version of the English dataset for Russian, we

use the RuWordNet taxonomy [Loukachevitch et al., 2016]. RuWordNet comprises

synsets — sets of synonyms expressing a particular concept. A synset consists of one

or more senses — words or multi-word constructions in the initial form. Therefore, we

use the current version of RuWordNet-1.0 and the extended version of RuWordNet

— RuWordNet-2.0 which has not been published yet to compile the dataset (see

Table 3.1). We select words which appear only in a newer version and consider their

hypernyms as gold standard hypernyms. Likewise in English dataset construction

pipeline, we add “orphans” to the dataset, if only their hypernyms appear in both

versions. As a result, the dataset comprises 14.660 nouns and 2.154 verbs, which

is comparable to the WordNet1.6-3.0 dataset size. The relationship between the

Russian datasets and the RuWordNets version are displayed in Figure 3-2.

Figure 3-2: The display of relationships between different RuWordNet versions,
RUSSE’2020 and the created dataset

RUSSE'2020

RuWordNet 1.0-2.0

RUSSE'2020

RuWordNet 2.0

RuWordNet 1.0 RuWordNet 2.0

RuWordNet 1.0
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RUSSE’2020 Dataset

The RUSSE’2020 dataset was created for the Dialogue Evaluation shared task

[Nikishina et al., 2020a] and can be viewed as a restricted subset of the Russian

dataset we present above. We split this data into two parts: public test set (763

nouns and 175 verbs) and private test set (1 525 nouns and 350 verbs).

The words included in the RUSSE’2020 dataset are collected in the following way.

Given words (nouns and verbs) from the dataset RuWordNet1.0-2.0, we select only

single tokens. Then we filter the obtained list, excluding the following words:

• all three-symbol words and the majority of four-symbol words;

• diminutive word forms and feminine gender-specific job titles;

• words which are derived from words which are included in the published

RuWordNet;

• words denoting inhabitants of cities and countries;

• geographic and personal names;

• compound words that contain their hypernym as a substring.

If one of the synsets selected for RUSSE’2020 from RuWordNet-2.0 belongs to

hypernym which is also not yet presented in RuWordNet-1.0, we set its closest

published “ancestor” as a gold hypernym.

The training dataset (words paired with hypernyms) for the We also create

a training data set for the participants of the RUSSE’2020 competition shared

task using RuWordNet1.0 data. The goal is to keep the published RuWordNet-1.0

taxonomy in the dataset format annotated analogously to the test data. To create

the training set, we sample all leaves (synsets with no hyponyms) of depth equal to

or more than 5. Overall, it comprises 12 393 nouns and 2 102 verbs.

3.2.1 WordNet ILI Mapping (ru-en)

In order to connect wordnets in different languages, the ILI is used [Bond et al., 2016].

This mapping is designed to make possible coordination between wordnet projects.
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For the Russian test sets, we also provide a mapping from RuWordNet to WordNet3.

For each hypernym synset of each query word, we present the corresponding WordNet

synset index. Table 3.3 demonstrates several examples of this kind of mapping. As

we can see, datasets for the Russian nouns and verbs are extended with an additional

column called “WordNet synsets”, where the corresponding WordNet3.0 synsets are

listed in accordance with the Russian synset list.

Table 3.4: Coverage of the WordNet synsets for the hypernyms in the Russian test
sets.

Input type Total Have ILI mapping

Non-restricted nouns

All synsets 41,694 28,425
Unique synsets 4,777 2,791
Query words 17,475 15,251

Restricted (private) nouns

All synsets 4,456 3,087
Unique synsets 1,376 885
Query words 1,920 1,720

non-restricted verbs

All synsets 6,783 4,860
Unique synsets 1,473 931
Query words 2,872 2,606

restricted (private) verbs

All synsets 1,110 821
Unique synsets 611 419
Query words 477 440

However, not all synsets have an equivalent in the mapping language, as there

exist untranslatable concepts and lacunae. Therefore, we present in Table 3.4 the

coverage of the WordNet synsets for the hypernyms of query words from the test set.

This mapping can further be used for multilingual experiments.
3https://doi.org/10.5281/zenodo.4969267
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3.3 Conclusion

All in all, we created new diachronic datasets based on WordNet versioning 1.6-3.0.

They feature:

• 11.551 noun synsets and 401 verb synsets from the WordNets 1.6-3.0,

• 4.036 noun synsets and 182 verb synsets from the WordNets 1.7-3.0,

• 2.023 noun synsets and 158 verb synsets from the WordNets 2.0-3.0.

We also compiled a new dataset based on RuWordNet 1.0-2.0 and mapped it

with the English WordNet synsets using the ILI mapping.

In the next chapter we discuss the existing methods for the Taxonomy Enrichment

task that we test on the constructed datasets.
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Chapter 4

Baseline Systems

In this chapter, we first describe our baseline model which is a method of synset

ranking based on distributional embeddings and hand-crafted features (the method

was proposed as a baseline for the RUSSE-2020 shared task [Nikishina et al., 2020b]).

Then, we propose extending it with new features extracted from Wiktionary and

using alternative sources of information about words (e.g. graph representations)

and their combinations.

4.1 RUSSE’2020 Participants

One of the contributions of the current thesis is also the organisation of the RUSSE-

2020 competition on the Taxonomy Enrichment for the Russian language. The task

formulation matches the one presented in Section 1.1: given words that are not yet

included in the taxonomy, we need to associate each word with the appropriate

hypernym synset(s) from the existing taxonomy RuWordNet. For example, given an

input word “утка” (duck) the participants are asked to provide a ranked list of its

most probable 10 candidate hypernym synsets, e.g. “животное” (animal), “птица”

(bird), and so on. We assume that an orphan may be a “child” of one, two, or more

“ancestors” (hypernym synsets) at the same time.

The task featured two tracks: detection of hypernym synsets for nouns and verbs.

We provided participants with the following resources: (i) a training set based on the

RuWordNet taxonomy, (ii) a collection of news texts from the year 2017 (2.2 billion
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tokens), (iii) a parsed Wikipedia corpus1, and (iv) a hypernym database from the

Russian Distributional Thesaurus2 [Panchenko et al., 2016, Sabirova and Lukanin,

2014], which contains a set of hypernyms and a set of distributionally related terms

both extracted from a huge text corpus. The participants were allowed to use any

additional data and were asked to indicate the additional resources in their model

descriptions.

The competition was hosted on the Codalab platform3. To allow the participants

to evaluate their models on real data, we split the gold standard data into public and

private test sets (denoted as “PRACTICE” and “EVALUATION” phases in Codalab).

Thus, the participants could test their models before the deadline on the public

test set by submitting the results to the “PRACTICE” leaderboard. During the

“EVALUATION” phase the leaderboard was hidden, so the participants were not

able to overfit the test data.

The participated systems mainly relied on vector representations of words and

the intuition that words used in similar contexts have close meanings. We describe

their approaches in the following paragraphs.

Yuriy The participant generated candidate hypernyms and calculated features for

them. Then candidates were ranked by a linear model with handcrafted weights.

The list of features is provided below:

1. candidate is in the top-10 similar words from RuWordNet;

2. candidate is in hypernyms of top 10 similar words from RuWordNet;

3. candidate is in second-order hypernyms of top 10 similar words from RuWord-

Net;

4. candidate is in hypernyms on Wiktionary4 page about the word;

5. candidate is in hypernyms of hypernyms on Wiktionary page about the word;
1https://doi.org/10.5281/zenodo.3827903
2https://doi.org/10.5281/zenodo.3827834
3https://competitions.codalab.org/competitions/22168
4https://ru.wiktionary.org
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6. candidate is in “en-ru” translation of WordNet[Miller, 1998a] hypernyms of

“ru-en” translation of the word (extracted with Yandex Machine Translation

model5);

7. candidate is in the word definition on the Wiktionary page;

8. candidate is on the Yandex search result page;

9. candidate is on the Google search result page.

The candidates were collected using features 1-6. Features 1-3 are based on the

fastText model6. This approach was applied for both “nouns” and “verbs” tracks.

xeno This participant merged candidates extracted by several methods. Those

methods included: Russian Wiktionary semantic graph (taxonomic relations, syn-

onymy, antonymy); rule-based plain text definition parsing; rule-based plain text

parsing with Hearst patterns on Russian Wikipedia from Panchenko et al. [2016]

and Russian language corpus; graph-based analysis of the nearest neighbor list ob-

tained from word2vec. The definitions were taken from Russian Wiktionary, Russian

Wikipedia, Big English-Russian polytechnic dictionary and Efremova dictionary

[Efremova, 2000]. The above-mentioned methods were used for nouns. For verbs, the

team used only the Russian Wiktionary semantic graph and rule-based plain text

definition parsing.

KuKuPl [Kunilovskaya et al., 2020a] This team trained a classifier on the official

train data provided by the organizers. They considered synsets (occurring more than

n times in the training data) as classes, representing words with the embeddings

(standard CBOW from word2vec) pretrained on a concatenation of four corpora:

Araneum Russicum Maximum, Russian Wikipedia, Russian National Corpus, and a

corpus of Russian news (9.5 billion word tokens overall). The corpus was specifically

tailored for this task: all multi-word entities which also occurred in the RuWordNet

were merged into single tokens, thus making sure that the majority of the RuWordNet

entries received their respective vector representations.
5https://translate.yandex.ru
6https://fasttext.cc/docs/en/crawl-vectors.html
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A neural network classifier with one hidden layer (size 386), dropout of 0.1, ReLu

activation, and a softmax output layer was trained on all the training data until

convergence, using hypernym synset ids as class labels. At test time, the trained

model obtains the vector representation of a query word and predicts possible classes

(hypernym synsets) for this vector. 10 synsets with the highest probability are

considered predictions. This approach is applied to both “nouns” and “verbs” tracks.

RefalMachine, Parkat13 [Tikhomirov et al., 2020] This team implemented the

algorithm consisting of three stages. Firstly, they created a list of similar words

using a combination of vector representations of words obtained with Parkinson’s

Progression Markers Initiative (PPMI) weighting and SVD factorization (window

= 1). Secondly, they selected candidates from those similar words (depending on

pattern matching), their hypernyms, and second-order hypernyms. These candidates

were ranked based on the following features:

• cosine similarity;

• patterns matching co-hyponyms;

• patterns matching hypernyms (Hearst patterns). The patterns were extracted

from the news corpus provided by the organizers;

• the number of synset occurrences in the candidate list;

• probabilities based on ruBERT predictions [Kuratov and Arkhipov, 2019].

The final rank for each candidate was computed using the weighted feature

combination; the weights are hand-picked during the experiments. This approach

was applied to both “nouns” and “verbs” tracks.

MorphoBabushka (alvadia, maxfed, joystick) [Arefyev et al., 2020] This team

used the following pipeline. First, they retrieved the nearest neighbors for the target

word from word2vec “SkipGram with Negative Sampling” model trained on Librusec

book collection [Arefyev et al., 2015] and searched for their direct and indirect

hypernyms in RuWordNet. Then they counted direct and indirect hypernyms of
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the nearest neighbors, combining their counts, converting words with the wrong

part-of-speech to the correct form if possible (otherwise excluding). They took the 10

most frequent hypernyms of the nearest neighbors’ synsets. Finally, they combined

those hypernyms with the hypernyms extracted from Wiktionary by matching the

definition N-grams with the synsets. This method was applied to both “nouns” and

“verbs” tracks.

cointegrated [Dale, 2020a] The participant used similarity scores between word

embeddings to predict hypernym relations. For each RuWordNet synset, the team

computed the embedding of its title, all senses, and the mean embedding of the title

and all senses. Each type of the above-mentioned embeddings was computed as an

L2-normalized weighted mean of its word embeddings from RusVectores [Kutuzov

and Kuzmenko, 2017] (weight is 1.0 for nouns, 0.1 for prepositions, and 0.5 for all

other POS). For OOV words, the embedding was computed as a mean embedding of

all words in the vocabulary with the longest prefix matching the target word.

For each query word (orphan), the participant found its 100 nearest neighbors

from RuWordNet and all the first and second-order hypernyms of the corresponding

synsets, considering them as answer candidates. The resulting list of hypernyms

comprises 10 candidates with the highest scores. The score for each candidate is a

sum of “neighbor scores” overall nearest neighbors from RuWordNet; if the candidate

is a second-order hypernym, its “neighbor score” is multiplied by 0.5. The “neighbor

score” is calculated as exp(−3 · d) · s5, where d is the distance between the queries

and neighbor embeddings; s is their cosine similarity. The described approach was

applied to both “nouns” and “verbs” tracks.

On one hand, our methods in the presented thesis have pretty much things in

common, such as using cosine similarity for comparing word embeddings and using

additional resources, such as Wiktionary. On the other hand, we work out methods

which depend on graph-based structures and combine them with the approaches

applying word embeddings.
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4.2 Baseline

We consider the approach by Nikishina et al. [2020b] as our baseline. There, we

first create a vector representation for each synset in the taxonomy by averaging

vectors (pretrained embeddings) of all words from this synset. Then, we retrieve the

top 10 synsets whose vectors are the closest to that of the query word (we refer to

these synsets as synset associates). For each of these associates, we extract their

immediate hypernyms and hypernyms of all hypernyms (second-order hypernyms).

This list of the first- and second-order hypernyms forms our candidate set. We need

to rank the candidates by their relevance to the query word. Note that the lists of

candidates for different associates can have intersections. When forming the overall

candidate set, we make sure that each candidate occurs in it only once.

The intuition behind the method is the following. We propose that if a synset of

a taxonomy is a parent of a word which is similar to our query word, it can also be a

parent of this query word.

To rank the candidate set of synsets we train a Linear Regression model with

L2-regularisation on the training dataset formed of the words and synsets of WordNet.

Candidate hypernyms are ranked by their model output score. We limit the output

to the k = 10 best candidates.

We rank the candidate set using the following features:

• n× sim(vi, vhj ), where vx is a vector representation of a word or a synset x, hj

is a hypernym, n is the number of occurrences of this hypernym in the merged

list, sim(vi, vhj) is the cosine similarity of the vector of the input word i and

hypernym vector hj;

• the candidate presence in the Wiktionary hypernyms list for the input word

(binary feature);

• the candidate presence in the Wiktionary synonyms list (binary feature);

• the candidate presence in the Wiktionary definition (binary feature);

• the average cosine similarity between the candidate and the Wiktionary hyper-

nyms of the input word.
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4.3 Web-based Synset Ranking (WBSR)

In this section, we describe Web-based Synset Ranking (WBSR) a method which

leverages the power of the existing general-purpose services. It makes use of two

famous search engines: Google (for both English and Russian datasets) and Yandex7

(for Russian only). According to our hypothesis, the search results for a word are

likely to contain its hypernyms or co-hyponyms as they are often used to define a

word via generalisation or by providing synonyms (co-hyponyms). For instance, if

we do not know what “abdominoplasty” is, searching for it with a search engine can

yield its definition “a cosmetic surgery procedure”.

Another source that we could probably benefit from is another taxonomy, prefer-

ably larger than the one we work with. However, there might be no other taxonomies

available in the same language. Therefore, in this case, we can resort to Machine

Translation and automatically translate query words into a high-resource language

(e.g. English) in order to use an existing taxonomy (e.g. English Princeton WordNet).

In this study, we use Yandex Machine Translation system8 to translate query words

into English and then translate hypernyms (if found) back to Russian.

The main drawback of using external sources such as search engines and machine

translation systems is their weak reproducibility. The search results are dependent

on the search history, so reproducing the experiment on a different account or after

a relatively long period of time is problematic. However, since the method greatly

improves the performance even with trivial handling of the collected data, we use it

despite its drawback. To make our results reproducible, we release all data from the

external sources used in our approach.9

Similarly to the approaches described above, here we also make use of Wik-

tionary and fastText embeddings cosine similarity. However, we treat synsets and

words/phrases that they consist of in a different way. In the previously described

approaches, we computed embeddings for multiword phrases by averaging word

embeddings of individual words in them. Here we treat them as sentences — we
7https://yandex.com
8https://translate.yandex.ru/
9https://doi.org/10.5281/zenodo.4540717
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compute their embeddings using the get_sentence_vector method from the fast-

Text Python library. FastText vectors are divided by their norms and then averaged

so that only vectors with the positive L2-norm value are considered. Secondly, we

do not combine the word/phrase vectors into a synset vector but operate with the

word/phrase embeddings directly.

Similarly to the baseline, the proposed algorithm consists of two steps: candidate

generation and candidate ranking. Our candidate list is formed of the following

synsets:

• synsets which contain words/phrases from the list of top-10 nearest neighbours

of the query word;

• hypernyms and second-order hypernyms of those synsets;

• Wiktionary-based candidates:

– synsets that contain words/phrases listed in Wiktionary as the hypernyms

of the query word;

– hypernym synsets of these synsets;

• cross-lingual candidates (for the Russian language only):

– synsets that contain words/phrases listed in the English WordNet as the

hypernyms of the query word;

– hypernym synsets of these synsets.

