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Abstract
Nowadays, achieving high quality in Natural Language Processing (NLP) tasks of-
ten requires processing large amounts of data, such as WikiData with 12 billion
objects, or utilizing massive models, such as the GPT-2, GPT-3, GPT-3.5 model
from the Transformer family. However, working under this consumption necessitates
significant computing resources, resulting in substantial energy and financial costs.

This thesis focuses on analyzing computational algorithms and models for sev-
eral NLP tasks. More specifically, in this thesis, we explore the use of multilinear
algebraic representations for various NLP tasks: Link Prediction, Language Mod-
elling, Natural Language Understanding and Text Summarization. Namely, we use
tensor representation in various ways: first, by presenting input data in Knowledge
Graph in the form of tensor decomposition, and second by presenting layers of neural
models in the form of tensor decomposition products.

Efficient implementations with low-level optimization of the proposed techniques
are developed. Optimization appears in obtaining significant memory savings for a
Link Prediction task with a slight quality improvement. Furthermore, an implemen-
tation of tensor representation-based layer structures is offered. These structures
can be integrated into the computational graph of a Large Language Model. These
kinds of models are validated in a large variety of tasks from the Natural Language
Understanding and Language Modelling groups. A deep study of the compara-
tive Question-Answering problem is also provided and the efficient version of Large
Language Model is validated on it. Experiments demonstrate that models with
tensor-based layers outperform others when training architectures from scratch. In
experiments with compressing of pre-trained weights, tensor-based approaches ex-
hibit superior performance with larger compression rates, as opposed to smaller
ones.
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Chapter 1

Introduction

1.1 Motivation

In recent years, there have been significant advancements in Natural Language Pro-

cessing (NLP) methods, leading to higher quality solutions. These advancements

can be attributed to two interconnected factors. Firstly, there has been a remark-

able improvement in hardware capabilities for processing and storing information.

This has enabled the storage of vast amounts of data for training and processing,

resulting in more efficient and faster operations. For example, the DBpedia knowl-

edge dataset [Auer et al., 2007] now contains 400 million facts, while the dataset for

Bloom [Scao et al., 2022] model encompasses 350 billion tokens. Additionally, mod-

els like Bloom or Megatron [Shoeybi et al., 2019] offer distributed training across

multiple graphic cards or clusters.

Secondly, the practicality of these advanced techniques has significantly enhanced

language methods. One key development was the incorporation of the attention

mechanism [Vaswani et al., 2017a] into Language Modelling. This technique enables

the identification of the most relevant parts within large textual data. By applying

the attention mechanism, models can effectively analyze semantic, grammatical,

and other implicit patterns in language, even in texts comprising several thousand

tokens.

This progress has resulted in a remarkable performance boost. Presently, trans-

former models, trained on big corpus of texts, can be employed in nearly any task
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with minimal modifications. Moreover, they can work in experiments with the few-

shot setup - with a few prompts and zero-shot - without any prompting.

The study [Kaplan et al., 2020] presents an empirical scaling law that demon-

strates how the performance of language models is influenced by their size and the

size of the training data. While the law discussed in that study specifically relates

to cross-entropy, subsequent works such as [Radford et al., 2019b], [Radford et al.,

2019a], [Brown et al., 2020], and [Shoeybi et al., 2019] indicate that other quality

metrics also improve with larger model sizes and training datasets. However, the

rapid growth of these models has revealed redundancies in both the full modules

within NLP architectures [Michel et al., 2019b] and the parameters within different

fully-connected layers [Denil et al., 2013]. Nonetheless, increasing the size of models

presents several challenges. The computational cost associated with such models

necessitates significant capital investment to reproduce them. While it is possible to

interact with models via APIs, full access to large architectures and in-depth study

is generally belongs only to industrial companies. Consequently, research labs often

face resource constraints that make working with state-of-the-art (SOTA) models

and relevant datasets impractical or excessively time-consuming.

To address these issues, our work focuses on utilizing limited resources more ef-

ficiently. We achieve this by employing low-ranking representations to obtain com-

pressed versions of either the architectures (as discussed in Chapters 6.4 and 5)

or the dataset itself, as explored in Chapter 3, treating the semantic graph as a

low-ranking object.

Another concern is related to the fact that when training and operating large

models, the issue of energy consumption and the accompanying CO2 emission be-

comes significant. For models comparable to GPT-3, the training carbon footprint

comes to several hundred tons [Rae et al., 2021], [Zhang et al., 2022]. The values

of these parameters largely depend on the training settings and server architecture,

the type of maps and even the location of data centers [Patterson et al., 2021].

They are proportional to the number of FLOPS (Floating Point Operations) needed

either to train the model or to forward the signal in inference. In this case, the

effective reduction of linguistic models due to low-ranking representations of their
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parts, described in Chapters 6.4 and 5, ceteris paribus, leads to a decrease in energy

consumption and CO2 emissions.

It should be noted that the request for vast resources in training and employing

processes often occurs due to the specifics of utilized training tools and framework

settings. Namely, the default algorithms of Pytorch - the most popular framework

for building computation graphs - require more memory than is necessary for the

task. The proposed work, in particular, shows optimization options in related situ-

ations. For example, Section 4 describes the optimization of signal backpropagation

in structures, a sequence of multidimensional objects; Section 3 offers an example of

a mixed type of gradient calculation for Neural Network (NN) architecture. In this

type, the computational graph is created for tiny layers. In contrast, for an embed-

ding layer with considerable size, we count gradient analytically, which reduces the

overall memory consumed by the model.

1.2 Thesis Objectives

The purpose of the presented thesis is to study and apply the methods of low-rank

tensor approximations to language processing problems of various types. In more

detail, this work investigates the following research questions:

1. Can we make the Knowledge Graphs (KG) embedding computation more ef-

ficient using tensor structure?

2. Can we reduce the size of the Transformer-based language model by replacing

some layers with Tensor structures and how it affects the model performance?

3. How can we improve the quality of the compressed model? More precisely,

can we select layers more compatible with compression and can we integrate

information about the downstream model task into the compression algorithm?
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1.3 Contribution, Novelty and Impact

This study highlights that certain linguistic models and techniques may demand

excessive resources for certain tasks, emphasizing the importance of efficient com-

pression. In our compression methods, we employ low-rank techniques and tensor

decomposition approaches. We achieve a smaller model in two ways: by training the

complete architecture from the start and by compressing the pre-existing pre-trained

model. For the Transformers, we conduct experiments on the encoder (BERT and

BERT-base architectures) and the decoder (GPT-2).

1. The slight modifications to the Canonical Polyadic Decomposition (CPD) de-

composition technique is made, which enhances the efficiency of representing

Knowledge Base data.

2. An implementation of TTM-based Neural Network (NN) layers is provided,

which made them compatible for fine-tuning and training from scratch. These

layers have been incorporated into the Transformer model, replacing the tra-

ditional Fully-Connected (FC) Layer with Tensor Train Matrix (TTM)-based

and Singular Value Decomposition (SVD)-based layers.

3. A compressed version of GPT-2 using TTM and SVD layers is developed; its

performance is evaluated on both language modeling and classification tasks.

4. The most suitable modules for TTM and SVD compression are identified in

the Transformer model.

5. A comprehensive study of abstractive and extractive approaches to question-

answering in a comparative case is conducted. For this task, FC layers in

the corresponding Transformer model are replaced with its TTM and SVD

compressed versions.

6. SVD-based and the TTM-based layers for the BERT model are adjusted in a

language-comprehensive task.
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1.4 Thesis Outline

This thesis has the following structure, which is outlined below.

Chapter 2 introduces the notation and various tensor decomposition methods,

focusing on the low-rank and full-rank representation formats used in efficient NLP

methods or relied upon by comparison baselines.

In Introduction 1, a brief overview of the primary objectives of the proposed work

is provided, as well as discuss the potential impact of the research on the scientific

community.

Chapter 3 details how we used tensor methods to obtain a compact representa-

tion of large datasets that describe real-world facts in the form of a 3D structure.

To achieve this, we employed a distribution-aware version of CP decomposition,

compressing the data into embeddings.

In Chapter 4, we discuss the implementation details of representing Fully-Connected

(FC) layers in the TTM format. We focus on creating a Pytorch-compatible layer

based on a sequence of TTM cores for time and memory-efficient fine-tuning and

training operations. We further use the proposed structures to replace FC layers

in different Transformer architectures. This choice of harnessing FC layers is mo-

tivated by the fact that these layers are often the most significant bottleneck in

Transformers.

We use these results the Chapter 5, where we replace layers in the Transformer

architecture GPT-2 with a TTM object. Train this kind of model from scratch,

validating its performance inside and outside the domain of the Language Modeling

task, as well as on some downstream tasks.

Chapter 6, titled "Comparative Question Answering", explores the task of an-

swering comparative questions. The chapter provides an overview of generative and

abstractive methods for solving this problem, with a focus on the latter - finding

relevant answers in the corpus. One promising solution is ColBERT, a model based

on the BERT architecture that encodes queries and texts simultaneously in the

search space. However, as with any transformer-based model, it is computationally

intensive and heavy. In this chapter, we employ TTM decomposition to compress
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the fully-connected layers within ColBERT. We search for optimal TTM ranks that

offer the best approximation. Furthermore, we conduct a comparative analysis of

models employing various compression techniques to accomplish QA tasks.

We also explore whether the modules in a transformer architecture exhibit similar

compression behavior. Specifically, it investigates whether selecting certain layers

for compression results in less degradation in performance.

Chapter 7 delves deeper into this topic, exploring the compression of BERT,

a transformer-based architecture used for natural language comprehension. In ad-

dition, we investigate the fine-tuning options available to improve the compressed

model’s performance.

23



Chapter 2

Background

In this chapter, we will discuss the matrix and tensor representations that we have

utilized in our work to enhance the efficiency of our linguistic models in terms of

speed and memory requirements. We will only introduce the representations that

were employed in our experiments, to ensure that this manuscript is self-contained

for the reader’s convenience.

To enhance convenience, the Table 2.1 incorporates notations that correspond

to algebraic objects mentioned in the text and the operations performed on them.

It’s worth mentioning that there are numerous other methods for decomposition,

such as Tensor Networks [Biamonte and Bergholm, 2017] and TensorRing [Zhao

et al., 2016], along with a wide variety of algorithms [Kolda and Bader, 2009b],

which we do not cover in this chapter. A complete overview of methods is provided

in [Ji et al., 2019].

2.1 Matrix Decompositions

2.1.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) of a complex matrix M 2 Rm⇥n is a

factorization of the form M = U⌃V⇤ where U 2 Rm⇥m complex unitary matrix,

⌃ 2 Rm⇥n is a rectangular diagonal matrix with non-negative real numbers on the

diagonal, V 2 Rn⇥n is a complex unitary matrix, V? is the conjugate transpose of
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Figure 2-1: The interpretation of SVD. The operator of transformation M is de-
composed into rotation U, scaling ⌃ and rotation back VT.

V. If M is real, V? is equivalent of VT.

Matrix M̃ with a rank r is said to be a truncated approximation of the

matrix M if M̃ = U⌃̃V⇤
, where ⌃̃ is the same matrix as ⌃ except that it contains

only the r largest singular values (the other singular values are replaced by zero).

As depicted in fig. 2-1, three-factor matrices in the Singular Value Decomposition

can be treated as rotation, scaling and rotation back operations. In other words, the

object M is translated into a space where it can be represented as a sum of basis

functions with weights equal to singular values. In this space, we can drop the part

with minor weights (truncate it) and then transfer the object M back to the regular

world.

2.2 Tensor Decompositions

Tensor decomposition is a powerful technique for representing multidimensional ob-

jects by breaking them down into elementary operations on smaller objects. This

approach is particularly useful for addressing the curse of dimensionality, where the

number of elements in an Nth-order tensor grows exponentially with the order. The

sheer volume of data in high-dimensional objects can pose significant computational

and memory challenges.

To tackle this issue, reducing the size and dimensions of the original object can
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Table 2.1: Tensor symbols and notations.

Notation/Symbol Meaning

X 2 RI1⇥I2⇥...IN N th
order tensor of size I1 ⇥ I2 ⇥ . . . IN

xi1,i2,...,in = X (i1, i2, . . . , in) (i1, i2, . . . tN )th entry of the tensor X

G,G(k),Gk
Core tensors in Tucker and Tensor Train decompositions

A,b Matrix and vector

�, ⌦, � Khartri-Rao, Kronecker and outer Products

X ⇥n A Mode-n product of X 2 RI1⇥I2⇥...IN and matrix A 2 RJ⇥In

AT
, A�1

, A†
Transpose, inverse and Moore-Penrose pseudo-inverse

of a matrix A

X[n] Mode-n matricization (unfolding). This operation represents

a tensor X 2 RI1⇥···⇥In⇥···⇥IN in a matrix X[n] 2 RIn⇥I1·····IN

lead to more efficient and faster applications. There are various options available

for representing a tensor as a set of smaller-dimensional objects, each with its own

limitations. The choice of decomposition method depends on the specific problem

statement and the types of data being used.

2.2.1 Canonical Polyadic Decomposition

One of the most popular tensor approximation is the Canonical Polyadic Decom-

position (CPD) [Hitchcock, 1927], an extension of the low-rank matrix factoriza-

tion to multidimensional objects. This decomposition introduses an N -order tensor

X 2 RI1⇥I2⇥···⇥IN as a sum of R < N tensors of rank 1, also known as Kruskal

tensors:

X ⇡

FX

r=1

�rb
(1)
r � b

(2)
r · · · � b

(n)
r = ⇤⇥1 B

(1)
⇥2 B

(2)
· · ·⇥N B(N) (2.1)

Here B
(n) = [b(n)1 , b

(n)
2 , b

(n)
R ] 2 RIn⇥R - one of N factor matrices.

In other words, a N -dimensional object is represented as R digit weights and

N two-dimensional matrices. These matrices are called factor matrices; they are

usually orthogonal and represent the principal component of each mode. Since the

resulting decomposition objects are two-dimensional, CPD is good in addressing the

curse of dimensionality. Such a representation gives good compression for tensors
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Figure 2-2: The CP decomposition scheme.

with many dimensions. Unfortunately, the widespread use of this decomposition

is restricted by the fact that, for a number of problems, it does not give good

convergence. The scheme of CPD decomposition in 3-d tensor case is in Figure 2-2.

A argmin
A

||X[0] � (B�C)AT
||2

B argmin
B

||X[1] � (A�C)BT
||2

C argmin
C

||X[2] � (A�B)CT
||2

(2.2)

A popular approach for computing the CP decomposition of a tensor, is the CP

Alternating Least Squares (ALS) algorithm [Battaglino et al., 2018, Dunlavy et al.,

2011]. this approach aims in minimising L2 norm between the and corresponding

unfolding [Kolda and Bader, 2009b] of the initial tensor (see 2.2). Algorithm 1

presents this method to the 3-rd order case. The main idea is to fix all factor

matrices except for one to optimize the non-fixed matrix. This step is then repeated

for each matrix until a specific stopping criterion is reached.

In the proposed dissertation, we use Canonical Decomposition in the one of the

Natural Language Processing task with some tips to improve convergence.

2.2.2 Tucker Decomposition

Another tensor decomposition is called Tucker decomposition proposed by [Tucker,

1966c] — is an extension of CPD. Since the CPD considers only outer products

between factors’ elements with the same indexes, the Tucker representation adds

products of vectors with all possible indexes to the approximation sum. In Figures 2-
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Algorithm 1 CP-ALS [Kolda and Bader, 2009a]
Input: : Tensor X 2 RI⇥J⇥K . Ground Truth Tensor

stopping criterion

Output: : A, B, C . Factor matrices

Initialize factor matrices A 2 RI⇥R
, B 2 RJ⇥R

, C 2 RK⇥R

repeat

A = X[0][(B�C)T ]†

B = X[1][(A�C)T ]†

C = X[2][(A�B)T ]†

for i = 1 . . . N do

normalize columns of X[i]
define �i as norm

end for

until stopping criterion is met

2,2-3, it is seen that the Tucker decomposition has a dense core tensor, while the CPD

assumes only a diagonal part of it. This difference causes Tucker more accurately

approximates the object due to the more extensive set of possible elements in sum.

On the other hand, the Tucker representation has a core tensor with the same

dimension as the original compressing object. If the desired rank needs to be bigger,

it can reraise the curse of the dimensionality problem.

X ⇡

R1X

r1=1

· · ·

RNX

rN=1

gr1,r2..rN b
(1)
r1 � b

(2)
r2 · · · � b

(n)
rn = G ⇥1 B

(1)
⇥2 B

(2)
· · ·⇥N B(N) (2.3)

=

A

C

I

K K

J

I

B

Figure 2-3: The scheme of Tucker decomposition in a case of 3-d tensor. The source
of the image: Cichocki et al. [2016].
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2.2.3 Tensor Train Format

Tensor Train (TT) decomposition [Oseledets, 2011a] represents a N -order object as

a sequence of third-order tensors G1, . . . , GN , adjacent to each other along one of

the axes 2-4. The TT format generalizes the principle of low-rank approximation

to objects of higher dimensions. A tensor X 2 RI1⇥I2⇥···⇥IN is represented in the

Tensor Train (TT) format if each element of X can be computed as:

X (i1, . . . , iN) ⇡
R1X

↵1=1

· · ·

RN�1X

↵N�1=1

G
(1)(↵0, i1,↵1)G

(2)(↵1, i2,↵2) . . .G
(N)(↵N�1, iN ,↵N)

(2.4)

Here Gk 2 RRk⇥Ik⇥Rk+1 , k = 1, N , are 3-dimentional core tensors (cores) of TT

decomposition. The R1, . . . , Rk are called TT-ranks of the decomposition, given that

R1 = Rk = 1, R = max
k

(R1, . . . , Rk). The index ↵k goes from 1 to the corresponding

rank Rk and is related to the corresponding dimension of the kernel, ↵N are always

equal to 1.

Particularly, the element X (i1, i2 . . . iN) is effectively the product of 2 vectors

and N � 2 matrices as depicted in 2-4:

X (i1 . . . iN) = G
(1)[i1, :]| {z }
1⇥R1

G
(2)[:, i2, :]| {z }
R1⇥R2

. . .G
(N�1)[:, iN�1, :]| {z }
RN�2⇥RN�1

G
(N)[:, iN ]| {z }
RN�1⇥1

,

Figure 2-4: The example of computation tensor elements via it’s TT representation.
Source of the image: [Xu et al., 2022].

Regarding the inquiry about the existence of a TT-decomposition, the following
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statement remains valid [Oseledets, 2011b]:

Theorem 1. If for each unfolding X[k] of a d-dimensional tensor X , where k =

1, . . . , d, rank X[k] = Rk, then there exists a decomposition of the form 2.4 with

TT-ranks not higher than Rk.

In other words, this statement, firstly, means the possibility of obtaining a TT

decomposition with ranks 1 for any data. Secondly, it determines the specific values

of the cores’ ranks.

In the proposed expansion, the cores store R(I1+ IM)+R
2
PN�1

k=2 Ik parameters,

while the original tensor contains
MQ

m=1
Im. This can be cost-effective at low ranks

but not so beneficial at high ranks due to quadratic complexity.

The most common algorithms of obtaining TT decompostion called TT-SVD [Os-

eledets, 2011b] and usually are based on the operation of the gaining k-th core. In

this operation, we take an unfolding of d-shaped tensor C along the dimension k and

apply truncated SVD to it, where the truncation rank r is rk, the k-th rank of the

desired TT decomposition. The matrix U forms the k core and multiplication ⌃VT

acts object A for further step. The full procedure is described in Algorithm 2.

Algorithm 2 TT-SVD [Oseledets, 2011b]
Input: d-dimentional tensor A;

Output: Cores G
1
, . . . ,G

d of TT decomposition of A

Temporary tensor C = A, r0 = 1

for k = 1 to d� 1 do

C := reshape(C, [rk�1nk,
prod(C.shape)

rk�1nk
]

rk-truncated SVD: C ⇡ U⌃rkV
T

G
k:= reshape(U, [rk�1, nk, rk])

C:= ⌃rkV
T

end for

G
k = C

Thus, the TT format potentially captures all the advantages of the previous

methods:
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• We can represent every tensor in a TT form, since SVD always exists for

complex matrices.

• It can have a large compression ratio.

• It doesn’t suffer from the course of the dimensionality since the maximum

dimension of cores is 3.

The disadvantages of this method include the fact that, in practice, it is rarely

possible to obtain a decomposition with minor ranks, and the memory occupied by

the TT representation grows quadratically with R.

2.2.4 Tensor Train Matrix Format

The method is based on the representation of a matrix as a d-dimensional tensor and

applying the TT-decomposition to given object is called Tensor Train Matrix (TTM)

format. Tha main idea of this representation comes from the fact presented in [Loan

and Pitsianis, 1992]. This work shows that for matrix the Kronecker minimization

problem min||A�B⌦C||F may be transferred to a 1-rank approximation problem

min||Ã � vec(B)vec(C)T ||F by rearranging blocks of A by vectorization operation

vec:

X 2 Rp⇥q
! vec(X) =

2

6666664

X(1 : p, 1)

X(1 : p, 2)
...

