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 Abstract 

Currently, a geologist should manually fill an electronic table while he describes 

rocks or scratch a description on a blanket. This takes a lot of time and effort. Lots of 

researchers have developed their approach to autonomous rock classification. 

Unfortunately, all of them are based on a core column investigation. Most used a 

traditional approach to image classification based on a statistical analysis of images and 

machine learning techniques. In this work, modern deep learning techniques were 

applied to the problem of classification and segmentation of core images. An important 

note here is that previous works cover only core column examination, while this work 

presents an approach to extract core columns from a core box. Thus, a geologist 

shouldn’t spend time on a manual description of the core or extraction of separate 

images out of a core box. This can be done by applying the developed algorithms 

described in this work. The algorithms were also included in a system which became 

worldwide available software. 

Keywords: automated rock description, core column extraction, sedimentology, 

mining, geology, deep learning, machine learning. 

  



4 

  

 

 Publications 

Journal papers 

Baraboshkin, E.E., Baraboshkin, E.Y., Ismailova, L.S., Orlov, D.M., 

Zhukovskaya, E.A., Kalmykov, G.A., Khotylev, O.V., Koroteev, D.A., 2020. Deep 

convolutions for in-depth automated rock typing. Comput. Geosci. 135. 

https://doi.org/10.1016/j.cageo.2019.104330 

Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A., 2022. Core box 

image recognition and its improvement with a new augmentation technique. Comput. 

Geosci. 162. https://doi.org/10.1016/j.cageo.2022.105099 

Patents 

Baraboshkin, E.E., Koroteev, D.A., Orlov, D.M., Ismailova, L.S., 2019. 

RU2706515C1 - System and method for automated description of rocks. 

Conference papers 

Baraboshkin, E., Ismailova, L., Orlov, D., Koroteev, D., 2019. Machine Vision 

Methods in the Application for Core Image Segmentation, in: Progress’19. European 

Association of Geoscientists & Engineers, pp. 1–5. https://doi.org/10.3997/2214-

4609.201953061 

Baraboshkin, E., Orlov, D., Koroteev, D., 2020. Tools for Automated Rock 

Description, in: First EAGE Digitalization Conference and Exhibition. European 

Association of Geoscientists & Engineers, pp. 1–5. https://doi.org/10.3997/2214-

4609.202032061 

Baraboshkin, E., Panchenko, E., Demidov, A., Sharipova, Y., Gatina, N., 

Koroteev, D., 2022. Automated core description system application for 

sedimentological analysis, in: 21st International Sedimentological Congress. 

Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Alekseev, V.V., Tkachev, A.Y., 

Nyazhemetdinov, R.R., Korneeva, K.N., Kostoev, R.S., Koroteev, D.A., 2021a. An 

intellectual system for fast and reliable automated core description development, in: 

EAGE Annual. 82nd EAGE Conference and Exhibition. Amsterdam. 

ryan
Highlight
Since there are many authors it would be good to outline your contributions to these publications. You could use this: https://www.elsevier.com/authors/policies-and-guidelines/credit-author-statement




5 

  

 

Baraboshkin, E.E., Demidov, A.E., Panchenko, E.A., Gatina, N.N., Hahina, A.N., 

Mamaev, D.A., Alekseev, V.V., Nyazhemetdinov, R.R., Tkachev, A.Y., Orlov, D.M., 

Koroteev, D.A., 2021b. Automated Full-Bore Core Description Application for 

Production Purposes. From an Idea to IT-Product, in: Data Science in Oil and Gas 2021. 

European Association of Geoscientists & Engineers, pp. 1–6. 

https://doi.org/10.3997/2214-4609.202156016 

Baraboshkin, E.E., Ivchenko, A. V, Ismailova, L.S., Orlov, D.M., Baraboshkin, 

E.Y., Koroteev, D.A., 2018. Core photos lithological interpretation using neural 

networks, in: 20th International Sedimentological Congress. 

Baraboshkin, E.E., Panchenko, E.A., Demidov, A.E., Gatina, N.N., Hahina, A.N., 

Mamaev, D.A., Alekseev, V.V., Nyazhemetdinov, R.R., Tkachev, A.Y., Orlov, D.M., 

Koroteev, D.A., 2022b. Automated full-bore core description system application in 

production. Use case example, in: Ways of Realization of Oil and Gas Potential of West 

Siberia. Khanty-Mansiysk, pp. 293–299. 

Ivchenko, A. V, Baraboshkin, E.E., Ismailova, L.S., Orlov, D.M., Koroteev, 

D.A., Baraboshkin, E.Y., 2018. Core Photo Lithological Interpretation Based on 

Computer Analyses, in: IEEE Northwest Russia Conference on Mathematical Methods 

in Engineering and Technology. pp. 425–428. 

  



6 

  

 

 Acknowledgements 

This work wouldn’t be possible without support from colleagues interested in the 

research and helping develop the system's concepts. I want to thank all the contributors 

who criticized and commented on the research: MiMGO, IGT, and Evgeny Yu. 

Baraboshkin, Tatiana Kulashova, Alexandr Ivchenko, Anna Gutorova, Natalia 

Zhuravleva, Elena Zhukovskaya, Georgy Kalmykov, Oleg Khotylev, Denis Orlov and 

Leyla Ismailova. 

I would also thank members of the Individual committee, Evgeny Chekhonin, 

Victor Lempitsky and Dmitry Koroteev, for their valuable comments and support 

during the research. 

I want to thank Digital Petroleum and FIT teams for developing the system based 

on the research. 

A considerable improvement in algorithms performance in the production 

environment wouldn’t be possible without Andrey Demidov's help and advice. 

Skoltech operational support in academic mobility and education approach 

allowed me to perform this research and meet many interesting people, including 

friends and colleagues, who also gave me a lot of insights during discussions. 

  



7 

  

 

 Table of Contents 

Abstract ................................................................................................................. 3 

Publications .......................................................................................................... 4 

Acknowledgements .............................................................................................. 6 

Table of Contents ................................................................................................. 7 

List of Symbols, Abbreviations ............................................................................ 9 

List of Figures ..................................................................................................... 10 

List of Tables ...................................................................................................... 16 

Chapter 1. Introduction ................................................................................ 17 

1.1. Problem overview ................................................................................ 17 

1.2. Literature review ................................................................................. 20 

1.3. Terminology review ............................................................................ 37 

Chapter 2. Methods. ..................................................................................... 43 

2.1. Feature extraction ................................................................................ 43 

2.2. Machine learning ................................................................................. 46 

2.3. Deep Learning ..................................................................................... 51 

2.4. Evaluation ............................................................................................ 53 

2.5. Programming languages frameworks .................................................. 55 

Chapter 3. Dataset preparation ..................................................................... 57 

3.1. Classification ....................................................................................... 59 

3.2. Segmentation ....................................................................................... 60 

3.3. Dataset automated gathering ............................................................... 61 

3.4. Data balancing techniques ................................................................... 62 

Chapter 4. Classification .............................................................................. 65 

4.1. Results and discussion ......................................................................... 65 



8 

  

 

Chapter 5. Segmentation .............................................................................. 93 

5.1. Results and discussion ......................................................................... 93 

5.2. Summary ............................................................................................ 103 

Chapter 6. System construction ................................................................. 104 

6.1. Results and discussion ....................................................................... 104 

Chapter 7. Conclusions .............................................................................. 109 

Chapter 8. Recommendations for future research ..................................... 111 

Bibliography ..................................................................................................... 112 

 

  



9 

  

 

 List of Symbols, Abbreviations 

PCA - Principal Component Analysis. 

HOG - Histogram of Oriented Gradients. 

PNNF – features extracted with pretrained network 

CNN – convolutional neural network. 

SVM - Support Vector Machines. 

RF - Random Forest. 

AC – agglomerative clustering. 

FH - Felzenszwalb-Huttenlocher. 

QS - Quick Shift. 

SLIC - Simple Linear Iterative Clustering. 

RAG - Region Adjacency Graph. 

SSh - Selective Search. 

GTD-1 and GTD-2 – geotechnical description datasets described in sec. 4.1.1.  

TLA - template-like augmentation technique described in sec. 3.4.  

  



10 

  

 

 List of Figures 

Figure 1. A principal component analysis image compression example. A – the 

original image, B – PCA compressed image with a 0.95 information retrieval. The 

principal component may be extracted from an image used for the classification 

algorithm. The image demonstrates how the principal components work. This algorithm 

aimed to store high-frequency data only, so details like the rule (on the top of an image) 

and small structures were not preserved. ..................................................................... 44 

Figure 2. A Histogram of oriented gradients application example. A – the original 

image, B – visualization of gradients extracted by HOG, C – enlarged area with 

gradients drawn with white arrows. HOG calculates the gradient between the two 

nearest regions was calculated. In comparison to PCA (figure 1), various structures 

were preserved except for color. .................................................................................. 45 

Figure 3. An example of convolution happening in each convolution layer inside 

CNN. The information from an image is transformed from a human-readable format 

(RGB channels) into a machine-readable format (pixels with condensed details). After 

the first layer – the RGB channels are not used, and each next layer further 

“compresses” the information. ..................................................................................... 53 

Figure 4. Examples of metrics calculation for segmentation task. The ground truth 

is marked as green, the intersection with the mask is light green, and the mask is light 

blue. The calculated metrics for different types of intersections are below the squares.

 ...................................................................................................................................... 54 

Figure 5. Datasets examples. A - RosGeolfond (Russian federal geological fund), 

B - NOPIMS (National Offshore Petroleum Information Management System, C - 

IODP (Integrated Ocean Drilling Program). ................................................................ 57 

Figure 6. A preprocessor for .cdr file was created to extract images as a file (.jpg) 

from the vector graphic files. A – a window to select the source folder, which contains 

folder and subfolders with .cdr files; B – a window to select files from those which were 

found to convert into image (.jpg). .............................................................................. 58 

Figure 7. Developed a tool for description depth matching to a core image. A – 

current 10cm part of a core with depth referencing information; B – a window to add 

or subtract from the image depth; C – current image for depth matching. .................. 59 



11 

  

 

Figure 8. A tool developed within this work for the final expert data quality check. 

A – window with the current image; B – window with an expert-defined class example; 

C – window with classes available; D – list of files available for check. .................... 60 

Figure 9. PixelAnnotationTool (PAT) (Bréhéret, 2017) usage example for the 

creation of pixel-accurate rock type and structure (cracks) labels. A – available labels, 

B – available images to segment, C – watershed button, D – current image with mask 

hovered over it. ............................................................................................................ 61 

Figure 10. Different types of image augmentation. Various augmentations were 

applied to prevent overfitting and improve the generalization ability of the developed 

algorithms .................................................................................................................... 63 

Figure 11. Comparison of the initial image (A) and augmented images (B). Some 

cores in the box changed (B); parts are cut out (B). .................................................... 64 

Figure 12. Manually labelled dataset for rock typing: A - argillite, B - limestone, 

C - granite, D - massive sandstone, E - laminated sandstone, F – siltstone. ................ 66 

Figure 13.Various lithotypes for sedimentological description: A – laminated 

shaly sand (Hs), B – laminated shaly sand with bioturbation (Hsb) , C – laminated sandy 

shale (Ht), D – laminated sandy shale with bioturbation (Htb), E – deformed sandy shale 

(Htd), F – laminated mudrock (Ml), G – massive mudrock (Mm), H – bioturbated 

sandstone (Sb), I – deformed sandstone (Sd), J – intraclast-bearing sandstone(Si), K – 

laminated sandstone (Sl), L – massive sandstone (Sm), M –rippled sandstone (Sr), N – 

cross-bedded sandstone (Sx), O – bioturbated siltstone (Tb), P – deformed siltstone 

(Td), Q – laminated siltstone (Tl), R – massive siltstone (Tm), S – rippled siltstone (Tr), 

T – coal (C). ................................................................................................................. 67 

Figure 14. Data check results. 75% unclassified data was classified to different 

classes. Caption for the abbreviations can be found on figure 13 and figure 15. ........ 68 

Figure 15. Final data quantity for each class. The distribution is not equal. Hs - 

laminated shaly sand (333), Hsb – laminated shaly sand with bioturbation (171); Ht – 

laminated sandy shale (711); Htb – laminated sandy shale with bioturbation (132); Htd 

– deformed sandy shale (73); Ml – laminated mudrock (188); Mm – massive mudrock 

(185); Sb – bioturbated sandstone (108); Sd – deformed sandstone (175); Si – intraclast-

bearing sandstone (84); Sl – laminated sandstone (227); Sm – massive sandstone 



12 

  

 

(1909); Sr –rippled sandstone (156); Sx – cross-bedded sandstone (76); Tb – 

bioturbated siltstone (98); Td – deformed siltstone (246); Tl – laminated siltstone (524); 

Tm – massive siltstone (602); Tr – rippled siltstone (4); C – coal (2). ........................ 68 

Figure 16. Various fault rock types for GTD-2 dataset: A – cataclasite (Kt), B – 

mylonite (Ml), C – quartz (Q), D – non-tectonized, E - fracture zones (Z). ................ 69 

Figure 17. Data check results in GTD-2 dataset. A large amount of data was 

relabeled for mylonite as it was previously described in a scale of 1:100 cm, while the 

dataset has scale of 1:5 cm. Caption for the abbreviations can be found in Figure 16 and 

Figure 18. ..................................................................................................................... 70 

Figure 18. Final data quantity for each class in the GTD-2 dataset. The 

distribution is not equal: Kt - cataclasite (79), Z - fracture zones (764), Ml – mylonite 

(80), Nt – non-tectonized (266), Q – quartz (65). ........................................................ 70 

Figure 19. A feature representation is based on the features extracted from 

different images. Feature extraction methods: Principal Component Analysis (PCA), 

Histogram of Oriented Gradients (HOG); Pretrained networks (PNNF). Each color 

represents a different class from the rock typing dataset. ............................................ 71 

Figure 20. A set of classifications based on different features classified with 

Support Vector Machines (SVM) and Random Forest (RF). 0 – argillite, 1 – granite, 2 

– limestone, 3 – laminated sandstone, 4 – massive sandstone, 5 – siltstone. Feature 

extraction methods: Principal Component Analysis (PCA), Histogram of Oriented 

Gradients (HOG); Pretrained networks (PNNF) .......................................................... 72 

Figure 21. Examples of highly hydrocarbon-saturated massive sandstones. ..... 73 

Figure 22. A comparison of different feature-based classification algorithms. 

Several machine learning algorithms (Support Vector Machines (SVM) and Random 

Forest (RF)) compared to convolutional Neural Network (NN) classification. The 

classification was performed on features extracted in different ways: Principal 

Component Analysis (PCA), Histogram of Oriented Gradients (HOG), Pretrained 

networks (PNNF) and Neural Network (NN) as a reference value. ............................ 74 

Figure 23. Results of unsupervised classification produced by various algorithms 

and feature extraction methods. Applied algorithms: K-mean – k-mean algorithm, AC 

– agglomerative clustering. Feature extraction methods: HOG – histogram of oriented 



13 

  

 

gradients, PNNF – pre-trained neural network. No meaningful results were gained 

within 5 classes chosen according to the class labels.. ................................................ 75 

Figure 24. Example of classification based on AC clustering with Neural Network 

features from one class. All of the images belong to the same class produced by an 

algorithm. As can be seen, various images and textures are placed in the same class. 76 

Figure 25. A comparison of different feature-based clusterization algorithms on a 

hard-to-classify for CNN part data. Clusterization methods (Mean Shift and K-mean) 

compared to convolutional Neural Network (NN) classification. The clusterization was 

performed on features extracted with Principal Component Analysis (PCA). The orange 

box on the mean shift and k-mean algorithm results highlight misclassification regions.

 ...................................................................................................................................... 77 

Figure 26. Sketch-ups of different architectures: 0 – convolution layer, 1 – 

activation layer, 2 – inception module, 3 – average pooling, 4 – batch normalization, 5 

– max pooling, 6 – zero padding, 7 – residual module, 8 – drop-out layer, 9 – layer 

composition, 10 – dense layer. ..................................................................................... 78 

Figure 27. An image and extracted features from a random layer of different 

CNNs ............................................................................................................................ 79 

Figure 28. Countered image regions are important for a CNN classification 

acquired with the LIME package. ................................................................................ 80 

Figure 29. Training loss curves for AlexNet and ResNet architectures. ............ 81 

Figure 30. A confusion matrix for the ResNet-101 lithotyping algorithm. Hs – 

laminated shaly sand; Hsb – laminated shaly sand with bioturbation; Htb – laminated 

sandy shale with bioturbation; Ht – laminated sandy shale; Ml – laminated mudrock; 

Mm – massive mudrock; Sb – bioturbated sandstone; Sd – deformed sandstone; Sl – 

laminated sandstone; Sm – massive sandstone; Sr –rippled sandstone; Td – deformed 

siltstone; Tl – laminated siltstone; Tm – massive siltstone. ......................................... 82 

Figure 31. Different samples were defined as laminated shaly sand (Hs) lithotypes 

by the ResNet-101. Hs – laminated shaly sand, Ht – laminated sandy shale, Sb – 

bioturbated sandstone. These examples truly contain both classes as they have multi-

labels. ........................................................................................................................... 83 



14 

  

 

Figure 32. Comparison of algorithm (left) classification and expert’s (right) 

classification correction. .............................................................................................. 84 

Figure 33. Confusion matrix for expert classification made over CNN 

classification. The true label represents the final expert decision made after 

classification by an algorithm. Hs – laminated shaly sand; Hsb – laminated shaly sand 

with bioturbation; Htb – laminated sandy shale with bioturbation; Ht – laminated sandy 

shale; Ml – laminated mudrock; Mm – massive mudrock; Sb – bioturbated sandstone; 

Sd – deformed sandstone; Sl – laminated sandstone; Sm – massive sandstone; Sr –

rippled sandstone; Td – deformed siltstone; Tl – laminated siltstone; Tm – massive 

siltstone. ....................................................................................................................... 85 

Figure 34. Some feature extraction examples in different lithotypes classified by 

ResNet-101. Hsb – laminated shaly sand with bioturbation, Mm – massive mudrock, Sl 

– laminated sandstone, Tm – massive siltstone. The following columns persist Lith. – 

lithotype, Original – original image, extracted features – randomly selected feature 

maps, LIME – image processing with application of Local Interpretable Model-agnostic 

Explanations, green areas indicate positive input for classification, blue – negative ones

 ...................................................................................................................................... 86 

Figure 35. A confusion matrix for the ResNet-101-based GTD-1 interpretation 

algorithm inference on a validation set. ....................................................................... 87 

Figure 36. The GTD-1 model is applied to new data from different domains. 

