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Abstract

In this thesis, we study the question of thermalization dynamics in classical and

quantum many-body systems. Specifically, we investigate the dynamics starting

with certain “exceptional” nonequilibrium states. These states are exceptional for

two reasons: First, they correspond to a subset of initial conditions of measure zero.

Second, their thermalization patterns are noticeably different from that of typical

states.

As the first class of exceptional states, we study the stability of many-body pe-

riodic trajectories in spin chains and the quantum dynamics of the corresponding

initial states. In particular, we consider translationally invariant chains of interact-

ing spins in both quantum and classical cases. As initial conditions, we consider all

spins pointed along the same direction. Despite their simple character, such initial

conditions lead to a number of interesting equilibration properties. Namely, classi-

cal periodic trajectories may exhibit topologically different regimes of motion, and

some of them are stable for relatively large system sizes. Furthermore, the stabil-

ity of a periodic trajectory has highly non-trivial dependence on the system’s size.

We also uncover the existence of time quasicrystals where the periodic trajectory

spontaneously transitions to quasiperiodic time dynamics with lowered translational

symmetry. On the quantum side of the aforementioned problem, we discover rem-

nants of periodic classical dynamics in chains of spins-1 and higher. These remnants

manifest themselves as “finite-size quantum scars” – the eigenstates in finite systems

with anomalously low entanglement entropy. These eigenstates are responsible for

the slowed relaxation of initial conditions. We also introduce “quantum separatrix”,

which by analogy with classical separatrix distinguishes between two topologically

different regimes of motion.

As a second class of exceptional states, we introduce Almost Complete Reviving

states. Specifically, we consider a lattice of spins 1/2 and demonstrate how to

construct a quantum state such that a given spin 1/2 is maximally polarized initially

and then exhibits an almost complete recovery of the initial polarization at a later

predetermined moment of time. Experimental observation of such revivals may be
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utilized to benchmark quantum simulators. We further propose to utilize these

revivals for delayed disclosure of a secret.

As a third class of exceptional states, we study a heavy particle interacting with

the gas of light particles. It is believed that, in such a setup, the stationary reduced

density matrix of a heavy particle should be classical-like due to the interaction

with the gas. Therefore, if a heavy particle is initially in a superposition of quantum

states localized around two distant points, such an initial state is expected to be

highly unstable to decoherence. Nevertheless, we discover that there is a measure-

zero subset of eigenstates in the middle of the spectrum corresponding to a heavy

particle being in a highly nonclassical state of the kind described above.
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Fig. from ref [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4-2 The maximal 𝑙max and average 𝑙av coherence lengths for eigenstates
of the nonintegrable Hamiltonian for the cases of the presence ( 𝜖 =
0) and absence (𝜖 = 0.1) of the spatial reflection symmetry. The
system is half-filled with fermions, with 𝑁 = 𝐿/2 for even 𝐿 and
𝑁 = (𝐿 − 1)/2 for odd 𝐿. Other parameters of the Hamiltonian are
the same as in Fig. 4-1. Fig. from ref [2]. . . . . . . . . . . . . . . . 91
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Chapter 1

Introduction

1.1 Dynamic thermalization

It is a fundamental thermodynamic assumption that an isolated many-body sys-

tem must reach the stationary state of thermal equilibrium [5]. The process of

reaching thermal equilibrium can be referred to as thermalization. In reality, we ob-

serve many out-of-equilibrium systems such as stars, living cells, synthetic quantum

systems, or even glacé coffee. From these observations, two questions naturally arise:

when will the system reach equilibrium, and what happens during thermalization?

Furthermore, there are known many-body systems which do not thermalize at all

[6–12]. This raises another question about applicability limits of the thermalization

assumption.

Dynamic thermalization research addresses these questions by studying the dy-

namics of non-equilibrium states in many-body systems. Of particular interest are

systems resisting thermalization in one way or another. A number of physical mech-

anisms are responsible for suppressed thermalization in many-body systems. Un-

derstanding these mechanisms may help determine the timescales when we can or

cannot expect a certain state to thermalize.

Dynamic thermalization is closely related to the ergodic hypothesis. The system

is called ergodic if, during its evolution, any initial equilibrium state eventually

comes arbitrarily close to every other equilibrium state with the same energy; if the

above phenomena is not observed on a certain time scale, then we can state that on

14



Chapter 1. Introduction 1.1. Dynamic thermalization

this particular time scale system is not ergodic.

One famous example of unexpectedly non-thermal behavior is known as Fermi-

Pasta-Ulam-Tsingou problem [7]. In this problem, a vibrating non-linear string is

modeled as a discrete system of nearest-neighbour coupled oscillators with non-linear

interaction. Initially, the string has a simple half-sinusoidal form; thus, all but one

Fourier modes have zero energy. It is expected that after some time, due to non-

linear interactions, the energy of the first mode will be equally distributed over all

the others Fourier modes. However, results of the simulation show “very little, if

any, tendency towards equipartition of energy among the degrees of freedom” [7].

Unusual thermalization patterns were also discovered in different quantum many-

body systems. One of the first experiments which induced significant interest in the

thermalization of quantum many-body systems is known as ”A Quantum Newton’s

cradle” [6]. In this experiment, a 1D Bose-gas of more than a hundred 87Rb atoms

with point-like interactions was observed to remain in the out-of-equilibrium state

even after thousands of collisions. The physical mechanism responsible for such a

long-living our-of-equilibrium state is rooted in quantum integrability [13–16].

1.1.1 Integrable and chaotic dynamics

Integrable systems are characterized by large amounts of conserved quantities

known as integrals of motion. In classical dynamics, integrability leads to the absence

of exponential sensitivity to initial conditions. In other words, if the system is

integrable, the discrepancy between two initially close trajectories will not grow

exponentially with time. In quantum case presence of the extensive amount of

integrals of motion often leads to a scenario when dynamical wavefunction is locked

in a certain sector of Hilbert space, and thus it cannot access all quantum states

with given energy. There are many experimental [6, 17] and theoretical [12, 18–21]

examples of suppressed thermalization in integrable systems. Let us also mention

that, although observables in integrable systems, in general, do not relax to their

thermal values, they can relax to the values predicted by the Generalized Gibbs

Ensemble [22–24]. Integrability is not the only physical mechanism that leads to

unusual thermalization properties. There are many others, such as, for example,
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disorder which may lead to many-body localization[25, 26], or long-range interactions

which lead to glassy behaviour[9–11, 27], or constraints in Hilbert space which lead

to quantum scars, which we will discuss further.

Classical interacting many-body systems, in general, are known to exhibit chaotic

dynamics. We will call the system chaotic if it exhibits exponential sensitivity to

small deviations of initial conditions. In particular, if the system possesses two

initially close phase trajectories which exponentially diverge after some time, then

the system is chaotic. To describe the divergence rate quantitatively described, the

formalism of Lyapunov exponents [28, 29] is usually employed.

In the present thesis, we focus on chaotic classical and non-integrable quantum

systems that, in particular, do not have disorder, long-range interactions or Hilbert

space constraints.

1.1.2 Quantum systems away from integrability

Because of the uncertainty principle, the notion of chaos cannot be directly trans-

ferred from classical physics to quantum theory. Indeed, to define chaos in classical

systems, we use infinitesimally close trajectories, whereas, in quantum theory, the

very notion of phase-space trajectory does not make much sense. Furthermore, the

evolution of wavefunction is governed by the Schrödinger equation, which is linear

and thus does not exhibit exponential sensitivity to initial conditions. Simulta-

neously, the correspondence principle states that quantum theory shall reproduce

classical physics in the limit of large quantum numbers. If the correspondence prin-

ciple is correct, then there should be some quantum mechanism that would result

in exponential sensitivity to initial conditions in the classical limit.

Finding manifestation of quantum chaos or even rigorously defining quantum

chaoticity has been a long-standing problem that goes far beyond the scope of the

present thesis. There are many ways to introduce a measure of quantum chaos, for

example, by utilizing random matrix theory [30–32], or adiabatic gauge potential

[33]. We will discuss some of these measures below; for now, let us focus on the

dynamical properties of chaotic quantum systems.

The main dynamical feature of chaotic quantum systems is that such systems
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exhibit a clear tendency toward equilibration. In this regard, the dynamics of chaotic

quantum systems are usually quite the different of that of integrable ones. The

natural question here is: how do we know if a particular quantum system thermalizes

or not? From the point of view of dynamic thermalization research, we shall look

at the dynamics of out-of-equilibrium states. If every state we test reaches thermal

equilibrium, we can conclude that the system is chaotic (at least for the subset

of initial states we considered). Another practical way to determine whether the

system is chaotic or not is to look at the system’s eigenstates instead of dynamical

properties.

Eigenstate thermalization hypothesis

Let us briefly recapitulate the main essence of the Eigenstate Thermalization

Hypothesis (ETH) [34–39]. Let us consider some many-body system of size 𝐿 de-

scribed by the Hamiltonian 𝐻, with eigenstates |𝐸𝑛⟩, and let �̂� be some few-body

observable, eigenenergies 𝐸𝑛 are ordered. The Hamiltonian 𝐻 satisfies Eigenstate

Thermalization Hypothesis (ETH) if diagonal matrix elements 𝑂𝑛𝑛 = ⟨𝐸𝑛|�̂�|𝐸𝑛⟩

change slowly with 𝑛, and the difference between neighbouring values 𝑂𝑛𝑛−𝑂𝑛−1,𝑛−1

is exponentially small in 𝐿, and the off-diagonal elements ⟨𝐸𝑚|�̂�|𝐸𝑛⟩ are also expo-

nentially small in 𝐿.

There is also an assumption that if the Hamiltonian 𝐻 satisfies the above con-

ditions, then it is expected that any initial out-of-equilibrium state will eventually

come to thermal equilibrium. Different many-body Hamiltonians were proven to ap-

proximately satisfy the above conditions with good precision once the system size is

large enough [40–42]. It also was verified that ETH is violated in integrable systems

or systems close to integrability [12, 21, 43]. There are also systematic approaches

to constructing counterexamples to ETH [44].

Level spacing statistics

Another practical approach that is utilized as a measure of quantum chaos is level

spacing statistics. By analyzing the distribution of eigenenergies of quantum many-

body systems, it is often possible to tell if the system will resist thermalization or not.
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Methods based on level spacing statistics are relying on random matrix theory [30–

32]. The main idea is based on the two following conjectures. First conjecture [45–47]

is that if the system is chaotic, its spectrum must exhibit level repulsion, and its

level statistics should be described by either Gaussian Orthogonal Ensemble (GOE),

Gaussian Unitary Ensemble (GUE) or Gaussian Symplectic Ensemble (GSE). The

second conjecture (Berry-Tabor conjecture) [48] is that if the system is integrable,

it possesses a vast amount of integrals of motion and, therefore many uncorrelated

energy levels which can cross. Thus the system’s energy level statistics should be

Poisson-like in most cases.

Even when exact diagonalization is numerically doable, two additional steps are

required to analyze level spacing statistics correctly. The first step is to remove

all the system symmetries, such as translational or reflection symmetries. Other-

wise, one can confuse a chaotic spectrum with an integrable one. The second step

is to perform the so-called unfolding of the spectrum by resetting eigenvalues to

dimensionless values with unit mean spacing.

One statistical quantity which allows easily distinguish between chaotic and inte-

grable spectral statistics is the so-called 𝑟-value [49, 50], which is defined as a mean

value of the following quantity:

𝑟𝑛 =
min(𝑠𝑛, 𝑠𝑛−1)

max(𝑠𝑛, 𝑠𝑛−1)
= min

(︂
𝑟𝑛,

1

𝑟𝑛

)︂
, (1.1)

where 𝑟𝑛 = 𝑠𝑛/𝑠𝑛−1 and 𝑠𝑛 = 𝐸𝑛+1 − 𝐸𝑛, here 𝐸𝑛 is eigenenergy. Eigenenergies

𝐸𝑛 are supposed to be ordered and non-degenerate. The 𝑟-value itself is equal to

mean value of 𝑟𝑛 for all 𝑛, let us denote it as ⟨𝑟⟩. If the system is integrable,

for large enough system size its 𝑟-value must converge to the 𝑟-value of Poisson

statistics, namely ⟨𝑟⟩𝑝 ≃ 0.38. If the system is non-integrable, then depending on the

symmetry its 𝑟-value should converge to 𝑟-value for either GOE ⟨𝑟⟩GOE ≃ 0.53, GUE

⟨𝑟⟩GUE ≃ 0.59 or GSE ⟨𝑟⟩GSE ≃ 0.67. In the present thesis, we mostly study non-

integrable systems with spectral statistics similar to that of Gaussian Orthogonal

Ensemble.
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1.1.3 Quantum scars

Let us review one of the most recent examples of non-thermal behavior in non-

integrable quantum many-body systems.

Quantum scars in billiard

To be consistent, let us first discuss regular quantum scars introduced by Heller

in [4]. Quantum scars are special eigenstates of classically chaotic quantum systems

characterized by probability density concentrated around classical periodic trajec-

tories with short periods.

Historically quantum scars were introduced in chaotic billiards. If we consider

eigenstates of a symmetric chaotic billiard with high quantum numbers (far from

the ground state), the majority of these states are indistinguishable on the level of

observables, such as probability density |Ψ(r)|2. Indeed, from Fig. 1-1 (a), we see

that probability density for a typical eigenstate is rather featureless. Examining all

eigenstates shows some special eigenstates with a clearly non-uniform probability

distribution. In this case, the probability distribution is concentrated around clas-

sical unstable periodic trajectories with short periods. In Fig. 1-1 (b), probability

density for such scarred eigenstate is plotted as well as the corresponding classical

unstable periodic orbit.

Quantum many-body scars

While billiards in which quantum scars were historically discovered possess only

two degrees of freedom. There have been a series of recent discoveries of scarred

eigenstates in quantum many-body systems. A notion of quantum many-body scars

has been introduced in [51]. It refers to atypical non-ergodic many-body eigenstates

[52] that violate the strong eigenstate thermalization hypothesis (ETH) [34, 35]. It

has been demonstrated in [51] that a natural initial state of the PXP spin model has

large overlaps with quantum scars, which results in long-living oscillations observed

experimentally in [8].

An explosive interest in quantum many-body scars initiated in 2018 by the pub-
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Figure 1-1: Picture from the paper [4]. Probability density |Ψ(r)|2 in chaotic billiard.
(a) Close to uniform probability density for a typical eigenstate with high quantum
number. (b) Probability density corresponding to the scarred eigenstate. Solid line
corresponds to the classical unstable periodic orbit.
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lication [51] has led to recent discoveries of quantum many-body scars in a number

of models, including kinematically constrained models [53], special configurations of

spin-chains [54–56] or optical lattices [57].

Quantum many-body scars offer a very interesting mechanism of non-thermal

behavior. If initially out of equilibrium state has high overlap with scarred eigen-

states, it might resist thermalization since it can be practically “locked” in a small

fraction of the systems’s Hilbert space. Alternatively, if the initial state does not

significantly overlap with a scarred state, it is expected that such a state will quickly

relax to the thermal equilibrium state as in the usual non-integrable system.

The phenomenon of quantum scars, among other things, clearly demonstrates

that thermalization dynamics can be affected not only by the special properties of

the system but also by the initial state itself. In other words, there are systems

where some specially selected out-of-equilibrium states have significantly different

thermalization behaviour than randomly selected out-of-equilibrium states.

1.1.4 Spin systems

In two chapters of the present thesis, we focus on quantum and classical spin

systems. Namely, we study the dynamics of special out-of-equilibrium states in

such systems. Quantum spin systems are attractive theoretical and experimental

platforms for studying various many-body phenomena. Indeed, an enormous amount

of theoretical research is devoted to this subject, as well as successful experimental

validation of different spin models[10, 11]. A spin system can be integrable [13, 14,

58] or non-integrable [40, 59], there are spin systems which satisfy ETH with great

precision [40, 41]. There are quantum spin chains exhibiting quantum many-body

scars [54–56], it can exhibit glassy behaviour [11] or many-body localization [60].

It is also important that quantum spin systems have explicit classical counterparts

and vice versa. This fact allows one to study quantum to classical transition.

1.2 Unusual equilibration. Role of initial states

As we discussed above, a number of physical mechanisms are responsible for un-
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usual equilibration in many-body systems. In this project, we focus on the initial

states and do not put any special restrictions on the systems under consideration. In

particular, we consider Hamiltonians robustly non-integrable and possess no prop-

erties such as constraints, disorder, or long-range interactions. Initial states under

consideration are, on the contrary, special. Let us now briefly preview the settings

and the results to be considered in the present thesis.

1.2.1 Fully polarized spin states

First, we study polarized initial states in classical and quantum translationary

invariant spin systems. Such states are natural for spin systems, but their ther-

malization is distinctly different from that starting from a generic initial state. By

generic state, we mean states possessing a degree of randomness in initial spin ori-

entation in classical case and thermal states in quantum one.

In the case of classical dynamics, our study reveals a very rich structure behind

the Lyapunov spectrum of the system. In particular, we discover a long-living in-

termediary regime that the system enters before turning into a completely ergodic

system. Further, we demonstrate that quantum and classical spins are related when

quantum spins are large. In particular, such relation is manifested by the existence

of special eigenstates, which are remnants of classical periodic trajectories. We also

introduce the so-called quantum separatrix, which distinguishes between different

regimes of motion, and we demonstrate that the location of this separatrix may be

predicted from classical value with reasonable accuracy. We observe slow thermaliza-

tion of such initial conditions for values of quantum spin higher than 1/2. We also

observe several eigenstates with values of local observables significantly deviating

from equilibrium values.

1.2.2 Almost complete revivals

Secondly, we introduce the phenomenon of almost complete revivals (ACR) of

local spin polarization in quantum spin lattices. We consider a non-integrable lattice

of interacting spins 1/2 and show how to construct a quantum state such that a
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given spin 1/2 is maximally polarized initially and then exhibits an almost complete

recovery of the initial polarization at a predetermined moment of time. We refer to

such special initial states as “ACR” states.

Such states may be constructed for a wide class of finite non-integrable spin

Hamiltonians. Furthermore, let us emphasize that the revival time can also be

chosen arbitrarily. We also demonstrate that ACR is present in quantum systems

of 5-25 spins.

