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Abstract.

The thesis is devoted to the applications of the identities on the quantum
R-matrices, mainly, the associative Yang–Baxter equation, in the theory of
classical and quantum integrable systems.

The new families of classical integrable systems of M non-relativistic and rel-
ativistic interacting glN integrable tops have been constructed in this approach.
The obtained integrable systems generalizes both the classical integrable sys-
tems of particles (spin Calogero–Moser and spin Ruijsenaars–Schneider models)
in the N = 1 particular case and the classical integrable tops of Euler–Arnold
type in the M = 1 case.

The Lax representations with spectral parameter for these systems have been
written explicitly, as well as the dynamical classical r-matrix for the generalized
interacting integrable tops in the non-relativistic case. In the quantum level,
the quantum dynamical RLL-algebra for the quantization of this classical r-
matrix is also obtained. In the elliptic case the quadratic quantum algebra
based on this RLL-relation generalizing the Sklyanin algebra and the small
elliptic quantum group is constructed.

3



List of publications.

1. A. Grekov, I. Sechin, A. Zotov. Generalized model of interacting integrable
tops, JHEP 10 (2019) 081; arXiv: 1905.07820 [math-ph].

2. I.A. Sechin, A.V. Zotov, Integrable system of generalized relativistic inter-
acting tops. Theoret. and Math. Phys., 205:1 (2020) 1292–1303, arXiv:
2011.09599 [math-ph].

3. I.A. Sechin, A.V. Zotov, Quadratic algebras based on SL(NM) elliptic quan-
tum R-matrices, Theoret. and Math. Phys., 208:2 (2021), 1156–1164,
arXiv: 2104.04963

4



Contents

1 Introduction 7
Thesis structure and review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Generalized interacting integrable tops 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Lax equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 R-matrix properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Lax pair and equations of motion . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Hamiltonian description . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Interacting tops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Classical r-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Elliptic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.2 Trigonometric models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.3 Rational models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.1 Spin glM Calogero–Moser model . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.2 Integrable glN tops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Generalized relativistic interacting integrable tops 46
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Relativistic integrable GLN -top. . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.2 Spin generalization of the Ruijsenaars–Schneider model. . . . . . . . . . . 50
3.1.3 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Derivation of equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 R–matrix identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Lax equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5



3.2.3 Interacting tops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Quantum GL(NM) R-matrix and quantum algebra 61
4.1 Quantum dynamical GL(NM) R-matrix . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Elliptic quantum algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Sklyanin algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Elliptic quantum group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 A quadratic algebra for the SL(NM) R–matrix . . . . . . . . . . . . . . . . . . 70
4.3.1 An example calculation to check the RLL–relation . . . . . . . . . . . . . 72
4.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Conclusion 75

Appendix: Elliptic functions and their properties 76

Bibliography 79

6



Chapter 1

Introduction

The integrable systems or exactly solvable models are classical and quantum systems with very
specific properties, resulting in the fact that there exist a large number of the integrals of
motion (conservation laws). The systems of this type are quite rare and therefore finding some
new integrable cases is always a very interesting problem. The theory of integrable systems
is one of the rapidly developing areas in the modern mathematical physics, new integrable
systems are constantly being explored, as well as their connections to the known integrable
systems and to the other areas of the mathematics and theoretical physics, such as theory of
matrix models, Lie groups theory, quantum algebras, quantum and conformal field theory and
string theory. This thesis is also devoted to the introduction of a new family of integrable
systems based on the algebraic identities on the quantum R-matrices. Despite the fact that
the construction uses the quantum objects, the methods of the thesis allows to define both
classical and quantum systems with the very interesting properties. The systems defined can
be considered as the generalizations of the well-known mechanical integrable systems, and the
quantum algebra corresponding to the defined systems, generalizes two well-known quantum
algebra structures: the Sklyanin algebra and the elliptic quatnum group.

There exist two well-known important classes of integrable systems with a finite number of
degrees of freedom (mechanical systems), which have representatives both at the classical and
at the quantum side. The first class includes the many-body systems of interacting particles
on a line, which representative example is a classical Calogero–Moser system with Hamilton
function

H =
M∑
i=1

p2i
2

− 1

2

M∑
i,j
i ̸=j

V (qi − qj), (1.1)
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where pi and qi are the canonical momenta and coordinates with Poisson brackets

{pi, qj} = δij, {pi, pj} = {qi, qj} = 0.

The Calogero–Moser system is known to be integrable for three integrable potentials V (q) —
rational, trigonometric and elliptic:

V (q) =


1
q2
, rational case,
1

sin2(q)
, trigonometric case,

℘(q), elliptic case.

(1.2)

In the elliptic case the Weierstrass ℘-function on the elliptic curve C/Z+ τZ is used

℘(q) =
1

q2
+
∑

m,n∈Z2

m̸=n

(
1

(q +m+ nτ)2
− 1

(m+ nτ)2

)
.

The second wide class includes different tops and spins systems (integrable tops, Gaudin
models, spin chains). The symplectic manifolds connected with the systems of this type are
constructed using the coadjoint orbits of Lie algebras, and the spin variables have Lie-algebraic
Poisson brackets. The simplest representatives of this class are known as the integrable SO(3)
Euler tops. They have Hamilton functions of the form

H =
∑

α∈{x,y,z}

JαS
2
α, (1.3)

where Sα have the Poisson brackets connected with Lie algebra of SO(3)

{Sα, Sβ} = ϵαβγSγ

and Jα are arbitrary constants corresponding to the components of the inverse of the inertia
tensor of the top. There are three integrable Euler top cases, depending on the values of Jα:

Jx = Jy = Jz, rational case,

Jx = Jy ̸= Jz, trigonometric case,

Jx ̸= Jy ̸= Jz ̸= Jx elliptic case.

(1.4)

The rational, trigonometric and elliptic cases in this classification relate to the type of functions,
obtained in the solutions of the equations of motion. In the most general elliptic case, using
the conserved quantities H and S2 = S2

x + S2
y + S2

z , one can write the equation on Sx

Ṡx = {H,Sx} = 2(Jy − Jz)SySz =
√

a+ bS2
x + cS4

x, (1.5)
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where a, b, c are the constant depending on Jx, Jy, Jz, S
2, H. In the general case of nonzero c the

solution is elliptic, in the situation Jx = Jy ̸= Jz c = 0 and the solutions become trigonometric,
in the situation Jx = Jy = Jz both c = 0 and b = 0 and the equation degenerates to the trivial
one.

The integrability of these systems in all three cases are based on the set of functional
identities satisfying by the rational, trigonometric and elliptic functions. The most fundamental
relation from this set, from which one can obtain all other identities, is called the Fay identity

ϕ(u, z12)ϕ(v, z23) = ϕ(v, z13)ϕ(u− v, z12) + ϕ(v − u, z23)ϕ(u, z13), zij = zi − zj. (1.6)

This identity is satisfied by rational, trigonometric and elliptic functions, which in turn define
rational, trigonometric, or elliptic integrable systems. The three series of solutions are

ϕ(u, z) =


1
u
+ 1

z
= u+z

uz
, rational case,

coth(u) + coth(z) = sin(u+z)
sin(u) sin(z)

, trigonometric case,
ϑ′(0)ϑ(z+u)
ϑ(z)ϑ(u)

, elliptic case,

(1.7)

where ϑ(z) is the odd elliptic theta-function

ϑ(z) =
∑
k∈Z

exp
(
πiτ(k + 1

2
)2 + 2πi(z + 1

2
)(k + 1

2
)
)

on the elliptic curve C/Z + τZ with moduli τ : Imτ > 0. The elliptic case is the most general
one, and trigonometric and elliptic cases could be obtained from as its limits

ϑ(z) → sin z → z,

ϑ′(0)ϑ(z + u)

ϑ(z)ϑ(u)
→ sin(z + u)

sin(z) sin(u)
= cot(z) + cot(u) → z + u

zu
=

1

z
+

1

u
.

This thesis consists some results of the studying of a family of integrable systems that is in
an intermediate position between these two classes of systems and has the properties of both
types — interacting integrable tops systems, constructed via a quantum R-matrix satisfying
the specific quantum R-matrix identities, generalizing the functional relations which provide
the integrability in the known cases.

The main method of investigation of these systems is connected with the extension of the
Fay identity on a scalar function ϕ to a noncommutative matrix case. The matrix-valued
counterpart of the Fay identity is known as the associative Yang–Baxter equation

Rℏ
12(z12)R

η
23(z23) = Rη

13(z13)R
ℏ−η
12 (z12) +Rη−ℏ

23 (z23)R
ℏ
13(z13). (1.8)
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This is the relation on the matrix function R taking values in the tensor square of a Mat(N,C)
space, written in a tensor cube of this space, and the lower indices shows the components of the
tensor product where this matrix is nontrivial. It is the standard notation using for quantum
R-matrices in the Quantum Inverse Scattering Method.

There is a natural reason to call the objects in these relations the quantum R-matrices.
Namely, any solution of the associative Yang–Baxter equation which additionally satisfies uni-
tarity and skew-symmetry properties

Rℏ
12(z)R

ℏ
21(−z) ∝ 1⊗ 1, Rℏ

12(z) = −R−ℏ
21 (−z) (1.9)

is also a solution of the Yang–Baxter equation.
In order to prove it, one needs to consider the associative Yang–Baxter equations with

deformation parameters ℏ = 2a, η = a

R2a
12(z12)R

a
23(z23) = Ra

13(z13)R
a
12(z12) +R−a

23 (z23)R
2a
13(z13). (1.10)

After that, multiply both sides on Ra
23(z23)

Ra
23(z23)R

2a
12(z12)R

a
23(z23) = Ra

23(z23)R
a
13(z13)R

a
12(z12) +Ra

23(z23)R
−a
23 (z23)R

2a
13(z13). (1.11)

Using unitarity and skew-symmetry, one obtains

Ra
23(z23)R

−a
23 (z23) = −Ra

23(z23)R
a
32(z32) = −(℘(a)− ℘(z23))1N ⊗ 1N , (1.12)

therefore, one gets for the r.h.s. of the Yang–Baxter equation

Ra
23(z23)R

a
13(z13)R

a
12(z12) = Ra

23(z23)R
2a
12(z12)R

a
23(z23) + (℘(a)− ℘(z23))R

2a
13(z13). (1.13)

Doing the same procedure for the associative Yang–Baxter equation rewritten in the spaces
1− 3− 2 instead of 1− 2− 3, one obtains the same expression for the l.h.s.

R2a
13(z13)R

a
32(z32) = Ra

12(z12)R
a
13(z13) +R−a

32 (z32)R
2a
12(z12),

R2a
13(z13)R

a
32(z32)R

a
23(z23) = Ra

12(z12)R
a
13(z13)R

a
23(z23) +R−a

32 (z32)R
2a
12(z12)R

a
23(z23),

Ra
12(z12)R

a
13(z13)R

a
23(z23) = (℘(a)− ℘(z23))R

2a
13(z13) +Ra

23(z23)R
2a
12(z12)R

a
23(z23). (1.14)

The solutions of the associative Yang–Baxter equation are also rational, trigonometric and
elliptic quantum R-matrices. All these solutions can be used to construct the generalized
integrable models.
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Thesis structure and review

The Chapter 1 is the introduction, where the identities on the quantum R-matrices and their
correspondence to the functional relations are discussed, and the short review of the thesis is
given.

The Chapter 2 is devoted to the nonrelativistic generalized interacting integrable tops
systems as the main example of models described using the quantum R-matrices and the
relations on them. The construction uses GL(N) quantum R-matrices to define M interacting
glN integrable tops and their generalizations. The quantum R-matrices defines the structure
of spin variables interaction, they are included into the Hamiltonian and the Lax operators of
this system:

H =
1

2

M∑
i=1

p2i +
M∑
i=1

Htop(S ii) +
1

2

M∑
i,j
i ̸=j

U(S ij,Sji, qi − qj), (1.15)

L(z) =
M∑
i=1

Eii ⊗
(
pi · 1N + Tr2(S ii

2 R
z,(0)
12 P12)

)
+

M∑
i,j
i ̸=j

Eij ⊗ Tr2(S ij
2 R

z
12(qij)P12). (1.16)

Here Eij is the standard matrix basis in M ×M matrices with the matrix elements (Eij)ab =
δiaδjb, pi and qj are canonical momenta and coordinates with the canonical Poisson brackets
{pi, qj} = δij, and {pi, pj} = {qi, qj} = 0 and S ij are matrices of the spin variables with
Lie-algebraic Poisson brackets

{S ij
ab,S

kl
cd} = Skj

cb δ
ilδad − S il

adδ
kjδcb, i, j, k, l = 1, . . . ,M, a, b, c, d = 1, . . . , N. (1.17)

The potential function U(S ij,Sji, qi − qj), the top Hamiltonian Htop(S ii) and the components
of the Lax operator L(z) are defined via the quantum R-matrix satisfying the associative Yang–
Baxter equation Rz(qij) and its coefficients in the expansion in the spectral parameter z and
coordinates qij:

Rz
12(qij) =

1

z
· 1 + r12(qij) + zm12(qij) +O(z2), (1.18)

Rz
12(qij) =

1

qij
P12 +R

z,(0)
12 +O(qij), (1.19)

U(S ij,Sji, qi − qj) = Tr12(∂qir21(qi − qj)P12S ij
1 S

ji
2 ), (1.20)

Htop(S) = 1

2
Tr12(m12(0)S1S2). (1.21)
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where P12 denotes the permutation matrix.
The Lax equations are equivalent to the equations of motion under the constraints

TrS ii = const (1.22)

and defines the integrable systems on the coadjoint orbits of the group GL(NM). The N = 1
case reconstructs the Lax pair for the spin generalization of the many-body Calogero–Moser
system, and the M = 1 case provides the Lax pair for the Euler–Arnold integrable top — two
different systems from two different classes of the integrable mechanical systems.

The Hamiltonian structure of the generalzed interacting integrable tops system is also de-
scribed in the Chapter 2. It is shown, that the Lax operator for the system satifies the modified
dynamical classical r-matrix structure which provides the commutativity of the Hamiltonians
in this system under the constraints

{L1′1(z1), L2′2(z2)} = [r1′2′12(z1, z2), L1′1(z1)]− [r2′1′21(z2, z1), L2′2(z2)]−

−
( M∑

i=1

TrS ii · ∂qi
)
r1′2′12(z1, z2), (1.23)

r1′2′12(z, w) =
M∑
i=1

(Eii)1′ ⊗ (Eii)2′ ⊗ r12(z − w) +
M∑
i,j
i ̸=j

(Eij)1′ ⊗ (Eji)2′ ⊗R
qij
12 (z − w). (1.24)

The classical r-matrices for these generalized systems are also defined via the same quantum
R-matrices, as in the corrrespoding Lax operators.

The Chapter 3 introduced the relativistic version of the generalized interacting integrable
tops systems. These systems are the simultaneous extensions of the spin Ruijsenaars–Schneider
particle systems and the relativistic integrable tops. They are described via the Lax pair with
a spectral parameter and set of equations of motion equivalent to the Lax equation. There
is no known general Hamiltonian structure and classical r-matrix structure in the relativistic
case, as well as in the particular case of the elliptic spin version of Ruijsenaars–Schneider model
(however, it is known in for the rational and trigonometric spin models).

The Lax operator of the relativistic model has also the construction based on the quantum
R-matrix satisfying the set of quantum R-matrix identities and has the form

L(z) =
M∑

i,j=1

Eij ⊗ Tr2(S ij
2 R

z
12(qij + η)P12). (1.25)

As in the case of the spin Ruijsenaars–Schneider model, the Lax equations are equivalent to
the equation of motion on a set of constraints on coordinates q and spin variables S

µi = q̇i − TrS ii = 0. (1.26)
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These constraints can be presented as the additional term inserted into the Lax equations

L̇(z) = [L(z),M(z)] +
M∑
i=1

(µi − µj)Eij ⊗ Tr2(S ij
2 F

z
12(qij + η)P12), (1.27)

where F z(qij) = ∂qiR
z(qij).

In the nonrelativistic η → 0 limit on the constraints µi = 0 this Lax operator goes to the
Lax operator from the Chapter 2 with the identification pi = q̇i/η:

L(z) → 1

η

M∑
i=1

Eii ⊗ 1 · TrS ii +
M∑
i=1

Eii ⊗ Tr2(S ii
2 R

z,(0)
12 (qij)P12)+

+
M∑
i,j
i ̸=j

Eij ⊗ Tr2(S ij
2 R

z
12(qij)P12) +O(η). (1.28)

TheChapter 4 is devoted to the quantumR-matrix structure for the generalized interacting
tops system. It quantizes the modified dynamical classical r-matrix structure defined above.
The quantum R-matrix in this case is also ”half-dynamical” (like the classical one), depending
only on coordinates q. It has a form of a GL(M) block Felder dynamical R-matrix with
nondynamical GL(N) quantum R-matrices inside the blocks.

Rℏ
1′2′12(z, w | q) =

M∑
i=1

(Eii)1′ ⊗ (Eii)2′ ⊗Rℏ
12(z − w) +

M∑
i,j
i ̸=j

(Eij)1′ ⊗ (Eji)2′ ⊗R
qij
12 (z − w)+

+
M∑
i,j
i ̸=j

(Eii)1′ ⊗ (Ejj)2′ ⊗ 1N ⊗ 1N ϕ(ℏ,−qij) =
1

ℏ
+ r1′2′12(z, w | q) +O(ℏ). (1.29)

In the case M = 1 only the first summand is in the sum, therefore, this R-matrix becomes a
nondynamical quantum R-matrix (not depends on q and satisfies the ordinary Yang–Baxter
equation), but in the case N = 1 it is equivalent to the ordinary dynamical Felder quantum
R-matrix, satisfying the dynamical Yang–Baxter.

The modified dynamical Yang–Baxter equation written on this R-matrix has shifts only
along 1′ and 2′ spaces, corresponding to the Felder-like structures in the R-matrix

Rℏ
1′2′12(z1, z2 | q)Rℏ

1′3′13(z1, z3 | q − ℏ(2′))Rℏ
2′3′23(z2, z3 | q) =

= Rℏ
2′3′23(z2, z3 | q − ℏ(1′))Rℏ

1′3′13(z1, z3 | q)Rℏ
1′2′12(z1, z2 | q − ℏ(3′)), (1.30)

Rℏ
1′2′12(z1, z2 | q − ℏ(3′)) =

(
M∑
i=1

(Eii)3′ e
−ℏ∂qi

)
Rℏ

1′2′12(z1, z2 | q)

(
M∑
i=1

(Eii)3′ e
ℏ∂qi

)
. (1.31)

13



One can also define an L-operator and RLL-algebra corresponding to this quantum R-
matrix. Let h1, . . . , hM be commutative elements, then L̂(z) is called an L-operator with
Cartan elements hi if it satisfies the relation

Rℏ
1′2′12(z1, z2 | q)L̂1′1(z1 | q − ℏ(2′))L̂2′2(z2 | q) =

= L̂2′2(z2 | q − ℏ(1′))L̂1′1(z1 | q)Rℏ
1′2′12(z1, z2 | q − ℏh), (1.32)

where the shift along the Cartan algebra is used

Rℏ
1′2′12(z1, z2 | q − ℏh) =

(
M∑
i=1

hi e
−ℏ∂qi

)
Rℏ

1′2′12(z1, z2 | q)

(
M∑
i=1

hi e
ℏ∂qi

)
. (1.33)

The Section 4 is also contains the quadratic algebra defined via generators and relations, which
is equivalent to this RLL-algebra in the case of elliptic Baxter–Belavin R-matrix in the blocks.
This algebra is generated by the operators tαij, where 1 < i, j < M and α ∈ ZN × ZN . For any
fixed pair i, j these operators satisfy the Sklyanin algebra relations, and additional relations on
the operators generalizes the relations in the small elliptic dynamical quantum group.
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Chapter 2

Generalized interacting integrable tops

This chapter is based on our paper [30] and is devoted to the classical integrable systems
of M interacting glN tops. The construction of this integrable system is based on the GLN

quantum R-matrix satisfying additionally the associative Yang–Baxter equation. These models
generalize the classical spin Calogero–Moser models by adding the anisotropy to the interaction
of spins. The R-matrix data provides the classical analogues of the anisotropic spin exchange
operators.

