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Abstract

The removal of noise and artifacts from images and signals (especially in biomedical

signals and neuroimages) is very important in various applications and an active

research area. In particular, in biomedical applications, the reduction of noise and

enhancement of the resolution of neuroimages are significant pre-processing tasks.

This research investigates new methods and approaches that allow us to remove

huge noise (outliers) and various artifacts in MRI and EEG signals using low-rank

(typically high-order) tensor decomposition techniques and formulate the problem

as a constrained optimization problem that is solved by modified ADMM with mini-

mization of the tensor nuclear norm and imposing additional sparsity or smoothness

constraints. The corrupted noise or artifact samples of signals and pixels or voxels

of images or videos are identified, and novel techniques used in matrix or tensor

completion are applied.

This thesis explores and compares various block Hankel folding strategies and

tensorization techniques in order to transform low-order tensors (vectors, matrices,

and 3D tensors) into higher-order block Hankel tensors before applying tensor com-

pletion via tensor train (TT) and tensor ring (TR) low-rank decompositions. This

hankelization step ensures the low rank property of the incomplete data and also

helps in improving the accuracy of reconstruction of images and signals corrupted

by large noise. Moreover, the thesis applied convolutional neural network as one of

the major Hankelization steps in tensorization.

Furthermore, the thesis investigates tensor cross approximation models and as-

sociated algorithms in order to process corrupted, noisy data quickly and efficiently.

The thesis has three main contributions:

1. The first developed approach exploits a sparse representation for tensor ring

cores using dictionary learning. The thesis proposed and implemented an

efficient procedure that allows for the transformation of available data into

higher-order tensors, and the core tensors are estimated using tensor ring de-

composition. Then, using an over complete discrete cosine dictionary, sparse

codes are generated. The sparse codes, together with the estimated core ten-
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sors, are optimized using the ALS (Alternating Least Squares) gradient descent

algorithm.

2. In the second alternative approach, the thesis investigates the 3D tensor com-

pletion task by computing the modified CUR approximations with smoothing

constraints for the underlying data tensor. In each iteration of our algorithm,

a CUR approximation of the underlying data tensor is computed, followed by

the mask operator. The developed algorithms have low complexity and are

very fast. For structurally missing data components or a high missing rate,

the algorithm incorporates an efficient smooth variant of the developed tensor

CUR algorithm, which first makes the sampled components smooth and then

the CUR algorithm is applied.

3. In addition, this research also tackles the problem of motion artifacts in

diffusion-weighted MRI images. The developed algorithm employs the tubal

norm of the tensor for reconstructing MRI images from a few samples of MRI

data in the Fourier transform.

Extensive computer simulations performed using all three strategies show the

effectiveness and superiority of the methods used in the research.
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Thesis Outline

Significance: This thesis is devoted to the development of new methods and as-

sociated algorithms for removing or reducing noise and artifacts from signals (time

series), images (represented by matrices and tensors), and videos (represented by

3D or 4D tensors), especially biomedical signals and neuroimages. Such data can

be naturally represented by 3D/4D tensors (e.g., space-time-frequency) or even ten-

sorized (i.e., vector matrices and 3D tensors are transformed to higher-order tensors).

Such tensors can be decomposed into factor matrices and core tensors using tensor

decomposition and tensor networks.

The thesis focused on data that is corrupted by large noise (outliers) and pos-

tulated that not all the data samples are corrupted by noise, but the majority of

them are (typically up to about 95% of pixels can be corrupted by noise). In the

thesis, it is also assumed that corrupted samples or pixels can be identified auto-

matically (that is, their positions in time and/or space) by special software that

was recently developed. The thesis solves these tasks using a matrix and tensor

completion approach. The tensor completion helps to model and represent incom-

plete multidimensional data in the form of factor matrices and/or core tensors and

reconstruct the missing elements via low-rank approximation with additional con-

straints imposed on factors like sparsity and smoothness. Although various tensor

completion techniques have already been developed, to date there are still certain

scenarios where the state-of-the arts algorithms are slow with high complexity or

provide poor performance when the number of missing elements is large.

In other scenarios, the available algorithms to date are only able to recover

certain types of missing data, such as randomly missing pixels. Motivated by the

limitations of existing tensor completion techniques, the thesis developed new or

alternative algorithms by exploiting and adopting different optimization strategies

and constraints. The main advantage of our proposed methods is the ability to

recover different kinds of missing data, such as structurally missing pixels e.g., data

with whole rows or columns missing or missing blocks/patches. Also, images with

scratched surfaces and images with randomly missing pixels can be recovered. The
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algorithms are also computationally efficient compared to most current methods and

are able to work on different types of tensor data.

The primary goal of the thesis is to develop efficient algorithms for tensor

completion tasks that are capable of removing artifacts and noise from data, partic-

ularly MRI and EEG data. The proposed methods are comparable to state-of-the

art algorithms and, in general, do not suffer from limitations that occur in existing

methods.

Novelty: Three new methods based on matrix and tensor network decompo-

sitions are proposed in this work. The first method uses dictionary learning and

sparse coding for updating the core tensors of a tensor ring decomposition, where

noisy corrupted data is transformed into a higher-order tensor through block Hanke-

lization. The problem is solved using the ADMM and gradient descent algorithms.

The Hankelized high-order tensor is first decomposed into tensor ring cores. Then

an over-complete discrete cosine dictionary is applied to each core tensor to learn

the latent features and produce a sparse vector. The core tensors, together with the

sparse codes, are then updated using the gradient descent algorithm until optimal

accuracy is reached. The proposed method provides higher performance compared

to other completion methods.

The second method proposed uses the matrix cross approximation methods and

extends them to the tensor case. The thesis applied the Tucker decomposition model

with the CUR sampling method to the fibers of the tensor. A smoothing technique

is applied to the sampled incomplete fibers of each unfolding tensor before tensor

completion is performed. This novel approach improves the performance of the

completion results as compared to performing the completion without the smoothing

strategy. Also, the use of tubes of tensor reduces the running time of the method,

thereby providing a faster means of reconstructing huge amounts of incomplete data.

The third method proposed in this thesis performs the reconstruction of mo-

tion artifacts from MRI data using Hankelization and tensor tubal norm. A few

samples of MRI data are sampled in the Fourier domain, and reconstruction is

performed. The results are comparable to other methods used for reconstructing

diffusion-weighted MRI data.
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Chapter 1

Introduction and Problem Statement

As healthcare and medical sciences advance rapidly, there is an increasing depen-

dence on medical imaging due to its clarity that illustrates current and developing

conditions in a patient’s body. However, there are several challenges with the data

acquisition processes on biomedical data, such as the movement of patients before

the image capture, technical difficulties (poor calibration, environmental factors,

etc.) of equipment, and image corruption during the transfer stage. These have

given rise to the implementation of algorithms to solve/correct these problems. In-

complete or corrupted data can lead to miscalculations and misdiagnoses of medical

conditions, which subsequently have a pronounced health, financial and reputational

impact on all stakeholders. Biomedical data denoising is a classical problem in com-

puter vision and has been studied extensively. Many researchers have taken up the

task of finding more effective methods to eliminate these artifacts in medical image

data due to the significant advantages it brings to medical care for correct diagnosis

and treatment of patients. Most papers in the medical field address the reconstruc-

tion of images using transform coding-based methods such as wavelet transforms,

ICA, PCA, Machine learning, etc [14, 15, 16, 17, 18, 19, 20, 21, 22]. However, in

recent times, low-rank matrix approximations have been employed to solve these

problems in biomedical signal data, particularly MRI and EEG data. Consequently,

the idea and use of tensors have surpassed theoretical performance limits and opened

up new avenues for real-world applications [23]. Tensors accomplish this by taking

advantage of the underlying latent data structures [6, 24].
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Chapter 1. Introduction and Problem Statement

1.1 Thesis Statement

This research focuses on the completion of images and signals (especially biomedi-

cal signals and neuroimages) using tensor completion techniques. A pre-processing

step of tensorizing the data into higher order tensors using different Hankel folding

methods is adopted. This pre-processing step aids in improving the performance of

the algorithms. To improve the performance of the results, our proposed algorithms

make use of sparsity and smoothness in the data.

1.2 Layout of Thesis

After the brief introduction, Chapter 1 continues with preliminaries and notations,

discussions on the problem statement, an introduction to the data used and an

overview of some related works. The thesis continues with discussions on tensor

decomposition, in Chapter 2. Chapter 3 discusses some proposed Hankelization

procedures used for tensor completion problems. Consequently, the proposed tensor

completion methods are discussed and evaluated in Chapters 4, 5 and 6. The last

chapter, Chapter 7 presents a conclusion of the work and future research directions.

1.3 Preliminaries and notations

Notations adopted in the work by [12] are used all through this research. The order

of a tensor is defined as number of its’ dimensions, in some literature the order

is also referred to as modes. Scalars are denoted by standard lowercase letters,

e.g. 𝑥. Vectors or 1st-order tensors are denoted by boldface lower case letters,

e.g. x. A matrix or second order tensor is represented by boldface capital letter,

e.g. X and a higher order tensor is also denoted by bold underlined capital letter,

e.g. X. The (𝑖1, 𝑖2, . . . , 𝑖𝑁)th element of an 𝑁th-order tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 is

denoted by 𝑥𝑖1,𝑖2,...,𝑖𝑁 = X(𝑖1, 𝑖2, . . . , 𝑖𝑁). The multi-index is defined as 𝑖1𝑖2 . . . 𝑖𝑁 =

𝑖𝑁 + (𝑖𝑁−1 − 1) 𝐼𝑁 + · · ·+ (𝑖1 − 1) 𝐼2𝐼3 · · · 𝐼𝑁 .

A typical 𝑛-mode matricization [6] also known as mode-𝑛 unfolding of a tensor

X ∈ R𝐼1×𝐼2×···×𝐼𝑁 is given by X(𝑛) ∈ R𝐼𝑛×𝐼1···𝐼𝑛−1𝐼𝑛+1···𝐼𝑁 . Refer to figure 1-1 for
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illustration on tensor unfolding. Transforming a vector, matrix, or a low-order to

a higher-order tensor is known as tensorization or matrix folding. Tensorization is

the inverse operation for matricization. Slices are sub-tensors generated by fixing

all indices except two, and they are thus matrices. For example, for a tensor X ∈

R𝐼1×𝐼2×𝐼3 , the slices X(:, :, 𝑖), 𝑖 = 1, 2, . . . , 𝐼3, are called frontal slices and are denoted

as X(𝑖). Refer to figure 1-2 for illustration. A fiber is denoted as X(𝑖, :, 𝑗),X(:, 𝑗, 𝑘)

and X(𝑖, 𝑗, :). It is defined by fixing all but one index. Fibers in third order tensors

are called rows, columns and tubes respectively. The inner product of two tensors

X , Y ∈ R𝐼1×𝐼2×···×𝐼𝑁 is defined as ⟨X,Y⟩ =
∑︀

𝑖1

∑︀
𝑖2
. . .
∑︀

𝑖𝑁
𝑎𝑖1,...,𝑖𝑁 𝑏𝑖1,...,𝑖𝑁 . The

trace of X is defined as 𝑡𝑟(X) =
∑︀𝐼3

𝑖=1 𝑡𝑟(X(𝑖)) where 𝑡𝑟(.) is the matrix trace. The

induced Frobenius norm of a tensor is denoted by ‖X‖𝐹 =
√︀
⟨X,X⟩. Refer to Table

1.1 for common tensor operations and symbols.

Figure 1-1: Mode-𝑛 unfolding of a tensor

Definition 1. (t-product) The t-product of two tensors X ∈ R𝐼1×𝐼2×𝐼3 and Y ∈

R𝐼2×𝐼4×𝐼3 , is given by C ∈ R𝐼1×𝐼4×𝐼3 . This is defined as

C = X *Y = fold (circ (X) . unfold (Y)) , (1.1)
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Table 1.1: Matrix and tensor symbols and notations.

Notation/symbol Meaning
𝑥,x,X scalar, vector and matrix

X ∈ R𝐼1×𝐼2×···×𝐼𝑁 an 𝑁 𝑡ℎ order tensor of size 𝐼1 × 𝐼2 × · · · × 𝐼𝑁

𝑥𝑖1,𝑖2,...,𝑖𝑁 = X(𝑖1, 𝑖2, . . . , 𝑖𝑁) (𝑖1, 𝑖2, . . . , 𝑖𝑁)𝑡ℎ entry of tensor X

X𝑇 ,X−1,X† transpose, inverse and Moore–Penrose pseudo-inverse of
a matrix X

X = [x1,x2, . . . ,x𝑅] matrix with 𝑅 column vectors 𝑎𝑟 ∈ R𝐼 , with entries 𝑎𝑖𝑟

A,B,C,A(𝑛),B(𝑛),U(𝑛) component (factor) matrices

G,G(𝑛),X(𝑛) core tensors

X(𝑛) ∈ R𝐼𝑛×𝐼1···𝐼𝑛−1𝐼𝑛+1···𝐼𝑁 mode-n matricization of X ∈ R𝐼1×𝐼2×···×𝐼𝑁

𝑅, (𝑅1, . . . , 𝑅𝑁) tensor rank 𝑅 and its corresponding multi-linear rank

X<𝑛> ∈ R𝐼1𝐼2···𝐼𝑛×𝐼𝑛+1···𝐼𝑁 mode-(1, . . . , 𝑛) matricization of X ∈ R𝐼1×𝐼2×···×𝐼𝑁

X(:, 𝑖2, 𝑖3, . . . , 𝑖𝑁) ∈ R𝐼1 mode-1 fiber of a tensor X obtained by fixing all indices
but one (a vector)

X(:, :, 𝑖3, . . . , 𝑖𝑁) ∈ R𝐼1×𝐼2 slice (matrix) of a tensor X obtained by fixing all indices
but two

X(:, :, :, 𝑖4, . . . , 𝑖𝑁) sub-tensor of X, obtained by fixing several indices

< X,Y > inner product of two tensor X and Y with same size

X×𝑛 A mode-n product of X ∈ R𝐼1×𝐼2×···×𝐼𝑁 and matrix A ∈
R𝐽×𝐼𝑛

∘ outer product

⊙, ⊗ Khatri–Rao product, Kronecker product

𝑡𝑟(.) trace of a square matrix

𝑑𝑖𝑎𝑔(.) diagonal matrix
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Figure 1-2: Slices from a 3rd order tensor [6]

where

circ (X) =

⎡⎢⎢⎢⎢⎢⎢⎣
X(:, :, 1) X(:, :, 𝐼3) · · · X(:, :, 2)

X(:, :, 2) X(:, :, 1) · · · X(:, :, 3)
...

... . . . ...

X(:, :, 𝐼3) X(:, :, 𝐼3 − 1) · · · X(:, :, 1)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and

unfold(Y) =

⎡⎢⎢⎢⎢⎢⎢⎣
Y(:, :, 1)

Y(:, :, 2)
...

Y(:, :, 𝐼3)

⎤⎥⎥⎥⎥⎥⎥⎦ , Y = fold (unfold (Y)) .

It can be seen that the t-product operation (1.1) is equivalent to the circular con-

volution operator, and can therefore be easily computed through the Fast Fourier

Transform (FFT). To be precise, all tubes from the two tensors X, Y are trans-

formed into the frequency domain, then the frontal slices of the spectral tensors

are multiplied. we then apply the Inverse Fast Fourier Transform (IFFT) to all the

tubes in the last tensor. The t-product can also be written in the Fourier domain

as follows:

C = X *Y ≡ ̂︀C = ̂︀X̂︀Y, (1.2)
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where ̂︀X, ̂︀Y and ̂︀C are block diagonal matrices defined as follows:

̂︀X = 𝑏𝑑𝑖𝑎𝑔(̂︀X) =

⎡⎢⎢⎢⎢⎢⎢⎣
̂︀X(1) 0̂︀X(2)

. . .

0 ̂︀X(𝐼3)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where ̂︀X(1) is the a matrix computed by applying the fast Fourier transform. The

operator 𝑏𝑑𝑖𝑎𝑔(.) maps the tensor ̂︀X to the block diagonal matrix ̂︀X. The procedure

for t-product in the Fourier domain is summarized in Algorithm 1. The Matlab

function fft (X, 𝑁,𝐷𝐼𝑀) is used in computing fast Fourier transform across the

dimension DIM. Where DIM represents the dimension to perform the transform

and N is the N-point fft where N can be fixed as the length of the data. The inverse

Fourier transform is obtained using ifft
(︁̂︀X, 𝑁,𝐷𝐼𝑀

)︁
. The command fft (X, [], 3)

applies the fft operation across the frontal slice of X.

Algorithm 1: t-product in the Fourier domain [25]
Input : Two data tensors X ∈ R𝐼1×𝐼2×𝐼3 , Y ∈ R𝐼2×𝐼4×𝐼3

Output: t-product C = X *Y ∈ R𝐼1×𝐼4×𝐼3

1 ̂︀X = fft (X, [], 3)

2 ̂︀Y = fft (Y, [], 3)
3 for 𝑖 = 1, 2, . . . , 𝐼3 do
4 ̂︀C (:, :, 𝑖) = ̂︀X (:, :, 𝑖) ̂︀Y (:, :, 𝑖)
5 end

6 C = ifft
(︁̂︀C, [], 3

)︁

Definition 2. (Transpose) The conjugate transpose of tensor X ∈ R𝐼1×𝐼2×𝐼3 is

denoted by X𝑇 ∈ R𝐼2×𝐼1×𝐼3 . It is obtained by applying transpose to all the frontal

slices and then reversing the order of the transposed frontal slices from the second

through to the last frontal slice.

Definition 3. (Identity tensor) An identity tensor I ∈ R𝐼1×𝐼1×𝐼3 is a tensor with

first frontal slice being an identity matrix of size 𝐼1 × 𝐼1, and all other frontal slices

being equal to zero.
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Definition 4. (Orthogonal tensor) A tensor X ∈ R𝐼1×𝐼1×𝐼3 is orthogonal if X𝑇 *X =

X *X𝑇 = I is satisfied.

Definition 5. (f-diagonal tensor) An f-diagonal tensor is a tensor with all of its

frontal slices being diagonal.

Definition 6. (t-SVD) A tensor X ∈ R𝐼1×𝐼2×𝐼3 , can be decomposed as

X = U * S *V𝑇 ,

where U ∈ R𝐼1×𝐼1×𝐼3 , V ∈ R𝐼2×𝐼2×𝐼3 are orthogonal tensors, and tensor S ∈ R𝐼1×𝐼2×𝐼3

is f-diagonal.

Algorithm 2: t-SVD [26]
Input : A data tensor X ∈ R𝐼1×𝐼2×𝐼3 and target tubal rank 𝑅
Output: U𝑅 ∈ R𝐼1×𝑅×𝐼3 , S𝑅 ∈ R𝑅×𝑅×𝐼3 , V𝑅 ∈ R𝐼2×𝑅×𝐼3

1 ̂︀X = fft (X, [], 3)
2 for 𝑖 = 1, 2, . . . , 𝐼3 do
3 [U,S,V] = svd

(︁̂︀X(:, :, 𝑖), 𝑅
)︁

4 ̂︀U (:, :, 𝑖) = U

5 ̂︀S (:, :, 𝑖) = S

6 ̂︀V (:, :, 𝑖) = V

7 end

8 U = ifft
(︁̂︀U, [], 3

)︁
, S = ifft

(︁̂︀S, [], 3)︁ , V = ifft
(︁̂︀V, [], 3

)︁

The t-SVD can be obtained using the SVD of frontal slices of the original data

tensor in the Fourier domain. The algorithm for computing the t-SVD for tensors

is outlined in Algorithm 2. So, for the t-SVD of X, we have:

̂︀X(𝑖) = ̂︀U(𝑖) * ̂︀S(𝑖) * (̂︀V(𝑖))𝑇 , 𝑖 = 1, 2, . . . , 𝐼3 , (1.3)

where ̂︀X(𝑖) is the 𝑖-th frontal slice of the tensor X in the Fourier domain, i.e.,̂︀X(𝑖) = ̂︀X(:, :, 𝑖).

Definition 7. (tensor tubal rank and tensor nuclear norm) [27] The tensor tubal

rank of a third order tensor X ∈ R𝐼1×𝐼2×𝐼3 is defined as the maximum rank among
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all frontal slices of an f-diagonal tensor S, i.e., max 𝑟𝑎𝑛𝑘(S(𝑖)). It is the number of

non-zero tubes of S, where S is from the t-SVD of X = U * S *V𝑇

Additionally, the tensor nuclear norm ‖X‖* is defined as the sum of the singular

values in all frontal slices of S, i.e.,

‖X‖* = 𝑡𝑟(S) =

𝐼3∑︁
𝑖=1

𝑡𝑟(S(𝑖)) , (1.4)

where S(𝑖) are defined in (1.3).

It is shown in [27] that the trace of tensor product (X *Y) equals to the trace

of the product of ̂︀X(1) and ̂︀Y(1),that is

𝑡𝑟(X *Y) = 𝑡𝑟(̂︀X(1) ̂︀Y(1)) . (1.5)

Therefore, we can conclude as shown in [27] that the tensor nuclear norm defined in

(1.4) can be simplified as

‖X‖* = 𝑡𝑟(S) = 𝑡𝑟(̂︀S(1)) =
⃦⃦⃦

(̂︀X(1))
⃦⃦⃦
*
. (1.6)

The work by [28] proposed the tubal nuclear norm minimization approach based on

t-SVD and defined as the sum of nuclear norms of all frontal slices in the Fourier

domain and proved to be convex envelope to the tensor tubal rank.

Definition 8. (Multi-rank) A multi-rank is a vector [𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑛] where 𝑠𝑖 is

the rank of X(:, :, 𝑖).

Definition 9. (Tensor singular value thresholding) The singular value thresholding

(SVT) [27] operator D𝛽(.) is performed on each frontal slice of the f-diagonal tensor̂︀S. That is,

D𝛽(X) = U *D𝛽(S) *V𝑇 , (1.7)

where D𝛽(S) is the inverse FFT of D𝛽(̂︀S) and D𝛽(̂︀S(𝑖)
) = 𝑑𝑖𝑎𝑔(𝑚𝑎𝑥{𝜎𝑡−𝛽, 0}1≤𝑡≤𝑅), 𝑖 =

1, . . . , 𝐼3, 𝛽 > 0 and 𝑅 is the rank of ̂︀S(𝑖).
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1.4 Problem Statement

With the increasing number of information processing tasks, experts seek to re-

cover signals of interest from incomplete or highly corrupted data. The problem of

corruption commonly arises in computational imaging, computer vision, and other

fields when either large parts of the data get corrupted or could not be captured due

to some constraints. In this regard, compressive sensing, machine learning, neural

networks and other related areas have raised and addressed fundamental questions

concerning the amount and the content of data that are sufficient for signal recovery

[29, 30, 31, 32]. Despite a lot of recent progress, there are still certain challenges

with visual representation of the resultant data. This work focuses specifically on the

tensor completion approach for solving the problem of incomplete data. Tensor fac-

torization/decomposition has evolved into a powerful tool for multidimensional data

representation and analysis. Low rank tensor factorization is seen as a higher order

generalization of low-rank matrix factorization, both of which have been used for

image and video representation and reconstruction from compressive measurements.

Tensor completion uses the techniques of tensor factorization in estimating missing

pixels from incomplete or noisy data with the help other optimization methods and

constraints to achieve a complete data useful for specific data analysis. Most tensor

completion methods, exploit some a priori information in order to impose specific

constraints such as smoothness, nonnegativity and sparsity. Some real-world data

are often naturally non-negative, examples are images or medical data. In such

cases, non-negativity constraints are added to the method in order to increase inter-

pretability and uniqueness of tensor decomposition solutions. Moreover, in addition

to noise, many datasets contain instances of data that are highly inconsistent, re-

ferred to as outliers in data distribution. The robust PCA techniques [33, 34] can

be used to remove the effect of outliers and make the decomposition method more

robust by separating the approximation tensor into low-rank tensor plus very sparse

tensors to capture the different outlier patterns. The tensor completion problem

can be solved by the minimization of a suitable cost or objective function. The

minimization can be subject to some constraints and regularization terms. The task
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of tensor completion is solved by completing an 𝑁 𝑡ℎ-order tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁

from its known entries given by a specific index set. In general, the problem is solved

by minimizing the following optimization problem [35, 36]

min
X

𝑓(X),

𝑠.𝑡.PΩ(X) = PΩ(Y),
(1.8)

where X is the estimated recovered tensor with full entries and Y ∈ R𝐼1×𝐼2×···×𝐼𝑁

is the observed incomplete data with observation index tensor Ω ∈ R𝐼1×𝐼2×···×𝐼𝑁 ,

defined as:

Ω(𝑖1, 𝑖2, . . . , 𝑖𝑁) =

⎧⎨⎩ 1 if 𝑥𝑖1,𝑖2,...,𝑖𝑁 is known,

0 if 𝑥𝑖1,𝑖2,...,𝑖𝑁 is unknown,

then the complement becomes:

Ω⊥(𝑖1, 𝑖2, . . . , 𝑖𝑁) =

⎧⎨⎩ 0 if 𝑥𝑖1,𝑖2,...,𝑖𝑁 is known,

1 if 𝑥𝑖1,𝑖2,...,𝑖𝑁 is unknown.