Sedimentological-like dataset to the left, a new dataset to the right ............................ 88 

Figure 37. A confusion matrix for the ResNet-101-based GTD-2 interpretation 

algorithm inference on a validation dataset. ................................................................ 89 

Figure 38. An example of classification result with CNN trained on GTD-2 

dataset. The percentage shows probabilities. The image contains both quartz (the core 

is white) and a fracture zone (there are several cracks on the image), so the image has 

multiple labels. ............................................................................................................. 90 

Figure 39. Some feature extraction examples in different lithotypes. Lith. – 

lithotype, Original – original image, Extracted features – randomly selected feature 

maps, LIME – image processing with an application of Local Interpretable Model-



15 

  

 

agnostic Explanations, green areas indicate positive input for classification, blue – 

negative ones ................................................................................................................ 92 

Figure 40. Examples of the labelled datasets for core column extraction. A – the 

original image; B – the produced mask. ...................................................................... 94 

Figure 41. Dataset labelling example for rock type segmentation task gained with 

PixelAnnotationTool (Bréhéret, 2017). A – original image, B – human-readable format 

(yellow – sandstone, orange – shale, C – machine-readable labelling format (barely 

visible grey – sandstone, black – shale). The size of the sample is around 10 cm. ..... 94 

Figure 42. The comparison of an algorithm trained with two data setups. The rows 

contain different types of core boxes. 1,2- taken by hand with a camera, 3 - taken with 

a camera placed on a core-imaging stand. ................................................................... 96 

Figure 43. A set of images was prepared with the TLA technique. A questionary 

has been made based on this picture. The questionary results are presented in figure 44.

 ...................................................................................................................................... 97 

Figure 44. The results of a questionary on the generated images are described in 

figure 43; the x-axis is the image number, and the y–axis is the number of votes. ..... 97 

Figure 45.  Loss and IOU curves for different data setups.  First setup – the initial 

dataset separated by training and validation dataset, second setup – the training dataset 

expanded with TLA data. ............................................................................................. 98 

Figure 46. Distribution of x and y coordinates for “good” core bounding boxes 

detection examples. ...................................................................................................... 99 

Figure 47. Distribution of x and y coordinates for “bad” core bounding boxes 

detection examples. ...................................................................................................... 99 

Figure 48. Comparison of different segmentation algorithms. AC – agglomerative 

clustering. FH - Felzenszwalb-Huttenlocher. QS - Quick Shift. SLIC - Simple Linear 

Iterative Clustering. RAG - Region Adjacency Graph. SSh - Selective Search. ....... 101 

Figure 49. An example of CNN-based segmentation. The results allow calculating 

the NTG ratio after training on a small dataset (only 400 images) ............................ 102 

Figure 50. A segmentation example with different algorithms implementation. 

AC – agglomerative clustering. FH - Felzenszwalb-Huttenlocher. QS - Quick Shift. 

SLIC - Simple Linear Iterative Clustering. RAG - Region Adjacency Graph. SSh - 



16 

  

 

Selective Search, CNN – convolutional neural networks. Various features can be found 

on an image: C – cracks, L – layers. Colors on the CNN image: yellow -sandstone, 

purple – cracks, orange – argillite. ............................................................................. 103 

Figure 51. A pure python program with algorithms implementation. .............. 105 

Figure 52. A web-app prototype. ...................................................................... 106 

Figure 53. A mix of python and additional frameworks implementation. Core box 

extraction step. ........................................................................................................... 107 

Figure 54. A mix of python and additional frameworks implementation. Core 

classification step. ...................................................................................................... 107 

 

 List of Tables 

Table 1. Metrics gained with different CNN architectures on a test set. ............ 80 

Table 2. Metrics gained with different CNN architectures on new data with expert 

validation. ..................................................................................................................... 80 

Table 3. The best metrices for the sedimentological dataset gained with ResNet-

101 architecture on a test set. ....................................................................................... 81 

Table 4. The best metrics for the sedimentological dataset gained with ResNet-

101 architecture on a new data ..................................................................................... 85 

Table 5. The best metrics for the first iteration of the GTD-1 dataset gained with 

ResNet-101 architecture on new data. ......................................................................... 87 

Table 6. The best metrics for the GTD-2 dataset gained with ResNet-101 

architecture on test data. .............................................................................................. 89 

Table 7. The metrics for the GTD-2 dataset gained with ResNet-101 architecture 

on a validation data ...................................................................................................... 90 

 

  



17 

  

 

Chapter 1. Introduction 

1.1. Problem overview 

The scientific approach requires data collection on a studied object. A geological 

object is presented by a large area formed in a certain way (physical weathering by 

winds and rivers, temperature changes, volcanic and tectonic processes, etc.) during a 

certain time (millions of years). To study this object, a geologist may apply different 

methods that constantly improve and arise. It could be well logs, seismic, thin section 

analysis, and many others. Since the beginning of geology, one of the ways to acquire 

data was to manually describe the rocks which are formed during the Earth's history. 

This data can be used to understand many things: how rocks were formed, how they 

can be used, what valuable components are stored in the area, and what an explorer 

should do to extract these components efficiently. This data and other characteristics 

are stored in a geological model. While humanity developed technologies, the depth of 

such investigation has grown. A special methodology was developed to get the rocks 

from depth, which allowed to extract samples by drilling. Such drilled sample is called 

a core. Currently, most manual rock descriptions are performed on core samples 

extracted from the Earth by drilling.  

The number of cores extracted for one drilling season could be different in 

different industries. For example, in 2020 according to the annual reports Novatek (oil 

and gas company) drilled 45.4 km for exploration with core extraction and 640 km for 

production without core extraction, while Polymetall (mining company) drilled 189 km 

with core extraction for exploration, the number of production cored intervals is 

unknown. The drilling depth and complexity cause differences in core extraction rates 

between industries. The drilling depths in the oil industry are around 2 to 3 km and up 

to 500 – 1 km in the mining industry.  

Various conclusions and decisions rely on such data, so sometimes, companies 

hire several experts to describe the same drill core. The first expert may describe general 

and technical information right after extraction, and the second may dive into details to 

build a proper geological model. A reliable and precise description is essential to 

decrease all the uncertainties during reserves calculation. 
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There are several cases when the description required for proper modelling: 

1) Geological modelling. 

2) Hydrological modelling based on upscaled results of geological modelling. 

3) Geotechnical modelling. 

Each case requires a different amount of data and various information from the 

core description. Thus, an expert should sometimes describe the core to get the results. 

As other experts may have different views on describing core, different companies 

developed a set of standards. 

The main document, which included most of the best practices for core 

description and analysis, was prepared by American Petroleum Institute (1998). The 

main workflow is the following: 

1-6) Check the core layout, numbering, quantity, and any damage. 

7) Compare the core gamma-ray log. 

8) Assess the cored sequence before description to seek out large-scale features 

(sequences, contacts, etc.). 

9) Record major features (9 features). 

10) Record centimetre-by-centimetre features. 

11) Record non-reservoir rocks. 

12) Record fracture information. 

As the preparation process before the core description can also differ, a special 

section devoted to core imaging techniques exists in the recommendations (American 

Petroleum Institute, 1998). The imaging can be performed with different tools and 

under different spectra (daylight, ultraviolet, x-rays, etc.). In this work, specific types 

of images are used – those which are taken under natural light. Unfortunately, no special 

methodology is described in (American Petroleum Institute, 1998) to get such images 

in natural light.  

In recent documents (“Appendix no 5. To the regulations on ‘Core investigation’ 

(In Russian),” 2017) several additions to imaging techniques described like color 

scheme persistence. Also, some modern types of analysis are proposed, like color 
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distribution based on images taken with a camera. Thin (2 cm) slabs stored in epoxy 

can be taken from the full-bore core column. 

One way or another – all the extracted cores are usually described manually, 

which is time-consuming and requires experts’ attention. A description's speed and 

precision may vary depending on the geologist’s experience, the purpose of the research 

and the available budget. Various methods are used to describe core (Marjoribanks, 

2010): prose logging, graphical scale logging, and analytical spreadsheet logging. All 

the methods have their benefits and pitfalls.  

Prose logging can be helpful when a quick review of freshly extracted rock is 

needed when there is no time to investigate the core precisely and the object is 

unknown. The main problem is that each expert can formulate the description 

differently. There could be a standard for the formulation. In most cases, the 

descriptions are hard to compare as the depth intervals are not fixed, and each expert 

may highlight different features. Prose logging is usually applied in reports. 

Graphical scale logging is useful when there is some time available for an expert 

to investigate the core on a predefined scale properly (e.g., 1:5, 1:10, 1:100, etc.). With 

a set scale, the expert fills a blanket with different characteristics. Each characteristic 

may be either numerical (e.g., representing angles, sample numbers, etc.) or graphical. 

Also, a separate comment section usually appears to describe some features that are not 

fit in the table. Such reports are easier to compare. The number of characteristics may 

differ in different companies and regions. As some characteristics may not be included 

in such a log, and some may be way smaller than the chosen scale – the level of detail 

from such a log may be insufficient.  

The analytical spreadsheet logging is the most time-consuming and detailed as 

they are formed in a table. To fill the table, special codes are used to indicate the core 

description parameters called geocodes. Geocodes and analytical spreadsheets are 

usually applied in the mining industry (Marjoribanks, 2010). The geocodes may 

represent different prior-defined categories like color, mineral percentage composition, 

etc. The expert may use a special catalogue with barcodes to scan each lithotype and 
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automatically record it into a system or manually choose each code in a special 

software. 

Some common characteristics should be counted, such as discontinuities (for rock 

quality designation (RQD) calculation) and total core recovery in both industries. It is 

common to describe the core within certain intervals bounded to the coring run or 

description scale. The coring run is the rod length drilled into the ground before the 

core inner tube recovering. 

A core description is applied to various tasks. The time spent on the description 

of a core could be various. Typically, a geologist who wants to describe the core 

thoroughly spends around 8 hours for 30 to 100 meters of the core, depending on the 

deposit’s complexity. 

The description process requires an expert presence in the core storage. 

Meanwhile, in most cases, the core stored in the storage has a digital representation 

with an image. The expert can visually inspect the core without a core storage visit. As 

the expert is valuable, it is not in the company's interest to spend his time on manual 

core description. Thus, different methods were developed to automate this process and 

help the expert describe the core faster. The following subsection will discuss these 

attempts and approaches. 

1.2. Literature review 

The rock texture classification is a common problem which can be found either 

in geology or different fields, like decoration (Laurenge and Bonduà, 2004) or tile 

quality control (Ferreira and Giraldi, 2017) and autonomous rovers’ guidance (Gor et 

al., 2001). Here all related to rock image interpretation through computer vision 

methods works presented. As rock type definition can be performed in various scales 

following classification applied to describe all the scales based on the way of the data 

acquisition and analysis: long-distance feature mapping (airborne, satellite imagery), 

visual rock investigation without special equipment (which is around 2 to 15 cm), thin-

section investigation, and digital rock investigation (e.g., tomography, scanning 

electronic microscope). A list of problems which may appear during data gathering and 

analysis with traditional techniques will be described first, and then the description of 
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the reference will be given. An almost thorough reference description will be given in 

the visual rock investigation section, as it is the principal subject of this research. 

1.2.1. Long-distance feature mapping 

This section united all the image processing performed over a long-distance 

imaging technique (the scale is more than 15 cm) and aimed to classify such images to 

a certain type of rock or geological unit. Such distance measurements could be 

performed with satellites, special aerial equipment (drones, planes), or ground tools. 

The methods of interpreting such data require understanding the rocks' physical 

characteristics. The interpreter (e.g., geologist) should also know how the relief forms 

and how it may be changed due to different geological dynamic processes. As the relief 

may form in different ways, the region's history may also be important for the 

interpretation (e.g., detection of certain deposits). There is a list of problems which an 

expert may run into:  

1) The observed characteristics may not be connected to only one object. 

A set of layers may generate and increase the observed physical 

characteristics. In the same way, they can compensate each other. 

2) The searched object may not generate any high physical field. 

3) Some objects (like diamond tubes) may not be observed thought 

physical fields as they are like rocks in their characteristics. For such 

cases, a set of additional methods like satellite images should be 

observed to detect other important features like lineaments. 

4) Each case is special. 

As the Earth was formed over a long period of time and different 

stochastic (in terms of our knowledge) processes happened – we cannot 

exactly know what kind of things happened to the observed place. The 

main problem that at the same time and place, several processes could 

happen, e.g., some rivers could be covered by other sediments or 

destructed by erosional processes. A geologist may only propose some 

most noticeable versions based on the available information (the region's 

history, the observed characteristics, etc.).  
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Thus, many features should be counted in to develop a generalized algorithm that 

will work in any place on the earth. As the data is gathered at different times with 

various methods, there may be quite a lot of missing data, which hardens the algorithm 

construction situation. Still, it is possible to construct an algorithm for a certain region. 

For satellite imagery, several approaches were developed to detect large-scale features.  

A work by (Cracknell and Reading, 2014) demonstrates the abilities of different 

machine learning algorithms to extract features and improve manual interpretation 

results. A set of algorithms described: Naive Bayes (NB), k-Nearest Neighbors (kNN), 

Random Forests (RF), Support Vector Machines (SVM), and Artificial Neural 

Networks (ANN). The study covers an area of ~160 km2 located near Broken Hill, far 

western New South Wales, Australia. The region includes 13 different types of rock 

(please, refer to the publication for a thorough description): retrograde micaceous 

schist; non-graphitic meta-sediment (pelite– and psammite–psammopelite); garnet-

bearing quartzo-feldspathic gneiss; medium to fine-grained quartz-plagioclase-K-

feldspar-biotite garnet gneiss; metasediments ranging from well bedded 

pelitic/psammopelitic schists, to psammopelitic or psammitic/pelitic metasediments; 

basic gneiss, lenticular masses of garnet-bearing quartzo–feldspathic gneiss, and "lode 

horizon" rocks; metasediment and metasedimentary composite gneiss; garnet rich. 

Sporadic bodies of basic gneiss and quartz-gahnite; medium-grained saccharoidal 

leucocratic sodic plagioclase quartz+K-feldspar biotite rocks; psammopelitic to 

psammitic composite gneisses or metasediments; plagioclase-quartz rocks and minor 

granular quartz-iron oxide/iron sulfide "lode" rocks; medium to coarse-grained quartz–

feldspar–biotite+garnet gneiss; sedimentary quartz–feldspar–biotite–sillimanite-

garnet-cordierite composite gneiss. A digital 1:250,000 geological map was used to 

prepare the training dataset. 10% of the data (~6500 samples) were used to train an 

algorithm. The sample is represented by a 256x256px crop of a map which is equal to 

a 50x50m region. A set of 18 geophysical data sources was used: airborne geophysical 

data were supplied with X and Y spatial coordinates, digital elevation model (DEM) (m 

ASL), total magnetic intensity (TMI) (nT), and three gamma-ray spectrometry (GRS) 

channels comprising potassium (K%), thorium (Th ppm), and uranium (U ppm), 

Landsat ETM+  data consisted of band 1 blue, band 2 green, band 3 red, band 4 near-
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infrared, band 5 short-wave infrared, band 6 thermal low gain / high gain, band 7 mid-

infrared, excluding band 8 panchromatic. Also, 9 different features were generated from 

Landsat images by dividing 3rd band to 1,2,5,7 bands, dividing 5th band to 1, 2, 4, 7 and 

by multiplying the division of 5/4 and 3/4 bands. A set of experiments was conducted 

with different inputs for training and classification. Different training data sampling 

techniques were used to train the algorithm: a unified area, several areas (32 data 

clusters) and multiple randomly chosen areas (1024 clusters). The maximum resulting 

accuracy for each algorithm on a test dataset: 0.506 - Naive Bayes, 0.635 - k-Nearest 

Neighbors (kNN), 0.762 - Random Forests (RF), 0.671 - Support Vector Machines 

(SVM), 0.627 – Artificial Neural Networks (ANN). As a result, the authors concluded 

that Random Forest is a good first-choice machine learning algorithm for multiclass 

inference using widely available high-dimensional multi- source remotely sensed 

geophysical variables. 

The on-ground scanning of the rocks is also may be done. While satellites and 

airborne surveys aim to catch large areas, on-ground measurements may be valuable 

for detailed mapping of quarries and outcrops. To catch the whole outcrop a special 

equipment used like drones and lidar/laser – scanning (Enge et al., 2007). The GPS 

data, various places scans and photographs are united in one project. This data is further 

processed and cleaned. Up to 50% of data may be decimated. Finally, the data is 

triangulated, and a digital elevation model is created. The model may be textured with 

image data. Such a model is very helpful for a thorough investigation by an expert, but 

it involves a lot of manual processing. 

The next step after the analysis of long-distance data is to analyze the data which 

has some material form, like rock samples. 

1.2.2. Visual rock investigation 

The visual description of rocks (from 10 meters to 10 cm) could be done with 

traditional methods by hand. This method requires only visual recognition and a fresh 

piece of rock. The traditional instruments required for the description are a hammer, 

acid (e.g. HCL for carbonates detection), magnification tool, and sometimes – UV light 

(e.g. for mineral and oil stain detection). In rare cases, a geologist may use a needle and 
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some elements from the Mohs scale of mineral hardness. Special equipment used for 

modern investigation includes XlrF-scanners. 

A set of problems may also be presented during the investigation: 

1) The scale of the observed data may be much larger than the expert could 

see. 