X(1 : p, q)

3

7777775
2 Rpq

The vec opearation can be used to express min||A � B ⌦ C||F the to rank-1

approximation problem with the amount of disperancy stayed remain. More pre-

ciesely,
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2

4 A1,1 A2,1

A1,2 A2,2

3

5�B⌦C

������
F

=

������������

2

6666664

a1,1 a2,1

a1,2 a2,2

a3,1 a4,1

a3,2 a4,2

a1,3 a2,3

a1,4 a2,4

a3,3 a4,3

a3,4 a4,4

3

7777775
�

2

4 b1,1 b2,1

b1,2 b2,2

3

5⌦

2

4 c1,1 c2,1

c1,2 c2,2

3

5

������������
F

is equivalent to

������������

2

6666664

vec(A11)T

vec(A21)T

vec(A31)T

vec(A41)T

3

7777775
� vec(B)vec(C)T

������������
F

=

=

������������

2

6666664

a1,1 a2,1

a3,1 a4,1

a1,2 a2,2

a3,2 a4,2

a1,3 a2,3

a3,3 a4,3

a1,4 a2,4

a3,4 a4,4

3

7777775
�

2

6666664

b11

b21

b12

b22

3

7777775
[b11, b21, b12, b22]

������������
F

,

where the right parts obviously represent a product and give an object of rank 1.

This fact can also be interpreted as representing a 2-dimensional Kronecker ma-

trix A as a 4-dimensional array A. The axes in this array have the following mean-

ings: row of an element in a matrix block, column of an element in a block, row

of a block in a "big" block matrix, column of a block in this matrix. Vectorization

operation changes the order element indexing, and thus, changes the order of these

axes:

Ã = permute(A, [1, 3, 2, 4])

Oseledets [2010] generalizes it to the d-dimensional case - in fact, a block matrix

was created d times from the structure obtained in the previous step. At the first

step, this structure was a 2-dimensional 2 ⇥ 2 matrix; at the second - 4 ⇥ 4 tensor
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with 4 dimensions. The resulting object B has dimension 2d ⇥ 2d and d axes that

determine the position of the element in superstructured blocks. Vectorization of

elements inside the "initial" block matrix is equivalent to the following permutation:

C = permute(B, [1,
d

2
+ 1, 2,

d

2
+ 2, . . . ,

d

2
, d])

It is interesting to note that the compression ranks depend on the ordering of di-

mensions; i.e., the tensor can be “compressible” for one permutation of dimensions

and not compressible for another. The rank rk of decomposition is determined as

rank of the k-unfolding matrix Ak = A(i1, i2, . . . , ik, ik+1, . . . , id) as it described in

section 2.2.3. It is interesting to note that the compression ranks depend on the

ordering of dimensions; i.e., the tensor can be “compressible” for one permutation of

dimensions and not compressible for another.

Having 2d-dimention tensor C, where adjacent dimensions are pairwise linked

(they determine the position of the pseudo-element in the matrix of the level k 2

1, , . . . d). For element c(i1, j1, . . . id, jd) pair (ik, jk) defines the multiindex, and C has

efficient dimentionality d and can be decompose into TT format (see Section 2.2.3)

with d cores:

X (i1, j1, . . . , id, jd) ⇡
R1X

↵1=1

· · ·

Rd�1X

↵d�1=1

G
(1)(↵0, i1, j1,↵1)G

(2)(↵1, i2, j2,↵2) . . . G
(N)(↵d�1, id, jd,↵d).

(2.5)

Note, that cores turn out to be 4-dimentional instead of 3-dimentional and are

indexed as G
(k)(↵k�1, ik, jk,↵k).

2.3 Knowledge graphs

A Knowledge Graphs (KG) is a well-organized framework for representing factual in-

formation, encompassing entities, relationships, and semantic descriptions. Entities

refer to both tangible objects and abstract concepts, while relationships depict the

connections between entities. Furthermore, entities and their relationships are char-

acterized by types and properties that possess clearly defined meanings. Although
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<Albert Einshtein, Born In, German Empire>
<Albert Einshtein, Son Of, Hermann Einshtein>
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<The Theory of Relativity, Theory Of, Physics>
<Albert Einshtein, Winner Of, Nobel Prize In Physics>

<Nobel Prize In Physics, Award In, Physics>

Winner Of
<The Theory of Relativity, Proposed By , Albert Einshtein>Proposed By

Figure 2-5: The example of triples in Knowledge Graph. Source of the image: Ji
et al. [2020].

the terms "knowledge graph" and "knowledge base" are essentially interchangeable,

there exists a subtle distinction between them. Conceptually, a knowledge graph

can be visualized as a graph due to its inherent structural nature. Each unit of

knowledge can be succinctly expressed as a factual triple in the form of (subject, re-

lation, object). As an example, we can consider (Albert Einstein, WinnerOf, Nobel

Prize), as it depict in the Figure 2-5.

Numerous open knowledge bases and ontologies have been published, such as

WordNet [Miller, 1992], DBpedia [Auer et al., 2007], YAGO [Suchanek et al.,

2007], and Freebase [Bollacker et al., 2008b]. Additionally, several related datasets

specifically designed for Machine Learning (ML) tasks are available, including Word-

Net, DBpedia, YAGO, and Freebase.

The information contained in knowledge graphs can be very useful for NLP ap-

plications. Knowledge-aware models gain significant advantages by incorporating

diverse information sources and comprehensive semantics. Common-sense knowl-

edge allows us to get more capacity representations of language elements and more

successfully solve question-answer problems and logical reasoning tasks.

2.4 Transformer-based language models

In a general sense, language models possess knowledge about the properties inherent

to a language. By taking into account the surrounding text, they are capable of

generating a probability distribution of the appearence of each language unit (they

can be represented as words, parts of words and letters and are called tokens) in the

current context.
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Figure 2-6: The scheme of the GPT-2 model.
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There are various types of language models, including statistical-based models,

recurrent neural network models, and models incorporating attention mechanisms.

Figures presented below 2-7, 2-8 illustrate the attention mechanism from Equa-

tion 2.6. In this representation, the text is treated as a sequence of tokens, with

each token being transformed into a vector representation. These vectors are then

projected onto the space of queries (Q), keys (K), and values (V) through trainable

matrices. A similarity function sim is applied to estimate the closeness of the query

of the current token with the representations of all other elements. The similar-

ity scores define weights, determining the importance of each part when they are

combined. The resulting sum is then concatenated with the values of the current

token.

X Q

=

X K
=

X
V

=

Figure 2-7: Visualization of Query, Key and Value claculation inside the transformer
block.

X Q

=

X K
=

X
V

=

Q

V

=

Z
softmax( )

Figure 2-8: Visualization of attention calculation inside the transformer block.

attn(Q,K,V) = softmax(
Q,KT

p
(d)

)V,

attn(Q,Ki, Vi) =

Pp
j=1 sim(Qi, Kj)VjPp
j=1 sim(Qi, Kj)

,

(2.6)
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Transformer models possess an architecture composed of distinct modules, which

is the reason behind their name, "transformers." Each module typically comprises

an Attention layer, followed by a pair of consecutive Fully Connected (FC) layers.

These layers first reduce the size of the input vector and then restore them to their

original dimensions, with non-linearities incorporated between them. The scheme

of GPT-2 decoder transformer with the corresponding sizes of layer’s weights and

input activations is shown in (refer to Figure 2-6).

The variances in different models’ architectures often lie in the number of modules

they possess. For instance, the BERT [Devlin et al., 2019] model consists of 16

blocks, while the GPT-2 [Radford et al., 2019a] model has 12, 24, or 36 blocks,

depending on the specific variant (small, medium, or large). These models also

differ in their training procedures. Encoder-based models like BERT aim to preserve

language information and are trained to understand context by filling in gaps in the

text and predicting subsequent sentences. Enhanced versions of the BERT model,

such as RoBERTa [Liu et al., 2019] and others, feature improved data and learning

processes. On the other hand, decoder-based models (GPT) are utilized for sequence

generation tasks and are trained using linguistic modeling objectives, specifically

generating the next token.
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Chapter 3

Efficient Knowledge Embedding

Using Canonical Polyadic

decomposition

In this chapter, we present MEKER: Memory Efficient Knowledge Embedding Rep-

resentation model for Knowledge Graphs (KG) embeddings. Knowledge Graphs

are symbolically structured storages of facts. The KG embedding contains concise

data used in NLP tasks requiring implicit information about the real world. Fur-

thermore, the size of KGs that may be useful in real Natural Language Processing

(NLP) applications is enormous, and creating embedding over it has memory cost

issues. We represent KG as a 3rd-order binary tensor and move beyond the standard

Canonical Polyadic Decomposition (CPD) [Hitchcock, 1927] by using a data-specific

generalized version of it [Hong et al., 2020]. The generalization of the standard CP-

ALS algorithm allows obtaining optimization gradients without a backpropagation

mechanism. It reduces the memory needed in training while providing computa-

tional benefits. We propose a MEKER, a memory-efficient KG embedding model,

which yields SOTA-comparable performance on link prediction tasks and KG-based

Question Answering.
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3.1 Introduction

NLP models have done a big step forward over the past few years. For instance,

language models can can easily generate fluent human-like text. However, some

applications like question answering and recommendation systems need correct and

trustworthy answers. Large Language models, like GPT-3 [Brown et al., 2020] or

ChatGPT 1 are trained to maximise human preferences in a text and often halluci-

nate in situation, which needs trustworthy answers [Yang et al., 2023]. The presence

of this limitation renders the models unsuitable for implementation in mentioned

systems.

For this goal, it is appropriate to leverage KG [Bollacker et al., 2008a, Rebele

et al., 2016] as a structured repository of essential facts about the real world. For

convenience, the knowledge graph can be represented as a set of triples. A triple is

intriduced by two entities — subject es and object eo — and a relation r between

them. As a whole, the triple describes the fact.

For efficient use of information from KG, there is a need for the low-dimensional

embedding of graph entities and relations. KG embedding models usually use a stan-

dard Neural Networks (NN) backward mechanism for parameter tuning, duplicating

its memory consumption. Hence, existing approaches to embedding learning have

substantial memory requirements and can be deployed only on small datasets under

a single GPU card. Processing large KGs appropriate for the custom downstream

task is a challenge.

There are several libraries designed to solve this problem. Framework LibKGE

[Ruffinelli et al., 2020] allows the processing of large datasets by using sparse embed-

ding layers. Despite the memory saving, sparse embedding has several limitations -

for example, in the PyTorch library, they are not compatible with several optimiz-

ers. PyTorch-BigGraph [Lerer et al., 2019] operates with large knowledge graphs by

dividing them into partitions - distributed subgraphs. Subgraphs need a place for

storing, embedding models need modifications to work with partitions and perform

poorly.
1https://openai.com/blog/chatgpt
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One of contributions of thesis is a memory-efficient approach to learning Knowl-

edge Graph embeddings MEKER (Memory Efficient Knowledge Embedding Repre-

sentation). It allows more efficient KG embedding learning, maintaining comparable

performance to state-of-the-art models. MEKER leverages generalized CPD [Hong

et al., 2020], which allows a better approximation of given data and analytical com-

putation of the parameters’ gradient. MEKER is evaluated on a link prediction

task using several standard datasets and large datasets based on Wikidata. Experi-

ments show that MEKER achieves highly competitive results on these two tasks. To

demonstrate downstream usability, we create a Knowledge Base Question Answering

system Text2Graph and use embeddings in it. The system with MEKER embed-

dings performs better as compared to other KG embeddings, such as PTBG [Lerer

et al., 2019].

3.2 Related Work

There are three types of approaches for learning KG embedding: distance-based,

tensor-based, and deep learning-based models. The first group is based on the

assumption of translation invariance in the embedding vector space. In model

TransE [Bordes et al., 2013] relations are represented as connection vectors be-

tween entity representations. TransH [Wang et al., 2014] implies relation as a

hyperplane onto which entities are being projected. QuatE [Zhang et al., 2019]

extends the idea with hypercomplex space and represents entities as embeddings

with four imaginary components and relations as rotations in the space.

Tensor-based models usually represent triples as a binary tensor and look for em-

bedding matrices as factorization products. RESCAL [Nickel et al., 2011] employs

tensor factorization in the manner of DEDICOM [Harshman et al., 1982], which de-

composes each tensor slice along the relationship axis. DistMult [Yang et al., 2015]

adapts this approach by restricting the relation embedding matrix to diagonal. On

the one hand, it reduces the number of relation parameters, on the other hand, it

losses the possibility of describing asymmetric relations. The ComplEX [Trouillon

et al., 2016] represents the object and subject variants of a single entity as com-
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plex conjugates vectors. It combines tensor-based and translation-based approaches

and solves the asymmetric problem. TuckER [Balazevic et al., 2019] uses Tucker

decomposition [Tucker, 1966c] for finding representation of a knowledge graph ele-

ments. This work can also be considered a generalization of several previous link

prediction methods.

Standart CPD [Hitchcock, 1927] decomposition in the link prediction task does

not show outstanding performance [Trouillon et al., 2017]. Several papers address

this problem by improving the CPD approach. SimplIE [Kazemi and Poole, 2018]

states that low performance is due to different representations of subject and object

entity and deploys CPD with dependently learning of subjects and objects matrices.

CP-N3 [Lacroix et al., 2018] highlights the statement that the Frobenius norm reg-

ularizing is not fit for tensors of order more than 3 [Cheng et al., 2016] and proposes

a Nuclear p-norm instead of it. Our approach also uses CPD with enhancement.

We consider remark from SimplIE and set the object and subject representations

of one entity to be equals. At the same time, inside the local step of the CPD

algorithm, the matrices of subjects and objects consist of different elements and are

different (see subsection 3.4.1). In contradistinction to CP-N3, we do not employ a

regularizer to improve training but change the objective. Instead of squared error,

we use logistic loss, which is appropriate for one-hot data. We abandon the gradient

calculation through the computational graph and count gradient analytically, which

makes the training process less resource-demanding.

Subjects

Ob
jec

ts

Relations

Figure 3-1: The scheme of CPD in case of informational embedding.

Approaches based on Deep Learning convolutions and attention mechanisms

ConvE, GAT, GAAT [Dettmers et al., 2017, Nathani et al., 2019, Wang et al.,

2020] achieve high performance in link prediction. Besides, they have their disad-
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vantages - it necessitate more time and memory resources than other types of models

and usually needs pre-training.

3.3 MEKER: Memory Efficient Knowledge Embed-

ding Representation

Our approach to entity embeddings relies on generalized CPD [Hitchcock, 1927].

Namely, R-rank CPD approximates an N-dimensional tensor as a sum of R outer

products of N vectors. Every product can also be viewed as a rank-1 tensor. This

approximation is described by the following formula: X ⇡M = [|A,B,C|], where

X 2 RI⇥J⇥K is original data and M 2 RI⇥J⇥K is its approximation. Factors have

the following shape A 2 RI⇥R, B 2 RJ⇥R, C 2 RK⇥R. The scheme of CPD applied

to the KG elements representation task is in Figure 3-1. We set matrix A equal to

matrix C and simultaneously corresponding to subject and object entities.

3.3.1 Generalization of CPD

Following the determination of the approximation type, the next task is to find the

parameters of the factor matrices that best match the ground truth data. [Battaglino

et al., 2018, Dunlavy et al., 2011] describe the most widely used CPD algorithm,

CP-ALS. The update rules for the factor matrices are derived by alternating between

minimizing squared error (MSE) loss. [Hong et al., 2020] demonstrates that MSE

corresponds to Gaussian data and is a particular case of a more general solution

for an exponential family of distributions. In general, the construction of optimal

factors originates the minimization problem:

minF (M;X ) ⌘
X

i2⌦

f(xi,mi),

f(x,m) ⌘ log p(x|l�1(m)),

(3.1)

where f - elementwise loss function, ⌦ - set of indices of known elements of X , l - link

function, xi and mi - the i-th elements of X and M, respectively. We also introduce

42



Y - the tensor of derivatives of the elementwise loss with the same size as X and

being filled by zeros for i 62 ⌦. The data in the sparse one-hot triple tensor has a

Bernoulli distribution. The link function for Bernoulli is l(⇢) = log(⇢/(1 � ⇢)) and

associated probability is ⇢ = exp(m)(1� exp(m)) so the loss function and elements

of the Y are defined as follows:

f(xi,mi) = log(1 + expmi)� ximi,

y(xi,mi) =
@f(xi,mi)

@mi
=

expmi

1 + expmi
� xi.

(3.2)

Hong et al. [2020] derives partial derivatives of F w.r.t. factor matrices and

presents gradients G of it in a form similar to standard CPD matrix update formulas:

GA = Y[0](B�C)T †
,

GB = Y[1](A�C)T †
,

GC = Y[2](A�B)T †
,

(3.3)

where †, � and X[n] are defined in a Chapter 2. The importance of representa-

tion (3.1) is that we can calculate the gradients via an essential tensor operation

called the matricized tensor times Khatri-Rao product (MTTKRP), implemented

and optimized in most programming languages. Algorithm 3 describes the procedure

for computing factor matrices gradients (3.3) in a Bernoulli distribution case (3.2).

3.3.2 Implementation Details

We use PyTorch Paszke et al. [2019a] to implement the MEKER model. We set the

object and subject factors equal and correspond to matrix A for the decomposition

of the one-hot KG triplet tensor. Sparse natural and reconstructed tensors are

stored in Coordinate Format as a set of triplets (COO). We combine actual triples

and sampled negative examples in batches, and process them. The corresponding

pieces from the ground-truth tensor and current factor matrices are cut out for each

batch. Then the pieces are sent to Algorithm 3 for the calculation of gradients

of the matrix elements with appropriate indexes. Algorithm 4 is an extension of

Algorithm 1 in Chapter 2 and describes the pseudocode of factorization KG tensor

43



using GCP gradients.

We train the MEKER model using Bayesian search optimization to obtain the

optimal training parameters. We use the Wandb.ai tool Biewald [2020] for exper-

iment tracking and visualizations. The complete sets of tunable hyperparameters

are in the Appendix. Table 3.3 shows the best combinations of it for the proposed

datasets.

Baselines As a comparison, we deploy related link prediction approaches that

meet the following criteria: 1) it should learn KG embedding from scratch 2)

it should report high performance 3) the corresponding paper should provide a

runnable code. We use the Tucker, Hyper, ConvKB, and QuatE implementations

from their respective repositories. For TransE, DistMult, ComplEx, and ConvE,

we use LibKGE Ruffinelli et al. [2020] library with the best parameter setting for

reproducing every model. We run each model five times for each observed value and

provide means and sample standard deviation.

Algorithm 3 GCP GRAD Bernuilli
Input: X . Ground Truth Tensor

A, B, C . Factor matrices

Output: F , GA, GB, GC

M = {A,B,C} . Model Restored tensor

F =
P

i f(xi,mi) =
P

log(1 + emi )� ximi . Loss

Y =
P

i
�f(xi,mi)

�mi
= . Derivative tensor

=
P 1

1+e(�mi)
� xi

GA = Y[0](B�C)T †
. . Element-wise gradient for A

GB = Y[1](A�C)T † . Element-wise gradient for B

GC = Y[2](A�B)T † . Element-wise gradient for C

3.4 Experiments on Standard Link Prediction Datasets

3.4.1 Experimental settings

The Link prediction task estimates the quality of KG embedding. Link prediction

is a classification predicting if triple over graph elements is true or not. The scoring
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Algorithm 4 Factorization of the KG tensor using GCP gradients
Input: X . Ground Truth Tensor

Triplets . List of triplets

LR . learning rate

R . Desired size of embeddings

N . Number of epoch

Output: A, B . Updated factor matrices

Initialize factor matrices A 2 RR⇥ne , B 2 RR⇥nr

for i = 1 . . . N do

for [indsa, indsb, indsc] in Triplets do

Xbatch = X [indsa, indsb, indsc]
ga, gb, gc, loss = GCP_GRAD(Xbatch,A[indsa], B[indsb], A[indsc])
A[indsa].grad = ga
B[indsb].grad = gb
A[indsc].grad = gc
UPDATE(A, B, LR)

end for

end for

function �(es, rel, eo) returns the probability of constructing a true triple. We test

our model on this task using standard link prediction datasets.

FB15k237 [Toutanova and Chen, 2015] is the dataset based on the FB15k

adapted Freebase subset, which contains triples with the most mentioned entities.

FB15k237 devised the method of selecting the most frequent relations and then fil-

tering inversions from test and valid parts. The WN18RR [Bordes et al., 2013]

version of WN18 is devoid of inverse relations. WN18 is a WordNet database that

contains the senses of words as well as the lexical relationships between them. Ta-

ble 3.4 shows the number of entities, relations, and train-valid-test partitions for

each dataset used in the proposed work. For evaluation, we obtain complementary

candidates from the entity set for each pair entity-relation from each test triple

and estimate the probability score of the input triple being true. The presence of

an entity, which really completes a triple, among the candidates with the highest

probability signifies a hit. Candidate ranking is performed with a filtered setting,

which was first used in [Bordes et al., 2013]. In a filtered setting, all candidates who

completed a true triple on the current step are removed from the set, except for

the expected entity. We use Hit@1, Hit@3, Hit@10 as evaluation metrics. We also

use mean reciprocal rank (MRR) to ensure that true complementary elements are

ranked correctly.
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Table 3.1: Link Prediction scores for various models on the FB15k237 and WN18RR
datasets. The embedding size is 200. The winner scores are highlighted in bold font,
and the second results are underlined. The group of models, marked by ? is employed
using LibKGE framework.