Analogously to DWRank, we then rank all candidates by a Logistic Regression

model which uses the following features:

• the candidate synset contains a word/phrase from the list of query word’s

nearest neighbours;

• the candidate synset is a hypernym of one of the nearest neighbours;

• the candidate is a second-order hypernym of one of the nearest neighbours;

• the candidate synset contains a hypernym of the query word from Wiktionary;

• the candidate synset is a hypernym of the synset which contains a hypernym

of the query word from Wiktionary;
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• the candidate synset contains a word which is present in the definition of the

query word from Wiktionary;

• the candidate synset is present in the list of English WordNet synset candidates

(for Russian language only);

• the candidate synset is present in the list of hypernyms of the WordNet

candidates (for Russian language only);

• the candidate synset contains words which occur on the Google results page;

• the candidate synset contains words which occur on the Yandex results page

(for Russian language only).

The training set for the Logistic Regression model is comprised of wordnet in

the relevant language as follows. For each query word in the list of query words

we first find the most similar lemma which is contained in the wordnet. We know

hypernyms for these lemmas and use them to generate the training set. We generate

the candidate list as described before. First- and second-order hypernyms in this

candidate list are used as positive examples for the corresponding lemmas, and

synsets from the candidate list which are not hypernyms are considered negative

examples.

This approach participated in the RUSSE’2020 Taxonomy Enrichment task for

the Russian Language. The method achieved the best result on the nouns track.

Therefore, we consider it the state-of-the-art method for Russian.

4.4 WordNet Path Prediction

A completely different approach to make use of fastText embeddings is presented

in the work of [Cho et al., 2020]. The authors experiment with encoder-decoder

models in order to solve the task of direct hypernym prediction. They use a

standard LSTM-based sequence-to-sequence model [Sutskever et al., 2014] with

Luong attention [Luong et al., 2015]. First, they average fastText embeddings for

the input word or phrase and put it through the encoder. The decoder sequentially

generates a chain of synsets from the encoder hidden state, conditioned on the

previously generated ones. The authors consider two different setups:
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• hypo2path — given the input word, generate a sequence of synsets starting from

the root synset and going down the taxonomy to the closest hypernym;

• hypo2path reverse — given the input word, generate a sequence of synsets

starting from the closest hypernym up to the root entity.

To be able to apply this sequence-to-sequence architecture to our data, we build

new datasets similar to the ones described in Cho et al. [2020]. We generate a

path from the WordNet starting from the root node to the target synset or word.

Similarly to the original work, we include multiple paths from the root to the parents

of the query word. We filter the validation set to only include queries that do not

occur anywhere in the full taxonomy paths of the training data. To sort candidates

generated by the decoder, we enumerate the generated hypo2path sequence from the

right to the left or the hypo2path reverse from the left to the right and get the first

10 synsets.

Additionally, we extend this approach by replacing the LSTM with attention

architecture with the Transformer architecture [Vaswani et al., 2017a]. During

training, we provide an embedding of a synset as input to the Transformer and

expect the model to generate a sequence of synsets starting from the hypernym of the

input synset. During inference, we provide embedding of query words as input and

expect the model to output sequences of synsets starting with the direct hypernyms.

4.5 Taxonomy Enrichment with Meta-Embeddings

Most existing approaches to Taxonomy Enrichment consider only a single type of

distributional information, i.e. pre-trained word embeddings. Meanwhile, Taxonomy

Enrichment models may benefit from combining different types of embeddings at the

same time. As it can be seen from the approaches of the RUSSE’2020 participants,

fasttext embeddings perform better on nouns and word2vec embeddings demonstrate

larger scores on the verb subsets. Therefore, Tikhomirov and Loukachevitch [2021]

study meta-embeddings approaches, which combine several source embeddings, to

the hypernym prediction of novel words and show that meta-embedding approaches
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obtain better results for this task if compared to other methods. Meta-embeddings

are further used in our approaches for distributional and graph-based embedding

combinations, therefore, we describe them below in more detail.

4.5.1 Base Meta-Embeddings

The easiest way of combining embeddings of different types is to concatenate them

and use the concatenated vector as an input. It combines different subsets of

distributional (fastText, word2vec, GloVe) embeddings. In addition to that, the

authors perform Singular Value Decomposition (SVD) over this concatenation as

proposed in Yin and Schütze [2016].

4.5.2 Autoencoded Meta-Embeddings

In Tikhomirov and Loukachevitch [2021] the authors use two variants of autoen-

coders for the generation of meta-embeddings: Concatenated Autoencoded Meta-

Embeddings (CAEME) and Averaged Autoencoded Meta-Embeddings (AAEME)

from Bollegala and Bao [2018]. They have shown good results on the task of eval-

uating lexical similarity. However, they have never been applied before that to

Taxonomy Enrichment.

They generate meta-embeddings as follows. Let us consider an embedding model

s(w). For each of such embedding models they train an autoencoder consisting of an

encoder and a decoder:

E(s(w)) = h(w),

D(h(w)) = ŝ(w),

LED = dist(s(w), ŝ(w)),

(4.1)

where E and D are the encoder and the decoder, and L is the loss used for

training the autoencoder. The loss is implemented as the distance (dist) between the

original and the reconstructed embeddings. The dist can be any distance or similarity
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measure such as MSE, KL-divergence, or cosine distance. In their preliminary study,

the cosine distance showed the best results, so they use it further in their experiments.

Considering there are two embedding models s1(w) and s2(w). In such a case,

the input to each decoder is not the result of the corresponding encoder, but meta-

embeddings, which depend on both encoders. Depending on the approach, meta-

embeddings can be built in different ways, the authors construct the meta-embeddings

as follows. In case of CAEME, they take an L2-normalised concatenation of the two

source embeddings encoded with respective encoders E1(s1(w)) and E2(s2(w)):

m(w) =
E1(s1(w))⊕ E2(s2(w))

||E1(s1(w))⊕ E2(s2(w)||2
, (4.2)

where ⊕ is the concatenation operation.

The drawback of this model is the growing dimensionality of meta-embeddings

for cases where multiple source embeddings are combined. To fight that, the con-

catenation operation is replaced with averaging, yielding AAEME. It computes the

meta-embedding of a word w from its two source embeddings s1(w) and s2(w) as

the L2-normalised sum of internal representations E1(s1(w)) and E2(s2(w)):

m(w) =
E1(s1(w)) + E2(s2(w))

||E1(s1(w)) + E2(s2(w))||2
. (4.3)

In CAEME, the dimensionality of the meta-embedding space is the sum of

the dimensions of the source embeddings, whereas in AAEME it stays the same.

Averaging in AAEME gives the possibility to avoid increasing the dimensionality of

the meta-embedding.

4.5.3 Training of Autoencoders

Additional restrictions can be imposed on *AEME models during training. One

such restriction is the use of triplet loss. The authors restrict a word to be closer to

the words that are semantically related to it according to the taxonomy than to a

randomly chosen word with some margin:
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L(wa, wp, wn) = max(||m(wa)−m(wp))||−

||m(wa)−m(wn))||+margin, 0),
(4.4)

where ||.|| is a distance function, wa is the anchor word, wp and wn are positive

and negative words, respectively.

The algorithm for calculating triplet loss is as follows:

1. for each word presented in the taxonomy, they compile a list of semantically

related words which includes synonyms, hyponyms and hypernyms;

2. at each epoch, they randomly select K positive words from this related words

set and form a set of K negative words by selecting them randomly from the

vocabulary;

3. if the word is not presented in the taxonomy, then they cannot form a list of

related words for it. In this case, they generate positive vectors for it by adding

random noise to its vector;

4. next, they calculate the triplet margin loss by combining the triplet loss with

the original loss as α ∗ loss+ (1− α) ∗ triplet_loss.

The authors use the following parameters for the triplet loss: K = 5, margin =

0.1, alpha = 0.005. These parameters were selected via grid search with AAEME

algorithm on the English 1.7 dataset.

4.6 Conclusions

In the current section we described numerous existing approaches to the Taxonomy

Enrichment task, demonstrating decent results. In the next Chapter, we discuss

DWRank — a model that comprises different types of embeddings and demonstrating

promising results. Chapter 6 demonstrates the experimental results for all methods

including the ones, described in the current chapter.
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Chapter 5

Distributional Wiktionary-based

synset Ranking (DWRank)

We present a new method of Taxonomy Enrichment — Distributional Wiktionary-

based synset Ranking (DWRank). It combines distributional representations with

features from Wiktionary. DWRank builds up on the baseline described in Section 4.2.

We extend the baseline Logistic Regression model with new features that mainly

account for the number of occurrences of a synset in the candidate lists of different

synset associates (nearest neighbours) of the query word. We introduce the following

new features:

• the number of occurrences (n) of the synset in the merged candidate list and

the quantity log2(2 + n) which serves for smoothing,

• the minimum, average, and maximum proximity level of the synset in the

merged candidate list:

– the level is 0 if the synset was added based on similarity with the query

word;

– the level of 1 is for the immediate hypernyms of the query word;

– the level of 2 is for the hypernyms of the hypernyms;

• the minimum, average, and maximum similarities of the query word to all

words of the synset,
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• the features based on hyponyms of a candidate synset (“children-of-parents”):

– we extract all hyponyms (“children”) of the candidate synset;

– for each word/phrase in each hyponym synset we compute their similarity

to the query word;

– we compute the minimum, average, and maximum similarity for each

hyponym synset;

– we form three vectors: a vector of minimums of similarities, average

similarities, and maximum similarities of hyponym synsets;

– for each of these vectors, we compute the minimum, average, and maximum.

We use these resulting 9 numbers as features.

These features account for different aspects of similarity of the candidate’s

children to the query word and help defining if these children can be the query

word’s co-hyponyms (“siblings”).

Moreover, in this approach, we use cross-validation and feature scaling when

training the Logistic Regression model.

These methods could be straightforwardly extended to other languages that

possess a taxonomy, a wiki-based open content dictionary (Wiktionary) and text

embeddings like fastText or/and word2vec and GloVe.

5.1 Word Representations for DWRank

We test our baseline approach and DWRank with different types of embeddings:

fastText [Bojanowski et al., 2017], word2vec [Mikolov et al., 2013e] embeddings for

English and Russian datasets and also GloVe embeddings [Pennington et al., 2014]

for the English dataset.

We use the fastText embeddings from the official website1 for both English and

Russian, trained on Common Crawl (CC) from 2019 and Wikipedia CC including

lexicon from the previous periods as well. For word2vec we use models from Fares
1https://fasttext.cc/docs/en/crawl-vectors.html
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et al. [2017], Kutuzov and Kuzmenko [2017] for both English2 and Russian.3 We

lemmatize words and synsets for both languages with the same UDPipe [Straka and

Straková, 2017] model which was used while training the representations. For the

out-of-vocabulary (OOV) words we find all words in the vocabulary with the longest

prefix matching this word and average their embeddings like in Dale [2020b]. As

for the GloVe embeddings, we also use them from the official website4 trained on

Common Crawl with a vocabulary size of 840 billion tokens.

5.2 DWRank-Graph

The DWRank method extracts a set of candidate synsets based on the similarities of

word vectors. So far, we used only distributional word vectors (fastText, GloVe, etc.)

to represent words. On the other hand, graph-based representations can contain the

taxonomic information which is absent in distributional embeddings [Makarov et al.,

2021].

Here, we present DWRank-Graph. This is the same DWRank method where

the distributional embeddings are replaced with graph representations. The score

prediction model and the features it uses do not change. In the following subsections,

we describe the graph representations and their combinations that we applied in

DWRank-Graph.

5.2.1 Poincaré Embeddings

Poincaré embeddings is an approach for “learning hierarchical representations of

symbolic data by embedding them into hyperbolic space — or more precisely into an

“n-dimensional Poincaré ball” [Nickel and Kiela, 2017]. Poincaré models are trained on

hierarchical structures and simultaneously capture hierarchy and similarity due to the

underlying hyperbolic geometry. According to the authors, hyperbolic embeddings

are more efficient on the hierarchically structured data and may outperform Euclidean

embeddings in several tasks, e.g, in Taxonomy Induction [Aly et al., 2019].
2http://vectors.nlpl.eu/repository/20/29.zip
3http://vectors.nlpl.eu/repository/20/185.zip
4https://nlp.stanford.edu/projects/glove/
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Therefore, we use the Poincaré embeddings of our wordnets for the Taxonomy

Enrichment task. We train the Poincaré ball model for our wordnets using the default

parameters and the dimensionality equal to 10. This yields the best results on the

link prediction task [Nickel and Kiela, 2017].

However, applying these embeddings to the task is not straightforward, because

of the non-extensible nature of the Poincaré model’s vocabulary. This means that the

new words needed to be attached to the existing taxonomy will not have any Poincaré

embeddings at all. Thus, we cannot make use of the embeddings similarity. To

overcome this limitation, we compute top-5 fastText nearest synsets (analogously to

the procedure described in Section 4.2) and then aggregate embeddings in hyperbolic

space using Einstein midpoint, following [Gülcehre et al., 2019]. The resulting vector

is considered as an embedding of the input word in the Poincaré space.

Then, we use this vector space to generate candidates for the DWRank approach.

As the model presented in Section 5 does not depend on the types of input embeddings,

we are able to provide Poincaré embeddings as input.

5.2.2 Node2vec Embeddings

The hierarchical structure of the taxonomy is a graph structure, and we may also

consider taxonomies as graphs and apply random walk approaches to compute

embeddings for the synsets. For this purpose, we apply node2vec [Grover and

Leskovec, 2016] which represents a “random walk of a fixed length l” with “two

parameters p and q which guide the walk in breadth or in depth”. Node2vec randomly

samples sequences of nodes and then applies the skip-gram model of Mikolov et al.

[2013a] to train their vector representations. We train node2vec representations

of all synsets in our wordnets with the following parameters: dimensions = 300,

walk_length = 30, num_walks = 200. The other parameters are taken from the

original implementation.

However, analogously to the Poincaré vector space, the node2vec model is not

capable of representing out-of-vocabulary words. Thus, it is unable to map new words

onto the vector space. To overcome this limitation, we apply the same technique of

averaging top-5 nearest neighbours from fastText and considering their mean vector
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as the new word embedding and search for the most similar synsets.

5.2.3 Graph Neural Networks

The models described above have a major shortcoming: the resulting vectors for the

input words heavily depend on their representations in the fastText model. This

can lead to incorrect results if the word’s nearest neighbour list is noisy and does

not reflect its meaning. In this case, the noise will propagate through the graph

embedding (Poincaré or node2vec) model and result in inaccurate output even if the

graph embedding model is of high quality.

Therefore, we test different Graph Neural Network (GNN) architectures — Graph

Convolutional Network (GCN) [Kipf and Welling, 2016a], Graph Attention Network

(GAT) [Velickovic et al., 2018] and GraphSAGE (SAmple and aggreGatE) (Graph-

SAGE) [Hamilton et al., 2017] which make use of both fastText embeddings and the

graph structure of the taxonomy.

All the above mentioned models work similarly. According to Makarov et al.

[2021], “GCN works similarly to the fully-connected layers for neural networks. It

multiplies weight matrices with the original features but masking them with an

adjacency matrix. Such a method allows accounting not only node representation,

but also representations of neighbours and two-hop neighbours.” The GraphSAGE

model addresses the problem of the representation of unseen nodes by training a set of

aggregator functions that learn to aggregate feature information from a node’s local

neighborhood. GCN, on the contrary, learns a distinct embedding vector for each

node. In GAT, the convolution operation from GCN is replaced with the attention

mechanism. It uses the self-attention mechanism of Transformers [Vaswani et al.,

2017b] to aggregate the information from the one-hop neighbourhood.

FastText embeddings are used as input node features for all models, which is

an advantage of the model over Poincaré and node2vec, as they do not use word

embeddings for training. Even though new words are not connected to the taxonomy,

it is still possible to compute their embeddings according to their input node features.

We get the vector representations of query words from one of the pre-trained

GNN models and then use them as the input to DWRank. Even though all methods
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work similarly, they demonstrate different performance on different datasets.

5.2.4 Text-Associated Deep Walk

Text-Associated Deep Walk (TADW) [Yang et al., 2015] is another approach that

incorporates text and graph information into one vector representation. The method

is based on the DeepWalk algorithm [Perozzi et al., 2014] which learns feature

representations by simulating uniform random walks. To be specific, the sampling

strategy in DeepWalk can be seen as a special case of node2vec with p = 1 and q = 1.

The authors prove that the DeepWalk approach is equivalent to matrix factoriza-

tion. They incorporate text features of vertices into network representation learning

within the framework of matrix factorization. First, they define matrix M ∈ R|V |×|V |

where each entry Mij is the logarithm of the average probability that vertex vi

randomly walks to vertex vj in a fixed number of steps. In comparison to DeepWalk,

where the goal is to factorize matrix M into the product of two low-dimensional

matrices W ∈ Rk×|V | and H ∈ Rk×|V | (k � |V |), TADW aims to factorize matrix

M into the product of three matrices: W ∈ Rk×|V |, H ∈ Rk×ft and text features

T ∈ Rft×|V |. As text features, in this work, we apply fastText embeddings.