This is a common case when the expert has only a core. For example, suppose 

a boulder is greater than the core size. In that case, it could be interpreted as a 

layer if an expert wouldn’t see special elements that will point out this difference 

(e.g., a sharp boundary or an unexpected lithology change that doesn’t fit the 

region's environmental conditions). The same problem could be met in the field 

when the observed object is big and doesn’t fit the expert’s environmental 

process understanding. 

2) The researcher may not know some special topics to understand the 

material. 

This is a common case for researchers who have little experience in studying 

the material or the information about the studied object is insufficient. In that 

case, some features may be guessed. A nice illustration of such a case may be 

trace fossils counted as some animals or plants for a long time. 

3) The interpretation of the material may change depending on the case. 

The initial appearance of the rocks may have a dual meaning as some processes 

(e.g. flows, chemical processes, etc.) may look the same in different conditions 

(e.g. salt deposits may appear in oceans and salt lakes). Rocks may be changed 

the same way in different conditions. For example, quartzite (metamorphized 

sandstone) may form in case of heating and pressure deep underground or 

heated by intrusion near the surface. 

The classification of the image itself to a certain class or feature characteristic 

may be done with different algorithms. The rock description automatization problem 

was touched by different scientists in various ways and for various purposes. 
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One of the earliest works on the theme of geological features automatic 

characterization was published by Jonatan Hall with his colleagues (Hall et al., 1996). 

They proposed a methodology to extract sedimentological and structural, petrophysical 

and reservoir description information from wireline images and core photographs. The 

main objective was to classify known geometric structures and textures and abstract 

them into geological processes. The second objective was upscaling and downscaling 

the described characteristics to produce reliable descriptions. A set of human and 

machine virtues and failings was defined by (Hall et al., 1996). Humans can recognize 

features from noisy data and adapt by learning new knowledge, but it can be subjective 

and biased. A human tends to be inconsistent in applying knowledge and interpretation 

and making hasty interpretations, but he also can formalize models to explain 

observations and interpretations. According to (Hall et al., 1996), a machine has virtues. 

It can untiringly load and process large volumes of data, provide summarized statistics 

and provide formalized uncertainty evaluation measures. Several methods were applied 

to extract information from the images(Hall et al., 1996). For the planar events like 

boundaries, calcite concretionary nodules, fractures and many others, edge detection 

followed by Hough transform is performed. The extracted features were analyzed with 

different statistics for various shapes like ellipsoids. It takes around 40 minutes per 

meter to calculate the statistic. For textural information characterization like rock fabric, 

several steps are performed. Firstly, a statistic based on co-occurrence matrices was 

calculated. Secondly, linearity is defined as the distance from the origin and direction 

as the angular position on the cross plot calculated. Finally, an unsupervised neural 

network called Competitive and Selective Learning (CSL) classifies the texture based 

on calculated statistics. The same statistics are used for the calculation of True Dip and 

Azimuth. The computation time for a window length of 0.5 m with a step of 0.075m is 

6 seconds per meter.  

(Singh et al., 2004) tested several algorithms for the autonomous classification of 

rocks to help civil engineers make decisions. Seven feature extraction methods were 

tested due to a consensus that no single texture analysis method is suitable for all image 

data types. The methods are based on texture analysis. Each of the methods extracts a 

different number of features or coefficients: Autocorrelation – 24, Co-occurrence 
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Matrices [4,5] – 25, Edge frequency – 25, Law’s Mask Features [13] – 125 features 

gained with the application of 25 Law’s masks, Run Length – depends on the number 

of runs with 5 groups of features, Texture Operators – 5 groups of features, Texture 

Spectrum – 5 groups of features. 110 samples were used from igneous (27), sedimentary 

(61) and metamorphic (22) types of rocks. These samples were manually imaged in a 

similar lightning and background condition. The features were extracted from grey-

scale images and classified with the k-nearest neighbour classifier with cross-

validation. Maximum accuracy of 94.21 % was gained with k = 7 on features extracted 

with Laws masks. 

(Paclík et al., 2005) designed a system for an autonomous rock classification 

system. It contains tree steps: local texture derivation of an informative representation, 

local patch classifier, and combination of per-patch decisions into a single decision. The 

work is based solely on gray-level textures analysis. The work uses a co-occurrence 

matrix (CM). A classifier derives the decision. Several classifiers are used to compare 

their performance. Two types of rocks were used. The minimum error is 0.271 gained 

with Kullback-Leibler divergence due to the non-linearity introduced by this algorithm. 

(Wu et al., 2012) developed a system which allows a user to upload an image of 

a rock sample to a remote server with a mobile device and receive a description of it. 

They used color, directionality, and granularity features of an image. The color image 

transformed to HIS (Hue, Saturation, Intensity) and only hue and saturation were used 

for color features. Ix and Iy derivatives are used to calculate directions for a given pixel 

(x, y), and the finite difference is used to approximate the derivative. After derivatives 

for all pixels were calculated, a histogram of directions was used to estimate the 

direction. The histogram is close to a uniform distribution for a texture without 

direction. The granularity is evaluated over a small patch of an image. A difference in 

the quantity of gray level extremes between the original patch and the median-filtered 

patch was calculated. Similar numbers indicate low granularity because the filter does 

not change the image too much, and vice versa. The classification is performed with 

ANFIS (adaptive-network-based fuzzy inference system based on fuzzy inference 

system and neural network. 375 images were evaluated in experiments performed by 

Wu et al.  Based on the features, several membership functions were developed. Two 
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membership features distinguished between colored and achromatic rocks. And four 

functions for further colored rocks classification. The membership functions for 

directionality and granularity were established similarly. The success rate is 77.6%.  

(Prince and Chitale, 2008) implemented color distribution analyses method. 

Authors made thresholding (separating by some value) of grayscale images in HSI 

(Hue, Saturation, Intensity) for the pay estimation. The authors defined two classes – 

pay (sand) and non-pay (shale), and this method was tested on high-resolution images. 

In (2011), Thomas et al. proposed a new method for automatic lithology 

classification. This method is called object-based image analysis. The main aim was to 

detect pixels which significantly differ from each other. Four lithotypes were used – 

sand, shale, carbonate and no core. First, a threshold automatically separates different 

lithotypes from the core image. After that, the nearest neighbor classifier (Arya et al., 

1998) was applied to the small data for supervised learning. The nearest neighborhood 

classification is based on the comparison of all datasets in n-dimensional space. 

Different classes were separated and placed at a maximum distance from one other. The 

training dataset is made from several examples of different lithotypes from the well. 

The following classification is being done on the samples from the same well.  

The trained classifier was applied to the whole dataset to classify lithotypes. And 

the expert manually checked the results. Additional samples were added or removed 

from the nearest neighborhood model if the results were not reasonable. This method 

works with good performance if applied in one object as all the data are from the same 

distribution (core image collection). The accuracy of this method reached 94.29%. The 

misclassification took place in the images with empty cores or shaded areas.  

(Harinie et al., 2012) used Tamura Feature Extraction and Tamura Feature 

Classification based on coarseness, contrast, directionality, line-likeness, regularity, 

and roughness, to describe low-level statistical properties of textures to determine eight 

types of rocks: peridotite, phyllite, pegmatite, rhyolite, aphanitic, andesite, diatomite, 

conglomerate. The algorithm was trained on 50 256x256 images and tested on 60 

images. The test set prediction gave 87% accuracy. 
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(Shang and Barnes, 2012) used local colour histograms and the first (mean) and 

second (standard deviation or std) order colour statistics (2 features for each pixel) 

based on both R, G, B, and H, S, and V channels (12 features) features. Unsupervised 

Feature Selection Based on Data Reliability and Information Gain-based Feature 

Ranking used for feature selection. Data reliability is based on feature distance 

measurement. A feature is considered reliable (or relevant to the problem) if its values 

are tightly grouped. Support vector machine, K-Nearest Neighbours, and decision trees 

are used to classify the features. 14 unnamed types of rocks are used to train and test 

the algorithm with 10-fold cross-validation. A maximum accuracy rate of 93.58% is 

gained with an SVM-based classifier trained on 20 reliability-based selected features. 

The improved color distribution analysis approach was shown in aeries of works 

by Khasanov et all (Khasanov, 2015, 2014, 2013; Khasanov et al., 2016; Postnikova et 

al., 2017). This method is based on the difference in lithology colors in HSI color space 

(limestones may be white or yellowish-white, sandstones – yellowish-white to green, 

etc.). Besides that, other petrophysical characteristics like oil saturation, porosity, 

permeability, cementation, etc., also can be seen through the color distribution. This 

approach requires several hours to choose the right color distribution range for each 

type of characteristic. After that, it is necessary to determine which components are 

responsible for the color distribution (lithology, porosity/ permeability, etc.). The 

authors proposed to make a database of such color distributions and train an artificial 

neural network by color intensities to simplify this process. 

Another method was based on extracting features with Principal Component 

Analysis (PCA) (Wieling, 2013) and color distribution analyses. This research was 

aimed to evaluate bedding direction, lithology, grain size, and permeability. This work 

was mainly based on various statistical tools. The lithology, bedding direction, 

permeability and grain size determination was done on the core segmented to centimeter 

intervals. The detection was performed with an auto-covariance function. Information 

about each core image was represented in RGBD (Red, Green, Blue, Darkness) color 

space. This information was extracted by a centered log ratio (CLR) transformation 

followed by PCA. 
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After PCA, the information about bedding was measured by the correlation of a 

bedding image and two parallel lines drawn on the image. Then k-means clustering was 

applied to the data to gather all corresponding pixels. The classification by lithology 

was made by Multivariate Gaussian (MG) distribution model followed by the Minimum 

Covariance Determinant and Quadratic Decision Boundary (QDB). The performed 

operations are accomplished by linear regression of the Auto-Covariance properties for 

grain size and permeability estimation. Two lithology types were chosen for separation: 

sandstone and other rocks (coal, mudstone=shale (not to be confused with carbonates) 

and siltstone). The accuracy of the QDB classification model was 91% and 88% for the 

MG. Thus, the boundary between sandstone and other rocks is defined clearly. To 

separate other rocks, the contrast between siltstone and other coupled lithology classes 

was set by a linear decision boundary. The ability to separate this kind of data was very 

poor as soon as siltstone, shale, and coal were all dark by color. 

In Chatterjee et al. works (Chatterjee, 2013; Chatterjee et al., 2010, 2008; Patel et 

al., 2017a, 2017b, 2016) crushed rocks from different mines were analyzed. Each 

boulder from the box was separately segmented from the image. Various features of 

texture and structure were extracted from the image by different methods. These 

features were reduced to the smaller dimensional space by the principal component 

analyses (PCA) method (till the 2010s) or by genetic algorithms (GA). There was no 

dimension reduction in the latter works (Patel et al., 2017a). Only 18 features of color 

distribution and intensity were used for the demands of online system development. 

These features were placed into a multiclass support vector machine (SVM) – a 

method based on mapping the non-linearly separated problem (many features present 

non-linearity) to linear space. After the mapping, it can be solved as a separate linear 

problem. Both approaches to separate the data were used: one-versus-all and one-

versus-one. This method is precise (from 90% to 99%, depending on the method and 

the number of lithotypes). 

A massive amount of work is also denoted to ore classification problems 

thoroughly reviewed(Patel et al., 2017a). For example, (Khorram et al., 2017) used 

SVM for the classification of three different types of carbonates. The SVM method 

made this separation with an accuracy of up to 89%. 
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(Sharif et al., 2015) used 3.5x3.5 cm greyscale patches to classify the rock with 

Bayesian classification approach. The main goal was to develop a system for a mars-

rower. 30 images of different rock types (some of them of the same origin) were taken 

within 50 cm distance in a similar condition to save textural information. The images 

were converted to greyscale, and three patches of 256x256 px were extracted from each 

image for analysis. Simple image statistics such as the maximum average, standard 

deviation, and skewness of the intensity distribution did not work for rock sample 

differentiation. Haralick feature extraction was used to sufficiently describe the image 

for an algorithm. The features were classified with a Bayesian function. Such an 

approach allows having a 1/30 chance that a sample is correctly classified. 8191 

possible combinations of Haralick parameters were tested, and the highest score 

attained was 24.1 (80.3%) using 6 Haralick parameters out of 25. 

(Francis et al., 2014) worked on an autonomous system for rock outcrop surface 

segmentation for rovers. Mars Exploration Rovers (MER) and Mars Science Laboratory 

(MSL) missions. These works were dedicated to the recognition of images which are 

received from mars. A set of methods and a pipeline for exploring a geological 

environment are presented. The main accent of applying such methods is in different 

autonomous scenarios without human guidance. 

 (Li and Han, 2018) developed a deep learning system for predicting 3 types of 

rocks: granite, phyllite and breccia. 571 samples were used for transfer learning with 

the Inception-v3 model. The testing set contains 9 images for each class. A total 

accuracy was over 80%.  

(Shu et al., 2017) proposed an unsupervised method for autonomous rock image 

classification for Mars exploration programs. Two unsupervised approaches were 

tested: K-means feature learning and self-taught learning. 9 different rock types were 

imaged, and 700 textural images were generated from these types. Each type contained 

80 textural areas with size of 128x128 px and about 1-2 cm across. Features were 

extracted both manually using first and second-order statistics (carefully hand-crafted 

by computer scientists without any geological meaning) and autonomously by 

unsupervised feature learning based on K-means. One-vs-all linear SVM (support 
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vector machine) was used to classify the features with 5-fold cross-validation. 

Maximum accuracy of 96.24% for manually extracted features 96.71% for feature 

learning and 90.32% for self-taught learning were gained. 

(Valentín et al., 2017) used Haralick Textural Features, along with other textural 

features, extracted from each image and a Naive Bayes classifier. Each image was 

filtered with 4 different filters: gaussian, canny-edge, entropy and variance. A set of 

104 features for each image (filtered and the original one) was calculated. Thus, 520 

features were extracted for each image. With genetic optimization and principal 

component analysis, it was possible to achieve a 92.27% success rate for 9 rock types 

prediction.  

(Zhang et al., 2018b, 2018a) used neural networks to identify various structures 

from geological images with K-nearest neighbors, artificial neural network (ANN), 

XGboost (extreme gradient boosting) algorithms, 3-layer CNN and pretrained 

Inception-v3 convolutional neural network. They used 2206 geological structure 

images with 12 labels, including anticline, ripple marks, xenolith, scratch, ptygmatic 

folds, fault, concretion, mud cracks, gneissose, boudin, basalt columns, and dike.  KNN, 

ANN, and XGboost had poor performance, with an accuracy of less than 40.0%, 3-layer 

CNN overfitted on the training data, and Inception-v3 reached 83.3% top-1 accuracy. 

(Harraden et al., 2019) implemented an automated core logging technology based 

on a high-resolution Hyperspectral Core Imager Mark-III scanner, including 3d depth 

distribution. The fractures are calculated automatically with a special computer vision 

technique. The mineral composition is calculated from the hyperspectral analysis. 

(Ran et al., 2019) collected 2290 field images (the size is either 5760 × 3840 or 

4000 × 3000px) belonging to six rock types. The images were cropped to 512x512px 

areas. The final number of training set images is14,589 for training, 4863 images for 

testing and 4863 images for validation. The accuracy is 97.96% gained with a 3-layered 

convolutional neural network. 

(Liu et al., 2020) proposed application of Faster R-CNN architecture based on 

VGG16 convolutional neural network to classify multiple rocks in one image. 1034 
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images were used collected for 8 classes and further amplified to 78143 by different 

types of augmentation. The accuracy for multiple rocks detection is 80%. 

(Fan et al., 2020) developed a lightweight convolutional neural network model. 

The dataset consists of 28 kinds of rock with 2566 images in a training set, 330 rock 

images in a validation set, and 312 rock images in a testing set. The image scale is about 

10 to 20 cm. The size of an image is 224x224 px. MobileNet and SqueezeNet 

convolutional neural networks are used to reduce the network size and inference time. 

The average recognition accuracy of the two models was 94.55% and 93.27% on a test 

set, respectively. 

(Cai et al., 2021) used ResNet convolutional neural network architecture to 

classify high-resolution images into 8 classes: black coal, gray black mudstone, gray 

argillaceous, siltstone, gray fine sandstone, light gray fine sandstone, dark gray silty 

mudstone, dark gray mudstone. The training dataset contained 322 images of high 

resolution (up to 4096x3000), which were split into 224x224 images 51,600 

experimental images. A set of 33 test images were predicted by optimized ResNet with 

0.996 accuracy. 

(Alférez et al., 2021) had six plutonic rock types: gabbro, diorite, tonalite, 

granodiorite, monzodiorite, granite. The dataset consists of 71 high-resolution images 

split into various size images. In the end, 423 images for training and 423 images for 

validation were gained. Various combinations of rock images were used for 

classification and testing. The maximum accuracy gained with a self-constructed 

convolutional neural network was 0.95. 

(Xu et al., 2021) trained an algorithm for full-scale rock samples from an outcrop 

with size of about 10 cm. A data fusion method was implemented using images and 

portable X-ray fluorescence spectrometers. Initial datasets consist of 13 classes with 

image size up to 2085 × 2390 px. The images were randomly cropped to 224x224 px; 

thus, 19,000 images were gained with relevant elemental data, including Fe, Ca, K, Al, 

Si, Mg and the mixed content of other elements. ResNet-50 and ResNet-101 models 

were used for image identification and data fusion. 6700 images with relevant elemental 

data were used as the testing dataset. The ResNet-50 model has a test accuracy of 
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84.99%, and the data fusion model has a test accuracy of 94.62%. ResNet-101 has a 

test accuracy of 86.65%, and the fusion model has a test accuracy of 94.44%. 

(Alzubaidi et al., 2021) used deep convolutional neural networks for small tile 

classification. The authors distinguish three images: limestone, sandstone, shale, and 

non-core. They used various convolutional neural network architectures. A total of 

76,500 images (25,500 images per each rock type) were created as cropped images 

ranging from 240x240 pixels to 300x300 pixels in size. A scale of 2 cm was used to 

crop 2x2 cm images. The dataset was then divided into 54,000 for training, 13,500 for 

validation and 9,000 for testing. 88.74% accuracy was received before smoothing of 

the label prediction and 92.00% after smoothing with ResNeXt-50 architecture. 