Dataset FB15k237 WNRR18

Model MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

ConvKB Nguyen et al. [2018] 0.299 0.479 0.327 0.229 0.222 0.507 0.378 0.035
HypER Balazevic et al. [2018] 0.342 0.523 0.377 0.253 0.465 0.522 0.477 0.436
TuckER Balazevic et al. [2019] 0.345 0.541 0.389 0.261 0.465 0.526 0.478 0.436
QuatE Zhang et al. [2019] 0.361 0.554 0.401 0.271 0.482 0.572 0.496 0.436
CP-N3 Lacroix et al. [2018] 0.351 0.529 0.388 0.265 0.440 0.486 0.449 0.421

ConvE? Dettmers et al. [2017] 0.337 0.521 0.368 0.238 0.428 0.505 0.449 0.393
TransE? Bordes et al. [2013] 0.312 0.496 0.317 0.219 0.227 0.519 0.367 0.052
DistMult? Yang et al. [2015] 0.333 0.518 0.367 0.241 0.451 0.522 0.463 0.416
ComplEx? Trouillon et al. [2016] 0.339 0.526 0.372 0.247 0.475 0.547 0.481 0.436

MEKER 0.359 0.539 0.392 0.268 0.477 0.5447 0.488 0.437

Table 3.2: Sample Standard Deviation for Link Prediction scores on FB15k237 and
WN18RR datasets for different models. The embedding size is 200. These deviations
correspond to Table 2 in the main paper.

Dataset FB15k237 WNRR18

Model MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

ConvE 0.0058 0.0018 0.0016 0.0011 0.0018 0.0016 0.0016 0.0026
HypER 0.0004 0.0015 0.0007 0.0011 0.0019 0.0021 0.0030 0.0012

DistMult 0.0024 0.0027 0.0026 0.0023 0.0011 0.0014 0.0015 0.0010
ComplEx 0.0015 0.0014 0.0025 0.0013 0.0023 0.0031 0.0024 0.0027
TuckER 0.0012 0.0019 0.0009 0.0023 0.0012 0.0010 0.0011 0.0019

MEKER 0.0010 0.0014 0.0009 0.0015 0.0018 0.0026 0.0027 0.0026

Assumption of the Linearity In general, CPD assumes linearity in matrices

A, B, and C parameters. We must ensure that each of the three input matrices

is distinct. This requirement is met for the datasets considered in this thesis and

the proposed calculation conditions. Despite the fact that objects and subjects are

represented in the same matrix, in every batch step objects and subjects sets do not

intersect at any point, and matrices pieces A[indsobj], A[indssubj] are different. Fig-

ure 3-2 shows a histogram of the number of intersections in the bathes of Fb15k237.

It indicates how frequently a given entity appears in one batch as both an object and

a subject role. From Figure 3-2 we can see that there are almost no intersections in

the majority of cases. At the same time, datasets with inverted relations (for exam-

ple, relations of the form award/nomenee, nomenee/award [Toutanova and Chen,

2015]) may not meet the linearity assumption in general. As a result, the proposed
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Table 3.3: The best hyperparameters of the MEKER.

Dataset FB15k237 WN18RR

Optimizer AdamW AdamW
LR 0.01 0.009
Batch Size 156 128
L2 reg 0.001 0.0
Number of negative 6 8
Step of decay LR 3 15
Gamma of decay LR 0.8 0.6

Table 3.4: Statistics of link prediction datasets.

Number of Triplets
Dataset #ents #rels Train Valid Test

Fb15k237 14,541 237 27.2·104 17,535 20,466
WN18RR 40,943 11 8.6·104 30,034 3,134
Wiki4M 4,316·104 1,245 1,367·104 30,000 35,815

Wikidata5m 4,594·104 822 2,061·104 5,163 5,133

method based on the GCP algorithm should be used with caution for datasets with

inversions.

Figure 3-2: Intersections of objects and subjects entities in FB15k237 training
batches.

3.4.2 Link Prediction

Table 3.1 shows the mean value of the experiment on small datasets for the em-

bedding of size 200. The Hit@10 standard deviation for MEKER is 0.0034 for the

FB15k237 dataset and 0.0026 for the WNRR18 dataset. Due to space constraints,
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the table with deviations from all experiments, comparable to Table 3.1, is in Ta-

ble 3.2.

The best score belongs to QuatE [Zhang et al., 2019] model due to its highly ex-

pressive 4-dimensional representations. Among the remaining approaches, MEKER

outperforms its contestants’ over all metrics except for the Hit@10 - Tucker model

surpasses MEKER for Fb15k237, ComplEX by LibKGE for WNRR18. In general,

MEKER shows decent results comparable to strong baselines of Zhang et al. [2019],

Balazevic et al. [2019]. It is also worth noting that MEKER significantly improves

MRR and Hit@1 metrics on freebase datasets, whereas on word sense, according to

data, it has been enhanced in Hit@10.

Model efficiency in case of parameter size increasing Given a strong mem-

ory assumption, we can reduce the size of pre-trained MEKER embeddings by ten-

fold while losing only a few percent of performance.

Figure 3-3: MRR scores in dependence
of embedding ranks.

Figure 3-4: Hit@1 scores in dependence
of embedding ranks.

Figures 3-3 and 3-4 show MRR and Hit@1 scores for MEKER, TuckER, and

ComplEX models at various embedding sizes. Each model achieves a constant value

on both metrics around rank 100. For ranks 200 and 300, difference in performance

between the three models is approximately consistent for both metrics, with MEKER

scoring the highest on rank 20. It means that the number of MEKER parameters can

be reduced while maintaining or improving quality. The quality loss is significant

for other presented models.
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3.4.3 Memory Complexity Analysis

We show the space complexity of models mentioned in the current work in the right

column of Table 3.5. In the context of the Link Prediction task, all approaches

have asymptotic memory complexity O((ne + nr)d), which is proportional to the

size of the full dictionary of KG elements, i.e. the embedding layer or look-up table.

Other detailes of the proposed models are less significant: the convolutional layers

are not very extensive. The implementation determines the amount of real memory

used by the model during the training process. The Neural Network backpropaga-

tion mechanism is used to tune parameters in the most number of related works.

Backpropagation in Figure 3-5 creates a computational graph in which all model

parameters are duplicated. It results in a multiplicative constant 2, insignificant for

a small dictionary but critical in a large one. To summarize, the following factors

should be taken into account to decrease MEKER’s required memory:

1. In the MEKER algorithm gradients are computed analytically.

2. MEKER does not have additional neural network layers (linear, convolutional,

or attention).

To measure GPU RAM usage, we run each considered embedding model on

FB15k-237 on a single GPU and print peak GPU memory usage within the created

process. The left column of a Table 3.5 demonstrates that MEKER has objective

memory complexity that is at least twice lower than that of other linear approaches.

This property reveals the possibility of obtaining representations of specific large

databases using a single GPU card.

3.5 Experiments on Large-Scale KG Datasets

3.5.1 Experimental settings

To test the model on large KGs, we employ two WikiData-based datasets. The

first dataset in English, Wikidata5m [Wang et al., 2021]2, is selected due to the
2https://deepgraphlearning.github.io/project/wikidata5m
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Figure 3-5: The scheme of the augmented computational graph of the Neural Net-
work.

Table 3.5: Memory, reserved in the PyTorch Framework during the training pro-
cess and theoretical approximation of given implementations’ complexity. On the
FB15k237 dataset, we train 200-size representations with a batch size of 128. Lin

denotes the number of output features in a linear layer, conv denotes the size of
convolutional layer parameters. The constant c represents the number of different
layers.

Model GPU Memory Theoretical Approximation
Usage, MB of Space Complexity

TuckER 357 2 · ((ne + nr + c · lin) · d)
HypER 208 2 · ((ne + nr + c · lin) · d)
ConvKB 3 563 2 · ((ne + nr) · d+ c · conv)
ConvE 229 2 · ((ne + nr) · d+ c · conv)
ComplEX 252 2 · (ne + nr) · d
DistMult 174 2 · (ne + nr) · d
QuatE 2 367 2 · 4 · (ne + nd + c · lin)
CP (N3) 138 2 · (ne + nr) · d

MEKER 79 ((ne + nr) · d)

presence of related works and reproducible baseline Ruffinelli et al. [2020]. This

dataset is created over the 2019 dump of WikiData and contains of elements with

links to informative Wikipedia pages. Our experiments use the transductive setting

of Wikidata5m — triplet sets to disjoint across training, validation, and test.

The second English-Russian dataset is formed since its suitability for the NLP

downstream task. We leverage KG-based fact retrieval over Russian Knowledge

Base Questions (RuBQ) Rybin et al. [2021] benchmark. This benchmark is a subset

of Wikidata entities with Russian labels. Some elements in RuBQ are not covered

with Wikidata5m, so we created a link-prediction Wiki4M dataset over RuBQ. We

select triples without literal objects and obtain approximately 13M triples across

4M entities (see Table 3.4). Wiki4M also fits the concept of multilingualism and

50



could be used in a cross — lingual transfer or few-shot learning.

Table 3.6: Unfiltered link prediction scores for MEKER and PyTorch-BigGraph
approaches for Wiki4M and Wikidata5m datasets and memory needed in leveraging
every model. Storage means additional memory demanded for auxiliary structures.
Batch size 256. Here “RAM” is GPU RAM or main memory RAM if GPU limit of
24 GB is reached. Sparse means sparse embeddings. Models without sparse mark
employ dense embeddings matrix.

Model MRR Hit@1 Hit@3 Hit@10 Memory, GB Storage, GB

English: Wikidata5m dataset

PTBG (ComplEX) 0.184 0.131 0.210 0.287 45.15 9.25

PTBG (TransE) 0.150 0.091 0.176 0.263 43.64 9.25

LibKGE sparse (TransE) 0.142 0.153 0.211 0.252 33.29 0.00

LibKGE sparse (ComplEX) 0.202 0.160 0.233 0.316 21.42 0.00

MEKER (ours) 0.211 0.149 0.238 0.325 22.27 0.00

Russian: Wiki4M dataset

PTBG (ComplEX) 0.194 0.141 0.212 0.293 42.83 9.25

LibKGE sparse (TransE) 0.183 0.126 0.191 0.275 26.75 0.00

LibKGE sparse (ComplEX) 0.247 0.196 0.275 0.345 20.22 0.00

MEKER (ours) 0.269 0.199 0.303 0.410 21.04 0.00

3.5.2 Link Prediction

We embed the datasets for ten epochs on a 24.268 Gb GPU card with the following

model settings: LR 2.5 · 10�4, increasing in 0.5 steps every 10 epoch, batch size 256,

number of negative samples 4 for Wiki4M and 2 for Wikidata5m.

As a comparison, we use the PyTorch-BigGraph large-scale embedding sys-

tem [Lerer et al., 2019]. PyTorch-BigGraph modifies several traditional embed-

ding systems to focus on the effective representation of KG in memory. We select

ComplEX and TransE and train graphs for these embedding models, dividing large

datasets into four partitions. With a batch size of 256, the training process takes 50

epochs.

We also deploy LibKGE [Ruffinelli et al., 2020] to evaluate TransE and ComplEX

approaches. For ComplEX model training, we use the best parameter configuration

from the repository, for TransE, we obtain a set of training parameters by greed

search.

Hyperparameters iterate over the following set: optimizer type {Adam, AdamW,

SGD}, learning rate {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05},

batch size {64, 128, 256, 512}, number of negative samples per positive {2, 4, 5, 6},
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L2 regularizer {0.0, 0.001, 0.01, 0.05, 0.1}. For SGD, we switch Nesterov momentum

between {True, False} and set momentum value to {0.8, 0.9, 0.99}. We also vary

learning rate decay in {0.2, 0.5, 0.8} in every {2, 8, 10} steps.

The final learning rate for TransE is 0.5, decaying in factor 0.45 every 5 steps

and train model in 100 epochs. In both cases, we use sparse embedding in the

corresponding model setting and batch size of 256. Models from both wrappers that

did not fit in 24 GB, we train on the CPU.

Embedding sets, yielded by these experiments, we then test on the link pre-

diction task. We provide scoring without filters because the partition-based setup

of PyTorch-BigGraph does not support filtering evaluation. Tables 3.6 shows that

MEKER significantly improves the results of PyTorch-BigGraph models across all

proposed metrics. The ComplEX model with sparse embedding, fine-tuned by

LibKGE, gives results almost approaching the MEKER and exceeding the Hit@1 in

Wiki4M. The right part of Tables 3.6 shows that the baseline approaches consume

twice as much memory as MEKER, but sparse ComplEX slightly improves memory

consumption. TransE does not give such significant results as ComplEX.

3.5.3 Knowledge Base Question Answering (KBQA)

In this section, to further evaluate the proposed MEKER embeddings we test them

extrinsically within on a KBQA task on two datasets for English and Russian.

Experimental Setting

We perform experiments with two datasets: for English, we use the common dataset

SimpleQuestions [Bordes et al., 2015] aligned with Wiki4M KG3 (cf. Table 3.4), and

for Russian, we use RuBQ 2.0 dataset [Rybin et al., 2021] which comes with the

mentioned above Wiki4M KG (cf. Table 3.4). RuBQ 2.0 is the Russian language

QA benchmark with multiple types of questions aligned with Wikidata. For both

SimpleQuestions and RuBQ, an answer is represented by a KG triple for each ques-

tion.
3https://github.com/askplatypus/wikidata-simplequestions
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For training, we use a training set of SimpleQuestions, for verification, we use a

test set of SimpleQuestions and RuBQ 2.0 dataset for English and Russian, respec-

tively. These Q&A pairs provide ground truth answers linked to this exact version

of KG elements.

More specifically, in these experiments, we test answers to 1-hop questions, which

are questions corresponding to one subject and one relation in the knowledge graph

and takes their object as an answer.

We want to leverage the KBQA model, which can process questions both in

English and Russian. To measure the performance of a KBQA system, we measure

the accuracy of the retrieved answer/entity. This metric was used in previously

reported results on SimpleQuestions and RuBQ. If the subject of the answer triple

matches the reference by ID or name, it is considered correct.

Question

m-BERT eq

MLPo

MLPr

MLPs

eoeres

Graph  
Embeddings

NER

Candidate
subjects

Filtered
embeddingsOnly 

 candidates

coss + cosr + coso
Ranked  
answers

KG
Embed

Figure 3-6: Text2Graph method used in our experiments: 1-Hop QA pipeline. First,
we take an original entity and relation embeddings. The question is embedded
using m-BERT. This embedding is then processed by MLP, yielding a candidate
representations of an object, relation, and subject. The sum of the subject, relation,
and object cosines is the final score of triple candidates.

KBQA methods

The key idea of the KBQA approaches is mapping questions in natural language

to the low-dimensional space and comparing them to graph elements’ given rep-

resentation. In KEQA [Huang et al., 2019], LSTM models detect the entity and
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predicates from the question text and project it further into the entity and predicate

embedding spaces. We select the closest subject in terms of similarity to the entity

and predicate embeddings as the answer.

We created a simple approach Text2Graph which stems from the KEQA and

differs from the original work in improved question encoder, entity extractor, addi-

tional subject embedding space and simplified retrieval pipeline. The Algorithm 5

describes projection of the input question to graph elements. The multilingual-

BERT [Devlin et al., 2019] model encodes the input question, and all word vectors

are averaged into a single deep contextualized representation eq. This representation

then goes through three MLPs jointly learning candidate embeddings of an object,

relation, and subject. We minimize MSE between predicted embeddings and the

corresponding KGE model’s embeddings. The appropriateness score of every fact in

KG is a sum of cosine similarity between MLP outputs and ground truth model rep-

resentation for every element in the triple. We consider the triple with the highest

score as an answer. We train the pipeline using an AdamW optimizer with default

parameters for 10 epochs.

Baselines We evaluate our method on datasets with English and Russian ques-

tions. On every benchmark, we provide several baselines, which are described below

and are, in fact, a combination of the embedding model with a QA system.

RuBQ 2.0

Our method MEKER is combined with several QA approaches compatible with

questions from this benchmark.
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Algorithm 5 Text2Graph question projection algorithm
Input: Q, G, E, text encoder Menc, projection modules: Ms,Mr,Mo, Subject Candidates

Extractor: NER

Output: answer hoa, ra, sai

eq = Menc(Q)

Initialize answers A=[], scores S=[], candidates C=[]

for entity in G do

if entity.name in NER(Q) then

C.append(entity)

end if

end for

for entity in C do

for relation in entity.relations do

s = entity.id, r = relation.id, o = entity[r]

triple = hs, r, oi

es = E[s], er = E[r], eo = E[o]

ys = Ms(eq), yr = Mr(eq), yo = Mo(eq)

score = cos(eo,yo) + cos(er,yr) + cos(es,ys)

A.append(triple), S.append(score)

end for

end for

ind = argmax(S)

hsa, ra, oai = A[ind]

return hsa, ra, oai

QAnswer4 is a rule-based system addressing questions in several languages,

including Russian. SimBa is a baseline presented by RuBQ 2.0 authors. It is

a SPARQL query generator based on an entity linker and a rule-based relation

extractor. KBQA module of DeepPavlov Dialogue System Library [Burtsev

et al., 2018] is also based on query processing.

SimpleQuestions

Simple Question is an English language benchmark aligned with FB5M KG -

the subset of Freebase KG. Training and validation parts consist of 100k and 20k

questions, respectively. As a baseline solution, we employ KEQA [Huang et al.,

2019]. We realign answers from this benchmark to our system, which is compatible
4https://www.qanswer.eu
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Table 3.7: Comparison of the Text2Graph system with the various KG embeddings
with the existing solutions (QA-Ru, QA-En, SimBa) on RuBQ 2.0 benchmark.

KBQA Model Embedding Model Accuracy 1-Hop

DeepPavlov - 30.5 ± 0.04
SimBa - 32.3 ± 0.05
QA-En - 32.3 ± 0.08
QA-Ru - 30.8 ± 0.03

Text2Graph PTBG (ComplEX) Wiki4M 48.16 ± 0.05
Text2Graph PTBG (TransE) Wiki4M 48.84 ± 0.06
Text2Graph MEKER Wiki4M 49.06 ± 0.06

Table 3.8: Comparison of the Text2Graph system with the various KG embeddings
with the existing embedding-based solution on the SimpleQuestions benchmark.

KBQA Model Embedding Model Accuracy 1-Hop

KEQA TransE FB5M 40.48 ± 0.10

Text2Graph PTBG (TransE) Wikidata5m 59.97 ± 0.15
Text2Graph MEKER Wikidata5m 61.81 ± 0.13

with Wikidata5m. Not all of the questions from FB5M have answers among Wiki4M,

that is why we test both systems on a subset of questions whose answers are present

in both knowledge graphs.

Experimental Results

We compare the results of the Text2Graph with PTBG embeddings versus MEKER

embedding and baseline KBQA models. Results on the RuBQ 2.0 dataset are shown

in Table 3.7. Text2Graph outperforms baselines. Using MEKER embeddings in-

stead of the PTBG version of ComplEX and TransE demonstrates slightly better

accuracy.

Table 3.8 presents results on the SimpleQuestions dataset. As Huang et al. [2019]

model uses FB5M KG and Text2Graph uses Wikidata5m KG we test both models

on the subset of questions, which answers are present in both knowledge graphs for

a fair comparison. Our model demonstrates superior performance and regarding the

comparison within different embeddings in a fixed system, MEKER provides better

accuracy of answers than TransE embeddings on the SimpleQuestions benchmark.
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3.6 Conclusion

We propose MEKER, a linear knowledge embedding model based on generalized

CPD. This method allows for the calculation of gradient analytically, simplifying

the training process under memory restriction. Compared to previous KG embed-

ding linear models Balazevic et al. [2019], our approach achieves high efficiency

while using less memory during training. On the standard link prediction datasets

WN18RR and FB15k-237, MEKER shows quite competitive results.

In addition, we created a Text2Graph — KBQA system based on the learned KB

embeddings to demonstrate the model’s effectiveness in NLP tasks. We obtained

the required representations using MEKER on the Wikipedia-based dataset Wiki4M

for questions in Russian and Wikidata5m for questions in English. Text2Graph

outperforms baselines for English and Russian while using MEKER’s embeddings

provides additional performance gain compared to PTBG embeddings. Our model’s

link prediction scores on Wiki4M and Wikidata5m outperform the baseline results.

MEKER can be helpful in question-answering systems over specific KG, in other

words, in systems that need to embed large sets of facts with acceptable quality.

All codes to reproduce our experiments are available online.5

5https://github.com/s-nlp/meker

57



Chapter 4

SVD and TTM Representations of

the Fully-Connected (FC) Layers

4.1 Introduction

In this section, we present a methodological tool used for efficient representation of

linear layers in NLP deep neural networks in the following chapters.

Algebraic structures are commonly employed to represent linear layers, such

as TTM decomposition [Usvyatsov et al., 2022] or Kronecker decomposition [Edalati

et al., 2021]. Since low-rank approaches decrease the expressivity, in Neural Network

an adaptive version is usually deployed [Thakker et al., 2020], [Chen et al., 2019].

This replacement occurs in order to reduce the number of parameters in the layer

and overall model size. To achieve this, a layer class that is compatible with the

chosen representation structure must be provided and further can be effectively

integrate within the neural network model for training and fine-tuning. Existing

works, such as Usvyatsov et al. [2022] and Novikov et al. [2015], have addressed

this for TTM structure. However, these implementations sometimes suffer from

high memory consumption during training due to their internal structure [Novikov

et al., 2015]. To overcome this challenge, we have developed a TTM layer class that

incorporates time- and memory-aware signal propagation function implementations,

ensuring efficient training performance.

Summarazing, we develop a custom TTM-layer that, firstly, has fewer parameters
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and, secondly, uses less memory during forward and backward passes.

4.2 Method SVD

Singular Value Decomposition (SVD) is defined as follows: W = U⌃VT. To

compress a linear layer with SVD, we use truncated products of it with rank r:

Ur = U[:, : r],⌃r = ⌃[: r, : r],Vr = V[:, : r]. In order to avoid double multiplica-

tion of input activation matrix to a diagonal matrix ⌃r, we carry it inside Ur and

Vr:

W2 = U[:, : r]
p
⌃r,W1 =

p
⌃rU[:, : r]T (4.1)

As a result, we get approximation of linear matrix W ⇡ W2W1 and approxi-

mation of the initial layer Y ⇡ XWT
1 W

T
2 + b.