The main results in this chapter are the explicit expression for the glNM -valued Lax pair with
spectral parameter for the generalized interacting integrable tops system and the Hamiltonian
description of this model, including the classical dynamical r-matrix structure associated with
the constructed Lax pairs. These results have been obtained via the identities on the quantum
R-matrix in the definition of system, therefore, they do not depend on the explicit form of this
R-matrix. The chapter also contains the examples of the interacting tops systems for different
quantum R-matrix — elliptic, trigonometric and the rational ones, in these cases the potentials
and the spin exchanges are written explicitly.

The system of interacting integrable tops can be considered simultaneously as the extension
of the spin Calogero–Moser systems of interacting particles (in the N = 1 case) and as the
extension of the integrable top of the Euler–Arnold type (in the M = 1 case). The glNM -valued
Lax pair for this system also generalizes the glN Lax structure of the integrable top and the
glM Lax structure of the spin Calogero–Moser system. The Lax operators can be considered
as M ×M block matrices with the form of Calogero–Moser Lax operators with N ×N blocks
inside, corresponding to the top-like degrees of freedom.

The classical r-matrix for this system generalizes two different classical r-matrix structure
— the nondynamical one, typical for the top-like systems, and the dynamical one, typical for
the particle-like systems. This means that the classical r-matrix does not depend explicitly on
the spin variables by depends only on the coordinates of particles.
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2.1 Introduction

In this chapter we describe the classical integrable glNM model given by the Hamiltonian of the
following form:

H =
M∑
i=1

p2i
2

+
M∑
i=1

Htop(S ii) +
1

2

M∑
i,j
i ̸=j

U(S ij,Sji, qi − qj), (2.1)

where pi and qj are the canonical variables:

{pi, qj} = δij, {pi, pj} = {qi, qj} = 0, i, j = 1, . . . ,M. (2.2)

For all i, j = 1, . . . ,M S ij are N ×N matrices of ”classical spin” variables, i.e.

S ij =
N∑

a,b=1

S ij
ab eab ∈ Mat(N,C), (2.3)

where {eab, a, b = 1, . . . , N} is the standard basis in Mat(N,C). They are naturally arranged
into NM ×NM block-matrix S:

S =
M∑

i,j=1

Eij ⊗ S ij =
M∑

i,j=1

N∑
a,b=1

S ij
abEij ⊗ eab ∈ Mat(NM,C), (2.4)

where {Eij, i, j = 1, . . . ,M} is the standard basis in Mat(M,C). The Poisson structure is
given by the Poisson–Lie brackets on gl∗NM Lie coalgebra:

{S ij
ab,S

kl
cd} = Skj

cb δ
ilδad − S il

adδ
kjδbc. (2.5)

Integrable tops. In order to clarify the structure of the Hamiltonian (2.1) consider the case
M = 1. Then the last term in (2.1) is absent, and we are left with a free particle (with momenta
p1) and the Hamiltonian Htop(S11) of integrable top of Euler–Arnold type [3, 18, 51, 55, 56].
Here we deal with the models admitting the Lax pairs with spectral parameter on elliptic curves
[78, 69]. The general form for equations of motion (for the top-like models) is

Ṡ = [S, J(S)], (2.6)

where S ∈ Mat(N,C) is the matrix of dynamical variables, while the inverse inertia tensor J
is a linear map

J(S) =
N∑

i,j,k,l=1

Jijkl eij Slk ∈ Mat(N,C) (2.7)
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In the general case the model (2.6) is not integrable. It is integrable for some special J(S) only.
More precisely, here we consider special tops, which were described in [40, 92, ?, 45, 47] for
elliptic, trigonometric and rational cases respectively. All of them can be written [45, 47, 49]
in the R-matrix form based on a quantum GLN R-matrix (in the fundamental representation)
satisfying the associative Yang–Baxter equation [27, 61]:

Rℏ
12(q12)R

η
23(q23) = Rη

13(q13)R
ℏ−η
12 (q12) +Rη−ℏ

23 (q23)R
ℏ
13(q13), qab = qa − qb. (2.8)

Having solution of (2.8) with some additional properties (see the next Section) the inverse
inertia tensor comes from the term m12(z) in the classical limit expansion:

Rℏ
12(z) =

1

ℏ
1N ⊗ 1N + r12(z) + ℏm12(z) +O(ℏ2) (2.9)

Namely, for

m12(z) =
N∑

i,j,k,l=1

mijkl(z) eij ⊗ ekl (2.10)

the components of J are
Jijkl = mijkl(0), (2.11)

that is
J(S) = Tr2(m12(0)S2), S2 = 1N ⊗ S. (2.12)

The Hamiltonian of the model is of the form:

Htop(S) =
1

2
Tr(SJ(S)) =

1

2
Tr12(m12(0)S1S2), S1 = S ⊗ 1N . (2.13)

This expression enters (2.1). The phase space of the model is a coadjoint orbit

Mtop = ON (2.14)

of GLN Lie group, i.e. the space spanned by Sij with some fixed eigenvalues of matrix S (or the
Casimir functions Ck = TrSk). Its dimension depends on the eigenvalues. The minimal orbit
Omin

N corresponds to N−1 coincident eigenvalues, i.e the matrix S (up to a matrix proportional
to identity matrix) is of rank one:

dimOmin
N = 2(N − 1). (2.15)

The Lax pair is given in the Appendix.

17



Spin Calogero-Moser model. In the case N = 1 the second term in (2.1) is trivial, and
the last one boils down to the spin Calogero-Moser model [29, 85, 9, 10, 38]:

Hspin =
M∑
i=1

p2i
2

−
M∑
i,j
i>j

SijSjiE2(qi − qj), (2.16)

where E2(q) is the second Eisenstein function (A.4). Some details of the spin Calogero-Moser
model are given in the Appendix. Let us only remark here that the model (2.16) is integrable
through the Lax representation and the classical r-matrix structure on the constraints

Sii = ν ∀i = 1, . . . ,M (2.17)

supplemented by some gauge fixation conditions generated by the coadjoint action of the Cartan
subgroup HM ⊂ GLM . That is the phase space of the model is given by

Mspin = T ∗hM ×OM//HM , (2.18)

where hM = Lie(HM) is the Lie algebra of HM , and OM is an orbit of the coadjoint action of
GLM . The first factor in (2.18) describes the many-body degrees of freedom (2.7), and the
second factor describes the ”classical spin” variables. In the general case the spin variables can
be parameterized by the set of canonically conjugated variables:

Sij =
N∑
a=1

ξiaη
j
a, (2.19)

{ξia, η
j
b} = δabδij, i, j = 1, . . . ,M, a, b = 1, . . . , N. (2.20)

The Poisson structure (2.148) is reproduced in this way. Using these notations it is easy to see
that

SijSji =
N∑

a,b=1

ξiaη
j
aξ

j
bη

i
b = Tr(S iiSjj), (2.21)

and the potential in the Hamiltonian (2.16) takes the form

Vspin(S ii,Sjj, qij) = −Tr(S iiSjj)E2(qi − qj). (2.22)

Below we construct anisotropic (in Mat(N,C) space) generalizations of (2.22).
In the special case, when the matrix of spin variables S is of rank 1 (it is the minimal Omin

M

orbit (2.15))
Sij = ξiηj (2.23)
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the reduction with respect to the action of HM leads to the spinless Calogero-Moser (CM)
model [13, 14, 81, 82, 57, 37] since the second factor in (2.18) become trivial. Indeed, plugging
(2.23) into (2.16) and using (2.17) we get

Hspin =
M∑
i=1

p2i
2

− ν2

M∑
i,j
i>j

E2(qi − qj). (2.24)

The spinless Calogero-Moser models are gauge equivalent to the special top with the minimal
orbit (2.15). See [40, 36, 1] for details.

Interacting tops. Turning back to the glNM model (2.1) consider the special case when the
matrix S is of rank 1:

S ij
ab = ξiaη

j
b . (2.25)

We will see that in this case the last term in (2.1) is rewritten in the form

U(S ij,Sji, qi − qj) = V(S ii,Sjj, qi − qj), (2.26)

and the Hamiltonian (2.1) acquires the form

Htops =
M∑
i=1

p2i
2

+
M∑
i=1

Htop(S ii) +
1

2

M∑
i,j
i ̸=j

V(S ii,Sjj, qi − qj). (2.27)

It describes mechanics of M interacting integrable glN tops. The Hamiltonian of (2.27) type
was introduced by A.P. Polychronakos [65, 64, 66] from his study of matrix models. Then the
elliptic version of model (2.1) and (2.27) was described as glNM Hitchin system [90, 44, 92] (see
some details in Section 2.4), and (2.1) was also generalized for arbitrary complex Lie group
[41, 42].

Similarly to the spin Calogero–Moser model the general model (2.1) requires additional
constraints (cf. (2.17))

Tr(S ii) = ν ∀i = 1, . . . ,M. (2.28)

They should be supplied with some gauge fixation conditions generated by the coadjoint action
of H′

NM ⊂ HNM — subgroup of the Cartan subgroup HNM ⊂ GLNM with elements of the
form

∑M
i=1 hiEii ⊗ 1N . Together with (2.28) the gauge fixation conditions are the second class

constraints, and one can perform the Dirac reduction procedure to compute the final Poisson
structure starting from the linear one (2.5). The phase space of the general model (2.1) is of
the from:

Mgen = T ∗h′NM ×ONM//H′
NM , h′NM = Lie(H′

NM). (2.29)
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For the interacting tops case (2.25)–(2.27) the orbit ONM becomes Omin
NM . Then the phase space

Mtops = T ∗h′NM ×Omin
NM//H′

NM (2.30)

has dimension 2NM , while its ”spin part” is of dimension

dim
(
Omin

NM//H′
NM

)
= 2NM − 2M. (2.31)

A brief summary of the described models is given in the following scheme:

glNM model (2.1)

M = 1 ↙
y ↘ N = 1

integrable glN top
y glM spin CM

rk(S) = 1

y rank(S) = 1 :
yrk(S) = 1

special glN top Omin
N

y glM spinless CM

M = 1 ↖
y ↗ N = 1

interacting tops (2.27)

(2.32)

Purpose of this chapter is to describe a family of the models (2.1) and (2.27) in terms of
R-matrices satisfying the associative Yang–Baxter equation (2.8). We give explicit formulae
for NM × NM Lax pair with spectral parameter (see the next Section) and compute the
Hamiltonians (2.1) and (2.27). As a result we obtain the potentials

U(S ij,Sji, qi − qj) = Tr12

(
∂qir21(qij)P12S ij

1 S
ji
2

)
(2.33)

for the general model (2.1) and

V(S ii,Sjj, qi − qj) = Tr12

(
∂qir12(qij)S ii

1 S
jj
2

)
(2.34)

for the model of interacting tops (2.27). Notice that in the simplest case related to the rational
Yang’s XXX R-matrix

Rz
12(qij) =

1N ⊗ 1N
z

+
P12

qi − qj
(2.35)
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we get just the spin Calogero-Moser model written in terms of matrix variables:

V = −Tr(S iiSjj)

(qi − qj)2
. (2.36)

Next, we proceed to the classical (dynamical) r-matrix. It is similar to the one for the spin
Calogero-Moser case [9, 38] but this time its matrix elements are R-matrices themselves. The
classical exchange relations are verified directly. This guarantees the Poisson commutativity of
the Hamiltonians generated by the Lax matrix.

The answers (2.33) and (2.34) depend on the classical r-matrix, which appears from the
quantum one in the limit (2.9). The quantum R-matrix enters the higher Hamiltonians. It
should satisfy a set of properties which we discuss in the next Section. The most general R-
matrix satisfying all the required properties is the elliptic Baxter–Belavin’s one. In this case the
the integrable models are known. They were first described by Polychronakos in [65, 64, 66] and
later reproduced as Hitchin type systems on the bundles with nontrivial characteristic classes
in [90, 44].

The family of the obtained models includes new integrable systems in the trigonometric and
rational cases. While the quantization of the potential V from (2.36) is given by isotropic spin
exchange operator V̂ = −Pij/(qi − qj)

2, the obtained general answer (2.33)–(2.34) leads to the
anisotropic potentials. An example of such anisotropic extension to the spin (trigonometric)
Calogero–Moser–Sutherland model was first suggested by Hikami and Wadati [33] at quantum
level. From the point of view of (2.34) their answer corresponds to the gl2 XXZ r-matrix. At
the same time the set of trigonometric R-matrices satisfying the required properties is much
lager [2, 72, 62], and all these R-matrices can be used for construction of the integrable tops [36].
The results of this chapter are also valid for all these cases. An example based on the gl2 7-th
vertex deformation of the XXZ R-matrix is given Section 4. Similarly, in the rational case the
admissible R-matrices includes not only the Yang’s R-matrix (2.35) but also its deformations
such as 11-vertex R-matrix [16] and its higher rank versions [45, 47]. An example related to
11-vertex R-matrix is given in Section 4.

Possible applications of the described models are discussed in the end. Namely, we ar-
gue that the obtained models can be used for construction of higher Hamiltonians for the
anisotropic generalizations of the Haldane–Shastry–Inozemtsev long-range spin chains. The
latter is important for the proof of integrability of these chains, which still remains an open
problem.
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2.2 Lax equations

In this Section we construct the NM ×NM Lax pair L(z),M(z) satisfying the Lax equations

L̇(z) = [L(z),M(z)] (2.37)

for the model (2.1). Our construction is based on GLN R-matrix — a solution of the associative
Yang–Baxter equation (2.8). Besides (2.8) the R-matrix should also satisfy a set of properties.

2.2.1 R-matrix properties.

We consider R-matrices satisfying (2.8) and (2.9). Let us also impose the following set of
conditions for GLN R-matrices under consideration:
Expansion near z = 0:

Rℏ
12(z) =

1

z
P12 +R

ℏ,(0)
12 + zR

ℏ,(1)
12 +O(z2), (2.38)

Also,

R
z,(0)
12 =

1

z
1N ⊗ 1N + r

(0)
12 +O(z), r12(z) =

1

z
P12 + r

(0)
12 + zr

(1)
12 +O(z2). (2.39)

Skew-symmetry:

Rℏ
12(z) = −R−ℏ

21 (−z) = −P12R
−ℏ
12 (−z)P12, P12 =

N∑
i,j=1

Eij ⊗ Eji. (2.40)

Unitarity:

Rℏ
12(z)R

ℏ
21(−z) = fℏ(z) 1N ⊗ 1N , fℏ(z) = ℘(ℏ)− ℘(z). (2.41)

We are also going to use the Fourier symmetry:

Rℏ
12(z)P12 = Rz

12(ℏ). (2.42)

It is not necessary but convenient property.
The following relations on the coefficients of expansions (2.9) and (2.38) follow from the

skew-symmetry:

r12(z) = −r21(−z), m12(z) = m21(−z),

R
ℏ,(0)
12 = −R

−ℏ,(0)
21 , r

(0)
12 = −r

(0)
21 . (2.43)
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Similarly, from the Fourier symmetry we have (see details in [87]):

R
z,(0)
12 = r12(z)P12, R

z,(1)
12 = m12(z)P12, r

(0)
12 = r

(0)
12 P12.

In what follows we use special notation for the R-matrix derivative:

F z
12(q) = ∂qR

z
12(q). (2.44)

It is the R-matrix analogue of the function (A.5) entering the M -matrix of the spin Calogero-
Moser model (2.144) likewise R-matrix itself is a matrix analogue of the Kronecker function
(A.1) due to similarity of (A.6) and (2.8). See [46, 48]. Then from the classical limit (2.9) we
have

F 0
12(q) = ∂qR

z
12(q) |z=0= ∂qr12(q). (2.45)

The latter is the R-matrix analogue of the function −E2(q) (A.12) entering the Calogero-Moser
potential. Notice also that F 0

12(q) = F 0
21(−q) due to (2.43). From (2.44) and (2.38) the local

expansion near q = 0 is as follows

F z
12(q) = − 1

q2
P12 +R

z,(1)
12 +O(q) (2.46)

and, therefore,

F 0
12 = − 1

q2
P12 +R

z,(1)
12 |z=0 +O(q)

(2.44)
= − 1

q2
P12 +m12(0)P12 +O(q). (2.47)

On the other hand,

F 0
12(q)

(2.45)
= ∂qr12(q)

(2.39)
= − 1

q2
P12 + r

(1)
12 +O(q). (2.48)

From (2.47) and (2.48) we conclude that

r
(1)
12 = m12(0)P12. (2.49)

In the elliptic case the set of properties is fulfilled by the Baxter–Belavin [6, 7, 70] R-matrix
(2.166). A family of trigonometric R-matrices include the XXZ 6-vertex one, its 7-vertex
deformation [16] and GLN generalizations [2, 72, 62]. See a brief review and applications to
integrable tops in [36]. The rational R-matrices possessing the properties are the XXX Yang’s
R-matrix, its 11-vertex deformation [16] and higher rank analogues obtained from the elliptic
case by special limiting procedure [80]. The final answer for such R-matrix was obtained in
[45, 47] through the gauge equivalence between the relativistic top with minimal orbit and the
rational Ruijsenaars–Schneider model.
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2.2.2 Lax pair and equations of motion

Using coefficients of the expansion of the GLN R-matrix near z = 0 we define NM ×NM Lax
pair

L(z) =
M∑

i,j=1

Eij ⊗ Lij(z) Lij(z) ∈ MatN L(z) ∈ MatNM , (2.50)

Lij(z) = δij

(
pi1N + Tr2(S ii

2 R
z,(0)
12 P12)

)
+ (1− δij) Tr2(S ij

2 R
z
12(qij)P12). (2.51)

and similarly for M ij(z) ∈ MatN

M ij(z) = δijTr2(S ii
2 R

z,(1)
12 P12) + (1− δij) Tr2(S ij

2 F
z
12(qij)P12). (2.52)

where the entries are defined from (2.38) and (2.44). The tensor notations are similar to those
used in (2.160)–(2.163).

