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Abstract

Quantum algorithms promise significant computational speed-up compared to their

classical counterparts. For these algorithms to be practical, however, large-scale

fault-tolerant quantum computers are required. An important step towards such

hardware is noisy intermediate-scale quantum (NISQ) devices, which are already

available today. NISQ computers are of especial usefulness in executing algorithms

implemented in the so-called variational quantum computing approach. In such

algorithms, a quantum computer is used to prepare a quantum state, which is ob-

tained as some easy-to-prepare initial state acted by a parametrized unitary oper-

ator. Commonly, these operators are represented by sequences of quantum gates,

which may depend on several parameters. Such unitary operators are called varia-

tional quantum circuits, as their parameters can be varied for obtaining a desired

quantum state. This thesis studies applications of such circuits in different fields,

including condensed matter physics and machine learning. Inter alia, described is

the mathematical apparatus of quantum computing, and the variational model of

quantum computations is introduced. Additionally in the thesis, several existing

variational quantum algorithms are reviewed and formulated in the tensor networks

notation.
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Introduction

Relevance of the work

The development of quantum physics and quantum technologies contributed to the

fast growth in information technology in the XX century in terms of creating hard-

ware, while the principles of representing and processing information, software, re-

mained classical. At the end of the XX century, proposed were fundamentally new

approaches based on the use of more subtle effects of quantum physics, which can

be called quantum information processing technologies. For the information repre-

sentation and processing, these approaches use phenomena and properties inherent

exclusively in quantum systems, such as quantum entanglement, quantum paral-

lelism, the Heisenberg uncertainty principle, and the impossibility of cloning quan-

tum states.

A great attention to quantum computation methods was drawn after Peter Shor

published the article describing a quantum algorithm for factorization of an integer

number into a product of prime numbers [5]. The sensation of this algorithm was

that if it would be possible to execute it on a quantum computer, then it would be

also possible to crack public-key cryptographic systems commonly used, for example,

in banking or on the Internet. The basic principle of such cryptographic systems

assumes the presence of a hard computational problem for which a fast classical

algorithm is unknown. For example, the popular RSA [6] system implements the

public key as the product of two large prime numbers. In order to break the RSA

cipher, one needs to find the factors of this product. If this number is sufficiently

large, then there is no known algorithm which is able to factorize it in reasonable

time. That is, the best classical algorithm does it in exponential time [7], while
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Shor’s method is polynomial.

As stated earlier, the very idea of quantum computation is to utilize certain

phenomena of quantum physics as a resource for computation. For instance, the

famous Grover’s search algorithm [8] is based on the fact that a number of quantum

bits can be put into the uniform superposition of zeros and ones, which is impos-

sible for classical bits as their state is definitive. Many of quantum cryptography

protocols [9] make use of the non-cloning theorem [10] which states that there is

no operation allowing to copy an unknown quantum state. Other quantum cryp-

tography protocols [11] are based on quantum entanglement, a phenomenon which

allows for several quantum systems to be prepared in a state such that they cannot

be described separately [12, 13]. Entanglement is also used as a resource for some

quantum algorithms, including quantum teleportation [14] and superdense coding

[15].

Many other useful quantum algorithms are known today. Amongst them is e.g.

the quantum phase estimation algorithm [16] which serves as a subroutine for other

algorithms, such as quantum algorithm for solving linear systems of equations [17],

singular value decomposition [18, 19], and the celebrated Shor’s factorization algo-

rithm [5]. Of great practical relevance are also quantum algorithms for semidefinite

[20, 21] and dynamical [22] programming, machine learning [23–25], solving differ-

ential equations [26–28], and other [29].

The main peculiarity of quantum computations is that the development of theory

is currently far ahead of that of technology. The principal obstacle to the creation

of a full-scale quantum computer is errors caused by external noise, or decoher-

ence, which destroys the superposition and entanglement of quantum bits, the basic

building blocks in quantum computing. Currently, great efforts are put to the de-

velopment of quantum error correction methods [30, 31].

Another way around the erroneous quantum computation is the development

of quantum algorithms suitable for the so-called noisy intermediate-scale quantum

(NISQ) computers [32, 33]. The core of such algorithms is formed by the idea of

variational quantum computing [34–41]. The algorithms developed in this setting

are called variational quantum algorithms (VQA). In these algorithms, one encodes
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a problem of interest into a real-valued function which assumes as an argument a

parametrized quantum state called the variational sate. This function — called the

cost, loss, or objective function — is constructed in such a way that the argument,

which delivers the minimum to the function, encodes the solution to the original

problem. While executing a VQA, a quantum processor computes the cost function,

while a classical processor searches for optimal assignments for the parameters of

the variational state. That is, the routines of the optimization of a cost function are

distributed between a classical and a quantum computer. Due to this, variational

quantum algorithms are sometimes called hybrid quantum-classical.

One of the pioneering VQAs was the variational quantum eigensolver (VQE)

algorithm [37]. In simple words, this algorithm uses a quantum device for naturally

findidng a solution to the Schrödinger equation. Namely, given a Hamiltonian, the

algorithm finds its ground state energy and vector. The cost function of this algo-

rithm is essentially the expected value of the Hamiltonian in the variational state.

In physics, a Hamiltonian describes a quantum system in terms of energy, which

is an observable quantity. That is, a quantum computer prepares the variational

state and measures its energy according to a given Hamiltonian, while a classical

computer finds parameters for the variational state such that the energy of the sys-

tem is minimized. This process can be considered as a direct application of the

Rayleigh–Ritz principle [42]. In the seminal work, the VQE was executed on an

optical device which encodes quantum bits into states of photons, and the target

Hamiltonian was describing the bond-dissociation energy of the molecule H-He+. It

is also noteworthy that measuring an observable with respect to a quantum state is

a very basic operation naturally performed by quantum computers, therefore VQAs

are based on computing the expected value of an observable.

To describe quantum algorithms, graphical methods for representing equations

are often used. The most prominent of such methods is the notation of quantum

circuits, which is inspired by the visualization methods for electrical circuit design

and tensor networks in physics [43–45]. In a quantum circuit, one indicates the initial

quantum state, its transformation in terms of sequences of unitary operators called

quantum gates, and the measurement of the resultant state. If a circuit describes a
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variational quantum algorithm, then the gates comprising the circuit are indicated

to depend on variational parameters. Such circuits are called variational quantum

circuits.

Although the quantum circuits notation allows to make pictorial and explana-

tory representations of quantum algorithms, there is a more general and powerful

language called tensor diagrams. Aside from physics and quantum computing, ten-

sor networks methods are also prominent in classical computer science [46, 47] and

machine learning [48–50]. So, formulated in terms of tensor networks, variational

quantum algorithms could attract more attention of researches from the communi-

ties of computer science, computational physics, machine learning etc.

Thesis goals

This thesis aims to study applications of variational quantum circuits. The objec-

tives of the thesis also include the description of variational quantum algorithms,

cost functions they are based on, areas of possible applications, obstacles and pe-

culiarities of their execution, and ways of their representation in terms of quantum

circuits and tensor diagrams. The goals are achieved by performing the following

tasks.

1. Describe an experiment of executing the variational quantum eigensolver (VQE)

algorithm on an optical setup. As a target Hamiltonian, choose one that mod-

els a real physical system. Determine special features and arising problems

characteristic for the chosen hardware and Hamiltonian. Additionally, inves-

tigate the performance of VQE in the presence of controlled noise.

2. Perform numerical experiments for the VQE algorithm executed for a Hamil-

tonian modeling a system the ground state of which is highly entangled. Inves-

tigate the performance of the algorithm for this case, make conclusions about

abilities to extract properties of interest from the approximated ground state

vector.

3. Review several existing variational quantum algorithms and formulate them

using the tensor diagrams notation. By leveraging tensor network transforma-
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tion rules, show that these variational algorithms can be reduced to the VQE

algorithm.

4. Explore possibilities of putting quantum information problems into the frame-

work of variational quantum computing. As a case study, formulate the quan-

tum channel discrimination problem as a variational algorithm and conduct

numerical experiments of executing it.

5. Consider variational quantum computing methods as a means for solving clas-

sification machine learning tasks. As a case study, determine the properties of

quantum classifiers trained for distinguishing between quantum channels.

Statements defended

The thesis defends the following claims.

1. The variational quantum eigensolver (VQE) algorithm can be implemented on

an optical setup which encodes states of a qubit into the polarization of a pho-

ton. That is, the vertical polarization corresponds to the state |0⟩ while the

horizontal polarization stands for |1⟩. In such a setting, one is able to experi-

mentally find the ground state energy and vector for the two-qubit Schwinger

Hamiltonian, which depends on several parameters. Even in the presence of

noise one is still able to study physical properties of the approximated ground

state.

2. VQE can be applied for studying Hamiltonians which describe spin chains

with the Dzyaloshinskii-Moriya type interactions. The ground state of such

Hamiltonians can be highly entangled, which makes it difficult for VQE to find

a precise state vector. That is, even if the ground state energy is found with

high precision, the closeness of the approximate state vector to the true one

can be small. Nonetheless, one is still able to extract some physical properties

of interest from the solution found.

3. Some of the existing variational quantum algorithms can be formulated in the

language of tensor networks. Applying this tensor diagrams notation, one can
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reduce these algorithms to VQE for a specific Hamiltonian and pure variational

state. Among such algorithms are:

• variational quantum linear solver;

• variational quantum state preparation algorithms;

• variational quantum state diagonalization algorithm;

• variational eigenstate verification algorithms.

4. Variational quantum computing approach can be utilized for solving optimiza-

tion problems from the quantum information theory. Namely, by replacing

the optimization over quantum states and measurement operators by the opti-

mization over the parameters of variational circuits, one is able to solve these

problems on a quantum computer. One of such problems, quantum channel

discrimination, can be solved such that the fundamental theoretical bounds

on the solution quality are achieved.

5. Variational quantum circuits can be utilized for solving classification tasks for

data represented by labeled quantum states. Particularly, one can train a

variational circuit for distinguishing between quantum states acted by labeled

quantum channels.

Scientific novelty

1. The VQE algorithm solves the ground state problem for a given Hamiltonian.

We showed that even if the obtained solution is of low precision, one is still

able to estimate physical properties of interest. Concretely, we showed that

one can observe critical points of a physical model in the presence of noise, and

retrieve from a low-fidelity ground sate vector the magnetic texture of highly

entangled spins.

2. Having found a solution using VQE, one may be interested in the closeness of

the obtained solution to the true ground state. We proposed a new method

for such a state certification, and compared it to the existing one.
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3. Researchers of many fields of science use the tensor networks notation for rep-

resenting equations, and formulating algorithms and methods. We formulated

several existing variational quantum algorithms in the language of tensor net-

works. By using this notation, we also reduced the considered algorithms to

VQE for specific Hamiltonians and variational states.

4. For the problem of binary quantum channel discrimination, theoretical works

are typically dedicated to obtaining bounds on probabilities of successful dis-

tinguishing, but not telling how to achieve these bounds. We give a recipe for

solving this problem using the notion of variational quantum circuits. This

implies that if a problem from the quantum information theory is formulated

as a task of optimization over quantum states and measurement operators,

then it can be put into the framework of variational quantum computing.

Theoretical and practical significance

The results related to VQE are useful for physics of condensed matter, e.g. exper-

imental study of physical properties of different model Hamiltonians. The tensor

network formulations of variational algorithms are potentially useful in theoreti-

cal physics, classical computing and machine learning fields. Solving the binary

quantum channel discrimination problem in the variational framework suggests the

applicability of the devised technique on NISQ devices. The results on solving the

channel discrimination problem could be important for quantum target detection.

Presentations and validation of the results

The main results of the work are based on articles published in peer-reviewed jour-

nals. Some of the results have been reported in the following scientific conferences:

1. International Conference on Quantum Technologies (July 12-16, 2021, Moscow,

online, poster);

2. International Conference on Quantum Technologies (July 15-19, 2019, Moscow,

poster).
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The validity of the work is supported by numerical experiments and rigorous math-

ematical proofs, where applicable.
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Chapter 1

Theoretical background

This chapter introduces the mathematical apparatus used throughout the thesis:

main definitions, basics of quantum computating, quantum circuits, and tensor net-

works notation.

1.1 Hilbert space and Dirac notation

In quantum mechanics, it is postulated that the state of a quantum system is de-

scribed by a density operator 𝜌 acting in a Hilbert space ℋ. The vector space

ℋ with a scalar (inner) product ⟨𝜓, 𝜙⟩ is called a Hilbert space if this space is

complete with respect to the metric induced by the scalar product in this space,

||𝜓 − 𝜙|| =
√︀
⟨𝜓 − 𝜙, 𝜓 − 𝜙⟩, 𝜓, 𝜙 ∈ ℋ. The completeness of a space means that

any fundamental (Cauchy) sequence in this space converges to an element of this

space. For complex Hilbert spaces, we assume that the scalar product is linear in

the second argument and is anti-linear in the first argument:

⟨𝜓 + 𝑏𝜙, 𝑐𝜂⟩ = 𝑎𝑐⟨𝜓, 𝜂⟩ + 𝑏𝑐⟨𝜙, 𝜂⟩,

where 𝑎, 𝑏, 𝑐 ∈ C; 𝜓, 𝜙, 𝜂 ∈ ℋ; and 𝑎 means the complex conjugate of 𝑎.

From here on — if not stated otherwise — we will work with finite-dimensional

complex Hilbert spaces of dimensionality 𝑑, so commonly we work with ℋ = C𝑑.

In finite dimensions, an element 𝜓 ∈ ℋ is represented by a column-vector with the

24



Chapter 1. Theoretical background

components 𝜓𝑗. For the scalar product we then have

⟨𝜓, 𝜙⟩ =
𝑑∑︁
𝑗=1

𝜓𝑗𝜙𝑗 = 𝜓†𝜙, (1.1)

where 𝜓† ≡ 𝜓
𝑇 is a complex-conjugated row-vector, the Hermitian conjugate of 𝜓.

The vectors 𝜓† are often called covectors to 𝜓.

Let us now introduce the Dirac (bra-ket) notation. From now on, we will denote

vectors 𝜓 and their covectors 𝜓† as

𝜓 ≡ |𝜓⟩ ,

𝜓† ≡ ⟨𝜓| .

This notation is very convenient and illustrative in writing the products of vectors

and operators. Let us denote the set of linear maps from ℋ to itself as ℒ(ℋ); if

dim(ℋ) = 𝑑, then ℒ(ℋ) is essentially Mat𝑑×𝑑C, the set of all complex matrices of

the size 𝑑 by 𝑑. It is also convenient for us to define the space of all Hermitian

operators,

Herm(ℋ) = {𝐻 ∈ ℒ(ℋ) | 𝐻 = 𝐻†},

where 𝐻† is the Hermitian conjugate of 𝐻, and unitary operators

U(ℋ) = {𝑈 ∈ ℒ(ℋ) | 𝑈 †𝑈 = 1},

where 1 is the identity on ℋ. Now, for 𝜓, 𝜙 ∈ ℋ and 𝐴 ∈ ℒ(ℋ) the bra-ket notation

gives

𝜓†𝜙 ≡ ⟨𝜓|𝜙⟩ , (1.2)

𝜓𝜙† ≡ |𝜓⟩⟨𝜙| , (1.3)

𝜓†𝐴𝜙 ≡ ⟨𝜓|𝐴|𝜙⟩ , (1.4)

Therefore, (1.2) is a scalar product of the form (1.1). The expression (1.3) gives a

notation for the “outer product” of vectors; it describes rank-1 operators of the form

25



Chapter 1. Theoretical background

𝑇 = |𝜓⟩⟨𝜙| which act on a vector |𝜂⟩ ∈ ℋ as 𝑇 |𝜂⟩ = |𝜓⟩ ⟨𝜙|𝜂⟩. The notation in (1.4)

is equivalent to ⟨𝜓,𝐴𝜙⟩ = ⟨𝐴†𝜓, 𝜙⟩.

In (1.2), formally [51], ⟨𝜙| can be also viewed as an anti-linear function on ℋ

defined as

⟨𝜙| : |𝜓⟩ → ⟨𝜙|𝜓⟩ ∈ C. (1.5)

Now consider a bi-linear function ⟨𝜙1 ⊗ 𝜙2| of the arguments |𝜓1⟩ ∈ ℋ1 and |𝜓2⟩ ∈

ℋ2 such that

⟨𝜙1 ⊗ 𝜙2|
(︀
|𝜓1⟩ , |𝜓2⟩

)︀
= ⟨𝜙1|𝜓1⟩ ⟨𝜙2|𝜓2⟩ .

Considering the vector space 𝐿 of linear combinations of all such functions, one may

introduce the inner product

⟨𝜙1 ⊗ 𝜙2|𝜓1 ⊗ 𝜓2⟩ = ⟨𝜙1|𝜓1⟩ ⟨𝜙2|𝜓2⟩ (1.6)

and extend it by linearity to 𝐿. The the space 𝐿 is a Hilbert space itself, and

it is called the tensor product of spaces ℋ1 and 𝐻2 denoted as ℋ1 ⊗ 𝐻2, and its

elements are |𝜓1 ⊗ 𝜓2⟩ ≡ |𝜓1⟩ ⊗ |𝜓2⟩. In fact, for finite-dimensional spaces, the

explicit form of a vector |𝜙1 ⊗ 𝜙2⟩ can be obtained if one treats the tensor product

⊗ as the Kronecker product of two (column-) vectors. Indeed, one can show that

the components 𝑖, 𝑗 of the resultant vector have the form (𝜓1 ⊗𝜓2)
𝑖𝑗 = 𝜓𝑖1𝜓

𝑗
2, which

satisfies the requirement for the scalar product (1.6).

Any vector |𝜓⟩ ∈ ℋ1 ⊗ℋ2 can be represented as

|𝜓⟩ =
𝐷∑︁

𝑖,𝑗=1

𝑐𝑖𝑗
⃒⃒
𝑒𝑖1
⟩︀
⊗
⃒⃒
𝑒𝑗2
⟩︀
,

with 𝐷 = dim(ℋ1) · dim(ℋ2), {𝑒𝑗1} being a basis in ℋ1 and {𝑒𝑗2} a basis in ℋ2;

important is the fact that the vectors {|𝑒𝑖1⟩⊗
⃒⃒
𝑒𝑗2
⟩︀
}𝐷𝑖,𝑗=1 also form a basis in ℋ1⊗ℋ2.

For the operators 𝐴1 and 𝐴2 acting in ℋ1 and ℋ2, respectively, the tensor product

is given by

(𝐴1 ⊗ 𝐴2)
(︀
|𝜓1⟩ ⊗ |𝜓2⟩

)︀
= 𝐴1 |𝜓1⟩ ⊗ 𝐴2 |𝜓2⟩

and is extended to ℋ1 ⊗𝐻2.
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The notion of the tensor product is needed for considering composite quantum

systems with corresponding Hilbert spaces. Additionally, it allows to define the

scalar product (1.5) as follows. The functions ⟨𝜙| also form their own Hilbert space

ℋ*, which is called dual to ℋ. It allows to define the scalar product (1.2) as a map

such that

⟨·|·⟩ : ℋ* ⊗ℋ → C.

As the tensor product of Hilbert spaces describes states of a composite quantum

system, there is also a way to describe one of its parts. Let 𝑇 ∈ ℒ(ℋ𝐴 ⊗ℋ𝐵), then

its partial trace over the subspace 𝐻𝐵 is the operator Tr𝐻𝐵
𝑇 ∈ ℒ(ℋ𝐴) such that

⟨𝜓|Tr𝐻𝐵
(𝑇 )|𝜙⟩ =

𝑑𝐵∑︁
𝑗=1

⟨𝜓 ⊗ 𝑏𝑗|𝑇 |𝜙⊗ 𝑏𝑗⟩,

where 𝑑𝐵 = dimℋ𝐴, 𝜓, 𝜙 ∈ ℋ𝐴 and {𝑏𝑗}𝑑𝐵𝑗=1 is a basis in ℋ𝐵. For 𝐻𝐵 = C𝑑𝐵 , the

partial trace can be found as

Tr𝐻𝐵
(𝑇 ) =

𝑑𝐵∑︁
𝑗=1

(︁
1𝐴 ⊗ ⟨𝑏𝑗|

)︁
𝑇
(︁

1𝐴 ⊗ |𝑏𝑗⟩
)︁
,

where 1𝐴 is the identity operator on ℋ𝐴. The operator 𝑇𝐴 ≡ Tr𝐻𝐵
(𝑇 ) is often called

the reduced operator.

1.2 Introduction to quantum computing

1.2.1 Quantum states

As was mentioned, in quantum mechanics, for a quantum system, there is a cor-

responding Hilbert space ℋ. Generally, the state of this system is described by a

so-called density operator acting in a Hilbert space ℋ.

Definition 1 (Set of density operators) The set of density operators on ℋ is

𝒟(ℋ) = {𝜌 ∈ Herm(ℋ) | 𝜌 > 0,Tr 𝜌 = 1}. (1.7)
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In this definition, the inequality 𝜌 > 0 means that 𝜆 > 0 ∀𝜆 ∈ spec(𝜌). Since we

agreed that ℋ = C𝑑 for some 𝑑 ∈ N, we sometimes will also call such operators

density matrices.

By the spectral theorem, a density operator 𝜌 — as any Hermitian operator —

can be decomposed as

𝜌 =
∑︁
𝑗

𝜆𝑗 |𝜓𝑗⟩⟨𝜓𝑗| , (1.8)

where 𝜆𝑗 and |𝜓𝜆⟩ are the eigenvalues and the corresponding eigenvectors of 𝜌,

respectively. In the equation above, we assumed that all the eigenvalues 𝜆 are

distinct. In case of finite dimensionality 𝑑 and degenerate spectrum, one rewrites

(1.8) as

𝜌 =
𝑑∑︁
𝑗=1

𝜆𝑗𝑀𝑗,

where

𝑀𝑗 =
∑︁
𝑗:𝜆𝑗=𝜆

|𝜓𝑗⟩⟨𝜓𝑗|

for distinct eigenvalues 𝜆𝑗.

Of particular interest are density operators of so-called pure states.

Definition 2 (Pure state) The state 𝜌 is called pure if 𝜌2 = 𝜌, i.e. if 𝜌 is a

projector.

This means that for a pure state 𝜌 there is only one term in the decomposition (1.8),

which implies that there is some 𝜓 ∈ ℋ such that 𝜌 |𝜓⟩ = |𝜓⟩. It gives 𝜌 = |𝜓⟩⟨𝜓|,

which is a projector onto |𝜓⟩. Therefore, density operators of pure states acting

in ℋ can be represented as unit vectors from this space. The purity of a state

𝜌 =
∑︀

𝑗 𝜆𝑗 |𝜓𝑗⟩⟨𝜓𝑗| can be quantified by

𝑃 (𝜌) = Tr 𝜌2 =
∑︁
𝑗

𝜆2𝑗 , (1.9)

which equals 1 for pure states and is less than 1 otherwise. The states which are not

pure are called mixed. Worthy of note is also that the vectors |𝜓⟩ and |𝜙⟩ = 𝑒𝑖𝑎 |𝜓⟩

are considered to describe the same quantum state for any 𝑎 ∈ R, as they give the

same density operator |𝜓⟩⟨𝜓|.
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Pure and mixed states can be understood from geometric perspective. A set

of density operators 𝒟(ℋ) is a convex subset of the space of all linear Hermitian

operators in ℋ [51]. It can be proven that the extreme points 𝜌𝑗 ∈ 𝒟(ℋ) called

pure states are precisely one-dimensional projectors of the form |𝜓𝑗⟩⟨𝜓𝑗|. For a state

𝜌 ∈ 𝒟(ℋ) one can write a unique convex combination

𝜌 =
𝑑∑︁
𝑗=1

𝜆𝑗 |𝜓𝑗⟩⟨𝜓𝑗| ,
𝑑∑︁
𝑗=1

𝜆𝑗 = 1,

which resembles the spectral decomposition (1.8). In other words, any (mixed) state

is a convex combination of pure states.

Of particular interest are states which describe two-level systems, e.g. spin pro-

jection of an electron, energy levels of an ion, polarization of a photon etc. Such

states are called quantum bits or qubits.

Definition 3 (Quantum bit) A quantum bit, or qubit, is a density operator acting

in a Hilbert space of dimensionality 2.

Let us fix in ℋ = C2 the basis {|0⟩ = (1, 0)𝑇 , |1⟩ = (0, 1)𝑇} called the computational

or standard basis. Then, taking into account the definition of a density matrix (1.7),

one may establish that the state of a qubit can be parametrized as

𝜌 =
1

2
(1 + 𝑎𝑥𝜎𝑥 + 𝑎𝑦𝜎𝑦 + 𝑎𝑧𝜎𝑧), (1.10)

0 6 𝑎2𝑥 + 𝑎2𝑦 + 𝑎2𝑧 6 1.
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Here, the Pauli operators 𝜎𝑗 are defined as

1 = |0⟩⟨0| + |1⟩⟨1| =

⎛⎝1 0

0 1

⎞⎠ ,

𝜎𝑥 = |0⟩⟨1| + |1⟩⟨0| =

⎛⎝0 1

1 0

⎞⎠ ,

𝜎𝑦 = −𝑖 |0⟩⟨1| + 𝑖 |1⟩⟨0| =

⎛⎝0 −𝑖

𝑖 0

⎞⎠ ,

𝜎𝑧 = |0⟩⟨0| − |1⟩⟨1| =

⎛⎝1 0

0 −1

⎞⎠ .

If the state is pure, i.e. 𝜌 = |𝜓⟩⟨𝜓|, one finds the following parametrization for the

state vector:

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ , 𝛼, 𝛽 ∈ C,

with the requirement Tr 𝜌 = 1 giving ⟨𝜓|𝜓⟩ = 1 and hence |𝛼|2 + |𝛽|2 = 1.

As for a system of 𝑛 qubits, the associated Hilbert space is ℋ = C⊗2𝑛 ≡ C⊗𝑛
2

with the computational basis being {|0⟩ , |1⟩}⊗𝑛. One can establish that

ℒ(C⊗𝑛
2 ) ≡ Mat2𝑛×2𝑛C = spanC{1, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧}⊗𝑛, 𝑛 ∈ N, (1.11)

and therefore one can parametrize a density operator 𝜌 ∈ 𝒟(C⊗𝑛
2 ) as follows:

𝜌 =
1

2𝑛

∑︁
𝐾∈{0,𝑥,𝑦,𝑧}×𝑛

𝑎𝐾𝑆𝐾 , (1.12)

𝑆𝐾 =
⨂︁
𝑗∈𝐾

𝜎𝑗,

𝑎𝐾 ∈ R, 𝑎{0}×𝑛 = 1,
∑︁

𝐾∈{0,𝑥,𝑦,𝑧}×𝑛

𝑎2𝐾 6 1.

As an instance, for 𝑛 = 1 the equation (1.12) reduces to (1.10), and if 𝑛 = 2 it would

give

𝜌 =
1

4

3∑︁
𝑖,𝑗=0

𝑎𝑖𝑗 𝜎𝑖 ⊗ 𝜎𝑗, 𝑎00 = 1.
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1.2.2 Transformation of quantum states

Let us consider an affine map Φ : 𝒟(ℋ) → 𝒟(ℋ), i.e. a map taking density operators

to density operators such that it preserves the “weights” of states in mixes:

Φ

[︃∑︁
𝑗

𝑝𝑗𝜌𝑗

]︃
=
∑︁
𝑗

𝑝𝑗Φ [𝜌𝑗] , (1.13)

𝑝𝑗 > 0,
∑︁
𝑗

𝑝𝑗 = 1, 𝜌𝑗 ∈ 𝒟(ℋ).

In a case when Φ : 𝒟(ℋ𝐴) → 𝒟(ℋ𝐵), i.e. when the input and output Hilbert spaces

are different, one needs a more general notion of quantum transformations. Such a

map is called a quantum channel.

Definition 4 (Quantum channel) A quantum channel is a map Φ : 𝒟(ℋ𝐴) →

𝒟(ℋ𝐵) such that

(1) Φ
[︀∑︀

𝑖 𝑐𝑖𝜌𝑖
]︀

=
∑︀

𝑖 𝑐𝑖Φ[𝜌𝑖] (linearity)

(2) Tr Φ[𝜌] = Tr 𝜌 (trace preservation)

(3)
(︁

Φ ⊗ Id
)︁

[𝜌𝐴𝐸] > 0 (complete positivity)

In (1), 𝜌𝑖 ∈ 𝐷(ℋ𝐴), 0 6 𝑐𝑖 6 1, and
∑︀

𝑖 𝑐1 = 1. In (2), 𝜌 ∈ 𝐷(ℋ𝐴). In (3),

𝜌𝐴𝐸 ∈ 𝒟(ℋ𝐴 ⊗ℋ𝐸) and 1 is the identity map on 𝒟(ℋ𝐸).

Any quantum channel Φ : 𝒟(ℋ𝐴) → 𝒟(ℋ𝐵) admits the so-called (not unique) Kraus

representation:

Φ[𝜌] =
𝐷∑︁
𝑗=1

𝑉𝑗𝜌𝑉
†
𝑗 ,

where 𝐷 6 dim(𝐻𝐴) · dim(𝐻𝐵) and the operators 𝑉𝑗 : ℋ𝐴 → ℋ𝐵 are such that

𝐷∑︁
𝑗=1

𝑉 †
𝑗 𝑉𝑗 = 1. (1.14)

In the special case when 𝐷 = 1 and ℋ𝐴 = ℋ𝐵 we obtain

Φ[𝜌] = 𝑈𝜌𝑈 †,
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where 𝑈 is unitary, i.e. 𝑈 †𝑈 = 1. Interestingly, by Wigner’s theorem, this also

follows directly from (1.13) if one supposes that the map Φ is bijective, although in

this case the operator 𝑈 is allowed to be also antiunitary, i.e. such that ||𝑈𝜓|| = ||𝜓||

and 𝑈
∑︀

𝑗 𝑐𝑗𝜓𝑗 =
∑︀

𝑗 𝑐
*
𝑗𝑈𝜓𝑗, 𝑐𝑗 ∈ C, 𝜓𝑗 ∈ ℋ.

