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Abstract

This thesis tackles the problem of a human face and body image synthesis. The generative

models with such capabilities are referred to in the literature as avatars and have become a key

component of modern telepresence and special effects systems. A few years ago, the creation

and realistic rendering of avatars was a challenging and resource-hungry process that required

specialized capture setups, such as light stages that can cost millions of dollars and hours of

manual post-processing time of computer graphics artists. Nowadays, head and facial capture

and subsequent realistic reenactment can be done using just a collection of images produced via a

smartphone. In this manuscript, we present some of the methods that contributed to the emergence

of these modern systems. The leitmotif of our work is in leveraging the deep neural networks and

their training techniques, such as Generative Adversarial Networks (GANs), perceptual losses,

and meta-learning, to achieve high levels of avatars’ personalization and rendering quality.

First, we combined the widely spread GAN-based and perceptual losses in a single system, which

showed improvements in the facial editing task. Then, we tackled the problem of full-body avatar

synthesis using a novel architecture based on neural networks. We integrated classical computer

graphics and neural-based approaches to achieve high robustness of the learned avatars w.r.t. new

camera poses unseen during training. However, the resulting model still worked in a so-called

multi-shot learning scenario, i.e. when each avatar system was trained to model a particular

individual given a large amount of data depicting their appearance and motion. In the follow-up

work, we were among the first to introduce large-scale training into the avatar creation process to

achieve the realistic synthesis of human heads in a few-shot scenario, i.e. given just a handful of

images per person. To accomplish that, we tackled this problem via meta-learning to improve

the personalization of the avatars and GAN-based training to ensure the high realism of renders.

Next, to facilitate practical applications for such systems, we developed a new model that allowed

the creation and rendering of realistic head avatars even on mobile devices. In one of the most

recent works, we extended the existing capabilities for cross-subject reenactment by introducing

a novel way of learning implicit latent representations of human facial expressions. This new

approach allowed us to achieve state-of-the-art cross-subject reenactment and the degrees of

fidelity in motion transfer that were unseen in prior works. We also proposed a novel method

for scaling the few-shot head avatar systems to megapixel resolution. Lastly, we have explored

the challenging task of one-shot rigged head mesh reconstruction and were the first to propose

a method capable of reconstruction, subsequent animation, and neural rendering of the human

heads using just a single image.
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Chapter 1

Introduction

This thesis is based on the collection of publications on the human face and body synthesis.

The unifying factor between these works is the usage of generative adversarial networks, which

help achieve a high degree of realism in the synthesized images, as well as extensive usage of

large-scale datasets for the training of such networks, which facilitates both the creation of the

avatars and their rendering.

1.1 Motivation

The synthesis of realistic human images has historically been one of the most challenging

problems in computer graphics. Its complexity largely stems from the effect known as uncanny

valley Mori [1970], which manifests in a negative emotional response of humans to the depictions

of anthropomorphic subjects when the latter reach a certain level of human-likeness or realism.

This effect is significantly exacerbated when the respondents are shown moving or talking

subjects, which constitutes a challenging obstacle to generating realistic and animated depictions

of humans.

Initial success in synthesizing realistic images of human subjects was demonstrated Blanz and

Vetter [1999], Debevec et al. [2000], Kanade et al. [1997] using computer graphics techniques

such as photogrammetry Kanade et al. [1997], structured light Debevec et al. [2000] or laser 3D

scanning Blanz and Vetter [1999], Figure 1.1. These methods reconstruct the subject in the form

of a polygonal mesh and a corresponding colored texture or albedo. Such representation allows

the synthesis of novel images by rendering the mesh from different angles and in various lighting

conditions. The obtained reconstructions could be subsequently animated either completely

manually or by refining the data gathered from the motion capture systems Gavrila and Davis

[1996]. This pipeline can achieve state-of-the-art results even to this day and is widely used in the
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Chapter 1 Introduction

FIGURE 1.1: A brief overview of the two influential classical human modeling methods. The
Light Stage Debevec et al. [2000] is the first version of the structured light 3D scanner (a), in
which the facial shape and appearance of the subject (b) are reconstructed using pre-determined
light patterns. While achieving high realism of the facial reconstructions, the capture process
requires highly specialized equipment. In parallel, statistical mesh modeling Blanz and Vetter
[1999] methods were developed that achieved lower accuracy and personalization, but were

capable of facial reconstruction using only a single image (c).

film and computer games industries. However, such a process requires access to highly specialized

equipment for appearance and motion capture, as well as manual input from professional artists

who refine the captured data to create the photorealistic renders of the characters we are used to

seeing on the big screen.

It is worth mentioning that the refinement of the motion capture data is rarely carried out at

the level of individual mesh vertices. Instead, the lower dimensional representations, such as

keypoints or blendshapes, are introduced by rigging the underlying mesh model. Such a rigging

process can be either manual or automatic. The latter relies on the statistical mesh modeling

systems Blanz and Vetter [1999], Li et al. [2017], Loper et al. [2015], Pavlakos et al. [2019],

Paysan et al. [2009], typically referred to as parametric models. One of their key ideas was

primarily inspired by the influential work on the Eigenfaces Sirovich and Kirby [1987], in

which a principal component analysis (PCA) Pearson [1901] was performed on a dataset of the

greyscale facial images. It allows each facial image to be represented as a linear combination

of eigenvectors, or the so-called “eigenfaces”, drastically reducing their dimensionality. The

early parametric mesh models Blanz and Vetter [1999] leveraged this idea by applying PCA to

the dataset of 3D scanned human faces, obtaining the basis vectors both for the mesh vertices

and the textures, which allows introducing rigging for arbitrary 3D scans without any manual

input. The dimensionality reduction property of the PCA also helps estimate these parametric

models even in ill-posed scenarios, such as reconstruction from a monocular video obtained with

an uncalibrated camera or even a single image Feng et al. [2018], Thies et al. [2016b]. These

models have also been introduced for the full body Loper et al. [2015], head Li et al. [2017], and

hands Pavlakos et al. [2019], effectively covering the majority of the human body motion.

While such statistical approaches were quite successful in representing the motion of a subject,

in many regards, the obtained quality of 3D reconstructions and rendering was lacking. First,
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obtaining faithful 3D scans of the mouth cavity and hair has proven challenging, and therefore

they were not present in the existing models Blanz and Vetter [1999], Li et al. [2017]. A similar

problem occurs in full-body reconstructions with clothing representation Loper et al. [2015],

Pavlakos et al. [2019] since its diversity and non-rigidness prevent dimensionality compression

using linear methods. Second, creating photorealistic renders typically requires a high number of

parameters to imprint person-specific high-frequency details onto the mesh geometry and texture.

However, due to their low dimensionality, parametric models are only sufficient to represent and

realistically render facial regions. Lastly, the PCA-based dimensionality reduction inevitably

leads to the loss of capability to represent subtle motions such as wrinkles and detailed mimics.

These motions are crucial for the truthful rendering of the humans that avoids the uncanny valley

effect. To this end, realistic synthesis of the face and body images was only made possible by

replacing the classical rendering pipeline with the so-called neural rendering, which heavily

relied on neural networks to produce realistic images and faithful representation of the motion.

For the past decade, deep artificial neural networks have been widely used in various areas of

computer vision. However, their initial groundbreaking results were achieved by addressing the

problems related to discriminative modeling. The pioneering works Rumelhart et al. [1986a]

first popularized neural networks in their “shallow” version by proposing a highly effective

error backpropagation algorithm to train them. This algorithm was later applied LeCun et al.

[1998] to the so-called convolutional neural networks (CNNs) and achieved impressive results in

classifying image-like data. However, the beginning of their widespread usage of neural networks

corresponds to the “deep learning revolution”, a term coined in a similarly named book Sejnowski

[2018]. The advancements in graphical processing units (GPUs) have led to the development

of the GPU-based backpropagation frameworks Krizhevsky et al. [2012], which leveraged the

inherent data parallelism in the convolutional operations to speed up their optimization process.

This made it feasible to use deep neural networks, which had a substantially higher complexity and

the number of parameters than their shallow counterparts. Concurrently, large-scale classification

datasets with human-made annotations started to emerge Everingham et al. [2009], Russakovsky

et al. [2015], which deep CNNs were empirically shown to benefit from. In the end, in a milestone

achievement, deep neural networks eventually outperformed Simonyan and Zisserman [2015b]

the classical computer vision methods in the image classification task.

Deep convolutional networks were shown to be highly effective not only in discriminative tasks

but also in generative modeling. Image colorization Zhang et al. [2016b], stylization Gatys

et al. [2016], and super-resolution Johnson et al. [2016b] tasks were all shown to benefit from

using CNNs. The generation of realistic images soon followed with the groundbreaking work by

Goodfellow et al. Goodfellow et al. [2014a], in which generative adversarial networks (GANs)

were introduced. This method quickly overtook the abovementioned areas, as the introduction

of adversarial training was shown Isola et al. [2017], Ledig et al. [2017a], Zhu et al. [2017c] to

improve results in all these tasks. The key advantage of this method, compared to the competitors
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such as variational autoencoders (VAEs) Kingma and Welling [2014], was the perceived realism

of the obtained images. It was achieved by hallucinating convincing high-frequency details while

maintaining global semantic consistency.

These neural methods were also successfully applied to the problems of human image synthesis,

ranging from semantic image editing Choi et al. [2018], Zhu et al. [2017a] to novel view

synthesis Thies et al. [2019a] and facial animation Kim et al. [2018b]. In Chapter 2, we introduce

one of such semantic image editing systems, in which the unsupervised GAN-based training

procedure was improved using networks pre-trained on large-scale datasets. While being effective

for unsupervised learning, we did not employ this training method in our follow-up works. It was

shown Chan et al. [2018], Wang et al. [2018b] that human avatars can be learned via supervised

training using de-personalized motion representations, such as keypoints. This approach has

proven its high efficiency compared to unsupervised training, and we used it for the majority of

our follow-up work.

Some of the abovementioned avatar systems combine classical data structures and their rendering

pipelines from computer graphics with neural networks. However, in Chapters 3-4, we show

that realistic synthesis of such images could be achieved without explicitly defined 3D models.

In Chapter 3, we describe a system which is utilizing a mapping from the image space to

texture space, directly estimated from the input image without any underlying 3D reconstruction

process Güler et al. [2018]. This mapping is used to obtain renders of full-body avatars given a

multi-view video sequence, which achieves a higher degree of realism than classical systems.

However, training the texture mapping estimator would be impossible without an extensive

amount of human-made annotations. In Chapter 4, we show that learning the volumetric nature

of the data for the case of human heads is also possible in a purely data-driven way without any

annotations and using just the convolutional neural networks. Crucially, our proposed system

was capable of creating realistic renders of full human heads, which include the areas of hair and

mouth cavity, problematic for the classical rendering methods, in novel views or poses given

just a single image. In the follow-up work, described in Chapter 5, we also show how a texture

mapping, similar to Güler et al. [2018], could be trained in an unsupervised way for the case of

human head modeling and subsequently improve the rendering speed of such systems.

While data-driven approaches that use only the 2D convolutional neural networks for image

synthesis were shown to have great potential, combining them with volumetric priors could

also beneficially affect their robustness and multi-view consistency. Some works Lombardi

et al. [2019], Wang et al. [2021] incorporated the weak form of such prior by representing a

scene as a sparse or dense volumetric grid. They could then represent a camera motion as a

simple transformation of the underlying volume, making a trained model significantly more

robust to viewpoint changes. Others have incorporated the geometric constraints on a deeper

level by applying neural networks to render and estimate the underlying 3D representations. In
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FIGURE 1.2: Selected avatars produced by the methods described in this thesis. Early methods
are presented on the left, the outputs generated using more recent megapixel avatars are shown
in the center, and mesh-based avatars are on the right. These results are all generated from a

single input image.

Chapters 6-7, we describe the representative systems for both of these approaches. First, we

describe a system capable of single-shot non-rigid reconstruction of the human heads in the form

of a rigged mesh, i.e., a mesh with associated blendshapes and skinning weights. Our method is

built upon a face reconstructing parametric model Li et al. [2017] and extends it to handle the

hair and shoulder regions in a purely unsupervised way, without ground-truth 3D annotations.

Crucially, compared to the previous face reconstruction works, which extend the parametric

models Feng et al. [2020], our system is also capable of realistic rendering.

Finally, in Chapter 6, we describe a volumetric rendering system, capable of high-resolution

rendering in the challenging cross-reenactment scenario. The motion data for the human image

synthesis can be either extracted using the images of the same or a different person. Some methods

based on deep neural networks Siarohin et al. [2019b], Wang et al. [2021] notably struggle with

transferring the motion data obtained from a different person than the one being synthesized.

In this work, we propose a principal solution to this problem and develop a method with cross-

reenactment performance, substantially improved compared to the competitors. Moreover, we

propose a novel way of up-sampling the produced avatars to a high resolution, which achieves

less flicker in the video and higher quality than competitors, and also a method of distilling such

a system for a fixed number of avatars to achieve real-time performance.

The selected results from the works presented in this thesis are showcased in Figure 1.2.

1.2 Overview

1.2.1 Image Manipulation with Perceptual Discriminators

Image manipulation tasks are usually formalized as a problem of conditional image genera-

tion Choi et al. [2018], Isola et al. [2017], Zhu et al. [2017a]. They are formalized as sampling
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from the distribution of manipulated realistic images x̂, conditioned on the input image x and the

variable c that encodes the desired manipulation: x̂ ∼ p(x̂ | x, c). The problem of sampling from

this distribution can be effectively addressed using a specific architecture of the deep convolu-

tional neural networks, referred to in the literature as image-to-image translation networks Isola

et al. [2017]. These deep CNNs are particularly useful since many image manipulation tasks

require only local edits at the level of textures.

The choice of training objective is as important for this problem as the usage of image translation

networks. The so-called perceptual loss functions Johnson et al. [2016b] were shown to be highly

efficient at matching the textures and high-level semantics while ignoring some discrepancies,

such as misalignment on a pixel level, which are imperceivable to humans. The perceptual

loss utilizes intermediate features from a CNN pre-trained for a large-scale image classification

task Russakovsky et al. [2015]. Such pre-training allows the network to learn a wide range

of useful statistics in its intermediate feature representations. The loss is then defined as the

distance between the feature maps, estimated separately for predicted and ground truth images.

These losses are used alongside the GAN-based objectives that ensure general realism of the

predictions and are shown to be highly effective when combined with image-to-image translation

networks Choi et al. [2018], Isola et al. [2017], Zhu et al. [2017a].

However, for some problems, such as facial attribute editing, there are no medium- or large-

scale datasets with annotated ground truths for the desired set of manipulations. To be specific,

existing datasets consist of pairs of realistic images x and their attributes c, not pairs of images

x and x̃ with an imposed manipulation c̃. In this work, we decided to adapt perceptual losses,

which are most useful in a supervised training scenario where the ground truth is known, to

this unsupervised training setting. Specifically, we propose combining perceptual losses and

unsupervised GAN-based losses in a single system. Instead of using raw images as inputs to the

discriminator, we use the feature maps of the pre-trained deep CNNs. We call a combination of

such a feature extractor and a regular discriminator as a perceptual discriminator. The resulting

architecture can be utilized in various image manipulation tasks and was shown to benefit from

the robustness of perceptual losses.

As stated previously, our proposed system is most effective in the unsupervised setting, specifically

an unaligned image-to-image translation problem Zhu et al. [2017a]. In the aligned image-to-

image translation, the resulting transformation of the image is known and can be supervised

via the abovementioned perceptual losses, reducing the effect of the proposed discriminator.

However, in an unaligned translation task, the result of the transform is unknown, and the only

learning signal comes from the GAN-based loss function. We have substantially outperformed

most existing systems Radford et al. [2015], Zhu et al. [2017a] in this task by simply substituting

their discriminator with ours, which was confirmed by an evaluation conducted on multiple

datasets.
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Such a perceptual discriminator represents a plug-and-play solution for the domains where

the usage of perceptual losses is effective. Its main failure case, however, happens when the

manipulated images are substantially different from the dataset which is used to train the statistics

extractor. For example, while the proposed systems work great for the domain of natural images,

the results for their stylization into paintings are on-par with the base methods.

1.2.2 Textured Neural Avatars

The abovementioned image manipulation approach can be quite fruitful for animating human

subjects. For example, a number of systems Chan et al. [2018], Wang et al. [2018c] used image-

to-image translation techniques to animate a human subject given a dataset of videos depicting its

motion and appearance. As an input, such systems use a set of keypoints, which denote subject’s

pose, and directly output a rendered image. The dataset creation process required to learn such

an avatar system can be as simple as capturing a monocular video of a person and processing it

via an off-the-shelf keypoints extractor Cao et al. [2017].

However, the failure case of such a naive approach is in its data hungriness. The amount of data

required to synthesize various avatar motions in different camera poses grows exponentially since

the CNNs are used to produce the 2D images directly. Even a simple linear 3D transformation

of the scene, such as rotation, may result in a substantially non-linear 2D transformation of a

projected geometry. All combinations of these transformations must be learned by observing

the training data, which results in a limited generalization capability of a trained model. While

many of these disadvantages could be overcome with the classical mesh-based rendering sys-

tems Alldieck et al. [2018a], the resulting renders typically lack the realism produced by the

CNN-based systems.

In this work, we present a system that combines the two approaches in a novel formulation. We

propose to use a texture-based image synthesis, similar to the classical computer graphics systems,

alongside the direct prediction of the rendered texture coordinates similar to the image-to-image

translation methods. The estimation of such texture coordinates was pioneered in a DensePose

system Güler et al. [2018], which was trained using extensive amount of human-annotated data

with image to template mesh correspondenses. As a result of training with noisy and sparsely

annotated data, and contrary to classical graphics systems, these texture coordinates do not

necessarily correspond to a rendered 3D model, i.e. they do not have to be view-consistent with

the camera rotations and translations. Such flexibility allows our system to learn much more

realistic renders without tackling the challenging task of reconstructing detailed geometry of the

human subject. In our method, we do not rely on the CNNs to synthesize the images directly,

and instead predict only the texture coordinates, which greatly increases the generalization of the
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resulting system, compared to the approaches that directly synthesize the output images Chan

et al. [2018], Wang et al. [2018c].

We first show that our system outperforms the competitors using multi-view training data and

then utilize fine-tuning to obtain similar degrees of generalization on the sparse-view or even

monocular videos. The main limitation of our method is reliance on pre-trained pose estimation

systems Cao et al. [2017] for inference and texture coordinates estimators Güler et al. [2018] for

pre-trainining. All errors of these systems are directly translated into our method. Additionally,

since CNNs that we use to predict texture coordinates are known to lack scale invariance, the

resulting system does not generalize well for the cases when the person is rendered at scales

different from the training set. Lastly, the approach that we take does not propperly handles

lighting as it lacks view-directional conditioning.

1.2.3 Few-Shot Adversarial Learning of Realistic Neural Talking Head Models

While standard image-to-image translation methods were able to address the problem of avatar

creation for individual subjects, such approaches still require a large amount of training data and

a lengthy training process. In the previous work, we have shown how to train such systems using

sparse-view videos or lengthy monocular videos instead of multi-view data. However, these data

and computational requirements are still inadequate for most applications. A more realistic use

case would require a short video and minutes of fine-tuning. However, such constraints would

require the system to have an extensive human appearance and motion prior. In our follow-up

work, we attempted to learn such prior directly from the data using a large-scale dataset of human

talking head videos Chung et al. [2018b].

We decided to approach the problem of talking head synthesis using a setting of conditional image

generation, similar to our image manipulation work. We treat the problem of avatar generation

as sampling from a distribution p(x | y, e), where x denotes a rendered image of the avatar for

the person e in the pose y encoded in the form of keypoints. The sampler has a form of the

neural network G that, conditioned on e, maps y into a sample x. Unlike the previous related

image manipulation works, which only tackled a small number of possible conditions Huang

et al. [2018], Wang et al. [2018c,g], our method was capable of handling an arbitrary person as

an input. Also, compared with the extisting systems of few-shot talking head generation Wiles

et al. [2018], our proposed system achieved substantially greater realism.

Inspired by the previous works on style transfer, we utilized adaptive instance normalization

layers (AdaIN) Huang and Belongie [2017] to condition our generator with an arbitrary style code.

Therefore, all generator parameters can be separated into person-agnostic θ and person-specific

γ(e). In order to predict person-specific parameters, we use a single image or multiple images

depicting a person we want to reenact and pass through an encoding network E. In the case
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of multiple images, we obtain the person-specific embeddings for each image individually and

then average the results. The predicted embeddings are then used to estimate person-specific

parameters γ(e) with a multi-layer perceptron (MLP). Such an approach allows us to leverage

end-to-end GAN-based training for the problem of avatar creation since all the elements of the

pipeline are differentiable.

While this approach achieves a high degree of generalization to novel views and poses, the gap

between the person’s appearance in the source images and the reenacted images remains quite

noticeable. To combat that, we propose an additional fine-tuning step that trains the generator

in an autoencoding fashion, i.e., to reenact the images which were used to initialize its person-

specific parameters. This approach is reminiscent of model-agnostic meta-learning (MAML) Finn

et al. [2017]. The major difference of our work is that we do not modify the training procedure

to facilitate the post-training fine-tuning, since that would incur large computational costs.

Surprisingly, despite the fact that after fine-tuning a large network with millions of parameters to

reenact just a handful of images (as little as one image), it retains its generalization capabilities

while improving the personalization of the outputs. We achieve that by keeping the fine-tuning

process short to prevent overfitting and by extensively pre-training the network to reenact the

avatars without such fine-tuning, as was described previously.

The main limitations of the method include a lack of personalization in the cross-reenactment

scenario, where the pose and appearance are estimated using videos of different people. The head

pose, being encoded as the keypoints, contains information about the shape of the facial features,

which in turn gets imprinted onto the system’s output. Another limitation is the inability to handle

high-frequency details such as moles and wrinkles, which stems from the lack of capacity of the

model.

1.2.4 Fast Bi-layer Neural Synthesis of One-Shot Realistic Head Avatars

While our previous work substantially bridged the gap between the multi-shot avatars and the

practical applications, some improvements were still needed to deploy the avatars on edge devices

such as smartphones. While improving the avatars’ personalization, the fine-tuning process

was still relatively slow and unsuitable for deployment on mobile devices since the existing

frameworks lack back-propagation capabilities SNP. The inference time per frame could also be

improved to achieve real-time performance. Lastly, to make the use-case simpler and broader,

we decided to focus on single-shot avatar creation, which was also done in our main competing

work Siarohin et al. [2019b].

Our approach models a person’s appearance by decomposing it into two layers. The first layer

is a pose-dependent coarse image synthesized by a small neural network. The second layer is

defined by a pose-independent texture image that contains high-frequency details. The texture

13



Chapter 1 Introduction

image is generated once per avatar, warped, and added to the coarse image to ensure a higher

effective resolution of synthesized head views. Such decomposition allows us to directly produce

an RGB texture, similar to the previous works Wiles et al. [2018]. Our main novelty was a

neural-based generation of such texture, which allowed the inclusion of high-frequency details

and substantially outperformed the previous work in terms of quality. Another novelty, the image

decomposition, made the generated results more realistic in handling specular highlights. During

initial experiments, we noticed that direct prediction of low-frequency RGB images allowed

such highlights to stay in place during head rotation. Lastly, we propose a neural network-based

fine-tuning process that achieves a much faster convergence and generalization than stochastic

gradient descent. All these improvements combined allow us to handle even small person-specific

high-frequency details such as moles, which shows a clear advantage over our previous system in

terms of the quality of the outputs.

The main advantage of our system was its real-time capabilities evaluated on Android-based

mobile devices, as well as the quality of the results, which outperforms the state-of-the-art

methods given the tight computational budget required by real-time performance.

1.2.5 MegaPortraits: One-shot Megapixel Neural Head Avatars

In this work, we advance neural head avatars to the megapixel resolution while focusing on the

particularly challenging task of cross-driving synthesis, i.e., when the appearance of the driving

image is substantially different from the animated source image.

To achieve that, we propose a set of new neural architectures and training methods that can

leverage both medium-resolution video data and high-resolution image data to achieve the

desired levels of rendered image quality and generalization to novel views and motion. We show

that suggested architectures and methods produce convincing high-resolution neural avatars,

outperforming the competitors Doukas et al. [2021b], Siarohin et al. [2019b], Wang et al. [2021]

in the cross-driving scenario. To achieve this level of quality, we use the Face Vid-to-vid

method Wang et al. [2021] as a base for image synthesis but replace its motion estimation and

reenactment components. Instead, we employ self-supervised learning of the motion latent codes,

which have a high degree of disentanglement from the latent appearance representations. The

idea of using latent motion models was first proposed in the work by Burkov et al. Burkov et al.

[2020], while we expand on that idea by proposing a viable method of combining it with larger

models by using multiple novel techniques. Lastly, we propose a new way to train a single-image

super-resolution module to incorporate high-resolution image-based datasets into the training

and boost the quality of the results even further. We show that our semi-supervised training

formulation achieves better effective resolution and fewer artifacts in the outputs when applied

for out-of-domain cross-reenactment.
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We also show how a trained high-resolution neural avatar model can be distilled into a lightweight

student model which runs in real-time and locks the identities of neural avatars to several dozens

of pre-defined source images. Real-time operation and identity lock are essential for many

practical applications of head avatar systems.

1.2.6 Realistic one-shot mesh-based avatars

Finally, we tackle the problem of synthesizing personalized avatars using geometry-based render-

ing. Contrary to our previous works, which mostly ignored the step of estimating the geometry

of the subject in favor of directly predicting the images, in this work he ground our rendering

with the 3D reconstruction of the human head. Such an approach could be useful for the tasks

such as full head tracking, where the full reconstruction of the human subject is required, not just

of the facial region, present in the previous works Feng et al. [2020].

The main challenge here is twofold: similarly to our previous works, we want to estimate head

avatars using a single image and be able to animate them. This is a highly ill-posed problem: we

want to obtain a 3D representation that is regularized enough to estimate it using just a single

image and, simultaneously, to have additional degrees of freedom which allow its animation.

Previous works Feng et al. [2020], Guo et al. [2020] relied on the existing datasets of 3D scans

of human faces, which were distilled into low-dimensional parametric models Blanz and Vetter

[1999], Li et al. [2017]. However, none of such datasets were publicly released for full head

reconstruction. Moreover, even private data collection effors Wuu et al. [2022] contain only a

few hundred subjects, which is insufficient for single-shot head reconstruction due to its diversity

of appearance. Therefore, we designed our approach around the learning-by-synthesis paradigm,

using a large-scale dataset of videos without any 3D annotation.

Since the existing state-of-the-art face reconstruction methods Feng et al. [2020] rely on strong 3D-

based priors, we decided to focus on augmenting their capabilities and reconstructing everything

that is missing from them, i.e., the rest of the head, hair, and as a by-product, shoulders. The

facial and head rigging would therefore be inherited from these systems, substantially simplifying

our problem.