The operator PΩ (X) projects the data tensor X onto the observation index tensor

Ω and is defined as

PΩ (X) =

⎧⎨⎩ 𝑥𝑖1,𝑖2,...,𝑖𝑁 (𝑖1, 𝑖2, . . . , 𝑖𝑁) ∈ Ω,

0 Otherwise.

The function 𝑓(.) is a scalar cost function, with (prior) structural assumptions,

Figure 1-3: An illustration of tensor completion [7]
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and in general non-convex and non-differentiable. For noisy and insistent tensor

data, it is often more convenient to consider ”inexact” tensor completion, which

can be formulated, in general, as the following optimization problem (for detailed

information see [35]):

min
X

𝑓(X) + 𝜆
2
‖PΩ(X−Y)‖2𝐹 , (1.9)

where 𝜆 > 0 is penalty parameter which is difficult to determine. In general, the

task of tensor completion can be termed as an incorrectly defined problem because it

can have multiple solutions. For example, a simple trivial solution can be obtained

in a such way that all values of the recovered data tensor X equal to those in Y, in

nonzero positions of the index tensor Ω and in zero positions are generated as zero-

mean random noise. To overcome this problem, we need some prior assumptions.

The key and very popular assumption is the low-rank tensor assumption. In general,

we can formulate the following minimum tensor rank optimization problem:

min
X

𝑟𝑎𝑛𝑘 (X),

𝑠.𝑡. PΩ(X) = PΩ(Y).
(1.10)

Here, the rank of the tensor could have different definitions and forms depending on

the type of decomposition being used. Also, determining the rank of a tensor is an

NP hard problem [37], and various alternatives for tensor rank have been proposed

in the open literature [38, 39, 30, 13]. In [38], a weighted summation of nuclear

norms of mode-𝑛 matricized versions of tensor, called the Tucker norm, was used as

an alternative for tensor rank. The nuclear norm of canonical matricized versions

of a tensor, called tensor train rank, was used as an alternative to tensor rank in

[39]. Using tensor train rank instead of the Tucker rank, results in a more balanced

matrices and consequently better completion algorithm. The work by [30], exploited

𝑛-rank of data tensor for tensor completion. In addition, the rank of a tensor can be

replaced by the rank of its core tensors derived from the decomposition. Minimizing

the summation of nuclear norms of matricized versions of core tensors was proposed

in [13]. Another alternative called latent low rank has been also used in [40]. The
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Low Rank Tensor Completion (LRTC) model for the multi-linear (Tucker) rank can

be formulated as follows:

min
X(𝑛)

𝑁∑︀
𝑛=1

𝛼𝑛𝑟𝑎𝑛𝑘 (X(𝑛)),

𝑠.𝑡. PΩ(X) = PΩ(Y),

(1.11)

where 𝛼𝑛 are nonnegative weights for rank (X(𝑛)) obtained by matricization of the

data tensor along one single mode. For easier optimization, the rank minimization

is usually relaxed to the following nuclear-norm minimization :

min
{X}

𝑁∑︀
𝑛=1

𝛼𝑛

⃦⃦
X(𝑛)

⃦⃦
*,

𝑠.𝑡. PΩ(X) = PΩ(Y),

(1.12)

where ‖.‖* denotes the nuclear norm regularization in the form of a sum of the

singular values of the matrix. That is:

‖X‖* =

𝑚𝑖𝑛(𝐼1,𝐼2)∑︁
𝑖=1

𝜎𝑖.

For the TT ranks with more balanced unfolded matrices, the LRTC model is

formulated as

min
{X}

𝑁∑︀
𝑛=1

𝛼𝑛‖X<𝑛>‖*,

𝑠.𝑡. PΩ(X) = PΩ(Y).

(1.13)

Despite the fact that these unfolding matrices cannot be optimized independently

due to their multi-linear correlations, this convex relaxation allows us to solve the

completion problem without pre-defining the tensor rank, which makes it more

tractable in practice. In the case of Gaussian noise, an equivalent problem could be

written as

arg min
X

𝜆

2
‖PΩ (X−Y)‖2

𝐹
+

𝑁∑︁
𝑛=1

𝛼𝑛‖X(𝑛)‖* , (1.14)

where the operator PΩ (.) projects the observation index tensor Ω unto the estimated

tensor.

A more popular approach for solving the above problem is to apply splitting
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method [30, 41, 38, 42], example, Alternating Direction Method of Multipliers

(ADMM). Based on ADMM method, the completion problem defined in Equation

1.14 could be reformulated by introducing auxiliary matrices Z(𝑛), 𝑛 = 1, ..., 𝑁 as

arg minX
𝜆
2
‖PΩ (X−Y)‖2

𝐹
+

𝑁∑︀
𝑛=1

𝛼𝑛‖Z(𝑛)‖*,

𝑠.𝑡 Z(𝑛) = X(𝑛), 𝑛 = 1, . . . , 𝑁.

(1.15)

An augmented Lagrangian objective function from the above equation could be

derived as

ℒ𝑛 = 𝜆
2
‖PΩ (X−Y) ‖2𝐹 +

𝑛∑︀
𝑛=1

(𝛼𝑛 ‖Z𝑛‖+ ⟨Y𝑛,Z𝑛 −X𝑛⟩+ 𝜇
2
‖Z𝑛 −X(𝑛)‖2𝐹 ),

(1.16)

where Y(𝑛) are the Lagrange multipliers, 𝜇 > 0 is a penalty parameter. Using the

ADMM, the update scheme for Z𝑛 and Y𝑛 could be iteratively updated as follows

Z𝑛 ← D𝛽

(︀
X𝑘−1

𝑛 + Y𝑛

𝜆

)︀
,

X𝑛 ←
(︀
Z𝑛 − 1

𝜆
Y𝑘−1

)︀
Ω⊥ ,

Y𝑛 ← Y𝑛 + 𝜇
(︀
Zn −X𝑛

)︀
.

(1.17)

These solutions run until a stopping criterion is reached. 𝛽 > 0 is constant and

D𝛽(.) is the matrix singular value thresholding operation achieved by computing

the singular value decomposition of a matrix X:

D𝛽(X) = UD𝛽(S)V𝑇 ,

where U represent the right singular vectors and and V represent the left singular

vectors. A popular soft thresholding operator as follows

D𝛽(𝑥) = 𝑠𝑔𝑛(𝑥)𝑚𝑎𝑥(|𝑥| − 𝛽, 0).

Various optimization methods based on minimizing the multilinear (Tucker)

norm were proposed in [38], including Simple Low Rank Tensor Completion (SiL-

RTC), which employs relaxation between different matrices resulted from the matri-
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cization of different modes of the tensor. Another algorithm is called Fast Low-Rank

Tensor Completion (FaLRTC), which uses a smoothing scheme for smoothing non-

smooth cost function. Finally, the third algorithm, High accuracy Low-Rank Tensor

Completion (HaLRTC), uses the ADMM described above for minimizing the nuclear

norms of unfolding matrices. Recently, several algorithms based on minimizing a

tensor train rank have been proposed in [39]. The first algorithm, called SiLRTC-

TT, is similar to SiLRTC whereby tensor train rank has been used instead of Tucker

rank. Another approach is based on parallel matrix factorization of the canonical

matricized version of the tensor, referred to as the TMac-TT, has been also proposed

in [39]. The minimization of tensor train rank, in addition to the sparsity assump-

tion of mode-n matricized version of the tensor, has been used in [43]. In this thesis,

it is assumed that the missing elements may be distributed both randomly and

structurally (i.e., the whole blocks or tubes can be missing). In tensor decompo-

sition based algorithms, an incomplete tensor is decomposed to its latent variables

and then the reconstructed tensor and consequently the missing elements are esti-

mated using these latent variables [29, 44, 45, 13, 46, 47, 48]. In these approaches,

it is typically assumed that the ranks of latent variables (core tensors and factor

matrices) are known in advance. A large variety of tensor completion algorithms

based on different tensor decomposition models have been proposed. Particularly, in

[29], an approach based on CANDECOMP/PARAFAC (CP) decomposition, called

CP Weighted OPTimization (CP-WOPT) was proposed which has been recently

extended for TT and TR models. A very efficient Smoothed PARAFAC Decompo-

sition (PD) method called Smooth PARAFAC tensor Completion (SPC), was also

proposed for CPD tensor completion in [49], where the ranks of latent variables

can be estimated during the completion procedure. In [47], the Bayesian Tucker

decomposition model was used for tensor completion with automatic estimation of

multilinear rank. On the other hand, tensor decomposition based on tensor ring and

tensor train are promising approaches for large scale and high-order tensor comple-

tion [46, 43, 32, 50, 51, 52]. The main motivation for using tensor train and tensor

ring decomposition rather than other decomposition approaches lies with the fact

that determining CP rank of a tensor is NP-hard. In addition, Tucker decomposi-
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tion suffers from issues related to the curse of dimensionality. In contrast to CP and

Tucker decompositions, the rank of tensor train and tensor ring can be determined

relatively easily through truncated SVD. In addition, the storage costs of tensor

ring and tensor train decompositions change linearly with the tensor dimension [50].

Recently, [43, 32, 13, 40] have developed several new algorithms, including Tensor

Train Weighted OPTimization (TT-WOPT) and Tensor Train Stochastic Gradi-

ent Descent (TT-STD) for tensor completion based on tensor train decomposition.

Furthermore, the approach in [50] applied tensor train decomposition accompanied

by system identification techniques for elegant and efficient tensor completion. In

this approach, the completed tensor was assumed to be the system to be identified.

Several variations of Alternating Least Squares (ALS) algorithms for finding low-

rank approximation of incomplete tensor with TT and TR format were proposed in

[45, 32, 13]. The first algorithm for tensor completion using tensor ring decompo-

sition, called Tensor Ring completion by Alternating Least Squares (TR-ALS) was

proposed in [46]. In [13] an efficient algorithm called Tensor Ring Low-Rank Factors

(TR-LRF) was developed. In this algorithm, the missing elements were estimated

by applying rank minimization to the matrices obtained from the matricization of

the core tensors. The Tensor Ring Weighted OPTimization (TR-WOPT) also has

been developed in [32]. In this algorithm, the core tensors are updated using gradi-

ent based optimization in such a way that the observed elements of the estimated

and incomplete tensors are the same. In tensor completion there are some basic

assumptions that are taken into consideration to make the completion task work.

One of the most important assumptions is the sampling assumption:

• Tensor completion is typically based on the random sampling assumption,

which states that the partially observed entries are drawn at random from the

original tensor. Bernoulli sampling and independent sampling with replace-

ment are two random sampling approaches for tensors. Several other sam-

pling assumptions, such as Gaussian measurements, Fourier measurements,

and Adaptive sampling, are also used for the convenience of theoretical demon-

stration or the practicability in real-world applications.
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1.5 Challenges with MRI and EEG data

Our human bodies communicate health information that indicates the state of our

organs as well as our overall health. This data is collected by devices that measure

various information such as muscle movement, eye blinks, brain activity, heart rate,

blood pressure, and many others [53]. Advancement in medical imaging modali-

ties such as magnetic resonance imaging (MRI), computed tomography (CT), and

positron emission tomography (PET) and ultrasound allows scientist and radiolo-

gists to visualize the functions and underlying structure of the human organs. One

main characteristic of biomedical data is that they are all time series comprising

of both spatial and temporal dimensions. Signal and image processing tasks such

as segmentation of organ structures, classification, image processing or analysis and

Computer Aided Diagnosis (CAD) make use of such data.

Figure 1-4: a. MRI brain image without a skull, b. 3D volumetric MRI brain data

MRI is a medical imaging technology that uses radio waves and a magnetic field

to create detailed images of organs and tissues [54, 55]. It is a non-invasive technique,

which provides good soft tissue contrast and is widely available in clinics. MRI has

proven to be highly effective in diagnosing a number of conditions by showing the

difference between normal and diseased soft tissues of the body. The MRI scan is

more comfortable than any other scans for diagnosis [56, 57]. However, MRI just like

the other biomedical signal is also susceptible to noise due to different acquisition

techniques and movement of patient [58]. Figure 1-4 shows a volumetric illustration

of MRI of the brain whiles Figure 1-5 depicts the various views of an MRI data.

EEG (Electroencephalogram) data represents electrical activities of the brain
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Figure 1-5: 3D Brain MRI with the three different views

that is recorded by placing several electrodes on a scalp. The signals provide the

means of understanding the brain and how it works. EEG’s are used extensively

in neuro-science, cognitive science, psycho-physiological research and other medical

fields. They can be used within a wide range of applications mostly in Brain Com-

puter Interface (BCI) applications [59, 60]. As mentioned for MRI data, the main

issue that affects the performance of such applications is the quality of the recorded

EEG signal. Figure 1-6 illustrates a single channel EEG data divided into epochs

for analysis and a multi-channel EEG data. Noisy Artifacts produced during the

recording of the EEG signal impact directly on the quality of the acquired neural

signal. Many methods have been proposed to remove artifacts from EEG recordings

using different techniques [61, 62, 63, 64, 65, 66, 11, 67, 68]. The performance of

BCI applications is dependent on the quality of the EEG signals. Refer to Figure

1-7 for visual illustration of EEG signal with EOG (eye movement) artifacts and its

ground-truth.

A major issue with medical data is that it needs rigorous pre-processing before
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(a) A typical single channel EEG data

(b) A multi-channel EEG data

Figure 1-6: EEG data

they can be used for any analysis and prediction work. Secondly, the artifacts in

this type of data are independent since they have completely different generating

mechanism and therefore requires different methods for tackling them [69]. Lastly,

recording EEG or MRI data is expensive therefore discarding the whole data after

some noise introduction is not an option [11]. As a result, there is a need to keep or

preserve the available data and find ways of improving the data. Methods such as

PCA (principal components analysis) and (ICA) independent component analysis

[14, 70, 71, 72, 69, 73] have been proven to be successful in the recovering of such

data without artifacts. However, there is no theoretical or experimental evidence

that ICA or PCA are the only correct concept for extracting brain sources or isolating

brain networks [74]. Figure 1-8 presents ICA sources recovered from multi-channel

EEG data with artifacts.
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Figure 1-7: EEG data with artifact and its ground-truth data

Figure 1-8: EEG data reconstruction using ICA

1.6 Challenges with completing Biomedical signals

Many algorithms [75, 76, 77, 64, 78, 79, 80, 11, 81, 82] have been developed to

solve biomedical signals and its associated problems. Algorithms implementing ma-

trix and tensor decomposition [26, 75, 83, 76, 11] have been recently proposed to
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complete and recover these data from the original noisy input data. Some of these

methods are based on low-rank matrix and tensor decomposition algorithms for the

task of completing the missing pieces in the data [74, 75, 32, 13, 84, 85, 51, 86, 87].

For a comprehensive overview of such algorithms, refer to [24, 88, 89, 36, 90]. The

major issue with completing medical data and time series data in general is the

technicality in the structure of the data and the fact the there is no one method to

fix all the problems [61, 91, 11, 92]. Most methods used in biomedical data recon-

struction are tailored towards one type of data, mainly because of dimensionality

issues and also MRI and biomedical data are different owing to their acquisition

process. Different MRI data such as fMRI, dynamic weighted MRI, cardiac MRI,

breast scans, require different techniques, data components and hyper-parameter

tuning for reconstruction. In addition, due to dimensionality issues with biomedical

data, it is very difficult to analyze the whole data. The memory capacity required

to process such data becomes prohibitively expensive for most matrix and tensor

completion methods [29, 93, 24]. Furthermore, some tensor decomposition tech-

niques such as Tucker, TT and TR do not have unique solutions [86, 94]. There

is therefore the need to find appropriate regularization to the optimization func-

tions before reconstruction. Because the matrix and tensor completion problem is

ill-conditioned there is always the task of finding appropriate constraints that work

well for a particular data type [95, 96]. Constraints such as nonnegativity, sparse-

ness, smoothness, decorrelation, statistical independence, etc have been adopted in

various factorization models to improve the performance of the reconstruction pro-

cess. Some methods also assume that all artifacts are very similar during a given

recording session, which is an unrealistic assumption for artifacts caused by move-

ments of the subject. Because this assumption does not hold completely, it becomes

challenging to remove other artifacts in cases in which the regularity assumption is

violated [97]. Also most matrix completion and reconstruction methods require the

data to be reshaped into a long or tiny vector/Matrix, this process may undermine

the natural spatial structure of MRI data [49, 22]. Solving these tasks efficiently

can have enormous positive impact in neuro-imaging and neuro-physiological data

for medicine and treatment of patients with physiological illness.
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1.7 Related works

Various methods has been implemented for matrix and tensor completion using

several optimization techniques. Lu et al . [98, 99] applies the Alternating Direc-

tion Method of Multipliers (ADMM) [41] as a solver for linearly constrained con-

vex problems with separable objectives. They present the unified frameworks and

convergence analysis using Gauss-Seidel ADMMs and Jacobian ADMMs. These

frameworks tackle the objective function by minimizing their separable majorant

surrogates to solve problems with non-separable objectives. ADMM is effective in

dealing with large-scale problems and solve optimization problems that have mul-

tiple nonsmooth terms in the objective [100]. One of the early and popular works

using tensor unfolding and applying nuclear norm to the resultant matrices was [100].

They extended the matrix nuclear norm to the tensor case in their simple SiLRTC,

FaLRTC, HaLRTC algorithms. The HaLRTC algorithm used the ADMM optimiza-

tion model for the completion task. The solution for HaLRTC can be accelerated

depending on the hyper-parameters used.

The limitations with choosing the best rank number for completion introduced

the methods that employed automatic rank selections and rank increments. A rank

increment method is characterized by the fact that the tensor should be initialized

with a lower rank approximation than its target rank [9]. A typical Canonical

Polyadic Decomposition(CPD) with a rank too small will not be able to fit the data

well whereas the big rank number may also result in over-fitting. Finding a way

around this issue, Yokota et al . [49] adopts a Canonical Polyadic (CP) completion

model with smoothness constraints on latent features for time series data. The

smoothness constraint increases the minimum number of rank components although

the variability and flexibility of the approximation model is decreased. This makes

it hard to determine the upper bound of the tensor rank of the original tensor.

Therefore a rank increment strategy is further used which allow to find optimal rank.

The approach however, has difficulty is obtaining theoretical results on convergence

which makes it difficult to analyse the model. This problem is attributed to the unit-

norm constraint imposed on the model. On the same rank increment idea, the Tucker

38



Chapter 1. Introduction and Problem Statement

decomposition for missing slices method [9] introduces a rank increment strategy on

the factor matrices during the optimization process. This method provides a good

solution for the completion of time series data. Rather than using the ADMM

method, the Alternating Least Squares (ALS) optimization algorithm [95, 101] is

used to improve the convergence characteristics during the optimization process.

This strategy addresses the non-uniqueness of a solution for a particular tensor.

Therefore, the effectiveness of the completion is dependent on the rank initialization.

Following this and using the ALS optimization, the work in [52] implements a rank

selection method using TR decomposition. The approach is known to find relatively

close ranks for the core tensors automatically by gradually increasing the ranks in

each iteration based on approximation error on each of the core tensors. The method

has relatively lower storage costs and is particularly useful for tensors with inexact

TT or TR structures. On the downside, one of the challenge with incremental

strategies apart from the choice of rank update rules is how to append new entries

to the core tensor at each iteration as the rank increases. Initializing new entries

with zero does not affect the rank of the tensor which leaves the current estimate

at a local minima. On the other hand appending arbitrary non-zero entries may

destroy the similarity between the original and the factors computed at the previous

iteration. To solve this an optimized procedure that updates the core tensors with

vectors that belong to the null space of the current image estimate to provide a

robust reconstruction is proposed in [102]. A TT and rank optimization approach

by Bengua et al . [39] implements a nuclear norm minimization and multilinear

matrix factorization based on SiLRTC [38]. The models referred to as SiLRTC-TT

and tensor completion by parallel matrix factorization via Tensor Train (TMac-

TT) makes it convenient to capture hidden information from tensors. However the

method is based on the Block Coordinate Descent (BCD) algorithm to alternatively

optimize a group of variables in the data. Experimenting on applying weights to

tensor cores, the TT-WOPT [103] and TR-WOPT [32] for high dimension tensors

applies the gradient-based optimization method to finding the optimal latent core

tensors from the observed tensor data and recover the missing entries. The upside of

using the weights in the optimization stage is that it helps in minimizing the distance
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between weighted real data and weighted optimization objective. Nevertheless, the

algorithms are sensitive to the setting of ranks so they use the same rank value for

all their experiments. Also if the data is too large with high missing rate TT-WOPT

has high computational cost and is not able to effectively recover missing entries.

The idea of sparseness in data and its advantage to completion has also been

exploited by researchers for various tensor decomposition techniques [47, 104, 105].

The Sparse Tensor train Optimization (STTO) by Yuan et al . [43] uses their TT-

WOPT method but with the introduction of sparse constraint on the incomplete

data and is solved via gradient descent algorithm. The method works well if the

data is transformed into a higher order form.

The use of Riemannian optimization techniques for low rank tensor completion

has recently been adopted [106, 107, 108, 109]. The methods have been implemented

using various tensor decomposition approach such as Tucker, CP and recently tensor

ring decomposition. The method by [110] implements the tensor ring completion

using pre-conditioning approach. Other method where a pre-conditioning with rank

constraints achieves great performance for missing values in data has also been

implemented that exploits the fundamental structures of symmetry, due to non-

uniquenes of most tensor decompistion methods [111]. A new Riemannian metric

or inner product is proposed that exploits the least-squares structure of the cost

function and accounts for the structured symmetry present in the Tucker decompo-

sition optimization criterion. Optimization methods such as gradient descent and

conjugate gradient descent for solving the underlying data are used in these mod-

els. The frameworks proposed are computationally efficient for recovering missing

data. However, the limitation in most of these methods is the time need to perform

such operations and in some cases results are not comparable to other completion

techniques.

The most pioneering work in recovering missing pixels using the Hankel folding

technique is ALOHA [112], which has achieved desirable visual results in natural

images. However, the patch-by-patch approach used in ALOHA simply treats each

Hankel matrix independently, focusing only on local intra-patch information while

failing to capture global inter-patch information. [113, 9] proposed the multi-way
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delay-embedding transform (MDT) algorithm, which mathematically shifts the en-

tire rows or columns of pixels into a much higher order tensor with Hankel structure.

The MDT approach is again adopted for time series forecasting by representing the

data as low-rank block Hankel tensors (BHT) [114] and incorporating the Auto-

regressive Integrated Moving Average (ARIMA) method for prediction. Wang et

al. [115] applies the delay embedding to traffic data for traffic state estimation

using sparse mobile sensor data. The Truncated nuclear norm (TNN) minimiza-

tion technique is used with ADMM algorithm for solving such problem. Because

of the Hankel nature of the input data, the size of the resulting tensor is much

larger than the original, necessitating a large amount of storage memory, high com-

putational cost for real time applications and preventing MDT from being used on

ordinary PCs or laptops. A fast MDT approach [116] which uses circulant matrices

for the computation of the MDT approximation is introduced to resolve the high

computational cost problem. The works by Sedighin et al. [51] and Zheng et al.

[117] extends the MDT method and incorporates the patch-by-patch Hankelization

to the TC problem. The methods uses the ALS algorithm with TT and TR de-

composition respectively. However, the algorithm focuses much on local intra-patch

information. Furthermore, because each patch is treated independently, determining

the subspace dimensions for tensor decomposition methods is difficult. Xu et al .