After having learnt the factorisation of matrix M , we use rows of matrix W as

node (synset) embeddings in DWRank.

5.2.5 High-Order Proximity Preserved Embeddings

High-Order Proximity preserved Embeddings (HOPE) [Ou et al., 2016] is yet another

approach that embeds a graph into a vector space preserving information about graph

properties and structure. Unfortunately, most structures cannot preserve asymmetric

transitivity, which is a critical property of directed graphs. To solve the problem,

the authors employ matrix factorization to directly reconstruct asymmetric distance

measures like Katz index, Adamic-Adar or common neighbors. This approach is

scalable — it preserves high-order proximities of large-scale graphs and is capable of

capturing asymmetric transitivity. HOPE outperforms state-of-the-art algorithms in

tasks of reconstruction, link prediction and vertex recommendation.
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As for our Taxonomy Enrichment task, we also apply HOPE to generate graph

embeddings to be used as input in the DWRank model. The main difference with

the other embeddings is that HOPE does not incorporate textual information from

the nodes.

5.3 DWRank-Meta

In DWRank we employed only distributional information, i.e. pre-trained word

embeddings, whereas in DWRank-Graph we represented words using the information

from the graph structure of the taxonomy and usually ignoring their distributional

properties. Meanwhile, Taxonomy Enrichment models may benefit from combining

several word or graph vector representations. Therefore, we present DWRank-

Meta — an extension of DWRank which combines multiple types of input synset

representations.

As in DWRank-Graph, the process of candidates selection, the feature set and the

algorithm of synset ranking stay intact. Here we change the input representations of

words and synsets. We performed experiments using the whole range of existing word

embeddings: fastText, word2vec and GloVe and several graph vector representations:

GCN, GraphSAGE, node2vec, and TADW. We do not cover the whole range of

possible word and graph embeddings, but we demonstrate performance on various

combinations of vector representations.
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Chapter 6

DWRank Experiments

In this chapter we present an empirical investigation of the proposed Taxonomy

Enrichment method DWRank described in the previous Chapter 5. We describe the

evaluation metric and its modification for the current task, present the results on

different datasets and perform an error analysis.

6.1 Evaluation Metrics

This section presents the methodology for the usage of corpora presented in the

previous chapter for the Taxonomy Enrichment experiments. We outline metrics

that are normally used for the Taxonomy Enrichment task and explain our choice of

the score for evaluation. Moreover, we discuss possible modifications of the existing

metrics to increase their applicability to our task setting. More specifically, we

accept as correct answer hypernyms of the direct hypernyms in addition to the

direct hypernym. In some cases, as we see later, it might be extremely challenging

and unreal to point at a specific place in the taxonomy. Therefore, as part of our

contribution, we suggest a new annotation metric for the facilitated Taxonomy

Enrichment task setting.

The goal of diachronic Taxonomy Enrichment is to build a newer version of

wordnet by attaching new terms to the older wordnet version. We cast this task as

a soft ranking problem and use the Mean Average Precision (MAP) score for the

quality assessment:
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Figure 6-1: The example from RuWordNet-1.0 for case 1. Multiple related hypernyms
are needed to reflect all shades of the meaning.

109570-N

круиз
gidravlika

cruise

137121-N

развлекательная поездка
razvlekatel'naja poezdka

entertaining journey

134047-N

развлечение
razvlechenie

entertainment

143590-N

тур
tur

tour

152303-N

активный отдых
aktivnyj otdyh
active leisure

5920-N

путешествие
puteshestvie

journey

2661-N

поездка
poezdka

travel

106587-N

перемещение
peremeshhenie

move

MAP = 1
N

∑N
i=1APi,

APi = 1
M

∑n
i preci × I[yi = 1],

(6.1)

where N and M are the number of predicted and ground truth values, respectively;

preci is the fraction of ground truth values in the predictions from 1 to i, yi is the

label of the i-th answer in the ranked list of predictions, and I is the indicator

function.

This metric is widely acknowledged in the Hypernym Discovery shared tasks,

where systems are also evaluated over the top candidate hypernyms [Camacho-

Collados et al., 2018a]. The MAP score takes into account the whole range of

possible hypernyms and their rank in the candidate list.
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Figure 6-2: The example from RuWordNet-1.0 for case 2a. Word is a composition of
senses

921-N

гидравлика
gidravlika

hydraulics

3101-N

технические науки
tehnicheskie nauki

engineering science

4713-N

прикладные науки
prikladnye nauki
applied science

856-N

физика
fizika

physics

112189-N

естественные науки
estestvennye nauki

natural science

6.2 Evaluation Setup

However, the design of our dataset disagrees with MAP metric. As we described in

Section 3, the gold-standard hypernym list is extended with second-order hypernyms

(parents of parents). This extension can distort MAP. If we consider all gold

standard answers as compulsory for the maximum score, it means that we demand

models to find both direct and second-order hypernyms. This disagrees with the

original motivation of including second-order hypernyms to the gold standard — it

was intended to make the task easier by allowing a model to guess a direct or a

second-order hypernym.

On the other hand, if we decide that guessing any synset from the gold standard

yields the maximum MAP score, we will not be able to provide an adequate evaluation

for words with multiple direct hypernyms. There exist two cases thereof:

1. the target word has two or more hypernyms which are co-hyponyms or one

is a hypernym of the other — this word has a single sense, but the annotator

decided that multiple related hypernyms are needed to reflect all shades of the

meaning,
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2. the target word has two or more hypernyms which are not directly connected

in the taxonomy and neither are their hypernyms. This happens if:

(a) the word’s sense is a composition of senses of its hypernyms, e.g. “impec-

cability” possesses two components of meaning: (“correctness”, “propriety”)

and (“morality”, “righteousness”);

(b) the word is polysemous and different hypernyms reflect different senses,

e.g. “pop-up” is a book with three-dimensional pages (“book, publication”)

and a baseball term (“fly, hit”).

While case 2a corresponds to a monosemous word and case 2b indicates polysemy,

this difference does not affect the evaluation process. We propose that in both cases

in order to get the maximum MAP score a model should capture all the unrelated

hypernyms which correspond to different components of sense. At the same time, we

should bear in mind that guessing a direct hypernym or a second-order hypernym

are equally good options. Therefore, we evaluate our models with modified MAP. It

transforms a list of gold standard hypernyms into a list of connected components.

Each of these components includes hypernyms (both direct and second-order) which

form a connected component in a taxonomy graph. (According to graph theory,

connected component is a subgraph, in which there is a path between any two nodes.)

Thus, in case 1 we will have a single connected component, as can be seen in Figure

6-1. To get the maximum MAP score, it is enough to guess any hypernym from

this connection. In cases 2a and 2b we will have multiple components, and a model

should guess any hypernym from each of the components, see Figures 6-2 and 1-1

correspondingly.

6.3 Experiments

In this section, we report and discuss the performance of our models in the Taxonomy

Enrichment task. We experiment with our DWRank approach and its modifications

DWRank-Graph and DWRank-Meta. In addition to that, we compare them with the

baseline introduced in the RUSSE’2020 shared task and with several state-of-the-art

methods. We conduct the experiments with English and Russian wordnets.

89

Douglas Teodoro



Figure 6-3: Comparison of the method performance on nouns_1.6 dataset for English.
Each colour denotes the method type and the embedding type used.
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6.3.1 Experimental Setup

For each result, we add the standard deviation values. We calculate them as follows.

We randomly sample 80% of the test data and calculate the MAP scores on that

part of the test set. We repeat the same procedure 30 times and then calculate the

standard deviation on those 30 MAP values.

The MAP metric should be interpreted as follows: the higher the score, the better

the results. For instance, MAP@k = 1.0 means that all of the N correct hypernyms

are present in the first top-N positions in the ranked list of candidates. Moreover,

with MAP@k = 1.0 the first candidate is always correct. MAP@k ≥ 0.5 means

that at least one of the correct hypernyms is present in the two first positions (top-2 )

in the ranked lists of candidates. MAP@k ≥ 0.3 means that at least one of the

correct hypernyms is present in the first three positions (top-3 ) in the ranked lists of

candidates.

We show the performance of different methods on the nouns attribution task for

English (nouns 1.6) in Figure 6-3 and Russian (non-restricted nouns) in Figure 6-4.

The X axis shows the MAP score for each method, the methods are listed along the

Y axis. For DWRank-Meta models, we list the embeddings used in the model in
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brackets. The colors of the bars in the figures correspond to different types of input

embeddings. The orange color stands for the vanilla DWRank – DWRank which

uses only distributional embeddings. Purple denotes the DWRank-Graph variants.

For the DWRank-Meta approaches exploiting only distributional embeddings, we

use pink, and DWRank-Meta on word and graph embeddings is denoted with the

bright green color. Previous SOTA approaches are shown in yellow.

The full results for all experiments on the English and Russian datasets can

be seen in Appendix A in Tables A.6 and A.7, respectively. Here, when listing

embeddings used in DWRank-Meta models, we use the shortcut “words” to denote

the combination of fastText, word2vec, and GloVe embeddings.

6.3.2 Results

DWRank-Meta Figures 6-3 and 6-4 show that the leaderboard for both English

and Russian nouns is dominated by DWRank-Meta models. While English benefits

from the union of distributional and graph embeddings, distributional embeddings for

Russian perform on par with their combinations with graph embeddings. Besides that,

high-performing variants of DWRank-Meta for English feature TADW, node2vec,

and GraphSAGE, whereas for Russian TADW is the only graph embedding model

which does not decrease the scores of DWRank-Meta.

We see that triplet loss significantly improves the results for DWRank-Meta

models (cf. AAEME/CAEME with and without triplet loss) for both English and

Russian.

DWRank-Graph On the other hand, DWRank-Graph fails in the task of taxon-

omy extension for all datasets. TADW model is the only graph embedding model

which can compete with DWRank-Meta models. This can be explained by the fact

that TADW is an extended version of DeepWalk and applies the skip-gram model

with the pre-trained fastText representations. In contrast to that, the other graph

models suffer from the noisy representations of OOV query words.

At the same time, despite the success of TADW, it does not outperform mod-

els based solely on distributional embeddings, showing that graph representations
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apparently do not contribute any information which is not already contained in

distributional word vectors.

Baselines We also notice that for both languages the baselines are quite competi-

tive. They are substantially worse than the best-performing models, but they are

much simpler to implement and are fast and easy to train. Therefore, we suggest

that it should be preferred in the situation of limited resources and time.

However, the choice of embedding models is crucial for the baselines (as well as

for the vanilla DWRank which performs closely). We see that fastText outperforms

word2vec and GloVe embeddings for almost all languages and datasets. The low

scores of GloVe and word2vec embeddings on the baseline and DWRank methods

can be explained by data coverage issues. Fixed vocabularies of word2vec and Glove

do not allow generating any representation for missing query words, whereas fastText

can handle them.

SOTA models Neither of the SOTA models managed to outperform the fastText

baseline or approach the best DWRank-Meta variants. Web-based Synset Ranking

(WBSR) model shows that the information from online search engines and Machine

Translation models is beneficial for the task – its performance without this information

drops dramatically. However, this information is not enough to outperform the word

embedding models.

The performance of the hypo2path model is even lower than that of WBSR.

Being an autoregressive generative model, it is very sensitive to its own mistakes.

Generating one senseless hypernym can ruin all the following chains. Conversely,

when starting with the root hypernym “entity.n.01”, it often takes the wrong path.

Finally, the TaxoExpan model relies on definitions of words which we did not provide

in this task. Therefore, its results are close to zero. We do not consider them credible

and provide them in italics.

Performance for different datasets Figures 6-3 and 6-4 as well as the results

in the appendix show that there is no single best-performing model. While DWRank-

Meta is almost always the best, for different datasets different variations of this
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Figure 6-4: Performance of different models on the Russian non-restricted dataset.
Each colour denotes the method type and the embedding type used.
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model are the most successful. The results are usually consistent for the same

language and part of speech (e.g. for different versions of English nouns datasets the

best-performing model is the same), but there are exceptions to this regularity.

Interpretable Evaluation MAP metric which is the standard way of evaluating

Taxonomy Enrichment models has a serious drawback. Namely, it is not interpretable,

which hampers the understanding of the models’ performance.

Therefore, in addition to MAP, we report the Precision@k score which can be

interpreted as the ratio of correct synsets in the top-k outputs of a model. We

evaluate our best systems automatically with the Precision@k (k = 1, 2, 3) score.

The choice of the values of k is explained by the fact that the average number of

true ancestors is 2 for English words, and 3 for Russian words. Thus, Precision@k

for k > 3 will be unfairly understated, because there will always be at most 3 correct

answers out of k. This means that for the k = 4 the maximum is 0.75, for k = 5 it is

0.6, etc.

Table 6.1 shows the Precision@k scores for the best performing English and

Russian models on the nouns datasets. Both of them are DWRank-Meta models

with AAEME autoencoders. The English model uses three types of distributional
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Table 6.1: Precision@k for the best-performing models for the English and Russian
nouns datasets.

Method Pr@1 Pr@2 Pr@3

English nouns 1.6-3.0

baseline 0.260 0.184 0.144
DWRank 0.245 0.170 0.135
DWRank-Meta 0.288 0.185 0.143
DWRank-Graph 0.278 0.189 0.150
DWRank-Meta (Words + Graph) 0.311 0.199 0.154

English verbs 1.6-3.0

baseline 0.173 0.126 0.101
DWRank 0.260 0.169 0.126
DWRank-Meta 0.238 0.168 0.131
DWRank-Graph 0.238 0.158 0.118
DWRank-Meta (Words + Graph) 0.259 0.164 0.124

Russian non-restricted nouns

baseline 0.346 0.228 0.171
DWRank 0.347 0.228 0.172
DWRank-Meta 0.396 0.257 0.196
DWRank-Graph 0.347 0.224 0.168
DWRank-Meta (Words + Graph) 0.397 0.255 0.192

Russian non-restricted verbs

baseline 0.251 0.181 0.139
DWRank 0.282 0.196 0.154
DWRank-Meta 0.368 0.245 0.190
DWRank-Graph 0.274 0.191 0.149
DWRank-Meta (Words + Graph) 0.341 0.231 0.180

embeddings and TADW graph embeddings, while the Russian model uses only

fastText and word2vec but benefits from the triplet loss. We see that Precision@k is

particularly high for Russian. There, over half of generated lists contain a correct

synset in the first position. This shows that DWRank-Meta can successfully be used

as a helper tool for taxonomy extension.

The results for English are lower. However, this should not be considered a sign

of the lower performance of models for English. The Russian and English datasets

consist of different words, so they cannot be directly compared.
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6.4 Error Analysis

To better understand the difference in systems performance and their main difficulties,

we made a quantitative and qualitative analysis of the results.

Figure 6-5: Distribution of words over the number of senses.

(a) Russian dataset (nouns and verbs)
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(b) English dataset (nouns and verbs)
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6.4.1 Comparison of Graph-based Approaches withWord Vec-

tor Baselines

First of all, we wanted to know to what extent the set of correct answers of graph-

based models overlaps with one of the fastText-based models. In other words, we

would like to know if the graph representations are able to discover hypernymy

relations which could not be identified by word embeddings.

Therefore, for each new word we computed the average precision (AP ) score

and compared those scores across different approaches. We found that at least 90%

of words for which fastText failed to identify correct hypernyms (i.e. words with

AP = 0) also have the AP of 0 in all the graph-based models. This means that if

fastText cannot provide correct hypernyms for a word, other models cannot help

either. Moreover, all words which are correctly predicted by graph-based approaches,

are also correctly predicted by fastText. Moreover, only 8% to 55% of words correctly

predicted by fastText are also correctly predicted by any of the graph-based models.

At the same time, the number of cases where graph-based models perform better

than fastText is very low (3–5% cases). Thus, combining them cannot improve

95

Douglas Teodoro



performance significantly. This observation is corroborated by the scores of the

combined models.

To contrast the performance of the text and graph embeddings and to demonstrate

the input and the output formats of the models we present Tables A.1 and A.2 in

Appendix A. They demonstrate the main features of the tested approaches. The

examples do not pretend to be general case examples, however, they do provide the

idea about the ranking of the results and the performance of text, graph and fusion

embedding types.

6.4.2 Performance on Polysemous Words

The differences in word semantics make the dataset uneven. In addition to that,

we would also like to understand whether the performance of models depends on

the number of connected components (possible meanings) for each word. Thus, we

examine how many words with more than one meaning can be predicted by the

system.