To do that, we propose combining soft rasterization Liu et al. [2019] and deferred neural render-

ing Thies et al. [2019a] techniques in a novel system designed to work with large-scale training,

which in the end, allows learning the shape of the subject from a single observation. This allows

us to obtain a 3D reconstruction and a realistic neural-based renderer that we found to outperform

previous works Siarohin et al. [2019b], Zakharov et al. [2020].
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However, the main limitation of our method is the lack of details in the obtained reconstructions.

We manage to only reconstruct a general shape that hair and shoulders occupy, without any details

related to clothing or specific hairstyles. Addressing these limitations remains future work.

16



Chapter 2

Image Manipulation with Perceptual
Discriminators

Abstract

Systems that perform image manipulation using deep convolutional networks have achieved

remarkable realism. Perceptual losses and losses based on adversarial discriminators are the two

main classes of learning objectives behind these advances. In this work, we show how these two

ideas can be combined in a principled and non-additive manner. This is accomplished through a

special architecture of the discriminator network inside generative adversarial learning framework.

The new architecture, that we call a perceptual discriminator, embeds the convolutional parts

of a pre-trained deep classification network inside the discriminator network. The resulting

architecture can be trained on unaligned image datasets, while benefiting from the robustness

and efficiency of perceptual losses. We demonstrate the merits of the new architecture in a

series of qualitative and quantitative comparisons with baseline approaches and state-of-the-art

frameworks for image manipulations.

This work was published as: Diana Sungatullina∗, Egor Zakharov∗, Dmitry Ulyanov and Victor Lempitsky.
Image Manipulation with Perceptual Discriminators. European Conference on Computer Vision (ECCV), 2018.
∗ denotes equal contribution.

Supplementary materials are hosted on the project page: https://egorzakharov.github.io/
perceptual_gan
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Chapter 2 Image Manipulation with Perceptual Discriminators

2.1 Introduction

Generative convolutional neural networks have achieved remarkable success in image manipu-

lation tasks both due to their ability to train on large amount of data Dosovitskiy et al. [2015],

Jain and Seung [2009], Kim et al. [2016] and due to natural image priors associated with such

architectures Ulyanov et al. [2018]. Recently, the ability to train image manipulation ConvNets

has been shown in the unaligned training scenario Benaim and Wolf [2017], Zhu et al. [2017a,d],

where the training is based on sets of images annotated with the presence/absence of a certain

attribute, rather than based on aligned datasets containing {input,output} image pairs. The ability

to train from unaligned data provides considerable flexibility in dataset collection and in learning

new manipulation effects, yet poses additional algorithmic challenges.

Generally, the realism of the deep image manipulation methods is known to depend strongly

on the choice of the loss functions that are used to train generative ConvNets. In particular,

simplistic pixelwise losses (e.g. the squared distance loss) are known to limit the realism and are

also non-trivial to apply in the unaligned training scenario. The rapid improvement of realism of

deep image generation and processing is thus associated with two classes of loss functions that

go beyond pixel-wise losses. The first group (so-called perceptual losses) is based on matching

activations inside pre-trained deep convolutional networks (the VGG architecture trained for

ILSVRC image classification is by far the most popular choice Simonyan and Zisserman [2014]).

The second group consists of adversarial losses, where the loss function is defined implicitly

using a separate discriminator network that is trained adversarially in parallel with the main

generative network.

The two groups (perceptual losses and adversarial losses) are known to have largely complemen-

tary strengths and weaknesses. Thus, perceptual losses are easy to incorporate and are easy to

scale to high-resolution images; however, their use in unaligned training scenario is difficult, as

these loss terms require a concrete target image to match the activations to. Adversarial losses

have the potential to achieve higher realism and can be used naturally in the unaligned scenarios,

yet adversarial training is known to be hard to set up properly, often suffers from mode collapse,

and is hard to scale to high-resolution images. Combining perceptual and adversarial losses in

an additive way has been popular Dosovitskiy and Brox [2016], Ledig et al. [2017b], Sajjadi

et al. [2017], Wang et al. [2017]. Thus, a generative ConvNet can be trained by minimizing a

linear combination of an adversarial and a perceptual (and potentially some other) losses. Yet

such additive combination includes not only strengths but also weaknesses of the two approaches.

In particular, the use of a perceptual loss still incurs the use of aligned datasets for training.

In this work we present an architecture for realistic image manipulation, which combines percep-

tual and adversarial losses in a natural non-additive way. Importantly, the architecture keeps the

ability of adversarial losses to train on unaligned datasets, while also benefits from the stability
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of perceptual losses. Our idea is very simple and concerned with the particular design of the

discriminator network for adversarial training. The design encapsulates a pretrained classification

network as the initial part of the discriminator. During adversarial training, the generator network

is effectively learned to match the activations inside several layers of this reference network, just

like the perceptual losses do. We show that the incorporation of the pretrained network into the

discriminator stabilizes the training and scales well to higher resolution images, as is common

with perceptual losses. At the same time, the use of adversarial training allows to avoid the need

for aligned training data.

Generally, we have found that the suggested architecture can be trained with little tuning to impose

complex image manipulations, such as adding to and removing smile from human faces, face

ageing and rejuvenation, gender change, hair style change, etc. In the experiments, we show that

our architecture can be used to perform complex manipulations at medium and high resolutions,

and compare the proposed architecture with several adversarial learning-based baselines and

recent methods for learning-based image manipulation.

2.2 Related work

2.2.1 Generative ConvNets.

Our approach is related to a rapidly growing body of works on ConvNets for image generation

and editing. Some of the earlier important papers on ConvNet image generation Dosovitskiy et al.

[2015] and image processing Dong et al. [2014], Jain and Seung [2009], Kim et al. [2016] used

per-pixel loss functions and fully supervised setting, so that at test time the target image is known

for each input. While this demonstrated the capability of ConvNets to generate realistic images,

the proposed systems all had to be trained on aligned datasets and the amount of high-frequency

details in the output images was limited due to deficiencies of pixel-wise loss functions.

2.2.2 Perceptual Losses.

The work of Mahendran and Vedaldi Mahendran and Vedaldi [2015] has demonstrated that

the activations invoked by an image within a pre-trained convolutional network can be used to

recover the original image. Gatys et al. Gatys et al. [2016] showed that such activations can

serve as content descriptors or texture descriptors of the input image, while Dosovitsky and

Brox Dosovitskiy and Brox [2016], Ulyanov et al. Ulyanov et al. [2016], Johnson et al. Johnson

et al. [2016a] have shown that the mismatches between the produced and the target activations

can be used as so-called perceptual losses for a generative ConvNet. The recent work of Chen and

Koltun [2017] pushed the spatial resolution and the realism of images produced by a feed-forward
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ConvNet with perceptual losses to megapixel resolution. Generally, in all the above-mentioned

works Chen and Koltun [2017], Dosovitskiy and Brox [2016], Johnson et al. [2016a], Ulyanov

et al. [2016], the perceptual loss is applied in a fully supervised manner as for each training

example the specific target deep activations (or the Gram matrix thereof) are given explicitly.

Finally, Upchurch et al. [2017] proposed a method that manipulates carefully aligned face images

at high resolution by compositing desired activations of a deep pretrained network and finding an

image that matches such activations using the non-feedforward optimization process similar to

Gatys et al. [2016], Mahendran and Vedaldi [2015].

2.2.3 Adversarial Training.

The most impressive results of generative ConvNets were obtained within generative adversarial

networks (GANs) framework proposed originally by Goodfellow et al. Goodfellow et al. [2014a].

The idea of adversarial training is to implement the loss function as a separate trainable network

(the discriminator), which is trained in parallel and in adversarial way with the generative Con-

vNet (the generator). Multiple follow-up works including Arjovsky et al. [2017], Karras et al.

[2017], Radford et al. [2015], Salimans et al. [2016] investigated the choice of convolutional

architectures for the generator and for the discriminator. Achieving reliable and robust conver-

gence of generator-discriminator pairs remains challenging Chintala et al. [2017], Goodfellow

[2017], Lucic et al. [2017], and in particular requires considerably more efforts than training with

perceptual loss functions.

2.2.4 Unaligned Adversarial Training.

While a lot of the original interest to GANs was associated with unconditional image generation,

recently the emphasis has shifted to the conditional image synthesis. Most relevant to our work

are adversarially-trained networks that perform image translation, i.e. generate output images

conditioned on input images. While initial methods used aligned datasets for training Isola

et al. [2017], Zhang et al. [2016a], recently some impressive results have been obtained using

unaligned training data, where only empirical distributions of the input and the output images are

provided Benaim and Wolf [2017], Zhu et al. [2017a,d]. For face image manipulation, systems

using adversarial training on unaligned data have been proposed in Brock et al. [2016], Choi et al.

[2018]. While we also make an emphasis on face manipulation, our contribution is orthogonal to

Brock et al. [2016], Choi et al. [2018] as perceptual discriminators can be introduced into their

systems.
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Fake B

Real B

Perceptual

discriminator

VGG 
(frozen)

P(real)

P(real) P(real)

FIGURE 2.1: The perceptual discriminator is composed of a pre-trained image classification
network (such as VGG), split into blocks bi. The parameters of those blocks are not changed
during training, thus the discriminator retains access to so-called perceptual features. The
outputs of these blocks are processed using learnable blocks of convolutional operations ci and
the outputs of those are used to predict the probability of an image being real or manipulated
(the simpler version uses a single discriminator dmain, while additional path discriminators are

used in the full version).

2.2.5 Combining Perceptual and Adversarial Losses.

A growing number of works Dosovitskiy and Brox [2016], Ledig et al. [2017b], Wang et al.

[2017] use the combination of perceptual and adversarial loss functions to accomplish more stable

training and to achieve convincing image manipulation at high resolution. Most recently, Sajjadi

et al. [2017] showed that augmenting perceptual loss with the adversarial loss improves over the

baseline system Chen and Koltun [2017] (that has already achieved very impressive results) in the

task of megapixel-sized conditional image synthesis. Invariably, the combination of perceptual

and adversarial losses is performed in an additive manner, i.e. the two loss functions are weighted

and added to each other (and potentially to some other terms). While such additive combination

is simple and often very efficient, it limits learning to the aligned scenario, as perceptual terms

still require to specify target activations for each training example. In this work, we propose a

natural non-additive combination of perceptual losses and adversarial training that avoids the

need for aligned data during training.

2.3 Method

2.3.1 Background and motivation

Generative adversarial networks have shown impressive results in photorealistic image synthesis.

The model includes a generative network G, that is trained to match the target distribution

ptarget(y) in the data space Y , and a discriminator networkD that is trained to distinguish whether

the input is real or generated by G. In the simplest form, the two networks optimize the policy
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function V (D,G):

min
G

max
D

V (D,G) = Ey∼ptarget(y) logD(y) + Ex∼psource(x)[log(1−D(G(x))], (2.1)

In (2.1), the source distribution psource(x) may correspond to a simple parametric distribution

in a latent space such as the unit Gaussian, so that after training unconditional samples from

the learned approximation to ptarget(y) can be drawn. Alternatively, psource(x) may correspond

to another empirical distribution in the image space X . In this case, the generator learns to

translate images from X to Y , or to manipulate images in the space X (when it coincides with

Y). Although our contribution (perceptual discriminators) is applicable to both unconditional

synthesis and image manipulation/translation, we focus our evaluation on the latter scenario. For

the low resolution datasets, we use the standard non-saturating GAN modification, where the

generator maximizes the log-likelihood of the discriminator instead of minimizing the objective

(2.1) Goodfellow et al. [2014a]. For high-resolution images, following CycleGAN Zhu et al.

[2017a], we use the LSGAN formulation Mao et al. [2016].

Converging to good equilibria for any of the proposed GAN games is known to be hard Chintala

et al. [2017], Goodfellow [2017], Lucic et al. [2017]. In general, the performance of the trained

generator network crucially depends on the architecture of the discriminator network, that needs

to learn meaningful statistics, which are good for matching the target distribution ptarget. The

typical failure mode of GAN training is when the discriminator does not manage to learn such

statistics before being “overpowered” by the generator.

2.3.2 Perceptual Discriminator Architecture

Multiple approaches have suggested to use activations invoked by an image y inside a deep

pre-trained classification network F (y) as statistics for such tasks as retrieval Babenko et al.

[2014] or few-shot classification Razavian et al. [2014]. Mahendran and Vedaldi Mahendran and

Vedaldi [2015] have shown that activations computed after the convolutional part of such network

retain most of the information about the input y, i.e. are essentially invertable. Subsequent works

such as Dosovitskiy and Brox [2016], Gatys et al. [2016], Johnson et al. [2016a], Ulyanov et al.

[2016] all used such “perceptual” statistics to match low-level details such as texture content,

certain image resolution, or particular artistic style.

Following this line of work, we suggest to base the GAN discriminator D(y) on the perceptual

statistics computed by the reference network F on the input image y, which can be either real

(coming from ptarget) or fake (produced by the generator). Our motivation is that a discriminator

that uses perceptual features has a better chance to learn good statistics than a discriminator

initialized to a random network. For simplicity, we assume that the network F has a chain

structure, e.g. F can be the VGGNet of Simonyan and Zisserman [2014].
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Consider the subsequent blocks of the convolutional part of the reference network F , and denote

them as b0, b1, . . . , bK−1. Each block may include one or more convolutional layers interleaved

with non-linearities and pooling operations. Then, the perceptual statistics {f1(y), . . . , fK(y)}
are computed as:

f1(y) = b0(y) (2.2)

fi(y) = bi−1(fi−1(y)), i = 2, . . . ,K , (2.3)

so that each fi(y) is a stack of convolutional maps of the spatial dimensions Wi ×Wi. The

dimension Wi is determined by the preceeding size Wi−1 as well as by the presence of strides

and pooling operations inside bi. In our experiments we use features from consecutive blocks, i.e.

Wi =Wi−1/2.

The overall structure of our discriminator is shown in Figure 2.1. The key novelty of our

discriminator is the in-built perceptual statistics fi (top of the image), which are known to be

good at assessing image realism Gatys et al. [2016], Johnson et al. [2016a], Upchurch et al. [2017].

During the backpropagation, the gradients to the generator flow through the perceptual statistics

extractors bi, but the parameters of bi are frozen and inherited from the network pretrained for

large-scale classification. This stabilizes the training, and ensures that at each moment of time

the discriminator has access to “good” features, and therefore cannot be overpowered by the

generator easily.

In more detail, the proposed discriminator architecture combines together perceptual statistics

using the following computations:

h1(y) = f1(y) (2.4)

hi(y) = stack [ci−1(hi−1(y), ϕi−1) , fi(y)] , i = 2, . . . ,K , (2.5)

where stack denotes stacking operation, and the convolutional blocks cj with learnable pa-

rameters ϕj (for j = 1, . . . ,K − 1) are composed of convolutions, leaky ReLU nonlinearities,

and average pooling operations. Each of the cj blocks thus transforms map stacks of the spatial

size Wj ×Wj to map stacks of the spatial size Wj+1 ×Wj+1. Thus, the strides and pooling

operations inside cj match the strides and/or pooling operations inside bj .

Using a series of convolutional and fully-connected layers with learnable parameters ψmain

applied to the representation hK(y), the discriminator outputs the probability dmain of the whole

image y being real. For low- to medium- resolution images we perform experiments using only

this probability. For high-resolution, we found that additional outputs from the discriminator

resulted in better outcomes. Using the “patch discriminator” idea Isola et al. [2017], Zhu et al.

[2017a], to several feature representations hj we apply a convolution+LeakyReLU block dj
with learnable parameters ψj that outputs probabilities dj,p at every spatial locations p. We then
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replace the regular log probability logD(y) ≡ log dmain of an image being real with:

logD(y) = log dmain(y) +
∑
j

∑
p∈Grid(Wj×Wj)

log dj,p(y) (2.6)

Note, that this makes our discriminator “multi-scale”, since spatial resolution Wj varies for

different j. The idea of multiple classifiers inside the discriminator have also been proposed

recently in Iizuka et al. [2017], Wang et al. [2017]. Unlike Iizuka et al. [2017], Wang et al. [2017]

where these classifiers are disjoint, in our architecture all such classifiers are different branches

of the same network that has perceptual features underneath.

During training, the parameters of the c blocks inside the feature network F remain fixed, while

the parameters ϕi of feature extractors ci and the parameters ψi of the discriminators di are

updated during the adversarial learning, which forces the “perceptual” alignment between the

output of the generator and ptarget. Thus, wrapping perceptual loss terms into additional layers

ci and di and putting them together into the adversarial discriminator allows us to use such

perceptual terms in the unaligned training scenario. Such unaligned training was, in general, not

possible with the “traditional” perceptual losses.

2.3.3 Architecture Details

Reference Network. Following multiple previous works Gatys et al. [2016], Johnson et al.

[2016a], Ulyanov et al. [2016], we consider the so-called VGG network from Simonyan and

Zisserman [2014] trained on ILSVRC2012 Russakovsky et al. [2014] as the reference network

F . In particular, we pick the VGG-19 variant, to which we simply refer to as VGG. While the

perceptual features from VGG already work well, the original VGG architecture can be further

improved. Radford et. al Radford et al. [2015] reported that as far as leaky ReLU avoids sparse

gradients, replacing ReLUs with leaky ReLUs He et al. [2015b] in the discriminator stabilizes the

training process of GANs. For the same reasons, changing max pooling layers to average pooling

removes unwanted sparseness in the backpropagated gradients. Following these observations, we

construct the VGG* network, which is particularly suitable for the adversarial game. We thus

took the VGG-19 network pretrained on ILSVRC dataset, replaced all max pooling layers by

average poolings, ReLU nonlinearities by leaky ReLUs with a negative slope 0.2 and then trained

on the ILSVRC dataset for further two days. We compare the variants of our approach based on

VGG and VGG* features below.

Generator Architecture. For the image manipulation experiments, we used transformer

network proposed by Johnson et al. Johnson et al. [2016a]. It consists of M convolutional

layers with stride size 2, N residual blocks He et al. [2015a] and M upsampling layers, each
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one increases resolution by a factor of 2. We set M and N in a way that allows outputs of

the last residual block to have large enough receptive field, but at the same time for generator

and discriminator to have similar number of parameters. We provide detailed descriptions of

architectures in Sungatullina et al. [2018b].

Stabilizing the Generator. We have also used two additional methods to improve the generator

learning and to prevent its collapse. First, we have added the identity loss Taigman et al. [2016],

Zhu et al. [2017a] that ensures that the generator does not change the input, when it comes from

the ptarget. Thus, the following term is added to the maximization objective of the generator:

JG
id = −λid Ey∼ptargetλ

∥∥y −G(y)
∥∥
L1
, (2.7)

where λid is a meta-parameter that controls the contribution of the weight, and ∥ · ∥L1 denotes

pixel-wise L1-metric.

To achieve the best results for the hardest translation tasks, we have found the cycle idea from the

CycleGAN Zhu et al. [2017a] needed. We thus train two generators Gx→y and Gy→x operating

in opposite directions in parallel (and jointly with two discriminators), while adding reciprocity

terms ensuring that mappings Gx→y ◦Gy→x and Gy→x ◦Gx→y are close to identity mappings.

Moreover, we notice that usage of external features as inputs for the discriminator leads to fast

convergence of the discriminator loss to zero. Even though this is expected, since our method

essentially corresponds to pretraining of the discriminator, this behavior is one of the GAN failure

cases Chintala et al. [2017] and on practice leads to bad results in harder tasks. Therefore we find

pretraining of the generator to be required for increased stability. For image translation task we

pretrain generator as autoencoder. Moreover, the necessity to pretrain the generator makes our

approach fail to operate in DCGAN setting with unconditional generator.

After an additional stabilization through the pretraining and the identity and/or cycle losses, the

generator becomes less prone to collapse. Overall, in the resulting approach it is neither easy

for the discriminator to overpower the generator (this is prevented by the identity and/or cycle

losses), nor is it easy for the generator to overpower the discriminator (as the latter always has

access to perceptual features, which are good at judging the realism of the output).

2.4 Experiments

The goal of the experimental validation is two-fold. The primary goal is to validate the effect of

perceptual discriminators as compared to baseline architectures which use traditional discrim-

inators that do not have access to perceptual features. The secondary goal is to validate the

25



Chapter 2 Image Manipulation with Perceptual Discriminators

Input DFI DCGAN VGG-GAN
(ours)

VGG*-GAN
(ours)

CycleGAN FaceApp

FIGURE 2.2: Qualitative comparison of the proposed systems as well as baselines for
neutral→smile image manipulation. As baselines, we show the results of DFI (perceptual
features, no adversarial training) and DCGAN (same generator, no perceptual features in the
discriminator). Systems with perceptual discriminators output more plausible manipulations.

ability of our full system based on perceptual discriminators to handle harder image translation/-

manipulation task with higher resolution and with less data. Extensive additional results are

available on our project page Sungatullina et al. [2018b]. We perform the bulk of our experiments

on CelebA dataset Liu et al. [2015], due to its large size, popularity and the availability of the

attribute annotations (the dataset comprises over 200k of roughly-aligned images with 40 binary

attributes; we use 160× 160 central crops of the images). As harder image translation task, we

use CelebA-HQ Karras et al. [2017] dataset, which consists of high resolution versions of images

from CelebA and is smaller in size. Lastly, we evaluate our model on problems with non-face

datasets like apples to oranges and photo to Monet texture transfer tasks.

Experiments were carried out on NVIDIA DGX-2 server.

2.4.1 Qualitative Comparison on CelebA.

Even though our contribution is orthogonal to a particular GAN-based image translation method,

we chose one of them, provided modifications we proposed and compared it with the following

important baselines in an attribute manipulation task:

• DCGAN Radford et al. [2015]: in this baseline GAN system we used image translation

model with generator and discriminator trained only with adversarial loss.

• CycleGAN Zhu et al. [2017a]: this GAN-based method learns two reciprocal transforms in

parallel with two discriminators in two domains. We have used the authors’ code (PyTorch

version).
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TABLE 2.1: Quantitative comparison: (a) Photorealism user study. We show the fraction of
times each method has been chosen as “the best” among all in terms of photorealism and identity
preservation (the higher the better). (b) C2ST results (cross-entropy, the higher the better). (c)
Log-loss of classifier trained on real data for each class (the lower the better). See main text for

details.

(a) User study (b) C2ST, ×10−2 (c) Classification loss
Smile Age Smile Gender Hair

color
Smile Gender Hair

color
DFI Upchurch et al. [2017] 0.16 0.4 < 0.1 < 0.01 < 0.01 1.3 0.5 1.14
FaceApp FaceApp [2018] 0.45 0.41 – – – – – –

DCGAN Radford et al. [2015] – – 0.6 0.03 0.06 0.6 1.5 2.33
CycleGAN Zhu et al. [2017a] 0.03 0.04 5.3 0.35 0.49 1.2 0.8 2.41

VGG-GAN – – 8.6 0.21 0.96 0.4 0.1 1.3
VGG*-GAN 0.36 0.15 5.2 0.24 1.29 0.7 0.1 1.24

Real data – – – – – 0.1 0.01 0.56

• DFI Upchurch et al. [2017]: to transform an image, this approach first determines target

VGG feature representation by adding the feature vector corresponding to input image and

the shift vector calculated using nearest neighbours in both domains. Then the resulting

image is produced using optimization-based feature inversion as in Mahendran and Vedaldi

[2015]. We have used the authors’ code.

• FaceApp FaceApp [2018]: is a very popular closed-source app that is known for the quality

of its filters (transforms), although the exact algorithmic details are unknown.

Our model is represented by two basic variants.

• VGG-GAN: we use DCGAN as our base model. The discriminator has a single classifier

and no generator pretraining or regularization is applied, other than identity loss mentioned

in the previous section.

• VGG*-GAN: same as the previous model, but we use a finetuned VGG network variant

with dense gradients.

The comparison with state-of-the-art image transformation systems is performed to verify the

competitiveness of the proposed architecture (Figure 2.2). In general, we observe that VGG*-

GAN and VGG-GAN models consistently outperformed DCGAN variant, achieving higher

effective resolution and obtaining more plausible high-frequency details in the resulting images.

While a more complex CycleGAN system is also capable of generating crisp images, we found

that the synthesized smile often does not look plausible and does not match the face. DFI turns

out to be successful in attribute manipulation, yet often produces undesirable artifacts, while

FaceApp shows photorealistic results, but with low attribute diversity. Here we also evaluate

the contribution of dense gradients idea for VGG encoder and find it providing minor quality

improvements.
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Input Blond hair Black hair Brown hair Gender swap Smile on/off

FIGURE 2.3: Results for VGG*-MS-CycleGAN attribute editing at 256 × 256 resolution
on Celeba-HQ dataset. Networks have been trained to perform pairwise domain translation
between the values of hair color, gender and smile attributes. Digital zoom-in recommended.

See Sungatullina et al. [2018b] for more manipulation examples.

2.4.2 User Photorealism Study on CelebA.

We have also performed an informal user study of the photorealism. The study enrolled 30

subjects unrelated to computer vision and evaluated the photorealism of VGG*-GAN, DFI,

CycleGAN and FaceApp on smile and aging/rejuvenation transforms. To assess the photorealism,

the subjects were presented quintuplets of photographs unseen during training. In each quintuplet

the center photo was an image without the target attribute (e. g. real photo of neutral expression),

while the other four pictures were manipulated by one of the methods and presented in random

order. The subjects were then asked to pick one of the four manipulations that they found most

plausible (both in terms of realism and identity preservation). While there was no hard time limit,

the users were asked to make the pick as quickly as possible. Each subject was presented overall

30 quintuplets with 15 quantuplets allocated for each of the considered attribute. The results

in Table 3.1a show that VGG*-GAN is competitive and in particular considerably better than

the other feed-forward method in the comparison (CycleGAN), but FaceApp being the winner

overall. This comes with the caveat that the training set of FaceApp is likely to be bigger than

CelebA. We also speculate that the diversity of smiles in FaceApp seems to be lower (Figure 2.2),

which is the deficiency that is not reflected in this user study.
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2.4.3 Quantitative Results on CelebA.

To get objective performance measure, we have used the classifier two-sample test (C2ST) Lopez-

Paz and Oquab [2016] to quantitatively compare GANs with the proposed discriminators to other

methods. For each method, we have thus learned a separate classifier to discriminate between

hold-out set of real images from target distribution and synthesized images, produced by each of

the methods. We split both hold-out set and the set of fake images into training and testing parts,

fit the classifier to the training set and report the log-loss over the testing set in the Table 2.1b.

The results comply with the qualitative observations: artifacts, produced by DCGAN and DFI

are being easily detected by the classifier resulting in a very low log-loss. The proposed system

stays on par with a more complex CycleGAN (better on two transforms out of three), proving

that a perceptual discriminator can remove the need in two additional networks and cycle losses.

Additionally, we evaluated attribute translation performance in a similar fashion to StarGAN Choi

et al. [2018]. We have trained a model for attribute classification on CelebA and measured

average log-likelihood for the synthetic and real data to belong to the target class. Our method

achieved lower log-loss than other methods on two out of three face attributes (see Table 2.1c).