[118] introduced clustering into the Hankelization game/scene by applying k-means

clustering to 3D hankelized patches. The method known as Hankel tensor induced

fast TNN (HFTNN), uses a randomized tensor SVD algorithm to recover the un-

derlying missing data. As common to most Hankel methods, the computation cost

is sacrificed and the method requires a pre-defined ranks. The computational cost

of this algorithm is high because the input data is too large data and the data has

to be transformed with specific kernel/window size to obtain good results.

Amid the various schemes for removing noise in EEG and MRI data, wavelet-

based denoising techniques [71, 72, 119, 120, 121], blind source separation techniques

(ICA, PCA and Non-negative Matrix Factorization) [122, 123, 18, 70, 124, 69, 73]

and Machine learning approaches [125, 126] takes the central place in the signal

processing field. ICA helps to optimize an objective function that approximates
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independent component measures. EEG data recorded at multiple scalp sensors are

linear sums of temporally independent components that arise from spatially fixed,

distinct, or overlapping brain areas where propagation time delays are negligible,

making ICA useful for blind source separation of EEG. Furthermore, the artifacts

and EEG are distinct because they are generated by entirely different mechanisms

[69]. Nevertheless, with ICA and its associated methods there is still a limited

understanding of how the uncertainty in the variables affects the reconstructed EEG

signal after the artifact components have been removed [127]. In recent times,

tensor decomposition algorithms have also been adopted for removal and completion

of EEG data [75, 26, 83, 76, 11]. These methods have proven to be effective in

obtaining a low rank approximation of the data while still removing the unwanted

parts. Though most of these methods are sensitive to rank selection and data missing

ratio.

The idea for applying low rank tensor approximation for reconstructing MRI

Diffusion weighted images with motion artifacts have been exploited by many re-

searchers [128, 129, 130, 131, 132, 133]. The methods by [134, 135, 136, 137] uses a

Hankel approach they term "Lifting" to generate higher order k-space sampled data

and then applies low rank matrix completion for the task of reconstructing the MRI

images from the under-sampled k-space data.

Deep learning approaches [138, 139, 140, 141, 142, 85, 143] for tensor comple-

tion and image reconstruction has also been vigorously investigated because of their

strong ability to produce natural visual images from similar contextual samples. The

works by [141] termed Deep Image Prior (DIP) uses an unsupervised learning ap-

proach for in-painting and other image reconstruction task. The network is able to

take a noise input and perform completion using the noisy and incomplete data as a

prior for optimization. The Manifold Modelling in Embedded Space (MMES) [143]

method provided an interpretation to the DIP and convolutions where Hankelized

image patches were used to optimize an auto-encoder network for reconstruction of

incomplete noisy data. Diffusion weighted image reconstruction using Deep Learning

approaches [144, 145] have also been investigated by [146, 147]. The model termed

MoDL-MUSSELS is a generalized framework based on the existing MUSSELS algo-
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rithm [137] that is implemented for correcting of phase errors in multi-shot diffusion

weighted echo-planar MR images. However, while deep learning-based methods have

achieved impressive results on complex occasions, they have their own limitations.

On the one hand, updating network parameters requires a significant amount of

time, and the hardware requirements are relatively high, limiting their widespread

use in simple image processing tasks. The performance of most deep learning-based

methods, on the other hand, is sensitive to the size and proportion of the missing

parts [118].

These models and approaches demonstrate the feasibility and effectiveness of

using various completion techniques to estimate missing data. However, there are

still some challenges and limitations that need to be addressed. For example, most

efficient neural network methods or models employ a deep learning based architec-

ture. As a result, it requires massive amount of images and hardware resources to

train the model. However, there is a shift from heavy computations and resources

to methods that are able to perform reconstruction in a matter of minutes.

The addition of constraints to the optimization problem poses a significant chal-

lenge. Because the use of different constraints introduces new variants of the opti-

mization problem. The question is what constraints to apply in order to produce the

best approximation for the given data and parameters. The majority of constraints

are applied based on assumed observations [36].

Parameterization and determining the best tensor network or structures for most

datasets in order to provide a low-rank approximation of a sufficiently low-order with

a relatively low computational complexity must also be addressed [12, 148].
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Tensor Decomposition Techniques

This section briefly present concepts that are essential for a better grasp of the

material. We recommend the reader to read [6, 24, 12, 88] for a more thorough

introduction to the fundamental of tensors and tensor decomposition methods.

Tensors are generalizations of matrices and therefore treated as multi-dimensional

data [89]. Tensor Decomposition is a generalization of the matrix factorization.

Tensor decomposition factorizes a tensor into a low-rank tensor with the entries

comparable to the original tensor with a minimum rank [24]. There are various

approaches or techniques used to factorise or decompose a tensor. Tensor decom-

Figure 2-1: Tensor decomposition as a sum of rank 1 tensor

position techniques, such as those described in [6, 149, 24, 12], can be used to

approximate low rank data structures while preserving the underlying data and fea-

tures, which has the advantage of saving memory and processing time. The major

factorization methods utilized under tensors are the Tucker [150] decomposition,

the Canonical Polyadic (CP) [151] and Tensor networks (TNs). TNs decompose
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higher-order tensors into sparsely interconnected small-scale low-order core tensors

[152]. Tensor Train (TT) [153] and Tensor Ring (TR) 1 [154, 155, 156, 157] are two

powerful and relatively simple tensor networks representing a higher order tensor

as a train and ring (or chain) of third order core tensors. For a comprehensive

study on tensor networks and applications in physics and machine learning, refer to

[158, 159, 160, 161, 162, 163, 164, 165, 88, 166, 167].

2.1 Canonical Polyadic decomposition (CPD)

The Canonical Polyadic (CP) [151], [168] decomposition is considered as a rank

decomposition where the tensor is decomposed into a sum of rank one tensors.

Canoncial Polyadic/CANDECOMP PARAFAC (CP) was proposed by Hitchcock

[151], the method was rediscovered in 1970 by Carroll et al [168] naming it Canon-

ical Decomposition (CANDECOMP). The paper by Harshman et al [169] called it

PARAllel FACtors (PARAFAC). PCA is expanded to higher-order tensors through

CP decomposition. In actuality, PCA is a matrix-based CP decomposition. Because

it is conceptually straightforward, CP decomposition is an appealing technique. The

CP-rank is defined as smallest/minimum number of rank-1 tensors that generates

the given tensor as their sum. The standard CP factorization is expressed/formal-

ized by:

min
X̂

⃦⃦⃦
X− X̂

⃦⃦⃦
, where X̂ =

𝑅∑︁
𝑟=1

a𝑟 ∘ b𝑟 ∘ · · · ∘ c𝑟 = JA,B,CK (2.1)

where ∘ denotes the outer product of vectors and J. . .K is a shorthand notation of

CP factorization. {A,B,C} are latent factor matrices corresponding to each of N

modes, respectively. Where N is the number of dimensions of the tensor and R

denotes the rank of a tensor. The rank of a tensor X is defined as the smallest

number of rank-one tensors that generate X as their sum [6]. The CP model can be

interpreted as a sum of R rank-one tensors, which is related to the definition of CP

rank that is the smallest integer R for which the equation holds.
1It is also known as Tensor Chain (TC) decomposition.
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However, for CP decomposition the best rank approximation may not exist [6].

Therefore the above minimization problem is generally an ill-posed one. However,

incorporating a coherence constraint in the minimization problem helps to overcome

this ill-posedness [170, 171]. Moreover, the CP decomposition of tensors with order

higher than two, is often unique under mild assumptions, this constitutes one of the

attractive properties of the CP decomposition [24]. Constraints such as orthogo-

nality and non-negativity ensure the existence of the minimum of the optimization

criterion used [172, 173].

Figure 2-2: Graphical Representation of CP Decomposition

2.1.1 ALS algorithm for CP decomposition

A popular approach for computing the CP decomposition of a tensor, is the CP

Alternating Least Squares (ALS) algorithm [168, 169]. This method is very efficient

in many tensor decomposition applications. The main idea of this algorithm is to

fix all factor matrices except for one in order to optimize for the non-fixed matrix,

and then repeat this step for each matrix until some stopping criterion is met.

A← arg min
Â

‖X(1) − Â(C⊙B)𝑇‖

B← arg min
B̂

‖X(2) − B̂(C⊙A)𝑇‖

C← arg min
Ĉ

‖X(3) − Ĉ(B⊙A)𝑇‖

(2.2)
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This minimization problem above can be solved optimally by:

Â = X(1)[(C⊙B)𝑇 ]† = X(1)(C⊙B)(C𝑇C *B𝑇B)†

B̂ = X(2)[(C⊙A)𝑇 ]† = X(2)(C⊙A)(C𝑇C *A𝑇A)†

Ĉ = X(3)[(B⊙A)𝑇 ]† = X(3)(B⊙A)(B𝑇B *A𝑇A)†

(2.3)

The CP-ALS algorithm requires that the rank used for approximation be passed

in as an argument. Furthermore, while the ALS algorithm is simple to understand

and implement, it may require several steps to converge and may fail to converge

to a global optimum. This means that the initialization of the ALS algorithm has

a significant impact on its performance [89]. Algorithm 3 presents a generalization

of the method to the 𝑁 𝑡ℎ order case. Many tensor completion algorithms have been

proposed using CP decomposition. In [29], the CP weighted optimization (CP-

WOPT) is proposed. The tensor completion problem is formulated as a weighted

least squares (WLS) problem and an optimization algorithm is used to find the

optimal CP factors. Another popular algorithm that uses CP decomposition is the

Fully Bayesian CP Factorization (FBCP)[47]. This method employs a Bayesian

probabilistic model to find the optimal CP factors and CP rank simultaneously.

Algorithm 3: CP ALS [6]
Input : A data tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 and ranks [𝑅1, 𝑅2, . . . , 𝑅𝑁 ]
Output: Approximate CP of the tensor X

1 Initialize A(𝑛) ∈ R𝐼×𝑅 for 𝑛 = 1, . . . , 𝑁
2 repeat
3 for 𝑖 = 1, . . . , 𝑁 do
4 Y ← A(1)𝑇A(1) * · · ·A(𝑛−1)𝑇A(𝑛−1) *A(𝑛+1)𝑇A(𝑛+1) * · · · *A(𝑁)𝑇A(𝑁)

5 A(𝑛) ← X(𝑛)
(︀
A(𝑁) ⊙ · · ·A(𝑛+1) ⊙A(𝑛−1) ⊙ · · · ⊙A(1)

)︀
Y†

6 Perform normalization for the columns of A(𝑛)

7 Store norms as 𝜆

8 end
9 until stopping criteria is satisfied

10 return 𝜆,A(1),A(2), . . . ,A(𝑁)
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2.2 Tucker decomposition

Tucker [150] decomposition is a generalized SVD [174] for matrices. It decomposes a

tensor into a core tensor and a set factor matrices which correspond to different core

scaling along each mode of the tensor. Tucker decomposition was also proposed

by Ledyard R.Tucker[150] in 1966. A 3-way Tucker decomposition of a tensor,

X ∈ R𝐼×𝐽×𝐾 is expressed as:

min
X̂

⃦⃦⃦
X− X̂

⃦⃦⃦
where X̂ =

𝑃∑︁
𝑝=1

𝑄∑︁
𝑞=1

𝑅∑︁
𝑟=1

𝑔𝑝𝑞𝑟 a𝑟 ∘ b𝑟 ∘ . . . ∘ c𝑟

= G×1 A×2 B×3 C

= JG;A,B,CK

(2.4)

where G ∈ R𝑃×𝑄×𝑅, A ∈ R𝐼×𝑃 , B ∈ R𝑅×𝑄, C ∈ R𝐾×𝑅 . In Tucker framework, G

is the core tensor, which expresses how and to which extent different tensor elements

interact with each other. The factor matrices A, B, and C are often referred to as

the principal component in the respective tensor mode. The matricized version of

Figure 2-3: Graphical Illustration of Tucker Decomposition

the above tensor is given

X̂(1) = AG(1)(C⊗B)𝑇

X̂(2) = BG(2)(C⊗A)𝑇

X̂(3) = CG(3)(B⊗A)𝑇

(2.5)
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In the general N-way case we get

X̂ =
𝑅1∑︀

𝑟1=1

𝑅2∑︀
𝑟2=1

· · ·
𝑅𝑁∑︀
𝑟𝑛=1

𝑔𝑟1𝑟2···𝑟𝑁 a
(1)
𝑖1𝑟1

a
(2)
𝑖2𝑟2
· · · a(𝑁)

𝑖𝑁𝑟𝑁

= G×1 A
(1) ×2 A

(2) · · · ×𝑁 A(𝑁)

= JG;A(1),A(2), . . . ,A(𝑁)K

X̂(𝑛) = A(𝑛)G(𝑛)

(︀
A(𝑁) ⊗ · · · ⊗A(𝑛+1) ⊗A(𝑛−1) ⊗ · · ·A(1)

)︀𝑇
(2.6)

The introduction of Higher Order SVD (HOSVD) by [175] permits that for a given

tensor X, we can easily find an exact Tucker decomposition of rank (𝑅1, 𝑅2, . . . , 𝑅𝑁)

where 𝑅𝑛 = 𝑟𝑎𝑛𝑘𝑛(X). It is shown that the HOSVD is a generalization of the

matrix SVD. The HOSVD algorithm is able to efficiently compute the leading left

singular vectors of X(𝑛). The decomposition is known as the truncated HOSVD

when 𝑅𝑛 < 𝑟𝑎𝑛𝑘𝑛(X) for one or more n. In fact, the HOSVD’s core tensor is

all-orthogonal, which has implications for truncating the decomposition [6]. The

method ins formalised in Algorithm 4

Algorithm 4: HOSVD [175]
Input : A data tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 and ranks [𝑅1, 𝑅2, . . . , 𝑅𝑁 ]
Output: Approximate HOSVD of the tensor X

1 for 𝑖 = 1, , . . . , 𝑁 do
2 A(𝑛) ← leading left singular vectors of X(𝑛)

3 end
4 G← X×1 A

(1)𝑇 ×2 A
(2)𝑇 · · · ×𝑁 A(𝑁)𝑇

5 return G,A(1),A(2), . . . ,A(𝑁)

An alternative approach to computing the Tucker decomposition provided by

De Lathauwer et. al [176] is the Higher Order Orthogonal Iteration (HOOI). The

HOOI method is basically an ALS algorithm that uses the result of HOSVD on a

tensor as a starting point for initializing the factor matrices. [6]. HOOI uses the

SVD instead of eigen value decomposition for computing only the dominant singular

vectors of X(𝑛). The method is effective when used with truncated HOSVD, since the

successive application of the ALS algorithm allows for more accurate decompositions

[6, 89]. Refer to Algorithm 5 for details.

Tucker decomposition is also a widely used tool for tensor completion. The
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Algorithm 5: HOOI [176]
Input : A data tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 and ranks [𝑅1, 𝑅2, . . . , 𝑅𝑁 ]
Output: Approximate HOOI of the tensor X

1 Initialize factor matrices using HOSVD
2 repeat
3 for 𝑖 = 1, . . . , 𝑁 do
4 Y ← X×1 A

(1)𝑇 · · · ×𝑛−1 A
(𝑛−1)𝑇 ×𝑛+1 A

(𝑛+1)𝑇 · · · ×(𝑁) A
(𝑁)𝑇

5 A(𝑛) ← leading left singular vectors of Y(𝑛)

6 end
7 until stopping criteria is satisfied
8 G← X×1 A

(1)𝑇 ×2 A
(2)𝑇 · · · ×𝑁 A(𝑁)𝑇

9 return G,A(1),A(2), . . . ,A(𝑁)

algorithms by [38] (SiLRTC, FaLRTC, and HaLRTC) extend the nuclear norm reg-

ularization for matrix completion to tensor completion by minimizing the Tucker

rank of the incomplete tensor. A Tucker low-n-rank tensor completion (TLnR) is

proposed in [44] and their experimental results outperforms traditional nuclear norm

minimization methods.

2.3 Tensor Train (TT) decomposition

Tensor networks (TNs) decompose higher-order tensors into sparsely interconnected

small-scale low-order core tensors [152]. Tensor Train (TT) proposed by [153] is

powerful and relatively simple tensor network used to represent a higher order ten-

sor as a train of third order core tensors. The TT decomposition is also known as

Matrix Product State (MPS) in quantum physics [158, 177]. It has several practical

applications in machine learning [163, 178, 179, 180], compressing deep neural net-

works [181, 182, 183], tensor completion [46, 32, 39, 184], and hyperspectral image

super-resolution [185, 186]. The memory storage requirement of this networks scale

linearly with the order of the tensor so they break the curse of dimensionality which

is a main bottleneck in handling high order data tensors [187]. A TT decomposition
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of an 𝑁 𝑡ℎ− order tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 is written as

X (𝑖1, 𝑖2, . . . , 𝑖𝑁) ∼=
∑︀

𝑟1,...,𝑟𝑁−1

G(1) (𝑖1, 𝑟1)G
(2) (𝑟1, 𝑖1, 𝑟2) . . .

G(𝑁−1) (𝑟𝑁−2, 𝑖𝑁−1, 𝑟𝑁−1)G
(𝑁) (𝑟𝑁−1, 𝑖𝑁 , 𝑟0) ,

(2.7)

and the 𝑁 -tuple (1, 𝑟1, . . . , 𝑟𝑁−1, 1) is called TT-ranks. It should be noted that,

G(1) and G(𝑁) are considered as matrices. The element-wise representation of the

data tensor X is represented as

𝑥(𝑖1, 𝑖2, . . . , 𝑖𝑁) = G
(1)
𝑖1
×G

(2)
𝑖2
× · · ·G(𝑁)

𝑖𝑁
∼=

(︃
𝑁∏︁

𝑛=1

G
(𝑛)
(𝑖𝑛)

)︃
, (2.8)

where G
(𝑛)
(𝑖𝑛)
∈ R𝑅𝑛−1×𝑅𝑛 is the 𝑖𝑛-th slice of the core tensor G(𝑛) ∈ R𝑅𝑛−1×𝐼𝑛×𝑅𝑛 .

where for 𝑛 = 1, . . . , 𝑁 , G(𝑛) ∈ R𝑟𝑛−1×𝐼𝑛×𝑟𝑛 and 𝑟0 = 𝑟𝑛 = 1. A shorthand notation

[152] to express the relation between the approximated tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 and

the core tensors is as follows

X ∼=≪ G(1),G(2), . . . ,G(𝑁) ≫

The notation≪ .≫ is the operation that transform the core tensors to the approx-

imated tensor. TT-format uses 𝒪(𝑑𝑛𝑟2) memory to store 𝒪(𝑛𝑑) elements. It should

be taken into account that TT decomposition is most efficient with smaller ranks.

TT decompositon has been applied to the task of tensor completion. The algorithm

by [39] creates a low-TT-rank tensor completion where the nuclear norm regulariza-

tions are imposed on the more balanced unfoldings of the tensor. The assumption

of low-rank imposed on the TT-ranks, improves performance of the method. TT-

ALS is proposed in [188], employs the alternative least squares (ALS) method to find

the TT decomposition factors to solve tensor completion problem. A gradient-based

completion algorithms (TT-WOPT, TT-SGD) discussed in [103, 43, 40],seeks to find

the TT decomposition by gradient descent method and simple cost functions.These

methods are able to recover data with high missing rates.
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2.4 Tensor Ring (TR) decomposition

Tensor Ring decomposition 2 (TR) [154, 155, 156, 157] similar to TT is a tensor

network that represents a higher order tensor as a ring (or chain) of third order core

tensors. The TT can be considered a special case of the TR decomposition. Let

tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 be an 𝑁th- order data. The TR decomposition represents

the data tensor X into a sequence of latent core tensors G(𝑛) ∈ R𝑅𝑛−1×𝐼𝑛×𝑅𝑛 , 𝑛 =

1, 2, . . . , 𝑁 . The element-wise representation of the data tensor X in the TR format

can be expressed as

X(𝑖1, 𝑖2, . . . , 𝑖𝑁) ∼= Tr

(︃
𝑁∏︁

𝑛=1

G(𝑛)(𝑖𝑛)

)︃
, (2.9)

where G(𝑛)(𝑖𝑛) ∈ R𝑅𝑛−1×𝑅𝑛 is the 𝑖𝑛-th lateral slice matrix of the core tensor G(𝑛) ∈

R𝑅𝑛−1×𝐼𝑛×𝑅𝑛 . The expanded form of (2.9) is

X (𝑖1, 𝑖2, . . . , 𝑖𝑁) ∼=
𝑅0∑︀

𝑟0=1

· · ·
𝑅𝑁−1∑︀

𝑟𝑁−1=1

G(1) (𝑟0, 𝑖1, 𝑟1) . . .

G(𝑁) (𝑟𝑁−1, 𝑖𝑁 , 𝑟0) ,

(2.10)

and the 𝑁 -tuple (𝑅0, 𝑅1, . . . , 𝑅𝑁−1) is called TR-ranks. Note that in the TR decom-

position, we have 𝑅0 = 𝑅𝑁 and it is also shown in [157] that the TR-ranks satisfy

𝑅0𝑅𝑛 ≤ rank
(︀
X⟨𝑛⟩

)︀
for 𝑛 = 1, 2, . . . , 𝑁 . As shown for the TT case, the shorthand

notation for the TR decomposition is similarly written as [152]

X ∼=≪ G(1),G(2), . . . ,G(𝑁) ≫.

The TT decomposition is a special case of the TR decomposition for 𝑅0 = 𝑅𝑁 = 1.

This means that the first and last cores in the TT decomposition are matrices and

rest of them are 3𝑟𝑑−order tensors. For graphical illustration of the TT and the

TR decompositions, see Figures 2-4 (a)-(c). For a comprehensive overview on fast

algorithms for TR decomposition, see [3].
2It is also known as Tensor Chain (TC).
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Algorithm 6: TR-SVD algorithm [157].
Input : A tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 , a prescribed tolerance 𝜖, and an initial

rank 𝑅0 as a divisor of rank𝛿

(︀
X⟨1⟩

)︀
Output: Approximate representation of the tensor X in the TR format̂︀X =≪ ̂︀X(1)

, ̂︀X(2)
, . . . , ̂︀X(𝑁)

≫, such that
⃦⃦⃦
X− ̂︀X⃦⃦⃦

𝐹
≤ 𝜀‖X‖𝐹 and

the TR-ranks {𝑅0, 𝑅1, . . . , 𝑅𝑁−1};
1 Compute 𝛿 =

𝜀‖X‖𝐹√
𝑁

;

2 C = reshape
(︁
X,
[︁
𝐼1,

numel(X)
𝐼1

]︁)︁
;

3 [U,S,V] = SVD𝛿 (C);
4 Set 𝑅0𝑅1 = rank (S);

5 ̂︀X(1)
= reshape (U, [𝑅0, 𝐼1, 𝑅1]);

6 C = reshape
(︁
SV𝑇 ,

[︁
𝑅1,
∏︀𝑁

𝑗=2 𝐼𝑗, 𝑅0

]︁)︁
;

7 for 𝑛 = 2, . . . , 𝑁 − 1 do
8 C = reshape

(︁
C,
[︁
𝑅𝑛−1𝐼𝑛,

numel(C)
𝑅𝑛−1𝐼𝑛

]︁)︁
;

9 [U,S,V] = SVD𝛿 (C);
10 𝑅𝑛 = rank (S);

11 ̂︀X(𝑛)
= reshape (U, [𝑅𝑛−1, 𝐼𝑛, 𝑅𝑛]);

12 C = SV𝑇 ;

13 C = reshape
(︁
C,
[︁
𝑅𝑛,

∏︀𝑁
𝑗=𝑛+1 𝐼𝑗, 𝑅0

]︁)︁
14 end

15 ̂︀X(𝑁)
= reshape (C, [𝑅𝑁−1, 𝐼𝑁 , 𝑅0]);
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(a) Tensor train (TT) decomposition (b) Tensor ring (TR) decomposition

(c) Slice-wise representation of the tensor ring (TR)
decomposition

Figure 2-4: Illustration of the tensor train (TT) and tensor ring (TR) decomposi-
tions.

