
Skolkovo Institute of Science and Technology

APPLICATIONS OF DIFFERENTIAL EQUATIONS
AND REDUCED-ORDER MODELING FOR DEEP

LEARNING

Doctoral Thesis

by

TALGAT DAULBAEV

DOCTORAL PROGRAM IN
COMPUTATIONAL AND DATA SCIENCE AND

ENGINEERING

Supervisor:
Ivan Oseledets, Full Professor

Co-supervisor:
Andrzej Cichocki, Full Professor

Moscow — 2023
© Talgat Daulbaev 2023

i

I hereby declare that the work presented in this thesis was
carried out by myself at Skolkovo Institute of Science and
Technology, Moscow, except where due acknowledgement
is made, and has not been submitted for any other degree.

Talgat Daulbaev
Professor Ivan Oseledets

Professor Andrzej Cichocki

ii

Abstract

In this thesis, we explore the various ways in which differential equations and
reduced-order modeling can be applied in the context of deep learning. The
work is divided into two main parts.

The first part is about neural ordinary differential equations, a type of neu-
ral network architecture that uses systems of ordinary differential equations
as a fundamental building block. We propose a new interpolation-based algo-
rithm for efficient and memory-effective training of these networks, examine
the influence of different normalization layers on the performance of neural
ODEs, and demonstrate how the parametrization of the training solver can
affect the robustness of these networks.

The final two chapters investigate the application of classic techniques
from differential equations to standard neural network architectures. Specifi-
cally, we explore the use of reduced-order modeling techniques to accelerate
artificial neural networks, and the application of the active subspace method
for compression of these networks and the creation of universal adversarial
attack vectors.

iii

Publications

The body of this thesis is formed by four published papers and a single
preprint. A sign ? denotes equal contribution. All papers and major contribu-
tions of the author are as follows.

Chapter 2 expands on:
• Talgat Daulbaev, Alexander Katrutsa, Larisa Markeeva, Julia Gusak,

Andrzej Cichocki, and Ivan Oseledets
“Interpolation technique to speed up gradients propagation in neural ODEs”
Advances in Neural Information Processing Systems, 33, pages 16689-16700, 2020

Author’s contributions in the paper include: design, implementation,
theoretical analysis, experiments, draft, and revisions.

Chapter 5 expands on:

• Julia Gusak?, Talgat Daulbaev?, Evgeny Ponomarev, Andrzej Cichocki,
and Ivan Oseledets “Reduced-order Modeling of Deep Neural Networks”
Computational Mathematics and Mathematical Physics, 61(5), pages 774-785, 2021

Author’s contributions in the paper include: design, implementation, theo-
retical analysis, experiments, draft, and revisions.

Chapter 3 expands on:

• Julia Gusak, Larisa Markeeva, Talgat Daulbaev, Alexander Katrutsa, An-
drzej Cichocki, and Ivan Oseledets “Towards Understanding Normalization
in Neural ODEs”
ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equa-
tions

Author’s contributions in the paper include: theoretical analysis, draft,
and revisions.

Chapter 6 expands on:
• Chunfeng Cui, Kaiqi Zhang, Talgat Daulbaev, Julia Gusak, Ivan Os-

eledets, and Zheng Zhang “Active Subspace of Neural Networks: Structural
Analysis and Universal Attacks”
SIAM Journal on Mathematics of Data Science, 2(4), pages 1096-1122.

Author’s contributions in the paper include: implementation and experi-
ments.

iv

Chapter 4 expands a pre-print:

• Julia Gusak, Talgat Daulbaev, Alexander Katrutsa, Andrzej Cichocki,
and Ivan Oseledets “Meta-solver for neural ordinary differential equations”
arXiv preprint arXiv:2103.08561.

Author’s contributions in the paper include: experiments and ideas.

v

Acknowledgements

I want to thank everyone who has helped me throughout my journey to
graduate school and the creation of this thesis. The list of these people is so
huge that it would hardly fit on a page.

I am incredibly grateful to my supervisors, Prof. Ivan Oseledets and Prof.
Andrzej Cichocki. They are always supportive and kind, and my gratitude to
them can not be overestimated. In particular, Prof. Ivan Oseledets, who was
also a supervisor for my master’s thesis, taught me a tremendous amount of
things and showed me how research should be done.

I would like to thank my co-authors (in alphabetical order) Alexander Ka-
trutsa, Chunfeng Cui, Evgeny Ponomarev, Julia Gusak, and Larisa Markeeva.

Also, I want to say “thank you” to all my teachers from my school, Moscow
State University, and Skoltech. Especially, I am grateful to my first math
teachers Boris V. Antonov and Oleg I. Yuzhakov, and to my first supervisor,
the late Konstantin V. Rudakov.

Finally, I thank my family (especially my mum for her constant support)
and friends. Without them, this thesis would not exist.

vi

Contents

Abstract ii

Publications iii

Acknowledgements v

List of Figures ix

List of Tables xii

Notation xiv

Introduction 1

1 Preliminaries 3
1.1 Considered Machine Learning Problems 3
1.2 Neural Ordinary Differential Equations 5

1.2.1 Adaptive Runge–Kutta Solvers 6
1.3 Discrete Empirical Interpolation Method 10
1.4 Active Subspace Method . 11

2 Acceleration of Gradients Propagation in Neural ODEs 12
2.1 Introduction . 12
2.2 Related Work . 14
2.3 Interpolated Reverse Dynamic Method 14
2.4 Upper Bound on the Gradient Error Induced by Interpolated

Activations . 17
2.5 Numerical Experiments . 20

2.5.1 Experimental settings 21
2.5.1.1 Classification 21
2.5.1.2 Density estimation 21
2.5.1.3 VAE . 22

2.5.2 Density Estimation . 23
2.5.3 Variational Autoencoder 24
2.5.4 Classification . 25
2.5.5 Number of Chebyshev Grid Points 25

2.6 Conclusion . 27

vii

3 Towards Understanding Normalization in Neural ODEs 28
3.1 Introduction . 28
3.2 Background . 28
3.3 Numerical Experiments . 29

3.3.1 Accuracy . 30
3.3.2 (S , n)-criterion of dynamics smoothness in the trained

model . 30
3.4 Discussion and Further research 33

4 Exploring Robustness of Different Solvers for Neural ODEs 34
4.1 Introduction . 34

4.1.1 Related works . 35
4.2 Meta Neural ODE . 37
4.3 Experiments . 38

4.3.1 Motivation to explore solver parameterizations 38
4.3.2 Adversarial training on CIFAR-10 39
4.3.3 Neural Networks attack Neural ODEs 40
4.3.4 Neural ODEs attack Neural ODEs 40

4.4 Conclusion . 40

5 Reduced-Order Modeling of Deep Neural Networks 44
5.1 Introduction . 44
5.2 Background . 45

5.2.1 Maximum Volume Algorithm and Sketching 45
5.2.2 Computation of Low-Dimensional Embeddings 46

5.3 Method . 46
5.3.1 A Toy Example: MLP 47
5.3.2 Convolutional Neural Networks 48
5.3.3 Residual Networks . 49
5.3.4 Approximation error . 49

5.4 Experiments . 50
5.4.1 Singular values . 50
5.4.2 Fully-connected networks 50
5.4.3 Convolutional networks 52
5.4.4 Comparisons with other approaches 53

5.5 Discussion . 54
5.6 Related work . 56
5.7 Conclusion . 57

6 Active Subspaces for Neural Networks 58
6.1 Introduction . 58

6.1.1 Contributions . 59
6.2 Active Subspace . 60

6.2.1 Response Surface . 61
6.3 Active Subspace for Structural Analysis and Compression of

Deep Neural Networks . 62
6.3.1 Deep Neural Networks 62
6.3.2 The Number of Active Neurons 63

viii

6.3.3 Active Subspace Network (ASNet) 65
6.3.4 The Active Subspace Layer 66
6.3.5 Polynomial Chaos Expansion Layer 67
6.3.6 Structured Re-training of ASNet 70

6.4 Active-Subspace for Universal Adversarial Attacks 71
6.4.1 Universal Perturbation of Deep Neural Networks . . . 72
6.4.2 Recursive Projection Method 72

6.5 Numerical Experiments . 73
6.5.1 Structural Analysis and Compression 73

6.5.1.1 Choices of Parameters 75
6.5.1.2 Efficiency of the ASNet 75
6.5.1.3 CIFAR-10 . 76
6.5.1.4 CIFAR-100 . 77

6.5.2 Universal Adversarial Attacks 77
6.5.2.1 Fashion-MNIST 78
6.5.2.2 CIFAR-10 . 79
6.5.2.3 CIFAR-100 . 80

6.6 Conclusions and Discussions 80

Conclusions 85

Bibliography 86

ix

List of Figures

2.1 Example of potential instability of RDM as described in [55]. We took a
single ResNet-block with random weights as a right-hand side and solved
the initial value problem 2.1 with an initial condition z0 (left) and obtained
the image z1 (middle). After that, we integrated the same initial value
problem backward-in-time and obtained ẑ0 (right). Images on the left and
on the right should coincide in order to perform an accurate backward pass,
but they obviously do not. 13

2.2 Comparison of different schemes to make forward and back-
ward passes through the ODE block. Red circles indicate that
the activations are stored at these time points. Red arrows in-
dicate that during ODE steps, the outputs of the intermediate
layer are stored to propagate gradients. Green arrows corre-
spond to the steps with ODE solvers. Blue arrows correspond
to the steps with automatic differentiation through the stored
computational graph. Activations in Chebyshev grid points
(t0, τ1, τ2 and t1 in Figure 2.2c) are stored in the interpolation
approach during the forward pass. Chebyshev grid points do
not necessarily coincide with time steps of ODE solver, but
activations in these points can be recovered from the computed
activations with ODE solver. The stored activations are used
to approximate activations in the backward pass. The dotted
arrows in Figure 2.2c shows that activations in t0, τ1, τ2 and t1
are used to interpolate activations in the backward pass. . . . 18

2.3 The dependence of the IRDM gradients error in `1-norm with
respect to the number of nodes in the Chebyshev grid and
the tolerance of the DOPRI5 method. The output of the stan-
dard backpropagation performed for the DOPRI5 with 1e-7
tolerance was used as a ground truth. 23

2.4 Comparison of the IRDM with the RDM (baseline from FFJORD)
on density estimation problem for tabular dataset miniboone.
The number of points in the Chebyshev grid N used in the
IRDM is given in the legend. 24

2.5 Total number of f (z(t), t, θ) evaluations for density estimation
datasets. 24

2.6 Comparison of the number of right-hand side evaluations for
the IRDM and the RDM in training variational autoencoder. . 24

2.7 Experiments results in the image classification task. The re-
ported values are averaged over three trained models corre-
sponding to the considered tasks. 25

x

2.8 Comparison of IRDM (our method) and RDM on density es-
timation problem for toy datasets 2spirals, pinwheel, moons,
and circles in terms of test loss versus wall-clock training time.
Comparison results for every dataset are presented in the cor-
responding subplot. The number of points in Chebyshev grid
N used in the IRDM is given in legend. 26

2.9 Comparison of IRDM (our method) and RDM on density es-
timation problem for toy datasets 2spirals, pinwheel, moons,
and circles in terms of total number of the right-hand side
evaluations versus number of iterations. Comparison results
for every dataset are presented in the corresponding subplot.
The number of points in Chebyshev grid N used in the IRDM
is given in legend. 27

3.1 Illustration of how the choice of ODE solver and normalizations
during training implicitly affects the smoothness of learned
dynamics. Each subplot corresponds to the model trained
with a fixed ODE solver and normalization scheme. Models
within one row have the same type of training solver ((Euler,
n), n = 2, 16, 32 from top to bottom). Models within one col-
umn have the same normalization technique. For example,
subplot in the third row and the second column corresponds
to the ODENet4 model trained with (Euler, 32) solver with BN
after the first convolutional layer and LN after convolutional
layers inside ODE block. Lines of different style corresponds
to different types of test solvers. If model accuracy does not
drop when the more powerful ODE solver is used, we conclude
that, according to (S , n)-criterion, the model provides a smooth
dynamics. For example, the model (Euler, 32) BN-LN trains
a smooth dynamics, while (Euler, 2) BN-LN fails to do that.
Also, we can observe that to learn the smooth dynamics during
training, for some normalization schemes less powerful solvers
are required. If we compare BN-LN and BN-WN models, we
can see that the first one learns smooth dynamics when Euler
with n = 16 is used, but the latter one does that only for n = 32. 32

4.1 Robust accuracy of the model on MNIST dataset vs. different
values of parameter u in the 2-nd order Runge-Kutta solver
(see Table 4.1). 39

5.1 We plot singular values of all layers for CIFAR-10 for VGG-19
(left) and ResNet-56 (right). Each singular value is divided by
the largest one for this layer. One can see that most singular
values are relatively small. 52

5.2 RON for different LeNet models. 52
5.3 Accuracy and FLOP reduction for RON accelerated models on

CIFAR-10. 54

xi

6.1 Structural analysis of deep neural networks by the active sub-
space (AS). All experiments are conducted on CIFAR-10 by
VGG-19. (a) The number of neurons can be significantly re-
duced by the active subspace. Here, the number of active
neurons is defined by Definition 6.3.1 with a threshold ε = 0.05;
(b) Most of the parameters are distributed in the last few lay-
ers; (c) The active subspace direction can perturb the network
significantly. 60

6.2 (a) The original deep neural network; (b) The proposed ASNet
with three parts: a pre-model, an active subspace (AS) layer,
and a polynomial chaos expansion (PCE) layer. 66

6.3 Distribution of the first two active subspace variables at the 6-th layer
of VGG-19 for CIFAR-10. 68

6.4 Perturbations along the directions of an active-subspace direction and
of principal component, respectively. (a) The function f (x) = aTx−
b. (b) The perturbed function along the active-subspace direction.
(c) The perturbed function along the principal component analysis
direction. 71

6.5 Structural analysis of VGG-19 on the CIFAR-10 dataset. (a) The first
200 singular values for layers 4 ≤ l ≤ 7; (b) The accuracy (without
any fine-tuning) obtained by active-subspace (AS) and polynomial
chaos expansions (PCE) compared with principal component analysis
(PCA) and logistic regression (LR). 76

6.6 Universal adversarial attacks for the Fashion-MINST with respect to
different `2-norms. (a)-(c): the results for attacking one class dataset.
(d)-(f): the results for attacking the whole dataset. 81

6.7 The effect of our attack method on one data sample in the Fashion-
MNIST dataset. (a) A trouser from the original dataset. (b) An
active-subspace perturbation vector with the `2 norm equals 5. (c)
The perturbed sample is misclassified as a t-shirt/top by the deep
neural network. 82

6.8 Universal adversarial attacks of VGG-19 on CIFAR-10 with respect
to different `2-norm perturbations. (a)-(c): The training attack ratio,
the testing attack ratio, and the CPU time in seconds for attacking
one class dataset. (d)-(f): The results for attacking ten classes dataset
together. 83

6.9 Adversarial attack of VGG-19 on CIFAR-10 with different number
of training samples. The `2-norm perturbation is fixed as 10. (a) The
results of attacking the dataset from the first class; (b) The results of
attacking the whole dataset with 10 classes. 83

6.10 Results for universal adversarial attack for CIFAR-100 with respect
to different `2-norm perturbations. (a)-(c): The results for attacking
the dataset from the first class. (d)-(f): The results for attacking ten
classes dataset together. 84

xii

List of Tables

2.1 Time (in seconds) to perform 10000 training iterations for toy
datasets. 26

3.1 Comparison of normalization techniques for ODENet10 archi-
tecture on CIFAR-10. BN – batch normalization, LN – layer
normalization, WN – weight normalization, SN – spectral nor-
malization, NF – the absence of any normalization. To perform
back-propagation, we exploit ANODE with a non-adaptive
ODE solver. Namely, we use Euler scheme with Nt = 8,
where Nt is a number of time steps used to solve IVP (3.1).
The first row corresponds to the normalization in the ODE
blocks. We use BN after the first convolutional layer and inside
ResNet blocks, respectively. Standard ResNet10 architecture
(only ResNet blocks are used) gives 0.931 test accuracy. 31

4.1 2-stage RK method of the 2-nd order 37
4.2 Blackbox attacks on CIFAR10 Neural ODE models. Source

models are from RobustBench [32] and papers by Carmon et al.
[18], Sehwag et al. [152], and Wong, Rice, and Kolter [171]. PGD
attack is performed with 20 iterations and DeepFool attack is
performed with 50 iterations. 42

4.3 Greybox attacks for ε = 8/255. Mean robust accuracy and
standard errors averaged over three runs are reported below.
Parameters for PGD attack are the following: number of steps
is 7, step size is 2/255. Maximum number of steps in DeepFool
attack is 50. 43

4.4 Comparison of adversarial robustness of the RK2 and Euler
solvers. 43

5.1 Accuracy and FLOP trade-off for the models accelerated with
RON on CIFAR-10 dataset. DCP is a channel pruning method
from [186]. 54

5.2 VGG on CIFAR-100. RON N× stands for the accelerated model,
where feature dimentionality of last layers is reduced by N×
times comparing to the teacher. 55

5.3 VGG on SVHN. RON N× stands for the accelerated model,
where feature dimentionality of last layers is reduced by N×
times comparing to the teacher. 55

xiii

5.4 Comparison of acceleration methods for VGG-19 on CIFAR-
10. Pre-trained baseline has 93.7% accuracy. The higher FLOP
reduction the better. The smaller accuracy drop the better. . . 55

6.1 Comparison of number of neurons r of VGG-19 on CIFAR-10.
For the storage speedup, the higher is better. For the accuracy
reduction before or after fine-tuning, the lower is better. 75

6.2 Accuracy and storage on VGG-19 for CIFAR-10. Here, “Pre-M" de-
notes the pre-model, i.e., layers 1 to l of the original deep neural
networks, “AS" and “PCE" denote the active subspace and polyno-
mial chaos expansion layer, respectively. 77

6.3 Accuracy and storage on ResNet-110 for CIFAR-10. Here, “Pre-
M" denotes the pre-model, i.e., layers 1 to l of the original deep
neural networks, “AS" and “PCE" denote the active subspace
and polynomial chaos expansion layer, respectively. 78

6.4 Accuracy and storage on VGG-19 for CIFAR-100. Here, “Pre-M"
denotes the pre-model, i.e., layers 1 to l of the original deep neural
networks, “AS" and “PCE" denote the active subspace and polyno-
mial chaos expansion layer, respectively. 79

6.5 Accuracy and storage on ResNet-110 for CIFAR-100. Here, “Pre-
M" denotes the pre-model, i.e., layers 1 to l of the original deep
neural networks, “AS" and “PCE" denote the active subspace
and polynomial chaos expansion layer, respectively. 80

6.6 Cross-model performance for CIFAR-10 80
6.7 Summary of the universal attack for different datasets by the active-

subspace compared with UAP and the random vector. The norm of
perturbation is equal to 10. 81

xiv

xv

Notation

ASActive Subspaces

BLIBarycentric Lagrange Interpolation

BNBatch Normalization

CNNConvolutional Neural Networks

CPChannel Pruning

CPUCentral Processing Unit

DCPDiscrimination-aware Channel Pruning

DEIMDiscrete Empirical Interpolation Method

DOPRI5Dormand-Prince of Order (4)5

ELBOEvidence Lower Bound

FFJORDFree-form Jacobian of Reversible Dynamics

FGSMFast Gradient Sign Method

FLOPFloating Point Operation

FOOCFirst-Order Optimality Conditions

IRDMInterpolated Reverse Dynamic Method

IVPInitial Value Problem

LNLayer Normalization

MaxVolMaximum Volume Algorith

MLPMultilayer Perceptron

ODEOrdinary Differential Equations

PCEPolynomial Chaos Expansion

PDEPartial Differential Equations

xvi

PGDProjected Gradient Descent Attack

PODProper Orthogonal Decomposition

RDMReverse Dynamic Method

ReLURectified Linear Unit

ResNetResidual Networks

RKRunge–Kutta methods

RONReduced Order Network

SGDStochastic Gradient Descent

SNSpectral Normalization

SVDSingular Value Decomposition

UAPUniversal Adversarial Perturbations

VAEVariational Autoencoders

VGGVery Deep Convolutional Networks

1

Introduction

Motivation

The study of machine learning and its connections to various areas of mathe-
matics and physics has led to a number of significant findings, particularly
in the realm of differential equations. These equations, which can be ordi-
nary, partial, or stochastic in nature, play a critical role in machine learning
tasks. For example, gradient descent algorithms can be viewed as numerical
methods for solving differential equations [4, 115].

differential equations. These connections can be found in both classic and
more recent studies of the field. For instance, residual networks [74] have
incorporated elements of differential equations in their design, such as the
use of Euler’s method to solve special ordinary differential equations and the
incorporation of the Runge-Kutta method. Additionally, the hierarchical
structure of feature maps in residual networks has been inspired by the
multigrid method for solving partial differential equations [43, 168].

However, the influence of differential equations on deep learning goes
beyond simple analogies and discretizations. One example of this is the
class of neural networks known as neural ordinary differential equations
(ODEs)[22]. These networks consist of ODE blocks that output solutions
to differential equations at given times, with the parameters of the ODE
blocks being encapsulated in their right-hand sides. Neural ODEs have been
applied to a variety of problems, including classification[22], time series
prediction [95], video generation [130], and generative modeling [61].

Another promising application of differential equations in deep learning
is the use of diffusion models [163, 94]. These models are a type of ordinary
and stochastic differential equation. Model reduction techniques, which are
often used to reduce the computational cost and memory requirements of
large systems of ODEs, are also closely related to differential equations.

In this thesis, we continue to explore the ways in which differential equa-
tions can be applied to deep learning. The work is divided into two parts. The
first part focuses on various aspects of neural ODEs, while the second part
investigates the adoption of model reduction algorithms for use in standard
artificial neural networks.

The second part is devoted to application of model order reduction to
standard artificial neural networks (Chapters 5 and 6).

Introduction 2

Contributions, Novelty, Impact

In Chapter 2, we present a novel interpolation-based method for approx-
imating gradients in neural ODE models, which allows for more efficient
training than the traditional reverse dynamic method (also known as the
"adjoint method"). We demonstrate the effectiveness of our approach through
a series of experiments involving classification, density estimation, and ap-
proximation tasks and provide a theoretical justification of our method using
logarithmic norm formalism. This work was presented at the Neural Informa-
tion Processing Systems (NeurIPS) conference in 2020 [36].

In Chapter 3, we examine the impact of various normalization techniques
on the performance of neural ODEs. Through our analysis, we are able to
achieve an accuracy of 93% in the CIFAR-10 classification task, which to
the best of our knowledge, is the highest reported accuracy among neural
ODEs that were tested for this problem. This work was presented at the
ICLR 2020 Workshop on Integration of Deep Neural Models and Differential
Equations [66].

Chapter 4 investigates how the parametrization of a training ODE solver
impacts the adversarial robustness of neural ODEs. We propose simple meth-
ods for improving the robustness of neural ODEs without incurring additional
computational costs. This work has not yet been published but is available on
arXiv [66].

In Chapter 5, we introduce a method for speeding up the inference process
in deep neural networks through the use of reduced-order modeling tech-
niques inspired by the analysis of dynamical systems. Our method, which is
based on the maximum volume algorithm [116], demonstrates efficiency on
pre-trained neural networks across a variety of datasets. We also show that
it is possible to replace convolutional layers with fully-connected layers in a
reduced dimention with minimal loss in accuracy. This work was published
in the Computational Mathematics and Mathematical Physics Journal [65].

In Chapter 6, we explore the application of the active subspace method to
deep learning. The active subspace method is a model reduction technique
commonly used for differential equations, and we propose using it to analyze
the internal structure and vulnerability of deep neural networks. Specifically,
we use the active subspace method to measure the number of "active neu-
rons" at each intermediate layer, which allows us to develop a more compact
network (referred to as ASNet) with significantly fewer model parameters.
We also propose using the active subspace method to analyze the vulnera-
bility of neural networks by identifying universal adversarial attack vectors
that can misclassify a dataset with high probability. Our experiments on the
CIFAR-10 dataset show that ASNet can achieve 23.98x parameter reduction
and 7.30x flops reduction, and the universal active subspace attack vector can
achieve around 20% higher attack ratio compared to existing approaches in
our numerical experiments. This work was published in the SIAM Journal of
Mathematics for Data Science [35].

3

Chapter 1

Preliminaries

In this chapter, we provide an overview of the problems considered in this
work, as well as an intuition of the standard algorithms and models that will
be used in the following chapters.

In Section 1.1, we briefly formulate the considered machine learning prob-
lems and describe the loss functions.

In Section 1.2, we give all the required information about the neural ordi-
nary differential equations (Neural ODEs) model. Neural ODEs models are
the object of research in the first part of this work.

In Section 1.3, we describe the Discrete Empirical Interpolation Method
for ODEs and show the connection to the Maximum Volume algorithm.

In Section 1.4, we overview the Active Subspaces method and show its
applications to systems of ODEs.

1.1 Considered Machine Learning Problems

Classification

In multiclass classification, we are given a set of possible data points or
samples X ⊆ Rd and a finite set of classes Y = {c1, . . . , ck}. Each data point
x ∈ X corresponds to a single class y ∈ Y , meaning that there exists an
unknown function f : X → Y .

The set X can be infinite, and typically we can not observe all its elements.
Instead, we are given training samples and their corresponding classes as
finite subsets X , {x1, . . . , xn} and Y , {y1, . . . , yn}. Our task is to obtain (or
train) a function a : X → Y that can predict the unknown mapping f even
for x /∈ X. This function is called a classifier. Typically, we select a family
of functions that are defined up to a set of parameters θ, and the problem
of training a classifier is usually reduced to selecting a proper value of θ by
minimizing a so-called loss function with respect to θ.

There are many ways to measure the quality of the obtained function a.
The simplest one is accuracy which is the average number of matches with
the correct class for a special validation set that is not used during the training.
Usually, the classifier outputs not a single class but an ordering with respect
to its internal estimation of probability. In this case, we can define the top-m
accuracy as the average number of matches with the correct class in the top-m
predicted classes.

Chapter 1. Preliminaries 4

A common loss function for multiclass classification problem is the cross-
entropy loss (also known as the negative log-likelihood loss) that for a single
object (x, y) is defined as follows

L(θ, x, y) , − ∑
c∈Y

[c = y] log pc(x), (1.1)

where squared brackets are the indicator function and pc(x) is the estimated
probability that x belongs to the class c.

Density Estimation

In density estimation, we are given a set of samples x1, . . . , xn drawn from an
unknown probability density function p. The goal is to create a model that
can approximate the density function p(x) for any unknown sample.

One common approach to training a parametric model for density estima-
tion is to maximize the log-likelihood of the model with respect to the model
parameters. The log-likelihood can also be used as a measure of the quality of
the model.

For image datasets, a commonly used metric is bits per pixel (also known as
bits/dim). This metric is calculated by computing the negative log-likelihood
of the model using the binary logarithm, and then dividing it by the number
of pixels in the image. For example, if the images in the dataset are tensors of
shape 3× 32× 32, the denominator for this metric would be 3072.

Universal Adversarial Attacks

Universal adversarial attacks refer to a type of adversarial attack on neural
networks where a single adversarial perturbation can be applied to multiple
input samples to cause the neural network to misclassify them. These attacks
are called “universal” because they can be applied to a wide range of input
samples rather than being specific to a single sample.

To understand the problem of universal adversarial attacks construction,
it is first important to understand the concept of adversarial attacks in general.
Adversarial attacks are a type of attack on machine learning models, including
neural networks, where an attacker tries to cause the model to make incorrect
predictions by making small, imperceptible changes to the input data. These
changes are designed to be difficult for a human to detect but are still able to
fool the model into making an incorrect prediction.

The problem with universal adversarial attacks is that they can be difficult
to defend against since they can be applied to a wide range of input samples
and do not require the attacker to carefully craft the perturbation for each
individual sample. This makes it difficult for a model to be robust against these
attacks since it is not possible to anticipate and defend against all possible
perturbations. As a result, universal adversarial attacks can be a serious
problem for neural networks, as they can cause the model to make incorrect
predictions and potentially compromise the integrity of the system.

Chapter 1. Preliminaries 5

One of the applications of universal adversarial attacks is generating im-
ages for CAPTCHA (Completely Automated Public Turing test to tell Com-
puters and Humans Apart) to prevent artificial classifiers from recognizing
the right answers.

1.2 Neural Ordinary Differential Equations

Neural ordinary differential equations (Neural ODEs) is a family of neural net-
work architectures that contain the following system of ordinary differential
equations as a building block{

dz
dt = f (z(t), t, θ), t ∈ [t0, t1]

z(t0) = z0.
(1.2)

We will call this block an ODE block. The right-hand side f is typically
parametrized by a neural network, and parameters θ are the weights of this
neural network. The input to an ODE block is treated as the initial conditions
of an ODE, and the output is usually the solution of this system of ODEs at
the final time t1.

Neural ODEs s

Runge–Kutta Methods and Adaptive Solvers

The forward pass through the ODE block is performed using numerical inte-
grators of a system of ODEs. Here we give a brief overview of the numerical
ODE integrators following the book by Hairer and Wanner [67].

Almost all numerical methods for solving ODEs can be viewed as a special
case of the Runge–Kutta methods. Every Runge–Kutta method is defined
by the number of stages s and parameters a21, a31, a32, . . . , as1, as2, . . . , as,s−1,
b1, . . . , bs, c2, . . . , cs. One step of the s-stage Runge–Kutta method for solving
problem (1.2) is defined as

k1 = f (z0, t0, θ)

k2 = f (z0 + ha21k1, t0 + c2h, θ)

k3 = f (z0 + h(a31k1 + a32k2), t0 + c3h, θ)

. . .
ks = f (z0 + h(as1k1 + . . . + as,s−1ks−1), t0 + csh, θ)

zt0+h = z0 + h(b1k1 + . . . + bsks),

where h is the step size.

Chapter 1. Preliminaries 6

A convenient way to visualize the coefficients of the Runge–Kutta method
is a so-called Butcher tableau

0
c2 a21
c3 a31 a32
... . . .

cs as,1 as,2 . . . as,s−1
b1 b2 . . . bs−1 bs.

(1.3)

Thus, there is a one-by-one correspondence between the Runge–Kutta method
and its Butcher tableau.

An important characteristic of a Runge–Kutta method is its order. A Runge–
Kutta method is said to have the order p if for sufficiently smooth initial value
problems problems (1.2) holds

‖z(t0 + h)− zt0+h‖ ≤ Khp+1.

Methods are usually selected to have a high order p.

1.2.1 Adaptive Runge–Kutta Solvers

Each step of the Runge–Kutta method requires the selection of the step size h.
It can be defined as a constant number, but two undesired situations are possi-
ble: lack of convergence due to the huge value of step and slow convergence
due to an unreasonably small value of step. In order to manage these issues,
automatic step selection procedures were developed.