2.4.4 Higher Resolution.

We further evaluate our model on CelebA-HQ dataset. Here in order to obtain high quality results

we use all proposed regularization methods. We refer to our best model as VGG*-MS-CycleGAN,

which corresponds to the usage of VGG* network with dense gradients as an encoder, multi-scale

perceptual discriminator based on VGG* network, CycleGAN regularization and pretraining

of the generator. Following CycleGAN, we use LSGAN Mao et al. [2016] as an adversarial

objective for that model. We trained on 256× 256 version of CelebA-HQ dataset and present

attribute manipulation results in Figure 2.3. As we can see, our model provides photorealistic

samples while capturing differences between the attributes even for smaller amount of training

samples (few thousands per domain) and higher resolution compared to our previous tests.

In order to ensure that each of our individual contributions affects the quality of these results, we

consider three variations of our discriminator architecture and compare them to the alternative

multi-scale discriminator proposed in Wang et al. Wang et al. [2017]. While Wang et al. used

multiple identical discriminators operating at different scales, we argue that this architecture

has redundancy in terms of number of parameters and can be reduced to our architecture by

combining these discriminators into a single network with shared trunk and separate multi-scale

output branches (as is done in our method). Both variants are included into the comparison

in Figure 2.4. Also we consider Rand-MS-CycleGAN baseline that uses random weights in

the feature extractor in order to tease apart the contribution of VGG* architecture as a feature

network F and the effect of also having its weights pretrained on the success of the adversarial
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(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

FIGURE 2.4: We compare different architectures for the discriminator on CelebA-HQ 256×
256 male ↔ female problem. We train all architectures in CycleGAN manner with LSGAN
objective and compare different discriminator architectures. (a) Input, (b) VGG*-MS-CycleGAN:
multi-scale perceptual discriminator with pretrained VGG* as a feature network F , (c) Rand-
MS-CycleGAN: multi-scale perceptual discriminator with a feature network F having VGG*
architecture with randomly-initialized weights, (d) MS-CycleGAN: multi-scale discriminator
with the trunk shared across scales (as in our framework), where images serve as a direct input,
(e) separate multi-scale discriminators similar to Wang et al. Wang et al. [2017]. Digital zoom-in

recommended.

Input CycleGAN VGG*-CycleGAN Input CycleGAN VGG*-CycleGAN

FIGURE 2.5: Comparison between CycleGAN and VGG*-MS-CycleGAN on painting↔photo
translation task. It demonstrates the applicability of our approach beyond face image manipula-

tion. See Sungatullina et al. [2018b] for more examples.

training. While the weights inside the VGG part were not frozen, so that adversarial training

process could theoretically evolve good features in the discriminator, we were unable to make

this baseline produce reasonable results. For high weight of the identity loss λid the resulting

generator network produced near-identical results to the inputs, while decreasing λid lead to

severe generator collapse. We conclude that the architecture alone cannot explain the good

performance of perceptual discriminators (which is validated below) and that having pretrained

weights in the feature network is important.

2.4.5 Non-face Datasets.

While the focus of our evaluation was on face attribute modification tasks, our contribution applies

to other translation tasks, as we verify in this section by performing qualitative comparison with
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Input CycleGAN VGG*-MS
CycleGAN

Input CycleGAN VGG*-MS
CycleGAN

FIGURE 2.6: Apple↔orange translation samples with CycleGAN and VGG*-MS-CycleGAN
are shown. Zoom-in recommended. See Sungatullina et al. [2018b] for more examples.

the CycleGAN and VGG*-MS-CycleGAN architectures on two non-face domains on which

CycleGAN was originally evaluated: an artistic style transfer task (Monet-photographs) in Fig-

ure 2.5 and an apple-orange conversion in Figure 2.6 (the figures show representative results). To

achieve fair comparison, we use the same amount of residual blocks and channels in the generator

and the same number of downsampling layers and initial amount of channels in discriminator both

in our model and in the original CycleGAN. We used the authors’ implementation of CycleGAN

with default parameters. While the results on the style transfer task are inconclusive, for the

harder apple-to-orange task we generally observe the performance of perceptual discriminators

to be better.

2.4.6 Other Learning Formulations.

Above, we have provided the evaluation of the perceptual discriminator idea to unaligned image

translation tasks. In principle, perceptual discriminators can be used for other tasks, e.g. for

unconditional generation and aligned image translation. In our preliminary experiments, we

however were not able to achieve improvement over properly tuned baselines. In particular, for

aligned image translation (including image superresolution) an additive combination of standard

discriminator architectures and perceptual losses performs just as well as our method. This is

not surprising, since the presence of alignment means that perceptual losses can be computed

straight-forwardly, while they also stabilize the GAN learning in this case. For unconditional

image generation, a naive application of our idea leads to discriminators that quickly overpower

generators in the initial stages of the game leading to learning collapse.

2.5 Summary

We have presented a new discriminator architecture for adversarial training that incorporates

perceptual loss ideas with adversarial training. We have demonstrated its usefulness for unaligned
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image translation tasks, where the direct application of perceptual losses is infeasible. Our

approach can be regarded as an instance of a more general idea of using transfer learning, so that

easier discriminative learning formulations can be used to stabilize and improve GANs and other

generative learning formulations.
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Textured Neural Avatars

Abstract

We present a system for learning full-body neural avatars, i.e. deep networks that produce

full-body renderings of a person for varying body pose and camera position. Our system takes the

middle path between the classical graphics pipeline and the recent deep learning approaches that

generate images of humans using image-to-image translation. In particular, our system estimates

an explicit two-dimensional texture map of the model surface. At the same time, it abstains

from explicit shape modeling in 3D. Instead, at test time, the system uses a fully-convolutional

network to directly map the configuration of body feature points w.r.t. the camera to the 2D

texture coordinates of individual pixels in the image frame. We show that such a system is

capable of learning to generate realistic renderings while being trained on videos annotated

with 3D poses and foreground masks. We also demonstrate that maintaining an explicit texture

representation helps our system to achieve better generalization compared to systems that use

direct image-to-image translation.

This work was published as: Aliaksandra Shysheya, Egor Zakharov, Kara-Ali Aliev, Renat Bashirov, Egor Burkov,
Karim Iskakov, Aleksei Ivakhnenko, Yury Malkov, Igor Pasechnik, Dmitry Ulyanov, Alexander Vakhitov, and Victor
Lempitsky Textured Neural Avatars. Computer Vision and Pattern Recognition (CVPR), 2019.

Supplementary materials are hosted on the project page: https://samsunglabs.github.io/
textured_avatar

33

https://samsunglabs.github.io/textured_avatar
https://samsunglabs.github.io/textured_avatar
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3.1 Introduction

Capturing and rendering human body in all of its complexity under varying pose and imaging

conditions is one of the core problems of both computer vision and computer graphics. Recently,

there is a surge of interest that involves deep convolutional networks (ConvNets) as an alternative

to traditional computer graphics means. Realistic neural rendering of body fragments e.g.

faces Kim et al. [2018a], Lombardi et al. [2018a], Suwajanakorn et al. [2017], eyes Ganin et al.

[2016], hands Mueller et al. [2018] is now possible. Very recent works have shown the abilities

of such networks to generate views of a person with a varying body pose but with a fixed camera

position, and using an excessive amount of training data Aberman et al. [2018], Chan et al. [2018],

Liu et al. [2018], Wang et al. [2018b]. In this work, we focus on the learning of neural avatars,

i.e. generative deep networks that are capable of rendering views of individual people under

varying body pose defined by a set of 3D positions of the body joints and under varying camera

positions (Figure 4.1). We prefer to use body joint positions to represent the human pose, as joint

positions are often easier to capture using marker-based or marker-less motion capture systems.

Generally, neural avatars can serve as an alternative to classical (“neural-free”) avatars based

on a standard computer graphics pipeline that estimates a user-personalized body mesh in a

neutral position, performs skinning (deformation of the neutral pose), and projects the resulting

3D surface onto the image coordinates, while superimposing person-specific 2D texture. Neural

avatars attempt to shortcut the multiple stages of the classical pipeline and to replace them with

a single network that learns the mapping from the input (the location of body joints) to the

output (the 2D image). As a part of our contribution, we demonstrate that, however appealing for

its conceptual simplicity, existing pose-to-image translation networks generalize poorly to new

camera views, and therefore new architectures for neural avatars are required.

Towards this end, we present a neural avatar system that does full-body rendering and combines

the ideas from the classical computer graphics, namely the decoupling of geometry and texture,

with the use of deep convolutional neural networks. In particular, similarly to the classic pipeline,

our system explicitly estimates the 2D textures of body parts. The 2D texture within the classical

pipeline effectively transfers the appearance of the body fragments across camera transformations

and body articulations. Keeping this component within the neural pipeline boosts generalization

across such transforms. The role of the convolutional network in our approach is then confined

to predicting the texture coordinates of individual pixels in the output 2D image given the

body pose and the camera parameters (Figure 3.1). Additionally, the network predicts the body

foreground/background mask.

In our experiments, we compare the performance of our textured neural avatar with a direct

video-to-video translation approach Wang et al. [2018b], and show that explicit estimation of
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textures brings additional generalization capability and improves the realism of the generated

images for new views and/or when the amount of training data is limited.

3.2 Related work

Our approach is closely related to a vast number of previous works, and below we discuss a small

subset of these connections.

3.2.1 Full-body avatars

Building avatars from image data has long been one of the main subsections of computer

vision research. Traditionally, an avatar is defined by a 3D geometric mesh of a certain neutral

pose, a texture, and a skinning mechanism that transforms the mesh vertices according to pose

changes. A large group of works has been devoted to body modeling from 3D scanners Pons-

Moll et al. [2015], registered multi-view sequences Robertini et al. [2017] as well as from

depth and RGB-D sequences Bogo et al. [2015], Weiss et al. [2011], Yu et al. [2018]. On

the other extreme are methods that fit skinned parametric body models to single images Bălan

and Black [2008], Bogo et al. [2016], Hasler et al. [2010], Kanazawa et al. [2018], Omran

et al. [2018], Pavlakos et al. [2018], Starck and Hilton [2003]. Finally, research on building

full-body avatars from monocular videos has started Alldieck et al. [2018b,c]. Similarly to the

last group of works, our work builds an avatar from a video or a set of unregistered monocular

videos. The classical (computer graphics) approach to modeling human avatars requires explicit

physically-plausible modeling of human skin, hair, sclera, clothing surface, as well as motion

under pose changes. Despite considerable progress in reflectivity modeling Alexander et al.

[2010b], Donner et al. [2008], Klehm et al. [2015], Weyrich et al. [2006], Wood et al. [2015] and

better skinning/dynamic surface modeling Feng et al. [2015], Loper et al. [2015], Stavness et al.

[2014], the computer graphics approach still requires considerable “manual” effort of designers

to achieve high realism Alexander et al. [2010b] and to pass the so-called uncanny valley Mori

[1970], especially if real-time rendering of avatars is required.

3.2.2 Image synthesis using deep convolutional neural networks

A lot of recent efforts Dosovitskiy et al. [2015], Goodfellow et al. [2014a] has been directed

onto synthesis of realistic human faces Choi et al. [2018], Karras et al. [2018], Sungatullina et al.

[2018a]. Compared to traditional computer graphics representations, deep ConvNets model data

by fitting an excessive number of learnable weights to training data. Such ConvNets avoid explicit

modeling of the surface geometry, surface reflectivity, or surface motion under pose changes, and

35



Chapter 3 Textured Neural Avatars

therefore do not suffer from the lack of realism of the corresponding components. On the flipside,

the lack of ingrained geometric or photometric models in this approach means that generalizing

to new poses and in particular to new camera views may be problematic. Still a lot of progress

has been made over the last several years for the neural modeling of personalized talking head

models Kim et al. [2018a], Lombardi et al. [2018a], Suwajanakorn et al. [2017], hair Wei et al.

[2018], hands Mueller et al. [2018]. Notably, the recent system Lombardi et al. [2018a] has

achieved very impressive results for neural face rendering, while decomposing view-dependent

texture and 3D shape modeling.

Over the last several months, several groups have presented results of neural modeling of full

bodies Aberman et al. [2018], Chan et al. [2018], Liu et al. [2018], Wang et al. [2018b]. While the

presented results are very impressive, the approaches still require a large amount of training data.

They also assume that the test images are rendered with the same camera views as the training data,

which in our experience makes the task considerably simpler than modeling body appearance

from an arbitrary viewpoint. In this work, we aim to expand the neural body modeling approach

to tackle the latter, harder task. The work Martin-Brualla et al. [2018] uses a combination of

classical and neural rendering to render human body from new viewpoints, but does so based on

depth scans and therefore with a rather different algorithmic approach.

A number of recent works warp a photo of a person to a new photorealistic image with modified

gaze direction Ganin et al. [2016], modified facial expression/pose Cao et al. [2018a], Shu

et al. [2018], Tulyakov et al. [2018], Wiles et al. [2018], or modified body pose Balakrishnan

et al. [2018], Neverova et al. [2018], Siarohin et al. [2018], Tulyakov et al. [2018], whereas

the warping field is estimated using a deep convolutional network (while the original photo

effectively serves as a texture). These approaches are however limited in their realism and/or the

amount of change they can model, due to their reliance on a single photo of a given person for its

input. Our approach also disentangles texture from surface geometry/motion modeling but trains

from videos, therefore being able to handle harder problem (full body multi-view setting) and to

achieve higher realism.

Our system relies on the DensePose body surface parameterization (UV parameterization) similar

to the one used in the classical graphics-based representation. Part of our system performs a

mapping from the body pose to the surface parameters (UV coordinates) of image pixels. This

makes our approach related to the DensePose approach Güler et al. [2018] and the earlier works

Güler et al. [2017], Taylor et al. [2012] that predict UV coordinates of image pixels from the

input photograph. Furthermore, our approach uses DensePose results Güler et al. [2018] for

pretraining.

Our system is related to approaches that extract textures from multi-view image collec-
tions Goldlücke and Cremers [2009], Lempitsky and Ivanov [2007] or multi-view video collec-

tions Volino et al. [2014] or a single video Rav-Acha et al. [2008]. Our approach is also related
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to free-viewpoint video compression and rendering systems, e.g. Casas et al. [2014], Collet

et al. [2015], Dou et al. [2017], Volino et al. [2014]. Unlike those works, ours is restricted to

scenes containing a single human. At the same time, our approach aims to generalize not only

to new camera views but also to new user poses unseen in the training videos. The work of Xu

et al. [2011] is the most related to ours in this group, as they warp the individual frames of the

multi-view video dataset according to the target pose to generate new sequences. The poses that

they can handle, however, are limited by the need to have a close match in the training set, which

is a strong limitation given the combinatorial nature of the human pose configuration space.

3.3 Method

3.3.1 Notation.

We use the lower index i to denote objects that are specific to the i-th training or test image. We

use uppercase notation, e.g. Bi to denote a stack of maps (a third-order tensor/three-dimensional

array) corresponding to the i-th training or test image. We use the upper index to denote a

specific map (channel) in the stack, e.g. Bj
i . Furthermore, we use square brackets to denote

elements corresponding to a specific image location, e.g. Bj
i [x, y] denotes the scalar element in

the j-th map of the stack Bi located at location (x, y), and Bi[x, y] denotes the vector of elements

corresponding to all maps sampled at location (x, y).

3.3.2 Input and output.

In general, we are interested in synthesizing images of a certain person given her/his pose. We

assume that the pose for the i-th image comes in the form of 3D joint positions defined in the

camera coordinate frame. As an input to the network, we then consider a map stack Bi, where

each map Bj
i contains the rasterized j-th segment (bone) of the “stickman” (skeleton) projected

on the camera plane. To retain the information about the third coordinate of the joints, we linearly

interpolate the depth value between the joints defining the segments, and use the interpolated

values to define the values in the map Bj
i corresponding to the bone pixels (the pixels not covered

by the j-th bone are set to zero). Overall, the stack Bi incorporates the information about the

person and the camera pose.

As an output of the whole system, we expect an RGB image (a three-channel stack) Ii and a

single channel mask Mi, defining the pixels that are covered by the avatar. Below, we consider

two approaches: the direct translation baseline, which directly maps Bi into {Ii,Mi} and the

textured neural avatar approach that performs such mapping indirectly using texture mapping.
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Input pose

Part assignments

Generator

Part coordinates

Texture stack

Render

Cross-entropy 
loss

Perceptual 
loss

Predicted mask Ground truth mask

Predicted RGB Ground truth RGB

FIGURE 3.1: The overview of the textured neural avatar system. The input pose is defined as
a stack of "bone" rasterizations (one bone per channel; here we show it as a skeleton image).
The input is processed by the fully-convolutional network (generator) to produce the body part
assignment map stack and the body part coordinate map stack. These stacks are then used to
sample the body texture maps at the locations prescribed by the part coordinate stack with the
weights prescribed by the part assignment stack to produce the RGB image. In addition, the
last body assignment stack map corresponds to the background probability. During learning,
the mask and the RGB image are compared with ground-truth and the resulting losses are
backpropagated through the sampling operation into the fully-convolutional network and onto

the texture, resulting in their updates.

In both cases, at training time, we assume that for each input frame i, the input joint locations

and the “ground truth” foreground mask are estimated, and we use 3D body pose estimation

and human semantic segmentation to extract them from raw video frames. At test time, given

a real or synthetic background image Ĩi, we generate the final view by first predicting Mi and

Ii from the body pose and then linearly blending the resulting avatar into an image: Îi =

Ii ⊙Mi + Ĩi ⊙ (1 −Mi) (where ⊙ defines a “location-wise” product, i.e. the RGB values at

each location are multiplied by the mask value at this location).

3.3.3 Direct translation baseline.

The direct approach that we consider as a baseline to ours is to learn an image translation

network that maps the map stack Bk
i to the map stacks Ii and Mi (usually the two output stacks

are produced within two branches that share the initial stage of the processing Dosovitskiy

et al. [2015]). Generally, mappings between stacks of maps can be implemented using fully-

convolutional architectures. Exact architectures and losses for such networks is an active area

of research Chen and Koltun [2017], Isola et al. [2017], Johnson et al. [2016a], Ulyanov et al.

[2016]. Very recent works Aberman et al. [2018], Chan et al. [2018], Liu et al. [2018], Wang

et al. [2018b] have used direct translation (with various modifications) to synthesize the view

of a person for a fixed camera. We use the video-to-video variant of this approach Wang et al.

[2018b] as a baseline for our method.
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3.3.4 Textured neural avatar.

The direct translation approach relies on the generalization ability of ConvNets and incorporates

very little domain-specific knowledge into the system. As an alternative, we suggest the textured

avatar approach, that explicitly estimates the textures of body parts, thus ensuring the similarity

of the body surface appearance under varying pose and cameras.

Following the DensePose approach Güler et al. [2018], we subdivide the body into n=24 parts,

where each part has a 2D parameterization. Each body part also has the texture map T k, which is

a color image of a fixed pre-defined size (256×256 in our implementation). The training process

for the textured neural avatar estimates personalized part parameterizations and textures.

Again, following the DensePose approach, we assume that each pixel in an image of a person is

(soft)-assigned to one of n parts or to the background and with a specific location on the texture

of that part (body part coordinates). Unlike DensePose, where part assignments and body part

coordinates are induced from the image, our approach at test time aims to predict them based

solely on the pose Bi.

The introduction of the body surface parameterization outlined above changes the translation

problem. For a given pose defined by Bi, the translation network now has to predict the stack Pi

of body part assignments and the stack Ci of body part coordinates, where Pi contains n+1 maps

of non-negative numbers that sum to identity (i.e.
∑n

k=0 P
k
i [x, y] = 1 for any position (x, y)),

and Ci contains 2n maps of real numbers between 0 and w, where w is the spatial size (width

and height) of the texture maps T k.

The map channel P k
i for k = 0, . . . , n−1 is then interpreted as the probability of the pixel to

belong to the k-th body part, and the map channel Pn
i corresponds to the probability of the

background. The coordinate maps C2k
i and C2k+1

i correspond to the pixel coordinates on the k-th

body part. Specifically, once the part assignments Pi and body part coordinates Ci are predicted,

the image Ii at each pixel (x, y) is reconstructed as a weighted combination of texture elements,

where the weights and texture coordinates are prescribed by the part assignment maps and the

coordinate maps correspondingly:

s(Pi, Ci, T )[x, y] =
n−1∑
k=0

P k
i [x, y]·

T k
[
C2k
i [x, y], C2k+1

i [x, y]
]
, (3.1)

where s(·, ·, ·) is the sampling function (layer) that outputs the RGB map stack given the

three input arguments. In (3.1), the texture maps T k are sampled at non-integer locations

(C2k
i [x, y], C2k+1

i [x, y]) in a piecewise-differentiable manner using bilinear interpolation Jader-

berg et al. [2015].
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When training the neural textured avatar, we learn a convolutional network gϕ with learnable

parameters ϕ to translate the input map stacks Bi into the body part assignments and the body

part coordinates. As gϕ has two branches (“heads”), we denote with gPϕ the branch that produces

the body part assignments stack, and with gCϕ the branch that produces the body part coordinates.

To learn the parameters of the textured neural avatar, we optimize the loss between the generated

image and the ground truth image Īi:

Limage(ϕ, T ) = dImage

(
Īi, s

(
gPϕ (Bi), g

C
ϕ (Bi), T

))
(3.2)

where dImage(·, ·) is a loss used to compare two images. In our current implementation we

use a simple perceptual loss Gatys et al. [2016], Johnson et al. [2016a], Ulyanov et al. [2016],

which computes the maps of activations within pretrained fixed VGG network Simonyan and

Zisserman [2014] for both images and evaluates the L1-norm between the resulting maps

(Conv1,6,11,20,29 of VGG19 were used). More advanced adversarial losses Goodfel-

low et al. [2014a] popular in image translation Dosovitskiy and Brox [2016], Isola et al. [2017]

can also be used here.

During the stochastic optimization, the gradient of the loss (3.2) is backpropagated through (3.1)

both into the translation network gϕ and onto the texture maps T k, so that minimizing this loss

updates not only the network parameters but also the textures themselves. As an addition, the

learning also optimizes the mask loss that measures the discrepancy between the ground truth

background mask 1− M̄i and the background mask prediction:

Lmask(ϕ, T ) = dBCE

(
1̄−Mi, g

P
ϕ (Bi)

n
)

(3.3)

where dBCE is the binary cross-entropy loss, and gPϕ (Bi)
n corresponds to the n-th (i.e. back-

ground) channel of the predicted part assignment map stack. After backpropagation of the

weighted combination of (3.2) and (3.3), the network parameters ϕ and the textures maps T k are

updated. As the training progresses, the texture maps change (Figure 3.1), and so does the body

part coordinate predictions, so that the learning is free to choose the appropriate parameterization

of body part surfaces.

3.3.5 Initialization of textured neural avatar.

The success of our network depends on the initialization strategy. When training from multiple

video sequences, we use the DensePose system Güler et al. [2018] to initialize the textured

neural avatar. Specifically, we run DensePose on the training data and pretrain gϕ as a translation

network between the pose stacks Bi and the DensePose outputs.
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FIGURE 3.2: The impact of the learning on the texture (top, shown for the same subset of maps
T k) and on the convolutional network gCϕ predictions (bottom, shown for the same pair of input
poses). Left part shows the starting state (after initialization), while the right part shows the final

state, which is considerably different from the start.

An alternative way that is particularly attractive when training data is scarce is to initialize the

avatar is through transfer learning. In this case, we simply take gϕ from another avatar trained on

abundant data. The explicit decoupling of geometry from appearance in our method facilitates

transfer learning, as the geometrical mapping provided by the network gϕ usually does not need

to change much between two people, especially if the body types are not too dissimilar.

Once the mapping gϕ has been initialized, the texture maps T k are initialized as follows. Each

pixel in the training image is assigned to a single body part (according to the prediction of the

pretrained gPϕ ) and to a particular texture pixel on the texture of the corresponding part (according

to the prediction of the pretrained gCϕ ). Then, the value of each texture pixel is initialized to the

mean of all image pixels assigned to it (the texture pixels assigned zero pixels are initialized to

black). The initialized texture T and gϕ usually produce images that are only coarsely reminding

the person, and they change significantly during the end-to-end learning (Figure 3.2).
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FIGURE 3.3: Renderings produced by multiple textured neural avatars (for all people in our
study). All renderings are produced from the new viewpoints unseen during training.

(a) User study (b) SSIM score (c) Frechet distance
Ours-v-V2V Ours-v-

Direct
V2V Direct Ours V2V Direct Ours

CMU1-16 0.56 0.75 0.908 0.899 0.919 6.7 7.3 8.8
CMU2-16 0.54 0.74 0.916 0.907 0.922 7.0 8.8 10.7
CMU1-6 0.50 0.92 0.905 0.896 0.914 7.7 10.7 8.9
CMU2-6 0.53 0.71 0.918 0.907 0.920 7.0 9.7 10.4

TABLE 3.1: Quantitative comparison of the three models operating on different datasets (see
text for discussion).

3.3.6 Experiments

Below, we discuss the details of the experimental validation, provide comparison with baseline

approaches, and show qualitative results. The project webpage1 contains more videos of the

learned avatars.

3.3.6.1 Architecture.

We input 3D pose via bone rasterizations, where each bone, hand and face are drawn in separate

channels. We then use standard image translation architecture Johnson et al. [2016a] to perform

a mapping from these bones’ rasterizations to texture assignments and coordinates. This archi-

tecture consists of downsampling layers, stack of residual blocks, operating at low dimensional

feature representations, and upsampling layers. We then split the network into two roughly equal

parts: encoder and decoder, with texture assignments and coordinates having separate decoders.

We use 4 downsampling and upsampling layers with initial 32 channels in the convolutions and

256 channels in the residual blocks. The ConvNet gϕ has 17 million parameters.

1https://saic-violet.github.io/texturedavatar/
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3.3.6.2 Datasets.

We train neural avatars on several types of datasets. First, we consider collections of multi-view

videos registered in time and space, where 3D pose estimates can be obtained via triangulation of

2D poses. We use two subsets (corresponding to two persons from the 171026_pose2 scene) from

the CMU Panoptic dataset collection Joo et al. [2017], referring to them as CMU1 and CMU2

(both subsets have approximately four minutes / 7,200 frames in each camera view). We consider

two regimes: training on 16 cameras (CMU1-16 and CMU2-16) or six cameras (CMU1-6 and

CMU2-6). The evaluation is done on the hold-out cameras and hold-out parts of the sequence

(no overlap between train and test in terms of the cameras or body motion).

We have also captured our own multi-view sequences of three subjects using a rig of seven

cameras, spanning approximately 30◦. In one scenario, the training sets included six out of seven

cameras, where the duration of each video was approximately six minutes (11,000 frames). We

show qualitative results for the hold-out camera as well as from new viewpoints. In the other

scenario described below, training was done based on a video from a single camera.