2.5 Tubal Decomposition

Tubal tensor decomposition, commonly known as tensor-Singular Value Decompo-

sition (t-SVD) is a special type of tensor decomposition representing a 3rd-order

tensor as a product of three 3rd-order tensors where the middle tensor has nonzero

components only in some tubes which are located in the diagonal parts of the tensor

([25, 26, 189, 190]), see Figure 2-5, for graphical illustration of the t-SVD an its

truncated version. The generalization of the t-SVD to higher order tensors has been

proposed in [191].

The number of nonzero tubes is called tubal rank. Unlike the Tucker decom-

position or CPD, the truncated t-SVD gives the best approximation in the least-

squares sense for any unitary invariant tensor norm [25]. To further explain the

concept of t-SVD, if X ∈ R𝐼1×𝐼2×𝐼3 , then the t-SVD of the tensor X, admits the

model X = U * S * V𝑇 , where U ∈ R𝐼1×𝑅×𝐼3 , V ∈ R𝑅×𝐼2×𝐼3 are orthogonal ten-

sors and the tensor S ∈ R𝑅×𝑅×𝐼3 is f-diagonal ([25, 26]). Computing t-SVD of

a tensor is performed in the Fourier domain. Here similar to the t-product, it

is sufficient to consider only the truncated SVD of the first ⌈ 𝐼3+1
2
⌉ frontal sliceŝ︀X(:, :, 𝑖), 𝑖 = 1, 2, . . . , ⌈ 𝐼3+1

2
⌉, (as described in [192]). More precisely, we first com-
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Figure 2-5: Illustration of (a) tensor-SVD (t-SVD) and (b) Truncated t-SVD for a 3rd-
order tensor

Algorithm 7: Fast t-SVD
Input : A data tensor X ∈ R𝐼1×𝐼2×𝐼3 and target tubal rank 𝑅;
Output: U𝑅 ∈ R𝐼1×𝑅×𝐼3 , S𝑅 ∈ R𝑅×𝑅×𝐼3 , V𝑅 ∈ R𝐼2×𝑅×𝐼3 ;

1 ̂︀X = fft (X, [], 3);
2 for 𝑖 = 1, . . . , ⌈ 𝐼3+1

2
⌉ do

3 [̂︀U(:, :, 𝑖), ̂︀S(:, :, 𝑖), ̂︀V(:, :, 𝑖)] = truncated_svd
(︁̂︀X(:, :, 𝑖), 𝑅

)︁
;

4 end
5 for 𝑖 = ⌈ 𝐼3+1

2
⌉+ 1, . . . , 𝐼3 do

6 ̂︀U (:, :, 𝑖) = conj(̂︀U(:, :, 𝐼3 − 𝑖 + 2));
7 ̂︀S (:, :, 𝑖) = ̂︀S(:, :, 𝐼3 − 𝑖 + 2);
8 ̂︀V (:, :, 𝑖) = conj(̂︀V(:, :, 𝐼3 − 𝑖 + 2));
9 end

10 U = ifft
(︁̂︀U, [], 3

)︁
, S = ifft

(︁̂︀S, [], 3)︁ , V = ifft
(︁̂︀V, [], 3

)︁
.
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pute the truncated SVD of the first ⌈ 𝐼3+1
2
⌉ frontal slices ̂︀X(:, :, 𝑖), 𝑖 = 1, 2, . . . , ⌈ 𝐼3+1

2
⌉

as follows
[̂︀U(:, :, 𝑖), ̂︀S(:, :, 𝑖), ̂︀V(:, :, 𝑖)] =

truncated_svd
(︁̂︀X(:, :, 𝑖), 𝑅

)︁
𝑖 = 1, 2, . . . , ⌈𝐼3 + 1

2
⌉,

and store ̂︀U(:, :, 𝑖), ̂︀V(:, :, 𝑖) and ̂︀S(:, :, 𝑖), for 𝑖 = 1, 2, . . . , ⌈ 𝐼3+1
2
⌉. Then, they are

used to recover the remaining factors ̂︀U(:, :, 𝑖), ̂︀S(:, :, 𝑖), ̂︀V(:, :, 𝑖), 𝑖 = ⌈ 𝐼3+1
2
⌉, . . . , 𝐼3

based on the following relations

̂︀U(:, :, 𝑖) = ̂︀U(:, :, 𝐼3 − 𝑖 + 2),̂︀S(:, :, 𝑖) = ̂︀S(:, :, 𝐼3 − 𝑖 + 2),̂︀V(:, :, 𝑖) = ̂︀V(:, :, 𝐼3 − 𝑖 + 2),

𝑖 = ⌈𝐼3 + 1

2
⌉+ 1, . . . , 𝐼3. (2.11)

Also, instead of using the discrete Fourier transform matrices, one can define

the t-SVD according to an arbitrary unitary transform matrix. It is shown in [193]

that this approach can provide t-SVD with lower tubal rank. The full algorithm for

truncated t-SVD is summarized in Algorithm 7. Many tensor completion algorithms

[99, 28, 98, 194, 192] have recently being adopting tubal SVD and its truncated

variants for completion.
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Tensorization of data via

Hankelization: Different Strategies

A Hankel matrix is a type of matrix that has all its elements along the skew-diagonals

being constant. A Hankel tensor is a higher order Hankel matrix. A data X is called

a Hankel tensor if all components 𝑥𝑖1,𝑖2,...,𝑖𝑁 for which the quantity 𝑖1 + 𝑖2 + · · ·+ 𝑖𝑁

is fixed, are the same. Hankelization is the procedure of generating a Hankel matrix

or tensor from a given vector, matrix or tensor. The concept of Hankel tensor has

been introduced in several contexts. The first paper discussing the Hankel tensor

is [195] which was concerned with phase retrieval as an important topic in signal

processing. It defines the Hankelization process based on 1. Hankelization is kind

of tensorization in which a raw data tensor is transformed to a higher order tensor.

It is mostly used as a pre-(data) processing technique in signal processing followed

by other algorithms after which the processed data is returned back to the original

format. In particular, this idea has been used for reconstructing data tensors with

structured missing components (several sequential columns/row are removed) and

has been shown to be a very promising approach for performing the mentioned

task. Figure 3-1 shows an example of such application where the TR-ALS [46] and

TRLRF [13] algorithms as two efficient tensor completion algorithms fail to provide

promising reconstruction while the Hankelization technique with parameter 𝜏 = 10

(to be defined later) gives quite good results when used as pre-processing step before
1The code "hankelize" used in tensorlab toolbox.
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the tensor completion is performed.

Figure 3-1: The effectiveness of using Hankelization approach as pre-processing step before
completing images with structural missing pixels.

3.1 Generating a Hankel Matrix

A Hankel matrix can be generated from a vector as follows. Given a vector x =

(𝑥1, 𝑥2, . . . , 𝑥𝑁)𝑇 ∈ R𝑁 , and a window size 𝜏 , the operatorℋ𝜏 (x) : R𝑁 → R𝜏×(𝑁−𝜏+1)

generates a Hankel matrix

X𝐻 = ℋ𝜏 (x) :=

⎛⎜⎜⎜⎜⎜⎜⎝
𝑥1 𝑥2 · · · 𝑥𝑁−𝜏+1

𝑥2 𝑥3 · · · 𝑥𝑁−𝜏+2

...
... . . . ...

𝑥𝜏 𝑥𝜏+1 · · · 𝑥𝑁

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ R𝜏×(𝑁−𝜏+1).

The operator ℋ𝜏 (x) is referred to as a delay embedding transform of vector x with

window size 𝜏 [9, 31]. Equally, the Hankelization procedure can be expressed by

a duplication matrix which provides a relationship between a Hankel matrix X𝐻

and a corresponding given vector x. Example, let X𝐻 , be a Hankel matrix, then

T ∈ {0, 1}𝜏(𝑁−𝜏+1)×𝑁 , is called a duplication matrix [9, 143, 116] if

vec (X𝐻) = Tx. (3.1)

The operator fold(N,𝜏) : R𝜏(𝑁−𝜏+1) → R𝜏×(𝑁−𝜏+1) which returns back a vectorized

form of a Hankel matrix to the original Hankel matrix is called folding operator,

that is

X𝐻 = fold(N,𝜏) (Tx) . (3.2)
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A sample illustration of this definition for a vector of size 8 and window size 𝜏 = 5

is presented in Figure 3-2. It is seen that the duplication matrices includes block of

shifted identity matrices.

Figure 3-2: Duplication matrix for a vector of size 8 and window size 𝜏 = 5.

3.1.1 Block Hankelization

A block Hankel matrix is defined similarly, where instead of the individual entries of

a matrix, its blocks are repeated along the block skew-diagonals of the matrix. More

precisely, from a set of matrices, we can generate a block Hankel matrix. The paper

by [86, 51, 118] used this block Hankel method. See figure 3-3 for a step by step

illustration of the block Hankelization procedure. Figure 3-4 further presents visual

comparison on using different window sizes (𝜏) when performing tensor completion

task with Hankel folding as a pre-processing step.

Figure 3-3: Illustration of block Hankelization of a matrix and construction of 4th-
order tensor using row scanning. Similar tensor can be obtained by column scanning.
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Figure 3-4: The Hankelization results for different parameters 𝜏 .

3.1.2 Row or Column Hankelization

The idea of row Hankelization of a data matrix to a higher order tensor was first

proposed in [8]. In this work each row of the given matrix is Hankelized to a matrix

and then a block Hankel matrix is produce after which is then reshaped to a block

Hankel tensor, see Figure 3-5(a) for an illustrative example of such transformation.

The procedure of column Hankelization procedure can be performed similarly by

applying the aforementioned technique to the transpose of the underlying matrix.

In [9], the column Hankelization is performed directly to a given matrix by using

the so-called duplication matrices. The Hankelized tensors are called embedded

space. So, the Hankelization introduced in [9] can be considered as a generalization

of that proposed in [8]. It is worth mentioning that in the Hankelization framework

introduced in [9, 8], each Hankel tensor is of even order, that is an 𝑁th order tensor

is transformed to a 2𝑁 -th order tensor and based on this framework, a Hankel tensor

of odd order is not defined. The main difference of this Hankelization procedures

with the one in [10] is that given an 𝑁 𝑡ℎ order tensor it is transformed into an

𝑁 + 1 order tensor, therefore a Hankel tensor of odd order can be defined. Here,

again the columns are Hankelized but the generated Hankel tensor is different from

the one introduced in [9]. This approach perform the Hankelization procedure on

each column and transform the column vector to a matrix. This resultant matrix

is considered as a slice of the generated tensor, see Figure 3-5 (b) for a graphical

sample of such Hankel tensors. Hankelization of the elements of a tensor can also

be scanned in others ways such as zigzag shown in Figure 3-6.
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3.1.3 Inverse Hankelization

A vector from which a Hankel matrix was constructed can be obtained through

inverse Hankelization procedure [9] as follows

x = ℋ−1
𝜏 (X𝐻) = T†vec (X𝐻) ,

where T is a duplication matrix. The concept of delay embedding can be generalized

to higher order tensors via multi-way delay embedding [9, 31, 143]. The intuition

behind this generalization is that the classical delay embedding can be considered

as a tensor-vector multiplication, i.e. x×1T = Tx, where a vector (which is a first

order tensor) uses only one duplication matrix T. For a matrix X ∈ R𝐼1×𝐼2 (which

is a second order tensor), two duplication matrices T1 ∈ {0, 1}𝜏1(𝐼1−𝜏1+1)×𝐼1 and

T2 ∈ {0, 1}𝜏2(𝐼2−𝜏2+1)×𝐼2 are used. This gives us

Y = X×1T1×2T2 = T1X T𝑇
2 ∈ R𝜏1(𝐼1−𝜏1+1)×𝜏1(𝐼2−𝜏2+1),

where the operator fold(N,𝜏) (X×1T1×2T2) reshapes the data matrix Y to a fourth

order Hankel tensor of size 𝜏1 × (𝐼1 − 𝜏1 + 1) ×𝜏1 × (𝐼2 − 𝜏2 + 1).

For an 𝑁th-order tensor, we should consider 𝑁 duplication matrices T𝑛 ∈

{0, 1}𝜏𝑛(𝐼𝑛−𝜏𝑛+1)×𝐼𝑛 , 𝑛 = 1, 2, . . . , 𝑁 and the multi-way embedded space is defined

as [9]

X𝐻 = ℋ𝜏 (X) = fold(𝐼,𝜏) (X×1T1 · · · ×𝑁T𝑁) ,

where fold(𝐼,𝜏) : R𝜏1(𝐼1−𝜏1+1)×···×𝜏𝑁 (𝐼𝑁−𝜏𝑁+1) → R𝜏1×(𝐼1−𝜏1+1)×···×𝜏𝑁×(𝐼𝑁−𝜏𝑁+1) trans-

forms an 𝑁th-order tensor to an 2𝑁th-order tensor. The 𝑁 -tuple (𝜏1, 𝜏2, . . . , 𝜏𝑁)

indicates the window size of different duplication matrices corresponding to different

modes. Illustration for Hankelization of a matrix and transforming it to a 4th-order

tensor is shown in Figure 3-5. The reverse procedure where the task is retrieving

the original data tensor from the tensor X𝐻 was constructed, can be expressed as

ℋ−1
𝜏 (X𝐻) = unfold(I,𝜏) (X𝐻)×1T

†
1 · · · ×𝑁T

†
𝑁 ,
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where unfold(𝐼,𝜏) = fold−1
(𝐼,𝜏), and it basically transforms the 2𝑁th-order block Hankel

tensor X𝐻 of size 𝜏1×(𝐼1 − 𝜏1 + 1)×· · ·×𝜏𝑁×(𝐼𝑁 − 𝜏𝑁 + 1) to an 𝑁th-order tensor

of size 𝜏1 (𝐼1 − 𝜏1 + 1)× · · · × 𝜏𝑁 (𝐼𝑁 − 𝜏𝑁 + 1).

Figure 3-5: Two types of tensor Hankelization, a) Hankelization procedure introduced in
[8, 9], b) Hankelization procedure introduced in [10].

Figure 3-6: The procedure of zigzag Hankelization.

3.2 Perspectives on using Hankel data

The Hankelization procedure, also known as delay/shift embedding in the image pro-

cessing community, is a technique that duplicates patches of an image with specified

window sizes. It is well known that as a pre-processing step, a prior Hankelization
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Figure 3-7: Completion of the "Barbara" and "Lena" image with structural missing
parts using different types of Hankelization together with their corresponding PSNR
and SSIM

procedure can capture the delay/shift-invariant features (e.g. non-local similarity)

of signals/images [143]. This is an effective property for learning the hidden struc-

ture of images, allowing us to apply this technique in task completion [143, 9, 51].

Refer to figure 3-9 for some visual results using the delay embedding technique. In

particular, it is experimentally shown that for incomplete data tensors with random

missing pixels, this technique is quite efficient. Although, it is possible to use more

sophisticated Hankelization, such as patch-based/block Hankelization [51, 196, 112],

however we adopt the simple row Hankelization procedure and Hankelization using

convolutional techniques due to its efficiency. Refer to table 3.1 for some comparison

results. In our approach, each row of the frontal slices of the data tensor 2 is Han-

kelized using a given window size and a corresponding duplication matrix. Then,

from these matrices, block Hankel matrices are constructed. Having computed all

the block Hankel matrices, they are reshaped to higher order tensors. By column

Hankelization, we can obtain similar or the same results. Refer to Figure 3-7 for vi-

sual results as well as PSNR and SSIM evaluation on different Hankel methods using

the TT-WOPT [103] and TR-WOPT [32] completion algorithms on "Barbara" and

"Lena" image. In the first row, we combine randomly missing pixels and structural

missing pixels on the "Lena" image. For this case, we structurally removed 20% of

pixels grouped in form of black big spots with some holes in the picture and continue
2In images, each frontal corresponds to RGB slices.

63



Chapter 3. Tensorization of data via Hankelization: Different Strategies

Figure 3-8: Reconstructing images from structural missing data using various Han-
kelization appraoches

Figure 3-9: MRI reconstruction with MDT Hankelization on different missing sce-
narios
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further by removing 50% pixels randomly from the image. The TR-WOPT method

was used in this experiment. For "Barbara" image in the second row, about 40% of

pixels were structurally removed in a form of small black spots creating holes in the

image and the TT-WOPT algorithm was used. The images used in this experiment

are of size 256×256×3. The size of the Hankelized tensor depends on the Hankeliza-

tion procedure used and for the column and row Hankelization, we use window size

𝜏 = [32, 32.1] and as a result a 6-th order tensor and size 32× 225× 32× 225× 1× 3

is produced. In Figure 3-8, we consider "Facade" image with structural missing

pixels. For the Hankel type II (illustrated in Figure 3-5), a tensor of order 4 and size

128× 129× 256××3 is generated. We apply our Tucker CUR algorithm (details in

Chapter 5) for completing the mentioned images where the ranks are incrementally

increased. The PSNR and SSIM of the different strategies are also given.

3.3 Convolutions as a Hankelization step

Convolutional neural networks have provided a lot of insights into image processing

tasks. It has seen many applications in inpainting, denoising, recommender sys-

tems, segmentation, data interpolation and image prediction. Recently Yokota et

al. [143] investigated the power of convolutional layers to performing Hankelization

as a pre-processing step before using an auto-encoder for image in-painting. The

Hankelized image patches generated using a convolutional neural network serves as

a prior to an auto-encoder network. The method employs convolution as a form of

delay embedding and a transformation step. In the same manner, in this work a

convolutional layer is employed to perform a Hankelization step as a prior for the

completion step. Table 3.1 shows the results and effectiveness of using convolutions

as a Hankelization step prior to completion task.
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(a) Hankelization Convolution

(b) Inverse Hankelization using transposed Convo-
lutions

Figure 3-10: Illustration of Hankelization procedure using neural network Convolu-
tions [9]

IMAGE Results Original Row/Column [9] PatchBased [51] Zigzag Convolution [143]

50% Missing PSNR 28.2641 30.6803 30.3937 30.0322 37.6738
SSIM 0.8354 0.8708 0.8703 0.8300 0.9634

70% Missing PSNR 25.9434 28.03590 24.0412 26.5751 34.6040
SSIM 0.7976 0.8031 0.7543 0.7961 0.9121

Table 3.1: Average PSNR and SSIM results for some natural images using various
Hankel methods and the TRLRF algorithm [13] with rank 6 and tau/kernel size =
10
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Chapter 4

Novel optimization method

exploiting Sparsity and dictionary

Learning

This chapter presents the first proposed method for this research. It explores the

concept of sparsity on core tensors of a tensor ring decomposition taking advantage of

dictionary learning and Hankel folding. The applicability and performance of many

tensor completion methods are highly dependent on the probability distribution

underlying the missing data components. The majority of matrix/tensor completion

models rely on the assumption that the locations of missing entries are random and

there should be some observable entries in each row or column [100, 39, 47, 157, 197].

Many of these algorithms struggle to recover the data tensor when a significant

portion of it, such as several consecutive rows or columns of a frame is missing

and only work well when the underlying missing components are distributed evenly.

Therefore, recovering the incomplete entries would require more regularization than

just what rank minimization could offer. For instance, if entire rows with missing

data is filed with zeros, the result could yield the lowest rank; however, that is not the

desired solution. The randomness assumption may be violated in many applications.

For example, due to faulty sensors or surge problems with wireless transmissions,

several rows or columns of an image may be missing. In addition, a number of

fibers or slices may be missing from the MRI data. One or more signal units in
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the latent tensor could be completely missing, and a video frame could be dropped

during transmission. All these scenarios make the task of completion difficult. So,

there is an urgent need to investigate methods to solve such challenging scenarios.

Existing models that rely solely on the low-rank prior fail to account for structural

missing. In general, tensor ring decomposition is not unique. Moreover, tensor

completion is a very ill conditioned optimization problem, thus some regularization is

necessary in order to obtain stable, relatively simple and meaningful representation.

Sparsity constraints is one such regularization technique. In other words, sparse

representations have two main purposes: They are a form of regularization that

pushes as many parameters as possible to exact zeros. Furthermore, sparsity leads to

simpler tensor models by learning what parameters can be dropped, lowering their

total number. Also, sparse optimization methods are useful for signal processing

problems that involve large, noisy, or incomplete data sets, where finding a simple

and meaningful representation is challenging. Sparse representation has attracted

great attention as it can allow us to find the characteristics of data in a high-

dimensional space and therefore can be widely applied in engineering fields such as

dictionary learning, signal reconstruction, image clustering, feature selection, and

extraction. The method proposed by Yang et al. [198] introduce a sparsity prior

on the columns to solve the failure of the low-rankness in regularizing structural

matrix completion tasks. The method shows significant improvement over previous

approaches in applications such as image inpainting, deraining, and interpolation

of seismic data. In [94], the authors extend the matrix case to higher-dimensional

tensors and consider structural missing along each mode using the TT framework

with low rankness. Inspired by these successful methods, in our proposed model,

the underlying tensor is regularized by a low-TR-rankness prior to exploiting the

inter-fibers/slices correlations, and its fibers are regularized by a sparsity prior under

dictionaries to exploit intra-fibers correlations. The work further explores the idea of

Hankel folding [9, 31] as a pre-processing step in generating higher order tensors for

images, videos and time series data. The proposed model is solved by an alternating

direction method under the augmented Lagrangian multiplier framework.
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4.1 Hankel folding with tensor ring decomposition

The idea of Hankelization was first proposed in [199] and recently generalized to

tensors in [9] but so far, it has not exploited extensively for the TR representation

with sparse constraints. The methods in [9, 51], employ the Tucker or the TT rep-

resentations to the higher order Hankel tensor X𝐻 and then the original data tensor

is reconstructed through inverse Hankelization. However, this method considers the

optimization problem (1.9) with block Hankelized data tensor ̂︀X𝐻 (described in

chapter 3 and Figure 3-3) and exploit a TR decomposition as:

̂︀X𝐻 ≈≪ ̂︀G(1)
, ̂︀G(2)

, . . . , ̂︀G(𝑁)
≫,

where the core tensors ̂︀G(𝑛)
, 𝑛 = 1, 2, . . . , 𝑁, are estimated using dictionary learning.

Owing to this, we formulate an optimization problem in which the constrained core

tensors ̂︀G(𝑛)
, 𝑛 = 1, 2, . . . , 𝑁, are updated sequentially to minimize the cost function

in (1.9) and the implicit sparse representation constraint [94, 200], is imposed on the

core tensors ̂︀G(𝑛)
(𝑛 = 1, 2, . . . , 𝑁). Finally, the following constrained optimization

problem is formulated:

min{︁̂︀G(1)
, ̂︀G(2)

,..., ̂︀G(𝑁)
}︁
⃦⃦⃦
PΩ𝐻

(︁̂︀X𝐻− ≪ ̂︀G(1)
, ̂︀G(2)

, . . . , ̂︀G(𝑁)
≫
)︁⃦⃦⃦2

𝐹

+𝜂
𝑁∑︀

𝑛=1

⃦⃦
C(𝑛)

⃦⃦
1

𝑠.𝑡. ̂︀G(𝑛)
(2) = D(𝑛)C(𝑛), 𝑛 = 1, 2, . . . , 𝑁,

(4.1)

where ̂︀G(𝑛)
(2) ∈ R𝐼𝑛×𝑅𝑛−1𝑅𝑛 is mode-2 matricization of the core tensor ̂︀G(𝑛)

∈ R𝑅𝑛−1×𝐼𝑛×𝑅𝑛 ,

D(𝑛) ∈ R𝐼𝑛×𝑅𝑛−1𝑅𝑛 is a pre-defined dictionary, C(𝑛) ∈ R𝑅𝑛𝑅𝑛−1×𝑅𝑛𝑅𝑛−1 is a sparse

matrix and 𝜂 > 0 is a regularization parameter. The method achieves good perfor-

mance for 𝜂 in range 0.05 to 0.3. It is important to note that while the optimization

problem (4.1) is convex with respect to each core tensor ̃︀G(𝑛)
, it is not convex with

respect to the entire set of core tensors. Thus, there is no guarantee that the so-

lution will eventually converge to a global minimum, though we have employed a

sub-optimal approximation. In addition, unlike [94], where the sparse representa-
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tion of unfolding matrices is used, we impose a sparsity representation constraint

on the TR core tensors. Because TR core tensors are smaller in size than unfold-

ing matrices, this can reduce the computational complexity of the algorithm while

also improving performance. To compute the dictionary D(𝑛), various dictionary

learning algorithms can be used such as Over-complete Discrete Cosine Transform

(ODCT) dictionary [201, 201], [202], Online Dictionary Learning (ODL)1 [203] and

group sparse dictionary learning technique [200]. For the purpose of this work, the

ODCT method [202, 204] was adopted because it is quite versatile and works for

a broad range of data. The ODCT dictionary D(𝑛) ∈ R𝐼𝑛×𝑅𝑛−1𝑅𝑛 is generated as

follows

d
(𝑛)
𝑖,𝑗 =

⎧⎨⎩
1√
𝐼𝑛
, if 𝑗 = 1.

cos
(︁

(𝑖−1)(𝑗−1)𝜋
𝑅𝑛−1𝑅𝑛

)︁
, if 𝑗 > 1.

for 𝑖 = 1, 2, . . . , 𝐼𝑛 and 𝑗 = 1, 2, . . . , 𝑅𝑛−1𝑅𝑛.