The intuition behind the most popular adaptive Runge–Kutta methods is
rather simple. Let us take two methods of different orders, say, p = 5 and p̂ =
4. To avoid extra right-hand side function computations, two methods with
common ai,j and ci coefficients and different bi coefficients are usually selected.
We pick an initial step size h and want outputs zh and ẑh of different solvers
for the initial-value problem 1.2 to be approximately the same. The desired
similarity of two outputs is controlled by two hyperparameters: absolute
tolerance (atol) and relative tolerance (rtol). Formally, we want ‖zh − ẑh‖ to
be less than sc , atol + max{‖zh‖, ‖ẑh‖} · rtol for a given norm. In the case
of `2-norm, we can define the error term as

err ,

√√√√ 1
n

n

∑
i=1

(
zh,i − ẑh,i

sci

)2

. (1.4)

Then, the step is accepted if err ≤ 1. It can be shown [67] that err ≈ Chq+1,
where q , min(p, p̂). Since we want the error term to be equal to 1, the
optimal step can be computed as

hopt = h · (1/err)1/(q+1). (1.5)

Chapter 1. Preliminaries 7

In practical implementations of adaptive solvers, additional simple heuristics
are introduced to keep the step from shrinking too much or increasing too
much.

One of the most common solvers for Neural ODEs is DOPRI5 which
consists of two embedded Runge–Kutta methods of orders 5 and 4.

An important part of the Runge–Kutta methods is a so-called dense out-
put [83, 156, 157], i.e., an ability to interpolate the solution at any point τ
without a lot of additional computations as

z(τ) = z0 + h
s∗

∑
i=1

bi(τ)ki, (1.6)

where ki are computed as in the Runge–Kutta formulas and s∗ is a number of
stages.

Backward pass through ODE blocks

Neural ODEs, like classical artificial neural networks, are trained via gradient
methods. Thus, an important question is how to compute gradients of the
loss function with respect to the parameters of Neural ODEs. In Chapter 2, we
propose a stable algorithm for the computation of the gradients. However, in
this subsection, we briefly describe classical approaches to this problem and
derive formulas for the so-called adjoint method.

Obviously, a standard backpropagation can be applied to a numerical ODE
solver. However, we can run out of memory since there is a need to store all
intermediate values.

In order to differentiate ODEs using a limited amount of memory, there
exists the so-called adjoint method. To derive formulas of this method, we
will use the calculus of variations and Lagrange multipliers. Nevertheless,
Chen et al. [22] derived formulas for this method in a slightly different way.

We have to minimize L(z(t1), θ) with respect to θ with constraints

dz
dt

= f (z (t) , θ) , z(t0) = z0. (1.7)

This problem can be viewed as a constrained optimization problem with an
infinite number of equality constraints. In this case, we introduce Lagrange
a(t) and b [5, 13] and write the Lagrange function

L(z(t), θ, a(t)) = L(z(t1), θ)+
∫ t1

t0

a(t)>
(

dz
dt
− f (z(t), θ)

)
dt+ b · (z(t0)− z0).

(1.8)
s in discrete cases imply that all derivatives of the Lagrange function

should be equal to zero. In the case of functions, we have to consider vari-
ational derivatives. Recall that the variational derivative of a function J(y)
is

δJ(y, h) , lim
ε→0

J[y + εh]− J[y]
ε

=
∂

∂ε
J[y + εh]

∣∣
ε=0, (1.9)

Chapter 1. Preliminaries 8

where h is a feasible variation.
Let us take the derivative of the Lagrange function with respect to θ. We

can consider a standard derivative since θ is not a function.

∂L(z(t), θ, a(t))
∂θ

=
∂L
∂θ

(z(t1), θ)−
∫ t1

t0

a(t)>
∂ f
∂θ

(z(t), t, θ) dt = 0. (1.10)

Condition (1.10) can be rewritten as

∂L
∂θ

(z(t1), θ) = 0 +
∫ t0

t1

(
−a(t)>

∂ f
∂θ

(z(t), t, θ)

)
dt. (1.11)

This is the integral form of the solution of the following system of ODEs
that are solved backward-in-time from t1 to t0

d
dt

(
∂L
∂θ

)
= −a(t)>

∂ f
∂θ

(z (t) , θ),

∂L
∂θ

∣∣∣∣
t=t1

= 0.
(1.12)

This system should be solved in order to compute the gradient of L with
respect to θ, but it depends on a(t) and z(t).

To obtain the system for a(t), we take the functional derivative of the
Lagrange function (1.8) with respect to z(t):

δzL(z, h) =
∂L
∂z

(z(t1), θ) · h(t1)+

+ lim
ε→0

1
ε

∫ t1

t0

a(t)>
(

ε
dh(t)

dt
− ∂ f

∂z
(z(t), θ) · εh(t) + o(ε)

)
dt (1.13)

Here h(t0) = 0, since z(t0) + εh(t0) should satisfy the initial conditions.
We apply integration by parts

∫ t1

t0

a(t)>
dh(t)

dt
dt =

[
a(t)>h(t)

] ∣∣∣t1

t0
−
∫ t1

t0

da(t)
dt

h(t) dt =

= −a(t1)
>h(t1)−

∫ t1

t0

da(t)
dt

h(t) dt (1.14)

and get

δzL(z, h) =
(

∂L
∂z

(z(t1))− a(t1)

)
· h(t1)−

−
∫ t1

t0

{
da(t)

dt
+ a(t)>

∂ f
∂z

(z(t), θ)

}
h(t)dt = 0. (1.15)

Chapter 1. Preliminaries 9

Due to the main lemma of variational calculus,
da(t)

dt
= −a(t)>

∂ f
∂z

(z(t), θ)

a(t1) =
∂L
∂z

(z (t1)) .
(1.16)

Finally, we can take the functional derivative with respect to a(t) and
obviously get

dz
dt

= f (z(t), t, θ)

z(t1) = z1,
(1.17)

where z1 is z(t1) saved after the forward pass.
To sum up, in the adjoint method, we have to solve the following system

of ODEs

d
dt

(
∂L
∂θ

)
= −a(t)>

∂ f
∂θ

(z (t) , θ)

dz
dt

= f (z(t), t, θ)

da(t)
dt

= −a(t)>
∂ f
∂z

(z(t), θ)

∂L
∂θ

∣∣∣∣
t=t1

= 0

z(t1) = z1

a(t1) =
∂L
∂z

(z (t1))

(1.18)

backward-in-time from t1 to t0. The only required value is z1, which is saved
after the forward pass. As a result, we obtain the gradient of the loss function
with respect to parameters, and this value can be used with stochastic gradient
optimization algorithms. In Chapter 2, we describe the disadvantages of this
algorithm and give a receipt on how to mitigate the issues.

Continuous Normalizing Flows for Density Estimation

Discrete normalizing flows [98, 139] are popular generative models. In order
to define discrete normalizing flows, we have to select a family of invertible
functions and a probability distribution (say, standard Gaussian). Then, we
try to generate real data from noise by applying functions from the selected
family. The main workhorse of discrete normalizing flows is the change of
variables theorem: if x = f (z), then

log p(x) = log p(z) + log
∣∣∣∣det

∂ f−1

∂x

∣∣∣∣ . (1.19)

The need to compute the determinant of the inverse transformations is a
serious constraint since, in the general case, it is intractable. That is why, in
discrete normalizing flows, families of functions with tractable Jacobians are
introduced.

Chapter 1. Preliminaries 10

Chen et al. [22] introduced continuous normalizing flows. In continuous
normalizing flows, the data is transformed via the system of ODEs 2.1. It can
be shown that under mild conditions, the transformation of the probability
density function is also guided by the system of ODEs

d log p(z(t))
dt

= −tr
(

∂ f
∂z(t)

)
, log p(z(t0)) = log pz0(z0), (1.20)

where pz0 is a base distribution from which the first sample is drawn. To
reduce the computational time, Grathwohl et al. [61] proposed to use the
Hutchinson estimation [87] of the trace instead of its exact computation.

1.3 Discrete Empirical Interpolation Method

Let us consider a system of ODEs

d
dt

y(t) = Ay(t) + F(y(t)) (1.21)

with any initial condition, where A ∈ Rn×n is a matrix and F : Rn → Rn is
an elementwise non-linear function. Such systems typically come from the
discretization of several classes of PDEs. Suppose we want to reduce the com-
putational complexity and the memory footprint but obtain approximately
the same output. It can be done by reducing the system dimensionality.

Model reduction methods usually search for a linear subspace of order
k� n that approximates the original system. The subspace is determined by
a matrix Vk ∈ Rn×k, and the new system looks as follows

d
dt

ỹ(t) = V>k AVkỹ(t) + V>k F(Vkỹ(t)). (1.22)

The information about the system is usually stored as a set of snapshots, i.e.,
inputs, intermediate points, and outputs.

The main difference between the different model reduction techniques is
the choice of subspace. In the proper orthogonal decomposition via Galerkin
projection (POD-Galerkin) [142, 100], the subspace is computed via the sin-
gular value decomposition (SVD) of the snapshot matrices. This method is
optimal with respect to the approximation error. However, POD-Galerkin has
a high complexity since the non-linear function F still should be computed
for n-dimensional vectors, although the linear term can be precomputed.

Another popular model reduction method is the Discrete Empirical Inter-
polation Method (DEIM) [21]. The key difference of the DEIM algorithm is
the use of sparse sampling to identify a set of "interpolation points" that are
used to approximate the high-dimensional function. In sparse sampling, a
subset of the data points is selected in a way that captures the key features of
the function while minimizing the number of points needed. This can be done
using various techniques, such as greedy algorithms or random sampling. (In
Chapter 5, we use the maximum volume algorithm for this task [60, 116].)

Chapter 1. Preliminaries 11

DEIM is particularly well-suited for systems with non-linear functions F that
are expensive to compute, as it allows for efficient evaluation of F at the
selected indices.

In summary, both POD-Galerkin and DEIM are methods for construct-
ing reduced-order models of systems of ODEs, but they differ in the way
they determine the subspace that approximates the original system. POD-
Galerkin is optimal with respect to the approximation error, but it has a high
computational complexity, while DEIM is more efficient but may not be as
accurate.

1.4 Active Subspace Method

The active subspace method is a technique used in optimization and sensitivity
analysis to identify the most important directions, or “subspaces,” in the input
space of a function. It can be used to reduce the dimensionality of the input
space, making optimization and sensitivity analysis more efficient.

The active subspace method is based on the idea that, for many functions,
the most important directions in the input space are those that have the
greatest effect on the output of the function. These directions are called
the “active subspaces,” and they can be identified using the gradient of the
function with respect to the inputs.

The first paper describing the active subspace method Constantine, Dow,
and Wang [27] showed simulations for elliptic partial differential equations.
Later on, this method was widely used to analyze systems governed by
differential equations.

For example, in fluid dynamics, the Navier-Stokes equations are a set of
differential equations that describe the motion of a fluid. These equations
can be very complex, especially in three-dimensional space, but the active
subspaces method can be used to identify the most important directions in
the space of solutions, which can help us understand the behavior of the fluid
flow [37]. The active subspaces were successfully used for applied problems
such as HIV modeling [109], lithium-ion battery modeling [26], and so on.

Overall, the active subspaces method is a powerful tool for analyzing and
interpreting systems governed by differential equations, and it can be used
in many different fields of science and engineering. A detailed and formal
mathematical description of the active subspace method is given in Chapter 6.

12

Chapter 2

Acceleration of Gradients
Propagation in Neural ODEs

2.1 Introduction

In this chapter, we propose a novel method to train neural ordinary differen-
tial equations (neural ODEs) [22]. This method performs stable and memory-
efficient backpropagation through the solution of initial value problems (IVP).
We use the term neural ODEs for all neural networks with so-called ODE
blocks. An ODE block is a continuous analog of a residual neural network [73]
that can be considered as Euler discretization of ordinary differential equa-
tions.

As we already mentioned in the previous chapter, ODE block is a neural
network layer that takes the activations z0 from the previous layer as input,
solves the initial value problem (IVP) described as{

dz
dt = f (z(t), t, θ), t ∈ [t0, t1]

z(t0) = z0,
(2.1)

and solved by any ODE solver. Note, the right-hand side in IVP (2.1) depends
on set of parameters θ which is gradually updated during training. Therefore,
during the backward pass in neural ODEs, the loss function L, which depends
on the solution of the IVP, should be differentiated with respect to parame-
ter θ. A direct application of backpropagation to ODE solvers require a huge
memory, since for every time step τk, the output z(τk) must be stored as a part
of the computational graph.

However, the approach based on the adjoint method [132, 114] helps to
propagate gradients through the initial value problem with a relatively small
memory footprint. Originally adjoint method has been actively used in math-
ematical modeling, for example, in seismograph and climate studies [44, 69].
It was used to investigate the sensitivity of the model output with respect
to the input. In the context of training neural ODEs, the adjoint method is
modified to combine it with the standard backpropagation [22]. We refer to
this modified adjoint method as reverse dynamic method (RDM). This method
yields solving the augmented initial value problem backward-in-time. We call
this IVP as the adjoint IVP. One of the components of the adjoint IVP is IVP
that defines z(t), t ∈ [0, 1]. Therefore, the numerical solving of the adjoint IVP

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 13

does not require storing intermediate activations z(τk) during the forward
pass. As a result, the memory footprint becomes smaller.

However, Gholami et al. [55] showed that the RDM might lead to catas-
trophic numerical instabilities. We checked this fact by ourselves and got the
same results.

z0 z1 ẑ0

FIGURE 2.1: Example of potential instability of RDM as described
in [55]. We took a single ResNet-block with random weights as a
right-hand side and solved the initial value problem 2.1 with an initial
condition z0 (left) and obtained the image z1 (middle). After that,
we integrated the same initial value problem backward-in-time and
obtained ẑ0 (right). Images on the left and on the right should coincide
in order to perform an accurate backward pass, but they obviously do

not.

To address this issue, the authors introduce a method called ANODE. This
method exploits checkpointing idea [154], i.e., propose to store checkpoints
z(τk) at intermediate selected time points τk during the forward pass. As
result of this, in the backward pass, ANODE performs additional ODE solver
steps forward-in-time in each interval between sequential checkpoints. The
intermediate activations are stored to compute the target gradient. The main
disadvantage of ANODE is that it requires intermediate activations storage
and needs to perform additional ODE solver steps.

To address the instability of the reverse dynamic method and limitations
of ANODE, we propose interpolated reverse dynamic method (IRDM), which is
described in detail in Section 2.3. This method is based on a smooth function
interpolation technique to approximate z(t) and exclude the IVP that defines
z(t) from the adjoint IVP. Thus, we do not reverse IVP (2.1) and avoid the
instability problem of the reverse dynamic method. Under mild conditions on
the right-hand side f (z(t), t, θ), function z(t) is continuously differentiable
as a solution of IVP, i.e. z(t) ∈ C1[t0, t1]. Therefore, it can be approximated
with the barycentric Lagrange interpolation (BLI) [10] on a Chebyshev grid. This
technique is widely used for interpolation problems [10]. To construct such ap-
proximation, one has to store activations z(t) in the point from the Chebyshev
grid during the forward pass. These activations can be computed with DO-
PRI5 adaptive ODE solver without additional right-hand side evaluations [40].
After that, in the backward pass, stored activations are used to approximate
z(t) during the adjoint IVP solving. The main requirement for our method to
work correctly and efficiently is that z(t) can be approximated by BLI with
sufficient accuracy. This can only be verified experimentally. However, the
accuracy of such approximation is inherently related to the smoothness of

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 14

the solution, which is also one of the main motivations behind using neural
ODEs.

Our main contributions are the following.

• We propose the interpolated reverse dynamic method to train neural ODEs.
This method uses approximated activations z(t) in the backward pass
and reduces the dimension of the initial value problem, that is used to
compute the gradient. Thus, the training becomes faster.

• We present the error bound for the gradient norm under small perturba-
tion of the activations z(t) induced by using interpolated values.

• We have evaluated our approach on density estimation, inference ap-
proximation, and classification tasks and showed its effectiveness in
terms of test loss-training time trade-off compared to the reverse dy-
namic method.

2.2 Related Work

Neural ODEs [22] is a model inspired by the connection between neural
networks and dynamical systems [110, 20, 146, 136]. Neural ODEs and its
modifications were used for various different applications [61, 144, 66, 182, 41].
Nguyen et al. [123] emphasized the importance of using adaptive solvers and
introduce a procedure to learn their tolerances. Quaglino et al. [133] proposed
to use of spectral element methods, where the dynamics are expressed as a
truncated series of Legendre polynomials. Similar ways of using interpolation
in the adjoint method are implemented in SUNDIALS [78].

The proposed method relies on the ability of Runge-Kutta (RK) methods
to evaluate the trajectory in intermediate points with Hermite polynomial
interpolation. We use this feature of RK methods to evaluate activations in
the Chebyshev grid points. The works by L. F. Shampine [156, 157] study the
error induced by this approach to evaluate activations in intermediate points.
In addition, the stiffness of ODE is an important concept [161, 169] for stable
and fast training of neural ODEs.

2.3 Interpolated Reverse Dynamic Method

Deep learning problems are usually solved by minimizing a loss function L
with respect to model parameters using gradient-based methods. To compute
the gradient ∂L

∂θ without saving computational graph from the forward pass,
the adjoint method can be used [58, 131].

Adjoint method. The detailed derivation of the adjoined method is given
in Section 1.2.1. However, we recall the basics of this approach. The main
idea of the adjont method is to derive gradients of the loss function L from
the first-order optimality conditions (FOOC) for a constrained optimization

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 15

problem. In our case, the optimization problem is formulated as the loss
minimization with ODE constraint in the form of (2.1).

To construct the corresponding Lagrangian, the adjoint variable a(t) is
introduced

L(z(t), θ, a(t)) = L(z(t1), θ) +
∫ t1

t0

a(t)
(

dz
dt
− f (z(t), t, θ)

)
dt,

and the FOOC can be written in the following form

δL
δa(t)

= 0→ dz
dt
− f (z(t), t, θ) = 0 (2.2)

δL
δz(t)

= 0→
{

da
dt = −a(t)> ∂ f (z(t),t,θ)

∂z
a(t1)− ∂L

∂z(t1)
= 0

(2.3)

δL
δθ

= 0→ ∂L
∂θ

=
∫ t1

t0

a(t)>
∂ f (z(t), t, θ)

∂θ
dt. (2.4)

Hence, the target gradient ∂L
∂θ can be computed in the following way: ODE (2.2)

gives the activation dynamic z(t), ODE (2.3) gives the adjoint variable a(t)
based on z(t) and finally the target gradient ∂L

∂θ is computed with the integral
in (2.4). The adjoint method assumes that activations z(t0) = z0 are known
in the backward pass. Thus, IVP (2.1) is solved forward-in-time, IVP (2.3) is
solved backward-in-time and integral (2.4) is computed based on the derived
a(t) and z(t). The adjoint method requires storing gradients ∂ f

∂θ and ∂ f
∂z in

intermediate activations z(t), t ∈ [t0, t1]. Therefore, to reduce its memory
consumption, the checkpointing idea is used.

Checkpointing in the adjoint method. ANODE method [55] exploits check-
pointing idea to get the target gradient ∂L

∂θ . This method stores some inter-
mediate activations z(t) in the forward pass. These activations are called
checkpoints. In the backward pass, ANODE considers intervals between
sequential checkpoints from the right side to the left side. In every inter-
val, ODE (2.2) with an initial condition equal to the checkpoint on the left is
solved forward-in-time, IVP (2.3) is solved backward-in-time and the integral
is updated. This approach is illustrated in Figure 2.2d. This approach still
requires additional memory to store checkpoints and gradients ∂ f

∂θ . Also, it
solves ODE (2.2) with multiple initial conditions equal to checkpoints. These
drawbacks are fixed in reverse dynamic method [22].

Reverse dynamic method. This method is used in [22], where the neural
ODE model was proposed, under the name “adjoint method”. The reverse
dynamic method assumes that activations z(t1) = z1 are known and do not
store any checkpoints during the backward pass. Therefore, in the backward

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 16

pass, the following IVP is solved backward-in-time and defines activaions:{
dz
dt = f (z(t), t, θ)

z(t1) = z1,
(2.5)

IVP (2.3) is solved backward-in-time and integral (2.4) is computed as the
solution of the following IVP:{

d
dt

(
∂L
∂θ

)
= −a(t)> ∂ f (z(t),t,θ)

∂θ
∂L
∂θ(t1) = 0.

(2.6)

Thus, IVPs (2.3),(2.5) and (2.6) can be composed in the augmented IVP that
is solved backward-in-time. This method is illustrated in Figure 2.2a. The
study [55] demonstrates that this method can be unstable due to the reverse
IVP (2.1). To get the right trade-off between stability and memory consump-
tion, we propose interpolated reverse dynamic method (IRDM).

Interpolated reverse dynamic method. In the proposed interpolated reverse
dynamic method (IRDM), we suggest to eliminate (2.5) from the adjoint IVP.
Instead of using IVP (2.5) to get activations z(t), the IRDM approximates
them through the barycentric Lagrange interpolation (BLI) on a Chebyshev
grid [10]. This method is summarized in Figure 2.2c. We urge readers not to
confuse the Lagrange interpolation, which is mostly of theoretical interest,
with the BLI, that is widely used in practice for polynomial interpolation [77].

Denote by ẑ(t) the interpolated activations with the BLI technique that are
used in the backward pass. As described in [77], ẑ(t) can be computed with
the following equation:

ẑ(t) =

(
N

∑
n=0

wn

t− τn
ẑn

)/(
N

∑
n=0

wn

t− τn

)
, (2.7)

where the sequence {τn}N
n=0 form the Chebyshev grid, and t0 = τ0 < τ1 <

. . . < τN = t1, ẑn , z(τn) are exact activations computed in the Chebyshev
grid during the forward pass and stored to be used in the backward pass. To
get these activations during the forward pass, we explore features of DOPRI5
adaptive solver [40] to compute activations in given time points (e.g., in
Chebyshev grid) without additional right-hand side evaluations. Thus, we
store z(τn) and solve IVP (2.1) simultaneously. The weights wn are computed
as follows once for the entire training process

wn = (−1)n sin
(
(2n + 1)π

2N + 2

)
.

The computational complexity of computing ẑ(t), as well as additional
memory usage, is O(N). Since we approximate z(t), only (2.3) and (2.6)
have to be solved backward-in-time during the backward pass. Thus, the
dimension of the backward IVP is reduced by the size of the activations z(t).

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 17

From the theory of polynomial interpolation, it is known, that if z(t) is
analytic function, then the following bound on the BLI approximation error
holds

max
t∈[0,1]

‖ẑ(t)− z(t)‖∞ ≤ O(M−N), (2.8)

where M > 1 depends on the region where the activation dynamic z(t) is
analytic, more details see in [77, 47, 165]. The solution of IVP (2.1) is analytic
if the right-hand side f (z(t), t, θ) is analytic [45].

2.4 Upper Bound on the Gradient Error Induced by
Interpolated Activations

The proposed method excludes IVP that defines z(t) from the adjoint IVP
and uses approximation ẑ(t) given by the barycentric Lagrange interpolation
formula (2.7). Therefore, the dimension of the adjoint IVP is reduced, but the
error in gradient ∂L

∂θ appears since the activations are not exact. In this section,
we present the upper bound on the gradient error norm and the factors that
affect the magnitude of this error. By the gradient error norm, we mean the
norm of the difference between gradients computed with exact activations
z(t) and interpolated ones ẑ(t).

According to (2.4) we have to estimate the following error norm, where
the 2-norm is used

E =

∥∥∥∥∫ t1

t0

[
ã(t)>

∂ f (z̃(t), t, θ)

∂θ
− a(t)>

∂ f (z(t), t, θ)

∂θ

]
dt
∥∥∥∥ , (2.9)

where ã(t) and z̃(t) are adjoint variables and activations obtained with in-
terpolation technique and a(t) and z(t) are exact ones. Now we derive the
upper bound estimate of E and show what factors affect this upper bound.
Introducing perturbations ∆z(t) and ∆a(t) such that ã(t) = a(t) + ∆a(t) and
z̃(t) = z(t) + ∆z(t) and using the first-order expansion of ∂ f

∂θ at z(t) we can
re-write terms from (2.9) with perturbed adjoint variables and activations as
follows

ã(t)>
∂ f (z̃(t), t, θ)

∂θ
= (a(t)+∆a(t))>

(
∂ f (z(t), t, θ)

∂θ
+

∂2 f (z(t), t, θ)

∂θ∂z
∆z(t)+

+O(‖∆z(t)‖2)

)
.

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 18

Forward pass

Backward pass: (3), (5), (6)

(A) Reverse dynamic method (RDM) [22], [61]
Forward pass

Backward pass

(B) Standard backpropagation
Forward pass

Backward pass: (3), (6)

(C) Interpolated reverse dynamic method
(IRDM)

Backward pass: (2), (3), (4)

Forward pass

(D) Checkpointing (ANODE)

FIGURE 2.2: Comparison of different schemes to make forward
and backward passes through the ODE block. Red circles in-
dicate that the activations are stored at these time points. Red
arrows indicate that during ODE steps, the outputs of the inter-
mediate layer are stored to propagate gradients. Green arrows
correspond to the steps with ODE solvers. Blue arrows corre-
spond to the steps with automatic differentiation through the
stored computational graph. Activations in Chebyshev grid
points (t0, τ1, τ2 and t1 in Figure 2.2c) are stored in the interpola-
tion approach during the forward pass. Chebyshev grid points
do not necessarily coincide with time steps of ODE solver, but
activations in these points can be recovered from the computed
activations with ODE solver. The stored activations are used
to approximate activations in the backward pass. The dotted
arrows in Figure 2.2c shows that activations in t0, τ1, τ2 and t1

are used to interpolate activations in the backward pass.

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 19

Substitution the above equality into (2.9) and applying standard inequalities
lead to the following upper bound

E ≤
∫ t1

t0

‖a(t)‖‖∆z(t)‖
∥∥∥∥∂2 f (z(t), t, θ)

∂θ∂z

∥∥∥∥ dt +
∫ t1

t0

‖a(t)‖
∥∥∥∥∂ f (z(t), t, θ)

∂θ

∥∥∥∥ dt+∫ t1

t0

‖∆a(t)‖‖∆z(t)‖
∥∥∥∥∂2 f (z(t), t, θ)

∂θ∂z

∥∥∥∥ dt + Mz

∫ t1

t0

(‖a(t)‖+ ‖∆a(t)‖)‖∆z(t)‖2dt,

(2.10)

where Mz > 0 is a constant hidden in big-O notation. In order to estimate the
error norm, we have to analyze bounds for all terms in (2.10). The norm of
activations perturbation ‖∆z(t)‖ is bounded according to the upper bound
on the interpolation error (2.8). At the same time, the gradient ∂ f (z(t),t,θ)

∂θ and

the second partial derivative ∂2 f (z(t),t,θ)
∂θ∂z are not bounded a priori, so we need

to consider them additionally. The remaining terms are ‖a(t)‖ and ‖∆a(t)‖
and to bound them we need the following Lemma [162].

Lemma 2.4.1 ([162], see Lemma 1)
Let x(t) be a solution of the following non-autonomous linear system

dx
dt

= x(t)>A(t) + b(t),

x(t0) = x0.
(2.11)

Then ‖x(t)‖ ≤ ξ(t), where the scalar function ξ satisfies the IVP
dξ

dt
= µ[A(t)]ξ + ‖b(t)‖,

ξ(t0) = ‖x0‖,
(2.12)

where µ[A] , lim
h→0+

‖I+hA‖−1
h is a logarithmic norm of matrix A [160].

If the 2-norm is used in definition of the logarithmic norm, then

µ[A] = λmax

(
A + A>

2

)
,

where λmax(A) is the maximum eigenvalue of a matrix A.
In our case, IVP (2.11) is equivalent to IVP (2.3). Therefore, this lemma

helps to estimate ‖a(t)‖. In particular, ‖a(t)‖ ≤ ξ(t), where ξ(t) is a solution
of the following IVP:

dξ

dt
= µ[J(t)]ξ,

ξ(t1) =
∥∥∥ ∂L

∂z1

∥∥∥ ,
(2.13)

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 20

where J(t) , ∂ f (z(t),t,θ)
∂θ . Hence, the upper bound on the adjoint variable norm

is written with the solution of IVP (2.13):

‖a(t)‖ ≤ ξ(t1) exp
(∫ t

t1

µ[J(τ)]dτ

)
. (2.14)

The upper bound for ‖∆a(t)‖ can be also obtained with Lemma 2.4.1. To
derive this upper bound, we compose an auxiliary IVP that defines a dynamic
of ∆a(t). Consider the following IVPs corresponding to exact and perturbed
activations: {

da
dt = a(t)> ∂ f (z(t),t,θ)

∂z
a(t1) =

∂L
∂z(t1)

{
dã
dt = ã(t)> ∂ f (z̃(t),t,θ)

∂z
ã(t1) =

∂L
∂z(t1)

.
(2.15)

Subtracting one IVP from the other, we get the IVP that defines dynamic of
∆a(t) = ã(t)− a(t):

d∆a(t)
dt

= ∆a(t)> J(t) + ã(t)(J̃(t)− J(t))

∆a(t1) = 0.
(2.16)

Note that IVP (2.16) satisfies assumption in Lemma 2.4.1. Therefore, the
following estimate holds

‖∆a(t)‖ ≤ ξ(t), (2.17)

where ξ(t) is a solution of the following IVP:
dξ

dt
= µ[J(t)]ξ + ‖ã(t)(J̃(t)− J(t))‖,

ξ(t1) = 0.
(2.18)

The solution of IVP (2.18) is given by the following formula

ξ(t) = φ(t)
∫ t

t1

φ−1(τ)‖ã(τ)(J̃(t)− J(t))‖dτ, (2.19)

where φ(t) = exp
(∫ t

t1
µ[J(τ)]dτ

)
is a fundamental solution of IVP (2.19).

Thus, we get the upper bounds for all terms in the inequality (2.10).
Thus, we can list the factors that affect the accuracy of gradient approxi-

mation with interpolated activations. These factors are constants that bound
∂ f (z(t),t,θ)

∂θ and ∂2 f (z(t),t,θ)
∂θ∂z for t ∈ [t0, t1] (2.10), logarithmic norm µ[J(t)] (2.14),

(2.17), (2.19), and smoothness of J(t).

2.5 Numerical Experiments

In this section, firstly, we compare the proposed the IRDM with the RDM on
the density estimation and variational inference tasks (for the RDM baselines,
we use FFJORD [61] implementation). Secondly, we show the benefits of the

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 21

IRDM on the CIFAR10 classification task (RDM implementation is similar
to [22]). We demonstrate that during training, the IRDM requires less compu-
tational time to achieve convergence and a smaller number of evaluations of
the right-hand side function comparing to the baselines. The source code of
the proposed method can be found at GitHub1.

Also, as the number of Chebyshev grid points N is an important hyperpa-
rameter in our method, we study how it affects the gain in considered tasks.
Our method is implemented on top of torchdiffeq2 package. The default
ODE solver in our experiments is the DOPRI5. The values of optimized hy-
perparameters are in the supplementary materials. Mostly we follow the
strategies from [61] and [55]. Every separate experiment is conducted on a
single NVIDIA Tesla V100 GPU with 16Gb of memory [178]. We conducted all
experiments with three different fixed random seeds and reported the mean
value. Experiments were tracked using the “Weights & Biases” library [11].