Finally, we evaluate on two short monocular sequences from Alldieck et al. [2018b] and a

Youtube video in Figure 3.6.

3.3.6.3 Pre-processing.

Our system expects 3D human pose as input. For non-CMU datasets, we used the OpenPose-

compatible Cao et al. [2017], Simon et al. [2017] 3D pose formats, represented by 25 body joints,

21 joints for each hand and 70 facial landmarks. For the CMU Panoptic datasets, we use the

available 3D pose annotation as input (which has 19 rather than 25 body joints). To get a 3D

pose for non-CMU sequences we first apply the OpenPose 2D pose estimation engine to five

consecutive frames of the monocular RGB image sequence. Then we concatenate and lift the

estimated 2D poses to infer the 3D pose of the last frame by using a multi-layer perceptron model.

The perceptron is trained on the CMU 3D pose annotations (augmented with position of the feet

joints by triangulating the output of OpenPose) in orthogonal projection.

For foreground segmentation we use DeepLabv3+ with Xception-65 backbone Chen et al. [2018]

initially trained on PASCAL VOC 2012 Everingham et al. [2015] and fine-tuned on HumanParsing

dataset Liang et al. [2015a,b] to predict initial human body segmentation masks. We additionally

employ GrabCut Rother et al. [2004] with background/foreground model initialized by the

masks to refine object boundaries on the high-resolution images. Pixels covered by the skeleton

rasterization were always added to the foreground mask.
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GT Direct V2V Proposed GT Direct V2V Proposed

FIGURE 3.4: Comparison of the rendering quality for the Direct, V2V and proposed methods on
the CMU1-6 and CMU2-6 sequences. Images from six arbitrarily chosen cameras were used for
training. We generate the views onto the hold-out cameras which were not used during training.

The pose and camera in the lower right corner are in particular difficult for all the systems.

3.3.6.4 Baselines.

In the multi-video training scenario, we consider two other systems, against which ours is

compared. First, we take the video-to-video (V2V) system Wang et al. [2018b], using the authors’

code with minimal modifications that lead to improved performance. We provide it with the same

input as ours, and we use images with blacked-out background (according to our segmentation)

as desired output. On the CMU1-6 task, we have also evaluated a model with DensePose results

computed on the target frame given as input (alongside keypoints). Despite much stronger

(oracle-type) conditioning, the performance of this model in terms of considered metrics has not

improved in comparison with V2V that uses only body joints as input.

The video-to-video system employs several adversarial losses and an architecture different from

ours. Therefore we consider a more direct ablation (Direct), which has the same network architec-

ture that predicts RGB color and mask directly, rather than via body part assignments/coordinates.

The Direct system is trained using the same losses and in the same protocol as ours.

As for the single video case, two baseline systems, against which ours is compared, were

considered. On our own captured sequences, we compare our system against video-to-video

(V2V) system Wang et al. [2018b], whereas on sequences from Alldieck et al. [2018b] we

provide a qualitative comparison against the system of Alldieck et al. [2018b].

3.3.6.5 Multi-video comparison.

We compare the three systems (ours, V2V, Direct) in CMU1-16, CMU2-16, CMU1-6, CMU2-6.

Using the hold-out sequences/motions, we then evaluated two popular metrics, namely structured

self-similarity (SSIM) and Frechet Inception Distance (FID) between the results of each system

and the hold-out frames (with background removed using our segmentation algorithm). Our
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method outperforms the other two in terms of SSIM and underperforms V2V in terms of FID.

Representative examples are shown in Figure 3.4.

We have also performed user study using a crowd-sourcing website, where the users were shown

the results of ours and one of the other two systems on either side of the ground truth image

and were asked to pick a better match to the middle image. In the side-by-side comparison,

the results of our method were always preferred by the majority of crowd-sourcing users. We

note that our method suffers from a disadvantage both in the quantitative metrics and in the

user comparison, since it averages out lighting from different viewpoints. The more detailed

quantitative comparison is presented in Table 3.1.

We show more qualitative examples of our method for a variety of models in Figure 3.3 and some

qualitative comparisons with baselines in Figure 3.5.

3.3.6.6 Single video comparisons.

We also evaluate our system in a single video case. We consider the scenario, where we train the

model and transfer it to a new person by fitting it to a single video. We use single-camera videos

from one of the cameras in our rig. We then evaluate the model (and V2V baseline) on a hold-out

set of poses projected onto the camera from the other side of the rig (around 30◦ away). We thus

demonstrate that new models can be obtained using a single monocular video. For our models,

we consider transferring from CMU1-16.

We thus pretrain V2V and our system on CMU1-16 and use the obtained weights of gϕ as

initialization for fine-tuning to the single video in our dataset. The texture maps are initialized

from scratch as described above. Evaluating on hold-out camera and motion highlighted strong

advantage of our method. In the user study on two subjects, the result of our method has been

preferred to V2V in 55% and 65% of the cases. We further compare our method and the system of

Alldieck et al. [2018b] on the sequences from Alldieck et al. [2018b]. The qualitative comparison

is shown in Figure 3.6. In addition, we generate an avatar from a YouTube video. In this

set of experiments, the avatars were obtained by fine-tuning from the same avatar (shown in

Figure 3.5–left). Except for the considerable artefacts on hand parts, our system has generated

avatars that can generalize to new pose despite very short video input (300 frames in the case of

Alldieck et al. [2018b]).

3.3.6.7 Limitations

Our method suffers from certain limitations. The generalization ability is still limited, as it

does not generalize well when a person is rendered at a scale that is considerably different from
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GT Proposed V2V GT Proposed V2V

FIGURE 3.5: Results comparison for our multi-view sequences using a hold-out camera. Tex-
tured Neural Avatars and the images produced by the video-to-video (V2V) system correspond
to the same viewpoint. Both systems use a video from a single viewpoint for training. Electronic

zoom-in recommended.

FIGURE 3.6: Results on external monocular sequences. Rows 1-2: avatars for sequences from
Alldieck et al. [2018b] in an unseen pose (left – ours, right – Alldieck et al. [2018b]). Row 3 – the
textured avatar computed from a popular YouTube video (’PUMPED UP KICKS DUBSTEP’).

In general, our system is capable of learning avatars from monocular videos.

the training set (which can be partially addressed by rescaling prior to rendering followed by

cropping/padding postprocessing). Furthermore, textured avatars exhibit strong artefacts in the

presence of pose estimation errors on hands and faces. Finally, our method assumes constancy of

the surface color and ignores lighting effects. This can be potentially addressed by making our

textures view- and lighting-dependent Debevec et al. [1998], Lombardi et al. [2018a].
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3.4 Summary and Discussion

We have presented textured neural avatar approach to model the appearance of humans for

new camera views and new body poses. Our system takes the middle path between the recent

generation of methods that use ConvNets to map the pose to the image directly, and the traditional

approach that uses geometric modeling of the surface and superimpose the personalized texture

maps. This is achieved by learning a ConvNet that predicts texture coordinates of pixels in the

new view jointly with the texture within the end-to-end learning process. We demonstrate that

retaining an explicit shape and texture separation helps to achieve better generalization than direct

mapping approaches.

Our method suffers from certain limitations. The generalization ability is still limited, as it

does not generalize well when a person is rendered at a scale that is considerably different from

the training set (which can be partially addressed by rescaling prior to rendering followed by

cropping/padding postprocessing). Furthermore, textured avatars exhibit strong artefacts in the

presence of pose estimation errors on hands and faces. Finally, our method assumes constancy of

the surface color and ignores lighting effects. This can be potentially addressed by making our

textures view- and lighting-dependent Debevec et al. [1998], Lombardi et al. [2018a].
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Chapter 4

Few-Shot Adversarial Learning of
Realistic Neural Talking Head Models

Abstract

Several recent works have shown how highly realistic human head images can be obtained by

training convolutional neural networks to generate them. In order to create a personalized talking

head model, these works require training on a large dataset of images of a single person. However,

in many practical scenarios, such personalized talking head models need to be learned from a

few image views of a person, potentially even a single image. Here, we present a system with

such few-shot capability. It performs lengthy meta-learning on a large dataset of videos, and

after that is able to frame few- and one-shot learning of neural talking head models of previously

unseen people as adversarial training problems with high capacity generators and discriminators.

Crucially, the system is able to initialize the parameters of both the generator and the discriminator

in a person-specific way, so that training can be based on just a few images and done quickly,

despite the need to tune tens of millions of parameters. We show that such an approach is able

to learn highly realistic and personalized talking head models of new people and even portrait

paintings.

This work was published as: Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and Victor Lempitsky. Few-
Shot Adversarial Learning of Realistic Neural Talking Head Models. International Conference on Computer Vision
(ICCV), 2019.

Supplementary materials are hosted on the project page: https://samsunglabs.github.io/
talking_heads
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4.1 Introduction

Source Target → Landmarks → Result

FIGURE 4.1: The results of talking head image synthesis using face landmark tracks extracted
from a different video sequence of the same person (on the left), and using face landmarks of a
different person (on the right). The results are conditioned on the landmarks taken from the
target frame, while the source frame is an example from the training set. The talking head
models on the left were trained using eight frames, while the models on the right were trained in

a one-shot manner.

In this work, we consider the task of creating personalized photorealistic talking head models, i.e.

systems that can synthesize plausible video-sequences of speech expressions and mimics of a

particular individual. More specifically, we consider the problem of synthesizing photorealistic

personalized head images given a set of face landmarks, which drive the animation of the model.

Such ability has practical applications for telepresence, including video-conferencing and multi-

player games, as well as special effects industry. Synthesizing realistic talking head sequences

is known to be hard for two reasons. First, human heads have high photometric, geometric

and kinematic complexity. This complexity stems not only from modeling faces (for which a

large number of modeling approaches exist) but also from modeling mouth cavity, hair, and

garments. The second complicating factor is the acuteness of the human visual system towards

even minor mistakes in the appearance modeling of human heads (the so-called uncanny valley
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effect Mori [1970]). Such low tolerance to modeling mistakes explains the current prevalence of

non-photorealistic cartoon-like avatars in many practically-deployed teleconferencing systems.

To overcome the challenges, several works have proposed to synthesize articulated head sequences

by warping a single or multiple static frames. Both classical warping algorithms Averbuch-Elor

et al. [2017], Seitz and Dyer [1996] and warping fields synthesized using machine learning

(including deep learning) Ganin et al. [2016], Shu et al. [2018], Wiles et al. [2018] can be used

for such purposes. While warping-based systems can create talking head sequences from as little

as a single image, the amount of motion, head rotation, and disocclusion that they can handle

without noticeable artifacts is limited.

Direct (warping-free) synthesis of video frames using adversarially-trained deep convolutional

networks (ConvNets) presents the new hope for photorealistic talking heads. Very recently, some

remarkably realistic results have been demonstrated by such systems Isola et al. [2017], Kim et al.

[2018a], Wang et al. [2018c]. However, to succeed, such methods have to train large networks,

where both generator and discriminator have tens of millions of parameters for each talking head.

These systems, therefore, require a several-minutes-long video Kim et al. [2018a], Wang et al.

[2018c] or a large dataset of photographs Isola et al. [2017] as well as hours of GPU training in

order to create a new personalized talking head model. While this effort is lower than the one

required by systems that construct photo-realistic head models using sophisticated physical and

optical modeling Alexander et al. [2010b], it is still excessive for most practical telepresence

scenarios, where we want to enable users to create their personalized head models with as little

effort as possible.

In this work, we present a system for creating talking head models from a handful of photographs

(so-called few-shot learning) and with limited training time. In fact, our system can generate a

reasonable result based on a single photograph (one-shot learning), while adding a few more

photographs increases the fidelity of personalization. Similarly to Isola et al. [2017], Kim et al.

[2018a], Wang et al. [2018c], the talking heads created by our model are deep ConvNets that

synthesize video frames in a direct manner by a sequence of convolutional operations rather than

by warping. The talking heads created by our system can, therefore, handle a large variety of

poses that goes beyond the abilities of warping-based systems.

The few-shot learning ability is obtained through extensive pre-training (meta-learning) on a large

corpus of talking head videos corresponding to different speakers with diverse appearance. In the

course of meta-learning, our system simulates few-shot learning tasks and learns to transform

landmark positions into realistically-looking personalized photographs, given a small training

set of images with this person. After that, a handful of photographs of a new person sets up a

new adversarial learning problem with high-capacity generator and discriminator pre-trained via

meta-learning. The new adversarial problem converges to the state that generates realistic and

personalized images after a few training steps.

50



Chapter 4 Few-Shot Adversarial Learning of Realistic Neural Talking Head Models

In the experiments, we provide comparisons of talking heads created by our system with al-

ternative neural talking head models Isola et al. [2017], Wiles et al. [2018] via quantitative

measurements and a user study, where our approach generates images of sufficient realism and

personalization fidelity to deceive the study participants. We demonstrate several uses of our

talking head models, including video synthesis using landmark tracks extracted from video

sequences of the same person, as well as puppeteering (video synthesis of a certain person based

on the face landmark tracks of a different person).

4.2 Related work

4.2.1 Systems based on statistical shape modeling

A huge body of works is devoted to statistical modeling of the appearance of human faces Blanz

et al. [1999], with remarkably good results obtained both with classical techniques Thies et al.

[2016b] and, more recently, with deep learning Lombardi et al. [2018a], Nagano et al. [2019]

(to name just a few). While modeling faces is a highly related task to talking head modeling,

the two tasks are not identical, as the latter also involves modeling non-face parts such as hair,

neck, mouth cavity and often shoulders/upper garment. These non-face parts cannot be handled

by some trivial extension of the face modeling methods since they are much less amenable

for registration and often have higher variability and higher complexity than the face part. In

principle, the results of face modeling Thies et al. [2016b] or lips modeling Suwajanakorn et al.

[2017] can be stitched into an existing head video. Such design, however, does not allow full

control over the head rotation in the resulting video and therefore does not result in a fully-fledged

talking head system.

4.2.2 Generative adversarial networks

The design of our system borrows a lot from the recent progress in generative modeling of images.

Thus, our architecture uses adversarial training Goodfellow et al. [2014a] and, more specifically,

the ideas behind conditional discriminators Mehdi Mirza [2014], including projection discrimina-

tors Takeru Miyato [2018]. Our meta-learning stage uses the adaptive instance normalization

mechanism Huang and Belongie [2017], which was shown to be useful in large-scale conditional

generation tasks Brock et al. [2019a], Tero Karras [2018]. We also find an idea of content-style

decomposition Huang et al. [2018] to be extremely useful for separating the texture from the

body pose.
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4.2.3 Few-shot training via meta-learning

The model-agnostic meta-learner (MAML) Finn et al. [2017] uses meta-learning to obtain the ini-

tial state of an image classifier, from which it can quickly converge to image classifiers of unseen

classes, given few training samples. This high-level idea is also utilized by our method, though

our implementation of it is rather different. Several works have further proposed to combine

adversarial training with meta-learning. Thus, data-augmentation GAN Antoniou et al. [2018],

MetaGAN Zhang et al. [2018b], adversarial meta-learning Yin et al. [2018] use adversarially-

trained networks to generate additional examples for classes unseen at the meta-learning stage.

While these methods are focused on boosting the few-shot classification performance, our method

deals with the training of image generation models using similar adversarial objectives. To

summarize, we bring the adversarial fine-tuning into the meta-learning framework. The former

is applied after we obtain initial state of the generator and the discriminator networks via the

meta-learning stage.

Finally, very related to ours are the two recent works on text-to-speech generation Arik et al.

[2018], Jia et al. [2018]. Their setting (few-shot learning of generative models) and some of the

components (standalone embedder network, generator fine-tuning) are are also used in our case.

Our work differs in the application domain, the use of adversarial learning, its adaptation to the

meta-learning process and implementation details.

4.3 Methods

4.3.1 Architecture and notation

The meta-learning stage of our approach assumes the availability of M video sequences, contain-

ing talking heads of different people. We denote with xi the i-th video sequence and with xi(t)

its t-th frame. During the learning process, as well as during test time, we assume the availability

of the face landmarks’ locations for all frames (we use an off-the-shelf face alignment code Bulat

and Tzimiropoulos [2017a] to obtain them). The landmarks are rasterized into three-channel

images using a predefined set of colors to connect certain landmarks with line segments. We

denote with yi(t) the resulting landmark image computed for xi(t).

In the meta-learning stage of our approach, the following three networks are trained (Figure 4.2):

• The embedder E(xi(s),yi(s); ϕ) takes a video frame xi(s), an associated landmark image

yi(s) and maps these inputs into an N -dimensional vector êi(s). Here, ϕ denotes network

parameters that are learned in the meta-learning stage. In general, during meta-learning, we aim

to learn ϕ such that the vector êi(s) contains video-specific information (such as the person’s
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FIGURE 4.2: Our meta-learning architecture involves the embedder network that maps head im-
ages (with estimated face landmarks) to the embedding vectors, which contain pose-independent
information. The generator network maps input face landmarks into output frames through the
set of convolutional layers, which are modulated by the embedding vectors via adaptive instance
normalization. During meta-learning, we pass sets of frames from the same video through the
embedder, average the resulting embeddings and use them to predict adaptive parameters of the
generator. Then, we pass the landmarks of a different frame through the generator, comparing
the resulting image with the ground truth. Our objective function includes perceptual and
adversarial losses, with the latter being implemented via a conditional projection discriminator.

identity) that is invariant to the pose and mimics in a particular frame s. We denote embedding

vectors computed by the embedder as êi.

• The generator G(yi(t), êi; ψ,P) takes the landmark image yi(t) for the video frame not seen

by the embedder, the predicted video embedding êi and outputs a synthesized video frame x̂i(t).

The generator is trained to maximize the similarity between its outputs and the ground truth

frames. All parameters of the generator are split into two sets: the person-generic parameters

ψ, and the person-specific parameters ψ̂i. During meta-learning, only ψ are trained directly,

while ψ̂i are predicted from the embedding vector êi using a trainable projection matrix P:

ψ̂i = Pêi.

• The discriminator D(xi(t),yi(t), i; θ,W,w0, b) takes a video frame xi(t), an associated

landmark image yi(t) and the index of the training sequence i. Here, θ,W,w0 and b denote

the learnable parameters associated with the discriminator. The discriminator contains a

ConvNet part V (xi(t),yi(t); θ) that maps the input frame and the landmark image into an N -

dimensional vector. The discriminator predicts a single scalar (realism score) r, that indicates

whether the input frame xi(t) is a real frame of the i-th video sequence and whether it matches

the input pose yi(t), based on the output of its ConvNet part and the parameters W,w0, b.

4.3.2 Meta-learning stage

During the meta-learning stage of our approach, the parameters of all three networks are trained

in an adversarial fashion. It is done by simulating episodes of K-shot learning (K = 8 in our
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experiments). In each episode, we randomly draw a training video sequence i and a single frame

t from that sequence. In addition to t, we randomly draw additional K frames s1, s2, . . . , sK
from the same sequence. We then compute the estimate êi of the i-th video embedding by simply

averaging the embeddings êi(sk) predicted for these additional frames:

êi =
1

K

K∑
k=1

E (xi(sk),yi(sk); ϕ) . (4.1)

A reconstruction x̂i(t) of the t-th frame, based on the estimated embedding êi, is then computed:

x̂i(t) = G (yi(t), êi; ψ,P) . (4.2)

The parameters of the embedder and the generator are then optimized to minimize the following

objective that comprises the content term, the adversarial term, and the embedding match term:

L(ϕ, ψ,P, θ,W,w0, b) = LCNT(ϕ, ψ,P)+ (4.3)

LADV(ϕ, ψ,P, θ,W,w0, b) + LMCH(ϕ,W) .

In (4.3), the content loss term LCNT measures the distance between the ground truth image xi(t)

and the reconstruction x̂i(t) using the perceptual similarity measure Johnson et al. [2016a], corre-

sponding to VGG19 Simonyan and Zisserman [2015a] network trained for ILSVRC classification

and VGGFace Parkhi et al. [2015a] network trained for face verification. The loss is calculated

as the weighted sum of L1 losses between the features of these networks.

The adversarial term in (4.3) corresponds to the realism score computed by the discriminator,

which needs to be maximized, and a feature matching term Wang et al. [2018e], which essentially

is a perceptual similarity measure, computed using discriminator (it helps with the stability of the

training):

LADV(ϕ, ψ,P, θ,W,w0, b) = (4.4)

−D(x̂i(t),yi(t), i; θ,W,w0, b) + LFM .

Following the projection discriminator idea Takeru Miyato [2018], the columns of the matrix W

contain the embeddings that correspond to individual videos. The discriminator first maps its

inputs to an N -dimensional vector V (xi(t),yi(t); θ) and then computes the realism score as:

D(x̂i(t),yi(t), i; θ,W,w0, b) = (4.5)

V (x̂i(t),yi(t); θ)
T (Wi +w0) + b ,
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where Wi denotes the i-th column of the matrix W. At the same time, w0 and b do not depend

on the video index, so these terms correspond to the general realism of x̂i(t) and its compatibility

with the landmark image yi(t).

Thus, there are two kinds of video embeddings in our system: the ones computed by the embedder,

and the ones that correspond to the columns of the matrix W in the discriminator. The match term

LMCH(ϕ,W) in (4.3) encourages the similarity of the two types of embeddings by penalizing

the L1-difference between E (xi(sk),yi(sk); ϕ) and Wi.

As we update the parameters ϕ of the embedder and the parameters ψ of the generator, we also

update the parameters θ,W,w0, b of the discriminator. The update is driven by the minimization

of the following hinge loss, which encourages the increase of the realism score on real images

xi(t) and its decrease on synthesized images x̂i(t):

LDSC(ϕ, ψ,P, θ,W,w0, b) = (4.6)

max(0, 1 +D(x̂i(t),yi(t), i; ϕ, ψ, θ,W,w0, b))+

max(0, 1−D(xi(t),yi(t), i; θ,W,w0, b)) .

The objective (4.6) thus compares the realism of the fake example x̂i(t) and the real example

xi(t) and then updates the discriminator parameters to push these scores below −1 and above +1

respectively. The training proceeds by alternating updates of the embedder and the generator that

minimize the losses LCNT,LADV and LMCH with the updates of the discriminator that minimize

the loss LDSC.

4.3.3 Few-shot learning by fine-tuning

Once the meta-learning has converged, our system can learn to synthesize talking head sequences

for a new person, unseen during meta-learning stage. As before, the synthesis is conditioned on

the landmark images. The system is learned in a few-shot way, assuming that T training images

x(1),x(2), . . . ,x(T ) (e.g. T frames of the same video) are given and that y(1),y(2), . . . ,y(T )

are the corresponding landmark images. Note that the number of frames T needs not to be equal

to K used in the meta-learning stage.

Naturally, we can use the meta-learned embedder to estimate the embedding for the new talking

head sequence:

êNEW =
1

T

T∑
t=1

E(x(t),y(t); ϕ) , (4.7)

reusing the parameters ϕ estimated in the meta-learning stage. A straightforward way to generate

new frames, corresponding to new landmark images, is then to apply the generator using the

estimated embedding êNEW and the meta-learned parameters ψ, as well as projection matrix P.
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By doing so, we have found out that the generated images are plausible and realistic, however,

there often is a considerable identity gap that is not acceptable for most applications aiming for

high personalization degree.

This identity gap can often be bridged via the fine-tuning stage. The fine-tuning process can be

seen as a simplified version of meta-learning with a single video sequence and a smaller number

of frames. The fine-tuning process involves the following components:

• The generator G(y(t), êNEW; ψ,P) is now replaced with G′(y(t); ψ,ψ′). As before, it takes

the landmark image y(t) and outputs the synthesized frame x̂(t). Importantly, the person-

specific generator parameters, which we now denote with ψ′, are now directly optimized

alongside the person-generic parameters ψ. We still use the computed embeddings êNEW and

the projection matrix P estimated at the meta-learning stage to initialize ψ′, i.e. we start with

ψ′ = PêNEW.

• The discriminator D′(x(t),y(t); θ,w′, b), as before, computes the realism score. Parameters θ

of its ConvNet part V (x(t),y(t); θ) and bias b are initialized to the result of the meta-learning

stage. The initialization of w′ is discussed below.

During fine-tuning, the realism score of the discriminator is obtained in a similar way to the

meta-learning stage:

D′(x̂(t),y(t); θ,w′, b) = (4.8)

V (x̂(t),y(t); θ)Tw′ + b .

As can be seen from the comparison of expressions (4.5) and (4.8), the role of the vector w′

in the fine-tuning stage is the same as the role of the vector Wi + w0 in the meta-learning

stage. For the intiailization, we do not have access to the analog of Wi for the new personality

(since this person is not in the meta-learning dataset). However, the match term LMCH in the

meta-learning process ensures the similarity between the discriminator video-embeddings and

the vectors computed by the embedder. Hence, we can initialize w′ to the sum of w0 and êNEW.

Once the new learning problem is set up, the loss functions of the fine-tuning stage follow directly

from the meta-learning variants. Thus, the generator parameters ψ and ψ′ are optimized to

minimize the simplified objective:

L′(ψ,ψ′, θ,w′, b) = (4.9)

L′
CNT(ψ,ψ

′) + L′
ADV(ψ,ψ

′, θ,w′, b) ,
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where t ∈ {1 . . . T} is the number of the training example. The discriminator parameters

θ,wNEW, b are optimized by minimizing the same hinge loss as in (4.6):

L′
DSC(ψ,ψ

′, θ,w′, b) = (4.10)

max(0, 1 +D(x̂(t),y(t); ψ,ψ′, θ,w′, b))+

max(0, 1−D(x(t),y(t); θ,w′, b)) .

In most situations, the fine-tuned generator provides a much better fit of the training sequence.

The initialization of all parameters via the meta-learning stage is also crucial. As we show in

the experiments, such initialization injects a strong realistic talking head prior, which allows our

model to extrapolate and predict realistic images for poses with varying head poses and facial

expressions.

4.3.4 Implementation details

We base our generator network G(yi(t), êi;ψ,P) on the image-to-image translation architecture

proposed by Johnson et. al. Johnson et al. [2016a], but replace downsampling and upsampling

layers with residual blocks similarly to Brock et al. [2019a] (with batch normalization Ioffe and

Szegedy [2015] replaced by instance normalization Ulyanov et al. [2016]). The person-specific

parameters ψ̂i serve as the affine coefficients of instance normalization layers, following the

adaptive instance normalization technique proposed in Huang and Belongie [2017], though we

still use regular (non-adaptive) instance normalization layers in the downsampling blocks that

encode landmark images yi(t).

For the embedderE(xi(s),yi(s);ϕ) and the convolutional part of the discriminator V (xi(t),yi(t); θ),

we use similar networks, which consist of residual downsampling blocks (same as the ones used

in the generator, but without normalization layers). The discriminator network, compared to the

embedder, has an additional residual block at the end, which operates at 4× 4 spatial resolution.

