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The thesis document includes the following changes in answer to the external review process. 

 

I am grateful to the Defense Jury members for their reviews and comments that helped me to adjust and 

improve the thesis. 

 

 Fixed mathematical formulations and notations in Chapter 1 and Chapter 2.  

 

 Provided definition and  relationship between the tensor tubal rank, the tensor multi-rank, and the 

tensor nuclear norm under t-SVD framework in Chapter 1.3 

 

 Discussion on challenges of tensor completion methods for MRI data has been presented in Chapter 

1.6. 

 

 Added motivation for sparsity constraints on core tensors in Chapter 4. 

 

 Provided details on the smoothing strategy in Chapter 5.3.2 

 

 Included results for noisy image reconstruction and compared with neural network methods in 

Figure 4-9 and Figure 6.7. 

 

 Provided motivation for using t-SVD for reconstruction in Chapter 6.1. 

 

 Added new experimental results for MRI data compress sensing algorithms in Chapter 6. PSNR 

and RMSE values presented in Figure 6-6. 

 

 Corrected errors in some algorithms and added new algorithm in Chapter 6. 

 

 Figures and tables have been adjusted for better visibility. 

 

 Corrected many grammatical and typographical errors. 

 

 

 

 

 

 

 



Reply to specific  comments 

 It may be more reader-friendly if the motivation of sparse representation of tensor ring core can be 

explained in details. Is there any physical background for such a representation? 

Response: Thank you for the comment. 

In general, tensor ring decomposition is not unique. Moreover, tensor completion is a very ill conditioned 

optimization problem, thus some regularization is necessary in order to obtain stable, relatively simple and 

meaningful representation. Sparsity constraints is one such regularization technique. In other words, sparse 

representations have two main purposes: They are a form of regularization that pushes as many parameters 

as possible to exact zeros. Furthermore, sparsity leads to simpler tensor models by learning what parameters 

can be dropped, lowering their total number. In addition, sparse optimization methods are useful for signal 

processing problems that involve large, noisy, or incomplete data sets, where finding a simple and 

meaningful representation is challenging. Inspired by successful methods that introduced a sparsity prior on 

the columns to solve the failure of  low-rankness in regularizing structural matrix completion tasks and 

another method that extends the matrix case to higher-dimensional tensors and considered structural missing 

data along each mode using the TT framework. In our proposed model, the underlying tensor is regularized 

by a low-TR-rankness prior to exploiting the inter-fibers/slices correlations, and its fibers are regularized by 

a sparsity prior under dictionaries to exploit intra-fibers correlations. 

 

 

 In chapter 6, t-SVD based low rank approximation is used to MRI Motion Artifact Reconstruction. 

Why do you prefer this decomposition? Compared with some tensor networks, why do you choose 

t-SVD for it? 

 

Response: The t-SVD model is relatively simple and its associated learning algorithm is quite efficient.  

One of my  main objective was to investigate several tensor decomposition models and select the most 

promising one. It is known that unlike the Tucker and Canonical Polyadic Decompositions, the t-SVD has 

similar properties to the classical SVD. More precisely, the truncated t-SVD provides the best low tubal 

rank approximation in the least-squares sense for any invariant tensor norm. This was one motivation to use 

the t-SVD in our formulation. On the other hand, experimental results reported in the literature show the 

efficiency and performance of the t-SVD in many applications, such as tensor completion and tensor 

denoising. This was another motivation to utilize the t-SVD in our work. It is worth mentioning that several 

fast algorithms have been proposed to decompose a tensor into the t-SVD format and this facilitates the 

utilization of the t-SVD for real-world big data processing. 

 

 What is the advantage of cross tensor approximation to the other random tensor approximation (e.g., 

random tensor t-SVD)?  

 

Response: Randomized t-SVD is also a fast approach for computing a low tubal rank approximation. The 

main benefit of the cross approximation is that we need access to only a part of the underlying data tensor, 

while the randomized t-SVD multiplies the original data tensor with a random tensor, which means the 

method needs  all components of the tensor. This computation could be very expensive, especially when we 

are dealing with big data tensors. 

 

 

 The author uses tensor singular value thresholding. Its calculation depend on the parameter beta, 

see formula (7) in the Appendix. However, it is not clear from the results of the experiments whether 

they are robust w.r.t. this value. Any comments on this issue? 

 

Response: The tensor singular value thresholding is a generalization of the matrix singular value 

thresholding, which was proposed for recovering tensors with missing elements. For the 

tensor singular value thresholding algorithm, the parameter β is defined as λ/μk, where λ  is a penalty 

parameter and μk is a regularization parameter used at k-th iteration. So, the parameter β is not fixed and is 

dynamically changed at each iteration. Please note that the parameter μ is updated via formula μk+1 = min(Jμk, 

μmax). The parameter  λ  should be carefully selected as using bigger values result in poor approximation 

and reconstruction. On the other hand, a smaller value takes too long to converge even though reconstruction 

is good. 

 



 In (2.1) the min may not exist for the CP decomposition. Some comment about this would be 

appropriate. 

 

Response: Thank you for the comments. For CP decomposition the best rank approximation may not exist. 

Therefore minimization problem is generally an ill-posed one. However, incorporating a coherence 

constraint in the minimization problem helps to overcome this ill-posedness. Moreover, the CP 

decomposition of tensors with order higher than two, is often unique under mild assumptions. This 

constitutes one of the attractive properties of the CP decomposition. Constraints such as orthogonality and 

non-negativity ensure the existence of the minimum of the optimization criterion used. 

 

 

 