Now consider a one-parameter group of unitary operators 𝑈𝑡 with 𝑡 ∈ R such

that

1. 𝑈0 = 1,

2. 𝑈𝑡𝑈𝑠 = 𝑈𝑡+𝑠

3. the map 𝑡→ 𝑈𝑡 is continuous.

The Stone’s theorem states that in this case

𝑈𝑡 = 𝑒−𝑖𝑡𝐻 , (1.15)

where 𝐻 is a Hermitian operator. We will use this result later when describing the

so-called quantum gates, unitary operators used for transforming (commonly, pure)

quantum states |𝜙⟩ → |𝜓⟩ = 𝑈 |𝜙⟩.

1.2.3 Entanglement

There is an important class of quantum states which comprises the so-called entan-

gled states. Consider a pure state |𝜓⟩ from the Hilbert space ℋ1⊗ℋ2 the subspaces

of which contain the corresponding orthogonal bases {
⃒⃒
𝑒𝑗1
⟩︀
}𝑑1𝑗=1 and {

⃒⃒
𝑒𝑗2
⟩︀
}𝑑2𝑗=1, where

𝑑𝑘 = dimℋ𝑘, 𝑘 ∈ {1, 2}. It is known that this state is always representable in the

form of the so-called Schmidt decomposition:

|𝜓⟩ =
𝑑𝑚∑︁
𝑗=1

√︀
𝜆𝑗
⃒⃒
𝑒𝑗1
⟩︀
⊗
⃒⃒
𝑒𝑗2
⟩︀
, (1.16)

where 𝑑𝑚 = min{𝑑1, 𝑑2} and 𝜆𝑗 > 0.

Definition 5 (Entanglement of a pure state) A pure state |𝜓⟩ ∈ ℋ1 ⊗ ℋ2 is

called separable if it can be represented as |𝜓⟩ = |𝜓1⟩ ⊗ |𝜓2⟩, where |𝜓1⟩ ∈ ℋ𝑘 with

𝑘 ∈ {1, 2}. Otherwise, the state is called entangled.
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One can quantify the entanglement of a pure state by the number of terms in its

Schmidt decomposition (1.16) [52]. That is, a pure state is not entangled (or sepa-

rable) if there is only one term in this decomposition. More generally, one needs an

entanglement measure, a function 𝐸(|𝜓⟩ ∈ ℋ1 ⊗ℋ2) with the following properties:

1. 𝐸(|𝜓⟩) > 0 for any state vector |𝜓⟩, and the equality is achieved only when

|𝜓⟩ is separable;

2. 𝐸
(︀
(𝑈1 ⊗ 𝑈2) |𝜓⟩

)︀
= 𝐸(|𝜓⟩) with 𝑈1 ∈ U(ℋ1) and 𝑈2 ∈ U(ℋ2), i.e. the

entanglement does not increase under local transformations.

One of such functions is

𝐸(|𝜓⟩) = 𝐻
(︀

Tr2 |𝜓⟩⟨𝜓|
)︀

= 𝐻
(︀

Tr1 |𝜓⟩⟨𝜓|
)︀
,

where

𝐻(𝜌) = −Tr 𝜌 log 𝜌 =
∑︁
𝑗

𝜆𝑗 log 𝜆𝑗

is called the von Neumann entropy.

Now let us consider mixed states.

Definition 6 (Entanglement of a mixed state) A mixed state 𝜌 ∈ 𝒟(ℋ1⊗ℋ2)

is called separable if it can be decomposed as

𝜌 =
∑︁
𝑗

𝑝𝑗 𝜌
𝑗
1 ⊗ 𝜌𝑗2,

where
∑︀

𝑗 𝑝𝑗 = 1 and 𝜌𝑗𝑘 are (in general, mixed) states from 𝒟(ℋ𝑘), 𝑘 ∈ {1, 2}.

Otherwise the state is called entangled.

Quantifying the entanglement of mixed states is more complicated. One way to do

it is computing the entanglement of formation

𝐸(𝜌) = min
∑︁
𝑗

𝑝𝑗𝐻(Tr2 𝜌𝑗),

where the minimum is taken over all possible decompositions for 𝜌 =
∑︀

𝑗 𝑝𝑗𝜌𝑗.

Information on other entanglement measures can be found e.g. in [53].
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1.2.4 Observables and measurement

In quantum mechanics, an observable is commonly described by a Hermitian oper-

ator 𝐴 = 𝐴† which can be decomposed in the form (1.8), i.e.

𝐴 =
∑︁
𝑎

𝑎𝐸𝑎,

where 𝑎 and 𝐸𝑎 = |𝑒𝑎⟩⟨𝑒𝑎| are the eigenvalues and the corresponding eigenprojectors

of 𝐴. A result of the measurement of an observable 𝐴 in a state 𝜌 is 𝑎 ∈ spec(𝐴),

and the probability of obtaining a specific value as an outcome is described by the

Born-von Neumann statistical postulate:

p𝐴𝜌 (𝑎) = Tr 𝜌𝐸𝑎. (1.17)

Summing over all possible outcomes 𝑎, one obtains the expected value of 𝐴 measured

in the state 𝜌,

E𝜌(𝐴) =
∑︁
𝑎

𝑎 p𝐴𝜌 (𝑎) =
∑︁
𝑎

𝑎Tr 𝜌𝐸𝑎 = Tr 𝜌𝐴. (1.18)

For a pure state 𝜌 = |𝜓⟩⟨𝜓|, it simplifies to

E𝜓(𝐴) = ⟨𝜓|𝐴|𝜓⟩ .

An important peculiarity of the measurement of an observable with respect to

some state is that this state generally changes in accordance with the obtained

measurement outcome. That is, if one measures an observable 𝐴 =
∑︀

𝑎 𝑎𝐸𝑎 with

respect to a state 𝜌 and obtains an outcome 𝑎, the post-measurement state would

be

𝜌′ =
1

p𝐴𝜌 (𝑎)
𝐸𝑎𝜌𝐸𝑎,

for p𝐴𝜌 (𝑎) = Tr 𝜌𝐸𝑎 > 0. Such a transformation is demanded for making the mea-

surements repeatable: After measuring the resultant state again, we must obtain the

very same outcome. This causes another issue: We need to conduct a measurement

experiment many times to estimate the probabilities p𝐴𝜌 (𝑎). Practically, we perform
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𝑁 measurements, count the number of times 𝑁𝑎 we obtained the outcome 𝑎, and

infer the probabilities p𝐴𝜌 (𝑎) from the frequencies 𝑁𝑎/𝑁 . From these estimated prob-

abilities we then obtain the expected value of 𝐴 as given in (1.18). To estimate the

expected value of an observable with a precision 𝜖, one generally needs to conduct

𝑁 = 𝑂(1/𝜖2) measurements [54, 55].

It also must be noted that the probability distribution p𝐴𝜌 (𝑎) in (1.17) is affine,

i.e. for a mix of states 𝜌 =
∑︀

𝑗 𝑝𝑗𝜌𝑗 we have

p𝐴𝜌 (𝑎) =
∑︁
𝑗

𝑝𝑗p
𝐴
𝜌𝑗

(𝑎)

This property allows to generalize the notion of quantum measurement. [51]

Theorem 1 Let there be a function from quantum states 𝜌 ∈ 𝒟(ℋ) to probability

distributions p𝜌 on some finite set of outcomes 𝒜. Then if this function is affine,

then there is a unique set of operators {Π𝑎 | 𝑎 ∈ 𝒜} called a resolution of the identity

such that

Π𝑎 = Π†
𝑎 > 0,

∑︁
𝑎∈𝒜

Π𝑎 = 1

for which

p𝜌(𝑎) = Tr 𝜌Π𝑎. (1.19)

Vice versa, for a resolution of the identity in ℋ, the function (1.19) defines an affine

map from quantum states to probability distributions on 𝒜.

Often the resolution of the identity {Π𝑎 | 𝑎 ∈ 𝒜} is called the positive operator-

valued measure (POVM). If 𝒜 ⊂ R, and if the POVM is orthogonal, namely, if

Π𝑥Π𝑦 = 𝛿𝑥𝑦Π𝑥 for all 𝑥, 𝑦 ∈ 𝒜, the expression

𝐴 =
∑︁
𝑎∈𝒜

𝑎Π𝑎

establishes a bijection between Hermitian operators on ℋ with spec(𝐴) = 𝒜 and

orthogonal resolutions of identity {Π𝑎 | 𝑎 ∈ 𝒜} in this ℋ. This traces us back to

the spectral decomposition (1.8). Non-orthogonal POVMs — similarly to quan-

tum states — allow to consider mixed observables; they are of particular usefulness
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quantum state tomography and quantum error correction.

1.3 Tensor diagrams

In quantum computing, objects like vectors and linear operators can be represented

in the computational basis. For example, let |𝜓⟩ ∈ ℋ𝑗, dimℋ𝑗 = 𝑑𝑗, and {|𝑗⟩}𝑑𝑗𝑗=1

be the computational basis in ℋ𝑗, then

|𝜓⟩ =

𝑑𝑗∑︁
𝑗=1

𝜓𝑗 |𝑗⟩ ,

where 𝜓𝑗 = ⟨𝑗|𝜓⟩. Similarly, for a covector ⟨𝜙| ∈ ℋ*
𝑗 we have

⟨𝜙| =

𝑑𝑗∑︁
𝑗=1

𝜙𝑗 ⟨𝑗|

with 𝜙𝑗 = ⟨𝜙|𝑗⟩. An operator 𝐴 : ℋ𝑗 → ℋ𝑘 can be decomposed as

𝐴 =

𝑑𝑗∑︁
𝑗=1

𝑑𝑘∑︁
𝑘=1

𝐴𝑘𝑗 |𝑘⟩⟨𝑗| ,

where 𝐴𝑘𝑗 = ⟨𝑘|𝐴|𝑗⟩ and 𝑑𝑘 = dimℋ𝑘.

In the equations above, the vector |𝜓⟩ and the operator 𝐴 can be thought as

tensors with the respective components 𝜓𝑗 and 𝐴𝑘𝑗 in the computational bases of

the corresponding spaces. Indeed, the action of the operator 𝐴 to the vector |𝜓⟩

reminds the tensor contraction:

𝐴 |𝜓⟩ =

𝑑𝑗∑︁
𝑗=1

𝑑𝑘∑︁
𝑘=1

𝐴𝑘𝑗𝜓
𝑗 |𝑘⟩ =

𝑑𝑘∑︁
𝑘=1

𝜙𝑘 |𝑘⟩ = |𝜙⟩ ∈ ℋ𝑘.

With this idea in mind, the objects 𝜓𝑗 and 𝐴𝑘𝑗 can be also thought as tensors with

the abstract tensor notation applied. In this notation, the indices indicate not the

components in a particular basis, but serve as placeholders and indicate the type of
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a tensor. For example, let 𝑇 : ℋ𝑗 → ℋ𝑘 ⊗ℋ𝑙 have the representation

𝑇 =

𝑑𝑗∑︁
𝑗=1

𝑑𝑘∑︁
𝑘=1

𝑑𝑙∑︁
𝑙=1

𝑇 𝑘𝑙𝑗 |𝑘𝑙⟩⟨𝑗| .

With the abstract index notation, we can denote the action of 𝑇 ≡ 𝑇 𝑘𝑙𝑗 on |𝜓⟩ ≡ 𝜓𝑗

as

𝑇 |𝜓⟩ ≡ 𝑇 𝑘𝑙𝑗 𝜓
𝑗 = 𝜂𝑘𝑙 ≡ |𝜂⟩ ∈ ℋ𝑘 ⊗ℋ𝑙,

where we applied the Einstein summation convention which allows to remove the

sum signs and which implies summation over repeating indices.

In the tensor networks language, tensors have their specific depictions. In this

section, basing on the works [43, 44], we introduce the notation of tensor diagrams.

A vector |𝜓⟩ ∈ ℋ𝑖 and a covector ⟨𝜙| ∈ ℋ*
𝑖 are commonly depicted as a triangle

with an outcoming wire,

|𝜓⟩ = 𝜓𝑖 =

⟨𝜙| = 𝜙𝑖 =

To show a tensor 𝑇 , one uses squares with in- and outcoming wires; for instance, a

tensor 𝑇 : ℋ𝑖 → ℋ𝑗 ⊗ℋ𝑘 is depicted as

𝑇 𝑗𝑘𝑖 =

The tensor contraction is shown as connecting the wires of the corresponding tensors

For example, let 𝜓, 𝜙 ∈ ℋ and 𝑇 ∈ ℒ(ℋ); then

⟨𝜓|𝑇 |𝜙⟩ = 𝜓𝑖𝑇
𝑖
𝑗 𝜙

𝑗 =

Placing tensors 𝐴 ∈ ℒ(ℋ1) and 𝐵 ∈ ℒ(ℋ2) together in parallel means their tensor
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product:

(𝐴⊗ 1)(1 ⊗𝐵) = (1 ⊗𝐵)(𝐴⊗ 1) = (𝐴⊗𝐵)

The equations above also show that an identity operator 1 is depicted as a straight

line. In the tensor networks language, a special notation is given to the so-called

(unnormalized) Bell states:

⃒⃒
Φ+
⟩︀

=
∑︁
𝑗

|𝑗⟩ ⊗ |𝑗⟩ = (1.20)

⟨︀
Φ+
⃒⃒

=
∑︁
𝑗

⟨𝑗| ⊗ ⟨𝑗| = (1.21)

With the notion of the Bell state, one can compute the trace of an operator. For

example, the trace of 𝐴 ∈ ℒ(ℋ) can be computed as the expected value of the

operator 1 ⊗ 𝐴 ∈ ℒ(ℋ⊗ℋ) in the state |Φ+⟩ ∈ ℋ ⊗ℋ,

Tr𝐴 = ⟨Φ+|1 ⊗ 𝐴|Φ+⟩

=

Therefore, taking the trace of an operator is graphically indicated as connecting the

wires of this operator. The partial trace over a subspace can be also computed in

the same way, i.e. via connecting the wires of the corresponding subspaces. That

38



Chapter 1. Theoretical background

is, if 𝐴 ∈ ℒ(ℋ𝑖 ⊗ℋ𝑗), then the partial trace over ℋ𝑖 is

Trℋ𝑖
𝐴 =

(︁ ⟨︀
Φ+
⃒⃒
⊗ 1
)︁

(1 ⊗ 𝐴)
(︁ ⃒⃒

Φ+
⟩︀
⊗ 1
)︁

=

From this equation one can also establish the so-called ricochet trick:

(𝐴⊗ 1)|Φ+⟩ = (1 ⊗ 𝐴𝑇 )|Φ+⟩ (1.22)

One can also find the following interesting property of the Bell state:

(1.23)

Important in the tensor networks language also is the COPY which acts as

COPY |𝑗⟩ = |𝑗⟩ ⊗ |𝑗⟩

(1.24)

where 𝑗 ∈ {0, 1}. This tensor is used for constructing the so-called controlled gates

which will be discussed further. Additionally, the unnormalized Bell state (1.20) can

be prepared as

where 𝐻 is called the Hadamard gate which acts as 𝐻 |0⟩ =
∑︀

𝑗 |𝑗⟩. Finally, let us
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introduce the swap tensor SW which for the case of qubits is defined to be:

SW =
1

2

3∑︁
𝑗=0

𝜎𝑗 ⊗ 𝜎𝑗 (1.25)

=
1∑︁

𝑘,𝑙=0

|𝑘⟩⟨𝑙| ⊗ |𝑙⟩⟨𝑘|

=

Presented in this section notation will be used in Chapter 3 for formulating

variational quantum algorithms and making derivations. Also, in Section 1.4, we will

consider quantum circuits, a similar notation for describing quantum computations.

1.3.1 Tensor network states

The notation of tensor network diagrams discussed in Section 1.3 is closely connected

to the concept of tensor network states [56, 57]. Overall, tensor network states is

a way of representing quantum states classically. Although we do not utilize this

concept in this thesis, we nevertheless consider it worthy of mention. In what follows,

we describe one of the most prominent tensor network states, the matrix product

state (MPS).

Consider a pure 𝑛-qubit state |𝜓⟩ ∈ C⊗𝑛
2 represented in the computational basis,

|𝜓⟩ =
∑︁

𝑖,𝑗,...,𝑘∈{0,1}

𝜓𝑖𝑗...𝑘 |𝑖𝑗 . . . 𝑘⟩ , (1.26)

where we used the notation |𝑖𝑗⟩ ≡ |𝑖⟩ ⊗ |𝑗⟩. This decomposition may have up to 2𝑛

coefficients 𝜓𝑖𝑗...𝑘 ∈ C, meaning that generally we need memory of an exponential

capacity to classically store such a state. At the meantime, an 𝑛-qubit state can be

represented as a so-called matrix product state.

Definition 7 (Matrix product state) Matrix product state (MPS) is a represen-
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tation of an 𝑛-qubit state vector in the form

|𝜓⟩ =
∑︁

𝑖,𝑗,...,𝑘∈{0,1}

Tr
(︁
𝐴

[1]
𝑖 𝐴

[2]
𝑗 · · ·𝐴[𝑛]

𝑘

)︁
|𝑖𝑗 . . . 𝑘⟩ . (1.27)

Comparing (1.26) and (1.27), one notices that we can represent the decomposi-

tion coefficients 𝜓𝑖𝑗...𝑘 by products of the matrices 𝐴[𝛼]
𝑖 , where 𝛼 ∈ {1, 2, . . . , 𝑛}

and 𝑖 ∈ {0, 1}. If these matrices are of the size 𝜒 by 𝜒, then one needs 2𝑛𝜒2

numbers to store an 𝑛-qubit state. For example, one can represent the so-called

Greenberger–Horne–Zeilinger (GHZ) state

|GHZ⟩ =
1√
2

(︀
|0⟩⊗𝑛 + |1⟩⊗𝑛

)︀
as an MPS by setting 𝐴[𝛼]

0 = |0⟩⟨0| and 𝐴[𝛼]
1 = |1⟩⟨1|.

One way of finding an MPS representation of a given pure 𝑛-qubit state |𝜓⟩ ∈

C⊗𝑛
2 is the consecutive Schmidt decomposition (1.16) [52, 58]. First, ommiting the

tensor product signs, we find the Schmidt decomposition of |𝜓⟩ ≡
⃒⃒
𝜓[1,2,...,𝑛]

⟩︀
for the

bipartition [1|2, . . . , 𝑛], i.e. for the “cut” which separates the first qubit from the

rest of the qubits:

⃒⃒
𝜓[1,2,...,𝑛]

⟩︀
=

∑︁
𝑎1∈{0,1}

Λ[1]
𝑎1

|𝑎[1]1 ⟩|𝑎[2,...,𝑛]1 ⟩

=
∑︁

𝑎1∈{0,1}

∑︁
𝑖∈{0,1}

𝐴
[1]
𝑎1,𝑖

Λ[1]
𝑎1

|𝑖[1]⟩|𝑎[2,...,𝑛]1 ⟩,

where Λ
[1]
𝑎1 are the Schmidt coefficients, and in the second equality we decomposed the

Schmidt vectors |𝑎[1]1 ⟩ in the computational basis with the decomposition coefficients
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being 𝐴[1]
𝑎1,𝑖

= ⟨𝑖[1]|𝑎[1]1 ⟩. Now consider the bipartition [1, 2|3, . . . , 𝑛]:

⃒⃒
𝜓[1,2,...,𝑛]

⟩︀
=

∑︁
𝑎2∈{0,1}×2

Λ[2]
𝑎2

|𝑎[1,2]2 ⟩|𝑎[3,...,𝑛]2 ⟩

=
∑︁

𝑎1∈{0,1}

∑︁
𝑎2∈{0,1}×2

∑︁
𝑗∈{0,1}

𝐴
[2]
𝑎1,𝑎2,𝑗

Λ[2]
𝑎2

|𝑎[1]1 ⟩|𝑗[1]⟩|𝑎[3,...,𝑛]2 ⟩

=
∑︁

𝑎1∈{0,1}

∑︁
𝑎2∈{0,1}×2

∑︁
𝑖,𝑗∈{0,1}

𝐴
[1]
𝑎1,𝑖
𝐴

[2]
𝑎1,𝑎2,𝑗

Λ[2]
𝑎2

|𝑖[1]⟩|𝑗[2]⟩|𝑎[3,...,𝑛]2 ⟩,

where in the second line we decomposed the Schmidt vectors |𝑎[1,2]2 ⟩ in the basis of

vectors |𝑎[1]1 ⟩|𝑗[2]⟩ with the coefficients 𝐴[2]
𝑎1,𝑎2,𝑗

=
(︁
⟨𝑎[1]1 |⟨𝑗[2]|

)︁
|𝑎[1,2]2 ⟩, and in the third

line we again decomposed the Schmidt vectors |𝑎[1]1 ⟩ in the computational basis. This

procedure is repeated until reaching the last bipartition, [1, 2, . . . , 𝑛−1|𝑛]. For it, we

decompose the states Λ
[𝑛−1]
𝑎𝑛−1 |𝑎

[𝑛]
𝑛−1⟩ in the computational basis with the coefficients

𝐴
[𝑛]
𝑎𝑛−1,𝑘

= Λ
[𝑛−1]
𝑎𝑛−1 ⟨𝑘[𝑛]|𝑎

[𝑛]
𝑛−1⟩. This gives

⃒⃒
𝜓[1,2,...,𝑛]

⟩︀
=

∑︁
𝑖,𝑗,...,𝑘∈{0,1}

𝐴
[1]
𝑖 𝐴

[2]
𝑗 · · ·𝐴[𝑛]

𝑘 |𝑖[1]⟩|𝑗[2]⟩ · · · |𝑘[𝑛]⟩.

Note that in the equation we obtained, 𝐴[1]
𝑖 is a row vector and 𝐴

[𝑛]
𝑘 is a column

vector, so we do not need to take the trace of the matrix product as done in (1.27).

It is also worth mentioning that one can apply tensor diagrams notation introduced

in Section 1.3 to obtain an MPS as demonstrated in [59].

One may notice that while taking consecutive Schmidt decompositions towards

the ⌊𝑛/2⌋-th qubit, the number of Schmidt coefficients grows exponentially. What

can be done is keeping only 𝜒 largest Schmidt coefficients after each decomposition,

and discarding the rest. Earlier we mentioned that by the number of the Schmidt

coefficients one can quantify the entanglement of a bipartition. That is, if there

are 𝜒 terms in the Schmidt decomposition of a state, one needs about log2 𝜒 two-

qubit operations (e.g. 𝐶𝑋 gates discussed in Section 1.4) to prepare this state [52].

Therefore, the more Schmidt coefficients we keep, the more entanglement our MPS

can support.

With 𝜒 = 2⌊𝑛/2⌋, an MPS is known to be able to approximate any 𝑛-qubit
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state. Interestingly, in practice, one usually does not need such a large expressibil-

ity. That is, the states of quantum systems described by a number of physically

relevant models follow one of the so-called area laws [60, 61]: The entanglement

grows proportionally to the “area” of the bipartition which separates two subsets of

interacting qubits, i.e. the number of qubits located along the boundary of the cut.

More information about physical models obeying or disobeying area laws, and also

about other tensor network states, can be found in e.g. [57].

1.4 Quantum circuits

Quantum computations, i.e. transformations and measurements of quantum states,

can be graphically represented using the quantum circuits notation. Suppose we

want to first prepare the following pure two-qubit state:

|𝜓⟩ = (𝑈3 ⊗ 𝑈4)𝑈2 (𝑈1 ⊗ 1)
(︁
|𝜑0⟩ ⊗ |𝜏0⟩

)︁
,

where 𝑈1, 𝑈3, 𝑈4 are single-qubit operators, 𝑈2 is a two-qubit operator, and |𝜓0⟩⊗|𝜏0⟩

is some separable initial state of two qubits. Also suppose that we then want to

measure it with the POVM Π. This whole process can be depicted as follows:

This graphical representation is called the quantum circuit notation. The blocks

which are called gates indicate unitary operators. The notation of quantum cir-

cuits has many similarities with the tensor network notation introduced in Section

1.3. That is, blocks indicate tensors, the lines which connect blocks indicate ten-

sor contraction, and blocks and lines placed in parallel mean tensor products. In

quantum circuits though, the lines are commonly treated as individual qubits, and

on the left side of the circuit is put the initial state being transformed (in the case

above, it is |𝜓0⟩ ⊗ |𝜏0⟩). Quantum circuits also often contain measurements which

are depicted by , where one can indicate the POVM used (in our case, it is
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Π). In quantum computations, it is commonly assumed that we can measure only

individual qubits with the POVM elements Π = {|0⟩⟨0| , |1⟩⟨1|} with the correspond-

ing outcomes 𝒜 = {−1,+1} (although sometimes the set of outcomes is changed to

𝒜 = {0, 1}, for compatibility with classical computing). In fact, this corresponds to

measuring the observable 𝜎𝑧 = |0⟩⟨0| − |1⟩⟨1|. Simultaneously measuring all individ-

ual qubits of an 𝑛-qubit state means measuring the observable 𝜎⊗𝑛
𝑧 . Intuitively, one

may think that this is a measurement with the POVM elements

Π = {|0⟩⟨0| , |1⟩⟨1|}⊗𝑛

and the outcome “−1” is attributed to the projectors onto |𝑗1𝑗2 . . . 𝑗𝑛⟩ ≡ |𝑗1⟩ ⊗

|𝑗2⟩ ⊗ . . .⊗ |𝑗𝑛⟩, 𝑗𝑘 ∈ {0, 1}, such that
∑︀𝑛

𝑘=1 𝑗𝑘 mod 2 = 1, and the outcome “+1”

to the projectors such that
∑︀𝑛

𝑘=1 𝑗𝑘 mod 2 = 0. This follows from the spectral

decomposition of the Hermitian operator

𝜎⊗𝑛
𝑧 =

∑︁
𝑎∈{0,1}𝑛

(−1)|𝑎| |𝑎⟩⟨𝑎| .

For instance, if one measures the observable 𝐴 = 𝜎𝑧⊗𝜎𝑧 with respect to a two-qubit

state |𝜓⟩ ∈ C⊗2
2 , then according to (1.18) one has

E𝜓(𝐴) = p𝐴𝜓(+1,−1) − p𝐴𝜓(−1,−1) − p𝐴𝜓(−1,+1) + p𝐴𝜓(+1,+1).

To measure other observables, one puts proper gates before the measurement blocks.

For example, the following circuit describes the measurement of the obsevable 𝜎𝑥 ⊗

𝜎𝑦 ⊗ 𝜎𝑧 in the state 𝑈 |0⟩⊗3:

|0⟩

𝑈

𝐻

|0⟩ 𝑆 𝐻

|0⟩

(1.28)

Here, we applied the commonly used Hadamard 𝐻 =
(︀
𝜎𝑥 + 𝜎𝑧

)︀
/
√

2 and phase 𝑆 =
√
𝜎𝑧 = |0⟩⟨0| + 𝑖 |1⟩⟨1| gates. One can establish that 𝐻 |0⟩ =

(︀
|0⟩ + |1⟩

)︀
/
√

2 ≡ |+⟩
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and 𝐻 |1⟩ =
(︀
|0⟩ − |1⟩

)︀
/
√

2 ≡ |−⟩ are the eigenvectors of 𝜎𝑥; the same can be

shown for |	⟩ ≡ 𝑆𝐻 |0⟩ and |�⟩ ≡ 𝑆𝐻 |1⟩ to be the eigenvectors of 𝜎𝑦. That is, by

putting proper gates before the measurement, one “rotates” the measurement basis

(or, changes the POVM elements). In the circuit above, we also took into account

a common assumption that the initial states of individual qubits are |0⟩.

1.4.1 Quantum gates

In the previous section, we mentioned that qubit transformations in quantum circuit

notation are called gates. In quantum computing, a quantum gate is, in general,

a unitary operator acting in some Hilbert space ℋ. Often the notion of a gate is

restricted to an element of the special unitary group,

SU(𝑑) = {𝑈 |𝑈 ∈ U(ℋ), dim(ℋ) = 𝑑, det(𝑈) = 1}.

The unitary operators 𝑈 and 𝑉 = 𝑒𝑖𝛼𝑈 with 𝛼 ∈ R are equal up to the factor 𝑒𝑖𝛼

called the global phase, which is physically not observable since |𝑒𝑖𝛼| = 1. Indeed,

one easily finds that 𝑉 𝜌𝑉 † = 𝑈𝜌𝑈 † for any density operator 𝜌.

Alongside with the mentioned earlier gates 𝐻 and 𝑆, commonly used are the

Pauli gates 𝑋 ≡ 𝜎𝑥, 𝑌 ≡ 𝜎𝑦 and 𝑍 ≡ 𝜎𝑧. Importantly, the Pauli operators can be

used to generate any element from SU(2). It is known that any its element can be

represented as

𝑅𝑛(𝛼) = 𝑒−𝑖 𝛼𝑛·𝜎 (1.29)

where 𝛼 ∈ R, 𝑛 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) ∈ R3 and 𝜎 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧), so that 𝑛·𝜎 = 𝑛𝑥𝜎𝑥+𝑛𝑦𝜎𝑦+

𝑛𝑧𝜎𝑧 (note the similarity of (1.29) with (1.15)). Of particular interest are also the

gates called the Pauli rotations (or 𝑥-, 𝑦- and 𝑧-rotations) of the form 𝑅𝑗(𝛼) = 𝑒−𝑖𝛼𝜎𝑗

with 𝑗 ∈ {𝑥, 𝑦, 𝑧}. In practical quantum computing, for performing an arbitrary

single-qubit operation, it is enough to implement any two of these rotations on a

hardware. Indeed, one can show that any 𝑈 ∈ SU(2) can be decomposed as

𝑈 = 𝑅𝑘(𝛼)𝑅𝑙(𝛽)𝑅𝑘(𝛾) (1.30)
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for any 𝑘, 𝑙 ∈ {𝑥, 𝑦, 𝑧} such that 𝑘 ̸= 𝑙.

As we mentioned in Section 1.2.3, entanglement cannot be generated by local

(single-qubit) transformations, so there is a need for at least two-qubit gates for

it. One, of course, may think of Pauli rotations of the form 𝑅𝑘𝑙(𝛼) = 𝑒−𝑖𝛼 𝜎𝑘⊗𝜎𝑙 .