To obtain the vectorized outputs in both networks, we perform global sum pooling over spatial

dimensions followed by ReLU.

We use spectral normalization Takeru et al. [2018] for all convolutional and fully connected layers

in all the networks. We also use self-attention blocks, following Brock et al. [2019a] and Zhang

et al. [2019]. They are inserted at 32 × 32 spatial resolution in all downsampling parts of the

networks and at 64× 64 resolution in the upsampling part of the generator.

For the calculation of LCNT, we evaluate L1 loss between activations of Conv1,6,11,20,29

VGG19 layers and Conv1,6,11,18,25 VGGFace layers for real and fake images. We sum

these losses with the weights equal to 1.5 · 10−1 for VGG19 and 2.5 · 10−2 for VGGFace terms.
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Method (T) FID↓ SSIM↑ CSIM↑ USER↓
VoxCeleb1

X2Face (1) 45.8 0.68 0.16 0.82
Pix2pixHD (1) 42.7 0.56 0.09 0.82
Ours (1) 43.0 0.67 0.15 0.62
X2Face (8) 51.5 0.73 0.17 0.83
Pix2pixHD (8) 35.1 0.64 0.12 0.79
Ours (8) 38.0 0.71 0.17 0.62
X2Face (32) 56.5 0.75 0.18 0.85
Pix2pixHD (32) 24.0 0.70 0.16 0.71
Ours (32) 29.5 0.74 0.19 0.61

VoxCeleb2
Ours-FF (1) 46.1 0.61 0.42 0.43
Ours-FT (1) 48.5 0.64 0.35 0.46
Ours-FF (8) 42.2 0.64 0.47 0.40
Ours-FT (8) 42.2 0.68 0.42 0.39
Ours-FF (32) 40.4 0.65 0.48 0.38
Ours-FT (32) 30.6 0.72 0.45 0.33

TABLE 4.1: Quantitative comparison of methods on different datasets with multiple few-shot
learning settings. Please refer to the text for more details and discussion.

We use Caffe Jia et al. [2014] trained versions for both of these networks. For LFM, we use

activations after each residual block of the discriminator network and the weights equal to 10.

Finally, for LMCH we also set the weight to 10.

We set the minimum number of channels in convolutional layers to 64 and the maximum number

of channels as well as the size N of the embedding vectors to 512. In total, the embedder has

15 million parameters, the generator has 38 million parameters. The convolutional part of the

discriminator has 20 million parameters. The networks are optimized using Adam Kingma and

Ba [2014]. We set the learning rate of the embedder and the generator networks to 5× 10−5 and

to 2 × 10−4 for the discriminator, doing two update steps for the latter per one of the former,

following Zhang et al. [2019].

4.4 Experiments

Two datasets with talking head videos are used for quantitative and qualitative evaluation:

VoxCeleb1 Nagrani et al. [2017] (256p videos at 1 fps) and VoxCeleb2 Chung et al. [2018a]

(224p videos at 25 fps), with the latter having approximately 10 times more videos than the

former. VoxCeleb1 is used for comparison with baselines and ablation studies, while by using

VoxCeleb2 we show the full potential of our approach.
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4.4.1 Metrics.

For the quantitative comparisons, we fine-tune all models on few-shot learning sets of size T for

a person not seen during meta-learning (or pretraining) stage. After the few-shot learning, the

evaluation is performed on the hold-out part of the same sequence (so-called self-reenactment

scenario). For the evaluation, we uniformly sampled 50 videos from VoxCeleb test sets and 32

hold-out frames for each of these videos (the fine-tuning and the hold-out parts do not overlap).

We use multiple comparison metrics to evaluate photo-realism and identity preservation of

generated images. Namely, we use Frechet-inception distance (FID) Heusel et al. [2017a], mostly

measuring perceptual realism, structured similarity (SSIM) Wang et al. [2004a], measuring

low-level similarity to the ground truth images, and cosine similarity (CSIM) between embedding

vectors of the state-of-the-art face recognition network Deng et al. [2019] for measuring identity

mismatch (note that this network has quite different architecture from VGGFace used within

content loss calculation during training).

We also perform a user study in order to evaluate perceptual similarity and realism of the results as

seen by the human respondents. We show people the triplets of images of the same person taken

from three different video sequences. Two of these images are real and one is fake, produced

by one of the methods, which are being compared. We ask the user to find the fake image given

that all of these images are of the same person. This evaluates both photo-realism and identity

preservation because the user can infer the identity from the two real images (and spot an identity

mismatch even if the generated image is perfectly realistic). We use the user accuracy (success

rate) as our metric. The lower bound here is the accuracy of one third (when users cannot spot

fakes based on non-realism or identity mismatch and have to guess randomly). Generally, we

believe that this user-driven metric (USER) provides a much better idea of the quality of the

methods compared to FID, SSIM, or CSIM.

4.4.2 Methods.

On the VoxCeleb1 dataset we compare our model against two other systems: X2Face Wiles et al.

[2018] and Pix2pixHD Wang et al. [2018e]. For X2Face, we have used the model, as well as

pretrained weights, provided by the authors (in the original paper it was also trained and evaluated

on the VoxCeleb1 dataset). For Pix2pixHD, we pretrained the model from scratch on the whole

dataset for the same amount of iterations as our system without any changes to thetraining

pipeline proposed by the authors. We picked X2Face as a strong baseline for warping-based

methods and Pix2pixHD for direct synthesis methods.

In our comparison, we evaluate the models in several scenarios by varying the number of frames T

used in few-shot learning. X2Face, as a feed-forward method, is simply initialized via the training
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1

8

32

T Source Ground truth X2Face Pix2pixHD Ours

FIGURE 4.3: Comparison on the VoxCeleb1 dataset. For each of the compared methods, we
perform one- and few-shot learning on a video of a person not seen during meta-learning or
pretraining. We set the number of training frames equal to T (the leftmost column). One of the
training frames is shown in the source column. Next columns show ground truth image, taken
from the test part of the video sequence, and the generated results of the compared methods.

frames, while Pix2pixHD and our model are being additionally fine-tuned for 40 epochs on the

few-shot set. Notably, in the comparison, X2Face uses dense correspondence field, computed on

the ground truth image, to synthesize the generated one, while our method and Pix2pixHD use

very sparse landmark information, which arguably gives X2Face an unfair advantage.

4.4.3 Comparison results.

We perform comparison with baselines in three different setups, with 1, 8 and 32 frames in the

fine-tuning set. Test set, as mentioned before, consists of 32 hold-out frames for each of the 50

test video sequences. Moreover, for each test frame we sample two frames at random from the

other video sequences with the same person. These frames are used in triplets alongside with

fake frames for user-study.

As we can see in Table 4.1-Top, baselines consistently outperform our method on the two of

our similarity metrics. We argue that this is intrinsic to the methods themselves: X2Face uses

L2 loss during optimization Wiles et al. [2018], which leads to a good SSIM score. On the

other hand, Pix2pixHD maximizes only perceptual metric, without identity preservation loss,

leading to minimization of FID, but has bigger identity mismatch, as seen from the CSIM column.

Moreover, these metrics do not correlate well with human perception, since both of these methods

produce uncanny valley artifacts, as can be seen from qualitative comparison Figure 4.3 and the
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1

8

32

T Source Ground truth Ours-FF
Ours-FT

before
fine-tuning

Ours-FT
after

fine-tuning

FIGURE 4.4: Results for our best models on the VoxCeleb2 dataset. The number of training
frames is, again, equal to T (the leftmost column) and the example training frame in shown
in the source column. Next columns show ground truth image and the results for Ours-FF
feed-forward model, Ours-FT model before and after fine-tuning. While the feed-forward
variant allows fast (real-time) few-shot learning of new avatars, fine-tuning ultimately provides

better realism and fidelity.

user study results. Cosine similarity, on the other hand, better correlates with visual quality, but

still favours blurry, less realistic images, and that can also be seen by comparing Table 4.1-Top

with the results presented in Figure 4.3.

While the comparison in terms of the objective metrics is inconclusive, the user study (that

included 4800 triplets, each shown to 5 users) clearly reveals the much higher realism and

personalization degree achieved by our method.

We have also carried out the ablation study of our system and the comparison of the few-shot

learning timings. Both are provided in the Supplementary material.

4.4.4 Large-scale results.

We then scale up the available data and train our method on a larger VoxCeleb2 dataset. Here, we

train two variants of our method. FF (feed-forward) variant is trained for 150 epochs without the

embedding matching loss LMCH and, therefore, we only use it without fine-tuning (by simply

predicting adaptive parameters ψ′ via the projection of the embedding êNEW). The FT variant

is trained for half as much (75 epochs) but with LMCH, which allows fine-tuning. We run the
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Source Generated images

FIGURE 4.5: Bringing still photographs to life. We show the puppeteering results for one-shot
models learned from photographs in the source column. Driving poses were taken from the

VoxCeleb2 dataset. Digital zoom recommended.

evaluation for both of these models since they allow to trade off few-shot learning speed versus

the results quality. Both of them achieve considerably higher scores, compared to smaller-scale

models trained on VoxCeleb1. Notably, the FT model reaches the lower bound of 0.33 for the

user study accuracy in T = 32 setting, which is a perfect score.

Generally, judging by the results of comparisons (Table 4.1-Bottom) and the visual assessment,

the FF model performs better for low-shot learning (e.g. one-shot), while the FT model achieves

higher quality for bigger T via adversarial fine-tuning.

4.4.5 Puppeteering results.

Finally, we show the results for the puppeteering of photographs and paintings. For that, we

evaluate the model, trained in one-shot setting, on poses from test videos of the VoxCeleb2

dataset. We rank these videos using CSIM metric, calculated between the original image and the

generated one. This allows us to find persons with similar geometry of the landmarks and use

them for the puppeteering. The results can be seen in Figure 4.5.
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4.4.6 Limitations

Currently, the key limitations of our method are the mimics representation (in particular, the

current set of landmarks does not represent the gaze in any way) and the lack of landmark

adaptation. Using landmarks from a different person leads to a noticeable personality mismatch.

So, if one wants to create “fake” puppeteering videos without such mismatch, some landmark

adaptation is needed. We note, however, that many applications do not require puppeteering

a different person and instead only need the ability to drive one’s own talking head. For such

scenario, our approach already provides a high-realism solution.

4.5 Conclusion

We have presented a framework for meta-learning of adversarial generative models, which is able

to train highly-realistic virtual talking heads in the form of deep generator networks. Crucially,

only a handful of photographs (as little as one) is needed to create a new model, whereas the

model trained on 32 images achieves perfect realism and personalization score in our user study

(for 224p static images).

Currently, the key limitations of our method are the mimics representation (in particular, the

current set of landmarks does not represent the gaze in any way) and the lack of landmark

adaptation. Using landmarks from a different person leads to a noticeable personality mismatch.

So, if one wants to create “fake” puppeteering videos without such mismatch, some landmark

adaptation is needed. We note, however, that many applications do not require puppeteering

a different person and instead only need the ability to drive one’s own talking head. For such

scenario, our approach already provides a high-realism solution.
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Chapter 5

Fast Bi-layer Neural Synthesis of
One-Shot Realistic Head Avatars

Abstract

We propose a neural rendering-based system that creates head avatars from a single photograph.

Our approach models a person’s appearance by decomposing it into two layers. The first layer is

a pose-dependent coarse image that is synthesized by a small neural network. The second layer

is defined by a pose-independent texture image that contains high-frequency details. The texture

image is generated offline, warped and added to the coarse image to ensure a high effective

resolution of synthesized head views. We compare our system to analogous state-of-the-art

systems in terms of visual quality and speed. The experiments show significant inference speedup

over previous neural head avatar models for a given visual quality. We also report on a real-time

smartphone-based implementation of our system.

This work was published as: Egor Zakharov, Aleksei Ivakhnenko, Aliaksandra Shysheya, and Victor Lempitsky.
Fast Bi-layer Neural Synthesis of One-Shot Realistic Head Avatars. European Conference on Computer Vision
(ECCV), 2020.

Supplementary materials are hosted on the project page: https://samsunglabs.github.io/
bilayer_model
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5.1 Introduction

•4ms on NVIDIA P40 (FP32)
•42ms on Adreno 640 (FP16)

53ms on 
NVIDIA P40

Once per avatar Once per frame

New pose

Initialization
Module

Inference
Module

FIGURE 5.1: Our new architecture creates photorealistic neural avatars in one-shot mode and
achieves considerable speed-up over previous approaches. Rendering takes just 42 milliseconds

on Adreno 640 (Snapdragon 855) GPU, FP16 mode.

Personalized head avatars driven by keypoints or other mimics/pose representation is a technology

with manifold applications in telepresence, gaming, AR/VR applications, and special effects

industry. Modeling human head appearance is a daunting task, due to complex geometric and

photometric properties of human heads including hair, mouth cavity and surrounding clothing.

For at least two decades, creating head avatars (talking head models) was done with computer

graphics tools using mesh-based surface models and texture maps. The resulting systems fall

into two groups. Some Alexander et al. [2010a] are able to model specific people with very

high realism after significant acquisition and design efforts are spent on those particular people.

Others Hu et al. [2017] are able to create talking head models from as little as a single photograph,

but do not aim to achieve photorealism.

In recent years, neural talking heads have emerged as an alternative to classic computer graphics

pipeline striving to achieve both high realism and ease of acquisition. The first works required a

video Kim et al. [2018a], Wang et al. [2018c] or even multiple videos Lombardi et al. [2018a],

Suwajanakorn et al. [2017] to create a neural network that can synthesize talking head view

of a person. Most recently, several works Fu et al. [2019], Ha et al. [2019], Siarohin et al.

[2019c,c], Tripathy et al. [2019], Wang et al. [2019], Zakharov et al. [2019] presented systems

that create neural head avatars from a handful of photographs (few-shot setting) or a single

photograph (one-shot setting), causing both excitement and concerns about potential misuse of

such technology.

Existing few-shot neural head avatar systems achieve remarkable results. Yet, unlike some of the

graphics-based avatars, the neural systems are too slow to be deployed on mobile devices and

require a high-end desktop GPU to run in real-time. We note that most application scenarios of

neural avatars, especially those related to telepresence, would benefit highly from the capability

to run in real-time on a mobile device. While in theory neural architectures within state-of-the-art

65



Chapter 5 Fast Bi-layer Neural Synthesis of One-Shot Realistic Head Avatars

approaches can be scaled down in order to run faster, we show that such scaling down results in a

very unfavourable speed-realism tradeoff.

In this work, we address the speed limitataions of one-shot neural head avatar systems, and

develop an approach that can run much faster than previous models. To achieve this, we adopt a

bi-layer representation, where the image of an avatar in a new pose is generated by summing

two components: a coarse image directly predicted by a rendering network, and a warped texture

image. While the warping itself is also predicted by the rendering network, the texture is estimated

at the time of avatar creation and is static at runtime. To enable the few-shot capability, we use

the meta-learning stage on a dataset of videos, where we (meta)-train the inference (rendering)

network, the embedding network, as well as the texture generation network.

The separation of the target frames into two layers allows us both to improve the effective

resolution and the speed of neural rendering. This is because we can use off-line avatar generation

stage to synthesize high-resolution texture, while at test time both the first component (coarse

image) and the warping of the texture need not contain high frequency details and can therefore be

predicted by a relatively small rendering network. These advantages of our system are validated

by extensive comparisons with previously proposed neural avatar systems. We also report on

the smartphone-based real-time implementation of our system, which was beyond the reach of

previously proposed models.

5.2 Related work

5.2.1 Few and multi-shot head avatars

As discussed above, methods for the neural synthesis of realistic talking head sequences can be

divided into many-shot (i.e. requiring a video or multiple videos of the target person for learning

the model) Isola et al. [2017], Kim et al. [2018a], Lombardi et al. [2018a], Wang et al. [2018c]

and a more recent group of few-shot/singe-shot methods capable of acquiring the model of a

person from a single or a handful photographs Ha et al. [2019], Siarohin et al. [2019c], Tripathy

et al. [2019], Wang et al. [2019], Wiles et al. [2018], Zakharov et al. [2019]. Our method falls into

the latter category as we focus on the one-shot scenario (modeling from a single photograph).

5.2.2 Direct synthesis approach

Along another dimension, these methods can be divided according to the architecture of the

generator network. Thus, several methods Kim et al. [2018a], Tripathy et al. [2019], Wang

et al. [2018c], Zakharov et al. [2019] use generators based on direct synthesis, where the image
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is generated using a sequence of convolutional operators, interleaved with elementwise non-

linearities, and normalizations. Person identity information may be injected into such architecture,

either with a lengthy learning process (in the many-shot scenario) Kim et al. [2018a], Wang et al.

[2018c] or by using adaptive normalizations conditioned on person embeddings Fu et al. [2019],

Tripathy et al. [2019], Zakharov et al. [2019]. The method Zakharov et al. [2019] effectively

combines both approaches by injecting identity through adaptive normalizations, and then fine-

tuning the resulting generator on the few-shot learning set. The direct synthesis approach for

human heads can be traced back to Suwajanakorn et al. [2017] that generated lips of a famous

person in the talking head sequence, and further towards first works on conditional convolutional

neural synthesis of generic objects such as Dosovitskiy et al. [2015].

5.2.3 Differentiable warping approach

The alternative to the direct image synthesis is to use differentiable warping Jaderberg et al. [2015]

inside the architecture. The X2Face approach Wiles et al. [2018] applies warping twice, first

from the source image to a standardized image (texture), and then to the target image. The Codec

Avatar system Lombardi et al. [2018a] synthesizes a pose-dependent texture for a simplified

mesh geometry. The MarioNETte system Ha et al. [2019] applies warping to the intermediate

feature representations. The Few-shot Vid-to-Vid system Wang et al. [2019] combines direct

synthesis with the warping of the previous frame in order to obtain temporal continuity. The First

Order Motion Model Siarohin et al. [2019c] learns to warp the intermediate feature representation

of the generator based on keypoints that are learned from data. Beyond heads, differentiable

warping/texturing have recently been used for full body re-rendering Neverova et al. [2018],

Shysheya et al. [2019]. Earlier, DeepWarp system Ganin et al. [2016] used neural warping to alter

the appearance of eyes for the purpose of gaze redirection, and Zhou et al. [2016] also used neural

warping for the resynthesis of generic scenes. Our method combines direct image synthesis with

warping in a new way, as we obtain the fine layer by warping an RGB pose-independent texture,

while the coarse-grained pose-dependent RGB component is synthesized by a neural network

directly.

5.3 Methods

We use video sequences annotated with keypoints and, optionally, segmentation masks, for

training. We denote t-th frame of the i-th video sequence as xi(t), corresponding keypoints as

yi(t), and segmentation masks as mi(t) We will use an index t to denote a target frame, and s –

a source frame. Also, we mark all tensors, related to generated images, with a hat symbol, ex.

x̂i(t). We assume the spatial size of all frames to be constant and denote it as H ×W . In some
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Result

…

…

Embeddings New pose

Image composition

FIGURE 5.2: During training, we first encode a source frame into the embeddings, then we
initialize adaptive parameters of both inference and texture generators, and predict a high-
frequency texture. These operations are only done once per avatar. Target keypoints are then
used to predict a low-frequency component of the output image and a warping field, which,
applied to the texture, provides the high-frequency component. Two components are then added

together to produce an output.

modules, input keypoints are encoded as an RGB image, which is a standard approach in a large

body of previous works Ha et al. [2019], Wang et al. [2019], Zakharov et al. [2019]. In this work,

we will call it a landmark image. But, contrary to these approaches, at test-time we input the

keypoints into the inference generator directly as a vector. This allows us to significantly reduce

the inference time of the method.

5.3.1 Architecture

In our approach, the following networks are trained in an end-to-end fashion:

• The embedder network E
(
xi(s),yi(s)

)
encodes a concatenation of a source image and a

landmark image into a stack of embeddings {êik(s)}, which are used for initialization of

the adaptive parameters inside the generators.

• The texture generator network Gtex
(
{êik(s)}

)
initializes its adaptive parameters from the

embeddings and decodes an inpainted high-frequency component of the source image,

which we call a texture X̂i(s).

• The inference generator network G
(
yi(t), {êik(s)}

)
maps target poses into a predicted

image x̂i(t). The network accepts vector keypoints as an input and outputs a low-frequency

layer of the output image x̂i
LF(t), which encodes basic facial features, skin color and

lighting, and ω̂i(t) – a mapping between coordinate spaces of the texture and the output

image. Then, the high-frequency layer of the output image is obtained by warping the

predicted texture: x̂i
HF(t) = ω̂i(t) ◦ X̂i(s), and is added to a low-frequency component to

produce the final image:
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x̂i(t) = x̂i
LF(t) + x̂i

HF(t) . (5.1)

• Finally, the discriminator network D
(
xi(t),yi(t)

)
, which is a conditional Mehdi Mirza

[2014] relativistic Jolicoeur-Martineau [2019] PatchGAN Isola et al. [2017], maps a real

or a synthesised target image, concatenated with the target landmark image, into realism

scores si(t).

During training, we first input a source image xi(s) and a source pose yi(s), encoded as a

landmark image, into the embedder. The outputs of the embedder are K tensors êik(s), which are

used to predict the adaptive parameters of the texture generator and the inference generator. A

high-frequency texture X̂i(s) of the source image is then synthesized by the texture generator.

Next, we input corresponding target keypoints yi(t) into the inference generator, which predicts

a low-frequency component of the output image x̂i
LF(t) directly and a high-frequency component

x̂i
HF(t) by warping the texture with a predicted field ω̂i(t). Finally, the output image x̂i(t) is

obtained as a sum of these two components.

It is important to note that while the texture generator is manually forced to generate only a

high-frequency component of the image via the design of the loss functions, which is described

in the next section, we do not specifically constrain it to perform texture inpainting for occluded

head parts. This behavior is emergent from the fact that we use two different images with different

poses for initialization and loss calculation.

5.3.2 Training process

We use multiple loss functions for training. The main loss function responsible for the realism of

the outputs is trained in an adversarial way Goodfellow et al. [2014a]. We also use pixelwise loss

to preserve source lightning conditions and perceptual Johnson et al. [2016a] loss to match the

source identity in the outputs. Finally, a regularization of the texture mapping adds robustness to

the random initialization of the model.

Pixelwise and perceptual losses ensure that the predicted images match the ground truth, and

are respectively applied to low- and high-frequency components of the output images. Since usage

of pixelwise losses assumes independence of all pixels in the image, the optimization process

leads to blurry images Isola et al. [2017], which is suitable for the low-frequency component of

the output. Thus the pixelwise loss is calculated by simply measuring mean L1 distance between

the target image and the low-frequency component:
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LG
pix =

1

HW
||x̂i

LF(t)− xi(t)||1 . (5.2)

On the contrary, the optimization of the perceptual loss leads to crisper and more realistic images

Johnson et al. [2016a], which we utilize to train the high-frequency component. To calculate the

perceptual loss, we use the stop-gradient operator SG, which allows us to prevent the gradient

flow into a low-frequency component. The input generated image is, therefore, calculated as

following:

x̃i(t) = SG
(
x̂i

LF(t)
)
+ x̂i

HF(t) . (5.3)

Following Ha et al. [2019] and Zakharov et al. [2019], our variant of the perceptual loss consists

of two components: features evaluated using an ILSVRC (ImageNet) pre-trained VGG19 network

Simonyan and Zisserman [2014], and the VGGFace network Parkhi et al. [2015a], trained for face

recognition. If we denote the intermediate features of these networks as f ik,IN(t) and f ik,face(t),

and their spatial size as Hk ×Wk, the objectives can be written as follows:

LG
IN =

1

K

∑
k

1

HkWk
||f̃ ik,IN(t)− f ik,IN(t)||1 , (5.4)

LG
face =

1

K

∑
k

1

HkWk
||f̃ ik,face(t)− f ik,face(t)||1 . (5.5)

Texture mapping regularization is proposed to improve the stability of the training. In our

model, the coordinate space of the texture is learned implicitly, and there are two degrees of

freedom that can mutually compensate each other: the position of the face in the texture, and

the predicted warping. If, after initial iterations, the major part of the texture is left unused by

the model, it can easily compensate that with a more distorted warping field. This artifact of an

initialization is not fixed during training, and clearly is not the behavior we need, since we want

all the texture to be used to achieve the maximum effective resolution in the outputs. We address

the problem by regularizing the warping in the first iterations to be close to an identity mapping:

LG
reg =

1

HW
||ωi(t)− I||1 . (5.6)

Adversarial loss is optimized by both generators, the embedder and the discriminator networks.

Usually, it resembles a binary classification loss function between real and fake images, which

discriminator is optimized to minimize, and generators – maximize Goodfellow et al. [2014a]. We
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…

Backpropagation 
through M update steps

Backpropagation 
and stop-gradient

Source Target

FIGURE 5.3: Texture enhancement network (updater) accepts the current state of the texture
and the guiding gradients to produce the next state. The guiding gradients are obtained by
reconstructing the source image from the current state of the texture and matching it to the
ground-truth via a lightweight updater loss. These gradients are only used as inputs and are
detached from the computational graph. This process is repeated M times. The final state of the
texture is then used to obtain a target image, which is matched to the ground-truth via the same
loss as the one used during training of the main model. The gradients from this loss are then

backpropagated through all M copies of the updater network.

follow a large body of previous works Brock et al. [2019b], Ha et al. [2019], Wang et al. [2019],

Zakharov et al. [2019] and use a hinge loss as a substitute for the original binary cross entropy

loss. We also perform relativistic realism score calculation Jolicoeur-Martineau [2019], following

its recent success in tasks such as super-resolution Wang et al. [2018c] and denoising Kim et al.

[2019]. Additionally, we use PatchGAN Isola et al. [2017] formulation of the adversarial learning.

The discriminator is trained only with respect to its adversarial loss LD
adv, while the generators

and the embedder are trained via the adversarial loss LG
adv, and also a feature matching loss

LFM Wang et al. [2018e]. The latter is introduced for better stability of the training.

5.3.3 Texture enhancement

To minimize the identity gap, Zakharov et al. [2019] suggested to fine-tune the generator weights

to the few-shot training set. Training on a person-specific source data leads to significant

improvement in realism and identity preservation of the synthesized images Zakharov et al.

[2019], but is computationally expensive. Moreover, when the source data is scarce, like in

one-shot scenario, fine-tuning may lead to over-fitting and performance degradation, which is

observed in Zakharov et al. [2019]. We address both of these problems by using a learned gradient

descend (LGD) method Andrychowicz et al. [2016] to optimize only the synthesized texture

X̂i(s). Optimizing with respect to the texture tensor prevents the model from overfitting, while

the LGD allows us to perform optimization with respect to computationally expensive objectives

by doing forward passes through a pre-trained network.