This is equivalent to two sequential linear layers - first with weight W1 and zero

bias and the second one with weight W2 and bias b. If W have nin, nout shape, the

number of parameters in layer before compression is nin⇥ nout, after representation

by truncated SVD is r ⇥ (nin + nout).

Based on this, the parameter compression rate for the SVD representation of a

linear layer can be determined as follows:

c_rate =
r ⇥ (nin + nout)

nin ⇥ nout
(4.2)

4.3 Method TTM

As described in section 2.2.4, Tensor Train Matrix (TTM) decomposition is effi-

cient for matrices that can be represented as the Kronecker product of objects. In

other words, such matrices are expected to be non-invariant to the permutation

of columns (features). For a pretrained matrix of a fully connected layer of neu-

ral network architectures, this is generally not true - in such a matrix, there is no

well-defined structure and swapping rows and columns doesn’t yield any significant

changes.
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Nevertheless, it is possible to construct a container that utilizes the TTM struc-

ture to store the weights. With the aid of this container, the formula 2.5 can be

employed to compute the elements of the corresponding linear layer’s matrix. By

training this structure from scratch, we can attain a compressed representation of

a "virtual" FC layer, where the weight matrix is already expressed in the TTM

decomposition form.

As described in the Chapter 2, the TTM form is, in fact, a multidimensional

tensor over 2-dimensional objects with sizes 2 ⇥ 2. Consequently, the decomposed

matrix should be expressed as a mosaic of elementary blocks from R2⇥2 space and

has dimensions equal to the power of 2. Since matrices in FC layers are not engaged

in this, we will deviate from this rule in the experimental implementation. Therefore,

the elementary blocks have the dimensions of the factors of the initial matrix’s sizes.

According to the Subection 2.2.4, tensor T 2 RI1⇥J1⇥···⇥IM⇥JM is represented in

TTM format with ranks (R0, R1, . . . , RM) if each element is computed as:

T (i1, j1, . . . , iM , jM) ⇡
R1X

r1=1

· · ·

RM�1X

rM�1=1

G
(1)(i1, j1, r1)G

(2)(r1, i2, j2, r2) . . . G
(M)(rM�1, iM , jM),

where G
(m)
2 RRm�1⇥Im⇥Jm⇥Rm , m = 1, 2, . . . ,M � 1 are core tensors (cores) of

TTM decomposition, R0 = RM = 1.

Estimating the number of parameters in the original and compressed version of

the matrix W 2 RDin⇥Dout , where Din =
QM

m=1 Im and Dout =
QM

m=1 Jm, in the

same way as it is done in 2.2.3, we obtain that full representation stores
QM

m=1 ImJm

elements, while TTM-core format contains only R(I1J1 + IMJM) + R
2
PM�1

m=2 ImJm

parameters.

Then, the parameter compression rate for the TTM representation is:

c_rate =
R(I1J1 + IMJM) +R

2
PM�1

m=2 ImJmQM
m=1 ImJm

(4.3)

The substantial case in Neural Network (NN) modules is to define the proper

way of signal transmission. In the TTM-based layers, the forward signal propagation
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means sequentially tensor contraction of input activation tensor X with core tensors.

Representing FC in this way, we should attend to memory and time-stable forward

and backward methods.

TTM Tensor Contraction

Given two tensors T 1
2 RI1⇥···⇥IM⇥S1⇥···⇥SK and T

2
2 RS1⇥···⇥SK⇥J1⇥···⇥JN the result

of tensor contraction along axis s1, . . . , sK is a tensor T 2 RI1⇥···⇥IM⇥J1⇥···⇥JN , where

one element is computed using formula

T (i1, . . . , iM , j1, . . . , jN) =
S1X

s1=1

· · ·

SkX

sk=1

T
1(i1, . . . , iM , s1, . . . , sK)T

2(s1, . . . , sK , j1, . . . , jN)

and requires O(S1S2 . . . SK) = O

✓
KQ
k=1

Sk

◆
floating point operations (FLOPS).

Thus, number of FLOP to compute tensor T is O

✓
MQ

m=1
Im

NQ
n=1

Jn

KQ
k=1

Sk

◆
. For ex-

ample, a multiplication of two matrices of shapes (I, S) and (S, J) can be calculated

for O(IJS) operations.

Signal Transmission

If we sequentially contract input X with cores, then after contracting with G
M
, . . . ,G

k+1

we get a tensor of shape (B, I1, . . . , IK , JK+1, . . . , JM , RK), its contraction with the

next core G
k
2 RRk�1⇥Ik⇥Jk⇥Rk requires BI1 . . . IkJk . . . JMRk�1Rk steps. Thus the

computational complexity of the TTM layer is

O(BM max{Din, Dout}max
k

{Ik, Jk}(max
k

Rk)
2)

and depends on the schedule in which we contract cores.

We measure the peak memory during one training iteration in GPT-2 model with

TTM layers on different ranks. Experiments depicted in 4.2 show that on a rank

16 the TTM layer can be more memory-consuming than the regular FC layer. The

memory footprint for FC and TTM layers for custom-defined and PyTorch signal
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Table 4.1: Peak memory footprints for signal propagation in full GPT-2 model with
TTM layers with different ranks. At the rank 16 we have an increment in memory
consumption.

Layer TTM-16 TTM-32 TTM-64 Fully-Connected
Type

Memory, GB 75.07 48.7 48.31 48.37

Table 4.2: Memory footprints for signal propagation in TTM wiht rank 16 and
Fully-Connected Layers. PyTorch strategy leads to memory costs for TTM.

Layer TTM-16 TTM-16 Fully-Connected

Backprop Strategy PyTorch Einsum PyTorch
Autodiff Full Matrix Autodiff

Single Layer, Batch 16 1100 MB 294 Mb 395 Mb

propagation strategies (Table 4.2) confirms this claim.

For a tensor contraction, the PyTorch framework uses Einstein summation no-

tation. Optimized Einsum library Smith and Gray [2018] optimizes the expression’s

contraction order by looking for an optimal path - a set of strings of the form "ikl,lkj-

>ij". By default optimization, the obtained path are time-stable, not memory-

stable. We extend the existing research by proposing memory-efficient techniques

to compute forward and backwards through the TTM layer for a more comprehen-

sive description of the proposed methods.

4.3.1 Forward Pass

Fully-connected layer. Given an input batch X 2 RB⇥Din a forward pass through

a fully-connected layer with weight matrix W 2 RDin⇥Dout and bias vector b 2 RDout

results in the output Y = XW+b 2 RB⇥Dout and requires O(BDinDout) operations.

TTM layer. In TTM layer the weight W is a Din ⇥ Dout matrix repre-

sented in TTM format with M cores G
m
2 RRm�1⇥Im⇥Jm⇥Rm , m = 1,M , where

Im and Jm are such that Din =
MQ

m=1
Im and Dout =

MQ
m=1

Jm. More presiesely, first

we we reshape the 2-dimensional matrix W into a 2M dimensional array WM =

W.reshape(I1, I2, . . . , IM , JM).

Input matrix X is reshaped into tensor X 2 RB⇥I1⇥···⇥IM before performing a
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forward pass through the layer, which outputs tensor Y 2 RB⇥J1⇥···⇥JM , such that

Y(j1, . . . , jM) =
X

i1,...,iM

W(i1, j1, . . . , iM , jM)X (i1, . . . , iM), (4.4)

where

W(i1, j1, . . . , iM , jM) =
X

r1,...,rM�1

G
1(r0, i1, j1, r1) . . .G

M(rM�1, iM , jM , rM). (4.5)

4.3.2 Forward Pass as a Contraction Process

We represent WM as a set of M cores G. So, in equation 4.5 we should contract X

with sequence (GM , . . . , G1) sequentially. Please note, we can start with the first

core (G1
, ...G

M) or with the last (GM , . . . , G1), in common it doesn’t matter.

We contract X with size (B,Din) to G
m with size (Rm�1, Im, Jm, 1). As Din =

Q
(I1 . . . Im), we contract over Im and have a tensor of shapes (B,Rm�1, Jm, Im�1, . . . , I1)

as a result. This tensor we should contract to core Gm�1 with shapes

(Rm�2, Im�1, Jm�1, Rm�1)

over Im�1Rm�1 dimensions. This operation yields the object of shapes

(B,Rm�2, Jm, Jm�1, Im�2, . . . , I1).

By repeating such operation K times, we obtain product with shapes

(B, I1, . . . , IK , JK+1, . . . , JM , RK).

In the end, we gain the output of sizes (B, J1, . . . JM) = (B,Dout).

The computational complexity of this operation is estimated above.

TTM layer: Einsum The schedule of contractions computed during forward

pass is optimized via opt_einsum function [Smith and Gray, 2018]. This function

optimizes the time of expression’s contraction in the BLAS library for common

linear algebra operations. The default optimization strategy provides an recursive
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depth-first search over all possible pathes, by pruning candidates that exceed the

best time.

Thus, due to some shared intermediate results memory for saved activations

might be optimized.

TTM layer: Fixed Schedule The order of cores to contract with is fixed

in advance, we don’t optimize it with opt_einsum. In this case saved activations

occupy usually the same amount of memory.

Algorithm 6 Forward pass (FC layer). Number of layer parameters is
O(BDinDout). Computational complexity is O(BDinDout). SavedActivations is
O(BDin).
Input: data X 2 RB⇥Din ; parameters W 2 RDin⇥Dout , b 2 RDout ;

Output: Y 2 RB⇥Dout

Y = XW + b

Algorithm 7 Forward pass (TTM layer, Fixed Scheduler). Number of layer pa-

rameters is O(
MP

m=1
Rm�1ImJmRm).

Input: data X 2 RB⇥Din ;Din =
MQ

m=1
Im, Dout =

MQ
m=1

Jm;

parameters G
m
2 RRm�1⇥Im⇥Jm⇥Rm ,m = 1,M , R0 = RM = 1;

Output: Y 2 RB⇥J1⇥···⇥JM

X = Reshape(X) 2 RB⇥I1⇥···⇥IM

Y0 := X

ContractionSchedule := (1, 2, . . . ,M)

for k in ContractionSchedule do

Yk := einsum(Gk
,Yk�1) . FLOPY = O(B

k+1Q
m=1

Jm

MQ
m=k+1

ImRkRk+1)

Y = Yk . MemoryY = O(B
kQ

m=1
Jm

MQ
m=k+1

ImRk)

end for

Forward with Fixed Scheduler approach is equivalent to sequential forward pass

through M linear layers. The order of contraction in schedule might be either

(M,M � 1, . . . , 1) or (1, 2, . . . ,M � 1).
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Algorithm 8 Forward pass (TTM layer, Einsum). Number of layer parameters is

O(
MP

m=1
Rm�1ImJmRm).

Input: data X 2 RB⇥Din ;Din =
MQ

m=1
Im, Dout =

MQ
m=1

Jm;

parameters G
m
2 RRm�1⇥Im⇥Jm⇥Rm ,m = 1,M , R0 = RM = 1;

Output: Y 2 RB⇥J1⇥···⇥JM

X = Reshape(X) 2 RB⇥I1⇥···⇥IM

Y := einsum(G1
, . . .G

M
,Y)

4.3.3 Backward Pass

While training neural networks, intermediate activations are saved during forward

pass to compute gradients during backward pass.

Fully-connected layer. For the layer y = Wx + b a derivatives w.r.t. to

weight is computed as
@L

@W
=

@L

@y
xT

.

.

TTM layer: Automatic Pytorch differentiation (Autodiff). Automatic

Pytorch differentiation during backpropagation through TTM layer results in storing

many intermediate activations, as TTM layer is considered as a sequence of linear

layers (where number of layers corresponds to the number of core tensors).

We propose several ways to perform backward pass that require smaller memory

consumption.

TTM layer: Full Einsum. In the first approach for each core tensor Gm we

compute gradient of loss with respect to its parameters:

@L

@Gm
=

@L

@W

@W

@Gm
= XT @L

@Y

@W

@Gm
. (4.6)

As a gradient computation might be considered as a tensor contraction along spec-

ified axis, the process includes three main steps.

Firstly, we generate a string type expression, wich specifies the shapes of input

and resulting tensors (e.g. "ikl,lkj->ij" for performing tensor contraction along two
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axis). Secondly, the schedule of contraction is defined (e.g., firstly along axis ’l’ and

then along axis ’k’). And thirdly, einsum computation is performed.

In Full Einsum approaches first two steps (expression generation, contraction

scheduling) are performed independently for all @L
@Gm

. The third step, in turns,

tracks simultanuosly what contractions are computed for different derivatives and

allows sharing of intermediate results. Due to this sharing we get memory savings

compared to Autodiff approach.

TTM layer: Full Matrix. In Full Matrix approach we perform the same three

steps as in Full Einsum approach. The difference is that as a first contraction we

usually convolve tensors X and @L
@Y along batch axis, and the schedule of other con-

traction is further optimized. This provides complexity improvements when batch

size is large (which is the case in Transformer like models, where batch dimension

is product of batch size by sequence length).

Algorithm 9 Backward pass (TTM layer, Autodiff).
Input: @L

@Y ; saved activations from forward Y1, . . .YM

Output: @L
@X ,

@L
@G1 , . . . ,

@L
@GM

@L
@YM

= @L
@Y

for k in {M, . . . , 1} do
@L
@Gk = einsum(Yk�1,

@L
@Yk )

@L
@Yk�1

= einsum( @L
@Yk

,G
k)

end for
@L
@X = @L

@Y0
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Algorithm 10 Backward pass (TTM layer, Full Einsum).
Input: @L

@Y ; X

Output: @L
@X ,

@L
@G1 , . . . ,

@L
@GM

. Results in the below for-cycle are computed only for the first batch during

training and reused for others.

for k in {1, . . . ,M} do

Compose einsumk expression for @L
@Gk

Optimize contraction schedule for composed einsumk

end for

for k in {1, . . . ,M} do
@L
@Gk = einsumk(

@L
@Y ,G

1
, . . . ,G

M)

end for

Backward with Full Einsum approach in the worst case has the same complexity

as backward Autodiff.

Algorithm 11 Backward pass (TTM layer, Full Matrix).
Input: @L

@Y ; X

Output: @L
@X ,

@L
@G1 , . . . ,

@L
@GM

@L
@W = einsum( @L@Y ,X ) . einsum here contracts only along batch dimension

. FLOP @L
@W

= O(BDinDout)

. Memory @L
@W

= O(DinDout)

. Results in the below for-cycle are computed only for the first batch during

training and reused for others.

for k in {1, . . . ,M} do

Compose einsumk expression for @L
@Gk

Optimize contraction schedule for composed einsumk

end for

for k in {1, . . . ,M} do
@L
@Gk = einsumk(

@L
@W ,G

1
, . . . ,G

M)

. FLOP @L
@Gk

= O(DinDout max
m

(Im, Jm)(max
m

R
m)2)

end for
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4.4 Experiments

Thus, FLOP for backward pass using Full Matrix strategy is:

FLOP = O(BDinDout) +O(MDinDout max
m

(Im, Jm)(max
m

R
m)2) (4.7)

When B is large (as it happens usually for Transormers, where B is batch size

multiplied by sequence length) memory complexity of Full Matrix is better than for

Full Einsum strategy as it doesn’t depend on batch size B.

Table 4.3: Time and memory footprints for different forward and backward strategies
for TTM-16 layer.

Forward Backward Memory, Mb Time, ms

Einsum PyTorch Autodiff 1008 23.6
Einsum Full Einsum 192 55.7
Einsum Full Matrix 192 17.5
Fixed Schedule PyTorch Autodiff 2544 58.4
Fixed Schedule Full Einsum 192 84
Fixed Schedule Full Matrix 192 125

The memory footprints of each of these methods for TTM layers of rank 16

are in the Table 4.3. We select the most optimal pair according to memory and

time - Einsum Forward, Full Matrix Backward - and employ it in TTM layer

implementation.

4.5 Conclusion

This part introduces representing FC layers in a custom TTM format with a proved

compressibility. Considering properties of TTM container, we establish a customized

signal propagation strategy that maintains forward speed without creation redun-

dant activations in the backward direction. In addition, TTM layers can replace the

FC layer in every Neural Network architecture in resource-restricted environments;

it can be used to reduce the effective size of any Transformer-based models.
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Chapter 5

Efficient GPT Model using TTM

Decomposition

5.1 Introduction

With sufficient amounts of training data, big models usually outperform smaller

ones. The paper Kaplan et al. [2020] derives an empirical law for the dependence of

the final loss on the model’s parameters, subject to a sufficiently large dataset and

sufficient computing resources.

Large language models such as GPT-2, GPT-3 [Radford et al., 2019a, Brown

et al., 2020] have the property of generality and show outstanding results in all areas

of natural language processing. However, models with several billion parameters

have difficulties in custom use. Training such models is associated with significant

time costs, using a large amount of electricity and a carbon footprint [Zhang et al.,

2022, Patterson et al., 2021]. Common approaches to large model compression, such

as distillation [Sanh et al., 2019b], usually preserve the quality of a particular task

while ignoring the generalization property.

There are several performance bottlenecks in models based on the transformer

architecture: the embedding layer, the layer that implements the attention mech-

anism, and fully connected layers, which usually hold about half of the memory

allocated to train the model.

We reduce the size of the GPT language model by representing its fully connected
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layers with custom TTM structure and train from scratch two types of model: based

on GPT-2 small and based on GPT-2 medium. To make GPT-2-based models

easier to deploy, we replaced fully connected layers with sequential Tensor Train

Matrix [Oseledets, 2010] containers, based on Tensor Train (TT) [Oseledets, 2011a]

representation. The weight matrix is generally full-rank and cannot be approximated

with low-rank objects. Therefore, we trained the architecture with custom TTM

layers from scratch: thus, we were looking for the weights of the linear layer not

among all matrices but among those represented in the TTM format. Then we

study the behavior of the pre-trained custom model on in-domain and out-of-domain

language modeling tasks and several downstream tasks.

In this chapter, we provide a GPT-based model with up to 40% fewer parameters

showing performance close to the original GPT in language modeling in the domain

and outside the domain, GLUE benchmark, and text summarization.

5.2 Related work

Several approaches explore ways to reduce the size of language models. The mecha-

nism of distillation [Hinton et al., 2015a] was applied to BERT [Sanh et al., 2019b]

and GPT-21. Open pre-trained transformers (OPT) [Zhang et al., 2022] provide a

smaller model that mimics the behavior of GPT-3 [Brown et al., 2020]. They employ

more efficient training and use the particular datasets for improving generalization

capability.

Tensor Train (TT) decomposition is an effective way to obtain low-rank repre-

sentations of inner layers and is also used to reduce parameter numbers. Khrulkov

et al. [2019] and Yin et al. [2021] reduce the size of the embedding layer using TT.

Novikov et al. [2015] uses the TT format of linear layers to compress the computer

vision models, however, TT representations were not tested before for generative

Transformers.
1https://huggingface.co/distilgpt2
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5.3 Present FC layer in TTM format
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Figure 5-1: The scheme of 4-cores TTM representation of weight matrix in the
GPT-2 small FC layer. The dimentions of the initial matrix are decomposed into 4
factors. The matrix ia reshaped to these factors. Than axis are permuted in a way
that input and output dimensions are adjacent. Black digits indicate the size of the
axes, and light blue - their number.

To represent matrix W of shape Din ⇥Dout in TTM we should:

1. Reshape it to a tensor of shapes I1 . . . IM , J1 . . . JM where Din =
MQ

m=1
Im and

Dout =
MQ

m=1
Jm.

2. Permute tensor axes so that dimensions Ik, Jk became adjacents.

3. Represent tensor in a TT (see section 2.2.3 for detailed description of it) for-

mat.

Now cores store store only R(I1J1 + IMJM) + R
2
PM�1

m=2 ImJm parameters, initial

matrix -
MQ

m=1
Im

MQ
n=1

Jn.

Figure 5-1 presents the scheme of TTM-based layers and the appropriate FC

layer matrix. Purple and blue colours marks dimensions of cores corresponding to

the input and output sides of the initial weight matrix, respectively.

5.4 Experiments: End-to-end Training

We conducted experiments with a GPT-2 generative model.

In standard GPT-2 arhitectures we replaced the fully connected layers with the

TTM module, as it described in Chapter 4, and trained the resulting models from
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scratch on the task of language modelling (LM). In this section, we examine per-

formance of the original model with our model and also a GPT-2 compressed with

SVD (with the same parameter budget as our model).

The general intuition of TTM layers superiority w.r.t. SVD is as follows: TTM is

proved to be full-rank [Khrulkov et al., 2019], since the truncated SVD is a low-rank

method. Training the layers from scratch, we find a structure which defines weight

matrices. The matrix M 2 R
IJ being restored from TTM containers has rank

RTTM = min(I, J), otherwise matrix assembled from SVD factors has truncated

rank RSV D < min(I, J)

We can suggest that for matrices with a certain dimension:

• TTM is seeking a proper weight in a more comprehensive space by utilizing a

set of full-rank matrices, which are more effective than a set of matrices with

truncated ranks;

• Higher rank matrix can store more information than a matrix with the same

dimensions but a lower rank.

5.4.1 Hyperparameter Selection

The proposed layer structure assumes two sets of hyperparameters - TTM cores

shapes and TTM ranks.