For example, the operation 𝑅𝑥𝑥 implemented via the so-called Mølmer-Sørensen

gate [62] is natural for quantum computers based on trapped ions [63]. However,

historically researchers were interested in quantum gates which are reminiscent of

those in classical computing. An option is a two-qubit gate which transforms the

state of one qubit conditioned on the state of another. That is, if one treats the

qubit states of the computational basis {|0⟩ , |1⟩} as logical 0 and 1, it is possible to

devise a gate 𝐶𝑈 which acts as follows:

𝐶𝑈
(︀
|0⟩ ⊗ |𝜓⟩

)︀
= |0⟩ ⊗ |𝜓⟩ ,

𝐶𝑈
(︀
|1⟩ ⊗ |𝜓⟩

)︀
= |1⟩ ⊗ 𝑈 |𝜓⟩ .

Formally, such a gate can be written as

𝐶𝑈 = |0⟩⟨0| ⊗ 1 + |1⟩⟨1| ⊗ 𝑈 = ∙
𝑈

(1.31)

In the general case of 𝑛 qubits, a controlled-𝑈 gate with the 𝑖th control and 𝑗th

target qubits takes the form

𝐶𝑈𝑖𝑗 = 1⊗(𝑖−1) ⊗ |0⟩⟨0| ⊗ 1⊗(𝑛−𝑖) + 1⊗(𝑗−1) ⊗ |1⟩⟨1| ⊗ 1⊗(𝑗−𝑖−1) ⊗ 𝑈 ⊗ 1⊗(𝑛−𝑗),

where 𝑖 < 𝑗. Putting the Pauli 𝑋 gate instead of 𝑈 in (1.31), one obtains the 𝐶𝑋

gate called the controlled-not (or CNOT) gate, which is very prominent in quantum

computing. The 𝐶𝑋 gate “flips” the state of the second qubit if the first one is |1⟩,

and does nothing if it is |0⟩. This gate is of special usefulness when combined with
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the Hadamard gate 𝐻, as it allows to produce a so-called Bell state

⃒⃒
Φ+
⟩︀

=
1√
2

(︀
|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩

)︀
(1.32)

= |0⟩ 𝐻 ∙

|0⟩ 𝑋

which is a maximally entangled state of two qubits. Of great use is also the the

controlled 𝑈 gate which acts oppositely,

𝐿𝑈
(︀
|0⟩ ⊗ |𝜓⟩

)︀
= |0⟩ ⊗ 𝑈 |𝜓⟩ ,

𝐿𝑈
(︀
|1⟩ ⊗ |𝜓⟩

)︀
= |1⟩ ⊗ |𝜓⟩ ,

and is formally defined as

𝐿𝑈 = |1⟩⟨1| ⊗ 1 + |0⟩⟨0| ⊗ 𝑈 =

𝑈

= 𝑋 ∙ 𝑋

𝑈

(1.33)

Single-qubit rotations plus the 𝐶𝑋 gate form the so-called universal gate set.

This means that any many-qubit unitary operation can be decomposed into a finite

sequence of the gates from this set. If one possesses universal single-qubit rotations

in a universal gate set, then this decomposition can be performed exactly. Moreover,

as a consequence of the celebrated Solovay-Kitaev theorem, any single-qubit gate

can be efficiently approximated to a given precision as a product of the Hadamard

𝐻, phase 𝑆, and the so-called 𝜋/8-gate 𝑇 = 𝑒−𝑖𝜋𝜎𝑧/8. That is, for a 𝑈 ∈ SU(2) and

some 𝜖 > 0 we have ⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝑈 −

𝑁∏︁
𝑗=1

𝑈𝑗

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒ 6 𝜖, 𝑈𝑗 ∈ {𝐻,𝑆, 𝑇},

where 𝑁 = 𝑂(log𝑐(1/𝜖)) for some constant 𝑐. More details on universal gate sets

and the proof of the Solovay-Kitaev theorem can be found e.g. in Section 4.5 and

Appendix 3 of [64].
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1.4.2 Parametrization of a quantum state

In Section 1.2.2 we mentioned that in the simplest case, one obtains one pure state

from another via a unitary transformation, i.e.

|𝜙⟩ −→ |𝜓⟩ = 𝑈 |𝜙⟩ .

Then later in Section 1.4.1 we discussed that this unitary operator 𝑈 can be exactly

decomposed into a sequence of gates as

𝑈 =

𝑝∏︁
𝑗=1

𝑈𝑗, (1.34)

where 𝑈𝑗 ∈ {𝑅𝑘, 𝑅𝑙, 𝐶𝑋} with 𝑘 ̸= 𝑙. There we also showed that a gate can be

parametrized, i.e. 𝑈𝑗 ≡ 𝑈𝑗(𝜃𝑗) with 𝜃𝑗 ∈ R (e.g. a Pauli rotation gate 𝑅𝑗(𝛼) = 𝑒−𝑖𝛼𝜎𝑗

with 𝑗 ∈ {𝑥, 𝑦, 𝑧}). This allows us to rewrite (1.34) as

𝑈(𝜃) =

𝑝∏︁
𝑗=1

𝑈𝑗(𝜃𝑗), (1.35)

where 𝜃 = {𝜃𝑗}𝑝𝑗=1 ∈ R𝑝. In (1.35), we also assumed that each gate 𝑈𝑗 contains only

one parameter, and all non-parametrized gates (e.g. 𝐶𝑋) are “embeded” into the

parametrized ones. This leads us to the idea that a pure state |𝜓⟩ can be prepared

by acting with a parametrized unitary operator 𝑈(𝜃) on some initial state |𝜓0⟩, i.e.

|𝜓⟩ −→ |𝜓(𝜃)⟩ = 𝑈(𝜃) |𝜓0⟩ .

A parametrized in such a way probe state is called the variational state. This

parametrization is widely used in variational quantum algorithms described later in

Chapter 2.

The parametrized operator 𝑈(𝜃) is called the variational quantum circuit, and

it can have a specific structure of placing the gates in the circuit. In this case, such

a unitary is called an ansatz. More formally, we define the notion of the ansatz as

follows.
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Figure 1-1: A four-qubit example of the checkerboard ansatz of four layers. On the
right shown is also the two-qubit operator of five parameters which is put into a
block. In it, 𝑅𝜎(𝜃) = 𝑒−𝑖𝜃𝜎 and 𝑅𝜎𝜏 (𝜃) = 𝑒−𝑖𝜃𝜎⊗𝜏 with 𝜎, 𝜏 ∈ {𝜎𝑥, 𝜎𝑦, 𝜎𝑧} specifying
the Pauli operator and 𝜃 ∈ [0, 2𝜋) being the optimization parameters.

Definition 8 (Ansatz) An ansatz 𝐴(𝜃) is a parametrized unitary operator which

has the form of a quantum circuit 𝑉 (𝜃𝑗) concatenated 𝑀 times,

𝐴(𝜃) =
𝑀∏︁
𝑗=1

𝑉 (𝜃𝑗),

where
⋃︀𝑀
𝑗=1 𝜃𝑗 = 𝜃 and

𝑉 (𝜃𝑗) =
𝐿∏︁
𝑘=1

𝑈𝑘(𝜃𝑘)

with 𝜃𝑘 ∈ R and
⋃︀𝐿
𝑗=1 𝜃𝑘 = 𝜃𝑗. The operator 𝑉 is called the ansatz layer and the

number 𝑀 is called the ansatz depth.

The notion of ansatz is very important in applied variational quantum computing,

e.g. in quantum chemistry [65–67] and quantum materials science [68–70]. In Figure

1-1 we show an example of the so-called checkerboard ansatz [71–73]. In Section

2.1.1, we will meet the so-called hardware-efficient ansatz, which — as can be estab-

lished from its name — is implementable on any quantum computer provided that

it is able to perform single-qubit rotations and any entangling gate.

1.5 Hamiltonian simulation

One of possible applications of quantum computers is the Hamiltonian simulation.

Consider the evolution of a pure state |𝜓0⟩ in time 𝑡 under a unitary transformation:

|𝜓(𝑡)⟩ = 𝑈(𝑡) |𝜓0⟩ . (1.36)
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Recalling the Stone’s theorem (1.15), we get

|𝜓(𝑡)⟩ = 𝑒−𝑖𝐻𝑡 |𝜓0⟩ .

Differentiating this equation with respect to 𝑡, one obtains the time-dependent

Schrödinger’s equation for pure states:

𝑖
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = 𝐻 |𝜓(𝑡)⟩ . (1.37)

The Hermitian operator 𝐻 is called the Hamiltonian, and it is considered as an

“energy” operator. That is, measured in a quantum state, the expected value of a

Hamiltonian is the energy of the quantum system in this state. The structure of a

Hamiltonian is supposed to describe the quantum system under study. The equation

(1.37) is very important in physics as it governs the dynamics of many models of

physical quantum systems. For example, a chain of 𝑛 interacting 1/2-spins placed

in a transverse magnetic field can be described by the Ising Hamiltonian

𝐻Ising = 𝐽

(︃
𝑛∑︁
𝑗=1

𝑋𝑗𝑋𝑗+1 + ℎ
𝑛∑︁
𝑗=1

𝑍𝑗

)︃
, (1.38)

where 𝐽 ∈ R is the coupling strength between neighbouring spins and ℎ ∈ R is the

transverse field; in the equation above, we made use of the notation

𝐴𝑗 ≡ 1⊗(𝑗−1) ⊗ 𝐴⊗ 1⊗(𝑛−𝑗)

and applied the periodic boundary conditions 𝑋𝑛𝑋𝑛+1 ≡ 𝑋1𝑋𝑛.

Obviously, (1.36) is a solution to the Schrödinger equation (1.37). It appears

that a gate-based quantum computer could naturally simulate a unitary evolution

of a given quantum state under a given Hamiltonian. The obstacles here are, first,

that one has to be able to prepare the initial state |𝜓0⟩, and, second, apply to it

the unitary 𝑈(𝑡) = 𝑒−𝑖𝑡𝐻 as a gate. For the latter, in Section 1.4.1 we mentioned

that any unitary can be decomposed into a sequence of single-qubit rotations and

𝐶𝑋-gates. But the problem here is that the unitary 𝑈(𝑡) itself is unknown, known
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only is its generating Hamiltonian 𝐻. To circumvent this, one may decompose the

given Hamiltonian as a sum of 𝐿 terms,

𝐻 =
𝐿∑︁
𝑘=1

𝐻𝑘,

such that the gates of the form 𝑈𝑘(𝑡) = 𝑒−𝑖𝑡𝐻𝑘 are implementable on a given quantum

hardware. For example, if one decomposes the Ising Hamiltonian (1.38) in such a

way, the required gates would be 𝑈𝑘(𝑡) = 𝑒−𝑖𝑡ℎ𝑍𝑘 and 𝑈𝑘(𝑡) = 𝑒−𝑖𝑡𝐽𝑋𝑘𝑋𝑘+1 ; here,

the first gate is just a single-qubit Pauli rotation, and the second gate is a Mølmer-

Sørensen gate which is natural for trapped ions computers.

And here comes another obstacle in Hamiltonian simulation. The problem is

that in general 𝐻𝑘𝐻𝑙 ̸= 𝐻𝑙𝐻𝑘, therefore

exp

{︃
−𝑖𝑡

𝐿∑︁
𝑘=1

𝐻𝑘

}︃
̸=

𝐿∏︁
𝑘=1

exp{−𝑖𝑡𝐻𝑘}.

However, one can approximate the exponential of a sum using e.g. the first-order

𝑝-step Suzuki-Trotter formula

exp

{︃
−𝑖𝑡

𝐿∑︁
𝑘=1

𝐻𝑘

}︃
=

(︃
𝐿∏︁
𝑘=1

exp

{︂
−𝑖𝑡
𝑝
𝐻𝑘

}︂)︃𝑝

+𝑂
(︀
𝐿2𝑡2/𝑝2

)︀
(1.39)

As an instance, for the Ising Hamiltonian (1.38) one obtains

𝑒−𝑖𝑡𝐻Ising ≈

(︃
𝑛∏︁
𝑗=1

𝑒−𝑖𝑡𝐽𝑋𝑗𝑋𝑗+1/𝑝

𝑛∏︁
𝑗=1

𝑒−𝑖𝑡ℎ𝑍𝑗/𝑝

)︃𝑝

For details on higher-order approximations, or on Hamiltonian simulation in general,

see [74].
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Variational quantum computing

There is an important peculiarity in quantum computing: The input and output

for a quantum algorithm are commonly quantum states. The output state is often

such that it encodes the solution to the problem the algorithm is devised to solve.

For example, the output of the Grover’s algorithm [8] is a state |𝑥⟩ which encodes

the solution to the equation 𝑓(𝑥) = 1, where 𝑓 : B𝑛 → B and 𝑥 ∈ B𝑛 for 𝑛 ∈ N.

In Section 1.4.2 we also described how one can parametrize a quantum state |𝜓⟩ →

|𝜓(𝜃)⟩ with 𝜃 ∈ R𝑝, 𝑝 ∈ N.

This forms the core of so-called the variational quantum computing approach.

In variational quantum algorithms, for some Hilbert space ℋ one defines a so-called

cost function, the common form of which is

𝑓 : Herm(ℋ) ×𝒟(ℋ) → R,

i.e. it maps pairs of Hermitian observables and quantum states into real numbers.

A cost function is supposed to be designed in such a way that the minimization of it

leads to the solution of a problem of interest. Most commonly, this function is the

expected value of some observable in some (usually, pure) state. As a pure state can

be parametrized by a set of real numbers 𝜃, the function becomes parametrized as

well, so 𝑓 ≡ 𝑓(𝜃). Therefore, a variational quantum algorithm is designed in such a
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way that a solution for the minimization problem

𝜃opt ∈ arg min
𝜃
𝑓(𝜃) (2.1)

encodes the solution of a problem of interest. In [39], the authors identify four

criteria desirable for a cost function 𝑓 :

1. the exact optimum of 𝑓(𝜃) corresponds a the solution of the original problem;

2. the function 𝑓(𝜃) can be efficiently estimated on a quantum computer;

3. the parameters 𝜃 must be efficiently trainable.

4. the smallness of values of 𝑓(𝜃) indicate the closeness to the solution (opera-

tional meaning);

As mentioned earlier, generally, this function is based on measuring an observ-

able in the variational state of the form (1.4.2). That is, the function 𝑓(𝜃) itself is

evaluated (more accurately, estimated) on a quantum computer. At the same time,

the parameters 𝜃 are optimized on a classical computer using an existing minimiza-

tion algorithm (e.g. gradient descent). Here rises the main peculiarity of variational

quantum algorithms: they are hybrid quantum-classical in the sense that one needs

a quantum and a classical computer to execute such an algorithm. In the next sec-

tion, we describe the variational quantum eigensolver, one of the most prominent

representatives of variational quantum algorithms.

2.1 Variational quantum eigensolver

In Section 1.5 we mentioned the time-dependent Schrödinger’s equation. Let us now

consider its stationary variant: for a given Hamiltonian 𝐻 ∈ Herm(ℋ) one seeks to

find a |𝜓⟩ ∈ ℋ such that

𝐻 |𝜓⟩ = 𝐸 |𝜓⟩ , (2.2)

which essentially is an eigenvalue-eigenvector problem. Often one is interested in

the smallest eigenvalue and its corresponding eigenvector of a given Hamiltonian
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𝐻, and these are called the ground energy 𝐸g and ground state |𝜓g⟩, respectively.

Physically, this corresponds to the state of a system at rest, and to its energy in this

state. That is, in solving the stationary Schrödinger’s equation (2.2), one wants to

obtain

𝐸g = min
𝜓

⟨𝜓|𝐻|𝜓⟩ , (2.3)

|𝜓g⟩ = arg min
𝜓

⟨𝜓|𝐻|𝜓⟩ . (2.4)

Namely, by varying the probe state 𝜓, one wants it to become the ground state of

a given Hamiltonian 𝐻. This is actually a direct application of the Rayleigh–Ritz

method of approximating an eigenvalue of a matrix [75]. In Section 1.4.2, we dis-

cussed that a pure quantum state can be parametrized via the action of a parametrized

unitary operator on an initial state, i.e. |𝜓⟩ → |𝜓(𝜃)⟩ = 𝑈(𝜃) |𝜓0⟩ with 𝑈(𝜃) ∈ U(ℋ)

and 𝜃 ⊂ R. Therefore, the minimization problems (2.3) and (2.4) can be rewritten

as

𝐸𝑔 = min
𝜃

⟨𝜓(𝜃)|𝐻|𝜓(𝜃)⟩ , (2.5)

|𝜓𝑔⟩ ≡
⃒⃒
𝜓(𝜃opt)

⟩︀
, 𝜃opt = arg min

𝜃
⟨𝜓(𝜃)|𝐻|𝜓(𝜃)⟩ . (2.6)

That is, we transitioned from varying over state vectors 𝜓 ∈ ℋ to varying over real

numbers 𝜃 ⊂ R.

The variational state can be prepared by acting with gates from a universal set

implemented on a given hardware. But what about measuring the expected value of

a given Hamiltonian in this state? In Section 1.4 we mentioned that a measurement

is commonly carried out in the computational basis, i.e. for each qubit measured

is the 𝜎𝑧 observable. In circuit (1.28), we showed how one can rotate the basis in

order to measure 𝜎𝑥 and 𝜎𝑦. When it comes to measuring an arbitrary Hermitian

observable 𝐻, one may notice that, similarly to (1.11), the space of all Hermitian

2𝑛 × 2𝑛-matrices is

Herm(C⊗𝑛
2 ) = spanR{1, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧}⊗𝑛, 𝑛 ∈ N.
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Therefore, any Hermitian matrix of the size 2𝑛 × 2𝑛 can be written as

𝐻 =
∑︁

𝐾∈{0,𝑥,𝑦,𝑧}×𝑛

𝑎𝐾𝑆𝐾 , (2.7)

𝑎𝐾 ∈ R, 𝑆𝐾 =
⨂︁
𝑗∈𝐾

𝜎𝑗.

In other words, an observable on 𝑛 qubits can be represented as a sum of tensor

products of Pauli operators called Pauli strings. With this decomposition for an

𝑛-qubit Hermitian operator 𝐻, we can rewrite (2.5) and (2.6) as

𝐸𝑔 = min
𝜃

⎧⎨⎩ ∑︁
𝐾∈{0,𝑥,𝑦,𝑧}×𝑛

𝑎𝐾 ⟨𝜓(𝜃)|𝑆𝐾 |𝜓(𝜃)⟩

⎫⎬⎭ , (2.8)

|𝜓𝑔⟩ ≡
⃒⃒
𝜓(𝜃opt)

⟩︀
, 𝜃opt = arg min

𝜃

⎧⎨⎩ ∑︁
𝐾∈{0,𝑥,𝑦,𝑧}×𝑛

𝑎𝐾 ⟨𝜓(𝜃)|𝑆𝐾 |𝜓(𝜃)⟩

⎫⎬⎭ . (2.9)

As we see in (2.8), to calculate the expected value of an arbitrary Hamiltonian

𝐻, we represent it as a sum of Pauli strings 𝑆𝐾 as shown in (2.7), compute the

expected values of each individual Pauli string, and sum these expectations with the

corresponding coefficients 𝑎𝐾 . In Section 1.2.4, we mentioned that for estimating an

expected value with a precision 𝜖, one needs to perform 𝑁 = 𝑂(1/𝜖2) measurements.

Therefore, for 𝑀 Pauli strings, the required number of measurements would be

𝑁 = 𝑂(𝑀/𝜖2) [54]. The issue here is that in the worst case we have 𝑀 = 4𝑛 Pauli

strings to measure. Therefore, it is commonly assumed that a Hamiltonian has a

number of terms polynomial in the number of qubits 𝑛 [38], which often holds for

physically relevant Hamiltonians (for example, the Ising Hamiltonian (1.38) consists

2𝑛 terms). Additionally, one may consider representing a given Hamiltonian in the

form

𝐻 =
∑︁
𝑗

𝐻𝑗,

where each

𝐻𝑗 =
∑︁
𝐾

𝑎𝐾𝑆𝐾 , 𝑎𝐾 ∈ R,

consists of commuting Pauli strings, i.e. [𝑆𝐾 , 𝑆𝐾′ ] ≡ 𝑆𝐾𝑆𝐾′ − 𝑆𝐾′𝑆𝐾 = 0. The
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reason of doing this is that if two observables commute, then they share the same

eigenbasis and therefore — with some effort — can be measured simultaneously [76].

2.1.1 Experimental realizations of VQE

The first application of VQE

The equations (2.8) and (2.9), in fact, incarnate the idea of the variational quantum

eigensolver. Historically, this algorithm was first described and experimentally im-

plemented in the work [37]. There, the authors found the bond dissociation energy

of the molecule He-H+. The target Hamiltonian 𝐻 was the full configuration inter-

action Hamiltonian for this system, and this Hamiltonian was adopted for qubits

via the Jordan-Wigner transformation [77] (for details, see the original work [37]

and its supplemental material). As a quantum computer, used was a photonic chip

which implements qubits as path-encoded photons. Such a setup allows to apply

𝐶𝑋 gates and arbitrary single-qubit rotations via beamsplitters and phaseshifters.

Hardware-efficient ansatz and superconducting qubits

Another interesting work on the implementation of VQE is [78]. There, the authors

proposed the notion of the hardware efficient ansatz (HEA) for VQE executed on

a quantum computer based on superconducting qubits. The idea of HEA is to al-

ternate arrays of single-qubit operations with many-qubit, or entangling operations.

An important property of this ansatz is that it does not matter how the many-qubit

operators are implemented and what form they have, important only is the ability

of introducing a sufficient amount of entanglement into the quantum state. This

is where the name “hardware-efficient” comes from: single-qubit operations are as-

sumed to be implementable on modern-day quantum computers, while it does not

matter how implemented is the entangling operator. In Figure 2-1, shown is an

example of one layer of HEA for 4 qubits. In this Figure, as one may notice, the

many-qubit entangling operator is implemented as a cascade of the 𝐶𝑋 gates. One

can put several layers of this ansatz to increase its expressive power, i.e. the ability

of preparing quantum states of wider ranges (in other words, to “cover” wider regions
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Single-qubit rotations Entangler

𝑅𝑥(𝜃1) 𝑅𝑧(𝜃2) 𝑅𝑥(𝜃3) ∙ 𝑋

𝑅𝑥(𝜃4) 𝑅𝑧(𝜃5) 𝑅𝑥(𝜃6) 𝑋 ∙

𝑅𝑥(𝜃7) 𝑅𝑧(𝜃8) 𝑅𝑥(𝜃9) 𝑋 ∙

𝑅𝑥(𝜃10) 𝑅𝑧(𝜃11) 𝑅𝑥(𝜃12) 𝑋 ∙

Figure 2-1: A layer of a hardware-efficient ansatz for 4 qubits with 𝑝 = 12 variational
parameters. Here, 𝑅𝜎(𝜃) = 𝑒−𝚤𝜃𝜎 with 𝜎 ∈ {𝜎𝑥, 𝜎𝑦, 𝜎𝑧} specifying the Pauli operator
and 𝜃𝑗 ∈ [0, 2𝜋) being the optimization parameters. The controlled-X operators
“flip” the target qubit depending on the state of the control qubit, see (1.31).

of the Hilbert space).

Ion traps qubits

In [79], the authors performed the VQE algorithm for Schwinger’s Hamiltonian

adopted for 𝑁 qubits via the Jordan-Wigner transformation [77]. In Pauli basis,

this Hamiltonian is written as

𝐻Sch = 𝑤
𝑁−1∑︁
𝑗=1

[𝜎𝑗+𝜎
𝑗+1
− + 𝜎𝑗+1

− 𝜎𝑗+] +
𝑚

2

𝑁∑︁
𝑗=1

(−1)𝑗𝜎𝑗𝑧 + 𝑔
𝑁∑︁
𝑗=1

𝐿𝑗, (2.10)

where 𝜎± = 𝜎𝑥 ± 𝑖𝜎𝑦 and

𝐿𝑗 = 𝜖0 −
1

2

𝑗∑︁
𝑙=1

[𝜎𝑙𝑧 + (−1)𝑙].

This Hamiltonian describes electron-positron pair creation and annihilation and

their interaction. The first term is responsible for the interaction of an electron

and a positron, the second depends on the bare mass 𝑚 of the particles, and the

third stands for the energy of the electric field with 𝜖0 being its strength.

In the original experiment, the assignments for the parameters were 𝑤 = 𝑔 = 1

and 𝜖0 = 0, and the parameter 𝑚 was varied so that the ground state was found for

different values of this parameter. The physical realization of the quantum computer

was the ion traps. A hardware-efficient ansatz was used for preparing the variational
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state. The entangling bock of the HEA was implemented as 𝑈ent = 𝑒−𝑖𝜃𝐻𝑋𝑌 , where

𝐻𝑋𝑌 =
𝑁∑︁
𝑗=1

𝐽𝑖(𝜎
𝑗
+𝜎

𝑗+1
− + 𝜎𝑗+1

− 𝜎𝑗+) +𝐵

𝑁∑︁
𝑗=1

𝜎𝑗𝑥,

which is called the 𝑋𝑌 Hamiltonian; it describes the interaction of ions when they

are shun by a laser beam of a specific configuration (for details, see the original work

[79]).

Photon polarization qubits

In [1], we also experimentally applied the VQE algorithm for the two-qubit version

of the Schwinger’s Hamiltonian (2.10). There, the qubit states were encoded into

the polarization of a photon. That is, the vertical polarization encodes the |0⟩ while

the horizontal polarization encodes |1⟩. On such an optical setup, one can naturally

implement the following transformation:

𝑈(𝜃, 𝛿) = 𝑉 (𝜃)𝐷(𝛿)𝑉 †(𝜃), (2.11)

𝑉 (𝜃) = 1 cos(𝜃) − 𝑖𝜎𝑦 sin(𝜃), 𝐷(𝛿) = 𝑒𝑖𝛿|1⟩⟨1|.

The unitary (2.11) describes the half-wave plate (HWP) and the quarter-wave plate

(QHP) operators defined as

𝑈HWP(𝜃) ≡ 𝑈(𝜃, 𝜋), 𝑈QWP(𝜃) ≡ 𝑈(𝜃, 𝜋/2),

which are used to prepare a two-qubit variational state produced by the following

circuit:

|0⟩ 𝑈QWP(𝜃1) 𝑈HWP(𝜃2) ∙ 𝑈QWP(𝜃3) 𝑈HWP(𝜃4)

|0⟩ 𝑋 𝑋 𝑈QWP(𝜃5) 𝑈HWP(𝜃6)

The ground state energy of Schwinger’s Hamiltonian (2.10) found by VQE in this

setting is shown in Figure 2-2a. As can be seen, experimentally obtained energies

are found with good precision.
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For zero background field, 𝜖0 = 0, the Schwinger model (2.10) is known to

experience a phase transition at the point 𝑚 ≈ −0.7 [79, 80]. This point is also

special for the so-called order parameter observable [79]

𝑂 =
1

2𝑛(𝑛− 1)

∑︁
𝑗>𝑖

(︁
1 + (−1)𝑖𝜎𝑖𝑧

)︁(︁
1 + (−1)𝑗𝜎𝑗𝑧

)︁
. (2.12)

In our case of 𝑛 = 2 qubits, this observable is simply the projector 𝑂 = |01⟩⟨01|. For

large negative 𝑚, the ground state is expected to be |𝜓g⟩ = |01⟩, which translates

to ⟨𝜓g|𝑂|𝜓g⟩ = 1; for large positive 𝑚, the ground state is |𝜓g⟩ = |10⟩ giving

⟨𝜓g|𝑂|𝜓g⟩ = 0. The value 𝑚 = −0.5 can be considered as a critical point of the

order parameter 𝑂, as at this point the ground state is precisely

⃒⃒
Ψ−⟩︀ =

1√
2

(︀
|01⟩ − |10⟩

)︀
,

which is called the singlet state, and which gives ⟨Ψ−|𝑂|Ψ−⟩ = 0.5. An important

feature of this state is that ∀𝑈 ∈ U(C2) one has (𝑈 ⊗ 𝑈) |Ψ−⟩ = |Ψ−⟩, i.e. this

state is invariant under local transformations of the form 𝑈 ⊗ 𝑈 . This means that

there could be a region in the space of variational parameters such that it has a “flat

valley”, in which the energy does not change. Figure 2-2 supports this statement: in

the vicinity of the point 𝑚 = −0.5, at which the energy landscape is flat for some of

the variational parameters, the variance of the results is higher than that for more

distant points. Additionally, some energies are wrongly found to be −3/2, which is

the ground state energy for 𝑚 = −0.5.

Inter alia, in [1] we also investigated how controlled dephasing noise affects the

results obtained by VQE. In the described setup, one can artificially introduce noise
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Figure 2-2: Eigenvalue (a) and order parameter (b) versus bare mass𝑚 of Shwinger’s
Hamiltonian (2.10). Solid lines stand for the analytical solution, cyan points (violin
plot) show the results of simulations, and red points are obtained from the exper-
iment. For each 𝑚, the data for simulations are obtained as the average over 30
trials. For the experiment, all attempts are shown as distinct points. The figures
are taken from [1].

described by the following channel:

ℰ(𝜌) =
2∑︁
𝑗=1

𝐸𝑗𝜌𝐸
†
𝑗 , (2.13)

𝐸𝑖 = 𝑉 (𝜃)𝐷𝑖(𝛿)𝑉
†(𝜃), (2.14)

𝐷1(𝛿) =

√︂
2 − 𝜖

2

⎛⎝𝑒𝑖𝛿 0

0 1

⎞⎠ , 𝐷2(𝛿) =

√︂
𝜖

2

⎛⎝𝑒𝑖𝛿 0

0 −1

⎞⎠ . (2.15)

Physically, this noise comes from placing a liquid crystal variable retarder (LCVR)

before the measurement apparatus. LCVRs allow to change the phase of the specific

polarization of a photon depending on the external applied voltage. In (2.13)-(2.15),

the parameter 𝜃 controls the axis angle of the LCVR, 𝛿 is called the mean optical

retardance, and the value 0 6 𝜖 6 1 is the noise strength. For the experiment in [1],

we set 𝜃 = 𝜋/4 and 𝛿 = 2𝜋, while the noise strength 𝜖 was varied.