Specifically, we introduce a lightweight loss function Lupd (we use a sum of squared errors), that

measures the distance between a generated image and a ground-truth in the pixel space, and a
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texture updating network Gupd, that uses the current state of the texture and the gradient of Lupd

with respect to the texture to produce an update ∆X̂i(s). During fine-tuning we perform M

update steps, each time measuring the gradients of Lupd with respect to an updated texture. The

visualization of the process can be seen in Figure 5.3. More formally, each update is computed

as:

X̂i
m+1(s) = X̂i

m(s) +Gupd

(
X̂i

m(s),
∂Lupd

∂X̂i
m(s)

)
, (5.7)

where m ∈ {0, . . . ,M − 1} denotes an iteration number, with X̂i
0(s) ≡ X̂i(s).

The network Gupd is trained by back-propagation through all M steps. For training, we use the

same objective LG
total that was used during the training of the base model. We evaluate it using a

target frame xi(t) and a generated frame

x̂i
M (t) = x̂i

LF(t) + ω̂i(t) ◦ X̂i
M (s) . (5.8)

It is important to highlight that Lupd is not used for training ofGupd, but simply guides the updates

to the texture. Also, the gradients with respect to this loss are evaluated using the source image,

while the objective in Eq. 5.8 is calculated using the target image, which implies that the network

has to produce updates for the whole texture, not just a region “visible” on the source image.

Lastly, while we do not propagate any gradients into the generator part of the base model, we

keep training the discriminator using the same objective LD
adv. Even though training the updater

network jointly with the base generator is possible, and can lead to better quality (following

the success of model agnostic meta-learning Finn et al. [2017] method), we resort to two-stage

training due to memory constraints.

5.3.4 Segmentation

The presence of static background leads to a certain degradation of our model for two reasons.

Firstly, part of the capacity of the texture and the inference generators has to be spent on modeling

high variety of background patterns. Secondly, and more importantly, the static nature of

backgrounds in most training videos biases the warping towards identity mapping. We therefore,

have found it advantageous to include background segmentation into our model.

We use a state-of-the-art face and body segmentation model Gong et al. [2019b] to obtain the

ground truth masks. Then, we add the mask prediction output m̂i(t) to our inference generator

alongside with its other outputs, and train it via a binary cross-entropy loss Lseg to match the

ground truth mask mi(t). To filter out the training signal, related to the background, we have
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explored multiple options. Simple masking of the gradients that are fed into the generator leads to

severe overfitting of the discriminator. We also could not simply apply the ground truth masks to

all the images in the dataset, since the model Gong et al. [2019b] works so well that it produces a

sharp border between the foreground and the background, leading to border artifacts that emerge

after adversarial training.

Instead, we have found out that masking the ground truth images that are fed to the discriminator

with the predicted masks m̂i(t) works well. Indeed, these masks are smooth and prevent the

discriminator from overfitting to the lack of background, or sharpness of the border. We do not

backpropagate the signal from the discriminator and from perceptual losses to the generator via

the mask pathway (i.e. we use stop gradient/detach operator SG
(
m̂i(t)

)
before applying the

mask). The stop-gradient operator also ensures that the training does not converge to a degenerate

state (empty foreground).

5.3.5 Implementation details

All our networks consist of pre-activation residual blocks He et al. [2016b] with LeakyReLU

activations. We set a minimum number of features in these blocks to 64, and a maximum to 512.

By default, we use half the number of features in the inference generator, but we also evaluate our

model with full- and quater-capacity inference part, with the results provided in the experiments

section.

We use batch normalization Ioffe and Szegedy [2015] in all the networks except for the embedder

and the texture updater. Inside the texture generator, we pair batch normalization with adaptive

SPADE layers Wang et al. [2019]. We modify these layers to predict pixelwise scale and bias

coefficients using feature maps, which are treated as model parameters, instead of being input

from a different network. This allows us to save memory by removing additional networks and

intermediate feature maps from the optimization process, and increase the batch size. Also,

following Wang et al. [2019], we predict weights for all 1× 1 convolutions in the network from

the embeddings {êik(s)}, which includes the scale and bias mappings in AdaSPADE layers, and

skip connections in the residual upsampling blocks. In the inference generator, we use standard

adaptive batch normalization layers Brock et al. [2019b], but also predict weights for the skip

connections from the embeddings.

We do simultaneous gradient descend on parameters of the generator networks and the discrimi-

nator using Adam Kingma and Ba [2014] with a learning rate of 2 · 10−4. We use 0.5 weight for

adversarial losses, and 10 for all other losses, except for the VGGFace perceptual loss (Eq. 5.5),

which is set to 0.01. The weight of the regularizer (Eq. 5.6) is then multiplicatively reduced by

0.9 every 50 iterations. We train our models on 8 NVIDIA P40 GPUs with the batch size of 48

for the base model, and a batch size of 32 for the updater model. We set unrolling depth M of the
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updater to 4 and use a sum of squared errors as the lightweight objective. Batch normalization

statistics are synchronized across all GPUs during training. During inference they are replaced

with “standing” statistics, similar to Brock et al. [2019b], which significantly improves the quality

of the outputs, compared to the usage of running statistics. Spectral normalization is also applied

in all linear and convolutional layers of all networks.

Please refer to the supplementary material for a detailed description of our model’s architecture,

as well as the discussion of training and architectural features that we have adopted.

5.3.6 Experiments

We perform evaluation in multiple scenarios. First, we use the original VoxCeleb2 Chung et al.

[2018a] dataset to compare with state-of-the-art systems. To do that, we annotated this dataset

using an off-the-shelf facial landmarks detector Bulat and Tzimiropoulos [2017a]. Overall, the

dataset contains 140697 videos of 5994 different people. We also use a high-quality version of

the same dataset, additionally annotated with the segmentation masks (which were obtained using

a model Gong et al. [2019b]), to measure how the performance of our model scales with a dataset

of a significantly higher quality. We obtained this version by downloading the original videos

via the links provided in the VoxCeleb2 dataset, and filtering out the ones with low resolution.

This dataset is, therefore, significantly smaller and contains only 14859 videos of 4242 people,

with each video having at most 250 frames (first 10 seconds). Lastly, we do ablation studies on

both VoxCeleb2 and VoxCeleb2-HQ, and report on a smartphone-based implementation of the

method. For comparisons and ablation studies we show the results qualitatively and also evaluate

the following metrics:

• Learned perceptual image patch similarity Zhang et al. [2019] (LPIPS), which measures

overall predicted image similarity to ground truth.

• Cosine similarity between the embedding vectors of a state-of-the-art face recognition

network Deng et al. [2019] (CSIM), calculated using the synthesized and the target images.

This metric evaluates the identity mismatch.

• Normalized mean error of the head pose in the synthesized image (NME). We use the

same network Bulat and Tzimiropoulos [2017a], which was used for the annotation of the

dataset, to evaluate the pose of the synthesized image. We normalize the error, which is

a mean euclidean distance between the predicted and the target points, by the distance

between the eyes in the target pose, multiplied by 10.

• Multiply-accumulate operations (MACs), which measure the complexity of each method.

We exclude from the evaluation initialization steps, which are calculated only once per

avatar.
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FIGURE 5.4: In order to evaluate a quality against performance trade off, we train a family of
models with varying complexity for each of the compared methods. For quality metrics, we
have compared synthesized images to their targets using a perceptual image similarity (LPIPS ↓),
identity preservation metric (CSIM ↑), and a normalized pose error (NME ↓). We highlight a
model which was used for the comparison in Figure 5.5 with a bold marker. We observe that our
model outperforms the competitors in terms of identity preservation (CSIM) and pose matching
(NME) in the settings, when models’ complexities are comparable. In order to better compare
with FOMM, we did a user study, where users have preferred the image generated by our model

to FOMM 59.6% of the time.

The test set in both datasets does not intersect with the train set in terms of videos or identities.

For evaluation, we use a subset of 50 test videos with different identities (for VoxCeleb2, it is the

same as in Zakharov et al. [2019]). The first frame in each sequence is used as a source. Target

frames are taken sequentially at 1 FPS.

We only discuss most important results in the main paper. For additional qualitative results and

comparisons please refer to the supplementary materials.

5.3.6.1 Comparison with the state-of-the-art methods

We compare against three state-of-the-art systems: Few-shot Talking Heads Zakharov et al.

[2019], Few-shot Vid-to-Vid Wang et al. [2019] and First Order Motion Model Siarohin et al.

[2019c]. The first system is a problem-specific model designed for avatar creation. Few-shot Vid-

to-Vid is a state-of-the-art video-to-video translation system, which has also been successfully

applied to this problem. First Order Motion Model (FOMM) is a general motion transfer system

that does not use precomputed keypoints, but can also be used as an avatar. We believe that

these models are representative of the most recent and successful approaches to one-shot avatar

generation. We also acknowledge the work of Ha et al. [2019], but do not compare to them

extensively due to unavailability of the source code, pretrained models or pre-calculated results.

A small-scale qualitative comparison is provided in the supplementary materials. Additionally,

their method is limited to the usage of 3D keypoints, while our method does not have such

restriction. Lastly, since Few-shot Vid-to-Vid is an autoregressive model, we use a full test video

sequence for evaluation (25 FPS) and save the predicted frames at 1 FPS.
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FIGURE 5.5: Comparison on a VoxCeleb2 dataset. The task is to reenact a target image,
given a source image and target keypoints. The compared methods are Few-shot Talking
Heads Zakharov et al. [2019], Few-shot Vid-to-Vid Wang et al. [2019], First Order Motion
Model (FOMM) Siarohin et al. [2019c] and our proposed Bi-layer Model. For each method, we
used the models with a similar number of parameters, and picked source and target images to
have diverse poses and expressions, in order to highlight the differences between the compared

methods.

Importantly, the base models in these approaches have a lot of computational complexity, so

for each method we evaluate a family of models by varying the number of parameters. The

performance comparison for each family is reported in Figure 5.4 (with Few-shot Talking Heads

being excluded from this evaluation, since their performance is much worse than the compared

methods). Overall, we can see that our model’s family outperforms competing methods in terms

of pose error and identity preservation, while being, on average, up to an order of magnitude

faster. To better compare with FOMM in terms of image similarity, we have performed a user

study, where we asked crowd-sourced users which generated image better matches the ground

truth. In total, 361 users evaluated 1600 test pairs of images, with each one seeing on average 21

pairs. In 59.6% of comparisons, the result of our medium model was preferred to a medium sized

model of FOMM.

Another important note is on how the complexity was evaluated. In Few-shot Vid-to-Vid we have

additionally excluded from the evaluation parts that are responsible for the temporal consistency,

since other compared methods are evaluated frame-by-frame and do not have such overhead.
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Source Pose Result Source Pose Result

FIGURE 5.6: High quality synthesis results. We can see that our model is both capable of
viewpoint extrapolation and low identity gap synthesis. The architecture in this experiment has

the same number of parameters as the medium architecture in the previous comparison.

Also, in FOMM we have excluded the keypoints extractor network, because this overhead is

shared implicitly by all the methods via usage of the precomputed keypoints.

We visualize the results for medium-sized models of each of the compared methods in Figure 5.5.

Since all methods perform similarly in case when source and target images have marginal

differences, we have shown the results where a source and a target have different head poses. In

this extrapolation setting, our method has a clear advantage, while other methods either introduce

more artifacts or more blurriness.

5.3.6.2 Evaluation on high-quality images.

Next, we evaluate our method on the high-quality dataset and present the results in Figure 5.6.

Overall, in this case, our method is able to achieve a smaller identity gap, compared to the dataset

with the background. We also show the decomposition between the texture and a low frequency

component in Figure 5.7. Lastly, in Figure 5.8, we show that our texture enhancement pipeline

allows us to render small person-specific features like wrinkles and moles on out-of-domain

examples. For more qualitative examples, as well as reenactment examples with a driver of a

different person, please refer to the supplementary materials.

77



Chapter 5 Fast Bi-layer Neural Synthesis of One-Shot Realistic Head Avatars

Source Texture LF Result

FIGURE 5.7: Detailed results on the generation process of the output image. LF denotes a
low-frequency component.

Source Target Pose Ours

FIGURE 5.8: Our method can preserve a lot of details in the facial features, like the famous
Marylin’s mole.

5.3.6.3 Smartphone-based implementation.

We train our model using PyTorch PyT and then port it to smartphones with Qualcomm Snap-

dragon chips. There are several frameworks which provide APIs for mobile inference on

such devices. From our experiments, we measured the Snapdragon Neural Processing Engine

(SNPE) SNP to be about 1.5 times faster than PyTorch Mobile PyT and up to two times faster

than TensorFlow Lite TFL. The medium-sized model ported to the Snapdragon 855 (Adreno 640

GPU, FP16 mode) takes 42 ms per frame, which is sufficient for real-time performance, given

that the keypoint tracking is being run in parallel, e.g. on a mobile CPU.
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Method LPIPS ↓ CSIM ↑ NME ↓
VoxCeleb2

Baseline 0.377 0.547 0.447
Ours 0.370 0.595 0.441
+Updater 0.358 0.653 0.433

VoxCeleb2-HQ
Ours 0.313 0.432 0.476
+Updater 0.298 0.649 0.456

TABLE 5.1: Ablation studies of our approach. We first evaluate the baseline method without
AdaSPADE or adaptive skip connections. Then we add these layers, following Wang et al.
[2019], and observe significant quality improvement. Finally, our updater network provides
even more improvement across all metrics, especially noticeable in the high-quality scenario.

5.3.6.4 Ablation study.

Finally, we evaluate the contribution of individual components. First, we evaluate the contribution

of adaptive SPADE layers in the texture generator (by replacing them with adaptive batch

normalization and per-pixel biases) and adaptive skip-connections in both generators. A model

with these features removed makes up our baseline. Lastly, we evaluate the contribution of the

updater network. The results can be seen in Table 5.1 and Figure 5.9. We evaluate the baseline

approach only on a VoxCeleb2 dataset, while the full models with and without the updater

network are evaluated on both low- and high-quality datasets. Overall, we see a significant

contribution of each component with respect to all metrics, which is particularly noticeable in the

high-quality scenario. In all ablation comparisons, medium-sized models were used.

5.4 Conclusion

We have proposed a new neural rendering-based system that creates head avatars from a single

photograph. Our approach models person appearance by decomposing it into two layers. The

first layer is a pose-dependent coarse image that is synthesized by a small neural network. The

second layer is defined by a pose-independent texture image that contains high-frequency details

and is generated offline. During test-time it is warped and added to the coarse image to ensure

high effective resolution of synthesized head views. We compare our system to analogous

state-of-the-art systems in terms of visual quality and speed. The experiments show up to an

order of magnitude inference speedup over previous neural head avatar models, while achieving

state-of-the-art quality. We also report on a real-time smartphone-based implementation of our

system.
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Source Pose Ours +Upd.

FIGURE 5.9: Examples from the ablation study on VoxCeleb2 (first two rows) and VoxCeleb2-
HQ (last two rows).
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Chapter 6

MegaPortraits: One-shot Megapixel
Neural Head Avatars

Abstract

In this work, we advance the neural head avatar technology to the megapixel resolution while

focusing on the particularly challenging task of cross-driving synthesis, i.e., when the appearance

of the driving image is substantially different from the animated source image. We propose a set

of new neural architectures and training methods that can leverage both medium-resolution video

data and high-resolution image data to achieve the desired levels of rendered image quality and

generalization to novel views and motion. We show that suggested architectures and methods

produce convincing high-resolution neural avatars, outperforming the competitors in the cross-

driving scenario. Lastly, we show how a trained high-resolution neural avatar model can be

distilled into a lightweight student model which runs in real-time and locks the identities of neural

avatars to several dozens of pre-defined source images. Real-time operation and identity lock are

essential for many practical applications head avatar systems.

This work was published as: Nikita Drobyshev, Evgeny Chelishev, Aleksei Ivakhnenko, Taras Khakhulin, Victor
Lempitsky, and Egor Zakharov. MegaPortraits: One-shot Megapixel Neural Head Avatars. ACM Conference on
Multimedia (ACMMM), 2022.

Supplementary materials are hosted on the project page: https://samsunglabs.github.io/
MegaPortraits
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6.1 Introduction

Neural head avatars Burkov et al. [2020], Doukas et al. [2021b], Ha et al. [2020], Kim et al.

[2018b], Lombardi et al. [2018b, 2019], Park et al. [2021a,b], Siarohin et al. [2019a,b], Thies

et al. [2019b], Wang et al. [2021], Zakharov et al. [2019, 2020] offer a new fascinating way to

create virtual head models. They bypass the complexity of realistic physics-based modeling of

human avatars by learning the shape and appearance directly from the videos of talking people.

Over the last several years, methods that can create realistic avatars from a single photograph

(one-shot) have been developed Doukas et al. [2021b], Siarohin et al. [2019b], Wang et al. [2021],

Zakharov et al. [2020]. Such methods leverage extensive pre-training on the large datasets of

videos of different people Chung et al. [2018b], Wang et al. [2021] to create their avatars in the

one-shot mode using the generic knowledge about human appearance.

Despite the impressive results obtained by this class of methods, their quality is severely limited

by the resolution of the training datasets. This limitation is not trivial to bypass by collecting

a higher resolution dataset. This is because an appropriate dataset needs to be large-scale and

diverse at the same time. It needs to include thousands of humans, with multiple frames per

person, diverse demographics, lighting, background, face expression, and head pose. To the best

of our knowledge, all public datasets Chung et al. [2018b], Wang et al. [2021] that meet these

criteria are limited in resolution. As a result, even the most recent one-shot avatar systems Wang

et al. [2021] learn the avatars at resolutions up to 512× 512.

In our work, we make three main contributions. First, we propose a new model for one-shot neural

avatars that achieves state-of-the-art cross-reenactment quality in up to 512 × 512 resolution.

In our architecture we utilize the idea of representing the appearance of the avatars as a latent

3D volume Wang et al. [2021] and propose a new way to combine it with the latent motion

representations Burkov et al. [2020]. We also propose to use a novel contrastive loss to achieve

higher degrees of disentanglement between the latent motion and appearance representations. On

top of that, we add a problem-specific gaze loss that increases the realism and accuracy of eye

animation.

Our second and crucial contribution is showing how a model trained on medium-resolution

videos can be “upgraded” to the megapixel (1024× 1024) resolution using an additional dataset

of high-resolution still images. As a result, our proposed method, while using the same training

dataset, outperforms the baseline super-resolution approach Yang et al. [2020] for the task of

cross-reenactment. We are thus the first to demonstrate neural head avatars in proper megapixel

resolution.

Lastly, since a lot of practical applications of neural avatars require real-time or faster than

real-time rendering, we distill our megapixel model into ten times faster student model that runs

at 70 FPS on a modern GPU. This significant speedup is possible since the student is trained for
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specific appearances (unlike the main model that can create new avatars for previously unseen

people). The applications based on such a student model “locked” to predefined identities can

prevent its misuse for creating “deep fakes” while at the same time achieving low rendering

latency.

6.2 Related work

6.2.1 Implicit functions for radiance modeling

The recent success of neural implicit scene representations Mildenhall et al. [2020] for the

problem of 3D reconstruction has inspired several works on the so-called 4D head avatars Gafni

et al. [2021], Lombardi et al. [2018b, 2019], Park et al. [2021a,b], Yang et al. [2021], which treat

the problem of appearance and motion modeling of the avatars as a non-rigid reconstruction of

the training video. These methods have different ways of handling the non-rigidity of motion

and either learn it from scratch Park et al. [2021a,b], Yang et al. [2021], use pre-trained motion

extractors Gafni et al. [2021] or pre-computed coarse meshes Lombardi et al. [2018b, 2019].

While all these methods can achieve an impressive realism of renders and fidelity of motions, they

require multi-shot training data, are trained separately for each avatar, and often fail to represent

motions unseen during training. In contrast, our method can impose motion from an arbitrary

video sequence on an appearance obtained from a single image while still achieving megapixel

resolutions of the renders.

6.2.2 Direct generation of images via convolutional networks

Direct generation of videos via convolutional neural networks, conditioned on both appearance

and motion descriptors, is an alternative approach to talking-head synthesis. While the early

works in this area learned an avatar from the video Kim et al. [2018b], Thies et al. [2019b], the

follow-up works added few-shot and one-shot capabilities Burkov et al. [2020], Doukas et al.

[2021b], Siarohin et al. [2019a,b], Wang et al. [2021], Zakharov et al. [2019, 2020]. Most of

these works use explicit representations for the motion, such as keypoints or blendshapes, while

others Burkov et al. [2020] have adopted latent motion parameterization. The latter achieves

better expressiveness of motion if the disentanglement from the appearance is achieved during

training. In our system, we chose the latter approach and proposed a new method of disentangling

the motion and the appearance descriptors, which significantly improves the quality of the results.
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6.2.3 Single image super-resolution

The resolution of the talking head models is currently upper bounded by the available video

datasets Chung et al. [2018b], Wang et al. [2021], which contain videos of at most 512× 512

resolution. This problem restricts the enhancement of the output quality further on the existing

datasets using the standard high-quality image and video synthesis techniques Wang et al.

[2018d,g]. Alternatively, this problem could be treated as single image super-resolution (SISR).

This way, we require only the dataset of still high-resolution images for training, which is

easier to obtain. However, the quality of the outputs of the one-shot talking head model varies

greatly depending on the imposed motion, which results in poor performance of standard SISR

methods Yang et al. [2020]. These classic approaches rely on supervised training procedures with

an a priori known ground truth, which we cannot provide for the novel motion data since we only

have one image per person. We address this problem in a novel way by combining supervised

and unsupervised training and achieve considerably better performance for arbitrary motion data

than the solution based on SISR.

6.3 Method

Pretrained

FIGURE 6.1: Overview of our base model. To encode the appearance of the source frame,
we predict volumetric features vs and a global descriptor ês from the source image via an
appearance encoder Eapp. In parallel, we predict the motion representations from both the source
and driving images using a motion encoder Emtn. These representations consist of the explicit
head rotations Rs/d, translations ts/d, and the latent expression descriptors zs/d. They are used
to predict the 3D warpings ωs→ and ω→d via the separate warping generators Ws→ and W→d.
The first warping removes the source motion from the appearance features vs by mapping them
into a canonical coordinate space, and the second one imposes the driver motion. The canonical
volume is processed by a 3D convolutional network G3D, and the driving volume vs→d is
orthographically projected into 2D features and processed by a 2D convolutional network G2D,

which predicts an output image x̂s→d.

We propose a system for the one-shot creation of high-resolution human avatars, called megapixel

portraits or MegaPortraits for short. Our model is trained in two stages. Optionally, we propose

an additional distillation stage for faster inference. Our training setup is relatively standard. We
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sample two random frames from our dataset at each step: the source frame xs and the driver

frame xd. Our model imposes the motion of the driving frame (i.e., the head pose and the facial

expression) onto the appearance of the source frame to produce an image x̂s→d. The main

learning signal is obtained from the training episodes where the source and the driver frames

come from the same video, and hence our model’s prediction is trained to match the driver

frame. In this section, we will focus on the principal training regime while leaving details of the

architectures to the supplementary materials.

6.3.1 Base model

During the first stage, we train our base model (Figure 6.1) by sampling two frames xs and xd

from a random training video. The driving frame acts as both an input for our system and the

ground truth. The source frame xs is passed through an appearance encoder Eapp, which outputs

local volumetric features vs (a 4D tensor with the fourth dimension corresponding to channels),

and the global descriptor ês. In parallel, the motion descriptors of the source and driver images

are calculated by separately applying a motion encoder Emtn to each image. This encoder outputs

head rotations Rs/d, translations ts/d, and latent expression descriptors zs/d. The source tuple

(Rs, ts, zs, ês) is then input into a warping generator Ws→ to produce a 3D warping field ωs→,

which removes the motion data from the volumetric features vs by mapping them into a canonical

coordinate space. These features are then processed by a 3D convolutional network G3D. Finally,

the driver tuple (Rd, td, zd, ês) is fed into a separate warping generator W→d, which output

ω→d is used to impose the driver motion. The final 4D volumetric features are therefore obtained

in the following way:

vs→d = ω→d ◦G3D(ωs→ ◦ vs), (6.1)

where ◦ represents a 3D warping operation. The idea behind this approach is first to rotate the

volumetric features into a frontal viewpoint, remove any face expression motion decoded from

zs, process them by a 3D convolutional network, and then impose the driver head rotation and

motion. We use a pre-trained network to estimate head rotation data, but the latent expression

vectors zs/d and the warpings to and from the canonical coordinate space are trained without

direct supervision.

The volumetric feature encoding and the explicit use of head pose are inspired by Wang et al.

[2021]. However, a significant difference with Wang et al. [2021] is that we do not use keypoints

to represent expression and instead rely on the latent descriptor Burkov et al. [2020], which is

decoded into the explicit 3D warping field to represent face mimics in a more person-independent

way. We have also observed that the motion disentanglement scheme proposed in Burkov et al.

[2020] starts to fail when we increase the capacity of the avatar system to facilitate higher

resolutions. This problem leads to severe appearance leakage from the driving to the predicted
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image. To combat that, we propose using a cycle-consistency loss, which we describe below,

and improving the driving image’s pre-processing pipeline. For more details, please refer to the

supplementary materials.

Finally, the driver volumetric features vs→d are orthographically projected into the camera frame

using the same approach as in Wang et al. [2021]. We denote this operation as P . The resulting

2D feature map is decoded into the output image by a 2D convolutional network G2D:

x̂s→d = G2D
(
P(vs→d)

)
. (6.2)

We refer to the combination of the networks described above as Gbase, so that

x̂s→d = Gbase(xs,xd). (6.3)

We use multiple loss functions for training, which can be split into two groups. The first group

consists of the standard training objectives for image synthesis. These include perceptual Johnson

et al. [2016b] and GAN Wang et al. [2018g] losses that match the predicted image x̂s→d to the

ground-truth xd. The other objective regularizes the training and introduces disentanglement

between the motion and canonical space appearance features via the cycle consistency Zhu et al.

[2017b] loss.

Perceptual losses match the motion and appearance of the predicted image x̂s→d to the ground-

truth xd. We use three types of pre-trained networks for the perceptual losses: regular ILSVRC

(ImageNet) Deng et al. [2009] pre-trained VGG19 Simonyan and Zisserman [2015b] to match

the general content of the images, VGGFace Parkhi et al. [2015b] trained for face recognition

to match the facial appearance, and a specialized gaze loss based on VGG16 to match the gaze

direction. The latter network was trained to distill a state-of-the-art gaze detection system Fischer

et al. [2018]. For more details on the training and usage of the gaze loss, please refer to the

supplementary materials. We calculate the weighted L1 distance between the feature maps

obtained for the predicted x̂s→d and ground-truth xd images using all these networks. The final

perceptual loss is a weighted combination of individual perceptual losses:

Lper = wINLIN + wfaceLface + wgazeLgaze. (6.4)

Adversarial losses ensure the realism of the predicted images. We calculate these losses using

the same predicted and driving images. Following the previous works, we train a multi-scale

patch discriminator Zhu et al. [2017b] with a hinge adversarial loss alongside the generator Gbase.