(Alzubaidi et al., 2022) used convolutional neural networks to calculate rock 

quality designation (RQD) splitting the image into 5 classes: rock, fractures, crushed 

core, non-rock objects, and empty tray regions. The final model was trained on a 

training set of 6400 225x225px size images. The maximum accuracy gained with a self-

constructed convolutional neural network was 98%. 

(Abashkin et al., 2020; Seleznev et al., 2020, 2019) developed statistical methods 

for image analysis to classify different types of rocks. Various features are calculated 

over images like color, which may be interpreted into a rock. 

(Timmer et al., 2021) used 13,545 tiles of 128x128px size are used to train a DL 

algorithm to automatically predict if a core photograph contains evidence of 

bioturbation. The final network accuracy is 88%. 

(Ayranci et al., 2021) developed a model which determines 6 bioturbation indexes 

(BI). They used 1303 images with various BI. The final number of classes was set to 3: 

0; 1–2; 3–6. With the use of VGG-16 the maximum accuracy gained was 94.7%. 

(Fu et al., 2022) collected dataset with 10 lithologies: diabase; diorite; gneiss; 

granite; limestone; marble; monzonite; mudstone; shale; and siltstone. A total of 15,000 

images were obtained. Various architectures were tested, but ResNeSt-50 gained the 

best result of 99.60% accuracy on untrained shots. 
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1.2.3. Thin section investigation 

A thin-section investigation could be performed with an optical microscope. The 

images taken in this scale can have different scales. The microscope may have different 

equipment for further investigation: analyzer, uv-light, diaphragm. Several problems 

should be kept in mind while studying thin sections:  

1) Some minerals may have similar optical characteristics in a static position. 

Optical characteristics are viewed in different lightning conditions. 

The minerals are identified by features like color, relief, twinning, pleochroism, 

and extinction. Minerals like feldspar and quartz or different calcite minerals like 

dolomite and carbonate are differentiated by a set of detected features. Also, to easily 

distinct some minerals from each other, it is important to look at them in both polarized 

and crossed-polarized polar views; sometimes, it should be done while the stage is 

rotating. 

2) Camera characteristics and light conditions may differ drastically. 

Various cameras may have different resolutions, and the user may set various 

settings during imaging, including lightning, focus, and additional filters. 

3) We can only observe small and distinct characteristics like grain size, 

composition, or distribution.  

As we are looking at a small scale, the sample's naming may only be constructed 

based on initial characteristics. 

(Młynarczuk et al., 2013) introduced a method for thin-section automated 

classification by machine learning algorithms based on color spaces analysis. Four 

pattern recognition methods were compared: the nearest neighbour algorithm, the K-

nearest neighbor, the nearest mode algorithm, and the method of optimal spherical 

neighbourhoods. Different color spaces were used to test the methodology: RGB, 

CIELab, YIQ, and HSV. 9 different thin section types were used. The whole dataset 

consisted of 2700 images. The maximum accuracy gained on the CIELab color space 

and the nearest neighbor algorithm with the result of 99.8%. 
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(Cheng and Guo, 2017) used 4800 samples under various colour spaces: HSV, 

YCbCr and RGB to recognize the granularity of input image samples. Three types of 

rock images were used: course feldspar sandstone, medium granular feldspar sandstone, 

and fine feldspar sandstone. In RGB colour space, the classification accuracy achieves 

98.5% with the application of a self-constructed neural network. 

(Budennyy et al., 2017; Bukharev et al., 2018) created a deep-learning watershed 

algorithm to perform grain analysis accurately and evaluate the composition of rock. A 

grauwacke was segmented with about 90% accuracy. 

(Wei et al., 2014) used K-means and probabilistic neural network to detect 3 

classes within 600 images (400 for training): rock thin images, background images and 

pore target images. The average correct classification rate is around 95.12% 

(Koeshidayatullah et al., 2020) used 4000 images of carbonate petrographic thin 

sections of different scales to train two algorithms for carbonate components detection 

(coated grains; bioclasts; micrite; calcite cement; replacement dolomite; and porosity) 

and object detection (13,000 individual carbonate components were manually labelled): 

ooids; peloids; foraminifera; molluscs; other skeletal grains; micrite; calcite cement; 

replacement dolomite; and porosity. Inception-ResNet showed a good result of 0.91 for 

image classification and faster R–CNN with a result of 0.84 for object detection.  

1.2.4. Digital rock investigation 

The highest scale (up to 1 micron) is produced by scanning electronic microscopy 

(SEM) and tomography imaging techniques. They are based on computer imaging of 

the rocks by scanning either by CT-scan or with SEM. A quantitative evaluation of 

minerals (QEMSCAN) may be added to SEM which allows to get the mineral map 

equal to thin section. Still, there are some important things to keep in mind during data 

processing of such data: 

1) The data is different from the other scales. 

Visual rock and thin section scale investigation data gathered from the physical 

sample differs from the SEM and CT-scan data as it is collected on a scale where 

ryan
Highlight
length scales? 



36 

  

 

not all details are visible to the human eye. The minerals are detected either by 

shape, density or the detected elements. 

2) It is hard to upscale and downscale the data. 

As the scale is very high not all the data should be used for modelling as some 

of the details may influence the result, causing only slight differences (Pickup and 

Hern, 2002) in reservoir simulation, most of such micrometre-scale information 

is usually neglected due to high computational cost. But such information will be 

valuable in the case of oil production intensification techniques. 

3) A lot of factors may influence the scanning results. 

The operator experience, aim of the study, and the equipment's quality directly 

influence the quality of the data received for interpretation. Compared to optical 

imaging, the final data interpretation may be corrupted due to some physically 

induced process that may not be directly visible. In CT imaging, the result may 

change depending on the reconstruction parameters. 

(Chauhan et al., 2016) made a comparison of different segmentation algorithms 

for CT images. Both unsupervised (k-means, fuzzy c-means (FCMs) and self-organized 

maps (SOMs) and supervised (feed forward artificial neural network (FFANN) and LS-

SVM) machine learning techniques were used for segmentation of pore, mineral and 

matrix phases). The averaged porosity obtained for various samples (andesite, Berea 

sandstone, Rotliegend sandstone and the synthetic sample) is in very good agreement 

with the respective laboratory measurement data and varies by a factor of 0.2. 

(Wang et al., 2021) compared various convolutional neural networks for 

segmentation of CT-scan with SEM and QEMSCAN data. Voxelwise accuracy is 

relatively high for all tested models (85%–95%), but for each mineral, the accuracy 

highly differs form architecture to architecture. 

1.2.5. Summary 

Different authors have done lots of work to help an expert make his life easier. 

Various approaches have been tested, most of the reviewed works are based on 

measurements taken on a test set, which is similar to the training set, which is not always 
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the case. There are a lot of problems which may appear during testing the same 

approaches on a new set of data. So, the problems should be further investigated. After 

that, the prepared algorithms may be included in a system which will help the researcher 

to use the developed models. 

While a researcher looks through the literature, some time may be spent to 

understand the terminology used. The following section will introduce some general 

terms to help a researcher in his investigation. 

1.3. Terminology review 

As the work combines both the geology and machine learning/computer vision 

(which are united in computer sciences) fields of knowledge, some general terms of 

both scientific fields should be described to ease the accessibility of this work and 

introduce the problems which may appear during the study of these directions. As 

geology and computer vision are continuously developing scientific areas, various 

definitions from different sources are collected in the following subsections to show 

different point of views on some of the terms and reveal the ambiguous moments that 

may confuse a researcher during his study. The ambiguity appears not only because of 

the multiple uses of the same term in different situations but also because of some 

linguistic barriers. 

1.3.1. Geology 

Geology is the scientific study of the composition, structure, and history of the 

Earth. More recently, many branches of geology have become established as disciplines 

in their own right (e.g., geochemistry, geomorphology, geophysics, mineralogy, and 

paleontology) (Allaby, 2013). 

Due to various people's views about geology, there are a few terms where several 

geologists may be certain in mutual definition (such as mineral, fossil, cement). Even 

geologists of the same organization may define some terms differently. Due to an 

overwhelming number of regulatory documents, finding the mutual definition of 

specific terms is hard. Here is a short description, history of definitions and reasoning 

behind the author’s opinion provided for the most commonly confusing terms which 

may be used in this work. As the work assumes that some of the words used are well 
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defined in wildly available wordbooks (such as Oxford Advanced Learner’s Dictionary 

(Oxford Advanced Learner’s Dictionary, 2020)) the author will refer the reader to such 

a dictionary in case of any misunderstanding.  

This work is generally devoted to the study of rocks. The rock is a type of 

sediment usually formed from a composite of minerals. It can be solid or soft. The 

origin of rocks may be various, the same as the classification of such origin. Here a 

classification based on the nature of processes (“British Geological Survey (BGS) Rock 

Classification Scheme,” n.d.) is used, which includes sedimentary, igneous and 

metamorphic rocks. Some researchers may separate consolidated sediment as a rock 

with a separate name (like siltstone) and loose sediment with another name (e.g., silt). 

As this work is based on image analysis of the core, the image in most cases may not 

represent the sediment's looseness, but the grain size – silt and siltstone will be referred 

to as the same class. 

Lithology, lithotype, lithogenetic type and facies. A few definitions of both 

facies and lithotype exist: 

1. Lithology is a physical characteristic of rock, including colour, 

composition, and texture (Collins COBUILD Advanced Learner`s 

Dictionary, 2018).  

2. Lithology (from Greek lithos – rock, logos – to study) is a fundamental 

part of geology aimed for composition, formation and genetical study 

of sedimentary rocks (Yapaskurt, 2016). 

3. Lithology is a geological term used to describe the types of rock 

formations (Guo, 2019). Three main types are commonly defined: 

sedimentary, metamorphic, and igneous. In reservoir analysis, the 

lithology is identified by geologists using core samples taken from the 

exploration wells (Guo, 2019). 

4. A lithotype is a term which describes coal types. Lithotype descriptions 

are primarily used to characterize coal beds in geological investigations 

(Malvadkar et al., 2004). Each coal lithotype is a macroscopic 
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component of coal that is sufficiently distinguishable from other coals 

(like vitrain, clarain, durain or fusain).  

5. Lithological type or lithotype – it is a textural (granulometry) type of 

rock with several first and second-order genetic (environmental) 

attributes (Sirotin et al., 2004a). Lithogenetic type includes one or 

several lithological types with specific genetic characteristics (Sirotin et 

al., 2004b).  

6. As stated in VSEGEI dictionary (Petrov, 2011), lithotype is a geological 

body that includes layers or several layers with common 

sedimentological and diagenetic attributes that point to the 

environmental conditions.  

7. As stated in GOST (GOST R 53375-2016. Oil and gas wells. 

Geological-technological logging. General requirements., 2016) 

standard, a lithotype is a type of rock identified by a number of 

lithological attributes. 

8. The term lithofacies may be shortened to facies by some experts. 

Lithofacies is defined as a body of rock with certain specified attributes 

that distinguish it from other rock units (Leeder, 1982).  

9. The facies (the environmental facies model) is the whole set of attributes 

possessed by the deposited sediment laid down in a particular 

environment (Leeder, 1982).  

In Russia lithology term has only one meaning which is the study of rocks. 

English terminology has a dual meaning. In this work, lithology means the study of 

rock. Several concepts were used to split the use of lithology terms: rock type and 

lithotype. 

The term rock type is used to describe a rock's mineral composition, including 

its original formation (basalt, sandstone, limestone, etc.). The rock type can be a soft or 

hard rock that has a fixed structure and texture at the current time. 

https://www.collinsdictionary.com/dictionary/english/study
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Here is the definition of lithotype from GOST (GOST R 53375-2016. Oil and gas 

wells. Geological-technological logging. General requirements., 2016) standard 

describes rock type and structure. 

The facies is an overused term (Moradi et al., 2019). The term “facies” introduced 

by A. Gressly in 1838 (Gressly, 1838) originally meant the lateral change of a 

stratigraphic unit's rocks, structures, and fauna. Its meaning has been broadened to 

express a wide range of geologic concepts: environment of deposition, lithologic 

composition, biodiversity interchange, or tectonic and metamorphic associations. Also, 

an experienced sedimentologist may mix facies and lithofacies as he can propose a 

specific environment for lithofacies on the go, which may cause a misunderstanding for 

a newcomer. In this work, the term facies will not be used. The term lithofacies will be 

used instead. Several lithotypes may exist in one lithofacies. 

The structure has a reversed translation, “текстура” (which is pronounced as 

texture) in Russian. It means an arrangement and organization of interrelated elements 

in a material object or system, or the object or system organized so. A sedimentary 

structure (Allaby, 2013) is the external shape, the internal structure, or the forms 

preserved on bedding surfaces, generated in sedimentary rocks by sedimentary 

processes or contemporaneous biogenic activity. 

The same as structure, texture has a reversed translation, “структура” 

(pronounced as structure), and in sedimentology, it means the relationship between the 

materials of which a rock is composed (Allaby, 2013). In petrology, the meaning is 

similar sizes and shapes of particles in the rock and their mutual interrelationships 

(Allaby, 2013). In pedology, it is the proportions of sand, silt, and clay in the fine earth 

of a soil sample, which give a distinctive feel to the soil when handled, and which are 

defined by classes of soil texture (Allaby, 2013). 

The structure and texture will be used “as is” as defined in English literature. 

Summary 

Basically, there are several known to every geologist term, but others may be 

interpreted differently depending on the background and experience of the geologist. 



41 

  

 

That happens due to various deposits and environments presented to the geologist, its 

understanding of formations and sometimes due to linguistic barriers. This work will 

use several general terms: lithotype, rock type, structure and texture. 

1.3.2. Computer science 

Like in geology, computer science has various definitions for various terms. Even 

the definition of computer science can differ (McGuffee, 2000) from one author to 

another. This may happen either because different authors want to distinct or include 

various applications to the research or because some new methods and applications 

have developed over time. Also, in most cases, it is hard to find a strict definition of 

any term in the book or paper. In most revised books, each term described here had a 

separate paragraph discussing what this term is about without a definition. 

The definition of computer science (the discipline of computing) is the systematic 

study of algorithmic processes that describe and transform information. Their theory, 

analysis, design, efficiency, implementation, and application could be different 

(Denning et al., 1989). According to the Oxford dictionary (Butterfield et al., 2016), it 

includes: “programming; information structures; software engineering; programming 

languages; compilers and operating systems; hardware design and testing; computer 

system architecture; computer networks and distributed systems; systems analysis and 

design; theories of information, systems, and computation; applicable mathematics and 

electronics; computing techniques (e.g. graphics, simulation, artificial intelligence, and 

neural networks); applications; social, economic, organizational, political, legal, and 

historical aspects of computing”. 

This work mainly uses the applicable mathematics area of computer science, 

including computer vision and machine learning techniques and methods. 

Computer vision is the transformation of data from a still or video camera into 

either a decision or a new representation to achieve some particular goal (Bradski and 

Kaehler, 2008). Various information may be analyzed together with the image to help 

the computer understand the picture. Important to note that the computer only operates 

with numbers, so various methods are applied to help it understand the image, like 

machine learning techniques. 
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Machine learning is about extracting knowledge from data (Müller and Guido, 

2016). It is a research field at the intersection of statistics, artificial intelligence, and 

computer science. And a set of methods that can automatically detect patterns in data, 

and then use the uncovered patterns to predict future data, or to perform other kinds of 

decision making under uncertainty (Murphy, 2012). 

A separate term is machine vision which might confuse a reader as it is very 

similar to computer vision. According to (Fisher et al., 2014) it is: “a general term for 

processing image data by a computer; often synonymous with computer vision. There 

is a slight tendency to use “machine vision” for practical vision systems, such as 

industrial vision, and “computer vision” for more exploratory vision systems or for 

systems that aim at some of the competences of the human vision system.”  

Summary 

Some terms in computer science may have similar definitions, which may 

intersect as they developed simultaneously from various fields of application. The same 

as in geology, computer science techniques were formed rapidly, which caused some 

pluralism of the opinions for various terms. Still, many methods developed during the 

time are widely used and united within computer science. A part of these methods is 

described in the next section. 
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Chapter 2. Methods. 

This work uses different mathematical and computational algorithms based on 

computer vision, machine learning and deep learning techniques applied for image 

analysis. The work doesn’t pretend to have a solid mathematical basis for applied 

algorithms as it is based on well-developed methods, so only the algorithm’s intuition 

and important notes are described. For strong mathematical formulation, the reader can 

refer to the works described here. The author will only use the formulas in cases where 

it is necessary. 

There are several steps in image processing. Each followed subsection will 

describe and reference a workflow and intuition developed by highly qualified experts 

in the field. Firstly, a feature from the image should be extracted. Secondly, the feature 

can be preprocessed by different dimensionality reduction methods. Finally, the feature 

can be sent for classification to a machine learning or deep learning algorithm. Next, 

the classification can be further processed by different statistical algorithms. Computer 

vision includes all the steps. All these steps should be implemented within various 

programs connected with special communication protocols for production purposes.  

2.1. Feature extraction 

There are broad methods to extract different features from images. The feature 

can describe image granularity, corners, and many other useful characteristics a human 

can read from an image. 

The following feature extraction methods were used: 

• Principal component analysis (PCA) (Tipping and Bishop, 1999; Wold 

et al., 1987). 

• Histogram of oriented gradients (HOG), like in (Dalal and Triggs, 2005; 

Lowe, 2004; Viola et al., 2003). 

• Pretrained convolution neural network feature extraction (PNNF) 

(Intrator, 1990; Wiatowski and Bolcskei, 2018). 

The principal component analysis is based on a data projection onto a principal 

subspace that minimizes the square reconstruction error. 

ryan
Cross-Out
aim to provide

ryan
Highlight
Are all of the explained methods used in this thesis? Maybe limit this section to only methods used in the thesis to keep it focused. 



44 

  

 

The histogram of oriented gradients is based on a calculation of gradients over 

the image. The gradients are calculated in small cells over the image. 

Pretrained convolutional neural networks can have features like common 

extractors. In most cases, they extract much more useful information as they can be 

trained for specific extraction tasks. 