We further discuss the statistical properties of ACR and its connection to the

theory of relaxation. We also show that ACR is suppressed for high quantum spins,

which agrees with the classical picture, where such revivals at an arbitrary moment

are generally impossible due to the chaoticity of classical many-body systems. In

addition, we propose several potential applications of ACR, such as benchmarking

of quantum simulators, entanglement-assisted sensing, and delayed disclosures of a

secret.

1.2.3 Manifestly non-classical eigenstates in a model of colli-

sional decoherence

Lastly, we address the decoherence of a mesoscopic particle in a gas of microscopic

particles. In this last chapter, we focus on special eigenstates which, at first sight,

look highly out-of-equilibrium. It is expected that, if the mesoscopic particle is

prepared in the so-called “Schrödinger’s cat state”, namely in a highly nonclassical

spatial superposition at two distant points, then such a state should be highly out of

equilibrium. Indeed, one expects those light particles would quickly “measure” the

heavy one, thereby destroying the superposition. Nevertheless, we discover a small

subset of eigenstates in the middle of the spectrum in which heavy particle is highly

non-classical in the sense mentioned above, contrary to the expectations.
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Chapter 2

Fate of periodic trajectories and

weakly scarred quantum dynamics in

many spin systems

2.1 Preliminary remarks

2.1.1 Stability of periodic trajectories

In a chaotic many-body system, the evolution of a trajectory from randomly

selected initial conditions usually manifests exponential instability with respect to

small perturbation of the initial conditions. To quantitatively characterize such

instabilities, one usually utilizes the formalism of Lyapunov exponents [61] which

has been applied successfully for a number of paradigmatic models of many-body

physics [62–66]. The maximal Lyapunov exponent 𝜆max (exact definition will be

provided later in this section) quantitatively characterize the growth of the distance

𝑑(𝑡) ∼ 𝑒𝜆max𝑡 between two initially close phase trajectories.

Usually, if a system has a positive maximal Lyapunov exponent 𝜆max, it means

that the almost all randomly selected trajectories in the system are unstable. The

periodic trajectories, however, require special consideration. In particular, as we will

show below, there are certain cases when a chaotic system possesses a stable periodic

trajectory. The stability of such a trajectory cannot be described with the maximal
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Figure 2-1: Possible scenarios for the evolution of initially periodic trajectory. The
time-evolution of initially periodic trajectory was obtained as a solution of (2.4).
The dynamics of the first spin S1(𝑡) is plotted for 𝑡 ∈ [0, 200], 𝐽 = 1.76. (a) 𝐿 = 23
periodic trajectory is stable (b) 𝐿 = 6 periodic trajectory goes to neither periodic nor
ergodic transient regime (c) 𝐿 = 13 periodic trajectory is unstable and eventually
becomes ergodic.

Lyapunov exponent 𝜆max. For this reason, we will introduce a special “periodic”

Lyapunov exponent 𝜆𝑝, describing the stability of the periodic trajectories.

As we will show in this chapter, in a classical chaotic spin system, a trajectory

close to the periodic one can have zero Lyapunov exponent 𝜆𝑝 = 0, thus being perpet-

ually periodic. We will also demonstrate the existence of a remarkable intermediate

quasiperiodic regime when the periodicity is lost, but the trajectory becomes stable.

Possible scenarios for the evolution of the initially periodic trajectory and all three

regimes are illustrated in Fig. 2-1. Spin trajectories to be shown in this figure will

be discussed further in detail.

The present research was motivated by our interest in exploring whether the pe-

riodic trajectories in many-body classical systems entail any quantum consequences.

Specifically, we consider rather generic translationally invariant lattices of interact-

ing spins — classical and quantum, with the former representing the classical limit

of the latter. For the classical lattices, we investigate the stability of a class of peri-
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odic trajectories with all spins pointing in the same direction and then explore the

corresponding dynamics of the quantum lattices. In other words, we describe the

“fate of periodic classical trajectories” in two senses: fate in the sense of their sta-

bility in purely classical systems and fate in transitioning from classical to quantum

dynamics.

At the outset of this investigation, we expected that the signatures of the peri-

odic trajectories have little chance of leading to atypical scar-like eigenstates in the

thermodynamic limit because the trajectory would need to close onto itself on the

timescale faster than the inverse of the sum of all positive Lyapunov exponents of

the system known as the Kolmogorov-Sinai entropy, which grows proportionally to

the system size. On the other hand, we hoped that the signatures of the periodic

dynamics would survive in the initial relaxation of the system even in the thermo-

dynamic limit and in the appearance of scar-like eigenstates for finite quantum spin

systems. Both of the above expectations were largely borne out by our numerical

results. Yet, this investigation uncovered rather unexpected stability and the as-

sociated rich behavior of the periodic classical trajectories, which supposedly made

the quantum signatures of these trajectories more robust.

We considered a lattice of spins well-defined both classically and quantum me-

chanically. In the model under consideration, periodic trajectories tend to be more

stable when the interaction between classical spins is strengthened compared with

an external magnetic field. On the quantum side we simulate chains of finite sizes

for quantum spins 𝑆 = 1
2
, 1, 3

2
, 2. For quantum spins higher than one, we observed

the emergence of some peculiar eigenfunctions characterized by a low entanglement

entropy which reside in the bulk of the otherwise quantum chaotic spectrum. We

refer to these eigenfunctions as “finite size quantum scars” (FSQS). Importantly such

scars are responsible for the atypically long relaxation of quantum observables in

the thermodynamic limit.

2.2 General formulation

We consider translationally invariant periodic chains of 𝐿 interacting spins –
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classical and quantum – described by the Hamiltonian:

ℋ = −
𝐿∑︁
𝑖=1

(︀
𝐽𝑆𝑥

𝑖 𝑆
𝑥
𝑖+1 + 2𝐽𝑆𝑦

𝑖 𝑆
𝑦
𝑖+1

)︀
+

𝐿∑︁
𝑖=1

(ℎ𝑆𝑥
𝑖 + ℎ𝑆𝑦

𝑖 ) , (2.1)

where, in the classical case, 𝑆𝛼
𝑖 are the components of 3-dimensional vectors S𝑖 =

(𝑆𝑥
𝑖 , 𝑆

𝑦
𝑖 , 𝑆

𝑧
𝑖 ) of unit length, and in quantum case 𝑆𝛼

𝑖 are spin-𝑆 operators, 𝑖 is the

lattice index, 𝛼 = 𝑥, 𝑦, 𝑧 is the spin projection index, 𝐽 and ℎ are the interaction

constant and the local field parameter, respectively. Throughout the chapter, we fix

ℎ = 1 and consider the following values of quantum spin 𝑆 = 1
2
, 1, 3

2
, 2. We also set

ℏ = 1 where relevant. The above particular form of the Hamiltonian is known to

lead to a well-defined non-integrable behavior in the quantum case even for relatively

modest system sizes. The anisotropy in the XY plane is responsible for the robust

absence of quantum integrability and for the existence of intermediate quasiperiodic

classical regime which will be introduced further.

We investigate one special type of nonequilibrium initial conditions correspond-

ing to all spins polarised in the same direction. Specifically, we choose them polarised

along the 𝑧-direction, which, according to Hamiltonian (2.1), imply that the initial

energy 𝐸0 is equal to zero, which, in turn, corresponds to the infinite temperature,

implying that the initial state belongs to the energy shell of maximum entropy (max-

imum density of states quantum mechanically); the latter minimizes the influence

of the finite-size effects on our numerical results.

In the classical case, the above initial conditions are represented by 3𝐿-dimensional

vector:

𝒮(0) = {S𝑖(0) = (0, 0, 1)}𝐿𝑖=1. (2.2)

In the quantum case, the fully polarized “up”-states are described by the initial
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wavefunction:

|Ψ(0)⟩ = |Ψup⟩ ≡
𝐿⨂︁
𝑖=1

|𝑚𝑖 = 𝑆⟩. (2.3)

2.3 Classical spins

2.3.1 Equations of motion

Classical dynamics of the Hamiltonian (2.1) is governed by the system of 3𝐿

nonlinear differential equations:

𝑑𝑆𝛼
𝑗

𝑑𝑡
= {ℋ, 𝑆𝛼

𝑗 } (2.4)

where {..., ...} are the Poisson brackets, with {𝑆𝛼
𝑖 , 𝑆

𝛽
𝑗 } = 𝛿𝑖𝑗𝜖𝛼𝛽𝛾𝑆

𝛾
𝑖 , 𝛿𝑖𝑗 is the Kro-

necker delta, and 𝜖𝛼𝛽𝛾 is the Levi-Civita epsilon. The system of equations (2.4) can

be rewritten as

𝑑S𝑗

𝑑𝑡
= H𝑗 × S𝑗, (2.5)

where

H𝑗 =

⎛⎜⎜⎜⎜⎝
−𝐽𝑆𝑥

𝑗−1 − 𝐽𝑆𝑥
𝑗+1 + ℎ

−2𝐽𝑆𝑦
𝑗−1 − 2𝐽𝑆𝑦

𝑗+1 + ℎ

0

⎞⎟⎟⎟⎟⎠ (2.6)

is the local field acting on the 𝑗th spin. The solutions of Eqs.(2.5, 2.6) give 3𝐿-

dimensional vectors 𝒮(𝑡) = (𝑆𝑥
1 (𝑡), 𝑆

𝑦
1 (𝑡), 𝑆

𝑧
1(𝑡), . . . , 𝑆

𝑥
𝐿(𝑡), 𝑆

𝑦
𝐿(𝑡), 𝑆

𝑧
𝐿(𝑡)).

Where necessary, we solve the above set of equations using the 4th-order Runge-

Kutta algorithm with discretization step ∆𝑡 = 0.001 or smaller.

2.3.2 Periodic trajectories

Due to the translational invariance of both the initial conditions (2.2) and the

Hamiltonian (2.1), the classical spins initially polarised in the same direction exhibit

the same time evolutions and hence remain parallel to each other at all subsequent
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moments of time, but the direction of their common polarisation evolves as a function

of time. As a result, the calculation of a many-spin trajectory 𝒮(𝑡) is reduced to

computing the same one-spin trajectory S𝑗(𝑡) = Sp(𝑡) for each spin on the lattice.

The one-spin trajectory Sp(𝑡) is limited to a two-dimensional manifold - the surface

of a unit sphere |Sp| = 1. On a two-dimensional manifold a phase-space trajectory

normally cannot avoid closing onto itself, which means that it becomes periodic. The

corresponding many-spin trajectory, to be denoted as 𝒮p(𝑡), also becomes periodic.

Since all spins during this dynamics point in the same direction, the projections

of S𝑗−1 and S𝑗+1 in Eq.(2.6) can be replaced by those of S𝑗, and, as a result,

the periodic one spin trajectories Sp(𝑡) can be computed with the help of one-spin

Hamiltonian

ℋp = −𝐽(𝑆𝑥
p)

2 − 𝐽(𝑆𝑦
p)

2 + ℎ𝑆𝑥
p + ℎ𝑆𝑦

p. (2.7)

Initial conditions (2.2) correspond to zero energy, indeed if S𝑝(0) = (0, 0, 1) then

ℋp = 0. The quadratic equation ℋp = 0 in terms of 𝑆𝑥 and 𝑆𝑦, together with the

condition |Sp| = 1, defines an energy shell, which is represented by a line on the

unit sphere. In Figure 2-2 we plot one-spin trajectories S𝑝(𝑡) for different values of

𝐽 . As expected S𝑝(𝑡) closes onto itself and thus becomes periodic.

2.3.3 Librations and rotations

Dependent on the parameters of the Hamiltonian ℋp and the initial orientation

of the spins Sp(0), there are two possible kinds of periodic trajectories Sp(𝑡), which,

by analogy with the description of a pendulum, we call “librations” and “rotations”

[29]. Librations are realised by a single trajectory on the spherical surface |Sp| = 1

connecting all points having the same energy. Two disconnected trajectories realize

the rotations corresponding to the same energy. Librations and rotations transition

to each other as a function of Hamiltonian parameters and/or initial energy through

a separatrix, as illustrated in Fig.2-2.

When a periodic trajectory is considered as a function of 𝐽 for fixed ℎ = 1

and fixed energy 𝐸 = 0 (associated with our initial conditions “all-spins-up”), the

29



Chapter 2. Fate of periodic trajectories... 2.3. Classical spins

Figure 2-2: Periodic solutions corresponding to the one-body Hamiltonian (2.7) (a)
𝐽 = 0.79 Librations, trajectory oscillates between two poles (b) 𝐽 ≃ 𝐽* = 1.15041
Vicinity of the separatrix distinguishing between two regimes (c) 𝐽 = 1.76 Rotations,
trajectory is confined inside the upper hemisphere. There is an identical trajectory
inside the bottom hemisphere obtained from S𝑝(0) = (0, 0,−1).

separatrix corresponds to 𝐽 = 𝐽* ≃ 1.15. Librations are realized for 𝐽 < 𝐽*, and

rotations for 𝐽 > 𝐽*.

As we see later, rotations appear to be more stable and have a stronger tendency

to evolve into a quasiperiodic motion.

2.3.4 Lyapunov instabilities

Instabilities of phase space trajectories cause chaos in nonlinearly interacting

classical systems with respect to small deviations of initial conditions. The insta-

bility of a phase trajectory in a 2𝐿-dimensional phase space is characterized by a

spectrum of 2𝐿 Lyapunov exponents {𝜆𝑘}. Some Lyapunov exponents correspond-

ing to integrals of motion or other directions not exhibiting exponential sensitivity to

small deviations may be zero. A phase space trajectory is chaotic when its maximum

Lyapunov exponent 𝜆max is greater than zero. Another commonly used character-

istic of chaos is the sum of all positive Lyapunov exponents 𝐾 ≡
∑︀𝜆𝑘>0

𝑘 𝜆𝑘, also

known as the Kolmogorov-Sinai entropy.

To compute 𝜆max, one chooses a reference phase space trajectory 𝒮(𝑡) and an

infinitesimally close one 𝒮(𝑡) + 𝛿𝒮(𝑡), then traces the growth of 𝛿𝒮(𝑡), which is
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eventually overtaken by the largest Lyapunov exponent. This implies that

𝜆max = lim
𝑡→∞,

|𝛿𝒮(0)|→0

1

𝑡
log

|𝛿𝒮(𝑡)|
|𝛿𝒮(0)|

. (2.8)

Practical numerical computation of 𝜆max requires one to perform a large number of

resets (contractions) of |𝛿𝒮(𝑡)| as described in Refs. [61, 62].

Largest Lyapunov exponents 𝜆max and the entire Lyapunov spectra {𝜆𝑘} of clas-

sical spin systems have previously been investigated [62] but only in the vicinity of

ergodic trajectories, which nonperiodically cover the entire energy shell of the sys-

tem. If a trajectory is ergodic, it is supposed to pass in the vicinity of every point

on the energy shell, thereby “collecting” all possible local growth rates of |𝛿𝒮(𝑡)|

and averaging over them. As a result, 𝜆max and the entire Lyapunov spectrum do

not depend on the choice of the initial conditions |𝒮(0)|. The convergence of the

procedure for computing 𝜆max is, in fact, a good measure of the ergodisation time

of the underlying dynamics.

The periodic phase space trajectories in many-body systems are rather excep-

tional as they correspond to a subset of initial conditions of measure zero. Periodic

trajectories are not ergodic; hence they do not cover the entire energy shell and thus

are not supposed to have the same Lyapunov spectrum as the ergodic trajectories.

Moreover, it cannot be excluded a priori that they are Lyapunov-stable even when

their ergodic counterparts are unstable.

The periodic trajectories considered in this chapter have one further defining

property: they are translationally invariant in a system where the Hamiltonian is

also translationally invariant. To explore the consequences of this property, let us

define the operator ℒ𝑡 governing the growth of small deviations in the Lyapunov

problem by the relation

𝛿𝒮(𝑡) = ℒ𝑡(𝛿𝒮(0)) (2.9)

The operator ℒ𝑡(𝛿𝒮(0)) is linear with respect to 𝛿𝒮(0). The problem of computing

the Lyapunov spectrum is an eigenvalue problem for ℒ𝑡. The eigenvalues have the

form 𝑒𝜆𝑘𝑡+𝑖𝜔𝑘𝑡, where the frequency 𝜔𝑘 controls the phase factor when present. Each

eigenvalue corresponds to an eigenvector 𝛿𝒮𝑘. Since both the underlying Hamilto-

31



Chapter 2. Fate of periodic trajectories... 2.3. Classical spins

nian and the reference trajectory are translationally invariant on the lattice, the

operator ℒ𝑡 must also be translationally invariant. In such a case, the eigenvectors

of this operator realize irreducible representations of the lattice translational sym-

metry group, which have the form 𝑒𝑖qr, where r the coordinate of the lattice site

and q is the wave vector. In other words, each Lyapunov exponent 𝜆𝑘, corresponds

to instability around the reference periodic trajectory 𝒮p(𝑡), which develops with a

well-defined wave vector q𝑘 with the allowed values of the wave number 𝑞𝑘 = 2𝜋
𝐿
𝑘,

where 𝑘 = 0, 1, ..., 𝐿− 1.

Generically, different wave vectors q𝑘 are supposed to correspond to different

values of 𝜆𝑘 with the exception of symmetry-related degeneracies or accidental de-

generacies. A symmetry-related degeneracy occurs, particularly when the lattice

has inversion symmetry (as is the case for our investigation), and, as a result, pairs

of wave vectors ±q𝑘 correspond to the same 𝜆𝑘. In such a case, a generic Lyapunov

exponent is at least double-degenerate, the possible exceptions correspond to 𝑞𝑘 = 0

and 𝑞𝑘 = 𝜋/𝐿.

The symmetry considerations further imply that different irreducible represen-

tations are not supposed to mix in the linear approximation, which, in turn, means

that the linear stability problem in many-dimensional phase space is decomposed

into a set of stability problems in low-dimensional subspaces. The latter brings back

the concerns based on the KAM (Kolmogorov–Arnold–Moser) [29] theorem that the

periodic trajectory may turn out to be Lyapunov-stable.