2.5.1 Experimental settings

To integrate ODE blocks in all experiments, we use the DOPRI5 ODE solver.
We report mean test loss values and function evaluations values. These values
are computed based on the ten runs with different fixed random seeds for toy
datasets and three runs for other datasets.

2.5.1.1 Classification

We test considered methods of neural ODE model training in the CIFAR10
classification task. We consider a model with a single ODE block, which
consists of two convolutional layers with 64 input and output channels, ReLU
activations, and weight normalizations. A convolutional layer with three
input channels and 64 output channels, a batch normalization layer, and
ReLU activation precede the ODE block. We use only random crops and
random flips for data augmentation.

The training is performed by SGD with momentum 0.9. The weight decay
is equal to 1e-5; the learning rate is fixed and equal to 5e-3, batch size is 100.
Initial absolute and relative tolerances are set to 1e-5. After the nth150 epoch,
these tolerances are decreased by 10.

2.5.1.2 Density estimation

For the density estimation problem, we consider miniboone tabular dataset
and four two-dimensional toy datasets. Data and preprocessing procedures
are taken from https://github.com/gpapamak/maf and https://github.com/
rtqichen/ffjord, respectively.

Instead of simple linear layers inside the ODE block, we use a so-called
concatsquash linear layers, which are defined as follows

(Wz + b1)� σ (tc + b2) + tb3, (2.20)
1https://github.com/Daulbaev/IRDM
2https://github.com/rtqichen/torchdiffeq/

https://github.com/gpapamak/maf
https://github.com/rtqichen/ffjord
https://github.com/rtqichen/ffjord
https://github.com/Daulbaev/IRDM
https://github.com/rtqichen/torchdiffeq/

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 22

where z are input activations, t stands for the time, W , c, b1, b2, b3 are trainable
parameters, σ is a sigmoid activation, and � is an element-wise product.

For the miniboone dataset, we train a model with 10 ODE blocks and
softplus nonlinearity. It is trained by Adam optimizer with a fixed learning
rate equal to 1e-3. The batch size is equal to 10000. Absolute and relative
tolerances are set to 1e-8 and 1e-7, respectively. The training terminates if
test loss does not decrease during 30 sequential epochs.

In experiments with toy datasets, a model with a single ODE block is used.
This ODE block consists of three concatsquash linear layers of size 2× 64,
64× 64, and 64× 2. To train the Neural ODEs model, SGD with momentum
0.9 and fixed learning rate 1e-3 is used. Absolute and relative tolerances are
set to 1e-5. The number of iterations in the training procedure is 10000, and
100 samples compose mini-batch.

2.5.1.3 VAE

For VAE experiments, we choose two datasets: Caltech and Freyfaces. Both
datasets can be found in https://github.com/riannevdberg/sylvester-flows.
All the experimental settings are exactly the same as in the FFJORD paper.
The only difference is that IRDM is used to train models instead of RDM.

Improvement in stability of gradient computations. We perform experi-
ments on the reconstruction trajectory of the dynamical system that collapses
in zero. As a result, we observe that the reverse dynamic method (RDM) and
our method (IRDM) solve this problem with approximately the same accuracy.
However, the RDM requires at least 10 times more right-hand side evaluations
to solve adjoint IVP in every iteration than the IRDM. We use RDM implemen-
tation from the torchdiffeq package. Thus, in such a toy problem the IRDM
and the RDM compute similar gradients, but the IRDM computes them much
faster. To illustrate the stability of the IRDM, we show the plot of test loss vs.
training time in density estimation problem, see Figure 2.4a.

How gradient approximation depends on the tolerance in adaptive solver
and size of the Chebyshev grid. In Section 2.4, we provide theoretical
bounds on the gradient approximation and list the main factors that affect
it. However, tolerance in the adaptive solver and number of nodes in the
Chebyshev grid can also significantly affect the quality of gradient approxi-
mation. To illustrate this influence empirically, we consider the toy dynamical
system in 2D with the right-hand side Ay3 and train neural ODE model to
approximate trajectories of this dynamical system. We consider the range of
tolerances in the DOPRI5 adaptive solver and the range of nodes quantities in
the Chebyshev grid. The result of this experiment is presented in Figure 2.3.
This plot shows that the smaller tolerance, the more accurate gradients ap-
proximation for all considered number of nodes in the Chebyshev grid. At the
same time, the larger number of nodes leads to decreasing the approximation
quality.

https://github.com/riannevdberg/sylvester-flows

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 23

2 10 20 30 40
Number of the IRDM grid points

1e-1

1e-2

1e-3

1e-4

1e-5

Ab
so

lu
te

 to
le

ra
nc

e

10 7

10 6

FIGURE 2.3: The dependence of the IRDM gradients error in
`1-norm with respect to the number of nodes in the Chebyshev
grid and the tolerance of the DOPRI5 method. The output of the
standard backpropagation performed for the DOPRI5 with 1e-7

tolerance was used as a ground truth.

2.5.2 Density Estimation

The problem of density estimation is to reconstruct the probability density
function using a set of given data points. We compared the proposed IRDM
with the RDM (FFJORD3 [61] baseline) that exploits the reverse dynamic
method to density estimation problem. We tested these methods on four
toy datasets (2spirals, pinwheel, moons and circles) and tabular miniboone
dataset [140]. This tabular dataset was used in our experiments since it is
large enough and allows considered methods to converge for a reasonable
time. According to [61] setting, we stopped the training process if, for the
sequential 30 epochs, the test loss does not decrease. Therefore, we excluded
test loss values given by the last 30 epochs from the plots. The model for
miniboone was slightly different from the model from [61]; it includes 10 ODE
blocks instead of 1. We used Adam optimizer [96] in all tests on the density
estimation problem. For toy datasets, we used the following hyperparameters:
learning rate equals 10−3, the number of epochs was 10000, the batch size
was 100, absolute and relative tolerances in the DOPRI5 solver were 10−5 and
10−5.

Figure 2.4 shows that the test loss decreases more rapidly with our method
than with the RDM. To make figures more clear, we plot convergence only for
one value of N for every dataset. This value of N gives the best result among
the tested values.

The number of nodes in the Chebyshev grid significantly affects the perfor-
mance of the proposed method. If this number is small, then the interpolation
accuracy is not enough, and the training takes a long time. If this number
is large, then the computing of intermediate activations is too costly, and
training is relatively slow. In Figure 2.5, the total number of the right-hand
side f (z(t), t, θ) evaluations per training iteration is shown.

3https://github.com/rtqichen/ffjord

https://github.com/rtqichen/ffjord

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 24

102 103

Training time, sec
10

15

20

25

30

35
Te

st
 L

os
s

RDM
Ours, N = 16

(A) miniboone: test loss

101 102 103

Training time, sec

10

20

30

40

50

60

70

80

90

Tr
ai

n
lo

ss

RDM
Ours, N = 16

(B) miniboone: train loss

101 102 103

Training time, sec
500

600

700

800

900

1000

rh

s e
va

lu
at

io
ns

RDM
Ours, N = 4
Ours, N = 8
Ours, N = 16
Ours, N = 32
Ours, N = 64
Ours, N = 128

(C) miniboone: total num-
ber of f (z(t), t, θ) evalua-

tions

FIGURE 2.4: Comparison of the IRDM with the RDM (baseline
from FFJORD) on density estimation problem for tabular dataset
miniboone. The number of points in the Chebyshev grid N used

in the IRDM is given in the legend.

101 102 103 104

Training time, sec

50

100

150

200

250

rh

s e
va

lu
at

io
ns

FFJORD
Ours, N = 4
Ours, N = 8
Ours, N = 16
Ours, N = 32
Ours, N = 64
Ours, N = 128

(A) 2spirals

101 102 103

Training time, sec

40

60

80

100

120

rh

s e
va

lu
at

io
ns

FFJORD
Ours, N = 4
Ours, N = 8
Ours, N = 16
Ours, N = 32
Ours, N = 64
Ours, N = 128

(B) pinwheel

101 102 103

Training time, sec

40

60

80

100

120

140

rh

s e
va

lu
at

io
ns

FFJORD
Ours, N = 4
Ours, N = 8
Ours, N = 16
Ours, N = 32
Ours, N = 64
Ours, N = 128

(C) moons

101 102 103 104

Training time, sec

50

100

150

200

rh

s e
va

lu
at

io
ns

FFJORD
Ours, N = 4
Ours, N = 8
Ours, N = 16
Ours, N = 32
Ours, N = 64
Ours, N = 128

(D) circles

FIGURE 2.5: Total number of f (z(t), t, θ) evaluations for density
estimation datasets.

2.5.3 Variational Autoencoder

We also compare the RDM (baselines from FFJORD) and the IRDM on training
of variational autoencoder [97]. We use datasets Caltech and Freyfaces. The
test negative ELBO loss and test bits per dim loss are reported for caltech and
freyfaces datasets, respectively. Figure 2.6 illustrates a minor acceleration
of convergence provided by the IRDM compared to the RDM. However,
the IRDM gives the same final test loss with the same training time as the
RDM. We suppose that the reason for such convergence degradation near the
optimum is the same as for the density estimation models.

102 103

Training time, sec
4000

6000

8000

10000

12000

14000

rh

s e
va

lu
at

io
ns

 p
er

 e
po

ch

RDM
Ours, N = 8
Ours, N = 16

(A) caltech

102 103

Training time, sec
3000

4000

5000

6000

7000

rh

s e
va

lu
at

io
ns

 p
er

 e
po

ch

RDM
Ours, N = 8
Ours, N = 16

(B) freyfaces

FIGURE 2.6: Comparison of the number of right-hand side eval-
uations for the IRDM and the RDM in training variational au-

toencoder.

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 25

102 103 104 105

Training time, sec

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 a
cc

ur
ac

y

RDM
Ours, N = 8
Ours, N = 16

(A) Comparison of the IRDM with the
RDM in CIFAR10 classification task.
IRDM even with N = 8 nodes trains

faster than RDM.

0 10 20 30 40 50
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Barycentric Lagrange
Interpolation (BLI)
Piecewise-linear Interpolation

(B) Comparison of BLI and piecewise-
linear interpolation used in the IRDM
(8 nodes) in MNIST classification

problem.

FIGURE 2.7: Experiments results in the image classification task.
The reported values are averaged over three trained models

corresponding to the considered tasks.

2.5.4 Classification

We test the proposed method on the classification problem with the CIFAR10
dataset. The model with a single convolution, a single ODE block, and a
linear layer is considered. For this model, the IRDM with 16 points in the
Chebyshev grid gives 0.867 test accuracy with the batch size 512 and tolerance
1e-3 in the DOPRI5. We compare the IRDM with the RDM in terms of test loss
versus training time. Figure 2.7a demonstrates that the IRDM gives higher
test accuracy and requires less training time.

Another experiment is investigating whether other interpolation tech-
niques can be used in the IRDM. We compare the Barycentric Lagrange In-
terpolation (BLI), which is a default method used in the IRDM, with the
piecewise-linear interpolation. We perform 50 epochs in the MNIST classifica-
tion problem with constant learning rate 1e-1 and without data augmentation.
Figure 2.7b confirms our choice of BLI since already after 40 epochs piecewise-
linear interpolation provides less stable test accuracy behaviour.

2.5.5 Number of Chebyshev Grid Points

In this section, we study how the quality of a model depends on the number
of Chebyshev grid points. To demonstrate this dependence, we perform
experiments with a range of N on toy two-dimensional datasets for the density
estimation problem. Figures 2.8a and 2.8d show that if the number of nodes is
too small, e.g., N = 4, the IRDM converges to the higher test loss. It means
that the interpolation accuracy is not enough, and a larger number of points
in the Chebyshev grid is needed. On the other hand, Figure 2.8 illustrates
that if the number of nodes is too large, e.g., N = 128, the IRDM might be
slower than the RDM. The reason is that a large number of nodes leads to the
costly computations of the interpolated activations, see Equation (7) in the
main text. Since the right-hand side function in the ODE block for toy datasets
is easy to compute, the speedup effect is not much noticeable. However, the
total number of the right-hand side function evaluations performed in IRDM

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 26

is significantly smaller than in RDM, see Figure 2.9. Therefore, the more
computationally expensive the right-hand side function is in the ODE block,
the more significant gain one can get from using IRDM.

101 102 103

Training time, sec.

2.8

3.0

3.2

3.4

3.6

Te
st

 lo
ss

Ours, N = 4
Ours, N = 8
Ours, N = 16
Ours, N = 32
Ours, N = 64
Ours, N = 128
RDM

(A) 2spirals

101 102 103

Training time, sec.

2.4

2.6

2.8

3.0

3.2

3.4

Te
st

 lo
ss

Ours, N = 4
Ours, N = 8
Ours, N = 16
Ours, N = 32
Ours, N = 64
Ours, N = 128
RDM

(B) pinwheel

101 102 103

Training time, sec.

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

Te
st

 lo
ss

Ours, N = 4
Ours, N = 8
Ours, N = 16
Ours, N = 32
Ours, N = 64
Ours, N = 128
RDM

(C) moons

101 102 103

Training time, sec.
3.3

3.4

3.5

3.6

3.7

Te
st

 lo
ss Ours, N = 4

Ours, N = 8
Ours, N = 16
Ours, N = 32
Ours, N = 64
Ours, N = 128
RDM

(D) circles

FIGURE 2.8: Comparison of IRDM (our method) and
RDM on density estimation problem for toy datasets
2spirals, pinwheel, moons, and circles in terms of
test loss versus wall-clock training time. Comparison results
for every dataset are presented in the corresponding subplot.
The number of points in Chebyshev grid N used in the IRDM is

given in legend.

Table 2.1 shows the total time to perform 10000 training iterations for
considered toy datasets. It can be seen that the IRDM with N = 16 nodes
always outperforms the RDM.

TABLE 2.1: Time (in seconds) to perform 10000 training itera-
tions for toy datasets.

nodes / RDM 4 8 16 32 64 128
dataset

pinwheel 5318 5389 4642 4750 4846 5152 5574
circles 7874 6927 6864 6842 7037 7578 8113
moons 7494 5618 6062 6471 6518 6720 7192
2spirals 9285 8998 9492 8938 8947 9267 9680

Chapter 2. Acceleration of Gradients Propagation in Neural ODEs 27

0 2000 4000 6000 8000
Iteration

0

25

50

75

100

125

150

175

rh

s e
va

lu
at

io
ns

,
10

5 Ours, N = 4
Ours, N = 8
Ours, N = 16
Ours, N = 32
Ours, N = 64
Ours, N = 128
RDM

(A) 2spirals

0 2000 4000 6000 8000
Iteration

0

20

40

60

80

100

rh

s e
va

lu
at

io
ns

,
10

5 Ours, N = 4
Ours, N = 8
Ours, N = 16
Ours, N = 32
Ours, N = 64
Ours, N = 128
RDM

(B) pinwheel

0 2000 4000 6000 8000
Iteration

0

20

40

60

80

100

120

140

rh

s e
va

lu
at

io
ns

,
10

5 Ours, N = 4
Ours, N = 8
Ours, N = 16
Ours, N = 32
Ours, N = 64
Ours, N = 128
RDM

(C) moons

0 2000 4000 6000 8000
Iteration

0

20

40

60

80

100

120

140

160

rh

s e
va

lu
at

io
ns

,
10

5 Ours, N = 4
Ours, N = 8
Ours, N = 16
Ours, N = 32
Ours, N = 64
Ours, N = 128
RDM

(D) circles

FIGURE 2.9: Comparison of IRDM (our method) and RDM on
density estimation problem for toy datasets 2spirals, pinwheel,
moons, and circles in terms of total number of the right-hand
side evaluations versus number of iterations. Comparison re-
sults for every dataset are presented in the corresponding sub-
plot. The number of points in Chebyshev grid N used in the

IRDM is given in legend.

2.6 Conclusion

We have presented the interpolated reverse dynamic method (IRDM) to im-
prove the original reverse dynamic method (RDM) for training neural ODE
models. The main idea of IRMD is to reduce the number of ODEs solved
during the backward pass by using interpolated values z(t) rather than ones
found from equation (2.5). Thus, the total number of right-hand side eval-
uations during training and convergence time decreases compared to the
original reverse dynamic method. We have empirically demonstrated this
behavior on density estimation, variational inference, and classification tasks.
Also, we have derived a theoretical upper bound on the error in computed
gradients induced by the interpolation. The influence of the tolerance in
adaptive ODE solver and the number of nodes in the Chebyshev grid is also
studied numerically.

28

Chapter 3

Towards Understanding
Normalization in Neural ODEs

3.1 Introduction

Neural Ordinary Differential equations (neural ODEs) are proposed in [22]
and model the evolution of hidden representation with ordinary differential
equation 2.1. The right-hand side of this ODE is represented with some
neural network. If one considers classical Euler scheme to integrate this ODE,
then ResNet-like architecture [73] will be obtained. Thus, Neural ODEs are
continuous analogue of ResNets. One of the motivation to introduce such
models was assumption on smooth evolution of the hidden representation
that can be violated with ResNet architecture. Also, in contrast to ResNet
models, Neural ODEs share parameters of the ODE right-hand side between
steps to integrate this ODE. Thus, Neural ODEs are more memory efficient.

Different normalization techniques were proposed to improve the quality
of deep neural networks. Batch normalization [88] is a useful technique when
training a deep neural network model. However, it requires computing and
storing moving statistics for each time point. It becomes problematic when
a number of time steps required for different inputs vary as in recurrent
neural networks [81, 29, 7], or the time is continuous as in neural ODEs.
We apply different normalization techniques ([148, 117, 7]) to Neural ODE
models and report results for the CIFAR-10 classification task. The considered
normalization approaches are compared in terms of test accuracy and ability
to generalize if a more powerful ODE solver is used in the inference.

3.2 Background

We consider the same IVP as in the previous chapters:
dz
dt

= f (z(t), t, θ), t ∈ [t0, t1]

z(t0) = z0,
(3.1)

where z0 denotes the input features, which are considered as initial value.
To solve IVP, we numerically integrate system (3.1) using ODE solver. De-
pending on the solver type different number of RHS evaluations of (1) are

Chapter 3. Towards Understanding Normalization in Neural ODEs 29

performed. Initial value problem (3.1) replaces Euler discretization for the
same right-hand side that arises in ResNet-like architectures. One part of the
standard ResNet-like architecture is the so-called ResNet block, which consists
of convolutions, batch normalizations, and ReLU layers. In practice, batch
normalization is often used to regularize model, make it more robust, and
reduce internal covariate shift [158]. Also, it is shown that batch normalization
yields smoother loss surface and makes neural network training faster and
more robust [149]. In the context of neural ODEs training, previous studies
applied layer normalization [22] and batch normalization [55] but did not
investigate the influence of these layers on the model performance. In this
study, we focus on the role of normalization techniques in neural ODEs. We
assume that proper normalization applied to the layers in ODE blocks leads
to the higher test accuracy and smoother dynamic.

According to [112], different problems and neural network architectures
require different types of normalization. In our empirical study, we investi-
gate the following normalization techniques to solve the image classification
problem with neural ODE models.

• Batch normalization (BN; [88]) is the most popular choice for the image
classification problem, we discuss its benefits in the above paragraph.

• Layer normalization (LN; [7]) and weight normalization (WN; [148]) were
introduced for RNNs. We consider these normalizations as appropriate
candidates for incorporating in neural ODEs since they showed its effec-
tiveness for RNNs that also exploit the idea of weights sharing through
time.

• Spectral normalization (SN; [117]) was proposed for generative adversarial
networks. It is natural to consider SN for neural ODEs since if the Jacobian
norm is bounded by 1, one may expect better properties of the gradient
propagation in the backward pass.

• We also trained neural ODEs without any normalization (NF).

To perform back-propagation, we use ANODE [55] approach. This is a
memory-efficient procedure to compute gradients in neural ODEs with several
ODE blocks. This method exploits checkpointing technique at the cost of extra
computations.

3.3 Numerical Experiments

This section presents numerical results of applying different normalization
techniques to neural ODEs in the CIFAR-10 classification task. Firstly, we
compare test accuracy for neural ODE based models with different types of
normalizations. Secondly, we present an (S , n)-criterion to estimate quality of
the trained neural ODE-like model. The source code is available at GitHub
repository1.

1https://github.com/juliagusak/neural-ode-norm

https://github.com/juliagusak/neural-ode-norm

Chapter 3. Towards Understanding Normalization in Neural ODEs 30

In our experiments we consider neural ODE based models, which are built
by stacking standard layers and ODE blocks. After replacing ResNet block
with ODE block in ResNet4 model, we get

conv→ norm→ activation→ ODE block→ avgpool→ fc

an architecture, which we call ODENet4. For this model we test different
normalization techniques for norm layer and inside the ODE block. Similarly,
by replacing in ResNet10 architecture ResNet blocks, which do not change
spatial size, with ODE blocks, we get the following model:

conv→ norm→ activation→ ResNet block→ ODE block→ ResNet block
→ ODE block→ avgpool→ fc,

which we call ODENet10. In contrast to ODENet4, this model admits different
normalizations in place of the norm layer, inside ResNet blocks and ODE
blocks.

We use ANODE to train considered models since it is more robust than
the adjoint method (more details see in [55]). In both forward and backward
passes through ODE blocks we solve corresponding ODEs using Euler scheme.
For the training schedule, we follow the settings from ANODE ([55]). In
contrast to ANODEDEV2 ([182]), we include activations and normalization
layers to the model. We train considered models for 350 epochs with an initial
learning rate equal to 0.1. The learning rate is multiplied by 0.1 at epoch 150
and 300. Data augmentation is implemented. The batch size used for training
is 512. For all experiments with different normalization techniques, we use
the same settings.

3.3.1 Accuracy

In our experiments, we assume that normalizations for all ResNet blocks are
the same, as well as for all ODE blocks. Along with these two normalizations,
we vary a normalization technique after the first convolutional layer. We
report test accuracy for different normalization schedules for ODENet10.
Table 3.1 presents test accuracy given by ODENet10 model. The best model
achieves 93% accuracy. It uses batch normalization after the first convolutional
layer and in the ResNet blocks, and layer normalization in the ODE blocks.
Also, we observe that the elimination of batch normalization after the first
convolutional layer and from the ResNet blocks leads to decreasing accuracy
to 91.2%. Such quality is even worse than the quality obtained with the model
without any normalizations (92%).

3.3.2 (S , n)-criterion of dynamics smoothness in the trained
model

Since in neural ODEs like models, we train not only parameters of standard
layers, but also parameters on the right-hand side of the system (3.1), the test
accuracy is not the only important measure. Another significant criterion is

Chapter 3. Towards Understanding Normalization in Neural ODEs 31

TABLE 3.1: Comparison of normalization techniques for
ODENet10 architecture on CIFAR-10. BN – batch normaliza-
tion, LN – layer normalization, WN – weight normalization,
SN – spectral normalization, NF – the absence of any normaliza-
tion. To perform back-propagation, we exploit ANODE with a
non-adaptive ODE solver. Namely, we use Euler scheme with
Nt = 8, where Nt is a number of time steps used to solve
IVP (3.1). The first row corresponds to the normalization in
the ODE blocks. We use BN after the first convolutional layer
and inside ResNet blocks, respectively. Standard ResNet10 archi-
tecture (only ResNet blocks are used) gives 0.931 test accuracy.

ODE blocks BN WN SN NF LN
Accuracy@1 0.762 0.925 0.926 0.927 0.930

the smoothness of the hidden representation dynamic that is controlled by the
trained parameters of the right-hand side (3.1).

To implicitly estimate this smoothness, we propose an (S , n)-criterion that
indicates whether more powerful solver induces performance improvement
of the trained neural ODE model during evaluation. Here, S denotes a solver
name (Euler, RK2, RK4, etc) and n denotes a number of the right-hand side
evaluations necessary for integration of system (3.1), which corresponds to
the forward pass through the ODE block. By more powerful solver we mean
ODE solver that requires more right-hand side evaluations to solve (3.1) than
ODE solver used in training for the same purpose. For example, assume
one trains the model with Euler scheme and n = 2. Then, we say that ODE
block in trained model corresponds to smooth denamics if using Euler scheme
with n > 2 during evaluation yields higher accuracy. Otherwise, we say that
(S , n)-criterion shows the absence of learned smooth dynamics. Worth noting
that the (S , n)-criterion has limitation. Namely, it requires the solution of
IVP (3.1) to be a Lipschitz function of the right-hand side (3.1) parameters and
inputs ([24]). Otherwise, we can not rely on this criterion since the closeness
in the right-hand side parameters does not induce the closeness of features
that are inputs to the next layers of the model.

In our experiments we consider ODENet4 architecture with four different
settings of the Euler scheme: n = 2, 8, 16, 32. For each setting we have trained
10 types of architectures that differ from each other by the type of normal-
ization we apply to the first convolutionl layer and convolutional layers in
the ODE block. For example, the model named “ODENet4 BN-LN (Euler,
2)” means the following: we have used ODENet4 architecture, where after
conv layer follows a BN layer, after each convolutional layer in the right-
hand side (3.1) follows an LN layer, and Euler scheme with 2 steps is used to
propagate through the ODE block.

For a fixed model trained with (Euler, n0) solver we check the fulfillment
of (S , n)-criterion by evaluating its accuracy with more powerful solver. In
this case, we consider the following more powerful solvers: (Euler, n), (RK2,
n) and (RK4, n), where n > n0.

In Figure 3.1, we show how test accuracy given by ODENet4 model

Chapter 3. Towards Understanding Normalization in Neural ODEs 32

with different normalizations changes with varying ODE solvers to integrate
IVP (3.1) in ODE blocks. Different line types correspond to different solver
type (Euler, RK2, RK4), x-axis depicts the number of the right-hand side eval-
uations, while y-axis stands for the test accuracy. These models were trained
with Euler scheme and after that we use Euler, RK2 and RK4 schemes to com-
pute test accuracy. Every row from top to bottom corresponds to n = 2, 16, 32
used in Euler scheme.

FIGURE 3.1: Illustration of how the choice of ODE solver and
normalizations during training implicitly affects the smoothness
of learned dynamics. Each subplot corresponds to the model
trained with a fixed ODE solver and normalization scheme.
Models within one row have the same type of training solver
((Euler, n), n = 2, 16, 32 from top to bottom). Models within one
column have the same normalization technique. For example,
subplot in the third row and the second column corresponds
to the ODENet4 model trained with (Euler, 32) solver with BN
after the first convolutional layer and LN after convolutional
layers inside ODE block. Lines of different style corresponds
to different types of test solvers. If model accuracy does not
drop when the more powerful ODE solver is used, we conclude
that, according to (S , n)-criterion, the model provides a smooth
dynamics. For example, the model (Euler, 32) BN-LN trains
a smooth dynamics, while (Euler, 2) BN-LN fails to do that.
Also, we can observe that to learn the smooth dynamics during
training, for some normalization schemes less powerful solvers
are required. If we compare BN-LN and BN-WN models, we
can see that the first one learns smooth dynamics when Euler
with n = 16 is used, but the latter one does that only for n = 32.

Chapter 3. Towards Understanding Normalization in Neural ODEs 33

3.4 Discussion and Further research

We have empirically investigated the effect of normalization techniques to
ODE based models. For different models, we have compared test accuracy as
well as the ability to learn parameters that yield smooth dynamics of hidden
representations. Informally, we recommend using layer normalizations or
weight normalizations and to avoid batch normalizations for neural ODEs.
We have observed that both normalization and type of training solver affect
the performance of the final model. Worth noting that pre-trained models,
which are close in terms of test accuracy, can significantly differ when it comes
to the smoothness of the hidden representations dynamics. Also, we will
work on a more rigorous theoretical criterion that can be used to compare
ODE based models, considering both neural networks and ODEs metrics.

34

Chapter 4

Exploring Robustness of Different
Solvers for Neural ODEs

4.1 Introduction

In this chapter, we study the neural ODEs from the viewpoint of adversarial
robustness. The robustness of neural ODE models to adversarial attacks [3]
has already been considered by Hanshu et al. [71]. Authors demonstrate
that in the image classification task neural ODE models are more robust to
white-box adversarial attacks [57] than CNNs with the similar number of
parameters. However, the dependence of the robustness on the used ODE
solver in the forward and backward passes is not discussed in [71]. We fill
this gap in the presented study and consider the influence of the ODE solver
on neural ODE models robustness and test accuracy.

To the best of our knowledge, there were no papers exploring how the
choice of a numerical integration scheme affects the quality of the trained
neural ODE model. Therefore, we investigate how the choice of ODE solver in
the training stage (standard or adversarial) affects the robustness of the trained
neural ODE model with respect to the adversarial attacks. We also analyse
the possibility to improve the robustness of neural ODE model to black-box
attacks through accurate choice of the particular ODE solver in the training
stage or use a combination of some set of ODE solvers. Such combination can
be obtained according to one of the methods proposed below, see Section 4.2.
In addition, we consider how the ODE solver affects the transferability [173]
of the adversarial examples generated by neural ODE model.

In this chapter, we consider Runge–Kutta solvers (eq:butcher). The impor-
tant property of any Runge-Kutta method is the order of function approximation
denoted by p.

Definition 1 A Runge-Kutta method is of the order p if the following inequality
holds for any t̃ ∈ [t0, t1] such that t̃ + h ∈ [t0, t1]: ‖z(t̃ + h)− ẑ(t̃ + h)‖ ≤ Chp+1,
where z(t) and ẑ(t) are ground-truth and approximate dynamics.

Runge-Kutta methods such that the number of stages s equals to the order
p are of particular interest since the corresponding Butcher tableaux can be
parametrized with no more than two scalar parameters [169]. We exploit this
property when constructing sampling and ensembling solver techniques that
operate with a set of solvers rather than with a single predefined one. These

Chapter 4. Exploring Robustness of Different Solvers for Neural ODEs 35

techniques advance the conventional approach to neural ODE training and
evaluation by going beyond the use of a predefined solver. To the best of
our knowledge we are the first who consider an influence of ODE solvers
to adversarial training and robustness if neural ODE models to black-box
attacks.

We test the introduced techniques on the image classification tasks (CI-
FAR10 and MNIST datasets) and robustness to adversarial attacks. Robustness
of the trained models to black-box attacks is tested with FGSM [59], PGD [113]
and DeepFool [119] attacks from FoolBox package [138, 137]. Models to gener-
ate black-box attack are taken from RobustBench collection of benchmarks [32].
The source code to reproduce results of this study is presented on github1.

Our main results and contributions to the understanding of neural ODEs
properties are summarised as follows:

• We empirically demonstrate that the choice of ODE solver significantly
affects robustness of neural ODE models to adversarial attacks. Both
standard and adversarial training are tested.

• We propose methods of ODE solvers sampling in the training of neural
ODEs that lead to more robust trained models without any additional
costs.

• We propose methods of ODE solvers ensembling in the training of neural
ODEs that make the trained model more robust to large attacks.

• We consider approaches to construct models ensembling based on the
single trained neural ODE model and multiple ODE solvers.