Figure 6-5 depicts the distribution of synsets over the number of senses they

convey. As we can see, the vast majority of words are monosemous. For Russian

nouns, the system correctly identifies almost half of them, whereas for other datasets

the share of correctly predicted monosemous words is below 30%. This stems from

the fact that for distributional models it is difficult to capture multiple senses in one

vector. They usually capture the most widespread sense of a word. Therefore, the

number of predicted synsets with two or more senses is extremely low. A similar power

law distribution would be obtained using BERT embeddings, as we are still averaging

embeddings from all contexts. This may be one of the reasons why contextualised

models did not perform better than the fastText models which capture the main

meaning only but do it well.

6.4.3 Error Types

In order to understand why a large number of word hypernyms (at least 60%) are

too difficult for models to predict, we turn to manual analysis of the system outputs.
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We find out that errors can be divided into two groups: system errors caused by

distributional models limitations and taxonomy inaccuracies. Therefore, we come

across five main error types:

Type 1. Extracted nearest neighbours can be semantically related words but

are not necessary co-hyponyms:

• delist (WordNet); expected senses: get rid of; predicted senses: remove, delete;

• хэштег (hashtag, RuWordNet); expected senses: отличительный знак, по-

метка (tag, label); predicted senses: символ, короткий текст (symbol, short

text).

Type 2. Distributional models are unable to predict multiple senses for one

word:

• latakia (WordNet); expected senses: tobacco; municipality city; port, geograph-

ical point; predicted senses: tobacco;

• запорожец (zaporozhets, RuWordNet); expected senses: житель города

(citizen, resident); марка автомобиля, автомобиль (car brand, car); predicted

senses: автомобиль, мототранспортное средство, марка автомобиля (car,

motor car, car brand).

Type 3. The system predicts too broad / too narrow concepts:

• midweek (WordNet); expected senses: day of the week, weekday; predicted

senses: time period, week, day, season;

• медянка (smooth snake, RuWordNet); expected senses: неядовитая змея,

уж (non-venomous snake, grass snake); predicted senses: змея, рептилия,

животное (snake, reptile, animal).

Type 4. Incorrect word vector representation: nearest neighbours are semanti-

cally far from the meaning of the input word:

• falanga (WordNet); expected senses: persecution, torture; predicted senses:

fish, bean, tree, wood.;
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• кубокилометр (cubic kilometer, RuWordNet); expected senses: единица объ-

ема, единица измерения (unit of capacity, unit of measurement); predicted

senses: город, городское поселение, кубковое соревнование, спортивное

соревнование (city, settlement, competition, sports contest).

Type 5. Unaccounted senses in the gold standard datasets, inaccuracies in the

manual annotation:

• emeritus (WordNet); expected senses: retiree, non-worker; predicted senses:

professor, academician;

• сепия (sepia, RuWordNet); expected senses: морскоймоллюск “sea mollusc”;

predicted senses: цвет, краситель (color, dye).

Figure 6-6: Manual datasets evaluation results: Precision@10.
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Table 6.2: Words selected for the manual evaluation.

Language Word List

English
falanga, venerability, ambulatory, emeritus, salutatory address, eigenvalue of a matrix,
liposuction, moppet, dinette, snoek, to fancify, to google, to expense, to porcelainize,
to junketeer, to delist, to podcast, to deglaze, to shoetree, to headquarter

Russian
барабашка, листинг, стихосложение, аукционист, точилка, гиперреализм,
серология, огрызок, фен, марикультура, уломать, отфотошопить, тяпнуть,
растушевать, завраться, леветь, мозолить, загоститься, распеваться, оплавить

In order to check how useful the predicted synsets are for a human annotator

(i.e. if a short list of possible hypernyms can speed up the manual extension of a

taxonomy), we conduct the manual evaluation of 10 random nouns and 10 random

verbs for both languages (the words are listed in Table 6.2). We focus on worse-quality
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cases and thus select words whose MAP score is below 1. Annotators with expertise

in the field and knowledge of English and Russian were provided with guidelines

and asked to evaluate the outputs from our best-performing system. Each word was

labelled by 4 expert annotators, Fleiss’s kappa is 0.63 (substantial agreement) for

both datasets.

We compute the Precision@k score (the share of correct answers in the generated

lists from position 1 to k) for k from 1 to 10, as shown in Figure 6-6. We can see that

even for words with MAP below 1 our model manages to extract useful hypernyms.

6.5 Conclusions

In the previous chapters, we paid a lot of attention to the models that attach pre-

defined words to the existing taxonomy, achieving SOTA results. In the next chapter

we will present another view on the task providing necessary datasets, methods and

experiments.
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Chapter 7

Cross-modal Contextualized Hidden

State Projection for Candidate-free

Taxonomy Enrichment

7.1 Introduction

Normally, taxonomies are compiled manually by linguists, which is a time-consuming

process. This also requires expertise and language proficiency. At the same time,

many approaches have been proposed to update existing taxonomies. However, we

argue about one crucial limitation of the existing setups for Taxonomy Enrichment

questioning their usefulness in a real-world application. Namely, they all require some

set of pre-collected orphans (new words). Figure 7-1a demonstrates the traditional

Taxonomy Enrichment task setting where the system is provided with the candidate

to add and the task is to find the correct place for it in the existing taxonomy.

Compiling lists with the new words to add is an inherently challenging problem. It

might be not clear to which of the multiple sources we would give our preference:

neologisms, teenage slang from the Internet or professional jargon.

On the contrary, large pre-trained language models such as BERT [Devlin et al.,

2019], ELMo [Peters et al., 2018], and GPT [Brown et al., 2020] already contain

information about the majority of terms in a language as they were trained on huge

web-scale corpora which can be further used in the downstream tasks. Many probing
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Figure 7-1: Two types of taxonomy enrichment task formulation. We explore option
(b) in this chapter.

(a) Standard taxonomy enrichment using
candidate terms.
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(b) Candidate-free generative taxonomy enrich-
ment.
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studies [Rogers et al., 2020, Jawahar et al., 2019, Ettinger, 2020] show that a vast

amount of linguistic information is encoded inside large transformer networks, e.g.

syntax or lexical semantics. Specifically, it has been shown that models are able to

correctly retrieve hypernyms in cloze tasks.

In our study, we assume that a huge amount of knowledge from pre-trained

models can be leveraged to predict new words missing in taxonomic resources. We

suggest a novel candidate-free task formulation for Taxonomy Enrichment, arguing

that compiling word lists may be redundant. Information about new words is already

present in large pre-trained networks. Therefore, we provide subgraphs sampled from

the existing taxonomy as input to predict hyponyms at a certain place (see Figure

7-1b as an example). We suggest using synsets 2 hops away from the target node, as

further located synsets may not be semantically related.

The approach includes several stages: learning embeddings of WordNet taxonomy,

projecting them into the hidden states space of BERT and decoding them back

to text candidates. Intuitively, our approach can be seen as collecting information

from graph modality and applying it to another modality. Therefore, the candidate

prediction part of our method works as a regular language model in the sense that the

predictions are based on a pre-trained model, but the masked token representation

either combines graph information with context from the running text or relies solely
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on the former.

Thus, the contribution of our work is three-fold:

• First, we formulate a new, yet realistic yet more challenging setting for the

Taxonomy Enrichment task and present a new dataset based on WordNet 3.0

taxonomy [Miller, 1995]

• Second, we evaluate baselines for this task based on BERT and fastText

[Bojanowski et al., 2017] models, demonstrating the difficulty of the task;

• Third, we propose a method for incorporating graph information into pre-

trained language models, based on hidden contextualized state projection. It

demonstrates superior performance in comparison with fasttext- and BERT-

based baselines.

7.2 Related Work

There have been two important competitions that have introduced the task of

Taxonomy Enrichment to the public: SemEval 2016 [Jurgens and Pilehvar, 2016a]

and our competition RUSSE-2020 [Irina Nikishina et al., 2020]. However, both

their formulations required a predefined list of candidates. A detailed overview of

taxonomy-related papers is presented in Jurgens and Pilehvar [2016a], Nikishina

et al. [2022].

At the same time, there exists a lot of research on how suitable is BERT for captur-

ing and transferring information about the hypo-hypernym relationship Ravichander

et al. [2020], Hanna and Mareček [2021], Schick and Schütze [2019]. For instance,

Ravichander et al. [2020] examine hypernymy knowledge encoded in BERT represen-

tations. In their experiments, BERT demonstrated the ability to correctly retrieve

hypernyms, however, they argue that it does not necessarily follow that BERT is

capable of systematic generalisation.

Another paper about BERT’s knowledge of hypernymy [Hanna and Mareček, 2021]

applies several patterns to predict possible hypernym candidates: “[MASK], such

as x” and “My favorite [MASK] is x”. Such prompts often elicit correct hypernyms
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from BERT. However, BERT still fails in 43% of cases, therefore, the authors cannot

claim that BERT has a limited understanding of hypernymy.

Table 7.1: Graph embeddings comparison on the tree representation task.

Embeddings Pr@1 Pr@2 Pr@5 Pr@10 R@1 R@2 R@5 R@10

Inductive

Graph-BERT directed (node reconstruction) 0.127 0.099 0.064 0.041 0.127 0.113 0.150 0.182
GraphBERT directed (graph recovery) 0.190 0.163 0.115 0.073 0.190 0.182 0.260 0.314
Graph-BERT undirected (node reconstruction) 0.166 0.142 0.107 0.070 0.160 0.166 0.273 0.349
Graph-BERT undirected (graph recovery) 0.164 0.140 0.100 0.062 0.164 0.153 0.227 0.268
GAT 0.018 0.016 0.014 0.011 0.008 0.021 0.068 0.099

Non-inductive

Node2vec directed root2leaf 0.227 0.217 0.212 0.181 0.227 0.241 0.368 0.509
Node2vec directed leaf2root 0.451 0.359 0.244 0.173 0.451 0.470 0.563 0.674
Node2vec undirected 0.988 0.807 0.515 0.321 0.988 0.987 0.988 0.990
Poincare directed 0.769 0.671 0.464 0.297 0.769 0.818 0.882 0.910
Poincare undirected 0.716 0.618 0.434 0.283 0.716 0.727 0.804 0.862
TADW 0.006 0.005 0.005 0.004 0.006 0.006 0.008 0.010
GCN 0.021 0.024 0.028 0.030 0.021 0.033 0.073 0.137

Anwar et al. [2020] examine the application of context-aware word representation

models for lexical units and frame role expansion task. This task is related to our

setting in a sense of generation of meaningful substitutes with preservation of content.

We adopt their context-aware methods for our task. In our case, the meaningful

substitute will be generated for a masked hyponym with the preservation of meaning

represented in projected embeddings (see Section 7.4).

7.3 Taxonomy Enrichment Dataset

Our dataset relies on the latest version of the English wordnet — WordNet3.0, it

contains 82,115 noun synsets and 117,798 lemmas. In this research, we perform

experiments only on nouns.

From this taxonomy we select 1000 nodes with children that are leaves. This

means that they do not have hyponyms of their own. We also take into consideration

the distance length from the root to the leaf which should be more than 5 hops.

This allows us to exclude the case of predicting very abstract or broad concepts.

For each “parental” hypernym, all its hyponyms (leaves) were replaced by a single

“masked” node, e.g., handwear.n.01 had hyponyms glove.n.02 and muff.n.01 that

were replaced by a single ORPHAN_100000243. This place in the taxonomy was

then considered for extension and the candidates predicted for the masked node

could be compared against the true hyponyms. All in all, we masked 4,376 leaves
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with 1000 “[MASK]” tokens.

We limit our experiments to leaves only, replacing all children with one mask in

order to be able to compare with a wide range of possible answers (like it typically

is in real-life cases) and not searching for the one and only true option. Moreover,

focusing on the leaves and not any nodes, in general, could help us to expand

non-common and remote parts of the tree-like graph.

Figure 7-2: Cross-modal Contextualized Hidden State Projection Method (CHSP):
graph-based BERT architecture that makes use of both node and text embeddings.
Graph-BERT architecture illustration source: [Zhang et al., 2020], BERT architecture
illustration source [Devlin et al., 2019]. Graph-BERT to BERT embeddings mapping
will be trained on SemCor corpus [Langone et al., 2004].
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7.4 Cross-modal Contextualized Hidden State Pro-

jection (CHSP) Method

The main idea of the paper is to predict new words using knowledge preserved in

BERT and enhance the word generation process with graph information. Figure 7-2

demonstrates the overall architecture of the Cross-modal Contextualized Hidden State

Projection (CHSP) approach that we use to solve the task. First, we train a graph

representation model to compute graph embeddings. It is either node2vec [Grover

and Leskovec, 2016] or Graph-BERT [Zhang et al., 2020], as depicted in Figure

7-2. Furthermore, we fit a projection layer to transform target graph embeddings to
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the BERT vector space. Then we apply the projected embeddings as input to the

masked language modelling part of the BERT model. The prediction head generates

new lemmas that are treated as candidate hyponyms for parent nodes. This process

results in the gradual joining of the graph and textual modalities.

Further Subsections 7.4.1-7.4.5 discuss each part of the CHSP method and are

ordered according to Figure 7-2. Subsection 7.4.1 describes the choice of graph

embedding algorithm. Subsection 7.4.2 explains the projection of embeddings from

graph space to BERT space. Subsection 7.4.3 explains how BERT is used to

predict candidates from the projected embeddings. Subsection 7.4.4 gives a thorough

explanation of the multi-token candidate generation algorithm. Finally Subsection

7.4.5 lists post-processing filters applied to the list of generated candidates.

7.4.1 Graph Embedding Computation

The first step concerns the choice of embedding we use to incorporate into the

BERT language model. In Figure 7-2 it is the Graph-BERT model that is depicted,

however, it could be any model for representing a graph structure. In order to identify

which embeddings could be used for the task, we evaluated several inductive and

non-inductive embeddings such as Graph-BERT, node2vec, GCN [Kipf and Welling,

2017], GAT [Velickovic et al., 2018], TADW [Yang et al., 2015] and Poincaré [Nickel

and Kiela, 2017] embeddings. We also tested directed and undirected structures

of Graph-BERT, node2vec and Poincaré. Finally, we performed both intrinsic and

extrinsic evaluations of the computed embeddings.

As for the intrinsic evaluation, which was conducted on the unmasked WordNet,

we generated the top-10 nearest neighbours and computed Precision@k and Recall@k

scores (k=1, 2, 5, 10) metrics that assess the number of hyponyms presented in

the top-k list. We assume that the more “children” are presented in the list, the

more suitable embeddings are for the tree-like structures and hyponym prediction.

From Table 7.1 we can see that the best inductive embedding model is Graph-BERT

on the directed graph and non-inductive node2vec on the undirected graph. We

observe that node2vec and Poincaré show much higher scores than other methods.

We speculate that this can be explained by the fact that these two algorithms are
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the only ones that do not incorporate textual features into the learned embeddings.

Intuitively, similarity in textual features is not equal to the similarity in a graph.

Additionally, degradation of node similarity in models that aggregate information

from graph structure and node features is a known issue [Jin et al., 2021] and is

linked to the over-smoothing problem. We believe that this could be one of the

reasons why the approaches, which demonstrate promising results on a traditional

Taxonomy Enrichment task [Nikishina et al., 2022], like GAT, GCN, and TADW do

not perform well in predicting nearest neighbours. Moreover, it might be explained

by the fact that such models better represent co-hyponymy or hypernymy, rather

than hyponymy. Graph-BERT is known for avoiding an over-smoothing problem,

thus, it performs much better than GAT, GCN and TADW. Furthermore, there is

another explanation for the exceptional scores of node2vec trained on undirected

taxonomy. The reason for that lies in the random walk sampling algorithm. Firstly,

on average each node in taxonomy has one hypernym and 4.5 hyponyms. This means

that of all random walks starting from a particular node generally there will be

more walks that include the node’s child rather than a parent. This presents more

opportunities for learning about node’s hyponyms. Secondly, undirected node2vec

outperforms directed because sampled random walks can go in an arbitrary direction

and thus provide a less biased neighbourhood.

For the extrinsic evaluation (evaluation of the downstream task), we have used

two models: the best non-inductive and the best inductive embeddings. It is either a

Graph-BERT [Zhang et al., 2020] that accepts a sequence of node representations

and their positional embeddings describing their local and global positioning in

the graph or a node2Vec [Grover and Leskovec, 2016] that learns low-dimensional

representations for nodes in a graph through the use of random walks. Graph-

BERT was initialized with fastText raw textual features (each node – average of

the according synset lemmas). It was trained for 200 epochs on the node attribute

reconstruction task, and the process continued for 200 more epochs on the graph

structure recovery task. The learning rate was set to 1e-3 and subgraph size to 5,

and the resulting vectors were 300-dimensional. Node2vec was trained to generate

embeddings of the same dimensionality, with 30 nodes in each random walk and 200
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walks per node. In both cases, the remaining parameters are set to default values.

However, as we further see, good coverage of hyponyms in the nearest neighbour list

does not guarantee high performance on hyponym prediction.