Theorem.
Consider an R-matrix satisfying the associative Yang–Baxter equation (2.8), the classical limit
(2.9) and the set of properties from the previous paragraph. Then the Lax equation (2.37)
holds true for the Lax pair (2.50)–(2.52) on the constraints

Tr
(
S ii
)
= const, ∀i (2.53)

(cf. (2.113)) and provides the following equations of motion for off-diagonal N × N blocks of
S:

Ṡ ij =
M∑

k ̸=i,j

(
S ikTr2(Skj

2 F 0
12(qkj)P12)− Tr2(S ik

2 F 0
12(qik)P12)Skj

)
+

S iiTr2(S ij
2 F

0
12(qij)P12)− Tr2(S ii

2 m12(0))S ij−
−Tr2(S ij

2 F
0
12(qij)P12)Sjj + S ijTr2(Sjj

2 m12(0)), (2.54)

for diagonal N ×N blocks of S:

Ṡ ii = [S ii,Tr2(m12(0)S ii
2 )] +

M∑
k ̸=i

(
S ikTr2(Ski

2 F 0
21(qik)P12)− Tr2(S ik

2 F 0
12(qik)P12)Ski

)
, (2.55)

and for momenta:

ṗi = −
M∑
k ̸=i

Tr23

(
∂qiF

0
32(qik)P23S ik

2 Ski
3

)
. (2.56)
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Proof: We imply pi = q̇i in the formulae above. This follows from the Hamiltonian description,
which is given in the next paragraph.
1. Let us begin with the non-diagonal blocks. Consider the one numbered ij (i ̸= j). The l.h.s.
of the Lax equations reads

l.h.s. = L̇ij(z) = Tr2(Ṡ ij
2 R

z
12(qij)P12) + Tr2(S ij

2 F
z
12(qij)P12)(q̇i − q̇j). (2.57)

The r.h.s. of the Lax equation is as follows:

r.h.s. = LijMjj −MiiLij + LiiMij −MijLjj +
M∑

k ̸=i,j

(
LikMkj −MikLkj

)
. (2.58)

The last sum is computed using identity

Rz
12(x)F

z
23(y)− F z

12(x)R
z
23(y) = F 0

23(y)R
z
13(x+ y)−Rz

13(x+ y)F 0
12(x), (2.59)

which follows from (2.8). It is the R-matrix analogue of (A.7). In its turn (A.7) is the key tool
underlying ansatz for the Lax pairs with spectral parameter [37]. For k ̸= i, j we have

LikMkj −MikLkj =

= Tr23(R
z
12(qik)P12S ik

2 F z
13(qkj)P13Skj

3 )− Tr23(F
z
12(qik)P12S ik

2 Rz
13(qkj)P13Skj

3 ) =

= Tr23

((
Rz

12(qik)F
z
23(qkj)− F z

12(qik)R
z
23(qkj)

)
P12P13S ik

2 Skj
3

)
(2.59)
=

= Tr23

((
F 0
23(qkj)R

z
13(qij)−Rz

13(qij)F
0
12(qik)

)
P12P13S ik

2 Skj
3

)
=

= Tr23

(
Rz

12(qij)P12

(
S ik
2 Skj

3 F 0
23(qkj)P23 − F 0

23(qik)P23S ik
3 Skj

2

))
. (2.60)

This expression provides the upper line in the equations of motion (2.54). To proceed we need
degenerations of the identity (2.59) when y → 0. It comes from the expansions (2.38), (2.46)
and (2.48):

Rz
12(x)R

z,(1)
23 − F z

12(x)R
z,(0)
23 = r

(1)
23 R

z
13(x)−Rz

13(x)F
0
12(x)−

1

2
P23∂

2
xR

z
13(x). (2.61)

In the same way in the limit x → 0 (2.59) takes the form

R
z,(0)
12 F z

23(y)−R
z,(1)
12 Rz

23(y) = F 0
23(y)R

z
13(y)−Rz

13(y)r
(1)
12 +

1

2
∂2
yR

z
13(y)P12. (2.62)
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Similarly to the ordinary (spin) Calogero-Moser case the terms linear in momenta in the r.h.s.
(2.58) (pi − pj)Mij are cancelled out by the last term in the l.h.s. of (2.57). Consider the first
and the fourth terms from (2.58) without momenta. Using evaluations similar to (2.60) we get

LijMjj −Mij(Ljj − pj1N) =

= Tr23

((
Rz

12(qij)R
z,(1)
23 − F z

12(qij)R
z,(0)
23

)
P12P13S ij

2 S
jj
3

)
(2.61)
=

= Tr23

((
r
(1)
23 R

z
13(qij)−Rz

13(qij)F
0
12(qij)−

1

2
P23∂

2
qi
Rz

13(qij)
)
P12P13S ij

2 S
jj
3

)
=

= Tr23(R
z
12(qij)P12S ij

2 S
jj
3 m23(0))− Tr23(R

z
12(qij)P12F

0
23(qij)P23S ij

3 S
jj
2 )−

−1

2
Tr23(∂

2
qi
Rz

12(qij)P12S ij
2 S

jj
3 ), (2.63)

where the relation (2.49) was also used (for the first term in the answer). The first and the
second terms in the obtained answer provide the last line in the equations of motion (2.54),
while the last term in (2.54) is the ”unwanted term”.

In the same way, using (2.62) one gets

(Lii − pi1N)Mij −MiiLij =

= Tr23(R
z
12(qij)P12S ii

2 S
ij
3 F

0
23(qij)P23)− Tr23(R

z
12(qij)P12m23(0)S ii

3 S
ij
2 )+

+
1

2
Tr23(∂

2
qi
Rz

12(qij)P12S ii
3 S

ij
2 ). (2.64)

Again, the first two terms provide an input to equations of motion — the second line in (2.54).
The last term is the ”unwanted term”. It is cancelled by the one from (2.63) after taking the
trace over the third component and imposing the constraints (2.53).
2. Consider a diagonal N ×N block (numbered ii) of the Lax equation. The l.h.s. of the Lax
equations is

l.h.s. = L̇ii(z) = ṗi1N + Tr2(Ṡ ii
2 R

z,(0)
12 P12)

(2.44)
= ṗi1N + Tr2(Ṡ ii

2 r12(z)). (2.65)

The r.h.s. of the Lax equation is as follows:

r.h.s. = [Lii,Mii] +
M∑
k ̸=i

(
LikMki −MikLki

)
. (2.66)

The commutator term in (2.66) provides the commutator term in the equations of motion (2.55)
since it is the input from the internal ii-th top’s ynamics, and this was derived in [49]. See
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(2.159)–(2.161). In order to simplify expression in the sum we need the following degeneration
of (2.8):

Rz
12(x)R

z
23(y) = Rz

13(x+ y)r12(x) + r23(y)R
z
13(x+ y)− ∂zR

z
13(x+ y), (2.67)

It corresponds to ℏ = η = z. In the scalar case it is the identity (A.9). In the limit x = q = −y
from (2.67) we get

Rz
12(q)R

z
23(−q) = R

z,(0)
13 r12(q)− r32(q)R

z,(0)
13 − ∂zR

z,(0)
13 + F 0

32(q)P13, (2.68)

or, using (2.44)

Rz
12(q)R

z
23(−q) = (r13(z)r32(q)− r32(q)r13(z))P13 − F 0

13(z)P13 + F 0
32(q)P13. (2.69)

By differentiating (2.69) with respect to q we obtain

Rz
12(q)F

z
23(−q)− F z

12(q)R
z
23(−q) = [F 0

32(q), r13(z)]P13 − ∂qF
0
32(q)P13. (2.70)

For k ̸= i consider

LikMki −MikLki =

= Tr23

((
Rz

12(qik)F
z
23(qki)− F z

12(qik)R
z
23(qki)

)
P12P13S ik

2 Ski
3

)
(2.70)
=

= Tr23

((
[F 0

32(qik), r13(z)]P13 − ∂qiF
0
32(qik)P13

)
P12P13S ik

2 Ski
3

)
. (2.71)

The commutator term in the obtained expression yields the sum term in the equations of motion
(2.55), while the last term in (2.71) provides equations of motion (2.56). Indeed,

Tr23

((
∂qiF

0
32(qik)P13

)
P12P13S ik

2 Ski
3

)
= 1NTr23

(
∂qiF

0
32(qik)P23S ik

2 Ski
3

)
, (2.72)

and the momenta is the scalar component in the l.h.s. (2.65).

2.2.3 Hamiltonian description

The Hamiltonian function. Let us compute the Hamiltonian for the model (2.50)–(2.56).
It comes from the generating function

1

2N
Tr(L2(z)) =

1

2N

M∑
i=1

Tr
(
Lii(z)

)2
+

1

2N

M∑
i,j
i ̸=j

Tr
(
Lij(z)Lji(z)

)
. (2.73)
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Consider

Tr
(
Lii(z)

)2
= Np2i + 2piTr12

(
r12(z)S ii

2

)
+ Tr123

(
r12(z)r13(z)S ii

2 S ii
3

)
. (2.74)

As before, the numbered tensor components are Mat(N,C)–valued. In order to simplify (2.74)
we use the identity (see [46, 48])

r12(z)r13(z + w)− r23(w)r12(z) + r13(z + w)r23(w) = m12(z) +m23(w) +m13(z + w), (2.75)

which can be treated as a half of the classical Yang–Baxter equation 1. In the limit w → 0
(2.75) yields

r12(z)r13(z) = r
(0)
23 r12(z)− r13(z)r

(0)
23 − F 0

13(z)P23 +m12(z) +m23(0) +m13(z). (2.76)

Also, we are going to use the following R-matrix property:

Tr1R
q
12(z) = Tr2R

q
12(z) = ϕ̃(z, q)1N , (2.77)

where ϕ̃(z, q) is the Kronecker function (A.1) but with possibly different normalization factor
and normalization of arguments. The property (2.77) holds true in the elliptic case (2.167)
as well as for its trigonometric and rational degenerations. From (2.77), expansion (2.9) and
(A.10) we also have similar properties for Tr1r12(z) = Ẽ1(z) and Tr1m12(z) — they are scalar
operators:

Tr1R
q
12(z) = q−11N + Tr1r12(z) + qTr1m12(z) +O(q2). (2.78)

Return now to (2.74). On the constraints (2.53) the second term is equal to 2piẼ1(z)const.
After summation over i it provides the Hamiltonian proportional to

∑M
i=1 pi. Plugging (2.76)

into the last term of (2.74) we get

Tr123

(
r12(z)r13(z)S ii

2 S ii
3

)
=

= Tr123

((
r
(0)
23 r12(z)− r13(z)r

(0)
23 − F 0

13(z)P23 +m23(0) +m12(z) +m13(z)
)
S ii
2 S ii

3

)
. (2.79)

Due to (2.77) the first two terms are cancelled out after taking the trace over the component
1. By the same reason the last two terms in (2.79) provide 2Tr1(m12(z))Tr23(S ii

2 S ii
3 ). These are

constants on the constraints (2.53). The rest of the terms are

Tr123

((
− F13(z)P23 +m23(0)

)
S ii
2 S ii

3

)
(2.77)
= Ẽ2(z)Tr

(
S ii
)2

+NTr23

(
m23(0)S ii

2 S ii
3

)
, (2.80)

1The difference of two such equations gives the classical Yang–Baxter equation for the classical r-matrix.
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where Ẽ2(z)1N = −Tr1(F
0
13(z)) = −∂zTr1(r13(z)) = −∂zẼ1(z)1N . It is a scalar function coming

from (2.78) and similar to E2(z) (A.4). The factor N in the last term comes from Tr1. The
first term in (2.80) is a part of the Casimir function TrS2, and the second one is Htop(S ii) from
(2.1):

Htop(S ii) =
1

2
Tr12

(
m12(0)S ii

1 S ii
2

)
. (2.81)

Next, consider

Tr
(
Lij(z)Lji(z)

)
= Tr123

(
Rz

12(qij)P12R
z
13(qji)P13S ij

2 S
ji
3

)
=

= Tr123

(
Rz

12(qij)R
z
23(qji)P12P13S ij

2 S
ji
3

)
(2.69)
=

= Tr123

((
[r13(z), r32(qij)]− F 0

13(z) + F 0
32(qij)

)
P23S ij

2 S
ji
3

)
. (2.82)

Again, the commutator term vanishes after taking the trace over the first tensor component.
Therefore,

Tr
(
Lij(z)Lji(z)

)
= Tr123

((
− F 0

13(z) + F 0
32(qij)

)
P23S ij

2 S
ji
3

)
=

= Ẽ2(z)Tr
(
S ijSji

)
+NTr12

(
F 0
21(qij)P12S ij

1 S
ji
2

)
. (2.83)

Finally, for the potential term from (2.1) we have

U(S ij,Sji, qij) = Tr12

(
F 0
21(qij)P12S ij

1 S
ji
2

)
(2.84)

and the Hamiltonian (2.1) is of the form:

H =
M∑
i=1

p2i
2

+
1

2

M∑
i=1

Tr12

(
m12(0)S ii

1 S ii
2

)
+

M∑
i,j
i>j

Tr12

(
F 0
21(qij)P12S ij

1 S
ji
2

)
. (2.85)

In M = 1 case H reproduce the Hamiltonian of the integrable top, while in the M = 1 case
we obtain the spin Calogero–Moser Hamiltonian (2.16) up to terms containing Sii — they are
constant in this case (2.17).

Poisson brackets. The Poisson structure (before reduction (2.29)) consists of the canonical
brackets for positions and momenta

{pi, qj} = δij, {pi, pj} = {qi, qj} = 0, i = 1, . . . ,M. (2.86)
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and the linear Poisson–Lie brackets for the S variables. They are of the form (2.148) but for
Mat(NM,C) case instead of Mat(M,C) in (2.148). It is convenient to write down these brackets
in terms of Mat(N,C)–valued blocks S ij. For i, j, k, l = 1, . . . ,M and a, b, c, d = 1, . . . , N :

{S ij
ab,S

kl
cd} = Skj

cb δ
ilδad − S il

adδ
kjδbc (2.87)

or
{S ij

1 ,Skl
2 } = P12Skj

1 δil − S il
1 P12δ

kj, (2.88)

where P12 as before the permutation operator in Mat(N,C)⊗2. For the diagonal blocks we have

{S ii
1 ,Skk

2 } = [P12,S ii
1 ]δ

ik. (2.89)

It is verified directly that the Poisson structure (2.86), (2.88) and the Hamiltonian (2.85)
provides equations of motion (2.54)–(2.56), i.e. for the l.h.s. of the Lax equation (2.37) we
have

L̇(z) = {H,L(z)}. (2.90)

2.2.4 Interacting tops

Suppose the matrix S is of rank one, i.e. (2.25) is fulfilled. Consider the potential

Tr12

(
F 0
21(qij)P12S ij

1 S
ji
2

)
=

N∑
a,b,c,d=1

(F 0
12(qji)P12)ab,cdS ij

baS
ji
dc. (2.91)

The right multiplication of an element T12 =
N∑

i,j,k,l=1

TijklEij⊗Ekl ∈ Mat(N,C)⊗2 by permutation

operator P12 yields Tijkl → Tilkj, i.e.

Tr23

(
F 0
32(qij)P23S ij

2 S
ji
3

)
=

N∑
a,b,c,d=1

(F 0
12(qji))ad,cbS

ij
baS

ji
dc. (2.92)

In the rank one case we have
S ij
baS

ji
dc = ξibη

j
aξ

j
dη

i
c = S ii

bcS
jj
da. (2.93)

Therefore,

Tr23

(
F 0
32(qij)P23S ij

2 S
ji
3

)
= Tr12

(
F 0
12(qji)S

jj
1 S ii

2

)
= Tr12

(
F 0
12(qij)S ii

1 S
jj
2

)
. (2.94)
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The Hamiltonian of interacting tops model acquires the form:

Htops =
M∑
i=1

p2i
2

+
1

2

M∑
i=1

Tr12

(
m12(0)S ii

1 S ii
2

)
+

M∑
i,j
i<j

Tr12

(
F 0
12(qij)S ii

1 S
jj
2

)
. (2.95)

From the Poisson brackets (2.86), (2.89) we get the corresponding equations of motion:

Ṡ ii = [S ii,Tr2(m12(0)S ii
2 )] +

M∑
k ̸=i

[S ii,Tr2(F
0
12(qik)Skk

2 )], (2.96)

ṗi = −
M∑
k ̸=i

Tr12

(
∂qiF

0
12(qik)S ii

1 Skk
2

)
. (2.97)

In this model we are left with M matrix variables S ii ∈ Mat(N,C) of rank one. It is notable
that the spin part of the phase space (2.30) is isomorphic to a product of M minimal coadjoint
orbits (2.15):

Omin
NM//H′

NM
∼= Omin

N × . . .×Omin
N︸ ︷︷ ︸

Mtimes

. (2.98)

Notice that the orbits Omin
N come from the constraints conditions (2.53). Hence it appears that

1. For the model of interacting tops the constraints (2.53) play the role of fixation of the
Casimir functions for M copies of gl∗N (of rank one). Consequently, equations of motion (2.96)
are not changed after reduction. For the N = 1 case (the spin Calogero-Moser model) we get
Ṡii = 0 since the r.h.s. of (2.96) consists of commutators.

2. The model of interacting tops is formulated in terms of M Mat(N,C)–valued variables
of rank one, describing the minimal coadjoint orbits. The integrability condition is that all
Casimir functions Tr(S ii) are equal to each other 2.

3. The spin part of the phase space for the model of interacting tops coincides with the phase
space of GLN classical spin chain on M sites with the spins described by minimal coadjoint
orbits at each site.

Let us also remark that the top like models with matrix–valued variables were studied in
[49, 87] and [8]. In contrast to these papers here we deal with the models, where the matrix
variables have their own internal dynamics.

2More precisely, we can not confirm that the model is not integrable in the case Tr(Sii) ̸= Tr(Sjj), but the
presented Lax pair does not work in this case.
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2.3 Classical r-matrix

In this Section we describe the classical r-matrix structure for the Lax matrix (2.51). Since L ∈
Mat(NM,C) then the corresponding classical glNM r-matrix r ∈ Mat(NM,C)⊗2. Recall that
for the Lax matrix we use the matrix basis (2.50), in which L ∈ Mat(M,C)⊗Mat(N,C). Let the
Mat(M,C)–valued tensor components be numbered by primed numbers, and the Mat(N,C)–
valued components — without primes (as before). Introduce the following r-matrix:

r1′2′12(z, w) =
M∑
i=1

1′

Eii ⊗
2′

Eii ⊗r12(z − w) +
M∑
i,j
i ̸=j

1′

Eij ⊗
2′

Eji ⊗Rz−w
12 (qij)P12, (2.99)

so that r1′2′12 ∈ Mat(M,C)⊗2 ⊗Mat(N,C)⊗2. In the case M = 1 we come to a non-dynamical
r-matrix describing the top model, while in the N = 1 we reproduce the dynamical r matrix
of the spin Calogero-Moser model (2.150). r-matrices of these type are known in glNM case
and can be extended for arbitrary complex semisimple Lie algebras [19, 20, 25, 43]. In the
elliptic case (2.99) is known in the quantum case as well [44]. At the same time (2.99) includes
the cases, which have not been described yet. For instance, the new cases correspond to the
rational Rz

12(q)-matrix from [45, 47]. Similarly to the Lax equations the construction of the
r-matrix (2.99) is based on the associative Yang–Baxter equation (2.8) and its degenerations.

Proposition.
Consider an R-matrix satisfying the associative Yang–Baxter equation (2.8), the classical limit
(2.9) and the set of properties from the Section 2.2.1. Then for the Lax pair (2.50)–(2.51) the
following classical exchange relation holds true:

{L1′1(z),L2′2(w)} = [L1′1(z), r1′2′12(z, w)]− [L2′2(w), r2′1′21(w, z)]−

−
M∑
k=1

Tr(Skk)∂qkr1′2′12(z, w), (2.100)

where

L1′1(z) =
M∑

i,j=1

Eij ⊗ 1M ⊗ Lij(z)⊗ 1N , (2.101)

L2′2(w) =
M∑

k,l=1

1M ⊗ Ekl ⊗ 1N ⊗ Lkl(w). (2.102)

The Poisson brackets in the l.h.s. of (2.100) are given by (2.86)–(2.89).
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Proof:

The proof is direct. Let us demonstrate how to verify (2.100) for several components of
1′

Eij

⊗
2′

Ekl, which are similar to those considered in (2.152)–(2.157) for the spin Calogero–Moser
model.

the tensor component
1′

Eij ⊗
2′

Ejk (i ̸= j, j ̸= k, i ̸= k):

l.h.s. of (2.100):

Tr34

(
Rz

13(qij)P13R
w
24(qjk)P24{S ij

3 ,S
jk
4 }
)
= −Tr3

(
S ik
3 Rw

23(qjk)P23R
z
13(qij)P13

)
. (2.103)

r.h.s. of (2.100):

Tr3

(
S ik
3 (Rz

13(qik)P13R
z−w
12 (qkj)P12 −Rz−w

12 (qij)P12R
w
23(qik)P23)

)
. (2.104)

Expressions (2.103) and (2.104) coincide due to (2.8) and (2.40).

the tensor component
1′

Eii ⊗
2′

Eij (i ̸= j):

l.h.s. of (2.100):

Tr4

(
{pi, Rw

24(qij)}P24S ij
4

)
+ Tr34

(
r13(z)R

w
24(qij)P24{S ii

3 ,S
ij
4 }
)
=

= Tr3

(
S ij
3 ∂qiR

w
23(qij)P23

)
− Tr3

(
S ij
3 R

w
23(qij)P23r13(z)

)
. (2.105)

r.h.s. of (2.100):

Tr3

(
S ij
3 (R

w
13(qij)P13R

z−w
12 (qji)P12 − r12(z − w)Rw

23(qij)P23)
)
. (2.106)

Expressions (2.105) and (2.106) coincide due to (2.67) rewritten through the Fourier symmetry
(2.42) as

Rqij
ac (z)R

qji
bc (w) = −R

qij
ab (z − w)rac(z) + rbc(w)R

qij
ab (z − w)− ∂qiR

qij
ab (z − w) (2.107)

for distinct a, b, c.

the tensor component
1′

Eij ⊗
2′

Eji (i ̸= j):

l.h.s. of (2.100):

Tr3

(
Sjj
3 Rz

13(qij)P13R
w
23(qji)P23 − S ii

3 R
w
23(qji)P23R

z
13(qij)P13

)
. (2.108)
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r.h.s. of (2.100):

Tr3

(
S ii
3 (r13(z)R

z−w
12 (qij)P12 −Rz−w

12 (qij)P12r23(w))
)
+

+Tr3

(
Sjj
3 (−Rz−w

12 (qij)P12r13(z) + r23(w)R
z−w
12 (qij)P12)

)
−

−Tr3

((
S ii
3 − Sjj

3

)
∂qiR

z−w
12 (qij)P12

)
. (2.109)

The last term comes from the second line of (2.100). Again, expressions (2.108) and (2.109)
coincide due to (2.107).