As can be seen in Figure 2-3, even in the presence of dephasing noise we can

detect the critical point of the order parameter in the Schwinger model, i.e. the

point at which the expected value of (2.12) rapidly changes. Moreover, one can

also observe that the profile of the obtained ground state energy curves remains the

same.
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Figure 2-3: Noise simulations for dephasing noise (2.13) acted on one qubit (a), (c)
and both qubits (b), (d). Panels (a) and (b) show the dependence of the ground
state energy of Schwinger’s Hamiltonian (2.10) on the bare mass 𝑚, and panels (c)
and (d) indicate the dependence of the order parameter (2.12). Red lines correspond
to simulations without noise, and the color blur corresponds to the increase of noise
strength 𝜖 from 0.1 to 1 in 0.1 steps. Distinct points stand for experimental results,
and solid areas show theoretical predictions for points with different noise level. The
plots are taken from [1].

2.1.2 Soliton solution: a case study

In this section, we discuss the solution obtained by VQE for a Hamiltonian with a

highly entangled ground state, which we studied in [2]. Consider the Hamiltonian

of a one-dimensional chain of 𝑁 quantum spins S𝑗 with the Dzyaloshinskii-Moria

interaction (DMI):

𝐻DMI = −𝐽
∑︁
⟨𝑖,𝑗⟩

S𝑖 · S𝑗 −
∑︁
⟨𝑖,𝑗⟩

𝐷𝑖𝑗 · (S𝑖 × S𝑗) +
𝑁∑︁
𝑗=1

B · S𝑗. (2.16)

Here, the first term describes the so-called direct exchange interaction which for 𝐽 >

0 favors collinear ordering of spins; the index 𝑗 labels the spins along their position

on the 𝑧 axis, and ⟨𝑖, 𝑗⟩ implies summation over nearest neighbors. The second term

61



Chapter 2. Variational quantum computing

specifies the DMI, which destroys homogeneity of collinear magnetic ordering: it

promotes spin canting between neighboring sites; the strength of DMI is determined

by the Dzyaloshinskii vector 𝐷𝑖𝑗. The third term stands for the transverse magnetic

field B. In this field, the competition between DMI and exchange interaction results

in a non-colinear configuration of spins [81–83]. The Hamiltonian 𝐻DMI defined in

(2.16) describes a reliable model of a wide class of so-called chiral magnets [84–86].

Considering spin one-half particles, one has the spin operators of the form S =

𝜎/2 with 𝜎 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) being the Pauli vector. The state of a spin can be described

by the vector |𝑆⟩ =
(︀
cos 𝜃

2
, 𝑒𝑖𝜙 sin 𝜃

2

)︀𝑇 , which gives

⟨𝑆|Ŝ𝑖|𝑆⟩ = 𝑛𝑖/2,

𝑛𝑖 = (cos𝜙𝑖 sin 𝜃𝑖, sin𝜙𝑖 sin 𝜃𝑖, cos 𝜃𝑖).

In what follows, we assume that the Dzyaloshinskii vector is aligned along the 𝑧 axis,

so 𝐷𝑖𝑗 = 𝐷𝑒𝑧, where 𝐷 determines the strength of DMI; we also set the magnetic

field to be aligned along the 𝑥 axis, i.e. B = 𝐵𝑒𝑥 with 𝐵 being expressed in energy

units.

In the basis |𝑆1, 𝑆2, . . . , 𝑆𝑁⟩, the quantum Hamiltonian (2.16) can be mapped to

a classical Heisenberg-type model of interacting spins,

𝐻 = −𝐽
4

∑︁
⟨𝑖,𝑗⟩

𝑛𝑖 · 𝑛𝑗 −
𝐷

4

∑︁
⟨𝑖,𝑗⟩

(𝑛𝑖 × 𝑛𝑗)𝑧 −
𝐵

2

𝑁∑︁
𝑗=1

𝑛𝑥𝑗 . (2.17)

Considering the continuous description of this model, i.e. 𝑛𝑖 = 𝑛(𝑧) so that 𝜙𝑖 =

𝜙(𝑧) and 𝜃𝑖 = 𝜃(𝑧) now depend on the coordinate 𝑧, one can describe it in terms of

magnetization specified by the vector field

𝑛(𝑧) =
(︀

cos𝜙(𝑧) sin 𝜃(𝑧), sin𝜙(𝑧) sin 𝜃(𝑧), cos 𝜃(𝑧)
)︀
.

Let 𝑎 be the distance between a pair of neighboring spins and 𝑛𝑖+1 = 𝑛(𝑧 + 𝑎),

and assume 𝑛(𝑧 + 𝑎) ≈ 𝑛(𝑧) + 𝑎𝑛′(𝑧) + 𝑎2𝑛′′(𝑧)/2. In (2.17), we can now replace

summation by integration,
∑︀

𝑗 →
1
𝑎

∫︀ 𝐿
0
𝑑𝑧, where 𝐿 is the total length of the spin

62



Chapter 2. Variational quantum computing

chain, and in the lowest order in 𝑎 we can write

𝐻 =
𝑎𝐽

8

∫︁ 𝐿

0

𝑑𝑧
[︀
𝜃′2 + 𝜙′2 sin2 𝜃 − 𝑘0𝜙

′ sin2 𝜃 + 2𝑚2 cos𝜙 sin 𝜃
]︀
, (2.18)

where 𝑘0 = 𝐷/(𝑎𝐽) and 𝑚2 = 2𝐵/(𝑎2𝐽). One can show that the ground state

energy of the Hamiltonian (2.18) is obtained when 𝜃 = 𝜋/2, and 𝜙 is given by the

sine-Gordon equation [81–83],

𝜙′′ +𝑚2 sin𝜙 = 0. (2.19)

Integrating this equation, one gets

𝜙 = 2 am(𝑚𝑧/𝜅, 𝜅), (2.20)

where 𝜅 is called the elliptic modulus to be found later, and am(𝑢, 𝜅) is the Jacobi

amplitude determined by sn𝑢 = sin am(𝑢, 𝜅) with sn𝑢 defining the elliptic sine. The

solution (2.20) can be shown to correspond to a so-called soliton lattice with the

spatial periodicity,

ℓ =
2𝜅

𝑚

∫︁ 𝜋/2

0

𝑑𝜙√︀
1 − 𝜅2 sin2 𝜙

=
2𝜅

𝑚
𝐾(𝜅), (2.21)

where 𝐾(𝜅) is the complete elliptic integral of the first kind. Putting (2.20) into

(2.18) we obtain the energy of the soliton lattice over a period

𝜀 =
𝑎𝑚2𝐽

2

(︂
2

𝜅2
𝐸(𝜅)

𝐾(𝜅)
− 1

𝜅2
− 𝜋

2𝑚

𝑘0
𝜅𝐾(𝜅)

)︂
, (2.22)

where we introduced the complete elliptic integral of the second kind 𝐸(𝜅) =∫︀ 𝐾(𝜅)

0
dn2𝑧 𝑑𝑧 with dn𝑧 being the delta amplitude. The value of 𝜅 which minimizes

the energy 𝜀 can be obtained from

𝜋𝜅𝑘0 = 4𝑚𝐸(𝜅), (2.23)

which is derived using the fact that 𝜅𝐸 ′(𝜅) = 𝐸(𝜅)−𝐾(𝜅) and 𝜅𝐾 ′(𝜅) = 𝐸(𝜅)/(1−
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𝜅2) −𝐾(𝜅).

In [2], we applied the VQE algorithm for the Hamiltonian (2.16). For our nu-

merical experiments, we set 𝐷/𝐽 = 0.63, and 𝐵/𝐽 = 3.36 × 10−3, which, as will be

seen later, results in spiral arrangement of the spins. Solving (2.23) gives 𝜅 ≈ 0.256

which corresponds to 𝑁 = ℓ/𝑎 ≈ 10. That is, we have to consider 𝑁 = 10 qubits to

properly address one period of the soliton lattice. In our numerical experiments, we

represent the variational state by the hardware-efficient ansatz shown in Figure 2-1,

but with the 𝐶𝑋 replaced by 𝐶𝑅𝑦 gates. To simulate quantum circuits, we used the

Qiskit package [87]. As the optimization method, we applied the BFGS algorithm

[88] restricting the maximum number of iterations to 50,000.

In Figure 2-4, we show the ground state energy and fidelity of the ground state

(i.e. the overlap of this state with the exact one) of the Hamiltonian (2.16) found

by VQE versus the number of ansatz layers 𝑙. As one might expect, the more

layers of the ansatz we have (i.e. the more expressive ansatz is), the more accurate

is the found energy. Indeed, we observe discrepancy between the approximated

result and the exact one to be less than 1%. Moreover, we apply a simple criterion

discussed in [1, 89] for quantifying the precision of a VQE solution. That is, if 𝐸0

and 𝐸1 are the respective exact ground state and the first excited energies, and

𝐸VQE is the ground state energy found by VQE, then this solution can be accepted

if 𝛿 = (𝐸VQE − 𝐸0)/(𝐸1 − 𝐸0) < 1. With 𝑙 = 6 layers of the hardware-efficient

ansatz, we obtained a solution with the quality 𝛿 ≈ 0.6841.

Despite that the ground state energy is found with high precision, the perfor-

mance of VQE in terms the state fidelity is rather poor. This can be attributed to

the entanglement properties of the ground state describing the spin configuration of

the Hamiltonian (2.16). Let 𝜌𝑖𝑗 be the reduced density operator of the two qubits 𝑖

and 𝑗. The entanglement of a two-qubit state can be quantified by the concurrence

𝐶𝑖𝑗 = max{0,
√︀
𝜆1 −

√︀
𝜆2 −

√︀
𝜆3 −

√︀
𝜆4}, (2.24)

where 𝜆1 > 𝜆2 > 𝜆3 > 𝜆4 are the eigenvalues of the non-Hermitian operator 𝑅𝑖𝑗 =

𝜌𝑖𝑗𝜌𝑖𝑗 in increasing order. Here, 𝜌𝑖𝑗 = (𝜎𝑦⊗𝜎𝑦)𝜌*𝑖𝑗(𝜎𝑦⊗𝜎𝑦) is the spin-flipped density
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Figure 2-4: Ground state energy (a) and the overlap of the approximate ground state
vector with the exact one (b) of the Hamiltonian (2.16) for 𝑁 = 10 found by VQE.
In panel (a), the dashed green line stands for the exact ground state energy. Each
data point is obtained as an average over 5 optimizations initialized with random
parameters of the ansatz. The error bars show the standard deviation. The figures
are taken from [2].
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matrix with asterisk indicating the complex conjugation.

In Figure 2-5, we plot the concurrence 𝐶𝑖𝑗 of the ground state of the Hamiltonian

(2.16) of 𝑁 = 10 qubits. The numerical results show that the highest concurrence

is observed for nearest-neighbouring spins. As we see, the solution obtained with

VQE captures the entanglement of these spins, while the concurrence between dis-

tant qubits is not very well reproduced. In [2], we also showed that this lack of

accuracy does not arise from trainability issues. Specifically, with some assignments

for 𝐷 and 𝐵 for the Hamiltonian (2.16), the nearest-neighbouring spins can be

highly entangled, yet with no entanglement present between the next-neighbouring

ones. The ground state in this case can be found with high precision, and the per-

formance of VQE with the hardware-efficient ansatz seems to be dependent on how

the entanglement is “smeared” between spatially separated sites of the spin chain.

We therefore conclude that a soliton solution found analytically describes a ground

state with long-range entanglement, and this state cannot be well-reproduced with

VQE without a sufficiently large number of ansatz layers. This limits the appli-

cation range of VQE executed with a shallow ansatz for Hamiltonians describing

short-range spin configurations.

Despite that the ground state vector found by VQE is of low fidelity, one nonethe-

less is still able to extract some physical properties of interest from it. To illustrate

this, in Figure 2-6 we show the magnetic texture of the ground state plotted versus

the number of ansatz layers used in VQE. In this figure, arrows positioned along hor-

izontal lines represent the directions of spins in the chain. The moments are placed

in the 𝑥𝑦 plane since their 𝑧 components are zeros, which is in full agreement with

the analytical results. In Figure 2-6, shown also is the spin configuration given by

the analytical solution 𝜃 = 𝜋/2 and 𝜙 = 2am(𝑚𝑧/𝜅, 𝜅). We expect that increasing

the number of layers should lead to a solution close to the analytical one. What is

interesting here is that the directions of the spins given by the VQE solutions are

not correct, but nonetheless we capture the spiral structure of magnetic moments.

That is, even using a shallow-circuit ansatz, the magnetic texture can be studied at

least qualitatively.
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Figure 2-5: Concurrence 𝐶𝑖𝑗 (2.24) between the 𝑖th and 𝑗th qubits of the ground
state of the DMI Hamiltonian (2.16). Panels (a) and (b) show the concurrence
calculated for the VQE solution 𝐶VQE

𝑖𝑗 obtained with six ansatz layers and the exact
ground state 𝐶exact

𝑖𝑗 , respectively. Panel (c) gives the ratio 𝐶VQE
𝑖𝑗 /𝐶exact

𝑖𝑗 . As can be
seen, the more distant two spins are, the worse the entanglement is captured by
VQE. The figures are taken from [2].
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Figure 2-6: Magnetic texture of the ground state of the Hamiltonian (2.16) of𝑁 = 10
spin one-half particles versus the number of layers of the hardware-efficient ansatz.
Each line corresponds to the magnetic moments of spins in the ground state found
by VQE with a specific number of layers of the ansatz, and each arrow shows the
magnetic moment of a given spin in the 𝑥𝑦 plane (𝑧 components are equal to zero).
The uppermost line of magnetic moments is given by the analytical solution 2.20.
The figure is taken from [2].
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Variational algorithms and tensor

diagrams

In Chapter 2, we discussed the variational quantum eigensolver (VQE) algorithm,

one of the most prominent and promising methods of quantum computing for NISQ

devices. The core of this algorithm is formed by computing the expected value of a

Hermitian operator 𝐻 in a pure state |𝜓⟩, i.e. ⟨𝜓|𝐻|𝜓⟩. In this chapter, we consider

some other existing variational algorithms based on computing different expected

values.

The algorithms will be formulated in a common way with equations, and also

in the notation of tensor networks introduced in Section 1.3. The tensor network

language is a way to represent tensor contraction operations in a pictorial and very

explanatory way. In this notation, the manipulation with equations and indices

of tensors is replaced by manipulating the wires and blocks representing tensors

and contraction operations. Tensor networks are widely used in e.g. theoretical

physics, classical computer science, and machine learning. So, the formulation in

this language would help researchers from other fields of science understand quantum

algorithms. Additionally, the tensor diagrams notation allows to notice interesting

and often important details about the algorithm formulated. More specifically, inter

alia, we will show that the variational quantum algorithms we review in this chapter

can be reduced to VQE executed for a certain Hamiltonian and a pure variational

state.
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3.1 State preparation verification for VQE

We begin reviewing variational quantum algorithms with a method for state prepa-

ration verification. In [79], of particular interest is the proposed method for cer-

tification of the preparation of a desired state (the authors considered the ground

state of Schwinger’s Hamiltonian (2.10)). For it, at each minimization iteration of

the VQE algorithm, it was proposed to compute the the following quantity:

𝐹𝐻(𝜓) = ⟨𝜓|𝐻2|𝜓⟩ − ⟨𝜓|𝐻|𝜓⟩2 , (3.1)

where 𝐻 is a Hamiltonian on 𝑛 qubits. Essentially, the expression (3.1) is the

variance of the energy measured for the Hamiltonian 𝐻 in the state |𝜓⟩. One can

prove that 𝐹𝐻(𝜓) = 0 if and only if 𝐻 |𝜓⟩ = 𝜆 |𝜓⟩, i.e. if |𝜓⟩ is an eigenvector of

𝐻. Since the ground energy of the target Hamiltonian 𝐻 is commonly unknown,

then, having measured ⟨𝜓|𝐻|𝜓⟩ at each step of the VQE algorithm, one does not

know how close is the current obtained solution vector to the exact one. At the

same time, the closeness of 𝐹𝐻 to zero can serve as an indicator of the closeness of

the approximate ground state vector to the true one. It must be also pointed out

that it is relatively easy to compute this function. Indeed, the term ⟨𝜓|𝐻|𝜓⟩2 is

trivially obtained after each step of VQE, so one needs only to compute ⟨𝜓|𝐻2|𝜓⟩

by decomposing the Hermitian operator 𝐻2 in Pauli basis (see (2.7)) and measuring

it as an ordinary observable.

An alternative way of certifying the preparation of an eigenstate was proposed

by us in [3]. There, we define the function

𝐹𝑄(𝜓) =
⃒⃒
⟨𝜓|𝑄|𝜓⟩

⃒⃒2
, (3.2)

where 𝑄 = 𝑒−𝑖𝐻𝑡 with 𝐻 being a target Hamiltonian for VQE and 𝑡 ∈ R. Similarly

to 𝐹𝐻 , the function 𝐹𝑄 outputs unity if and only if its argument 𝜓 is an eigenvector

of 𝐻. In this formulation, one can use the tensor network notation to obtain an

interesting equivalent expression. In Fig. 3-1, we apply the property (1.23) for
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obtaining the formula

𝐹𝑄(𝜓) = ⟨Ψ|𝑀 |Ψ⟩,

where

𝑀 =
⃒⃒
Φ+
⟩︀⟨︀

Φ+
⃒⃒
, (3.3)

|Ψ⟩ = 𝑄 |𝜓⟩ ⊗ |𝜓⟩. (3.4)

with ⃒⃒
Φ+
⟩︀

=
1√
𝑑

𝑑∑︁
𝑗=1

|𝑗⟩ ⊗ |𝑗⟩

being a maximally entangled state of 𝑛 qubits, which is a generalization of the Bell

state (1.32) for 𝑑 = 2𝑛. Obviously, the Hamiltonian 𝑀 has the vector |Φ+⟩ as its

unique highest-energy state with the eigenvalue 1, and the rest of the eigenvectors

have the the eigenvalue 0. Therefore, one can run the VQE algorithm to find the

eigenvector which corresponds to the maximal eigenvalue of 𝑀 , which is equivalent

to maximizing the cost function (3.2); the probe state for VQE should be of the

form (3.4).

Interestingly, to execute the VQE, there is no need to decompose the Hamiltonian

(3.3) in the Pauli basis. Since we know the how to prepare the state |Φ+⟩, see (1.32),

we can directly measure the observable 𝑀 on a conventional quantum computer. If

|Φ+⟩ = 𝐹 (|0⟩ ⊗ |0⟩), where |0⟩ = |0⟩⊗𝑛, then it is needed only to prepare the state

|𝜙⟩ = 𝐹 †(𝑄 |𝜓⟩ ⊗ |𝜓⟩) and measure it in the computational basis. The probability

of obtaining only zeros as a result of this measurement is

p0 = Tr |𝜙⟩⟨𝜙| |0⟩⟨0|⊗2 =
⃒⃒
⟨0|⊗2 |𝜙⟩

⃒⃒2
=
⃒⃒
(⟨0| ⊗ ⟨0|)𝐹 †(𝑄 |𝜓⟩ ⊗ |𝜓⟩)

⃒⃒2
=
⃒⃒
⟨Φ+|Ψ⟩

⃒⃒2
= ⟨Ψ|𝑀 |Ψ⟩ =

⃒⃒
⟨𝜓|𝑄|𝜓⟩

⃒⃒2
.

The calculations simplify even more if one assumes the variational state to be

of the form |𝜓⟩ = 𝑈 †𝑄𝑈 |0⟩, where 𝑈 is a variational ansatz. Indeed, consider

the Hamiltonian 𝑀 = |0⟩⟨0|, for which the vector |0⟩ is the unique highest-energy
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Figure 3-1: Reduction of the term
⃒⃒
⟨𝜓|𝑄|𝜓⟩

⃒⃒2 from (3.2) to the VQE cost function
of the form ⟨Ψ|𝑀 |Ψ⟩, where 𝑀 and |Ψ⟩ are defined in (3.3) and (3.4), respectively.

eigenstate. Then the cost function (3.2) can be written as

𝐹𝑄(𝜓) = ⟨𝜓|𝑀 |𝜓⟩ =
⃒⃒
⟨0|𝑈 †𝑄𝑈 |0⟩

⃒⃒2
,

i.e. it is equivalent to VQE executed finding the eigenstate of the highest-energy

of 𝑀 using the variational state of the specified form. And again, the absolute

value squared can be estimated as the probability to obtain zeros as a result of the

measurement of the state |𝜓⟩,

p0 = Tr |𝜓⟩⟨𝜓| |0⟩⟨0| =
⃒⃒
⟨0|𝜓⟩

⃒⃒2
=
⃒⃒
⟨0|𝑈 †𝑄𝑈 |0⟩

⃒⃒2
. (3.5)

The quantum circuit which performs this computation is the following:

|0⟩

𝑈 𝑄 𝑈 †
|0⟩

...
...

|0⟩

By optimizing the functions 𝐹𝐻 and 𝐹𝑄, it is possible to obtain one of the

eigenstates of a given Hamiltonian. In Figure 3-2 we show the performance of 𝐹𝐻

and 𝐹𝑄 in finding an eigenstate quantified by two metrics. The first metric is the
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convergence rate, which we call the percentage of the instances converged to the

values of the overlap

𝒪 =
⃒⃒
⟨𝜓|𝜙⟩

⃒⃒2 (3.6)

at least 0.999, where |𝜓⟩ is the variational state and |𝜙⟩ is an exact eigenstate;

this required value of the overlap is relatively large and is comparable to recent

experimental results on high-fidelity state preparation [90, 91]. The second metric

we use is the gain defined as

𝒢𝒪 = E𝒪

[︂
𝒪conv −𝒪init

𝒪opt −𝒪init

]︂
, (3.7)

where 𝒪init is the value the overlap (3.6) calculated at the very beginning of the

optimization, 𝒪opt is the function value obtained after convergence, and 𝒪opt is the

true optimal value of the function; the notation E𝒪 means averaging over all instances

of the initial ansatz parameters [92]. In fact, the gain can be used to characterize the

performance of any cost function 𝑓 which is supposed to be optimized, and it is used

as a convergence metric in machine learning. To quantify the performance of 𝐹𝐻 and

𝐹𝑄 by the mentioned metrics, we considered the four-qubit Ising Hamiltonian (1.38)

with 𝐽 = ℎ = 1, and the four-qubit Schwinger Hamiltonian (2.10) with 𝑤 = 𝑔 = 1,

𝜖0 = 0 and 𝑚 = −0.7. To parametrize the probe state |𝜓⟩, we used the hardware-

efficient ansatz. As can be seen in Figure 3-2, the function 𝐹𝑄 outperforms the

function 𝐹𝐻 in the case of Ising Hamiltonian, and for the Schwinger Hamiltonian

the situation is opposite.

3.1.1 Variational Hamiltonian diagonalization

Interestingly, the cost function (3.2) can be also used to find a unitary which diag-

onalizes a Hamiltonian. That is, given 𝐻 ∈ Herm(C𝑑), one can variationally find a

unitary 𝑈 ∈ U(C𝑑) such that the operator 𝑈𝐻𝑈 † is diagonal in some basis. Indeed,

the function

𝑓ℎ(𝑈) =
1

𝑑

𝑑∑︁
𝑗=1

⃒⃒
⟨𝑗|𝑈 †𝑒−𝑖𝐻𝑡𝑈 |𝑗⟩

⃒⃒2 (3.8)
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Figure 3-2: The overlap gain (left) and convergence rate (right) for the transverse
field Ising model Hamiltonian (a) and the Schwinger model Hamiltonian (b) during
the optimization of the functions 𝐹𝐻 and 𝐹𝑄 defined in (3.1) and (3.2), respectiv-
elly. For each Hamiltonian, 300 random sets of initial parameters for the hardware-
efficient ansatz were generated. The figures are taken from [3].

returns unity if and only if the operator 𝑈 †𝑒−𝑖𝐻𝑡𝑈 is diagonal with respect to the

computational basis {|𝑗⟩}𝑑𝑗=1. Therefore, one finds a diagonalizing unitary 𝑈diag as

a solution to the following optimization problem:

𝑈diag = arg max
𝑈

𝑓ℎ(𝑈).

Obviously, if the operator 𝑈 †𝑒−𝑖𝐻𝑡𝑈 is diagonal in {|𝑗⟩}𝑑𝑗=1, then is the operator

𝑈 †𝐻𝑈 , as they have the same eigenvectors.

The main shortcoming of the described method is that it necessitates conducting

𝑑measurement experiments for a given𝐻 ∈ Herm(C𝑑). That is, given a Hamiltonian

acting on 𝑛 qubits, one has to compute 𝑑 = 2𝑛 probabilities in (3.8), which is

exponential. This obstacle can be overcome by applying the tensor network notation

in the same manner as done in the previous section. Letting again 𝑄 = 𝑒−𝑖𝐻𝑡, and
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Figure 3-3: Derivations used to reduce the cost function (3.8) to VQE. The vector
|Ψ⟩ and the operator 𝑆 are defined in (3.9) and (3.11), respectively.

using the derivations shown in Figure 3-3, one can rewrite the cost function (3.8) as

𝑓ℎ(𝑈) = ⟨Ψ|𝑀 |Ψ⟩,

where

|Ψ⟩ = (𝑈 †𝑄𝑈 ⊗ 1)
⃒⃒
Φ+
⟩︀
, (3.9)

𝑀 =
𝑑∑︁
𝑗=1

|𝑗⟩⟨𝑗| ⊗ |𝑗⟩⟨𝑗| . (3.10)

Although we reduced the quantum algorithm to VQE executed for the variational

state |Ψ⟩ and Hamiltonian𝑀 , the problem still remains: the Hamiltonian𝑀 consists

of an exponential number of terms in the Pauli basis. This issue can be resolved as

follows.

In Fig. 3-3, we introduced the notation

𝑆 =
1

𝑑

𝑑∑︁
𝑗=1

|𝑗⟩⟨𝑗| ⊗ |𝑗⟩⟨𝑗| ≡ , (3.11)
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where we made use of the COPY tensor (1.24). Note that 𝑆 is not just an observable,

it is a density operator, 𝑆 ∈ 𝒟(C𝑑 ⊗ C𝑑). The quantum state it describes is mixed,

but a purification can be easily found. Consider the state

⃒⃒
Φ+

3

⟩︀
=

1√
𝑑

𝑑∑︁
𝑗=1

|𝑗⟩𝐴 ⊗ |𝑗⟩𝐵 ⊗ |𝑗⟩𝐶 ≡ . (3.12)

This state can be prepared using a circuit similar to the one used for preparing the

Bell state (1.32), which we will denote as
⃒⃒
Φ+

2

⟩︀
. Then the state 𝑆 can be obtained

as

𝑆 = Tr𝐶
⃒⃒
Φ+

3

⟩︀⟨︀
Φ+

3

⃒⃒
= Tr𝐶

[︃
1

𝑑

𝑑∑︁
𝑗,𝑘=1

|𝑗⟩⟨𝑘|𝐴 ⊗ |𝑗⟩⟨𝑘|𝐵 ⊗ |𝑗⟩⟨𝑘|𝐶

]︃

From this, using the definitions (3.12) and (1.32), we can rewrite the cost function

(3.8) as

𝑓ℎ(𝑈) = ⟨Ψ|𝑀 |Ψ⟩,

where now

|Ψ⟩ = (𝑈 †𝑄𝑈 ⊗ 1 ⊗ 1)
⃒⃒
Φ+

3

⟩︀
, (3.13)

𝑀 =
⃒⃒
Φ+

2

⟩︀⟨︀
Φ+

2

⃒⃒
⊗ 1. (3.14)

Since we know how to prepare the sates
⃒⃒
Φ+

2

⟩︀
and

⃒⃒
Φ+

3

⟩︀
, the Hamiltonian (3.14) is

much easier to measure than (3.10). Indeed, consider the following quantum circuit:

|0⟩ 𝐻 ∙ 𝑈 𝑄 𝑈 † ∙ 𝐻

|0⟩ 𝑋 ∙ 𝑋

|0⟩ 𝑋
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Figure 3-4: Numerical experiments conducted for diagonalizing random 5-qubit
Hamiltonians with the method described by (3.8). The unitary 𝑈 was parametrized
by HEA of different number of layers 𝑙. On panel (a) depicted is the error of diago-
nalization, the sum of the squared absolute values of the off-diagonal entries of the
diagonalized matrix. Each data point is obtained as an average over ten random
Hamiltonians; the shaded area indicates the standard deviation. On panel (b) plot-
ted is the gain (3.7) of the cost function in (3.8). The lines of different colors stand
for different number of layers 𝑙 in the ansatz.

One can show that the probability of obtaining zeros as a result of the measurement

is

p0 =
1

𝑑2

𝑑∑︁
𝑗=1

⃒⃒
⟨𝑗|𝑈 †𝑄𝑈 |𝑗⟩

⃒⃒2
,

from which one straightforwardly obtains 𝑓ℎ(𝑈) = p0𝑑. Therefore, if one finds

a unitary 𝑈 which maximizes the probability p0, then we can be sure that the

operator 𝑈 †𝐻𝑈 is diagonal in the computational basis.

We conducted numerical experiments on minimizing the cost function (3.8) ran-

domly generated Hamiltonians of 𝑛 = 5 qubits. In Figure 3-4 we plot the error

of the diagonalizaton and the gain (3.7) of the cost function in (3.8). The error is

given as the sum of the squared absolute values of the off-diagonal entries of the

matrix 𝑈 †𝐻𝑈 . To parametrize the unitary 𝑈 , we applied the hardware-efficient

ansatz with the number of layers 𝑙 ranging from 1 to 12. As we see in the figure, the

more layers we have, the lower the error is. With 𝑙 = 12 ansatz layers we achieve

the error close to zero, meaning that the operator 𝑈 †𝐻𝑈 is close to be diagonal in

the computational basis.
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3.2 Variational state preparation

Consider the following problem: given a (possibly, unknown) 𝑛-qubit state |𝛼⟩, find

a unitary 𝑈 such that |𝜓⟩ = 𝑈 |0⟩ and |𝛼⟩ = 𝑒𝑖𝑟 |𝜓⟩, where 𝑟 ∈ R and |0⟩ = |0⟩⊗𝑛.