All these interesting possibilities can be investigated by the direct numerical

calculation of the largest positive Lyapunov exponent in the vicinity of the periodic

trajectories 𝒮p(𝑡), which we denote as 𝜆p.

From now on, we focus on our one-dimensional lattice, where symmetry rep-

resentations are characterized by wave numbers 𝑞 rather than wave vectors, and

so are the Lyapunov instabilities. The above discussion implies that when the pe-

riodic trajectory 𝒮p(𝑡) is Lyapunov unstable, the instability corresponding to the

largest Lyapunov exponent 𝜆p generically develops as a standing wave in real space

characterized by a pair of wave numbers ±𝑞p.

The numerical algorithm for computing 𝜆p is the same as the computing 𝜆max
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for an ergodic trajectory. The only practical difference is that the reference peri-

odic trajectory is to be computed semi-analytically, such that the long runs along

it are not the subject of growing numerical error. In particular, we compute peri-

odic trajectory S𝑝(𝑡) by numerically solving equations corresponding to the one-spin

Hamiltonian (2.7). After that we construct “perfect” many-spin trajectory 𝒮𝑝(𝑡) by

periodically copying S𝑝(𝑡) over time such that S𝑝(𝑡 + 𝑇𝑛) = S𝑝(𝑡) for an arbitrary

integer 𝑛.

2.3.5 Results: Dependence of 𝜆p on 𝐽 and 𝐿

The dependence of 𝜆p on the interaction strength 𝐽 for several system sizes 𝐿

is plotted in Fig. 2-3. The dependence of 𝜆p on 𝐿 for three different values of 𝐽 is

presented in Fig. 2-5. We now describe and discuss these results.

As explained in Section 2.3.3, the periodic trajectory that starts from the all-

spins-up state of our spin chain undergoes a transition from the libration to the

rotation regime as a function of the interaction parameter 𝐽 for fixed ℎ = 1 at

𝐽 = 𝐽* ≈ 1.15, which corresponds to a separatrix.

Figures 2-3 and 2-5(a) illustrate that the periodic motion in the libration regime

𝐽 < 𝐽* is, generally, unstable, except for a finite set of small values of 𝐿, for which

𝜆p = 0. We observed that 𝜆p > 0 for 𝐽 > 0.3 and 𝐿 > 10 for all simulated librations.

The typical dependence of 𝜆p on 𝐽 is a monotonic growth diverging at the separatrix

𝐽 < 𝐽*. We further note in Fig.2-5(a) the weak oscillatory dependence of 𝜆p on 𝐿.

The rotation regime 𝐽 > 𝐽* has a richer phenomenology, which can be observed

in Figs. 2-3 and 2-5(b,c). In this regime, the unstable character of the periodic

motion is less robust than in the libration regime in the sense that the occurrence

of 𝜆p = 0 extends to significantly larger values of 𝐿, and also appears in the limit

𝐽 → ∞ for all simulated chains except for those whose lengths 𝐿 are multiples of

6. As one can further see in Fig. 2-3, 𝜆p on the rotation side of the plots, when not

equal to zero, decreases monotonically as a function of 𝐽 starting from the infinite

value at 𝐽 = 𝐽* but, in comparison with librations, it exhibits a more diverse

functional dependence on 𝐽 with a characteristic switching character. Also, as seen

in Figs.2-5(b,c), 𝜆p for rotations exhibits a much stronger oscillatory dependence on
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Figure 2-3: Dependence of periodic Lyapunov exponent 𝜆p on the value of 𝐽 for the
spin chains of different sizes 𝐿 with ℎ = 1. The separatrix between the libration and
the rotation regimes corresponds to 𝐽 = 𝐽* ≈ 1.15. Chains of different lengths 𝐿
that are multiples of each other often exhibit intervals of equal 𝜆p, which indicates
the underlying spatial periodicity of the Lyapunov vectors corresponding to 𝜆p. We
further note that 𝜆𝑝 → 0 when 𝐽 is sufficiently large unless 𝐿 is a multiple of 6.
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Figure 2-4: Lyapunov exponent 𝜆𝑝 in the vicinity of separatrix 𝐽 = 𝐽* ± 𝛿𝐽 . The
value of separatrix is approximately 𝐽* ≃ 1.1504059085. Minimal value of 𝛿𝐽 is
equal to 10−8. Values 𝐽 = 𝐽* − 𝛿𝐽 correspond to the regime of librations, while
𝐽 = 𝐽* + 𝛿𝐽 correspond to rotations.
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Figure 2-5: Lyapunov exponents 𝜆p versus different system size 𝐿, for fixed values of
𝐽 (a) 𝐽 = 0.79 regime of librations 𝜆p(𝐿) quickly saturates, (b,c) regime of rotations
𝐽 = 1.76 and 𝐽 = 2.23 correspondingly. The dependence of 𝜆p(𝐿) is non-monotonic.
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𝐿.

The standard algorithms of calculation of Lyapunov exponents do not work in the

close vicinity of separatrix 𝐽 = 𝐽*. Indeed, as we approach separatrix closer, we need

to take smaller values of initial perturbations 𝛿𝒮. In real calculations, however, we

are always limited by selected machine precision (the smallest difference between two

numbers which computer recognizes). Therefore, in practice, we cannot approach

separatrix arbitrarily close.

To analyze the behavior of periodic Lyapunov exponents near separatrix, we

have computed them for different small violations from 𝐽* such that 𝐽 = 𝐽* ± 𝛿𝐽 ,

see Fig. 2-4. This figure shows that 𝜆𝑝 growth in the vicinity of separatrix, yet this

growth is slow.

Although we cannot compute 𝜆𝑝 on the separatrix or arbitrarily close to it, we

expect that it has a finite value. The following argument supports this expectation.

Points in the phase space move with limited speed; therefore, 𝜆𝑝(𝐽) must be confined

from above for all finite 𝐽 , including 𝐽*. Also, from Fig. 2-4, we can see that in the

vicinity of separatrix, the Lyapunov exponent is an even function of perturbation,

such that 𝜆𝑝(𝐽* − 𝛿𝐽) = 𝜆𝑝(𝐽
* + 𝛿𝐽). This fact hints that 𝜆𝑝 shall be continuous in

the point 𝜆𝑝(𝐽*).

Let us finally mention here that the numerically computed largest Lyapunov

exponent for an ergodic trajectory of a system with 𝐽 = 1.76 and large 𝐿 = 100

on the infinite-temperature energy shell is 𝜆max ≈ 1.18, which is significantly larger

than the Lyapunov exponents 𝜆p reported in Fig.2-5. Yet the value of 𝜆p would

easily exceed 𝜆max once 𝐽 approaches the separatrix value 𝐽*.

Translational symmetry breaking by Lyapunov vectors.

The above-described phenomenology is rather diverse, but it can be brought into

a single perspective based on the considerations of Section 2.3.4, that the Lyapunov

vectors lower the full translational symmetry of the system to the one characterized

by a particular wave number 𝑞.

In Fig 2-6, we plot the spatial Fourier transforms of the Lyapunov vectors cor-

responding to 𝜆p for two chain lengths 𝐿 = 18 and 𝐿 = 20 and for two interaction

constants 𝐽 representing the libration and the rotation regimes for each length. In
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Figure 2-6: Fourier transformation of the Lyapunov vectors corresponding to 𝜆𝑝 for
chain lengths 𝐿 = 18, 20. Regime of librations corresponds to the 𝐽 = 0.79, regime
of rotations 𝐽 = 1.76.
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all four cases, one can see two dominant Fourier peaks corresponding to ±𝑞.

The underlying translational symmetry breaking helps us to explain the distinct

switching behavior of plots in Fig.2-3 on the rotation side, where there are ranges

of the values of 𝐽 , where the Lyapunov exponents 𝜆p for the chains of different

lengths coincide, and there are ranges, where they suddenly become different. The

two pairs of plots in Fig. 2-3 correspond to chain lengths such that one chain is

twice the length of the other. Therefore, the two chains have a set of allowed wave

numbers 𝑞 that are equal to each other, but then the longer chain has additional

wave numbers that are unavailable for the shorter one. Thus, if the largest Lyapunov

exponent for the longer chain corresponds to 𝑞 available for the shorter chain, then

the two Lyapunov exponents 𝜆p are equal to each other. If, however, the above 𝑞 for

the longer chain is not available for, the shorter one, then the values of 𝜆p become

different, with the larger 𝜆p necessarily corresponding to the longer chain.

Analytical approximation for 𝜆p(𝐿).

We now convert the qualitative understanding of the role of the translational

symmetry breaking into an analytical formula describing the entire dependence

𝜆p(𝐿).

The oscillatory dependence of 𝜆p on 𝐿 in Fig.2-5, presumably, originates from the

fact that, for a chain of a given length 𝐿, the allowed values of the wave number 𝑞 =
2𝜋
𝐿
𝑛, where 𝑛 = 0, 1, ..., 𝐿−1 cannot exactly match a certain value 𝑞0 that is optimal

for the strongest Lyapunov instability 𝜆p,max. As the length of the chain increases,

the allowed values of 𝑞 come increasingly closer to 𝑞0, and, as a result, the oscillatory

part of 𝜆p(𝐿) becomes gradually suppressed. We are dealing with a supposedly small

difference between 𝑞0 and the nearest allowed value 𝑞p = 2𝜋
𝐿

round
(︀
𝑞0𝐿
2𝜋

)︀
, where

function “round(...)” rounds its argument to the nearest integer value. It is thus

reasonable to parameterize the departure from 𝜆p,max by a quadratic dependence on

the above difference:

𝜆p(𝐿) = 𝜆p,max − 𝛼

[︂
𝑞0 −

2𝜋

𝐿
round

(︂
𝑞0𝐿

2𝜋

)︂]︂2
, (2.10)

where 𝜆p, max, 𝑞0 and 𝛼 are three adjustable parameters.
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The remarkably good performance of formula (2.10) in describing the numerically

computed 𝜆p(𝐿) is demonstrated in Fig.2-3. The one can observe that it gives an

excellent quantitative description also in the regime of large differences between

𝜆p(𝐿) and 𝜆p,max. In this large-deviations regime, the formula (2.10) has to be

further supplemented by the condition that, if it predicts 𝜆p < 0, then 𝜆p = 0

should be substituted instead, implying that the periodic motion is Lyapunov stable.

With such a modification, the formula (2.10) turns into an excellent predictor of

the lengths 𝐿 corresponding to the stable periodic motion. The quality of the

approximation (2.10) can be improved further by adding there terms with higher-

order powers of (𝑞0 − 𝑞p).

2.3.6 Results: Quasiperiodic regime

While computing the Lyapunov exponents for periodic trajectories, we discov-

ered that, as the Lyapunov instability develops and the deviations from the reference

periodic trajectory become large and no longer describable by Lyapunov exponents,

the dynamics do not immediately become chaotic —rather, it enters a quasiperi-

odic regime, which often has a rather long lifetime, especially when it is entered

from a rotation-type periodic trajectory. One example of the transition to a sta-

ble quasiperiodic motion and one example of the transition to the chaotic regime

through a long-living quasiperiodic regime are shown in Figs.2-7 (a) and (b), respec-

tively. In a few computed cases indicated in Fig.2-5(b,c), ( 𝐽 = 1.76 with 𝐿 = 6, 7,

and 𝐽 = 2.23 with 𝐿 = 6, 12, 13), the quasiperiodic regime is numerically stable,

which means that on rather long timescale 𝑡 ≃ 105 covered by the simulations, the

system does not enter the chaotic regime see Fig. 2-8. We have also computed the

Lyapunov exponents of these stable quasiperiodic trajectories and found them equal

to zero.

The frequency spectrum of a periodic motion consists of discrete peaks at fre-

quencies, all of which are the multiples of a fundamental frequency. For a chaotic

motion, the spectrum is supposed to be continuous. The spectrum of a quasiperiodic

motion inherits a discrete peak structure from the periodic motion, but the peaks

are determined by the combinations of two or more frequencies, whose ratio is an
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Figure 2-7: Quasiperiodic dynamics of 𝑆𝑥
1 (𝑡) observable for 𝐽 = 1.76. Top row:

𝐿 = 6 unstable periodic motion comes to a stable transient regime. Bottom row:
𝐿 = 18 transient regime is also unstable and eventually becomes chaotic.
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Figure 2-8: Very long-time dynamics of 𝑆𝑥
1 (𝑡) observable in stable quasiperiodic

regime. Top row: 𝐿 = 6, 𝐽 = 1.76. Bottom row: 𝐿 = 13, 𝐽 = 2.23.
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Figure 2-9: Fourier spectrum of the observable 𝑆𝑧
1(𝑡) for different regimes of motion.

The spectrum is calculated for the finite time interval of 𝑡 ∈ [100, 1100].

42



Chapter 2. Fate of periodic trajectories... 2.3. Classical spins

irrational number. In Fig.2-9, we show the numerically computed frequency spec-

tra for one variable within a system exhibiting periodic, quasiperiodic, and ergodic

motion.

Figure.2-9(b) is particularly important for our identification of the quasiperiodic

motion. There we identify two primary peaks with frequencies 𝜔1 and 𝜔2, and

two secondary peaks at frequencies 𝜔1 + 𝜔2 and 2𝜔2. The numerically accessed

approximate ratio 𝜔1/𝜔2 is 0.46, consistent with the expectation that the true value

of 𝜔2/𝜔1 is an irrational number.

Given the discussion in the previous subsection of the translational symme-

try breaking accompanying Lyapunov instabilities, the explanation of the basic

quasiperiodic character of the emerging motion can be the following. The initial pe-

riodic motion corresponds to a certain fundamental frequency, and the wave number

𝑞 = 0. The motion that emerges as a result of the Lyapunov instability is charac-

terized by wave vector 𝑞 = 𝑞p ̸= 0 and by another frequency. As the Lyapunov

instability develops, the spectral weight shifts from the wave number 𝑞 = 0 to the

wave number 𝑞 = 𝑞p. After a while, the two spectral components become compara-

ble to each other, and the process becomes quasiperiodic with two incommensurate

fundamental frequencies — one inherited from the original periodic motion with

𝑞 = 0 and the other one characterising the motion with 𝑞 = 𝑞p. As the amplitude of

the motion with 𝑞 = 𝑞p grows, the interaction between the two modes renormalizes

the frequencies of each of them. This change of frequencies naturally slows down

once their ratio reaches the value corresponding to the most stable motion. The

latter would be further destroyed when and if a mode with yet another frequency

develops in the dynamics.

We call the above regime a “time quasicrystal” by analogy with quasicrystals in

space. The latter has a fully broken translational symmetry and yet exhibit dis-

crete Brag peaks in the wave-vector space. Likewise, the time quasicrystal emerges

spontaneously, is not invariant with respect to any time shift, and yet exhibits the

discrete peaks in the frequency space. It also exhibits discrete peaks in the wave-

vector space, but those are commensurate with a fundamental wave vector of the

underlying lattice.
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2.4 Quantum spins

As discussed in the introduction, the present project was largely motivated by

an attempt to explore whether periodic orbits in classical spin systems lead to scar-

like eigenstates in their quantum counterparts. The expectation was that, on the

one hand, the special scar eigenstates are unlikely to survive in the thermodynamic

limit, but, on the other hand, they may appear in finite systems; also, the special

initial thermalization behavior of observables may be inherited from the scar states

in the thermodynamic limit.

Our classical investigation of the previous subsection indicates that the chances

of observing the scar effects in many spin systems are, actually, somewhat better

than what one would expect a priori from the knowledge of the Lyapunov spectra

of ergodic trajectories. The reason is that one can choose the parameters of the

Hamiltonian such that the largest Lyapunov exponent for a periodic trajectory is

significantly smaller than that for an ergodic trajectory, and, moreover, there exist

rather long spin chains for which the Lyapunov instabilities in the vicinity of the

periodic trajectories are completely suppressed.

Below, we first consider the special initial condition (2.3) - “all spins up” , which

in the classical limit gives the periodic trajectory, and check whether the evolution

starting from that condition exhibits an anomalously slow thermalization. Then we

decompose those initial conditions into the energy eigenstates of the systems and

check whether any of the eigenstates prominently present in the above initial state

also violate the eigenstate thermalization hypothesis.

This investigation is based on the exact diagonalization of the system’s Hamil-

tonian (2.1) (periodic boundary conditions are implied same as in classical case).

It involves quantum spins with 𝑆 = 1
2
, 1, 3

2
, 2. Quantum spin vectors have length√︀

𝑆(𝑆 + 1), while, in the classical simulations, this length was set to 1. Spin length

affects the relative strength of different terms in the Hamiltonian (2.1). We set ℎ = 1

and 𝐽 = 0.91 where not specified otherwise.
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Figure 2-10: Time-evolution of a single spin ⟨𝑆𝑧
1(𝑡)⟩ for |Ψup⟩ (solid line) and |Ψinf⟩

(dashed line) states, for different values of quantum spin. Value of 𝐽 = 0.91.
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Figure 2-11: Thermalization dynamics of the observable ⟨𝑆𝑧
1(𝑡)⟩ in case of fully

polarized “up” states |Ψup⟩ and infinite temperature initial state |Ψinf⟩. In case
of |Ψup⟩ initial states dynamics is calculated for different system sizes. Value of
quantum spin 𝑆 = 3/2 and 𝐽 = 0.91. Dynamics of infinite temperature state is
calculated for 𝐿 = 7.
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2.4.1 Results: Suppressed initial thermalization

We compute the thermalisation behavior of the observable ⟨𝑆𝑧
1(𝑡)⟩ ≡ ⟨𝑆𝑧

1(𝑡)⟩/𝑆

for different values of 𝑆 starting from the fully polarized state |Ψup⟩ given by

Eq.(2.3). We also compute the thermalization of the same observable starting from

a more generic initial condition where the spin 𝑆1
𝑧 is fully polarised, but the rest

of the system is in the infinite temperature state. The latter initial state reads

|Ψinf⟩ = |𝑆⟩1 ⊗ |inf⟩𝐿−1, where |inf⟩𝐿−1 is a pure state sampled to represent the

infinite temperature equilibrium 1.