The matrix of the size (Din, Dout) is represented in cores G
1
2 R1,J1,I1,R1 ,G

2
2

RR1,J2,I2,R2 , . . . , G
M
2 RRM�1,jM ,iM ,1, where Din =

QM
k=1 Ik, Dout =

QM
k=1 Jk, M -

number of cores. The compression rate in a TTM layer is defined in the formula 4.3.

Based on this equation, we state that for the maximum compression rate shapes

multiplication of Ik ⇤ Jk should be as close to each other as possible among all M

cores.

We choose Ik ⇤ Jk in a way that they are equal to each other and approximately

equal to (Din ⇤Dout)1/M . Shapes selection is implemented with a custom algorithm

which will be presented in the source code. In our case, GPT-2 small fully-connected

layers [I, J] is [768, 3072]; 768 = 4 ⇤ 6 ⇤ 8 ⇤ 4 and 3072 = 8 ⇤ 8 ⇤ 6 ⇤ 8; Ik ⇤ Jk are 8*4,

8*6, 6*8, 8*4.
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As for the choice of ranks, we select it based on the desired compression of the

entire model. For a small GPT, these are from 50% to 90%. For a medium GPT,

the reduction is 40%.

5.4.2 In-domain Language Modelling Task

To evaluate in-domain performance on the LM task, we provide training and eval-

uation on the train and test partition of the same dataset, respectively. We replace

the fully connected layers of GPT-2-small with TTM of ranks 16, 32, 64, and 80. We

train and validate the model with block size 512 on the Wikitext-103 dataset [Merity

et al., 2016] for 40 epochs using the AdamW optimizer [Loshchilov and Hutter, 2019]

and the Cosine warmup scheduler [Goyal et al., 2017], increasing the training step

from 0 to 2.5e�4. In this and subsequent experiments, we established the maximum

learning rate point relative to the total number of training steps. Our goal was to

ensure that the model reached its highest point and underwent approximately 1/10

of the entire learning process. Table 5.1 shows that the resulting perplexity is com-

parable to the original model. However, model compression has a negligible impact

on quality within this domain. For example, a reduction in parameters of over 30%

only results in a half a percent decrease in perplexity, while a reduction of over 40%

leads to a 3% drop.

Table 5.1: In-domain perplexities for GPT-2 small model, pre-training from scratch.

Model Training Validation Number of % of classic Perplexity
parameters GPT-2 size

GPT-2 small Wikitext-103 train Wikitext-103 test 124 439 808 100 17.55
GPT-2 small TTM-16 Wikitext-103 train Wikitext-103 test 68 085 504 54 21.33
GPT-2 small TTM-32 Wikitext-103 train Wikitext-103 test 71 756 544 57 21.06
GPT-2 small TTM-64 Wikitext-103 train Wikitext-103 test 83 606 784 67 18.08
GPT-2 small TTM-80 Wikitext-103 train Wikitext-103 test 107 698 944 86 17.61

5.4.3 Out-of-domain Language Modelling Task

In this setup, we perform validation on the test section of Wikitext-103 while training

the model on other datasets for the same language modeling task.
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Table 5.2: Out-domain perplexities for GPT-2 Medium and GPT TTM-72 models,
pre-training from scratch.

Model Training Validation Number of % of classic Perplexity
parameters GPT-2 size

GPT-2 med Webtext Wikitext-103 354 823 168 100 20.56
GPT-2 TTM-72 Openwebtext Wikitext-103 218 303 488 61 30.85
GPT-2 SVD-50 Openwebtext Wikitext-103 220 920 832 62 55.46
Distill GPT-2 Openwebtext Wikitext-103 81 912 576 23 51.45
OPT 350m Openwebtext + BookCorpus Wikitext-103 331 196 416 93 24.75

+ Pile [Gao et al., 2021]

We train GPT-TT architecture on a sufficiently large dataset OpenWebText

[Gokaslan and Cohen, 2019], which imitates the WebText dataset and is publicly

available. We train the model for 10 epochs with a similar optimizer scheduler with

a maximum learning rate 2.95 exp�5 and global batch size 340. Upon reaching the

perplexities value of 50, we halved the batch size. We use an optimizer and sched-

uler as in the previous section, sequence length 1024. The optimal parameters were

chosen based on the perplexity on the validation part of the Wikitext-103 dataset

of a small GPT-2 model with classical fully connected layers. After obtaining the

optimal parameters for the classical model, the learning settings were fixed. The

training process continued for approximately 20 days on 4 GPUs 3090ti. To receive

a GPT-based model with a compatible size, we train from scratch under the same

condition the GPT-2 medium with linear layer replaced with SVD-structure layers

with rank 50. As shown in Table 5.2, the best perplexity among the compressed

models pertains to OPT [Zhang et al., 2022] with 350 million of parameters. Here-

with, OPT saves 7% of full GPT-2, while TTM-72 saves 40%, and perplexity is

decreased to 31. At the same time, an SVD-50 of a similar size as TTM-72 has per-

plexity 55, which is even worse than Distill GPT, the architecture with the smallest

number of parameters.

5.4.4 Natural Languge Understanding - GLUE

We take a pre-trained GPT TTM-72 model from the previous section (without fine-

tuning) and validate it on a General Language Understanding Evaluation (GLUE)

benchmark. It is a collection of nine natural language tasks, including language
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Table 5.3: Performance for GPT-2-based model on GLUE benchmark after one
epoch fine-tining.

Model STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI AVG

GPT-2 med 0.76 0.45 0.82 0.78 0.87 0.87 0.53 0.92 0.43 0.74

GPT-2 TTM-72 0.77 0.23 0.79 0.80 0.61 0.86 0.47 0.82 0.56 0.66

GPT-2 SVD-50 0.73 0.08 0.78 0.68 0.84 0.84 0.57 0.89 0.43 0.64

DistilGPT 0.18 0.00 0.73 0.70 0.79 0.52 0.57 0.88 0.43 0.64

Table 5.4: Text Summarization Results.

Model ROUGE-1 ROUGE-2 ROUGE-L

GPT-2 med 20.5 4.6 10.2
GPT-2 SVD-72 18.1 2.3 11.3
GPT-2 TTM-72 20.1 4.1 9.9

acceptability, sentiment analysis, paraphrasing and natural language inference. The

evaluating script is based on the original Transformer repository [Wolf et al., 2020].

We add a top head compatible with the given task and run one training epoch. We

choose just one epoch to avoid a situation where several models, all "large" concern-

ing the number of tokens in the dataset but of different sizes relative to each other,

converge to approximately the same loss during the entire training cycle [Kaplan

et al., 2020]. We repeated these experiments 5 times with different random seeds,

Table 5.3 shows the averaged obtained results with a standard deviation of no more

than 0.0008. The classical models and models with TTM layers show approximately

equal results, periodically overtaking each other. GPT-2 TTM-72 has a performance

decrease in Acceptability and several Question-Answering data (QNLI, MNLI). The

result of SVD-50 is close to TTM-72.

5.4.5 Text Summarization

We also compare the behaviour of proposed models on the text summarization task

when tuning on a small amount of data. Based on the pipeline from [Khandelwal

et al., 2019], we trained both models on 3000 objects from the CNN/Daily Mail

datasets [Hermann et al., 2015, Nallapati et al., 2016]. The obtained ROUGEs are

not high (Table 5.4) but match the result from cited paper and highlight the similar

behaviour of the classical GPT-2 and TTM-72. SVD-50 shows a bit worse outcome,

except for the metric ROUGE-L.
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5.5 Conclusion

We present an approach to incorporating custom TTM layers as fully-connected lay-

ers in a transformer-based GPT-2 architecture. This modification results in a 40%

reduction in model size, while maintaining performance on in-domain tasks with-

out any loss in quality. Furthermore, in out-of-domain tasks, our proposed model

outperforms similar architectures that use SVD instead of Fully-Connected layers

and training from scratch under the same conditions. In this task, it also exceeds

other compressed GPT-2 architectures like DistillGPT-2. This trend continues in

downstream tasks such as Language Understanding and Text Summarization, where

the quality of our resulting model is lower than the original but superior to baseline

compressed models.
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"Many people want someone else to

make decisions for them. For exam-

ple, a pipeline based on neural net-

work linguistic models."

Me

Chapter 6

Efficient Question Answering using

TTM decomposition

6.1 Introduction

In this section, we provide a detailed description of the comparative case of the

Question-Answering problem. We have presented a demo version of the software that

allows users to compare generative, retrieval-based and template-based approaches.

Than we focus on the retrieval-based approach. More precisely, having a corpus with

passages, we offer several options for extract the answer matching the particular

question: methods based on statistics and techniques based on Ensembles of Trees.

Also, we employ strategies based on the Transformer architecture and aiming to

the information retrieval task (ColBERT). It provides a good result but consumes

a lot of memory. Finally, we compressed the FC layers in this model using SVD

and TTM decomposition. For compression, we chose the layers with the sharpest

SVD spectrum change within the SVD and TTM decomposition; the same spectral

analysis determines the rank for the TTM.
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6.2 Overview of Comparative Question-Answering

methods

In this section, we compare three approaches of a Comparative Question Answer-

ing(Is X better than Y with respect to Z? ) creation. Answering such questions in

natural language is important for assisting humans in making informed decisions.

These approaches are based on modern NLP methods: linguistic transformer type

models and models for extracting relevant texts from corpora. For easy comparison,

we have created a system. The key component of our system is a natural language

interface for comparative QA that can be used in personal assistants, chatbots, and

similar NLP devices. Comparative QA is a challenging NLP task, since it requires

collecting support evidence from many different sources, and direct comparisons of

rare objects may be not available even on the entire Web.

Comparison of objects of a particular class (e.g. holiday destinations, mobile

phones, programming languages) is an essential daily task, that many individuals

require every day. According to Bondarenko et al. [2020a], comparative questions

comprise around 3% of search question queries submitted to major search engines—a

non-negligible amount. Answering a comparative question (What is better, X or Y? )

requires collecting and combining facts and opinions about compared objects from

various sources. This challenges general-purpose question answering (QA) systems

that rely on finding a direct answer in some existing datasets or extracting from web

documents.

Nowadays, many websites (e.g. Diffen, WolphramAlpha, or Versus) provide users

with a comparison functionality. Furthermore, the task of answering comparative

questions has recently attracted the attention of the research community [Kessler

and Kuhn, 2014, Arora et al., 2017, Yang et al., 2018b]. Most of the current re-

searches suggest that an answer to a comparative question not only should indicate

the “winner” of a comparison, but also provide arguments in favour of this decision

and arguments that support the alternative choice.

Therefore, we argue that a comparative QA system should be a combination

of an argument mining engine and a dialogue system that mimics a human expert
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in the field. In this work, we make the first step towards the development of such

technology. Namely, we develop a Comparative Question Answering System (Co-

QAS), an application that consists of a Natural Language Understanding (NLU)

module that identifies comparative structures (objects, aspects, predicates) in input

questions and a Natural Language Generation (NLG) module that constructs an

answer. We tested various options for both NLU and NLG parts ranging from a

simple template-based generation to Transformers-based language models.

The main contributions of our work are three-fold: (i) we design an evaluation

framework for comparative QA, featuring a dataset based on Yahoo! Answers; (ii) we

test several strategies for identification of comparative structures and for answer gen-

eration; (iii) we develop an online demo using three answer generation approaches.

A demo of the system is available online.1 Besides, we release our code and data.

Text Generation. Most of the current text natural language generation tasks

[Dušek and Jurčíček, 2016, Freitag and Roy, 2018] are based on sequence to sequence

models’ architecture [Sutskever et al., 2014], these existing generation methods are

developed by employing attention mechanism [Bahdanau et al., 2015] and pointer-

generator network [See et al., 2017]. More recent work on text generation focus on

generating natural language using multitask learning from multi-document or multi-

passage sources [Hsu et al., 2018, Nishida et al., 2019]. However, our generation

task uses a list of arguments to build the final answer. This makes it similar to

unsupervised summarization. There exist several approaches for tackling the latter

task, e.g. graph-based [Litvak and Last, 2008] and neural models [Isonuma et al.,

2019, Coavoux et al., 2019]. A common approach to the summarization task is based

TextRank graph algorithm [Mihalcea, 2004, Fan and Fang, 2017].

Comparative QA. According to Li and Roth [2002] questions can be divided

into 6 coarse and 50 fine-grained categories, such as factoid questions, list ques-

tions or definition questions: we focus on comparative questions. Sun et al. [2006]

proposed one of the first works on automatic comparative web search, where each

object was submitted as a separate query, than system obtained an answer and com-

pared the obtained results. Opinion mining of comparative sentences is discussed by
1https://skoltech-nlp.github.io/coqas
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Ganapathibhotla and Liu [2008] and Jindal and Liu [2006], yet with no connection

to argumentation mining. Instead, comparative information needs are partially sat-

isfied by several kinds of industrial systems mentioned above. Schildwächter et al.

[2019] proposed Comparative Argumentative Machine (CAM)2, a comparison sys-

tem based on extracting and ranking arguments from the web. The authors have

conducted a user study on 34 comparison topics, showing that the system is faster

and more confident at finding arguments when answering comparative questions in

contrast to a keyword-based search. Wachsmuth et al. [2017] presented args.me

system for retrieval of pros and cons (arguments) given some input statement. The

input of this system is not structured, but rather a query in a free textual form.

The Touché shared task on argument retrieval at CLEF [Bondarenko et al., 2020b]

featured a related track. The task was to retrieve from a large web corpus docu-

ments answering comparative question queries like “What IDE is better for Java:

NetBeans or Eclipse?”, which is similar to CAM and args.me.

6.2.1 System Design

Our system is designed to help the user make a proper choice by fully and reason-

ably describing the possible advantages and disadvantages of each of the matching

options. For this purpose, we have defined structures that contain significant infor-

mation about the desired comparison: compared objects, comparison aspects, and

predicates.

In the example “Which is better for Deep Learning: Python or MATLAB?”, the

objects are entities that the user wants to compare (Python, MATLAB). The pred-

icate is the entity that frames the comparison (better); it introduces a comparison

relation between the objects and is often represented by a comparative adjective or

adverb. Finally, the comparison aspects are shared properties along which the two

objects are compared, e.g. Deep Learning.

Our comparative question answering system is based on CAM [Schildwächter

et al., 2019], which retrieves pro/con arguments for a pair of compared objects.

We extend CAM by enabling it to process natural language questions and generate
2https://ltdemos.informatik.uni-hamburg.de/cam
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Python or MATLAB for
Deep Learning?

Objects:
 - Python
 - MATLAB

Aspects: 
- Deep Learning

Sequence tagging:
CRF / LSTM / BERT

...

Natural Language
Understanding

CAM / args.me /
Touché ...

Python
Pros:
- ...
- ...
Cons:
- ...

MATLAB
Pros:
- ...
- ...
Cons:
- ...

We chose
Python because
it was easy to
learn and fun to
work with. It has
a large
community of ...

Comparative Argument Retrieval 

Templates / CTRL /
Snippets / ...

Natural Language
Generation

Comparative Question Answering (this work)

Figure 6-1: The comparative QA workflow. A user submits a comparative question,
the NLU module identifies compared objects and aspects and transfers them to
CAM to retrieves comparative arguments. Then, the NLG module represents the
arguments in textual form.

coherent human-like answers as depicted in Figure 6-1.

CAM mines sentences in favour or against two compared objects with respect to

an aspect specified by the user. First, using the Elasticsearch BM25, CAM retrieves

sentences containing the two compared objects and the comparison aspect from

the Common Crawl-based corpus featuring 14.3 billion sentences [Panchenko et al.,

2018]. Then, CAM classifies the sentences as comparative or not and identifies the

“winner” of the two compared objects in the sentence context. Besides, it extracts

aspects and predicates from the retrieved comparative sentences [Panchenko et al.,

2019]. Finally, CAM outputs a list of argumentative pro/con sentences and shows

the “winner” of the comparison along with the comparison aspects.

We extend CAM with natural language question understanding (described in

Section 6.2.2) and natural language answer generation (described in Section 6.2.3)

modules. The first module is developed to automatically identify the compared ob-
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Enter a comparative question

Which is better for Deep Learning: Python or MATLAB? Model to generate with

CTRL

Answer

Which is better PRED  for Deep ASP  Learning: Python OBJ  or MATLAB OBJ ?

We chose Python OBJ  because it was easy PRED  to learn ASP  and fun to work with. It has a large community of developers who are

always willing to help each other out. In addition, the standard library makes developing applications with Python OBJ  very easy.The downside

is, that you have to be careful when using it. If you’re not careful, you’ll end up writing code which will crash your computer if something goes
wrong. You also need to know how to use libraries like numpy in order to get good results.

Comparative Question Answering System Github

Figure 6-2: The interface of the Comparative Question Answering System (CoQAS).

jects and the comparison aspect in a user-provided natural-language comparative

question. This information is passed to CAM which queries DepCC for compara-

tive sentences. The NLG module receives the output of CAM and transforms the

retrieved argumentative sentences into a short text, the generated answer. The

structure of our modular system is presented in Figure 6-1.

The user interface (Figure 6-2) contains an input form for submitting a compar-

ative question, and an output box for a generated answer. To improve readability

of the answer and help find the arguments in it, NLU module also labels the output

with identified objects, aspects and predicates. In Figure 6-2, we present an example

of the the input-output system’s web interface in action.

In the NLG module we use several approaches to response generation: an in-

formation retrieval-based approaches and approach built upon pre-trained language

models. These techniques provide different answers: the first is more structured,

and the second one is based on experience and opinions. Therefore, we allow user

to choose a generation model from different types: CAM, CTRL, and Snippets (cf.

Figure 6-2).

Finally, for integration into NLP applications, e.g., personal assistants and chat-

bots, we also provide a RESTful API for our comparative QA.
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Table 6.1: Statistics of the NLU dataset.

Obj Asp Pred

# occurrences 7,555 2,593 3,990
# per sentence 2.51 1.35 1.34
Length (words) 1.04 1.37 1.16

6.2.2 Natural Language Understanding

The goal of NLU module is to identify the objects to compare and comparison

structure aspects and predicates, if they were specified. We cast this as a sequence

labelling task.

Training Dataset To train the NLU, we created Comparely, a dataset with com-

parative sentences manually labeled with objects, aspects, and predicates. First, we

extracted comparative sentences for 270 object pairs from the dataset of (not) com-

parative sentences by Panchenko et al. [2019]. We extracted them from DepCC

corpus [Panchenko et al., 2018] using CAM. We then performed manual labelling

(two annotators) using WebAnno tool [Yimam et al., 2013]. Some of the extracted

sentences were not comparative, so the annotators were instructed to discard them.

The majority of sentences were labelled once, but we also labelled 200 of them mul-

tiple times to compute the inter-annotator agreement. The Cohen’s  for the aspect

labelling is 0.71 (substantial agreement). For predicates and objects the values are

0.90 and 0.93, respectively—perfect agreement. The dataset consists of 3,004 sen-

tences, each of them has a comparison of two or more distinct objects and at least

one aspect or predicate. The average length of sentence is 26.7 words (Table6.1).

The majority of sentences compare more than one pair of objects across multiple

parameters (i.e. sentences often contain more than one aspect or predicate). As the

NLU processed not statements but questions, for the further improvement of the

dataset we could use comparative questions from [Bondarenko et al., 2020a].

This dataset is essentially similar to the ones by [Arora et al., 2017, Kessler and

Kuhn, 2014]. They also contain comparative statements labelled with objects, as-

pects, and predicates. The primary difference of our dataset is the domain diversity.

The mentioned datasets contain the sentences of only one domain, namely, the cam-
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era reviews. The information contained in such sentences is difficult to generalise.

Thus, they demonstrate a proof of concept rather than a resource which can be used

for real-world tasks. On the other hand, Comparely features objects of different do-

mains. It was created based on real-world objects which are often compared. It

contains data from three domains: brands, generic objects, and computer science.

The two former domains are more numerous: 41% and 46% of sentences deal with

objects of brands and generic domains, respectively. The rest 13% are devoted to

objects of the computer science domain.

Method Identification of comparative question components (objects, aspects, pred-

icates, or none) is a sequence-labelling task, where the classifier should tag respec-

tive tokens in an input question. We test several common baselines starting with

simple one-layer bidirectional LSTM described by Arora et al. [2017] where the in-

put is encoded with GloVe embeddings. For some further improvements, we add

Conditional Random Field [Sutton and McCallum, 2012] to LSTM and use context-

based ELMO [Peters et al., 2018] embeddings for token representations. We also

experiment with Transformers [Vaswani et al., 2017c] using a pre-trained BERT

model [Devlin et al., 2019] and RoBERTa [Liu et al., 2019].

For every classifier, during training, we tune hyperparameters by varying a batch

size (from 16 to 100) and a learning rate (from 10�6 to 10�2). To find a proper

converge of training process, we apply two types of learning rate schedulers: Linear

With Warmup and Slanted Triangular.

For the model with the highest achieved F1 (RoBERTa), we employ stochastic

weight ensembling [Goodfellow and Vinyals, 2015, Garipov et al., 2018], i.e., we

interpolate between the weights obtained by training a certain model with different

random seeds. All models were trained on the Comparely dataset and tested on

its manually re-labelled subset of 400 sentences. The overview of the classifiers’

effectiveness is shown in Table 6.2.

Results and Discussion The evaluation shows that comparison aspect classifica-

tion is the hardest task: the baseline one-layer BiLSTM achieves an F1 score equal

to 0.33, and the most effective RoBERTa-based classifier achieves score 0.69. The
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Table 6.2: Evaluation in terms of F1 of the NLU tagger.