The rest of the components are verified similarly.

2.4 Examples

2.4.1 Elliptic models

Let us begin with the elliptic model [90, 44, 31, 88]. The Lax pair is of the form:

L(z) =
M∑

i,j=1

Eij ⊗ Lij(z), Lij(z) ∈ MatN L(z) ∈ MatNM , (2.110)

where

Lij(z) = δij

(
pi1N + S ii

(0,0)1NE1(z) +
∑
α ̸=0

S ii
αTαφα(z, ωα)

)
+

+(1− δij)
∑
α

S ij
α Tαφα(z, ωα +

qij
N

), (2.111)

where the basis (??) in Mat(N,C) is used. Similarly, the M -matrix is of the form

Mij(z) = δijS ii
(0,0)

E2
1(z)− ℘(z)

2N
1N +

1

N
δij
∑
α ̸=0

S ii
αTαfα(z, ωα)+

+
1

N
(1− δij)

∑
α

S ij
α Tαfα(z, ωα +

qij
N

). (2.112)

These formulae can be obtained from (2.50)–(2.52) and the R-matrix (2.167) together with
(A.8).
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The Lax equations hold on the constraints

S ii
(0,0) = const, ∀i. (2.113)

Instead of the standard basis (2.3) here we use the basis (??) for each N ×N block. Then the
Poisson structure (2.5) takes the form

{S ij
α ,Skl

β } = δilκα,βSkj
α+β − δkjκβ,αS il

α+β, (2.114)

where κα,β are the constants from (A.18).
The Hamiltonian easily follows from 1

2N
TrL2(z) = 1

2N
E2(z)Tr(S2) + H due to (A.19) and

(A.8):

H =
1

2

M∑
i=1

p2i −
1

2

M∑
i=1

∑
α ̸=0

S ii
αS ii

−αE2(ωα)−
1

2

M∑
i,j
i ̸=j

∑
α

S ij
α S

ji
−αE2(ωα +

qij
N

). (2.115)

Let us show how this Hamiltonian is reproduced from the general formula (2.85). In order to
get the second term in (2.115) one should substitute m12(0) into (2.85) from (2.169) and use
relation (A.12). For evaluation of the last sum in (2.85) we need to calculate F 0

12(q)P12. The
answer for F 0

12(q) is given in (2.170). Multiply it by P12 = (1/N)
∑

b Tb ⊗ T−b from the left:

F 0
12(q)P12 = − 1

N2
E2(q)

∑
b

Tb ⊗ T−b+

+
1

N2

∑
a̸=(0,0),b

φa(q, ωa)(E1(q + ωa)− E1(q) + 2πi∂τωα)κ2
a,bTa+b ⊗ T−a−b. (2.116)

Let us redefine the summation index b → b− a in the last sum. Since κa,b = κa,b−a we have

F 0
12(q)P12 =

=
1

N2

∑
b

Tb ⊗ T−b

(
− E2(q) +

∑
a̸=0,b

φa(q, ωa)(E1(q + ωa)− E1(q) + 2πi∂τωα)κ2
a,b

)
(2.174)
=

= − 1

N2

∑
b

Tb ⊗ T−bE2(ωb +
q

N
). (2.117)

Finally,

Tr12

(
F 0
21(qij)P12S ij

1 S
ji
2

)
=
∑
α

S ij
α S

ji
−αE2(ωα +

qij
N

). (2.118)

35



In the rank one case the answer for the Hamiltonian is given by (2.95). Plugging (2.170)
into (2.95) we get

Htops =
1

2

M∑
i=1

p2i −
1

2

M∑
i=1

∑
α ̸=0

S ii
αS ii

−αE2(ωα)−

−N

2

M∑
i,j
i ̸=j

(
E2(qij)S ii

0 S
jj
0 −

∑
α ̸=0

φα(qij, ωα)(E1(qij + ωα)− E1(qij) + 2πi∂τωα)S ii
−αSjj

α

)
. (2.119)

Let us show how the latter expression appears from (2.115). In the rank one case using (A.19)
(so that S ij

α = Tr(S ijT−α)/N) we get

S ij
α S

ji
−α =

Tr(ηjT−αξ
i)Tr(ηiTαξ

j)

N2
=

Tr(ηjT−αξ
iηiTαξ

j)

N2
=

Tr(S iiTαSjjT−α)

N2
. (2.120)

In this way the Hamiltonian (2.115) acquires the form

Htops =
1

2

M∑
i=1

p2i −
1

2

M∑
i=1

∑
α ̸=0

S ii
αS ii

−αE2(ωα)−

−1

2

M∑
i,j
i ̸=j

∑
α

Tr(S iiTαSjjT−α)

N2
E2(ωα +

qij
N

), (2.121)

which is the model of interacting tops of (2.27) type. The last terms in (2.121) can be simplified
in the following way. Substitute S ii =

∑
γ S ii

γ Tγ and Sjj =
∑

γ Sjj
µ Tµ into (2.121). It follows

from (A.18)–(A.19) that
Tr(TγTαTµT−α) = Nκ2

α,µδµ+γ. (2.122)

Therefore,∑
α

Tr(S iiTαSjjT−α)

N2
E2(ωα +

qij
N

) =
1

N

∑
α,µ

S ii
−µSjj

µ E2(ωα +
qij
N

)κ2
α,µ. (2.123)

Using (2.172)–(2.173) and summing up over α we obtain the last term in (2.119).

2.4.2 Trigonometric models

The general classification of the unitary trigonometric R-matrices satisfying associative Yang–
Baxter equation was given in [72, 62]. It includes the 7-vertex deformation [16] of the 6-vertex
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R-matrix and its GLN generalizations such as the non-standard R-matrix [2]. The integrable
tops and related structures based on these R-matrices were described in [36].

Here we restrict ourselves to the case N = 2. The 7-vertex R-matrix is of the following
form:

Rℏ
12(z) =


coth(z) + coth(ℏ) 0 0 0

0 sinh−1(ℏ) sinh−1(z) 0

0 sinh−1(z) sinh−1(ℏ) 0

C sinh(z + ℏ) 0 0 coth(z) + coth(ℏ)

 (2.124)

where C is a constant. In the limit C → 0 the lower left-hand corner vanishes and we get the
6-vertex XXZ R-matrix. For the classical r-matrix and its derivative (F 0

12(z) = ∂zr12(z)) we
have

r12(z) =


coth(z) 0 0 0

0 0 sinh−1(z) 0
0 sinh−1(z) 0 0

C sinh(z) 0 0 coth(z)

 (2.125)

and

F 0
12(q) =



− 1

sinh2(q)
0 0 0

0 0 − cosh(q)

sinh2(q)
0

0 − cosh(q)

sinh2(q)
0 0

C cosh(q) 0 0 − 1

sinh2(q)


(2.126)

respectively. The Fourier transformed F 0 matrix is of the form:

F 0
12(q)P12 =



− 1

sinh2(q)
0 0 0

0 − cosh(q)

sinh2(q)
0 0

0 0 − cosh(q)

sinh2(q)
0

C cosh(q) 0 0 − 1

sinh2(q)


(2.127)
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From the latter matrix using (2.33) we obtain

U(S ij,Sji, qi − qj) = Tr12

(
∂qir21(qij)P12S ij

1 S
ji
2

)
=

= − 1

sinh2(qij)

(
S ij
11S

ji
11 + S ij

22S
ji
22

)
− cosh(qij)

sinh2(qij)

(
S ij
11S

ji
22 + S ij

22S
ji
11

)
+ C cosh(qij)S ij

12S
ji
12. (2.128)

Similarly, using (2.34) and (2.126) we get the potential for the model of interacting tops:

V(S ii,Sjj, qi − qj) = Tr12

(
∂qir12(qij)S ii

1 S
jj
2

)
=

= − 1

sinh2(qij)

(
S ii
11S

jj
11 + S ii

22S
jj
22

)
− cosh(qij)

sinh2(qij)

(
S ii
12S

jj
21 + S ii

21S
jj
12

)
+ C cosh(qij)S ii

12S
jj
12. (2.129)

The top Hamiltonian Htop(S ii) entering (2.1) or (2.27) is of the form:

Htop(S ii) =
1

2

(
(S ii

11)
2 + (S ii

22)
2
)
+ C(S ii

12)
2. (2.130)

2.4.3 Rational models

The rational R-matrices satisfying the required properties are represented by the 11-vertex
deformation [16] of the 6-vertex XXX (Yang’s) R-matrix. Its higher rank analogues were
derived in [80] and [45, 47]. As in trigonometric case here we restrict ourselves to the case
N = 2. The 11-vertex R-matrix is of the following form:

Rℏ
12(z) =


ℏ−1 + z−1 0 0 0

−ℏ− z ℏ−1 z−1 0

−ℏ− z z−1 ℏ−1 0

−ℏ3 − 2zℏ2 − 2ℏz2 − z3 ℏ+ z ℏ+ z ℏ−1 + z−1

 (2.131)

In order to get the XXX R-matrix one may take the limit limϵ→0 ϵ
−1Rϵℏ(ϵz).

The classical r-matrix, the F 0
12 matrix and its Fourier dual are of the form:

r12(z) =


z−1 0 0 0

−z 0 z−1 0

−z z−1 0 0

−z3 z z z−1

 (2.132)
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F 0
12(q) =


−q−2 0 0 0

−1 0 −q−2 0

−1 −q−2 0 0

−3q2 1 1 −q−2

 (2.133)

F 0
12(q)P12 =


−q−2 0 0 0

−1 −q−2 0 0

−1 0 −q−2 0

−3q2 1 1 −q−2

 (2.134)

From (2.134) using (2.33) we obtain

U(S ij,Sji, qi − qj) = − 1

(qi − qj)2

(
S ij
11S

ji
11 + S ij

22S
ji
22 + S ij

11S
ji
22 + S ij

22S
ji
11

)
+

+S ij
12S

ji
22 + S ij

22S
ji
12 − S ij

12S
ji
11 − S ij

11S
ji
12 − 3(qi − qj)

2S ij
12S

ji
12. (2.135)

Similarly, from (2.133) using (2.34) we obtain

V(S ii,Sjj, qi − qj) = − 1

(qi − qj)2

(
S ii
11S

jj
11 + S ii

22S
jj
22 + S ii

12S
jj
21 + S ii

21S
jj
12

)
+

+S ii
12S

jj
22 + S ii

22S
jj
12 − S ii

12S
jj
11 − S ii

11S
jj
12 − 3(qi − qj)

2S ii
12S

jj
12. (2.136)

The top Hamiltonian Htop(S ii) entering (2.1) or (2.27) is of the form:

Htop(S ii) = S ii
12(S ii

22 − S ii
11). (2.137)

2.5 Discussion

A possible application of the obtained family of integrable models is in constructing quantum
integrable anisotropic long-range spin chains. The basic idea is that such spin chains appear
from the models of interacting tops by the so-called freezing trick likewise the Haldane-Shastry-
Inozemtsev spin chains [32, 77, 34, 63] come from the ordinary spin Calogero-Moser-Sutherland
models. A direct quantization of the interacting tops is a separate problem, which will be
discussed elsewhere. At the same time the quantum Hamiltonian of interacting tops appears
in the so-called R-matrix–valued Lax pairs for the (classical) spinless Calogero-Moser model
[46, 48, 73, 31, 88]. These are the Lax pairs in a large space Mat(M,C)⊗Mat(N,C)⊗M :

LCM =
M∑

a,b=1

Eab ⊗ Lab, Lab = δabpa 1⊗M
N + ν(1− δab)R

z
ab, Rz

ab = Rz
ab(qa − qb). (2.138)
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and similarly for the accompany M -matrix

MCM
ab = νδabda + ν(1− δab)F

z
ab + νδab F0, F z

ab = ∂qaR
z
ab(qa − qb), (2.139)

where

da = −
M∑
c ̸=a

F 0
ac, F0 =

M∑
b,c
b>c

F 0
bc =

M∑
b,c
b>c

∂qbrbc(qbc). (2.140)

In the N = 1 case this Lax pair coincides with the widely known Krichever’s result [37] for
glM Calogero–Moser model. The last term F0 in (2.139) enters M as a scalar (it is an identity
matrix in Mat(M,C) component) in the auxiliary space Mat(M,C). Therefore, it can be moved
to the l.h.s. of the Lax equation. This yields

{HCM,LCM}+ [νF0,LCM(z)] = [LCM(z),M̄CM(z)], (2.141)

where M̄CM = MCM − ν1M ⊗ F0. On the one hand, (2.141) is just a rewritten classical Lax
equation for the spinless Calogero–Moser model. On the other hand, we may treat it as half-
quantum Lax equation in a sense that the dynamics is given by the interacting tops Hamiltonian
(2.95), where the spin variables are already quantized, while the positions and momenta remain
classical. Indeed, the quantization of S ii

1 in fundamental representation of GLN is given by the
permutation operator P1j. Plugging it into the potential of (2.95) we get the F0 term from
(2.139) and (2.141).

Thus the R-matrix valued Lax pairs are multidimensional classical Lax pairs for the spinless
Calogero–Moser models and at the same time they are quantum Lax pairs for the models of
interacting tops with the spin variables being quantized in the fundamental representation of
GLN , i.e. the F0 term is the quantization of the potential V(S ii,Sjj, qi − qj) (2.34).

Let us also mention that there is another class of integrable models with the Hamiltonian
of type (2.27). These are the Gaudin type models [59]. The corresponding Lax matrix is of
size M ×M . It has simple poles at n points on elliptic curve (or its degenerations) with the
classical spin variables matrices attached to each point. The number of points is not necessarily
equal to M . It is an interesting task to find interrelations between the Gaudin models and the
models of interacting tops through the spectral duality [52, 53, 54] based on the rank-size
duality transformation.

The classical spinless Calogero–Moser model possesses an equilibrium position, where pi = 0
and qi = xi (for example, xi = i/M [17]). At this point the term {HCM,LCM} vanishes
from the l.h.s. of (2.141), and we are left with the quantum Lax equation for some long-
range (quantum) spin chain. It is an anisotropic generalization [73] of the Haldane–Shastry–
Inozemtsev type chains. An open question is which F0 provide integrable spin chains? To
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confirm integrability we need to construct higher Hamiltonians, which commute with each other
and with F0(qi = xi). Taking into account all the above we guess that the model of interacting
tops together with the freezing trick (the quantum version of the equilibrium position) can be
used to calculate higher spin chain Hamiltonians and to prove their commutativity. For this
purpose we need to construct a quantization for the model of interacting tops, which will be
the subject of the further investigations.

Another one intriguing question is to construct relativistic generalization of the models
discussed above. While the classical models of relativistic interacting tops are expected to be
relatively simple (the block Lij in (2.51) should be replaced by Tr2(S ij

2 R
z
12(qij + η)P12)) its

quantum versions and the related long-range spin chain were not studied yet as well as the
corresponding R-matrix–valued Lax pairs.

2.6 Appendix

2.6.1 Spin glM Calogero–Moser model

The Lax equations
L̇spin(z) = [Lspin(z),M spin(z)] (2.142)

with the Lax pair

Lspin
ij (z) = δij(pi + SiiE1(z)) + (1− δij)Sijϕ(z, qij), (2.143)

M spin
ij (z) = (1− δij)Sijf(z, qij). (2.144)

provide (after restriction on the constraints (2.17)) equations of motion

q̇i = pi, q̈i =
M∑
j ̸=i

SijSji℘
′(qi − qj), (2.145)

Ṡii = 0, Ṡij =
M∑

k ̸=i,j

SikSkj(℘(qi − qk)− ℘(qj − qk)), i ̸= j. (2.146)

The l.h.s. of the Lax equations (2.142) is generated by the Hamiltonian (2.16)

L̇spin(z) = {Hspin, Lspin(z)} (2.147)

and the linear Poisson–Lie brackets on gl∗M :

{Sij, Skl} = −Silδkj + Skjδil or {S1, S2} = [S2, P12]. (2.148)
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Recall that the Poisson reduction with respect to Cartan action (2.18) is non-trivial. For
instance, in the rank 1 case (2.23) such reduction leads to the spinless model (2.24). Explicit
expression of the reduced Poisson structure depends on a choice of gauge fixation conditions.
The equations of motion (2.145)–(2.146) are not the reduced. They are obtained by a simple
restriction. To get the final equations one should perform the Dirac reduction and evaluate the
Dirac terms.

The classical r-matrix structure is as follows:

{Lspin
1 (z), Lspin

2 (w)} = [Lspin
1 (z), rspin12 (z, w)]− [Lspin

2 (w), rspin21 (w, z)]− (2.149)

−
∑
i,j
i ̸=j

Eij ⊗ Eji(Sii − Sjj)f(z − w, qij)

with

rspin12 (z, w) = E1(z − w)
M∑
i=1

Eii ⊗ Eii +
M∑
i,j
i ̸=j

ϕ(z − w, qij)Eij ⊗ Eji. (2.150)

Here the linear Poisson brackets (2.148) are assumed as well. The Dirac reduction is not yet
performed. However, we can see that the restriction on the constraints (2.17) kills the last term
in (2.149), and we are left with the standard linear classical r-matrix structure. It is enough
for Poisson commutativity

{Tr(Lk(z)),Tr(Ln(w))} = 0, ∀k, n ∈ Z+, z, w ∈ C (2.151)

necessary for the Liouville integrability. The proof of (2.149) is direct. It is based on the
identities (A.6)–(A.9). Let us write down a few examples of verification of (2.149):

the tensor component Eij ⊗ Ejk (i ̸= j, j ̸= k, k ̸= i):

l.h.s. of (2.149):

{Lspin
ij (z), Lspin

jk (w)} = {Sij, Sjk}ϕ(z, qij)ϕ(w, qjk) = −Sikϕ(z, qij)ϕ(w, qjk). (2.152)

r.h.s. of (2.149):
Sikϕ(z, qik)ϕ(z − w, qkj) + Sikϕ(w, qik)ϕ(w − z, qji). (2.153)

Expressions (2.152) and (2.153) coincide due to (A.6).
the tensor component Eii ⊗ Eij (i ̸= j):

l.h.s. of (2.149):

{Lspin
ii (z), Lspin

ij (w)} = {pi, ϕ(w, qij)}Sij + {Sii, Sij}E1(z)ϕ(w, qij) = (2.154)

= Sijf(w, qij)− SijE1(z)ϕ(w, qij).
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r.h.s. of (2.149):
Sijϕ(z, qij)ϕ(z − w, qji) + SijE1(w − z)ϕ(w, qij). (2.155)

Expressions (2.154) and (2.155) coincide due to (A.9).
the tensor component Eij ⊗ Eji (i ̸= j):

l.h.s. of (2.149):

{Lspin
ij (z), Lspin

i (w)} = (2.156)

= {Sij, Sji}ϕ(z, qij)ϕ(w, qji) = (Sii − Sjj)ϕ(z, qij)ϕ(−w, qij).