The dynamics of ⟨𝑆𝑧
1(𝑡)⟩ for 𝑆 = 1/2, 1, 3/2, 2 is plotted in Fig.2-10. There one

can observe that the thermalisation process for 𝑆 ≥ 3/2 starting from the initial

condition |Ψup⟩ is noticeably slower than the the one starting from |Ψinf⟩. Such

a difference makes one suspect that atypical scarlike eigenstates are prominently

present in the expansion of |Ψup⟩. At the same, the difference between the two

thermalization curves for 𝑆 = 1/2 is rather small — suggestive of the absence of

scarlike states in the expansion of |Ψup⟩. The case of 𝑆 = 1 is a transitional between

𝑆 = 1/2 and 𝑆 ≥ 3/2.

Figure 2-11 further illustrates the anomalous slowdown of the thermalization for

spin-3/2 chains as a function of chain length 𝐿. The coincidence of the initial slowed-

down behavior for the chains of different lengths indicates that the slowdown of the

thermalization process starting from the state |Ψup⟩ is a feature that is also present

in the thermodynamic limit 𝐿 → ∞ irrespective of whether or not the system still

possesses the scarlike energy eigenstates in that limit.

2.4.2 Results: Finite-size quantum scars

In this section we calculate the bipartite entanglement entropy ℰ(|𝐸𝑛⟩) between

the sites from 1 to 𝐿/2 (rounded down for odd 𝐿) and the rest of the chain, for

every eigenstate |𝐸𝑛⟩. To conveniently compare ℰ(|𝐸𝑛⟩) between different system

1Infinite-temperature state is defined as |inf⟩ =
∑︀𝑁

𝑛=1 𝑐𝑛|𝑏𝑛⟩, here |𝑏𝑛⟩ are basis vectors and
𝑐𝑛 = |𝑐𝑛|𝑒𝑖𝜑𝑛 are complex amplitudes with phases chosen randomly from the interval [0, 2𝜋) and
absolute values chosen from the distribution 𝑃 (|𝑐𝑛|2) = 𝑁𝑒−𝑁 |𝑐𝑛|2 , where 𝑁 is the dimension of
the Hilbert space (see Ref.[67, 68])
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Figure 2-12: Top row: normalized half-chain entanglement entropy ℰ(|𝐸𝑛⟩) versus
eigenenrgies 𝐸𝑛 in a zero momentum sector. 𝑆 = 3/2 and system sizes 𝐿 = 5, 6, 7, 8.
Bottom row: normalized overlaps ℱ̄𝑛 of fully polarized “up” state |Ψup⟩ with eigen-
states |𝐸𝑛⟩. Magenta points correspond to first several eigenstates with higest over-
lapls with |Ψup⟩.

ℰ(|𝐸𝑛⟩) = ℰ(|𝐸𝑛⟩)/ℰmax, where ℰmax = max|𝐸𝑛⟩ ℰ(|𝐸𝑛⟩).

First, we scan the systems of 𝑆 = 1
2

for eigenstates with low entanglement

entropy. We consider values of 𝐽 ∈ [0.4, 3] and system sizes 𝐿 = 5, 18. We find that

for these conditions, ℰ(|𝐸𝑛⟩) quickly converges to 1 in the middle of the spectrum

with no outliers at all. This result is by no means surprising because (2.1) is far from

integrability and supposed to satisfy the Eigenstate Thermalization Hypothesis in

the thermodynamic limit.

As we increase the value of quantum spin 𝑆 the system still comes to an agree-

ment with ETH but not as quickly as in case of 𝑆 = 1/2. Indeed, once we consider

𝑆 > 1
2
, for some values of 𝐽 we start observing special eigenstates |FSQS⟩𝑗 close to

the middle of the spectrum, which normalized Entanglement Entropy ℰ(|FSQS⟩𝑗) is

significantly lower than 1. We refer to the states |FSQS⟩𝑗 as to “Finite Size Quan-

tum Scars” or FSQS, index 𝑗 = 1, 𝐾 enumerates these states. The number of FSQS

states 𝐾 is typically small 𝐾 = 3− 10, whereas for the rest of the eigenstates in the

middle of the spectrum, we also observe great convergence of ℰ(|𝐸𝑛⟩) to one.

As an example of FSQS states, let us consider the case of 𝑆 = 3
2
. In the top

row of the Fig. 2-12 we see that for the majority of eigenstates near the middle of
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the spectrum, values of ℰ(|𝐸𝑛⟩) are close to one, yet there are several pronounced

outliers corresponding to the |FSQS⟩𝑗 states. FSQS states are noticeably different

from the majority of eigenstates near the middle of the spectrum. We will show

further that FSQS states have a significant impact to the dynamics of |Ψup⟩ states.

FSQS states are connected with fully polarized states |Ψup⟩ as follows. The most

pronounced outlier of Entanglement Entropy |FSQS⟩max corresponds to the maximal

overlaps of |Ψup⟩ state with eigenstates:

|FSQS⟩max = argmax|𝐸𝑛⟩|⟨Ψ
up|𝐸𝑛⟩|. (2.11)

In the bottom row of the Fig. 2-12 we plot normalized overlaps ℱ̄𝑛 = |⟨Ψup|𝐸𝑛⟩|/ℱmax,

where ℱmax = max|𝐸𝑛⟩ |⟨Ψup|𝐸𝑛⟩|. Thus ℱ̄ = 1 corresponds to the maximal overlap

of |Ψup⟩ with eigenstates. We observe the same picture for 𝑆 = 1 and 𝑆 = 2, see

Fig 2-13.

From finite size scaling we see that the maximal overlap |⟨Ψup|𝐸𝑛⟩| naturally

goes to zero with the system size 𝐿, yet it always corresponds to the |FSQS⟩max

state. The value of ℰ(|FSQS⟩max) also converges to 1 in the thermodynamic limit,

which is in agreement with the fact that the system is non-integrable and eventually

supposed to satisfy ETH. In this regard, FSQS states do not violate ETH like genuine

quantum many-body scars, yet as we will show further, their presence in finite-size

systems is sufficient to suppress initial thermalization even in the thermodynamic

limit.

FSQS states can be viewed as remnants of classical periodic trajectories. In a

large 𝑆 limit, quantum spins are expected to demonstrate classical-like behavior.

Therefore such systems should possess periodic trajectories with short period 𝑇 ,

meaning that the wavefunction |Ψup(𝑡)⟩, shall repeat itself after this period such

that |⟨Ψup(0)|Ψup(𝑇 )⟩| → 1. On the other hand, quantum spins 𝑆 = 1
2

is the limit

opposite to classical spins. In this limit, the very concept of trajectory does not

have much sense, thus, “quantumness” is destroying periodic trajectories.
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Figure 2-13: Normalized half-chain entanglement entropy ℰ(|𝐸𝑛⟩) versus eigenenr-
gies 𝐸𝑛 in a zero momentum sector and normalized overlaps ℱ̄𝑛 of fully polarized
“up” state |Ψup⟩ with eigenstates |𝐸𝑛⟩. For system sizes 𝐿 = 5, 6, 7, 8 and for differ-
ent 𝑆. Magenta points correspond to first 6 eigenstates with highest overlaps with
|Ψup⟩. The value is fixed as 𝐽 = 1.76.
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Figure 2-14: Time-evolution of a single spin ⟨𝑆𝑧

1(𝑡)⟩ for |Ψup⟩ for different values of
𝐽 in case of 𝑆 = 1 and 𝐿 = 10.

2.4.3 Results: Quantum separatrix

It was shown in the previous section that classical separatrix corresponding to

𝐽 = 𝐽* distinguishes between two different regimes of motion. Analogously to the

classical picture let us take a look at the dynamics of ⟨𝑆𝑧
1(𝑡)⟩ for different 𝐽 in case of

|Ψup⟩ initial state. From the Fig. 2-14, we can distinguish between clearly between

the oscillatory behaviour of ⟨𝑆𝑧
1(𝑡)⟩ which we refer as “quantum librations”, and

between slowly thermalizing “quantum rotations” when ⟨𝑆𝑧
1(𝑡)⟩ > 0 for sufficiently

long time. We can find a value of 𝐽 = 𝐽𝑄, such that the corresponding dynamics of

⟨𝑆𝑧
1(𝑡)⟩ is neither oscillating nor slowly thermalizing. We refer to the value of 𝐽𝑄 as

“quantum separatrix”.

Same as in classical case “quantum librations” correspond to 𝐽 < 𝐽𝑄 whereas

“quantum rotations” correspond to 𝐽 > 𝐽𝑄. When 𝐽 is in the vicinity of separatrix

𝐽𝑄 the observable ⟨𝑆𝑧
1(𝑡)⟩ thermalizes almost as quickly as in the case of an infinite

temperature state. This is in agreement with the classical picture when periodic

motion gets extra unstable in the vicinity of the separatrix.
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Figure 2-15: Normalized participation ratio 𝒫 vs 𝐽 for different values of 𝑆 =
1/2, 1, 3/2, 2. Vertical lines correspond to the values of separatrix 𝐽*/

√︀
𝑆(𝑆 + 1)

predicted classically with 𝐽* = 1.15.
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It is remarkable that the approximate value of 𝐽𝑄 corresponding to the quantum

separatrix may be obtained from the classical one 𝐽* as 𝐽𝑄 ≃ 𝐽*/
√︀
𝑆(𝑆 + 1). In

order to demonstrate this, let us introduce participation ratio:

𝒫 = 1
⧸︁ 𝒩∑︁

𝑛=1

|⟨Ψup|𝐸𝑛⟩|4, (2.12)

where 𝒩 is the number of eigenstates in a zero-momentum sector. Participation

ratio 𝒫 counts the number of states which are accessible from the initial state

|Ψup⟩, thus it can be utilized to characterize its stability. Indeed, if 𝒫 is of the

order of 𝒩 it means that |Ψup(𝑡)⟩ decomposes into a superposition of an exponen-

tial number of eigenstates with approximately equal amplitudes. Thus the fidelity

|⟨Ψup(0)|Ψup(𝑡)⟩| → 0 at exponential rate. On the contrary, if 𝒫 ≪ 𝒩 , it will result

in oscillations of fidelity and thus in slower thermalization of local observables such

as ⟨𝑆𝑧
1(𝑡)⟩.

Let us study the dependence of 𝒫(𝐽) on 𝐽 for different 𝑆. To conveniently

compare different systems let us use the normalized quantity 𝒫(𝐽) = 𝒫(𝐽)/𝒫max,

where 𝒫max = max𝐽 𝒫(𝐽). In Fig. 2-14 we plot 𝒫(𝐽) for different 𝑆 and clas-

sically predicted values 𝐽*/
√︀
𝑆(𝑆 + 1) as vertical lines. We immediately observe

that, for 𝑆 = 3/2 and 𝑆 = 2, the maxima of 𝒫(𝐽) approximately coincides with

𝐽*/
√︀
𝑆(𝑆 + 1) with a good precision. Further, we observe that for 𝑆 = 1 there

is no pronounced maximum of 𝒫(𝐽), instead, we observe some intervals of 𝐽 cor-

responding to the maximal values of 𝒫(𝐽). Nevertheless, the classically predicted

value falls within this interval. Lastly, we see that, in the case of 𝑆 = 1/2, there is

no maximum of 𝒫(𝐽) at all, and the system does not enter the regime of quantum

rotations. This last observation is in agreement with the fact that we found no

FSQS states for systems of 𝑆 = 1/2.

Similarly to the classical results presented in Fig. 2-3, we see that for 𝑆 > 1/2,

the state which corresponds to the classical periodic trajectory |Ψup⟩ is most unstable

near the separatrix and gets more and more stable as 𝐽 increases. This behaviour is

quite opposite to the stability of ⟨𝑆𝑧
1(𝑡)⟩ for |Ψinf⟩ initial state. In the latter case the
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thermalization time of ⟨𝑆𝑧
1(𝑡)⟩ decreases linearly with 𝐽 similarly to the “ergodic”

Lyapunov exponent 𝜆max.

2.4.4 Dynamics of entanglement entropy

In section 2.4.2 we used the value of entanglement entropy for the eigenstates of

the system as the test of ETH. The entanglement entropy of the system as such was

not the principal concern of the present investigation: instead we could have used

the expectation value of a different physical observable, for example, the expectation

value of 𝑆𝑥
1 . Yet, in this subsection, for the sake of completeness, we present the

time-evolution of entanglement entropy for initial state |Ψup⟩.

In the Figure 2-16, we plot normalized entanglement entropy ℰ(|Ψ(𝑡))/ logℳ,

where ℳ is the dimensionality of the Hilbert space of subsystem. We investigated

the entanglement entropies of a single spin and of a half of the chain (𝐿
2

spins

for even 𝐿, and 𝐿−1
2

spins for odd 𝐿). In both cases we see that ℰ(|Ψ(𝑡)⟩/ logℳ

slowly converges to some saturation value, which in its turn close to 1. Initially

ℰ(|Ψ(𝑡)⟩/ logℳ exhibits linear growth, which is slowed down after some time.

2.5 Lyapunov exponents: technical details

2.5.1 Calculation of the larges Lyapunov exponent for er-

godic motion

The full form of equations (2.4) reads:

𝑑𝑆𝑥
𝑗

𝑑𝑡
= 𝑆𝑧

𝑗 + 2𝐽(𝑆𝑦
𝑗−1 + 𝑆𝑦

𝑗+1)𝑆
𝑧
𝑗 ,

𝑑𝑆𝑦
𝑗

𝑑𝑡
= 𝑆𝑧

𝑗 + 𝐽(𝑆𝑥
𝑗−1 + 𝑆𝑥

𝑗+1)𝑆
𝑧
𝑗 ,

𝑑𝑆𝑧
𝑗

𝑑𝑡
= 𝑆𝑦

𝑗 + 𝐽(𝑆𝑥
𝑗−1 + 𝑆𝑥

𝑗+1)𝑆
𝑦
𝑗 (2.13)

− 𝑆𝑥
𝑗 − 2𝐽(𝑆𝑦

𝑗−1 + 𝑆𝑦
𝑗+1)𝑆

𝑥
𝑗 .
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Figure 2-16: Time-evolution of entanglement entropy for initial |Ψup⟩ state. Entan-
glement is normalized by the quantity logℳ, where ℳ is total number of states in
subsystem. For a single spin 𝑆 = 3/2, ℳ = 4, for the chain of three spins (bipartite
division) ℳ = 43.
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In general the solution of this system is a 3𝐿-dimensional vector 𝒳 (𝑡) = {S𝑖(𝑡)}𝐿𝑖=1.

Let us first calculate the value 𝜆max, which corresponds to the maximal value of the

Lyapunov spectrum of (2.1). To calculate 𝜆max we employ standard procedure de-

scribed, for example, in [61, 62]. Let us briefly recapitulate the main steps of this

procedure.

1. Fix the values of the initial error 𝑑0, reset time 𝑇𝑅, and a number of resets 𝑀 .

2. Pick initial conditions 𝒳 (0) = {S𝑖(0)}𝐿𝑖=1 as a random configurations of spins

S𝑖(0). Perturb initial conditions by a random vector of small length ‖𝛿𝑅‖ = 𝑑0.

3. By solving (2.13) obtain two trajectories 𝒳1(𝑇𝑅) and 𝒳2(𝑇𝑅) for initial condi-

tions 𝒳 (0) and 𝒳 (0) + 𝛿𝑅 correspondingly, up to the reset time 𝑇𝑅. Evaluate

the distance between them 𝑑1 = ‖𝒳1(𝑇𝑅)−𝒳2(𝑇𝑅))‖.

4. As a new initial conditions take 𝒳 (0) = 𝒳1(𝑇𝑅), and as a displacement vector

take a vector with a direction along 𝛿𝑅 = 𝒳2(𝑇𝑅) − 𝒳1(𝑇𝑅) and renormalize

it such that preserves direction, but its norm ‖𝛿𝑅‖ = 𝑑0.

5. Obtain new trajectories 𝒳1(𝑇𝑅) and 𝒳2(𝑇𝑅), and the distance between them

𝑑𝑛 = ‖𝒳1(𝑇𝑅)−𝒳2(𝑇𝑅))‖, here index 𝑛 corresponds to the number of performed

resets

6. Go to step 4 and repeat it until 𝑛 =𝑀 resets.

7. Calculate 𝜆max by using the following formula:

𝜆max =
1

𝑀𝑇𝑅

𝑀∑︁
𝑛=1

log

⃒⃒⃒⃒
𝑑𝑛
𝑑0

⃒⃒⃒⃒
. (2.14)

The maximal Lyapunov exponent 𝜆max converges constant value with 𝑀 . In

principle one must set the values of 𝑑0 → 0 and 𝑇𝑅 → ∞. However, in practice,

we are limited to finite numbers. The value of 𝜆max should not depend on the

values of 𝑑0 and 𝑇𝑅, however if 𝑇𝑅 is too large the distance between trajectories
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Figure 2-17: Logarithmic growth of the distance between trajectories log10

(︁
𝐷(𝑡)
𝑑0

)︁
for 𝐽 = 1.76, and different reset times 𝑇𝑅 initial errors 𝑑0 and lengths 𝐿. (a) Random
initial conditions corresponding to the 𝜆max ≃ 1.17 (b-f) Periodic initial conditions.
(b-c) 𝜆𝑝 = 0 stable periodic trajectory. (d,f) 𝜆𝑝 = 0.351, periodic trajectory is
unstable. (e) same as (d), but reset time 𝑇𝑅 is too big.

𝑑(𝑡) = ‖𝒳1(𝑡) − 𝒳2(𝑡))‖ can reach saturation because of finite size of the phase

space. The growth of the distance 𝑑(𝑡) is shown in Fig. 2-17 (a).

Below are values of 𝜆max for the Hamiltonian (2.1) in case ℎ = 1, 𝐿 = 100 and

different 𝐽 .

𝐽 0.79 1.15 1.76

𝜆max 0.512 0.76 1.18

2.5.2 Calculation of the largest Lyapunov exponent for peri-

odic motion

The many-body periodic trajectory 𝒮𝑝(𝑡) is perfectly periodic and thus stable.

However, this trajectory can be practically implemented neither in experiment nor

in computer simulations. Indeed in both of the above cases we can set up initial

conditions (and all the other parameters) only with some finite precision. In the

case of chaotic systems, any finite discrepancy between initially close trajectories

may lead to the exponential growth of the distance between these trajectories. For
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this reason we shall distinguish between the stable “perfectly periodic” trajectory

𝒮𝑝(𝑡) and practically implemented trajectory 𝒮(𝑡) which we just refer as “periodic”.

