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The thesis document includes the following changes in answer to the external review process:

1. Title changed as ”On The Performance Of Quantum Approximate Optimization”.

2. Page 3) Text rephrasing: This parameterized state, called ansatz, is then tuned iteratively via
classical outer-loop optimization routines to minimize the expected value of some classical cost
function.

3. Page 3) Text rephrasing: Secondly, we consider training QAOA circuits and show that the
optimal circuit parameters feature a concentration effect, called parameter concentrations.

4. Page 3) Text rephrasing: We conjecture a logistic saturation behaviour for the circuit depth as a
function of problem density to recover ϵ-tolerant approximations.We test our prediction against
simulated data and find the model to be capable of describing the data within a 3σ confidence.

5. Page 8) New symbol added to List of Symbols : N,N0 – Field of natural numbers and natural
numbers inclusive of zero

6. Page 8) Text change: P– The class of problems that can be solved in polynomial time by a
deterministic Turing machine.

7. Page 8) Text change: NP– The class of problems that can be verified in polynomial time by a
deterministic Turing machine.

8. Page 14) Minor corrections in Statement 2:
The optimal parameters for the fixed depth QAOA admit a concentration effect. Specifically,
concentrations imply that, given a set of optimal parameters β∗

n and γ∗
n, for n qubits, a set of

optimal parameters for n+ 1 qubits, β∗
n+1 and γ∗

n+1 can be found such that:∣∣β∗
n+1 − β∗

n

∣∣2 + ∣∣γ∗
n+1 − γ∗

n

∣∣2 ∼ poly−1(n).

• Parameters concentrate for p = 1, 2 QAOA on variational state preparation with concen-
tration scaling: ∣∣β∗

n+1 − β∗
n

∣∣2 + ∣∣γ∗
n+1 − γ∗

n

∣∣2 ∼ n−4,

• Parameters concentrate for p ≥ 3 depth QAOA on variational state preparation for up to
p = 5 and 17 qubits with observed scaling being the same as for p = 1, 2.

9. Page 19) Minor corrections in Definition 1.5:
Given H, the Hilbert space of n qubits and A ∈ L(H), a basis decomposition of A, in terms of
Pauli strings, can be obtained as:

A =
∑
α

cα

n⊗
k=1

σαk

k ,

1



where α ∈ {0, 1, 2, 3}×n and σαk

k represent the corresponding Pauli matrix according to the
labeling σ0

k = 1k, σ
1
k = Xk, σ

2
k = Yk and σ3

k = Zk. The cardinality, |A|, is then defined as the
number of non-zero coefficients cα ∈ C in Eq. (1.6) and the locality given by the maximum

number of non-identity terms taken over the Pauli strings,
n⊗
k=1

σαk

k .

10. Page 21) Minor corrections in Definition 1.8:
Given A ∈ hermC[2

n], the expected value given a unit norm state |ψ⟩ ∈ H is defined as:

⟨ψ|A |ψ⟩ =
2n∑
k=1

λk |ck|2 ,

where λk are the eigenvalues of A and ck are the coefficients of |ψ⟩ in the eigenbasis of A.

11. Page 23) Equation Eq. (2.1) changed to: f : B×n −→ N0.

12. Page 24) Equation Eq. (2.2) modified as:

B −→ C2

× −→ ⊗.

13. Page 28) Minor edits in the sentence: We map binary variables xj −→ 1
2 (1+ Zj), where Zj is

the Pauli-Z matrix acting on the jth qubit.

14. Page 33) Discussion added to the end of Chapter 2.

15. Page 39) Definition 3.4 corrected as:
Given a problem Hamiltonian H > 0, whose ground states we wish to approximate using p-depth
QAOA, let Hmin represent the ground state energy of H. The approximation ratio is then defined
as:

r =
Hmin

⟨ψ(γ,β)|H |ψ(γ,β)⟩
.

QAOA exactly recovers ground states whenever, r = 1.

16. Page 49) Discussion added to the end of Chapter 3.

17. Page 51) Definition 4.1 restated as:
Let Ωp represent the variational state space accessible for a parameterized quantum circuit of
depth p. Given some problem Hamiltonian to be minimized H, the circuit is underparameterized,
whenever:

min
ψ∈Ω

⟨ψ (θ)|H |ψ (θ)⟩ −min
ϕ∈H

⟨ϕ|H |ϕ⟩ > 0 =⇒ Ωp ⊂ H.

18. Page 51) Definition 4.2 restated as:
Given some problem Hamiltonian H (α), on n-qubits and of density α, let Ω represent the
variational state space accessible for a p-depth QAOA circuit:

Ω =
⋃
γ,β

{
|ψ(γ,β)⟩

}
,

where |ψ(γ,β)⟩ as in Eq. (??). Reachability deficits are α induced underparameterization:

min
ψ∈Ω

⟨ψ|H (α) |ψ⟩ −min
ϕ∈H

⟨ϕ|H (α) |ϕ⟩ > 0.
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19. Page 70) Text rephrasing: Considering random instances of the satisfiability problem, we observe:
instances with relatively low clause density require low depth QAOA circuits, whereas for high
density instances, larger depth is required in order to approximate the minimum.

20. Page 72) Definition 5.2 restated as:
Let Γ represent a problem class, and let Hg represent the corresponding problem Hamiltonians
for random instances g ∈ Γ. For QAOA circuits of fixed depth p ∈ N, given (γ∗

n, β
∗
n) ∈

argmin
γ,β

⟨ψ(γ,β)|Hg |ψ(γ,β)⟩. Parameters concentrate whenever:

∀ (β∗
n,γ

∗
n) ∃

(
β∗
n+1,γ

∗
n+1

)
:∣∣β∗

n+1 − β∗
n

∣∣2 + ∣∣γ∗
n+1 − γ∗

n

∣∣2 ∼ poly−1 (n) .

21. Page 79) Minor edits in Theorem 5.1:
Let |t⟩ ∈ [C2]

⊗n
be an n qubit target state in the computational basis. For depth p = 1, 2,

parameters concentrate as:

∣∣β∗
n+1 − β∗

n

∣∣2 + ∣∣γ∗
n+1 − γ∗

n

∣∣2 = O
(

1

n4

)
. (1)

22. Page 88) Conjecture 6.1 restated as:
Critical depth p⋆, depends on clause density α,for MAX-2-SAT instances as:

p∗(α) ≈ pmax
1 + e−κ(α−αc)

, (2)

where αc is the critical density, κ the logistic growth rate, and pmax the saturation value.

23. Page 92) Text rephrasing: The modern approach in quantum algorithms development is centered
around the variational model of quantum computation, wherein a hybrid architecture, composed
of a classical co-processor and a near term quantum device, is exploited to realize ground state
quantum computing. In this framework, for classical combinatorial optimization tasks, QAOA
is among the most studied with promising prospects in near-term applications.
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