The last term from the r.h.s. of (2.149) contributes in this component. The r.h.s. of (2.149):

(pi + SiiE1(z)− pj − SjjE1(z))ϕ(z − w, qij)− (2.157)

−(pj + SjjE1(w)− pi − SiiE1(w))ϕ(w − z, qji)− (Sii − Sjj)f(z − w, qij) =

= (Sii − Sjj)
(
(E1(z)− E1(w))ϕ(z − w, qij)− f(z − w, qij)

)
.

Expressions (2.156) and (2.157) coincide due to (A.9).

2.6.2 Integrable glN tops

It was shown in [49] (see also [45, 47]) that the Lax equations

L̇(z, S) = [L(z, S),M(z, S)] (2.158)

are equivalent to equations
Ṡ = [S, J(S)] (2.159)

for the Lax pair

L(z, S) = Tr2(r12(z)S2), M(z, S) = Tr2(m12(z)S2), S2 = 1N ⊗ S (2.160)

and
J(S) = Tr2(m12(0)S2). (2.161)

constructed by means of the coefficients of the (classical limit) expansion (2.9) for an R-matrix
satisfying the associative Yang–Baxter equation (2.8) and the properties (2.38)–(2.41). The
answer (2.160) can be written more explicitly. For

r12(z) =
N∑

i,j,k,l=1

rijkl(z)eij ⊗ ekl (2.162)
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(2.160) means

L(z, S) =
N∑

i,j,k,l=1

rijkl(z)Slkeij (2.163)

since Tr(eklS) = Slk.
Let us briefly describe how these formulae reproduce the elliptic top from [40].
Define the set of functions numerated by a = (a1, a2) ∈ ZN × ZN :

φa(z, ωa + u) = exp(2πi
a2
N
z)ϕ(z, ωa + u), ωa =

a1 + a2τ

N
(2.164)

and introduce notation

fa(z, ωa + u) = exp(2πi
a2
N
z)f(z, ωa + u). (2.165)

The Baxter–Belavin R-matrix [6, 7, 70] satisfying all required properties including the
Fourier symmetry (2.42) is of the form:

RBB
12 (ℏ, z) =

∑
a∈ZN×ZN

φa(z, ℏ+ ωa)Ta ⊗ T−a ∈ Mat(N,C)⊗2. (2.166)

here φa are the elliptic functions and Ta are the corresponding basis matrices in MatN(C)
defined in the Appendix.

This R-matrix satisfies required properties but with different normalizations. For example,
the Fourier symmetry has form RBB

12 (ℏ, z)P12 = RBB
12 (z/N,Nℏ) (see the Fourier transformation

formulae in [87]). To fulfill all requirements including the normalization (2.41) we consider

Rℏ
12(z) = RBB

12 (ℏ/N, z) =
1

N

∑
a∈ZN×ZN

φa(z,
ℏ
N

+ ωa)Ta ⊗ T−a ∈ Mat(N,C)⊗2. (2.167)

The corresponding classical r-matrix is as follows

r12(z) =
1

N
E1(z)1N ⊗ 1N +

1

N

∑
a̸=(0,0)

φa(z, ωa)Ta ⊗ T−a ∈ Mat(N,C)⊗2, (2.168)

and

m12(z) =
E2

1(z)− ℘(z)

2N2
1N ⊗ 1N +

1

N2

∑
a̸=(0,0)

fa(z, ωa)Ta ⊗ T−a ∈ Mat(N,C)⊗2, (2.169)

where fa are the derivatives of φa functions (see Appendix).
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Then the formulae for the Lax pair (2.160) reproduce the Lax pair of the elliptic top. It is
contained in the Lax pair (2.110)–(2.112) as a diagonal N ×N block.

The derivative of the classical r-matrix is obtained through (A.5):

F 0
12(z) = ∂zr12(z) = − 1

N
E2(z) 1N ⊗ 1N+ (2.170)

+
1

N

∑
a̸=(0,0)

φa(z, ωa)(E1(z + ωa)− E1(z) + 2πi∂τωα)Ta ⊗ T−a

The Fourier symmetry Rℏ
12(z) = Rz

12(ℏ)P12 for the R-matrix (2.167) is based on the following
set of identities for the functions (2.164):

1

N

∑
α

κ2
α,γφα(Nℏ, ωα +

z

N
) = φγ(z, ωγ + ℏ), ∀γ ∈ ZN × ZN . (2.171)

Be degeneration of the latter identities on can deduce (see [87]):∑
α

E2(ωα + q) = N2E2(Nq) (2.172)

and for γ ̸= 0∑
α

κ2
α,γE2(ωα + q) = −N2φγ(Nq, ωγ)(E1(Nq + ωγ)− E1(Nq) + 2πi∂τωγ). (2.173)

Conversely,

− E2(q) +
∑
α

κ2
α,γφα(q, ωα)(E1(q + ωα)− E1(q) + 2πi∂τωα) = −E2(ωγ +

q

N
). (2.174)
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Chapter 3

Generalized relativistic interacting
integrable tops

This chapter is based on our paper [75] and it continues and develops the ideas of the previous
chapter, introducing the relativistic versions of the generalized interacting tops systems. The
spin Calogero–Moser system of particles has the relativistic analogue — the spin Ruijenaars–
Schneider model, and the Euler–Arnold integrable top also has a relativistic counterpart. This
chapter is devoted to the classical integrable system generalizing both of these relativistic
integrable models.

The main result of this chapter is the description of the Lax structure of a generalized model
of relativistic interacting tops, constructed via the quantum R-matrix satisfying the associative
Yang–Baxter equation. Similar to the models in the previous chapter, these GL(NM) models
generalizes the classical spin Ruijsenaars–Schneider systems (obtained in the particular case
N = 1) and the relativistic integrable tops on GL(N) Lie group (the particular case M = 1).

The Hamiltonian structure is not known even in the case of the spin Ruijsenaars–Schneider
model, which has been described only in terms of the equations of motion and the Lax structure
corresponding to these equations. So, the generalized relativistic model introduced in this
section are also obtained by means of the Lax pair with spectral parameters and the equations
of motion, matching on a certain constraint. The proof of this matching uses again only the
identities on the quantum R-matrices but not their special form.
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3.1 Introduction

This chapter ideas are the continuation of the series of articles [30, 73, 31, 74, 89], where the
known integrable systems and related structures are extended through the use of quantum
R–matrices (in the fundamental representation of GL(N) Lie group) being interpreted as the
matrix generalizations of the Kronecker function in the rational, trigonometric and elliptic
cases, defined as

ϕ(z, q) =


1/z + 1/q,

coth(z) + coth(q),
ϑ′(0)ϑ(z+q)
ϑ(z)ϑ(q)

,

E1(z) =


1/z,

coth(z),
ϑ′(z)
ϑ(z)

,

℘(z) =


1/z2,

1/ sinh2(z) + 1
3
,

−E ′
1(z) +

1
3
ϑ′′′(0)
ϑ(0)

.

(3.1)

All the functions are complex–valued. So that the trigonometric and hyperbolic cases are
actually the same. In (3.1) for all three cases we also give definitions of the first Eisenstein
function E1(z) and the Weierstrass ℘-function, which appear in the expansion of ϕ(z, q) near
its simple pole (with residue equal to one) at z = 0:

ϕ(z, q) =
1

z
+ E1(q) +

z

2
(E2

1(q)− ℘(q)) +O(z2). (3.2)

The properties of elliptic functions can be found in the Appendix, for the applications the most
important ones is the Fay identity of genus 1:

ϕ(z1, q1)ϕ(z2, q2) = ϕ(z1 − z2, q1)ϕ(z2, q1 + q2)ϕ(z2 − z1, q2)ϕ(z1, q1 + q2), (3.3)

as well as its degenerations corresponding to equal arguments:

ϕ(z, q1)ϕ(z, q2) = ϕ(z, q1 + q2)(E1(z) + E1(q1) + E1(q2)− E1(q1 + q2 + z)), (3.4)

ϕ(z, q)ϕ(z,−q) = ℘(z)− ℘(q). (3.5)

The Fay identity (3.3) can be considered as a particular scalar case of the associative Yang–
Baxter equation [27, 61, 48]:

Rz
12(q12)R

w
23(q23) = Rw

13(q13)R
z−w
12 (q12) +Rw−z

23 (q23)R
z
13(q13), qab = qa − qb. (3.6)

A normalization of the matrix operator Rz
ab(qab) is chosen in a way that for N = 1 the latter

reduces to the scalar function ϕ(z, q) (3.1). In this respect equation (3.6) is a noncommutative
generalization of (3.3), while the operator R — is a noncommutative generalization of the
Kronecker function.
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In addition to (3.6), one can impose the properties of the skew-symmetry and unitarity (the
latter is a matrix analogue for (3.5)):

Rz
12(q) = −R−z

21 (−q), Rz
12(q)R

z
21(−q) = 1N ⊗ 1N(℘(z)− ℘(q)). (3.7)

Then such an R–operator satisfies the quantum Yang–Baxter equation

Rℏ
12(z12)R

ℏ
13(z13)R

ℏ
23(z23) = Rℏ

23(z23)R
ℏ
13(z13)R

ℏ
12(z12). (3.8)

Let us mention that even in the scalar case the condition (3.6) or (3.3) is very restrictive. At
the same time equation (3.8) is not restrictive at all since in the scalar case the quantum Yang–
Baxter equation is identically true. A class of quantum R–matrices satisfying the discussed
above conditions includes the elliptic Baxter–Belavin R–matrix as well as its trigonometric
and rational degenerations, which are equal to the function ϕ(z, q) (3.1) in the scalar case.
More detailed description of these R–matrices can be found in [1, 49, 45, 36, 88, 86, 48], where
an application of this class of R–matrices to integrable system is given — a construction of
integrable tops. The main idea goes back to the Sklyanin’s paper [78]. He suggested the
Hamiltonian description of the classical Euler top by means of the quadratic Poisson algebras,
obtained through the classical limit of RLL-relations. That is, the classical Euler top was
described as the classical limit of 1 site spin chain. This approach can be developed to obtain
explicit description of the Lax pairs with spectral parameters, constructed via the data of R–
matrices satisfying (3.6), (3.7). A detailed derivation of equations of motion together with the
Hamiltonian description by means of the R–matrix data is given in papers [1, 49] and [45, 36]
for non-relativistic and relativistic cases respectively.

3.1.1 Relativistic integrable GLN-top.

In the general case the phase space of GLN -top is given by the set of coordinate functions Sij,
i, j = 1, . . . , N on the Lie group GLN . They are unified into matrix S =

∑
ij SijEij of size

N ×N . Equations of motion then take the form of the Euler–Arnold equations

Ṡ = [S, J(S)], (3.9)

where J(S) is a linear functional on S. It can be written in the form

J(S) =
N∑

i,j,k,l=1

JijklEijSlk ∈ Mat(NM,C) (3.10)

or, using the standard notations S1 = S ⊗ 1N , S2 = 1N ⊗ S,

J(S) = Tr2(J12S2), J12 =
N∑

i,j,k,l=1

JijklEij ⊗ Ekl, (3.11)
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where Tr2 — is the trace over the second space in the tensor product. Below we give the Lax
pair of the relativistic integrable top using the above notation (in the general case, equations
(3.9) are of course not integrable).

For this purpose consider the classical limit of the R–matrix:

Rℏ
12(z) =

1

ℏ
1N ⊗ 1N + r12(z) +

ℏ
2

(
r12(z)

2 − ℘(z)1⊗ 1
)
+O(ℏ2), (3.12)

where r12(z) = −r21(−z) — the classical r–matrix, and the ℏ–order term follows from (3.7).
By comparing this expression with (3.2), we conclude that while the quantum R–matrix is a
matrix analogue of the Kronecker function, the classical r–matrix is a matrix analogue of the
first Eisenstein function E1(z) (3.1).

Consider expansions

Rz
12(q) =

1

q
P12 +R

z,(0)
12 +O(q), r12(q) =

1

q
P12 + r

(0)
12 +O(q), P12 =

N∑
i,j=1

Eij ⊗ Eji, (3.13)

where P12 — is the matrix permutation operator.
Generally speaking, existence of expansions of types (3.12), (3.13) is an additional non-

trivial requirement for the R–matrix. Finally, let us impose one more condition for R–matrix:

Rz
12(q) = Rq

12(z)P12. (3.14)

In the scalar case it turns into equality ϕ(z, q) = ϕ(q, z). Using (3.14) and comparing (3.12),
(3.13) we easily get

r12(z) = R
z,(0)
12 P12. (3.15)

Now we can formulate the statement on the Lax pair of the relativistic top. Namely, for a pair
of matrices

L(z) = Tr2(R
η
12(z)S2) = Tr2(R

z
12(η)P12S2), (3.16)

M(z) = −Tr2(r12(z)S2) = −Tr2(R
z,(0)
12 P12S2) (3.17)

the Lax equation
L̇(z) = [L(z),M(z)] (3.18)

is equivalent to equations of motion of the form (3.9), where

J12 = R
η,(0)
12 − r

(0)
12 . (3.19)
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3.1.2 Spin generalization of the Ruijsenaars–Schneider model.

In the integrable many-body systems the relativistic generalizations are known as the Ruijsenaars–
Schneider models [71]. We are going to deal with their spin extensions [39]. The set of dynamical
variables consists of particles positions and velocities, and the spin variables are arranged into
the matrix S ∈ Mat(M,C). The equations of motion take the following form (for the diagonal
and off-diagonal parts of the matrix S):

Ṡii = −
M∑
k ̸=i

SikSki

(
E1(qik + η) + E1(qik − η)− 2E1(qik)

)
, (3.20)

Ṡij =
M∑
k ̸=j

SikSkj

(
E1(qkj + η)− E1(qkj)

)
−

M∑
k ̸=i

SikSkj

(
E1(qik + η)− E1(qik)

)
(3.21)

and
q̈i = Ṡii, (3.22)

where i ̸= j and qij = qi − qj. The Lax pair with spectral parameter

Lij(z) = Sijϕ(z, qij + η), i, j = 1, . . . ,M res
z=0

L(z) = S ∈ Mat(M,C), (3.23)

Mij(z) = −δij(E1(z) + E1(η))Sii − (1− δij)Sijϕ(z, qij) (3.24)

satisfies the Lax equation with additional term (here µi = q̇i − Sii)

L̇(z) = [L(z),M(z)] +
M∑

i,j=1

Eij(µi − µj)Sijf(z, qij + η), f(z, q) = ∂qϕ(z, q), (3.25)

which turns into zero on-shell constraints

µi = 0 or Sii = q̇i, i = 1, . . . ,M. (3.26)

More precisely, equation (3.25) is equivalent to (3.20)–(3.21), and under conditions (3.26) the
Lax equations with the additional term (3.25) turn into the ordinary Lax equations (3.18), and
(3.22) holds true. Besides the original paper [39], the detailed derivation of (3.25) can be also
found in [89]. This derivation is convenient for consideration of a more general system, where
the functions entering (3.20)–(3.24) are replaced by their R–matrix analogues. Although we
do not use the Hamiltonian description, let us mention that it is known for the rational and
trigonometric systems (see [4, 5, 68, 23, 24, 15, 21, 22]).
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3.1.3 The main result

The main result of the chapter is the simultaneous generalization of both the relativistic top
(3.16)–(3.19) and the spin Ruijsenaars–Schneider model (3.20)–(3.24). Consider Mat(NM,C)–
valued Lax pair subdivided into M ×M blocks Lij(z) = Lij(S ij, z) of sizes N ×N each:

L(z) =
M∑

i,j=1

Eij ⊗ Lij(z) ∈ Mat(NM,C), Lij(z) ∈ Mat(N,C), (3.27)

Lij(z) = Tr2(R
z
12(qij + η)P12S ij

2 ), S ij = res
z=0

Lij(z) ∈ Mat(N,C), (3.28)

M(z) =
M∑

i,j=1

Eij ⊗Mij(z) ∈ Mat(NM,C), Mij(z) ∈ Mat(N,C), (3.29)

Mij(z) = −δijTr2

(
R

(0),z
12 P12S ii

2

)
− (1− δij)Tr2

(
Rz

12(qij)P12S ij
2

)
. (3.30)

The R–matrix entering this definition satisfies the associative Yang–Baxter equation (3.6) to-
gether with the properties (3.7), (3.14) and the expansions (3.12)–(3.13). Then the Lax equation
with the additional term

L̇(z) = [L(z),M(z)] +
M∑

i,j=1

(µi
0 − µj

0)Eij ⊗ Tr2

(
F z
12(qij + η)P12S ij

2

)
, (3.31)

where by the analogy with (3.25)
F z
12(q) = ∂qR

z
12(q) (3.32)

and
µi
0 = q̇i − Tr

(
S ii
)
, i = 1, . . . ,M, (3.33)

is equivalent to equations of motion (in (3.35) we assume i ̸= j)

Ṡ ii = [S ii, Jη(S ii)] +
M∑
k ̸=i

(
S ikJη,qki(Ski)− Jη,qik(S ik)Ski

)
, (3.34)

Ṡ ij = S ijJη(Sjj)− Jη(S ii)S ij +
M∑
k ̸=j

S ikJη,qkj(Skj)−
M∑
k ̸=i

Jη,qik(S ik)Skj. (3.35)

On-shell constraints
µi
0 = 0 or q̇i = Tr

(
S ii
)
, i = 1, . . . ,M (3.36)
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(the equations 3.31) reduce to the Lax equations, and the following equations holds:

q̈i = Tr
(
Ṡ ii
)
=

M∑
k ̸=i

Tr
(
S ikJη,qki(Ski)− Jη,qik(S ik)Ski (3.37)

The linear functionals Jη, Jη,q from the equations of motion are given by

Jη(S ii) = Tr2

(
(R

(0),η
12 − r

(0)
12 )S ii

2

)
, (3.38)

Jη,q(S ij) = Tr2

(
(R

(0),q+η
12 −R

(0),q
12 )S ij

2

)
. (3.39)

In the elliptic case the above given Lax pairs and equations of motion reproduce 1 the results
of our previous paper [89], and in the non-relativistic limit the results of [30] are reproduced
as well. For N = 1 the R–matrix operators under consideration become the scalar functions
from (3.1), thus reproducing the spin Ruijsenaars–Schneider model (3.20)–(3.26). For M = 1
the Lax matrices consists of a single block. In this way we come to relativistic top (3.16)–
(3.19). In the non-relativistic elliptic case the models of the above described type were first
obtained in [65, 66], they were later described as Hitchin systems on the bundles with non-trivial
characteristic classes [44, 90, 92, 41, 42]. Some explicit examples of the systems can be easily
obtained using R–matrices used in [30] in the same normalization as in the present article.

3.2 Derivation of equations of motion

3.2.1 R–matrix identities

To derive equations of motion in the spin Ruijsenaars–Schneider model, one should use the
identity (3.4). Let us rewrite it in a different manner

ϕ(z, q1)ϕ(z, q2) = ϕ(z, q1 + q2)(E1(q1) + E1(q2))− ∂zϕ(z, q1 + q2), (3.40)

where we used that (3.1) provides ∂zϕ(z, q) = ϕ(z, q)(E1(z+ q)−E1(z)). Being written in such
a form the identity (3.4) possesses R–matrix generalization:

Rz
12(x)R

z
23(y) = Rz

13(x+ y)r12(x) + r23(y)R
z
13(x+ y)− ∂

∂z
Rz

13(x+ y) (3.41)

1In [89] the elliptic case was described in a slightly different normalization. It differs from the one we use
here by qj → qj/N . This leads to additional factor 1/N in the equations of motion in [89].
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Applications of the latter identity can be found in [88]. Let us write down its corollary (3.41):

Rz
12(qik)R

z
23(qkj + η)−Rz

12(qik + η)Rz
23(qkj) = (3.42)

= Rz
13(qij + η)(r12(qik)− r12(qik + η)) + (r23(qkj + η)− r23(qkj))R

z
13(qij + η). (3.43)

We will use degenerations of (3.41) as well. Consider expansions of its both parts near x = 0(1
x
P12 +R

(0),z
12 + . . .