The practical algorithm for calculating 𝜆𝑝 is similar to the one used for calcu-

lating 𝜆max. The main difference is that instead of calculating the dynamics of two

trajectories simultaneously, we fix a reference trajectory 𝒮𝑝(𝑡), which is perfectly

periodic. Below we provide the step-by-step algorithm for calculating 𝜆𝑝:

1. Fix the values of the initial error 𝑑0, reset time 𝑇𝑅, and the number of resets

𝑀 .

2. Generate a displacement vector 𝛿𝑅 randomly directed in a phase space, with

the norm ‖𝛿𝑅‖ = 𝑑0.

3. On the 𝑛-th reset, 𝑛 = 1, . . . ,𝑀 , obtain a trajectory 𝑆(𝑇𝑅) corresponding to

the initial conditions 𝒮(0) = 𝒮𝑝((𝑛− 1)𝑇𝑅) + 𝛿𝑅. Evaluate the divergence of

this trajectory from the periodic one 𝑑𝑛 = ‖𝒮(𝑇𝑅)− 𝒮𝑝(𝑛𝑇𝑅)‖.

4. Perform a reset: update the displacement vector as 𝛿𝑅 = 𝒮(𝑇𝑅) − 𝒮𝑝(𝑛𝑇𝑅),

and renormalize it such that ‖𝛿𝑅‖ = 𝑑0. Go to the step 3 until 𝑛 =𝑀 .

5. Evaluate 𝜆𝑝 by using the formula:

𝜆𝑝 =
1

𝑀𝑇𝑅

𝑀∑︁
𝑛=1

log
𝑑𝑛
𝑑0
. (2.15)

Let us note that values of 𝜆𝑝 calculated by the above algorithm are always positive

because of finite values of 𝑀 and 𝑑0, which ideally should be set to infinity and zero

correspondingly. To distinguish zero Lyapunov exponents 𝜆𝑝 → 0 from finite but

small ones, we shall look at the dependence of 𝜆𝑝 on the reset time 𝑇𝑅. In the case

of finite Lyapunov, exponents 𝜆𝑝 do not depend on the reset time as long as it is not

too big. When 𝜆𝑝 decreases with 𝑇𝑅 as 𝜆𝑝 ∼ log 𝑇𝑅/𝑇𝑅, it means that it actually

converges to zero, and therefore there is no exponential instability of the trajectory.
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Figure 2-18: (a) Periodic Lyapunov exponents 𝜆𝑝 for different system sizes 𝐿 and
different reset times 𝑇𝑅. (b) 𝜆𝑝 vs 𝑇𝑅 for stable 𝐿 = 23 and unstable 𝐿 = 18 periodic
motion.

2.6 Summary and discussion

2.6.1 Summary of the classical results

1. Periodic trajectories can remain stable in fairly large finite systems but not

in the thermodynamic limit.

2. Instability of periodic orbits often leads to the spontaneous formation of

states that we call “time-quasicrystals”: these states exhibit quasiperiodic dynamics

in time and broken translational symmetry in space. Time quasicrystals typically

appear as long-lived transient regimes followed by a transition to an ergodic regime,

but in some cases, they are found to be stable to the extent our numerical simula-

tions afford. The observed connections between periodic, quasiperiodic, and ergodic

regimes are summarised in Fig.2-1.

3. The largest Lyapunov exponents around an initial periodic trajectory exhibit

a nontrivial dependence on the size of the system.

4. The periodic trajectories exhibit two topologically different regimes, which

we name “librations” and “rotations” by analogy with the similar-called regimes of

a pendulum.

2.6.2 Discussion of the classical results

We have demonstrated that the fate of classical periodic trajectories in spin sys-
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tems is a rather rich subject. The stability of periodic motion depends crucially on

whether it is in the regime of librations or rotations. The regime’s choice is deter-

mined by the magnitude of the interaction strength between spins. Lower interac-

tion strength leads to librations when the trajectory oscillates between the poles,

and higher interaction strength leads to rotations when the trajectory is confined

inside the upper hemisphere. There is also a value of interaction strength which

corresponds to the separatrix distinguishing between librations and rotations. We

discovered that librations are always unstable, except for a few marginal cases. The

rotations, on the contrary, demonstrate better (often perfect) stability, especially

for higher interaction strength. Periodic trajectories near separatrix demonstrate

extraordinary instability; in particular, they are even less stable than randomly

selected many-body trajectories.

We have calculated “periodic” Lyapunov exponents around perfectly periodic

trajectories to characterize their stability. We have discovered the non-universal

dependence of periodic Lyapunov exponent on the system size. We presented many

examples when the periodic motion in a system of bigger size is perfectly stable,

whereas it is unstable in a system of a significantly smaller size. Such behavior

is somewhat counterintuitive. Indeed in many-body problems, one can reasonably

expect that adding extra degrees of freedom will only make stability worse, not

better. Surprisingly our example with periodic trajectories demonstrates that such

logic is not always correct.

In the regime of rotations, as system size increases, periodic Lyapunov exponents

slowly converge to its saturation values. Furthermore, they exhibit long-lasting

quasiperiodic damped oscillations around these values. Such behavior is atypical for

Lyapunov exponents, which are usually regarded as intensive quantities. Another

manifestation of non-universality is that if the system size is a multiple of 6, then

the periodic motion is always unstable in such a system, regardless of the interaction

strength. While in all the other cases, one can always choose interaction strength

big enough to make a periodic trajectory stable.

We have also uncovered the existence of a quasiperiodic regime that sponta-

neously breaks time-space translational invariance. Trajectory in a quasiperiodic
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regime often has a longer lifetime than the periodic trajectory it originated from.

The dynamics of the discovered quasiperiodic regime is neither periodic nor ergodic.

One can always make quasiperiodic regime stable by increasing interaction strength.

In this regard, this lower symmetry regime is indeed more stable than some periodic

trajectories.

The above results about periodic trajectories were obtained for the specific

setting. Nevertheless, we believe they are extendable for a broader class of non-

integrable translationary invariant Hamiltonians.

2.6.3 Summary of the quantum results

For quantum spin lattices, we find that the signatures of periodic classical dy-

namics are largely absent for spin-1/2 lattices but then appear already for spin-1

lattices and become rather prominent for spins 3/2 and higher. These signatures

include:

Signature 1: Slowdown of the initial relaxation that survives in the thermody-

namic limit.

Signature 2: Finite-size quantum scars, which means the eigenstates in finite

systems with anomalously low entanglement entropy. The state are prominently

present in the initial quantum states corresponding to the classically periodic motion.

Signature 3: Presence of two regimes – quantum librations and quantum rota-

tions with a separatrix between them.

2.6.4 Discussion of the quantum results

Our work has been driven by the idea of studying how stable short-period trajec-

tories in classical spin chains can manifest themselves in the quantum counterpart

of the system, particularly in the case of higher quantum spins, when the system is

expected to exhibit more classical-like features. We discover that quantum chains

of spin 𝑆 > 1/2 possess special ”Finite size quantum scars” FSQS eigenstates in

the middle of the spectrum characterized by lower entanglement entropy. Further-

more, FSQS states are connected with fully polarized “up” states which results in
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suppressed initial thermalization of the latter on the level of local observables.

We calculated the dynamics of spin polarization in the case of fully polarized “up”

initial states. We showed that thermalization of spin polarization is suppressed if

the system possesses FSQS states. Although FSQS states can only be distinguished

in the finite size systems, their impact on initial dynamics of fully polarized “up”

states remains in the thermodynamic limit. In this regard, FSQS states play a

bridging role between quantum scars in chaotic billiards [4], and genuine quantum

many-body scars [51, 52].

It also turns out that in the case of 𝑆 > 1/2, analogously to classical systems,

one can distinguish between two regimes of motion for an initially fully polarized

“up” state. Namely “quantum librations” in which spin polarization exhibits oscilla-

tory behavior, and “quantum rotations” in which spin exhibits slow thermalization.

Analogously to classical spins, the choice of the regime depends on the interaction

strength between spins. Also, analogously to the classical picture, we have intro-

duced a notion of “Quantum separatrix”, which distinguishes between two regimes

of motion. In the case of quantum separatrix, fully polarized “up” states exhibit the

quickest thermalization.

Another exciting discovery is that the value of interaction strength corresponding

to the quantum separatrix can be predicted with good precision from the classical

value. In other words, fully polarized “up” states in a quantum system can sense

the existence of classical separatrix. Because of this remarkable property, periodic

trajectories can also serve as a tangible connection between classical and quantum

spin systems.
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Chapter 3

Almost complete revivals

The content of this chapter is mostly based on the papers [1, 3].

3.1 States out of equilibrium at predetermined mo-

ment of time

Local observables of non-integrable quantum many-body systems are expected to

quickly reach their equilibrium values. This process of reaching thermal equilibrium

is also known as thermalization. It is also usually implied that once some observable

has reached thermal equilibrium, it stays there practically forever, exhibiting only

meaningless fluctuations upon its equilibrium value. There is however a number of

physical mechanisms when thermalization is either slowed down or not present at

all. Among such mechanisms are many-body localization [25], spin-glasses [9, 27],

systems with long-range interactions [10, 11] or systems with constraints [8, 51, 52].

All these mechanisms, however, are associated with the properties of the system

under consideration. An alternative approach to obtaining unusual thermalization

patterns is to consider specially designed initial states without putting significant

restrictions on the system itself.

One example of the latter kind was recently mentioned by Dymarsky [69]: namely,

for an isolated many-body system, where a local observable �̂� has equilibrium ex-

pectation value ⟨�̂�⟩eq = 0 but initially deviates from it, one can initiate a revival of
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Figure 3-1: Time evolution of the local observable ⟨𝑆𝑧
1⟩, for a system of 𝐿 = 12

spins 1/2 governed by the Hamiltonian (2.1). The solid green line corresponds to
the state (3.1) devised to obtain the revival at time 𝜏 = 10, and the dashed orange
line corresponds to the random reservoir (see the text). The inset shows the recovery
in fidelity of the ACR state |⟨ΦACR(0)|ΦACR(𝑡)⟩|.

a non-equilibrium value of ⟨�̂�⟩ at any given moment of time 𝜏 by using the initial

state:

|Ψ̃(0)⟩ = |Ψ(0)⟩+ |Ψ(−𝜏)⟩√
2

, (3.1)

where |Ψ(0)⟩ is a many-body wave function representing a “conventional” nonequilib-

rium state such that ⟨Ψ(0)|�̂�|Ψ(0)⟩ is equal to its maximally possible value ⟨�̂�⟩max,

and |Ψ(−𝜏)⟩ is the state that the system should have at time 𝑡 = −𝜏 in order to

arrive to |Ψ(0)⟩ at 𝑡 = 0. For the initial state |Ψ̃(0)⟩, both the initial value ⟨�̂�(0)⟩

and the revived one ⟨�̂�(𝜏)⟩ are close to ⟨�̂�⟩max/2. An example of such behavior for

a specific system is presented in Fig. 3-1.

In [1], we proposed a mechanism of constructing special initial states such that

the selected local observable after relaxation exhibits almost complete revival (ACR)
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Figure 3-2: (a) Schematic representation of the ansatz (3.17) in the many-body
Hilbert space. (b) Example of revival conditions (3.25) in case of 𝑞 = 𝑝 = 1 and
�⃗�1 = �⃗� ′

1 = (0, 0, 1/2). Matrix 𝑉 coincides with the bottom-left submatrix 𝑢 of size
2𝐿−1, states (3.17) and (3.20) have simple structure in the basis (3.16).

to its initial value at the predetermined moment of time. In a closed many-body

system 𝐶 = 𝐴∪𝐵 for a small subsystem 𝐴 in a pure state, the rest of the system 𝐵

usually serves as a thermal reservoir, which leads to the equilibration of 𝐴. However,

the reservoir 𝐵 can be finely tuned such that at some predetermined revival time 𝜏 ,

subsystem 𝐴 will be out of equilibrium. So in fact, the reservoir can work both ways:

thermalize the subsystem or, on the contrary, push it out of equilibrium. The latter,

however, is an exponentially rare event, yet if one can have access to sufficiently

many degrees of freedom of 𝐵, then the 𝐵 can be tuned such that this event will

take place at any desired time 𝜏 .

We also consider spin chains with spin 𝑆 > 1/2, and show that in this case, ACR

is suppressed by a factor 1/𝑆. This result agrees with the classical picture where the

ACR is impossible due to the fact that classical spin chains are generally chaotic.

3.1.1 Revivals along z-axis

In this section, we construct the revival of spin polarization along 𝑧-axis because

this case is particularly simple. The main idea of the ACR construction procedure is

illustrated in Fig. 3-2 (b). A general prescription for constructing arbitrary revivals

will be provided further.

Let us consider a lattice of 𝐿 interacting spins 1/2 described by spin operators

{𝑆𝛼
𝑖 }, where 𝑖 is the lattice index and 𝛼 = 𝑥, 𝑦, 𝑧 the spin projection index. As a

local observable, we choose the 𝑧-projection of the spin on an arbitrary site labeled

by index 1, i.e., �̂� = 𝑆𝑧
1 . We refer to the other 𝐿− 1 spins as the “reservoir”.
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Let us denote the bases of one-spin Hilbert spaces as |1𝑖⟩ and |0𝑖⟩, such that

⟨1𝑖|𝑆𝑧
𝑖 |1𝑖⟩ = 1/2 and ⟨0𝑖|𝑆𝑧

𝑖 |0𝑖⟩ = −1/2. We define the basis ℬ for the entire lattice

as ℬ = ℬ+ ∪ ℬ−, where

ℬ+ = {|11 12 . . . 1𝐿⟩, . . . , |11 02 . . . 0𝐿⟩}, (3.2)

ℬ− = {|01 12 . . . 1𝐿⟩, . . . , |01 02 . . . 0𝐿⟩}. (3.3)

represent the subspaces with the first spin being “up” or “down” respectively. Each of

the two subspaces thus has dimension 𝑁 = 2𝐿−1. For the entire basis ℬ we also use

the notation {|𝜙𝑛⟩}, where 𝑛 = 1, ..., 𝑁 represents the basis ℬ+ and 𝑛 = 𝑁+1, ..., 2𝑁

the basis ℬ−.

We search for the ACR state such that it initially has the form of a tensor product

|ΦACR(0)⟩ = |11⟩⊗ |Ψres⟩, where |Ψres⟩ is the state of the reservoir. Such a state can

be parameterized as

|ΦACR(0)⟩ =
𝑁∑︁

𝑛=1

𝐴𝑛|𝜙𝑛⟩, (3.4)

where 𝐴𝑛 are the complex amplitudes to be determined later. As follows from our

indexing convention, amplitudes 𝐴𝑛 have non-zero values only for the basis states

belonging to ℬ+. This choice guarantees that ⟨𝑆𝑧
1(0)⟩ is equal to its maximum

possible value ⟨𝑆𝑧
1⟩max = 1/2.

To obtain ACR at time 𝜏 , we now find such 𝐴𝑛 that |ΦACR(𝜏)⟩ has the form:

|ΦACR(𝜏)⟩ ≡ 𝑒−𝑖ℋ𝜏 |ΦACR(0)⟩

=
𝑁∑︁

𝑛=1

𝐶𝑛|𝜙𝑛⟩ + 𝛿 |𝜙𝑁+1⟩, (3.5)

where ℋ is the Hamiltonian of the system, while {𝐶𝑛} and 𝛿 are some complex

amplitudes. The principal feature of the ansatz (3.5) is that only one of 𝑁 basis

vectors of ℬ− participates in the expansion with amplitude 𝛿, while the basis ℬ+ is

fully represented by the set of amplitudes {𝐶𝑛}. As we show below, this leads to

the ACR.
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Ansatz (3.5) implies an unambiguous prescription for finding {𝐴𝑛}, {𝐶𝑛}, and

𝛿. In order to do this, one needs first to define the matrix 𝑢𝑚𝑛 of the time evolution

operator 𝑢 ≡ 𝑒−𝑖𝐻𝜏 in the basis ℬ. Then, to make sure that only state |𝜙𝑁+1⟩ from

the subspace ℬ− contributes to |ΦACR(𝜏)⟩ one needs to satisfy the following system

of 𝑁 equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑁+1,1𝐴1 + · · ·+ 𝑢𝑁+1,𝑁𝐴𝑁 = 𝛿

𝑢𝑁+2,1𝐴1 + · · ·+ 𝑢𝑁+2,𝑁𝐴𝑁 = 0

· · ·

𝑢2𝑁,1𝐴1 + · · ·+ 𝑢2𝑁,𝑁𝐴𝑁 = 0.

(3.6)

From this system one can find 𝑁 variables {𝐴𝑛} as a function of yet unknown

parameter 𝛿, and then find 𝛿 by normalizing {𝐴𝑛}. Finally, one can substitute the

result into the system of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢1,1𝐴1 + · · ·+ 𝑢1,𝑁𝐴𝑁 = 𝐶1

𝑢2,1𝐴1 + · · ·+ 𝑢2,𝑁𝐴𝑁 = 𝐶2

· · ·

𝑢𝑁,1𝐴1 + · · ·+ 𝑢𝑁,𝑁𝐴𝑁 = 𝐶𝑁 ,

(3.7)

thereby obtaining the set of amplitudes {𝐶𝑛}.

The central result of the present work is that the above prescription implies ACR

because, generically, the values |𝛿| and all |𝐶𝑛| are of the order of 1/
√
𝑁 , and, as a

result,

⟨𝑆𝑧
1(𝜏)⟩ =

1

2

(︃
𝑁∑︁
𝑖=1

|𝐶𝑖|2 − |𝛿|2
)︃

= 1/2−𝒪(1/𝑁), (3.8)

which, in turn, means that the revived ⟨𝑆𝑧
1(𝜏)⟩ is exponentially close to ⟨𝑆𝑧

1⟩max.