In other words, given a black-box state |𝛼⟩, find an operator 𝑈 which prepares this

state from |0⟩ up to a phase 𝑒𝑖𝑟. This task can be performed variationally, and two

cost functions can be suggested for it. The first cost function is the overlap between

the states,

𝑓1(𝑈) =
⃒⃒
⟨𝛼|𝑈 |0⟩

⃒⃒2
, (3.15)

which we already encountered in (3.6). This quantity is equal to unity if and only

if |𝛼⟩ = 𝑒𝑖𝑟 |𝜓⟩, which means the equivalence up to a phase, and which satisfies our

requirements. The second cost function is the squared distance between |𝛼⟩ and

|𝜓⟩ = 𝑈 |0⟩ induced by the 2-norm,

𝑓2(𝑈) =
⃒⃒⃒⃒
|𝛼⟩ − 𝑈 |0⟩

⃒⃒⃒⃒2
2

≡
(︁
⟨𝛼| − ⟨0|𝑈 †

)︁(︁
|𝛼⟩ − 𝑈 |0⟩

)︁
= ⟨𝛼|𝛼⟩ − ⟨𝛼|𝑈 |0⟩ − ⟨0|𝑈 †|𝛼⟩ + ⟨0|𝑈 †𝑈 |0⟩

= 2
(︀
1 − Re⟨𝛼|𝑈 |0⟩

)︀
, (3.16)

where we used the property (𝑧 + 𝑧)/2 = Re 𝑧 for 𝑧 ∈ C. This cost function is

minimized when |𝛼⟩ = |𝜓⟩, which means strict equivalence of the corresponding

components of the vectors, and this condition is stronger than that for the cost

function 𝑓1.

It turns out that the both cost functions can be calculated on a quantum com-

puter. The cost 𝑓1 can be estimated via the so-called swap test which is described

in Appendix B in detail. This routine requires an auxiliary qubit and the ability to

apply the controlled-swap gate. However for our case, a simpler way of computing

the cost function 𝑓1 is the same as in (3.5), i.e. it can be reduced to the probability

of obtaining the result “0” for all qubits after measuring the state 𝑈 † |𝛼⟩ in the com-

putational basis. The second cost function 𝑓2 can be calculated using the Hadamard

test which is discussed in Appendix C. To use this method, one needs to be able
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to apply the gates 𝑈 and 𝑉 conditioned on the state of an auxiliary qubit, i.e. the

method requires the application of the controlled unitaries 𝐶𝑈 and 𝐶𝑉 , which can

be done even for unknown operators [93].

For 𝑓1, the reduction to VQE is trivial: one could use VQE to find the maximal-

energy eigenstate of the Hamiltonian 𝑀 = |0⟩⟨0| using the variational state |𝜓⟩ =

𝑈 † |𝛼⟩. More interesting is the reduction of 𝑓2 which is given in Figure 3-5. This

derivation is inspired by the quantum circuit for the Hadamard test described in

detail in Appendix C. In the derivations presented, we first notice that

∙

𝑈 𝑉

= |0⟩⟨0| ⊗ 𝑉 + |1⟩⟨1| ⊗ 𝑈.

Then, by applying the phase gates, we change the sign of the second term,

(𝑆 ⊗ 1)
(︀
|0⟩⟨0| ⊗ 𝑉 + |1⟩⟨1| ⊗ 𝑈

)︀
(𝑆 ⊗ 1) = |0⟩⟨0| ⊗ 𝑉 − |1⟩⟨1| ⊗ 𝑈.

Finally, we trace out the first qubit to obtain the non-unitary operator we need,

Tr1
[︀
|0⟩⟨0| ⊗ 𝑉 − |1⟩⟨1| ⊗ 𝑈

]︀
= 𝑉 − 𝑈,

which gives the two-norm distance, see the first line in Figure 3-5. Recalling that

𝑆 = 𝑆𝑇 =
√
𝑍, one can use the properties of the Bell states to move the phase

gates up on the tensor diagram to obtain the 𝑍 gate, as done in the fourth line in

Figure 3-5. Thus, we reduced the cost function 𝑓2 to the VQE for the following

Hamiltonian and variational state:

𝑀 = (𝑍 ⊗ 1 ⊗ 1)
(︁ ⃒⃒

Φ+
⟩︀⟨︀

Φ+
⃒⃒
⊗ 1
)︁

(𝑍 ⊗ 1 ⊗ 1),

|Ψ⟩ = 𝐶𝑉23𝐿𝑈23

(︀ ⃒⃒
Φ+
⟩︀
⊗ |0⟩

)︀
,

where 𝐿𝑈 is the oppositely controlled 𝑈 defined in (1.33).

The two costs 𝑓1 and 𝑓2 have also different convergence properties. In Figure 3-6,

we plot the gain (3.7) of these functions during the optimization. As can be seen,
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Figure 3-5: Reduction of the 2-norm distance (3.16) to the cost function of VQE for
the Hamiltonian 𝑀 = (𝑍 ⊗ 1 ⊗ 1)

(︁
|Φ+⟩⟨Φ+| ⊗ 1

)︁
(𝑍 ⊗ 1 ⊗ 1) and the variational

state |Ψ⟩ = 𝐶𝑉23𝐿𝑈23 |Φ+⟩ ⊗ |0⟩.
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Figure 3-6: Comparison of the gains (3.7) of the functions (3.15) and (3.16) . The
number of qubits was set to 𝑛 = 6, the target vector |𝛼⟩ was generated randomly,
and the variational state |𝜓⟩ was prepared by the hardware-efficient ansatz given in
Fig. 2-1 with 𝑙 = 6 layers, the gain was obtained as the average over ten independent
runs, and the optimization algorithm was BFGS.

the 2-norm distance converges slightly faster than the overlap. Another important

advantage of the cost function 𝑓2 is that it has a simpler derivative since it is linear

with respect to ⟨𝛼|𝜓⟩.

3.3 Variational quantum compiling

Consider the following problem: given a unitary 𝑈 , find a quantum circuit 𝑉 such

that 𝑉 = 𝑒𝑖𝛼𝑈 , 𝛼 ∈ R. This task is often encountered in applied quantum computa-

tions and experiments with quantum computing devices [73, 94]. For example, the

𝐶𝑋 gate is crucial for many quantum algorithms, but it cannot be applied directly

on e.g. a hardware based on trapped ions. But this gate can be compiled as a

sequence of available operations, e.g. 𝑅𝑥, 𝑅𝑧 and 𝑅𝑥𝑥 in this case. The problem of

such compilation can be also faced when it is needed to perform a unitary evolution

of a (potentially, unknown) Hamiltonian 𝐻 in time 𝑡, 𝑈 = 𝑒−𝑖𝐻𝑡, on the condition

that this 𝑈 can be applied as a black-box. The third possible application of quantum

compilation is circuit compression: given an ansatz 𝑈 consisting of 𝑢 gates, the task

is to find a circuit 𝑉 which contains 𝑣 6 𝑢 gates.

81



Chapter 3. Variational algorithms and tensor diagrams

Formally, the stated problem can be solved as follows:

𝑉 opt = arg max
𝑉

⃒⃒
(𝑉, 𝑈)HS

⃒⃒2
, (3.17)

where we have the Hilbert-Schmidt product (𝑉, 𝑈)HS = Tr𝑉 †𝑈 . If 𝑈, 𝑉 ∈ U(𝑑)

with 𝑑 = 2𝑛, then
⃒⃒
(𝑉, 𝑈)HS

⃒⃒
= 𝑑 if and only if 𝑉 = 𝑒𝑖𝛼𝑈 , as required. The Hilbert-

Schmidt product can be computed basing on the fact that

⟨︀
Φ+
⃒⃒
𝑉 †𝑈 ⊗ 1

⃒⃒
Φ+
⟩︀

=
1

𝑑
Tr𝑉 †𝑈,

where ⃒⃒
Φ+
⟩︀

=
1√
𝑑

𝑑∑︁
𝑗=1

|𝑗⟩ ⊗ |𝑗⟩

is the generalized Bell state.

Let us look at this algorithm from the point of view of tensor diagrams. In

Fig. 3-7 we depict the reduction of the cost function in the maximization problem

(3.17) to finding the highest-eigenvalue state of the Hamiltonian 𝑀 = |Φ+⟩⟨Φ+|

with the variational state |Ψ⟩ = (𝑈 ⊗ 𝑉 ) |Φ+⟩ = (𝑈𝑉 † ⊗ 1) |Φ+⟩. As before, the

Hamiltonain 𝑀 is easy to measure. Suppose 𝐹 |0⟩⊗2𝑛 = |Φ+⟩. If one prepares

the state |Ψ⟩ = 𝐹 †(𝑉 †𝑈 ⊗ 1)𝐹 |0⟩⊗2𝑛 and measures it in the computational basis,

then the probability p0 of obtaining the “all-zeros” result is precisely
⃒⃒
Tr𝑉 †𝑈

⃒⃒2
/𝑑2.

Indeed, if |0⟩ = |0⟩⊗2𝑛, then

p0 = Tr |Ψ⟩⟨Ψ| |0⟩⟨0| =
⃒⃒
⟨Ψ|0⟩

⃒⃒2
=
⃒⃒ ⟨︀

Φ+
⃒⃒
𝑉 †𝑈 ⊗ 1

⃒⃒
Φ+
⟩︀ ⃒⃒2

=

⃒⃒⃒⃒
1

𝑑
Tr𝑉 †𝑈

⃒⃒⃒⃒2
That is, in the considered algorithm, the goal is to find 𝑉 such that it maximizes

this probability.

3.4 Variational linear system solver

In this section, we consider the problem of solving systems of linear equations. This

task can be formulated as 𝐴𝑥 = 𝑏, where 𝐴 and 𝑏 are the matrix and the vector of
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Figure 3-7: Reduction of the term
⃒⃒
(𝑉, 𝑈)HS

⃒⃒2 from (3.17) to the VQE cost function
of the form ⟨Ψ|𝑀 |Ψ⟩ with 𝑀 = |Φ+⟩⟨Φ+| and |Ψ⟩ = (𝑈 ⊗ 𝑉 ) |Φ+⟩.

coefficients, respectively, and 𝑥 is the vector of unknown variables to be found. It

turns out that this problem can be solved on a quantum computer [95–97]. Since in

quantum mechanics and computations we commonly work with unit-length vectors,

let us redefine the vectors 𝑏 and 𝑥 as

𝑏 ≡ ||𝑏||2 |𝑏⟩ , 𝑥 ≡ ||𝑥||2 |𝑥⟩ ,

where the 2-norms ||𝑏||2 and ||𝑥||2 can be safely incorporated into the matrix 𝐴.

This transforms the original equation 𝐴𝑥 = 𝑏 into its “quantum” form, 𝐴 |𝑥⟩ = |𝑏⟩.

The vector |𝑥opt⟩ which solves this equation can be found as

⃒⃒
𝑥opt

⟩︀
= arg max

𝑥

⃒⃒
⟨𝑏|𝐴|𝑥⟩

⃒⃒2
, (3.18)

which is essentially the overlap between the vectors |𝑏⟩ and 𝐴 |𝑥⟩. An important

assumption here is that it must be known how to prepare the state |𝑏⟩ = 𝐵 |𝜓0⟩

from some initial state |𝜓0⟩, i.e. the unitary 𝐵 must be given. Note also that

the matrix 𝐴 is arbitrary, so the vector 𝐴 |𝑥⟩ is not of unit norm. Therefore one

may divide the cost function in (3.18) by ⟨𝑥|𝐴†𝐴|𝑥⟩ so that the function has an

operational meaning: in this case, it is lower-bounded by 0 and upper-bounded by

1. However, for explaining the algorithm it is not crucial.

In the seminal work [96], it is suggested to represent the matrix 𝐴 as a linear
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combination of unitaries,

𝐴 =
𝐿∑︁
𝑖=1

𝑎𝑖𝐴𝑖, 𝑎𝑖 ∈ C, 𝐴†
𝑖𝐴𝑖 = 1.

Let us also suppose that the variational state |𝑥⟩ is prepared by the unitary operator

𝑋 (not to be confused with the Pauli operator), i.e. |𝑥⟩ = 𝑋 |𝜓0⟩. This rewrites the

optimization problem (3.18) to the form

⃒⃒
𝑥opt

⟩︀
= arg max

𝑋

𝐿∑︁
𝑖=1

⃒⃒⃒
𝑎𝑖⟨𝜓0|𝐵†𝐴𝑖𝑋|𝜓0⟩

⃒⃒⃒2
= arg max

𝑋

𝐿∑︁
𝑖,𝑗=1

𝑎𝑖𝑎𝑗 ⟨𝜓0|𝐵†𝐴𝑖𝑋|𝜓0⟩⟨𝜓0|𝑋†𝐴†
𝑗𝐵|𝜓0⟩. (3.19)

Two thoughts must be noted here. First, we transitioned from maximization over

vectors |𝑥⟩ to maximization over unitaries 𝑋 (which can be parametrized in accor-

dance with the variational approach, see Section 2.1). Second, in quantum compu-

tations we work with observables which are commonly Hermitian operators, while

the terms of the form ⟨𝜓0|𝐵†𝐴𝑖𝑋|𝜓0⟩ are, in fact, the expectation values of a uni-

tary operator, so these expectations are complex numbers. Still, it is possible to

compute these quantities via the Hadamard test mentioned earlier; more accurately,

it is possible to separately compute the real and imaginary parts of these expecta-

tion values (see Appendix C for details). In our case, the Hadamard test requires

the ability of applying the unitaries 𝐵†, 𝐴𝑖 and 𝑋 conditioned on the state of an

auxiliary qubit. Despite that the Hadamard test is a general technique allowing the

computation of terms of the form ⟨𝜓|𝑈 |𝜓⟩ for arbitrary |𝜓⟩ and 𝑈 , there is a more

efficient circuit which directly computes the terms ⟨𝜓0|𝐵†𝐴𝑖𝑋|𝜓0⟩⟨𝜓0|𝑋†𝐴†
𝑗𝐵|𝜓0⟩ in

(3.19), see Fig. 9(b) in the original article [96].

Let us now apply the language of tensor networks and reduce the cost function

in (3.18) to that of the VQE; this is done in Fig. 3-8. The fact that the operator

𝑀 = 𝐴† |𝑏⟩⟨𝑏|𝐴 is Hermitian is noted by the authors of [96], so the reduction is

straightforward. Recall however that in order to measure an expected value of 𝐻,

one needs to expand it in the Pauli basis (2.7). So the question here is how hard
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Figure 3-8: Reduction of the term
⃒⃒
⟨𝑏|𝐴|𝑥⟩

⃒⃒2 from (3.18) to the VQE cost function
of the form ⟨𝑥|𝑀 |𝑥⟩.

it is to find such a decomposition, and how many terms it would have. Another

interesting fact can be observed if one rewrites (3.19) as follows:

⃒⃒
𝑥opt

⟩︀
= arg max

𝑥

𝐿∑︁
𝑖=1

𝑖∑︁
𝑗=1

⟨𝑥|
(︁
𝑎𝑖𝑎𝑗 𝐴

†
𝑖 |𝑏⟩⟨𝑏|𝐴𝑗 + 𝑎𝑗𝑎𝑖𝐴

†
𝑗 |𝑏⟩⟨𝑏|𝐴𝑖

)︁
|𝑥⟩

In the equation above, the term in brackets is expectantly Hermitian, so the vari-

ational linear systems solver also reduces to VQE. However, the efficiency of this

approach is yet to be studied.

3.5 Variational quantum state diagonalization

The problem of diagonalizing a density operator is stated as follows. Given a state

𝜌 ∈ 𝒟(ℋ) with dimℋ = 𝑑, find 𝑈 ∈ U(ℋ) such that the state 𝜌𝑈 ≡ 𝑈𝜌𝑈 † is

diagonal in the computational basis {|𝑗⟩}𝑑𝑗=1. In [40], it is suggested to minimize a

quantity which characterizes how far is the state 𝜌𝑈 from being diagonal. Such a

metric can be the Hilbert-Schmidt distance

𝑑HS(𝐴,𝐵) = Tr
[︀
(𝐴−𝐵)†(𝐴−𝐵)

]︀
.

Now consider the channel 𝐷[𝜌] which sets to zero all the density matrix elements

except the ones on the diagonal,

𝐷[𝜌] =
𝑑∑︁
𝑗=1

⟨𝑗|𝜌|𝑗⟩ |𝑗⟩⟨𝑗| . (3.20)
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Then the unitary 𝑈opt which diagonalizes the state 𝜌 is found as

𝑈opt = arg min
𝑈
𝑑HS

(︀
𝜌𝑈 , 𝐷[𝜌𝑈 ]

)︀
(3.21)

= arg min
𝑈

𝑑∑︁
𝑎,𝑏=1
�̸�=𝑏

⃒⃒
⟨𝑎|𝜌𝑈 |𝑏⟩

⃒⃒2 (3.22)

= arg min
𝑈

(︁
Tr 𝜌2 − Tr𝐷[𝜌𝑈 ]2

)︁
. (3.23)

The equivalence of the expressions (3.21), (3.22) and (3.23) is shown in Appendix

A.

The most convenient way of solving the stated optimization problem is computing

the two terms in (3.23). The first term, Tr 𝜌2, can be estimated via the so-called

swap test which is described in detail in Appendix B. In Fig. 3-9 we show the tensor

network formulation of computing a similar term, (1 + Tr 𝜌2)/2, from which the

desired quantity can be easily extracted. The first line in this Figure, Tr 𝜌2 = Tr (𝜌⊗

𝜌)𝑆𝑊 (see equations (B.3-B.7) for the prove) is known as an invariant in the theory

of tensor networks [43]. In fact, the swap gate 𝑆𝑊 defined in (1.25) is Hermitian,

which makes it a valid observable to measure. Moreover, (𝜌⊗ 𝜌)𝑆𝑊 = 𝑆𝑊 (𝜌⊗ 𝜌),

which makes this expression a Hermitian operator as well, and it would be actually

enough in the sense of reducing to VQE. Indeed, the Hamiltonian and the pure

“variational” state in this case would be

𝑀 = 1 ⊗ 𝑆𝑊 (𝜌⊗ 𝜌) ⊗ 1,

|Ψ⟩ =
1√
𝑑

𝑑∑︁
𝑎,𝑏=1

|𝑎⟩ ⊗ |𝑎⟩ ⊗ |𝑏⟩ ⊗ |𝑏⟩ ,

which give ⟨Ψ|𝑀 |Ψ⟩ = 1
𝑑

Tr 𝜌2. However, of greater use would be a reduction suitable

for computing Tr 𝜌𝜏 with 𝜏, 𝜌 ∈ 𝒟(ℋ) (for pure states 𝜏 and 𝜌, it gives the overlap

between them, see Appendix B). For example, for a given 𝜌, one could want to find

𝜏 such that the trace of their product is maximized. Unfortunately, the operator

𝑆𝑊 (𝜌⊗ 𝜏) is not Hermitian anymore (see (B.6)), so it cannot be measured. This is

why we need further derivations given in the second and the third lines in Fig. 3-9,
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which are inspired by the swap test quantum circuit (B.1). The last line is obtained

by following the same logic as applied for the derivation of the tensor networks in

Fig. 3-5. Essentially, we used the property

but having the swap gate (1.25) instead of 𝑈 ; we also used the notation |+⟩ =

𝐻 |0⟩ = (|0⟩ + |1⟩)/
√

2. The result is that we obtained the cost function of VQE

with the following Hamiltonian and pure “variational” state:

𝑀 = |+⟩⟨+| ⊗ (𝜌⊗ 𝜌) ⊗ 1 ⊗ 1, (3.24)

|Ψ⟩ =
1√
𝑑

𝑑∑︁
𝑎,𝑏=1

(︁
|0⟩ ⊗ |𝑎⟩ ⊗ |𝑏⟩ ⊗ |𝑏⟩ ⊗ |𝑎⟩ + |1⟩ ⊗ |𝑏⟩ ⊗ |𝑎⟩ ⊗ |𝑏⟩ ⊗ |𝑎⟩

)︁
, (3.25)

giving again ⟨Ψ|𝑀 |Ψ⟩ = 1
𝑑

Tr 𝜌2. As was mentioned, this formulation is more suitable

if e.g. one wants to maximize Tr 𝜌𝜏𝑈 , where 𝜏𝑈 = 𝑈𝜏𝑈 † is a variational state; the

varied unitary 𝑈 can be incorporated into (3.25), which forms the pure variational

state. Note however that in the cost function of (3.23), there is no dependence of

the term Tr 𝜌2 on the variational unitary 𝑈 , this term needs to be computed only

once.

Now we need to compute the second term in (3.23), Tr𝐷[𝜌𝑈 ]2, the trace of the

squared variational density operator which has only diagonal entries, see (3.20). The

tensor network and the reduction to VQE is not very difficult, and it is depicted in

Fig. 3-10. There, we used the definition (3.12). The Hamiltonian and the variational

state for VQE are

𝑀 = 𝜌⊗ 1 ⊗ 𝜌, (3.26)

|Ψ⟩ =
1√
𝑑

𝑑∑︁
𝑎=1

𝑈 |𝑎⟩ ⊗ |𝑎⟩ ⊗ 𝑈 |𝑎⟩ . (3.27)

for which we have ⟨Ψ|𝑀 |Ψ⟩ = 1
𝑑

Tr𝐷[𝜌𝑈 ]2.
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Figure 3-9: Reduction of a tensor network which computes Tr 𝜌2 to a tensor network
which computes (1+Tr 𝜌2)/2. The obtained tensor network is equivalent to the VQE
for the Hamiltonian 𝐻 and state |Ψ⟩ defined in (3.24) and (3.25), respectively.

3.5.1 Alternative variational state diagonalization

Let us look closely at the cost function in (3.22). Applying certain properties of the

trace and tensor products, one may find that

𝑑∑︁
𝑎,𝑏=1
�̸�=𝑏

⃒⃒
⟨𝑎|𝜌|𝑏⟩

⃒⃒2
=

𝑑∑︁
𝑎,𝑏=1
�̸�=𝑏

⟨𝑎|𝜌|𝑏⟩⟨𝑏|𝜌|𝑎⟩

=
𝑑∑︁

𝑎,𝑏=1
�̸�=𝑏

Tr 𝜌 |𝑎⟩⟨𝑏| · Tr 𝜌 |𝑏⟩⟨𝑎|

=
𝑑∑︁

𝑎,𝑏=1
�̸�=𝑏

Tr
(︀
𝜌 |𝑎⟩⟨𝑏| ⊗ 𝜌 |𝑏⟩⟨𝑎|

)︀

=
1

2

𝑑∑︁
𝑎,𝑏=1
�̸�=𝑏

Tr
(︀
𝜌⊗ 𝜌

)︀(︁
|𝑎⟩⟨𝑏| ⊗ |𝑏⟩⟨𝑎| + |𝑏⟩⟨𝑎| ⊗ |𝑎⟩⟨𝑏|

)︁

= Tr
(︀
𝜌⊗ 𝜌

)︀
𝑀,
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Figure 3-10: Tensor network formulation and reduction to VQE for Tr𝐷[𝜌𝑈 ]2. The
Hamiltonian and the variational state for VQE are given in (3.26) and (3.27), re-
spectively.

where we introduced

𝑀 =
1

2

𝑑∑︁
𝑎,𝑏=1
�̸�=𝑏

(︁
|𝑎⟩⟨𝑏| ⊗ |𝑏⟩⟨𝑎| + |𝑏⟩⟨𝑎| ⊗ |𝑎⟩⟨𝑏|

)︁
. (3.28)

This allows to obtain a method for finding a unitary which diagonalizes a given

density operator. Let 𝜌 ∈ 𝒟(ℋ) with dimℋ = 𝑑 and

𝑓sd(𝑈) = Tr
(︀
𝑈𝜌𝑈 † ⊗ 𝑈𝜌𝑈 †)︀𝑀, (3.29)

where 𝑈 ∈ U(ℋ⊗ℋ). By construction, the function 𝑓sd(𝑈) returns zero if and only

if the density operator 𝑈𝜌𝑈 † is diagonal in the computational basis. This means

that one can diagonalize a density operator 𝜌 by finding a unitary 𝑈diag as

𝑈diag = arg min
𝑈
𝑓sd(𝑈).

Worthy of note is also the fact that the operator𝑀 defined in (3.28) is Hermitian,

thus making it a valid observable to measure. Moreover, one can easily find its

spectral decomposition. Indeed, consider the eigenvalue problem

𝑀 |𝜓⟩ = 𝜆 |𝜓⟩ .
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One can verufy that the eigenvectors of 𝑀 are

⃒⃒
𝜓𝑗0
⟩︀

= |𝑗⟩ ⊗ |𝑗⟩ ,⃒⃒
𝜓𝑎𝑏±
⟩︀

=
1√
2

(︁
|𝑎⟩ ⊗ |𝑏⟩ ± |𝑏⟩ ⊗ |𝑎⟩

)︁
, 𝑎 ̸= 𝑏,

from which 𝑑 vectors
⃒⃒
𝜓𝑗0
⟩︀

have to the eigenvalue 0, and 𝑑(𝑑 − 1)/2 vectors
⃒⃒
𝜓𝑎𝑏±
⟩︀

correspond to the eigenvalues ±1. This gives the following spectral decomposition:

𝑀 =
𝑑∑︁

𝑎,𝑏=1
�̸�=𝑏

⃒⃒
𝜓𝑎𝑏+
⟩︀⟨︀
𝜓𝑎𝑏+
⃒⃒
−

𝑑∑︁
𝑎,𝑏=1
�̸�=𝑏

⃒⃒
𝜓𝑎𝑏−
⟩︀⟨︀
𝜓𝑎𝑏−
⃒⃒

+ 0
𝑑∑︁
𝑗=1

⃒⃒
𝜓𝑗0
⟩︀⟨︀
𝜓𝑗0
⃒⃒
. (3.30)

As can be seen, the projectors
⃒⃒
𝜓𝑗0
⟩︀⟨︀
𝜓𝑗0
⃒⃒
have no contribution since their correspond-

ing eigenvalues are 0. The question is, how one can measure the observable 𝑀

without decomposing it in the Pauli basis? This is an idea for future work.

3.5.2 Alternative variational Hamiltonian diagonalization

It turns out that the method for state diagonalization described in the previous sec-

tion can be transformed to diagonalize a given Hamiltonian. Consider the following

operator on ℋ⊗ℋ:

𝜎 =
1

𝑑2
(︀
1 +𝑀

)︀
, (3.31)

where 𝑀 is defined in (3.28). In fact, this operator is a density operator from

𝒟(ℋ ⊗ℋ). Indeed, the identity 1 just shifts the eigenvalues of 𝑀 from {−1, 0, 1}

to {0, 1, 2}, and the division by 𝑑2 ensures that the resultant operator is of unit

trace. This leads us to a method for diagonalizing a Hamiltonian described by the

following cost function:

𝑓hd(𝑈) =
1

𝑑2
(Tr𝐻)2 − Tr (𝐻 ⊗𝐻)(𝑈 ⊗ 𝑈)𝜎(𝑈 † ⊗ 𝑈 †)

=
1

𝑑2
(Tr𝐻)2 − Tr (𝑈 †𝐻𝑈 ⊗ 𝑈 †𝐻𝑈)𝜎 (3.32)

Indeed, this function returns zero if the operator 𝑈 †𝐻𝑈 is diagonal in the computa-

tional basis in ℋ. This suggests that if one is able to prepare the bipartite state 𝜎,
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then by locally varying this state with 𝑈 ⊗ 𝑈 one can diagonalize the Hamiltonian

𝐻 ⊗𝐻 (and therefore 𝐻 itself) by minimizing the cost function (3.32).

The main drawback of this method is that the state 𝜎 is mixed, so it may be

hard to prepare it in a real experiment. To remedy this, one could purify this

state, which would double the number of qubits needed (form 2𝑛 to 4𝑛 for an 𝑛-

qubit Hamiltonian), but it will also reduce the method to VQE. The respective

Hamiltonian and variational state would be 𝐻 ⊗𝐻 ⊗ 1⊗ 1 and |𝜎⟩, the purification

for 𝜎. This purification can be obtained easily if one notices that

𝜎 =
2

𝑑2

𝑑∑︁
𝑎,𝑏=1
�̸�=𝑏

⃒⃒
𝜓𝑎𝑏+
⟩︀⟨︀
𝜓𝑎𝑏+
⃒⃒

+
1

𝑑2

𝑑∑︁
𝑗=1

⃒⃒
𝜓𝑗0
⟩︀⟨︀
𝜓𝑗0
⃒⃒
,

which is essentially the same decomposition as for 𝑀 in (3.30) but with the eigen-

values shifted by 1 and normalized by 𝑑2. This allows the following purification:

|𝜎⟩ =
1

𝑑

(︃
𝑑∑︁
𝑗=1

|𝑗⟩ ⊗ |𝑗⟩ ⊗ |𝑗⟩ ⊗ |𝑗⟩

+
1√
2

𝑑∑︁
𝑎,𝑏=1
�̸�=𝑏

(︀
|𝑎⟩ ⊗ |𝑏⟩ + |𝑏⟩ ⊗ |𝑎⟩

)︀
⊗
(︀
|𝑎⟩ ⊗ |𝑏⟩ + |𝑏⟩ ⊗ |𝑎⟩

)︀)︂
. (3.33)

The question is, how one prepares such a state on a quantum computer? This is an

idea for future work as well.

3.6 Remarks on variational quantum algorithms

In this chapter, we considered several existing variational quantum algorithms and

formulated them in the tensor networks notation. By applying tensor diagram iden-

tities, we reduced the cost functions of these algorithms to that of the VQE algo-

rithm, i.e. to the expected value of a Hamiltonian measured with respect to a (pure)

variational state. The question is, is it possible to do it for any variational quantum

algorithm?