4.1.1 Related works

Stable neural ODEs training and obtaining competitive results compared with
other architectures are challenging tasks that are addressed in many studies.
In particular, [55, 185] address the instability of the adjoint method with a
checkpointing strategy, and [36] proposes to use the interpolation technique
in the backward pass. The importance of the augmentation technique in the
context of training neural ODE is presented in [41]. The well-known fact
from numerical analysis [169] is that to solve ODE with sufficient accuracy, a
small step size in an ODE solver is required. However, this setting leads to
an increase of the running time to perform the forward pass in neural ODE.
This issue is addressed in [92, 56], where the trained dynamic is forced to
be easy to solve with regularization of the loss function and sampling of the
integration final time, respectively. Also, the extension of neural ODEs to
stochastic neural ODEs is considered in [103, 106, 167, 125].

Besides the standard machine learning quality measures, neural ODEs can
be evaluated based on the properties of the learned dynamic. The verification
of the learned dynamic stability with respect to decreasing step size in the
used ODE solver is studied in [66] where (S , n)-criterion is proposed for

1https://github.com/SamplingAndEnsemblingSolvers/SamplingAndEnsemblingSolvers

https://github.com/SamplingAndEnsemblingSolvers/SamplingAndEnsemblingSolvers

Chapter 4. Exploring Robustness of Different Solvers for Neural ODEs 36

that purpose. Further, similar analysis of the learned dynamic is performed
in [126]. The related question on the importance of control trained dynamic
properties is discussed in [135], where the continuous-in-depth extension of
ResNet architecture is proposed.

One of the crucial factors in the evaluation of machine learning models is
robustness to adversarial attacks [3]. Adversarial example is an input image
that is modified by adding perturbation, which is almost invisible for the
human eye, so called adversarial perturbation. We say that an adversarial
attack takes place if an adversarial example fools predictive model, i.e. model
gives wrong class label. Adversarial examples can be generated and tested
on different models. Therefore, concepts of white-box and black-box attacks
appear. The adversarial attack is called white-box, if all knowledge about
the model (parameters, loss, architecture, data labels) is used to generate
perturbation. In contrast, the attack is called black-box if none of the knowledge
about model is used. The intermediate case such that the limited knowledge
about model may be involved, except its parameters, is called semi-black-
box attack. The model to generate an adversarial example is called a source
model, and the model to evaluate the label for adversarial example is called
a target model. If the gradient of loss function with respect to the input is
used to calculate perturbation, we say that the attack is gradient-based [128].
The classical examples of such attacks are FGSM [59] and PGD [113]. Other
approaches to compute adversarial examples are DeepFool [119] and Carlini-
Wagner attack [17]. The studies [71, 19] demonstrate that neural ODEs are
more robust to adversarial attacks than classical CNN models.

Key idea: Runge-Kutta methods typically used in the neural ODE training
can be parametrized with no more than two scalar variables.

In this chapter, we consider explicit Runge-Kutta methods such that their
order p equals to the number of stages s. This requirement leads to the
constraints on the coefficients from Butcher tableau. These constraints induce
parametrizations of the Runge-Kutta methods that we will use to make neural
ODE model more robust. We provide the considered parametrizations of
Runge-Kutta methods below following [169].

Runge-Kutta methods of the 2-nd order with two stages. These Runge-
Kutta methods are defined by the Butcher tableau whose coefficients have to
satisfy the following system of equations:{

b1 + b2 = 1
b2c2 = 1

2 .

Thus, these methods can be parametrized by a single parameter u ∈ (0, 1]; see
the corresponding Butcher table (4.1a).

Definition 2 Let parameters of Runge-Kutta methods be a set of values that uniquely
define the Butcher tableau corresponding to the considered class of Runge-Kutta
methods.

Chapter 4. Exploring Robustness of Different Solvers for Neural ODEs 37

In particular, midpoint rule and Heun’s method are particular cases of such
parametrization if u = 1

2 and u = 1, respectively, see Tables 4.1b and 4.1c.

TABLE 4.1: 2-stage RK method of the 2-nd order

0 0
u u 0

1− 1
2u

1
2u

(A) Parametrized Butcher
tableau

0 0
1
2

1
2 0
0 1

(B) Midpoint rule

0 0
1 1 0

1
2

1
2

(C) Heun’s
method

Thus, tuning of parameter u leads to different solvers of the same order that
can be combined in training of neural ODE models. Techniques to combine
such Runge-Kutta methods are presented in Section 4.2.

4.2 Meta Neural ODE

Key idea. Solver parameters are modified during the neural ODE training
by sampling from a given distribution. Hence, the model is trained using
a large set of Runge-Kutta solvers instead of a single one, and yields better
robustness to adversarial attacks without time overhead.

Since we want to adjust an ODE solver during training to improve neural
ODE, the natural idea is to compute gradient of the loss function with respect
to solver parameters and update them according to the gradient method
altogether with weights in other layers. We have tested this approach and
figured out that the training is quite unstable since the feasible parameters are
not arbitrary and their clamping does not lead to desired improvement. Thus,
in this chapter we introduce gradient-free methods of updating Runge-Kutta
solver parameters during training.

Solver sampling. Solver sampling technique can be splitted in two methods:
switching and smoothing. During the neural ODE training, at each epoch
we randomly choose a solver from a pre-defined set of solvers to perform
propagation through the model. If the set of solvers is continuous, we call
this strategy solver smoothing, otherwise, we refer to it as solver switching. The
latter approach requires a pre-defined set of parameterizations, each of which
corresponds to one solver. Considering s-stage Runge-Kutta methods of order
p ≤ 4, p = s, each parametrization corresponds to one or two scalar values.

The sampling of solver parameters can be done uniformly or according
to some prior fixed distribution. The benefits of switching is that it does not
lead to computational overhead comparing to the single solver while trying
to make the model more robust to the choice of the solver. However, such
regime might make a neural ODE training via backpropogation difficult, if we
have a limited number of solvers that exhibit different dynamics. That leads
as to the smoothing approach, which can be considered as a continuous case
of switching. Smoothing regime requires to set in advance a parameterization
of one initial solver. During the training, parameters for the next solver

Chapter 4. Exploring Robustness of Different Solvers for Neural ODEs 38

are sampled from a continuous distribution, whose mean corresponds with
parameters of the initial solver. We expect that this approach leads to smoothing
of the trained dynamics and make it more robust to adversarial attacks.

Ensembling of solvers outputs. Another approach to adjust ODE solver
during training neural ODE models is ensembling of solvers outputs. The idea
of this method is to set ODE solvers corresponding to the same parameteriza-
tion but from different values of parameters, compute trajectories with these
solvers and average the computed trajectories with some pre-defined weights.
The resulting dynamic approximation takes into account dynamics generated
by different ODE solvers and therefore is more robust to the ODE solver
choice. However, this method requires extra costs since multiple trajectories
are computed. That is why we consider this approach as additional.

Ensemble of models for free. When training a neural ODE using smoothing
regime, we end up with a model, which performs well on a given task for a
family of solvers. Hence, we can use this fact to build an ensemble of models
to further improve the performance.

4.3 Experiments

4.3.1 Motivation to explore solver parameterizations

In this section, we provide a motivation experiment to explore the influence
of solver parameterizations on neural ODEs performance. In [71] the authors
pointed out that neural ODE models are more robust than CNN models for
image classification tasks. Inspired by this chapter, we move further and
consider the influence of different ODE solvers on the accuracy of models
when the samples are modified by an adversarial attack. We call this accuracy
a robust accuracy.

We use the classification task on the MNIST dataset to illustrate the de-
pendency of the robust accuracy on the choice of ODE solver. We consider
the 2-nd order two stages Runge-Kutta methods for various values of param-
eter u from the interval (0, 1]. The corresponding Butcher tableau is given
in Table 4.1a. The model we train is sequentially stacked three blocks: block
of standard neural network layers, ODE block, and another block of neural
network layers.

We evaluate the robust accuracy using PGD attack with ε = 0.3, learning
rate 2/255 and 7 iterations. We provide the dependency of the robust accuracy
on the value of solver parameter u in Figure 4.1. We see from Figure 4.1 that
models trained with different solver parameterizations yield different robust
accuracies while maintaining similar standard accuracy.

Chapter 4. Exploring Robustness of Different Solvers for Neural ODEs 39

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
u

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy Standard Accuracy (eval solver: fixed-step)

Robust Accuracy (eval solver: fixed-step)
Standard Accuracy (eval solver: adaptive)
Robust Accuracy (eval solver: adaptive)

FIGURE 4.1: Robust accuracy of the model on MNIST dataset vs.
different values of parameter u in the 2-nd order Runge-Kutta

solver (see Table 4.1).

4.3.2 Adversarial training on CIFAR-10

Motivated by the experiment from Section 4.3.1 we consider adversarial train-
ing of Neura ODE with Meta ODE blocks on the CIFAR-10 image classification
task. We experiment with an architecture of the following type: (Conv layer
→ PreResNet block→ Meta ODE block→ PreResNet block→ Meta ODE
block → GeLU → AveragePooling → FullyConnected Layer). We trained
the model using the technique proposed in [171]. As optimizer, we use SGD
with a momentum 0.9 and a Cyclic LR schedule (one cycle per 36 epochs with
batch size 256). We use fixed-step size ODE solvers to propagate through the
Meta ODE block.

In the following Sections 4.3.4, 4.3.3 we provide results for the resistance
to adversarial attacks of Neural ODEs trained with different Meta ODE block
regimes. We consider black-box attack scenarios. To generate test attacks we
use Foolbox [138, 137] package. We use pre-trained models from RobustBench
to generate adversarial examples for black-box experiments.

Training with a pre-defined (standalone) solver. We have trained the described
architecture several times using different 8-step standalone solvers, namely,
Euler solver and 2-stage 2-nd order Runge-Kutta solver with u = 0.5.

Training with solver switching. Using 2-stage Runge-Kutta solvers of 2-nd
and 4-th order, we built several groups of solvers (each group contained 2,
3, 10, or 20 solvers of the same order). We trained the same neural ODE
architecture using Meta ODE block in switching regime: at each iteration, one
solver from the group was chosen to perform propagation.

Training with solver smoothing. We chose 2-stage 2-nd order Runge-Kutta
solvers for our solver smoothing strategy. At each iteration, we use one solver
to propagate through the Meta ODE block. The parameter u of the solver is
sampled from the normal distribution N (0.5, 0.0125).

Training with solver ensembling. We consider a group of 2-nd order Runge-
Kutta solvers.

https://github.com/bethgelab/foolbox
https://robustbench.github.io/

Chapter 4. Exploring Robustness of Different Solvers for Neural ODEs 40

4.3.3 Neural Networks attack Neural ODEs

In black-box experiments, we use convolutional neural networks to generate
adversarial attacks and measure robust accuracy of neural ODEs trained with
Meta ODE block in standalone, sampling (both switching and smoothing),
and ensembling regimes. To validate all pre-trained architectures we use
2-stage 2-nd order Runge-Kutta solver in standalone regime with u = 0.5 and
8 steps (Tables 4.2, 4.4).

Neural ODEs trained in standalone regime. Table 4.4 shows that the usage
of 2-nd order Runge-Kutta solver during training yields models with better
resistance to black-box attacks than the usage of Euler solver. Our proposed
solver regimes further improve these results.

Neural ODEs trained in switching regime. We found that the resulting robust
accuracy is approximately the same for models trained with groups of solvers
of the same order, and it is higher for higher-order Runge-Kutta solvers.
Table 4.2 compares the influence of different solver regimes (all regimes use
2-nd order 2-stage Runge-Kutta solvers) to the robustness of the trained model.
We see that solver switching outperforms other regimes when ε is small.

Neural ODEs trained in smoothing/ensembling regime. From Table 4.2 we
can see that the solver ensembling regime can be helpful for high values of
perturbations, and the smoothing regime yields the best robustness in most
cases.

4.3.4 Neural ODEs attack Neural ODEs

In this section, we consider the case, when we know everything about the
attacked neural ODE except the solver used during training. We refer to
this case as grey-box attacks. Table 4.3 compares models pre-trained using
standalone, switching, smoothing and ensembling regimes (with the same
setting as in previous sections). We can see the from Table 4.3 that smoothing
and ensembling regimes lead to more robust models w.r.t FGSM and PGD
attacks. And that DeepFool attack is the most sensitive one to the difference in
the solvers used to perform propagation through the source and target neural
ODEs.

4.4 Conclusion

In this chapter, we show that in the adversarial tasks, the performance of
neural ODEs depends on the choice of an ODE solver. We consider different
parameterizations of the standard Runge-Kutta methods and study its influ-
ence on the neural ODE models training. We propose techniques of sampling
(switching/smoothing) and ensembling of ODE solvers during propagation
through neural ODEs that lead to more robust models. We validated mod-
els trained with our methods using FGSM, PGD and DeepFool attacks. We
observed that for different size of attacks and different neural network ar-
chitectures our proposed techniques improves the resistance of the resulting
model to adversarial attacks. The presented approach can be extended to other

Chapter 4. Exploring Robustness of Different Solvers for Neural ODEs 41

that Runge-Kutta parameterizations of ODE solvers and may be investigated
in different applications.

Chapter 4. Exploring Robustness of Different Solvers for Neural ODEs 42

TABLE 4.2: Blackbox attacks on CIFAR10 Neural ODE models.
Source models are from RobustBench [32] and papers by Car-
mon et al. [18], Sehwag et al. [152], and Wong, Rice, and Kolter
[171]. PGD attack is performed with 20 iterations and DeepFool

attack is performed with 50 iterations.

Source model 255ε Attack Ensembling Smoothing Standalone Switching

Carmon et al. [18] 2 DeepFool 79.77± 0.47 80.12± 0.14 79.93± 0.29 80.06± 0.21
Carmon et al. [18] 4 DeepFool 77.05± 0.27 77.43± 0.22 77.14± 0.2 77.31± 0.15
Carmon et al. [18] 8 DeepFool 71.47± 0.3 71.62± 0.37 71.31± 0.21 71.21± 0.22
Carmon et al. [18] 16 DeepFool 60.87± 0.16 60.95± 0.44 60.8± 0.6 60.68± 0.2
Carmon et al. [18] 32 DeepFool 48.44± 0.47 48.39± 0.47 48.23± 0.55 48.18± 0.26
Carmon et al. [18] 2 FGSM 79.0± 0.39 79.28± 0.1 79.07± 0.35 79.42± 0.2
Carmon et al. [18] 4 FGSM 75.43± 0.39 75.75± 0.06 75.29± 0.14 75.75± 0.1
Carmon et al. [18] 8 FGSM 67.64± 0.41 67.85± 0.23 67.24± 0.26 67.38± 0.29
Carmon et al. [18] 16 FGSM 53.1± 0.34 53.18± 0.26 52.85± 0.24 52.75± 0.2
Carmon et al. [18] 32 FGSM 35.54± 0.12 35.73± 0.04 35.15± 0.57 35.26± 0.48
Carmon et al. [18] 2 PGD 78.82± 0.45 79.11± 0.1 78.87± 0.34 79.24± 0.17
Carmon et al. [18] 4 PGD 74.51± 0.38 74.85± 0.19 74.45± 0.29 74.98± 0.27
Carmon et al. [18] 8 PGD 63.83± 0.35 64.0± 0.36 63.53± 0.17 63.65± 0.31
Carmon et al. [18] 16 PGD 48.21± 0.13 48.16± 0.08 47.82± 0.41 47.78± 0.28
Carmon et al. [18] 32 PGD 35.36± 0.1 35.24± 0.21 34.88± 0.27 34.97± 0.63

Sehwag et al. [152] 2 DeepFool 79.77± 0.36 80.28± 0.07 79.87± 0.34 80.15± 0.18
Sehwag et al. [152] 4 DeepFool 77.0± 0.31 77.47± 0.1 76.98± 0.37 77.41± 0.06
Sehwag et al. [152] 8 DeepFool 70.95± 0.35 71.65± 0.19 70.99± 0.26 71.36± 0.14
Sehwag et al. [152] 16 DeepFool 60.63± 0.19 61.12± 0.5 60.2± 0.35 60.89± 0.07
Sehwag et al. [152] 32 DeepFool 50.75± 0.11 51.27± 0.49 50.26± 0.53 50.86± 0.25
Sehwag et al. [152] 2 FGSM 78.06± 0.36 78.37± 0.06 78.17± 0.4 78.46± 0.13
Sehwag et al. [152] 4 FGSM 73.44± 0.28 73.66± 0.14 73.09± 0.33 73.55± 0.29
Sehwag et al. [152] 8 FGSM 62.53± 0.27 62.84± 0.14 62.27± 0.29 62.46± 0.39
Sehwag et al. [152] 16 FGSM 43.4± 0.33 43.33± 0.25 42.93± 0.31 43.11± 0.08
Sehwag et al. [152] 32 FGSM 24.64± 0.33 24.81± 0.51 24.04± 0.43 24.45± 0.27
Sehwag et al. [152] 2 PGD 78.0± 0.29 78.3± 0.09 78.07± 0.44 78.39± 0.19
Sehwag et al. [152] 4 PGD 72.96± 0.28 73.18± 0.16 72.67± 0.34 73.11± 0.14
Sehwag et al. [152] 8 PGD 59.86± 0.11 59.88± 0.22 59.76± 0.26 59.65± 0.19
Sehwag et al. [152] 16 PGD 40.66± 0.3 40.64± 0.19 40.51± 0.24 40.59± 0.16
Sehwag et al. [152] 32 PGD 27.78± 0.5 27.76± 0.27 27.4± 0.44 27.62± 0.36

Wong, Rice, and Kolter [171] 2 DeepFool 79.62± 0.31 80.14± 0.17 79.63± 0.37 80.07± 0.14
Wong, Rice, and Kolter [171] 4 DeepFool 76.74± 0.28 77.31± 0.48 76.71± 0.32 77.13± 0.24
Wong, Rice, and Kolter [171] 8 DeepFool 71.53± 0.38 71.9± 0.65 71.3± 0.19 71.66± 0.3
Wong, Rice, and Kolter [171] 16 DeepFool 63.96± 0.56 64.3± 0.95 63.16± 0.4 64.07± 0.32
Wong, Rice, and Kolter [171] 32 DeepFool 58.92± 0.81 59.2± 1.04 57.95± 0.28 58.94± 0.45
Wong, Rice, and Kolter [171] 2 FGSM 77.35± 0.3 77.65± 0.04 77.25± 0.34 77.77± 0.01
Wong, Rice, and Kolter [171] 4 FGSM 71.66± 0.31 71.9± 0.27 71.28± 0.19 71.69± 0.2
Wong, Rice, and Kolter [171] 8 FGSM 58.63± 0.12 58.79± 0.27 58.67± 0.47 58.59± 0.1
Wong, Rice, and Kolter [171] 16 FGSM 37.33± 0.36 37.42± 0.54 36.87± 0.37 37.01± 0.32
Wong, Rice, and Kolter [171] 32 FGSM 17.95± 0.23 18.05± 0.42 17.51± 0.42 18.05± 0.18
Wong, Rice, and Kolter [171] 2 PGD 77.27± 0.32 77.6± 0.02 77.2± 0.38 77.69± 0.07
Wong, Rice, and Kolter [171] 4 PGD 71.17± 0.18 71.38± 0.24 70.91± 0.22 71.34± 0.21
Wong, Rice, and Kolter [171] 8 PGD 55.63± 0.29 55.97± 0.02 55.71± 0.4 55.48± 0.08
Wong, Rice, and Kolter [171] 16 PGD 34.49± 0.24 34.51± 0.2 34.01± 0.31 34.15± 0.42
Wong, Rice, and Kolter [171] 32 PGD 20.62± 0.28 20.64± 0.34 20.44± 0.48 20.55± 0.44

Chapter 4. Exploring Robustness of Different Solvers for Neural ODEs 43

TABLE 4.3: Greybox attacks for ε = 8/255. Mean robust accu-
racy and standard errors averaged over three runs are reported
below. Parameters for PGD attack are the following: number
of steps is 7, step size is 2/255. Maximum number of steps in

DeepFool attack is 50.

Model
Attack FGSM PGD DeepFool

N = 8 N = 8
Standalone 40.74± 0.1 34.49± 0.08 36.34± 0.11
Switching 40.89± 0.08 34.88± 0.04 36.37± 0.12
Smoothing 41.39± 0.07 35.17± 0.1 36.85± 0.07
Ensembling 41.25± 0.13 35.13± 0.12 36.88± 0.11

N = 8 N = 32
Standalone 40.72± 0.11 34.44± 0.1 47.02± 0.04
Switching 40.89± 0.07 34.85± 0.04 47.62± 0.17
Smoothing 41.37± 0.05 35.22± 0.09 47.22± 0.27
Ensembling 41.22± 0.14 35.16± 0.13 47.45± 0.12

(A) Solver to generate attack and to compute
robust accuracy is RK2, u = 0.5.

Model
Attack FGSM PGD DeepFool

N = 8 N = 8
Standalone 40.73± 0.1 34.49± 0.09 36.37± 0.13
Switching 40.93± 0.08 34.89± 0.05 36.4± 0.13
Smoothing 41.36± 0.06 35.19± 0.11 36.84± 0.05
Ensembling 41.25± 0.11 35.15± 0.14 36.85± 0.1

N = 8 N = 32
Standalone 40.69± 0.1 34.42± 0.1 47.87± 0.17
Switching 40.88± 0.07 34.88± 0.04 48.44± 0.12
Smoothing 41.37± 0.06 35.21± 0.09 47.95± 0.31
Ensembling 41.19± 0.14 35.14± 0.12 47.96± 0.2

(B) Solver to generate attack and to compute
robust accuracy is RK2, u = 1.

Model
Attack FGSM PGD DeepFool

N = 8 N = 8
Standalone 40.75± 0.1 34.47± 0.09 41.74± 0.25
Switching 40.91± 0.08 34.89± 0.04 41.4± 09.03
Smoothing 41.37± 0.08 35.19± 0.1 41.4± 0.01
Ensembling 41.23± 0.13 35.15± 0.12 41.63± 0.31

N = 8 N = 32
Standalone 40.69± 0.1 34.43± 0.11 47.96± 0.19
Switching 40.89± 0.07 34.87± 0.04 48.57± 0.1
Smoothing 41.36± 0.06 35.21± 0.09 48.02± 0.28
Ensembling 41.18± 0.14 35.15± 0.12 48.07± 0.23

N = 32 N = 32
Standalone 40.73± 0.11 34.42± 0.09 36.43± 0.13
Switching 40.96± 0.06 34.88± 0.04 36.52± 0.11
Smoothing 41.39± 0.08 35.21± 0.09 36.98± 0.05
Ensembling 41.29± 0.14 35.18± 0.12 36.89± 0.13

(C) Solver to generate attack is RK2, u = 1.
Solver to compute robust accuracy is RK2,

u = 0.5.

Model
Attack FGSM PGD DeepFool

N = 8 N = 8
Standalone 40.76± 0.1 34.5± 0.09 40.95± 0.05
Switching 40.91± 0.06 34.87± 0.04 40.65± 0.2
Smoothing 41.38± 0.05 35.18± 0.11 41.03± 0.19
Ensembling 41.25± 0.12 35.15± 0.13 40.99± 0.07

N = 8 N = 32
Standalone 40.72± 0.11 34.44± 0.1 47.0± 0.04
Switching 40.89± 0.06 34.86± 0.04 47.53± 0.17
Smoothing 41.37± 0.06 35.22± 0.09 47.17± 0.25
Ensembling 41.21± 0.14 35.16± 0.13 47.42± 0.13

N = 32 N = 32
Standalone 40.72± 0.11 34.42± 0.09 36.42± 0.14
Switching 40.96± 0.06 34.88± 0.04 36.48± 0.11
Smoothing 41.4± 0.08 35.21± 0.09 36.97± 0.05
Ensembling 41.29± 0.14 35.18± 0.12 36.93± 0.14

(D) Solver to generate attack is RK2, u = 0.5.
Solver to compute robust accuracy is RK2,

u = 1.

TABLE 4.4: Comparison of adversarial robustness of the RK2
and Euler solvers.

FGSM-8/255 PGD-8/255 DeepFool-8/255
Source Model Euler RK2 Euler RK2 Euler RK2

Sehwag et al. [152] 62.0± 0.12 62.27± 0.1 59.38± 0.19 59.76± 0.09 70.78± 0.16 70.99± 0.09
Wong, Rice, and Kolter [171] 58.21± 0.05 58.67± 0.16 55.27± 0.1 55.71± 0.13 71.01± 0.17 71.3± 0.06
Carmon et al. [18] 67.06± 0.1 67.24± 0.09 63.21± 0.12 63.53± 0.06 70.94± 0.2 71.31± 0.07

FGSM-16/255 PGD-16/255 DeepFool-16/255
Source Model Euler RK2 Euler RK2 Euler RK2

Sehwag et al. [152] 42.73± 0.02 42.93± 0.1 40.08± 0.15 40.51± 0.08 60.39± 0.13 60.2± 0.12
Wong, Rice, and Kolter [171] 36.66± 0.18 36.87± 0.12 33.96± 0.1 34.01± 0.1 63.31± 0.22 63.16± 0.13
Carmon et al. [18] 52.33± 0.12 52.85± 0.08 47.25± 0.16 47.82± 0.14 60.24± 0.21 60.8± 0.2

44

Chapter 5

Reduced-Order Modeling of Deep
Neural Networks

5.1 Introduction

Recent studies [22, 61, 66, 36] have shown the connection between deep
neural networks and systems of ordinary differential equations (ODE). In
these works, the output of the layer during the forward pass was treated as
the state of a dynamical system at a given time. One of the effective methods
for accelerating computations in dynamical systems is the construction of
reduced models [134]. The classical approach for building such models is the
Discrete Empirical Interpolation Method (DEIM; see [21]). The idea of DEIM
is based on a low-dimensional approximation of the state vector, combined
with efficient recalculation of the coefficients in this low-dimensional space
through the selection of the submatrix of sufficiently large volume.

In this chapter, we use the above connection to build a reduced model of
deep neural network for a given pre-trained (fully-connected or convolutional)
network. We call this model Reduced-Order Network (RON). The reduced
model is a fully-connected network that has smaller computational complexity
than the original neural network. The complexity is defined as the number of
floating-point operations (FLOP) required to propagate through the network.
Thus, the inference of RON can be faster.

Following the reduced-order modeling approach, we assume that the
outputs of some layers lie in low-dimensional subspaces. We will refer to this
assumption as the low-rank assumption. Let x be the object from the dataset,
and zk = zk(x) be the vectorized output of the k-th layer. We assume that
there exists a matrix Vk ∈ RDk×Rk (Dk � Rk) such that

zk
∼= Vkck, (5.1)

where ck = ck(x) are embeddings. The matrix Vk is the same for all x.
This simple linear representation itself can not help to reduce the complex-

ity of neural networks, because all linear operations in a neural network are
followed by non-linear element-wise functions. However, we propose how to
approximate the next embedding based on the previous one.

As a result, under the low-rank assumption most fully-connected and

Chapter 5. Reduced-Order Modeling of Deep Neural Networks 45

convolutional neural networks1 can be approximated by fully-connected net-
works with a smaller number of processing units. In other words, instead
of dealing with huge feature maps, we project the input of the entire net-
work into a low-dimensional space and then operate with low-dimensional
representations. We restore the output dimensionality of the model using a
linear transformation. As a result, the complexity of neural networks can be
significantly decreased.

Even if the low-rank assumption holds only very approximately, we still
can use it to initialize a new network and then perform several iterations of
fine-tuning.

Our main contributions are:

• We propose a new low-rank training-free method for speeding up the
inference of pre-trained deep neural networks and show how to effi-
ciently use the rectangular maximum volume algorithm to reduce the
dimensionality of layers and estimate the approximation error.

• We validate and evaluate performance the proposed approach in a series
of computational experiments with LeNet pre-trained on MNIST and
VGG models pre-trained on CIFAR-10/CIFAR-100/SVHN.

• We show that our method works well on top of pruning techniques and
allows us to speed up the models that have already been accelerated.

5.2 Background

In this section, we give a brief description of the rectangular volume algorithm
(Subsection 5.2.1) and explain how to compute low-dimensional subspaces
of embeddings (Subsection 5.2.2). This information is required to clearly
understand what follows.

5.2.1 Maximum Volume Algorithm and Sketching

The rectangular maximum volume algorithm [116] is a greedy algorithm that
searches for a maximum volume submatrix of a given matrix. The volume of
a matrix A is defined as

vol (A) = det(A>A). (5.2)

This algorithm has several practical applications [46, 116]. In this chapter, we
use it to reduce the dimensionality of overdetermined systems as follows.

Assume, A ∈ RD×R is a tall-and-thin matrix (D � R); and we have to
solve a linear system

Ax = b (5.3)

1We mean convolutional neural networks consisting of convolutions, non-decreasing
activation functions, batch normalizations, maximum poolings, and residual connections.

Chapter 5. Reduced-Order Modeling of Deep Neural Networks 46

with a fixed matrix A for an arbitrary right-hand side b ∈ RD. The solution is
typically given by

x = A†b, (5.4)

where A† = (A>A)−1A> is the Moore-Penrose pseudoinversion of A. The
issue is that a matrix-by-vector product with R× D matrix A† costs too much.
Moreover, for the ill-conditioned matrix, the solution is not very stable.

Instead of using all D equations, we can select the most “representative”
of them. urpose, we apply the rectangular maximum volume algorithm2 to
the matrix A. It returns a set P row indices (R ≤ P� D), which corresponds
to equations used for further calculations. In this work, we choose P on the
segment [R, 2R].

A submatrix consisting of P given rows can be viewed as SA, where
S ∈ {0, 1}P×D. We call S a sketching matrix. For convenience in notations, we
assume that the rectangular maximum volume algorithm outputs a sketching
matrix. Thus, the system (5.3) can be solved as follows

x = (SA)† (Sb) . (5.5)

Selecting rows of b is a cheap operation, so the complexity of computing Sb is
O(P). If (SA)† is precomputed, for any right-hand side we only have to carry
out matrix-by-vector multiplication with a matrix of size R× P.

5.2.2 Computation of Low-Dimensional Embeddings

Let Z ∈ RN×D be the output matrix of a given layer; each row of Z cor-
responds to a training sample propagated through the part of the network
ending with this layer.

The truncated rank-R SVD of Z> ∈ RD×N is given by

Z> ∼= V︸︷︷︸
D×R

ΣU>︸ ︷︷ ︸
R×N

. (5.6)

Here the matrix V corresponds to the linear transformation, which maps
to the low-dimensional embedding subspace. To compute the matrix V , we
use the matrix sketching algorithm based on hashing [172, 166]. For our
applications, it is faster than randomized SVD.

5.3 Method

Our goal is to build an approximation of a given deep neural network (teacher)
by another network (student) with much faster inference.

Most conceptual details of our approach are explained on a toy example
of a multilayer perceptron (Subsection 5.3.1). Later on, we describe how to
apply the proposed ideas to feed-forward convolutional neural networks
(Subsection 5.3.2) and residual networks (Subsection 5.3.3).

2https://bitbucket.org/muxas/maxvolpy

https://bitbucket.org/muxas/maxvolpy

Chapter 5. Reduced-Order Modeling of Deep Neural Networks 47

5.3.1 A Toy Example: MLP

In this subsection, we consider a simple fully-connected feed-forward neural
network, or multilayer perceptron (MLP).