The algorithm proposed in [94], imposed the sparse representation constraints

on the mode-𝑛 unfolding matrices while the nuclear norm minimization is applied

on the 𝑛-unfolding matrices2. As a result, the proposed formulation (4.1) can be

considered as a non-trivial extension and combination of techniques considered in

[94] and [32], where on the one hand, this algorithm exploit 𝑙1-norm instead of nuclear

norm minimization [32] and on the other hand, similar to [94], the dictionary learning

technique is employed. It is worth mentioning that ignoring the sparsity constraints,

we come up to the algorithm proposed in [94]. The methods by [157, 32, 13], revealed

the relation between a core tensor ̂︀G(𝑛)
and the matricized tensor. From their works,

they showed that:

X𝐻 <𝑛> = ̂︀G(𝑛)
(2) (
̂︀G( ̸=𝑛)

<2> )𝑇 , ∀𝑛, (4.2)

where ̂︀G(̸=𝑛) is a 3rd-order tensor of size 𝑅𝑛 ×
𝑁∏︀

𝑖=1,𝑖 ̸=𝑛

𝐼𝑖 ×𝑅𝑛−1 obtained by merging

1The MATLAB implementation of this dictionary can be found in
https://github.com/kvdeepak/ksvd-denoising.

2Note that mode-𝑛 unfolding and 𝑛-unfolding matrices are related to the Tucker and the TT
decompositions, respectively.
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all other core tensors whose slice matrices are computed as

̂︀G(̸=𝑛) (︀
𝑖𝑛+1 . . . 𝑖𝑁 𝑖1 . . . 𝑖𝑛−1

)︀
=

𝑁∏︁
𝑗=𝑛+1

̂︀G(𝑗)
(𝑖𝑗)

𝑛−1∏︁
𝑗=1

̂︀G(𝑗)
(𝑖𝑗) .

For brevity of notation, in the rest of the paper we define ̂︀G(𝑛) := ̂︀G(𝑛)
(2) and̂︀G(̸=𝑛) := ̂︀G(̸=𝑛)

<2> . Using formula (4.2) and keeping in mind that the core tensors

are independent, we can optimize the core tensors in optimization problem (4.1)

independently while holding the other core tensors constant, as follows:

min
{ ̂︀G(𝑛)}

ℋ
(︁̂︀G(𝑛)

)︁
+ 𝜂
⃦⃦
C(𝑛)

⃦⃦
1

𝑠.𝑡. ̂︀G(𝑛) = D(𝑛)C(𝑛),

(4.3)

for 𝑛 = 1, 2, . . . , 𝑁 , where

ℋ
(︁̂︀G(𝑛)

)︁
=

⃦⃦⃦⃦
PΩ𝐻 ⟨𝑛⟩

(︂̂︀X𝐻 ⟨𝑛⟩ − ̂︀G(𝑛)
(︁̂︀G( ̸=𝑛)

)︁𝑇)︂⃦⃦⃦⃦2
𝐹

.

The augmented Lagrangian function corresponding to the constrained optimiza-

tion problem (4.3), can be constructed as

ℒ
(︁̂︀G(𝑛),C(𝑛),B

)︁
= ℋ

(︁̂︀G(𝑛)
)︁

+ 𝜂
⃦⃦
C(𝑛)

⃦⃦
1

+
⟨
B, ̂︀G(𝑛) −D(𝑛)C(𝑛)

⟩
+𝜆

2

⃦⃦⃦ ̂︀G(𝑛) −D(𝑛)C(𝑛)
⃦⃦⃦2
𝐹
,

(4.4)

where B is a matrix representing the Lagrangian multipliers and 𝜆 is penalty pa-

rameter. The method works well for 𝜆 between 0.1 to 1.1. The ADMM [41] update

rules for solving (4.1) are simply converted to simpler optimization problems using

the Lagrangian function (4.4), which is given as follows:

̂︀G(𝑛)
𝑘+1 = min̂︀G(𝑛)

𝑘

ℋ
(︁̂︀G(𝑛)

𝑘

)︁
+

𝜆

2

⃦⃦⃦ ̂︀G(𝑛)
𝑘 −D(𝑛)C

(𝑛)
𝑘 + B(𝑘)

⃦⃦⃦2
𝐹
, (4.5)

C
(𝑛)
𝑘+1 = min

C
(𝑛)
𝑘

⃦⃦⃦
C

(𝑛)
𝑘

⃦⃦⃦
1

+
𝜆

2

⃦⃦⃦ ̂︀G(𝑛)
𝑘 −D(𝑛)C

(𝑛)
𝑘 + B(𝑘)

⃦⃦⃦2
𝐹
, (4.6)

B(𝑘+1) = B(𝑘) +
(︁̂︀G(𝑛)

𝑘+1 −D(𝑛)C
(𝑛)
𝑘+1

)︁
. (4.7)

It is worth noting that the ADMM algorithm is a versatile approach for solving
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a wide range of optimization problems, including sparse inverse covariance selection,

generalized and group lasso problems, and so on. For a comprehensive study of this

technique and related problems, see [41]. Moreover, this strategy has been utilized

for solving many tensor completion problems, please see [205, 94, 206, 207, 208],

and for a comprehensive list of references see the review papers [36, 90] and the

references therein.

4.1.1 Solving the Sub Optimization Problem (4.5)

The first optimization sub-problem (4.5) can be solved via the standard gradient

descent method. To be more precise, the gradient of its objective function of (4.5)

in 𝑘-th iteration is

∇ ̂︀G(𝑛)
𝑘
𝐽 = PΩ𝐻 ⟨𝑛⟩

(︂̂︀G(𝑛)
𝑘

(︁̂︀G( ̸=𝑛)
𝑘

)︁𝑇
−X𝐻 ⟨𝑛⟩

)︂ ̂︀G(̸=𝑛)

+𝜆
(︁̂︀G(𝑛)

𝑘 −D(𝑛)C
(𝑛)
𝑘 + B(𝑘)

)︁
,

(4.8)

where 𝐽 = ℒ
(︁̂︀G(𝑛)

𝑘 ,C(𝑛),B
)︁

and the first and second terms of (4.8) are the gradient

of the first and second terms of the objective function of optimization problem (4.5),

respectively. The gradient of the first term of (4.8) has been derived in [32] and

the gradient of the second term can be derived by the following straightforward

computations

𝜆
2

⃦⃦⃦ ̂︀G(𝑛)
𝑘 −D(𝑛)C

(𝑛)
𝑘 + B(𝑛)

⃦⃦⃦2
𝐹

= 𝜆
2

(︂⃦⃦⃦ ̂︀G(𝑛)
𝑘

⃦⃦⃦2
𝐹

+
⃦⃦⃦
B(𝑛) −D(𝑛)C

(𝑛)
𝑘

⃦⃦⃦2
𝐹

+2Tr
(︁̂︀G(𝑛)

𝑘

𝑇
(︁
B(𝑛) −D(𝑛)C

(𝑛)
𝑘

)︁)︁)︁
,

and taking the gradient with respect to G
(𝑛)
𝑘 .

4.1.2 Solving the Sub Optimization Problem (4.6)

In order to solve optimization problem (4.6), the Accelerated Proximal Gradient

[209, 84] (APG) method is applied. Assuming that the 𝐸
(︁
C

(𝑛)
𝑘

)︁
=
⃦⃦⃦
C

(𝑛)
𝑘

⃦⃦⃦
1

+

72



Chapter 4. Novel optimization method exploiting Sparsity and dictionary
Learning

𝐹
(︁
C

(𝑛)
𝑘

)︁
, we have the following cost function:

𝐹
(︁
C

(𝑛)
𝑘

)︁
=

𝜆

2

⃦⃦⃦ ̂︀G(𝑛)
𝑘 + B(𝑘) −D(𝑛)C

(𝑛)
𝑘

⃦⃦⃦2
𝐹
.

The first step in the proximal gradient algorithms is considering an auxiliary prox-

imal variable Z𝑘, and computing a quadratic approximation of 𝐸(C
(𝑛)
𝑘 ) around Z𝑘

using the following equation

𝐻
(︁
C

(𝑛)
𝑘 ,Z𝑘

)︁
=
(︁⃦⃦⃦

C
(𝑛)
𝑘

⃦⃦⃦
1

+ 𝐹 (Z𝑘)
)︁

+
⟨
∇C𝑘

𝐹 (Z𝑘) ,C
(𝑛)
𝑘 − Z𝑘

⟩
+ 𝑐

2

⃦⃦⃦
C

(𝑛)
𝑘 − Z𝑘

⃦⃦⃦2
𝐹
,

(4.9)

where the gradient ∇C𝑘
𝐹 (Z𝑘) is computed straightforwardly by expanding 𝐹 (Z𝑘)

and taking gradient with respect to C𝑘 as

∇C𝑘
𝐹 (Z𝑘) = 𝜆

(︁
D(𝑛) 𝑇D(𝑛)C

(𝑛)
𝑘 −D(𝑛) 𝑇

(︁̂︀G(𝑛)
𝑘 + B(𝑘)

)︁)︁
. (4.10)

The parameter 𝑐 > 0 in (4.9) is a given parameter and in our simulation we set

𝑐 =
⃦⃦⃦
D

(𝑛)
⃦⃦⃦2
𝐹
. Substituting W𝑘 = Z𝑘 −∇C𝑘

𝑓 (Z𝑘) /𝑐 in (4.9), we obtain

𝐻
(︁
C

(𝑛)
𝑘 ,Z𝑘

)︁
= 𝑇 (C

(𝑛)
𝑘 ,w𝑘)− 1

2𝑐
‖∇C𝑘

𝑓 (Z𝑘)‖2𝐹 , (4.11)

where

𝑇 (C
(𝑛)
𝑘 ,w𝑘) =

⃦⃦⃦
C

(𝑛)
𝑘

⃦⃦⃦
1

+
𝑐

2

⃦⃦⃦
C

(𝑛)
𝑘 −W𝑘

⃦⃦⃦2
𝐹
. (4.12)

As a result, 𝑇 (C
(𝑛)
𝑘 ,w𝑘) is equivalent to 𝐻

(︁
C

(𝑛)
𝑘 ,Z𝑘

)︁
up to a constant and it can

be minimised instead of 𝐻
(︁
C

(𝑛)
𝑘 ,Z𝑘

)︁
. In the proximal gradient algorithms, instead

of minimizing 𝐸(C
(𝑛)
𝑘 ), which is a non differentiable optimization problem, the ob-

jective function 𝑇 (C
(𝑛)
𝑘 ,Z𝑘) is minimized for a sequence of proximal variables Z𝑗

𝑘.

This leads to the following minimization problem which can be solved iteratively

C
(𝑛+1)
𝑘,𝑗 = arg min

C
(𝑛)
𝑘

⃦⃦⃦
C

(𝑛)
𝑘

⃦⃦⃦
1

+
𝑐

2

⃦⃦⃦
C

(𝑛)
𝑘 −W𝑗+1

𝑘

⃦⃦⃦2
𝐹
, (4.13)
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where W𝑗+1
𝑘 = Z𝑗

𝑘 − ∇C𝑘
𝑓
(︀
Z𝑗

𝑘

)︀
/𝑐. Finally, we obtain the following closed form

solution

C
(𝑛+1)
𝑘,𝑗+1 = soft

(︂
W𝑗+1

𝑘 ,
1

𝑐

)︂
, (4.14)

where the soft thresholding operator is defined as soft (𝑔, 𝜏) = sign (𝑔) max(|𝑔| − 𝜏 , 0).

Note that in (4.13), the soft thresholding operator is applied in an element-wise man-

ner to all components of the matrix W𝑗+1
𝑘 . There are several possible options for

updating the proximal variable Z𝑗+1
𝑘 , but in this paper we used the accelerated one

introduced in [209] as follows

⎧⎨⎩ 𝑡𝑘+1 = 1+
√
4𝑡2𝑗+1
2

,

Z𝑗+1
𝑘 = C

(𝑛+1)
𝑘,𝑗 + 𝑡𝑘−1

𝑡𝑘+1

(︁
C

(𝑛+1)
𝑘,𝑗+1 −C

(𝑛+1)
𝑘,𝑗

)︁
,

where 𝑡1 = 1. The whole procedure is summarized in the pseudo-code of Algorithm

8. The stopping criterion which we used was that the relative error be less than a

predefined tolerance or the maximum number of iterations is reached. The Matlab

Poblano toolbox 1.1 [210] was used for solving the underlying nonlinear optimization

problems.

4.2 Discussion on computational complexity

The majority of recent tensor completion algorithms use the nuclear norm min-

imization formulation, which necessitates multiple computations of the singular

value decomposition (SVD). This increases their computational complexity while

also slowing them down. To prevent this drawback, the proposed method does not

use nuclear norm minimization therefore avoiding the SVD computation. For sim-

plicity of expressions, let us assume 𝐼1 = 𝐼2 = . . . = 𝐼𝑁 = 𝐼 and 𝑅1 = 𝑅2 = . . . =

𝑅𝑁 = 𝑅, then the computational complexity of TR-ALS [46] and TRLRF [13, 206]

are 𝒪(𝑝𝑁𝑅4𝐼𝑁 +𝑁𝑅6) and 𝒪(𝑁𝑅2𝐼𝑁 +𝑁𝑅6), respectively, where 𝑝 is constant be-

tween 0 and 1. The main operation in our algorithms is matrix-matrix multiplication

in (4.8) where we need to multiply matrices ̂︀G(𝑛)
𝑘 ∈ R𝑅2×𝐼𝑛 and ̂︀G(̸=𝑛)

𝑘 ∈ R
∏︀
𝑖 ̸=𝑛

𝐼𝑖×𝑅2

,
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Algorithm 8: Algorithm for Tensor Ring Decomposition with Sparse Rep-
resentation (TRDSR)
Input : An incomplete data tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 , the observation

index tensor Ω, TR-ranks (𝑅0, 𝑅2, . . . , 𝑅𝑁−1), (for simplicity, we
assume that 𝑅𝑛 = 𝑅 ∀ 𝑛), a window size 𝜏 and regularization
parameter 𝜆 > 0.

Output: Completed data tensor ̂︀X
1 Hankelize the data tensor X and Ω as X𝐻 and Ω𝐻

2 Initialize the TR core tensors for the Hankelized tensor X𝐻 aŝ︀G(1)
, ̂︀G(2)

, . . . , ̂︀G(𝑁)
with Gaussian random tensors

3 while A stopping criterion is not satisfied do
4 for 𝑛 = 1, 2, . . . , 𝑁 do
5 Compute dictionary D(𝑛) for mode-2 matricization of the core tensor̂︀G(𝑛)

6 Solve optimization Problem (4.3) for ̂︀G(𝑛) and C(𝑛) using the update
ADMM rules (4.5)-(4.7)

7 end

8 Compute ̂︀X𝐻 =≪ ̂︀G(1)
, ̂︀G(2)

, . . . , ̂︀G(𝑁)
≫

9 Compute ̂︀X𝐻 = PΩ𝐻

(︁̂︀X𝐻

)︁
+ PΩ⊥

𝐻

(︁̂︀X𝐻

)︁
10 De-Hankelize ̂︀X𝐻

11 end
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which costs 𝒪(𝑅2𝐼𝑁). This shows the proposed algorithm has lower complexity in

comparison to others.

4.3 Experiments

This section presents the evaluation of the proposed algorithm using MRI images

and some EEG data. The Peak Signal-to-Noise Ratio (PSNR), Structural Similarity

Index measure (SSIM) and Normalised Root Mean Square Error (NRMSE) are used

to evaluate and compare the performance of various algorithms. The NRMSE is

computed as :

NRMSE =

√︃
⟨(̂︀X−X)2⟩
⟨X2⟩

,

where X and ̂︀X are the original data tensor with all observations and the recon-

structed data tensor respectively. ⟨.⟩ is an expectation operator. The NRMSE was

calculated based on all the entries of the data. The PSNR is defined as

PSNR = 10 log10

(︀
2552/MSE

)︀
,

where

MSE =
⃦⃦⃦ ̂︀X−X

⃦⃦⃦2
𝐹
/num (X) ,

and “num(.)” denotes the number of components of the tensor X whiles the SSIM

is defined as

SSIM =
(2𝜇X𝜇̂︀X + 𝑐1)(2𝜎X̂︀X + 𝑐2)

(𝜇2
X + 𝜇2̂︀X + 𝑐1)(𝜎2

X + 𝜎2̂︀X + 𝑐2)

where

𝜇X, 𝜇̂︀X ,𝜎2
X, 𝜎

2̂︀X are the mean and variances of X and ̂︀X respectively. 𝜎X̂︀X is the

covariance X between ̂︀X and 𝑐1 = (𝑘1𝐿)2, 𝑐2 = (𝑘2𝐿)2 are stabilization variables

4.3.1 Experiments on MRI, images and time series data

The brain imaging data used in this research include:

• MRI dataset One: Predictive Analytics Competition (PAC) dataset challenge
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organized by the Translational Psychiatry Group at University Muenster, Ger-

many (https://photon-ai.com/pac). The data consist of structural MRI data

from a balanced MDD patients and healthy controls. The data is of size

121× 145× 121

• MRI dataset Two: Resting state functional T2-weighted MRI EPI series and

also structural T1-weighted MP-RAGE images from Skoltech Advanced Data

Analytics in Science and Engineering group. The images are of size 384 ×

384×352. Some of the images were resized to 256×256×3 for easy handling.

MRI data completion: In these sets of simulations, we attempted to use

realistic missing ratios because very often, most actual corrupted MRI data have

30% to 60% corruption when measured. The incomplete data tensor used from MRI

dataset one was Hankelized into an 5th-order tensor of size 64× 193× 64× 193× 3

using the window sizes 𝜏 = (64, 64, 3). Pertaining to the MRI from dataset two,

we used a window size 𝜏 = (32, 32, 4) and Hankelized the 3rd-order tensor into a

6th-order tensor of size 32× 90× 32× 90× 4× 7.

In the first experiments, images from MRI dataset two was used. The perfor-

mance of our algorithm was compared with some low rank completion algorithms

using different missing rates and different structural missing types. The algorithms

used were TRLRF [13], MDT [9], TRAR [52], TRALS[46], and TRWOPT [32]. In

order to provide a fair comparison with other algorithms, the hyper-parameters were

tuned as stated in each paper to make performance as best as possible. The recon-

structed images are displayed in Figure 4-1 and Figure 4-2. Figure 4-1 presents

results on degraded image with both random missing pixels and structural missing

data. In the structural case some rows and columns in the MRI slices are removed

and then about 50% of the rest of the pixels are also randomly removed. The results

in Figure 4-2 shows the reconstruction from approximately 40% random missing pix-

els. The results are compared with other completion algorithms. It is seen that our

proposed method, in general, outperforms the other algorithms in these two cases.

Using other MRI data from dataset two, 60% of random pixels are removed and

PSNR of the slices from the reconstruction are compared. This experiment showed
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Figure 4-1: Visual and PSNR comparison of MRI image reconstructed using different
tensor completion algorithms on structured missing pixels.

Figure 4-2: Comparison PSNR results with other algorithms on MRI Dataset Two
with 40% of random pixels missing

that the algorithm is able to reconstruct the data entirely, since the PSNR results

from the slices are comparable. Visual and PSNR results can be found in Figure

4-3. We present the PSNR results of the popular TRLRF [13] method compared

with our proposed method in another experiment. In this scenario 50% of the pixels

are removed and after reconstruction results for some selected slices are shown in

4-4. In addition, the plots in Figure 4-5 also shows the SSIM and PSNR results

from this experiment.

In a similar manner, 40% and 60% of pixels are randomly removed from the MRI

data from dataset one. The PSNR of some selected slices from the reconstructed

images are presented. Refer to Figures 4-6 and 4-7 view the results. Results obtained

confirms that our proposed method works well on the different slices of the entire

data and also works on different MRI datasets.
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Figure 4-3: PSNR results on MRI Dataset Two with 60% of random pixels missing

In the second experiment, we applied a scratching degradation on MRI slices

(first row in Figure 4-8) from dataset two, in the second row, we removed 10% of

pixels and 10% of columns and rows randomly (second row in Figure 4-8), in the

third row, we removed 40% of pixels and added some spots in the image (third row

in Figure 4-8), and lastly, we removed 40% columns and rows (fourth row in Figure

4-8). The recovered images together with indicated corresponding PSNR index

are reported in Figure 4-8. Our computer experiments indicate that the proposed

algorithm also provides good results for recovering real-life medical images.

MRI data Denoising: To demonstrate the effectiveness of our method for

denoising task, the proposed algorithm was further tested with noisy MRI images

where we compared our method with two neural network based architectures. MRI

images are of size 164 × 164 × 3. During the experiments, frames of the MRI data

were degraded with Poisson and Salt and Pepper Noise. The salt and pepper noise

was added with a noise density of 0.1 to all the frames. The PSNR and SSIM of

the reconstructed results are compared with the Deep Image Prior [141] and the

Unet model [211]. Figure 4-9 presents the visual and quantitative results of this

denoising task. The results show that our proposed method is comparable to some

deep learning architectures.
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Figure 4-4: Visual comparison and PSNR results of the proposed method with
TRLRF on MRI Dataset Two with 50% of random pixels missing

Image completion: The algorithm was also applied to natural color images

of size 256 × 256 × 3 using various missing scenarios. In this experiment we show

that the proposed method also works for natural images not only biomedical MRI

data. With the window size 𝜏 = (252, 252, 3), the incomplete images were first

Hankelized into a 5th-order tensor of size 252× 5× 252× 5× 3 and represented in

TR format before applying the completion algorithms. Using the "Lena" image in

the first simulation, we perform degradation by removing several rows and columns

and then also randomly removing about 30% of the pixels. In another simulation,

square holes were created in the image to render the image as corrupted. Then our

tensor completion is perform to reconstruct these corrupted images. Figure 4-10
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(a) PSNR comparison of MRI slices recon-
struction

(b) SSIM comparison of MRI slices recon-
struction

Figure 4-5: Comparison of PSNR and SSIM of proposed method with baseline
method TRLRF on 50% of missing pixels

Figure 4-6: PSNR results on MRI Dataset One with 40% of random pixels missing

Figure 4-7: PSNR results on MRI Dataset One with 60% of random pixels missing
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Figure 4-8: Performance of the proposed algorithm in recovering an MRI image with
different types of structured missing pixels.

shows the PSNR and SSIM results of our method compared with other tensor ring

completion methods. Finally in another experiment, round white holes were created

in the "Lena" image both structurally and randomly. The PSNR results of our

method compared with other tensor completion algorithms are given in 4-11.

The proposed method is examined in terms of robustness to TR rank selection.

To this end, we considered an image with 90% random missing pixels and compared

the RSE. The results are reported in Figure 4-12(𝑎) which show that our proposed

(TRDSR) algorithm achieves the lowest RSE compared to the other completion

methods and also it is relatively insensitive to selected TR ranks. One of the main

challenging task in tensor completion problem is a good selection of the rank because

a larger rank does not always necessarily provides better results. This is mainly
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Figure 4-9: Performance of the proposed algorithm in recovering an MRI image with
noisy artifacts. Top: Reconstruction of Noisy frame with Salt and Pepper. Bottom:
Reconstruction of Noisy Frame with Poison Noise.

because of the over-fitting problem where the model is not selected appropriately.