At the beginning of Chapter 2, we introduced the concept of the cost function
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to be a real-valued function of quantum states and observables. In [39], the authors

also give the following general expression of a cost function:

𝐶(𝜃) =
∑︁
𝑘

𝑓𝑘

(︁
Tr
[︀
𝑈(𝜃)𝜌𝑘𝑈

†(𝜃)𝐻𝑘

]︀)︁
, (3.34)

where 𝜌𝑘 are quantum states, 𝐻𝑘 are observables, 𝑓𝑘 are real-valued functions, and

𝑈(𝜃) is a variational circuit with the parameters 𝜃. A mixed state 𝜌𝑘 ∈ 𝒟(𝐻𝑘)

can always be purified: There always exists a Hilbert space ℋ𝐸 and a pure state

|Ψ𝑘⟩ ∈ ℋ𝑘⊗ℋ𝐸 such that 𝜌𝑘 = Tr𝐸 |Ψ𝑘⟩⟨Ψ𝑘|. More precisely, if 𝜌𝑘 =
∑︀

𝑗 𝑝𝑗 |𝜓𝑗⟩⟨𝜓𝑗|,

then one can take |Ψ𝑘⟩ =
∑︀

𝑗

√
𝑝𝑗 |𝜓𝑗⟩ ⊗ |𝑒𝑗⟩, where {|𝑒𝑗⟩} is an orthonormal basis

in ℋ𝐸. Therefore, the expression of the cost function (3.34) can be rewritten as

𝐶(𝜃) =
∑︁
𝑘

𝑓𝑘

(︁
⟨Ψ𝑘(𝜃)|�̃�𝑘|Ψ𝑘(𝜃)⟩

)︁
,

where |Ψ𝑘(𝜃)⟩ =
(︀
𝑈(𝜃)⊗ 1

)︀
|Ψ𝑘⟩ and �̃�𝑘 = 𝐻𝑘 ⊗ 1. That is, in expected values, we

can always replace mixed states by their purifications, and changing the observables

accordingly. Now the question is if we can always find a Hamiltonian and a varia-

tional state such that the expectation gives the value of 𝐶(𝜃) for arbitrary functions

𝑓𝑘 and any number of terms in (3.34). On the one hand, if the functions are simply

𝑓𝑘(𝑥) = 𝑥, then we can put𝐻 = 𝑁
∑︀

𝑘 �̃�𝑘⊗|𝑘⟩⟨𝑘| and |Ψ(𝜃)⟩ = 1√
𝑁

∑︀
𝑘 |Ψ𝑘(𝜃)⟩⊗|𝑘⟩,

where 𝑁 = ⟨Ψ(𝜃)|Ψ(𝜃)⟩, which gives ⟨Ψ(𝜃)|𝐻|Ψ(𝜃)⟩ = 𝐶(𝜃). On the other hand,

such a reduction to VQE does not seem possible for any set of functions 𝑓𝑘. For

example, we could not do it even for the cost function

𝐶(𝜃) = ⟨𝜓(𝜃)|𝐻2|𝜓(𝜃)⟩ − ⟨𝜓(𝜃)|𝐻|𝜓(𝜃)⟩2,

discussed in Section 3.1, unless we consider the terms of this expression separately.

We therefore argue that generally we cannot reduce any given variational quantum

algorithm to VQE, but as we showed in this chapter, it is often possible.
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Quantum channel discrimination

with variational quantum circuits

So far we have seen that using the notion of variational circuits one is able to formu-

late and solve many practical problems on a quantum computer. In this chapter, we

show that the variational quantum computing approach can be utilized for solving

machine learning tasks. We will see that classification problems for quantum data

(i.e. data represented by quantum states) can be solved by means of training the

parameters of a variational quantum circuit and a proper post-processing of the re-

sults of measurements. Particularly, we will show that the problem of distinguishing

between quantum channels can be solved in the variational setting, as we proposed

in [4].

4.1 Variational quantum channel discrimination

As was mentioned, with variational quantum circuits one is able to solve the problem

of quantum channel discrimination, i.e. to distinguish between a given set of maps

sending quantum states to quantum states. This problem is often encountered in

quantum communication and quantum information [98–101]. That is, this task is

the core of target quantum detection via quantum illumination [102, 103], quantum

reading [104], and photonic sensing [105].

The problem of quantum channel discrimination can be conveniently stated as
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a game between two parties, Alice and Bob. At the first step of this game, Alice

prepares an input state 𝜌in and sends it to Bob. Bob then randomly selects a channel

Φ𝑗 from a collection {Φ𝑗}𝑁𝑗=1, passes the received state through this channel, and

sends the output state 𝜌out = Φ𝑦[𝜌
in] back to Alice. Finally, Alice uses the POVM

Π = {Π𝑗}𝑁𝑗=1 to measure the received state. The result of this measurement is then

attributed to 𝑦, the label of the channel applied by Bob. The goal of the game for

Alice is to find the input state 𝜌in and the resolution of the identity Π to maximize

p𝑦 = Tr
(︀
Π𝑦Φ𝑦[𝜌

in]
)︀
, the probability to obtain the measurement outcome 𝑦 equal to

the label of the channel applied by Bob. The task of Alice can be stated as the

following optimization problem:

ps ≡
1

𝑁
max
𝜌in,Π

𝑁∑︁
𝑗=1

Tr
(︀
Π𝑗Φ𝑗[𝜌

in]
)︀
,

i.e. Alice wants to maximize the total probability of successful channel discrimina-

tion. The pre-factor 1/𝑁 comes from the assumption that Bob applies the channels

Φ𝑗 with equal probabilities.

Let us consider the situation when there are 𝑁 = 2 channels in the collection

{Φ𝑗}𝑁−1
𝑗=0 , i.e. Alice solves the binary quantum channel discrimination problem for

the channels Φ0 and Φ1. Therefore, Alice wants to find an input state 𝜌in and mea-

surement operators Π = {Π0,Π1 = 1−Π0} such that they maximize the probabilities

of successful discrimination

p00 =
1

2
Tr
(︀
Π0Φ0[𝜌

in]
)︀
,

p11 =
1

2
Tr
(︀
Π1Φ1[𝜌

in]
)︀
.

Here, p𝑦𝑦 is the probability of obtaining the measurement result 𝑦 ∈ {0, 1} if Bob

applied the channel Φ𝑦. Note that alongside with the probabilities of obtaining

wrong outcomes, p01 and p10, the success probabilities sum to unity, p00 + p01 +

p10 + p11 = 1. The task of Alice is therefore to maximize the overall probability of
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successful channel discrimination:

ps =
1

2
max
𝜌in,Π

{︀
Tr
(︀
Π0Φ0[𝜌

in]
)︀

+ Tr
(︀
Π1Φ1[𝜌

in]
)︀}︀
. (4.1)

This probability is known to be upper-bounded by the following quantity [106]:

p◇ =
1

2
+

1

4
||Φ0 − Φ1||◇, (4.2)

where we have the distance between channels induced by the so-called diamond

norm.

Definition 9 (Diamond norm) Let Φ be a channel acting in 𝒟(ℋ), 1 the identity

map on 𝒟(ℋ𝐸), and 𝜌 a density operator in 𝒟(ℋ⊗ℋ𝐸). The diamond norm of Φ

is defined as

||Φ||◇ = max
𝜌

⃒⃒⃒⃒
(Φ ⊗ 1)[𝜌]

⃒⃒⃒⃒
1
, (4.3)

where ||𝐴||1 = Tr
√
𝐴†𝐴.

In the game we described, it is assumed that there is the training stage during

which Alice is allowed to find the optimal input state and measurement operators.

That is, we assume that for each pair (𝜌in,Π) picked by Alice, Bob can provide

arbitrary many copies of the state 𝜌out = Φ𝑦[𝜌
in] with the same label 𝑦 ∈ {0, 1}.

Moreover, Bob tells to Alice the channel label 𝑦 for each output state. So, it is

assumed that Alice can conduct arbitrarily many measurements of the output state

𝜌out to exactly compute the probabilities in (4.1). Once Alice has found the optimal

𝜌in and Π, comes the guessing stage of the game. At this stage, Bob keeps the channel

labels 𝑦 in secret, and Alice is allowed to measure the output state only once. As

one may notice, the described game can be considered as a machine learning task

of binary classification.

4.1.1 Discrimination strategies: parallel and sequential

In the channel guessing game we described, Bob applies a channel Φ𝑦 only once. In

this section, we consider the situation when Alice can ask Bob to apply a chosen
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Figure 4-1: A schematic of the parallel strategy for channel discrimination with 𝑝
allowed channel applications. First, Alice takes two registers, 𝑃 of 𝑝 qubits and 𝑅 of
𝑟 qubits, and prepares a composite (𝑝+ 𝑟)-qubit state 𝜌in𝑃𝑅. Then the qubits of the
register 𝑃 are sent to Bob, who applies the channel Φ𝑦 on each qubit, and sends the
qubits back to Alice; meanwhile, the register 𝑅 remains unaffected. Finally, Alice
measures all qubits of the output state with the POVM Π. The figure is taken from
[4].

channel Φ𝑦 a finite and fixed number of times 𝑝. Provided that for each application

the channel label 𝑦 remains the same, Alice can adjust the discrimination strategy

by asking Bob to apply the channel Φ𝑦 in a specific way. In this case, Alice can

apply two different approaches for the channel discrimination game: the parallel and

the sequential strategy. In the following sections we describe these strategies with

the assumption that the channels Φ𝑦 transform qubit states into qubit states.

Parallel strategy

As comes from its name, in the parallel strategy a channel Φ𝑦 is applied 𝑝 times

such that it acts simultaneously on the separate subsystems of a composite input

state 𝜌in. Therefore, the probe state of Alice must contain at least 𝑝 qubits, which

are separately acted by the channels of Bob. Practically, Alice can also have 𝑟 > 0

qubits added to the input state, as it allows to have an entangled probe state which

can help in solving quantum channel discrimination problems [107–109]. When the

output state is received by Alice from Bob, it is measured with a POVM Π on (𝑝+𝑟)

qubits. The described discrimination strategy is schematically shown in Figure 4-1

The formal description of the parallel strategy is the following. Suppose that

Bob allows Alice to apply the channel Φ𝑦 the number of times 𝑝. Then, first, Alice

prepares an input state 𝜌in𝑃𝑅 of (𝑝+ 𝑟) qubits, where 𝑝 qubits belong to the register

𝑃 and 𝑟 qubits to the register 𝑅. After that, Alice sends the qubits of the register 𝑃
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to Bob, who applies a channel Φ𝑦 simultaneously to all the qubits of the register; at

the same time, the register 𝑅 is kept by Alice untouched. From Bob, Alice receives

the state

𝜌out = (Φ⊗𝑝
𝑦 ⊗ 1⊗𝑟)[𝜌in𝑃𝑅], (4.4)

i.e. the channel Φ⊗𝑝
𝑦 acts only on the qubits of the register 𝑃 , and the qubits of 𝑅

are acted trivially by 1⊗𝑟. The output state 𝜌out is then measured by Alice with the

POVM Π = {Π0,Π1}. The expression (4.1) therefore transforms to

ppar
s =

1

2
max
𝜌in𝑃𝑅,Π

{︁
Tr
(︀
Π0(Φ

⊗𝑝
0 ⊗ 1⊗𝑟)[𝜌in𝑃𝑅]

)︀
+ Tr

(︀
Π1(Φ

⊗𝑝
1 ⊗ 1⊗𝑟)[𝜌in𝑃𝑅]

)︀}︁
. (4.5)

Here, alongside with the input state and measurement operators, Alice also implic-

itly optimizes over 𝑟, the size of the auxiliary register 𝑅. As we mentioned, these

additional qubits allow to have the input state which has entanglement between

the qubits of the registers 𝑃 and 𝑅, and which may help achieve probabilities of

successful channel discrimination closer to the fundamental upper bound. For the

described strategy, this bound is given by

ppar
◇ (𝑝) =

1

2
+

1

4
||Φ⊗𝑝

0 + Φ⊗𝑝
1 ||◇ (4.6)

for 𝑝 parallel applications of Bob’s channel.

Sequential strategy

The other way to apply a given channel Φ𝑦 is placing it 𝑝 times in a row. This

forms the sequential discrimination strategy, in which Alice’s input state 𝜌in can

be single-qubit, and this qubit can be passed through a channel 𝑝 times step by

step. In this setting, each time when Bob applies a channel Φ𝑦 to the input state,

the output state is sent back to Alice, who can modify it and send to Bob again.

After this procedure is repeated 𝑝 times, Alice measures the resultant state with a

POVM Π. As in the parallel strategy, Alice as allowed to add the auxiliary register

𝑅 of 𝑟 qubits to produce a (1 + 𝑟)-qubit input state. A schematic depiction of the

sequential channel discrimination strategy shown in Figure 4-2.
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Figure 4-2: A schematic of the sequential channel discrimination strategy. First,
Alice prepares a (1 + 𝑟)-qubit state 𝜌in𝑃𝑅 of one qubit of the register 𝑃 and 𝑟 qubits
of the register 𝑅. The qubit of 𝑃 is sent to Bob who applies a channel Φ𝑦, while the
register 𝑅 stays with Alice. The output state is then sent from Bob back to Alice
who modifies it with a channel ℰ𝑗 and sends it back to Bob. Having repeated this
procedure 𝑝 times, Alice measures all the (1 + 𝑟) qubits a POVM Π. The figure is
taken from [4].

Let us describe this strategy more formally. First, Alice prepares the input state

𝜌in𝑃𝑅 of (1 + 𝑟) qubits, in which one qubit belongs to the register 𝑃 and the other

𝑟 qubits are of the register 𝑅. The qubit of 𝑃 is then sent to Bob who applies a

channel Φ𝑦 to it, and the register 𝑅 remains unaffected, so that the output state is

𝜌𝑃𝑅 = (Φ𝑦⊗1⊗𝑟)[𝜌in𝑃𝑅]. Having received this state from Bob, Alice modifies it with a

quantum channel 𝜀1, which gives 𝜌1 = 𝜀1[𝜌𝑃𝑅]. This process is repeated (𝑝−1) times

which produces for Alice the state 𝜌𝑝−1 = 𝜀𝑝−1[𝜌𝑝−2]. At the very end, Bob applies

the channel Φ𝑦 to the qubit of 𝑃 the 𝑝th time, which yields 𝜌out = (Φ𝑦 ⊗ 1⊗𝑟)[𝜌𝑝−1].

We can describe the whole process by the equation

𝜌out = 𝒞
(︀
Φ𝑦, ℰ

)︀
[𝜌in𝑃𝑅], (4.7)

where ℰ = {𝜀𝑗}𝑝−1
𝑗=1 are the channels of Alice, and

𝒞
(︀
Φ𝑦, ℰ

)︀
= (Φ𝑦 ⊗ 1⊗𝑟) ∘ 𝜀𝑝−1 ∘ · · · ∘ (Φ𝑦 ⊗ 1⊗𝑟) ∘ 𝜀2 ∘ (Φ𝑦 ⊗ 1⊗𝑟) ∘ 𝜀1 ∘ (Φ𝑦 ⊗ 1⊗𝑟),

where by ∘ we denoted the channel composition, i.e. (𝐵 ∘ 𝐴)[𝜌] ≡ 𝐵
[︀
𝐴[𝜌]

]︀
. The

output state 𝜌out is then measured by Alice with a POVM Π = {Π0,Π1}. The

optimization problem (4.1) for this strategy transforms to

pseq
s =

1

2
max
𝜌in𝑃𝑅,Π,ℰ

{︁
Tr
(︀
Π0 𝒞(Φ0, ℰ)[𝜌in𝑃𝑅]

)︀
+ Tr

(︀
Π1 𝒞(Φ1, ℰ)[𝜌in𝑃𝑅]

)︀}︁
, (4.8)
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where alongside with the input state 𝜌in𝑃𝑅 and measurement operators Π, Alice also

optimizes over the channels ℰ .

The sequential strategy incarnates the idea of the so-called quantum comb [105,

110]. For this strategy, however, there is no known upper bound for the maximal

success probability similar to that for the parallel strategy (4.6). Nonetheless, com-

pared to the parallel strategy, it is known that the sequential strategy allows to

achieve higher successful discrimination probabilities [111, 112]. There is also the

so-called indefinite casual order of channel application approach [113], which is a

more general discrimination strategy, and it is known to provide even better results.

That is, if ppar, pseq, and pico are the upper bounds for successful discrimination

probabilities of the parallel, sequential, and indefinite casual order strategies, re-

spectively, then it is proven that there exists a pair of channels Φ0 and Φ1 such

that

ppar < pseq < pico.

4.1.2 Variational formulation of the discrimination strategies

In this section, we embed the parallel and sequential discrimination strategies into

the framework of variational quantum computing. We will do it by replacing all

quantum state transformations with parametrized unitary operators, i.e. by varia-

tional quantum circuits. This also requires to accordingly modify the equations (4.5)

and (4.8), the optimization problems for ppar
s and pseq

s , respectively. A similar work

has been done in [114], where the authors considered solving the quantum channel

discrimination problem for 𝑝 = 1 using the variational approach.

Parallel strategy

Our embedding of the parallel channel discrimination strategy (4.5) into the frame-

work of variational quantum computing can be expressed by the circuit depicted in

Figure 4-3. This circuit prepares the input state of Alice 𝜌in𝑃𝑅 as

𝜌in𝑃𝑅 = 𝒰(𝜃0)[𝜌0(𝑝, 𝑟)],
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where 𝜌0(𝑝, 𝑟) = |0⟩⟨0|⊗𝑝𝑃 ⊗ |0⟩⟨0|⊗𝑟𝑅 , 𝒰(𝜃0)[𝜌] = 𝑈(𝜃0)𝜌𝑈
†(𝜃0), and 𝑈(𝜃0) is a varia-

tional ansatz with 𝜃0 ⊂ R. After this transformation, as done in (4.4), Bob acts by

a channel Φ𝑦 on all the 𝑝 qubits of the register 𝑃 of this state, leaving the qubits

of the register 𝑅 unaffected. Then Alice transforms the output state by a unitary

𝑈(𝜃1), which actually serves as a rotation of the basis for measurements. Therefore,

the state prepared by the circuit before the measurement is

𝜌out(𝜃,Φ𝑦, 𝑝, 𝑟) = 𝒰(𝜃1) ∘ (Φ⊗𝑝
𝑦 ⊗ 1⊗𝑟) ∘ 𝒰(𝜃0)[𝜌0(𝑝, 𝑟)], (4.9)

where 𝜃 = 𝜃0 ∪ 𝜃1. Consider the following resolution of the identity in the Hilbert

space of the registers 𝑃 and 𝑅:

1 =
𝑑∑︁
𝑗=1

|𝑗⟩⟨𝑗| ,

where {𝑗}𝑑𝑗=1 is the computational basis in C𝑑 with 𝑑 = 2𝑝+𝑟. Therefore, the simplest

way for Alice to choose the POVM operators is

Π0 =

𝑑/2∑︁
𝑗=1

|𝑗⟩⟨𝑗| , Π1 =
𝑑∑︁

𝑗=𝑑/2+1

|𝑗⟩⟨𝑗| . (4.10)

The measurement defined by these operators obviously reduces to measurements

conducted in the computational basis. Thus, the optimization problem (4.5) for

the parallel strategy embedded into the variational quantum computing framework

becomes

ppar
s =

1

2
max
𝜃,𝑟

{︁
Tr
(︀
Π0 𝜌

out(𝜃,Φ0, 𝑝, 𝑟)
)︀

+ Tr
(︀
Π1 𝜌

out(𝜃,Φ1, 𝑝, 𝑟)
)︀}︁
, (4.11)

i.e. we transitioned from the optimization over the input states 𝜌in𝑃𝑅 and measure-

ments Π to the optimization over real numbers 𝜃.
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|0⟩
𝑃

𝑈(𝜃0)

Φ𝑦

𝑈(𝜃1)

...
...
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|0⟩
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Φ𝑦

|0⟩⊗𝑟
𝑅

Figure 4-3: Parallel quantum channel discrimination strategy implemented as a
variational circuit. The circuit 𝑈(𝜃0) prepares the input state of Alice 𝜌in𝑃𝑅 from the
initial state |0⟩⊗𝑝𝑃 ⊗ |0⟩⊗𝑟𝑅 . After this transformation, Bob applies a channel Φ𝑦 to
the qubits of the register 𝑅, and the output state is sent to Alice to be measured.
To rotate the measurement basis, Alice uses the circuit 𝑈(𝜃1). The figure is taken
from [4].

Sequential strategy

Let us now consider a quantum circuit embedding of the parallel channel discrimina-

tion strategy (4.8) depicted in Figure 4-4. Recall that in this strategy, Alice operates

with a set of channels ℰ = {𝜀𝑗}𝑝−1
𝑗=1 which are used for transforming the probe state

after each application of the channel Φ𝑦 by Bob. In a variational circuit, a channel

can be applied via the so-called Stinespring representation [43]. For example, to

implement 𝜀[𝜌𝑃𝑅], one can add an auxiliary register 𝐸 for 𝑒 qubits prepared in a

state 𝜌𝐸, and then perform a unitary evolution 𝑈 of the joint state 𝜌𝑃𝑅 ⊗ 𝜌𝐸, after

which one traces out the subsystem 𝐸. Thus, one has

𝜀[𝜌𝑃𝑅] = Tr𝐸
[︀
𝑈(𝜌𝑃𝑅 ⊗ 𝜌𝐸

)︀
𝑈 †]︀. (4.12)

To obtain a general transformation in this representation, one has to have 𝑒 qubits

in the register 𝐸 such that 𝑒 is twice more than the total size of the registers 𝑃 and

𝑅 [64]. In our case, we have 𝑒 = 2(1 + 𝑟), with one qubit from the register 𝑃 and 𝑟

qubits from 𝑅.

In the variational circuit in Figure 4-4, we incorporate the register 𝐸 into 𝑅, the

register with auxiliary qubits. As we described, the channels ℰ = {𝜀𝑗}𝑝−1
𝑗=1 are imple-

mented via the Stinespring representation as parametrized unitaries {𝑈(𝜃𝑗)}𝑝−1
𝑗=1. In

the circuit, there are also the operators 𝑈(𝜃0) and 𝑈(𝜃𝑝), which prepare the initial

state rotate the measurement basis, respectively. Similar to (4.7), the state prepared
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|0⟩
𝑃

𝑈(𝜃0)

Φ𝑦

𝑈(𝜃1)

Φ𝑦

𝑈(𝜃𝑝−1)

Φ𝑦

𝑈(𝜃𝑝)· · ·

|0⟩⊗𝑟
𝑅

Figure 4-4: Sequential quantum channel discrimination strategy A variational quan-
tum circuit implementing the sequential channel discrimination strategy from Fig-
ure 4-2. The Alice’s channels ℰ = {𝜀𝑗}𝑝−1

𝑗=1 are replaced by the parametrized unitaries
{𝑈(𝜃𝑗)}𝑝−1

𝑗=1, where 𝑝 is the number of allowed applications of the channel Φ𝑦. The
input state 𝜌in𝑃𝑅 is prepared from |0⟩𝑃 ⊗ |0⟩⊗𝑟𝑅 via the unitary transformation 𝑈(𝜃0),
while 𝑈(𝜃𝑝) is used to rotate the measurement basis. This method necessitates
(1 + 𝑟) qubits, with one qubit in the register 𝑃 and 𝑟 qubits in the register 𝑅. In
analogy with the parallel strategy, 𝑟 might be set to zero. The figure is taken from
[4].

by the circuit before the measurement is

𝜌out
(︀
𝜃,Φ𝑦, 𝑝, 𝑟

)︀
= 𝒞

(︀
𝜃,Φ𝑦, 𝑝, 𝑟

)︀
[𝜌0(𝑟)], (4.13)

where 𝜌0(𝑟) = |0⟩⟨0|𝑃 ⊗ |0⟩⟨0|⊗𝑟𝑅 and

𝒞
(︀
𝜃,Φ𝑦, 𝑝, 𝑟

)︀
= 𝒰(𝜃𝑝) ∘ (Φ𝑦 ⊗ 1⊗𝑟) ∘ 𝒰(𝜃𝑝−1) ∘ · · ·

∘ 𝒰(𝜃2) ∘ (Φ𝑦 ⊗ 1⊗𝑟) ∘ 𝒰(𝜃1) ∘ (Φ𝑦 ⊗ 1⊗𝑟) ∘ 𝒰(𝜃0),

with 𝜃 =
⋃︀𝑝
𝑘=0 𝜃𝑘. In the equation above, the channels 𝒰 act as in (4.9). Finally,

the output state (4.13) is measured in the computational basis, and from the results

of this measurement one can reconstruct the results of the measurement conducted

with the POVM elements (4.10) with 𝑑 = 21+𝑟. Therefore, the optimization problem

(4.8) becomes

pseq
s =

1

2
max
𝜃,𝑟

{︀
Tr
(︀
Π0 𝜌

out(𝜃,Φ0, 𝑝, 𝑟)
)︀

+ Tr
(︀
Π1 𝜌

out(𝜃,Φ1, 𝑝, 𝑟)
)︀}︀
. (4.14)

As one may notice, the expressions for ppar
s in (4.11) and pseq

s in (4.14) look the same;

different only are the structure and the genesis of the output state 𝜌out.
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4.1.3 Numerical experiments

In the following sections, we discuss the results of our numerical experiments for

testing the variational quantum channel discrimination approach we described. In

our simulations, we fix the number of allowed channel applications to be 𝑝 = 1, 2

and consider different values of 𝑟, the size of auxiliary register 𝑅. To represent

𝑈(𝜃𝑘), we apply the hardware-efficient ansatz, a four-qubit example of which is

shown in Figure 2-1. In what follows, we demonstrate the capabilities of our method

to discriminate the depolarizing channels with different depolarization factors, and

entanglement breaking channels which map two-qubit states into one-qubit states.

As the optimization method, we used the L-BFGS-B algorithm [115] for all our

numerical simulations, when applicable.

Entanglement breaking channel discrimination

Consider the following entanglement breaking channels

Φ0[𝜌] =
5∑︁
𝑗=1

𝐴𝑗𝜌𝐴
†
𝑗, Φ1[𝜌] =

5∑︁
𝑗=1

𝐵𝑗𝜌𝐵
†
𝑗 , (4.15)

described by the Kraus operators

𝐴1 = |0⟩⟨00| , 𝐴2 = |0⟩⟨01| , 𝐴3 = |0⟩⟨10| ,

𝐴4 =
1√
2
|0⟩⟨11| , 𝐴5 =

1√
2
|1⟩⟨11| , (4.16)

𝐵1 = |+⟩⟨00| , 𝐵2 = |+⟩⟨01| , 𝐵3 = |1⟩⟨1+| ,

𝐵4 =
1√
2
|0⟩⟨1−| , 𝐵5 =

1√
2
|1⟩⟨1−| , (4.17)

where |±⟩ = (|0⟩±|1⟩)/
√

2. The parallel strategy applied for distinguishing between

these channels is known to give ppar
◇ (𝑝) < 1 for any finite 𝑝, i.e. the success proba-

bility (4.6) never reaches unity regardless the number of channel applications [116].

It has also been shown that the sequential strategy with only 𝑝 = 2 applications

allows to discriminate the channels perfectly. Computing the upper bounds for the

success probabilities (4.6), one obtains ppar
◇ ≈ 0.9268 for 𝑝 = 1 and ppar

◇ ≈ 0.9771 for
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𝑝 = 2. To calculate these values, it is needed to compute the diamond norm (4.3),

which can be done via semi-definite programming [117]; one can do it numerically

using e.g. the CVXPY package [118, 119].

Our numerical experiments are based on training the circuits similar to the ones

depicted in Figures 4-3 and 4-4, and the training is performed by solving the max-

imization problems (4.11) and (4.14), respectively. Recall that the entanglement-

breaking channels (4.15) transform two-qubit states into one-qubit states, so the

respective circuits must be rebuilt accordingly. For 𝑝 = 2 channel applications,

the explicit circuits for the parallel and sequential strategies are shown in Fig-

ure 4-5; note that for 𝑝 = 1, the circuits for the both strategies would look the

same. In our numerical simulations, for 𝑝 = 2 we achieved the success probability

ppar
s ≈ ppar

◇ ≈ 0.9771 with the use of 𝑙 = 5 layers of the hardware-efficient ansatz

for representing the parametrized unitaries 𝑈(𝜃0) and 𝑈(𝜃1). In the meantime, to

achieve pseq
s ≈ 1 for the sequential strategy with 𝑝 = 2, we needed only 𝑙 = 1 layer

of the ansatz. For both strategies, we did not use the auxiliary register 𝑅, i.e. we

set 𝑟 = 0. The case 𝑝 = 1 — when there is no difference between the strategies —

gives ps ≈ p◇ ≈ 0.9268 with one layer of the ansatz.

The circuits we used to implement the strategies are likely excessively expressive,

i.e. the ansätze contain too many parameters. As we mentioned, in [116] it was

shown that one needs only a separable input state and a single measurement to

perfectly discriminate the channels (4.15) using the sequential strategy with 𝑝 = 2

channel applications. Therefore, the important result for us is that even with the

(over)parametrized circuits we applied it is possible to find the input states and

measurement bases giving ppar
s ≈ ppar

◇ ≈ 0.9771 and pseq
s ≈ 1. The crucial detail

here is that the variational approach we propose needs almost no prior knowledge

about the channels Φ𝑦. That is, the only information we need is the size of the input

and output states.
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|0⟩

𝑈(𝜃0)

Φ𝑦

|0⟩

𝑈(𝜃1)|0⟩
Φ𝑦

|0⟩

(a)

|0⟩
𝑈(𝜃0) Φ𝑦

|0⟩
𝑈(𝜃1) Φ𝑦

|0⟩ 𝑈(𝜃2)

(b)

Figure 4-5: Explicit variational quantum circuits implementing (a) the parallel and
(b) sequential strategies discriminating the entanglement breaking channels (4.15)
with 𝑝 = 2 applications. Since the considered channels map two-qubit states into
one-qubit states, we need to add one qubit in some state (in our case, |0⟩) after the
first application of Φ𝑦.

Depolarizing channel discrimination

We continue with studying the variational approach applied for the discrimination

of the depolarizing channels of the form

Φ(𝛼)[𝜌] = (1 − 𝛼)𝜌+
𝛼

3

(︀
𝜎𝑥𝜌𝜎𝑥 + 𝜎𝑦𝜌𝜎𝑦 + 𝜎𝑧𝜌𝜎𝑧

)︀
(4.18)

where 𝛼 is the depolarization factor, and 𝜎𝑖 stands for a Pauli operator with 𝑖 =

𝑥, 𝑦, 𝑧. In what follows, we train variational circuits to distinguish between a pair

of such channels with different factors 0 6 𝛼0 ̸= 𝛼1 6 1. As for the case of the

entanglement-breaking channels, we considered the numbers of channel applications

𝑝 = 1, 2.