Hereinafter let ψk (k = 1, . . . , K) be non-decreasing element-wise activation
functions, e.g., ReLU, ELU or Leaky ReLU. Note that our method allows us
to accelerate a part of the initial network, but for simplicity, we assume that
the whole teacher network is used. Besides, without loss of generality, we
suppose that all biases are equal to zero.

Let z0 be an input sample. Being passed through K layers of the teacher
network, it undergoes the following transformations

z1 = ψ1(W1z0), z2 = ψ2(W2z1), . . . , zK = WKzK−1, (5.7)

where Wk ∈ RDk×Dk−1 is a weight matrix of the k-th layer.
Let c1, . . . , cK be the embeddings of z1, . . . , zK. We have already known

how to compute the linear transformation Vk ∈ RDk×RK , which maps zk to ck.
Here the dimensionality of the k-th embedding RK is much smaller than the
number of features Dk.

The low-rank assumption for the first layer gives

z1
∼= V1c1

∼= ψ1(W1z0) (5.8)

The boxed expression is a tall-and-skinny linear system with the matrix
V1 ∈ RD1×R1 , the right-hand side vector ψ1(W1z0) and the vector of un-
knowns c1. If S1 ∈ RP1×D1 is a sketching matrix (Section 5.2.1) for the matrix
V1, we can compute the embedding as follows

c1
∼= (S1V1)

† S1ψ1 (W1z0) = (S1V1)
†︸ ︷︷ ︸

R1×P1

ψ1(S1W1︸ ︷︷ ︸
P1×D1

z0). (5.9)

Here we switch point-wise linearity ψ and sampling because they commute
pairwise.

The same technique can be applied for computing the second embedding
c2 using c1. We write the low-rank assumption

z2
∼= ψ2 (W2z1) ∼= ψ2 (W2V1c1) ∼= V2c2, (5.10)

get the linear system
V2c2

∼= ψ2 (W2V1c1) (5.11)

and apply the rectangular maximum volume algorithm. If S2 ∈ RP2×D2 is a
sketching matrix, c2 can be estimated as

c2
∼= (S2V2)

†︸ ︷︷ ︸
R2×P2

ψ2(S2W2V1︸ ︷︷ ︸
P2×R1

c1). (5.12)

Chapter 5. Reduced-Order Modeling of Deep Neural Networks 48

The process can be continued for other layers. The output of the student
network is computed as VKcK:

c1
∼= (S1V1)

†︸ ︷︷ ︸
R1×P1

ψ1(S1W1︸ ︷︷ ︸
P1×D1

z0)

. . .

ck
∼= (SkVk)

†︸ ︷︷ ︸
RK×Pk

ψ2(SkWkVk−1︸ ︷︷ ︸
Pk×Rk−1

ck−1), k = 1, . . . , K

zK
∼= VKcK

(5.13)

Suppose sk is the output of ψk. We can rewrite (5.13) in a better way

s1
∼= ψ1(S1W1︸ ︷︷ ︸

P1×D1

z0),

s2
∼= ψ2(S2W2V1 (S1V1)

†︸ ︷︷ ︸
P2×P1

s1),

. . .

sK
∼= ψK(SKWKVK−1 (SK−1VK−1)

†︸ ︷︷ ︸
PK×PK−1

sK−1),

zK
∼= VK (SKVK)

†︸ ︷︷ ︸
Dk×RK

sK.

(5.14)

As a result, instead of K-layer network with Dk × Dk+1 layers (5.7) we obtain
a more compact K + 1-layer network (5.14).

The proposed approach is summarized in Algoritm 1.
Then, we propose to add batch normalizations into the accelerated model

and perform several epochs of fine-tuning.

5.3.2 Convolutional Neural Networks

Convolution is a linear transformation. We treat it as a matrix-by-vector
product, and we convert convolutions to fully-connected layers. Two crucial
remarks for this approach should be discussed.

Firstly, we vectorize all outputs. Do we lose the geometrical structure of
the feature map? Only partially, because it is integrated into the initial weight
matrices.

Secondly, the size of a single convolutional matrix is larger than the size
of its kernel. However, these sizes can be compatible after compression if the
number of channels is not big. So, as a result, a student model can be not only
faster but even smaller than the teacher.

Batch normalization is a linear operation that uses a set of frozen weights
during the inference stage. For inference, we can compose batch normalization
and linear layer into a single linear layer without batch normalization. Thus,

Chapter 5. Reduced-Order Modeling of Deep Neural Networks 49

in the student model, we get rid of batch normalization layers but preserve
the normalization property.

Maximum pooling is a local operation, which typically maps 2× 2 region
into a single value — the maximum value in the given region. We manage
this layer by taking 4 times more indices and by applying maximum pooling
after sampling.

5.3.3 Residual Networks

Residual networks [73, 180, 86] are popular models used in many modern
applications. In contrast to standard feed-forward CNNs, they are not sequen-
tial. Such models have several parallel branches, the outputs of which are
summed up and propagated through the activation function.

We approximate the output of each branch and the result as follows

Vc ∼= ψ (V1c1 + . . . + Vkck) . (5.15)

The above expression is an overdetermined linear system. If S is a sampling
matrix for matrix V , the embedding c is computed as

c ∼= (SV)† ψ (SV1c1 + . . . + SVkck) . (5.16)

The rest steps of residual network acceleration are the same as for the
standard multilayer perceptron (Section 5.3.1).

5.3.4 Approximation error

Suppose εk = Vkck − zk is an error of the low-rank approximation, thus

SkVkck = (SkVk)
† Skzk + (SkVk)

† Skεk. (5.17)

and error of our algorithm equals to ek = ‖ (SkVk)
† Skεk‖2. Since ‖V>k ‖2 =

‖Sk‖2 = 1,
‖ (SkVk)

† Sk‖2 = ‖V>k Vk (SkVk)
† Sk‖2

≤ ‖Vk (SkVk)
† ‖2.

(5.18)

Due to the Lemma 4.3 and Remark 4.4 from the rectangular maximum
volume paper [116]3

‖Vk (SkVk)
† ‖2 ≤

√
1 +

(Dk − PK) rk
PK + 1− RK

. (5.19)

Hence,

ek ≤

√
1 +

(Dk − PK) RK

PK + 1− RK
‖εk‖2. (5.20)

3In that paper, the given matrix is defined by C.

Chapter 5. Reduced-Order Modeling of Deep Neural Networks 50

For example, if PK = 1.5RK, approximation error ek is O(
√

Dk||εk||2) for
RK = o(Dk).

5.4 Experiments

Firstly, we provide empirical evidence that supports our low-rank assumption
about the outputs of some layers. Secondly, we show the performance of RON
for both fully-connected and convolutional neural network architectures. We
compare models accelerated by RON with the baselines from DCP [186] and
[184].

Datasets. We empirically evaluate the performance of RON on four
datasets, including MNIST, CIFAR-10, CIFAR-100, and SVHN. MNIST is
a collection of handwritten digits that contains images of size 28× 28 with a
training set of 60000 examples, and a test set of 10000 examples. CIFAR-10
consists of 32× 32 color images belonging to 10 classes with 50000 training
and 10000 testing samples. CIFAR-100 is similar to CIFAR-10, but it contains
100 classes with 500 training images and 100 testing images per class. SVHN
is a real-world image dataset with house numbers that contains 73257 training
and 26032 testing images of size 32× 32.

5.4.1 Singular values

Our method relies on the assumption, which states that the outputs of some
layers can be mapped to a low-dimensional space. We perform this map-
ping using the maximum volume based approximation of the basis obtained
through SVD. Figure 5.1 supports the feasibility of our assumption. Each sub-
figure corresponds to a specific architecture and depicts the singular values
of blocks output matrices. It can be seen that the singular values decrease
very fast for some (deeper) blocks, which means that their outputs can be
approximated by low-dimensional embeddings.

We use two strategies for rank selection: a non-parametric Variational
Bayesian Matrix Factorization (VBMF, [121]) and a simple constant factor rank
reduction.

Singular values are computed for matrices containing the whole training
data. We use matrix sketching algorithm based on hashing and do not have
to store the entire matrix in memory [172, 166].

Since the error is propagated through the layers and can be accumulated,
we fine-tune the processed model.

5.4.2 Fully-connected networks

To illustrate our method, we first choose LeNet-300-100 architecture for
MNIST, which is a fully-connected networks with three layers: 784× 300,
300× 100, and 100× 10 with ReLU activations. We perform 15 iterations of
the following procedure. First, we train the model with the learning rate 1e-3
for 25 epochs, then we train the model with the learning rate 5e-4 for the

Chapter 5. Reduced-Order Modeling of Deep Neural Networks 51

Algorithm 1: Initialization of the student network
Input: teacher’s weights {W1, W2, . . . , WK} and element-wise

activation functions {ψ1, ψ2, . . . , ψK}; subset of the training set
Z — a number of samples × number of input features matrix;
{R1, R2, . . . , RK}— sizes of the embeddings;

Output: student’s weights {W̃0, W̃1, W̃2, . . . , W̃K};
/* For simplicity, we use all {Vk}K

k=1, but in fact we have
to keep only two of them to compute a single weight of
student. */

1

2 for k← 1 to K do
3 Z ← Z propagated through the k-th layer
4 U, Σ, Vk ← truncated_svd(Z>, RK)

/* In practice, we don’t store the whole Z, but use
streaming randomized SVD algorithms */

5 Sk ← rect_max_vol(Vk)
6 end
7 W̃0 ← S1W1
8 for k← 1 to K− 1 do
9 W̃k ← SkWkVk−1 (Sk−1Vk−1)

†

10 end
11 W̃K ← VK (SKVK)

†

12 return {W̃0, W̃1, W̃2, . . . , W̃K}

Chapter 5. Reduced-Order Modeling of Deep Neural Networks 52

0 2500 5000 7500 10000 12500 15000
rank threshold

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d
sin

gu
la

r v
al

ue
s

VGG19

0 2500 5000 7500 10000 12500 15000
rank threshold

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d
sin

gu
la

r v
al

ue
s

ResNet56

FIGURE 5.1: We plot singular values of all layers for CIFAR-10
for VGG-19 (left) and ResNet-56 (right). Each singular value is
divided by the largest one for this layer. One can see that most

singular values are relatively small.

same number of epochs. After that, we apply our acceleration procedure with
rank reduction rates equal to 0.7 and 0.75, respectively. Figure 5.2a shows the
FLOP reduction rate together with the test accuracy.

2 4 6 8 10 12 14
FLOPs reduction, ×times

96.75

97.00

97.25

97.50

97.75

98.00

98.25

98.50

Ac
cu

ra
cy

RON with fine-tuning
Teacher

(a) LeNet-300-100-10

6 8 10 12 14
FLOPs reduction, ×times

97.7
97.8
97.9
98.0
98.1
98.2
98.3
98.4
98.5

Ac
cu

ra
cy

RON with fine-tuning
Teacher

(b) LeNet-500-300-10

FIGURE 5.2: RON for different LeNet models.

In [170, 107, 184], LeNet-500-300 model is accelerated 6.06, 6.41, and 7.85
times, respectively, approximately without accuracy drop. Our method is able
to achieve more then 8× acceleration (see Figure 5.2b).

5.4.3 Convolutional networks

We apply our method to VGG-like [159] architectures on CIFAR-10, CIFAR-
100, and SVHN classification tasks. In our experiments, we use RON once
to obtain an accelerated neural network (student), and then we fine-tune the
network if needed. During student initialization (Algorithm 1), embedding
sizes for CIFAR-10 are chosen using VBMF, while for CIFAR-100 and SVHN
feature sizes are reduced by a predefined rate. Pre-trained teacher models for
CIFAR-10 are available online4. They include VGG-19 and VGG-19 pruned
with DCP [186] approach at 0.3% pruning rate. For the experiments with

4https://github.com/SCUT-AILab/DCP/wiki/Model-Zoo

https://github.com/SCUT-AILab/DCP/wiki/Model-Zoo

Chapter 5. Reduced-Order Modeling of Deep Neural Networks 53

CIFAR-100 and SVHN we used pre-trained VGG-195 and VGG-76 networks,
correspondingly. When applying RON to VGG-like architecture, we accelerate
several last convolutional layers of the network. For instance, the model RON
(8 to 16) corresponds to the model with nine accelerated convolutional layers.

RON without fine-tuning. In this setting, we initialize a student network
using Algorithm 1 and measure its acceleration and performance. For VGG-19
on CIFAR-10, RON can achieve 1.53× FLOP reduction with 0.09% accuracy
increase without any additional fine-tuning (Table 1). We refer to [184] to
provide evidence that RON (without fine-tuning) significantly outperforms
one stage of channel pruning [107, 184](w/o fine-tuning) when applied to
the pre-trained VGG-19. The models with convolutional layers pruned at
0.1% pruning rate (i.e., FLOP reduction is around 1.23×) have more than 20%
accuracy drop (Figure 5 in [184]).

RON with fine-tuning. Fine-tuning the model accelerated with RON, we
can achieve 2.3× FLOP reduction with 0.28% accuracy increase (Table 5.1)
for VGG-19 on CIFAR-10. After the acceleration procedure, we perform 250
epochs of fine-tuning by SGD with momentum 0.9, weight decay 1e-4, and
batch size 256. The initial learning rate is equal to 1e-2, and it is halved after
ten training epochs without validation quality improvement. We use dropout
during the fine-tuning.

VGG networks for CIFAR-100 (Table 5.2) and SVHN (Table 5.3) are less
redundant, therefore, acceleration without accuracy drop is smaller than for
CIFAR-10 dataset.

Note that compression can be performed iteratively by alternating RON
and fine-tuning steps. The iterative approach takes much time, but it was
shown for both pruning [107, 186, 50, 184] and low-rank [64] methods that it
helps to reduce the accuracy degradation for high compression ratios.

RON on top of the pruned network. The motivation to use RON on top of
pruned models is the following. Channel pruning methods tend to leave the
most informative channels (e.g., in DCP [186] they look for more discrimina-
tive channels) and eliminate the rest. However, a convolutional layer consist-
ing of informative channels can still have a low-rank structure and, therefore,
can be further accelerated using RON. For VGG-19 pruned with DCP [186]
approach at 0.3% pruning rate, RON provides 4.48× FLOP reduction with
0.27% accuracy increase comparing to the initial VGG-19 while maintaining
higher accuracy and better acceleration than the pruned baseline (Figure 5.3).

5.4.4 Comparisons with other approaches

The advantage of our method is that it can be applied both alone and on
top of pruning algorithms. We have aggregated our results (Table 5.1) with

5https://github.com/bearpaw/pytorch-classification
6https://github.com/aaron-xichen/pytorch-playground

https://github.com/bearpaw/pytorch-classification
https://github.com/aaron-xichen/pytorch-playground

Chapter 5. Reduced-Order Modeling of Deep Neural Networks 54

TABLE 5.1: Accuracy and FLOP trade-off for the models acceler-
ated with RON on CIFAR-10 dataset. DCP is a channel pruning

method from [186].

Model Modified
layers

Acc@1 without
fine-tuning

Acc@1 with
fine-tuning

FLOP
reduction

Teacher — — 93.70 1.00×
RON 10 to 16 93.79 94.10 1.53×
RON 9 to 16 93.46 94.15 1.68×
RON 8 to 16 90.58 94.24 1.93×
RON 7 to 16 85.79 93.98 2.30×
RON 6 to 16 72.53 93.12 3.01×
RON 5 to 16 58.12 91.88 3.66×

DCP [186] — — 93.96 2.00×
DCP + RON 10 to 16 93.98 94.24 3.06×
DCP + RON 9 to 16 93.90 94.27 3.37×
DCP + RON 8 to 16 91.82 94.01 3.78×
DCP + RON 7 to 16 88.88 93.97 4.48×
DCP + RON 6 to 16 81.30 93.26 5.56×
DCP + RON 5 to 16 64.12 91.5 7.21×

1 2 3 4 5 6 7
FLOP reduction, ×times

90.5
91.0
91.5
92.0
92.5
93.0
93.5
94.0

Ac
cu

ra
cy

, %

VGG-19 on CIFAR-10

Teacher
DCP
RON (w/o fine-tuning)
RON (w/ fine-tuning)
DCP + RON (w/o fine-tuning)
DCP + RON (w/ fine-tuning)

FIGURE 5.3: Accuracy and FLOP reduction for RON accelerated
models on CIFAR-10.

the information from the paper by Zhuang et al. [186] and present them in
Table 5.4. We compare RON with ThiNet [111], channel pruning (CP) [75],
network slimming [107] and width-multiplier method [49]. More details about
related methods can be found in Section 5.6.

5.5 Discussion

We have proposed a method that exploits the low-rank property of the outputs
of neural network layers. The advantage of our approach is the ability to
work with a large class of modern neural networks and obtain a simple
fully-connected student neural network. We showed that, in some cases, the

Chapter 5. Reduced-Order Modeling of Deep Neural Networks 55

TABLE 5.2: VGG on CIFAR-100. RON N× stands for the ac-
celerated model, where feature dimentionality of last layers is

reduced by N× times comparing to the teacher.

Model Modified
layers

Acc@1
without

fine-tuning

Acc@5
without

fine-tuning

Acc@1
with

fine-tuning

Acc@5
with

fine-tuning

Speed up
on CPU

FLOP
reduction

Teacher — — — 71.95 89.41 1.00× 1.00×
RON 10× 8 to 16 70.81 88.51 72.09 90.12 1.95× 1.66 ×
RON 20× 8 to 16 63.94 85.12 71.89 89.95 2.15× 1.71×
RON 10× 10 to 16 60.68 82.36 70.87 90.46 1.72× 1.84×
RON 20× 10 to 16 44.07 68.29 69.69 89.78 2.19× 2.19×
RON 10× 12 to 16 42.77 67.34 66.84 88.16 2.22× 2.58×

TABLE 5.3: VGG on SVHN. RON N× stands for the accelerated
model, where feature dimentionality of last layers is reduced by

N× times comparing to the teacher.

Model
Modified

layers
Acc@1 without

fine-tuning
Acc@1 with
fine-tuning

Speed up
on CPU

FLOP
reduction

Teacher — — 96.03 1.00× 1.00×
RON 10× 5 to 7 92.46 95.41 1.62× 1.30×
RON 20× 5 to 7 89.04 95.33 1.71× 1.53×
RON 20× 3 to 7 83.58 92.13 1.67× 1.65×

TABLE 5.4: Comparison of acceleration methods for VGG-19 on
CIFAR-10. Pre-trained baseline has 93.7% accuracy. The higher
FLOP reduction the better. The smaller accuracy drop the better.

Model FLOP
reduction

Accuracy
drop, %

ThiNet [111] 2.00× 0.14
Network Sliming [107] 2.04× 0.19
Channel Pruning [75] 2.00× 0.32
Width-multiplier [49] 2.00× 0.38
Discrimination-aware Channel Pruning (DCP) [186] 2.00× -0.17
DCP-Adapt [186] 2.86× -0.58
RON (modified layers: 7 to 16) + fine-tuning 2.30× -0.18
DCP + RON (modified layers: 9 to 16) + fine-tuning 3.37× -0.57
DCP + RON (modified layers: 7 to 16) + fine-tuning 4.48× -0.27

student model has the same quality as a student network even without any
fine-tuning.

The disadvantage of the Reduced-Order Network is that the number of
parameters may increase when applied to wide convolutional networks on
high-resolution images since the resulting network is dense. However, we
have demonstrated that our method works well for neural networks with
pruned channels, and such pruning allows us to reduce the number of features.
The best application of our approach, in our opinion, is to further accelerate
networks, which were produced by channel pruning algorithms.

Chapter 5. Reduced-Order Modeling of Deep Neural Networks 56

Later on, we can try sparsification [118] and quantization techniques on
top of our approach to mitigate this issue.

5.6 Related work

Recently, a series of approaches have been proposed to speed up inference in
convolutional neural networks (CNNs) [23]. In this section, we overview the
main ideas of different method families and highlight the differences between
them and our approach.

Many different methods deal with a pre-trained network, which we call
the teacher network, and an accelerated network, which we call the student
network. This terminology comes from knowledge distillation [14, 79, 141,
179] methods, where the softmax outputs of the teacher network are used as a
target vector for the student network.

In section 5.4.4, we compare our aproach with different channel pruning
methods. Such methods aim to prune redundant channels in the weight ten-
sors and, hence, accelerate and compress the whole model. Pruned channels
are selected due to special information criteria. For example, it can be a sum
of absolute values of weights [102] or an average percentage of zeros [85].

There are two major approaches to channel pruning. The first approach
is to deal with a single network and train it from scratch, adding extra reg-
ularization, which forces the channel-level sparsity of weights. Later on,
some channels are considered to be redundant and have to be removed [107,
170]. It is usually an iterative procedure, which is computationally expensive,
especially for very deep neural networks.

The student is trained to minimize the reconstruction error between feature
maps of two models [75, 85, 111].

In [75], channel selection is made using LASSO regression, and the recon-
struction is performed via least squares. In [111], the pruning strategy for a
layer depends on the statistics of the next layer. In [107], it is proposed to
multiply each channel on a unique learnable scalar parameter; then, the whole
network is trained with a sparsity regularization on these scalar parameters.
In [184], neural architecture search techniques are combined with channel
pruning. Namely, the pruning strategy is generated by the LSTM network,
which is trained in a reinforcement learning way.

In [186], Discrimination-aware Channel Pruning (DCP) algorithm is intro-
duced. It is a multi-stage pruning method applied to the pre-trained network.
At each stage of DCP, a network from the previous stage is trained with an
additional classifier and discriminative loss. The least informative channels
either pruned at a fixed rate or selected using a greedy algorithm. We refer to
these approaches as to DCP and DCP-Adapt, accordingly.

Another related family of acceleration methods is low-rank methods,
which uses matrix or tensor decomposition to estimate the informative pa-
rameters of deep neural networks. In most cases, a much lower total computa-
tional cost can be achieved by replacing a convolutional layer with a sequence
of several smaller convolutional layers [39, 89, 101, 183, 64]. Opposed to our

Chapter 5. Reduced-Order Modeling of Deep Neural Networks 57

approach, most low-rank methods are applied not to feature maps [35] but to
weight tensors.

Finally, quantization [30, 63] methods worth mentioning. Such meth-
ods can significantly accelerate networks, but they usually require special
hardware to reach a theoretical speed-up in practice.

5.7 Conclusion

We have developed a neural network inference acceleration method that
is based on mapping layer outputs to a low-dimensional subspace using
the singular value decomposition and the rectangular maximum volume
algorithm. We demonstrated empirically that our approach allows finding a
good initial approximation in the space of new model parameters. Namely,
on CIFAR-10 and CIFAR-100, we achieved accuracy on par or even slightly
better than the teacher model without fine-tuning and reached acceleration
up to 4.48× with fine-tuning and no accuracy drop. We have supported our
experiments with the theoretical results, including approximation error upper
bound evaluation.

58

Chapter 6

Active Subspaces for Neural
Networks

6.1 Introduction

Deep neural networks have demonstrated impressive performance in a range
of applications, such as computer vision [99], natural language process-
ing [177], and speech recognition [62]. These networks often utilize deep
structures with many layers and a large number of neurons to achieve high
accuracy and expressive power [127, 52]. However, it is not always clear how
many layers and neurons are necessary, and using an unnecessarily complex
deep neural network can result in increased runtime and hardware require-
ments. As a result, there is growing interest in constructing smaller neural
networks for resource-constrained applications, such as robotics and the inter-
net of things, by removing network redundancy. Representative methods for
reducing the size of neural networks include network pruning and sharing [48,
70, 76, 108, 105], low-rank matrix and tensor factorization [147, 72, 51, 101,
124], parameter quantization [31, 38], and knowledge distillation [80, 141],
among others. However, most existing methods delete model parameters
directly without changing the network architecture [76, 70, 16, 105].

Another important issue of deep neural networks is the lack of robustness.
Robustness in deep neural networks (DNNs), as DNNs are often used in
safety-critical applications such as autonomous driving and medical image
analysis, and are expected to perform well even when faced with noisy or
corrupted data. However, studies have shown that many state-of-the-art
DNNs are vulnerable to small perturbations [164]. A variety of methods
have been proposed to generate adversarial examples, including optimization
methods [17, 119, 120, 164], sensitive features [59, 129], geometric transforma-
tions [42, 91], and generative models [8, 153]. However, these methods have
the limitation of requiring the computation of a new perturbation for each
new data sample. Recently, several methods have been proposed to compute
a universal adversarial attack that can fool a dataset as a whole in various
applications, such as computer vision[120], speech recognition [122], audio [1],
and text classification [9]. However, these methods still rely on solving a series
of data-dependent sub-problems. In [93], Khrulkov et al. proposed a method
for constructing universal perturbations by computing the (p, q)-singular
vectors of the Jacobian matrices of hidden layers in a network.

Chapter 6. Active Subspaces for Neural Networks 59

This chapter investigates the above two issues with the active subspace
method [145, 25, 27] that was originally developed for uncertainty quantifica-
tion. The key idea of the active subspace is to identify the low-dimensional
subspace constructed by some important directions that can contribute sig-
nificantly to the variance of the multi-variable function. These directions
are corresponding to the principal components of the uncentered covariance
matrix of gradients. Afterwards, a response surface can be constructed in this
low-dimensional subspace to reduce the number of parameters for partial
differential equations [27] and uncertainty quantification [28]. However, the
power of active subspace in analyzing and attacking deep neural networks
has not been explored.

6.1.1 Contributions

The contribution of this chapter is twofold.

• Firstly, according to Figure 6.1 (a), we find that only a small number of
neurons can be important when applying the active subspace to some inter-
mediate layers of a deep neural network. This motivates us to define the
concept of “active neurons”. Figure 6.1 (b) also shows that most parame-
ters are concentrated in the final layers. Therefore, we propose ASNet, a
simpler framework that removes the final layers and replaces them with an
active-subspace layer that maps intermediate neurons to a low-dimensional
subspace and a polynomial chaos expansion layer. Our numerical experi-
ments show that ASNet has fewer parameters than the original network.
ASNet can also be combined with structured re-training methods to achieve
better accuracy with fewer parameters.

• Secondly, we use active subspace to develop a new universal attack method
to fool deep neural networks on a whole data set. We formulate this
problem as a ball-constrained loss maximization problem and propose a
heuristic projected gradient descent algorithm to solve it. At each iteration,
the ascent direction is the dominant active subspace, and the stepsize is
decided by the backtracking algorithm. Figure 6.1 (c) shows that the attack
ratio of the active subspace direction is much higher than that of the random
vector.

The rest of this chapter is organized as follows. In Section 6.2, we review
the key idea of active subspace. Based on the active-subspace method, Sec-
tion 6.3 shows how to find the number of active neurons in a deep neural
network and further proposes a new and compact network, referred to as
ASNet. Section 6.4 develops a new universal adversarial attack method based
on active subspace. The numerical experiments for both ASNet and universal
adversarial attacks are presented in Section 6.5. Finally, we conclude this
chapter in Section 6.6.

Chapter 6. Active Subspaces for Neural Networks 60

0 5 10 15
Cut-off layer (l)

101

102

103

104

105
N

um
 o

f n
eu

ro
ns

(a)

Active VGG-19

0 5 10 15
Cut-off layer (l)

0.0

0.5

1.0

1.5

2.0

N
um

 o
f p

ar
am

et
er

s

1e7 (b)

VGG-19

0 2 4 6 8 10
ℓ2-norm of perturbation

0

20

40

60

80

100

Te
st

in
g

ac
cu

ra
cy

 (%
)

(c)

AS Random

FIGURE 6.1: Structural analysis of deep neural networks by the
active subspace (AS). All experiments are conducted on CIFAR-
10 by VGG-19. (a) The number of neurons can be significantly
reduced by the active subspace. Here, the number of active
neurons is defined by Definition 6.3.1 with a threshold ε =
0.05; (b) Most of the parameters are distributed in the last few
layers; (c) The active subspace direction can perturb the network

significantly.

6.2 Active Subspace

Active subspace is an efficient tool for functional analysis and dimension
reduction. Its key idea is to construct a low-dimensional subspace for the
input variables in which the function value changes dramatically. Given a
continuous function c(x) with x described by the probability density function
ρ(x), one can construct an uncentered covariance matrix for the gradient:
C = E[∇c(x)∇c(x)T]. Suppose the matrix C admits the following eigenvalue
decomposition,

C = VΛVT, (6.1)

where V includes all orthogonal eigenvectors and

Λ = diag(λ1, · · · , λn), λ1 ≥ · · · ≥ λn ≥ 0 (6.2)

are the eigenvalues. All the eigenvalues are nonnegative because C is positive
semidefinite. One can split the matrix V into two parts,

V = [V1, V2], where V1 ∈ Rn×r and V2 ∈ Rn×(n−r). (6.3)

The subspace spanned by matrix V1 ∈ Rn×r is called an active subspace [145]
because c(x) is sensitive to perturbation vectors within this subspace.

Remark 1 (Relationships with the Principal Component Analysis) Given a
set of data X = [x1, . . . , xm] with each column representing a data sample and each
row being zero-mean, the first principal component w1 inherits the maximal variance
from X, namely,

w1 = argmax
‖w‖2=1

m

∑
i=1

(wT
1 xi)2 = argmax

‖w‖2=1
wTXXTw. (6.4)

Chapter 6. Active Subspaces for Neural Networks 61

The variance is maximized when w1 is the eigenvector associated with the largest
eigenvalue of XXT. The first r principal components are the r eigenvectors associated
with the r largest eigenvalues of XXT. The main difference with the active subspace is
that the principal component analysis uses the covariance matrix of input data sets X,
but the active-subspace method uses the covariance matrix of gradient ∇c(x). Hence,
a perturbation along the direction w1 from (6.4) only guarantees the variability in
the data, and does not necessarily cause a significant change in the value of c(x).

The following lemma quantitatively describes that c(x) varies more on
average along the directions defined by the columns of V1 than the directions
defined by the columns of V2.

Lemma 6.2.1 [27] Suppose c(x) is a continuous function and C is obtained from
(6.1). For the matrices V1 and V2 generated by (6.3), and the reduced vector

z = VT
1 x and z̃ = VT

2 x, (6.5)

it holds that

Ex[∇zc(x)T∇zc(x)] =λ1 + . . . + λr,

Ex[∇z̃c(x)T∇z̃c(x)] =λr+1 + . . . + λn. (6.6)

Sketch of proof [27]:

Ex[∇zc(x)T∇zc(x)]

=trace
(

Ex[∇zc(x)∇zc(x)T]
)

=trace
(

Ex[VT
1∇xc(x)∇xc(x)TV1]

)
=trace

(
VT

1 CV1

)
=λ1 + . . . + λr.

When λr+1 = . . . = λn = 0, Lemma 6.2.1 implies ∇z̃c(x) is zero every-
where, i.e., c(x) is z̃-invariant. In this case, we may reduce x ∈ Rn to a
low-dimensional vector z = VT

1 x ∈ Rr and construct a new response surface
g(z) to represent c(x). Otherwise, if λr+1 is small, we may still construct a
response surface g(z) to approximate c(x) with a bounded error, as shown in
the following lemma.

6.2.1 Response Surface

For a fixed z, the best guess for g is the conditional expectation of c given z,
i.e.,

g(z) = Ez̃[c(x)|z] =
∫

c(V1z + V2z̃)ρ(z̃|z)dz̃. (6.7)

Based on the Poincaré inequality, the following approximation error bound is
obtained [27].