Model Objects Aspects Predicates

RoBERTa 0.925 0.685 0.894
BERT 0.829 0.563 0.869
ELMO 0.654 0.487 0.825
BiLSTM-CRF 0.631 0.475 0.766
BiLSTM 0.582 0.328 0.730

most reliable classification was achieved for predicting the compared objects with an

F1 0.58 for the baseline, and an F1 0.93 for RoBERTa. Adding Conditional Random

Fields and deploying special ELMO embedding to the BiLSTM classifier slightly

improved the results. Transformers demonstrated significant improvement in classi-

fication effectiveness over the baseline. Finally, we choose to deploy RoBERTa-based

classifier in the NLU module of our system.

Figure 6-3: Dependence of ROUGE metrics on the maximum length of the generated
sequence (CTRL model).

6.2.3 Comparative Answer Generation

Based on comparative sentences retrieved by CAM, we develop several generation

approaches to construct a human-like concise answer: (1) generation with pre-

trained Transformers-based language models, (2) retrieval of argumentative sen-

tences ranked by CAM or TextRank, (3) extracting context of sentence retrieved by

CAM as support for the “winning” object, and (4) entering extracted comparative

structures in templates.
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Table 6.3: Evaluation of generation methods on the Yahoo! Answers. The best
models of each type are highlighted.

Method Type ROUGE-1 ROUGE-2 ROUGE-3

CTRL:Question Language Model 0.2423 0.0226 0.0023
CTRL: Which-better-x-y-for-z Language Model 0.2454 0.0200 0.0021

CAM:First snippets Doc.Retrieval 0.2162 0.0167 0.0017

CAM:Bullet points Sent.Retrieval + Slots 0.2298 0.0328 0.0040
TextRank: Bullet points Sent.Retrieval + Slots 0.2203 0.0238 0.0036

Templates Object/Aspect Slots 0.1969 0.0195 0.0016

Generation Methods

Pre-trained Language Models Pre-trained language models have been shown

to contain commonsense knowledge, so they can be successfully used for question

answering [Andrews and Witteveen, 2019] and for generating sensible and coherent

continuation of text. Therefore, we use Transformers-based CTRL [Keskar et al.,

2019] models for answering comparative questions.

It should be noted that the research has been done back in the 2019 year and

now with more powerful conditional generative models than CTRL (i.e. ChatGPT3),

better results in Comparative QA can be obtained.

CTRL allows explicit control codes to vary the domain and the content of the

text. We use the Links control code which forces the model to produce text similar

to online news and reports. We feed into CTRL phrase “Links Which is better in

respect to aspect: object1 or object2?” and a row question from the input.

We also vary a maximum number of tokens, generated by CTRL. We experiment

with different length set, including: 20, 50, 100, 150, and 200 and generate answers

to questions from the Yahoo!Answers dataset (cf. Section 6.2.4). For the evaluation

part, we calculate ROUGE-1, ROUGE-2, ROUGE-3 scores between generated texts

and corresponding Yahoo!’s “best answers”. According to the results (cf. Figure 6-3),

a model with maximum length of 100 tokens gives the highest ROUGE-3 score (we

select this length parameter for our further experiments).
3https://openai.com/blog/chatgpt
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Sentence-Retrieval-Based Methods The CAM output contains a list of the

argumentative sentences which are ranked by the BM25 inverted index-based score.

Every sentence is a supportive argument for the superiority of the respective com-

pared object. Sentence-retrieval-based methods try to extract the most representa-

tive sentences and display it in the proper form. To create an answer, CAM:Bullet

points mentions a “winner” defined by CAM with respect to aspects if they exist. It

also takes the top-3 sentences supporting each of the objects and produces a list for

highlighting the advantages and disadvantages of each object in comparison.

An alternative way of retrieving the most relevant sentences is clustering. This

approach is used in TextRank:Bullet points. TextRank is a graph-based summariza-

tion algorithm. We use the version proposed by [Mallick et al., 2019]. We represent

sentences with hidden states of a LSTM network pre-trained on Wikipedia. Tex-

tRank iteratively updates the weights of edges and sets the node weights to be

proportional to the importance of adjacent edges. To make the graph sparse, we

remove the edges with a score below average.

We create separate graphs for sentences supporting each of the objects. We ap-

ply TextRank to each of them and then cluster them. Clustering divides the nodes

in graphs by semantic similarity and thus allows identifying groups of sentences sup-

porting a particular idea. Then, we apply TextRank again to each of the clusters

separately and select the three most characteristic sentences from each cluster as

produced by Chinese Whispers [Biemann, 2006], an iterative clustering algorithm,

which assigns vertices to the most common class among their neighbours. Argu-

mentative sentences selected in this way are displayed as a bullet-list after declaring

the “winner” object of comparison.

Document-Retrieval-Based Method To compose an answer, CAM:First snip-

pets takes the first sentence related to the “winner” object in CAM output. Then it

finds a document corresponding to this sentence and extracts the surrounding con-

text. The obtained context consists of 3 sentences and is considered to be a system

answer.
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Template-Based Answer Besides the argumentative sentences, CAM extracts

aspects and predicates from them. The predicates are adjectives or adverbs, which

allows using templates of the following form: “I would prefer to use Object1 because

it is Predicate1 and Predicate2. In addition, it is Predicate3, ..., and Predicatei.

However, you should also take into account that Object2 is Predicatei+1, ..., and

Predicatek”. Here Object1 is the winner of comparison.

6.2.4 Experiments

Evaluation Dataset To evaluate answer generation module of our system, we

use information extracted from Yahoo!Answers. Namely, we get a subset of L6–

Yahoo!Answers Comprehensive Questions and Answers version 1.0 (multi-part) re-

trieved from Yahoo! Webscope. We take pairs of objects that we used for generating

Comparely and extract a subset of questions from the Yahoo!Answers dataset which

contains these objects, yielding 1,200 questions. Additionally, we extract the answers

to these questions, which are labelled by users as “best answer”, and use them to

evaluate our NLG methods.

Evaluation Metric Generated and reference texts are usually compared by num-

ber of matched N-grams: BLUE (precision), ROUGE (recall), METEOR (F-score).

For all-round representation of the texts similarity, we select F1 score from ROUGE-

N outputs as evaluation metric. We evaluate our generation models on the Ya-

hoo!Answers dataset using the “best answer” (defined by users) as the reference.

Discussion of Results Evaluation results are provided in Table 6.3. CTRL mod-

els receive the highest ROUGE-1 scores, that describe overlapping of single words,

and CTRL’s high performance relatively to it can be explained by the fact that the

pre-trained language model stores information about a vast dictionary and, with

some probability, yields the words that are placed in the standard answer. While

the systems generate grammatically correct texts they may not necessarily satisfy

the information need of the user. For example, the CTRL answers the question

“What should I eat an orange or an apple?” with “It is simple: eat what you like
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Table 6.4: User study results for answer completeness and fluency (30 questions,
3-point Likert scales).

Answers a question (%) Answer fluency (%)
Method Complete Partial Does not Complete Partial Not fluent

Yahoo! Best Answer 62 28 10 86 6 8
CTRL:Question 100 30 37 33 80 12 8
CAM:Bullet points 28 58 14 22 48 30
CAM:First snippets 23 49 28 27 38 35

and don’t worry about it.”

Despite having low ROUGE-1, sentence retrieval-based approaches (Text Rank:Bullet

points, CAM:Bullet points) have consistently higher ROUGE-2 and ROUGE-3. The

generated answers are more structured and built on sentences marked by the system

as comparative. They often contain special 2-gram and 3-gram sequences which are

typical for an explanation.

Answers from CAM:First snippets, consisting of a single comparative sentences

only, perform worse on all metrics. Interestingly, CAM:Bullet points has better per-

formance than TextRank: Bullet points. It could indicate that modelling relevance

by a standard index provides more accurate results than clustering. Meanwhile,

template-based generation performs poorly. This indicates that the grammatical

structure is essential for the answer generation task.

We choose 50 random sentences from the Yahoo! Answers dataset and calculate

ROUGE-N scores for every generation method and Yahoo!’s “best answers”. For

each group of methods we select one providing the best result—CTRL:Question

100, CAM:First snippets and CAM:Bullet points—and add them to the system

demonstration engine.

User Study

To additionally evaluate the proposed answer generation methods, we also collect hu-

man assessments in a small user study for the three models with the highest ROUGE

scores (CTRL:Question 100, CAM:Bullet points, and CAM:First snippets).
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Experimental Setup For our study, we randomly sampled 30 comparative ques-

tions from the Yahoo!Answers dataset and generated answers using three methods:

CTRL:Question 100, CAM:Bullet points, and CAM:First snippets. Additionally,

since we used Yahoo!’s “best answers” as ground truth for automatic evaluation, we

asked our participants to also assess the quality of the human “best answers”. For

the user study, we internally recruited five (under-)graduate students. We focused

on the two answer evaluation criteria: (1) Whether an answer is complete (“Does it

answer the question?”) and (2) how fluently it is written. The 120 question–answer

pairs (3 generated answers and Yahoo!’s “best answer” for 30 questions) were ran-

domly ordered and the participants had to rate the answer completeness and fluency

on a three-point Likert scale (3: fully answers/fluent, 2: partially answers/fluent, and

1: does not answer/not fluent at all).

Results and Discussion The inter-annotator agreement shows a slight overall

agreement between the five annotators (Fleiss’  = 0.20 for answer completeness and

 = 0.13 for fluency) such that we decided to increase the reliability by calculating

the -scores for all combinations of three or four annotators. We then decided to

include only the three participants with the highest agreement ( = 0.32 for answer

completeness and 0.30 for fluency; both fair agreement) and to remove the two

“outlier” participants from the study.

Table 6.4 summarizes the study results as the ratio of votes collected from the

three annotators (we cannot use majority voting since about 60% of the question–

answer pairs do not have a majority vote). Not surprisingly, the human-written

answers are perceived as the most complete and fluent. The participants were

almost equally satisfied with the answers generated by CTRL:Question 100 and

CAM:Bullet points, however, they rated the CTRL answers as much more fluent.

Interestingly, the relatively low inter-annotator agreement might indicate that hu-

mans have different perceptions of answer completeness and fluency (even some “best

answers” were rated as incomplete and not fluent). For completeness, we calculated

the statistical significance of the user study results using Bonferroni corrected p-

values. For the pair CTRL:Question 100 (our best NLG model) and the Yahoo! Best
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Answer: p⌧ 0.05 for the answer completeness and p� 0.05 for the answer fluency.

For the CTRL model, Pearson’s r = 0.121 between the answer completeness and flu-

ency (small correlation), and for the “best answers”, r = 0.407 (medium correlation).

The results show that our proposed system is almost as fluent as the human-written

answers, but still needs some improvement in terms of adequacy.

Summarizing, we present a comparative question answering system targeted at

answering comparative questions, such as “Is X better than Y with respect to Z?”.

Our system is based on the Comparative Argument Mining (CAM) system—a tool

which retrieves from a large corpus textual comparative arguments for two to-be-

compared objects. We extend CAM with an NLU module that identifies objects and

aspects in a user textual query and highlights them in the answer, and a generation

module that gives a concise and coherent answer based on the retrieved information.

Evaluation of generation methods showed that a CTRL-based answer generation

gives better performance with respect to ROUGE-1, and Sentence Retrieval Methods

provide superior ROUGE-2 and ROUGE-3 scores.

We hope that the presented testbed for comparative QA and the set of baseline

approaches will pave the way for further research.

6.3 Comparative Information Retrieval

6.3.1 Retrieving Comparative Arguments using Ensemble Meth-

ods and BERT

In this section, we present a submission to the Touché lab’s Task 2 on Argument

Retrieval for Comparative Questions [Bondarenko et al., 2021]. Our team Katana

supplies several approaches based on decision tree ensembles algorithms to rank

comparative documents in accordance with their relevance and argumentative sup-

port. We use PyTerrier [Macdonald et al., 2021] library to apply ensembles models

to a ranking problem, considering statistical text features and features based on

comparative structures. We also employ large contextualized language modelling

techniques, such as BERT [Devlin et al., 2019], to solve the proposed ranking task.
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To merge this technique with ranking modelling, we leverage neural ranking library

OpenNIR [MacAvaney, 2020].

Our systems substantially outperforming the proposed baseline and scored first

in relevance and second in quality according to the official metrics of the competition

(for measure NDCG@5 [Wang et al., 2013] score). Presented models could help to

improve the performance of processing comparative queries in information retrieval

and dialogue systems.

In this part of work, we use ensemble methods based on mixed statistical and

comparative features to the document ranking; we are first to use neural information

retrieval approach to the task of argument retrieval; we propose a model outper-

forming the baseline and yielding the first and the second-best result according to

the relevance and quality metric, respectively.

The most relevant to this is the previous shared task Touche 2020 [Bondarenko

et al., 2020c]. 17 participants took part in the competition and submitted 41 runs.

Various approaches were tested by these participants, including methods based on

extraction of structures corresponding to claims and premises, assessing argument

quality, representation of documents by language models, expansion of the query by

similar words. The ranking function from search engine ChatNoir [Potthast et al.,

2012] based on BM25F [Robertson et al., 2004] approach was used as a baseline.

Only a few of the submitted solutions can slightly improve the baseline. The best

overall approach in the previous competition was the method based on query exten-

sion and reranking documents by relevance, credibility, and supportive quality [Abye

et al., 2020].

This work is based on our run submitted in the previous version of the Touche

shared task [Chekalina and Panchenko, 2020]. In this work, we used a pre-trained

language model to find relevance between the query and document. Extraction

of comparative structures and counting the number of comparative sentences in a

document help us to assess the quality of relevant arguments.

Therefore, the problem of argument retrieval arises in other scenarios. Com-

parative argumentation machine CAM [Schildwächter et al., 2019] retrieves com-

parative sentences with respect to accepted objects and comparison aspects. The
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paper [Fromm et al., 2019] explores the influence of context on an argument detect-

ing system and proves the performance increasing related to it.

Table 6.5: Example of query and documents with different relevances in the Touche
task dataset

Query Document Rank
What is better
for
the environment,
a real or a fake
Christmas tree?

Disease and condition content is reviewed by our medical
review board real or artificial? There is so much confusing
information out there about which is better for your health
and the environment.

2

You may think you’re saving a tree, but the plastic alter-
native has problems too. Which is “greener” an artificial
Christmas tree or a real one?

1

This entry is part 25 of 103 in the series eco-friendly fri-
day november 28th’s tip christmas trees: stuck between
choosing a real Christmas tree or a fake one?

0

Table 6.6: Example of query and documents with different relevances in the Antique
dataset

Query Document Rank
Why do we put
the letter k on
the words knife
and knob, knee?

They are saxon words. Knife would have been pronounced
ker-niff.

4

As a guess I would say that historically “kn” would have
been pronounced differently to “n” and that time has al-
tered the way the words are pronounced.

3

Because English is a funny language. 2
I don’t really (k)now! 1

Datasets and Evaluation setup The organizers provided 50 comparative ques-

tions (topics), for which we should obtain documents containing convincing argu-

ments for or against one or another option. Topics for the competition are available

online. 4

In addition, 50 topics and corresponding relevance annotations of the previous

year’s competition [Bondarenko et al., 2020c] were given for supervised learning.

These documents were also retrieved from ChatNoir and ranked manually to 0 (not

relevant), 1 (relevant) or 2 (highly relevant) scores. We use this data to train and
4https://webis.de/events/touche-21/shared-task-2.html
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set up models based on the decision trees and fine-tune the BERT ranker. Besides,

last year’s teams submissions were available too.

Unfortunately, this data is not insufficient for fitting large supervised ranking

models, for example, based on the BERT technique. In this case we use adjacent

question-answering dataset called Antique [Macdonald and Tonellotto, 2020]. This

dataset consists of the questions and answers of Yahoo! Webscope L6 and contains

2,626 open-domain non-factoid questions and 34,011 manual relevance annotations.

The example of query and ranked answers are in Table 6.5, Table 6.6 in Appendix

A. It might be noticed that Antique dataset has a different set of ranking scores -

0, 1, 2 instead of 1, 2, 3, 4 - so we rewrite Antique ranks in accordance with the

following mapping 1!0, 2!1, 3!1, 4!2.

We use every topic as a query in ChatNoir [Potthast et al., 2012] search engine

and extract up to 100 unique documents from the ClueWeb12 corpus. We clean

documents’ bodies from HTML tags and markups and ranked them using one of the

developed approaches described below.

As auxiliary data, the organizers provided the topics of the previous year’s com-

petition. For each proposed topic, a set of documents from ChatNoir was retrieved

and labelled as described above. We use this data to train developing models and

valid composing approaches. In the validation phase, we split the ranked data into

40 topics in train and 10 in validation.

In the run phase, we execute produced solutions on web evaluation platform

Tira [Potthast et al., 2019]. In this stage to fit the model we use ranked data from

the previous year entirely and predict rank for current proposed topics. The runs

were evaluated using the NDCG [Wang et al., 2013] metrics based on the human

judgements of the submitted runs. Retrieved documents were judged in accordance

with two criteria: (i) document relevance, (ii) whether sufficient argumentative sup-

port is provided [Braunstain et al., 2016].

Document ranking using ensembles of trees In this section, we use ensembles

of trees as a supervised machine learning technique to solve ranking problems. We

choose either pointwise regression tree algorithms, like Random Forest, or boosted
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tree algorithms like XGBoost and LightGBM. In the cases of LightGBM model we

employ LambdaMART [Wu et al., 2010] objective. It combines cost function derived

from minimizing the number of inversions in ranking (LambdaRank [Burges et al.,

2007]) and objective for building gradient boosted decision trees (MART [Friedman,

2002]). We use PyTerrier platform for information retrieval.5 It simplifies the ex-

traction of the text features and allows expressing retrieval experiments [Macdonald

and Tonellotto, 2020].

For our ranking ML methods, we use features that came from 3 origins described

below: (i) ranking features extracted by PyTerrier, (ii) specific comparative features,

(iii) score from ChatNoir system based on custom BM25 scoring function.6

PyTerrier provides measure of matching query-document texts by several models.

Among these models are statistical measures (TF-IDF), mesures based on language

models (Heimstra, Diriclet), measures based on occurrence of a document depending

on the fields that the term occurs in (BM25F, PLF). The list of all possible models

are available at the cite 7. Among these varieties we have chosen BM25, Heimstra,

DFIC, DPH, TF-IDF, DiricletLM, PL2 for our exploration.

Table 6.7: Results on validation set for text features in PyTerrier models.

Method BM25 Heimstra DFIC DPH TF-IDF DiricletLM PL2

NDCG@5 0.3637 0.3616 0.3642 0.3110 0.3637 0.3307 0.3603

We applied each of the selected methods sequentially and independently to the

training set, ranked documents by the obtained scores and evaluated the ranking

on the validation set. The result of these tests is in Table 6.7. We have chosen 3

methods with the most promising results, and these 3 methods combine 3 features.

We focus not only on finding high relevant documents as on finding documents

with a comparison of one object relative to another. The work [Chekalina et al., 2021]

assumes that the comparative issue can be represented by comparative structures -
5https://pyterrier.readthedocs.io/en/latest/index.html
6https://www.elastic.co/guide/en/elasticsearch/reference/current/

index-modules-similarity.html
7http://terrier.org/docs/current/javadoc/org/terrier/matching/models/

package-summary.html
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objects for comparison, comparative aspects and predicates. We take the sequence-

labelling model suggested in the cited paper and applied it to the query. It helps

us to define objects for comparison for every topic. Then we apply the model to

document and get a comparative feature set.

The feature is_retrieved describes are there any comparative structures in the

document at all. Characteristic objs_score defines how many objects from query

are found in document (0, 1 or 2). Feature asp_pred_score is counted in the fol-

lowing way: if at least one object from a query is in the document, every word in the

document labelled as an aspect or predicate increases the score to 0.5. Finally, we

combined defined features with scores obtained from the ChatNoir system, and a re-

sulting feature vector for pair query-document is {score_pl2, score_tf, score_bm,

score_dfic, baseline_scores, is_retrieved, ap_score, objs_score}.

Models

Random Forest We use the Random Forest model imported from Sklearn and

wrapped by the PyTerrier pipeline. To find the best setup, we vary the number of

estimators from 10 to 150, the value 20 gives the best valid score NDCG@5 of 0.408.

XGBoost We also wrapped gradient boosting library from Sklearn to PyTerrier

class and tune hyperparameters by setting the learning rate from 1e�4 to 0.1 and

max_depth from 4 to 16. The best setup is learning rate 0.01, max_depth 6 and

gives NDCG@5 0.547.

LightGBM In the case of LightGBM, we vary the number of leaves from 8 to 20

and the learning rate from 0.001 to 0.1. The best configuration with num_leaves

equal to 15 and a learning rate equal to 0.1 gives 0.579 score.

Table 6.8: Feature importance in the proposed LightGBM model

Feature Pl2 TF-IDF BM25 Dfic ChatNoir has comp objs_score asp_pred

Importance 1.76 1.19 1.51 2.3 20.8 0 1.66 1.51

The feature importance of the resulting model is in Table 6.8. It can be seen

that the most significant feature is the score retrieved from the ChatNoir, then there
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is a Divergence from Independence based on Chi-square [Kocabas et al., 2013] and

the existence of comparison objects in the document.

Document ranking using neural information retrieval based on BERT

Contextualized language models such as BERT can be much more efficient for rank-

ing tasks because they contain vast relationships between language units. In the

proposed work we use a reranking model from OpenNIR [MacAvaney, 2020]8 based

on “Vanilla” Transformer architecture [Vaswani et al., 2017b].

BERT receives a query and document and processes it jointly. A distinctive

feature of the BERT reranker is injection token similarity matrices on each layer,

which considerably improves performance [MacAvaney et al., 2019].