2.1.1. Principal component analysis 

The method minimizes the squared reconstruction error when it finds a certain 

basis with certain properties onto which the d-dimensional data vectors variance under 

projection is maximal. PCA is nothing other than a low-rank matrix approximation 

(Halko et al., 2011; Wold et al., 1987). If we apply it to an image, the PCA reduces 

(compresses) the matrix into a lower dimension and can restore it with data loss (Figure 

1). During compression, only high-frequency patterns may be stored. 

 

Figure 1. A principal component analysis image compression example. A – the original image, B – PCA 

compressed image with a 0.95 information retrieval. The principal component may be extracted from an image 

used for the classification algorithm. The image demonstrates how the principal components work. This algorithm 

aimed to store high-frequency data only, so details like the rule (on the top of an image) and small structures 

were not preserved. 

 

ryan
Highlight
Do you mean low spatial frequencies? To me it looks like the high spatial frequencies are removed while the sedimentary layers are retained. 



45 

  

 

2.1.2. Histogram of oriented gradients 

A histogram of oriented gradients (HOG) goes through the image and calculates 

gradients over a small sliding window (e.g., for a 128x128 px image, an 8x8 filter is 

applied). A normalization over the smaller regions is used, representing the result as 

normalized vectors over the image. The vectors are concatenated in a longer feature 

vector, which reduces the dimension of an image. The vectors are usually supplied as a 

2d- matrix to the algorithm, so the spatial gradient distribution doesn’t account for 

explicitly. 

 

Figure 2. A Histogram of oriented gradients application example. A – the original image, B – 

visualization of gradients extracted by HOG, C – enlarged area with gradients drawn with white arrows. HOG 

calculates the gradient between the two nearest regions was calculated. In comparison to PCA (figure 1), various 

structures were preserved except for color. 

 

2.1.3. Pretrained convolution neural network feature extraction 

The idea to use an artificial neural network (ANN) as a feature extractor comes 

from an approximation of principle component analysis with ANN (Intrator, 1990), 

which is shown by Oja (1982). The feature extracted with a pre-trained neural network 

may be better suitable for any task in the case of computer vision due to its nonlinearity. 

Convolutional neural networks (CNNs) are built with a set of filters which may extract 

various information about the image (they will be described in section 2.3.1. ). As it 
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meant by name – they should be trained first. After training, the CNN will be used to 

extract features. 

2.2. Machine learning 

Machine learning is a set of methods that allows a computer to provide an 

algorithm that will solve problems without human guidance. Machine learning uses 

mathematical models and computer science to construct such an algorithm. A 

supervised and unsupervised task can be solved with this method. The supervised task 

is based on a dataset consisting of different data and labels (answers). An unsupervised 

task has no labels in the dataset.  

2.2.1. Training a machine  

The machine should know how to differentiate positive and negative cases to train 

an algorithm in supervised ways. In the case of unsupervised learning – it should know 

how to measure distance or form some groups by some rules. Another algorithm 

optimizes a set of objective functions to give such information. During the optimization 

(training), the model is iteratively going through the dataset to predict the correct 

answer or group the data into meaningful form with an objective function. The process 

of model training is usually called model fitting. 

Objective function 

The objective function (also known as a criterion, in case of minimization – cost 

function, loss function, or error function) is a function which penalizes the model for 

making a wrong decision on a prediction. Only loss function and objective terms will 

be used hereinafter. The model can fit itself to the dataset only with the use of the loss 

function as it measures the model’s success rate. A set of loss functions can be used in 

different cases. For the classification task (Wang et al., 2020): Cross Entropy, Negative 

Log Likelihood, Margin Classifier, L1 Hinge Error, Mean Square, Cosine Error. 

For regression (Wang et al., 2020): Square loss, Absolute loss, Huber loss, Log-

cosh loss, Quantile loss, ε-insensitive loss, Square error, Distance error, Reconstruction 

error, and Negative variance. 
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For semantic Segmentation (Jadon, 2020): Binary Cross-Entropy (Ma et al., 

2004), Weighted Binary Cross-Entropy, Balanced Cross-Entropy, Focal Loss, Dice 

Loss, Tversky Loss, Exponential Logarithmic Loss, Distance map derived loss penalty 

term, Correlation Maximized Structural Similarity Loss, Hausdorff Distance Loss, Log-

Cosh Dice Loss, Sensitivity-Specificity Loss, Shape aware loss, Combo Loss. 

Each function has different properties and was designed for specific tasks in 

machine and deep learning. During machine learning algorithm training, humans aim 

to find the best loss function that will result in the best performance on a given data set, 

which may result in many experiments. Still, not only the loss function does the job, as 

the data should be verified, and a bunch of optimization methods, the same as 

hyperparameters, should also be selected carefully. 

Optimization 

Optimization is an operation which finds an argument value which maximizes or 

minimizes an objective function. The optimization algorithms can be different. They all 

have their pitfalls in various cases. The pitfalls can be caused by saddle points, local 

minimum or local maximum, which appear during the optimization process. In machine 

learning, the optimization function tries to reach the global minimum of a function, but 

it is not guaranteed to do that at the end (Kawaguchi et al., 2019). That’s why machine 

learning algorithms are continuously improving. The optimization algorithms in 

machine learning can be (Sun et al., 2020): 1) first-order optimization methods, 

represented by stochastic gradient methods; 2) high-order optimization methods, and 3) 

heuristic derivative-free optimization methods. The optimisation is usually done with a 

gradient descent algorithm or modification. The most known optimization algorithms 

for classification are (Ruder, 2016): Stochastic Gradient Decent (Robbins and Monro, 

1951), Adagrad (Duchi JDUCHI and Singer, 2011), Adam (Kingma and Ba, 2014), 

Nesterov accelerated gradient (Nesterov, 1983).  

A convergence of an optimization algorithm is the main problem a researcher can 

stumble into, as not every task can finally converge to a sufficient point. That depends 

not only on the data but also on those initial points called hyperparameters. 
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Hyperparameters 

Each machine learning algorithm and a set of parameters a researcher should tune 

to get the best performance of an algorithm (Smith, 2018) are called hyperparameters. 

The parameters could differ. Any parameter which can be changed inside an algorithm 

is a hyperparameter, even a loss function and optimization algorithm. A researcher 

should spend a lot of time and perform experiments searching for optimal 

hyperparameters, especially if the task he solves is new. 

Types of predictions 

The whole training process is aimed at getting some results. This could be some 

class (classification task) which will look like a set of numbers that can be transformed 

into meaningful names or a number (regression task) which may also be further 

processed. The other forms of predictions are mainly derived as an expansion of either 

classification or regression task (for segmentation, it is a whole image pixel-by-pixel 

classification, for time series – to predict a series of numbers, etc.). 

2.2.2. Classification 

The classification algorithms which were used are Random Forest (RF) (Breiman, 

2001) and Support vector machine (SVM) (Fan et al., 2008). For semi-supervised 

classification Mean shift algorithm (Comaniciu and Meer, 2002), Feature 

Agglomeration (Duda et al., 2001) and K-mean clustering (Lloyd, 1982; Macqueen, 

1967) were used. 

Random forest 

Random forests grow decision trees based on the training set. Each iteration 

develops a new leaf of such trees based on some rule generated during training. 

Different methods for creating such trees are described in (Breiman, 2001). It can be 

grown randomly by selecting both values and branching or propagating the branches 

using the Adaboost algorithm (Breiman, 2001). Some authors (Breiman, 2001) argue 

that random forests cannot overfit. Still, they have a limited generalization error which 

depends on the strength of the individual classifiers in the forest and their correlation. 
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Support vector Machine 

The method constructs support vectors which separate the data on different 

classes and works like PCA. Instead of approximation, it tries to maximize the distance 

between data objects to a hyperplane which separates the objects (Fan et al., 2008). 

Mean shift 

It is a clustering algorithm aimed to help analyse a complex multimodal feature 

space and delineate arbitrarily shaped clusters in it (Comaniciu and Meer, 2002). It is 

based on features density estimation, representing the empirical probability density 

function (p.d.f.) of the represented parameter. Dense regions in the feature space thus 

correspond to local maxima of the p.d.f., which are the modes of the unknown density. 

Once the location of a mode is determined, the cluster associated with it is delineated 

based on the local structure of the feature space (Comaniciu and Meer, 2002). 

It can be used for any type of data to create clusters either at a pixel level or with 

a feature extracted from images. 

Feature Agglomeration 

It is a hierarchical clustering algorithm based on Ward’s agglomerative clustering 

method that is based on a classical sum-of-squares criterion, producing groups that 

minimize within-group dispersion at each binary fusion (Murtagh and Legendre, 2014). 

Important to note that the user may manually set the number of clusters; if not – a 

distance threshold should be set, which will eventually separate different regions into 

distinct clusters. 

K-means  

It is a centroid-based clustering algorithm which minimizes the within-cluster 

sum of squares (or variance) and separates different clusters based on that rule. Initial 

points for clusters may are defined either randomly or with a special rule. A user defines 

the cluster number. The most used algorithm for cluster centroids seeding is kmean++ 

algorithm which optimizes the seeding to prevent minim (Arthur and Vassilvitskii, 

2007). 
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2.2.3. Segmentation 

Following unsupervised superpixel segmentation algorithms were used: 

Felzenszwalb-Huttenlocher (FH) based on graph construction (Felzenszwalb and 

Huttenlocher, 2004), Quick Shift (QS) (Vedaldi and Soatto, 2008) comparing pixels in 

a reduced dimensionality, Simple Linear Iterative Clustering (SLIC) (Achanta et al., 

2010) which use k-mean clustering, Region Adjacency Graph (RAG) (Tremeau and 

Colantoni, 2000) which unites two previous methods, and unites the most similar colors 

in a graph, Selective Search (SSh) (Uijlings et al., 2013) similar to RAG algorithms 

with larger features number (structure, objects size, etc.).  

Felzenszwalb-Huttenlocher 

The algorithm was designed to be broadly useful for image segmentation, like 

edge detection algorithms (Felzenszwalb and Huttenlocher, 2004). Two main aspects 

of a segmentation algorithm were established:  

1) It should capture perceptually important regions, which often reflect global 

aspects of the image. 

2) It should be computationally efficient, running in time nearly linear to the 

number of image pixels. 

The method is based on selecting graph edges, where each pixel is a node in a 

graph. Weights on each edge measure the dissimilarity between pixels. Each pixel 

compares to the other with a pairwise region comparison predicate. A segmentation 

produced by this algorithm obeys the properties of being neither too coarse nor too fine 

(Felzenszwalb and Huttenlocher, 2004).  

Quick Shift 

The method uses the kernel medoid shift algorithm as a driver to create clusters 

of data and quick shift to move each data point to the nearest neighbor. The algorithm 

unites all the data in a tree first, then separates the branches of the tree that are longer 

than a manually set threshold. It can balance the under and over-fragmentation of the 

clusters by choosing an actual parameter (Vedaldi and Soatto, 2008). 
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Simple Linear Iterative Clustering 

SLIC performs a local clustering of pixels in the 5-D space defined by the LAB 

values of the CIELAB color space and the x, y pixel coordinates ) (Achanta et al., 2010). 

It has only one parameter – the number of superpixels which should be placed on an 

image. A new distance measure that considers superpixel size was introduced in the 

paper. It enforces color similarity and pixel proximity in this 5-D space such that the 

expected cluster sizes and their spatial extent are approximately equal.  

Region Adjacency Graph 

The algorithm is based on the region's growing process. Firstly, it coarsely pre-

segments the image with either region growing, watershed or image of local second-

order moments algorithm. Secondly, it refines the pre-segmentation previously 

obtained with Region Adjacency Graph. Each segment unites in a group of simple- and 

second-order- connectivity views. The groups unite if their color distribution is 

sufficiently close. This merging provides a new partition of the image plane – “a 

fortiori” (Tremeau and Colantoni, 2000).  

Selective Search 

The method is based on a hierarchical understanding of an image. The algorithm's 

primary goal is to generate a class-independent, data-driven, selective search strategy 

that generates a small set of high-quality object locations (Uijlings et al., 2013). It uses 

a bottom-up approach for object groping. To get the first groups of pixels Felzenszwalb-

Huttenlocher algorithm was used. These groups are united by a greedy algorithm to 

iteratively group the most similar regions. At the end of iterations, only one region 

exists. A special diversification by complementary colour spaces, complementary 

similarity measures and starting regions methods is applied to support the grouping and 

get separate regions. Finally, the produced regions are ranked and compared to each 

other. If the regions are similar – they are united (Uijlings et al., 2013). 

2.3. Deep Learning 

Deep learning is a subset of machine learning algorithms. There is no exact 

boundary when machine learning turns to deep learning. Still, an algorithm can be 

safely regarded as deep learning as the study of models that involve a greater amount 



52 

  

 

of composition of either learned functions/concepts than traditional machine learning 

does (Goodfellow et al., 2016). Most researchers refer to an algorithm as a deep learning 

algorithm when they use an artificial neural network (perceptron-based or other) with a 

layer depth of more than three.  

Different algorithm types may be used for creating a deep learning system. Like 

machine learning algorithms they can be used for regression and classification. 

As deep learning algorithms are large and complex, the dataset for training of 

such algorithms should also be sufficiently large (thousands and thousands of data 

points with relevant answers). 

In this work, convolutional neural networks were used for both segmentation and 

classification tasks. 

2.3.1. Convolutional neural networks 

The convolutional neural networks are based on a linear operation created for 

image filtering called convolution. The convolution helps extract different information 

types from an image, like edges. 

Mathematically, the convolution (Figure 3) used in a CNN and most machine 

learning algorithms is a cross-correlation (Goodfellow et al., 2016; Rosebrock, 2017). 

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑  𝑚 ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛) 
𝑛  (1) 

The CNN usually contains a large number of convolutions (up to hundreds) 

randomly initialized at the beginning, and the class prediction is random. During 

training, the filters “learn” to extract different types of features from the data to predict 

the correct label that the data have. 
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Figure 3. An example of convolution happening in each convolution layer inside CNN. The information 

from an image is transformed from a human-readable format (RGB channels) into a machine-readable format 

(pixels with condensed details). After the first layer – the RGB channels are not used, and each next layer further 

“compresses” the information. 

2.4. Evaluation 

2.4.1. Metrics 

There is always a question of how well an algorithm performs. This question can 

be answered with a specific function that can measure success's value. This function is 

called metrics and can be created for any purpose and task. 

The results were evaluated on testing set using various metrics (Fawcett, 2006; 

Metz, 1978) and by visual screening of new unlabeled images as an application of an 

algorithm in the real world. A part of the visual screened results was additionally 

labelled to evaluate the performance with metrics.  

The metrics used are: 

• 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (Fawcett, 2006; Metz, 1978)   (1) 

• 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑃
 (Fawcett, 2006; Metz, 1978)    (2) 

• f – score Fβ =
(1+𝛽2)∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑟𝑒𝑐𝑎𝑙𝑙
 (Sasaki and Fellow, 2007) (3) 
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• intersection over union 𝐼𝑂𝑈 =
𝑇𝑃

(𝐹𝑃+𝑇𝑃+𝐹𝑁)
 (Rahman and Wang, 2016) (4), 

where TP – true positive, TN – true negative predictions, FP – false positive, FN 

– false negative labels to predict (the number of examples).  

Precision (1) describes an amount of data predicted correctly out of all predicted 

values. Recall (2) represents the amount of data detected out of all data. The f1 score 

(3) means an equal contribution of precision and recall (β=1), and f2 (3) implies 

inclination to recall (β=2). Metrics 1-3 were used both for classification and 

segmentation tasks. Some metrics will not work with segmentation tasks (Rahman and 

Wang, 2016) as areas of labels are compared. An area-comparing technique is used for 

segmentation called IOU. IOU (4) describes the prediction and target mask intersection. 

A demo example was created to illustrate the calculation (Figure 4). 

 

Figure 4. Examples of metrics calculation for segmentation task. The ground truth is marked as green, 

the intersection with the mask is light green, and the mask is light blue. The calculated metrics for different types 

of intersections are below the squares. 
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2.4.2. Unboxing black box 

Machine learning algorithms are usually called a “black box”, as during the 

training process, human is not directly involved in the tuning of the model (Ribeiro et 

al., 2016; Ruder, 2016; Rudin, 2019). The algorithm receives some data and answers 

the researcher. There is no specific way to understand the decisions of such algorithms. 

But there are a few ways to make the decisions being made during prediction a little bit 

clearer for a human.  

The first way is to build a separate algorithm that could be trained to extract 

different features from the data and recursively give it to the model to see how the 

predictions changes if the feature changes (Ribeiro et al., 2016). These algorithms may 

be represented by different low-level interpretable models like decision trees. Ribeiro 

and his co-authors (2016) designed a special algorithm called Local Interpretable 

Model-agnostic Explanations (LIME) for such an operation. Such an algorithm may 

help to understand which parts of data are used for classification and how they coincide 

with human perception. 

Another way which can be applied to neural networks is to use feature maps 

(Chollet, 2017) extracted from a neural network. The feature map in the case of CNN 

is a 3D tensor with width and height and a number of channels (depth) produced by the 

hyperparameters of the network. Its depth can be arbitrary since the output depth is a 

layer parameter. It stands for what is called "filters". Filters encode specific aspects of 

the input data. A single filter could encode different concepts, like the presence of a 

crack or structure on the image and other important characteristics which could be 

valuable for the final decision. 

2.5. Programming languages frameworks 

A set of computer languages were used to do scientific research on this thesis and 

provide a system based on the research. 

A research part was written in Python (version 3.7) (Van Rossum and Drake, 

2011). Different Python libraries were used: 

• OpenCV (4.1.1 (Bradski, 2000)) 
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• Numpy (1.18.1 (Travis, 2006))  

• Augmentation library Albumentation (0.4.1 (Buslaev et al., 2018)).  

• The Segmentation Models library (1.0.0 (Yakubovskiy, 2019)) was used 

to test a hypothesis based on the use of convolutional neural networks 

(CNN) applied for segmentation.  

• Keras library was used to build CNN’s architecture (2.3.1 (Chollet et al., 

2015)) with Tensorflow backend (1.15) (Martín Abadi, Ashish Agarwal, 

Paul Barham et al., 2015) and Pytorch (1.3 (Ketkar, 2017)) with the use 

of one Nvidia 1080TI GPU instance.  