Chapter 6. Active Subspaces for Neural Networks 62

Lemma 6.2.2 Assume that c(x) is absolutely continuous and square integrable with
respect to the probability density function ρ(x), then the approximation function g(z)
in (6.7) satisfies:

E[(c(x)− g(z))2] ≤ O(λr+1 + . . . + λn). (6.8)

The sketch of proof from [27]:

Ex[(c(x)− g(z))2]

=Ez[Ez̃[(c(x)− g(z))2 |z]]
≤const×Ez[Ez̃[∇z̃c(x)T∇z̃c(x)|z]] (Poincaré inequality)

=const×Ex[∇z̃c(x)T∇z̃c(x)]
=const× (λr+1 + . . . + λn) (Lemma 6.2.1)
=O(λr+1 + . . . + λn).

In other words, the active-subspace approximation error will be small if
λr+1, . . . , λn are negligible.

6.3 Active Subspace for Structural Analysis and
Compression of Deep Neural Networks

This section applies the active subspace to analyze the internal layers of a
deep neural network to reveal the number of important neurons at each layer.
Afterward, a new network called ASNet was built to reduce the storage and
computational complexity.

6.3.1 Deep Neural Networks

Many deep learning architectures can be described as

f (x0) = fL (fL−1 . . . (f1(x0))) , (6.9)

where x0 ∈ Rn0 is an input, L is the total number of layers, and fl : Rnl−1 →
Rnl is a function representing the l-th layer (e.g., combinations of convolution
or fully connected, batch normalization, ReLU, pooling layers, and skip-
connections). For any 1 ≤ l ≤ L, we rewrite the above feed-forward model as
a superposition of functions, i.e.,

f (x0) = f l
post(f l

pre(x0)), (6.10)

where the pre-model f l
pre(·) = fl . . . (f1(·)) denotes all operations before the

l-th layer and the post-model f l
post(·) = fL . . . (fl+1(·)) denotes all succeeding

operations. The intermediate neuron xl = f l
pre(x0) ∈ Rnl usually lies in a high

dimension. We aim to study whether such a high dimensionality is necessary.
If not, how can we reduce it?

Chapter 6. Active Subspaces for Neural Networks 63

6.3.2 The Number of Active Neurons

Denote loss(·) as the loss function, and

cl(x) = loss(f l
post(x)). (6.11)

The covariance matrix C = E[∇cl(x)∇cl(x)>] admits the eigenvalue decom-
position C = VΛV> with Λ = diag(λ1, · · · , λnl). We try to extract the active
subspace of cl(x) and reduce the intermediate vector x to a low dimension.
Here the intermediate neuron x, the covariance matrix C, eigenvalues Λ, and
eigenvectors V are also related to the layer index l, but we ignore the index
for simplicity.

Definition 6.3.1 Suppose Λ is computed by (6.2). For any layer index 1 ≤ l ≤ L,
we define the number of active neurons nl,AS as follows:

nl,AS = arg min
{

i :
λ1 + . . . + λi

λ1 + . . . + λnl

≥ 1− ε

}
, (6.12)

where ε > 0 is a user-defined threshold.

Based on Definition 6.3.1, the post-model can be approximated by an
nl,AS-dimensional function with a high accuracy, i.e.,

gl(z) = Ez̃[cl(x)|z]. (6.13)

Here z = V>1 x ∈ Rnl,AS plays the role of active neurons, z̃ = V>2 x ∈ Rn−nl,AS ,
and V = [V1, V2].

Lemma 6.3.1 Suppose the input x0 is bounded. Consider a deep neural network with
the following operations: convolution, fully connected, ReLU, batch normalization,
max-pooling, and equipped with the cross entropy loss function. Then for any
l ∈ {1, . . . , L}, x = f l

pre(x0), and cl(x) = loss(f l
post(x)), the nl,AS-dimensional

function gl(z) defined in (6.13) satisfies

Ez

[
(gl(z))

2
]
≤ 2Ex0

[
(c0(x0))

2
]
+ O(ε). (6.14)

Denote cl(x) = loss(fL(. . . (fl+1(x))), where loss(y) = − log exp(yb)

∑
nL
i=1 exp(yi)

is

the cross entropy loss function, b is the true label, and nL is the total number
of classes. We first show cl(x) is absolutely continuous and square-integrable,
and then apply Lemma 6.2.2 to derive (6.14).

Firstly, all components of cl(x) are Lipschitz continuous because (1) the
convolution, fully connected, and batch normalization operations are all linear;
(2) the max pooling and ReLU functions are non-expansive. Here, a mapping
m is non-expansive if ‖m(x)− m(y)‖ ≤ ‖x− y‖; (3) the cross entropy loss
function is smooth with an upper bounded gradient, i.e., ‖∇loss(y)‖ = ‖eb −
exp(y)/ ∑nL

i=1 exp(yi)‖ ≤
√

nL. The composition of two Lipschitz continuous
functions is also Lipschitz continuous: suppose the Lipschitz constants for

Chapter 6. Active Subspaces for Neural Networks 64

f1 and f2 are α1 and α2, respectively, it holds that ‖ f1(f2(x̄))− f1(f2(x))‖ ≤
α1‖ f2(x̄) − f2(x)‖ ≤ α1α2‖x̄ − x‖ for any vectors x̄ and x. By recursively
applying the above rule, cl(x) is Lipschitz continuous:

‖cl(x̄)− cl(x)‖2 = ‖loss(fL(. . . (fl+1(x̄))))− loss(fL(. . . (fl+1(x))))‖2

≤
√

nLαL . . . αl+1‖x̄− x‖2.

The intermediate neuron x is in a bounded domain because the input x0
is bounded, and all functions fi(·) are either continuous or non-expansive.
Based on the fact that any Lipschitz-continuous function is also absolutely
continuous on a compact domain [143], we conclude that cl(x) is absolutely
continuous.

Secondly, because x is bounded and cl(x) is continuous, both cl(x) and its
square integral will be bounded, i.e.,

∫
(cl(x)2ρ(x)dx < ∞.

Finally, by Lemma 6.2.2, it holds that

Ex[(cl(x)− gl(z))2] ≤ O(λnl,AS+1 + . . . + λn).

From Definition 6.3.1, we have

λnl,AS+1 + . . . + λn ≤ (λ1 + . . . + λn)ε = ‖C1/2‖2
Fε = O(ε).

In the last equality, we used that ‖C1/2‖F is upper bounded because cl(x) is
Lipschitz continuous with a bounded gradient. Consequently, we have

Ex[(gl(z))2]

=Ex[(gl(z)− cl(x) + cl(x))2]

≤2Ex[(cl(x))2] + 2Ex[(cl(x)− gl(z))2]

=2Ex0 [(c0(x0))
2] + 2Ex[(cl(x)− gl(z))2]

≤2Ex0 [(c0(x0))
2] + O(ε).

The proof is completed.
The above lemma shows that the active subspace method can reduce the

number of neurons of the l-th layer from nl to nl,AS. The loss for the low-
dimensional function gl(z) is bounded by two terms: the loss c0(x0) of the
original network, and the threshold ε related to nl,AS. This loss function is
the cross-entropy loss, not the classification error. However, it is believed that
a small loss will result in a small classification error. Further, the result in
Lemma 6.3.1 is valid for the fixed parameters in the pre-model. In practice,
we can fine-tune the pre-model to achieve better accuracy.

Further, a small number of active neurons nl,AS is critical to get a high
compress ratio. From Definition 6.3.1, nl,AS depends on the eigenvalue dis-
tribution of the covariance matrix C. For a proper network structure and a
good choice of the layer index l, if the eigenvalues of C are dominated by the
first few eigenvalues, then nl,AS will be small. For instance, in Fig. 6.5(a), the
eigenvalues for layers 4 ≤ l ≤ 7 of VGG-19 are nearly exponential, decreasing
to zero.

Chapter 6. Active Subspaces for Neural Networks 65

Algorithm 2: Training Procedure for the Active Subspace Network
(ASNet)

Input: Pretrained deep neural network, layer index l, and number of
active neurons r

Output: ASNet
1 Initialize the active subspace layer. The active subspace layer is a

linear projection, where the projection matrix V1 ∈ Rn×r is computed
using Algorithm 3. If r is not specified, we use the default value
r = nAS defined in Equation 6.12.

2 Initialize the polynomial chaos expansion layer. The polynomial
chaos expansion layer is a nonlinear mapping from the reduced
active subspace to the outputs, as shown in Equation 6.18. The
weights cα are computed using Equation 6.20.

3 Construct the ASNet. Combine the pre-model (the first l layers of the
deep neural network) with the active subspace and polynomial chaos
expansion layers to create a new network called ASNet.

4 Fine-tuning. Retrain all the parameters in the pre-model, active
subspace layer, and polynomial chaos expansion layer in ASNet for
several epochs using stochastic gradient descent.

6.3.3 Active Subspace Network (ASNet)

This subsection proposes a new network called ASNet that can reduce both
the storage and computational cost. Given a deep neural network, we first
choose a proper layer l and project the high-dimensional intermediate neurons
to a low-dimensional vector in the active subspace. Afterward, the post-model
is deleted completely and replaced with a nonlinear model that maps the low-
dimensional active feature vector to the output directly. This new network,
called ASNet, has three parts:

(1) Pre-model: the pre-model includes the first l layers of a deep neural
network.

(2) Active subspace layer: a linear projection from the intermediate neurons
to the low-dimensional active subspace.

(3) Polynomial chaos expansion layer: the polynomial chaos expansion
[53, 175] maps the active-subspace variables to the output.

The initialization for the active subspace layer and polynomial chaos expan-
sion layer are presented in Sections 6.3.4 and 6.3.5, respectively. We can also
re-train all the parameters to increase the accuracy. The whole procedure is
illustrated in Fig. 6.2 (b) and Algorithm 2.

Chapter 6. Active Subspaces for Neural Networks 66

layer 1 layer 2 ... layer L

(A) A deep neural network

pre-model AS PCE

(B) The proposed ASNet

FIGURE 6.2: (a) The original deep neural network; (b) The pro-
posed ASNet with three parts: a pre-model, an active subspace

(AS) layer, and a polynomial chaos expansion (PCE) layer.

6.3.4 The Active Subspace Layer

This subsection presents an efficient method to project the high dimensional
neurons to the active subspace. Given a dataset D = {x1, . . . , xm}, the empir-
ical covariance matrix is computed by Ĉ = 1

m ∑m
i=1∇cl(xi)∇cl(xi)>. When

ReLU is applied as an activation, cl(x) is not differentiable. In this case, ∇
denotes the sub-gradient with a little abuse of notation.

Instead of calculating the eigenvalue decomposition of Ĉ, we introduce a
matrix Ĝ and compute its singular value decomposition to save the computa-
tion cost:

Ĝ , [∇cl(x1), . . . ,∇cl(xm)] = V̂Σ̂Û> ∈ Rnl×m with Σ̂ = diag(σ̂1, · · · , σ̂nl).
(6.15)

The eigenvectors of C are approximated by the left singular vectors V̂ and the
eigenvalues of C are approximated by the singular values of Ĝ, i.e., Λ ≈ Σ̂2.

We use the memory-saving frequent direction method [54] to compute the
r dominant singular value components, i.e., Ĝ ≈ V̂rΣ̂rÛ>r . Here r is smaller
than the total number of samples. The frequent direction approach only stores
an n× r matrix S. In the beginning, each column of S ∈ Rn×r is initialized by
a gradient vector. Then the randomized singular value decomposition [68] is
used to generate S = VΣU>. Afterwards, S is updated in the following way,

S← V
√

Σ2 − σ2
r . (6.16)

Now the last column of S is zero, and we replace it with the gradient vector
of a new sample. By repeating this process, SS> will approximate ĜĜ> with
high accuracy, and V will approximate the left singular vectors of Ĝ. The
algorithm framework is presented in Algorithm 3.

After obtaining Σ = diag(σ1, . . . , σr), we can approximate the number of
active neurons as

n̂l,AS = arg min

i :

√
σ2

1 + . . . + σ2
i√

σ2
1 + . . . + σ2

r

≥ 1− ε

 . (6.17)

Under the condition that σ2
i → λi for i = 1, . . . , r and λi → 0 for i = r +

Chapter 6. Active Subspaces for Neural Networks 67

Algorithm 3: The frequent direction algorithm for computing the
active subspace

Input: A dataset with mAS input samples {xj
0}

mAS
j=1 , a pre-model f l

pre(·),
a subroutine for computing ∇cl(x), and the dimension of
truncated singular value decomposition r.

Output: The projection matrix V ∈ Rnl×r and the singular values
Σ ∈ Rr×r.

1 Select r samples xi
0, compute xi = f l

pre(xi
0), and construct an initial

matrix S← [∇cl(x1), . . . ,∇cl(xr)].
2 while the maximal number of samples mAS is not reached do
3 Compute the singular value decomposition VΣUT ← svd(S),

where Σ = diag(σ1, . . . , σr).
4 Update S by the soft-thresholding (6.16).
5 Get a new sample xnew

0 , compute xnew = f l
pre(xnew

0), and replace
the last column of S (now all zeros) by the gradient vector
S(:, r)← ∇cl(xnew).

6 end

1, . . . , nl, (6.17) can approximate nl,AS in (6.12) with a high accuracy. Further,
the projection matrix V̂1 is chosen as the first n̂l,AS columns of V. The storage
cost is reduced from O(n2

l) to O(nlr) and the computational cost is reduced
from O(n2

l r) to O(nlr2).

6.3.5 Polynomial Chaos Expansion Layer

We continue to construct a new surrogate model to approximate the post-
model of a deep neural network. This problem can be regarded as an un-
certainty quantification problem if we set z as a random vector. We choose
the nonlinear polynomial because it has higher expressive power than linear
functions.

By the polynomial chaos expansion [174], the network output y ∈ RnL is
approximated by a linear combination of the orthogonal polynomial basis
functions:

ŷ ≈
p

∑
|α|=0

cαφα(z), where |α| = α1 + . . . + αd. (6.18)

Here φα(z) is a multivariate polynomial basis function chosen based on the
probability density function of z. When the parameters z = [z1, . . . , zr]> are
independent, both the joint density function and the multi-variable basis
function can be decomposed into products of one-dimensional functions,
i.e., ρ(z) = ρ1(z1) . . . ρr(zr), φα(z) = φα1(z1)φα2(z2) . . . φαr(zr). The marginal
basis function φαj(zj) is uniquely determined by the marginal density function
ρi(zi). The scatter plot in Fig. 6.3 shows that the marginal probability density
of ezi is close to a Gaussian distribution.

Chapter 6. Active Subspaces for Neural Networks 68

0 1 2

−1

0

1

2

0

200

0 200

FIGURE 6.3: Distribution of the first two active subspace vari-
ables at the 6-th layer of VGG-19 for CIFAR-10.

Suppose ρi(zi) follows a Gaussian distribution, then φαj(zj) will be a Her-
mite polynomial [104], i.e.,

φ0(z) = 1, φ1(z) = z, φ2(z) = 4z2 − 2, φp+1(z) = 2zφp(z)− 2pφp−1(z).
(6.19)

In general, the elements in z can be non-Gaussian correlated. In this case,
the basis functions {φα(z)} can be built via the Gram-Schmidt approach
described in [34].

The coefficient cα can be computed by a linear least-square optimization.
Denote zj = V̂>1 f l

pre(x
j
0) as the random samples and yj as the network output

for j = 1, . . . , mPCE. The coefficient vector cα can be computed by

min
{cα}

1
mPCE

mPCE

∑
j=1
‖yj −

p

∑
|α|=0

cαφα(zj)‖2. (6.20)

Based on the Nyquist-Shannon sampling theorem, the number of samples to
train cα needs to satisfy mPCE ≥ 2nbasis = 2(r+p

p). However, this number can
be reduced to a smaller set of “important” samples by the D-optimal design
[181] or the sparse regularization approach [33].

The polynomial chaos expansion builds a surrogate model to approximate
the deep neural network output y. This idea is similar to the knowledge
distillation [80], where a pre-trained teacher network teaches a smaller student
network to learn the output feature. However, our polynomial-chaos layer
uses one nonlinear projection, whereas the knowledge distillation uses a series
of layers. Therefore, the polynomial chaos expansion is more efficient in terms
of computational and storage costs. The polynomial chaos expansion layer is
different from the polynomial activation because the dimension of z may be
different from that of output y.

The problem (6.20) is convex, and any first-order method can get a globally
optimal solution. Denote the optimal coefficients as c∗α and the finial objective

Chapter 6. Active Subspaces for Neural Networks 69

value as δ∗, i.e.,

δ∗ =
1

mPCE

mPCE

∑
j=1
‖yj − ψ∗(zj)‖2, where ψ∗(zj) =

p

∑
|α|=0

c∗αφα(zj). (6.21)

If δ∗ = 0, the polynomial chaos expansion is a good approximation to the
original deep neural network on the training dataset. However, the approx-
imation loss of the testing dataset may be large because of the overfitting
phenomena.

The objective function in (6.20) is an empirical approximation to the ex-
pected error

E(z,y)[‖y− ψ(z)‖2], where ψ(z) =
p

∑
|α|=0

cαφα(z). (6.22)

According to Hoeffding’s inequality [82], the expected error (6.22) is close to
the empirical error (6.20) with a high probability. Consequently, the loss for
ASNet with a polynomial chaos expansion layer is bounded as follows.

Lemma 6.3.2 Suppose that the optimal solution for the problem (6.20) is c∗α, the
optimal polynomial chaos expansion is ψ∗(z), and the optimal residue is δ∗. Assume
that there exist consts a, b such that for all j, ‖yj − ψ∗(zj)‖2 ∈ [a, b]. Then the loss
of ASNet will be upper bounded

Ez[(loss(ψ∗(z)))2] ≤ 2Ex0 [(c0(x0))
2] + 2nL(δ

∗ + t) w.p. 1− γ∗, (6.23)

where t is a user-defined threshold, and γ∗ = exp(−2t2mPCE
(b−a)2).

Proof Since the cross entropy loss function is
√

nL-Lipschitz continuous,
we have

E(y,z)[(loss(y)− loss(ψ∗(z)))2] ≤ nLE(y,z)[‖y− ψ∗(z)‖2], (6.24)

Denote T j = ‖yj−ψ∗(zj)‖2 for i = 1, . . . , nL. {T j} are independent under the
assumption that the data samples are independent. By Hoeffding’s inequality,
for any constant t, it holds that

E[T] ≤ 1
mPCE

∑
j
T j + t w.p. 1− γ∗, (6.25)

with γ∗ = exp(−2t2mPCE
(b−a)2). Equivalently,

E(y,z)[‖y− ψ∗(z)‖2] ≤ δ∗ + t w.p. 1− γ∗, (6.26)

Chapter 6. Active Subspaces for Neural Networks 70

Consequently, there is

Ez[(loss(ψ∗(z)))2]

≤2Ey[(loss(y))2] + 2E(y,z)[(loss(ψ∗(z))− loss(y))2]

≤2Ex0 [(c0(x0))
2] + 2nL(δ

∗ + t) w.p. 1− γ∗.

The last inequality follows from c0(x0) = cl(xl) = loss(y), equations (6.24)
and (6.26). This completes the proof.

Lemma 6.3.2 shows with a high probability 1− γ∗, the expected error of
ASNet without fine-tuning is bounded by the pre-trained error of the original
network, the accuracy loss in solving the polynomial chaos subproblem (6.21),
and the number of classes nL. The probability γ∗ is controlled by the threshold
t as well as the number of training samples mPCE.

In practice, we always re-train ASNet for several epochs and the accuracy
of ASNet is beyond the scope of Lemma 6.3.2.

6.3.6 Structured Re-training of ASNet

The pre-model can be further compressed by various techniques such as
network pruning and sharing [70], low-rank factorization [124, 101, 51], or
data quantization [38, 31]. Denote θ as the weights in ASNet and {x1

0, . . . , xm
0 }

as the training dataset. Here, θ denotes all the parameters in the pre-model,
active subspace layer, and the polynomial chaos expansion layer. We re-train
the network by solving the following regularized optimization problem:

θ∗ = arg min
θ

1
m

m

∑
i=1

loss(f (θ; xi
0)) + λR(θ). (6.27)

Here (xi
0, yi) is a training sample, m is the total number of training samples,

loss(·) is the cross-entropy loss function, R(θ) is a regularization function, and
λ is a regularization parameter. Different regularization functions can result
in different model structures. For instance, an `1 regularizer R(θ) = ‖θ‖1 [2,
150, 176] will return a sparse weight, an `1,2-norm regularizer will result in
column-wise sparse weights, a nuclear norm regularizer will result in low-
rank weights. At each iteration, we solve (6.27) by a stochastic proximal
gradient decent algorithm [155]

θk+1 = argmax
θ

(θ− θk)>gk +
1

2αk
‖θ− θk‖2

2 + λR(θ). (6.28)

Here gk = 1
|Bk| ∑i∈Bk

∇θloss(f (θ; xi
0), yi) is the stochastic gradient, Bk is a

batch at the k-th step, and αk is the stepsize.
In this work, we chose the `1 regularization to get sparse weight matrices.

In this case, problem (6.28) has a closed-form solution:

θk+1 = Sαkλ(θ
k − αkgk), (6.29)

Chapter 6. Active Subspaces for Neural Networks 71

FIGURE 6.4: Perturbations along the directions of an active-
subspace direction and of principal component, respectively. (a)
The function f (x) = aTx− b. (b) The perturbed function along
the active-subspace direction. (c) The perturbed function along

the principal component analysis direction.

where Sλ(x) = x�max(0, 1− λ/|x|) is a soft-thresholding operator.

6.4 Active-Subspace for Universal Adversarial At-
tacks

This section investigates how to generate a universal adversarial attack by
the active-subspace method. Given a function f (x), the maximal perturbation
direction is defined by

v∗δ = argmax
‖v‖2≤δ

Ex[(f (x + v)− f (x))2]. (6.30)

Here, δ is a user-defined perturbation upper bound. By the first order Taylor
expansion, we have f (x + v) ≈ f (x) +∇ f (x)Tv, and problem (6.30) can be
reduced to

vAS = argmax
‖v‖2=1

Ex[(∇ f (x)Tv)2] = argmax
‖v‖2=1

vTEx[∇ f (x)∇ f (x)T]v. (6.31)

The vector vAS is exactly the dominant eigenvector of the covariance matrix
of ∇ f (x). The solution for (6.30) can be approximated by +δvAS or −δvAS.
Here, both vAS and −vAS are solutions of (6.31) but their effect on (6.30) are
different.

Example 6.4.1 Consider a two-dimensional function f (x) = aTx− b with a =
[1,−1]T and b = 1, and x follows a uniform distribution in a two-dimensional square
domain [0, 1]2, as shown in Fig. 6.4 (a). It follows from direct computations that
∇ f (x) = a and the covariance matrix C = aaT. The dominant eigenvector of C or
the active-subspace direction is vAS = a/‖a‖2 = [1/

√
2,−1/

√
2]. We apply vAS to

perturb f (x) and plot f (x+ δvAS) in Fig. 6.4 (b), which shows a significant difference
even for a small permutation δ = 0.3. Furthermore, we plot the perturbed function
along the first principal component direction w1 = [1/

√
2, 1/
√

2]T in Fig. 6.4 (c).

Chapter 6. Active Subspaces for Neural Networks 72

Here, w1 is the eigenvector of the covariance matrix Ex[xxT] =

[
1/3 1/4
1/4 1/3

]
.

However, w1 does not result in any perturbation because aTw1 = 0. This example
indicates the difference between the active-subspace and principal component analysis:
the active-subspace direction can capture the sensitivity information of f (x), whereas
the principal component is independent of f (x).

6.4.1 Universal Perturbation of Deep Neural Networks

Given a dataset D and a classification function j(x) that maps an input sample
to an output label. The universal perturbation seeks a vector v∗ whose norm
is upper bounded by δ, such that the class label can be perturbed with a high
probability, i.e.,

v∗ = argmax
‖v‖≤δ

probx∈D[j(x + v) 6= j(x)] = argmax
‖v‖≤δ

Ex[1j(x+v) 6=j(x)], (6.32)

where 1d equals one if the condition d is satisfied and zero otherwise. Solving
problem (6.32) directly is challenging because both 1d and j(x) are discon-
tinuous. By replacing j(x) with the loss function c(x) = loss(f (x)) and the
indicator function 1d with a quadratic function, we reformulate problem (6.32)
as

max
v

Ex[(c(x + v)− c(x))2] s.t. ‖v‖2 ≤ δ. (6.33)

The ball-constrained optimization problem (6.33) can be solved by various
numerical techniques such as the spectral gradient descent method [12], and
the limited-memory projected quasi-Newton [151]. However, these methods
can only guarantee convergence to a local stationary point. Instead, we are
interested in computing a direction that can achieve a better objective value
by a heuristic algorithm.

6.4.2 Recursive Projection Method

Using the first order Taylor expansion c(x + v) ≈ c(x) + vT∇c(x), we refor-
mulate problem (6.33) as a ball constrained quadratic problem

max
v

vTEx[∇c(x)∇c(x)T]v s.t. ‖v‖2 ≤ δ. (6.34)

Problem (6.34) is easy to solve because its closed-form solution is exactly
the dominant eigenvector of the covariance matrix C = Ex[∇c(x)∇c(x)T] or
the first active-subspace direction. However, the dominant eigenvector in
(6.34) may not be efficient because c(x) is nonlinear. Therefore, we compute v
recursively by

vk+1 = proj(vk + skdk
v), (6.35)

Chapter 6. Active Subspaces for Neural Networks 73

where proj(v) = v×min(1, δ/‖v‖2)
1, sk is the stepsize, and dk

v is approxi-
mated by

dk
v = argmax

dv

dT
v Ex

[
∇c
(

x + vk
)
∇c
(

x + vk
)T
]

dv, s.t. ‖dv‖2 ≤ 1. (6.36)

Namely, dk
v is the dominant eigenvector of Ck = Ex

[
∇c
(
x + vk)∇c

(
x + vk)T

]
.

Because dk
v maximizes the changes in Ex[(c(x + v + dv)− c(x + v))2], we ex-

pect that the attack ratio keeps increasing, i.e., r(vk+1;D) ≥ r(vk;D), where

r(v;D) = 1
|D| ∑

xi∈D
1j(xi+v) 6=j(xi). (6.37)

The backtracking line search approach [6] is employed to choose sk such that
the attack ratio of vk + skdk

v is higher than the attack ratio of both vk and
vk − skdk

v, i.e.,

sk = min
i
{sk

i,t : r(vk+1
i,t ;D) > max(r(vk+1

i,−t ;D), r(vk;D)}, (6.38)

where sk
i,t = (−1)ts0γi, t ∈ {1,−1}, s0 is the initial stepsize, γ < 1 is the

decrease ratio, and vk+1
i,t = proj(vk + sk+1

i,t dk
v). If such a stepsize sk exists,

we update vk+1 by (6.35) and repeat the process. Otherwise, we record the
number of failures and stop the algorithm when the number of failures is
greater than the threshold.

The overall flow is summarized in Algorithm 4. In practice, instead of
using the whole dataset to train this attack vector, we use a subset D0. The
impact for a different number of samples is discussed in section 6.5.2.2.

6.5 Numerical Experiments

In this section, we show the power of active subspace in revealing the number
of active neurons, compressing neural networks, and computing the universal
adversarial perturbation. All codes are implemented in PyTorch and are
available online2.

6.5.1 Structural Analysis and Compression

We test the ASNet constructed by Algorithm 2, and set the polynomial order
as p = 2, the number of active neurons as r = 50, and the threshold in
Equation equation 6.12 as ε = 0.05 on default. Inspired by the knowledge
distillation [80], we re-train all the parameters in the ASNet by minimizing

1A better option is to project v on a sphere, but experiments are computed for the projection
into a ball.

2https://github.com/chunfengc/ASNet

https://github.com/chunfengc/ASNet

Chapter 6. Active Subspaces for Neural Networks 74

Algorithm 4: Recursive Active Subspace Universal Attack
Input: A pre-trained deep neural network denoted as c(x), a

classification oracle j(x), a training dataset D0, an upper bound
for the attack vector δ, an initial stepsize s0, a decrease ratio
γ < 1, and the parameter in the stopping criterion α.

Output: The universal active adversarial attack vector vAS.
1 Initialize the attack vector as v0 = 0.
2 for k = 0, 1, . . . do
3 Select the training dataset as

D = {xi + vk : xi ∈ D0 and j(xi + vk) = j(xi)}, then compute the
dominate active subspace direction dv using Algorithm 3.

4 for i = 0, 1, . . . , l do
5 Let sk

i,± = (−1)±s0γi and vk+1
i,± = proj(vk + sk+1

i,± dk
v) . Compute

the attack ratios r(vk+1
i,1) and r(vk+1

i,−1) by (6.37).
6 If either r(vk+1

i,1) or r(vk+1
i,−1) is greater than r(vk), stop the

process.
7 Return sk = (−1)tsk

i,1, where t = 1 if r(vk+1
i,1) ≥ r(vk+1

i,−1) and
t = −1 otherwise.

8 end
9 If no stepsize sk is returned, let sk = s0rI and record this step as a

failure.
10 Compute the next iteration vk+1 by the projection (6.35).
11 If the number of failure is greater the threshold α, stop.
12 end

the following loss function

min
θ

m

∑
i=1

βH
(

ASNetθ(xi
0), f (xi

0)
)
+ (1− β)H

(
ASNetθ(xi

0), yi
)

.

Here, the cross entropy H(p, q) = ∑j s(p)j log s(q)j, the softmax function

s(x)i =
exp(xi)

∑j exp(xj)
, and the parameter β = 0.1 on default. We re-train ASNet for

50 epochs by ADAM [96]. The stepsizes for the pre-model are set as 10−4 and
10−3 for VGG-19 and ResNet, and the stepsize for the active subspace layer
and the polynomial chaos expansion layer is set as 10−5, respectively,

We also seek sparser weights in ASNet by the proximal stochastic gradient
descent method in Section 6.3.6. On default, we set the stepsize as 10−4 for the
pre-model and 10−5 for the active subspace layer and the polynomial chaos
expansion layer. The maximal epoch is set as 100. The obtained sparse model
is denoted as ASNet-s.

In all figures and tables, the numbers in the bracket of ASNet(·) or ASNet-
s(·) indicate the index of a cut-off layer. We report the performance for different
cut-off layers in terms of accuracy, storage, and computational complexities.