7.4.2 Space Transformation

In order to project graph embeddings into the BERT embedding space, we use a simple

Multi-layer Preceptron (MLP) neural network model. It consists of three hidden

layers (source_embs× 1024, 1024× 512, 512× target_embs) with the exponential

linear unit (ELU) activation. During training, we used the AdamW [Loshchilov and

Hutter, 2017] optimizer, which is a variant of the Adam [Kingma and Ba, 2015] with

an improved implementation of weight decay. The loss function is a sum of two

components: (1) cosine embedding loss between the GraphBERT model output and

the corresponding target BERT embedding; (2) a negated cosine similarity between

the GraphBERT embedding and a random negative example embedding. As such

example, we consider any entity from the dataset that is not our current target. The

components are presented below:

L = L+ − L−

L+ = 1− cos (y, ŷ)

L− = max (0, cos (yneg, ŷ)) ,

(7.1)

where y – target embedding, ŷ – predicted embedding, yneg – negative example

embedding. The projection layer is trained for 500 epochs with batch size 64 and

1e-4 learning rate.

Figure 7-3: Excerpt from SemCor 3.0 used for learning a space transformation model.

 
 
 

law_degree.n.01

 
 
 

basketball.n.01

He played basketball there while

working toward a law degree .
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Figure 7-4: Illustration of replacement approaches. The projected graph embedding
is inserted after (a) the 1st BERT encoder layer, (b) the 6th BERT encoder layer, (c)
the 12th BERT encoder layer. The “replace/mean” denotes the replacement strategy:
the projected embedding either replaces “[MASK]” token hidden representation or is
averaged with it.

Layer 1

Layer 2

Layer 12

...

projected graph emb
replace/mean

BERT
Encoder

[MASK] is a {parent}

Layer 12

...

projected graph emb
replace/mean

BERT
Encoder

[MASK] is a {parent}

Layer 7

Layer 6

...

Layer 1 Layer 1

Layer 12

...

projected graph emb

BERT
Encoder

[MASK] is a {parent}

replace/mean

BERT embeddings are contextualized. Therefore, to learn a projection from graph

space into BERT, the target words should not be simply embedded as is because

their representations differ in various contexts. In order to generate contextualized

embeddings we use the SemCor dataset [Langone et al., 2004]. It consists of 352 texts

from Brown Corpus [Kucera and Francis, 1967], English text electronic collection.

SemCor contains manually annotated sentences where words are matched with the

according synsets. In our research, we use SemCor 3.0, which was automatically

created from SemCor 1.6 by mapping senses from WordNet 1.6 to WordNet 3.0.

We extract embeddings of annotated words and use them as contextualized target

synset embeddings for learning projection. Figure 7-3 demonstrates the annotation

scheme of SemCor. Therefore, we use the pre-trained GraphBERT embeddings of

synsets “basketball.n.01” and “law_degree.n.01” as input to the space transformation

model and consider BERT embeddings of “basketball”, “law”, and “degree” from this

sentence as the target embeddings. If there is more than one target token for a single

synset, then the tokens are averaged.
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7.4.3 BERT Masked Language Modelling Prediction

We use bert_base_uncased1 pre-trained configuration of BERT to embed a structure

“[MASK] is a {parent}” where “{parent}” is a lemma of a hypernym whose hyponyms

are to be predicted. In the following parts, we will refer to this structure as input

context. The choice of the structure was not accidental. We have evaluated three

different context constructions suggested in Hanna and Mareček [2021]:

1. “[MASK] is a/an {parent}”;

2. “My favourite {parent} is a [MASK]”;

3. “{parent} such as a [MASK]”

The scores for the predicted candidates with such patterns are presented in the

first three lines of Table 7.2 and Table 7.3, respectively. These experiments are

also repurposed as three baselines. Precision@10 indicates that the best results are

produced by the first prompt, which proves to be the most stable. Therefore, we

chose the first pattern for further experiments in all CHSP configurations.

Furthermore, we create three different approaches to incorporate graph embedding

into the language model prediction:

• pure-BERT prediction: embedding of the “[MASK]” token is left as is;

• replaced prediction: embedding of the “[MASK]” token is replaced by projected

graph embedding;

• mixed (or contextualized) prediction: embedding of the “[MASK]” token is

averaged with projected graph embedding.

The replacement can happen at three different stages: after the first layer of BERT

encoder, after the sixth (middle) or after the twelfth (last). In the first two cases,

space transformation learns to project graph embeddings into intermediate hidden

states and after replacement, the hidden states are passed through the remaining

encoder layers. The replacement strategies are illustrated in Figure 7-4. Thus, by
1https://huggingface.co/bert-base-uncased
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performing this process, we combine textual and graph modalities in order to improve

candidate prediction at a certain place in the taxonomy.

7.4.4 Multi-token Prediction

Algorithm 1 Algorithm of multi-token generation with BERT.
Inputs : name of parent synset parent, graph embedding of according masked child
node projected into BERT space proj_emb, layer of replacement l_num, replacement
strategy repl_strategy
Outputs : sorted list final_res that consists of tuples (candidate, score).
1: function multi_tok_generate(parent, proj_emb, l_num, repl_strategy)
2: tokens← tokenize(“[MASK] is a {parent}”)
3: hidden_states← BERT. encode(tokens, proj_emb, repl_strategy, l_num)
4: final_res← predict_candidates(hidden_states, tokens,mask_pos = 0)
5: return final_res
6: end function
7:
1: function predict_candidates(hidden_states, tokens,mask_pos)
2: mask_hidden_state← hidden_states[mask_pos]
3: single_tokens, single_scores← pred_single_mask(BERT, hidden_states,mask_pos)
4: f_preds, f_scores← extract_mask_preds(single_tokens, single_scores)
5: multi_preds,multi_scores← [], []
6: for seq_len ∈ [2, 3] do
7: new_tokens, new_scores←

← beam_search(tokens,mask_pos,mask_hidden_state, seq_len)
8: m_p,m_s← extract_mask_preds(new_tokens, new_scores)
9: multi_preds.append(m_p)
10: multi_scores.append(m_s)
11: end for
12: final_res← merge_sort_results(f_preds, f_scores,multi_preds,multi_scores)
13: return final_res
14: end function

Moreover, we experiment with single- and multi-token prediction. In the first

case, one embedding produces one token. In the second, we adopt a condBERT

[Dementieva et al., 2021] multi-token generation mechanism. In addition to “[MASK]

is a {parent}”, “[MASK][MASK] is a {parent}” or “[MASK][MASK][MASK] is a

{parent}” sentences are used. Furthermore, tokens are generated progressively by

beam search while each multi-token sequence is scored by the harmonic mean

of the probabilities of its tokens. The pseudocode for multi-token prediction is

given in Algorithm 1. It is split into two functions: multi_tok_generate() and

predict_candidates(). We are going to provide a detailed explanation for each of

them.

110

Douglas Teodoro

Douglas Teodoro



Figure 7-5: Beam search for a multi-token generation. In this figure 3-token case is
illustrated. In our research, we also use a 2-token case which is generated similarly.

[MASK] [MASK] [MASK] is a pie

top-k
lemon
deep
...

predict

lemon [MASK] [MASK] is a pie

deep [MASK] [MASK] is a pie

predict

predict

top-k
meringue
zest
...

...

lemon meringue [MASK] is a pie

A lemon zest [MASK] is a pie

[MASK] is a pie seq_len = 3
insert masks

The multi_tok_generate() function takes as input the name of a parent synset,

projected graph embedding, layer of replacement for the incorporation of the em-

bedding and the replacement strategy. Line 2 generates tokens for the context

construction “[MASK] is a {parent}”, and line 3 encodes them with the incorporation

of projected embedding according to the scheme described in Subsection 7.4.3. Fur-

thermore, the tokens and the hidden states are passed to the predict_candidates()

function. It also takes the position of the “[MASK]” token, which in this con-

text prompt is 0. Finally, predict_candidates() returns a sorted list of tuples

(candidate, score), where each candidate – predicted hyponym, and score harmonic

mean of scores for each token in the multi-token sequence.

The predict_candidates() function starts with saving the embedding of the

“[MASK]” token that incorporates graph information (line 2). Furthermore, in

line 3 the single-token candidates are predicted. This is done because multi-token

generation produces sequences of up to three tokens in length, which usually displaces

correct single token predictions. Function extract_mask_preds() (line 3) separates

the predictions of hyponyms from the generated sentences. For example, the sentence

“[MASK] is a claim” was predicted into “dibs is a claim”. Then extract_mask_preds()

extracts the predicted hyponym “dibs” and returns it as a candidate paired with

its score. Next, multi-token candidates of lengths 2 and 3 are generated (line 6).

It is done with a beam search (line 7), which is illustrated schematically in Figure

7-5. The beam_search() function takes as input the tokenized sentence, position

of a mask, saved embedding of a mask and a maximum length of the multi-token

sequence. The beam search starts with the insertion of one or two (according to the
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maximum length) additional mask tokens in the token sequence. Furthermore, the

masks are predicted iteratively while maintaining the best sequences as in a classical

beam search algorithm. For example, a sentence from Figure 7-5 “[MASK] is a pie”

got extended into “[MASK][MASK][MASK] is a pie” for a 3-token case. Then, the

new sentence is encoded with BERT in a usual way and the hidden state of the

first mask is substituted with saved embedding that incorporates graph information.

Candidates for the first mask are predicted, ranked, and a new set of hypotheses with

the predictions of the first mask are generated (e.g., “lemon [MASK][MASK] is a pie”

and “deep [MASK][MASK] is a pie”). The top ones are passed to the next iterations

for prediction of the second mask, and the process is repeated. The beam search

generation ends when the maximum sequence length of the multi-token prediction is

reached. The top hypotheses sentences as well as their scores are returned. Next, in

line 8 candidate hyponyms are extracted with extract_mask_preds() and together

with scores are saved. Finally, multi- and single-token predictions are merged together

and sorted by scores (line 10).

7.4.5 Post-processing

Predictions generated by the BERT language model contain a lot of noise like

punctuation and common stop-words such as “it”, “this”. Thus, we apply several

filters to the generated set of new words.

The general procedure removes all predictions containing non-alphabetical sym-

bols, usually, these are numbers or punctuation. Moreover, we remove all predictions

that are in a list of English stop-words obtained from Stopwords Corpus [Porter,

1980] in NLTK library2. The list contains 179 function words such as prepositions,

pronouns, auxiliary verbs, etc.

The multi-token generation case requires further post-processing. A single multi-

token candidate is a list of word pieces (or sub-words). If a word-piece is supposed

to be used with a prefix it has a “##” mark in the beginning. For example, a

word “strawberry” is tokenized as [“straw”, “##berry”]. Furthermore, in order to

be evaluated, such multi-tokens need to be merged together. If the first token in
2https://www.nltk.org/
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a multi-token candidate list starts with “##”, it is skipped, as there is no prefix

for it. If all tokens in a multi-token candidate list start with “##”, the candidate

is discarded. If a new (not first) token in a list does not contain “##”, it will be

added to the previously merged sequence with a preceding space. Continuing the

“strawberry” example, the aforementioned merging rules can be illustrated as:

• [“straw”, “berry”] −→ “straw berry”;

• [“straw”, “##berry”] −→ “strawberry”;

• [“##straw”, “##berry”] −→ candidate is discarded;

• [“##berry”] −→ candidate is discarded;

• [“##straw”, “berry”] −→ “berry”.

Furthermore, we check merged candidates for containing permutations of the same

sets of words and eliminate the repeating ones with lower scores. For example, if

there are two multi-token candidates “apple pie” and “pie apple”, the one less-probable

one is going to be discarded. Finally, the whole list of merged candidates is checked

for duplicates and sorted by their scores.

7.5 Baselines

In our experiments we are using five baselines:

1. fastText (nearest neighbours);

2. BERT (parent embeddings on inference);

3. three patterns from Hanna and Mareček [2021], Schick and Schütze [2019]

7.5.1 FastText (Nearest Neighbours)

The first baseline uses 300-dimensional fastText [Bojanowski et al., 2017] English em-

beddings pre-trained on Common Crawl and Wikipedia. Hypernym embeddings are

computed as an average of all lemmas embeddings. Furthermore, nearest neighbours
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of the resulting vectors are retrieved and scored as hyponym predictions. It is inspired

by the baseline method in Chapter 5, which also combines fastText representations

and nearest neighbours method, however, in their case, it is used for prediction of

hypernyms of orphans. Our approach can be seen as a reverse of DWRank. In a

single-token evaluation case multi-token hyponyms are dropped from the list of gold

hyponyms (see Section 6.3).

7.5.2 BERT (Parent Embeddings on Inference)

The second baseline uses BERT to encode each hypernym lemma and decode it back

in a single- or multi-token setting. Predictions for each parent lemma are aggregated

and evaluated. This method is loosely motivated by Anwar et al. [2020] and the

idea of lexical substitution, which goal is to find meaning-preserving alternatives to

a particular target word in its context. However, with this baseline, we wanted to

evaluate BERT’s ability to predict hyponyms in a contextless setting.

7.5.3 Pattern Comparison

The three last baselines are based on the approach described in these two publications:

Hanna and Mareček [2021], Schick and Schütze [2019]. They propose a variety of

constructions for prompting BERT in order to identify its linguistic capabilities and

test its ability to capture semantic properties of words. Both works use a similar set

of constructions, however, only Hanna and Mareček [2021] compare them against

each other in order to identify the most efficient ones. According to their evaluations

we have selected three best patterns: “[MASK] is a/an {parent}”, “My favourite

{parent} is a [MASK]”, “{parent} such as a [MASK]”. The constructions were encoded

with BERT and then decoded in single- and multi-token settings with “[MASK]”

predictions treated as new candidate hyponyms.
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7.6 Evaluation

The generated candidates will be compared against the true candidates from the

existing taxonomy. We will use standard metrics for Information Retrieval like

Precision@k and Mean Reciprocal Rank (MRR).

Both metrics are commonly employed in the Hypernym Discovery and Taxonomy

Enrichment shared tasks, which require systems to produce ranked lists of potential

hypernyms [Camacho-Collados et al., 2018a, Dale, 2020b]. Furthermore, numbers for

both metrics are multiplied by 100 for clearer presentation.

Since we are experimenting with single- and multi-token generations, we apply

according restrictions on the evaluation metrics. Namely, for single-token generation,

we are computing upper-bound scores. A model incapable of multi-token generation

will never predict such results, hence, a reduction of its score would be not fair. Thus,

in case of the single-token generation, we are removing multi-token lemmas from

the list of gold hyponyms and the generated candidates are evaluated against the

reduced target set.

Table 7.2: Prediction scores for single-token hyponyms generation for different source
graph embeddings and replacement strategies (x100).

Method Context Replaced MRR@5 MRR@10 MRR@20 Pr@1 Pr@5 Pr@10

Pattern comparison [Hanna and Mareček, 2021]
“[MASK] is a {parent}” Yes No 2.461 2.704 3.091 1.546 1.289 1.057
“My favourite {parent} is a [MASK]” Yes No 0.554 0.863 1.001 0.000 0.464 0.490
“A {parent} such as a [MASK]” Yes No 0.168 0.193 0.235 0.000 0.155 0.103

BERT (parent embedding on inference) No No 1.003 1.083 1.203 0.940 0.251 0.188
fastText (nearest neighbours) No No 2.400 3.500 4.000 0.130 1.839 2.100

CHSP (Graph-BERT) Yes Mix 7.229 8.037 8.624 3.608 3.247 2.474

Table 7.3: Prediction scores for multi-token hyponyms generation for different source
graph embeddings and replacement strategies (x100).

Method Context Replaced MRR@5 MRR@10 MRR@20 Pr@1 Pr@5 Pr@10

Pattern comparison [Hanna and Mareček, 2021]
“[MASK] is a {parent}” Yes No 0.930 1.027 1.177 0.600 0.460 0.370
“My favourite {parent} is a [MASK]” Yes No 0.425 0.693 0.844 0.000 0.361 0.438
“A {parent} such as a [MASK]” Yes No 0.051 0.137 0.137 0.000 0.052 0.077

BERT (parent embedding on inference) No No 0.320 0.345 0.390 0.300 0.080 0.060
fastText (nearest neighbours) No - 1.860 2.673 3.069 0.100 1.420 1.620

CHSP (Graph-BERT) Yes Yes 2.150 2.281 2.378 1.600 0.740 0.530
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7.7 Experiments

Table 7.4: CHSP prediction scores for single-token hyponyms generation for different
source graph embeddings, replacement strategies and substitution layer (x100).

Graph embeddings Context Replaced Layer MRR@5 MRR@10 MRR@20 Pr@1 Pr@5 Pr@10

Node2vec Yes

Yes 1st 0.975 1.831 2.252 1.186
Mix 1st 2.328 2.685 2.903 1.005
Yes 6th 3.316 3.799 4.070 1.340
Mix 6th 2.414 3.079 3.391 1.469
Yes 12th 2.436 3.185 3.486 1.160
Mix 12th 3.329 4.073 4.597 1.675

Graph-BERT Yes

Yes 1st 4.502 4.995 5.371 3.093 1.598 1.340
Mix 1st 1.448 1.813 2.033 0.773 0.876 0.979
Yes 6th 5.503 6.216 6.453 3.093 2.371 2.010
Mix 6th 2.981 3.500 3.836 1.546 1.649 1.495
Yes 12th 5.215 5.674 6.027 3.093 2.113 1.598
Mix 12th 7.229 8.037 8.624 3.608 3.247 2.474

Table 7.5: CHSP prediction scores for multi-token hyponyms generation for different
source graph embeddings, replacement strategies and substitution layer (x100).