)
Rz

23(y) =
(
Rz

13(y) + xF z
13(y) + . . .

)(1
x
P12 + r

(0)
12 + . . .

)
+ (3.44)

+r23(y)
(
Rz

13(y) + xF z
13(y) + . . .

)
− ∂

∂z

(
Rz

13(y) + xF z
13(y) + . . .

)
, (3.45)

where F z
ab(y) is defined as in (3.32). In the zeroth order in x we have:

R
(0),z
12 Rz

23(y) = F z
13(y)P12 +Rz

13(y)r
(0)
12 + r23(y)R

z
13(y)−

∂

∂z
Rz

13(y). (3.46)

Also, by expanding (3.41) near y = 0 we similarly obtain

Rz
12(x)

(1
y
P23 +R

(0),z
23 + . . .

)
=
(
Rz

13(x) + yF z
13(x) + . . .

)
r12(x)+ (3.47)

+
(1
y
P23 + r

(0)
23 + . . .

)(
Rz

13(x) + yF z
13(x) + . . .

)
− ∂

∂z

(
Rz

13(x) + yF z
13(x) + . . .

)
,

Rz
12(x)R

(0),z
23 = Rz

13(x)r12(x) + r
(0)
23 R

z
13(x) + P23F

z
13(x)−

∂

∂z
Rz

13(x). (3.48)

From (3.46) and (3.48) we deduce

R
(0),z
12 Rz

23(qij + η)−Rz
12(η)R

z
23(qij) = (3.49)

F z
13(qij + η)P12 +Rz

13(qij + η)(r
(0)
12 − r12(η)) + (r23(qij + η)− r23(qij))R

z
13(qij + η).

3.2.2 Lax equation

Let us write down the Lax equation with the additional term (3.31) explicitly in terms of N×N
blocks. For the diagonal blocks this yields

L̇ii(z) = Lii(z)Mii(z)−Mii(z)Lii(z) +
∑
k ̸=i

(
Lik(z)Mki(z)−Mik(z)Lki(z)

)
. (3.50)
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Similarly, for the off-diagonal part we have

L̇ij(z) = Lii(z)Mij(z)−Mii(z)Lij(z) + Lij(z)Mjj(z)−Mij(z)Ljj(z)+ (3.51)

+
∑
k ̸=i,j

(
Lik(z)Mkj(z)−Mik(z)Lkj(z)

)
+ (µi

0 − µj
0)Tr2

(
F z
12(qij + η)P12S ij

2

)
.

Our aim is to show that (3.50) and (3.51) are equivalent to the equations of motion (3.34)
and (3.35) respectively. Notice that

res
z=0

L(z) = S = − res
z=0

M(z) ∈ Mat(NM,C), (3.52)

i.e. the second order pole in z is cancelled out in the commutator [L(z),M(z)].

Off-diagonal part.

In the l.h.s. of (3.51) we have

L̇ij(z)1 = Tr2(F
z
12(qij + η)P12S ij

2 q̇ij) + Tr2(R
z
12(qij + η)P12Ṡ ij

2 ). (3.53)

The index 1 in the l.h.s. means that the Lax equation is in the first tensor component. Consider
expression in the r.h.s. of (3.51)

(Lik(z)Mkj(z)−Mik(z)Lkj(z))1 = (3.54)

= Tr23

(
−Rz

12(qik + η)P12S ik
2 Rz

13(qkj)P13Skj
3 +Rz

12(qik)P12S ik
2 Rz

13(qkj + η)P13Skj
3

)
= (3.55)

= Tr23

((
Rz

12(qik)R
z
23(qkj + η)−Rz

12(qik + η)Rz
23(qkj)

)
P12S ik

2 P13Skj
3

)
= (3.56)

(3.42)
= Tr23

(
Rz

13(qij + η)
(
r12(qik)− r12(qik + η)

)
P12S ik

2 P13Skj
3

)
+ (3.57)

+Tr23

((
r23(qkj + η)− r23(qkj)

)
Rz

13(qij + η)P12S ik
2 P13Skj

3

)
. (3.58)

Two obtained terms are transformed using (3.14)–(3.15) and the permutation operator property
P12U12 = U21P12 (and P12U23 = U13P12 respectively). Let us transform the first term from the
r.h.s. of (3.54):

Tr23

(
Rz

13(qij + η)
(
r12(qik)− r12(qik + η)

)
P12S ik

2 P13Skj
3

)
=

= −Tr3

(
Rz

13(qij + η)P13P13Tr2

(
(R

(0),qik+η
12 −R

(0),qik
12 )S ik

2

)
P13Skj

3

)
=

= −Tr3

(
Rz

13(qij + η)P13Tr2

(
(R

(0),qik+η
32 −R

(0),qik
32 )S ik

2

)
Skj
3

)
=

= −Tr2

(
Rz

12(qij + η)P12Tr3

(
(R

(0),qik+η
23 −R

(0),qik
23 )S ik

3

)
Skj
2

)
. (3.59)
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Using the defintion (3.38) we obtain

Tr23

(
Rz

13(qij + η)
(
r12(qik)− r12(qik + η)

)
P12S ik

2 P13Skj
3

)
=

= −Tr2

(
Rz

12(qij + η)P12J
η,qik(S ik)2Skj

2

)
. (3.60)

The second term from the r.h.s. of (3.54) is transformed in a similar manner:

Tr23

((
r23(qkj + η)− r23(qkj)

)
Rz

13(qij + η)P12S ik
2 P13Skj

3

)
=

= Tr23

(
Rz

13(qij + η)P12S ik
2 P13Skj

3

(
r23(qkj + η)− r23(qkj

))
=

= Tr23

(
Rz

13(qij + η)P13P23S ik
2 Skj

3

(
R

(0),qkj+η
23 −R

(0),qkj
23

)
P23

)
=

= Tr23

(
P23R

z
13(qij + η)P13P23S ik

2 Skj
3

(
R

(0),qkj+η
23 −R

(0),qkj
23

))
=

= Tr23

(
Rz

12(qij + η)P12S ik
2 Skj

3

(
R

(0),qkj+η
23 −R

(0),qkj
23

))
=

= Tr2

(
Rz

12(qij + η)P12S ik
2 Tr3

(
Skj
3 (R

(0),qkj+η
23 −R

(0),qkj
23 )

))
=

= Tr2

(
Rz

12(qij + η)P12S ik
2 Jη,qkj(Skj)2

)
. (3.61)

Finally, from (3.60) and (3.61) we get the following answer for the initial expression (3.54):

(Lik(z)Mkj(z)−Mik(z)Lkj(z))1 =

= Tr2

(
Rz

12(qij + η)P12

(
S ikJη,qkj(Skj)− Jη,qik(S ik)Skj

)
2

)
. (3.62)

Next, consider the following expression from (3.51):

(Lii(z)Mij(z)−Mii(z)Lij(z))1 =

= Tr23

(
−Rz

12(η)P12S ii
2 R

z
13(qij)P13S ij

3 +R
(0),z
12 P12S ii

2 R
z
13(qij + η)P13S ij

3

)
=

= Tr23

((
R

(0),z
12 Rz

23(qij + η)−Rz
12(η)R

z
23(qij)

)
P12S ii

2 P13S ij
3

)
. (3.63)

Apply relation (3.49):

(Lii(z)Mij(z)−Mii(z)Lij(z))1 = Tr23

(
F z
13(qij + η)P12P12S ii

2 P13S ij
3

)
+

+Tr23

(
Rz

13(qij + η)
(
r
(0)
12 − r12(η)

)
P12S ii

2 P13S ij
3

)
+

+Tr23

((
r23(qij + η)− r23(qij)

)
Rz

13(qij + η)P12S ii
2 P13S ij

3

)
. (3.64)
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Let us simplify all three terms in the r.h.s. of (3.64). Transform the first term:

Tr23

(
F z
13(qij + η)P12P12S ii

2 P13S ij
3

)
= Tr2

(
S ii
2

)
Tr3

(
F z
13(qij + η)P13S ij

3

)
=

= TrS ii · Tr2
(
F z
12(qij + η)P12S ij

2

)
. (3.65)

The third term is already known:

Tr23

((
r23(qij + η)− r23(qij)

)
Rz

13(qij + η)P12S ii
2 P13S ij

3

)
=

= Tr2

(
Rz

12(qij + η)P12S ii
2 J

η,qij(S ij)2

)
. (3.66)

For the second term from the r.h.s. of (3.64) we obtain

Tr23

(
Rz

13(qij + η)
(
r
(0)
12 − r12(η)

)
P12S ii

2 P13S ij
3

)
=

= Tr23

(
Rz

13(qij + η)P13

(
r
(0)
32 − r32(η)

)
P32S ii

2 S
ij
3

)
=

= Tr2

(
Rz

12(qij + η)P12Tr3

{(
r
(0)
23 − r23(η)

)
P23S ii

3

}
S ij
2

)
=

= −Tr2

(
Rz

12(qij + η)P12J
η(S ii)2S ij

2

)
. (3.67)

Thus, the expression (3.64) takes the form:

(Lii(z)Mij(z)−Mii(z)Lij(z))1 =

= Tr2

(
Rz

12(qij + η)P12

(
S iiJη,qij(S ij)− Jη(S ii

)
S ij)2

)
+

+TrS ii · Tr2
(
F z
12(qij + η)P12S ij

2

)
. (3.68)

One more expression Lij(z)Mjj(z)−Mij(z)Ljj(z) from (3.51) is transformed similarly to (3.64).
This yields

(Lij(z)Mjj(z)−Mij(z)Ljj(z))1 =

= Tr2

(
Rz

12(qij + η)P12

(
S ijJη(Sjj)− Jη,qij(S ij)Sjj

)
2

)
−

−TrSjj · Tr2
(
F z
12(qij + η)P12S ij

2

)
. (3.69)
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Collecting the terms (3.62), (3.68) and (3.69) gives the following answer for ij–block of the
commutator:

([L(z),M(z)]ij)1 = (TrS ii − TrSjj) · Tr2(F z
12(qij + η)P12S ij

2 ) + Tr2(R
z
12(qij + η)P12A2), (3.70)

A = S iiJη,qij(S ij)− Jη(S ii)S ij + S ijJη(Sjj)− Jη,qij(S ij)Sjj+

+
∑
k ̸=i,j

(
S ikJη,qkj(Skj)− Jη,qik(S ik)Skj

)
.

Also, taking into account the last term (with µ0
i ) in the r.h.s. of (3.51), we get (3.21) in the

form

Ṡ ij = S iiJη,qij(S ij)− Jη(S ii)S ij + S ijJη(Sjj)− Jη,qij(S ij)Sjj+

+
M∑

k ̸=i,j

(
S ikJη,qkj(Skj)− Jη,qik(S ik)Skj

)
. (3.71)

Let us comment on transition from (3.70) to (3.71). Strictly speaking, we have proved
that the Lax representation holds true on the equations of motion but we have not proved the
inverse. In order to prove the inverse statement we need to see that all components of the
matrix equation (3.71) are contained in (3.70) independently taking also into account that R12

is a linear operator, which may mix these components somehow. Put it differently, we need
to show that Tr2(R

z
12(qij + η)P12C2) = 0 leads to C = 0. For this purpose consider the Lax

equation near z = 0. It follows from (3.12)–(3.14) that Rz
12(qij + η)P12 has a simple pole in

z = 0 and the residue is equal to P12. Then the desired statement follows from Tr2(P12A2) = A.

Diagonal part.

Consider now the equation (3.50), which l.h.s. is of the form:

L̇ii(z)1 = Tr2(R
z
12(η)P12Ṡ ii

2 ). (3.72)
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In the r.h.s. we transform the expression under sum using (3.42):

(Lik(z)Mki(z)−Mik(z)Lki(z))1 =

= Tr23

(
−Rz

12(qik + η)P12S ik
2 Rz

13(qki)P13Ski
3 +Rz

12(qik)P12S ik
2 Rz

13(qki + η)P13Ski
3

)
=

= Tr23

((
Rz

12(qik)R23(qki + η)−Rz
12(qik + η)Rz

23(qki)
)
P12S ik

2 P13Ski
3 ) =

(3.42)
= Tr23

(
Rz

13(η)
(
r12(qik)− r12(qik + η)

)
P12S ik

2 P13Ski
3

)
+

+Tr23

((
r23(qki + η)− r23(qki)

)
Rz

13(η)P12S ik
2 P13Ski

3

)
=

= Tr2

(
Rz

12(η)P12(S ikJη,qki(Ski)− Jη,qik(S ik)Ski)2

)
. (3.73)

The rest of the expression in the r.h.s. of (3.50) is simplified via (3.49):

(Lii(z)Mii(z)−Mii(z)Lii(z))1 =

= Tr23

(
−Rz

12(η)P12S ii
2 R

(0),z
13 P13S ii

3 +R
(0),z
12 P12S ii

2 R
z
13(η)P13S ii

3

)
=

= Tr23

((
R

(0),z
12 Rz

23(η)−Rz
12(η)R

(0),z
23

)
P12S ii

2 P13S ii
3

)
=

(3.49)
= Tr23

(
Rz

13(η)
(
r
(0)
12 − r12(η)

)
P12S ii

2 P13S ii
3

)
+

+Tr23

((
r23(η)− r

(0)
23

)
Rz

13(η)P12S ii
2 P13S ii

3

)
+

+Tr23

(
F z
13(η)P12P12S ii

2 P13S ii
3

)
− Tr23

(
P23F

z
13(η)P12S ii

2 P13S ii
3

)
. (3.74)

Notice that the two last terms are equal, so that they are cancelled out:

Tr23

(
F z
13(η)P12P12S ii

2 P13S ii
3

)
= Tr23

(
P23F

z
13(η)P12S ii

2 P13S ii
3

)
=

= TrS ii · Tr2
(
F z
12(η)P12S ii

2

)
. (3.75)

The first and the second terms from (3.74) are of the form

Tr23

(
Rz

13(η)
(
r
(0)
12 − r12(η)

)
P12S ii

2 P13S ii
3

)
+

+Tr23

((
r23(η)− r

(0)
23

)
Rz

13(η)P12S ii
2 P13S ii

3

)
=

= Tr2

(
Rz

12(η)P12

(
Jη(S ii)S ii − S iiJη(S ii)

)
2

)
. (3.76)
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Finally, from (3.73) and (3.76) we get the answer

([L(z),M(z)]ii)1 = Tr2

(
Rz

12(η)P12B2

)
, (3.77)

where
B = Jη(S ii)S ii − S iiJη(S ii) +

∑
k ̸=i

(
S ikJη,qki(Ski)− Jη,qik(S ik)Ski

)
. (3.78)

Here one should also use the argument given after (3.71). Thus, the equations of motion are
verified for the diagonal blocks.

3.2.3 Interacting tops

As was explained in [89], in the particular case rk(S) = 1 the equations of motion can be written
in terms of the diagonal blocks only. Let us recall the main idea. The property rk(S) = 1 yields

S ik
1 P12Ski

1 = S ii
1 Skk

2 . (3.79)

Next, for an arbitrary J(S) = Tr2(J12S2) of the form (3.11) and J̆12 = J12P12 we have

J(S) = Tr2(J12S2) = Tr2(J̆12P12S2) = Tr2(S2J̆12P12) =

= Tr2(S2P12J̆21) = Tr2(P12S1J̆21). (3.80)

Therefore
S ikJ(Ski) = Tr2

(
S ik
1 P12Ski

1 J̆21

)
= S iiTr2

(
J̆21Skk

2

)
, (3.81)

where
J̆21 = P12J̆21P12 = P12J12. (3.82)

In the same way

J(S ik)Ski = Tr2

(
J̆12S ik

1 P12Ski
1

)
= Tr2

(
J̆12Skk

2

)
S ii. (3.83)

Finally, equations (3.34) and (3.37) are written in the form

Ṡ ii = [S ii, Jη(S ii)] +
M∑
k ̸=i

(
S iiJ̃η,qki(Skk)− J̆η,qik(Skk)Sii

)
, (3.84)

q̈i = Tr
(
Ṡ ii
)
=

M∑
k ̸=i

Tr
(
S iiJ̃η,qki(Skk)− J̆η,qik(Skk)Sii

)
, (3.85)
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where

J̃η,qki(Skk) = Tr2

(
J̆η,qki
21 Skk

2

)
= Tr2

(
P12J

η,qki
12 Skk

2

)
, (3.86)

J̆η,qik(Skk) = Tr2

(
J̆η,qik
12 Skk

2

)
= Tr2

(
Jη,qik
12 P12Skk

2

)
. (3.87)

Being written in the form (3.84)–(3.85) the equations of motion can be treated as dynamics
of M particles bearing additional ”spin” type degrees of freedom, i.e. the particles can be
identified with the tops, which have also positions and velocities besides their own internal
degrees of freedom. The interaction between the tops depends on the distance and on the spin
dynamical variables.
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Chapter 4

Quantum GL(NM) R-matrix and
quantum algebra

This chapter is based on our papers [74, 76] and is devoted to the quantization of the structures
described in the previous chapters.

In the first part of the chapter, the generalized quantum GLNM dynamical R-matrix is
constructed using the GLN solution of the associative Yang–Baxter equation. This quantum R-
matrix is a quantization of the classical r-matrix for the generalized interacting integrable tops
systems introduced in the previous sections. The quantum dynamical Yang–Baxter equation in
this case can be also considered as the quantum version of the classical dynamical Yang–Baxter
equation for the interacting tops models.

In the N = 1 case the obtained answer reproduces the GLM -valued Felder’s dynamical
R-matrix, while in the M = 1 case it provides the GLN nondynamical R-matrix of vertex type
including the Baxter–Belavin’s elliptic one and its degenerations.

In the second part of the chapter, the quadratic quantum algebra has been constructed
starting from the dynamical RLL-relation, which corresponds to the elliptic version of R-
matrices introduced above.