3.1.2 Estimation of revival’s imperfection

While the estimate |𝐶𝑛| ∼ 1/
√
𝑁 in the above construction is by no means
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surprising, the generic validity of 𝛿 ∼ 1/
√
𝑁 requires a justification. Our justification

is based mainly on the direct numerical solution of the system (3.6), but also it is

supported by the following analytical argument.

The argument is based on the assumption that, in a generic non-integrable sys-

tem, the time evolution operator 𝑢 for sufficiently large times 𝜏 is similar to a random

rotation in the 2𝑁 -dimensional Hilbert space. The matrix 𝑢𝑚𝑛 can then be viewed

as being composed of a set of 2𝑁 normalized vectors {𝑢1𝑛}, {𝑢2𝑛}, etc., where the

typical matrix element has absolute value |𝑢𝑚𝑛| ∼ 1/
√
2𝑁 and a largely random

phase. The system of equations (3.6) involves only half of the components of each

vector {𝑢𝑁+1,𝑛}, {𝑢𝑁+2,𝑛}, etc. It implies that the 𝑁 -dimensional vector {𝐴*
𝑛} must

be orthogonal to 𝑁 − 1 “half-vectors” {𝑢𝑁+2,𝑛}, ..., {𝑢2𝑁,𝑛}, while the value of 𝛿 is

the projection of the half-vector {𝑢𝑁+1,𝑛} onto the direction of {𝐴*
𝑛}. If the half-

vector {𝑢𝑁+1,𝑛} were uncorrelated with “half-vectors” {𝑢𝑁+2,𝑛}, ..., {𝑢2𝑁,𝑛}, then it

should also be uncorrelated with {𝐴*
𝑛}, which means that the relative orientation

of {𝑢𝑁+1,𝑛} and {𝐴*
𝑛} is random and thus the left-hand-side of the first equation in

system (3.6) can be estimated as 𝐴0𝑢0
√
𝑁 , where 𝐴0 ∼ 1/

√
𝑁 and 𝑢0 ∼ 1/

√
2𝑁

are the RMS values of 𝐴𝑛 and 𝑢𝑚𝑛 respectively. Such an estimate indeed gives

|𝛿| ∼ 1/
√
𝑁 . The same kind of estimate can also be used for each line of the system

(3.7), which would give |𝐶𝑛| ∼ 1/
√
𝑁 .

If the above assumptions were fully correct, they would imply that, once the

RMS values of |𝐶𝑛| and |𝛿| averaged over different not-too-small 𝜏 were exactly

equal to each other. However, our numerical tests show that, even though both 𝐶𝑛

and 𝛿 are indeed of the order 1/
√
𝑁 , there is a systematic difference between them,

which is, presumably, related to subtle correlations between 𝑢𝑚𝑛, for which we have

no explanation.

Considering the limitations of the above ACR scheme, one may be concerned

with the very unlikely possibility that the matrix of the coefficients 𝑢𝑚𝑛 in the

system of equations (3.6) has zero determinant and, therefore, the system has no

solution for 𝛿 ̸= 0. In such a case, however, one can find the solution for 𝛿 = 0,

which, according to Eq.(3.8), means a complete recovery for ⟨𝑆𝑧
1(𝜏)⟩ instead of an

“almost complete" one.
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The real limitation of the scheme is rather associated with the possibility that

the solution of (3.6) exists but implies that 𝛿 ∼ 1, and, as a result, the recovery falls

short of being “almost complete". The character of our argument crucially relies on

the assumption that the operator 𝑢 is similar to a random rotation, which suggests

that our ACR scheme would perform better for non-integrable quantum systems in

comparison with the integrable ones.

Assuming that the system is non-integrable, one can further ask how large the

recovery time 𝜏 should be for one to be able to speak of an "almost complete"

recovery. Theoretically, the ACR should already be observable when the unitary

transformation mixes large sectors of the Hilbert space but not all of it, which should

happen after a few characteristic one-spin times. Our numerical results presented

below are consistent with such an expectation.

In addition, let us introduce Matrix Participation Ratio (MPR):

MPR =
1

2
∑︀
𝑖𝑗

|𝑢𝑖𝑗|4
. (3.9)

This quantity allows us to numerically characterize the evolution operator’s prox-

imity 𝑢 to the random rotation in Hilbert space. If given unitary 𝑢 the value of

MPR → 1, it is close to the random rotation. In Fig. 3-3 (b) we plot MPR for

the Hamiltonian (3.14) for different system sizes. This figure confirms the above

assumption about the evolution operator.

The interesting direction is to study ACR for more experimentally relevant uni-

taries. It is particularly interesting to look at unitaries that can be implemented on

existing quantum computers.

3.1.3 *Case of large |𝛿|

In the above section, we argued that the parameter |𝛿| should be small for a

regular ”physical” Hamiltonian. It is also interesting to look at the structure when

the |𝛿| is always big. Consider the random initial state:
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Figure 3-3: (a) 𝑟-value for the Hamiltonian (3.14) for different system sizes. Zero-
momentum sector of the Hilbert space is considered. (b) Value of MPR (3.9) for
evolution operator 𝑢 ≡ 𝑒−𝑖𝐻𝜏 , for different system sizes.
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Figure 3-4: Time evolution of the local observable ⟨𝑆𝑧
1⟩, for a system of 𝐿 = 12

spins 1/2 governed by the Hamiltonian (3.14). The solid green line corresponds to
the ACR state devised to obtain the revival at time 𝜏 = 10; the dashed orange line
corresponds to the random reservoir (see the text). The inset shows the fidelity of
the ACR state |⟨ΦACR(0)|ΦACR(𝑡)⟩|.
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|Φrnd⟩ = | ↑⟩ ⊗
2𝐿−1∑︁
𝑛=1

𝐴𝑛|𝜙𝑛⟩, (3.10)

where |𝜙𝑛⟩ are elements of the many-body basis ℬ𝑟 = {|𝜙𝑛⟩}2
𝐿−1

𝑛=1 on the sublattice

of length 𝐿 − 1. Notice that coefficients 𝐴𝑛 are random complex numbers, so no

revival is implied. At the time 𝜏 :

𝑒−𝑖𝐻𝜏 |Φrnd⟩ = | ↑⟩ ⊗
2𝐿−1∑︁
𝑛=1

𝐶𝑛|𝜙𝑛⟩ + | ↓⟩ ⊗
2𝐿∑︁

𝑛=2𝐿−1+1

𝐶𝑛|𝜙𝑛⟩. (3.11)

Let us now choose the new basis ℬ̄𝑟 = {𝜑𝑛}2
𝐿−1

𝑛=1 for the sublattice as following.

Let us consider the vector:

|𝜑1⟩ =
2𝐿∑︁

𝑛=2𝐿−1+1

𝐶𝑛|𝜙𝑛⟩. (3.12)

The first vector |𝜑1⟩ of the ℬ̄𝑟 is constructed as |𝜑1⟩ = |𝜑1⟩/
√︀

⟨𝜑1|𝜑1⟩. The rest

of 2𝐿−1 − 1 vectors are constructed by applying the Gram-Schmidt procedure. Now

we can rewrite (3.11) as:

𝑒−𝑖𝐻𝜏 |Φrnd⟩ = | ↑⟩ ⊗
2𝐿−1∑︁
𝑛=1

𝐶𝑛|𝜙𝑛⟩ + 𝛿| ↓⟩ ⊗ |𝜑1⟩, (3.13)

where 𝛿 =
√︀

⟨𝜑1|𝜑1⟩. Since 𝐴𝑛 are chosen randomly scalar product
√︀
⟨𝜑1|𝜑1⟩ should

be the order of 1/
√
2.

This exercise shows that by changing the basis appropriately, we can always have

any wavefunction in the form (3.13) at the moment 𝜏 .
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3.1.4 Example of ACR

Let us now construct ACR for a translationally invariant periodic chain of 𝐿

spins 1/2 described by the Hamiltonian:

𝐻 =
𝐿∑︁

𝑗=1

(︀
𝐽𝑥 𝑆

𝑥
𝑗 𝑆

𝑥
𝑗+1 + 𝐽𝑦 𝑆

𝑦
𝑗 𝑆

𝑦
𝑗+1

)︀
+

𝐿∑︁
𝑗=1

(︀
ℎ𝑥 𝑆

𝑥
𝑗 + ℎ𝑦 𝑆

𝑦
𝑗

)︀
, (3.14)

where (𝐽𝑥, 𝐽𝑦, ℎ𝑥, ℎ𝑦) = (−2.0,−4.0, 2.2, 2.2) are dimensionless interaction constants,

we imply that ℏ = 1. The above values are chosen such that the Hamiltonian (3.14)

is far from integrability, as evidenced by the energy level-spacing statistics [50, 70].

An example of the ACR behavior for the observable 𝑆𝑧
1 in a 12-spin chain is

presented in Fig. 3-4. The initial state, in this case, was obtained by solving the

system of equations (3.6) for the revival time 𝜏 = 10, and, indeed, the expected

revival at 𝑡 = 𝜏 was observed.

In the same figure, we compare the ACR behavior with the one of a fully polarized

spin in a “random reservoir” associated with the initial state |Φin⟩ = |11⟩ ⊗ |Ψinf⟩,

where |Ψinf⟩ is sampled from the infinite temperature ensemble for the remaining 𝐿−

1 spins [67, 71]. For the complex amplitudes in Eq.(3.4) 𝐴𝑛 = |𝐴𝑛|𝑒𝑖𝜑𝑛 , the infinite

temperature ensemble in the limit 𝑁 ≫ 1 implies that phases 𝜑𝑛 are randomly

sampled from interval [0, 2𝜋) and the squares of the absolute values are sampled

according to the probability distribution 𝑃 (|𝐴𝑛|2) = 𝑁𝑒−𝑁 |𝐴𝑛|2 followed by the

overall normalization. As seen in Fig. 3-4, the value of ⟨𝑆𝑧
1(𝑡)⟩ in the case of a

random reservoir quickly relaxes to zero as expected for the infinite temperature

equilibrium. We note that the ⟨𝑆𝑧
1(𝑡)⟩ for the ACR state and the random reservoir

state nearly coincide over an extended initial time interval, yet the former evolves

to exhibit a revival at time 𝑡 = 𝜏 , while the latter shows just featureless equilibrium

fluctuations. Another remarkable observation is that the almost complete revival

around 𝑡 = 𝜏 has the character of a nearly complete time reversal, even though the

time reversal as such was not explicitly targeted by the procedure based on system
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Figure 3-5: (a) Dependence of revival value ⟨𝑆𝑧
1(𝜏)⟩ on the revival time 𝜏 for the

Hamiltonian (3.14). (b) Finite-size scaling of the 𝜏 -averaged revival value ⟨⟨𝑆𝑧
1(𝜏)⟩⟩𝜏

given by equation (3.15). (c) Finite-size scaling of |𝛿|2. Crosses represent the nu-
merical simulations, the solid blue line is the scaling |𝛿| = 1/

√
𝑁 . Averaging is

performed for an interval of 𝜏 ∈ [5, 30] with the step ∆𝑡 = 0.01, for 𝐿 = 13 with
∆𝑡 = 1.0.

(3.6). We note in this regard that, as shown in the inset of Fig. 3-4, the fidelity of the

many-body wave function |⟨ΦACR(0)|ΦACR(𝑡)⟩| does not exhibit a revival at 𝑡 = 𝜏 .

However, the observed time-reversed behavior of ⟨𝑆𝑧
1(𝑡)⟩ during ACR is consistent

with the statistical argument of Ref.[72] that the most likely behavior of strong

fluctuations is that of a time-reversed relaxation. Especially remarkable is the fact

that such a symmetry appears on the fastest natural timescale of the system.

The dependence of the revived value of ⟨𝑆𝑧
1⟩ on the revival time 𝜏 and on the

size of the lattice is illustrated in Fig. 3-5(a): different points of the plot ⟨𝑆𝑧
1(𝜏)⟩

are obtained from different initial states |ΦACR(0)⟩ computed for the fixed time 𝜏

with the help of Eqs.(3.6). There, one can observe that, for smaller systems, the

revived values of ⟨𝑆𝑧
1⟩ exhibit stronger fluctuations as a function of 𝜏 . However,

the amplitude of these fluctuations rapidly decreases with the system size 𝐿. To

quantify this decrease, we further observe that the fluctuation amplitudes for all
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system sizes 𝐿 are already stationary for 𝜏 > 5, which allows us to characterize the

typical fluctuations of ⟨𝑆𝑧
1(𝜏)⟩ by a 𝜏 -averaged quantity 1/2− ⟨⟨𝑆𝑧

1⟩⟩𝜏 , where

⟨⟨𝑆𝑧
1⟩⟩𝜏 =

1

𝜏1 − 𝜏0

𝜏1∫︁
𝜏0

⟨𝑆𝑧
1(𝜏)⟩𝑑𝜏 (3.15)

with 𝜏0 = 5 and 𝜏1 = 30. The dependence of ⟨⟨𝑆𝑧
1⟩⟩𝜏 on the system size is plotted

in Fig. 3-5(b). Finally, in Fig. 3-5(c), we present the semi-logarithmic plot of the

𝜏 -averaged value ⟨|𝛿|2⟩𝜏 = 1/2 − ⟨⟨𝑆𝑧
1⟩⟩𝜏 as a function of 𝐿. This is an important

plot because it shows that, for sufficiently large revival times 𝜏 , the typical value of

𝛿 decreases exponentially with the system size.

3.2 General revival scheme in chains of spin 1/2

In this section, we generalize the prescription offered in [1] such that the initial

and revived values of selected local spin are both arbitrary points on a Bloch Sphere.

Furthermore, we show that the revival may occur on a site different from the initial

one.

Let us consider a lattice of 𝐿 interacting spins 1/2. Each spin is described by

the operator {𝑆𝛼
𝑖 } where 𝑖 is the lattice index and 𝛼 = 𝑥, 𝑦, 𝑧 is the spin projection

index. As a collapsing observable, we pick the spin �⃗�𝑞 and �⃗� ′
𝑝 as a reviving one.

Notice that while values of 𝑞 and 𝑝 as well as �⃗�𝑞 and �⃗� ′
𝑝 are different in general,

there are no restrictions for them to coincide.

One-spin Hilbert spaces are defined as |1𝑖⟩ and |0𝑖⟩, such that ⟨1𝑖|𝑆𝑧
𝑖 |1𝑖⟩ = 1/2

and ⟨0𝑖|𝑆𝑧
𝑖 |0𝑖⟩ = −1/2. Let us introduce the basis ℬ = {|𝜙𝑗⟩}2

𝐿

𝑗=1, here |𝜙𝑗⟩ is a

many-body basis vector. Let us use the following ordering for the basis ℬ:

ℬ = {|11 12 . . . 1𝐿⟩, |11 12 . . . 0𝐿⟩, . . . , |01 02 . . . 1𝐿⟩, |01 02 . . . 0𝐿⟩}. (3.16)

Choice of basis determines further construction of ACR states. In our case, it is

convenient to quantize the basis along 𝑧-axis and order it such as each many-body
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vector |𝜙𝑗⟩ corresponds to the base-2 form of an integer 𝑗.

Let us use the following parametrization of the ACR state:

|ΦACR(0)⟩ =
2𝑞−1∑︁
𝑘=1

2𝐿−𝑞∑︁
𝑛=1

(︀
𝐴𝑠(𝑘,𝑛)|𝜙𝑠(𝑘,𝑛)⟩+ 𝛼𝐴𝑠(𝑘,𝑛)|𝜙𝑠(𝑘,𝑛)+2𝐿−𝑞⟩

)︀
, (3.17)

here 𝑞 is the collapsing site, 𝛼 - complex parameter defining the state of the collapsing

site on a Bloch Sphere, and function 𝑠(𝑘, 𝑛) is defined as:

𝑠(𝑘, 𝑛) = 2𝐿−𝑞+1(𝑘 − 1) + 𝑛. (3.18)

The ansatz (3.17) for the initial wavefunction guarantees that it has a form of

tensor product |ΦACR(0)⟩ = |𝑙𝑞⟩ ⊗ |Ψres⟩, where |𝑙𝑞⟩ is the wavefunction of the 𝑞-th

site which has the form:

|𝑙𝑞⟩ =
|0𝑞⟩+ 𝛼|1𝑞⟩√︀

1 + |𝛼|2
, (3.19)

|Ψres⟩ describes the rest of the system, we refer to |Ψres⟩ as to a ’reservoir’. The

parameter 𝛼 is a complex number that determines the position of 𝑞-th spin on a

Bloch sphere as below:

⟨𝑆𝑥
𝑞 ⟩ =

Re𝛼
1 + |𝛼|2

, ⟨𝑆𝑦
𝑞 ⟩ =

Im𝛼
1 + |𝛼|2

, ⟨𝑆𝑧
𝑞 ⟩ = −1

2
· 1− |𝛼|2

1 + |𝛼|2
.

Let us take a closer look at the expression (3.17). In general, a wavefunc-

tion in a form of tensor product |𝑙𝑞⟩ ⊗ |Ψres⟩ has 2𝐿−1 independent parameters

𝒜 = {{𝐴𝑠(𝑘,𝑛)}2
𝐿−1

𝑛=1 }2
𝑞−1

𝑘=1 . Function (3.18) gives us pairs of basis vectors |𝜙𝑠(𝑘,𝑛)⟩

and |𝜙𝑠(𝑘,𝑛)+2𝐿−𝑞⟩ such that these two vectors are identical for all but one 𝑞-th site.

For example if we set 𝑞 = 𝐿, then for 𝑘 = 1 we will have |𝜙𝑠(1,1)⟩ = |11 12 . . . 1𝐿⟩

and |𝜙𝑠(1,1)+1⟩ = |11 12 . . . 0𝐿⟩, taking all the 𝑘 = 1, 2𝑞−1 we will end up with 2𝐿−1
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basis vectors which are different only for the 𝐿-th site. Now to have a 𝑞-th spin

in a pure state (3.19) we need to demand that 𝐴𝑠(𝑘,𝑛)+2𝐿−𝑞 = 𝛼𝐴𝑠(𝑘,𝑛). If this con-

dition is satisfied, then initial wavefunction always has a form of tensor product

|ΦACR(0)⟩ = |𝑙𝑞⟩⊗ |Ψres⟩ for any set of parameters 𝒜. In Figure 3-2 (a) we schemat-

ically illustrate the ansatz (3.17).