Chapter 6. Active Subspaces for Neural Networks 75

TABLE 6.1: Comparison of number of neurons r of VGG-19 on
CIFAR-10. For the storage speedup, the higher is better. For
the accuracy reduction before or after fine-tuning, the lower is

better.

r = 25 r = 50 r = 75
ε Storage Acc. Reduce ε Storage Acc. Reduce ε Storage Acc. Reduce

Before After Before After Before After
ASNet(5) 0.34 20.7× 7.06 2.82 0.18 14.4× 4.40 1.82 0.11 11.0× 3.64 1.66
ASNet(6) 0.24 12.8× 2.14 0.59 0.11 10.1× 1.62 0.27 0.05 8.3× 1.40 0.21
ASNet(7) 0.15 9.3× 0.79 0.11 0.06 7.8× 0.63 -0.10 0.03 6.7× 0.77 0.00

6.5.1.1 Choices of Parameters

We first show the influence of the number of reduced neurons r, tolerance ε,
and cutting-off layer index l of VGG-19 on CIFAR-10 in Table 6.1. The VGG-
19 can achieve 93.28% testing accuracy with 76.45 Mb storage consumption.
Here, ε = λr+1+...+λn

λ1+...+λn
. For different choices of r, we display the corresponding

tolerance ε, the storage speedup compared with the original teacher network,
and the testing accuracy reduction for ASNet before and after fine-tuning
compared with the original teacher network.

Table 6.1 shows that when the cutting-off layer is fixed, a larger r usually
results in a smaller tolerance ε and a smaller accuracy reduction but also a
smaller storage speedup. This corresponds to Lemma 6.3.1, that the error of
ASNet before fine-tuning is upper bounded by O(ε). Comparing r = 50 with
r = 75, we find that r = 50 can achieve almost the same accuracy with r = 75
with a higher storage speedup. r = 50 can even achieve better accuracy than
r = 75 in layer 7 probably because of overfitting. This guides us to choose
r = 50 in the following numerical experiments. For different layers, we see
a later cutting-off layer index can produce a lower accuracy reduction but
a smaller storage speedup. In other words, the choice of layer index is a
trade-off between accuracy reduction with storage speedup.

6.5.1.2 Efficiency of the ASNet

We show the effectiveness of ASNet constructed by Steps 1-3 of Algorithm 2
without fine-tuning. We investigate the following three properties. (1) Re-
dundancy of neurons. The distributions of the first 200 singular values of the
matrix Ĝ (defined in equation 6.15) are plotted in Fig. 6.5 (a). The singular
values decrease almost exponentially for layers l ∈ {4, 5, 6, 7}. Although the
total numbers of neurons are 8192, 16384, 16384, and 16384, the numbers of
active neurons are only 105, 84, 54, and 36, respectively. (2) Redundancy of
the layers. We cut off the deep neural network at an intermediate layer and
replace the subsequent layers with one simple logistic regression [84]. As
shown by the red bar in Fig. 6.5 (b), the logistic regression can achieve rela-
tively high accuracy. This verifies that the features trained from the first few
layers already have a high expression power since replacing all subsequent
layers with a simple expression loses little accuracy. (3) Efficiency of the
active-subspace and polynomial chaos expansion. We compare the proposed

Chapter 6. Active Subspaces for Neural Networks 76

0 50 100 150 200
Index

10−2

10−1

100

Si
ng

ul
ar
 V
al
ue
s

(a)
l= 4 l= 5 l= 6 l= 7

4 5 6 7
Cut ff layers (l)

0.0

0.5

1.0

A
cc
ur
ac
y

(b)
AS+PCE
PCA+PCE

AS+LR
LR

PCA+LR

FIGURE 6.5: Structural analysis of VGG-19 on the CIFAR-10
dataset. (a) The first 200 singular values for layers 4 ≤ l ≤ 7;
(b) The accuracy (without any fine-tuning) obtained by active-
subspace (AS) and polynomial chaos expansions (PCE) com-
pared with principal component analysis (PCA) and logistic

regression (LR).

active-subspace layer with the principal component analysis [90] in projecting
the high-dimensional neuron to a low-dimensional space and also compare
the polynomial chaos expansion layer with logistic regression in terms of
their efficiency to extract class labels from the low-dimensional variables.
Fig. 6.5 (b) shows that the combination of active-subspace and polynomial
chaos expansion can achieve the best accuracy.

6.5.1.3 CIFAR-10

We continue to present the results of ASNet and ASNet-s on CIFAR-10 by
two widely used networks: VGG-19 and ResNet-110, in Tables 6.2 and 6.3,
respectively. The second column shows the testing accuracy for the corre-
sponding network. We report the storage and computational costs for the
pre-model, and post-model (i.e., active-subspace plus polynomial chaos ex-
pansion for ASNet and ASNet-s), and overall results, respectively. For both
examples, ASNet and ASNet-s can achieve a similar accuracy with the teacher
network yet with much smaller storage and computational cost. For VGG-19,
ASNet achieves 14.43× storage savings and 3.44× computational reduction;
ASNet-s achieves 23.98× storage savings and 7.30× computational reduction.
For most ASNet and ASNet-s networks, the storage and computational costs
of the post-models achieve significant performance boosts by our proposed
network structure changes. It is not surprising to see that increasing the layer
index (i.e., cutting off the deep neural network at a later layer) can produce a
higher accuracy. However, increasing the layer index also results in a smaller
compression ratio. In other words, the choice of layer index is a trade-off
between the accuracy reduction and the compression ratio.

For Resnet-110, our results are not as good as those on VGG-19. We find
that the eigenvalues for its covariance matrix are not exponentially decreasing
as that of VGG-19, which results in a large number of active neurons or a
large error ε when fixing r = 50. A possible reason is that ResNet updates as

Chapter 6. Active Subspaces for Neural Networks 77

TABLE 6.2: Accuracy and storage on VGG-19 for CIFAR-10.
Here, “Pre-M" denotes the pre-model, i.e., layers 1 to l of the
original deep neural networks, “AS" and “PCE" denote the active
subspace and polynomial chaos expansion layer, respectively.

Network Accuracy Storage (MB) Flops (106)

VGG-19 93.28% 76.45 398.14
Pre-M AS+PCE Overall Pre-M AS+PCE Overall

ASNet(5) 91.46% 2.12 3.18 5.30 115.02 0.83 115.85
(23.41×) (14.43×) (340.11×) (3.44×)

ASNet-s(5) 90.40% 1.14 2.05 3.19 54.03 0.54 54.56
(1.86×) (36.33×) (23.98×) (2.13×) (527.91×) (7.30×)

ASNet(6) 93.01% 4.38 3.18 7.55 152.76 0.83 153.60
(22.70×) (10.12×) (294.76×) (2.59×)

ASNet-s(6) 91.08% 1.96 1.81 3.77 67.37 0.48 67.85
(2.24×) (39.73×) (20.27×) (2.27×) (515.98×) (5.87×)

ASNet(7) 93.38% 6.63 3.18 9.80 190.51 0.83 191.35
(21.99×) (7.80×) (249.41×) (2.08×)

ASNet-s(7) 90.87% 2.61 1.91 4.52 80.23 0.50 80.73
(2.54×) (36.64×) (16.92×) (2.37×) (415.68×) (4.93×)

xl+1 = xl + fl(xl). Hence, the partial gradient ∂xl+1/∂xl = I +∇ fl(xl) is less
likely to be low-rank.

6.5.1.4 CIFAR-100

Next, we present the results of VGG-19 and ResNet-110 on CIFAR-100 in
Tables 6.4 and 6.5, respectively. On VGG-19, ASNet can achieve 7.45× storage
savings and 2.08× computational reduction, and ASNet-s can achieve 9.06×
storage savings and 2.73× computational reduction. The accuracy loss is
negligible for VGG-19 but larger for ResNet-110. The performance boost of
ASNet is obtained by just changing the network structures and without any
model compression (e.g., pruning, quantization, or low-rank factorization).

6.5.2 Universal Adversarial Attacks

This subsection demonstrates the effectiveness of active subspace in identi-
fying a universal adversarial attack vector. We denote the result generated
by Algorithm 4 as “AS” and compare it with the “UAP” method in [120] and
with “random" Gaussian distribution vector. The parameters in Algorithm 4
are set as α = 10 and δ = 5, . . . , 10. The default parameters of UAP are applied
except for the maximal iteration. In the implementation of [120], the maximal
iteration is set as infinity, which is time-consuming when the training dataset
or the number of classes is large. In our experiments, we set the maximal
iteration as 10. In all figures and tables, we report the average attack ratio and
CPU time in training out of ten repeated experiments with different training
datasets. A higher attack ratio means the corresponding algorithm is better
at fooling the given deep neural network. The datasets are chosen in two
ways. We first test data points from one class (e.g., trousers in Fashion-MNIST)
because these data points share lots of common features and have a higher

Chapter 6. Active Subspaces for Neural Networks 78

TABLE 6.3: Accuracy and storage on ResNet-110 for CIFAR-10.
Here, “Pre-M" denotes the pre-model, i.e., layers 1 to l of the
original deep neural networks, “AS" and “PCE" denote the active
subspace and polynomial chaos expansion layer, respectively.

Network Accuracy Storage (MB) Flops (106)

ResNet-110 93.78% 6.59 252.89
Pre-M AS+PCE Overall Pre-M AS+PCE Overall

ASNet(61) 89.56% 1.15 1.61 2.77 140.82 0.42 141.24
(3.37×) (2.38×) (265.03×) (1.79×)

ASNet-s(61) 89.26% 0.83 1.23 2.06 104.05 0.32 104.37
(1.39×) (4.41×) (3.19×) (1.35×) (346.82×) (2.42×)

ASNet(67) 90.16% 1.37 1.61 2.98 154.98 0.42 155.40
(3.24×) (2.21×) (231.55×) (1.63×)

ASNet-s(67) 89.69% 1.00 1.22 2.22 116.38 0.32 116.70
(1.36×) (4.29×) (2.97×) (1.33×) (306.72×) (2.17×)

ASNet(73) 90.48% 1.58 1.61 3.19 169.13 0.42 169.55
(3.11×) (2.06×) (198.07×) (1.49×)

ASNet-s(73) 90.02% 1.18 1.16 2.34 128.65 0.30 128.96
(1.34×) (4.32×) (2.82×) (1.31×) (275.74×) (1.96×)

probability of being attacked by a universal perturbation vector. We then
conduct experiments on the whole dataset to show our proposed algorithm
can also provide better performance compared with the baseline even if the
dataset has diverse features.

6.5.2.1 Fashion-MNIST

Firstly, we present the adversarial attack result on Fashion-MNIST by a 4-
layer neural network. There are two convolutional layers with kernel size
equal 5×5. The size of output channels for each convolutional layer is 20 and
50, respectively. Each convolutional layer is followed by a ReLU activation
layer and a max-pooling layer with a kernel size of 2× 2. There are two fully
connected layers. The first fully connected layer has the dimensionality of
input and output features equal to 800 and 500, respectively.

Fig. 6.6 presents the attack ratio of our active-subspace method compared
with the baselines UAP method [120] and Gaussian random vectors. The top
figures show the results for just one class (i.e., trousers), and the bottom figures
show the results for all ten classes. For all perturbation norms, the active-
subspace method can achieve around 30% higher attack ratio than UAP while
more than 10 times faster. This verifies that the active-subspace method has
better universal representation ability compared with UAP because the active-
subspace can find a universal direction while UAP solves data-dependent
subproblems independently. By the active-subspace approach, the attack ratio
for the first class and the whole dataset are around 100% and 75%, respectively.
This coincides with our intuition that the data points in one class have higher
similarity than data points from different classes.

In Fig. 6.7, we plot one image from Fashion-MNIST and its perturbation by
the active-subspace attack vector. The attacked image in Fig. 6.7 (c) still looks

Chapter 6. Active Subspaces for Neural Networks 79

TABLE 6.4: Accuracy and storage on VGG-19 for CIFAR-100.
Here, “Pre-M" denotes the pre-model, i.e., layers 1 to l of the
original deep neural networks, “AS" and “PCE" denote the active
subspace and polynomial chaos expansion layer, respectively.

Network Top-1 Top-5 Storage (MB) Flops (106)

VGG-19 71.90% 89.57% 76.62 398.18
Pre-M AS+PCE Overall Pre-M AS+PCE Overall

ASNet(7) 70.77% 91.05% 6.63 3.63 10.26 190.51 0.83 191.35
(19.23×) (7.45×) (249.41×) (2.08×)

ASNet-s(7) 70.20% 90.90% 5.20 3.24 8.44 144.81 0.85 145.66
(1.27×) (21.56×) (9.06×) (1.32×) (244.57×) (2.73×)

ASNet(8) 69.50% 90.15% 8.88 1.29 10.17 228.26 0.22 228.48
(52.50×) (7.52×) (779.04×) (1.74×)

ASNet-s(8) 69.17% 89.73% 6.87 1.22 8.09 172.69 0.32 173.01
(1.29×) (55.36×) (9.45×) (1.32×) (530.92×) (2.30×)

ASNet(9) 72.00% 90.61% 13.39 2.07 15.46 247.14 0.42 247.56
(30.49×) (4.95×) (357.10×) (1.61×)

ASNet-s(9) 71.38% 90.28% 9.38 1.94 11.32 183.27 0.51 183.78
(1.43×) (32.49×) (6.75×) (1.35×) (296.74×) (2.17×)

like a trouser for a human. However, the deep neural network misclassifies it
as a t-shirt/top.

6.5.2.2 CIFAR-10

Next, we show the numerical results of attacking VGG-19 on CIFAR-10.
Fig. 6.8 compares the active-subspace method compared with the baseline
UAP and Gaussian random vectors. The top figures show the results by the
dataset in the first class (i.e., automobile), and the bottom figures show the
results for all ten classes. For both two cases, the proposed active-subspace
attack can achieve 20% higher attack ratios while three times faster than UAP.
This is similar to the results in Fashion-MNIST because the active subspace
has a better ability to capture global information.

We further show the effects of different number of training samples in
Fig. 6.9. When the number of samples is increased, the testing attack ratio gets
better. In our numerical experiments, we set the number of samples as 100 for
one-class experiments and 200 for all-classes experiments.

We continue to show the cross-model performance on four different ResNet
networks and one VGG network. We test the performance of the attack vector
trained from one model on all other models. Each row in Table 6.6 shows the
results on the same deep neural network, and each column shows the results
of the same attack vector. It shows that ResNet-20 is easier to be attacked
compared with other models. This agrees with our intuition that a simple
network structure such as ResNet-20 is less robust. On the contrary, VGG-19
is the most robust. The success of cross-model attacks indicates that these
neural networks could find a similar feature.

Chapter 6. Active Subspaces for Neural Networks 80

TABLE 6.5: Accuracy and storage on ResNet-110 for CIFAR-100.
Here, “Pre-M" denotes the pre-model, i.e., layers 1 to l of the
original deep neural networks, “AS" and “PCE" denote the active
subspace and polynomial chaos expansion layer, respectively.

Network Top-1 Top-5 Storage (MB) Flops (106)

ResNet-110 71.94% 91.71 % 6.61 252.89
Pre-M AS+PCE Overall Pre-M AS+PCE Overall

ASNet(75) 63.01% 88.55% 1.79 1.29 3.08 172.67 0.22 172.89
(3.73×) (2.14×) (367.88×) (1.46×)

ASNet-s(75) 63.16% 88.65% 1.47 1.20 2.67 143.11 0.31 143.42
(1.22×) (3.99×) (2.46×) (1.21×) (254.69×) (1.76×)

ASNet(81) 65.82% 90.02% 2.64 1.29 3.93 186.83 0.22 187.04
(3.07×) (1.68×) (302.96×) (1.35×)

ASNet-s(81) 65.73% 89.95% 2.20 1.21 3.41 155.61 0.32 155.93
(1.20×) (3.27×) (1.93×) (1.20×) (208.38×) (1.62×)

ASNet(87) 67.71% 90.17% 3.48 1.29 4.77 200.98 0.22 201.20
(2.41×) (1.38×) (238.04×) (1.26×)

ASNet-s(87) 67.65% 90.10% 2.91 1.21 4.12 166.50 0.32 166.81
(1.20×) (2.56×) (1.60×) (1.21×) (163.50×) (1.52×)

TABLE 6.6: Cross-model performance for CIFAR-10

ResNet-20 ResNet-44 ResNet-56 ResNet-110 VGG-19

ResNet-20 91.35% 87.74% 86.28% 87.38% 81.16%
ResNet-44 84.75% 92.28% 87.03% 85.44% 83.44%
ResNet-56 83.63% 86.67% 90.15% 87.39% 84.38%

ResNet-110 71.02% 77.58% 74.19% 92.77% 77.32%
VGG-19 53.61% 59.74% 61.49% 66.29% 80.02%

6.5.2.3 CIFAR-100

Finally, we show the results on CIFAR-100 for both the first class (i.e., dolphin)
and all classes. Similar to Fashion-MNIST and CIFAR-10, Fig. 6.10 shows that
active-subspace can achieve higher attack ratios than both UAP and Gaussian
random vectors. Further, compared with CIFAR-10, CIFAR-100 is easier to be
attacked partially because it has more classes.

We summarize the results for different datasets in Table 6.7. The second
column shows the number of classes in the dataset. In terms of testing attack
ratio for the whole dataset, active-subspace achieves 24.2%, 15%, and 6.1%
higher attack ratios than UAP for Fashion-MNIST, CIFAR-10, and CIFAR-100,
respectively. In terms of the CPU time, active-subspace achieves 42×, 5×, and
14× speedup than UAP on the Fashion-MNIST, CIFAR-10, and CIFAR-100,
respectively.

6.6 Conclusions and Discussions

This chapter has analyzed deep neural networks by the active subspace
method originally developed for dimensionality reduction of uncertainty
quantification. We have investigated two problems: how many neurons and

Chapter 6. Active Subspaces for Neural Networks 81

5 6 7 8 9 10
ℓ2-norm of perturbation

0

25

50

75

100
Tr
ai
ni
ng
 A
tta
ck
 ra

tio
 (%

)
(a)

5 6 7 8 9 10
ℓ2-norm of perturbation

0

25

50

75

100

Te
st
in
g
A
tta
ck
 ra

tio
 (%

)

(b)

AS UAP Random

5 6 7 8 9 10
ℓ2-norm of perturbation

0

10

20

30

C
PU

 ti
m
e
(s
)

(c)

5 6 7 8 9 10
ℓ2-norm of perturbation

0

25

50

75

100

Tr
ai
ni
ng
 A
tta
ck
 ra

tio
 (%

)

(d)

5 6 7 8 9 10
ℓ2-norm of perturbation

0

25

50

75

100

Te
st
in
g
A
tta
ck
 ra

tio
 (%

)

(e)

AS UAP Random

5 6 7 8 9 10
ℓ2-norm of perturbation

0

20

40

60

C
PU

 ti
m
e
(s
)

(f)

FIGURE 6.6: Universal adversarial attacks for the Fashion-
MINST with respect to different `2-norms. (a)-(c): the results for
attacking one class dataset. (d)-(f): the results for attacking the

whole dataset.

TABLE 6.7: Summary of the universal attack for different
datasets by the active-subspace compared with UAP and the

random vector. The norm of perturbation is equal to 10.

Training Attack ratio Testing Attack ratio CPU time (s)
Class AS UAP Rand AS UAP Rand AS UAP

Fashion- 1 100.0% 93.6% 1.8% 98.0% 91.3% 3.0% 0.15 5.49
MNIST 10 79.2% 51.5% 8.0% 73.3% 49.1% 12.3% 1.40 58.85

CIFAR-10
1 94.7% 79.8% 8.0% 84.5% 57.9% 10.6% 8.18 52.83
10 86.5% 65.9% 10.2% 74.9% 59.9% 17.0% 37.01 181.72

CIFAR-100
1 97.2% 87.9% 19.7% 92.1% 84.3% 37.9% 13.32 248.78

100 93.7% 86.5% 38.7% 83.5% 77.4% 52.0% 14.32 204.50

layers are necessary (or important) in a deep neural network, and how to
generate a universal adversarial attack vector that can be applied to a set of
testing data? Firstly, we have presented a definition of “the number of active
neurons” and have shown its theoretical error bounds for model reduction.
Our numerical study has shown that many neurons and layers are not needed.
Based on this observation, we have proposed a new network called ASNet
by cutting off the whole neural network at a proper layer and replacing all
subsequent layers with an active subspace layer and a polynomial chaos
expansion layer. The numerical experiments show that the proposed deep
neural network structural analysis method can produce a new network with
significant storage savings and computational speedup yet with little accu-
racy loss. Our methods can be combined with existing model compression
techniques (e.g., pruning, quantization and low-rank factorization) to develop
compact deep neural network models that are more suitable for the deploy-
ment on resource-constrained platforms. Secondly, we have applied the active
subspace to generate a universal attack vector that is independent of a specific

Chapter 6. Active Subspaces for Neural Networks 82

0 10 20

0

10

20

(a) A Trouser

0 10 20

0

10

20

(b) AS perturbation

0 10 20

0

10

20

(c) A T-shirt/top

−2

−1

0

1

2

3

FIGURE 6.7: The effect of our attack method on one data sample
in the Fashion-MNIST dataset. (a) A trouser from the original
dataset. (b) An active-subspace perturbation vector with the `2
norm equals 5. (c) The perturbed sample is misclassified as a

t-shirt/top by the deep neural network.

data sample and can be applied to a whole dataset. Our proposed method can
achieve a much higher attack ratio than the existing work [120] and enjoys a
lower computational cost.

ASNet has two main goals: to detect the necessary neurons and layers,
and to compress the existing network. To fulfill the first goal, we require a
pre-trained model because from Lemmas 6.3.1, and 6.3.2, the accuracy of the
reduced model will approach that of the original one. For the second task,
the pre-trained model helps us to get a good estimation for the number of
active neurons, a proper layer to cut off, and a good initialization for the active
subspace layer and polynomial chaos expansion layer. However, a pre-trained
model is not required because we can construct ASNet in a heuristic way (as
done in most DNN): a reasonable guess for the number of active neurons and
cut-off layer, and a random parameter initialization for the pre-model, the
active subspace layer and the polynomial chaos expansion layer.

Chapter 6. Active Subspaces for Neural Networks 83

5 6 7 8 9 10
ℓ2-norm of perturbation

0

25

50

75

100

Tr
ai
ni
ng
 A
tta
ck
 ra

tio
 (%

)

(a)

5 6 7 8 9 10
ℓ2-norm of perturbation

0

25

50

75

100

Te
st
in
g
A
tta
ck
 ra

tio
 (%

)

(b)

AS UAP Random

5 6 7 8 9 10
ℓ2-norm of perturbation

0

25

50

75

100

C
PU

 ti
m
e
(s
)

(c)

5 6 7 8 9 10
ℓ2-norm of perturbation

0

25

50

75

100

Tr
ai
ni
ng
 A
tta
ck
 ra

tio
 (%

)

(d)

5 6 7 8 9 10
ℓ2-norm of perturbation

0

25

50

75

100

Te
st
in
g
A
tta
ck
 ra

tio
 (%

)
(e)

AS UAP Random

5 6 7 8 9 10
ℓ2-norm of perturbation

0

50

100

150

C
PU

 ti
m
e
(s
)

(f)

FIGURE 6.8: Universal adversarial attacks of VGG-19 on CIFAR-
10 with respect to different `2-norm perturbations. (a)-(c): The
training attack ratio, the testing attack ratio, and the CPU time
in seconds for attacking one class dataset. (d)-(f): The results for

attacking ten classes dataset together.

10 30 50 100 200
Number of training samples

0.0

0.2

0.4

0.6

0.8

1.0

A
tta

ck
 ra

tio

0.96 0.93 0.94 0.94 0.94

0.60

0.73
0.78

0.83
0.87

(a)

10 30 50 100 200
Number of training samples

0.0

0.2

0.4

0.6

0.8

1.0

A
tta

ck
 ra

tio

0.85 0.85 0.86
0.79

0.85

0.42

0.53

0.64 0.66

0.78

(b)

Training Testing

FIGURE 6.9: Adversarial attack of VGG-19 on CIFAR-10 with
different number of training samples. The `2-norm perturbation
is fixed as 10. (a) The results of attacking the dataset from the
first class; (b) The results of attacking the whole dataset with 10

classes.

Chapter 6. Active Subspaces for Neural Networks 84

5 6 7 8 9 10
ℓ2-norm of perturbation

0

25

50

75

100

Tr
ai
ni
ng
 A
tta
ck
 ra

tio
 (%

)

(a)

5 6 7 8 9 10
ℓ2-norm of perturbation

0

25

50

75

100

Te
st
in
g
A
tta
ck
 ra

tio
 (%

)

(b)

AS UAP Random

5 6 7 8 9 10
ℓ2-norm of perturbation

0

250

500

750

1000

C
PU

 ti
m
e
(s
)

(c)

5 6 7 8 9 10
ℓ2-norm of perturbation

0

25

50

75

100

Tr
ai
ni
ng
 A
tta
ck
 ra

tio
 (%

)

(d)

5 6 7 8 9 10
ℓ2-norm of perturbation

0

25

50

75

100

Te
st
in
g
A
tta
ck
 ra

tio
 (%

)

(e)

AS UAP Random

5 6 7 8 9 10
ℓ2-norm of perturbation

0

250

500

750

1000

C
PU

 ti
m
e
(s
)

(f)

FIGURE 6.10: Results for universal adversarial attack for CIFAR-
100 with respect to different `2-norm perturbations. (a)-(c): The
results for attacking the dataset from the first class. (d)-(f): The

results for attacking ten classes dataset together.

85

Conclusions

In this thesis, we focused on the investigation and advancement of neural
ordinary differential equations (ODEs) as a tool for modeling continuous-time
dynamic systems. Our research efforts were divided into two interconnected
parts, with the first part dedicated to the study of various aspects of neural
ODEs.

In the first part, we developed an efficient training algorithm for neu-
ral ODEs in chapter 2, which has the potential to significantly improve the
performance of neural ODEs in a variety of applications. Additionally, we
conducted a thorough experimental evaluation of different normalization
techniques for neural ODEs in chapter 3, as normalization is an important
aspect of neural network training that can impact the effectiveness of neural
ODEs. Finally, in chapter 4, we proposed a method for training neural ODEs
that are more robust to adversarial attacks, addressing a major concern in
machine learning and offering the potential for significant progress in this
area.

In the second part of this thesis, we applied classical model reduction tech-
niques, namely reduced-order modeling (chapter 5) and the active subspace
method (chapter 6), to neural networks.

86

Bibliography

[1] Sajjad Abdoli et al. “Universal Adversarial Audio Perturbations”. In:
arXiv preprint arXiv:1908.03173 (2019).

[2] Alireza Aghasi et al. “Net-trim: Convex pruning of deep neural net-
works with performance guarantee”. In: Advances in Neural Information
Processing Systems. 2017, pp. 3177–3186.

[3] Naveed Akhtar and Ajmal Mian. “Threat of adversarial attacks on
deep learning in computer vision: A survey”. In: IEEE Access 6 (2018),
pp. 14410–14430.

[4] Shun-ichi Amari, Andrzej Cichocki, and Howard Yang. “A new learn-
ing algorithm for blind signal separation”. In: Advances in neural infor-
mation processing systems 8 (1995).

[5] Harbir Antil and Dmitriy Leykekhman. “A brief introduction to PDE-
constrained optimization”. In: Frontiers in PDE-constrained optimization.
Springer, 2018, pp. 3–40.

[6] Larry Armijo. “Minimization of functions having Lipschitz continuous
first partial derivatives”. In: Pacific Journal of mathematics 16.1 (1966),
pp. 1–3.

[7] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer nor-
malization”. In: arXiv preprint arXiv:1607.06450 (2016).

[8] Shumeet Baluja and Ian Fischer. “Adversarial transformation net-
works: Learning to generate adversarial examples”. In: arXiv preprint
arXiv:1703.09387 (2017).

[9] Melika Behjati et al. “Universal Adversarial Attacks on Text Classi-
fiers”. In: ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 7345–7349.

[10] Jean-Paul Berrut and Lloyd N Trefethen. “Barycentric Lagrange inter-
polation”. In: SIAM Review 46.3 (2004), pp. 501–517.

[11] Lukas Biewald. Experiment Tracking with Weights and Biases. Software
available from wandb.com. 2020. URL: https://www.wandb.com/.

[12] Ernesto G Birgin, José Mario Martínez, and Marcos Raydan. “Non-
monotone spectral projected gradient methods on convex sets”. In:
SIAM Journal on Optimization 10.4 (2000), pp. 1196–1211.

[13] Andrew M Bradley. PDE-constrained optimization and the adjoint method.
Tech. rep. Technical Report. Stanford University. https://cs. stanford.
edu/˜ ambrad . . ., 2013.

https://www.wandb.com/

Bibliography 87

[14] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. “Model
Compression”. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’06. Philadel-
phia, PA, USA: ACM, 2006, pp. 535–541. ISBN: 1-59593-339-5. DOI:
10.1145/1150402.1150464. URL: http://doi.acm.org/10.1145/
1150402.1150464.

[15] John Charles Butcher and Nicolette Goodwin. Numerical methods for
ordinary differential equations. Vol. 2. Wiley Online Library, 2008.

[16] Han Cai, Ligeng Zhu, and Song Han. “ProxylessNAS: Direct Neural
Architecture Search on Target Task and Hardware”. In: arXiv preprint
arXiv:1812.00332 (2018).

[17] Nicholas Carlini and David Wagner. “Towards evaluating the robust-
ness of neural networks”. In: 2017 IEEE Symposium on Security and
Privacy (SP). IEEE. 2017, pp. 39–57.

[18] Yair Carmon et al. “Unlabeled data improves adversarial robustness”.
In: arXiv preprint arXiv:1905.13736 (2019).

[19] Fabio Carrara et al. “On the robustness to adversarial examples of
neural ode image classifiers”. In: 2019 IEEE International Workshop on
Information Forensics and Security (WIFS). IEEE. 2019, pp. 1–6.

[20] Bo Chang et al. “Multi-level residual networks from dynamical systems
view”. In: arXiv preprint arXiv:1710.10348 (2017).

[21] Saifon Chaturantabut and Danny C Sorensen. “Nonlinear model reduc-
tion via discrete empirical interpolation”. In: SIAM Journal on Scientific
Computing 32.5 (2010), pp. 2737–2764.

[22] Tian Qi Chen et al. “Neural ordinary differential equations”. In: Ad-
vances in Neural Information Processing Systems. 2018, pp. 6571–6583.

[23] Yu Cheng et al. “Model Compression and Acceleration for Deep Neural
Networks: The Principles, Progress, and Challenges”. In: IEEE Signal
Processing Magazine 35.1 (2018), pp. 126–136. ISSN: 10535888. DOI: 10.
1109/MSP.2017.2765695. arXiv: 1710.09282.

[24] Earl A Coddington and Norman Levinson. Theory of ordinary differential
equations. Tata McGraw-Hill Education, 1955.

[25] Paul G Constantine. Active subspaces: Emerging ideas for dimension reduc-
tion in parameter studies. Vol. 2. SIAM, 2015.

[26] Paul G Constantine and Alireza Doostan. “Time-dependent global
sensitivity analysis with active subspaces for a lithium ion battery
model”. In: Statistical Analysis and Data Mining: The ASA Data Science
Journal 10.5 (2017), pp. 243–262.

[27] Paul G Constantine, Eric Dow, and Qiqi Wang. “Active subspace meth-
ods in theory and practice: applications to kriging surfaces”. In: SIAM
Journal on Scientific Computing 36.4 (2014), A1500–A1524.

https://doi.org/10.1145/1150402.1150464
http://doi.acm.org/10.1145/1150402.1150464
http://doi.acm.org/10.1145/1150402.1150464
https://doi.org/10.1109/MSP.2017.2765695
https://doi.org/10.1109/MSP.2017.2765695
https://arxiv.org/abs/1710.09282

Bibliography 88

[28] Paul G Constantine et al. “Exploiting active subspaces to quantify
uncertainty in the numerical simulation of the HyShot II scramjet”. In:
Journal of Computational Physics 302 (2015), pp. 1–20.