Because of this issue, it is of interest to have a tensor completion algorithm which

is less sensitive to rank selection. In these simulations, we show that different from

other algorithms, ours is less sensitive to the choice of TR-rank and it is more

stable to various TR-rank. The running time of our method is also compared with

other existing methods. The results are reported in Figure 4-12(𝑏). It is seen that

our algorithm is the fastest algorithm while at the same time, it provides better

performance. Table 4.1 also shows the PSNR and SSIM results obtained from the

reconstruction of various corrupted scenarios using our method compared with other

tensor completion algorithms on other images.

Time series data completion: The performance of the proposed algorithm

is compared with the state of the art MDT [9] and SSA [212] algorithms. In figure

4-13, we show the reconstruction of time series data. In the first sub-figure, the

performance of the method is compared with other algorithms where parts of the

signals are removed. Furthermore, the last 30 and 60 samples of the time series

have also been taken off. It should be noted that these incomplete time series

were noise free that is no noise was added to them. Only the last 500 elements

of the signals are shown for better visualization. The results confirmed that the
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Figure 4-10: Performance of the proposed algorithm in recovering an structural
missing pixels on "Lena" image

Figure 4-11: Performance of the proposed algorithm in recovering structural missing
pixels on "Lena" image

proposed method also has ability to forecast future samples. The second sub-figure

corresponds reconstruction of artificial time series and speech signal, respectively.

Hankelization has been applied for using MDT. The window size (𝜏) is equal to 100

for the first and 300 for the second row. The missing rate for the speech signal is 74%

is whiles for artificial time series the rate is 53%. For evaluation, the Normalized

Root Mean Square Error (NRMSE) was utilized and shown beneath each figure

in brackets. The results of the reconstruction and evaluation confirmed the better

performance of the proposed approach.
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(a) Comparison of RSE vs TR Ranks R (b) Comparison of CPU Time vs TR Ranks
(in seconds)

Figure 4-12: Comparison of RSE and CPU time with TR Ranks of some tensor
completion algorithms with 90% missing components.

Table 4.1: Performance comparison using PSNR and SSIM for natural Images.

IMAGE Results TRLRF MDT TRALS TRWOPT TTWOPT CPWOPT SPC-TV Proposed (TRDSR)

Lena PSNR 29.63 27.65 30.19 28.39 23.80 21.45 27.11 31.49
SSIM 0.9156 0.8233 0.9024 0.9048 0.8130 0.6057 0.9049 0.9422

Barbara PSNR 18.76 19.34 19.59 10.63 17.53 10.71 16.96 24.12
Lines SSIM 0.5251 0.4700 0.7300 0.2525 0.4619 0.1242 0.5199 0.7702
House PSNR 32.67 32.41 31.66 30.49 27.78 22.73 30.73 33.95

SSIM 0.9186 0.8696 0.9050 0.8411 0.8601 0.6287 0.9075 0.9353
Barbara PSNR 29.98 26.77 29.67 28.70 28.64 21.05 30.29 31.84
White Circles SSIM 0.9200 0.7813 0.9177 0.8999 0.9126 0.5713 0.9279 0.9456
Occluded PSNR 22.56 19.91 16.18 20.699 15.22 22.14 20.06 23.24
Windows SSIM 0.7300 0.6258 0.5721 0.6560 0.5732 0.6704 0.7041 0.7425
Lena PSNR 32.89 32.03 33.95 32.18 30.00 21.73 34.34 36.71
Scratched SSIM 0.9159 0.9236 0.9390 0.9011 0.8932 0.6090 0.9513 0.9677
Peppers PSNR 17.85 20.11 21.33 20.52 13.88 16.50 20.06 22.19
90% Missing SSIM 0.2772 0.5619 0.5056 0.4689 0.1569 0.2617 0.6370 0.5506
Giant PSNR 16.71 19.58 18.35 18.37 13.48 16.38 19.09 20.32
90% Missing SSIM 0.3110 0.4631 0.3986 0.3756 0.1550 0.2531 0.4797 0.5272
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(a) Time series reconstruction with several last entries of the original time series removed. First row:
the last 30 entries removed Second row: the last 60 elements of the time series removed

(b) Time series reconstruction from incomplete and noisy time series. First row: artificial time series
reconstruction second row: reconstruction of speech signal

Figure 4-13: Time series Reconstruction
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4.4 Experiments on EEG Data

• EEG dataset One: EEG recordings in which artifact-free EEG signals are con-

taminated with ocular artifacts artificially. The significance of this dataset is

that it contains the pre-contamination EEG signals, allowing the brain signals

underlying the EOG artifacts to be identified and the performance of each

artifact rejection technique to be objectively evaluated. Using a realistic con-

tamination model, the first EEG dataset was artificially contaminated with

EOG artifacts. It is only concerned with EOG artifacts and employs a real-

istic model for the contamination of artifact-free EEGs rather than a random

procedure [213]. The size of the EEG data in this set is of size 19× 5600.

• EEG dataset Two: Multichannel EEG signal from the "NUI Maynooth EEG"

dataset. The data was recorded according to the method by Sweeney et. al.

[214] and used in the paper [215]. (Sampling Frequencies : 2048 Hz) and

(Accelerometer : 200 Hz). Each EEG trial is of size 11× 5600. The whole set

consist of 23 trials.

• The EEG dataset Three: The Laboratory for Advanced Brain Signal Process-

ing, BSI-RIKEN, Japan, provided the EEG recordings in collaboration with

Shanghai Jiao Tong University, China. This dataset included 5 healthy sub-

jects. The cue-based BCI paradigm included two motor imagery tasks: left

hand (LH) and right hand (RH) movement imagination (RH). We used data

from session 6 of the user A (i.e.,dataset SubA_s6). The EEG signals were

recorded using g.tec (g.USBamp). The EEG signals were bandpass filtered

between 2Hz and 30Hz at a sample rate of 256Hz, followed by a 50Hz notch

filter. The size of the EEG data is 6× 768× 150.

4.4.1 EEG data completion

The experiments in this section are designed to assess EEG completion as a method

of dealing with missing or corrupted samples. Experiments are conducted using real

EEG tensor datasets. The data is then artificially corrupted with missing entries.
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That is, a mask is used to generate missing data in the recordings. The missing

entries in the time series are assumed to be continuous by default. The first step

is to tensorize any original 2 dimensional EEG signals into a 3 dimensional EEG

tensor. EEG signals can be represented as a 3-dimensional tensor of shape channel

× time × trials. Secondly, we simulate an incomplete EEG data by performing

an operation to create missing entries using approaches adopted in [11, 216]. The

selection of missing entries are performed in two ways:

1. Select missing data entries randomly. This mask has no predefined structure

[65, 216]. See Figure 4-14(a) for illustration

2. Selecting data with missing channels in random trials. This scenario is more

realistic in BCI applications. This can happen, for example, if an electrode has an

incorrect impedance value or becomes completely detached during the experiment

for any reason [11]. Refer to Figure 4-14(b) for illustration.

Figure 4-14: EEG missing data scenarios [11]

Simulating missing entries randomly: To generate random missing entries

in X. A binary mask Q is defined. Each entry in the mask Q is either 0 or 1.

Indexes with values corresponding to 1 will be preserved whiles index values with 0

are deleted. Therefore, the incomplete tensor is Y = X * Q, where * denotes the

element-wise product. The tensor completion algorithm is then applied on Y to

recover the information of the missing entries. Figure 4-15 provides an illustration

of generating incomplete data with random entries.
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Figure 4-15: Generating incomplete EEG data with random entries

Experiments with missing or corrupted data

To evaluate the performance the tensor completion algorithm on EEG data. We

compare with other tensor completion algorithms. The methods used are TRLRF

[13], MDT [9], SPC [49], TRAR[51], CPWOPT [29], TRALS [46] and TRWOPT [32].

The algorithms were chosen because they represent various solutions to the tensor

completion problem. We performed Hankelization for our TRDSR and MDT. The

data from set one and two was reshaped into 3rd order tensors of size 140× 40× 19

and 140× 40× 11 respectively. Then, we perform Hankel folding using window size

𝜏 = (120, 35, 7) to generate a 6th-order tensor of size 120 × 21 × 35 × 6 × 7 × 13

and 120× 21× 35× 6× 7× 5. The incomplete EEG from set three was Hankelized

into an 5th-order tensor of size 760 × 9 × 154 × 6 × 6 using the window sizes 𝜏 =

(760, 150, 6). It should be noted that the 𝜏 values can be changed or a much smaller

window size can be used however, we used this window size because of memory

constraints. For EEG simulation, ranks between 8 and 20 was used for all methods

that required rank tuning. MDT [9] and SPC [49] does not require rank setting.

All other parameters were set according to method specifications. To compare the

correctness of the proposed tensor completion algorithms, the NRMSE of the original

and reconstructed error is computed computed. The NRMSE was calculated based

on all the entries of the data.

EEG Experiment 1: Simulations are performed using different amounts of

missing samples. Specifically, we considered 1%, 5%, 10%, 15%, 20%, 30% and 40%

of missing samples on the whole EEG data tensor from dataset three. The missing

entries are by generated randomly along all the channels in the EEG tensor without
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Figure 4-16: NRMSE results on different missing entries of EEG data

any restriction about the structure of the missed values (as shown in Figure 4-14a

and Figure 4-15).

Figure 4-17: NRMSE results on different missing ratios using selected channels of
EEG data

Despite the fact that this is not a more realistic scenario, the results show that

all tensor completion algorithms can recover missing entries of EEG data with high

accuracy. We report the NRMSE values obtained in Figure 4-16. Similarly, we report

channel by channel NRMSE results of EEG data from dataset one with random

missing ratio from 10% to 70% using our proposed TRDSR algorithm. Eight (8)

channels were selected from the reconstruction and results displayed. Results are
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shown in Figure 4-17.

Figure 4-18 also present results on selected trials from the EEG dataset three.

The data was randomly corrupted with missing ratios from 10% to 80%. The tensor

completion was performed on each trail data of size 11×5600. The results show that

the method is able to perform similarly across all trails in the data set. In general,

Figure 4-18: NRMSE results on different missing ratios using selected trials from
dataset two

from these results it can be concluded that for the case of having random missing

entries the reconstruction is more difficult especially as the missing ratio increases

as can be seen with the high values of the error.

EEG Experiment 2: The second type of simulation include experiments for

a more realistic scenario in which complete trials are corrupted or missing. Our

results show that the proposed tensor completion algorithms are still applicable in

more difficult scenarios. Figure 4-19 compares the NRMSE of our proposed TRDSR

with SPC, MDT, TRAR algorithms which provided the best results. In Figure 4-22,

the reconstructed results and spectrum are shown for a selected part of the EEG

tensor. Figure 4-22(a), shows the reconstruction of the time series with missing

data. The missing entries are contained within the two red lines in the figure with

approximately 100 samples removed. Figure 4-22(b) shows the spectrograms of these

reconstructed time series for further comparison and easier analysis.

EEG Experiment 3: Similarly, Figure 4-20 presents visual results of recon-

structed signals using the tensor completion algorithm after removing artifact with
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Figure 4-19: NRMSE results on EEG data with some channels removed

Figure 4-20: Single channel EEG data reconstruction after artifact detection

Figure 4-21: EEG data reconstruction after artifact detection

high frequency. We consider real EEG data with artifacts where the affected part

is removed and attempt to reconstruct the removed section using our proposed

TRDSR Algorithm. Figure 4-21 also shows the reconstruction results of one chan-

nel in a multi-channel EEG data with artifact correction. The corrupted data is

taken from EEG dataset one.
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Figure 4-22: Spectrogram comparison on the missing entries of an EEG tensor with
6 Channels. (a) Completion effects in the time domain; (b) completion effects in
frequency domain
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Cross tensor approximation

exploiting smoothness

This chapter introduces us to the concept of cross approximation or CUR and its ap-

plication to tensor completion. The ColUmn-Row (CUR) or cross-skeleton method

was introduced to the field of numerical linear/multi-linear algebra for computation

of fast low-rank matrix/tensor approximation using large-scale data matrices or ten-

sors. A CUR matrix approximation is a set of three matrices (C, U, R) that, when

multiplied together, closely approximate a given matrix. The main advantages for

adopting CUR algorithms are:

• Fast low tensor rank approximation,

• Data interpretation concerns,

• Higher compression ratio.

In addition to the above advantages, for the case of matrices, the SVD of sparse

matrices does not provide sparse factor matrices, whereas the cross-skeleton ap-

proximation does, resulting in a more compact data representation. Although CUR

approaches are commonly employed for low-rank matrix/tensor approximation and

compression, we are employing them to solve the completeness problem. The meth-

ods by [217] and [218] are the only algorithms that apply the CUR approximation

approaches for the completion job. These methods, on the other hand, are purely
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Figure 5-1: Illustration of cross decomposition for low-rank matrix approximation X ∼=
CUR, where U = W+ [12].

theoretical and cover more complicated procedures. The method proposed in this

research provides a simple and easy solution to implement. It can be implemented

in few lines of code. Also, because they utilise CUR methods, they have a lower

computational complexity than other completion techniques. This method is the

first one using the tensor CUR algorithm developed in [219] and [220], for the tensor

completion task.

5.1 Cross Matrix Approximation (CMA) and Ma-

trix Column Selection

The skeleton or cross approximation method of computing a low-rank approxima-

tion of a given matrix based on a portion of its individual columns and rows was first

developed in [221]. This framework is known as cross approximation because it uses

a matrix that intersects the columns and rows during the approximation phase. The

selection of a column or row can be done in a randomized or deterministic manner.

Algorithms based on The Maxvol [222, 223], Cross2D [224, 225] and Discrete Em-

pirical Interpolatory Method (DEIM) [226, 227] are known to have such selections.

If the columns or rows are selected randomly, this framework is often known as

randomized CUR approximation. Compared with conventional algorithms, such as

SVD, the CUR approach requires less memory usage and floating-point operations.

It can also preserve the structure of the original data matrix, such as non-negativity,

sparsity, and smoothness.

The CUR problem is formally formulated as follows: Let X ∈ R𝐼×𝐽 be a given
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matrix and C ∈ R𝐼×𝑅1 , R ∈ R𝑅2×𝐽 are the selected columns and rows, respectively,

and the intersection matrix is W ∈ R𝑅1×𝑅2 , see Figure 5-1. It’s low-rank cross

approximation is computed as:

X ∼= CUR = U×1C×2R
𝑇 , (5.1)

where U ∈ R𝑅1×𝑅2 should be computed to yield the smallest error. The best middle

matrix U in the least-squares sense is U = C+XR+ because

C†XR† = arg min
U∈R𝑅1×𝑅2

‖X−U×1C×2R‖𝐹 .

The approximation computed in the above formulation is exact if rank (X) ≤

min {𝑅1, 𝑅2} [221].

In order to compute the middle matrix in formulation (5.1), the whole matrix

X is needed. This approach can be simplified by using the Moore-Penrose of the

intersection matrix W and computing the approximation X ∼= CW†R. However,

there are instability issues when computing the Moore-Penrose pseudoinverse of such

a matrix especially when the matrix is ill-conditioned. Due to this, a well conditioned

intersection matrix should be selected. It is also known that the quality of this

intersection matrix depends on the module of the determinant called matrix volume.

To be precise, a set of columns and rows should be selected whose intersection matrix

has as much volume as possible. This clearly is an NP-hard problem since we

need to check the volume of all possible intersection matrices produced by different

selections of columns on rows. However, algorithms implemented in [228, 229, 230,

231] provide a heuristic approach for computing suboptimal solutions. If a given

matrix X is positive semi-definite, then the CUR approximation is called Nyström

method, i.e., C = R, and has several applications in machine learning and data

science [232, 233, 234, 235]. In this research, this variant is not considered as the

images/videos do not have symmetric structures.

A special case of the CMA where only columns are sampled is called matrix

column selection, interpolative matrix decompositions, and in some contexts, it is

also referred to as CY decomposition. This problem is known as column (feature)
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selection in the field of machine learning and data analysis [236, 237, 238, 239, 240,

241, 242]. To illustrate, let X ∈ R𝐼×𝐽 and C ∈ R𝐼×𝑅 be the number of selected

columns. Then the matrix column selection is formulated as follows:

X ∼= CY, (5.2)

where C ∈ R𝐼×𝑅 is a matrix containing the selected columns and Y ∈ R𝑅×𝐽 should

be computed in such a way that the approximate error should be as small as possible.

The best solution to the problem (5.2) in the least-squares (LS) sense is Y = C+X,

and if rank(X) = 𝑅, then the approximation is exact, i.e., X = CC+X.

5.2 Cross Tensor Approximation(CTA)

CTA is a fast low-rank tensor approximation method that is a generalization of

cross/skeleton matrix and CUR matrix approximation. The Skeleton or Cross ap-

proximation (CMA) computes a low-rank approximation using a portion of individ-

ual columns and rows. Deep learning methods [243], signal processing [244, 245],

scientific computing [246, 247, 248] and machine learning [219, 249, 250] have all

applied these methods in some applications. The next subsequent sections, explains

how the CMA can be generalized to the tensor case. In general, there are three

main categories under which the CTA techniques are generalized to tensors:

• Fiber selection,

• Fiber-Slice selection,

• Slice selection,

The first category is concerned with the Tucker decomposition while the last one

is related to the tubal SVD. The second category is a different model and will be

discussed in detail later.
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5.2.1 CTA based on fiber selection

A straightforward generalization of the CMA to tensors are proposed in the works

by [251, 252], and [253]. Similar to the CMA where parts of columns and rows

of a given matrix are sampled, a set of fibers (along different modes) are selected,

and the goal is to compute a Tucker approximation based on these sampled fibers.

For example, for 3rd-order tensors, columns, rows, and tubes are sampled. The

method proposed in [220] adopts a randomization approach, while those proposed

in [252, 253] are deterministic. These methods are considered to be the starting

points of generalizing CMA to tensors.

For noiseless data tensor, the existence of an exact Tucker model whose factor

matrices are taken from the fibers of the original data tensor is obvious. To be

more precise, let X be an 𝑁th-order tensor of size 𝐼1 × 𝐼2 × · · · × 𝐼𝑁 and of Tucker

rank (𝑅1, 𝑅2, . . . , 𝑅𝑁). Now, if we generate any full-rank factor matrices A𝑛 ∈

R𝐼𝑛×𝑅𝑛 , 𝑛 = 1, 2, . . . , 𝑁 , by sampling fibers in each mode and computing the core

tensor as

S = X×1A
+
1 ×2A

+
2 · · · ×𝑁A

+
𝑁 ∈ R𝑅1×𝑅2×···×𝑅𝑁 , (5.3)

then the obtained Tucker decomposition has the exact Tucker rank (𝑅1, 𝑅2, . . . , 𝑅𝑁).

So an exact Tucker decomposition of the tensor X whose factor matrices are taken

from the original data tensor is computed. For noisy tensors, similar to the CMA,

the accuracy of approximation quite depends on the number of selected fibers and

also the list of sampled fibers. The idea of sampling fibers and considering them as

the factor matrices, first was proposed in [220]. In the first step, the factor matrices

are generated, after which the core tensor is computed through (5.3) as described

above. This is summarized in Algorithm 9.

The Fast Sampling Tucker Decomposition (FSTD) algorithm [253] is another

approach for CTA. In this method, first an intersection subtensor W is produced

by sampling some indices in different modes and then the fibers are selected. In a

more precise way, let X ∈ R𝐼1×𝐼2×𝐼3 be a given 3rd-order tensor and ℐ1 ⊆ 𝐼1, ℐ2 ⊆

𝐼2, ℐ3 ⊆ 𝐼3, be subsets of indices 𝐼1, 𝐼2, 𝐼3 where, |ℐ| = 𝑃1, |ℐ2| = 𝑃2, |ℐ3| = 𝑃3
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Algorithm 9: Tucker CUR Algorithm [220]
Input : A data tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 , positive integer numbers

𝑅𝑛, 𝑛 = 1, 2, . . . , 𝑁
Output: Tucker approximation X ∼= [[S;A1,A2, . . . ,A𝑁 ]]

1 for 𝑛 = 1, 2, . . . , 𝑁 do
2 Sample 𝑅𝑛 fibers in 𝑛-th mode and generate approximate factor matrix

A𝑛 ∈ R𝐼𝑛×𝑅𝑛

3 end
4 Compute the core tensor S ∈ R𝑅1×𝑅2×···×𝑅𝑁 as in (5.19)

Figure 5-2: Illustration of the CTA (fiber selection version) for a 3rd-order low-rank tensor.
For simplicity of presentation, we assume that all fibers build up to block sub-tensors, [12].

and the core intersection subtensor is denoted by W ∈ R𝑃1×𝑃2×𝑃3 .

The question is how to compute an approximate Tucker decomposition for the

tensor X based on the intersection subtensor W?. Motivated by the fact that

U = W×1W
+
(1)×2W

+
(2) = W+WW+ = W+, (5.4)

which is used as the middle matrix in the CMA, it is proposed in [253] to compute

Figure 5-3: llustration of the Tucker-2 CUR approximation.
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the approximate core tensor in the Tucker decomposition as

U = W×1W
+
(1)×2W

+
(2)×3W

+
(3)

≡
[︁[︁
W;W+

(1),W
+
(2),W

+
(3)

]︁]︁
. (5.5)

This is a direct generalization of (5.4) to 3rd-order tensors. In view of (5.5), the core

tensor U of the Tucker approximation is of size 𝑃2𝑃3×𝑃1𝑃3×𝑃1𝑃2 and as a result,

𝑃2𝑃3 columns, 𝑃1𝑃3 rows, and 𝑃1𝑃2 tubes should be sampled. The selection has to

be done in an appropriate way, see Figure 5-2 for details. It is shown in [253] that

the corresponding factor matrices A1 ∈ R𝐼1×𝑃2𝑃3 , A2 ∈ R𝐼2×𝑃1𝑃3 ,A3 ∈ R𝐼3×𝑃1𝑃2 are

the subsampled matrices from the unfolding matrices X(1)(:, ℐ2, ℐ3), X(2)(ℐ1, :, ℐ3)

and X(3)(ℐ1, ℐ2, :) respectively and CTA approximation can be found as

X ∼= [[U;A1,A2,A3]]

≡

⎡⎢⎢⎣
⎡⎢⎢⎣W;A1W

+
(1)⏟  ⏞  ̃︀C1

,A2W
+
(2)⏟  ⏞  ̃︀C2

,A3W
+
(3)⏟  ⏞  ̃︀C3

⎤⎥⎥⎦
⎤⎥⎥⎦ . (5.6)

The procedure of this approach is summarized as follows

• Consider indices ℐ𝑛 ∈ [𝐼𝑛], 𝑛 = 1, 2, 3 and produce the intersection subtensor

W and corresponding sampled columns, rows, and tubes A1, A2 and A3.

• Compute the Tucker approximation (5.6).

The algorithm is referred to as Fast Sampling Tucker Decomposition (FSTD) and

summarized in Algorithm 10 [253]. The work by [254] provides a similar approach

to this method where the similarity lies in the number of selected fibers for each

mode.

5.2.2 CTA Based on Slice-Fiber Selection

The work by [255] provides an alternate approach to CTA. The idea is motivated

by some applications used in hyperspectral imaging, medical image analysis and

consumer recommender system analysis. This is because for most of these data, one
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Algorithm 10: Fast Sampling Tucker Decomposition (FSTD) algorithm
for 3rd-order tensors [253]
Input : A data tensor X ∈ R𝐼1×𝐼2×𝐼3 , indices ℐ𝑛 ⊆ [𝐼𝑛], 𝑛 = 1, 2, 3
Output: Tucker approximation X ∼= [[U;A1,A2,A3]]

1 Generate the intersection subtensor W = U (ℐ1, ℐ2, ℐ3)
2 Generate the subsampled matrices A1 = X(1)(:, ℐ2, ℐ3), A2 = X(2)(ℐ1, :, ℐ3)

and A3 = X(3)(ℐ1, ℐ2, :)
3 X ∼=

[︀[︀
W,A1W

+
1 ,A2W

+
2 ,A3W

+
3

]︀]︀
of the modes is qualitatively different from the others. This section introduces a

brief description of the idea for 3rd-order tensors. Let X ∈ R𝐼1×𝐼2×𝐼3 be a given data

tensor, and without loss of generality, we assume that the last mode is qualitatively

different from the others. More precisely, the last mode has a larger dimension

compared to the other modes, and some frontal slices and tubes are selected.