Graph embeddings Context Replaced Layer MRR@5 MRR@10 MRR@20 Pr@10

Node2vec Yes

Yes 1st 0.945 1.231 1.395 0.515
Mix 1st 0.287 0.374 0.492 0.180
Yes 6th 0.587 0.674 0.732 0.210
Mix 6th 1.924 2.073 2.193 0.550
Yes 12th 0.520 0.534 0.586 0.070
Mix 12th 0.453 0.534 0.610 0.110

Graph-BERT Yes

Yes 1st 1.908 2.054 2.149 0.500
Mix 1st 1.350 1.522 1.625 0.500
Yes 6th 2.150 2.281 2.378 1.600 0.740 0.530
Mix 6th 1.468 1.694 1.806 0.560
Yes 12th 1.278 1.312 1.368 0.190
Mix 12th 1.767 1.899 2.071 0.390

Our experiments can be categorised by the following features: source graph

embeddings, usage of context structure, replacement layer and replacement strategy.

This section is divided into two parts. The first subsection compares various combi-

nations of CHSP configurations. The second subsection analyzes the performance of

the best CHSP configurations against the baselines.

7.7.1 Replacement Strategy Comparison

Table 7.4 and Table 7.5 compare single-token and multi-token hyponym predictions

for methods with different source embeddings, replacement strategies and replacement

layers. We observe that in a single-token case for both node2vec and Graph-BERT the

best replacement point is after the last (12th) BERT encoder layer with the first and
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the sixth being close seconds. We hypothesise that the reason is that, when injecting

the projected graph embedding at earlier stages, the remaining encoder layers dilute

information incorporated in the embedding, thus deflecting from the right answers.

In the case of single-token generation, Graph-BERT with the replacement point after

the last layer is a clear winning strategy among all the combinations. On the contrary,

for multi-token generation significantly better scores were obtained by replacement

after the 6th layer. We suggest that this replacement strategy helped to diversify

generated subwords and produce more meaningful results.

In general, the “mixing” replacement strategy produces better results for the

last-layer replacement strategy, because it allows for the incorporation of context

information encoded in a final hidden state of the “[MASK]” token. However, there

are some cases where the context actually diverts the method from the real answer

(see Section 7.8). The complete replacement showed better scores in 1st and 6th

layer replacement, because this strategy already incorporates a lot of context in the

“[MASK]” embedding while passing it through the remaining layers of the encoder,

and “mixing” replacement reduces the influence of projected embedding too much.

To sum up, both replacement strategies are important and none of them can be

deemed winning as there is a clear pattern of where to apply each of them.

We can observe that node2vec did not perform as well as was expected judging

from the graph embedding comparison. In many cases of single-token generation,

words synonymous with the hypernym were predicted, instead of hyponyms. The

reason for the low scores on node2vec embeddings might be explained by the fact

that the Graph-BERT embeddings are easier to transform to the BERT vector

space. Another hypothesis is that the performance on hyponym prediction does not

guarantee high scores on predicting hyponyms for Taxonomy Enrichment.

In the next subsection, we are going to compare our CHSP against the baselines.

For our method we are using winning combinations for single- and multi-token

strategies, namely, Graph-BERT with mixing after the 12th layer and Graph-BERT

with complete replacement after the 6th layer.
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7.7.2 Overall Comparison

Table 7.2 and Table 7.3 contain the overall scores for different hyponym prediction

methods. We can see that our approach significantly outperforms other methods

on single token setup, however, it fails on predicting multi-token candidates. We

observe that the patterns from Hanna and Mareček [2021], Schick and Schütze

[2019] show results are mostly far from the top ones. This happened because the

context encapsulated in the patterns, in general, contains little information. We also

see that our method outperforms the BERT baseline (which is a simple prediction

of encoded parent synset) and a simple approach on fastText nearest neighbours

candidates. Even though the results for multi-token predictions are better for the

fastText baseline, we still consider our method to be the most effective, as fastText

is also not capable to predict multi-token candidates and yields to our method in

the single token setup.

For all setups, the multi-token generation did not result in an improvement in

the scores. This can be explained by the flawed nature of our multi-token sampler

and suggests a major stream of future work.

7.8 Error Analysis

We can categorise common errors into several groups: failing to differentiate the real

meaning of the hypernym, prediction of synonymical/same domain words instead of

hyponyms, and weakness of multi-token generator.

Many times, the method fails to recognise a rare meaning of a synset and

mistakes it for a more common one. For example, for hypernym “depression.n.10”

(pushing down) the correct prediction would be “click”. However, almost all results

contain mostly mental illness or medical-related predictions, e.g., headache, coma,

schizophrenia, etc.

An example of the second type of errors might be predictions of multi-token

pipeline with Graph-BERT embeddings for the “jazz_musician.n.01” hypernym.

While the correct answer is “syncopator”, the top produced predictions are “singer”,

and “dj”, which obviously come from the same music-related domain.
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Table 7.6: Example of Graph-BERT embeddings for the node “beverage.n.01” (single-
token generation).

beverage.n.01
Gold hyponyms: alcoholic drink, oenomel, fruit crush, cooler, alcoholic beverage, hot chocolate, fizz,
ade, milk, inebriant, cocoa, drinking chocolate, drinking water, tea, java, mixer, refresher, tea-like
drink, alcohol, coffee, fruit drink, ginger beer, wish-wash, potion, soft drink, near beer, smoothie,
chocolate, cyder, intoxicant, fruit juice, cider, mate, hydromel

pure BERT replaced mixed

1 beer milk coffee
2 coffee drink milk
3 alcohol coffee drink
4 water butter tea
5 cola pot chocolate
6 tea whisky butter
7 wine tea beer
8 milk turkey whisky
9 chocolate chocolate brandy
10 rum brandy water

Table 7.7: Example of node2vec embeddings for the node “stock.n.01” (multi-token
generation).

stock.n.01
Gold hyponyms: capital stock, treasury stock, quarter stock, preference shares,
growth stock, preferred stock, no-par-value stock, voting stock, common shares,
authorized shares, hot stock, ordinary shares, authorized stock, float, reacquired
stock, common stock, no-par stock, common stock equivalent, treasury shares,
preferred shares, hot issue, control stock, watered stock

pure BERT replaced mixed

1 stock capital capital
2 one capital cash capital cash
3 c capital investment capital investment
4 b capital financing capital money
5 today capital funds capital financial
6 x capital financial capital equity
7 gold capital income capital stock
8 everything capital funding capital financing
9 life capital revenue capital funds
10 r capital crop capital leverage

For multi-token Node2vec we observed a lot of cases where one strong word was

produced and further multi-token hypothesis would retain this first word and simply

permute other different words. Example output for test hypernym “suburb.n.01”:

suburb, suburb suburbs, suburbs, suburb suburban, suburb suburbs suburban, etc.
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Because of the weak multi-token decoding mechanism, many predictions failed.

For example, none of the setups managed to produce adequate hyponyms for

“berry.n.01”, because all correct answers are multi-token in BERT vocabulary (e.g.,

“ras”+“##p”+“##berry”).

Table 7.8: Example of Graph-BERT embeddings for the node “meal.n.01” (multi-
token generation)

meal.n.01
Gold hyponyms: nosh-up, tea, snack, breakfast, supper, brunch, tiffin, lunch, refec-
tion, mess, ploughman’s lunch, dejeuner, feast, spread, afternoon tea, picnic, dinner,
square meal, luncheon, teatime, banquet, bite, buffet, potluck, collation

pure BERT replaced mixed

1 life breakfast breakfast
2 food breakfast lunch breakfast lunch
3 dinner lunch lunch
4 lunch breakfast dinner breakfast dinner
5 breakfast breakfast lunch dinner breakfast lunch dinner
6 everything lunch dinner lunch dinner
7 love breakfast dining dinner
8 tomorrow breakfast meals breakfast meal
9 today breakfast meal breakfast lunch meal
10 nothing breakfast lunch dining breakfast meals

All in all, the results are diverse and controversial. For instance, Table 7.9

demonstrates that graph information from node2vec is confusing for the model.

According to Tables 7.6 and 7.8, Graph-BERT improves the ranking of the results.

However, none of the models handles multi-token prediction: the only case where

the model manages to predict the correct answer is presented in Table 7.7.

We reckon that the low scores could be explained by the task complexity and

automatic evaluation on a closed list of candidates excluded from taxonomy. For

instance, the model can generate correct candidates but they are not yet included in

the taxonomy. In this case, the evaluation system will still mark them as incorrect.

Another reason for the low results is the way the test set has been generated. In

most previous work [Cho et al., 2020] the data is selected from the well-known and

widespread domains like “pets”, “food”, “sport”, etc. Our test set is generated to

respect the taxonomy structure and normally comprises narrow and uncommon

terms, which BERT does not manage to process. At the same time, we can see that
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simple examples like “beverage” or “meal” gain better scores. As future work we want

to tackle the problem of rare terms.

Table 7.9: Example of node2vec embeddings for the node “citrus.n.01” (single-token
generation)

citrus.n.01
Gold hyponyms: citrange, citron, grapefruit, kumquat, lemon, lime, mandarin, orange,

pomelo

pure BERT replaced mixed

1 fruit date date
2 one year tree
3 rose horse year
4 another turkey snow
5 citrus dates horse
6 cherry tree turkey
7 orange snow dates
8 tomato calendar winner
9 mine winner grass
10 wood loser trees

7.9 Conclusion

In this chapter, we presented a novel candidate-free task formulation for Taxon-

omy Enrichment. We performed a computational study of various methods using

knowledge from BERT. We compared different graph-based embeddings on the

task of hypernym prediction and projected the best inductive and non-inductive

representations to the BERT vector space. Then we identified the best position for

the projected graph embedding to incorporate into the BERT model and compared

the results with several baselines. The results demonstrate that the incorporation of

graph embedding to the [MASK] embedding (at both “replace” and “mix” strategies)

is beneficial in the task of hyponym prediction using contextualized models like

BERT. Overall, this research has proven the difficulty of the novel task.

Despite the low results of the application of graph-based methods, we propose

further exploration of the combination of textual and graph modalities to predict new

nodes to the existing taxonomy. In the next chapter we present a visualization of the

CHSP method in a demonstration system which is able to generate new candidates.
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Chapter 8

System Description

In this chapter, we demonstrate the application of our approach for candidate-free

Taxonomy Enrichment, introducing TaxFree — a visualization tool for reviewing and

enhancing taxonomies. This tool shows how the existing taxonomy can be enriched

automatically without predefined candidates on the example of WordNet-3.0.

Plenty of tools are available for generic visualization of networks like Gephi

[Bastian et al., 2009], GraphX [Gonzalez et al., 2014], D31, and GraphViz [Ellson

et al., 2001]. At the same time, there exists some software specific for the visualization

of wordnets which are not available from the original interface of WordNet. For

example, Collins [2006] is one of the earliest papers that present a design paradigm.

Visualization from Kamps and Marx [2002] demonstrates not only the relations

between synsets but also denotes lemmas as graph nodes. WordNet Atlas [Abrate

and Bacciu, 2012] is designed for “users like computer scientists that are not familiar

with computational linguistics and/or WordNet”.

TaxFree (see the example of the visualization page in Figure 8-1) is an open-

source, web-based visualization and enrichment tool for taxonomies. We demonstrate

the capacities of TaxFree on WordNet-3.0 [Miller, 1995] with support for the visual

representation of WordNet synsets using ImageNet [Deng et al., 2009]. The tool

applies BERT [Devlin et al., 2019] as a pretrained language model to predict new

nodes (synsets). It allows to perform the search in WordNet by words (lemmas) or

nodes (synsets), to visualize the context of the query word (with hop = 2), and to
1https://github.com/d3/d3
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generate new leaf nodes or nodes between the two existing ones. In order to create

nodes, we apply the Cross-modal Contextualized Hidden State Projection Method.

This approach includes several stages: (i) learning embeddings of the WordNet

taxonomy and new synsets at the required places that we want to predict, regarding

such synsets as masked, (ii) projecting all graph embeddings into the hidden states

space of BERT, and (iii) decoding them back to text candidates.

Figure 8-1: Visualization example for the node “dog.n.01”

Thus, the contribution of this demo is three-fold:

1. it performs a search on taxonomy and visualization of query node within its

context (on the example of the English WordNet-3.0);

2. it allows the automatic extension of the existing taxonomy using the Cross-

modal Contextualized Hidden State Projection Method;

3. it integrates ImageNet representations to the WordNet synset description card.

We also provide the links to the demo2, code3 and the screencast video demon-

strating the system4 in the footnotes.
2http://taxgen.ltdemos.informatik.uni-hamburg.de
3https://github.com/skoltech-nlp/taxgen-demo
4https://youtu.be/GF2AVlnWGag
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8.1 System Design

TaxFree is designed to help lexicographers to update taxonomies and to inspect

them for modifications. In the current section, we discuss each part of the tool and

its usage in detail.

8.1.1 Software Architecture

The system is a web-based user interface through which users can explore the

WordNet-3.0 taxonomy. The front-end is implemented with JavaScript library

vis.js5 used to display networks consisting of nodes and edges. It supports the

hierarchical layout and allows us to interact with the network. The back-end is

written in Python using the Flask6 framework. It has an Application Programming

Interface (API) with several “GET” and “POST” queries that maintain the functioning

of the system: (i) searching for synsets, (ii) retrieving image by node id, (iii) getting

the current node graph context, (iv) generating new nodes.

8.1.2 Main Page

The start page in Figure 8-1 shows the highest level of the taxonomy. It is a tree

with the root node “entity.n.01” which is highlighted with green color. In most cases,

the target node is displayed within its two-hop neighbourhood (if any). To the right

of the graph visualization, there is a card with the description of the current node:

its image from ImagNet (if any), definition and the list of lemmas. Above the graph

visualization box there are two buttons: “Reset graph” , “Back to root” and a

search box with a “Move to” button. “Reset graph” deletes all generated nodes

from memory and displays only the initial WordNet-3.0 graph. “Back to root”

returns the user to the display of the root of the taxonomy, leaving all generated nodes

untouched. The search bar allows users to easily navigate through the taxonomy and

display subgraphs for the queried node. More details for each box are provided in

the corresponding subsections.
5https://visjs.github.io/vis-network/docs/network/
6https://flask.palletsprojects.com/en/2.2.x/
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Figure 8-2: Generation of a new node for the leaf node “maltese_dog.n.01”

8.1.3 Synset Search

The search bar accepts both synset names and lemmas and helps to disambiguate

unclear queries to WordNet-3.0. The user can enter a word or a phrase separated

by spaces or underscores. Moreover, Noun synsets such as “cat.n.01” or “stan-

dard_poodle.n.01” are also accepted. If the synset name is not recognized there is

no error displayed, but the search bar becomes empty again. In he case of entering a

word (lemma), the following pipeline is applied:

1. If there is only one synset corresponding to the query lemma, then this synset

is displayed.

2. If there is more than one synset, the user is forwarded to the subgraph of the

most common synset, displaying other disambiguation options under the synset

description card (see Figure 8-3). Each disambiguated synset is presented with

its synset name and definition.

After the query synset has been identified, the tool opens the required page with

the query synset as the target node in the f context. The subgraph display and the

synset description card are described in the following subsections.
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Figure 8-3: Disambiguation block for the “dog” lemma

8.1.4 Subgraph Display

Central (query) synset is displayed with the closest “relatives” at most two hops

away from the query in the central box of the page. It might be less if there are

no neighbours at a certain step away from the target node. It has green borders

highlighting that the current image is the target one. However, if the image from

the ImageNet is not presented, then the whole node is colored green. Other nodes

are not highlighted and colored in blue (in case there is no image to display).

Figure 8-2 shows the result page for the synset “maltese_dog.n.01” as an example
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to demonstrate synsets with images. Here all nodes have their representations from

WordNet-3.0. The node “maltese_dog.n.01” is a leaf node, therefore, it is placed at

the bottom of the graph and has only co-hyponyms at the same level, one hypernym

“toy_dog.n.01” and one hypo-hypernym “dog.n.01”. The arrows always have the

same direction: from abstract words to more concrete ones. Clicking on a node twice

will open a subgraph for this node, as it would be considered the next query word.

Therefore, it is possible to navigate through the graph even without queries. The

graph can be downloaded using the “Download graph” button.

At the bottom of the visualization box, there are centring and in/out zoom

buttons. The graph can be moved using the mouse or keys “left”, “right”, “up”

and “down” buttons on the screen.