First, we pretrain this reranker on the Antique dataset. We clean this dataset

from incorrect symbols and makeups. We also left from the dataset documents of

length more than 300 characters, since the length of the ChatNoir retrieves usually

does not exceed 300. The training process lasted for 500 epochs with 0.001 learning

rate and 56 objects in every batch. Finally, our model gives NDCG@5 0.3362 on a

validation set. We fine-tune the model on 40 train topics from the previous year for

50 epochs with the same configuration. Fine-tuning increased the score on validation

up to 0.412.

Table 6.9: Results on validation set.
Method NDCG@5 Time, ms
Random Forest 0.408 127.168
XGBoost 0.547 128.848
LightGBM 0.572 131.244
Bert Ranker 0.412 1560.947
Baseline’20 0.534 -

Results on validation set The result for every proposed approach obtained on

the validation part of data from the previous year competition is in Table 6.9. We

also evaluate the previous year’s baseline on the validation set. The best scores

come from the LightGBM model, which also outperforms the baseline. XGBoost
8https://github.com/Georgetown-IR-Lab/OpenNIR
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has fewer scores, Random Forest as a simple algorithm has the smallest score. Bert

overtakes Random Forest a little.

In the right column, we also added the time required to train each model. It

can be seen that the ensemble-based models have approximately the same time

complexity, while the Bert requires much more time to train.

Results on test set For final testing, the retrieved documents were labelled man-

ually with a score from 0 to 3. Judgment was carried out in two independent criteria:

the relevance of the document to the given topic and the quality of the text. Quality

criterion includes good language styling, easy reading and proper sentence structure,

the absence of typos and alliteration.

For each criterion, a separate file with the assessor’s scores is available. The

results of two evaluations are presented in the Table 6.10 and Table 6.10. The runs

of our team Katana have the best result between all teams in terms of relevance and

the second result in terms of the text quality.

As in the validation set, XGBoost and LightGBM give the best performance. It is

well explained, since the loss of these models based on the ranking quality functions,

NDCG in the XGBoost case and LambdaMART in the LightGBM case. The first

model describes relevance a bit better (0.489) and has first place among the whole

participant. For quality, conversely, LightGBM is better. It archives 0.684 and takes

second place in a quality table, slightly surrendering to Top 1. The random forest

method has scores just below the baseline in both cases. It can be explained by a

more elementary algorithm for building an ensemble. Bert gives a quite good result

for quality and weak for relevance. Perhaps the data from the adjacent task (factoid

QA) used for the training is the reason for not a very accurate solution.

We present our solution to the Argument retrieval shared task. We pay attention

to ensembles methods and use statistic approaches, language modelling and compar-

ative structure extraction to retrieve features for it. We also use a neural reranker

based on the Bert technique to use information from a contextualized model in our

task.

The best results were obtained by gradient boosting methods, training on rank-
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Table 6.10: NDCG@5 scores on test set for approaches

Method NDCG@5

Random Forest 0.393
XGBoost (Top 1) 0.489
LightGBM 0.460

Bert Ranker 0.091

ChatNoir baseline 0.422
Thor team (Top 2) 0.478

Method NDCG@5

Random Forest 0.630
XGBoost 0.675
LightGBM (Top 2) 0.684

Bert Ranker 0.466

ChatNoir baseline 0.636
Rayla team (Top 1) 0.688

ing cost function: XGBoost and LightGBM. The proposed approaches outperform

baseline and take first and second places in relevance and quality ranking, respec-

tively. Bert contextualized model shows the need for large learning data.

Table 6.11: Example of documents with the different relevance to query “Is admission
rate in Stanford higher than that of MIT?”

Is admission rate in Stanford higher than that of MIT?

LightGBM Top-3 Baseline Top-3

1. Stanford and Harvard have a similar
admissions rate of about 7%. MIT comes
with a somewhat greater rate of success
admitting just under 10% or 1742 for the
class of 2015. Harvard, Stanford and MIT
are global leaders in culture, commerce
and governmental policies.

1. Stanford and Harvard have a similar
admissions rate of about 7%. MIT comes
with a somewhat greater rate of success
admitting just under 10% or 1742 for the
class of 2015. Harvard, Stanford and MIT
are global leaders in culture, commerce
and governmental policies

2. For more than a decade, i have served
as an admissions officer for MIT. In that
time, i’ve read more than 10,000 applica-
tions and have watched thousands of new
students enter MIT. It is a privilege to
work at the most dynamic and exciting
university in the world.

2. For more than a decade, i have served
as an admissions officer for MIT. In that
time, i’ve read more than 10,000 applica-
tions and have watched thousands of new
students enter MIT. It is a privilege to
work at the most dynamic and exciting
university in the world.

3. Our primary enhancement was targeted
at families earning less than $75,000 —
making mit tuition free and eliminating

3. All of this factual information, plus a
lot of other detail, can be found in the mit
admissions literature. In fact, this year,
mit will award $74 million in undergradu-
ate aid.
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Table 6.12: Example of documents with the different relevance to query “Which
smartphone has a better battery life: Xperia or iPhone?”

Which smartphone has a better battery life: Xperia or iPhone?

LightGBM Top-3 Baseline Top-3

1. 1. The power saver app that will turn
down settings when battery life is low to
get as much juice out of the battery as
possible. Sony has set the benchmark with
its 12 megapixel camera inside the Xperia
S.

1. The iPhone 4 is apple’s thinnest smart-
phone yet, but offers a much better screen,
faster processor, video calling, and many
other enhancements.

2. How to increase the battery life of ap-
ple’s iPhone 4s many of those with an
iphone 4s have complaints about the bat-
tery life. Apple has acknowledged these
problems, and is working to fix them.

2. Sony Xperia’s review: an above aver-
age smartphone gizmotraker’, as far as
battery life is concerned, it last about 7 hr
30 min in talktime, 450 hrs in standby.

3. Sony Ericsson includes an 8gb card in
the sales package the Sony Ericsson Xpe-
ria arc s has below average battery life.
Most users will get around 24 hours of life
out of the Xperia. X27’s 1600mah bat-
tery before it needs a recharge, but heavy
users may need an injection of power be-
fore then.

3. How to increase the battery life of
Apple’s Iphone 4s many of those with an
iphone 4s have complaints about the bat-
tery life. Apple has acknowledged these
problems, and is working to fix them.

6.3.2 Retrieving Comparative Arguments using Deep Lan-

guage Models

In this part, we describe a submission to the Touché lab’s Task 2 on Argument

Retrieval for Comparative Questions. We continue attemting to solve the passage-

retireval task in the aim to answering a question in the Comparative case and employ

approaches based on pre-trained deep language model architecture ColBERT [Khat-

tab and Zaharia, 2020]. This BERT-based architecture is adapted to the text ranking

task by learning to represent both queries and documents as vectors and measur-

ing the similarity between them. We use a model trained on a question-answering

dataset MSMARCO, with the proposed weights and weights pre-trained by us. We

also customize ColBERT for the comparative retrieval domain by fine-tuning the

model on the data from the previous years’ Touché competitions. The proposed

experiments verify the usefulness of the transfer learning from a large pre-trained
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ranking language models to the problem of arguments extraction for comparative

topics. Ours solutions rank third in both relevance, quality, and stance prediction

evaluations.

The Touché lab’s Task 2 on Argument Retrieval in 2022 [Bondarenko et al., 2022]

proposes to select passages from a corpus of 1 million texts that are most relevant to

the user’s comparative queries, as well as to determine their position - which object

in the text is proposed as the most suitable. We employ neural-network based

approach with a simplified scheme for comparing query and document embeddings.

In addition to using the pre-trained large language model, we further trained the

model on documents ranked for comparative queries.

On the validation dataset, the approach shows competitive performance, but less

than the ensemble-based method from the previous section 6.3.1. This work shows

the possibility and efficiency of the neural network technique based on the matching

of the query and document representations relatively to a specific comparative case

of informational retrieval.

The main difficulty in finding relevant documents on the web is the large size

of the text corpus. Traditionally, search engine systems depict documents using

statistic-based features, the computation of which is not complex.

A large volume of texts imposes a limitation on the use of neural networks

for ranking documents in a corpus. There are two ways of neural approaches to

information retrieval tasks: representation-based models [Huang et al., 2013] and

interaction-based models [Mitra et al., 2017]. The first one computes the represen-

tation of the topic and passage separately and only counts the score of interaction

for the pair. Interaction-based methods match the query and document in a token

or phrase-level. This set of methods is more expensive but most effective. In the

proposed paper we deploy architecture, which combines the advantages of both these

methods.

Data provided for the task

The organizers offer the participants 50 comparative questions (topics), for which

it was necessary to extract and rank passages from the text corpus. Topics for the
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competition are available online9. The organizers also provide a corpus of about

0.9 million texts for passage extraction. For stance detection, every topic comprises

objects that are compared in it. For stance detection support, a dataset created

from comparative questions of the MSMARCO dataset10 is proposed. The dataset

includes relevant answers with highlighted objects of comparison in it and their

position in the documents. Every text in a dataset has a detected stance.

For model validation purposes, the task presents 100 topics and corresponding

relevance annotations of the previous year’s competition [Bondarenko et al., 2020c,

2021]. These documents were also retrieved from ChatNoir and ranked manually to

0 (not relevant), 1 (relevant), or 2 (highly relevant) scores. The 2020 year assessment

contains a common ranking, last year’s competition has a separate judgment for

relevance and quality. We use this data to fine-tune the model to comparative

sub-task in document retrieval. Besides, last year’s team submissions are available

too.

The standard learning object for argument ranking consists of a triple: query,

positive passage (relevant text), negative passage (irrelevant text). Reading compre-

hension dataset MSMARCO (Microsoft Machine Reading Comprehension) [Nguyen

et al., 2016] includes 1,010,916 anonymized questions from Bing’s query and 8 mil-

lion passages extracted from the search system Bing. For the training BERT-based

model we use MSMARCO-Passage-Ranking, which comprises triplets from the men-

tioned questions and passages.

We use data from the previous years’ Touche tasks to generate a validation

dataset and dataset for fine-tuning the ColBERT model. For every topic, we retrieve

up to 100 texts from the ClueWeb12 11 corpus using the ChatNoir [Potthast et al.,

2012] system, according to Tocuhe’20-21 task rules. The validation dataset was

created on 10 topics from 2021 with corresponding quality and relevance qrels. The

rest 40 topics and 50 topics from 2020 produce data for adapting the pre-trained

model for text ranking in terms of argumentative objects comparison.

The 2020 year task topics have only one assessment dimension in qrels. If the
9https://webis.de/events/touche-22/shared-task-2.html

10https://microsoft.github.io/msmarco
11http://lemurproject.org/clueweb12
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score in this is 1 or 2, we treat this text as relevant. Irrelevant pairs were selected

from documents with ratings less than 1 or from the search results for different

topics, provided that they were not presented in the search results for the current

query. In the case of an assessment of 21 years, there are separate judgments among

two axes: quality and relevance. We calculate a sum of a quality and relevance score

and consider relevant documents having a score equal to or more than 3, otherwise

- irrelevant. The statistic of mentioned datasets is in Table 6.13.

Table 6.13: Statistics of datasets used in training from scratch and fine-tuning.

Dataset Task Number of triples

MSMARCO-Passage-Ranking train 39 780 810
Dataset based on Touché 2021 fine-tune 46 450

For document ranking, we use ColBERT [Khattab and Zaharia, 2020] model, pre-

trained in several ways. Using the model, in the test stage, we created an index of

all documents in the provided collection of text passages. Using this index, we select

the top-k most relevant texts to each of the topics. We use auxiliary information

about objects under comparison to find them in every ranked document and define

document stance using Comparative argumentation machine CAM [Schildwächter

et al., 2019] functionality. We execute produced solutions on the web evaluation

platform Tira [Potthast et al., 2019]. The retrieved documents will be assessed

manually for both metrics: general relevance and comparison quality. Relevance

depicts proximity to the topic and the presence of sufficient argumentative support.

Quality refers to good structuring, understandable news, and text styling.

In the validation phase, we use topics of the previous year’s competition as

queries. The corpus on which the model builds the index consists of documents

from the Chat Noir issue that are relevant to topics. We retrieve documents for

every question and compare them to official qrels judgments.

Document ranking

The main architecture we used in the retrieving document task is Contextualized

Late Interaction over BERT (ColBERT). ColBERT provides a trade-off between
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Figure 6-4: The scheme of Late Interaction matching is used in ColBERT architec-
ture. The similarity of query and document is the sum of the scores between every
query token and the most similar document token. Source of the image: [Khattab
and Zaharia, 2020].

representation-based models with low computational cost and well-performed token

interaction-based models. Actually, for approaches with a full interaction matrix

between query and document tokens, ColBERT reduces complexity by affording a

convolution over the documents’ token.

The query and document processing in ColBERT architecture contains 2 steps:

• To encode query, we add [Q] after [CLS] token, process padded query by

BERT, apply convolution and normalization

• To encode document, we add [D] after [CLS] token, process padded passage

by BERT, apply convolution and normalization, also filter out punctuation

symbols and other tokens unimportant under retrieval task.

• The conception of Late Interaction (Figure 6-4) from the entire document

considers only the token that has the maximum similarity with the given query

token. The document relevance is estimated as a sum of maximum similarities

across all query tokens.

• For retrieving in a large-scale set of passages, we use the Faiss library [Johnson
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et al., 2019]. Faiss library relizes k-nearest neighbours approximation of text

indexing, which balances the computational complexity and approximation

quality.

Thus, the ColBERT approach fine-tunes BERT main encoder and learns from

the scratch linear layers, filter and embeddings for [q] and [d] symbols. Leveraging

on triplets of query, document with high relevance and document with low relevance

< q, d
+
, d

�
>, the model optimizes the pairwise softmax cross-entropy loss.

ColBERT models

For passage retrieval in the Touche task, we use three different types of pre-trained

ColBERT architecture.

ColBERT original The first is a checkpoint, generated at the University of Glas-

gow 12 on MSMARCO triples using instruction from the official ColBERT reposi-

tory 13.

ColBERT from scratch We also pre-trained ColBERT architecture, provided

in repository, from scratch by ourselves. We use L2 distance between a query and

document instead of cosine similarity, since the original paper noted that the faiss

index works faster on a square distance. The training process was carried out in a 3

epochs with the learning rate 3e�6, batch size 64, passage length no more than 180,

query length 32, similarity l2, and took about two weeks on a single GPU card.

CoBERT fine-tune We also tried to fine-tune the resulting model on data for a

comparative question-answer system obtained from information from past compe-

titions and described in section 6.13. The pre-training procedure was carried out

with the following parameters: learning rate 1e�7, batch size 64, passage length no

more than 180, query length 32, similarity L2. The weights are updated using the

AdamW optimizer during 10 epochs.
12http://www.dcs.gla.ac.uk/~craigm/colbert.dnn.zip
13https://github.com/stanford-futuredata/ColBERT
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Stance detection

An additional challenge within the task was to determine the stances of retrieved

documents. Stance defines the document’s attitude towards the compared objects:

pro first object, pro-second object, neutral, or the absence of attitude. To detect

the stance of a given document, we note objects from topic auxiliary data, found

them in the document, and consider text between objects’ locations. Comparative

Argumentative Machine (CAM) offers the possibility of classification those pieces

of text. It decodes them into feature vectors using Infersent [Conneau et al., 2017]

and applies a pre-trained XGBoost classifier to features [Schildwächter et al., 2019].

The output of CAM is considered to be a document stance class.

Results

We run the proposed approaches in two stages: in the validation stage the model

retrieves and ranks documents for the previous year’s topic over the ChatNoir out-

put, and in the test stage the model ranks passages for a given topics over proposed

corpus, at the same time designating their stance.

Table 6.14: NDCG@5 results for quality and relevance of retrieved document on
validation set.

Method Quality Relevance
Baseline’21 0.427 0.649
Best Answer’21 0.421 0.591
ColBERT original 0.413 0.474
ColBERT from scratch 0.342 0.314
ColBERT fine-tune 0.322 0.365

The result for every proposed approach obtained on the validation part of data

from the previous year’s competition is in Table 6.14. We compare ColBERT-based

approaches to the previous year’s baseline and LGBM Ranker, considered the best

answer. The best scores come from the frequency-based feature baseline approach,

the second place belongs to the ensembles over statistic and comparative features

set. Pre-trained ColBERT provides results slightly worse in terms of quality. In

terms of accuracy, the decrease is more significant, but the same in order as the

difference between the first and second places scores. ColBERT, trained by our
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team from scratch, provides a worse result than pre-trained ColBERT. Fine-tuning

this version on the dataset from the previous year’s task gives a noticeable increase in

relevance, but makes the model perform slightly worse on quality. This may be due

to the properties of the Touche-based dataset used for model fine-tuning. It contains

passages, less complete and grammatically correct than MSMARCO objects, but at

the same time they are more suitable specifically for the comparative subset of

questions.

The retrieved documents were assessed manually for two dimentions. The first

criteria is relevance - how opportune and supportive answer is contained in passage,

the second is rhetorical quality - good styling and well understoodness of the text.

The results also contains the F1 macro clssification scores for the stance detection.

The results for three criteria for our tean Katana and Top-1 approch in each metrics

are in Tables 6.15.

For the ranking document task, ColBERT, trained on the MSMARCO dataset

has the best performance according to fine-tuning the model. The difference between

the model with downloaded weights and the model trained by us from scratch is not

significant. Pre-trained model achive 3rd place in terms of relevance, while model

trained from scratch has 3rd place in the quality table. Fine-tuning comparative

data impairs the results. It may be due to the quality difference between texts

from the main and fine-tuning data - in the MSMARCO case, well-formed natural

language passages were composed by humans on the basis of the search system

outputs [Nguyen et al., 2016]. The quality of the stance detection towards the

objects expectedly depends on the ranking performance - the ColBERT with pre-

trained weights also takes third place.

Table 6.15: Final evaluation scores on the test set for Katana team as compared to
the Top-1 approaches.

Method NDCG@5 relevance NDCG@5 quality F1 stance detection

ColBERT original 0.618 (Top-3) 0.643 0.229 (Top-3)
ColBERT from scratch 0.601 0.644 (Top-3) 0.221
ColBERT fine-tune 0.574 0.637 0.212

Top-1 approach 0.758 0.774 0.313
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6.4 FC layers compression in comaparative QA neu-

ral models

In the preceding section, we discussed the utilization of BERT-based model Col-

BERT for Information Retrieval tasks. In this section, we delve into compressing

deep language models for information retrieval and question answering, employing

SVD and TTM decomposition.

The architecture of the ColBERT consists of the BERT pre-trained model and an

additional output linear layer. We focuse on the compression of the Transformer-

based part and apply compression techniques to FC layers in all 16 Transformer

blocks. We employ SVD with a rank of 40, as well as TTM decomposition with a

rank determined through an analysis of the singular values in the internal SVD step

of the TTM decomposition Algorithm 2.

Hyperparameters selection To determine the rank for the SVD, we refer to the

desired model compression rate outlined in Section 5. For TTM decomposition, we

select the Core dimensions such that dimensions products within each core were ap-

proximately equivalent across all Gk. In Section 5 we provide a detailed explanation

of this choice. As a result, we represent the BERT FC layers matrices, initially sized

as [3072, 768], as a series of cores [1, 4, 8, R], [R, 6, 8, R2], [R, 8, 6, R3], [R, 4, 8, 1].

The following paragraph describes the methodology for selecting the layers which is

best for TTM decomposition, as well as its desired ranks.

Selection of layers to compress and corresponding TTM ranks The rank

parameter is crucial in the TTM decomposition. To determine the rank for each

core in the sequence, we employ the truncated SVD method for the corresponding

unfolding matrix of the original tensor (like in the Algorithm 2). We extract and

visualize the spectrum of each SVD for all modules in the BERT architecture. As

we have 4 cores in decomposition, every module has 3 SVD spectra - one for each

inner rank of the TTM decomposition. Our observations led us to the following

conclusions:
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Figure 6-5: First row: singular values for the 1-st module layer, "uncompressible",
in ColBERT. Gradual slope of spectrum is less sharp. Second row: singular values
for the 4-th module layer,"compressible", in ColBERT. Gradual slope of spectrum
is more sharp.

• Linear layers in the transformer architecture in common do not have exact

low-ranking structures (with singular values close to 0).

• Some layers have values with a more gradual slope without inflexion points.

Some layers have inflexion points in the graphic and values decreasing by ap-

proximately 2 times in the first 5-10 steps before reaching a plateau. We label

the first type of layers as "incompressible" and the latter as "compress-

ible" with a rank equal to the inflexion point (see Figure 6-5).

• For one weight matrix, all three sets of singular values within one layer are

usually correlated in terms of compressibility or incompressibility.

• The compressibility (or incompressibility) property is typically maintained

within the module. The module inside the BERT consists of intermediate

and output linear layers. For instance, if one layer in the module appears to

be compressible, the other layer likely will be also compressible.

To compress the ColBERT, we chose modules 3, 4, and 5 from it’s architecture.

In these modules, all linear layers show singular values decrease by approximately

half among the all unfoldings. We identified that the number of singular values

at which they obtain a half decrease is approximately 5 for dense layers and 20 for
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output layers inside the modules. We utilized these numbers to determine the desired

ranks for the TTM decomposition. It results in a model that retained 80% of the

parameters from the original. We kept this hyperparameter — model compression

rate — constant throughout the experiments detailed in this section. Based on it,

we chose the rank value for SVD - 40.

6.5 Experimental setup

ColBERT original In this setup we employ ColBERT architecture, loaded from

checkpoint without any compression.