• Matplotlib (3.1.1 (Hunter, 2007)) was used for plotting the results. 

• Scikit-Learn (0.22, (Pedregosa et al., 2011)) was used for model tests.  

A system for production purposes was based on Golang (backend), Apache Kafka 

(message broker), PostgreSQL (scheme-oriented database), MinIO (object-oriented 

database), and Vue.js (frontend). 
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Chapter 3. Dataset preparation 

The dataset is the greatest value of a machine learning algorithm. Two tasks were 

solved: classification and segmentation. A classification task requires a dataset with 

labelled images (each image has a class label). The segmentation task requires a mask 

based on an image. Each pixel of this mask has some class. 

Each dataset was collected separately from different data sources. Most of the 

data is collected from NOPIMS (National Offshore Petroleum Information 

Management System, IODP (Integrated Ocean Drilling Program), and RosGeolfond 

(Russian federal geological fund). The dataset consists of images of full-bore cores, 

which are placed in core boxes (Figure 5). Over 10000 full-bore core box images were 

collected.  

 

Figure 5. Datasets examples. A - RosGeolfond (Russian federal geological fund), B - NOPIMS (National 

Offshore Petroleum Information Management System, C - IODP (Integrated Ocean Drilling Program). 

The images were stored in a form of document (.doc, .docx), table (.xlsx, .xls), 

vector graphic drawings (.cdr), and as image (.jpg, .tiff). A set of preprocessors and 

extensions were developed in Python and VBA programming languages (Figure 6) to 

convert all files into a unified image format (.jpg) as the most commonly used format 

with high compression quality rate to store images. 

https://en.wikipedia.org/wiki/Integrated_Ocean_Drilling_Program
https://en.wikipedia.org/wiki/Integrated_Ocean_Drilling_Program
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After converting, core box images were broken down into separate core columns, 

further sliced to 10cm scale images, and placed in one folder. 

 

Figure 6. A preprocessor for .cdr file was created to extract images as a file (.jpg) from the vector graphic 

files. A – a window to select the source folder, which contains folder and subfolders with .cdr files; B – a window 

to select files from those which were found to convert into image (.jpg). 

In addition to images a lithological description for images was collected in a form 

of reports (.doc, .docx, .pdf) and tables (.xlsx, .csv, .xls, .txt, .wam, .waw). These 

descriptions were also processed manually and with python scripts to a unified format 

of tables (.xlsx). 

The description is usually performed in intervals (e.g. from 10 to 11.5 m – 

sandstone, 11.5 – 12.9 – limestone, etc.). These intervals should be transformed into 

continuous logs with a discretization of 10 cm to connect the description and core 

columns images. After such transformation, another problem may appear – some of the 

data can be wrongly correlated with depth due to wrong depth referencing of the 

description or image. A unique preprocessing tool was developed to ensure data depth 

consistency (Figure 7). 

After such data preparation, it can be further labelled for classification and 

segmentation. The following labelling process differs for these tasks as each task 
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requires different types of labels. The classification task requires classes and 

segmentation – pixel labels in the form of an image-sized mask. 

 

Figure 7. Developed a tool for description depth matching to a core image. A – current 10cm part of a core 

with depth referencing information; B – a window to add or subtract from the image depth; C – current image for 

depth matching. 

3.1. Classification 

For the classification task, the 10 cm data samples should be rearranged from 

folder to directories according to lithology or class from the description. 

Machine learning algorithms require a well-prepared set of data. A special 

classification task data validation tool was developed (Figure 8). It allows an expert to 

process all the folders inside a path as a class. It enables a user to compare the current 

image with an expert-ensured database to check the final quality and relabel pictures in 

case some data was mislabeled. Each dataset has been checked with this program.  
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Figure 8. A tool developed within this work for the final expert data quality check. A – window with the 

current image; B – window with an expert-defined class example; C – window with classes available; D – list of 

files available for check. 

 

3.2. Segmentation 

The extracted table data from the database is required only as a reference for this 

task. The masks, in most cases, should be created with special tools. 

For rock-type segmentation (5.1.2. Rock segmentation) a PixelAnnotationTool 

(PAT) (Bréhéret, 2017) used. A watershed algorithm described above automates the 

labelling of the rest of an image in a semi-supervised way. To segment the image, a 

user should load the dictionary (key-value pairs) with labels he wants to mark on it and 

manually draw them on an image. Only small regions sufficiently distinct from each 

other may be marked on the image. The other regions will be automatically labelled 

with a watershed algorithm. 
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For core column segmentation (5.1.2. Box segmentation), a GIMP (GNU image 

manipulating program) was used (The GIMP Development Team, n.d.). The principle 

of use is the same as in PAT, except watershed algorithm. The masks are created 

manually with only one label – the box. An additional layer for mask was created on 

image and colored into two colors; one color meant background, and the other – was 

foreground (the core). 

 

Figure 9. PixelAnnotationTool (PAT) (Bréhéret, 2017) usage example for the creation of pixel-accurate 

rock type and structure (cracks) labels. A – available labels, B – available images to segment, C – watershed 

button, D – current image with mask hovered over it. 

 

3.3. Dataset automated gathering 

Due to a massive problem of data storage, sometimes the databases may be stored 

in an unstructured way. In one laboratory, the data storage can have a data structure that 

holds the images in separate folders, and the other laboratory may store the images with 

other data. That’s why a special framework was developed for automated datasets 

search. It is aimed at searching for images whenever the data is stored on a hard drive 

without a specially facilitated object-oriented database. 

The framework is inspired by relational databases such as PostgreSQL (Dimitri, 

2019). It has structured tables that rely on one another but can still be used separately.  

There are several storage tables at the first run: 
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Depth – the table where all parsed depth for each image is saved. 

Ini_names – table with a path to initial data and the name of the parsed file. 

Images – table with image names. 

The idea of the automated gathering is to collect all the available image data in 

the selected folders and subfolders in one place to manually process it. 

3.4. Data balancing techniques 

As machine learning algorithms are based on database analysis, a concept rule 

“garbage in, garbage out” (Lidwell et al., 2010) is applicable. Suppose the data is 

insufficient or inappropriately labelled. In that case, the algorithm either won’t get good 

accuracy on a new set of data or will not be able to overfit the data. It is a nice practice 

to overfit the algorithm on the available data first to check the data quality. 

If the data quality is sufficient, another problem may appear – some classes may 

not be represented the same way as others which is called undersampling. To fight such 

cases, a set of techniques are available. Also, even if data is sufficient, some outliers 

may still exist. In the case of machine vision – such outliers may be overlapping of 

several objects on an image or differentiation in object color.  Such issues may be solved 

with data augmentation 

3.4.1. Standard augmentation 

Augmentation is a set of image permutations which can be applied to an original 

image to increase the generalization ability of an algorithm. The algorithm may classify 

the same image differently if the image slightly changes. Augmentation is a standard 

tool to improve generalization by machine learning algorithms (DeVries and Taylor, 

2017). 

A set of augmentations were used to increase the performance of algorithms 

(Figure 10).  
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Figure 10. Different types of image augmentation. Various augmentations were applied to prevent 

overfitting and improve the generalization ability of the developed algorithms 

3.4.2. Template-like augmentation 

The existing augmentation techniques only work with the prepared image. This 

reduces the number of actions which can be performed over an image. A unique 

augmentation framework for the segmentation task was developed and described in (E. 

E. Baraboshkin et al., 2022a). A template and data should be placed together to run such 

an augmentation. The framework changes parts of a segmented image on a template to 

emulate different imaging environments (Figure 11). As seen in the figure, the core 

inside the core box was almost entirely changed. Such action improves the results of 

segmentation described in section 5.1.2.  
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Figure 11. Comparison of the initial image (A) and augmented images (B). Some cores in the box 

changed (B); parts are cut out (B). 

3.4.3. Other techniques 

A set of techniques like Oversampling (Chawla et al., 2002), Undersampling (Liu 

et al., n.d.), sample weighting (Cui et al., n.d.), Different loss functions (e.g. Focal loss), 

Label smoothing (Müller et al., n.d.) were applied to produce appropriate data 

distribution during the training.  
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Chapter 4. Classification 

Classification is an important task that can be solved by machine learning. 

Unfortunately, to build a reliable classification model based on supervised machine 

learning, it is vital to have a specific task to solve. The study should be clear and 

straight, the same as data which is supplied to an algorithm. Geologists like to build 

different classifications based on various features which they can get from observations. 

The features may be different: structure, texture, layering direction, mineral 

composition, etc., which depends on the study purpose and scale. The classifications 

applied may also differ depending on the task required to complete: find a certain 

deposit or create a specific model in terms of genesis. The data and the task may be 

ambiguous and contain several hidden objectives a geologist tries to solve.  

The objective of a researcher is to understand what a geologist wants to get from 

the data and which exact tasks and subtasks he solves to reach the final decision on an 

object.  

The presented research is aimed to describe several essential characteristics for 

further geological modelling. First, a general description of rocks was developed to 

understand the general rock composition, and then a more sophisticated model to get a 

sedimentological feature was created. Finally, a technical core condition description 

was developed to build a reliable model for fracturing. 

4.1. Results and discussion 

Several models to predict rock and lithological types were developed. The first 

model is developed for a general description of rock types. The second is for a 

sedimentological description of rocks, and two more for a geotechnical description. The 

following sections describe the datasets, the conducted experiments and the 

classification results. 

4.1.1. Datasets 

Rock typing dataset 

The dataset for rock typing consists of 590 core box images (approximately 1750 

m of core). This data was cropped into 17500 images with size 10x10cm and px size 
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from 185 to 707 px (~ 47 – 180 dpi). The images were manually labelled into 6 classes 

(Figure 12): argillite, sandstone, laminated sandstone, siltstone, granite, and limestone. 

Each class define a type of rock. 

 

Figure 12. Manually labelled dataset for rock typing: A - argillite, B - limestone, C - granite, D - massive 

sandstone, E - laminated sandstone, F – siltstone. 

Sedimentological description dataset 

The dataset for sedimentological description had 350 images (median size 

2300x4000 px) of core boxes and an initial label which was stored in a table. The core 

was cropped into smaller 10x10 cm images with average size of 506px (~128 dpi) up 

to 564px (~143 dpi). The dataset consists of 20 lithotypes (Figure 13): laminated shaly 

sand (Hs), laminated shaly sand with bioturbation (Hsb), laminated sandy shale (Ht), 

laminated sandy shale with bioturbation (Htb), deformed sandy shale (Htd), laminated 

mudrock (Ml), massive mudrock (Mm), bioturbated sandstone (Sb), deformed 

sandstone (Sd), intraclast-bearing sandstone(Si), laminated sandstone (Sl), massive 

sandstone (Sm), rippled sandstone (Sr), cross-bedded sandstone (Sx), bioturbated 

siltstone (Tb), deformed siltstone (Td), laminated siltstone (Tl), massive siltstone (Tm), 

rippled siltstone (Tr), coal (C).  
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Figure 13.Various lithotypes for sedimentological description: A – laminated shaly sand (Hs), B – 

laminated shaly sand with bioturbation (Hsb) , C – laminated sandy shale (Ht), D – laminated sandy shale with 

bioturbation (Htb), E – deformed sandy shale (Htd), F – laminated mudrock (Ml), G – massive mudrock (Mm), 

H – bioturbated sandstone (Sb), I – deformed sandstone (Sd), J – intraclast-bearing sandstone(Si), K – laminated 

sandstone (Sl), L – massive sandstone (Sm), M –rippled sandstone (Sr), N – cross-bedded sandstone (Sx), O – 

bioturbated siltstone (Tb), P – deformed siltstone (Td), Q – laminated siltstone (Tl), R – massive siltstone (Tm), 

S – rippled siltstone (Tr), T – coal (C). 

Each lithotype defines a type of rock and a structure which is formed during a 

deposition process. The lithotypes are used for further depositional environment and 

detailed deposits geological model reconstruction and lithofacies analysis. 
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After preparing the dataset with a table description, the dataset was manually 

checked, as described in section 2.5. 78% of data which previously didn’t have a 

particular class due to errors in depth referencing was classified (Figure 14). 2 to 15% 

were relabeled to other classes. The final dataset consists of 6104 images. An exact 

number of images for each class can be found in Figure 15. 

 

Figure 14. Data check results. 75% unclassified data was classified to different classes. Caption for the 

abbreviations can be found on figure 13 and figure 15. 

 

Figure 15. Final data quantity for each class. The distribution is not equal. Hs - laminated shaly sand 

(333), Hsb – laminated shaly sand with bioturbation (171); Ht – laminated sandy shale (711); Htb – laminated 

sandy shale with bioturbation (132); Htd – deformed sandy shale (73); Ml – laminated mudrock (188); Mm – 

massive mudrock (185); Sb – bioturbated sandstone (108); Sd – deformed sandstone (175); Si – intraclast-

bearing sandstone (84); Sl – laminated sandstone (227); Sm – massive sandstone (1909); Sr –rippled sandstone 

(156); Sx – cross-bedded sandstone (76); Tb – bioturbated siltstone (98); Td – deformed siltstone (246); Tl – 

laminated siltstone (524); Tm – massive siltstone (602); Tr – rippled siltstone (4); C – coal (2). 
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Geotechnical description 

The geotechnical description dataset was made to describe core intervals for the 

mining industry. The dataset consists of 390 core box images with a coring size of 6,6 

cm. It was separated into smaller crops 5x6,6 cm The dataset was built in two iterations.  

The first iteration only determined the core condition (1509 images in total): 

crushed core (907), intact core (223), and cracked core (379). It will be referenced as 

GTD-1.  

The second data labelling iteration contained 5 fault rock types (Figure 16) and 

an arbitrary one (3310 images in total): Cataclasite (Kt, 79), Mylonite (Ml, 80), Quartz 

(Q, 65), Non-tectonized (2266), Fracture zones (Z, 764) and Non-classified (56). Each 

rock state reflects a level of tectonic restructuring except for Quartz, which pointed out 

the quartz veins, which usually contain gold. The second dataset will be referenced as 

GTD-2 

 

Figure 16. Various fault rock types for GTD-2 dataset: A – cataclasite (Kt), B – mylonite (Ml), C – quartz 

(Q), D – non-tectonized, E - fracture zones (Z). 

The GTD-2 dataset had a table description of different fault rock types. 3 types 

were chosen by an expert as most common and important: mylonite, fracture zone, 

cataclasite. They were processed and manually cleaned up as described in section 2.5. 

15 to 40% of data was moved within each class (Figure 17), as some types were 

described within meter intervals. After processing a geologist manually added two more 

classes to the dataset (Figure 18). The final GTD-2 dataset contains 1254 images. 
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Figure 17. Data check results in GTD-2 dataset. A large amount of data was relabeled for mylonite as it 

was previously described in a scale of 1:100 cm, while the dataset has scale of 1:5 cm. Caption for the 

abbreviations can be found in Figure 16 and Figure 18. 

 

Figure 18. Final data quantity for each class in the GTD-2 dataset. The distribution is not equal: Kt - 

cataclasite (79), Z - fracture zones (764), Ml – mylonite (80), Nt – non-tectonized (266), Q – quartz (65). 

4.1.2. Feature-based classification 

The feature-based classification was performed on the rock typing dataset as it is 

an excellent toy example to understand the algorithm's performances on certain rock 

types. Features were extracted from each image out of the dataset. The following feature 

extraction methods were used: Principal Component Analysis (PCA), Histogram of 

Oriented Gradients (HOG), and Pretrained artificial networks (PNNF). Each method 

allows extracting a different number of features: PCA – 456, HOG – 156816, and PNNF 

– 4608.  
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Supervised classification 

To understand how the data is distributed a 3 randomly selected features were 

projected to a 3-dimensional space (Figure 19). It can be noted that PCA and HOG 

methods produce sparse features, while PNNF features are condensed in a small area. 

An additional PCA algorithm was applied for HOG and PNNF features to reduce 

dimensionality further. Unfortunately, it worked only with PNNF data as convolutional 

neural networks are based on linear convolutions the same as PCA performs reduction 

in linear space.  

 

Figure 19. A feature representation is based on the features extracted from different images. Feature 

extraction methods: Principal Component Analysis (PCA), Histogram of Oriented Gradients (HOG); Pretrained 

networks (PNNF). Each color represents a different class from the rock typing dataset. 

Two machine learning algorithms were used to classify the extracted features – 

SVM and Random Forest (Figure 20). As a reference algorithm for classifying images, 

convolutional neural networks (CNN) were used. 
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Figure 20. A set of classifications based on different features classified with Support Vector Machines 

(SVM) and Random Forest (RF). 0 – argillite, 1 – granite, 2 – limestone, 3 – laminated sandstone, 4 – massive 

sandstone, 5 – siltstone. Feature extraction methods: Principal Component Analysis (PCA), Histogram of 

Oriented Gradients (HOG); Pretrained networks (PNNF) 

After a thorough analysis of the results presented in figure 20, it was found that 

the SVM-based classification of features extracted with pretrained networks 

outperforms the convolutional neural networks in the classification of argillites, 

granites, and laminated sandstones. Random forest classification beat convolutional 

neural networks only in argillites and limestones. The other algorithms' combination 

failed to achieve such results. 

A hard-to-classify for CNN data interval was chosen (figure 22) to approve the 

gained results. The interval consists of 20 segments of rock, each sliced to 10x10 cm 

(the section length is 2 m). The interval causes a problem due to the rock's colour 

(Figure 21) – it is black-colored with highly hydrocarbon-saturated material - kerogen. 

As the initial dataset doesn’t contain such cases - the trained CNN misclassified it as 

argillite or siltstone, while originally, it is a massive sandstone. Important to note that 

if a rookie expert classifies the image, he may also make such a misclassification. 
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Figure 21. Examples of highly hydrocarbon-saturated massive sandstones. 