Given prior probability distributions for sampling frontal slices as {𝑝𝑖}𝐼3𝑖=1 and

tubes as {𝑞𝑗}𝐼1𝐼2𝑗=1 , in the first step, some frontal slices, say 𝐿1, are sampled and

they are stored in C ∈ R𝐼1×𝐼2×𝐿1 . In the second step, we sample some tubes, say

𝐿2 = 𝑅1𝑅2, and store them in R ∈ R𝑅1×𝑅2×𝐼3 , or a matrix R ∈ R𝐿2×𝐼3 (see Figure

5-4 (a)).

The CTA is then defined as (see Figure 5-4 (b))

X ∼= C×3 (UR)𝑇 , (5.7)

where the tensor C ∈ R𝐼1×𝐼2×𝐿1 and the matrix R ∈ R𝐿2×𝐼3 contain the sampled

frontal slices and tubes, respectively. The matrix U ∈ R𝐿1×𝐿2 is defined as

U = D1(D2WD1)
+D2 ∈ R𝐿1×𝐿2 ,

W = reshape(W, [𝐿2, 𝐿1]),

where D1 ∈ R𝐿1×𝐿1 and D2 ∈ R𝐿2×𝐿2 are scaling diagonal matrices corresponding
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to the slice and fiber sampling, respectively, and defined as follows

(D1)𝑡𝑡 =
1√︀
𝐿1𝑝𝑖𝑡

, 𝑡 = 1, 2, . . . , 𝐿1,

(D2)𝑡𝑡 =
1√︀
𝐿2𝑞𝑖𝑡

, 𝑡 = 1, 2, . . . , 𝐿2,

where {𝑝𝑖}𝐼3𝑖=1 are {𝑞𝑗}𝐼1𝐼2𝑗=1 are probability distributions under which the frontal slices

and fibers are sampled. This procedure is summarized in Algorithm 11. The length-

squared probability distributions are defined as follows

𝑝𝑖 =
‖X(:, :, 𝑖3)‖2𝐹
‖X‖2𝐹

, 𝑖3 = 1, 2, . . . , 𝐼3,

𝑞𝑗 =
X(𝑗1, 𝑗2, :)

‖X‖2𝐹
, 𝑗1, 𝑗2 ∈ 𝐽1, 𝐽2. (5.8)

where 𝐽1 and 𝐽2 are subsets of the indices 𝐼1 and 𝐼2, are used in [255] for selecting

the slices/tubes.

Remark 1. As discussed in [256], the model (5.7) can be considered as a special

case of (5.6) with A1 = W1 and A2 = W2.

Algorithm 11: Slice-tube CUR algorithm [255]

Input : A data tensor X ∈ R𝐼1×𝐼2×𝐼3 , a probability distribution {𝑝𝑖}𝐼3𝑖=1, a
probability distribution {𝑞𝑗}𝐼1𝐼2𝑗=1 and positive integers 𝐿1 and 𝐿2

Output: A tensor C of size 𝐼1 × 𝐼2 × 𝐿1, a matrix U of size 𝐿1 × 𝐿2 and
matrix R of size 𝐿2 × 𝐼3

1 Select 𝐿1 frontal slices of tensor X i.i.d. trials according to {𝑝𝑖}𝐼3𝑖=1 and
produce tensor C ∈ R𝐼1×𝐼2×𝐿1 ;

2 Generate diagonal scaling matrix 𝐷1 of size 𝐿1 × 𝐿1, where (D1)𝑡𝑡 = 1√
𝐿1𝑝𝑖𝑡

for 𝑡 = 1, 2, . . . , 𝐿1

3 Select 𝐿2 tubes of tensor X in 𝐿2 i.i.d. trials according to {𝑞𝑗}𝐼1𝐼2𝑗=1 and
produce unfolding matrix R ∈ R𝐿2×𝐼3

4 Generate diagonal scaling matrix of size 𝐿2 × 𝐿2, where (D2)𝑡𝑡 = 1√
𝑙2𝑞𝑗𝑡

for

𝑡 = 1, 2, . . . , 𝐿2

5 Compute the 3rd-order tensor intersecting the sampled tubes and frontal
slices as W ∈ R𝑅1×𝑅2×𝐿2 , 𝑅1𝑅2 = 𝐿1

6 Generate matrix W = reshape(W, 𝐿2, 𝐿1)

7 Define matrix U = D1(D2WD1)
+D2
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Figure 5-4: llustration of the CTA based on frontal slice and tube selection.

Figure 5-5: Illustration of the tubal CTA for a 3rd-order tensor.

5.2.3 CTA based on tubal product (t-product)

In this approach, the tensor variants of the CMA and matrix column selection are

called the tubal CTA and lateral slice selection respectively. To be precise, let X

be a given 3rd-order tensor. The tubal cross approximation based on t-product is

formulated as follows:

X ∼= C *U *R, (5.9)

where * stands for the t-product [25], C ∈ R𝐼1×𝐿1×𝐼3 and R ∈ R𝐿2×𝐼2×𝐼3 are some

sampled lateral and horizontal slices of the original tensor X respectively and the

middle tensor U ∈ R𝐿1×𝐿2×𝐼3 is computed in such a way that the approximation (5.9)

should be as small as possible, see Figure 5-5 for graphical illustration concerning

the tubal CTA.

Note that similar to other CTA algorithms discussed so far, the procedure of

both lateral and horizontal slices sampling can be performed based on prior prob-

ability distributions1. The probability distributions used in [257] are uniform and
1Here different various probability distributions (with/without replacement) can be used but
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nonuniform (length-squared and leverage scores) distributions. Let us first consider

the tubal CTA. Similar to the CMA, the best solution for the middle tensor U in

the least-squares sense becomes :

U = C+ *X *R+, (5.10)

because

C+ *X *R+ = argmin
U∈R𝐿×𝐼2×𝐼3

‖X−C *U *U‖𝐹 .

This is a straightforward generalization of the CMA [221] to tensors. Formula (5.10)

can be computed in the Fourier domain and these computations are summarized in

Algorithm 12. However, it is clear that (5.10) needs to pass the data tensor X once

again and this is of less practical interest for very large-scale data tensors, especially

when the data tensors do not fit into the memory and communication between

memory and disk is expensive [258]. To solve this problem, the MP pseudoinverse of

the intersection subtensor W ∈ R𝐿2×𝐿1×𝐼3 , which is obtained based on intersecting

the sampled horizontal and lateral slices, should be approximated as

U = C *W+ *R.

It is not difficult to see that the tensor W consists of some tubes of the original data

tensor X.

Also the tensor lateral slice selection based on the t-product is formulated as

follows

X ∼= C *Y, (5.11)

where C ∈ R𝐼1×𝐿×𝐼3 is a part of lateral slices of the tensor X and the tensor Y ∈

R𝐿×𝐼2×𝐼3 is computed in such a way that the reconstruction error (5.11) is as small

as possible [257]. The best solution for the tensor Y is

Y = C+ *X,

we will not go through the theoretical details.
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which provides the best approximation in a least-squares sense, that is

⃦⃦
X−C *

(︀
C† *X

)︀⃦⃦
𝐹

= min
Y∈R𝐿×𝐼2×𝐼3

‖X−C *Y‖𝐹 ,

through the projection approximation X ∼= C *C+ *X.

Algorithm 12: Tubal CUR algorithm
Input : A data tensor X ∈ R𝐼1×𝐼2×𝐼3 , positive numbers 𝐿1, 𝐿2, probability

distributions 𝑝𝑖, 𝑖 = 1, 2, . . . , 𝐼2 and 𝑝′𝑖, 𝑖 = 1, 2, . . . , 𝐼1
Output: Tubal CTA X ∼= Z = C *U *R

1 Select 𝐿1 lateral slices of the tensor X based on probability distributions
𝑝𝑖, 𝑖 = 1, 2, . . . , 𝐼2 and set tensor C

2 Select 𝐿2 horizontal slices of the tensor X based on probability distributions
𝑝′𝑖, 𝑖 = 1, 2, . . . , 𝐼2 and set tensor R

3 ̂︀X = fft (X, [], 3) ̂︀C = fft (C, [], 3) , ̂︀R = fft (R, [], 3)
4 for 𝑖 = 1, 2, . . . , 𝐼3 do
5 ̂︀U (:, :, 𝑖) = ̂︀C (:, :, 𝑖)+ ̂︀X (:, :, 𝑖) ̂︀R (:, :, 𝑖)+

6 end
7 for 𝑖 = 1, 2, . . . , 𝐼3 do
8 ̂︀Z (:, :, 𝑖) = ̂︀C (:, :, 𝑖) ̂︀U (:, :, 𝑖) ̂︀R (:, :, 𝑖)
9 end

10 Z = ifft
(︁̂︀Z, [], 3)︁ , U = ifft

(︁̂︀U, [], 3
)︁

5.3 Tensor CUR for image completion

The proposed algorithm for the tensor completion task is described in this section.

An important step in this technique is the CUR approximation of the underlying

data tensors. To begin, a completion algorithm with rank minimization is stated as

follows:
min
X

rank (X) ,

s.t. PΩ(X) = PΩ(Y) ,
(5.12)

where Y is the incompleted data tensor with only observed components with corre-

sponding indices Ω and X is the unknown data tensor that needs to be determined.

The rank mentioned in formulations (5.12) can be CPD rank, TT/TR(TC) rank,

Tucker rank, etc, and corresponding minimization problem is considered. In the

case of Tucker rank which is an N-tuple (𝑅1, 𝑅2, . . . , 𝑅𝑁), the following problem is
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formulated as
min
X

∑︀𝑁
𝑛=1 𝑅𝑛 ,

s.t. PΩ(X) = PΩ.(Y) .
(5.13)

The rank minimization problem in general is an NP-hard problem and a convex

surrogate of it usually is replaced [36, 90]. The tensor decomposition formulation is

a more efficient alternative to the nuclear norm minimization approach. The tensor

decomposition formulation (5.14) is written as follows

min
X
‖PΩ(X)−PΩ(Y)‖2𝐹 ,

s.t. 𝑟𝑎𝑛𝑘(X) = 𝑅 ,
(5.14)

where the unknown tensor X has low tensor rank representation. Here again, differ-

ent kinds of tensor ranks and associated tensor decompositions can be considered.

Using an auxiliary variable C, the optimization problem (5.14) can be solved more

conveniently by the following reformulation

min
X,C

‖PΩ(X)−PΩ(C)‖2𝐹 ,

s.t. 𝑟𝑎𝑛𝑘(X) = 𝑅 ,

and PΩ(C) = PΩ(Y) .

(5.15)

In this case, we can alternatively solve optimization problem (5.14) over vari-

ables X and C. Therefore, the minimization problem can be approximated by the

following iterative procedure

X(𝑛) = ℒ(C(𝑛)) , (5.16)

C(𝑛+1) = Ω~Y + (1−Ω) ~X(𝑛) , (5.17)

where ℒ is an operator which computes a low-rank tensor approximation of the

data tensor X(𝑛) and 1 is a tensor whose all components are equal to one. Note that

equation (5.16) solves the minimization problem (5.15) over X for fixed variable C.

Also equation (5.17) solves the minimization problem (5.15) over C for fixed variable

X. This algorithm consists of two main steps, low tensor approximation (5.16)

and Masking computation (5.17). It starts from the initial incomplete data tensor
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X(0) with the corresponding index set Ω and sequentially improves the approximate

solution till some stopping criterion is satisfied or the maximum number of iterations

is reached. Note that the term Ω ~ Y(𝑛) is not required to be computed at each

iteration as it is equal to the initial data tensor X(0). In general, any type of tensor

decomposition can be utilized for low rank approximation in (5.16). For example,

in [259], the Tucker decomposition is exploited at each iteration while in [29] and

[46] the CPD and the TR/TC decomposition are used.

The proposed algorithm is summarized in Algorithm 13. The formulation is

quite general and can incorporated into different tensor/matrix factorization cases.

For instance, in the case of matrices, a matrix CUR algorithm selects some columns

and rows (C ∈ R𝐼1×𝑅 and R ∈ R𝑅×𝐼2) and computes the middle matrix as U =

C†XR† ∈ R𝑅×𝑅 and a low CUR approximation X ∼= CUR is also computed.

For the tensor case, different tensor decompositions can be utilized, such as

Tucker decomposition [260, 150], tubal decomposition [25, 26], tensor CUR approx-

imation [255]. To be more precise, let us consider the Tucker decomposition case.

Here, in the first stage, the factor matrices C𝑛 ∈ R𝐼𝑛×𝑅𝑛 are computed by sampling

the columns of 𝑛-unfolding matrices (or 𝑛-mode fibers) after which the core tensor

is computed as follows

S = X×1C
†
1×2C

†
2 · · · ×𝑁C

†
𝑁 ∈ R𝑅1×𝑅2×···×𝑅𝑁 . (5.18)

Then, a low CUR Tucker approximation is computed at each iteration as follows

X = S×1C1×2C2 · · · ×𝑁C𝑁 . (5.19)

Other kinds of CUR Tucker approximations such as FSTD or adaptive fiber sampling

[253], Cross3D [252] can be utilized. In all our experiments, the sampling procedure

is performed randomly, and as a result, the proposed algorithm can be considered

a randomized tensor completion algorithm. It is also possible to exploit heuristic

ones as it is a special case of our algorithm. However, they are slower than the

randomized ones.

The simulations show that in the Tucker CUR and tubal CUR, the middle matrix
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should be computed very carefully and accurately otherwise, the approximation

scheme will be unstable, and the results will be very poor. In all our experiments

for the Tucker CUR and tubal CUR, we have utilized formula (5.19) and (5.10),

respectively.

Algorithm 13: Tensor CUR algorithm for tensor completion.
Input : An incomplete data tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 , Tensor Rank R, the

set of observed components Ω, error bound 𝜀 and MaxIter.
Output: Completed data tensor X*

1 X(0) ∈ R𝐼1×𝐼2×···×𝐼𝑁 is a random tensor;
2 Y(0) ∈ R𝐼1×𝐼2×···×𝐼𝑁 is a zero tensor;
3 for 𝑛 = 0, 1, 2, . . . do
4 Y(𝑛+1) ←Compute CUR approximation of the data tensor X(𝑛) with

rank 𝑅
5 X(𝑛+1) ← PΩ(Y(𝑛+1)) + PΩ⊥(Y(𝑛+1))

6 if ‖
X(𝑛+1)−X(𝑛)‖

𝐹

‖X(𝑛+1)‖
𝐹

< 𝜀 or 𝑛 > MaxIter then

7 X* = X(𝑛+1) and break
8 end
9 end

5.3.1 Multi-stage CUR for tensor completion

The tensor completion algorithm initializes a random data tensor with zero mean and

unit variance, which is then updated sequentially to reconstruct the incomplete data

tensor 2. The CUR approximation of the underlying data tensor is created at each

iteration, following which the mask operator is applied to keep fixed the observed

elements of the underlying tensor. The operator ℒ in (5.16) can be replaced by any

of the tensor CUR algorithms described above. The approximation computed in

the first stage is denoted by X(1) is a single-stage CUR approximation. This Single-

stage CUR approximation does not work well in practice and so there is a need

for a multi-stage CUR approximation by concatenating several single-stage CUR

approximation. To be more specific, the above-mentioned procedure is repeated by

computing a CUR approximation of the tensor X(1) and applying the mask operator
2We experimentally confirmed that the same results are achieved if the algorithm starts with

the incomplete data tensor.
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at each stage. This procedure is continued till a maximum number of iteration is

reached or a stopping criterion is satisfied. This method also can be interpreted

as a combination of a sequence of CUR approximation (linear operator) and mask

functions (nonlinear operator). For a graphical illustration on the proposed approach

see 5-6. Figure 5-7, shows that multistage CUR approximation provides better

results. It can be seen that an incomplete image with PSNR 18.7717 was recorded

after 100 iterations, a PSNR of 25.7841 was recorded at 200 iterations while for 500

iterations a PSNR of 31.3282 was achieved on the reconstructed MRI image. It was

also experimentally found that if the selected fibers are smoothed in the tensor CUR

approximation, the reconstruction performance of the algorithm is totally improved.

In particular, this was more visible in difficult scenarios, such as high missing ratio

or structural missing patterns.

Figure 5-6: The procedure of the proposed algorithm as a multi-stage CUR approximation
followed by mask operator.

Figure 5-7: The proposed approach for reconstructing an MRI with structured missing.a
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5.3.2 Smoothing techniques

The underlying elements of data tensors change smoothly or continuously in many

applications. Examples of such data are images. It is therefore natural to con-

sider the smoothness constraint when working on the optimization problems which

are associated with the mentioned data tensors. There are various techniques and

approaches to make the elements of a data tensor smooth such as low-pass filter-

ing, moving averaging, locally estimated scatterplot smoothing (LOESS) and its

weighed variant (LWOESS), the robust LOESS (RLOESS) and robust LWOESS

(RLWOESS) etc., see [261, 262, 263, 264] for a comprehensive study of such smooth

functions. As discussed in Section 5.1, the CMA methods can be generalized to ten-

sor by sampling fibers, slice-fibers and slices. Firstly, we apply smoothness to the

selected fibers and slices after their selections and then compute the corresponding

low CTA. It is experimentally confirmed that this idea always provides better results

than algorithm with no smoothness applied. More importantly, this can be seen in

the situation with high missing ratio of elements or structural missing components,

e.g., sequential columns and rows, the basic Algorithm 9 using Tucker CUR may

not work properly while its smooth variant works perfectly.

That is, in the simulations, it was discovered that for difficult incomplete data

tensors, such as removing sequential columns and rows or high missing ratio (95%),

the tensor CUR algorithms may have a problem in reconstructing the incomplete

data tensors. This is because the selected fibers of the incomplete data tensors

have many zero components, and their components do not change continuously

(smoothly) as expected in the case of images/videos. To overcome this difficulty, we

propose to first perform smoothing on the selected fibers and then compute the CTA,

refer to Figure 5-8 for illustration on the difference between the structure of smooth

signal and non-smooth ones. Different types of smoothing techniques were used

in the simulations including moving average, LOESS, LWOESS, LOESS, RLOESS,

RLWOESS and Savitzky-Golay. Generally the smoothing technique significantly

improves the Tucker CUR and tubal CUR algorithms with almost the same running

time compared to the non-smooth version. The quality of the different smoothing

strategies are compared in Figures 5-10 and 5-11, using some examples for the Tucker
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Figure 5-8: Illustration of the difference between the smooth fibers and non-smooth ones.
The results are for the column fiber X(:, 50, 1) using the Tucker CUR and the iterations
1, 10, 20, 30, 40, (from the left to the right).

and tubal decompositions respectively.

In our experiment, the Moving Average (MA) which is a special case of FIR

(Finite Impulse Response) filter provided sufficiently good performance and simul-

taneously low complexity and shortest running time. In fact, the moving average

method is the simplest type of such techniques used widely in the signal community

as finite impulse response (low-pass) filter. It smooths out the elements of given

data points, by replacing the elements of the data with a sequence of averages of

different subsets of the given data points. Refer to Figure 5-11(a)-(b) for PSNR

results using tubal CUR decomposition where we compare different smoothing tech-

niques on the degraded “Baboon” and “Peppers” images shown in Figure 5-9. We

can see that for this example, the moving average smoothing technique provided

better recovery results than other smoothing approaches. Also, in Figure 5-8, the

difference between the structure of one fiber of the “Peppers” image (fiber X(:, 50, 1))

with 95% missing ratio and its smooth forms during several iterations is shown. We

used the MATLAB, the function “smooth” and it supports all the above-mentioned

smoothing methods. The moving average technique with a span of 5 was utilized in

all our experiments and it provided quite good and promising results. It is worth

mentioning that inappropriate selection of the span parameter in moving average

may lead to blur image output.
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Figure 5-9: The original and the observed images.
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Figure 5-10: Comparing the performance of different smoothing strategies using the
Tucker CUR approximation for reconstructing images with structured missing data.
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Figure 5-11: Comparing the performance of different smoothing strategies for recon-
structing images using the tubal CUR approximation, a) incompleted “Pepper” in
Figure 5-9 b) incomplete “Baboon” in Figure 5-9. 40 lateral/horizontal slices were
used

5.3.3 Computational complexity

In this section, we make a brief comparison between the complexities of the algo-

rithms. Let ∈ R𝐼1×𝐼2×···×𝐼𝑁 , and for the simplicity, assume 𝐼1 = 𝐼2 = . . . = 𝐼𝑁 = 𝐼

and 𝑅1 = 𝑅2 = . . . = 𝑅𝑁 = 𝑅, then the computational complexities of the TR-ALS,

TRLRF and TR-WOPT per iteration are 𝒪(𝑃𝑁𝑅4𝐼𝑁 + 𝑁𝑅6), 𝒪(𝑁𝑅2𝐼𝑁 + 𝑁𝑅6)

and 𝒪(2𝑁𝐼𝑁𝑅2), respectively, where 𝑃 is the total number of observations. The

computational complexity of Tucker CUR is 𝒪(𝐼𝑁𝑅) which is lower than other com-

pletion algorithms. Our experimental results also confirm this. In our experiments,

the TR-WOPT required more iterations for convergence and this is why in Figure

5-18, the TR-WOPT has high running time.

5.4 Experiments on MRI, images, times series and

Video data

We examine the proposed CUR algorithms on image/video and MRI data comple-

tion. In all this experiments the sampling of fibers or slices were performed without

replacement. The PSNR and SSIM is also used here to compare the performance of

different completion algorithms.
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MRI data completion: The first experiments show that the proposed Tucker

CUR algorithm is applicable to medical images. To this end, we applied the Tucker

CUR completion algorithm developed by us for the MRI dataset3. The original

dataset is a 3rd order tensor of size 256× 256× 21, see Figure 5-12 for some sample

slices of the data tensor. 40% of the pixels of the original data tensor was uniformly

removed and the Tucker CUR algorithm was applied with 𝑅1 = 𝑅2 = 160, 𝑅3 = 21.

The reconstructed images (also images with missing pixels) and their corresponding

PSNR and SSIM are reported in Figure 5-12. We also apply the idea of smoothing

the fibers in the first and second modes and the PSNR and SSIM comparisons are

reported in Figure 5-14. In another experiment, MRI images of size 256× 256× 21

was degraded using structural missing patterns. In the first instance a scratching

pattern as seen in experiments in previous chapter was applied, whiles several rows

and columns were removed in the second image before the CUR tensor completion

was performed. Refer to Figure 5-13 for results on PSNR and SSIM. All the results

shown in these experiments point to the fact that the proposed algorithm especially

the algorithm equipped with smoothing idea is a promising approach for completing

the medical images.

Image completion: The second experiment compares the Tucker CUR and

tubal CUR with its smooth variants using images of size 256× 256× 3. The bench-

mark images used in this simulations are "Baboon", "House", "Peppers", "Lena"

and "Facade". Different kinds of missing components both random and structured

where considered and the visual results are shown in Table 5.1. The reconstructed

images were evaluated using PSNR and SSIM respectively. The running time of

these methods are also shown in Table 5.1. The image "Lena" was used in a similar

experiment where we applied a scratching degradation to render the image incom-

plete. Tubal CUR, FSTD, Slice-tube CUR, Tucker CUR and their smooth variants

were applied on resultant image. The reconstructed images with PSNR and SSIM

are displayed in Figure 5-15. Furthermore, we conduct more experiments using

Tucker CUR compared with TRLRF [13], TR-WOPT [32], TR-ALS [46] and SPC
3From the https://www.kaggle.com/malekmechergui/mri-data-set, we have used the data

s02_t1w_hires_defaced_MNI.nii.
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Figure 5-12: The reconstructed frame numbers (6-10-14-18-21) using the Tucker CUR
algorithm for the MRI brain dataset.

Figure 5-13: Performance of CUR on structured missing data
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Figure 5-14: The comparison of Tucker CUR and Smooth Tucker CUR for the MRI
dataset a) The PSNR comparison, b) The SSIM comparison.

Table 5.1: The PSNR and SSIM of the initial incomplete images and those achieved
by the Tucker CUR, tubal CUR and their smooth variants with corresponding run-
ning time (in second) for images with 95% missing components. The Tucker rank
(37, 37, 3) and tubal rank 𝑅1 = 25, 𝑅2 = 25 were used.