8.1.5 Synset Description Card

To the right of the subgraph display, there is a card with the summary of the query

node. It consists of a definition, image from the ImageNet (if any), synset name, and

list of lemmas. If any information about the node is missing, the row is skipped. The

image for the node is selected randomly from the pool of the corresponding images,

usually the first one from the ImageNet dataset. According to the statistics, only

19.167 synsets have their images.

8.1.6 New Synsets Prediction

Figure 8-2 demonstrates the process of adding new nodes to the taxonomy using

the algorithm described in Section 5. First, we may generate a new node starting

from a leaf. By clicking twice on it, we can generate children for the “maltese_dog”

synset, which does not possess hyponyms. Otherwise, they would be displayed as

“maltese_dog” is the central node. Furthermore, by clicking twice on the target

(query) node we can predict a candidate child for it. Figure 8-2 shows that there

were generated new nodes — the names of dog breeds. Another option for new synset

generation is predicting a new node between two existing nodes (meaning that one

of them is hypernym to the other). To generate this node, the user has to click
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twice on the edge that connects them. This option has been added in case there

are unaccounted words that should be placed in the middle of the graph. Figure

8-2 depicts the “toy_dog.n.01” and “maltese_dog.n.01” nodes. By clicking twice on

the edge between them, a new node is generated. It is supposed to be more general

than its hyponym “maltese_dog.n.01” and narrower than the word “toy_dog.n.01”.

However, we have not yet evaluated the performance of this specific type of node

insertion. Consequently, we leave the application of our method for this subtask for

further research.

8.2 Conclusion

The growing popularity of taxonomies in different research and industry tasks has

created the need for a tree-like taxonomic subgraphs visualization platform. TaxFree

provides such a platform for the visualization and analysis of hypo-hypernymy

subgraphs. The tool allows users to explore wordnet synsets in context and predict

new synsets for the leaf nodes. Our work aims to bring taxonomies to a broader

audience, by making the WordNet interface more user-friendly than the standard

WordNet7 visualization. On this note, we conclude our thesis in the next chapter.

7http://wordnet.princeton.edu
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Chapter 9

Conclusion

In this last chapter, we discuss the results, the limitations of our work, and provide

an outlook on future research.

9.1 Conclusions

In this work, we performed a large-scale computational study of various methods

for Taxonomy Enrichment. We also presented datasets for studying the diachronic

evolution of wordnets for English and Russian, extending the monolingual setup of

the RUSSE’2020 shared task [Nikishina et al., 2020a] with a larger Russian dataset

and similar English datasets based on different versions of WordNet.

We presented a new Taxonomy Enrichment method called DWRank. This method

combines distributional information and information extracted from Wiktionary

outperforming the baseline method from Nikishina et al. [2020b] on the English

datasets. We also presented its extensions: DWRank-Graph and DWRank-Meta,

which use graph- and meta- embeddings via a common interface. We tested word2vec,

fastText, GloVe, Poincaré, node2vec, HOPE and TADW embeddings along with

GCN and GAT graph neural networks to predict hypernym synsets for the input

word.

Additionally, we explored the benefits of meta-embeddings (combinations of

embeddings) and graph embeddings for the task of Taxonomy Enrichment. On the

Russian datasets, DWRank-Meta performed best using fastText and word2vec word
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embeddings. For the English dataset, the combination of word (fastText, word2vec

and GloVe) and graph (TADW) embeddings demonstrated the best performance.

Our results show that the use of word vector representations is much more efficient

than any of the tested graph-based approaches. Moreover, our baseline method

(candidates retrieved from fastText nearest neighbour list and ranked with features

extracted from Wiktionary) does not benefit from graph-based methods. Namely,

combining the baseline scoring function with Poincaré and node2vec similarities

results in marginal improvements for some datasets, but this does not hold for all of

them. In this research, we also presented a novel candidate-free task formulation

for taxonomy enrichment. We performed a computational study of various methods

using knowledge from BERT. We compared different graph-based embeddings on the

task of hypernym prediction and projected them to the BERT vector space. Then we

identified the best position for the projected graph embedding to be injected to the

BERT model. The results demonstrate that incorporation of graph embedding to

the [MASK] embedding (at both “replace” and “mix” strategies) is beneficial in the

task of hyponym prediction using contextualized models like BERT. The proposed

task proven to be very challenging paving the way for future research.

Error analysis on Taxonomy Enrichment with predefined candidates reveals that

the correct synsets identified by graph-based models are usually retrieved by the

fastText-based model alone. This makes graph representations mostly irrelevant and

redundant. Nonetheless, there exist cases where graph representations were able to

correctly identify some hypernyms that are not captured by fastText. Moreover, in

the candidate-free Taxonomy Enrichment task, the incorporation of the transformed

graph embedding inside BERT is beneficial for new taxonomy entry prediction.

To sum up the section and this thesis in general, we provide answers to the

research questions we stated in Section 1.3.

R1: Is it possible to predict hypernyms for new words from an existing

taxonomy? It is definitely possible to predict the correct hypernyms for the

new words from an existing taxonomy even without definition. According to our

experiments, word vector representations are a simple, powerful, and extremely
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effective tool for Taxonomy Enrichment, as the contexts (in a broad sense) extracted

from pre-trained word embeddings (fastText, word2vec, GloVe) and their combination

are sufficient to attach new words to the taxonomy.

R2: Are graph-based embeddings beneficial for attaching new words to

the taxonomy? Graph embeddings are quite useful and efficient for the Taxonomy

Enrichment task and in combination with the textual representations (contextualized

or non-contextualized) demonstrate SOTA results for both standard and candidate-

free task formulations. The majority of graph embeddings implemented during this

work do not perform well on the task yielding word vector representations. However,

word embeddings still benefit from a combination with any type of graph embeddings.

The best improvement on Taxonomy Enrichment is achieved when combined with

TADW vector representations.

R3: Is it possible to predict new nodes using a pre-trained language

model like BERT and an existing taxonomy? Taxonomy Enrichment seems

to be quite a challenging task when the predefined list of new words is not given. Even

though BERT managed to correctly identify some words absent in the taxonomy,

the overall results are still low. The pre-trained model still struggles to suggest the

appropriate words for a given place in a taxonomy graph. Another problem is the

multi-word prediction, which can be solved using other sophisticated models like

GPT or T5 [Raffel et al., 2020], which could be the topic of further research.

9.2 Publicly Available Code, Datasets, and Models

Here are the links to the publicly available code:

• for the RUSSE-2020 competition: https://github.com/dialogue-evaluation/taxonomy-

enrichment

• for the Taxonomy Enrichment methods (with query words): https://github.com/skoltech-

nlp/diachronic-wordnets

• for candidate-free Taxonomy Enrichment: https://github.com/skoltech-nlp/taxgen,
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dataset

• https://doi.org/10.5281/zenodo.4279821

9.3 Future Directions

Despite the inconsistent results of graph-based methods, we propose a further

exploration of the graph-based features as this resource contains principally different

and complementary information to the distributional signal contained in text corpora.

One potential way to improve the performance of the graph features is to use more

sophisticated non-linear projection transformations from word to graph embeddings.

Another promising direction is to explore other types of meta-embeddings to combine

word and graph signals, e.g. GraphGlove [Ryabinin et al., 2020]. Moreover, we find

it promising to experiment with temporal embeddings such as those of Goel et al.

[2020] for the Taxonomy Enrichment task.

Another possible direction for further research is to develop a technology that

would allow us to represent knowledge as a combination of textual, image and graph

data. We aim at developing a fusion model based on the Transformer architecture.

In principle, it would be able to predict missing representations of taxonomic objects

as well as predict new objects that are not yet included in the taxonomy.

Overall, we set the following goals for future work:

• develop technology for multimodal taxonomy representation as well as for

automatic taxonomy extension without predefined candidates;

• analyze the efficiency of the fusion of text, image and graph vector representa-

tions for the Taxonomy Enrichment task;

• apply the developed methods to both English and Russian taxonomies (WordNet

and RuWordNet).

Our multimodal task formulation is fully novel, as there has been no previous

work considering the Taxonomy Enrichment task from the multimodal perspective.
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Glossary

AAEME Averaged Autoencoded Meta-Embeddings. 49, 76–78, 91, 93, 153–155,
158, 159

AI Artificial Intelligence. 17

API Application Programming Interface. 124

BERT Bidirectional Encoder Representations from Transformers. 13, 14, 38, 42–44,
56, 57, 96, 100–105, 107–110, 112–123, 131

CAEME Concatenated Autoencoded Meta-Embeddings. 49, 76, 77, 91, 152, 158,
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CC Common Crawl. 18, 80, 81, 113

CHSP Cross-modal Contextualized Hidden State Projection. 2, 104, 105, 109,
115–117, 121

DWRank Distributional Wiktionary-based synset Ranking. 2, 79–86, 89–94, 114,
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ELMo Embeddings from Language Model. 42, 100

FFNN Feed-Forward Neural Network. 38

GAT Graph Attention Network. 56, 83, 129

GCN Graph Convolutional Network. 51, 55, 83, 85, 129

GNN Graph Neural Network. 51, 55–57, 83

GPT Generative Pre-trained Transformer. 42, 100, 131

Graph-BERT Graph-based BERT. 56, 57

GraphSAGE GraphSAGE (SAmple and aggreGatE). 83, 85

HD Hypernym Discovery. 36, 37, 44, 87, 115

HOPE High-Order Proximity preserved Embeddings. 84, 85, 129
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ILI Inter-Lingual Index. 24, 25, 63, 65

KB Knowledge Base. 17–19, 22, 23, 35, 36

KG Knowledge Graph. 20, 22, 50

LOD Linked Open Data. 24, 25

LogReg Logistic Regression. 31, 37, 44, 73, 74, 79, 80

LSTM Long Short-term Memory. 34, 35, 44, 74, 75

MAP Mean Average Precision. 86–90, 93, 99

MLM Masked Language Modelling. 43

MLP Multi-layer Preceptron. 39, 107

NLP Natural Language Processing. 17, 44

NSP Next Sentence Prediction. 43

PPMI Parkinson’s Progression Markers Initiative. 69

SKOS Knowledge Organization Systems. 18

SLP Single-layer Preceptron. 38

SOTA state-of-the-art. 19, 20, 24, 38, 43, 58, 74, 84, 89, 91, 92, 99, 131

SVD Singular Value Decomposition. 48, 69, 76, 158, 159

SVM Support Vector Machine. 30, 31

TADW Text-Associated Deep Walk. 51, 52, 84, 85, 91, 94, 129–131

TE Taxonomy Enrichment. 19–27, 36–38, 49, 50, 58, 65, 66, 74–76, 79, 82, 85, 86,
89, 93, 100–102, 106, 115, 117, 121, 122, 129–132

TI Taxonomy Induction. 25, 35, 44, 49, 50, 81
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Appendix A

Ranked Examples and All Results

In this Appendix, we provide Tables A.1, A.2 and A.3 with the examples that

demonstrate the input and the output formats of the models as well as Tables A.6

and A.7 that show the performance of all models for both English and Russian

datasets.

From both tables A.1 and A.2 (underlined bold text denotes predictions of the

model from the ground truth), we can see that at least one of the correct candidates

usually appears in the list of candidates from word embeddings (first part of the

table), whereas among candidates from graph embeddings we do not see any decent

synsets. Poincaré embeddings retrieved by aggregating words from fastText provide

too broad concepts which are clearly too far from the correct answers (“activity.n.01”,

“exposure.n.03”, “action.n.02”). Node2vec embeddings are both semantically far and

abstract. GraphSAGE is sticking to the word “play” and is too far from the correct

answers in general. TADW manages to predict the correct synset “therapy.n.01” in

the list of candidates, however, its position is much lower than the positions of the

same synsets among the candidates provided by word embeddings-based systems.

The candidates for the words “play therapy” and “eyewitness” provided by models

based on text embeddings do contain at least one true answer in the list. The position

of such words varies from the fourth to the sixth position.

DWRank-Meta on both word and graph embeddings may provide the results that

improve the ranking, e.g. “therapy.n.01” is the correct candidate at the first place

in the list for both CAEME triple loss (fastText, word2vec and GloVe) approach
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and for the AAEME (fastText, word2vec, Glove, TASDW) approach. For the word

“eyewitness” the DWRank-Meta models on words and graphs the true candidates are

placed in the worse positions, however, they still win before the DWRank-GRaph

approach.

We also provide several examples of the new words correctly attached to the

taxonomy graph visualized by means of our demo visualization tool TaxFree in

Figures A-1, A-2, A-3, A-4.

Table A.1: Examples of predictions for nouns from the English v 1.6-3.0 dataset with
various models.

play therapy
psychotherapy.n.02, therapy.n.01

fastText (baseline) fastText (DWRank)
AAEME triplet loss

(fastText + word2vec +
GloVe)

AAEME
(fastText + word2vec +

GloVe + TADW)

play.n.03 play.n.03 therapy.n.01 therapy.n.01
play.n.01 activity.n.01 activity.n.01 medical_care.n.01

baseball_play.n.01 plan_of_action.n.01 medical_care.n.01 play.n.03
therapy.n.01 therapy.n.01 diversion.n.01 play.n.01
activity.n.01 play.n.01 play.n.01 activity.n.01
diversion.n.01 dramatic_composition.n.01 act.n.02 dramatic_composition.n.01

plan_of_action.n.01 outdoor_game.n.01 psychotherapy.n.02 plan_of_action.n.01
action.n.01 medical_care.n.01 play.n.03 show.n.04
action.n.02 golf.n.01 dramatic_composition.n.01 treatment.n.01

dramatic_composition.n.01 diversion.n.01 behaviour_therapy.n.01 act.n.02

GraphSAGE TADW Poincaré node2vec

baseball_play.n.01 play.n.03 activity.n.01 presentation.n.03
play.n.03 play.n.01 exposure.n.03 presentation.n.01
play.n.01 plan_of_action.n.01 rejection.n.01 operation.n.01

squeeze_play.n.02 dramatic_composition.n.01 agreement.n.06 performance.n.02
activity.n.01 activity.n.01 light_unit.n.01 contact.n.01
diversion.n.01 baseball_play.n.01 blessing.n.01 exposure.n.03

dramatic_composition.n.01 show.n.04 vulnerability.n.02 activity.n.01
attempt.n.01 diversion.n.01 action.n.02 exposure.n.08

plan_of_action.n.01 use.n.01 influence.n.02 union.n.04
play.n.17 action.n.02 assent.n.01 exposure.n.06
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Table A.2: Examples of predictions for nouns from the English v 1.6-3.0 dataset with
various models.