This quantum R–matrix is related to the SL(NM)–bundles over the elliptic curve with
nontrivial characteristic class and generalizes simultaneously the elliptic nondynamical Baxter–
Belavin and dynamical Felder R–matrices, and the obtained quadratic relations generalize
both the Sklyanin algebra relations and the relations in the Felder–Tarasov–Varchenko elliptic
quantum group, coinsiding with them in the particular cases M = 1 and N = 1 respectively.
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4.1 Quantum dynamical GL(NM) R-matrix

Yang–Baxter equations. Consider a matrix-valued function Rℏ
12(z) ∈ Mat(N,C)⊗2, which

solves the associative Yang–Baxter equation [27, 61]:

Rℏ
12(z12)R

η
23(z23) = Rη

13(z13)R
ℏ−η
12 (z12) +Rη−ℏ

23 (z23)R
ℏ
13(z13), zab = za − zb. (4.1)

Let the solution of (4.1) satisfy also the properties of skew-symmetry

Rℏ
12(z) = −R−ℏ

21 (−z) = −P12R
−ℏ
12 (−z)P12, P12 =

N∑
i,j=1

eij ⊗ eji (4.2)

and unitarity

Rℏ
12(z)R

ℏ
21(−z) = (℘(ℏ)− ℘(z))1N ⊗ 1N , (4.3)

where ℘(x) — is the Weierstrass ℘-function. We assume that it is equal to 1/ sinh2(x) or 1/x2

for trigonometric (hyperbolic) or rational R-matrices respectively. Notice that solution of (4.1)
with the properties (4.2)–(4.3) is a true quantum R-matrix of vertex type, i.e. it satisfies the
quantum (non-dynamical) Yang–Baxter equation 1:

Rℏ
12(z12)R

ℏ
13(z13)R

ℏ
23(z23) = Rℏ

23(z23)R
ℏ
13(z13)R

ℏ
12(z12). (4.4)

Equation (4.1) can be viewed as the matrix extension of the genus one Fay trisecant identity:

ϕ(ℏ, z12)ϕ(η, z23) = ϕ(η, z13)ϕ(ℏ− η, z12) + ϕ(η − ℏ, z23)ϕ(ℏ, z13), (4.5)

which coincides with (4.1) in scalar (N = 1) case. It plays a crucial role in the theory of classical
and quantum integrable systems [37, 78, 12]. Solution of (4.5) satisfying the (scalar versions
of) properties (4.2)–(4.3) is the Kronecker function:

ϕ(ℏ, z) =
ϑ′(0)ϑ(ℏ+ z)

ϑ(ℏ)ϑ(z)
, ϑ(x) =

∑
k∈Z

exp

(
πiτ(k +

1

2
)2 + 2πi(x+

1

2
)(k +

1

2
)

)
, (4.6)

where Im(τ) > 0. Its trigonometric and rational limits are given by coth(ℏ) + coth(z) and
ℏ−1 + z−1 respectively. The properties of this function is given in the Appendix. Similarly, the
elliptic solution of (4.1) with properties (4.2)–(4.3) is known [61] to be given by the Baxter–
Belavin’s R-matrix [6, 7]. The trigonometric solutions were classified in [72, 62]. They include
the XXZ R-matrix, its 7-vertex deformation [16] and their GLN generalizations [2] (see a brief

1The latter statement is easily verified. See e.g. [46, 48, 88].
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review in [36]). The rational solutions consist of the XXX R-matrix, its 11-vertex deforma-
tion [16] and their GLN generalizations [80, 45] — deformations of the GLN Yang’s R-matrix
Rℏ

12(z) = ℏ−11N⊗1N+z−1P12. Summarizing, we deal with the R-matrices considered as matrix
generalizations of the Kronecker function (including its trigonometric and rational versions).

To formulate the main result we also need the Felder’s dynamical GLM R-matrix [26]:

RF

12(ℏ, z1, z2 | q) = RF

12(ℏ, z1 − z2 | q) = (4.7)

= ϕ(ℏ, z1 − z2)
M∑
i=1

Eii ⊗ Eii +
M∑
i,j
i ̸=j

Eij ⊗ Ejiϕ(z1 − z2, qij) +
M∑
i,j
i ̸=j

Eii ⊗ Ejjϕ(ℏ,−qij),

where q1, . . . , qM – are (free) dynamical parameters,

qij = qi − qj (4.8)

and the set {Eij} is the standard basis in Mat(M,C).
The R-matrix (4.7) is a solution of the quantum dynamical Yang–Baxter equation:

Rℏ
12(z1, z2 | q)Rℏ

13(z1, z3 |, q − ℏ(2))Rℏ
23(z2, z3 | q) = (4.9)

= Rℏ
23(z2, z3 | q − ℏ(1))Rℏ

13(z1, z3 | q)Rℏ
12(z1, z2 | q − ℏ(3)),

where the shifts of the dynamical arguments {qi} are performed as follows:

Rℏ
12(z1, z2 | q + ℏ(3)) = P ℏ

3 Rℏ
12(z1, z2 | q) P−ℏ

3 P ℏ
3 =

M∑
k=1

1M ⊗ 1M ⊗ Ekk exp

(
ℏ

∂

∂qk

)
. (4.10)

Quantum dynamical GLNM R-matrix. Consider the following Mat(NM,C)–valued ex-
pression:

Rℏ
1′2′12(z, w) =

M∑
i=1

1′

Eii ⊗
2′

Eii ⊗Rℏ
12(z − w) +

M∑
i,j
i ̸=j

1′

Eij ⊗
2′

Eji ⊗R
qij
12 (z − w)+ (4.11)

+
M∑
i,j
i ̸=j

1′

Eii ⊗
2′

Ejj ⊗
1

1N ⊗
2

1N ϕ(ℏ,−qij),

where the Mat(NM,C) indices are represented in a way that the Mat(M,C)–valued tensor
components are numbered by the primed numbers, and the Mat(N,C)–valued components
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are those without primes (as previously). Put it differently, the indices are arranged through
Mat(NM,C⊗2 ∼= Mat(M,C⊗2 ⊗Mat(N,C⊗2. The order of tensor components is, in fact, not
important. It is chosen as in (4.11) just to emphasize its similarity with the Felder’s R-matrix
(4.7). The latter is reproduced from (4.11) in the N = 1 case, when the GLN R-matrix entering
(4.11) turns into the Kronecker function (4.6).

The results of this section are summarized in the following theorem.
Theorem.

Let Rℏ
12(z) be some GLN quantum non-dynamical R-matrix satisfying the associative Yang–

Baxter equation (4.1) and the properties (4.2)–(4.3). Then the expression (4.11) is a quantum
dynamical R-matrix, i.e. it satisfies the quantum dynamical Yang–Baxter equation:

Rℏ
1′2′12(z1, z2 | q)Rℏ

1′3′13(z1, z3 | q − ℏ(2))Rℏ
2′3′23(z2, z3 | q) = (4.12)

= Rℏ
2′3′23(z2, z3 | q − ℏ(1))Rℏ

1′3′13(z1, z3 | q)Rℏ
1′2′12(z1, z2 | q − ℏ(3)), (4.13)

where the shifts of arguments {qi} are performed similarly to (4.10):

Rℏ
1′2′12(z1, z2 | q + ℏ(3)) = Pℏ

3′ R
ℏ
1′2′12(z1, z2 | q) P−ℏ

3′ , (4.14)

Pℏ
3′ =

M∑
k=1

1′

1M ⊗
2′

1M ⊗
3′

Ekk ⊗
1

1N ⊗
2

1N ⊗
3

1N exp

(
ℏ

∂

∂qk

)
.

Proof: It is useful to write (4.1) as

Rℏ
ab(zab)R

η
bc(zbc) = Rη−ℏ

bc (zbc)R
ℏ
ac(zac) +Rη

ac(zac)R
ℏ−η
ab (zab), (4.15)

where a, b, c are distinct numbers from the set {1, 2, 3}. Besides (4.15) and the properties (4.2)–
(4.3) the proof of (4.12) uses the Yang–Baxter equation (4.4) for the GLN R-matrix and the
following cubic relation:

Rℏ
ab(zab)R

η
ac(zac)R

ℏ
bc(zbc)−Rη

bc(zbc)R
ℏ
ac(zac)R

η
ab(zab) = Rℏ+η

ac (zac)(℘(ℏ)− ℘(η)), (4.16)

which is true under hypothesis of the theorem. If ℏ = η it reduces to (4.4). In the general case
(4.16) leads (due to skew-symmetry of its r.h.s.) to

Rη
abR

ℏ
acR

η
bc +Rℏ

abR
η
acR

ℏ
bc = Rη

bcR
ℏ
acR

η
ab +Rℏ

bcR
η
acR

ℏ
ab, Rℏ

ab = Rℏ
ab(za − zb), (4.17)

known as the Yang–Baxter equation with two Planck constants [50]. The verification of (4.12)
is a straightforward but cumber some calculation. Consider, for example, the equation arising
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in the tensor component
1′

Eij ⊗
2′

Ekk ⊗
3′

Eji with i ̸= j ̸= k ̸= i:

Rqik
12 (z12)R

qkj
13 (z13)R

qik
23 (z23) + ϕ(ℏ, qik)ϕ(ℏ, qki)R

qij
13 (z13) = (4.18)

= R
qkj
23 (z23)R

qik
13 (z13)R

qkj
12 (z12) + ϕ(ℏ, qkj)ϕ(ℏ, qjk)R

qij
13 (z13).

To prove it one should use (4.16) written in the form

Rqik
12 (z12)R

qkj
13 (z13)R

qik
23 (z23)−R

qkj
23 (z23)R

qik
13 (z13)R

qkj
12 (z12) = (4.19)

= (℘(qik)− ℘(qkj))R
qik+qkj
13 (z13) = (℘(qik)− ℘(qkj))R

qij
13 (z13)

and the well-known property of the Kronecker function (scalar version of the unitarity) (see
also the Appendix)

ϕ(ℏ, qik)ϕ(ℏ, qki) = ℘(ℏ)− ℘(qik), ϕ(ℏ, qkj)ϕ(ℏ, qjk) = ℘(ℏ)− ℘(qkj). (4.20)

The rest of the tensor components are verified similarly.
In the elliptic case, when Rℏ

12(z) is the Baxter–Belavin’s R-matrix, the result of the theorem
is known [44]. Similar results for the classical r-matrices were obtained previously by P. Etingof
and O. Schiffmann [19, 20] and later in [41, 42, 43, 92], where the Hitchin type systems were
described on the Higgs bundles with non-trivial characteristic classes. Recently, these type
models appeared in the context of R-matrix valued Lax pairs and quantum long-range spin
chains [31, 73, 30]. In [44] the answer (4.11) was verified explicitly in the elliptic case without
use of the associative Yang–Baxter equation. In this respect the approach of this work provides
much simpler proof. What is more important, the answer (4.11) is also valid for all trigonometric
and rational degenerations of the elliptic R-matrix (satisfying the properties required in the
Theorem). In the light of results of [30] the R-matrix (4.11) is the one necessary for quantization
of the (generalized) model of interacting tops.

Classical glNM r-matrix. As a by-product of the Theorem we also get the classical dynam-
ical Yang–Baxter equation for the classical r-matrix of the generalized interacting tops [30].
Consider the classical limit of the GLN R-matrix from the Theorem:

Rℏ
12(z) = ℏ−11N ⊗ 1N + r12(z) +O(ℏ). (4.21)

The coefficient r12(z) is the classical r-matrix, and the quantum Yang–Baxter equation (4.4)
reduces in the limit (4.21) to the classical (non-dynamical) Yang–Baxter equation:

[r12(z12), r13(z13)] + [r12(z12), r23(z23)] + [r13(z13), r23(z23)] = 0. (4.22)
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Similarly, the classical dynamical r-matrix appears from (4.7) through (4.21). It satisfies the
classical dynamical Yang–Baxter equation:

[r12(z12), r13(z13)] + [r12(z12), r23(z23)] + [r13(z13), r23(z23)]+ (4.23)

[∂̂1, r23(z23)]− [∂̂2, r13(z13)] + [∂̂3, r12(z12)] = 0, (4.24)

which underlies the Poisson structure of the spin Calogero-Moser model [9, 38]. Here

∂̂3 =
M∑
k=1

1M ⊗ 1M ⊗ Ekk ∂qk P ℏ
3

(4.10)
= 1M

⊗3 + ℏ∂̂3 +O(ℏ2). (4.25)

In the same way, starting from the quantum R-matrix (4.11) one gets the classical r-matrix

r1′2′12(z) =
M∑
i=1

1′

Eii ⊗
2′

Eii ⊗r12(z) +
M∑
i,j
i ̸=j

1′

Eij ⊗
2′

Eji ⊗R
qij
12 (z), (4.26)

and the classical dynamical Yang–Baxter equation follows from (4.12):

[r1′2′12(z12), r1′3′13(z13)] + [r1′2′12(z12), r2′3′23(z23)] + [r1′3′13(z13), r2′3′23(z23)]+ (4.27)

+[∂̂1′ , r2′3′23(z23)]− [∂̂2′ , r1′3′13(z13)] + [∂̂3′ , r1′2′12(z12)] = 0.

with

∂̂3′ =
M∑
k=1

1′

1M ⊗
2′

1M ⊗
3′

Ekk ⊗
1

1N ⊗
2

1N ⊗
3

1N ∂qk , Pℏ
3′

(4.14)
= 1MN

⊗3 + ℏ∂̂3′ +O(ℏ2). (4.28)

4.2 Elliptic quantum algebras

4.2.1 Sklyanin algebra

Consider Baxter–Belavin quantum R–matrix [6, 7]:

RBB
12 (ℏ, u) =

∑
α∈Z2

N

φα(u, ℏ+ ωα)Tα ⊗ T−α, (4.29)
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In this defintion the elliptic functions φα(u, x+ωα) and the N×N basis matrices Tα, connected
with these functions, are used. They are defined in the Appendix. This R–matrix satisfies the
quantum Yang–Baxter equation in Mat(N,C)⊗3

RBB
12 (ℏ, z12)RBB

13 (ℏ, z13)RBB
23 (ℏ, z23) = RBB

23 (ℏ, z23)RBB
13 (ℏ, z13)RBB

12 (ℏ, z12), (4.30)

An operator L(z) is called L–operator for the Baxter–Belavin R–matrix, if it satisfies the
RLL–relation

RBB
12 (ℏ, z1 − z2)L1(z1)L2(z2) = L2(z2)L1(z1)R

BB
12 (ℏ, z1 − z2). (4.31)

In the work [78] Sklyanin suggested a class of the L–operators for the case N = 2. After this,
his approach was generalized in the case of an arbitrary N and considering other parameters of
bundles over the elliptic curve [60, 67, 91, 11, 35]. The constructed L–operators are connected
with the quadratic algebra, called Sklyanin algebra.

Consider an L–operator of the form

L(z) =
∑
α

φα(z, ℏ+ ωα)SαTα. (4.32)

RLL–relation (4.31) for this L–operator is equivalent to the following quadratic relations on
operators Sα, labelled by pairs (α, β), which do not depend on the spectral parameters z1, z2:

β ̸= 0 :
∑
γ

κγακβγ

(
E1(ωγ + ℏ)− E1(ωα−β−γ+ℏ) + E1(ωα−γ + ℏ)− E1(ωβ+γ + ℏ)

)
Sα−γSβ+γ = 0,

(4.33)

β = 0 :
∑
γ

κγα

(
E2(ωγ + ℏ)− E2(ωα−γ + ℏ)

)
Sα−γSγ = 0, (4.34)

where E1(z) and E2(z) are Eisenstein functions, also defined in the Appendix. A set of numbers

καβ = exp

(
πi

N
(β1α2 − β2α1)

)
(4.35)

defines structure coefficients of the relations (4.33)–(4.34), called the Sklyanin algebra relations.
For example, operators Sα = T−α satisfy these relations. In this case the RLL–relation becomes
the Yang–Baxter equation (4.30).

One can slightly modify the definition (4.32) and relations (4.33)–(4.34). The L–operator
can be divided by a function depending only on z, because this function cancels in the both
parts of the RLL–relation. Presenting φα–function explicitly:

φα(z, ℏ+ ωα) = ϕ(z, ℏ+ ωα)e
2πi
N

α2z =
ϑ′(0)ϑ(z + ℏ+ ωα)

ϑ(z)ϑ(ℏ+ ωα)
e

2πi
N

α2z (4.36)
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and dividing the L–operator (4.32) by ϑ′(0)/ϑ(z), one obtains

Lℏ(z) =
∑
α

ϑ(z + ℏ+ ωα)

ϑ(ℏ+ ωα)
e

2πi
N

α2zSαTα. (4.37)

A multiplier ϑ(ℏ + ωα) does not depend on the spectral parameter, then, one can remove it
redefining Sα. In this case the L–operator will have the form

Lℏ(z) =
∑
α

ϑ(z + ℏ+ ωα)e
2πi
N

α2zS̃αTα, S̃α =
Sα

ϑ(ℏ+ ωα)
. (4.38)

The Sklyanin algebra relations will also change

β ̸= 0 :
∑
γ

κγακβγ

(
E1(ωγ + ℏ)− E1(ωα−β−γ + ℏ) + E1(ωα−γ + ℏ)− E1(ωβ+γ + ℏ)

)
×

×ϑ(ℏ+ ωα−γ)ϑ(ℏ+ ωβ+γ)S̃α−γS̃β+γ = 0, (4.39)

β = 0 :
∑
γ

κγα

(
E2(ωγ + ℏ)− E2(ωα−γ + ℏ)

)
ϑ(ℏ+ ωα+γ)ϑ(ℏ+ ωγ)S̃α−γS̃γ = 0 (4.40)

Moreover, one can change ℏ in the L–operators to another parameter, shifting z, because the
R–matrix depends only on the difference z1 − z2. Then one can define an operator

Lη(z) = Lℏ(z + η − ℏ) =
∑
α

ϑ(z + η + ωα)e
2πi
N

α2zSη
αTα , Sη

α = S̃αe
2πi
N

α2(η−ℏ). (4.41)

Relations on Sη
α will be analogues of the relations on S̃α accurate to these exponential multi-

pliers.

4.2.2 Elliptic quantum group

Consider Felder dynamical quantum R–matrix [26, 28]:

RF
12(ℏ, u | q) =

M∑
i=1

ϕ(u, ℏ)Eii ⊗ Eii +
M∑

i,j=1
i ̸=j

ϕ(u, qij)Eij ⊗ Eji +
M∑

i,j=1
i ̸=j

ϕ(ℏ,−qij)Eii ⊗ Ejj, (4.42)

where qij = qi − qj, Eij — M × M matrices with matrix elements (Eij)kl = δikδjl, and ϕ —
elliptic functions, defined in the Appendix. Dynamical here means that the R–matrix depends
on the dynamical parameters qi.
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The R–matrix (4.42) satisfies the quantum dynamical Yang–Baxter equation

RF
12(ℏ, z12 | q)RF

13(ℏ, z13 | q − ℏ(2))RF
23(ℏ, z23 | q) =

= RF
23(ℏ, z23 | q − ℏ(1))RF

13(ℏ, z13 | q)RF
12(ℏ, z12 | q − ℏ(3)) (4.43)

In this equation the shifts along the Cartan subalgebra {Eii} in gl(M) is used:

RF
12(ℏ, z12 | q − ℏ(3)) = e−ℏ∂̂3RF

12(ℏ, z12 | q)eℏ∂̂3 , ∂̂3 =
∑
k

(Ekk)3∂qk . (4.44)

Besides the quantum dynamical Yang–Baxter equation, the R–matrix satisfies also zero–
weight conditions:

[(Eii)1 + (Eii)2, R
F
12(ℏ, z12 | q)] = 0, (4.45)

[∂̂1 + ∂̂2, R
F
12(ℏ, z12 | q)] = 0. (4.46)

Let hi, i = 1, 2, . . .M be commuting elements. An operator L(z | q) is called dynamical
L–operator with Cartan elements hi for the Felder R–matrix if it satisfies the dynamical RLL–
relation

RF
12(ℏ, z12 | q)L1(z1 | q − ℏ(2))L2(z2 | q) = L2(z2 | q − ℏ(1))L1(z1 | q)RF

12(ℏ, z12 | q − ℏ · h),
(4.47)

RF
12(ℏ, z12 | q − ℏ · h) = e

−ℏ
∑

k hk
∂

∂qk RF
12(ℏ, z12 | q)e

ℏ
∑

k hk
∂

∂qk .

The dynamical Yang–Baxter equation implies the fact that the Felder dynamical R–matrix
is the dynamical L–operator with Cartan elements hi = (Eii)3:

L1(z | q) = RF
13(ℏ, z | q) . (4.48)

The RLL–relation (4.47) can be rewritten in the equivalent form if one acts on both sides from

the left by the operator eℏ∂̂1eℏ∂̂2 . Using zero–weight property [∂̂1 + ∂̂2, R
ℏ
12(u | q)] = 0, one

obtains [eℏ∂̂1eℏ∂̂2 , Rℏ
12(u | q)] = 0. Then one can get

eℏ∂̂1eℏ∂̂2RF
12(ℏ, z12 | q)L1(z1 | q − ℏ(2))L2(z2 | q) = eℏ∂̂1eℏ∂̂2L2(z2 | q − ℏ(1))L1(z1 | q)RF

12(ℏ, z12 | q − ℏ · h),

eℏ∂̂1eℏ∂̂2RF
12(ℏ, z12 | q)e−ℏ∂̂2L1(z1 | q)eℏ∂̂2L2(z2 | q) = eℏ∂̂2L2(z2 | q)eℏ∂̂1L1(z1 | q)RF

12(ℏ, z12 | q − ℏ · h),

RF
12(ℏ, z12 | q)eℏ∂̂1L1(z1 | q)eℏ∂̂2L2(z2 | q) = eℏ∂̂2L2(z2 | q)eℏ∂̂1L1(z1 | q)RF

12(ℏ, z12 | q − ℏ · h).