The set of parameters 𝒜 defines the state of the reservoir |Ψres⟩. If all the

parameters are chosen randomly, then the 𝑞-th spin will quickly entangle with the

reservoir and remain entangled virtually forever, the same applies to all other spins.

Our goal is to choose such set 𝒜 that at the specified ”revival” time 𝜏 wavefunction

would split into a tensor product again |ΦACR(𝜏)⟩ = |�̄�𝑝⟩ ⊗ |Ψ̄res⟩.

Let us demand:

|ΦACR(𝜏)⟩ = 𝑒−𝑖𝐻𝜏 |ΦACR(0)⟩ =
2𝑝−1∑︁
𝑘=1

2𝐿−𝑝∑︁
𝑛=1

(︀
𝐶𝑠(𝑘,𝑛)|𝜙𝑠(𝑘,𝑛)⟩+ 𝛽𝐶𝑠(𝑘,𝑛)|𝜙𝑠(𝑘,𝑛)+2𝐿−𝑝⟩

)︀
, (3.20)

this wavefunction has a form similar to (3.17), with the difference that now it is

𝑝-th spin in the pure state. The state |�̄�𝑝⟩ is parametrized by the complex number

𝛽 similarly to (3.19):

|𝑙𝑞⟩ =
|0𝑞⟩+ 𝛽|1𝑞⟩√︀

1 + |𝛽|2
,

we also modified 𝑠(𝑘, 𝑛) to 𝑠(𝑘, 𝑛) = 2𝐿−𝑝+1(𝑘 − 1) + 𝑛, to have a revival on 𝑝-th

site.

To find such set 𝒜 that (3.20) is satisfied we need to know the full form of the

evolution operator at the revival moment 𝑢 ≡ 𝑒−𝑖𝐻𝜏 . Let us take a look at the full

form of the condition (3.20):
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𝑢1,1𝐴1 + · · ·+ 𝑢1,2𝐿𝐴2𝐿 = 𝐶1

𝑢2,1𝐴2 + · · ·+ 𝑢2,2𝐿𝐴2𝐿 = 𝐶2

... (3.21)

𝑢2𝐿,1𝐴2 + · · ·+ 𝑢2𝐿,2𝐿𝐴2𝐿 = 𝐶2𝐿 .

By substituting 𝐴𝑠(𝑘,𝑛)+2𝐿−𝑞 = 𝛼𝐴𝑠(𝑘,𝑛) into (3.21), for 𝑛 = 1, 2𝐿−𝑞 and 𝑘 =

1, 2𝑞−1, we eliminate 2𝐿−1 variables from the system (3.21). We can also eliminate

2𝐿−1 equations from (3.21) by using the fact that 𝐶𝑠(𝑘,𝑛)+2𝐿−𝑝 = 𝛼𝐶𝑠(𝑘,𝑛). Thus we

obtain a set of conditions:

𝑉𝒜 = 0, (3.22)

where the matrix 𝑉 is given by:

𝑉𝑘𝑖 = 𝑢𝑑[𝑘],𝑑[𝑖] − 𝛽−1𝑢𝑑[𝑘]+2𝐿−𝑝,𝑑[𝑖] + 𝛼𝑢𝑑[𝑘],𝑑[𝑖]+2𝐿−𝑞 − 𝛼𝛽−1𝑢𝑑[𝑘]+2𝐿−𝑝,𝑑[𝑘]+2𝐿−𝑞 , (3.23)

where indexes 𝑘, 𝑗 = 1, 2𝐿−1, and sets of indexes 𝑑 and 𝑑 are ordered sets:

𝑑 = {{𝑠(𝑘, 𝑛)}2𝑞−1

𝑘=1 }2
𝐿−𝑞

𝑛=1 ,

𝑑 = {{𝑠(𝑘, 𝑛)}2𝑝−1

𝑘=1 }2
𝐿−𝑝

𝑛=1 . (3.24)

If matrix (3.23) is degenerate, then (3.22) has a solution and therefore (3.20) is

satisfied exactly. However we argued in [1] that in case of interacting non-integrable

Hamiltonian (3.23) must always be non-degenerate. In this case, the only solution

of 𝒜 = 0, which is irrelevant. Let us allow one equation from (3.22) have non-zero

right-hand side
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𝑉𝒜 = (𝛿, 0, . . . , 0)𝑇 , (3.25)

here 𝛿 is a parameter which will be determined from normalization condition on

(3.19).

Let us assume that typical matrix element of 𝑣 have absolute value |𝑣𝑘𝑖| ∼ 1/
√
2𝐿

and a largely random phase. In this case we can estimate typical values of 𝒜 and

𝒞 as|𝐴0| ∼ 1/
√
2𝐿−1 and |𝐶0| ∼ 1/

√
2𝐿−1. Now if we substitute these typical values

into the left-hand side of the first equation in (3.25) we obtain 𝛿 ∼ 1/
√
2𝐿−1. This is

a key assumption for the existence of ACR, we will discuss it further in the chapter.

Let us formulate the procedure of ACR construction as step by step algorithm.

In order to construct ACR one needs to:

1. Pick a collapsing 𝑞 and reviving 𝑝 sites.

2. Choose a position of collapsing �⃗�𝑞 and reviving �⃗� ′
𝑝 spins on a Bloch Sphere.

Determine corresponding parameters 𝛼 and 𝛽.

3. Compute sets of indexes 𝑑 and 𝑑 (3.24).

4. Compute matrix (3.23).

5. Solve set of equations (3.25). In practice one can set 𝛿 = 1 to obtain a non-

normalized solution.

6. When set of parameters 𝒜 is determined, construct wavefunction (3.17) and

normalize it.

In Figure 3-2 (b) we illustrate a particular example of obtaining conditions (3.25).

In this example we imply that 𝑝 = 𝑞 and that �⃗�𝑝 = �⃗� ′
𝑞 = (0, 0, 1/2), which corre-

sponds to 𝛼, 𝛽 → ∞ or simply |𝑙𝑞⟩ = |1𝑞⟩. In this case matrix (3.23) is simply

bottom-left block of size 2𝐿−1 and wavefunctions (3.17) and (3.20) are easy to con-

struct. This example corresponds to the one considered in [1].
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Figure 3-6: Time evolution of local observables 𝑆𝛼
𝑚 for the Hamiltonian (3.26). The

dynamics on the 1st site 𝑚 = 1 is shown in (a) and of the 5th 𝑚 = 5 in (b). Revival
time 𝜏 = 10.0, system size 𝐿 = 12, 𝛼 = 𝑖, 𝛽 = −

√︀
2/9− 1/3𝑖.

3.2.1 Example of generalized ACR

Let us now construct ACR for the Hamiltonian:

𝐻1 =
𝐿∑︁

𝑗=1

(︀
𝑔𝜎𝑥

𝑗 + ℎ𝜎𝑧
𝑗 + 𝐽𝜎𝑧

𝑗𝜎
𝑧
𝑗+1

)︀
, (3.26)

here parameters (𝑔, ℎ, 𝐽) = (0.9045, 0.8090, 1) are used. Periodic boundary condi-

tions 𝜎𝛼
𝑖 = 𝜎𝛼

𝑖+𝐿 are imposed. For the system sizes where exact diagonalization

is available, it was tested thoroughly in [40, 73] that this Hamiltonian is in great

agreement with Eigenstate Thermalization Hypothesis (ETH) [34, 35].

Consider the initial state |ΦACR(0)⟩ = |𝑙1⟩ ⊗ |Ψres⟩, here 𝛼 = 𝑖 therefore �⃗�1 =

(0, 1/2, 0). Let us set the revival time as 𝜏 = 10, and pick 𝑝 = 5 and 𝛽 = −
√︀
2/9−

1/3𝑖. By solving the system of equations (3.25) for the system of 𝐿 = 12 spins we

find such |ΦACR(0)⟩ that �⃗�5 = (−0.353611,−0.249662, 0.249849), see Fig. 3-6. The

norm of |�⃗�5|2 = 0.499797 is close to 1/2, therefore the 5-th spin is almost at the

pure state at the revival moment. We showed in [1] that the discrepancy between

perfect revival and ACR vanishes exponentially with the system size.
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Figure 3-7: Time evolution of the local observables ⟨𝑆𝛼
1 ⟩ = ⟨𝑆𝛼

1 ⟩/𝑆, for the Hamilto-
nian (3.27) for different quantum spins 𝑆 = 1

2
, 1, 3

2
, 2. The green line corresponds to

the 𝑧 projection, dotted blue and orange lines to 𝑥 and 𝑦 correspondingly. Revival
time 𝜏 = 5.

3.2.2 Higher spins

In this section, we apply the mechanism of ACR construction for the case of

quantum spins 𝑆 higher than 1
2
. Let us consider the case when collapsing and reviv-

ing sites coincide 𝑞 = 𝑝 = 1 and when |𝑙1⟩ = |11⟩. Let us consider the Hamiltonian:

𝐻2 =
𝐿∑︁

𝑗=1

(︀
𝐽𝑥 𝑆

𝑥
𝑗 𝑆

𝑥
𝑗+1 + 𝐽𝑦 𝑆

𝑦
𝑗 𝑆

𝑦
𝑗+1

)︀
+

𝐿∑︁
𝑗=1

(︀
ℎ𝑥 𝑆

𝑥
𝑗 + ℎ𝑦 𝑆

𝑦
𝑗

)︀
, (3.27)
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Chapter 3. Almost complete revivals 3.2. General revival scheme in chains of spin 1/2

Periodic boundary conditions are imposed and parameters (𝐽𝑥, 𝐽𝑦, ℎ𝑥, ℎ𝑦) =

(−2.0,−4.0, 2.2, 2.2) are used. Since this Hamiltonian acts in XY plane, then the

equilibrium values of ⟨𝑆𝑧
𝑗 ⟩ = 0. The Hamiltonian (3.27) is far from integrability, as

evidenced by energy-level-spacing statistics [50].

For spins 𝑆 it is convenient to order the basis ℬ𝑆 = {|𝜙𝑆
𝑗 ⟩}

𝑔𝐿

𝑗=1 as ℬ𝑆 = {𝑔𝐿𝑔 , ..., 2𝑔, 1𝑔, 0𝑔}

here 𝑔 = 2𝑆 + 1 and 𝑗𝑔 is a base-𝑔 form of an integer 𝑗. The initial state |ΦACR(0)⟩

has the form:

|ΦACR(0)⟩ =
𝑔𝐿−1∑︁
𝑛=1

𝐴𝑛|𝜙𝑆
𝑛⟩. (3.28)

conditions for observation ACR in the basis ℬ𝑆 changes to:

𝑔𝐿−1∑︁
𝑛=1

𝑢𝑔𝐿−1(𝑔−1)+1,𝑛𝐴𝑛 = 𝛿

𝑔𝐿−1∑︁
𝑛=1

𝑢𝑔𝐿−1(𝑔−1)+2,𝑛𝐴𝑛 = 0

· · · (3.29)
𝑔𝐿−1∑︁
𝑛=1

𝑢𝑔𝐿,𝑛𝐴𝑛 = 0.

The system (3.29) has 𝑔𝐿−1 variables and equations, 𝛿 ̸= 0 to be determined

from normalization conditions. The dimensionality of the Hilbert space is 𝒟 = 𝑔𝐿,

the system (3.28) allows us to set to zero at the moment 𝜏 only 𝑔𝐿−1 − 1 of the

coefficients. There are also 𝑝 = 𝑔𝐿−1(𝑔 − 1) + 1 of non-zero coefficients left in

𝑒−𝑖𝐻𝑡|ΦACR(0)⟩, so ⟨𝑆𝑧
1(𝜏)⟩ can not exhibit almost complete revival for spins higher

than 𝑆 > 1
2
. With increasing system size its revival value converges to:

⟨𝑆𝑧
1(𝜏)⟩ ≃

1

2𝑆
.

In a Fig. 3-7 we plot the time evolution of ⟨𝑆𝛼
1 ⟩ = ⟨𝑆𝛼

1 ⟩/𝑆 for different values
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Chapter 3. Almost complete revivals 3.3. Possible applications

of spin 𝑆. The ⟨𝑆𝑧
1(𝜏)⟩ decreases with 𝑆 which is in agreement with the classical

picture in which one can not predict trajectory for arbitrary time if the system is

chaotic.

3.3 Possible applications

3.3.1 Benchmarking quantum simulators

One possible application of ACR is to benchmark the performance of engineered

many-qubit systems, such as quantum computers or quantum simulators. The ob-

servation of ACR amounts to a comprehensive test of quantum coherence and quan-

tum control of the system. The larger the revival time 𝜏 , the more stringent the test

and the greater the coverage of the many-qubit Hilbert space probed by the wave

function in the course of the dynamical evolution. In particular, for non-integrable

systems, one can hope that the time evolution of the many-qubit wavefunction be-

fore ACR would amount to a reasonably fair sampling of the system’s Hilbert space.

We further note that the observation of ACR of only one qubit for sufficiently large

𝜏 indicates that the overlap between the desired initial many-qubit state and the

experimentally prepared one is close to 1.

Let us remark that for sufficiently long time delays 𝜏 , the ACR state is strongly

entangled, which makes it difficult to prepare. Yet such difficulty is obviously much

less than that of performing the full process tomography for a quantum simulator[74].

We further note that implementing ACR with relatively short 𝜏 should be less

challenging, which turns 𝜏 into a parameter controlling the robustness of the ACR-

based benchmarking.

Finally, the ability to prepare the ACR state requires one’s ability to compute it

on classical computers. This leaves ACR-based benchmarking as a tool for testing

relatively small near-term quantum simulators or smaller parts of larger simulators

when the qubits belonging to these parts can be physically decoupled from the rest.
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Magnetic �eld perturbation Δh

Re
vi

va
l v

al
ue

⟨Sz 1(τ
=1

0)⟩

Figure 3-8: Dependence of revival value ⟨𝑆𝑧
1(𝜏 = 10)⟩ on the magnetic field per-

turbation ∆ℎ. Revival time is fixed at 𝜏 = 10, perturbation is introduced as
(ℎ𝑥, ℎ𝑦) = (2.2 − ∆ℎ, 2.2 − ∆ℎ). The inset shows the dependence of resolution
∆ℎ1/2 on the revival time 𝜏 . Solid line corresponds to the fit ∆ℎ1/2 = 𝑐0/𝜏 , where
𝑐0 = 0.3895.
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3.3.2 ACR as a part of sensor design

ACR is rather fragile to the changes in the Hamiltonian parameters. This

fragility can be exploited to devise a sensor monitoring those parameters. To be

specific, let us describe how the ACR states computed earlier for the Hamiltonian

(2.1) can be used to monitor the values of the field parameters (ℎ𝑥, ℎ𝑦). We take the

initial wave functions obtained to generate ACRs at 𝜏 = 10 for spin chains of different

lengths and then compute what happens if the field parameters (ℎ𝑥, ℎ𝑦) = (2.2, 2.2)

are modified to (ℎ𝑥, ℎ𝑦) = (2.2 −∆ℎ, 2.2 −∆ℎ). Fig. 3-8 shows that, as expected,

the revived value of ⟨𝑆𝑧
1⟩ quickly decreases with increasing ∆ℎ. A sensor can thus

use the departure of this revived value from the maximum one to monitor ∆ℎ. We

define the selectivity range of such a sensor, ∆ℎ1/2, as the value of ∆ℎ corresponding

to the decrease of ⟨𝑆𝑧
1(𝜏)⟩ by 50 percent. As illustrated in Fig. 3-8, ∆ℎ1/2 depends

very little on the number of spins 𝐿 in the system; however, it decreases inversely

proportionally to the revival time 𝜏 (see the inset). This means that the selectivity

of such a sensor can be increased by increasing the value of 𝜏 , thereby making the

sensor very selective. The resolution within the selectivity range can be increased

by repeated measurements followed by the fitting to the curve in Fig. 3-8.

The performance of the above ACR sensor based on an 𝐿-spin cluster can be

compared with that of 𝐿 noninteracting spins. The latter can also be very accurate,

especially in the entangled state [75]. The principal advantage of the ACR sensor

is not in the resolution but in the selectivity range. The "noninteracting" sensor

produces a sinusoidal response as a function of the measured field and, therefore,

requires an additional precalibration placing the sensor within the central fringe of

the measured field. The ACR sensor does not have such an issue. Its non-zero signal

would guarantee that the measured field has a value within the selectivity range.

3.3.3 Delayed disclosure of a secret

Imagine that one needs to share a piece of valuable information in the form of a

string of 𝐾 classical bits. However, the information must not be disclosed to anyone

before a certain moment of time in the future. Below we propose a scheme that
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Figure 3-9: Schematic illustration of delayed disclosure of a secret. The information
is available only at two moments of time 𝑡 = 0 and 𝑡 = 𝜏 . Any attempt to extract
the information before the 𝜏 leads to its destruction

allows one to implement such a delayed disclosure of a secret with the help of the

ACR states.

Let us first consider only one classical bit. The state of this bit is to be encoded

as 𝑆𝑧
1 = ±1/2 for a given spin 1/2 (a qubit), interacting with a finite “reservoir”

of 10-50 other spins 1/2. The state of the reservoir |Ψres⟩ is to be prepared using

the solutions of the system of equations (3.6) such that ⟨𝑆𝑧
1(𝑡)⟩ exhibits a revival

at 𝑡 = 𝜏 (see Fig. 3-10). After the quantum evolution is launched, there are two

possible scenarios: Either one measures 𝑆𝑧
1 at 𝑡 = 𝜏 and thereby obtains the encoded

bit value with probability close to one, or the measurement is performed at a wrong

time (or someone has interfered with the evolution of the system) and, therefore,

the measured value of 𝑆𝑧
1 is, most likely, uncorrelated with the encoded one.

If one were to be transmitting only one bit of information, then one realization

of the above procedure would not be sufficient: the occurrence of ACR on a single

spin 1/2 would need to be verified either by repeating the procedure several times,

or by running it simultaneously for several identical groups of spins 1/2. In this

regard, the need to transmit a larger number of bits makes the verification of ACR

more efficient: namely, one only needs to transmit two copies of the string of 𝐾

bits. If 𝐾 is sufficiently large and the two recovered strings are identical, then this

indicates that the information was transmitted as intended.