[29] Tim Cooijmans et al. “Recurrent batch normalization”. In: arXiv preprint
arXiv:1603.09025 (2016).

[30] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Train-
ing deep neural networks with low precision multiplications”. In:
arXiv preprint arXiv:1412.7024 (2014). arXiv: 1412.7024. URL: http:
//arxiv.org/abs/1412.7024.

[31] Matthieu Courbariaux et al. “Binarized neural networks: Training deep
neural networks with weights and activations constrained to +1 or-1”.
In: arXiv preprint arXiv:1602.02830 (2016).

[32] Francesco Croce et al. “RobustBench: a standardized adversarial ro-
bustness benchmark”. In: arXiv preprint arXiv:2010.09670 (2020).

[33] Chunfeng Cui and Zheng Zhang. “High-Dimensional Uncertainty
Quantification of Electronic and Photonic IC with Non-Gaussian Cor-
related Process Variations”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2019).

[34] Chunfeng Cui and Zheng Zhang. “Stochastic collocation with non-
gaussian correlated process variations: Theory, algorithms and appli-
cations”. In: IEEE Transactions on Components, Packaging and Manufac-
turing Technology (2018).

[35] Chunfeng Cui et al. “Active Subspace of Neural Networks: Structural
Analysis and Universal Attacks”. In: arXiv preprint arXiv:1910.13025
(2019).

[36] Talgat Daulbaev et al. “Interpolation Technique to Speed Up Gradi-
ents Propagation in Neural ODEs”. In: Advances in Neural Information
Processing Systems 33 (2020).

[37] Nicola Demo, Marco Tezzele, and Gianluigi Rozza. “A non-intrusive
approach for the reconstruction of POD modal coefficients through
active subspaces”. In: Comptes Rendus Mécanique 347.11 (2019), pp. 873–
881.

[38] Lei Deng et al. “GXNOR-Net: Training deep neural networks with
ternary weights and activations without full-precision memory under
a unified discretization framework”. In: Neural Networks 100 (2018),
pp. 49–58.

[39] Emily L Denton et al. “Exploiting linear structure within convolutional
networks for efficient evaluation”. In: Advances in neural information
processing systems. 2014, pp. 1269–1277.

[40] John R Dormand and Peter J Prince. “A family of embedded Runge-
Kutta formulae”. In: Journal of Computational and Applied Mathematics
6.1 (1980), pp. 19–26.

https://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1412.7024

Bibliography 89

[41] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. “Augmented
neural ODEs”. In: arXiv preprint arXiv:1904.01681 (2019).

[42] Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M Roy.
“A study of the effect of jpg compression on adversarial images”. In:
arXiv preprint arXiv:1608.00853 (2016).

[43] Radii Petrovich Fedorenko. “A relaxation method for solving elliptic
difference equations”. In: USSR Computational Mathematics and Mathe-
matical Physics 1.4 (1962), pp. 1092–1096.

[44] Andreas Fichtner, H-P Bunge, and Heiner Igel. “The adjoint method
in seismology: I. Theory”. In: Physics of the Earth and Planetary Interiors
157.1-2 (2006), pp. 86–104.

[45] Gerald B Folland. Introduction to Partial Differential Equations. Princeton
university press, 1995.

[46] Alexander Fonarev et al. “Efficient rectangular maximal-volume algo-
rithm for rating elicitation in collaborative filtering”. In: 2016 IEEE 16th
International Conference on Data Mining (ICDM). IEEE. 2016, pp. 141–
150.

[47] Bengt Fornberg. A Practical Guide to Pseudospectral Methods. Vol. 1.
Cambridge university press, 1998.

[48] Jonathan Frankle and Michael Carbin. “The lottery ticket hypoth-
esis: Finding sparse, trainable neural networks”. In: arXiv preprint
arXiv:1803.03635 (2018).

[49] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications”. In: arXiv preprint arXiv:1704.04861
(Apr. 2017).

[50] Xitong Gao et al. “Dynamic Channel Pruning: Feature Boosting and
Suppression”. In: International Conference on Learning Representations.
2019. URL: https://openreview.net/forum?id=BJxh2j0qYm.

[51] Timur Garipov et al. “Ultimate tensorization: compressing convolu-
tional and FC layers alike”. In: arXiv preprint arXiv:1611.03214 (2016).

[52] Rong Ge, Runzhe Wang, and Haoyu Zhao. “Mildly Overparametrized
Neural Nets can Memorize Training Data Efficiently”. In: arXiv preprint
arXiv:1909.11837 (2019).

[53] Roger G Ghanem and Pol D Spanos. “Stochastic Finite Element Method:
Response Statistics”. In: Stochastic Finite Elements: A Spectral Approach.
Springer, 1991, pp. 101–119.

[54] Mina Ghashami et al. “Frequent directions: Simple and deterministic
matrix sketching”. In: SIAM Journal on Computing 45.5 (2016), pp. 1762–
1792.

[55] Amir Gholami, Kurt Keutzer, and George Biros. “ANODE: Uncondi-
tionally Accurate Memory-Efficient Gradients for Neural ODEs”. In:
arXiv preprint arXiv:1902.10298 (2019).

https://openreview.net/forum?id=BJxh2j0qYm

Bibliography 90

[56] Arnab Ghosh et al. “STEER: Simple Temporal Regularization For Neu-
ral ODEs”. In: arXiv preprint arXiv:2006.10711 (2020).

[57] Yotam Gil et al. “White-to-Black: Efficient Distillation of Black-Box
Adversarial Attacks”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). 2019, pp. 1373–
1379.

[58] Michael B Giles and Niles A Pierce. “An introduction to the adjoint
approach to design”. In: Flow, Turbulence and Combustion 65.3-4 (2000),
pp. 393–415.

[59] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining
and harnessing adversarial examples”. In: arXiv preprint arXiv:1412.6572
(2014).

[60] Sergei A Goreinov et al. “How to find a good submatrix”. In: Matrix
Methods: Theory, Algorithms And Applications: Dedicated to the Memory of
Gene Golub. World Scientific, 2010, pp. 247–256.

[61] Will Grathwohl et al. “Ffjord: Free-form continuous dynamics for scal-
able reversible generative models”. In: arXiv preprint arXiv:1810.01367
(2018).

[62] Alex Graves et al. “Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks”. In: Pro-
ceedings of the 23rd international conference on Machine learning. ACM.
2006, pp. 369–376.

[63] Suyog Gupta et al. “Deep Learning with Limited Numerical Precision”.
In: International Conference on Machine Learning. 2015, pp. 1737–1746.

[64] Julia Gusak et al. “Automated Multi-Stage Compression of Neural Net-
works”. In: Proceedings of the IEEE International Conference on Computer
Vision Workshops. 2019, pp. 0–0.

[65] Julia Gusak et al. “Reduced-order modeling of deep neural networks”.
In: Computational Mathematics and Mathematical Physics 61.5 (2021),
pp. 774–785.

[66] Julia Gusak et al. “Towards Understanding Normalization in Neural
ODEs”. In: International Conference on Learning Representations (ICLR)
Workshop on Integration of Deep Neural Models and Differential Equations
(2020). URL: https://openreview.net/forum?id=mllQ3QNNr9d.

[67] Ernst Hairer, Syvert P Nørsett, and Gerhard Wanner. Solving Ordinary
Differential Equations I, Nonstiff Problems. Springer-Vlg, 1993.

[68] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. “Finding
structure with randomness: Probabilistic algorithms for constructing
approximate matrix decompositions”. In: SIAM review 53.2 (2011),
pp. 217–288.

[69] Matthew CG Hall. “Application of adjoint sensitivity theory to an
atmospheric general circulation model”. In: Journal of the Atmospheric
Sciences 43.22 (1986), pp. 2644–2652.

https://openreview.net/forum?id=mllQ3QNNr9d

Bibliography 91

[70] Song Han, Huizi Mao, and William J Dally. “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding”. In: arXiv preprint arXiv:1510.00149 (2015).

[71] YAN Hanshu et al. “On robustness of neural ordinary differential
equations”. In: International Conference on Learning Representations. 2019.

[72] Cole Hawkins and Zheng Zhang. “Bayesian Tensorized Neural Net-
works with Automatic Rank Selection”. In: arXiv preprint arXiv:1905.10478
(2019).

[73] Kaiming He et al. “Deep residual learning for image recognition”.
In: Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition. 2016, pp. 770–778.

[74] Kaiming He et al. “Identity mappings in deep residual networks”. In:
European conference on computer vision. Springer. 2016, pp. 630–645.

[75] Yihui He, Xiangyu Zhang, and Jian Sun. “Channel Pruning for Ac-
celerating Very Deep Neural Networks”. In: The IEEE International
Conference on Computer Vision (ICCV). 2017.

[76] Yihui He et al. “Amc: Automl for model compression and accelera-
tion on mobile devices”. In: Proceedings of the European Conference on
Computer Vision (ECCV). 2018, pp. 784–800.

[77] Nicholas J Higham. “The numerical stability of barycentric Lagrange in-
terpolation”. In: IMA Journal of Numerical Analysis 24.4 (2004), pp. 547–
556.

[78] Alan C Hindmarsh et al. “User Documentation for ida v5. 4.0 (sundials
v5. 4.0)”. In: (2020).

[79] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the Knowl-
edge in a Neural Network”. In: arXiv preprint arXiv:1503.02531 (2015).

[80] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the Knowl-
edge in a Neural Network”. In: stat 1050 (2015), p. 9.

[81] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”.
In: Neural computation 9.8 (1997), pp. 1735–1780.

[82] Wassily Hoeffding. “Probability inequalities for sums of bounded ran-
dom variables”. In: The Collected Works of Wassily Hoeffding. Springer,
1994, pp. 409–426.

[83] Mary Kathleen Horn. “Fourth-and fifth-order, scaled rungs–kutta al-
gorithms for treating dense output”. In: SIAM Journal on Numerical
Analysis 20.3 (1983), pp. 558–568.

[84] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant.
Applied logistic regression. Vol. 398. John Wiley & Sons, 2013.

[85] Hengyuan Hu et al. “Network trimming: A data-driven neuron prun-
ing approach towards efficient deep architectures”. In: arXiv preprint
arXiv:1607.03250 (2016).

Bibliography 92

[86] Gao Huang et al. “Densely connected convolutional networks”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 4700–4708.

[87] Michael F Hutchinson. “A stochastic estimator of the trace of the influ-
ence matrix for Laplacian smoothing splines”. In: Communications in
Statistics-Simulation and Computation 18.3 (1989), pp. 1059–1076.

[88] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating
deep network training by reducing internal covariate shift”. In: arXiv
preprint arXiv:1502.03167 (2015).

[89] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. “Speeding
up Convolutional Neural Networks with Low Rank Expansions”. In:
arXiv preprint arXiv:1405.3866 (2014). arXiv: 1405.3866. URL: http:
//arxiv.org/abs/1405.3866.

[90] Ian Jolliffe. “Principal component analysis”. In: International encyclope-
dia of statistical science. Springer, 2011, pp. 1094–1096.

[91] Can Kanbak, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard.
“Geometric robustness of deep networks: analysis and improvement”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 4441–4449.

[92] Jacob Kelly et al. “Learning Differential Equations that are Easy to
Solve”. In: arXiv preprint arXiv:2007.04504 (2020).

[93] Valentin Khrulkov and Ivan Oseledets. “Art of singular vectors and
universal adversarial perturbations”. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2018, pp. 8562–8570.

[94] Valentin Khrulkov and Ivan Oseledets. “Understanding DDPM latent
codes through optimal transport”. In: arXiv preprint arXiv:2202.07477
(2022).

[95] Patrick Kidger et al. “Neural controlled differential equations for irreg-
ular time series”. In: Advances in Neural Information Processing Systems
33 (2020), pp. 6696–6707.

[96] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[97] Diederik P Kingma and Max Welling. “Stochastic gradient VB and
the variational auto-encoder”. In: Second International Conference on
Learning Representations, ICLR. Vol. 19. 2014.

[98] Durk P Kingma and Prafulla Dhariwal. “Glow: Generative flow with
invertible 1x1 convolutions”. In: Advances in Neural Information Process-
ing Systems. 2018, pp. 10215–10224.

[99] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances
in neural information processing systems. 2012, pp. 1097–1105.

https://arxiv.org/abs/1405.3866
http://arxiv.org/abs/1405.3866
http://arxiv.org/abs/1405.3866

Bibliography 93

[100] Karl Kunisch and Stefan Volkwein. “Galerkin proper orthogonal de-
composition methods for a general equation in fluid dynamics”. In:
SIAM Journal on Numerical analysis 40.2 (2002), pp. 492–515.

[101] Vadim Lebedev et al. “Speeding-up convolutional neural networks
using fine-tuned cp-decomposition”. In: arXiv preprint arXiv:1412.6553
(2014).

[102] Hao Li et al. “Pruning filters for efficient convnets”. In: arXiv preprint
arXiv:1608.08710 (2016).

[103] Xuechen Li et al. “Scalable gradients for stochastic differential equa-
tions”. In: arXiv preprint arXiv:2001.01328 (2020).

[104] David R Lide. “Handbook of mathematical functions”. In: A Century of
Excellence in Measurements, Standards, and Technology. CRC Press, 2018,
pp. 135–139.

[105] Liu Liu et al. “Dynamic Sparse Graph for Efficient Deep Learning”. In:
arXiv preprint arXiv:1810.00859 (2018).

[106] Xuanqing Liu et al. “Neural SDE: Stabilizing neural ODE networks
with stochastic noise”. In: arXiv preprint arXiv:1906.02355 (2019).

[107] Zhuang Liu et al. “Learning Efficient Convolutional Networks through
Network Slimming”. In: ICCV. 2017.

[108] Zhuang Liu et al. “Rethinking the value of network pruning”. In: arXiv
preprint arXiv:1810.05270 (2018).

[109] Tyson Loudon and Stephen Pankavich. “Mathematical analysis and
dynamic active subspaces for a long term model of HIV”. In: arXiv
preprint arXiv:1604.04588 (2016).

[110] Yiping Lu et al. “Beyond finite layer neural networks: Bridging deep
architectures and numerical differential equations”. In: arXiv preprint
arXiv:1710.10121 (2017).

[111] J. Luo et al. “ThiNet: Pruning CNN Filters for a Thinner Net”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence (2018), pp. 1–1.
ISSN: 0162-8828. DOI: 10.1109/TPAMI.2018.2858232.

[112] Ping Luo et al. “Differentiable learning-to-normalize via switchable
normalization”. In: arXiv preprint arXiv:1806.10779 (2018).

[113] Aleksander Madry et al. “Towards Deep Learning Models Resistant to
Adversarial Attacks”. In: International Conference on Learning Represen-
tations. 2018.

[114] Guri I Marchuk. Adjoint Equations and Analysis of Complex Systems.
Vol. 295. Springer Science & Business Media, 2013.

[115] Daniil Merkulov and Ivan Oseledets. “Stochastic gradient algorithms
from ODE splitting perspective”. In: arXiv preprint arXiv:2004.08981
(2020).

[116] Aleksandr Mikhalev and Ivan V Oseledets. “Rectangular maximum-
volume submatrices and their applications”. In: Linear Algebra and its
Applications 538 (2018), pp. 187–211.

https://doi.org/10.1109/TPAMI.2018.2858232

Bibliography 94

[117] Takeru Miyato et al. “Spectral Normalization for Generative Adversar-
ial Networks”. In: arXiv preprint arXiv:1802.05957 (2018).

[118] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. “Variational
dropout sparsifies deep neural networks”. In: Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org. 2017,
pp. 2498–2507.

[119] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.
“Deepfool: a simple and accurate method to fool deep neural net-
works”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 2574–2582.

[120] Seyed-Mohsen Moosavi-Dezfooli et al. “Universal adversarial pertur-
bations”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017, pp. 1765–1773.

[121] Shinichi Nakajima et al. “Global analytic solution of fully-observed
variational Bayesian matrix factorization”. In: Journal of Machine Learn-
ing Research 14.Jan (2013), pp. 1–37.

[122] Paarth Neekhara et al. “Universal adversarial perturbations for speech
recognition systems”. In: arXiv preprint arXiv:1905.03828 (2019).

[123] Tan M Nguyen et al. “InfoCNF: An efficient conditional continuous nor-
malizing flow with adaptive solvers”. In: arXiv preprint arXiv:1912.03978
(2019).

[124] Alexander Novikov et al. “Tensorizing neural networks”. In: Advances
in Neural Information Processing Systems. 2015, pp. 442–450.

[125] Viktor Oganesyan, Alexandra Volokhova, and Dmitry Vetrov. “Stochas-
ticity in Neural ODEs: An Empirical Study”. In: arXiv preprint arXiv:2002.09779
(2020).

[126] Katharina Ott et al. “When are Neural ODE Solutions Proper ODEs?”
In: arXiv preprint arXiv:2007.15386 (2020).

[127] Samet Oymak and Mahdi Soltanolkotabi. “Towards moderate over-
parameterization: global convergence guarantees for training shallow
neural networks”. In: arXiv preprint arXiv:1902.04674 (2019).

[128] Utku Ozbulak et al. “Perturbation analysis of gradient-based adversar-
ial attacks”. In: Pattern Recognition Letters 135 (2020), pp. 313–320.

[129] Nicolas Papernot et al. “The limitations of deep learning in adversarial
settings”. In: 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE. 2016, pp. 372–387.

[130] Sunghyun Park et al. “Vid-ode: Continuous-time video generation with
neural ordinary differential equation”. In: arXiv preprint arXiv:2010.08188
(2020).

[131] R-E Plessix. “A review of the adjoint-state method for computing the
gradient of a functional with geophysical applications”. In: Geophysical
Journal International 167.2 (2006), pp. 495–503.

Bibliography 95

[132] LS Pontryagin et al. Mathematical Theory of Optimal Processes {in Russian}.
1961.

[133] Alessio Quaglino et al. “SNODE: Spectral Discretization of Neural
ODEs for System Identification”. In: arXiv preprint arXiv:1906.07038
(2019).

[134] Alfio Quarteroni, Gianluigi Rozza, et al. Reduced order methods for mod-
eling and computational reduction. Vol. 9. Springer, 2014.

[135] Alejandro F Queiruga et al. “Continuous-in-Depth Neural Networks”.
In: arXiv preprint arXiv:2008.02389 (2020).

[136] Christopher Rackauckas et al. “Universal differential equations for
scientific machine learning”. In: arXiv preprint arXiv:2001.04385 (2020).

[137] Jonas Rauber, Wieland Brendel, and Matthias Bethge. “Foolbox: A
Python toolbox to benchmark the robustness of machine learning mod-
els”. In: Reliable Machine Learning in the Wild Workshop, 34th International
Conference on Machine Learning. 2017. URL: http://arxiv.org/abs/
1707.04131.

[138] Jonas Rauber et al. “Foolbox Native: Fast adversarial attacks to bench-
mark the robustness of machine learning models in PyTorch, Tensor-
Flow, and JAX”. In: Journal of Open Source Software 5.53 (2020), p. 2607.
DOI: 10.21105/joss.02607. URL: https://doi.org/10.21105/joss.
02607.

[139] Danilo Rezende and Shakir Mohamed. “Variational inference with nor-
malizing flows”. In: International conference on machine learning. PMLR.
2015, pp. 1530–1538.

[140] Byron P Roe et al. “Boosted decision trees as an alternative to artificial
neural networks for particle identification”. In: Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 543.2-3 (2005), pp. 577–584.

[141] Adriana Romero et al. “Fitnets: Hints for thin deep nets”. In: arXiv
preprint arXiv:1412.6550 (2014).

[142] Clarence W Rowley, Tim Colonius, and Richard M Murray. “Model
reduction for compressible flows using POD and Galerkin projection”.
In: Physica D: Nonlinear Phenomena 189.1-2 (2004), pp. 115–129.

[143] Halsey Lawrence Royden. Real Analysis. Macmillan, 2010.

[144] Yulia Rubanova, Tian Qi Chen, and David K Duvenaud. “Latent Ordi-
nary Differential Equations for Irregularly-Sampled Time Series”. In:
Advances in Neural Information Processing Systems. 2019, pp. 5321–5331.

[145] Trent Michael Russi. “Uncertainty quantification with experimental
data and complex system models”. PhD thesis. UC Berkeley, 2010.

[146] Lars Ruthotto and Eldad Haber. “Deep neural networks motivated by
partial differential equations”. In: Journal of Mathematical Imaging and
Vision (2018), pp. 1–13.

http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1707.04131
https://doi.org/10.21105/joss.02607
https://doi.org/10.21105/joss.02607
https://doi.org/10.21105/joss.02607

Bibliography 96

[147] Tara N Sainath et al. “Low-rank matrix factorization for deep neural
network training with high-dimensional output targets”. In: IEEE
international conference on acoustics, speech and signal processing. 2013,
pp. 6655–6659.

[148] Tim Salimans and Durk P Kingma. “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks”. In:
Advances in neural information processing systems. 2016, pp. 901–909.

[149] Shibani Santurkar et al. “How does batch normalization help opti-
mization?” In: Advances in Neural Information Processing Systems. 2018,
pp. 2483–2493.

[150] Simone Scardapane et al. “Group sparse regularization for deep neural
networks”. In: Neurocomputing 241 (2017), pp. 81–89.

[151] Mark Schmidt et al. “Optimizing costly functions with simple con-
straints: A limited-memory projected quasi-newton algorithm”. In:
Artificial Intelligence and Statistics. 2009, pp. 456–463.

[152] Vikash Sehwag et al. “Improving Adversarial Robustness Using Proxy
Distributions”. In: arXiv preprint arXiv:2104.09425 (2021).

[153] Alexandru Constantin Serban and Erik Poll. “Adversarial examples-
a complete characterisation of the phenomenon”. In: arXiv preprint
arXiv:1810.01185 (2018).

[154] Radu Serban and Alan C Hindmarsh. “CVODES: the sensitivity-enabled
ODE solver in SUNDIALS”. In: ASME 2005 international design engi-
neering technical conferences and computers and information in engineering
conference. American Society of Mechanical Engineers Digital Collec-
tion. 2005, pp. 257–269.

[155] Shai Shalev-Shwartz and Tong Zhang. “Accelerated proximal stochas-
tic dual coordinate ascent for regularized loss minimization”. In: Inter-
national Conference on Machine Learning. 2014, pp. 64–72.

[156] Lawrence F Shampine. “Interpolation for Runge–Kutta methods”. In:
SIAM journal on Numerical Analysis 22.5 (1985), pp. 1014–1027.

[157] Lawrence F Shampine. “Some practical Runge–Kutta formulas”. In:
Mathematics of Computation 46.173 (1986), pp. 135–150.

[158] Hidetoshi Shimodaira. “Improving predictive inference under covari-
ate shift by weighting the log-likelihood function”. In: Journal of statis-
tical planning and inference 90.2 (2000), pp. 227–244.

[159] Karen Simonyan and Andrew Zisserman. “Very deep convolutional
networks for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[160] Gustaf Söderlind. “The logarithmic norm. History and modern theory”.
In: BIT Numerical Mathematics 46.3 (2006), pp. 631–652.

[161] Gustaf Söderlind, Laurent Jay, and Manuel Calvo. “Stiffness 1952–2012:
Sixty years in search of a definition”. In: BIT Numerical Mathematics
55.2 (2015), pp. 531–558.

Bibliography 97

[162] Gustaf Söderlind and Robert MM Mattheij. “Stability and asymptotic
estimates in nonautonomous linear differential systems”. In: SIAM
Journal on Mathematical Analysis 16.1 (1985), pp. 69–92.

[163] Yang Song et al. “Maximum likelihood training of score-based diffu-
sion models”. In: Advances in Neural Information Processing Systems 34
(2021).

[164] Christian Szegedy et al. “Intriguing properties of neural networks”. In:
arXiv preprint arXiv:1312.6199 (2013).

[165] Lloyd N Trefethen. Spectral Methods in MATLAB. Vol. 10. Siam, 2000.

[166] Anton Tsitsulin et al. “FREDE: Linear-Space Anytime Graph Embed-
dings”. In: arXiv preprint arXiv:2006.04746 (2020).

[167] Belinda Tzen and Maxim Raginsky. “Neural stochastic differential
equations: Deep latent gaussian models in the diffusion limit”. In:
arXiv preprint arXiv:1905.09883 (2019).

[168] Panayot S Vassilevski. Lecture notes on multigrid methods. Tech. rep.
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), 2010.

[169] Gerhard Wanner and Ernst Hairer. Solving Ordinary Differential Equa-
tions II. Springer Berlin Heidelberg, 1996.

[170] Wei Wen et al. “Learning structured sparsity in deep neural networks”.
In: Advances in neural information processing systems. 2016, pp. 2074–
2082.

[171] Eric Wong, Leslie Rice, and J Zico Kolter. “Fast is better than free:
Revisiting adversarial training”. In: arXiv preprint arXiv:2001.03994
(2020).

[172] David P Woodruff et al. “Sketching as a tool for numerical linear
algebra”. In: Foundations and Trends® in Theoretical Computer Science
10.1–2 (2014), pp. 1–157.

[173] Lei Wu and Zhanxing Zhu. “Towards Understanding and Improving
the Transferability of Adversarial Examples in Deep Neural Networks”.
In: Asian Conference on Machine Learning. PMLR. 2020, pp. 837–850.

[174] Dongbin Xiu and George Em Karniadakis. “Modeling uncertainty in
steady state diffusion problems via generalized polynomial chaos”.
In: Computer methods in applied mechanics and engineering 191.43 (2002),
pp. 4927–4948.

[175] Dongbin Xiu and George Em Karniadakis. “The Wiener–Askey poly-
nomial chaos for stochastic differential equations”. In: SIAM journal on
scientific computing 24.2 (2002), pp. 619–644.

[176] Shaokai Ye et al. “Progressive DNN Compression: A Key to Achieve
Ultra-High Weight Pruning and Quantization Rates using ADMM”.
In: arXiv preprint arXiv:1903.09769 (2019).

Bibliography 98

[177] Tom Young et al. “Recent trends in deep learning based natural lan-
guage processing”. In: ieee Computational intelligenCe magazine 13.3
(2018), pp. 55–75.

[178] Igor Zacharov et al. ““Zhores”—Petaflops supercomputer for data-
driven modeling, machine learning and artificial intelligence installed
in Skolkovo Institute of Science and Technology”. In: Open Engineering
9.1 (2019), pp. 512–520.

[179] Sergey Zagoruyko and Nikos Komodakis. “Paying More Attention
to Attention: Improving the Performance of Convolutional Neural
Networks via Attention Transfer”. In: arXiv preprint arXiv:1612.03928
(2016). arXiv: 1612.03928. URL: http://arxiv.org/abs/1612.03928.

[180] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks”.
In: arXiv preprint arXiv:1605.07146 (2016).

[181] Vitaly P Zankin, Gleb V Ryzhakov, and Ivan Oseledets. “Gradient
Descent-based D-optimal Design for the Least-Squares Polynomial
Approximation”. In: arXiv preprint arXiv:1806.06631 (2018).

[182] Tianjun Zhang et al. “ANODEV2: A Coupled Neural ODE Evolution
Framework”. In: arXiv preprint arXiv:1906.04596 (2019).

[183] Xiangyu Zhang et al. “Accelerating very deep convolutional networks
for classification and detection”. In: IEEE transactions on pattern analysis
and machine intelligence 38.10 (2015), pp. 1943–1955.

[184] Jing Zhong et al. “Where to Prune: Using LSTM to Guide End-to-end
Pruning.” In: IJCAI. 2018, pp. 3205–3211.

[185] Juntang Zhuang et al. “Adaptive Checkpoint Adjoint Method for Gra-
dient Estimation in Neural ODE”. In: arXiv preprint arXiv:2006.02493
(2020).

[186] Zhuangwei Zhuang et al. “Discrimination-aware Channel Pruning for
Deep Neural Networks”. In: Advances in Neural Information Processing
Systems 31. Ed. by S. Bengio et al. Curran Associates, Inc., 2018, pp. 881–
892. URL: http://papers.nips.cc/paper/7367-discrimination-
aware-channel-pruning-for-deep-neural-networks.pdf.

https://arxiv.org/abs/1612.03928
http://arxiv.org/abs/1612.03928
http://papers.nips.cc/paper/7367-discrimination-aware-channel-pruning-for-deep-neural-networks.pdf
http://papers.nips.cc/paper/7367-discrimination-aware-channel-pruning-for-deep-neural-networks.pdf

	Abstract
	Publications
	Acknowledgements
	List of Figures
	List of Tables
	Notation
	Introduction
	Preliminaries
	Considered Machine Learning Problems
	Neural Ordinary Differential Equations
	Adaptive Runge–Kutta Solvers

	Discrete Empirical Interpolation Method
	Active Subspace Method

	Acceleration of Gradients Propagation in Neural ODEs
	Introduction
	Related Work
	Interpolated Reverse Dynamic Method
	Upper Bound on the Gradient Error Induced by Interpolated Activations
	Numerical Experiments
	Experimental settings
	Classification
	Density estimation
	VAE

	Density Estimation
	Variational Autoencoder
	Classification
	Number of Chebyshev Grid Points

	Conclusion

	Towards Understanding Normalization in Neural ODEs
	Introduction
	Background
	Numerical Experiments
	Accuracy
	(S, n)-criterion of dynamics smoothness in the trained model

	Discussion and Further research

	Exploring Robustness of Different Solvers for Neural ODEs
	Introduction
	Related works

	Meta Neural ODE
	Experiments
	Motivation to explore solver parameterizations
	Adversarial training on CIFAR-10
	Neural Networks attack Neural ODEs
	Neural ODEs attack Neural ODEs

	Conclusion

	Reduced-Order Modeling of Deep Neural Networks
	Introduction
	Background
	Maximum Volume Algorithm and Sketching
	Computation of Low-Dimensional Embeddings

	Method
	A Toy Example: MLP
	Convolutional Neural Networks
	Residual Networks
	Approximation error

	Experiments
	Singular values
	Fully-connected networks
	Convolutional networks
	Comparisons with other approaches

	Discussion
	Related work
	Conclusion

	Active Subspaces for Neural Networks
	Introduction
	Contributions

	Active Subspace
	Response Surface

	Active Subspace for Structural Analysis and Compression of Deep Neural Networks
	Deep Neural Networks
	The Number of Active Neurons
	Active Subspace Network (ASNet)
	The Active Subspace Layer
	Polynomial Chaos Expansion Layer
	Structured Re-training of ASNet

	Active-Subspace for Universal Adversarial Attacks
	Universal Perturbation of Deep Neural Networks
	Recursive Projection Method

	Numerical Experiments
	Structural Analysis and Compression
	Choices of Parameters
	Efficiency of the ASNet
	CIFAR-10
	CIFAR-100

	Universal Adversarial Attacks
	Fashion-MNIST
	CIFAR-10
	CIFAR-100

	Conclusions and Discussions

	Conclusions
	Bibliography