Define operators L̃(u | q) = eℏ∂̂L(u | q). Then (4.47) can be rewritten in the form

RF
12(ℏ, z12 | q)L̃1(z1 | q)L̃2(z2 | q) = L̃2(z2 | q)L̃1(z1 | q)RF

12(ℏ, z12 | q − ℏ · h). (4.49)
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In the work [83] V. Tarasov and A. Varchenko constructed the dynamical L–operators and
the quadratic algebra connected with them, which is also known as the small elliptic quantum
group. Consider qk and qk − ℏhk in R–matrices in (4.49) as independent coordinates and label

these two new sets of variables q
{2}
k = qk, q

{1}
k = qk − ℏhk. Then the RLL–relation is presented

as

RF
12(ℏ, z12 | q{2})L̃1(z1 | q{1}, q{2})L̃2(z2 | q{1}, q{2}) = L̃2(z2 | q{1}, q{2})L̃1(z1 | q{1}, q{2})RF

12(ℏ, z12 | q{1}).
(4.50)

Choose an ansatz for L–operator in the form

L̃(z | q) =
∑
i,j

ϑ(z + q
{2}
i − q

{1}
j )tjiEij, (4.51)

where tij are operators do not commute with coordinates q
{I}
k , but shift them by ℏ by the

following rule

tijf(q
{1}
1 , . . . , q

{1}
i , . . . , q

{1}
M , q

{2}
1 , . . . , q

{2}
j , . . . , q

{2}
M ) =

= f(q
{1}
1 , . . . , q

{1}
i + ℏ, . . . , q{1}M , q

{2}
1 , . . . , q

{2}
j + ℏ, . . . , q{2}M )tij, (4.52)

where f is an arbitrary function of variables q
{I}
k . The dynamical RLL–relation (4.50) for this

L–operator is equivalent to the following quadratic relations for the operators tij:

tijtik = tiktij, (4.53)

tiktjk =
ϑ(q

{1}
ij − ℏ)

ϑ(q
{1}
ij − ℏ)

tjktik, i ̸= j, (4.54)

ϑ(q
{2}
jl − ℏ)

ϑ(q
{2}
jl )

tijtkl −
ϑ(q

{1}
ik − ℏ)

ϑ(q
{1}
ik )

tkltij = −
ϑ(ℏ)ϑ(q{1}ik + q

{2}
jl )

ϑ(q
{1}
ik )ϑ(q

{2}
jl )

tiltkj, i ̸= k, j ̸= l. (4.55)

These quadratic relations define (small) elliptic Felder–Tarasov–Varchenko quantum group.

4.3 A quadratic algebra for the SL(NM) R–matrix

Consider a quantum R–matrix, corresponding to the SL(NM)–bundle with nontrivial charac-
teristic class over the elliptic curve. This R–matrix was constructed in the papers [44, 92, 74].
It generalizes simultaneously the nondynamical Baxter–Belavin quantum R–matrix and the
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dynamical Felder quantum R–matrix and can be presented in the form

Rℏ
ab12(z12 | q) =

∑
i

(Eii)a(Eii)bR
BB
12 (ℏ, z12)+

+
∑
i,j
i ̸=j

(Eij)a(Eji)bR
BB
12 (qij, z12) +

∑
i,j
i ̸=j

(Eii)a(Ejj)b ⊗ 1N ⊗ 1Nϕ(ℏ,−qij). (4.56)

Here spaces labelled by small latin letters are M × M matrix spaces in the standard basis,
and spaces labelled by numbers — N × N matrix spaces in the basis (A.15). This quantum
R–matrix satisfies the dynamical quantum Yang–Baxter equation with shifts only along the
Cartan subalgebra corresponding M ×M matrices (i.e. of the form hi ⊗ 1N):

Rℏ
ab12(z12 | q)Rℏ

ac13(z13 | q − ℏ(b))Rℏ
bc23(z23 | q) =

= Rℏ
bc23(z23 | q − ℏ(a))Rℏ

ac13(z13 | q)Rℏ
ab12(z12 | q − ℏ(c)). (4.57)

An operator La1(z | q{1}, q{2}) is called an L–operator for this quantum R–matrix, if it satisfies
the following RLL–relation:

Rℏ
ab12(z12 | q{2})La1(z1 | q{1}, q{2})Lb2(z2 | q{1}, q{2}) =

= Lb2(z2 | q{1}, q{2})La1(z1 | q{1}, q{2})Rℏ
ab12(z12 | q{1}). (4.58)

The main result of this chapter is the description of a quadratic algebra connected with this
RLL–relation. Choose an L–operator in the form

La1(z1 | q{1}, q{2}) =
∑
ij

(Eij)aL
ij
1 (z1 | q{1}, q{2}), (4.59)

Lij(z | q) =
∑
α

ϑ(z + q
{2}
i − q

{1}
j + ωα)t

α
ji. (4.60)

The operators tαij shift coordinates qk by the rule

tαijf(q
{1}
1 , . . . , q

{1}
i , . . . , q

{1}
M , q

{2}
1 , . . . , q

{2}
j , . . . , q

{2}
M ) =

= f(q
{1}
1 , . . . , q

{1}
i + ℏ, . . . , q{1}M , q

{2}
1 , . . . , q

{2}
j + ℏ, . . . , q{2}M )tαij. (4.61)

Then the RLL–relation is equivalent to the following set of quadratic relations for the generators
tαij:

1. For the same pairs of indices i, j the elements {tαji | α ∈ Z2
N} satisfy the Sklyanin algebra

relations with parameter η = q
{2}
i − q

{1}
j .
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2. For the same second index and distinct first indices i, j, k : j ̸= k∑
γ

κγακβγϕ(ℏ+ ωγ, q
{1}
jk + ωβ+γ−α)t

α−γ
ji tβ+γ

ki = ϕ(ℏ,−q
{1}
jk )tβkit

α
ji. (4.62)

3. For the same first index and distinct second indices i, j, k : j ̸= k∑
γ

κγακβγϕ(ℏ+ ωα−β−γ,−q
{2}
jk − ωγ)t

α−γ
ik tβ+γ

ij = ϕ(ℏ,−q
{2}
jk )tαijt

β
ik. (4.63)

4. For distinct first and second indices i, j, k, l : i ̸= k, j ̸= l∑
γ

κγακβγϕ(q
{2}
ik + ωγ, q

{1}
jl + ωβ+γ−α)t

α−γ
jk tβ+γ

li = ϕ(ℏ,−q
{1}
jl )tβlkt

α
ji − ϕ(ℏ,−q

{2}
ik )tαjit

β
lk.

(4.64)

One can notice, that in the case M = 1 there are only {tα11 | α ∈ Z2
N} generators, satisfying

the Sklyanin algebra relations, and in the case N = 1 there are only elliptic quantum groups
generators {t0ij | i, j ∈ 1, 2, . . . ,M}. Therefore, the constructed quadratic algebra generalizes
these two quantum algebras simultaneously.

The proof of this equivalence is straightforward, it can be checked via elliptic functions
identities given in the Appendix. An example of this check in the particular tensor component
of the RLL–relation is presented below.

4.3.1 An example calculation to check the RLL–relation

Consider for example the (Eij)a(Eik)b–component of the RLL–relation, for j ̸= k:

RBB
12 (ℏ, z12)L

ij
1 (z1)L

ik
2 (z2) = Lik

2 (z2)L
ij
1 (z1)ϕ(ℏ,−q

{1}
jk ) + Lij

2 (z2)L
ik
1 (z1)R

BB
12 (q

{1}
kj , z12). (4.65)

This relation is in N ×N–matrices. Expanding it in the basis Tα, one gets the following in the
components (Tα)1(Tβ)2 (after cancelling all exponential multipliers):

ϑ(z2 + q
{2}
i − q

{1}
k + ωβ)t

β
ki · ϑ(z1 + q

{2}
i − q

{1}
j + ωα)t

α
ji · ϕ(ℏ,−q

{1}
jk ) =

=
∑
γ

κγακβγ

(
ϕ(z12, ℏ+ ωγ)ϑ(z1 + q

{2}
i − q

{1}
j + ωα−γ)t

α−γ
ji ϑ(z2 + q

{2}
i − q

{1}
k + ωβ+γ)t

β+γ
ki −

−ϑ(z2 + q
{2}
i − q

{1}
j + ωα−γ)t

α−γ
ji ϑ(z1 + q

{2}
i − q

{1}
k + ωβ+γ)t

β+γ
ki ϕ(z12, q

{1}
kj + ωα−β−γ)

)
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Moving all tab to the right, one obtains

ϑ(z2 + q
{2}
i − q

{1}
k + ωβ)ϑ(z1 + q

{2}
i − q

{1}
j + ℏ+ ωα)ϕ(ℏ,−q

{1}
jk )tβkit

α
ji =

=
∑
γ

κγακβγ

(
ϕ(z12, ℏ+ ωγ)ϑ(z1 + q

{2}
i − q

{1}
j + ωα−γ)ϑ(z2 + q

{2}
i − q

{1}
k + ℏ+ ωβ+γ)−

−ϑ(z2 + q
{2}
i − q

{1}
j + ωα−γ)ϑ(z1 + q

{2}
i − q

{1}
k + ℏ+ ωβ+γ)ϕ(z12, q

{1}
kj + ωα−β−γ)

)
tα−γ
ji tβ+γ

ki

Divide two parts by ϑ(z2+q
{2}
i −q

{1}
k +ωβ)ϑ(z1+q

{2}
i −q

{1}
j +ℏ+ωα) and consider an expression

in the brackets in the right hand side. One can simplify it:

ϕ(z12, ℏ+ ωγ)
ϑ(z1 + q

{2}
i − q

{1}
j + ωα−γ)ϑ(z2 + q

{2}
i − q

{1}
k + ℏ+ ωβ+γ)

ϑ(z1 + q
{2}
i − q

{1}
j + ℏ+ ωα)ϑ(z2 + q

{2}
i − q

{1}
k + ωβ)

−

−ϕ(z12, q
{1}
kj + ωα−β−γ)

ϑ(z1 + q
{2}
i − q

{1}
k + ℏ+ ωβ+γ)ϑ(z2 + q

{2}
i − q

{1}
j + ωα−γ)

ϑ(z1 + q
{2}
i − q

{1}
j + ℏ+ ωα)ϑ(z2 + q

{2}
i − q

{1}
k + ωβ)

=

= ϕ(z12, ℏ+ ωγ)
ϕ(z2 + q

{2}
i − q

{1}
k + ωβ, ℏ+ ωγ)

ϕ(z1 + q
{2}
i − q

{1}
j + ωα−γ , ℏ+ ωγ)

−

−ϕ(z12, q
{1}
kj + ωα−β−γ)

ϕ(z1 + q
{2}
i − q

{1}
j + ℏ+ ωα, q

{1}
jk + ωβ+γ−α)

ϕ(z2 + q
{2}
i − q

{1}
j + ωα−γ , q

{1}
jk + ωβ+γ−α)

=

=
ϕ(z12, ℏ+ ωγ)ϕ(z2 + q

{2}
i − q

{1}
k + ωβ, ℏ+ ωγ)ϕ(z2 + q

{2}
i − q

{1}
j + ωα−γ , q

{1}
jk + ωβ+γ−α)

ϕ(z1 + q
{2}
i − q

{1}
j + ωα−γ , ℏ+ ωγ)ϕ(z2 + q

{2}
i − q

{1}
j + ωα−γ , q

{1}
jk + ωβ+γ−α)

−

−
ϕ(z12, q

{1}
kj + ωα−β−γ)ϕ(z1 + q

{2}
i − q

{1}
j + ℏ+ ωα, q

{1}
jk + ωβ+γ−α)ϕ(z1 + q

{2}
i − q

{1}
j + ωα−γ , ℏ+ ωγ)

ϕ(z1 + q
{2}
i − q

{1}
j + ωα−γ , ℏ+ ωγ)ϕ(z2 + q

{2}
i − q

{1}
j + ωα−γ , q

{1}
jk + ωβ+γ−α)

Applying Fay identity to ϕ, and using the fact that ϕ(x,−x) = 0, one can derive:

ϕ(z2 + q
{2}
i − q

{1}
k + ωβ, ℏ+ ωγ)ϕ(z2 + q

{2}
i − q

{1}
j + ωα−γ, q

{1}
jk + ωβ+γ−α) =

= ϕ(q
{1}
jk + ωβ+γ−α, ℏ+ ωγ)ϕ(z2 + q

{2}
i − q

{1}
j + ωα−γ, q

{1}
jk + ℏ+ ωβ+2γ−α)

ϕ(z1 + q
{2}
i − q

{1}
j + ℏ+ ωα, q

{1}
jk + ωβ+γ−α)ϕ(z1 + q

{2}
i − q

{1}
j + ωα−γ, ℏ+ ωγ) =

= ϕ(ℏ+ ωγ, q
{1}
jk + ωβ+γ−α)ϕ(z1 + q

{2}
i − q

{1}
j + ωα−γ, q

{1}
jk + ℏ+ ωβ+2γ−α)
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One can take out the common factor in the numerator ϕ(ℏ+ ωγ, q
{1}
jk + ωβ+γ−α), the rest parts

in the numerator are equal to the denominator (via Fay identity):

ϕ(z12, ℏ+ ωγ)ϕ(z2 + q
{2}
i − q

{1}
j + ωα−γ, q

{1}
jk + ℏ+ ωβ+2γ−α)−

−ϕ(z12, q
{1}
kj + ωα−β−γ)ϕ(z1 + q

{2}
i − q

{1}
j + ωα−γ, q

{1}
jk + ℏ+ ωβ+2γ−α) =

= ϕ(z1 + q
{2}
i − q

{1}
j + ωα−γ, ℏ+ ωγ)ϕ(z2 + q

{2}
i − q

{1}
j + ωα−γ, q

{1}
jk + ωβ+γ−α)

Using this simplification, one obtains the required relation without spectral parameters:∑
γ

κγακβγϕ(ℏ+ ωγ, q
{1}
jk + ωβ+γ−α)t

α−γ
ji tβ+γ

ki = ϕ(ℏ,−q
{1}
jk )tβkit

α
ji.

All other relations can be checked in the same way considering the other components of the
RLL–relation.

4.3.2 Discussion

In the chapter the quadratic algebra generalized the elliptic quantum group and Sklyanin
algebra is concructed. On the onehand, it is a classification result, which complements and
generalizes the known structures of the quadratic algebras in the bundles over the elliptic
curve. On the other hand, the obtained results can be applied to the description of the concrete
mechanical systems. It was shown in [73, 31, 30], that the considered SL(NM) quantum R–
matrix is connected with quantum long–range spin chains and R–matrix–valued Lax pairs.
Moreover, this particular R–matrix in the nonrelativistic classical limit describes the system of
interacting tops. The relativistic analogue of this system was also obtained recently using the
natural ansatz for the Lax pair [89, 75]. So, the result of this work can be also considered as
the description of the operator algebra of the quantum relativistic interacting tops.
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Conclusion

In this thesis we studied the applications of the quantum R-matrix identities,
first of all, the associative Yang–Baxter equation, to the theory of the integrable
systems, classical and quantum.

• The systems of generalized interacting integrable tops have been con-
structed for any quantum R-matrix, which solves the associative Yang–
Baxter equation together with skew-symmetry and unitarity conditions.
These systems can be considered as the extension of both the spin Calogero–
Moser systems of particles and the Euler–Arnold integrable tops.

• The relativistic analogue of the system of generalized interacting inte-
grable tops has been constructed. This system generalizes both the spin
Ruijsenaars–Schneider model and the relativistic version of the Euler–
Arnold top.

• The classical r-matrix structure for the generalized interacting integrable
tops has been quantized, quantum R-matrix and quantum RLL-algebra
have been obtained. In the elliptic case, the quadratic algebra correspond-
ing to this RLL-algebra is the simultaneous generalization of the Sklyanin
algebra and the small elliptic quantum group.
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Appendix: Elliptic functions and their
properties

The following set of functions is used in this work [84, 58]. The first one is the Kronecker
function:

ϕ(η, z) =


1
η
+ 1

z
, rational case,

coth(η) + coth(z), trigonometric case,
ϑ′(0)ϑ(z+η)
ϑ(η)ϑ(z)

, elliptic case.

(A.1)

Its elliptic version is given in terms of the odd theta-function

ϑ(z) =
∑
k∈Z

exp

(
πiτ(k +

1

2
)2 + 2πi(z +

1

2
)(k +

1

2
)

)
(A.2)

on elliptic curve with moduli τ : (Im(τ) > 0). The next are the first Eisenstein (odd) function
and the Weierstrass (even) ℘-function:

E1(z) =


1
z
,

coth(z),
ϑ′(z)
ϑ(z)

,

℘(z) =


1
z2
,
1

sinh2(z)
,

−∂zE1(z) +
1
3
ϑ′′′(0)
ϑ′(0)

.

(A.3)

We also need the derivatives
E2(z) = −∂zE1(z) (A.4)

and
f(z, q) = ∂qϕ(z, q) = ϕ(z, q)(E1(z + q)− E1(q)). (A.5)

The one (A.4) is the second Eisenstein function.
The main relation is the Fay trisecant identity:

ϕ(z, q)ϕ(w, u) = ϕ(z − w, q)ϕ(w, q + u) + ϕ(w − z, u)ϕ(z, q + u). (A.6)
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The following degenerations of (A.6) are necessary for the Lax equations and r-matrix struc-
tures:

ϕ(z, x)f(z, y)− ϕ(z, y)f(z, x) = ϕ(z, x+ y)(℘(x)− ℘(y)), (A.7)

ϕ(η, z)ϕ(η,−z) = ℘(η)− ℘(z) = E2(η)− E2(z). (A.8)

Also

ϕ(z, q)ϕ(w, q) = ϕ(z + w, q)(E1(z) + E1(w) + E1(q)− E1(z + w + q)) == (A.9)

= ϕ(z + w, q)(E1(z) + E1(w))− f(z + w, q).

The local behavior of the Kronecker function and the first Eisenstein function near its simple
pole at z = 0 is as follows:

ϕ(z, u) =
1

z
+ E1(u) +

z

2
(E2

1(u)− ℘(u)) +O(z2), (A.10)

E1(z) =
1

z
+

z

3

ϑ′′′(0)

ϑ′(0)
+O(z3). (A.11)

From (A.10) and (A.5) it follows that

f(0, u) = −E2(u). (A.12)

In definitions of R–matrices the shifted Kronecker elliptic functions are used

φα(u, x+ ωα) = ϕ(u, x+ ωα)e
2πi
N

α2u, ωα =
α1 + α2τ

N
, (A.13)

ϕ(u, x) =
ϑ′(0)ϑ(u+ x)

ϑ(u)ϑ(x)
, (A.14)

In the definition of the Baxter–Belavin quantum R–matrix the basis matrices Tα are used.
They can be defined as:

Tα = T(α1,α2) = exp

(
πiα1α2

N

)
Qα1Λα2 , (A.15)

Qjk = δjk exp

(
2πik

N

)
, Λjk =

{
1, if j + 1 = k mod N,

0, else.
(A.16)

Since

exp

(
2πi

N
α1α2

)
Qα1Λα2 = Λα2Qα1 (A.17)
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one has the multiplication rule

TαTβ = κα,βTα+β, κα,β = exp

(
πi

N
(β1α2 − β2α1)

)
, (A.18)

where α + β = (α1 + β1, α2 + β2). The non-degenerate pairing is given by the matrix trace:

Tr(TαTβ) = Nδα+β, T0 = 1N . (A.19)
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