We also include a standard feature-matching loss Wang et al. [2018g] to improve the training
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stability. The GAN loss for the generator can therefore be expressed as follows:

LGAN = wadvLadv + wFMLFM. (6.5)

Cycle consistency loss is used to prevent the appearance leakage through the motion descriptor.

During training, this task is essential since the motion descriptor is calculated using the same

image as the ground truth. Without this regularizer, severe artifacts are present when the driver

differs from the source in lighting, hair and beard style, or sunglasses because these features are

leaked from the driver image onto the predicted image.

In order to calculate this loss, we use an additional source-driving pair xs∗ and xd∗ , which

is sampled from a different video and therefore has different appearance from the current xs,

xd pair. We then apply the full base model to produce the following cross-reenacted image:

x̂s∗→d = Gbase(xs∗ ,xd), and also separately calculate a motion descriptor zd∗ = Emtn(xd∗).

Note that we will also use the stored motion descriptors zs∗→d and zs→d from the respective

forward passes of the base network.

We then arrange the motion descriptors into positive pairs P that should align with each other:

P =
{
(zs→d, zd), (zs∗→d, zd)

}
, and the negative pairs: N =

{
(zs→d, zd∗), (zs∗→d, zd∗)

}
.

These pairs are used to calculate the following cosine distance:

d(zi, zj) = s ·
(
⟨zi, zj⟩ −m

)
, (6.6)

where both s and m are hyperparameters. This distance is then used to calculate a large margin

cosine loss (CosFace) Wang et al. [2018a]:

Lcos = −
∑

(zk,zl)∈P

log
exp

{
d(zk, zl)

}
exp

{
d(zk, zl)

}
+

∑
(zi,zj)∈N

exp
{
d(zi, zj)

} . (6.7)

To conclude, the total loss which is used to train the base model is the sum of individual losses:

Lbase = Lper + LGAN + wcosLcos. (6.8)

These losses are calculated using only foreground regions in both predictions and the ground

truth. Hence, our model has no background generation built into it, which we found empirically

to hinder its performance. Instead, we impose the background post-training via pre-trained

inpainting and matting models. We obtain the background plate using a state-of-the-art inpainting

system Suvorov et al. [2021] and use the following systems for matting Gong et al. [2019a], Ke

et al. [2022]. The background is combined with the predicted image via alpha-compositing using

a calculated matte. For more details, please refer to the supplementary materials.
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6.3.2 High-resolution model

For the second training stage, we fix the base neural head avatar model Gbase, and only train an

image-to-image translation network Genh that maps the input x̂ at the resolution 512× 512 to

an enhanced version x̂HR that has the resolution 1024× 1024. We use a high-resolution dataset

of photographs Karras et al. [2019] to train this model, in which we assume all images to have

different identities. It implies that we cannot form source-driver pairs that only differ in their

motion as we do in the first training stage.

The high-resolution model is trained using two groups of loss functions. The first group represents

the standard super-resolution objectives, for which use an L1 loss, denoted as LMAE, and a GAN

loss LGAN. The second group of objectives works in an unsupervised way, and we use it to

ensure that our model performs well for the images generated in a cross-driving scenario. To do

that, for each training image xHR we sample an additional image xHR
c , and generate its initial

reconstruction x̂c = Gbase(x
LR,xLR

c ), where xLR
c is used to estimate motion, and xLR is used to

estimate appearance. Since we do not have high-resolution ground-truth for x̂HR
c = Genh(x̂c),

we can only match its distribution to ground truth using a patch discriminator. Furthermore, we

can enforce content preservation by applying the cycle-consistency loss at lower resolution:

Lc
cyc = LMAE

(
DS4(x̂c),DS8(x̂

HR
c )
)
, (6.9)

where DSk denotes a k-times downsampling operator.

The final objective for Genh includes the adversarial and the perceptual losses calculated for the

predicted image x̂HR and its ground-truth xHR, as well as an adversarial loss Lc
adv, calculated for

x̂HR
c and xHR, and the cycle-consistency loss Lc

cyc:

Lenh = LGAN + wMAELMAE + wc
advLc

adv + wc
cycLc

cyc. (6.10)

6.3.3 Student model

Finally, we use a small conditional image-to-image translation network GDT, which we refer

to as the student, to distill the one-shot model. We train the student to mimic the prediction of

the full (teacher) model GHR = Genh ∗ Gbase, which combines the base model and an enhancer.

The student is trained only in the cross-driving mode by generating pseudo-ground truth with the

teacher model. Since we train our student network for a limited number of avatars, we condition

it using an index i, which selects an image from the set of all N appearances {xi}Ni=1. Therefore,

training proceeds as follows: we sample the driving frame xd and the index i. We then match the
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Source Driver Face-V2V Ours

FIGURE 6.2: A qualitative comparison of head avatar systems in cross-reenactment scenario (top
two rows) and self-reenactment scenario (bottom row) at 512px resolution. In cross-reenactment,
we can see that our approach achieves better preservation of motion and appearance than the
previous state-of-the-art (Face-V2V). In self-reenactment, we achieve the results of comparable
quality with the state-of-the-art. For more examples, please refer to the supplementary materials.

following two images:

x̂DT
i→d = GDT(xd, i); x̂HR

i→d = GHR(xi,xd).

We train this network using a combination of perceptual and adversarial losses. For architectural

details, please refer to the supplementary materials.

6.4 Experiments

We use multiple datasets to train and evaluate our model: VoxCeleb2 Chung et al. [2018b]

and VoxCeleb2HQ video datasets, and FFHQ Karras et al. [2019] image dataset. We have

obtained a high-quality version of the VoxCeleb2 dataset, which we refer to as VoxCeleb2HQ,

by downloading the original videos and filtering them using both bitrate and image quality

assessment Su et al. [2020c]. This leaves approximately one-tenth of the original dataset (15,000

videos). We use this dataset to train and evaluate our base model at 512× 512 resolution while
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Source Driver FOMM HeadGAN Ours

FIGURE 6.3: A qualitative comparison of head avatar systems in cross-reenactment scenario
(top two rows) and self-reenactment scenario (bottom row) at 256× 256 resolution. Our system
significantly outperforms the competitors in cross-reenactment, achieving more faithful motion
and appearance preservation in the generated images. We also show that our system achieves
similar results in self-reenactment. For more examples, please refer to the supplementary

materials.

using the original VoxCeleb2 dataset, filtered using bitrate, for the 256 × 256 resolution. For

training a high-resolution model, we used a filtered version of the FFHQ dataset, which consists

of 20,000 images and has no frames that contain multiple people or children. Lastly, we use a

proprietary dataset of 20,000 selfie videos and 100,000 selfie pictures to train the student model.

6.4.1 Training details

We trained the 256×256 model for 200,000 iterations with the batch size of 24, and the 512×512

model for 300,000 iterations with the batch size of 16. We used AdamW Loshchilov and Hutter

[2019] optimizer with cosine learning rate scheduling. The initial learning rate was reduced from

2 ∗ 10−4 to 10−6 during training iterations. We used the following hyperparameters for the losses:

wIN = 20, wface = 4, wgaze = 5, wadv = 1, wFM = 40, and wcos = 2. We also set s = 5 and

m = 0.2 in the cosine loss.

We trained the high-resolution enhancer model for 50,000 iterations with the batch size of

16. We used the same optimizer and the learning rate scheduling. We set the loss weights to

wMAE = 100, wc
adv = 1, wFM = 100 and wc

cyc = 10. Finally, for the student model we distilled

100 avatars. We trained it for 170,000 iterations with the batch size of 8. For detailed descriptions

of all architectures, please refer to the supplementary material.

90



Chapter 6 MegaPortraits: One-shot Megapixel Neural Head Avatars

6.4.2 Baseline methods

We compare our base model with the following systems.

Face Vid-to-vid (Face-V2V) Wang et al. [2021] is a state-of-the-art system in self-reenactment,

i.e., when the source and driving images have the same appearance and identity. Its main features

are the volumetric encoding of the avatar’s appearance and the explicit representation of the

head motion with 3D keypoints, which are learned in an unsupervised way. In our base model,

we utilize a similar volumetric encoding of the appearance but instead encode the face motion

implicitly, which improves cross-reenactment performance.

First Order Motion Model (FOMM) Siarohin et al. [2019b] uses 2D keypoints to represent

motion and is another strong baseline for the task of self-reenactment. Similar to Face-V2V, these

keypoints are trained in an unsupervised way. However, as shown in our evaluation, this method

fails to generate realistic images in the cross-reenactment scenario.

Lastly, we compare against the HeadGAN Doukas et al. [2021b] system, in which the expression

coefficients of the 3D morphable model Blanz and Vetter [1999] are used as a motion representa-

tion. These coefficients are calculated using a pre-trained dense 3D keypoints regressor Deng

et al. [2020]. Effectively, this approach disentangles motion data from the appearance in the 3D

keypoints, but limits the space of possible motions (for example, it does not allow the control of

the gaze direction).

6.4.3 Cross-reenactment evaluation

Since pre-trained models of FOMM and HeadGAN are only available at 256× 256 resolution,

we compare them against our base model trained on a bitrate-filtered VoxCeleb2 dataset. For

Face-V2V, we compare the 512× 512 model pre-trained on the TalkingHead-1KH Wang et al.

[2021] dataset to our base model trained on the VoxCeleb2HQ. For the evaluation, we use samples

from the VoxCeleb2HQ and FFHQ datasets, downscaled to the training resolution.

For quantitative evaluation, we use the following metrics. Frechet Inception Distance (FID) Heusel

et al. [2017b] is used to compare the distributions of predicted images and the images in the

dataset. Cosine similarity between the embeddings of a face recognition network (CSIM) Za-

kharov et al. [2019] is used to evaluate the preservation of a person’s appearance in the predicted

image. Finally, we conduct two user studies (denoted as UMTN and UAPP) to evaluate the

motion and appearance preservation. We show the crowd-sourced users a random triplet of

images: a driving example to evaluate motion preservation or a source example to evaluate

the appearance, alongside the outputs of two random methods. We then ask each user to pick

one of the two outputs with the better-preserved motion or appearance. We then measure the
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Cross-reenactment
Method FID↓ CSIM↑ UMTN↑ UAPP↑

VoxCeleb2HQ & FFHQ (256× 256)
FOMM 79.1 0.63 24.0 27.9
HeadGAN 70.0 0.66 23.6 32.1
Ours 68.9 0.72 52.4 40.0

VoxCeleb2HQ & FFHQ (512× 512)
Face-V2V 63.4 0.70 34.4 45.4
Ours 58.8 0.73 65.6 54.6

Self-reenactment (raw / masked)
Method PSNR↑ SSIM↑ LPIPS↓

VoxCeleb2 (256× 256)
FOMM 20.6 / 27.5 0.74 / 0.90 0.18 / 0.06
HeadGAN 18.6 / 26.5 0.68 / 0.88 0.20 / 0.07
Ours 18.3 / 27.0 0.67 / 0.89 0.23 / 0.07

VoxCeleb2HQ (512× 512)
Face-V2V 21.9 / 31.2 0.76 / 0.90 0.18 / 0.06
Ours 20.2 / 30.2 0.72 / 0.89 0.22 / 0.07

TABLE 6.1: Quantitative results for cross and self-reenactment. To evaluate cross-reenactment
performance, we measure FID (lower the better), CSIM (higher the better), and user preference
scores (UMTN measures motion preservation and UAPP – appearance, both are higher the
better). Our method outperforms its competitors across all metrics at both resolutions, achieving
state-of-the-art results in the cross-reenactment scenario. The gap is especially noticeable in the
user study, where we achieve significantly better motion preservation. We use standard PSNR,
SSIM (higher the better), and LPIPS (lower the better) metrics to evaluate the self-reenactment.
We measure each metric using either raw or masked images. Our method performs similarly
to the competitors when face masking is applied while achieving reasonable results in the

unmasked (raw) scenario.

percentage of examples where each method was picked. We have conducted our experiment on

approximately 2,000 crowd-sourced people, and each evaluation sample was shown, on average,

to twenty different users.

The qualitative results are shown in Figures 6.2-6.3, and the quantitative metrics are presented

in Table 6.1. Overall, we can see that our method outperforms all competitors by some margin.

Furthermore, the first two rows in Figure 6.3 suggest that our approach is better at preserving

the shape and appearance of the source image and the motion of the driver image, including

gaze direction, than the FOMM and HeadGAN systems. Compared to the Face V2V system

(Figure 6.2, first two rows), our implicit pose representation approach prevents appearance

leakage through the driving image, leading to better preservation of the source image appearance,

as well as driver motion. These observations are confirmed by the quantitative evaluation, in

which we outperform our competitors across all cross-reenactment metrics (Table 6.1), including

both user studies.
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Source Driver Ours (base
w/ bicubic) HiFaceGAN Ours (HR)

FIGURE 6.4: A qualitative comparison of different super-resolution methods applied to the
output of our base model. While performing better than a baseline bicubic upsampling, we can
see that the state-of-the-art super-resolution method (HiFaceGAN) cannot achieve the same

level of high-frequency details fidelity as our approach. Digital zoom-in is recommended.

6.4.4 Self-reenactment evaluation

For the self-reenactment experiments, we use the same pre-trained models as for the cross

reenactment and evaluate them on the samples from the VoxCeleb2 and VoxCeleb2HQ evaluation

sets. We use the following standard metrics to measure the difference between the synthesized and

ground-truth images: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure

(SSIM) Wang et al. [2004b], and the Learned Perceptual Image Patch Similarity (LPIPS) Zhang

et al. [2018a].

We notice that qualitatively we achieve similar performance to the competitors, especially in the

face and hair regions (papers/megaportraits/figures 6.2-6.3, third row). To quantitatively verify

that, we have conducted an evaluation using masked data. The masks include the face, ears, and

hair regions and are applied to both the target and the predicted images before calculating the

metrics. In this scenario, we achieve comparable performance to the baseline methods (Table 6.1)

but have an inferior performance when the unmasked (raw) images are used.

This difference could be caused, among other reasons, by the lack of shoulders motion modeling

in our method. It results in the misalignment between our predictions and ground truth in the

corresponding regions. We further discuss this issue in the limitations section. Also, our method’s

high degree of disentanglement between motion and appearance descriptors prevents it from

leaking the appearance data directly from the driver, which generally contributes to the reduced

performance in self-reenactment.
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Method FID↓ CSIM↑ IQA↑
Base w/ bicubic 51.4 0.67 35.1
HiFaceGAN 49.4 0.65 43.9
Ours 39.2 0.67 49.3

TABLE 6.2: Quantitative results on the FFHQ dataset in the cross-reenactment mode at 1024×
1024 resolution. Besides the standard cross-reenactment metrics, we additionally perform an
image quality assessment (IQA, higher the better). Our super-resolution method improves the
resulting image quality compared to the base model with bicubic upsampling and the super-
resolution baseline (HiFaceGAN), as seen from the FID and IQA metrics. At the same time, we

preserve the source image appearance, which results in the same CSIM as the base model.

6.4.5 High-resolution evaluation

We evaluate high-resolution synthesis only in cross-reenactment mode since data for the self-

reenactment scenario is missing. We use subsets of a filtered FFHQ dataset for training and

evaluation. We train both our and the baseline super-resolution approaches using an output of

a pre-trained base model Gbase as input and by sampling two random augmented versions of

the training image as a source and a driver. We use random crops and rotations, since other

augmentation transforms could change person-specific traits (e.g. head width).

We compare against two baselines. First, we consider bicubic upsampling of the output of the base

model and, second, we evaluate a state-of-the-art face super-resolution system (HiFaceGAN) Yang

et al. [2020]. The results are presented in Figure 6.4, and Table 6.2. In the quantitative comparison,

we use an additional image quality assessment metric (IQA) Su et al. [2020c] to measure

the resulting image quality. Our method outperforms its competitors both qualitatively and

quantitatively by generating more high-frequency details and, at the same time, preserving the

identity of the source image.

Finally, in Figure 6.5 we show the results for the distillation of our base and high-resolution

models into a small student network designed to work for a limited number of avatars. The

architecture we chose for the distillation achieves 130 frames per second on the NVIDIA RTX

3090 graphics card in the FP16 mode. The total model size for the student containing 100 avatars

is 800 megabytes. This model can closely match the performance of the teacher model. It thus

achieves a PSNR of 23.14 and LPIPS of 0.208 (w.r.t. the teacher model) averaged across all

avatars.

6.4.6 Ablation study

We conducted an extensive ablation study to evaluate the contributions of individual components

within our method. Therefore, we evaluate the importance of the proposed cycle consistency

losses for the base and high-resolution models. The qualitative results are shown in Figure 6.6.
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Source Driver Ours (HR) Ours (dist)

FIGURE 6.5: Results of the distilled version of our system trained for 100 avatars. It closely
matches the prediction of the teacher model while being approximately ten times faster at the

inference, achieving up to 130 FPS on a modern GPU.

Source Driver w/o Lcos w/o Lc
∗ Ours (HR)

FIGURE 6.6: Ablation study. Both contrastive loss Lcos and unsupervised super-resolution
losses Lc

adv and Lc
cyc (denoted as Lc

∗) improve the performance of our method in the cross-driving
scenario.

Overall, both losses substantially improve the disentanglement between the motion and appear-

ance. The quantitative evaluation confirms this: the base model without Lcos achieves an FID

of 34.8, compared to the final 28.6, and the high-resolution model without cycle losses has an

FID of 39.6, compared to the final FID of 39.2. We also provide an in-depth evaluation of the

architectural choices in the supplementary materials.

6.5 Conclusion

We have presented a new approach for synthesizing high-resolution neural avatars. To the best of

our knowledge, this approach is the first to achieve megapixel resolution. We have also explored

a possible application of the proposed method in practice, which involves locking the identities of

the avatars by training a dedicated student network. The use of the student network also increase

the rendering speed while achieving similar quality of renders to our full one-shot model.
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Source Driver 1 Ours 1 Driver 2 Ours 2

FIGURE 6.7: The limitations of our method include the inability to model large head rotations,
which stems from the near frontal views distribution in the training data (1st example), and the

lack of shoulders motion modeling (2nd example).

Two main limitations of our system stem from the properties of our training set. First, both the

VoxCeleb2 and the FFHQ datasets that we use for training tend to have near frontal views, which

degrades the quality of rendering for strongly non-frontal head poses (Figure 6.7). Secondly, as

only static views are available at high resolution, a certain amount of temporal flicker is present

in our results (see supplementary video). Ideally, this needs to be tackled with special losses or

architecture choices. Lastly, our system lacks the modeling of shoulders motion. Addressing the

above-mentioned issues remains our future work.
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Chapter 7

Realistic One-shot Mesh-based Head
Avatars

Abstract

We present a system for the creation of realistic one-shot mesh-based (ROME) human head

avatars. From a single photograph, our system estimates the head mesh (with person-specific

details in both the facial and non-facial head parts) as well as the neural texture encoding, local

photometric and geometric details. The resulting avatars are rigged and can be rendered using a

deep rendering network, which is trained alongside the mesh and texture estimators on a dataset

of in-the-wild videos. In the experiments, we observe that our system performs competitively

both in terms of head geometry recovery and the quality of renders, especially for cross-person

reenactment.

This work was published as: Taras Khakhulin, Vanessa Sklyarova, Victor Lempitsky, and Egor Zakharov. Realistic
One-shot Mesh-based Head Avatars. European Conference on Computer Vision (ECCV), 2022.

Supplementary materials are hosted on the project page: https://samsunglabs.github.io/rome

97

https://samsunglabs.github.io/rome


Chapter 7 Realistic One-shot Mesh-based Head Avatars

7.1 Introduction

Personalized human avatars are becoming the key technology across several application domains,

such as telepresence, virtual worlds, online commerce. In many cases, it is sufficient to personalize

only a part of the avatars’ body. The remaining body parts can then be either chosen from a

certain library of assets or omitted from the interface. Towards this end, many applications

require personalization at the head level, i.e. creating person-specific head models. Creating

personalized heads is an important and viable intermediate step between personalizing just face

(which is often insufficient) and creating personalized full-body models, which is a much harder

task that limits quality of the resulting models and/or requires cumbersome data collection.

Acquiring human avatars from a single photograph (“one-shot”) offers the highest convenience

for users, yet is particularly challenging and requires strong priors on human geometry and

appearance. For faces, parametric models are long known to offer good personalization solu-

tions Blanz and Vetter [1999]. Face models can also be learned from a relatively small dataset of

3D scans, and represent geometry using meshes and appearance using textures, which makes

such models compatible with many computer graphics applications and pipelines. On the other

hand, parametric face models cannot be trivially expanded to the whole head region due to large

geometric variability of the non-facial parts such as hair and neck.

In this work, we extend parametric mesh-based modeling to the human heads. In order to learn

the increased geometric and photometric variability (compared to faces), we learn our parametric

models directly from a large dataset of in-the-wild videos Chung et al. [2018b]. We use neural

networks to parameterize both the geometry and the appearance. For the appearance modeling,

we follow the deferred neural rendering Thies et al. [2019a] paradigm and use a combination of

neural textures and rendering networks. A neural rendering framework Ravi et al. [2020] is used

to enable end-to-end training and to achieve high visual realism of the resulting head models.

After training, both the geometric and the appearance neural networks can be conditioned on the

information extracted from a single photograph, enabling one-shot realistic avatar generation.

To the best of our knowledge, our system is the first that is capable of creating realistic personal-

ized human head models in a rigged mesh format from a single photograph. This distinguishes

our model from a growing class of approaches that recover neural head avatars that lack explicit

geometry Siarohin et al. [2019b], Wang et al. [2021], Zakharov et al. [2019, 2020], from another

big class of approaches that can personalize the face region but not the whole head Blanz and

Vetter [1999], Feng et al. [2020], Kim et al. [2018c], Thies et al. [2016a], and from commer-

cial systems that create non-photorealistic mesh avatars from a single image Ava, Pinscreen.

Alongside our full model, we also discuss a simplification of it based on linear blendshape basis

and show how such simplification and a corresponding feedforward predictor for blendshape

coefficients can be trained (on the same video dataset).
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Source Driver Normals Render Driver Normals Render

FIGURE 7.1: Results of our system. It creates mesh-based avatars from a single photo (Source).
The resulting avatars are rigged, i.e., can be driven by the animation parameters from a different
frame (Driver) and use an underlying mesh that has a predefined topology and reflects person-
specific geometry (Mesh). The realism of the renders is enhanced by the use of neural rendering,
which is trained jointly with the geometric model generation on a dataset of in-the-wild videos.

Overall, our contributions are as follows:

• We present a system that is able to create mesh-based rigged head avatars from a single

image.

• We show how such system can be trained using in-the-wild videos by using modern

differentiable renderers.

• Our approach achieves state-of-the-art in the task of one-shot head mesh reconstruction.

• We discuss how a simplified linear blendshape model, which approximates our full system,

can be trained.

Below, we refer to the avatars generated by our system as ROME avatars (Realistic One-shot

Mesh-based avatars).

7.2 Related work

7.2.1 Parametric models of human faces

3D face reconstruction has been actively developed over decades for face tracking and align-

ment Guo et al. [2020], Hassner et al. [2015], face recognition Blanz et al. [2002], Tran et al.

[2017], and generative modelling Kim et al. [2018c], Lombardi et al. [2018b, 2019], Milden-

hall et al. [2020], Ramon et al. [2021], Thies et al. [2016a]. In all these scenarios, statistical

mesh-based models (aka parametric models) Blanz and Vetter [1999] remain one of the widely

used tools Egger et al. [2020], Ploumpis et al. [2021]. Such models impose a strong prior on the

space of possible reconstructions. State-of-the-art parametric models for human heads consist of

rigged meshes Li et al. [2017] which support a diverse range of animations with rigid motions for
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jaw, neck, and eyeballs, as well as via disentangled shape and expression coefficients. However,

they only provide reconstructions for face, ears, neck, and forehead regions, which limits the

range of applications. The inclusion of full head reconstruction (i.e., hair and clothing) into

these parametric models is possible, but in order to do that current approaches require signif-

icantly more training data to be gathered in the form of 3D scans. Instead, in our work, we

propose to leverage existing large-scale datasets Chung et al. [2018b] of in-the-wild videos via

the learning-by-synthesis paradigm without using any additional 3D scans.

7.2.2 Neural 3D human head models

While parametric models provide sufficient reconstruction quality for many downstream applica-

tions, they are not able to model very fine details that are needed for photorealistic modeling. In

recent years, approaches that model the very complex geometry and/or appearance of humans

using high-capacity deep neural networks. Some of these works use strong human-specific

priors Feng et al. [2020], Lombardi et al. [2021], Ramon et al. [2021], Saito et al. [2020b]. Others,

fit high-capacity networks to data without the use of such priors Kellnhofer et al. [2021], Lom-

bardi et al. [2018b, 2019], Ma et al. [2021], Mildenhall et al. [2020], Oechsle et al. [2021], Park

et al. [2019]. The methods in this class differ by the type of data structure used to represent the

geometry, namely, mesh-based Feng et al. [2020], Lombardi et al. [2018b, 2019], point-based Ma

et al. [2021], Zakharkin et al. [2021], and implicit models Lombardi et al. [2021], Mildenhall

et al. [2020], Oechsle et al. [2021], Park et al. [2019], Ramon et al. [2021], Saito et al. [2020b],

Yenamandra et al. [2021].

Mesh-based models arguably represent the most convenient class of methods for downstream

applications. They provide better rendering quality and better temporal stability than point-based

neural rendering. Also, unlike methods based on implicit geometry, mesh-based methods allow to

preserve topology and rigging capability, and are also much faster during fitting and/or rendering.

However, currently, mesh-based methods either severely limit the range of deformations Feng

et al. [2020], making it infeasible to learn complex geometry like hair or clothing, or operate in

the multi-shot scenario and require an excessive number of 3D scans as training data Lombardi

et al. [2018b, 2019]. Our proposed method is also mesh-based, but we allow the prediction of

complex deformations without 3D supervision, lifting the limitations of the previous works.

7.2.3 One-shot neural head models

Advances in neural networks also led to the development of methods that directly predict

images using large ConvNets operating in the 2D image domain, with effectively no underlying

3D geometry Siarohin et al. [2019b], Zakharov et al. [2019, 2020] or with very coarse 3D
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geometry Wang et al. [2021]. These methods achieve state-of-the-art realism Wang et al. [2021],

use in-the-wild images or videos with no 3D annotations for training, and can create avatars

from a single image. However, the lack of an explicit geometric model, makes these models

incompatible with many real-world applications, and limits the span of camera poses that can be

handled by these methods.

7.2.4 Neural mesh rendering

Recently, approaches that combines explicit data structures (point clouds or meshes) with neural

image generation have emerged. For mesh-based geometry, this method has been pioneered and

popularized by the Deferred Neural Rendering system Thies et al. [2019a]. This class of methods

also benefit from the recent advances in differentiable mesh rendering Laine et al. [2020], Liu

et al. [2019], Ravi et al. [2020]. Neural mesh rendering uses 2D convolutional networks to model

complex photometric properties of surfaces, and achieves high realism of renders with fine details

even when such details are missing in the underlying geometric model. In this work, we adapt

these advances to human head modeling and combine them with learning from large datasets of

in-the-wild videos.