All the algorithms classified the interval. The results of the classification can be 

found in figure 22. As it can be seen, the most agreed with ground truth classification 

is HOG followed by SVM classification (8 segments were detected correctly), the next 

top prediction rate is SVM and RF on PNNF classification (4 segments), and NN 

prediction itself (3 segments). Interesting to note that RF classification similarly 

classifies the images as a rookie expert would. Most of the black-colored image parts 

are marked as argillite. The RF classification made the least mistakes in terms of rock 

type classification. It classified all the rocks as a terrigenous type. It may be a result of 

underfitting caused by a tree's lack of generalization ability, as explained in section 

2.2.2.  
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Figure 22. A comparison of different feature-based classification 

algorithms. Several machine learning algorithms (Support Vector Machines 

(SVM) and Random Forest (RF)) compared to convolutional Neural Network 

(NN) classification. The classification was performed on features extracted in 

different ways: Principal Component Analysis (PCA), Histogram of Oriented 

Gradients (HOG), Pretrained networks (PNNF) and Neural Network (NN) as a 

reference value. 
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Unsupervised classification 

A set of experiments was performed to create an unsupervised classification 

(Figure 23).  

 

Figure 23. Results of unsupervised classification produced by various algorithms and feature extraction 

methods. Applied algorithms: K-mean – k-mean algorithm, AC – agglomerative clustering. Feature extraction 

methods: HOG – histogram of oriented gradients, PNNF – pre-trained neural network. No meaningful results 

were gained within 5 classes chosen according to the class labels.. 

As shown in figure 23 – the unsupervised classification has failed to classify the 

rock types correctly. The clusters were analyzed for each class, and it was found that 

the clusters are separated mainly by the texture and color attributes. As seen in figure 

24, the images have some lamination caused either by cracks and mechanical damage 

or by natural reasons (dissolutions and laminations). Different rock and structure types 

were set in the same cluster. 



76 

  

 

 

Figure 24. Example of classification based on AC clustering with Neural Network features from one class. 

All of the images belong to the same class produced by an algorithm. As can be seen, various images and textures 

are placed in the same class. 

The clustering results were also applied to hard-to-classify for CNN part data 

(Figure 25). It can be noted that both algorithms made the right decision and separated 

oil-saturated parts of the crop from other samples. Unfortunately, they both included 

a shadowed laminated sandstone sample to the same group, meaning the separation 

was primarily made by color and is unsuitable for further application.  
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Figure 25. A comparison of different feature-based clusterization algorithms on a hard-to-classify for 

CNN part data. Clusterization methods (Mean Shift and K-mean) compared to convolutional Neural Network 

(NN) classification. The clusterization was performed on features extracted with Principal Component 

Analysis (PCA). The orange box on the mean shift and k-mean algorithm results highlight misclassification 

regions. 

 

4.1.3. Deep learning-based classification 

Several neural networks were trained for each of the datasets. Each time a 

learning rate, set of augmentations and optimizer were selected during a set of 

experiments. 

Each architecture was trained on the same set of data. A set of parameters 

observed to verify the stability in results determination and generalization of the 

networks: 

1) The loss curves for training and validation sets match. 

2) A test set classified with the same or higher metrics rates. 

3) The prediction results on a new data set are reasonable at an expert's first 

glance. 
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Rock typing classification 

The first set of experiments aimed to search for the best architecture that could fit 

the classification problem. During the search, several architectures were assembled 

(figure 26): AlexNet (Krizhevsky et al., 2012), ResNet (He et al., 2015), GoogLeNet 

(Szegedy et al., 2015), VGG16 (Simonyan and Zisserman, 2014).  

 

Figure 26. Sketch-ups of different architectures: 0 – convolution layer, 1 – activation layer, 2 – inception 

module, 3 – average pooling, 4 – batch normalization, 5 – max pooling, 6 – zero padding, 7 – residual module, 

8 – drop-out layer, 9 – layer composition, 10 – dense layer.   

These architectures were exhaustively researched. Over 100 experiments were 

launched. Different hyperparameters were tested and modified, including loss 

functions, optimizations and layers. Each set of experiments concluded with inspecting 

classification results on a validation set. In addition, a set of randomly chosen features 

extracted from different layers was visually analyzed (Figure 27). 
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Original AlexNet VGG16 ResNet GoogLeNet 

     

Figure 27. An image and extracted features from a random layer of different CNNs 

After the analysis of extracted features and validation metrics calculation, the 

images were sent to classification with the LIME package. Random image parts are 

consequently sent to the CNN, and a region that gives the most classification value is 

evaluated (Figure 28).  

Only AlexNet activated a limited number of filters from a large number in all 

lithotypes (only one filter out of four was activated in figure 27). In other architectures, 

the filters have the same weight sign for most lithotypes, but each filter selects features 

for each lithotype. ResNet and VGGNet concentrate on the grain size of the lithotype 

and a texture, as each filter emphasizes the granularity of an image. ResNet does not 

extract information from images when the size of grains is small (the siltstone and 

argillite images do not have significant weight fluctuation). However, VGGNet 

attempts to extract information in all cases. GoogLeNet activations concentrate more 

on texture classification. The granularity of intermediate layers is small in GoogLeNet; 

it can be seen only in the massive sandstone and granite. More examples can be found 

in a published article (Baraboshkin et al., 2020). 

Regarding classification area countering - all the networks detect the lithotype 

based on several different-size image regions (Figure 28), which sometimes can cause 

misclassification. All CNNs classified the presented examples on the first row as 

laminated sandstone. In contrast, the second row has been classified as siltstone by most 

architectures except VGGNet, which classified it as laminated sandstone. That 

happened because most of the examined patches of an image are like siltstone. The 

VGGNet made such a prediction because the patches it examined contained sandstone 

parts and fine-grained siltstone. 
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Figure 28. Countered image regions are important for a CNN classification acquired with the LIME 

package. 

With such an experimental setup, the best optimization method was Adam 

(Adaptive Moment Estimation), with the learning rate starting at a level of 0.01. As a 

result of experiments, the following average metrics were gained on the validation set 

with the best-chosen hyperparameters (Table 1):  

Table 1. Metrics gained with different CNN architectures on a test set. 

Metric AlexNet VGG16 GoogLeNet ResNet 

Precision 0.95 0.96 0.95 0.93 

Recall 0.95 0.96 0.95 0.93 

F1 0.95 0.96 0.95 0.93 

 

The neural network performances were compared based on new data with an 

expert classification checkup within 44 m of the core. The metrics were calculated 

based on the expert’s classification check and can be found in table 2. 

Table 2. Metrics gained with different CNN architectures on new data with expert validation. 

Metric AlexNet VGG16 GoogLeNet ResNet 

Precision 0.65 0.63 0.72 0.70 

Recall 0.53 0.51 0.53 0.60 

F1 0.58 0.56 0.57 0.56 

As can be seen, most data were classified correctly with GoogleNet and ResNet 

architectures. The highest recall rate has ResNet architecture, meaning it has the highest 

true positive rates.  
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Figure 29. Training loss curves for AlexNet and ResNet architectures. 

Also, it appeared during experiments that ResNet - a type of architecture doing 

well in the classification of various rock types in case of a small number of examples 

(below 100 images). As ResNet is robust for small datasets and provides the highest 

true positive rate, it will be used further in such tasks. 

Sedimentological description 

Different ResNet architectures were compared during model preparation. The 

final metrics for ResNet-101 architecture are presented in table 3. The main issue during 

the training was a highly imbalanced class. To fight this issue, oversampling and class 

weighting techniques were used, described in section 3.4.3.  

Table 3. The best metrices for the sedimentological dataset gained with ResNet-101 architecture on a test 

set. 

Metric ResNet-101 

Precision 0.778 

Recall 0.771 

F1 0.770 

The performance of an algorithm was measured on a test set (Figure 30). The 

analysis confusion matrix provided exciting insights into the data. As seen in figure 30 

– some classes are misclassified within the same rock type (e.g., some Htb are referred 

to as Hs), and some cases are mixed between rock types (e.g., Sd referred to as Hs). 

Such cases were analyzed, and it appeared that these classes are very similar to the 

predicted one (e.g., Hs), and in 88% of cases, they shouldn’t be counted as errors as 

these images contain both classes (Figure 31). 
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Figure 30. A confusion matrix for the ResNet-101 lithotyping algorithm. Hs – laminated shaly sand; Hsb 

– laminated shaly sand with bioturbation; Htb – laminated sandy shale with bioturbation; Ht – laminated sandy 

shale; Ml – laminated mudrock; Mm – massive mudrock; Sb – bioturbated sandstone; Sd – deformed sandstone; 

Sl – laminated sandstone; Sm – massive sandstone; Sr –rippled sandstone; Td – deformed siltstone; Tl – laminated 

siltstone; Tm – massive siltstone. 

Such misclassification could be overcome with label smoothing (Müller et al., 

n.d.). For each label with several classes, a label should be smoothed with equal 

probabilities distribution. Another way to overcome the problem is to create a set of 

algorithms and get a mean classification result with maximum votes from a certain 

class. 
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Ht (labelled) – Hs  (predicted) Sb (labelled) – Hs (predicted) 

  

Ht (labelled) – Hs (predicted) Hs (labelled) – Hs (predicted) 

Figure 31. Different samples were defined as laminated shaly sand (Hs) lithotypes by the ResNet-101. Hs 

– laminated shaly sand, Ht – laminated sandy shale, Sb – bioturbated sandstone. These examples truly contain 

both classes as they have multi-labels. 

New data was interpreted by an algorithm to check the final accuracy of a model. 

The data consisted of a new core with an overall length of 50 m. An expert reviewed 

the results and made some changes in the interpretation (added layers, changing 

boundaries, etc.) (figure 32).  
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Figure 32. Comparison of algorithm (left) classification and expert’s (right) classification correction.  

Total estimated time for classification with an expert’s changes application – 40 

minutes, depth referencing included. The traditional way of such classification would 

take 5 hours from an expert. The results of the evaluation are presented in table 4. 
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Table 4. The best metrics for the sedimentological dataset gained with ResNet-101 architecture on a new 

data 

Metric ResNet-101 

Precision 0.72 

Recall 0.70 

F1 0.71 

As seen, an expert made the same number of corrections as in the validation set. 

After analysis of a confusion matrix based on an expert, the same trend was observed 

in misclassification. Most errors were made within a structure, but not within a rock 

type. 

 
Figure 33. Confusion matrix for expert classification made over CNN classification. The true label 

represents the final expert decision made after classification by an algorithm. Hs – laminated shaly sand; Hsb – 

laminated shaly sand with bioturbation; Htb – laminated sandy shale with bioturbation; Ht – laminated sandy 

shale; Ml – laminated mudrock; Mm – massive mudrock; Sb – bioturbated sandstone; Sd – deformed sandstone; 

Sl – laminated sandstone; Sm – massive sandstone; Sr –rippled sandstone; Td – deformed siltstone; Tl – laminated 

siltstone; Tm – massive siltstone.  

To further understand the abilities of ResNet-101 architecture, features from the 

last convolution layer were extracted and analyzed for different classes in the dataset 
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(figure 34). As seen in a figure, each filter extracts different information from the image. 

The filters on the first-row extract texture information, and the filters on the second row 

– collect structure information. 

Lith. Original Extracted features LIME 

Sl 

   

Hsb 

   

Tm 

   

Mm 

   

Figure 34. Some feature extraction examples in different lithotypes classified by ResNet-101. Hsb – laminated 

shaly sand with bioturbation, Mm – massive mudrock, Sl – laminated sandstone, Tm – massive siltstone. The following 

columns persist Lith. – lithotype, Original – original image, extracted features – randomly selected feature maps, LIME 

– image processing with application of Local Interpretable Model-agnostic Explanations, green areas indicate positive 

input for classification, blue – negative ones 

Geotechnical description 

A ResNet architecture was also used for geotechnical description. Two models 

were developed with it.  
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3-class geotechnical description 

The first model trained on the GTD-1 (geotechnical description – 1) dataset aimed 

to detect the core condition. It contained three classes: crushed core, intact core, and 

cracked core. The trained algorithm performed well on test and validation sets (table 5, 

figure 35). 

Table 5. The best metrics for the first iteration of the GTD-1 dataset gained with ResNet-101 architecture 

on new data. 

Metric ResNet-

101 

Precision 0.887 

Recall 0.885 

F1 0.886 

As seen in figure 35, the same as in the sedimentological dataset, the CNN 

classify some examples differently. It is also sometimes mixing intact core and cracked 

core. 

 

Figure 35. A confusion matrix for the ResNet-101-based GTD-1 interpretation algorithm inference on a 

validation set. 
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These performance issues should be eliminated over time when more data is 

acquired (at least more than 1000 examples per class). The developed algorithm was 

applied to different data and proved it stability in many cases. Although it was trained 

on 6,6 cm core samples, it also works on 10 cm core data from the sedimentological 

dataset. This model is domain-agnostic as the features developed by the layers are pretty 

similar for any rock image. 

 

Figure 36. The GTD-1 model is applied to new data from different domains. Sedimentological-like dataset 

to the left, a new dataset to the right 
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5-class geotechnical description 

The second model trained on the GTD-2 dataset was also validated with the 

results described in table 6. 

Table 6. The best metrics for the GTD-2 dataset gained with ResNet-101 architecture on test data. 

Metric ResNet-101 

Precision 0.849 

Recall 0.839 

F1 0.832 

The validation results on new data were lower than on a test set and presented in 

figure 37 and table 7. 

 

Figure 37. A confusion matrix for the ResNet-101-based GTD-2 interpretation algorithm inference on a 

validation dataset. 

The confusion matrix (figure 37) shows that some labels were misinterpreted. 

Some of the “Mylonite” was labelled either as cataclasite (4 cases) or fracture (2 
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samples). The same is for “Cataclasite”. As can be seen, most of the “Quartz” and “Non-

tectonized” labels were classified correctly. The weighted metrics for this validation set 

a presented in table 7.  

Table 7. The metrics for the GTD-2 dataset gained with ResNet-101 architecture on a validation data 

Metric ResNet-101 

Precision 0.77 

Recall 0.76 

F1 0.76 

So, the validation didn’t go well as in the GTD-1 dataset. This is caused by multi-

label (dual sense) classes (the image has several labels which are related and equally 

correct) which especially can be noted when new data was used to check the trained 

network (Figure 38). 

 

Figure 38. An example of classification result with CNN trained on GTD-2 dataset. The percentage shows 

probabilities. The image contains both quartz (the core is white) and a fracture zone (there are several cracks on 

the image), so the image has multiple labels. 

The idea of a multi-label class is well-illustrated in figure 38. The probabilities 

are distributed in the way they should be. First, the algorithm “sees” the fracture in the 



91 

  

 

middle, then it detects that the fracture is in the quartz vein, and finally, two intervals 

between it are presented as an intact core. Suppose the dataset will be relabeled in two 

or three ways with a different meanings. In that case, it will be easier to train several 

simple yet stable algorithms (e.g., one is for detecting the core condition, the second is 

detecting quartz, and the last is for mylonite \ cataclasite detection). 

The features from the algorithm were also analyzed, and a different set of filters 

were observed (figure 39). A filter for detecting vertical structure is presented in the 

extracted features' first row, and the texture is detected in the second row. Unlike in the 

sedimentological dataset – the LIME algorithm could detect the regions which could 

cause misclassification (blue colored in figure 39) 
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Lith. Original Extracted features LIME 

Cataclasite 

 
 

 

Fracture 

 
 

 

Mylonite 

 
 

 

Non-

tectonitzed 

 
 

 

Quartz 

 
 

 

Figure 39. Some feature extraction examples in different lithotypes. Lith. – lithotype, Original – original image, Extracted 

features – randomly selected feature maps, LIME – image processing with an application of Local Interpretable Model-agnostic 

Explanations, green areas indicate positive input for classification, blue – negative ones 
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Chapter 5. Segmentation 

The segmentation task may be solved in different ways. A traditional approach to 

the segmentation problem is to create superpixels, regions of similar color connected 

with semantic meaning. Another algorithm may further classify those regions. A set of 

methods is presented here to make a semi- and supervised segmentation of images 

compared to the traditional approach. In this work, the segmentation was used to solve 

several tasks. First – to extract the core column from an image; second – to classify 

different features on an image. The core extraction is aimed to help in those cases when 

a user provides a core box with some amount of core presented in columns on an image. 

These columns should be marked within a mask to allow the machine “understand” the 

image and extract the columns from a box and reference depths. Similarly, another task 

was solved – to classify the image into different rock types.  

5.1. Results and discussion 

Two models were developed during the research. One is for core column 

detection inside the core box image, and the other is for sand and shale detection, which 

is used for NTG (net-to-gross) calculation. Such datasets usually absent open data 

sources and should be manually labelled.  

5.1.1. Datasets 

The dataset previously collected for classification was reused for manual pixel-

by-pixel labelling.  

The labels are stored in the form of a mask –a greyscale image with the same 

height and width as the original image. Each pixel in that greyscale image represents 

the label. For binary cases – they are two types of pixels – the darkest (traditionally – it 

equals 0) and the brightest (255). 

Box segmentation 

Usually, the core column image is stored inside a core box image the last should 

be analyzed to extract the image from the box. Regardless of image size and resolution, 

all of them were labelled, as shown in figure 40. 
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Figure 40. Examples of the labelled datasets for core column extraction. A – the original image; B – the 

produced mask. 

A set of 1000 images was labelled. 

Rock segmentation 

In the same way as core boxes, the 10x10 cm images from the rock typing dataset 

(see chapter 4.1.1) were labelled. Semi-supervised methods can be applied. The dataset 

was labelled with the use of a watershed algorithm implemented in 

PixelAnnotationTool (PAT) (Bréhéret, 2017) (Figure 41). Each type of rock has its own 

label 15 for sandstone and 33 for shale. 

 

Figure 41. Dataset labelling example for rock type segmentation task gained with PixelAnnotationTool 

(Bréhéret, 2017). A – original image, B – human-readable format (yellow – sandstone, orange – shale, C – 

machine-readable labelling format (barely visible grey – sandstone, black – shale). The size of the sample is 

around 10 cm. 