Image Incomplete image Tucker CUR Smooth Tucker CUR Tubal CUR Smooth Tubal CUR
[PSNR, SSIM] [PSNR, SSIM,Time] [PSNR, SSIM,Time] [PSNR, SSIM,Time] [PSNR, SSIM,Time]

Lena [5.3439, 0.0077] [16.1314, 0.7696, 2.15] [22.1557, 0.9011, 4.11] [16.7514 0.7356, 3.26] [21.4871, 0.8919, 4.97]
House [4.8375, 0.0042] [18.2095, 0.6122, 2.17] [ 22.6334, 0.8168, 3.15] [17.9430, 0.4930, 3.48] [21.9302 0.7923, 5.26]
Facade [5.9693, 0.0045] [ 21.5613, 0.6044, 1.64] [22.5591, 0.6445, 3.57] [ 22.3742, 0.6061, 3.23] [20.0580, 0.4271, 5.22]
Peppers [6.1378, 0.0088 ] [14.7233, 0.6678, 1.52] [20.6701, 0.8751, 2.32] [14.4540, 0.6202, 5.36] [20.0312, 0.8580, 4.620]
Baboon [5.5815, 0.0064] [16.5684, 0.4111, 2.05] [19.8792, 0.5763, 3.38] [16.0691, 0.3464, 3.20] [19.5935, 0.5624, 4.82]

[49]. These methods are among the state-of-the-art algorithms for the tensor com-

pletion task. The reconstructed images using different completion algorithms along

with their corresponding PSNR and SSIM and running times are reported in Figure

5-16. Detailed information regarding each of the parameters used in the simula-

tions for TRLRF, TR-WOPT, TR-ALS and SPC are provided in Table 5.2. For an

RGB image, we have only three frontal slices (RGB channels) and it is expected to

select pixels from all three channels otherwise we completely loose one of the colors

which leads unsatisfactory results. On the other hand, selecting all slices means

using all elements of the data tensor, which defeats the purpose of sampling, which

is to use only a part of the elements, not all of them. In this sense, for Algorithm 11

to be effective, we reshaped the images to a 3rd order tensor of size 64×64×48 and

then select some slices and tubes. For the Tucker CUR case, we considered Tucker

rank of (70, 70, 3) in which we select 70 columns, 70 rows and 3 channels. For the
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Figure 5-15: Experimental results using "Lena" image on different CUR methods

tubal CUR, we considered 40 lateral and 40 horizontal slices and for the slice-tube

CUR, we considered 24 frontal slices and 1200 tubes.

Figure 5-17 compares the PSNR and the CPU time for the different completion

algorithms. For the Fast MDT algorithm [116], we considered the delay embedded

of 𝜏 = (32, 32, 1), tolerance 10(−4), with 1000 as the maximum number of iterations.

It can be seen that the proposed CUR algorithms are more scalable for achieving

higher performance than the other completion algorithms.

Video completion: In the last experiment for this method, we consider "Akiyo"

and "News" grayscale video datasets4 each of which is a 3rd order tensor of size

176× 144× 300. Although our algorithms are scalable to the number of frames but

in order to compare with other completion algorithm we only consider the first 30

frames of the video and consider a 3rd order tensor of size 176 × 144 × 30. In the

next step we remove randomly 70% pixels of the videos and apply the completion

algorithms to complete them. For Tucker CUR, we considered a Tucker rank of

(90, 90, 20), for the tubal CUR, we selected 40 lateral and horizontal slices and for
4http://trace.eas.asu.edu/yuv/
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Figure 5-16: The reconstructed images using different tensor completion algorithms.
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Table 5.2: The parameters of different completion algorithms used in our experi-
ments for images/videos completion.

Images
TRLRF TR-WOPT TR-ALS SPC

Size (256, 256, 3) (256, 256, 3) (4, 4, 16, 4, 4, 16, 3) (256, 256, 3)
TR-Rank (5, 5, 5) (5, 5, 5) (10, 10, . . . , 10) Type:Quadratic
Max Iteration 300 100 10 150

Videos
TRLRF TR-WOPT TR-ALS SPC

Size (176, 144, 30) (176, 144, 30) (16, 4, 4, 6, 33, 15) (176, 144, 30)
TR-Rank (5, 5, 5) (5, 5, 5) (10, 10, . . . , 10) Type:Quadratic
Max Iteration 300 100 10 150

Figure 5-17: Comparing the performance and running times of different completion algo-
rithms for the "House" image.

the Slice-tube CUR algorithm, we selected 15 frontal slices and 1500 tubes. The

running time of all completion algorithms for recovering the "Akiyo" and "News"

videos with 70% missing components is reported in Figure 5-18. The results show

that the Tucker CUR algorithms need less running time for recovering the mentioned

video with almost the same performance of other completion algorithms. Same

parameters are applied on the News video data set and 70% pixels are removed.
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Figure 5-18: The running time comparison of different completion algorithms for a) News
video dataset, and b) Akiyo video dataset.
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Chapter 6

Low rank tubal decomposition for

MRI motion artifact correction

Outliers in k-space measurements cause a variety of MR image artifacts. When a

subject moves during scanning, motion artifacts are frequently observed [265, 266].

Some of the k-space data lose their integrity from the neighboring k-space data due

to movements during the k-space scanning, which can also be considered as outliers

[132]. Various methods have been implemented to correct motion artifacts in MRI

images [267, 268, 269, 270, 271, 272, 273]. Recently, inspired by the duality property

between the low-rank structure of a Hankel matrix in k-space and the sparsity in the

image domain, motion artifact reconstruction models using low rank Hankel matrix

and other optimization techniques have been proposed [133, 132, 136, 137, 274,

136]. These approaches have proven to work very well in reconstructing MRI data

from sampled sparse measurements. But the downside to most of these methods

is it that they do not use the data in its natural tensor form. And so the global

correlation and information in the data is lost during the data transformation stages.

As an extension of these methods, in this work, we take advantage of the original

structure of the medical data so as not to lose important information. We propose

a tensor completion algorithm which is effective in the reconstruction of motion

artifact in MRI Diffusion weighted images and Dynamic MRI images. Based on

the tensor-tensor product (t-product) and tensor singular value decomposition (t-

SVD) [26, 192], Zhang et al. [28] formulated a low-tubal rank structure for a tensor
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and proposed a new tensor nuclear norm (TNN), which has been proven to be the

tightest convex relaxation for the tensor case. The t-SVD model is relatively simple

and its associated learning algorithm is quite efficient. It is known that unlike the

Tucker and Canonical Polyadic Decompositions, the t-SVD has similar properties to

the classical SVD. More precisely, the truncated t-SVD provides the best low tubal

rank approximation in the least-squares sense for any invariant tensor norm [25].

This was one motivation to use the t-SVD in our formulation. On the other hand,

experimental results reported in the literature show the efficiency and performance of

the t-SVD in many applications, such as tensor completion and tensor denoising. It

is worth mentioning that several fast algorithms have been proposed to decompose a

tensor into the t-SVD format and this facilitates the utilization of the t-SVD for real-

world big data processing. The rest of this chapter tackles, a Hankel tensor-based

reconstruction method for motion artifacts. The method first converts the sampled

k-space data into a Hankel tensor which helps to better reveal the relationship in

the data. Then a low rank tensor completion algorithm is used to reconstruct the

acquired image.

Figure 6-1: Illustration of framework for MRI motion data reconstruction

6.1 Proposed Low rank tubal method

Even though some MR images, are already sparse in their pixel representation, most

complex images are rarely sparse and only have a sparse representation in some

transform domain, like their wavelet coefficients or their spatial finite differences

[275]. Based on this observation, Lustig et al. [276] proposed the first optimiza-
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tion method for compressed sensing MRI data using the spatial domain wavelet

transform. More specifically, the problem is formulated as

min𝑥 ‖Ψx‖1,

𝑠.𝑡 ‖FSx− y‖ < 𝜖,
(6.1)

where ‖.‖1 is the 𝑙1 norm, Ψ is some spatial transformation operation, F is the Fourier

transform operator, S is down-sampling pattern or the sensitivity data maps, y is

the downsampled acquired k-space measurements and 𝜖 is some noise level .

However, this optimization algorithms are computational expensive. Therefore

advanced formulation for MRI compressed sensing was invented. One of the simplest

approaches for motion reconstruction is the Sensitivity encoding method (SENSE)

[277]. This approach explicitly utilizes the estimated coil maps to obtain an aug-

mented compressed sensing problem. Based on the SENSE method, a general opti-

mization problem for MRI reconstruction is formulated as:

min
𝑥

𝑇∑︁
𝑡=1

‖FSx𝑡 − y𝑡‖+ 𝜆‖Ψ(X)‖*. (6.2)

Ψ is some transformation operation, which is the Hankelization procedure in our

case, 𝜆 is the regularization parameter, and ‖.‖* denotes the nuclear norm regular-

ization in the form of a sum of the singular values of the tensor.

For simplicity, we make the following changes to the above equation:

• We represent FS as A, which denotes the downsampled Fourier transform as

can be seen in [275]

• The sampled/aquired signals y are concatenated to form a matrix Y

• Similarly we tranform the estimated signal x1, . . . ,x𝑇 into a matrix X .

This results in a new equation as follows:

min
{X}

‖PΩ (AX−Y)‖2𝐹 + 𝜆 ‖ΨX‖* , (6.3)

where PΩ denote the projection of the k-space sampling index. Applying the Han-
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kelization method to the equation 6.3, we convert it into a tensor case problem.

Therefore we reformulate the above problem and generalize the completion model

for the matrix case to higher order tensors by solving the following optimization

problem:

min
{X𝐻}

1
2
‖PΩ (X𝐻 ×2 A−Y𝐻)‖2

𝐹
+ 𝜆 ‖X𝐻‖* , (6.4)

where X𝐻×2 is the mode 2 unfolding of the tensor X. Again to further simplify

our expression and notations, X𝐻 ×2 A will be represented by X𝐻 . Therefore our

equation (6.4) above becomes:

min
{X𝐻}

1
2
‖PΩ (X𝐻 −Y𝐻)‖2

𝐹
+ 𝜆 ‖X𝐻‖* . (6.5)

The tensor completion algorithm in this section is solved using the tensor singu-

lar singular decomposition model. The motivation for using this new formulation is

comparing the performance of the matrix and the tensor variants in reconstructing

the images, this formulation enables one to take advantage of the inherent multi-

dimensionality of data [278]. Inspired by the results achieved by the nuclear norm

minimization of matrices for recovering data matrices with missing values, Zhang

et al.[28] proposed the tubal nuclear norm minimization approach based on t-SVD,

defined as the sum of nuclear norms of all frontal slices in the Fourier domain and

proved to be convex envelope to the tensor tubal rank. More precisely, the model

of rank minimization based tensor completion is formulated as follows

min
X

‖𝒫Ω (X𝐻 −Y𝐻)‖2
𝐹

+ tubal rank (X𝐻) , (6.6)

Similar to the matrix case, minimizing the tubal tensor rank is NP hard because it

includes the matrix case as a special case. The matrix trace norm was generalized

to the tensor case based on the t-product in [279, 192, 27, 28]. We use the one

introduced in [27, 192] which has been shown to provide superior results compared

to the others and to be faster because of using only the information of the first slice

in the Fourier domain. As a result, the following optimization problem is formulated
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the following optimization problem

min
X

1
2
‖𝒫Ω (X𝐻 −Y𝐻)‖2

𝐹
+ 𝜆 ‖X𝐻‖* , (6.7)

where ‖.‖* is the tubal nuclear norm. It should be noted that, the truncated tubal

nuclear norm [27] shown in Algorithm 7 can also be used in the formulation (6.7).

Similar tensor completion formulation is used in [118] but here we have used unitary

transform matrices instead of discrete Fourier transform matrix that is used in the

traditional tensor SVD and has shown to provide better results [280].

This optimization function is solved via the augmented Lagrangian method. Us-

ing ADMM [41], we transform the equation into a constrained one by introducing

an auxiliary tensor Z𝐻 with same size as the tensor X𝐻 :

min
{X𝐻 ,Z𝐻}

1
2
‖PΩ (Z𝐻 −Y𝐻)‖2

𝐹
+ 𝜆 ‖X𝐻‖* ,

𝑠.𝑡. X𝐻 = Z𝐻 .
(6.8)

Our model utilizing the ADMM algorithm [41] because it has been shown to have

fast convergence and good performance. The augmented Lagrangian function cor-

responding to the constrained optimization problem (6.8), can be constructed as

ℒ (X𝐻 ,Z𝐻 ,T) = 𝜆 ‖X𝐻‖*+
1

2
‖PΩ (Z𝐻 −Y𝐻)‖2

𝐹
+⟨T,X𝐻 − Z𝐻⟩+

𝜇

2
‖X𝐻 − Z𝐻‖

2
𝐹 ,

(6.9)

where T𝐻 is a tensor representing the Lagrangian multipliers and 𝜇 is penalty pa-

rameter. While the method works well for 𝜇 between 0.1 to 1.1. We set 𝜆 = 0.5 in

our simulations.

The Lagrangian function (6.9), and the ADMM [41] solution is converted to

simpler sub-problems. The sub-problem for X𝐻 is updated as:

X𝑘+1
𝐻 = min

X𝐻

ℒ
(︀
X𝐻 ,Z

𝑘
𝐻 ,T

𝑘, 𝜇𝑘
)︀
. (6.10)
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Problem (6.10) is solved via

X𝑘+1
𝐻 = min

X𝐻

(︃
𝜆 ‖X𝐻‖* +

𝜇𝑘

2

⃦⃦⃦⃦
X𝐻 − Z𝑘

𝐻 +
T𝑘

𝜇𝑘

⃦⃦⃦⃦2
𝐹

)︃
. (6.11)

Its closed form solution can be written as:

X𝑘+1
𝐻 = D𝛽

(︂
Z𝑘

𝐻 −
T𝑘

𝜇𝑘

)︂
, (6.12)

where D𝛽(.) is the tensor singular value thresholding operation. The value for 𝛽

is derived from 𝜆
𝜇𝑘 and is updated at each iteration. The augmented Lagragian

function w.r.t Z can be updated using the equation:

Z𝑘+1
𝐻 = min

Z𝐻

ℒ
(︀
X𝑘+1

𝐻 ,Z𝐻 ,T
𝑘, 𝜇𝑘

)︀
. (6.13)

Sub-problem (6.13) for Z can be solved through:

Z𝑘+1
𝐻 = min

Z𝐻

1

2
‖PΩ (Z𝐻 −Y𝐻)‖2

𝐹
+

𝜇𝑘

2

⃦⃦⃦⃦
X𝑘+1

𝐻 − Z𝐻 +
T𝑘

𝜇𝑘

⃦⃦⃦⃦2
𝐹

. (6.14)

The closed form solution for problem (6.14) is also solved through:

Z𝑘+1
𝐻 = P⊥

Ω

(︂
X𝑘+1

𝐻 +
T𝑘

𝜇𝑘

)︂
+ Y𝐻 . (6.15)

The solution for T is also converted to a simpler optimization as:

T𝑘+1 = min
T
ℒ
(︀
X𝑘+1,Z𝑘+1,T, 𝜇𝑘

)︀
. (6.16)

The sub-problem (6.16) for T can be solved through:

T𝑘+1 = T𝑘 + 𝜇𝑘
(︀
X𝑘+1

𝐻 − Z𝑘+1
𝐻

)︀
. (6.17)

The Lagrangian parameter 𝜇 is solved through the equation:

𝜇𝑘+1 = min
(︀
𝜇𝑘, 𝜇𝑚𝑎𝑥

)︀
. (6.18)
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Algorithm 14: Algorithm for low rank tensor completion
Input : Sampled data Y𝐻 ∈ R𝐼1×𝐼2×···×𝐼𝑁 in Hankel form, the observation

index tensor Ω, and regularization parameter 𝜆 > 0, 𝜇 = 1𝑒− 4
Z0

𝐻 = X0
𝐻 = T0

𝐻 = 0, PΩ (X𝐻) = PΩ (Y𝐻), 𝐾 = 300 is maximum
iteration, 𝑡𝑜𝑙 = 1𝑒− 5.

Output: Recovered data tensor X𝐻

1 while A stopping criterion is not satisfied do
2 Update X𝑘+1

𝐻 with equation (6.12)
3 Update Z𝑘+1

𝐻 with equation (6.15)
4 Update T𝑘+1 with equation (6.17)
5 Update 𝜇𝑘+1 with equation (6.18)
6 Check convergence conditions
7

⃦⃦
X𝑘+1

𝐻 −X𝑘
𝐻

⃦⃦
* ≤ 𝑡𝑜𝑙

8 Return X𝐻

9 end

where 𝜇𝑚𝑎𝑥 is a given fixed number and 𝜇 is the parameter obtained from the previ-

ous iteration. Refer to Algorithm 14 for steps to performing the tensor completion

and Algorithm 15 for the full algorithm.

Algorithm 15: Algorithm for MRI motion reconstruction
Input : MRI data with motion artifact
Output: Reconstructed MRI data X

1 Select 40% of data in k-space from each channel
2 Apply sensitivity map to generate the down-sampled signal y𝑡

3 Concatenate acquired signals y1, . . . , y𝑇 to form Y
4 Perform Hankel folding on Y to generate Y𝐻

5 Use Algorithm 14 to complete the data
6 Perform inverse Hankel folding of X𝐻 to obtain X

6.2 Experiments

MRI data used for this part of the research consist of:

• DWI one: A four-shot brain DWI data and corresponding sensitivity map of

size 248× 244× 8 with 8 coils.

• DWI Two: A 4 shots accelerated DWI data and corresponding sensitivity map

of size 248× 244× 32 with 32 coils.
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• Dynamic MRI: Under sampled Cartesian cardiac perfusion MRI data of size

128× 128× 40 with 12 coils.

Motion Artifact Reconstruction. We compared the performance of the algo-

rithm with some MRI multi-shot diffusion weighted imaging techniques that adopts

low rank completion for reconstruction. The algorithms which we used were SENSE

[277], MUSSELS [136], Shot-LLR [137]. For fair comparison with these algorithms,

we used the hyper-parameters as stated and used in each code to make performance

as best as possible. In the experiments, it was realised that setting the penalty

parameter 𝜆 = 1𝑒 − 8, achieves better performance and was used in all our simu-

lations. The initial regularization parameter 𝜇 was set to 𝜇 = 1𝑒 − 4. Figures 6-3

and 6-2 show reconstruction results. From the results obtained it can be seen that

our method is comparable to other existing methods for motion reconstruction. The

curve in Figure 6-4 presents results using RMSE to evaluate some of the methods

used with our proposed method. It can be seen that our method converges faster

than other methods and also has the lowest RMSE values. In another simulation,

we reconstructed images from undersampled Dynamic MRI data. The experiments

were performed using different sampling ratios and compared with other methods

such as k-t SLR [269], FTVNNR [281], SRTPCA [273], BCS [270]. The results

obtained from our method is comparable to the methods used and in some cases

performs better. Figure 6-6 show the PSNR and RMSE comparison of the results

and a visual representation of the results with 40% sampled data is also shown in

Figure 6-5.

In addition, experiments are conducted for denoising MRI perfusion data. Noise

of standard deviation 𝜎 = 10−2 is added to the data. A visual and PSNR comparison

of our result with the DIP [141] is presented in Figure 6-7. All hyper-parameters for

denoising using DIP was used as stated in the paper1. For the proposed method,

a block based approach where 8 × 8 patches of the noisy data was reconstructed

in parallel using the t-SVD approach was adopted. Our method yields less blurry

profile than the DIP method.

1https://dmitryulyanov.github.io/deep_image_prior
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Figure 6-2: Reconstruction of Multi-shot DWI from 55% of k-space sampled data
using samples from DWI one.

Figure 6-3: Reconstruction of Multi-shot DWI from 45% of k-space sampled data
using samples from DWI Two.

Figure 6-4: Convergence results from the algorithm using RMSE.
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Figure 6-5: PSNR comparison on 20𝑡ℎ frame of a cardiac perfusion MRI with 40%
sampling of k-space on the Dynamic MRI data.

(a) Comparison of PSNR vs Sampling ratio (b) RMSE vs Sampling ratio

Figure 6-6: Comparison of PSNR and RMSE with different sampling ratios on other
MRI reconstruction methods.

Figure 6-7: Denoised result of a frame from a cardiac MRI with noise using Deep
Image Prior (DIP) and Proposed method
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Conclusion and Future work

The removal of noise in data is critical in various medical signals and imaging ap-

plications. For signals in medical imaging, in particular, the reduction of noise is a

significant pre-processing task. One common approach used in the signal processing

community is performing Hankel folding on the data. The Hankel folding is capable

of capturing some delay or shift-invariant structure in the data. Therefore, in cases

where the elements in some continuous slices are missing in the data, performing

this delay embedding or Hankel folding provides a solution to this problem. Several

variants of the Hankel tensors have been introduced in recent years. The first part

of this work investigated their similarities and differences with particular emphasis

on their advantages when used as a pre-processing step in the tensor completion

task.

Furthermore, the second part of this thesis looked at three tensor completion

algorithms for reconstructing MRI and EEG data. These methods also work well for

natural RGB images. Low rank, sparsity and smoothness constraints were exploited

in these techniques. In the first method, a novel and efficient tensor completion

algorithm was proposed for recovering data tensors with random and/or structured

missing entries. The main idea is to Hankelize the incomplete data tensor in order

to obtain high-order tensors prior to learning the core tensors of the tensor ring

representation with sparse constraints. The core tensors are learned using an efficient

ODCT dictionary and sparse representation techniques. The ADMM algorithm and

APG approaches were adopted to solve the underlying optimization problems.
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Simulations show that our proposed method is able to recover incomplete data

tensors with different types of structured and random missing elements. The algo-

rithm exhibits higher performance in comparison to many existing tensor decom-

position methods, while providing lower computational cost in comparison to other

tensor completion approaches.

The second method proposes a general framework to use the tensor cross ap-

proximation based algorithms for reconstructing incomplete data tensors. The algo-

rithms are simple and easy to implement with low computational complexity. For

cases of data tensor with structural missing components or high missing rate, an

efficient smooth variant of the developed tensor CUR algorithm which performs

an initial smoothing on the sampled fibers before applying the CUR algorithms is

implemented. The efficiency and performance of the method is exhibited with ex-

tensive simulations on MRI datasets and other images/videos data using different

missing rates and patterns. The proposed tensor CUR-based algorithms have low

computational complexity and are faster than some state-of-the-art algorithms for

completing data tensors with execution time being 100 times faster in some cases.

Finally, we adopt an algorithm for reconstructing MRI motion artifacts using low-

rank tubal decomposition and tensor completion. The technique takes advantage of

the tensor nuclear norm and "Hankelization" to reconstruct the MRI in the Fourier

domain. It takes a few samples of the k-space data for reconstruction. Experiments

show the method is comparable to other MRI motion reconstruction techniques.

The completion results are analyzed with PSNR, SSIM and NRMSE using other

tensor completion algorithms like MDT [9], TRLRF [13] TRWOPT [32], Tucker

CUR [253], SPC [49] and CPWOPT [29]. In most cases our method outperforms

some of these algorithms for EEG and MRI data reconstructions and also for natural

images. Our methods also perform well for other natural images.
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7.1 Future Works

This research mostly focused on optimization problems which work on a single image

at a time. With the advent of sophisticated deep learning technology, it is now known

that it is possible to extract more meaningful features from images by using a larger

sample size rather than a single image. So, the main gap in the thesis is learning

on multiple images, which could potentially lead to improved recovery performance.

Furthermore, the tensor completion problem can be expressed as a convex or non-

convex optimization problem. The convex formulation has a high computational

complexity, whereas non-convex variants are frequently faster. To the best of my

knowledge, no papers on non-convex optimization problems for tensor completion

problems have been published that guarantee convergence to the global minimum.

A collaborative optimization problem could be used to solve this problem.

It is established with experiments that Hankelization improves the performance

of reconstruction of signals and images owing to the fact that the generated Hankel

data has more entries for the completion algorithm to use. However, it is time-

consuming and computationally expensive to run. It is therefore, imperative to

explore other techniques for convolutions as a Hankelization step to help reduce the

memory and time costs in running the algorithm.
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