First, let us study the case of 𝑝 = 1, which gives the same quantum circuit for

the both strategies. We found that the maximum discrimination efficiency in this
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setting is achieved with the following circuit:

|0⟩

𝑈(𝜃0)

Φ(𝛼𝑦)

𝑈(𝜃1)|0⟩

|0⟩

As can be seen, we added 𝑟 = 2 qubits to be the auxiliary register 𝑅. The opera-

tors 𝑈(𝜃0) and 𝑈(𝜃1) were represented by the hardware-efficient ansatz of different

number of layers 𝑙. In Figure 4-6 shown are the achieved probabilities of success-

ful discrimination of the depolarizing channels with parameters 𝛼0 and 𝛼1. In this

Figure, the results are given for the cases 𝑙 = 1 and 𝑙 = 2. As can be seen, two

ansatz layers is enough for achieving the success probabilities given by the diamond

distance (4.2). Additionally, as one could expect, we observe that the larger is the

distance between the parameters 𝛼0 and 𝛼1 — which, in fact, implies the larger

diamond distance — the lower is the achieved success probability.

Now let us consider the strategies with 𝑝 = 2. The parallel strategy was imple-

mented as the following circuit:

|0⟩

𝑈(𝜃0)

Φ(𝛼𝑦)

𝑈(𝜃1)

|0⟩ Φ(𝛼𝑦)

|0⟩

|0⟩

|0⟩

and the circuit which was applied for the sequential strategy is

|0⟩

𝑈(𝜃0)

Φ(𝛼𝑦)

𝑈(𝜃1)

Φ(𝛼𝑦)

𝑈(𝜃2)

|0⟩

|0⟩

|0⟩

|0⟩
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Figure 4-6: Results of numerical experiments with variational discrimination of the
the depolarizing channels with parameters 𝛼0 and 𝛼1. Panel (a) shows the achieved
probabilities of successful discrimination ps. In panel (b) shown are the ratios of
the success probability ps to the maximal achievable probability p◇. The data on
the panels on the left are obtained with 𝑙 = 1 layer of the hardware-efficient ansatz
while the right panels show the data for 𝑙 = 2 layers.
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As one may notice, as the size of the auxiliary register 𝑅, for the parallel strat-

egy we set 𝑟 = 3, and for the sequential strategy we put 𝑟 = 4, so that the total

number of qubits for the both strategies is 5. In Figure 4-7 we show the successful

discrimination probabilities (4.11) and (4.14) achieved with the parallel and sequen-

tial strategies applied for distinguishing between the depolarizing channels with the

factors 𝛼0 and 𝛼1 = 𝛼0 +0.1. This Figure also shows the dependence of the achieved

probabilities ps on 𝑙, the number of layers of hardware-efficient ansatz parametrizing

the operators 𝑈(𝜃𝑗). We observe that the sequential strategy shows higher perfor-

mance and smaller variance of the results with fewer layers. That is, it is enough to

have 𝑙 = 14 layers to achieve the success probability ppar
◇ for all pairs (𝛼0, 𝛼1). On

the other hand, with the parallel strategy, we cannot reach this result, even with

higher numbers of layers as we tried.

In Figure 4-7, one can also observe an interesting effect. The plot for the prob-

abilities ppar
◇ is symmetric, which implies symmetric diamond distances between

the channels, ||Φ⊗2(𝛼0) − Φ⊗2(𝛼1)||◇. For instance, the pairs (𝛼0 = 0.0, 𝛼1 = 0.1)

and (𝛼0 = 0.9, 𝛼1 = 1.0) both give the same upper bounds for the success prob-

ability, ppar
◇ = 0.595. Despite this, we see that the achieved probabilities ps for

(𝛼0 = 0.0, 𝛼1 = 0.1) are higher than that for (𝛼0 = 0.9, 𝛼1 = 1.0). Overall, for

the variational channel discrimination method, it is easier to obtain higher ps for

depolarization factor pairs on the left to 𝛼 = 0.5. Interestingly, this agrees with

the behaviour of the function Tr(𝜌0𝜌1), the trace of the product of output states of

the channels, 𝜌𝑦 ≡ Φ(𝛼𝑦)[𝜌], and the so-called trace distance between these states
1
2
||𝜌0−𝜌1||1, which serves as a measure of the distinguishability of density operators

[120]. In Figure 4-8, we plot the correlation coefficients between the achieved prob-

abilities ps plotted in Figure 4-7 and the trace of the product of the output states,

their trace distances, and the diamond distance between the channels. What we

also observe is that the more layers of the ansatz 𝑙 we use, the less performance of

the variational approach depends on the trace of the product and the trace distance.

It is also worthy of note that the function 𝜅(𝜌𝑖, 𝜌𝑗) = Tr(𝜌𝑖𝜌𝑗) serves as a kernel in

kernel-based quantum machine learning [121].
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Figure 4-7: Achieved probabilities of successful discrimination ps between two depo-
larizing channels with depolarization factors 𝛼0 and 𝛼1. Panel (a) shows the results
obtained for the parallel strategy, while in panel (b) shown are the results for the
sequential strategy. Different colors indicate different values of 𝑙, the number of
layers in the hardware-efficient ansatz. The probabilities ps averaged over 10 inde-
pendent optimizations are shown as marks connected by solid lines, while standard
deviations are shown as shaded areas. The maximum achievable probability for the
parallel strategy ppar

◇ for 𝑝 = 2 is indicated by the black solid line. The figures are
taken from [4].
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Figure 4-8: Correlation coefficients between the average achieved success probabili-
ties ps (shown in Figure 4-7) and the trace of the product of the channel output states
𝜌𝑦 = Φ⊗2

𝑦 [𝜌] with 𝑦 ∈ {0, 1} (blue circles), the trace distance between them (green
triangles), and the diamond distance between the channels Φ𝑦 (orange squares).
Here, Φ𝑦 ≡ Φ(𝛼𝑦) and the input state was set to 𝜌 = |00⟩⟨00|. Panels (a) and (b)
show the correlations for the parallel and sequential strategies, respectively. The
correlations are plotted versus 𝑙, the number of layers of the ansatz. Solid lines show
the functions 𝑓(𝑙) = 𝑙−1/𝑎 (blue and green) and 𝑔(𝑙) = 1 − 𝑒−𝑏𝑙 (orange), which fit
the data points of the corresponding colors. The figures are taken from [4].

4.1.4 Remarks on quantum channel discrimination

Let us discuss some aspects of the quantum channel discrimination problem solved

with variational circuits. Consider the depolarizing channel defined in (4.18). With

this definition, our depolarizing channel is actually a particular realization of the

so-called Pauli channel which is well-studied in the context of channel discrimination

[122]. That is, it is known that the Bell state |𝐵⟩ =
(︀
|00⟩+ |11⟩

)︀
/
√

2 is optimal for

discriminating between any pair of Pauli channels. Once we know an optimal input

state 𝜌, one finds the optimal POVM elements Π0 and Π1 to be such that

(Φ0 ⊗ 1)[𝜌] − (Φ1 ⊗ 1)[𝜌] =
∑︁
𝜆𝑗>0

𝜆𝑗Π0 +
∑︁
𝜆𝑗<0

𝜆𝑗Π1, (4.19)

where 𝜆𝑗 the eigenvalues of the Hermitian operator
(︀
(Φ0 ⊗ 1)[𝜌] − (Φ1 ⊗ 1)[𝜌]

)︀
.

Since an optimal input state is generally not known to us, we can find the optimal

measurement operators by applying the Naimark extension theorem [123]. Namely,

the measurement of a state 𝜌 with a general observable Π = {Π0,Π1} can be realized

110



Chapter 4. Quantum channel discrimination with variational quantum circuits

by finding a unitary operator 𝑈 such that

p𝑦 = Tr Π𝑦𝜌

= Tr
[︁(︀

1 ⊗ |𝑦⟩⟨𝑦|𝐸
)︀
𝑈
(︀
𝜌⊗ |0⟩⟨0|𝐸

)︀
𝑈 †)︀]︁,

where
{︀
|𝑦⟩⟨𝑦|𝐸

}︀
𝑦∈{0,1} and |0⟩⟨0|𝐸 are an orthogonal POVM and a density operator

acting in the auxiliary space ℋ𝐸 = C2, respectively.

Therefore, for distinguishing between depolarizing channels (4.18) with 𝑝 = 1

channel application, one may need two auxiliary qubits: One for preparing the input

state 𝜌 = |𝐵⟩⟨𝐵|, and one for conducting a general measurement of the output state

Φ𝑦[𝜌]. Recall that in our numerical experiments we as well introduced two auxiliary

qubits and achieved the upper bound of the success probability (4.2). This signifies

that our straightforward variational approach is able to find the optimal input (Bell)

state, and implement optimal measurements with the measurement operators which

can be found as shown in (4.19).

So, the Bell state |𝐵⟩ =
(︀
|00⟩ + |11⟩

)︀
/
√

2 is optimal for distinguishing between

depolarizing channels. It turns out that this state is also optimal for discriminating

between any pair of 𝑛-qubit channels Φ𝑦, 𝑦 ∈ {0, 1}, as long as for any Pauli string

𝜎 ∈ {1, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧}⊗𝑛 and any input state 𝜌 there exists a unitary 𝑉 such that

Φ𝑦[𝜎𝜌𝜎] = 𝑉 Φ𝑦[𝜌]𝑉 †. (4.20)

This property is called the teleportation covariance of the channel Φ𝑦, and this

name comes from the notion of teleportation unitaries for quantum teleportation

[124]. For teleportation covariant channels Φ0 and Φ1, one has [125]

||Φ0 − Φ1||◇ = ||𝜒0 − 𝜒1||1,

where

𝜒𝑦 = (Φ𝑦 ⊗ 1)
[︀
|𝐵⟩⟨𝐵|

]︀
is the so-called Choi state for the channel Φ𝑦, and |𝐵⟩ is the Bell state. That is,
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the diamond-norm distance between teleportation covariant channels — for exam-

ple, depolarizing channels — is the same as the trace norm distance between the

corresponding Choi states.

An example of a channel for which the property of teleportation covariance (4.20)

does not hold could be the so-called amplitude damping channel

Φ(𝛾)[𝜌] = 𝐴(𝛾)𝜌𝐴†(𝛾) +𝐵(𝛾)𝜌𝐵†(𝛾), (4.21)

𝐴(𝛾) =
√︀

1 − 𝛾 |0⟩⟨1| , 𝐵(𝛾) = |0⟩⟨0| +
√
𝛾 |1⟩⟨1| .

The optimal state for discriminating a pair of channels Φ(𝛾0) and Φ(𝛾1) in the one-

time application setting is known to be [126]

|𝐵(𝑡)⟩ =
√
𝑡 |00⟩ +

√
1 − 𝑡 |11⟩ ,

where

𝑡 = max

{︂
0,

1

2 −√
𝛾0 −

√
𝛾1

}︂
.

Another instance of a channel which is not teleportation covariant is any of the two

entanglement breaking channels (4.15). Recall that in our numerical experiments

we applied the variational approach for distinguishing between these channels and

obtained the known upper bounds on the probability of successful discrimination

for the parallel and sequential strategies.

4.2 Variational quantum channel classification

So far we have discussed and tested the variational quantum computing approach

applied for solving the quantum channel discrimination problem. In this section, we

consider the notion of variational quantum circuits from the point of view of machine

learning. More precisely, we will show that a variational quantum circuit can serve

as a building block for a quantum classifier, i.e. a means for solving classification

tasks for quantum data. Such classifiers have already showed their efficiency in,

for example, classifying phases of matter [127–129]. More generally, if one has a
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Bob Alice
𝜌 Φ𝑦 𝑈(𝜃)

Figure 4-9: A schematic of the variational quantum channel classifier. First, Bob
prepares a random state 𝜌, passes it through a channel Φ𝑦, and sends the output
state Φ𝑦[𝜌] to Alice. Alice then applies the unitary 𝑈(𝜃), measures the resultant
state in the computational basis, and computes the prediction value 𝑝 defined in
(4.23). The predictions 𝑝 are then used for training the circuit, which is done by
minimizing the square distances (4.24) between the predictions 𝑝 and the true labels
𝑦.

quantum classifier trained on labeled data points (e.g. quantum states of different

phases), then one can predict the unknown label of a given datum. In this section, we

build a quantum classifier trained to distinguish between two depolarizing channels

of the form (4.18) with two different depolarization factors 𝛼0 and 𝛼1.

As we did for the variational channel discrimination discussed in Section 4.1, let

us describe the process of building a quantum channel classifier as a game between

Alice and Bob. The goal of Alice in this game is to train a variational circuit 𝑈(𝜃)

such that having received from Bob a state passed through a channel Φ𝑦, Alice can

predict its label 𝑦. In contrast to the variational channel discrimination, in this

game Alice has no control on the input state 𝜌in. This time, this state is prepared

by Bob, and each time it is random and mixed. It is also assumed that Alice allowed

to measure the output states arbitrarily many times. Schematically, this game is

shown in Figure 4-9.

More formally, the game can be described as follows. As the first step, Bob

fixes two values of the depolarization factor 0 6 𝛼0 ̸= 𝛼1 6 1. Then Bob picks a

label 𝑦 ∈ {0, 1}, prepares a random (in general, mixed) qubit state 𝜌, and passes

it through the corresponding depolarizing channel, which gives the output state

𝜌𝑦 = Φ(𝛼𝑦)[𝜌]. Next, Bob sends this state to Alice who uses it as an input for the

variational circuit 𝑈(𝜃), which outputs the state

𝜌(𝛼𝑦,𝜃) = 𝑈(𝜃)𝜌𝑦𝑈
†(𝜃). (4.22)
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For this state, Alice measures the observable 𝜎𝑧 for calculating the value

𝑝(𝜃) =
1

2

(︀
1 + Tr[𝜌(𝛼𝑦,𝜃)𝜎𝑧]

)︀
, (4.23)

which is used to predict the label 𝑦. Therefore, the goal of the game is to train the

circuit 𝑈(𝜃) such that given a state 𝜌𝑦, Alice is able to predict the label 𝑦 the channel

using the prediction value (4.23). That is, for some 0 < 𝑏 < 1, Alice concludes that

𝑦 = 0 if obtained is a value 𝑝 6 𝑏, and 𝑦 = 1 otherwise.

For training the circuit, Alice receives from Bob a training set {𝜌𝑗𝑦𝑗 , 𝑦𝑗}
𝑁train
𝑗=1 ,

where 𝑦𝑗 ∈ {0, 1} are true labels; the superscript 𝑗 reminds that each input state is

randomly generated and, therefore, is different for each 𝑗. Alice inputs each state

from this set into the circuit 𝑈(𝜃) and computes the prediction values 𝑝𝑗(𝜃) defined

in (4.23). Having this done for all 𝑁train states, Alice forms the set {𝑝𝑗(𝜃), 𝑦𝑗}𝑁train
𝑗=1

and minimizes the square distances between the predictions 𝑝𝑗 and the true labels

𝑦𝑗:

𝑓(𝜃) =

𝑁train∑︁
𝑗=1

(︀
𝑦𝑗 − 𝑝𝑗(𝜃)

)︀2
. (4.24)

This gives the optimal parameters 𝜃opt for the circuit 𝑈(𝜃) as

𝜃opt ∈ arg min
𝜃
𝑓(𝜃),

from which Alice obtains the final predictions 𝑝𝑗(𝜃opt).

With the true labels 𝑦𝑗 and sorted predictions 𝑝𝑗, Alice can iteratively find the

value 𝑏 that separates the classes 𝑦 = 0 and 𝑦 = 1. At the iteration 𝑡, for the

prediction 𝑝𝑡, Alice assigns all elements that are less than or equal to 𝑏 to be-

long to the first class, (𝑝1, 𝑝2, . . . , 𝑝𝑡) ∈ {‘0’} and to the second class otherwise,

(𝑝𝑡+1, 𝑝𝑡+2, . . . , 𝑝𝑁train
) ∈ {‘1’}. Therefore, 𝑏 is equal to the prediction value 𝑝𝑡 which

gives the best classification accuracy.

Having trained the circuit 𝑈(𝜃) and found the separation value 𝑏, Alice is ready

predict unknown labels of given data. To test the classifier, Bob sends to Alice a set

{𝜌𝑗𝑦𝑗}
𝑁test
𝑗=1 . This set is similar to the training set, but this time Bob does not provide

Alice with the true labels 𝑦𝑗. As at the training stage, Alice takes a state 𝜌𝑗𝑦𝑗 from
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the test set, inputs it into the circuit 𝑈(𝜃opt), calculates the prediction value 𝑝𝑗, and

assigns the label 𝑦𝑗 = 0 if 𝑝𝑗 6 𝑏 or 𝑦𝑗 = 1 if 𝑝𝑗 ≥ 𝑏.

4.2.1 Numerical experiments

In this section, we show the results of our numerical experiments of testing the

described approach for building variational channel classifier. Recall that the classi-

fier is trained to distinguish between the depolarizing channels (4.18) with different

depolarization factors 𝛼0 and 𝛼1. As the variational circuit 𝑈(𝜃) we used the ansatz

𝑈(𝜃) = 𝑅𝑧(𝜃2)𝑅𝑥(𝜃1). (4.25)

To train and test the classifier, we generated the respective data sets {𝜌𝑗𝑦𝑗 , 𝑦𝑗}
𝑁train
𝑗=1

and {𝜌𝑗𝑦𝑗}
𝑁test
𝑗=1 of the same size, 𝑁train = 1000 and 𝑁test = 1000. The results of

our numerical experiments for this ansatz used as a channel classifier are shown in

Figure 4-10. As we can see, the circuit is able to classify the channels with some

accuracy. An interesting observation here is that the classifier shows accuracy when

one of the depolarization factors is 𝛼 = 0.7 or 0.8, i.e. near the point 0.75. We will

elaborate on this fact later.

In our work, we also investigated how the the performance of the obtained clas-

sifier depends on the number of data points used to train it. In Figure 4-11 we plot

the training and test accuracy against the size of the training set 𝑁train for different

assignments of the coefficients 𝛼0 and 𝛼1. On the one hand, for the training accu-

racy, we see that the classifier splits the data points well if there are few of them; the

more data points we add to the training set, the lower is the training accuracy. On

the other hand, by increasing the size of the training set, we, as could be expected,

increase the test accuracy as well, especially for the case 𝛼0 = 0 and 𝛼1 = 0.1.

Interestingly, we need relatively few data points to train the classifier to distinguish

between the channels with 𝛼0 = 0, 𝛼1 = 0.75, which according to Figure 4-10 gives

the maximum accuracy.

Now let us make a small modification of our variational classification method.

Namely, in the game between Alice and Bob, let us suppose that instead of sending
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Figure 4-10: Accuracy of quantum channel classifier trained for distinguishing be-
tween the depolarizing channels with factors 𝛼0 and 𝛼1. The classifier is based
on the ansatz (4.25) and is trained and tested on the data sets of the sizes
𝑁train = 𝑁test = 1000. The figure is taken from [4].
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Figure 4-11: Classification accuracy for the depolarizing channels with 𝛼0 and 𝛼1

versus the size of the training set 𝑁train. Panels (a) and (b) show the accuracy
obtained for the training and test sets, respectively. The size of the test set was
fixed to 𝑁test = 1000. The color of the curves indicate the values of the coefficients
𝛼0 and 𝛼1 (see legends), and shaded areas show the standard deviation computed
over 100 initial circuit parameters.
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Bob Alice
𝜌 Φ𝑦

𝑈(𝜃)
𝜌

Figure 4-12: A schematic of the modified variational classifier of quantum channels.
First, Bob generates two copies of a random state 𝜌, and passes one of them through
a channel Φ𝑦, outputting the state Φ𝑦[𝜌] ⊗ 𝜌. This state is then sent to Alice who
applies the unitary 𝑈(𝜃), measures the resultant state in the computational basis,
and computes prediction 𝑝 defined in (4.27). The circuit is trained by minimizing
the square distances (4.24) between the predictions 𝑝 and the true labels 𝑦.

to Alice the output state 𝜌𝑗𝑦𝑗 , by Bob sent is the state 𝜌𝑗𝑦𝑗 ⊗ 𝜌𝑗. That is, alongside

with the output state, sent is also a copy of the original, input state. This modified

version of the classifier is depicted in Figure 4-12. The expressions (4.22) and (4.23)

should be rewritten as, respectively,

𝜌(𝛼𝑦,𝜃) = 𝑈(𝜃)(𝜌𝑦 ⊗ 𝜌)𝑈 †(𝜃), (4.26)

𝑝(𝜃) =
1

2

(︀
1 + Tr

[︀
𝜌(𝛼𝑦,𝜃) (𝜎𝑧 ⊗ 𝜎𝑧)

]︀)︀
. (4.27)

The training set should be also changed accordingly to {𝜌𝑗𝑦𝑗 ⊗ 𝜌𝑗, 𝑦𝑗}𝑁train
𝑗=1 . In our

numerical experiments with this classifier, we represented the two-qubit unitary

𝑈(𝜃) by the following ansätze:

𝑈1(𝜃) = 𝑅𝑥(𝜃1) 𝑅𝑧(𝜃2) 𝑅𝑥(𝜃3) ∙

𝑅𝑥(𝜃4) 𝑅𝑧(𝜃5) 𝑅𝑥(𝜃6) 𝑅𝑦(𝜃7)

(4.28)

𝑈2(𝜃) = 𝑅𝑥(𝜃1) 𝑅𝑧(𝜃2)

𝑅𝑥(𝜃4) 𝑅𝑧(𝜃5)

(4.29)

The first ansatz 𝑈1(𝜃), up to the two-qubit gate, is essentially a single-layered

hardware-efficient ansatz shown in Figure 2-1. The second ansatz 𝑈2(𝜃) is a trun-

cated version of 𝑈1(𝜃), containing no entangling gates.

The accuracy obtained after training and testing the classifiers based on the
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ansätze (4.28) and (4.29) are shown in Figure 4-13. As for the previous case, the

sizes of the training and testing sets were 𝑁train = 𝑁test = 1000. Among the two

classifiers, based on the circuits 𝑈1 and 𝑈2, the higher accuracy is achieved with

the second one, although this circuit is less expressive and has no two-qubit gates.

As one can notice, when 𝛼0 . 0.75 . 𝛼1, this 𝑈2-based classifier distinguishes

the channels perfectly. Moreover, the circuit 𝑈1 shows the highest classification

accuracy for the depolarization factors 𝛼 = 0.7 or 0.8, i.e. near 0.75. Recall that we

observed the same phenomenon for the classifier based on the single-qubit unitary

(4.25). Interestingly, it correlates with the fact that the point 𝛼 = 3/4 − 𝜖/2 is the

extremum of the function

𝜅(𝜌𝛼, 𝜌𝛼+𝜖) = Tr(𝜌𝛼𝜌𝛼+𝜖),

for 0 6 (𝛼 + 𝜖) 6 1 and any 𝜌 ̸= 1/2.

Additionally, the point 𝛼 = 0.75 is special for the depolarizing channel, as for

this value of the parameter 𝛼 the output is always the maximally mixed state,

Φ(𝛼)[𝜌] = 1/2, regardless the input 𝜌. So, the obtained results suggest that when the

classifier is trained only on output states Φ(𝛼)[𝜌], the best performance is achieved

when the classifier is tasked to tell the maximally mixed state from any other output

state (i.e. when one of the parameters 𝛼𝑦 = 0.75).

In the meantime, when the classifier is trained on the pairs Φ(𝛼)[𝜌]⊗𝜌, i.e. when

it is also given the input states, it works best when the output states are from the

different sides with respect to 𝛼 = 0.75. This can be explained as follows. For an

arbitrary qubit state 𝜌 given by (1.10),

𝜌 =
1

2

[︁
1 +

(︀
𝑎𝑥𝜎𝑥 + 𝑎𝑦𝜎𝑦 + 𝑎𝑧𝜎𝑧)

]︁
,

one finds that

Φ(𝛼)[𝜌] =
1

2

[︁
1 +

(︂
1 − 4

3
𝛼

)︂(︀
𝑎𝑥𝜎𝑥 + 𝑎𝑦𝜎𝑦 + 𝑎𝑧𝜎𝑧)

]︁
.

Therefore, if one represents the state of a qubit by the vector �⃗� = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) ∈ R3,
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Figure 4-13: Accuracy of the classification of the depolarizing channels with 𝛼0 and
𝛼1. Panels (a) and (b) show the accuracy of the classifiers built on the circuits 𝑈1

and 𝑈2 defined in (4.28) and (4.29), respectively. The classifiers are trained and
tested on the sets of the sizes 𝑁train = 𝑁test = 1000. The figures are taken from [4].

which is called the Bloch vector, one sees that under the action of the depolarizing

channel Φ(𝛼), when 0 6 𝛼 < 3/4 or 3/4 < 𝛼 6 1, the vector �⃗� only changes its

length. At 𝛼 = 3/4, the length of �⃗� is zero, which corresponds to the maximally

mixed state 1/2. Therefore, if one takes 𝛼0 < 3/4 and 𝛼1 > 3/4, then the corre-

sponding Bloch vectors of Φ(𝛼0)[𝜌] and Φ(𝛼1)[𝜌] will be collinear, but pointing to the

opposite directions. So, it seems that the classifier trained on the pairs Φ(𝛼)[𝜌] ⊗ 𝜌

learns to detect this feature.

So far we have considered the channel classification only for single-qubit depo-

larizing channels. Let us now test the variational classification approach on the

generalized depolarizing channel for 𝑛 qubits:

Φ(𝛼)[𝜌] = (1 − 𝛼)𝜌+
𝛼

𝑑2 − 1

𝑑2−1∑︁
𝑗=1

𝑆𝑗𝜌𝑆𝑗, (4.30)

where 𝑑 = 2𝑛 and 𝑆𝑗 ∈ {1, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧}⊗𝑛/1⊗𝑛 is a Pauli string. In Figure 4-14 we

plot the accuracy of the classifier trained to distinguish three-qubit channels (4.30)

with 𝛼0 = 0 and 𝛼1 > 𝛼0. We considered the classifiers with one and two layers of

the hardware-efficient ansatz, and both of them were trained on the sets of 1000,

2000 and 3000 entries. As can be seen in Figure 4-14, the classification accuracy
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Figure 4-14: Accuracy of the classification of the three-qubit depolarizing channels
with 𝛼0 = 0 and 𝛼1 > 𝛼0. Panels (a) and (b) show the results for the classifiers
consisting of one and two layers of the hardware-efficient ansatz, respectively. The
classifiers were trained on the sets of the size 𝑁train = 1000, 2000 and 3000, and
tested on a set of the size 𝑁test = 1000. The shaded areas indicate the standard
deviation obtained over 10 initial circuit parameters.

for three-qubit depolarizing channels is comparable to that obtained for the single-

qubit channels, see Figure 4-10. Additionally, we do not achieve much improvement

by increasing the size of the training set or the expressive power of the variational

circuit.

Another test we conducted is the classification of random channels. In Fig-

ure 4-15, we show the accuracy of the classifier trained to distinguish between two

four-qubit channels obtained by generating random 12-qubit unitary matrices and

applying the Stinespring channel representation (4.12). The variational circuit of the

classifier consisted of one layer of the hardware-efficient ansatz, and it was trained

on only 𝑁train = 100 data points. As can be seen, the classification in this case is

almost perfect.

So, as we observed, to classify many-qubit depolarizing or random channels, we

do not seem to need larger training sets, nor do we need to increase the expressive

power of our variational circuits. This, however, should be confirmed for other

many-qubit channels, which possibly model some real physical processes.
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Figure 4-15: Training (a) and test (b) accuracy of the classification of random
four-qubit channels. The blue and the red points indicate the label 0 and label 1,
respectively. The channels were obtained via the Stinespring channel representation
(4.12) by generating random 12-qubit unitary matrices. The classifier was trained
on the sets of the size 𝑁train = 100, and tested on a set of the size 𝑁test = 1000.

4.2.2 Remarks on quantum machine learning

Let us discuss the aspects of machine learning in the context of quantum computing.

In [121], the authors distinguish four approaches of machine learning, depending on

the nature of the data in question and the computational device used to process

it. Namely, there are four classes of machine learning: classical-classical (CC),

classical-quantum (CQ), quantum-classical (QC) and quantum-quantum (QQ). The

first approach, CC, is the ordinary machine learning for classical data, 𝑥 ∈ R𝑑, per-

formed using classical computers. In CQ machine learning, one works with classical

data encoded into pure quantum states, 𝑥 ↦→ |𝑥⟩ ∈ C𝑑, and processed with a quan-

tum computer. QC methods, in their turn, allow to perform machine learning for

quantum data using classical algorithms. Finally, QQ approach utilizes quantum

computers for working with quantum data.

The problem of quantum channel classification considered in Section 4.2 belongs

to the class QQ. Indeed, the data in this problem is represented by quantum states

acted by labeled channels, and the data points are processed by applying a varia-

tional quantum circuit and performing measurements. A similar problem has been

solved in the QC setting in [130]. There, the authors considered the task of multi-

classification of quantum channels using classical neural networks. Although one can

achieve high classification accuracy with this QC approach, there is an obstacle: To

process a data point represented by a density operator 𝜌 ∈ 𝒟(C𝑑) using a classical

computer, one needs to obtain and store some representation of 𝜌. For instance, to
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completely describe a state of 𝑛 qubits, one would need to store (4𝑛 − 1) real num-

bers, see (1.12). Obtaining these numbers is another task known as quantum state

tomography, which can also be enhanced with classical neural networks [131, 132].

Although in many practical cases a quantum state of interest does not have an ex-

ponential number of parameters to be estimated [133], the full state tomography is,

in general, expensive in terms of measurements.