A total amount of 400 images were labelled this way.  
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5.1.2. Core box segmentation 

As experiments with the classification dataset proved that the deep-learning 

algorithm could be successfully applied to rock-type detection, the new datasets were 

also used to train CNNs for semantic segmentation. A U-Net architecture was used with 

the Res-Net backend. Both architecture and backend (as discussed in section 4.1.3. ) 

proved to have a great generalization ability on a small dataset. 

Preprocessing 

The data should be represented in HxWxC form to train a CNN for semantic 

segmentation, where H – is the height of an image, W – is the width, and C is for 

channels. In a color image, channels are represented in RGB format. In the case of 

classification, each channel should be presented as only one label, as the channels 

represent classes. 

Thus, a special framework for data preparation was developed. Various datasets 

can have different labels. Each label covers some number of pixels of the image. It is 

important to preprocess such labels correctly into a multidimensional array with a 

number of channels and classes equal to the number of objects segmented plus one more 

dimension for background; that is what the framework does. 

Box segmentation 

The results of this section were published in (E. E. Baraboshkin et al., 2022a). 

The usual solution for the problem of automated rock classification described in 

Chapter 4 is based on initially prepared core images. Sadly, the preparation process may 

include a lot of human work, including image gathering, acquiring depth information, 

cropping of the image, and extracting the core columns. Thus, much time should be 

spent on this, even if only 15 core box images are processed. A good way to optimize 

the time spent on this manual work is to build an algorithm which will do this work for 

the human. First, the algorithm was trained on the provided dataset described in section 

5.1.1. (Box segmentation subsection). The results of these experiments are described in 

figure 42. 
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# 

Original image First setup CNN Second setup CNN  Metrics 

w/o TLA TLA 

1 

   

IOU: 

0,752 

F1: 

0,859 

F2: 

0,801 

Recall: 

0,976 

Precisio

n: 

0,766 

IOU: 

0,855 

F1: 

0,922 

F2: 

0,903 

Recall: 

0,955 

Precisio

n: 

0,891 

2 

   

IOU: 

0,371 

F1: 

0,541 

F2: 

0,425 

Recall: 

0,993 

Precisio

n: 

0,372 

IOU: 

0,672 

F1: 

0,804 

F2: 

0,721 

Recall: 

0,992 

Precisio

n: 

0,675 

3 

   

IOU: 

0,285 

F1: 

0,444 

F2: 

0,664 

Recall: 

0,286 

Precisio

n: 

0,993 

IOU: 

0,960 

F1: 

0,980 

F2: 

0,973 

Recall: 

0,992 

Precisio

n: 

0,968 

 

Figure 42. The comparison of an algorithm trained with two data setups. The rows contain 

different types of core boxes. 1,2- taken by hand with a camera, 3 - taken with a camera placed on a core-

imaging stand. 

 

Unfortunately, when it was tested on new data from the other distribution, the 

results were not impressive (the detailed metrics can be found in figure 42, first setup 

column, the mean IOU on the provided examples is 0,469). An application of the 

developed augmentation technique called TLA (template-like augmentation) is 

described in section 3.4. was tested both on humans and during the training period. A 

set of images from the same template were generated to test the effectiveness of the 

TLA method (figure 43). A questionnaire has been made on different social networks 

using this image set. The results of the questionary are presented in figure 44. 
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Figure 43. A set of images was prepared with the TLA technique. 

A questionary has been made based on this picture. The questionary 

results are presented in figure 44. 

Figure 44. The results of a 

questionary on the generated 

images are described in figure 43; 

the x-axis is the image number, and 

the y–axis is the number of votes. 

42 respondents took the survey. The questionary results demonstrate an overall 

confusion of humans within the images as the correct option (number 4, figure 43) was 

chosen the same number of times as the augmented version (rest of images, figure 43). 

It is important to note that 7 geologists also participated in this questionary and only 4 

made the “correct” choice. 

U-Net (Ronneberger et al., 2015), with ResNet-50 backbone available in the 

segmentation_models library, was used. Compared with other models (such as PSPNet 

(Zhao et al., 2017) and DeeplabV3 (Chen et al., 2017)), ResNet-50 shows the same 

metric values (discussed in the Results section). As the initial setup for neural network 

training, the hyperparameters were set to the following values: initial learning rate - 3e-

4, batch size - 16, number of epochs - 15.  The ReduceLROnPlateau was used as a 

scheduler to adjust the plateau's learning rate.  The Early Stopping procedure was used 

to control the overfitting of the model. The complex loss function was used to train the 

model – binary cross-entropy and Jaccard loss with equal contribution to the 

optimization process. 
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Figure 45.  Loss and IOU curves for different data setups.  First setup – the initial dataset separated by 

training and validation dataset, second setup – the training dataset expanded with TLA data. 

Three groups of data conditions were analyzed during experiments: a dataset 

without TLA augmentation (first setup, which included an augmentation from the 

Albumentation library), a composed dataset with TLA and non-augmented images 

(second setup), and a dataset with TLA only (third setup). 

In the experiments, it was noted that the CNNs segment the images differently. 

The first setup training tended to segment most new images as a target value. The 

second setup training provided the best results during the visual screening of any data, 

whether similar to the training set images or new images. The third setup worked 

properly only on a few images; thus, just two first settings are compared here. The 

application of the TLA algorithm increased the segmentation results on a new set of 

data (Figure 42, second setup, mean IOU on the provided examples is 0,829) in 1,6 

times. 

A statistical approach was designed to filter out the “negative” and “positive” 

examples during image postprocessing to improve the algorithm's effectiveness. The 
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bounding box approach implemented in the OpenCV library was used to extract the 

core from the box. It produced bounding boxes in the following way: the starting 

coordinates of a box – x and y and the bounding box’s width and height. There are 

several characteristics of bounding boxes to look at. Firstly, the number of boxes in 

images varies from 1 to 6. This information was used to roughly evaluate the 

performance of an algorithm with simple bounding box counting. Secondly, the core 

can be found at the upper part of an image, so we can use this information to filter some 

boxes by the y coordinate. In combination with bounding box width and height, we can 

have several easy-to-estimate statistics that can increase the core extraction results for 

the user and further increase the recall (figure 46, figure 47).  

 

Figure 46. Distribution of x and y coordinates for “good” core bounding boxes detection examples. 

 

Figure 47. Distribution of x and y coordinates for “bad” core bounding boxes detection examples. 

Based on statistical analysis, different cleaning-up approaches were developed: 

1) Based on a median width and height of a core. 

After mask generation, the bounding boxes detected with the OpenCV 

library and their respective median height and width are calculated. After that, 

the median can be used to calculate boundary conditions for filtering.  

xt_up = x * n; xt_bot = y/n,  

where n – is a manually set coefficient (varies from 1.2 to 1.5), x – median 

width, y - median height, xt_up - is the threshold for the upper boundary of a 

core mask width, and xt_bot – is the bottom boundary of width.  

The same algorithm can be applied to height. 
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As a matter of demonstration – there are 10 bounding boxes on an image 

were detected. The calculated median width was 430, so after filtering, 5 core 

columns were left as the width of the others was either lower or higher than the 

threshold set (from 358 (xt_bot) to 516 (xt_up), since coefficient n was equal to 

1.2). 

 

2) Based on a width of an image threshold ratio (the core width cannot be less than 

this ratio).  

gt = xi/m, 

where gt – is the global image width ratio, xi – is the image width, and m 

– is the manual set coefficient (varies from 50 to 200). 

For example, if the image width is 4000, the m coefficient is set to 100, so 

the minimum core width is 400. Followed by the previous demonstration, the 

same columns can be filtered out and receive 6 bounding boxes as all of them 

coincide with the minimum core width threshold (gt).  

Both methods were used after experiments to increase the results for prediction 

and inform a user about the current segmentation status. The core image extraction 

procedure was shortened by 20 times with the developed algorithm. Also, as the 

bounding box is connected to the core's physical length, the applied algorithm allowed 

ease and improved the process of depth referencing. 

As this method showed promising results, a small experiment was done on the 

rock segmentation dataset described below. 

5.1.3. Rock type segmentation 

As a small experiment to test a hypothesis – an algorithm for segmentation was 

tested for the ability to segment the rock types. The results were published (Baraboshkin 

et al., 2019). Several approaches were tested: unsupervised segmentation based on 

super-pixels construction and supervised approach based on deep learning. 
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Super-pixel-based segmentation 

Superpixel segmentation allows the extraction of information in an unsupervised 

way. An expert should further decide which kind of information each segment belongs 

to. It could be either a rock type or some other characteristic. 

 

Figure 48. Comparison of different segmentation algorithms. AC – agglomerative clustering. FH - 

Felzenszwalb-Huttenlocher. QS - Quick Shift. SLIC - Simple Linear Iterative Clustering. RAG - Region Adjacency 

Graph. SSh - Selective Search. 

As seen in figure 48, each tested algorithm shows different results except the 

SLIC algorithm, which is produced due to its nature of equally-sized regions, except 

those much different from others which can be used for further interpretation. 

Unfortunately, as these regions should be further processed, the methods are not 

suitable for fully automated description as the system based on them will be too 

complex. 

Deep-learning-based segmentation 

In the case of rock segmentation, the deep learning approach allowed the 

classification of the images on a pixel-by-pixel basis in a fully automated way (figure 

49). Even with a small dataset, the classification results allowed us to calculate the NTG 

ratio without much human involvement.  
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Figure 49. An example of CNN-based segmentation. The results allow 

calculating the NTG ratio after training on a small dataset (only 400 images) 

 

 

As can be seen in figure 49 – most of the structures are separated correctly, but 

an algorithm may misinterpret some shadows as shales. Also, thin layers are not 

classified correctly in most cases.  

Testing on a new dataset 

The trained and tested algorithm was applied to new data to see the potential of 

their application on the new data (figure 50). As can be seen, the algorithms can 

segment various features on an image. Unfortunately, for all the super-pixel-based 

methods, additional postprocessing is required. CNN’s results are inspiring, but the 

manual labelling took time. The classification techniques (discussed in chapter 4) are 

much less time-consuming and more versatile in data preparation. 
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Figure 50. A segmentation example with different algorithms implementation. AC – agglomerative 

clustering. FH - Felzenszwalb-Huttenlocher. QS - Quick Shift. SLIC - Simple Linear Iterative Clustering. RAG - 

Region Adjacency Graph. SSh - Selective Search, CNN – convolutional neural networks. Various features can be 

found on an image: C – cracks, L – layers. Colors on the CNN image: yellow -sandstone, purple – cracks, orange 

– argillite. 

5.2. Summary 

Various segmentation algorithms were tested to solve different tasks: core box 

image understanding to ease the core column preparation process and different rock 

segmentation types.  

The core box segmentation was very useful in data preparation combination, but 

as the available images didn’t describe the variation of core boxes sufficiently – it failed 

on new data. A new approach for data augmentation was developed to improve the 

results -  (E. E. Baraboshkin et al., 2022a), which helped to improve the core columns 

extractions on most new examples sufficiently. 

Rock segmentation task may be useful, but due to the hard data preparation 

process (described in sections 5.1.1. and 3.2. ). It is not suitable for production purposes 

in comparison to classification. 
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Chapter 6. System construction 

It is sometimes difficult to develop a good algorithm for research purposes, but it 

is even harder to turn this algorithm into a production-ready product. 

6.1. Results and discussion 

A set of system architectures were tested. Each of them has its benefits and 

drawbacks. The architecture unites both segmentation and classification algorithms. 

The segmentation is used to extract a core from core box images and do automated 

depth referencing, and classification is applied to classify the core into different classes. 

6.1.1. A locally installed application 

The first architecture was developed using pure python and a local launcher. Its 

GUI is presented in figure 51.  

The main pitfall of such a system is that the whole process of algorithm 

calculations and data is stored and processed on a personal laptop with random 

characteristics. 

The second problem is that such an implementation requires a lot of space to store 

the program and trained algorithms.  

Finally, it is hard to check a license in case you have some commercial interests. 

Also, it is hard to update and maintain such a system due to variable system installations 

and the monolithic structure of the app (the whole program works in one way within 

one process).  

Still, such an approach has its benefits, like it doesn’t require a constant internet 

connection which can be a trouble for some users, and there is no need to spend a lot of 

money to maintain servers that will store all the information. 

As most of the software currently made supports cloud solutions, the user could 

operate with the data from any point around the world and collaborate with his 

colleagues, a decision was made to prepare a prototype that will work as a web 

application. 
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Figure 51. A pure python program with algorithms implementation. 

6.1.2. A web application 

The web application was developed with the application of Rest-API protocols. 

These protocols are widely used in all browsers, and almost any modern web 

application has them. As mentioned before, the web app doesn’t require installation and 

any user who visits the www-site will be able to use it. 

The app was also built as a monolith, so a user should wait some time to process 

his images, and only one processor could do that. But, due to a server deploy, the 

number of simultaneous connections increased, which enables processing many more 

images within different users. No database was created, so the user could only see the 

result.  

It was also easy to modify the app because all users got the required update. At 

the same time, if an update has some bug, all users would suffer, and if the monolithic 

system crushes, it has to recover for a long time. 
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Another pitfall was in the CNN architecture update – it wasn’t possible to update 

the architecture “on the fly”; only reboot and immediate logout of all users were 

required. 

 

Figure 52. A web-app prototype. 

6.1.3. Microservice web application  

Another way to operate the system with much more flexibility is microservices-

based software architecture. This time command of 6 people developed the system, and 

each member had a different function. 

In such a case, many virtual or physical servers are required. Each service which 

will be created will have its server, so the most significant disadvantage here is the cost 

of such infrastructure.  

Four services were created. Authentication service compares the information user 

entered with one in the database and registers the user if required. The classification 

service accepts the image path and returns the resulting classification. Segmentation 

takes the path of an image, creates a mask, and returns the path to the mask. The 

backend service operates the internal processes within and exchanges data between 

services.  

A huge modification was also made to create a database, separate object storage 

vault (for images and models), and task-management system. Each of these must be 

deployed on different machines. 



107 

  

 

The benefit of such a system is that it can be easily scaled, and in case some 

services fall, they could be recovered much faster, and, in most cases, the user won’t 

notice it. 

The final GUI examples are shown in figures (figure 53, figure 54). 

 

Figure 53. A mix of python and additional frameworks implementation. Core box extraction step.  

 A significant modification was made to the results editing. A user could modify 

segmentation and classification results which allow for checking the results and adding 

some specific classes if they were not used in the model. 

 

Figure 54. A mix of python and additional frameworks implementation. Core classification step. 

The developed system increases the geologist performance by a factor of 7 which 

was proved by tests in production (E. Baraboshkin et al., 2022; Baraboshkin et al., 
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2021a, 2021b; E. E. Baraboshkin et al., 2022b). A geologist spent only 40 minutes on 

depth referencing and description with editing instead of 5 hours. 
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Chapter 7. Conclusions 

The work introduces a new method for applying convolutional neural networks 

(CNN) for geological image understanding. The method was tested on different datasets 

taken under different conditions (sect. 4.1.3. ). The accuracy of such a method could be 

up to 95% which may depend on a geologist’s opinion. The developed algorithm could 

easily be applied or modified according to the new conditions. Also, a comparison of 

CNN with “traditional” algorithms was made (sect. 4.1.2. ). Most “traditional” 

algorithms failed to perform an outstanding description which would be at least slightly 

comparable to the geologist’s work. The applied CNN performed outstanding results in 

different tasks (4.1.3. ). 

A lot of requirements should be met to make an automated core description with 

CNN: 

1) There should be a lot of image data. 

2) The dataset should be clean. 

3) The labels should be strict. 

4) The images should be of fine quality (at least 80 DPI). 

In most cases, a geologist with a perfectly prepared database will have to rework 

the database several times before the above requirements are met (sect. 4.1.1. ), as the 

databases are usually designed on a larger scale. 

It was shown that multi-label classes decrease the overall CNN performance and 

may cause a misleading conclusion on the machine learning application in geology 

(4.1.3. , 5-class geotechnical description). 

Every developed classification CNN was “unboxed” with modern visualization 

techniques (the description of such techniques in sect. 2.4.2. ).  

Each result is provided by a stable classification CNN model that was checked 

and approved by an expert on a new dataset. 

CNN can be applied both for the classification and segmentation of an image. The 

latest is specifically useful in two cases: core column image detection and pixel-by-
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pixel classification, but the latter is time-consuming in data preparation. The core 

column segmentation allowed 20 times the speedup of core extraction from an image 

(5.1.2. ). 

A set of unsupervised algorithms was applied to both segmentation and 

classification tasks. Unfortunately, they failed due to the unreasonable complexity of 

such algorithms in pre- and postprocessing. 

The following classification models were developed: core condition description 

(3 classes), sedimentological description (14 classes), and geotechnical description (5 

classes). These models were applied both in hydrocarbon recovery and mining 

industries.  

Two models for segmentation were developed: core box segmentation (2 classes) 

and rock type segmentation (3 classes). The first model is universal for any data. A 

special augmentation technique (3.4. ) was introduced to increase the model's 

generalisation ability. The second model was only tested on validation data and 

probably should be further developed in case of production needs. 

The developed models were united in a system that helped geologists describe the 

core much faster. The segmentation model helps to detect the core on a core box image, 

and the classification model classifies the images according to the chosen model. 

The developed algorithms are implemented inside a system as the software allows 

speeding up the description by a factor of 7. 
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Chapter 8. Recommendations for future research 

A broad area of research in the field of automated core description is still 

uncovered. 

It is a question of future research on how the performance of an algorithm changes 

if the multi-label class is separated into several classes, and several CNN would be 

trained on top of it. A special algorithm could be developed to use such multi-label 

trained CNN to create semi-automated labelling. 

An interesting task is semi- and unsupervised labelling applied to rock-type 

classification. This work failed to create an unsupervised algorithm, but it was tested 

on a very small data quantity. The results may change if the data is sufficiently large (at 

least 10000 images per class). 

Another way to improve the classification and create a better classification 

algorithm is to simultaneously use multimodal data such as well- and core logs, UV 

images, and daylight images. Currently, it is hard to reference these data to each other 

as it either missed or corrupted. 

The developed core box segmentation algorithms may be further improved by 

adding more labels to the dataset. The labels could be additionally used for data 

extraction like depth referencing and coring direction. 
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