7.3 Method

Our goal is to build a system that jointly learns to produce photorealistic renders of human heads,

as well as to estimate their 3D meshes using only a single image and without any 3D supervision.

To achieve that, we use a large-scale dataset Chung et al. [2018b] of in-the-wild videos with

talking speakers. All frames in each video are assumed to depict the same person in the same

environment (defined by lighting, hairstyle, and person’s clothing).

At each training step, we sample two random frames xs and xt from a random training video.

Our goal is to reconstruct and to render the target image x̂t given a) the personal details and

the face shape extracted from the source image xs, as well as b) the head pose, the facial

expression, and the camera pose estimated from the target image xt. The final reconstruction

loss is backpropagated and used to update the parameters of the model components.

After training, we can create a personalized head model by estimating all parameters from a

single image. This model can then be animated using face tracking parameters extracted from

any talking head sequence and rendered from a range of viewpoints similar to those present in

the training dataset.
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FIGURE 7.2: Overview of our approach and the detailed scheme of the head mesh reconstruction.
Given the source photo, we first estimate a neural texture that encodes local geometric and
photometric details of visible and occluded parts. We then use a pre-trained system Feng et al.
[2020] for face reconstruction to estimate an initial mesh with a reconstructed facial part. We
call this step face and 3D pose estimation. During head mesh reconstruction (bottom), using the
estimated neural texture and the initial mesh, we predict the offsets for the mesh vertices, which
do not correspond to a face. The offsets are predicted using a combination of a convolutional
network Egeom and a perceptron network Ggeom. We then render the personalized head mesh
using the camera parameters, estimated by a pre-trained regressor Feng et al. [2020], while
superimposing the predicted neural texture. Finally, the rendering network Eimg estimates the

RGB image and the mask from the render.

7.3.1 Model overview

In our model, we jointly train multiple neural networks that perform rendering and mesh recon-

struction. The training pipeline proceeds as follows (Figure 7.2):

Latent texture estimation. The source image xs is encoded into a neural texture Ts that contains

local person-specific details (describing both appearance and geometry). The encoding is done

by a convolutional neural network Etex.

Face and 3D pose estimation. In parallel, we apply a pre-trained DECA system Feng et al.

[2020] for face reconstruction to both the source and the target image. DECA estimates facial

shape, expression, and head pose and uses the FLAME head model Li et al. [2017] with predefined

mesh topology and blendshapes learned from 3D scans. We use the face shape from the source

image xs as well as the facial expression and the camera pose from the target image xt for further

processing.
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Head mesh reconstruction. The vertices of the DECA mesh (initial mesh) with personalized

face region and generic non-facial parts are rendered into an xyz-coordinate texture using the

predefined texture mapping. The xyz-texture and the neural texture Ts are concatenated and

processed with the U-Net network Ronneberger et al. [2015] Egeom into a new texture map (latent

geometry map) Zt. The 3D displacements for each mesh vertex are then decoded independently

by the multi-layer perceptronGgeom that predicts a 3D offset ∆v̂ for each vertex along the surface

normal. This step reconstructs the personalized model for non-face parts of the head mesh. The

reconstructions are compatible with the topology/connectivity of the FLAME mesh Li et al.

[2017].

Deferred neural rendering. The personalized head mesh is rendered using the pose estimated

by DECA for the target image and with the superimposed neural texture. The resulting render

concatenated with rasterized surface normal and processed by the decoding (rendering) U-Net

network Eimg to obtain the predicted image x̂t and the segmentation mask ŝt. During training,

the reconstruction is compared to the true image/mask, and the losses are used to update the

components of our system.

Below, we first provide details of training process and the training losses. We also discuss how a

model with simplified inference and parameterization, which models head geometry using linear

blendshape basis, can be trained.

7.3.2 Parametric face modeling

Our method uses a predefined head mesh with corresponding texture coordinates w. Also,

our mesh reconstruction process does not change the head topology or texture coordinates of

individual vertices. More specifically, we use the FLAME Li et al. [2017] head model that

has N base vertices vbase ∈ R3N , and two sets of K and L basis vectors that encode shape

B ∈ R3N×K and expression D ∈ R3N×L. The reconstruction is carried out in two stages:

the basis vectors are first blended using the estimated vectors of linear coefficients ϕ and ψ, and

then the linear blend skinning Li et al. [2017] function W is applied with estimated parameters

θ, which rotates groups of vertices around linearly estimated joints. The final reconstruction in

world coordinates can be expressed as follows:

v(ϕ, ψ, θ) = W
(
vbase + Bϕ+Dψ, θ

)
.

In previous works Thies et al. [2016a], these parameters were estimated via photometric op-

timization. More recently, learning-based methods Feng et al. [2020] capable of single-view

reconstruction started to emerge. In our work, we use a pre-trained DECA system Feng et al.

[2020] that provides an initial head reconstruction (in the form of FLAME parameters).

103



Chapter 7 Realistic One-shot Mesh-based Head Avatars

During training, we apply DECA to both source image xs and the target image xt. The face

shape parameters from the source image xs alongside the expression, head pose and camera pose

parameters from the target image xt are then used to reconstruct the initial FLAME vertices

vt = v(ϕs, ψt, θt), as well as estimate the camera matrix Pt.

7.3.3 Head mesh reconstruction

The FLAME vertices vt estimated by DECA provide good reconstructions for the face region but

lack any person-specific details in the remaining parts of the head (hair, clothing). To alleviate

that, we predict person-specific mesh offsets for non-facial regions while preserving the face

shape predicted by DECA. We additionally exclude ear regions since their geometry in the initial

mesh is too complex to be learned from in-the-wild video datasets.

These mesh offsets are estimated in two steps. First, we encode both vertex texture and the

neural texture Ts into the latent geometry texture map Zt via a UNet network Egeom. It allows

the produced latent map to contain both positions of the initial vertices vt, and their semantics,

provided by the neural texture.

From Zt we obtain the vectors Zw
t by bilinear interpolation at fixed texture coordinates w. The

vectors Zw
t and their coordinates w are then concatenated and passed through a multi-layer

perceptron Ggeom independently for each vertex in the mesh to predict the offsets ∆v̂t and push

them along normal n⃗t. These displacements are then zeroed out for face and ear regions, and the

final reconstruction in world coordinates is obtained as follows: v̂t = vt +∆v̂t · n⃗t.

7.3.4 Deferred neural rendering

We render the reconstructed head vertices v̂t using the topology and texture coordinates w from

the FLAME model with the superimposed neural texture Ts. For that, we use a differentiable

mesh renderer R Ravi et al. [2020] with the camera matrix Pt estimated by DECA for the target

image xt.

The resulting rasterization (neural texture and surface normal) is processed by the rendering

(decoding) network Eimg to obtain the predicted image x̂t and the segmentation mask ŝt. Eimg

consists of two UNets that separately decode an image and a mask. The result of the deferred

neural rendering is the reconstruction of the target image x̂t and its mask ŝt, which is compared

to the ground-truth image xt and mask st via a photometric loss.
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7.3.5 Training objectives

In our approach, we learn geometry without any ground-truth 3D supervision during training

or pre-training (on top of the pretrained DECA estimator). For that we utilize two types of

objectives: segmentation-based geometric losses Lgeom and photometric losses Lphoto.

We found that explicitly assigning subsets of mesh vertices to the neck and the hair regions helps

a lot with the quality of final deformations. It allows us to introduce a topological prior for

the predicted offsets. In our predictions, hair has no holes and is topologically equivalent to a

half-sphere (a disk), while neck vertices are equivalent to a cylinder.

To evaluate the geometric losses, we calculate two separate occupancy masks using a soft

rasterization operation Liu et al. [2019]. First, ôhair
t is calculated with detached neck vertices, so

that the gradient flows through that mask only to the offsets corresponding to the hair vertices,

and then ôneck
t is calculated with detached hair vertices. We match the hair occupancy mask to

the ground-truth mask shair
t (which covers the hair, face, and ears), and the neck occupancy mask

to the whole segmentation mask st: Locc = λhair
∥∥ôhair

t − shair
t

∥∥2
2
+ λneck

∥∥ôneck
t − st

∥∥2
2
.

We also use an auxiliary Chamfer loss to ensure that the predicted mesh vertices cover the head

more uniformly. Specifically, we match the 2D coordinates of the mesh vertices, projected into

the target image, to the head segmentation mask. We denote the subset of predicted mesh vertices,

visible in the target image, as p̂t = P ′
t(v̂t), and the number of these vertices as Nt, so that

p̂t ∈ RNt×2. Notice that operator P ′
t here not only does the camera transformation, but also

discards the z coordinate of the projected mesh vertices. To compute the loss, we then sample

Nt 2D points from the segmentation mask st and estimate the Chamfer distance between the

sampled set of points pt and the vertex projections:

Lchm =
1

2Nt

∑
p̂t∈p̂t

∥∥∥p̂t − arg min
p∈pt

∥∥p− p̂t
∥∥∥∥∥+

1

2Nt

∑
pt∈pt

∥∥∥pt − arg min
p̂∈p̂t

∥∥p̂− pt
∥∥∥∥∥.

Lastly, we regularize the learned geometry using the Laplacian penalty Sorkine-Hornung [2005].

We initially found that regularizing offsets ∆v̂ worked better than regularizing full coordinates v̂

and stuck to that approach for all experiments. Our version of the Laplacian loss can be written

as:

Llap =
1

V

V∑
i=1

∥∥∥∆v̂i −
1

N (i)

∑
j∈N (i)

∆v̂j

∥∥∥
1
,

where N (i) denotes a set indices for vertices adjacent to the i-th vertex in the mesh.
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The final geometric loss that we use to learn head mesh reconstruction is: Lgeom = Locc +

λchmLchm + λlapLlap.

We also use photometric optimization that matches the obtained and the ground truth images. We

have found that photometric loss terms not only allow to obtain photorealistic renders but also

aid in learning proper geometric reconstructions. The photometric terms include the perceptual

loss Johnson et al. [2016b], the face recognition loss Cao et al. [2018b] and the multi-resolution

adversarial loss Goodfellow et al. [2014b], Wang et al. [2018f]. We also use the Dice loss Milletari

et al. [2016] to match segmentation masks. Therefore, we use the following combination of

losses: Lphoto = λperLper + λidtLidt + λadvLadv + λsegLseg.

The final objective is a sum of the geometric and the photometric losses: L = Lgeom + Lphoto.

7.3.6 Linear deformation model

In addition to our full non-linear model introduced above, we also consider a simplified parametric

model with a linear basis of offsets ∆v̂. While this model is similar to parametric models Li et al.

[2017], Zuffi et al. [2019], we still do not use 3D scans for training and rather obtain our linear

model by “distilling” our non-linear model. We also train a feedforward regressor that predicts

the linear coefficients from an input image.

The motivation for training this additional model is to show that the deformations learned by our

method can be approximated using a system with a significantly lower capacity. Such a simple

regression model can be easier to apply for inference on low-performance devices.

To train the linear model, we first obtain the basis of offsets F ∈ R3N×K , which is similar to

the ones used in the FLAME parametric model. This basis is obtained by applying a low-rank

PCA Halko et al. [2011] to the matrix of offsets ∆V̂ ∈ R3N×M , calculated using M images

from the dataset. Following Li et al. [2017], we discard most of the basis vectors and only keep

K components corresponding to maximal singular values. The approximated vertex offsets ṽ for

each image can then be estimated as following ṽ = Fη, where η can be obtained by applying the

pseudo-inverse of a basis matrix F to the corresponding offsets ∆v̂: η =
(
FTF

)−1FT∆v̂

We then train the regression network by estimating a vector of basis coefficients ηt, given an

image xt. For that, we minimize the mean square error (MSE) loss ∥η̂t − ηt∥22 between the

estimated coefficients and the ground truth.
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Source H3D-Net ROME GT H3D-Net ROME

FIGURE 7.3: Qualitative comparison on representative cases for the H3DS dataset. While
neither of the two methods achieve perfect results, arguably, ROME achieves more realistic
renders, as well as better matches the head geometry than H3D-Net in the single-shot mode. An

important advantage of ROME is that the resulting avatars are ready for animation.

7.4 Experiments

We train our models on the VoxCeleb2 Chung et al. [2018b] dataset of videos. This large-scale

dataset contains an order of 105 videos of 103 different speakers. It is widely used Doukas et al.

[2021a], Wang et al. [2021], Zakharov et al. [2020] to train talking head models. However, the

main drawback of this dataset is the mixed quality of videos and the heavy bias towards frontal

poses.

To address these well-known limitations, we process this dataset using an off-the-shelf image

quality analysis model Su et al. [2020a] and a 3D face-alignment network Bulat and Tzimiropou-

los [2017b]. We then filter out the data which has poor quality and non-diverse head rotations.

Our final training dataset has ≈ 15000 sequences. We note that filtering/pruning does not fully

solve the problem of head rotation bias, and our method still works best in frontal views. For

more details, please refer to the supplementary materials.

We also use the H3DS Ramon et al. [2021] dataset of photos with associated 3D scans to evaluate

the quality of head reconstructions.

7.4.1 Implementation details

In the experiments, unless noted otherwise, we train all architectures jointly and end-to-end. We

use the following weights: λhair = 10, λper = 1, λidt = 0.1, λadv = 0.1, λseg = 10, (λhair = 10,
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TABLE 7.1: Evaluation results on the H3DS dataset in one-shot scenario for our models, H3D-
Net, and DECA. We compute Chamfer distance (lower is better) across all available scans,
reconstructed from three different viewpoints. ROME variants significantly exceeds H3D-Net in

the one-shot reconstruction quality.

Method DECA H3D-Net ROME LinearROME
Chamfer Distance 14.98 15.1 12.6 12.45

λneck = 1) and enable the neck and the 2D Chamfer loss λchm = 0.01) and λlap = 10. We ablate

all geometry losses and method parts below.

We demonstrate results of ablation study at Figure 7.6. As expected, predicting more accurate

geometry affect the renders (first row). Also, we verify the necessity of all terms of geometry

loss.

We train our models at 256× 256 resolution using ADAM Kingma and Ba [2015] with the fixed

learning rate of 10−4, β1 = 0, β2 = 0.999, and a batch size of 32. For more details, please refer

to the supplementary materials.

7.4.2 Evaluation

3D reconstruction. We evaluate our head reconstruction quality using a novel H3DS

dataset Ramon et al. [2021]. We compare against the state-of-the-art head reconstruction method

H3D-Net Ramon et al. [2021], which uses signed distance functions to represent the geometry.

While providing great reconstruction quality in the sparse-view scenario, their approach has

several limitations. For example, H3D-Net requires a dataset of full head scans to learn the prior

on head shapes. Additionally, its results do not have fixed topology or rigging and their method

requires fine-tuning per scene, while our method works in a feed-forward way.

We carry out the comparison with H3D-Net in a single-view scenario, which is native for our

method but is beyond the capabilities stated by the authors in the original publication Ramon

et al. [2021]. However, to the best of our knowledge, H3D-Net is the closest system to ours

in single-view reconstruction capabilities (out of all systems with either their code or results

available). Additionaly, we tried to compare our system with PIFuHD Saito et al. [2020a], which

unfortunately failed to work with heads images without body (see supplementary).

We show qualitative comparison in Figure 7.3. We evaluate our method and H3D-Net both for

frontal- and side-view reconstruction. We note the significant overfitting of H3D-Net to the

visible hair geometry, while our model provides reconstructions more robust to the change of

viewpoint.
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Source Driver FOMM Bi-Layer FLAMETex ROME

FIGURE 7.4: Comparison of renders on a VoxCeleb2 dataset. The task is to reenact the source
image with the expression and pose of the driver image. Here, we picked diverse examples in
terms of pose variation to highlight the differences in performance of compared methods. We
observe that for the large head pose rotations, purely neural-based methods (FOMM, Bi-Layer)
struggle to maintain consistent quality. In comparison, our rendering method produces images
that are more robust to pose changes. Admittedly, for small pose changes, neural-based methods
exhibit a smaller identity gap than ROME (bottom row) and overall outperform our method in
terms of rendering quality. Additionally, we include a FLAMETex method, which is employed
in state-of-the-art one-shot face reconstruction systems Feng et al. [2020] but is not able to

personalize the avatar at the head level.

In total, we compared our models on all scans available in the test set of the H3DS dataset, and

each scan was reconstructed from three different viewpoints. We provide the measured mean

Chamfer distance both for our method and baselines across all scans in Tab. 7.1.

Rendering. We evaluate the quality of our renders on the hold-out subset VoxCeleb2 dataset.

We use a cross-driving comparison scenario for qualitative comparison to highlight the animation

capabilities of our method, and self-driving scenario for quantitative comparison.

First, we compare with a FLAMETex Li et al. [2017] rendering system, which works explicitly

with mesh rendering. From the source image, FLAMETex estimates the albedo via a basis

of RGB textures, and then combines it with predicted scene-specific shading. In contrast, our

method predicts a rendered image directly and avoids the complexity of explicit albedo-shading

decomposition.

We then compare with publicly available geometry-free rendering methods, which were trained on

the same dataset. For that, we use the First-Order Motion Model (FOMM) Siarohin et al. [2019b]

and the Bi-Layer Avatar Model Zakharov et al. [2020]. Both these systems bypass explicit 3D

geometry estimation and rely only on learning the scene structure via the parameters of generative

ConvNets. Other methods Doukas et al. [2021a], Wang et al. [2021], which internally utilize
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TABLE 7.2: Here we present the quantitative results on the VoxCeleb2 dataset in the self-
reenactment and cross-reenactment modes. Our ROME system performs on par with FOMM in
self-reenactment, but outperforms (in the most perceptually-plausible LPIPS metrics) On the
contrary, in cross-driving, when the task is complex for pure neural based, our method obtains

better results.

self-reenactment cross-reenactment

Method LPIPS↓ SSIM↑ PSNR↑ FID↓ CSIM↑ IQA↑
FOMM 0.09 0.87 25.8 52.95 0.53 55.9
Bi-Layer 0.08 0.83 23.68 51.35 0.56 50.48
TPSMM 0.09 0.85 26.1 49.27 0.57 59.5
ROME 0.08 0.86 26.2 45.32 0.62 66.3

some 3D structures, like camera rotations, were out of the scope of our comparison due to the

unavailability of pre-trained models.

We present the qualitative comparison in Figure 7.4, and a quantitative comparison across a

randomly sampled hold-out VoxCeleb2 subset in Table 7.2. We restrict the comparison to the

face and hair region as the shoulder pose is not controlled by our method (driven by DECA

parameters), which is admittedly a limitation of our system. We thus mask the results according

to the face and hair mask estimated from the ground truth image.

Generally, we observe that over the entire test set, the quality of ROME avatars in the self-

reenactment mode is similar to FOMM and better than the Bi-layer model. For the cross-

reenactment scenario, our model is clearly better than both alternatives according to three

metrics, that help to asses unsupervised quality of the images in three aspects: realism, identity

preservation and blind quality of the image. The huge gap for IQA Su et al. [2020b] and

FID Heusel et al. [2017b] is also noticeable in the qualitative comparison, especially for strong

pose change (see CSIM Zakharov et al. [2019] column in Tab. 7.2). The PSNR and SSIM metrics

penalize slight misalignments between the sharp ground truth and our renderings much stronger

than the blurriness in FOMM reconstructions. The advatage of ROME avatar is noticable even

for self-driving case according to LPIPS. We provide a more extensive qualitative evaluation in

the supplementary materials.

7.4.3 Linear basis experiments

As discussed above, we distill our ROME head reconstruction model into a linear parametric

model. To do that, we set the number of basis vectors to 50 for the hair and 10 for the neck

offsets and run low-rank Principle Component Analysis (PCA) to estimate them. The number

of components is chosen to obtain a low enough approximation error. Interestingly, the offsets

learned by our model can be compressed by almost two orders of magnitude in terms of degrees

of freedom without any practical loss in quality (Figure 7.5a), which suggests that the capacity
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Image ROME Distilled

(A) Linear model

Long hair Ear cover Failed renders

(B) Limitations

FIGURE 7.5: Linear model results and the examples of limitations. Offsets learned by our
method (ROME) could be distilled using a linear parametric model. We are able to compress the
offsets learned by our method into a small basis (PCA Rec.), reducing the degrees of freedom
by two orders of magnitude. We can then distill these offsets using a much faster regression
network with a small gap in terms of the reconstruction quality. The right image highlights the
main limitations of our method, which include the failure to model long hair due to incorrect
prior with small details (left), no coverage of ears (middle) and unrealistic renders under strong

scale change (right).

of the offset generator is underused in our model. We combine estimated basis vectors with the

original basis of the FLAME.

After that, we train feed-forward encoders that directly predict the coefficients of the two basis

from the source image. The prediction is performed in two stages. First, face expression, pose

and camera parameters are predicted with a MobileNetV2 Sandler et al. [2018] encoder. Then a

slower ResNet-50 encoder He et al. [2016a] is used to predict hair, neck and shape coefficients.

The choice of architectures are motivated by the fact that in many practical scenarios only the

first encoder needs to be invoked frequently (per-frame), while the second can run at much lower

rate or even only at the model creation time.

7.4.4 Limitations

In some cases, the proposed system often produces somewhat oversmoothed geometry without

person-specific attributes. Most of those attributes simply cannot be presented with the limited

set of vertices. Our preliminary experiments with subdivision during training did not help to

alleviate this problem. It may be interesting to study this problem in a few-shot scenario (given

different views) or to use images and proxy geometry in a higher resolution. Another frequent

geometry artifact is the roughness of the clothing approximation. As we know, modeling any

clothes without 3D data is an extremely difficult task and the fact that our models is not able

to do so from videos is not surprising. A principled solution to this problem will likely require

learning from datasets that cover these areas (e.g., circular 3D scans of human heads) Alldieck

et al. [2019].
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Input Full w/o ∆v̂ w/o n⃗ w/o Locc w/o Llap w/o Lchm

FIGURE 7.6: Ablation study. We qualitatively evaluate the individual components of our full
model. w/o ∆v̂: without the per-vertex displacements, we obtain a significantly worse render
quality. w/o n⃗: when we apply per-vertex deformations instead of per-vertex displacements (i.e.,
deformations alongside the normals), we obtain noisy reconstructions (especially in the area
of the neck) and worse renders. w/o Locc: without silhouette-based losses, our model fails to
learn proper reconstructions. w/o Llap: Laplacian regularization smooths the reconstructions
and reduces noise while not affecting the quality of renders. w/o Lchm: chamfer loss allows us
to constrain the displaced vertices to lie inside the scene boundaries, which positively affects the

smoothness of the visible part of the reconstruction.

Our current model is trained at roughly fixed scale, though explicit geometry modeling allows it

to generalize to adjacent scale reasonably well. Still, strong changes of scale lead to poor perfor-

mance (Figure 7.5b). More examples are provided in the supplementary materials. Addressing

this issue via mip-mapping and multi-scale GAN training techniques remains future work.

Lastly, our model can have artifacts with long hair (Figure 7.5b, left) or ears (Figure 7.5b, middle).

Handling such cases gracefully are likely to require a departure from the predefined FLAME

mesh connectivity to new person-specific mesh topology. Handling such issues using a limited

set of pre-designed hair meshes is an interesting direction for future research.

7.5 Summary

We have presented ROME avatars: a system for creating realistic one-shot mesh-based human

head models that can be animated and are compatible with FLAME head models. We compare

our model with representative state-of-the-art models from different classes, and show that it is

highly competitive both in terms of geometry estimation and the quality of rendering.

Crucially, our system can learn to model head geometry without direct supervision in the form of

3D scans. Despite that, we have observed it to achieve state-of-the-art results in head geometry

recovery from a single photograph. At the same time, it also performs better than previous

one-shot neural rendering approaches in the cross- and self-driving scenario. We have thus

verified that the resulting geometry could be used to improve the rendering quality.

As neural rendering becomes more widespread within graphics systems, ROME avatars and

similar systems can become directly applicable, while their one-shot capability and the simplicity
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of rigging derived from DECA and FLAME could become especially important in practical

applications.
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Chapter 8

Conclusion

In this thesis, the problem of synthesis of the human face and body images has been extensively

explored from computer vision and computer graphics perspectives. The works which constitute

this thesis advanced the human image synthesis systems in the following ways: proposed one of

the first methods of realistic synthesis of human heads by leveraging large-scale training tech-

niques; reduced the computational time required for initialization and inference of such systems

and improved their quality to achieve high realism; proposed an efficient way of disentangling

motion and appearance signals; and finally contributed to the task of one-shot full 3D rigged

human head reconstruction. Crucially, in all the proposed systems generative modeling approach

remains the key to achieving highly realistic synthesis.

We presented a new approach to GAN-based training for semantic image editing, one of the fun-

damental problems in human image synthesis. Then, we have explored geometry-free approaches

for human image synthesis based on the either direct prediction of the outputs using convolutional

neural networks, warping-based approaches that utilize an RGB texture, and hybrid approaches

that combine the two to achieve significant rendering speed-ups. Lastly, we have proposed two

approaches for incorporating 3D constraints into the geometry-free models. One system utilizes

a mesh representation and is capable of one-shot coarse reconstruction and realistic rendering.

Another model utilizes volumetric modeling to improve the performance of one-shot rendering

systems in the challenging cross-reenactment scenario.

The works on which this thesis is based have contributed not only to the scientific advancements

in the area of neural avatars but also to the public domain. Specifically, the work of Chapter 4,

sparked a discussion in both the mainstream and social media regarding the potential misuse of

the so-called “deep fake” systems, that allow the creation of fake media with human subjects. It

has also been discussed in publications by BBC, CNN, The Telegraph, and other news outlets.

This level of public attention has resulted in the publication being ranked by Altmetric rating as

the most discussed scientific work of 2019 Alt.
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While the potential for misuse of these early systems at a time was quite low due to the low

quality of the results, modern systems such as the ones described in Chapter 6 in conjunction

with large-scale text and image generative models such as GPT-3 Brown et al. [2020] or Latent

Diffusion Rombach et al. [2021] can produce increasingly sophisticated and believable synthetic

media. While the technology of human avatars is certainly disruptive and has numerous beneficial

applications in the areas of special effects, image generation, and editing, the potential for misuse

of these technologies is quite high and remains the focus of research Dolhansky et al. [2020],

Rössler et al. [2019].

Further directions on human avatar synthesis may revolve around the following problems. While

neural rendering has achieved exceptionally high degrees of realism, it cannot benefit from the

efficient classical rendering techniques developed in computer graphics. Bridging these two areas

together by making the realistic human rendering systems rely heavily on classical rendering and

physics modeling is an exciting new direction for research.

Another direction could be formulated as further incorporating the geometric constraints into

the geometry-free systems. Such constraints help improve the robustness of such systems to the

simple geometric transformations, such as camera rotation and translation, which are fundamental

to such applications as telepresence.
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