Ramadan
islamic_calendar_month.n.01, calendar_month.n.01, fast.n.01, abstinence.n.02

fastText (baseline) fastText (DWRank)
AAEME triplet loss

(fastText + word2vec +
GloVe)

AAEME
(fastText + word2vec +

GloVe + TADW)

islamic_calendar_month.n.01 islamic_calendar_month.n.01 calendar.n.01 islamic_calendar_month.n.01
calendar_month.n.01 calendar_month.n.01 islamic_calendar_month.n.01 calendar_month.n.01

holiday.n.02 time_period.n.01 calendar_month.n.01 time_period.n.01
religious_holiday.n.01 calendar.n.01 lunar_calendar.n.01 calendar.n.01

abstinence.n.02 islam.n.01 time_period.n.01 muslim.n.01
hindu_calendar_month.n.01 lunar_calendar.n.01 religionist.n.01 religionist.n.01

day.n.04 asian.n.01 muslim.n.01 religious_holiday.n.01
sacred_text.n.01 religion.n.02 religion.n.02 holiday.n.02

god.n.01 muslim.n.01 islam.n.01 lunar_calendar.n.01
place_of_worship.n.01 holiday.n.02 person.n.01 islam.n.01

graphSAGE TADW Poincaré node2vec

islamic_calendar_month.n.01 islamic_calendar_month.n.01 time_period.n.01 calendar_month.n.01
calendar_month.n.01 calendar_month.n.01 islamic_calendar_month.n.01 islamic_calendar_month.n.01

arab.n.01 time.n.02 religion.n.02 revolutionary_calendar_month.n.01
muslim.n.01 religious_holiday.n.01 time.n.02 islam.n.01
semite.n.01 calendar.n.01 measure.n.03 time_period.n.01

religionist.n.01 time_period.n.01 calendar_month.n.01 hindu_calendar_month.n.01
god.n.01 holiday.n.02 term.n.02 muharram.n.01
saint.n.02 lunar_calendar.n.01 year.n.01 shawwal.n.01
zoysia.n.01 god.n.01 time_off.n.01 rabi_i.n.01
islam.n.01 jewish_holy_day.n.01 leisure.n.01 rajab.n.01

Table A.3: Examples of predictions for verbs from the English v 1.6-3.0 dataset with
various models.

eyewitness
witness.v.01, watch.v.01

fastText (baseline) fastText (DWRank)
AAEME triplet loss

(fastText + word2vec +
GloVe)

AAEME
(fastText + word2vec +

GloVe + TADW)

be.v.01 inform.v.01 inform.v.01 inform.v.01
be.v.03 testify.v.02 testify.v.02 testify.v.02
be.v.08 communicate.v.02 communicate.v.02 confirm.v.02

watch.v.01 announce.v.01 see.v.10 communicate.v.02
testify.v.01 confirm.v.02 confirm.v.02 watch.v.01
testify.v.02 watch.v.01 watch.v.01 be.v.01
man.v.02 testify.v.01 witness.v.02 affirm.v.03
talk.v.01 affirm.v.03 affirm.v.03 testify.v.01
guard.v.01 report.v.03 testify.v.01 reject.v.01
confirm.v.01 record.v.01 verify.v.01 experience.v.01

graphSAGE TADW Poincaré node2vec

see.v.05 inform.v.01 confirm.v.02 affirm.v.03
testify.v.02 testify.v.02 examine.v.02 confirm.v.02
err.v.01 communicate.v.02 affirm.v.03 understand.v.02

confirm.v.01 declare.v.01 testify.v.02 uphold.v.03
pronounce.v.02 announce.v.01 inform.v.01 determine.v.08
idealize.v.01 testify.v.01 justify.v.02 stay_in_place.v.01
judge.v.02 record.v.01 declare.v.01 justify.v.02
negate.v.03 watch.v.01 validate.v.03 fall_asleep.v.01
reason.v.01 report.v.03 uphold.v.03 resettle.v.01

disbelieve.v.01 report.v.01 testify.v.01 settle.v.04
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Table A.4: Examples of predictions for verbs from the English v 1.6-3.0 dataset with
various models.

theologise
cover.v.05, broach.v.01, chew_over.v.01, think.v.03

fastText (baseline) fastText (DWRank)
AAEME triplet loss

(fastText + word2vec +
GloVe)

AAEME
(fastText + word2vec +

GloVe + TADW)

change.v.01 change.v.01 change.v.01 change.v.01
match.v.01 preface.v.01 preface.v.01 preface.v.01
date.v.03 make.v.03 convert.v.05 equal.v.03

reconstruct.v.01 date.v.03 match.v.01 date.v.03
determine.v.03 equal.v.03 chronologize.v.01 reconstruct.v.01

make.v.03 reason.v.01 reason.v.01 reason.v.01
speculate.v.01 chronologize.v.01 change_state.v.01 convert.v.05
convert.v.05 match.v.01 represent.v.09 formulate.v.03
reason.v.01 film.v.02 make.v.03 reflect.v.04

automatize.v.01 formulate.v.03 change.v.02 film.v.02

graphSAGE TADW Poincaré node2vec

process.v.02 change.v.01 state.v.01 settle.v.04
affect.v.01 preface.v.01 speculate.v.01 stay_in_place.v.01
change.v.01 date.v.03 reason.v.01 understand.v.02
dive.v.01 film.v.02 preface.v.01 study.v.03
tame.v.01 reconstruct.v.01 match.v.01 resettle.v.01

sensitize.v.02 equal.v.03 generalize.v.01 fall_asleep.v.01
convert.v.01 convert.v.05 announce.v.02 speculate.v.01
estimate.v.01 formulate.v.03 express.v.02 discover.v.07
subject.v.01 reason.v.01 add.v.02 explicate.v.02

compound.v.05 commemorate.v.03 equal.v.01 behave.v.02

Table A.5: Examples of predictions for verbs from the English v 1.6-3.0 dataset with
various models.

immunise
protect.v.01, defend.v.02, inject.v.01, administer.v.04

fastText (baseline) fastText (DWRank)
AAEME triplet loss

(fastText + word2vec +
GloVe)

AAEME
(fastText + word2vec +

GloVe + TADW)

indoctrinate.v.01 indoctrinate.v.01 teach.v.01 inject.v.01
inject.v.01 protect.v.01 treat.v.01 remove.v.01
defend.v.02 defend.v.02 insert.v.02 inform.v.01
remove.v.01 teach.v.01 prevent.v.01 change.v.01
treat.v.01 prevent.v.02 isolate.v.01 better.v.02
destroy.v.01 inject.v.01 inoculate.v.01 insert.v.02
prevent.v.02 insert.v.02 indoctrinate.v.01 defend.v.02
insert.v.02 defend.v.01 kill.v.01 kill.v.01
teach.v.01 kill.v.01 change.v.01 indoctrinate.v.01

administer.v.04 discriminate.v.02 enable.v.01 protect.v.01

graphSAGE TADW Poincaré node2vec

defend.v.02 protect.v.01 teach.v.01 receive.v.01
protect.v.01 indoctrinate.v.01 insert.v.02 insert.v.02

act.v.01 teach.v.01 inform.v.01 stay_in_place.v.01
negociate.v.01 defend.v.02 treat.v.01 get.v.01
attack.v.03 prevent.v.02 train.v.01 inject.v.01
prevent.v.02 inject.v.01 deceive.v.02 fall_asleep.v.01
insert.v.02 prevent.v.01 indoctrinate.v.01 accept.v.02

demilitarize.v.01 insert.v.02 misinform.v.01 settle.v.04
disarm.v.02 isolate.v.01 gull.v.02 resettle.v.01

foreswear.v.02 discriminate.v.02 interact.v.01 discover.v.07
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Figure A-1: Example of the correct attachment of the word “Cuban sandwich” (a
large sandwich made of a long crusty roll split lengthwise and filled with meats and
cheese (and tomato and onion and lettuce and condiments)) to the correct hypernym
“sandwich.n.01”

Figure A-2: Example of the correct attachment of the word “newmarket” (a long
close-fitting coat worn for riding in the 19th century) to the correct hypernym
“coat.n.01”
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Figure A-3: Example of the correct attachment of the word “walkman” (a pocket-sized
stereo system with light weight earphones) to the correct hypernym “stereo.n.01”

Figure A-4: Example of the correct attachment of the word “French loaf” (a loaf of
French bread) to the correct hypernym “loaf_of_bread.n.01”
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Table A.6: MAP scores for the taxonomy enrichment methods for the English
datasets. Numbers in bold show the best model within the category, underlined
numbers denote the best score across all the models. The combination of word
embeddings (fastText, word2vec, GloVe) is denoted as words.

method Nouns Verbs
1.6-3.0 1.7-3.0 2.0-3.0 1.6-3.0 1.7-3.0 2.0-3.0

Baseline [Nikishina et al., 2020b]

fastText [Bojanowski et al., 2017] 0.338±0.002 0.371±0.002 0.400±0.004 0.270±0.007 0.203±0.010 0.236±0.011
word2vec [Mikolov et al., 2013e] 0.142±0.001 0.178±0.002 0.164±0.004 0.229±0.006 0.155±0.008 0.212±0.009
GloVe [Pennington et al., 2014] 0.232±0.002 0.188±0.001 0.233±0.004 0.146±0.005 0.149±0.008 0.191±0.010

DWRank-Word

fastText [Bojanowski et al., 2017] 0.314±0.001 0.373±0.003 0.418±0.004 0.286±0.007 0.218±0.008 0.254±0.012
word2vec [Mikolov et al., 2013e] 0.244±0.001 0.271±0.003 0.298±0.004 0.099±0.005 0.118±0.008 0.141±0.010
GloVe [Pennington et al., 2014] 0.283±0.001 0.329±0.003 0.377±0.004 0.182±0.007 0.159±0.008 0.203±0.011

DWRank-Meta (Meta-embeddings based on Word Embeddings)

concat (words) 0.335±0.001 0.386±0.003 0.386±0.003 0.270±0.007 0.194±0.009 0.226±0.011
SVD (words) 0.333±0.001 0.399±0.003 0.456±0.004 0.277±0.007 0.209±0.010 0.264±0.012
CAEMEwords) 0.321±0.001 0.386±0.003 0.448±0.005 0.278±0.007 0.205±0.008 0.266±0.015
AAEME (words) 0.322±0.001 0.384±0.003 0.453±0.004 0.271±0.007 0.218±0.008 0.273±0.012

CAEME triplet loss (words) 0.332±0.001 0.394±0.003 0.451±0.004 0.273±0.007 0.205±0.007 0.256±0.013
AAEME triplet loss (words) 0.335±0.001 0.391±0.003 0.453±0.004 0.280±0.008 0.212±0.007 0.262±0.014

DWRank-Graph

GCN [Kipf and Welling, 2017] 0.175±0.001 0.249±0.002 0.267±0.002 0.162±0.006 0.113±0.005 0.149±0.010
GAT [Velickovic et al., 2018] 0.000±0.000 0.252±0.002 0.000±0.000 0.081±0.003 0.064±0.004 0.000±0.000
GraphSAGE [Hamilton et al., 2017] 0.214±0.001 0.282±0.002 0.224±0.003 0.127±0.004 0.114±0.004 0.090±0.008
TADW [Yang et al., 2015] (on fastText) 0.350±0.001 0.392±0.002 0.435±0.004 0.268±0.007 0.201±0.007 0.217±0.010
Poincaré [Nickel and Kiela, 2017] (top-5 fastText associates) 0.185±0.001 0.211±0.002 0.229±0.002 0.208±0.006 0.147±0.006 0.172±0.012
node2vec [Grover and Leskovec, 2016] (top-5 fastText associates) 0.270±0.001 0.312±0.002 0.341±0.004 0.175±0.006 0.128±0.007 0.118±0.012
HOPE [Ou et al., 2016] 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

DWRank-Meta (Meta-embeddings based on Word and Graph Embeddings)

SVD (words + node2vec) 0.343±0.001 0.383±0.003 0.434±0.005 0.272±0.006 0.194±0.009 0.239±0.011
CAEME (words + node2vec) 0.335±0.001 0.379±0.003 0.426±0.004 0.242±0.005 0.184±0.009 0.221±0.012
AAEME (words + node2vec) 0.350±0.001 0.394±0.003 0.446±0.004 0.252±0.007 0.184±0.008 0.208±0.012

SVD (words + TADW) 0.355±0.001 0.414±0.003 0.472±0.004 0.288±0.007 0.222±0.009 0.280±0.013
CAEME (words + TADW) 0.350±0.001 0.404±0.003 0.458±0.004 0.267±0.007 0.212±0.007 0.247±0.011
AAEME (words + TADW) 0.367±0.001 0.418±0.002 0.480±0.004 0.283±0.007 0.227±0.007 0.260±0.012

SVD (words + GCN) 0.323±0.001 0.385±0.003 0.443±0.004 0.260±0.005 0.209±0.009 0.249±0.011
CAEME (words + GCN) 0.331±0.001 0.395±0.003 0.457±0.004 0.251±0.006 0.207±0.009 0.235±0.012
AAEME (words + GCN) 0.331±0.001 0.392±0.003 0.456±0.004 0.243±0.006 0.200±0.008 0.228±0.012

SVD (words + GraphSAGE) 0.338±0.001 0.401±0.003 0.464±0.004 0.239±0.006 0.194±0.009 0.221±0.011
CAEME (words + GraphSAGE) 0.323±0.001 0.382±0.003 0.435±0.004 0.200±0.006 0.170±0.007 0.202±0.01
AAEME (words + GraphSAGE) 0.343±0.001 0.406±0.003 0.468±0.004 0.238±0.007 0.178±0.008 0.209±0.011

State-of-the-art Approaches

WBSR (Top-1 RUSSE’2020 for nouns) 0.333±0.002 0.393±0.003 0.436±0.003 0.252±0.006 0.206±0.011 0.252±0.013
WBSR, no search engine features 0.251±0.001 0.309±0.003 0.344±0.004 0.231±0.006 0.180±0.008 0.222±0.009

hypo2path rev [Cho et al., 2020] 0.264±0.001 0.283±0.003 0.238±0.007 0.173±0.005 0.104±0.008 0.118±0.009
hypo2path [Cho et al., 2020] 0.252±0.002 0.261±0.002 0.208±0.006 0.162±0.005 0.093±0.006 0.067±0.008
hypo2path transformer 0.218±0.002 0.229±0.002 0.057±0.002 0.140±0.003 0.120±0.006 0.100±0.008

TaxoExpan [Shen et al., 2020] 0.004±0.000 0.003±0.000 0.054±0.002 0.001±0.000 0.000±0.000 0.000±0.000
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Table A.7: MAP scores for the taxonomy enrichment methods for the Russian
datasets. Numbers in bold show the best model within the category, underlined
numbers denote the best score across all the models.

method nouns verbs
non-restricted restricted non-restricted restricted

Baseline

fastText [Bojanowski et al., 2017] 0.414±0.001 0.549±0.006 0.296±0.004 0.389±0.011
word2vec [Mikolov et al., 2013e] 0.263±0.001 0.427±0.006 0.343±0.004 0.445±0.013

DWRank (Word Embeddings)

fastText [Bojanowski et al., 2017] 0.419±0.001 0.572±0.005 0.337±0.003 0.428±0.007
word2vec [Mikolov et al., 2013e] 0.296±0.002 0.569±0.005 0.250±0.003 0.284±0.011

DWRank (Meta-embeddings based on Word Embeddings)

concat (words) 0.422±0.001 0.589±0.005 0.351±0.004 0.426±0.009
SVD (words) 0.461±0.001 0.600±0.005 0.426±0.005 0.475±0.010
CAEME (words) 0.400±0.001 0.561±0.005 0.342±0.003 0.416±0.008
AAEME (words) 0.456±0.001 0.582±0.005 0.368±0.004 0.442±0.009

CAEME triplet loss (words) 0.449±0.001 0.581±0.005 0.374±0.003 0.427±0.010
AAEME triplet loss (words) 0.474±0.001 0.593±0.006 0.399±0.004 0.449±0.010

DWRank (Graph embeddings)

GCN [Kipf and Welling, 2016a] 0.183±0.001 0.306±0.005 0.220±0.003 0.287±0.009
GAT [Velickovic et al., 2018] 0.142±0.001 0.318±0.004 0.000±0.000 0.000±0.000
GraphSAGE [Hamilton et al., 2017] 0.176±0.001 0.348±0.005 0.181±0.003 0.226±0.008
TADW [Yang et al., 2015] 0.417±0.001 0.562±0.005 0.328±0.003 0.423±0.008
Poincaré [Nickel and Kiela, 2017] (top-5 fastText associates) 0.336±0.001 0.476±0.005 0.244±0.004 0.339±0.009
node2vec [Grover and Leskovec, 2016] (top-5 fastText associates) 0.343±0.002 0.477±0.005 0.226±0.003 0.322±0.010
HOPE [Ou et al., 2016] 0.000±0.000 0.000±0.000 0.003±0.001 0.003±0.001

DWRank (Meta-embeddings based on Word and Graph Embeddings)

SVD (words + node2vec) 0.367±0.001 0.521±0.005 0.252±0.003 0.351±0.010
CAEME (words + node2vec) 0.370±0.001 0.533±0.005 0.267±0.003 0.362±0.010
AAEME (words + node2vec) 0.373±0.001 0.529±0.005 0.272±0.003 0.358±0.010

SVD (words + TADW) 0.469±0.001 0.604±0.006 0.394±0.005 0.455±0.010
CAEME (words + TADW) 0.429±0.001 0.571±0.005 0.349±0.003 0.437±0.009
AAEME (words + TADW) 0.461±0.001 0.584±0.005 0.362±0.004 0.439±0.009

SVD (words + GCN) 0.395±0.001 0.554±0.005 0.291±0.004 0.356±0.009
CAEME (words + GCN) 0.389±0.001 0.544±0.005 0.302±0.003 0.381±0.008
AAEME (words + GCN) 0.386±0.001 0.545±0.006 0.295±0.004 0.365±0.008

SVD (words + GraphSAGE) 0.410±0.001 0.603±0.005 0.336±0.004 0.426±0.009
CAEME (words + GraphSAGE) 0.321±0.001 0.541±0.005 0.266±0.004 0.345±0.007
AAEME (words + GraphSAGE) 0.409±0.001 0.577±0.006 0.323±0.004 0.419±0.009

State-of-the-art Approaches

WBSR (Top-1 RUSSE’2020 for nouns) 0.393±0.002 0.552±0.005 0.293±0.004 0.428±0.010
WBSR, no search engine features 0.369±0.002 0.497±0.005 0.267±0.004 0.387±0.009
Top-1 RUSSE’2020 for verbs: [Dale, 2020b] 0.288±0.001 0.418±0.006 0.341±0.004 0.452±0.012

hypo2path [Cho et al., 2020] 0.061±0.000 0.097±0.002 0.137±0.003 0.174±0.009
hypo2path rev [Cho et al., 2020] 0.246±0.001 0.342±0.006 0.151±0.003 0.194±0.008
hypo2path rev transformer [Cho et al., 2020] 0.234±0.001 0.331±0.004 0.152±0.003 0.201±0.008

TaxoExpan [Shen et al., 2020] 0.007±0.000 0.006±0.001 0.009±0.001 0.008±0.002
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