Can the delayed disclosure of a secret be implemented classically? Although
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⋮ |Ψres⟩ ⋮
|q⟩L

|q⟩2

|q⟩1

e−iHt

|Ψ1⟩

Figure 3-10: Scheme for implementing the delayed disclosure of a secret: a classical
bit is encoded into a local observable 𝑆𝑧

1 = ±1/2. The rest of the system (a reservoir)
is prepared in a state |Ψres⟩ constructed to generate a revival at time 𝜏 . The bit
is retrieved when the measurement time 𝑡 is equal to 𝜏 . Measurements at times 𝑡
outside of a narrow interval around 𝜏 would lead to random outcomes.

ACR can, in principle, be implemented classically, it cannot be used for a delayed

disclosure of a secret, because the classical variables can be measured nondestruc-

tively, which means that the information is not protected by a physical principle.

Let us further remark here that classical ACRs are much more difficult to realize

than quantum ones, because the classical spin dynamics is, typically, chaotic[62] and

hence exponentially sensitive to the uncertainties of initial conditions and Hamilto-

nian parameters, while non-integrable spin-1/2 systems, normally, do not have such

a problem[76].

In conclusion, we have shown how to generate an almost complete recovery of a

fully polarized state of a given spin 1/2 belonging to a larger lattice of interacting

spins 1/2. We have discussed possible applications of ACR to the benchmarking of

quantum simulators and also proposed to utilize ACR for a delayed disclosure of a

secret.
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Chapter 4

Manifestly non-classical eigenstates

in a model of collisional decoherence

In this section, contrary to the previous two, we study not out-of-equilibrium

initial states but special eigenstates in a model of collisional decoherence. We test

the hypothesis that every eigenstate in a large system is locally classical-like. We

find that it is true for most eigenstates, yet we find some eigenstates in the middle

of the spectrum which violate the above hypothesis. The content of this chapter is

mostly based on the paper [2].

4.1 Decoherence theory

Quantum many-body Hilbert space allows for all sorts of superpositions, for

example, the famous Schrödinger’s cat states. Such superpositions, however, are

entirely absent on the macroscopic level. A thoughtful explanation of why this is

happening is required to explain the so-called quantum-classical transition.

Decoherence theory [77–82] provides the following explanation. One cannot com-

pletely isolate any system from everything else. When the interaction between the

system and the environment is taken into account, many-body superpositions be-

come extremely fragile. In the above studies usually some out-of-equilibrium initial

state of the form |Ψ(0)⟩ = |𝜓𝑆⟩ ⊗ |𝜓𝐵⟩ is considered, here |𝜓𝑆⟩ describes the state

of the system 𝒮 and |𝜓𝐵⟩ represents the environment ℬ.
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We provide a complementary view by considering the eigenstates of the combined

system ℋ = 𝒮 ⊗ ℬ. The eigenstate decoherence hypothesis (EDH) introduced in

[83], suggests that eigenstates of ℋ should be locally classical. In this section, we

test EDH for a model of collisional decoherence and discover that it holds for the

majority of eigenstates. Yet we discover a small subset of eigenstates violating EDH.

4.2 Eigenstate Decoherence Hypothesis

The Eigenstate decoherence hypothesis may be formulated as follows. Consider

the total Hamiltonian 𝐻 which describes the system ℋ, for any eigenstate |Φ𝐸⟩, the

corresponding reduced density matrix

𝜌𝑆𝐸 ≡ trℬ|Φ𝐸⟩⟨Φ𝐸|, (4.1)

is classical-like according to a suitable quantumness measure, or, in other words,

free of any weird quantum Schrödinger-cat-type superpositions.

The EDH is motivated by the eigenstate thermalization hypothesis (ETH) [34–

36]. According to the ETH if the system reaches thermal equilibrium, then any

local observable ⟨�̂�𝑆
𝐸⟩ of 𝒮, as well as 𝜌𝑆𝐸 are smooth functuons of 𝐸. Various

case studies have suggested that it is indeed true for generic nonintegrable systems

without disorder [36, 40, 42].

4.2.1 Specific test of EDH

So far, there are not many specific tests of the EDH except for a central spin

model case [83]. Here we consider a more natural setup, namely a heavy particle

(subsystem 𝒮) in a gas of light particles ℬ. In particular, consider a heavy particle

prepared in some superposition state, for example |Ψ𝑆⟩ = 1/
√
2(|𝜓(�⃗�1)⟩ + |𝜓(�⃗�2)⟩),

where |�⃗�2− �⃗�2| ≫ 𝑙mfp, here 𝑙mfp is a mean free path. In this case, one can reasonably

expect that such a state has a lifetime of the order of mean free time. In other

words, it should be a highly out-of-equilibrium state, and one cannot expect it to
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be stable. Our studies demonstrate that this is indeed true most of the time. Yet,

surprisingly, we find that non-classical eigenstates exist where such a heavy particle

is in a superposition of two distant wavefunctions forever.

4.3 Model of collisional decoherence

Let us consider a heavy particle in a gas of light particles. We employ exact

diagonalization to find rare special eigenstates distinct from thermal ones. Exact di-

agonalization limits us to a one-dimensional version of this problem. Let us consider

𝑁 fermions and a single heavy particle on a linear lattice consisting of 𝐿 sites:

𝐻 =

(︃
−𝐽

𝐿−1∑︁
𝑖=1

𝑐†𝑖𝑐𝑖+1 − 𝐽 ′
𝐿−1∑︁
𝑖=1

𝑎†𝑖𝑎𝑖+1 + ℎ.𝑐.

)︃

+
𝐿∑︁
𝑖=1

𝑈𝑎†𝑖𝑎𝑖𝑐
†
𝑖𝑐𝑖 + 𝛿𝐻. (4.2)

Here 𝑐†𝑖 creates a fermion, and 𝑎†𝑖 – the particle, 𝐽 > 0 and 𝐽 ′ ≥ 0 are hopping

constants for fermions and the particle, respectively, 𝑈 > 0 is the coupling constant

between a fermion and the particle. The term

𝛿𝐻 = 𝜖
𝐿∑︁

𝑗=1

(𝑗/𝐿)𝑐†𝑗𝑐𝑗 (4.3)

describes the linear on-site potential felt by fermions. It is introduced to break

the otherwise present reflection symmetry of the Hamiltonian for a purpose to be

discussed later. When considering a relatively large system size, we will imply the

thermodynamic limit with the fixed fermionic density 𝑛 ≡ 𝑁/𝐿.

In order to separate time scales of decoherence and thermalization, we assume

that the distinguished particle is heavy as compared to the fermions [84, 85], which

amounts to 𝐽 ≫ 𝐽 ′.

In the limiting case of the infinitely heavy particle, 𝐽 ′ = 0, the model becomes
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trivially integrable with the eigenstates of the form

Φ𝐸 = |𝑗⟩ ⊗ |𝐹 𝑗
𝐸⟩, (4.4)

where |𝑗⟩ is the state of the particle localized on the site 𝑗 and |𝐹 𝑗
𝐸⟩ is an eigen-

state of the 𝑗-dependent quadratic fermionic Hamiltonian

𝐻𝑗 =

(︃
−𝐽

𝐿−1∑︁
𝑖=1

𝑐†𝑖𝑐𝑖+1 + ℎ.𝑐.

)︃
+ 𝑈𝑐†𝑗𝑐𝑗 + 𝛿𝐻. (4.5)

Note that if 𝛿𝐻 = 0, the spectrum acquires degeneracies due to the reflection

symmetry of the Hamiltonian.

4.3.1 Coherence length

Now we need to choose some physical quantity, to quantitatively characterize the

quantumness of the heavy particle. For a set up described above the most natural

quantity is the coherence length [86, 87]

𝑙(𝜌𝑆) ≡

⎯⎸⎸⎷2
∑︀𝐿

𝑖𝑗=1 |⟨𝑖|𝜌𝑆|𝑗⟩|2(𝑖− 𝑗)2∑︀𝐿
𝑖𝑗=1 |⟨𝑖|𝜌𝑆|𝑗⟩|2

, (4.6)

Here 𝜌𝑆 = tr𝐵|Ψ⟩⟨Ψ| is a reduced density matrix of the particle obtained from

a pure state |Ψ⟩ of the closed particle-gas system and ⟨𝑖|𝜌𝑆|𝑗⟩ = ⟨Ψ|𝑎†𝑗𝑎𝑖|Ψ⟩ is its

matrix elements in the position basis. The quantity (4.6) has a measure of length

and depends on off-diagonal elements of the density matrix. It effectively measures

the spatial extension of a superposition of localized states, ranging from 0 for a

particle localized on a single site to (𝐿 − 1) for a highly non-classical state of the

form
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|Ψ𝑄⟩ = (1/
√
2)(𝑎†1 + 𝑎†𝐿)|𝐹 ⟩, (4.7)

where |𝐹 ⟩ is some state of 𝑁 fermions. If the coherence length is equal to zero,

all the off-diagonal elements of the density matrix 𝜌𝑆 are equal to zero. Larger values

of |𝑖− 𝑗| for non-zero off-diagonal elements imply longer coherence length.

To simplify the terminology and notations, we will attribute coherence length

also to pure many-body states, implying 𝑙(|Ψ⟩) ≡ 𝑙 (trℬ|Ψ⟩⟨Ψ|).

Importantly, while 𝑙 for non-classical states can be on the order of the size of the

system 𝐿, as in eq. (4.7), for classical-like states 𝑙 is independent on the system size.

In particular, for the model (4.2) we expect that 𝑙 for classical-like states is bounded

from above by the average interparticle distance 𝐿/𝑁 times the probability for the

scattering of a fermion off the particle.

4.3.2 Test of EDH

To test the EDH we numerically diagonalize the Hamiltonian (4.2) for finite

system sizes and calculate the coherence length 𝑙(|Φ𝐸⟩) for each eigenstate |Φ𝐸⟩.

The range of system sizes is 𝐿 = 8, 9, . . . 12. We use half-filling to keep the fermion

density 𝑁/𝐿 independent of the system size. Namely, we take 𝑁 = 𝐿/2 for even

𝐿 and 𝑁 = (𝐿 − 1)/2 for odd 𝐿. We consider both unbiased (𝜀 = 0) and biased

(𝜀 = 0.1) versions of the Hamiltonian (4.2).

The coherence lengthes of all eigenstates are presented in Fig. 4-1. Most of

the states have coherence length on the order of the average interparticle distance,

𝐿/𝑁 ≃ 2, in accordance with the expectation discussed above. In particular, the

coherence length averaged over all states reads 𝑙av = 2.63. However, one can clearly

see that there exists a number of "outlier" eigenstates with a large coherence length

well exceeding this value. Such outliers are mostly concentrated at the edges of the

spectrum, however, they also can be found in the middle of the spectrum.

As discussed above, a decisive signature of violation of the EDH is the growth of

the coherence length with the system size. In Fig. 4-2 we show the finite-size scaling
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Figure 4-1: The coherence length for eigenstates of the nonintegrable Hamiltonian
(4.2) with 𝐽 = 1, 𝐽 ′ = 0.2, 𝑈 = 1, 𝑁 = 6, 𝐿 = 12, 𝛿𝐻 = 0. The ground state, the
state with the maximal coherence length and a state in the middle of the spectrum
with a large coherence length are marked with the red cross, black triangle and blue
circle, respectively. Fig. from ref [2]

Figure 4-2: The maximal 𝑙max and average 𝑙av coherence lengths for eigenstates of
the nonintegrable Hamiltonian for the cases of the presence ( 𝜖 = 0) and absence
(𝜖 = 0.1) of the spatial reflection symmetry. The system is half-filled with fermions,
with 𝑁 = 𝐿/2 for even 𝐿 and 𝑁 = (𝐿 − 1)/2 for odd 𝐿. Other parameters of the
Hamiltonian are the same as in Fig. 4-1. Fig. from ref [2].
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of the average and maximal (over all eigenstates) coherence lengths. The scaling

of these two quantities is drastically different: while the former vanishes with the

system size, the latter grows linearly with 𝐿. Thus we conclude that our numerical

data support the weak EDH, but suggest the violation of the strong EDH.

We have performed numerical calculations with various fermion densities (where

we can access slightly larger system sizes, up to 𝐿 = 13), coupling strengths, as well

as next-to-nearest neighbor interactions and obtained similar results. Note that, the

potential bias 𝛿𝐻 does not quantitatively alter the result, as is clear from Fig. 4-2

4.3.3 EDH: Conclusions

In this section, we have tested the eigenstate decoherence hypothesis (EDH) for

a system consisting of a heavy particle immersed in a one-dimensional Fermi gas.

Our numerical data suggest that while the weak EDH holds, the strong EDH is

violated by rare non-classical outlier eigenstates with a particle coherence length on

the order of the system size.

The existence of such outlier eigenstates is in stark contrast with the intuition

based on the theory of collisional decoherence [81, 85, 88], which predicts rapid

decoherence as soon as the particle experience a collision with the gas particles.

A plausible resolution of this conundrum is that most initial states (in particular,

product states of a particle and a gas often considered in this theory) have a vanishing

overlap with outliers, and thus the latter typically do not affect the decoherence.

Careful crafting of the state of a many-body system (e.g. in a cold atom simulator

[89]) is required to unveil the non-classical eigenstates.

Relation with quantum many-body scars

Finally, we remark that the outlier non-classical eigenstates violating the EDH

resemble the many-body scars violating the ETH. One may wonder if the scars, in

fact, exist in the model described by (4.2). At 𝐽 = 𝐽 ′ and 𝛿𝐻 = 0 the Hamiltonian

(4.2) is a Hubbard Hamiltonian, which is integrable in 1D and known to possess

eigenstates violating ETH [90]. However, to the best of our knowledge, no scars

have been reported away from this point. Furthermore, typically the scars are not
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robust with respect to perturbations of the Hamiltonian [91], while the violation

of the EDH is. We, therefore, conclude that, anyway, the violation of EDH is not

conditioned on the existence of quantum many-body scars.
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Chapter 5

Conclusions and outlook

In the present thesis, we studies several classes of exceptional states in many-body

systems. Chapters 2 and 3 focused on the special dynamics of certain strongly out-of-

equilibrium states in spin systems. In Chapter 4, we studied unusually non-classical

eigenstates in a model of collisional decoherence. We have presented corresponding

conclusions at the end of each Chapter. Here we would like to share a broader and

less specific look at the results of each Chapter and the future directions of research.

5.1 Periodic trajectories in many-spin systems

We have studied both classical and quantum evolution of initially fully polarized

spin configurations. The classical dynamics of this configuration turned out to be

surprisingly complex. Not only have we discovered irregular dependence of the

stability of periodic trajectories on the system size, but we have also uncovered

the existence of a intermediary quasiperiodic regime. Furthermore, we discovered

that for certain system sizes when the periodic motion is always unstable, but the

quasiperiodic regime exhibits good stability and is accompanied by translational

symmetry breaking.

The quasiperiodic regime requires further research. We believe that study of peri-

odic trajectories and quasiperiodic regime in different geometries can be a promising

direction for future research.

While studying the quantum counterpart of the problem, we have discovered

94



Chapter 5. Conclusions and outlook 5.2. Almost complete revivals

that for higher quantum spins, extra stable periodic trajectories manifest themselves

as lower-entropy eigenstates in chains of small sizes. We refer to such eigenstates

as “Finite size quantum scars” or FSQS. Although FSQS states so far has been

observed for finite size systems it is an interesting question whether they survive

thermodynamic limit.

Lastly, we have introduced the notion of “quantum separatrix” which distin-

guishes between oscillatory and non-oscillatory behavior. We demonstrated that

analogously to the classical picture, states corresponding to periodic initial condi-

tions are most unstable near separatrix. The parameters of the Hamiltonian corre-

sponding to the quantum separatrix can be approximately predicted from classical

ones. The existence of such a connection between quantum and classical problems

might be useful in the understanding of quantum to classical transition.

5.2 Almost complete revivals

In Chapter 3, we have introduced a phenomenon of almost complete revivals.

We provided a prescription on how to build an out-of-equilibrium state such that

at a predetermined moment of time some selected local spin will undergo an almost

complete revival to its full polarization. We also have generalized this method to

the case when collapse and revival sites do not coincide.

We suggested several possible applications for this phenomenon. Namely, bench-

marking of quantum simulators, entanglement-assisted sensing, and delayed disclo-

sure of a secret. As we have demonstrated, such revivals can be obtained in systems

of 5-25 spins. These suggestions rightly raise the question of the experimental possi-

bility of constructing almost complete reviving states, for example, by using existing

quantum computers. In further research we must answer the following crucial ques-

tion: how can one practically implement almost complete revivals with existing

quantum hardware?
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5.3 Non-classical eigenstates in many-body systems

In Chapter 4, we shifted our attention from special out-of-equilibrium states to

special eigenstates. We have considered a heavy particle in a gas of light fermions

and found that such a system possesses eigenstates for which the heavy particle is in a

non-classical spatial superposition at two separate locations. One could expect such

states to be cannot be stationary, because collisions would lead to quick decoherence

of such state. Nevertheless, our calculations show a small subset of perfectly stable

eigenstates corresponding to the highly non-local state of the heavy particle. On

the other hand, we have also established that the vast majority of eigenstates are

locally classical-like, thereby confirming the validity of the weak version of Eigenstate

Decoherence Hypothesis.

Although we did our best to eliminate all obvious integrals of motion in the

system, such as translational or mirror symmetry, our simulations were still con-

ducted in one dimension. Therefore we must ask ourselves whether the observed

non-classical eigenstates will remain in higher dimensions. We have not yet an-

swered this question due to the high computational complexity of two-dimensional

problem. We believe that this is an important question for further research.

Another direction of further research is to find more models to test Eigenstate

Decoherence Hypothesis. So far, it has been tested only in the central spin model

and in the model of collisional decoherence. It would also be interesting to test

this hypothesis in models describing light-matter interaction, such as the Jaynes-

Cummings-Hubbard model, which describes an array of coupled optical resonators.

Studying such models might be advantageous because, in this case, one can relatively

easily pick an appropriate measure of classicality. Furthermore, optical models often

have the advantage of being experimentally realizable.
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