A similar issue arises in the case of the CQ approach. The necessity of encoding

classical data points into the quantum ones can be viewed as a bottleneck of quantum

machine learning for classical data. Consider one of the simplest encodings for a

data point 𝑥 ∈ R𝑑, the rotation encoding:

𝑥 = {𝑥𝑗}𝑑𝑗=1 ↦→ |𝑥⟩ =
𝑑⨂︁
𝑗=1

(︁
cos(𝑥𝑗) |0⟩ + sin(𝑥𝑗) |1⟩

)︁
,

which can be obtained by acting with the 𝑦-rotation gates 𝑅𝑦(𝑥𝑗) = exp(−𝑖𝑥𝑗𝜎𝑦) on

the individual qubits of the state |0⟩⊗𝑑. Another encoding is the amplitude encoding

implemented as

𝑥 = {𝑥𝑗}𝑑𝑗=1 ↦→ |𝑥⟩ =

⌈log2 𝑑⌉∑︁
𝑗=1

𝑥𝑗 |𝑗⟩ ,

where the vectors |𝑗⟩ form the computational basis in C⊗⌈log2 𝑑⌉
2 . Compared to the

rotation encoding which requires 𝑂(𝑑) qubits, the amplitude encoding is advanta-

geous needing only 𝑂(log2 𝑑) qubits. However, the circuit 𝑈 which prepares the

state |𝑥⟩ = 𝑈 |0⟩⊗𝑑 may consist of an exponential number of gates [134]. More

information on data encodings can be found in Chapter 5 in [135].

Having encoded classical data points {𝑥𝑘}𝑚𝑘=1 into pure quantum states
{︀
𝜌𝑘 =

|𝑥𝑘⟩⟨𝑥𝑘|
}︀𝑚
𝑘=1

, one can perform machine learning by training variational circuits

as done in Section 4.2. Another option is computing the values of the function

𝜅(𝜌𝑘, 𝜌𝑙) = Tr 𝜌𝑘𝜌𝑙 =
⃒⃒
⟨𝑥𝑘|𝑥𝑙⟩

⃒⃒2 called the kernel and applying the so-called kernel-

based machine-learning methods [136]. On a quantum computer, one can calculate

the kernel directly via the swap test routine described in Appendix B. In [134], it is

claimed that if we are given 𝑚 classical data points, the kernel values for them can

be estimated on a quantum computer in time linear in 𝑚, but it is assumed that we
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can efficiently encode our data points into quantum states.

To conclude this section, we argue that machine learning tasks could be solved

more efficiently if the nature of the data matches that of the computational device

used. That is, quantum (classical) data is processed best by a quantum (classical)

computer.
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In this thesis, we considered variational quantum algorithms, their formulations and

applications. First, we made a brief introduction into the field of quantum com-

puting and its history of development. We noted that one of subareas of quantum

computing, variational quantum algorithms, is nowadays fast-developing due to the

possibility of execution on contemporary quantum computers.

Then we considered the variational quantum eigensolver (VQE) algorithm and

described several cases of its application. In the two case studies we performed,

it was found that the performance of VQE is dependent not only on the structure

of the variational state, but also on the properties of the target Hamiltonian and

especially its ground state. Namely, an important role may be played by e.g. the

entanglement properties of the ground state.

Next, we reviewed several variational algorithms (VQA) and formulated them

in the language of tensor networks. As the tensor diagrams notation is widely used

in theoretical physics, computer science, and machine learning, the obtained for-

mulations of VQA may make them more understandable for researches from the

mentioned communities. The tensor network language helped us to show that

the considered variational algorithms can be reduced to VQE executed for spe-

cific Hamiltonians and variational states. This is an interesting fact suggesting that

many variational quantum algorithms can be formulated in such a way that they

are based on computing the expected value of an observable with respect to a pure

state.

After that, we put the optimization problem of quantum channel discrimination

into the framework of variational quantum computing. This suggests that many

other optimization problems, which include quantum entities, can be solved this
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way, and in this thesis we proposed a recipe for it. For the channel discrimination

problem, we found that the performance of the variational approach is dependent

not only on the diamond distance between channels — which gives a fundamental

bound on the channel distinguishability — but it may depend also on the trace

distance between the the channels output states, and also on the trace of their

product. Interestingly, the latter serves as a kernel in quantum machine learning.

Finally, we showed that variational circuits are also applicable for binary classi-

fication of quantum channels. A big advantage of such a classifier is that it works

directly with given data sets of labeled quantum states. In contrast, if one applies

classical machine learning for quantum data, it would require explicit matrix rep-

resentations of density operators, which can be obtained only via expensive state

tomography. Additionally, the results of our numerical experiments suggest that

the variational circuits required for building a classifier can be quite shallow, and in

some cases they do not even need any many-qubit gates.

Results

1. At the certain point of the bare mass 𝑚 in the 2-qubit Schwinger Hamiltonian,

the rapid change of the order parameter can be witnessed [1]. At this point,

the ground state is the singlet state, which is maximally entangled and is

invariant under local transformations. Due to this, there is a flat valley of the

optimization landscape, which makes it hard for VQE to find the true ground

state in the vicinity of this point. Additionally, in the presence of controlled

dephasing noise, we can detect this critical point of the order parameter.

2. For a spin Hamiltonian with Dzyaloshinskii-Moriya interactions, even when

VQE finds the ground state energy with more than 99% precision, the overlap

between the found and the true ground state can be small [2]. We attribute

this lack of the state fidelity to the entanglement properties of the ground state

of the considered Hamiltonian, which cannot be reproduced with a low-depth

hardware-efficient ansatz. Although the ground state found by VQE is of low

fidelity, one is still able to extract from it some physical features of interest.
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For instance, we retrieved the spiral structure of the spins in the chain.

3. Formulated in the tensor networks notation, some variational quantum algo-

rithms can be reduced to the VQE algorithm executed for a specific Hamilto-

nian and variational state. We obtained explicit reductions for the following

algorithms:

• variational quantum linear solver,

• variational quantum state preparation algorithms,

• variational quantum state diagonalization algorithm,

• variational eigenstate verification algorithm [3].

4. The problem of binary quantum channel discrimination — which is a problem

of distinguishing between two given channels, and which is itself an optimiza-

tion problem — can be put into the framework of variational quantum com-

puting [4]. In this problem, the possibility of applying a given channel several

times gives rise to two discrimination strategies with parallel and sequential

applications of a channel. We tested both strategies in discriminating depolar-

izing channels and entanglement breaking channels. Compared to the parallel

strategy, the sequential strategy allows to achieve higher channel discrimina-

tion accuracy with shorter quantum circuits and lower variance of the results.

We also observed that the performance of the variational channel discrimina-

tion may depend on the trace distances between the channel output states,

and also on the trace of their product.

5. A variational quantum circuit can serve as a binary classifier for distinguishing

between quantum channels [4]. We showed that such a classifier can be trained

with a data set of relatively few entries. For depolarizing channels, the best

classification accuracy is observed when alongside with the channel output

states, the classifier is also provided with the input states. For single-qubit de-

polarizing channels, the classifying circuit does not need to contain entangling

gates. We also showed that for classifying many-qubit depolarizing channels,

we do not need larger training sets and more expressive variational circuits, as
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one might expect. Additionally, the variational classifier distinguishes random

many qubit channels with high efficiency.
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Appendix A

Cost functions of the variational

quantum state diagonalization

algorithm

In Section 3.5 we claimed that the three cost functions in (3.21)-(3.23) are equivalent,

𝑑HS

(︀
𝜌𝑈 , 𝐷[𝜌𝑈 ]

)︀
=
∑︁
�̸�=𝑏

⃒⃒
⟨𝑎|𝜌𝑈 |𝑏⟩

⃒⃒2
= Tr 𝜌2 − Tr𝐷[𝜌𝑈 ]2.

Indeed, for the Hilbert-Schmidt distance between the varied state 𝜌𝑈 and its de-

phased version 𝐷[𝜌𝑈 ] is

𝑑HS

(︀
𝜌𝑈 , 𝐷[𝜌𝑈 ]

)︀
= Tr

[︀
(𝜌−𝐷[𝜌])†(𝜌−𝐷[𝜌])

]︀
= Tr

[︀
𝜌2 − 𝜌𝐷[𝜌] −𝐷[𝜌]𝜌+𝐷[𝜌]2

]︀
= Tr 𝜌2 + Tr𝐷[𝜌]2 − 2 Tr 𝜌𝐷[𝜌], (A.1)
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where we omitted the subscript 𝑈 for readability. Suppose that 𝜌 =
∑︀

𝑖 𝑟𝑖 |𝑟𝑖⟩⟨𝑟𝑖|.

The spectral decomposition for the dephased version of this state is

𝐷[𝜌] =
∑︁
𝑎

⟨𝑎|𝜌|𝑎⟩ |𝑎⟩⟨𝑎| (A.2)

=
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⃒⃒2 |𝑎⟩⟨𝑎| .
Therefore for the second term in (A.1) we obtain
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𝑗

𝑟𝑗
⃒⃒
⟨𝑟𝑗|𝑏⟩

⃒⃒2 |𝑏⟩⟨𝑏|)︃]︃

= Tr

[︃∑︁
𝑎,𝑏

∑︁
𝑖,𝑗

𝑟𝑖𝑟𝑗
⃒⃒
⟨𝑟𝑖|𝑎⟩

⃒⃒2⃒⃒⟨𝑟𝑗|𝑏⟩⃒⃒2 ⟨𝑎|𝑏⟩ |𝑎⟩⟨𝑏|]︃

=
∑︁
𝑎

∑︁
𝑖,𝑗

𝑟𝑖𝑟𝑗
⃒⃒
⟨𝑟𝑖|𝑎⟩

⃒⃒2⃒⃒⟨𝑟𝑗|𝑎⟩⃒⃒2.
The last term in (A.1) reduces to

Tr 𝜌𝐷[𝜌] = Tr

[︃∑︁
𝑖

𝑟𝑖 |𝑟𝑖⟩⟨𝑟𝑖|
∑︁
𝑎

∑︁
𝑗

𝑟𝑗
⃒⃒
⟨𝑟𝑗|𝑎⟩

⃒⃒2 |𝑎⟩⟨𝑎|]︃

= Tr

[︃∑︁
𝑎

∑︁
𝑖,𝑗

𝑟𝑖𝑟𝑗
⃒⃒
⟨𝑟𝑗|𝑎⟩

⃒⃒2 |𝑟𝑖⟩⟨𝑟𝑖| |𝑎⟩⟨𝑎|]︃

=
∑︁
𝑎

∑︁
𝑖,𝑗

𝑟𝑖𝑟𝑗
⃒⃒
⟨𝑟𝑖|𝑎⟩

⃒⃒2⃒⃒⟨𝑟𝑗|𝑎⟩⃒⃒2
= Tr𝐷[𝜌]2.

Putting this into (A.1) we prove that

𝑑HS

(︀
𝜌𝑈 , 𝐷[𝜌𝑈 ]

)︀
= Tr 𝜌2 − Tr𝐷[𝜌𝑈 ]2,
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since obviously Tr 𝜌2𝑈 = Tr 𝜌2. Now consider

∑︁
�̸�=𝑏

⃒⃒
⟨𝑎|𝜌|𝑏⟩

⃒⃒2
=
∑︁
�̸�=𝑏

⟨𝑎|𝜌|𝑏⟩ ⟨𝑏|𝜌|𝑎⟩

=
∑︁
𝑎

⟨𝑎| 𝜌

(︃∑︁
𝑏 ̸=𝑎

|𝑏⟩⟨𝑏|

)︃
𝜌 |𝑎⟩

=
∑︁
𝑎

⟨𝑎| 𝜌
(︀
1 − |𝑎⟩⟨𝑎|

)︀
𝜌 |𝑎⟩

=
∑︁
𝑎

⟨𝑎|𝜌2|𝑎⟩ −
∑︁
𝑎

⃒⃒
⟨𝑎|𝜌|𝑎⟩

⃒⃒2
= Tr 𝜌2 − Tr𝐷[𝜌𝑈 ]2,

where the last term follows directly from tracing the expression (A.2). That is, we

have proven the equivalence of the cost functions in (3.21)-(3.23).
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Swap test

The swap test routine allows to compare two quantum states. Generally, given the

density operators 𝜌 and 𝜏 of the same size, the swap test allows to compute Tr 𝜌𝜏

[137]; if the given states are pure, i.e. 𝜌 = |𝑟⟩⟨𝑟| and 𝜏 = |𝑡⟩⟨𝑡|, then the outcome of

the swap test is obviously the overlap
⃒⃒
⟨𝑟|𝑡⟩

⃒⃒2 which is a measure of “closeness” of

two states. Moreover, the function 𝜅(𝜌𝑖, 𝜌𝑗) = Tr 𝜌𝑖𝜌𝑗 is actually a kernel which is

utilized in quantum machine learning [4, 138]. There are two equivalent swap test

routines which we will call the classic and the destructive swap test, and both of

them are described in the following sections.

B.1 Classic swap test

The classic swap test proposed in [139, 140] requires an auxiliary qubit and the

ability to apply the controlled swap gate 𝐶𝑆𝑊 . The swap gate 𝑆𝑊 is a two-qubit

operator which —as follows from its name— swaps the states of two qubits,

𝑆𝑊 (𝜌⊗ 𝜏)𝑆𝑊 = 𝜏 ⊗ 𝜌,

or, for the case of pure states,

𝑆𝑊
(︀
|𝑟⟩ ⊗ |𝑡⟩

)︀
= |𝑡⟩ ⊗ |𝑟⟩ ,
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where the gate 𝑆𝑊 is defined as

𝑆𝑊 =
1

2

3∑︁
𝑗=0

𝜎𝑗 ⊗ 𝜎𝑗

=
1∑︁

𝑘,𝑙=0

|𝑘⟩⟨𝑙| ⊗ |𝑙⟩⟨𝑘|

= ×

×

= ∙

∙ ∙

where 𝜎𝑗 is a Pauli operator, and the vectors |𝑘⟩ and |𝑙⟩ are from the computational

basis. The controlled version of this gate, 𝐶𝑆𝑊 , is constructed as shown in (1.31).

Consider the circuit

|0⟩⟨0| 𝐻 ∙ 𝐻

𝜌 ×

𝜏 ×

(B.1)

where 𝜌 and 𝜏 are single-qubit states. In this circuit, the initial state is 𝜓1 =

|0⟩⟨0| ⊗ 𝜌⊗ 𝜏 . The first qubit of this state is acted by the Hadamard gate, and the

resultant state is

𝜓2 = (𝐻 ⊗ 1 ⊗ 1)𝜓1(𝐻 ⊗ 1 ⊗ 1)

= |+⟩⟨+| ⊗ 𝜌⊗ 𝜏

=
1

2

(︁
|0⟩⟨0| + |0⟩⟨1| + |1⟩⟨0| + |1⟩⟨1|

)︁
⊗ 𝜌⊗ 𝜏.

This state is then acted by the controlled swap gate, 𝜓3 = 𝐶𝑆𝑊 𝜓2𝐶𝑆𝑊 , which

swaps the states of the second and the third qubit conditioned on the state of the

first one,

𝜓3 =
1

2

[︁
|0⟩⟨0| ⊗

(︀
𝜌⊗ 𝜏

)︀
+ |0⟩⟨1| ⊗

(︀
𝜌⊗ 𝜏

)︀
𝑆𝑊

+ |1⟩⟨0| ⊗ 𝑆𝑊
(︀
𝜌⊗ 𝜏

)︀
+ |1⟩⟨1| ⊗ 𝑆𝑊

(︀
𝜌⊗ 𝜏

)︀
𝑆𝑊

]︁
.

Finally, the first qubit is again acted by the Hadamard gate, 𝜓4 = (𝐻⊗1⊗1)𝜓3(𝐻⊗

142



Appendix B. Swap test

1 ⊗ 1), which yields the state

𝜓4 =
1

4

[︁(︀
|0⟩⟨0| + |0⟩⟨1| + |1⟩⟨0| + |1⟩⟨1|

)︀
⊗
(︀
𝜌⊗ 𝜏

)︀
+
(︀
|0⟩⟨0| − |0⟩⟨1| + |1⟩⟨0| − |1⟩⟨1|

)︀
⊗
(︀
𝜌⊗ 𝜏

)︀
𝑆𝑊

+
(︀
|0⟩⟨0| + |0⟩⟨1| − |1⟩⟨0| − |1⟩⟨1|

)︀
⊗ 𝑆𝑊

(︀
𝜌⊗ 𝜏

)︀
+
(︀
|0⟩⟨0| − |0⟩⟨1| − |1⟩⟨0| + |1⟩⟨1|

)︀
⊗
(︀
𝜏 ⊗ 𝜌

)︀]︁
where we took into account that 𝑆𝑊

(︀
𝜌⊗𝜏

)︀
𝑆𝑊 = 𝜏⊗𝜌. The probability of obtaining

the outcome 𝑥 ∈ {0, 1} after measuring the observable 𝑍 ⊗ 1 ⊗ 1 is

p𝑥 = Tr
[︀
𝜓4 |𝑥⟩⟨𝑥| ⊗ 1 ⊗ 1

]︀
=

1

4
Tr
[︁
𝜌⊗ 𝜏 + (−1)𝑥

(︀
𝜌⊗ 𝜏

)︀
𝑆𝑊 + (−1)𝑥𝑆𝑊

(︀
𝜌⊗ 𝜏

)︀
+ 𝜏 ⊗ 𝜌

]︁
=

1

4

(︁
2 + (−1)𝑥 Tr

[︁(︀
𝜌⊗ 𝜏

)︀
𝑆𝑊 + 𝑆𝑊

(︀
𝜌⊗ 𝜏

)︀]︁)︁
, (B.2)

where we noted that Tr
[︀
𝜌⊗ 𝜏

]︀
= Tr

[︀
𝜏 ⊗ 𝜌

]︀
= 1 since the both terms are traces of

a quantum state. Let us now look at the term with the trace in (B.2),

Tr
[︁(︀
𝜌⊗ 𝜏

)︀
𝑆𝑊 + 𝑆𝑊

(︀
𝜌⊗ 𝜏

)︀]︁
(B.3)

= Tr

[︃(︃
2∑︁
𝑖=1

𝑟𝑖 |𝑟𝑖⟩⟨𝑟𝑖| ⊗
2∑︁
𝑗=1

𝑡𝑗 |𝑡𝑗⟩⟨𝑡𝑗|

)︃
𝑆𝑊 + 𝑆𝑊

(︃
2∑︁
𝑖=1

𝑟𝑖 |𝑟𝑖⟩⟨𝑟𝑖| ⊗
2∑︁
𝑗=1

𝑡𝑗 |𝑡𝑗⟩⟨𝑡𝑗|

)︃]︃
(B.4)

= Tr

[︃(︃
2∑︁

𝑖,𝑗=1

𝑟𝑖𝑡𝑗 |𝑟𝑖⟩⟨𝑡𝑗| ⊗ |𝑡𝑗⟩⟨𝑟𝑖|

)︃
+

(︃
2∑︁

𝑖,𝑗=1

𝑟𝑖𝑡𝑗 |𝑡𝑗⟩⟨𝑟𝑖| ⊗ |𝑟𝑖⟩⟨𝑡𝑗|

)︃]︃
(B.5)

= 2
2∑︁

𝑖,𝑗=1

𝑟𝑖𝑡𝑗 ⟨𝑟𝑖|𝑡𝑗⟩ ⟨𝑡𝑗|𝑟𝑖⟩ = 2 Tr

[︃
2∑︁

𝑖,𝑗=1

𝑟𝑖𝑡𝑗 |𝑟𝑖⟩⟨𝑟𝑖| |𝑡𝑗⟩⟨𝑡𝑗|

]︃
(B.6)

= 2 Tr

[︃
2∑︁
𝑖=1

𝑟𝑖 |𝑟𝑖⟩⟨𝑟𝑖|
2∑︁
𝑗=1

𝑡𝑗 |𝑡𝑗⟩⟨𝑡𝑗|

]︃
= 2 Tr 𝜌𝜏. (B.7)

In derivations above, we used the property Tr |𝛼⟩⟨𝛼| = ⟨𝛼|𝛼⟩ and applied the spectral

decompositions 𝜌 =
∑︀2

𝑖=1 𝑟𝑖 |𝑟𝑖⟩⟨𝑟𝑖| and 𝜏 =
∑︀2

𝑗=1 𝑡𝑗 |𝑡𝑗⟩⟨𝑡𝑗|. Therefore, the proba-

bility of getting the outcome 𝑥 ∈ {0, 1} after executing the swap test circuit (B.1)
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is

p𝑥 =
1

2

(︀
1 + (−1)𝑥 Tr 𝜌𝜏

)︀
. (B.8)

So far we considered the case when 𝜌 and 𝜏 are single-qubit states, but the swap

test can be easily generalized for the case of many qubits.

Obviously, if the input states are pure, i.e. 𝜌 = |𝑟⟩⟨𝑟| and 𝜏 = |𝑡⟩⟨𝑡|, then (B.8)

reduces to

p𝑥 =
1

2

(︀
1 + (−1)𝑥

⃒⃒
⟨𝑟|𝑡⟩

⃒⃒2)︀
.

Interestingly, the post-measurement state of the swap test circuit in this case is

⃒⃒
𝜓𝑥pm

⟩︀
=

1

2
√
𝑝𝑥

|𝑥⟩ ⊗
(︁
|𝑟⟩ ⊗ |𝑡⟩ + (−1)𝑥 |𝑡⟩ ⊗ |𝑟⟩

)︁
,

i.e. some information about the input states |𝑟⟩ and |𝑡⟩ is preserved. Also remarkable

is the fact that there is no quantum channel which could map this state back to

|𝑟⟩ ⊗ |𝑡⟩ or |𝑡⟩ ⊗ |𝑟⟩ for any |𝑟⟩ and |𝑡⟩ [141], while the reverse process is always

possible (recall that this is done in the swap test itself). So, it is impossible to

utilize this state again to conduct another swap test.

B.2 Destructive swap test

In the previous section, we considered the swap test method which allows to compute

Tr 𝜌𝜏 for any given 𝜌 and 𝜏 . As we noted, this approach requires an auxiliary qubit

an the ability to apply the three-qubit controlled swap gate 𝐶𝑆𝑊 . Although several

decompositions of this gate in terms of one- and two-qubit gates are known, it is still

difficult to implement such an operation on a quantum computer. To circumvent

this obstacle, one may apply the so-called destructive swap-test.

Consider the following circuit:

𝜌 ∙ 𝐻

𝜏

(B.9)

where 𝜌 and 𝜏 are 𝑛-qubit states, and each line, consequently, represents an 𝑛-qubit
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register. Suppose that the probability to obtain the result 𝑎 ∈ B𝑛 after measuring

the first register and the result 𝑏 ∈ B𝑛 after measuring the second is 𝑝d𝑎𝑏. In [141] it

is proven that ∑︁
𝑎,𝑏∈B𝑛

(𝑎 · 𝑏 mod 2) 𝑝d𝑎𝑏 =
1

2

(︀
1 − Tr 𝜌𝜏

)︀
, (B.10)

where 𝑎·𝑏 is the scalar product of two bit strings of the size 𝑛. It is easy to notice that

the expression (B.10) is actually the probability of obtaining the outcome “1” in the

classic swap test p1 defined in (B.8) [142]. Similarly, the probability of the outcome

“0” in the classic swap test is connected with the probabilities for the destructive

swap test through the expression

∑︁
𝑎,𝑏∈B𝑛

(1 − 𝑎 · 𝑏 mod 2) 𝑝d𝑎𝑏 =
1

2

(︀
1 + Tr 𝜌𝜏

)︀
,

As follows from its name, the destructive swap test destroys almost all informa-

tion about the input states. This seems to be not a very big loss since, first, it is not

obvious how one can utilize the most-measurement state of the classic swap test,

and if it is possible at all; second, the destructive swap test has crucial advantages

before its classic version: there is no need in an auxiliary qubit, and one does need

to be able to apply the 𝐶𝑆𝑊 gate.

145



Appendix C

Hadamard test

In quantum computations, we usually dealing with expected values of Hermitian

operators. Still, it is possible to separately measure the real and imaginary part of

an expectation value of the form ⟨𝜓|𝑈 |𝜓⟩, where 𝑈 is unitary. This is helpful in e.g.

computing gradients of several cost functions. In Fig. C-1 shown are the circuits

which are designed compute Re ⟨𝜓|𝑈 |𝜓⟩ and Im ⟨𝜓|𝑈 |𝜓⟩, and the whole technique

is called the Hadamard test.

Let us consider the circuit depicted in Fig. C-1 on the left. The initial state of

this circuit is

|𝜙0⟩ = |0⟩ ⊗ |𝜓⟩ .

Then, the first qubit is acted by the Hadamard gate producing the state

|𝜙1⟩ =
1√
2

(︀
|0⟩ ⊗ |𝜓⟩ + |1⟩ ⊗ |𝜓⟩

)︀
.

After that, the second qubit is acted by the gate 𝑈 controlled by the state of the

first qubit:

|𝜙2⟩ =
1√
2

(︀
|0⟩ ⊗ |𝜓⟩ + |1⟩ ⊗ 𝑈 |𝜓⟩

)︀
.

Finally, the first qubit is once again acted by the Hadamard gate, which gives

|𝜙3⟩ =
1

2

(︁
|0⟩ ⊗

(︀
|𝜓⟩ + 𝑈 |𝜓⟩

)︀
+ |1⟩ ⊗

(︀
|𝜓⟩ − 𝑈 |𝜓⟩

)︀)︁
.

The probability p𝑅𝑥 of obtaining the outcome 𝑥 ∈ {0, 1} after measuring the first
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|0⟩ 𝐻 ∙ 𝐻

|𝜓⟩ 𝑈

|0⟩ 𝐻 𝑆† ∙ 𝐻

|𝜓⟩ 𝑈

Figure C-1: Quantum circuits for calculating the real and imaginary parts of the
complex number ⟨𝜓|𝑈 |𝜓⟩, where 𝑈 is unitary. For the left circuit, the proba-
bility of obtaining the result 𝑥 ∈ {0, 1} after measuring the auxiliary qubit is
p𝑅𝑥 = 1

2

(︀
1 + (−1)𝑥 Re ⟨𝜓|𝑈 |𝜓⟩

)︀
; for the right circuit, this probability is p𝐼𝑥 =

1
2

(︀
1 + (−1)𝑥 Im ⟨𝜓|𝑈 |𝜓⟩

)︀
.

qubit is

p𝑅𝑥 = Tr |𝜙3⟩⟨𝜙3| |𝑥⟩⟨𝑥| ⊗ 1

=
1

4

[︁⃒⃒
⟨𝑥|0⟩

⃒⃒2(︀ ⟨𝜓| + ⟨𝜓|𝑈 †)︀(︀ |𝜓⟩ + 𝑈 |𝜓⟩
)︀

+
⃒⃒
⟨𝑥|1⟩

⃒⃒2(︀ ⟨𝜓| − ⟨𝜓|𝑈 †)︀(︀ |𝜓⟩ − 𝑈 |𝜓⟩
)︀]︁

=
1

4

[︁
𝛿𝑥0
(︀
2 + ⟨𝜓|𝑈 |𝜓⟩ + ⟨𝜓|𝑈 |𝜓⟩

)︀
+ 𝛿𝑥1

(︀
2 − ⟨𝜓|𝑈 |𝜓⟩ − ⟨𝜓|𝑈 † |𝜓⟩

)︀]︁
=

1

4

[︁
𝛿𝑥0
(︀
2 + 2 Re⟨𝜓|𝑈 |𝜓⟩

)︀
+ 𝛿𝑥1

(︀
2 − 2 Re⟨𝜓|𝑈 |𝜓⟩

)︀]︁
=

1

2

(︁
1 + (−1)𝑥 Re⟨𝜓|𝑈 |𝜓⟩

)︁
.

The same can be proven for the circuit on the right in Fig. C-1. That is,

p𝐼𝑥 =
1

2

(︁
1 + (−1)𝑥 Im⟨𝜓|𝑈 |𝜓⟩

)︁
.

Therefore, the Hadamard test technique in two experiments allows to compute

⟨𝜓|𝑈 |𝜓⟩ = Re⟨𝜓|𝑈 |𝜓⟩ + Im⟨𝜓|𝑈 |𝜓⟩

C.1 Modified Hadamard test

The Hadamard test method can be modified for computing a scalar product ⟨𝛼|𝛽⟩,

provided that it is known how to prepare the states |𝛼⟩ = 𝐴 |0⟩ and |𝛽⟩ = 𝐵 |0⟩. The

circuits for computing the real and imaginary part of ⟨𝛼|𝛽⟩ are shown in Fig. C-2.

The logic of obtaining the wanted quantities is the same as for the usual Hadamard

test. Indeed, for the circuits on the left and on the right in Fig. C-2, the states
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|0⟩ 𝐻 ∙ 𝐻

|0⟩ 𝐴 𝐵

|0⟩ 𝐻 𝑆† ∙ 𝐻

|0⟩ 𝐴 𝐵

Figure C-2: Quantum circuits for calculating the real and imaginary parts of the
complex number ⟨0|𝐴†𝐵|0⟩, where 𝐴 and 𝐵 are unitary. For the left circuit, the
probability of obtaining the result 𝑥 ∈ {0, 1} after measuring the auxiliary qubit
is p𝑅𝑥 = 1

2

(︀
1 + (−1)𝑥 Re⟨0|𝐴†𝐵|0⟩

)︀
; for the right circuit, this probability is p𝐼𝑥 =

1
2

(︀
1 + (−1)𝑥 Im⟨0|𝐴†𝐵|0⟩

)︀
.

before the measurement are, respectively,

⃒⃒
𝜙𝑅3
⟩︀

=
1

2

(︁
|0⟩ ⊗

(︀
𝐴 |0⟩ +𝐵 |0⟩

)︀
+ |1⟩ ⊗

(︀
𝐴 |0⟩ −𝐵 |0⟩

)︀)︁
,⃒⃒

𝜙𝐼3
⟩︀

=
1

2

(︁
|0⟩ ⊗

(︀
𝐴 |0⟩ − 𝑖𝐵 |0⟩

)︀
+ |1⟩ ⊗

(︀
𝐴 |0⟩ + 𝑖𝐵 |0⟩

)︀)︁
.

The probabilities of obtaining the outcome 𝑥 ∈ {0, 1} for these states are

p𝑅𝑥 =
1

2

(︁
1 + (−1)𝑥 Re⟨0|𝐴†𝐵|0⟩

)︁
,

p𝐼𝑥 =
1

2

(︁
1 + (−1)𝑥 Im⟨0|𝐴†𝐵|0⟩

)︁
.

Therefore, in two experiments of executing the circuits of the modified Hadamard

test, one can compute the dot product of two vectors as

⟨𝛼|𝛽⟩ = ⟨0|𝐴†𝐵|0⟩ = Re⟨0|𝐴†𝐵|0⟩ + Im⟨0|𝐴†𝐵|0⟩.
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