ColBERT TTM In this configuration, we use the TTM structure which is pro-

posed in Section 4 to replace the modules that are most appropriate based on the

rank selection procedure. We use the compression algorithm 2 to compress the

intermediate FC part in the module with rank 5 and output with rank 20.

ColBERT TTM Round (TNTorch) In this section, we provide the compression

method using the TNTorch framework [Usvyatsov et al., 2022]. First, we create

full-rank cores by reshaping the proper unfolding without any truncation. Then, we

reduce the core ranks to the desired level by applying the truncation SVD method

to the corresponding unfoldings.

ColBERT SVD To achieve the desired model compression, we replace each FC

layer in the modules by its SVD-compressed version with the desired rank.

ColBERT SVD Selection In these experiments we apply SVD compression to

modules, which are selected based on the above heuristics for TTM decomposition.

The results (Table 6.16) show that, despite the use of TTM algorithm artefacts, this

choice can also work for SVD compression.
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Table 6.16: NDCG@5 results for quality and relevance of retrieved document on MS-
MARCO validation set. The column "Layers" provides number of modules, which
have been selected for compression. Column "Rank" describes the corresponding
compression ranks. In the case of SVD, the intermediate and output layers were
compressed with the same rank, in the case of TTM decomposition, with different.

Method Parameters Layers Rank MRR@10 Success@5 Recall@50

ColBERT original 109580544 - - 0.40 0.50 0.74

ColBERT SVD 94051584 2-4-6-8-10 40 0.20 0.30 0.59
ColBERT SVD Select 95447808 3-4-5 1 0.29 0.43 0.70

ColBERT TTM 81952992 2-4-6-8-10 50 0.09 0.14 0.37
ColBERT TTM 95485518 3-4-5 20-5 0.27 0.40 0.68
(Custom)
ColBERT TTM 95485518 3-4-5 20-5 0.26 0.41 0.68
(Tntorch)

Table 6.17: NDCG@5 results for quality and relevance of retrieved document on
validation set. The column "Layers" provides number of modules, which have been
selected for compression. Column "Rank" describes the corresponding compression
ranks. In the case of SVD, the intermediate and output layers were compressed with
the same rank, in the case of TTM decomposition, with different.

Method Number of Parameter Layers Rank Quality Relevance

ColBERT original 109580544 - - 0.49 0.42
ColBERT SVD 95447808 3-4-5 40 0.31 0.17
ColBERT TTM 95485518 3-4-5 20-5 0.34 0.17

6.5.1 Results

We select the three "compressible" modules (under numbers 3, 4 ,5) using the pro-

posed heuristic. Table 6.16 shows that the downstream problem’s results under this

selection are improved significantly compared to the absence of selection. Selecting

for TTM decomposition-only modules which are better compressible increases qual-

ity. However, if SVD compresses the same set of selected layers with an extremely

low rank 1, the scores will also not drop but increase. At the same time, adding to the

set of compressible modules at least one non-compressible (under number 6) drops

quality for SVD. This can be interpreted as the model based on the Transformer

architecture consists of modules with different significance. The best common strat-

egy would be to compress the FC from the less significant ones. According to the

results, FC in the ColBERT pre-trained model are better compressed by low-rank
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methods like SVD than TTM decomposition.

As can be seen from the Table 6.17, on the small comparative dataset TTM with

modules selection gives equal relevance and a slight increase in quality according to

the SVD method.

Table 6.18 provides qualitative examples of retrieved answers for full and com-

pressed models. The quality characteristics of the found texts for TTM and SVD

are approximately the same: it addresses the question a little worse than answer

found by the full model. However, in both versions of the texts retrieved by the

compressed models, such key concepts as drug name or symptoms are presented.

6.6 Conclusion

In this piece of work, we compare different methods to answer questions within

the comparative case. To do this, we propose our system demonstration pipeline,

which utilizes a Transformer-based CTRL model for generation, document and sen-

tence retrieval methods, and combining answers using templates. We evaluate each

approach using computational metrics and human opinions and find that the Trans-

former CTRL model approach performs the best.

We also present our solution for Argument Retrieval for Comparative Questions

– a ranking task over a corpus of textual passages. We solved retrieval question-

answering assignments by seeking the proper answer for data in the custom com-

parative dataset and dataset MSMARCO. In this competition, we pay attention to

ensemble methods. To retrieve features for it, we use statistic approaches, language

modelling and comparative structure extraction. We also use a neural rankers based

on the Transformer-based BERT architecture and ColBERT — model, which based

on computationally effective late interaction architecture. Inside this competition,

the best results are obtained by gradient boosting methods, training on ranking

cost functions: XGBoost and LightGBM. Among the Transformer-based models,

the best result is related to the ColBERT.

We took a ColBERT and applied TTM compression and SVD to the linear

layers inside the model. As experiments show, both compression methods give
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Table 6.18: Example of documents with the different relevance to query “What is
better at reducing fever in children, Ibuprofen or Aspirin ?”

What is better at reducing fever in children, Ibuprofen or Aspirin ?

ColBERT Pre-trained ColBERT Com-
pressed SVD

ColBERT Com-
pressed TTM

1. So if your child
is uncomfortable with
a fever, choose which
medicine to give, and
then give it consistently.
Either ibuprofen or ace-
tominophen are effective
in reducing fever and
making your child feel
better.

1. Take ibuprofen or as-
pirin for body aches and
fever.

1. The kind interpre-
tation is that the jus-
tices don’t know how the
health care market works
any better than most re-
porters do, so they’re
grasping for ways to un-
derstand it

2. Ibuprofen (motrin),
and even aspirin, are bet-
ter than acetaminophen
for fever and they are
often effective for pain.
However, inappropriate
dosing for extended pe-
riods of time can cause
damage to the gastroin-
testinal tract.

2. Paracetamol and
ibuprofen for fever in
children; low-dose aspirin
and cognitive function.
the prevalence of parkin-
son’s disease (pd) is in-
creasing due to increas-
ing life expectancy.

2. It will only be
available to healthcare
staff providing you with
care treatment in eng-
land. what information
is included in my sum-
mary care record? .

3. On the other hand, if
your child seems lethar-
gic and generally uncom-
fortable, fever-reducing
medications, such as ac-
etaminophen (tylenol) or
ibuprofen (advil, motrin)
may make your child feel
a little better.

3. He noted that aspirin
and ibuprofen should not
be used in children with
asthma, since they can
bring on an attack.

3. Tools and activi-
ties - classroom activities
health and physical edu-
cation - classroom activ-
ities ideas on how to re-
late health and physical
education teaching

approximately the same result on the dataset from the comparatively question-

answer case and the MSMARCO dataset. We selected the layers most suitable for

compression based on singular value analysis. The correct choice of layers seems

critical - for example, compressing "proper" modules with a lower rank performs

better than compressing all layers with a higher rank. Simultaneously, adding an
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"improper" layer to the compression set impairs the results.

The source code for Information-retrieval competitions is available online 14, as

well as Sytem Demonstration code 15.

14https://github.com/sayankotor/touche
15https://s-nlp.github.io/coqas
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Chapter 7

Transformer-based Encoders

compression using TTM

decomposition

7.1 Introduction

In recent years, the field of Natural Language Processing (NLP) has made signif-

icant progress with the development of large pre-trained language models such as

BERT [Devlin et al., 2019]. While these models have achieved state-of-the-art per-

formance on various tasks, their size, and computational requirements make them

difficult to deploy in resource-constrained environments. As a result, there has been

growing interest in developing techniques to compress these models while maintain-

ing their performance.

Normally, information is lost when compressing models and the quality drops

noticeably. In this case, the models are fine-tuned until a certain quality is achieved

on the task. However, fine-tuning is also resource-intensive, even for a compressed

model. To make it more efficient, we use the alignment of the low-rank compression

objective and the task objective [Hsu et al., 2022]. This makes the compressed model

more consistent with further fine-tuning.

One approach to model compression is to apply matrix factorization techniques

to the heaviest part of the Transformer – FC layers (see Table 7.1). The most

115



popular and simplest choice is to use the SVD to reduce the number of parameters

while retaining the model’s expressive power.

Applying SVD to a matrix can decrease its expressibility [Yang et al., 2018a].

However, additional techniques are employed to ensure a satisfactory quality of the

resultant model. Hsu et al. [2022] introduces the Fisher Weighted SVD (FWSVD)

approach, which considers the significance of each parameter for the model’s perfor-

mance during the compression process based on gradient values.

Another method for compressing large language models is Tensor-train matrix

decomposition, or simply TTM decomposition [Oseledets, 2011b]. TTM decompo-

sition transforms a weight matrix into a high-order tensor, which is then expressed

as a product of lower-dimensional objects. In this study, we expand the application

of the Fisher Weighted SVD (FWSVD) approach to TTM decomposition, creating

a novel approach called FWTTM.

Our contributions can be summarized as follows:

• We extend the previous work by Hsu et al. [2022] and incorporate weighting

based on Fisher information inside the TTM decomposition (we denote this

approach as FWTTM).

• We provide a comprehensive analysis of the performance of the BERT model

compressed with SVD, TTM, FWSVD, and FWTTM on various ranks on

tasks of GLUE benchmark and the BART model on the sequence-to-sequence

tasks of text summarization and text detoxification.

• We provide an implementation of the studied methods widely applicable to

pre-trained Transformer models, such as those at the Huggingface repository.

Table 7.1: Number of parameters for different layers in various Transformer archi-
tectures.

Layer/Model BERT BART

Full model 109 M 100% 140 M 100%

Fully connected layers 57 M 52% 84 M 60%

Embeddings 24 M 22% 38 M 27%

Attention 28 M 26% 23 M 16%
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7.2 Related Work

This section reviews methods related to model size reduction. It contains Knowledge

distillation, Quantization, Pruning, and low-rank Approximation techniques.

The first approach, Knowledge distillation (KD), learns a student model with a

smaller parameter budget guided by a larger trainer model. These methods can be

also applied to transfer knowledge from a large teacher model to a smaller student

model [Hinton et al., 2015b]. KD can improve the generalization performance of the

student model and reduce its size and computational cost [Jiao et al., 2020]. We use

DistilBERT [Sanh et al., 2019a] – a distilled version of the BERT model as one of

the strong baselines in our work.

Pruning is another powerful technique to reduce the number of deep neural net-

work parameters. The goal of neural network pruning is to identify and remove

unimportant connections to reduce the model size without affecting network accu-

racy. Movement pruning [Sanh et al., 2020] is a very efficient method for pruning

unstructured networks. This method gives high sparsity in the model while preserv-

ing the original quality score. On the other hand, such models will show effectiveness

only with specialized hardware and may not give any benefits to standardized devices

such as GPUs.

Block pruning is another effective method for reducing the number of deep neural

network parameters. This approach involves removing entire blocks of unimportant

connections rather than individual connections. This can result in a more structured

and efficient network architecture. One example of block pruning is filter pruning,

where entire filters in a convolutional neural network are removed [Li et al., 2017].

Another example is channel pruning, where entire channels are removed from the

network [He et al., 2017]. As opposed to movement pruning, this approach encour-

ages pruning that can be optimized on dense hardware.

The quantization approach enables the reduction of the model size without com-

promising the parameter count, achieved by reducing the number of bits allocated to

each parameter. The concept of quantization-aware training, which involves train-

ing the model with the reduced weights, originated from the realm of general deep
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learning models [Hawks et al., 2021] and has been extended to transformer-based

encoders [Wang et al., 2022].

Low-rank approximation techniques provide an alternative way to achieve model

compression. One such technique is SVD, which has been successfully applied to

compress various components of neural networks, such as word embeddings [Lan

et al., 2020], attention matrices [Michel et al., 2019a], and transformer layers [Hu

et al., 2021]. Another approximation technique is TTM, which decomposes high-

order tensors into a sequence of low-order tensors Oseledets [2011b]. TTM has been

employed for compressing word embeddings [Hrinchuk et al., 2020], CNNs [Garipov

et al., 2016], and even visual transformers [Pham Minh et al., 2022].

7.3 Low-rank Compression Methods

In this section, we describe four low-rank approximation methods used in our com-

putational study to compress feedforward layers of Transformers: SVD, TTM,

FWSVD, and FWTTM, with the last one being a novel approach.

7.3.1 Layer Structures

We perform two types of replacement layers and, respectively, weight compression

-SVD and TTM decomposition. To implement these techniques, we employ the

corresponding PyTorch-compatible layer classes as described in Chapter 4. For SVD,

we use the built-in Python function for decomposing pre-trained weights. For TTM,

we harness an implementation based on the TNTorch [Usvyatsov et al., 2022] library

with additions for more memory and time-aware calculation set out in Chapter 4

and custom implementation of algorithm from [Oseledets, 2010].

Singular Value Decomposition (SVD) We compress the initial model by re-

placing fully-connected layers with their SVD analogs. To implement it, we employ

the corresponding PyTorch-compatible layer classes as described in Chapter 4. To

obtain the SVD, we use the built-in Python function for decomposing pre-trained

weights.
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Tensor Train Matrix (TTM) decomposition We obtain a TTM-based layer,

we also use the layer class which is described in Chapter 4. For decomposition, we

harness an implementation based on the TNTorch [Usvyatsov et al., 2022] library

with additions for more memory and time-aware calculation set out in Chapter 4

and custom implementation of algorithm from [Oseledets, 2010].

Ti1,j1,...,iD,jD =
X

r1,...,rD�1

G
1
r0,i1,j1,r1 . . .G

D
rD�1,iD,jD,rD

,

Fisher Weighted SVD (FWSVD) We inject the Fisher information into decom-

position algorithms to minimize the gap between decomposition and task-oriented

objectives. Fisher information determines the importance of parameters in a given

task-specific [Bishop, 2007]. We find an approximation of the Fisher matrix using

dataset D = {d1, . . . , d|D|} as it is described by Hsu et al. [2022], for each weight

matrix W 2 RI⇥J :

IW = E
"✓

@

@W
log p(D|W)

◆2
#
,

IW ⇡
1

|D|

|D|X

i=1

@

@W
L(di;W).

(7.1)

Having this, ideally, we would want to solve weighted low-rank approximation:

k

p
IW ⇤ (W � Ŵ)k2 ! min

rank Ŵ=r
.

Unfortunately, this problem does not have a closed-form solution. Therefore, Hsu

et al. [2022] proposes to sum Fisher matrix by rows and solve low-rank approximation

with row-wise weighting, which can be done using SVD:

ĨW = diag (IW · 1) ,

Ŵ = ĨWW = USVT
,

(7.2)

where 1 = (1, . . . , 1) 2 RJ⇥1, diag - diagonal matrix with size I ⇥ I.

The resulted weighted factors for initial matrix W ⇡ ÛŜV̂T are computed as
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follows:

Û = Ĩ�1
WU, Ŝ = S, V̂ = V. (7.3)

As a result, we get low-rank approximations, which account for parameter im-

portances for the target task.

Fisher Weighted TTM (FWTTM) Our contribution is Algorithm 12 incorpo-

rating Fisher information into the TTM decomposition. The algorithm consists of

the following steps:

1. Compute the Fisher matrix IW for the original layer matrix W.

2. Apply the same transformations to IW as to W to obtain a “Fisher tensor”

ÎW.

3. For each SVD step of the TTM algorithm, we use the Fisher matrix exactly as

in the FWSVD setup. The first low-rank term is reshaped to get another core

in TTM, the second term goes to the next iteration, and the Fisher matrix

unfolds using U to keep the shape with the second term.

7.4 Transformer Compression Setup

This section describes our setup for compressing Transformer models using low-rank

approximation approaches. We focus on two methods: TTM and SVD, with and

without using Fisher information. We aim to reduce the number of parameters in the

model while maintaining its performance. Furthermore, we assume we can access

the task-oriented model-tuning process. We use the information obtained within

this process to improve the quality of the compression and thus speed up the tuning

by the desired values.

We run two setups for compressing and evaluating models on the GLUE [Wang

et al., 2019], ParaDetox [Logacheva et al., 2022] and XSUM [Narayan et al., 2018]

datasets:

• Single-train. We fine-tune a model for each task, compress it and measure

performance.
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Algorithm 12 Fisher-Weighted TTM decomposition.
Input: Matrix of layer weights W, matrix of Fisher weights IW, shapes

I1, J1, . . . , Id, Jd, ranks r0, . . . , rd

Output: Cores G
k, k = 1 . . . d of the TTM decomposition

1: B = W.reshape (I1, J1, . . . , Id, Jd)
2: BI = IW.reshape (I1, J1, . . . , Id, Jd)
3: C = B.permute (1, d+ 1, 2, d+ 2, . . . , d, 2d)
4: CI = BI .permute (1, d+ 1, 2, d+ 2, . . . , d, 2d) Nr = I1J1 . . . IdJd

5: for k in {1, . . . , d� 1} do
6: Nk = IkJk

7: Nr =
Nr
Nk

8: r = rk

9: Unfolding M = C.reshape (Nk, rNr) ,
10: Unfolding MI = CI .reshape (Nk, rNr)
11: M̃I = diag (MI)
12: M̃IM = USVT truncated to rk

13: Ũ = M̃I
�1

U
14: M = SVT

15: MI = UTMI

16: G
k = Ũ.reshape (rk, nk, rk+1)

17: G
k = G

k
.permute (2, 1, 3)

18: end for

• Double-train. We follow the same steps as for the Single-train and fine-tune

the compressed model again on the same task.

7.4.1 Baselines

We compare our compressed model to the model obtained by distillation [Jiao et al.,

2020], Block Pruning [Sanh et al., 2020] and inference of the original model with

floating-point precision equal to 16. Note that Distillation and Block Pruning are

train-aware methods. It means they require fine-tuning for the desired task so we

can use it only in the Double-train pipeline.

For mixed precision training and evaluation, we use the FP16 library, which is

built-in in PyTorch [Paszke et al., 2019b]. We set the optimization level to 01 and

patched all torch functions and tensor methods, except those that benefit from FP32

precision (softmax, etc.) For the two analyzed models, we obtained a compression

up to 52% for the BERT model and 54% for the BART model. However, since the

resulting Tables 7.5, 7.7, 7.8, 7.6 show compression of the models relative to the
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number of their parameters, but FP16 quantization keeps the number of parameters

the same, we indicate the actual number of parameters with a dagger (†).

7.4.2 Experimental setup

We compare the performance of four proposed methods based on BERT and BART

models. We use three compression ratios for the selected models and report the

corresponding ranks in Table 7.2. Finally, we test the compressed BERT on nine

NLU tasks, including language acceptability, sentiment analysis, paraphrasing, and

natural language inference, compressed BART – on text summarization, and detox-

ification tasks.

Table 7.2: Ranks for different compression approaches.

BERT

C. Rate SVD TTM

48% (53 M) 6 10

63% (69 M) 183 60

95% (102 M) 534 110

BART

C. Rate SVD TTM

60% (83 M) 10 10

74% (102 M) 210 64

90% (125 M) 460 96

7.4.3 Selection of hyperparameters

The proposed layer structure assumes two sets of hyperparameters - TTM cores

shapes for TTM decomposition and ranks for SVD and TTM decomposition.

We state that for the maximum compression rate in TTM, cores’ non-rank shapes

should be as close to each other as possible. We choose Ik ·Jk so that they are equal to

each other and approximately equal to (I · J)1/D. Shapes selection is implemented

with a custom algorithm which will be presented source code. As cores, we take

objects with sizes [1⇥32⇥12⇥R], [10⇥3⇥2⇥R], [R⇥2⇥2⇥R], [R⇥16⇥16⇥1].

Rank r for truncation in SVD and set of R1 . . . RM�1 is selected based on the

desired compression level.

7.4.4 Selection the layers for compression

As mentioned in section 6, certain modules within the transformer architecture lend

themselves better to compression than others. This chapter proposes two methods
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for distinguishing between favourable and unfavourable modules.

The first approach, similar to the one described in the previous part, involves

analyzing the singular values of the SVD expansions for the SVD and TTM layers.

Those layers, which have "sharp" graphics of the singular values, will marked as

compressible with ranks depending on the inflection point of the graphics. We also

involve the second approach - a method based on analysing Fisher information inside

the layer.

As an additional method of selecting layers for compression, we use a metric

called Fisher information variance '(W) [Hua et al., 2022], calculated as the variance

of its corresponding Fisher information Iw. We rank calculated '(W) for each layer

in ascending order. As candidates, we take layers with the lowest variance. In

the following experiments, we use the same number of layers for compression and

the same ranks as in the singular values method to get a similar model size after

compression.

As indicated in the Tables 7.3,7.4, the quality of compression for both SVD and

TTM decomposition is highly dependent on the selection of "good" layers. However,

the singular value-based method outperforms the Fisher matrix statistics in terms

of overall improvement.

Table 7.3: The results of different types of selection of BERT modules for compres-
sion in the Single-train pipeline. All compressed models has approximately 91 mln
parameters.

Compression Selection AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

SVD No select 0.64 0.79 0.1 0.76 0.6 0.79 0.84 0.52 0.89 0.51

SVD FisherS 0.58 0.82 0.26 0.6 0.32 0.63 0.82 0.5 0.8 0.49

SVD SingularS 0.71 0.86 0.43 0.72 0.78 0.83 0.84 0.56 0.9 0.52

FWSVD No select 0.77 0.87 0.54 0.83 0.83 0.88 0.87 0.63 0.91 0.52

FWSVD FisherS 0.64 0.85 0.35 0.68 0.48 0.78 0.81 0.52 0.84 0.48

FWSVD SingularS 0.73 0.87 0.42 0.75 0.8 0.82 0.79 0.62 0.9 0.56

TTM No select 0.54 0.81 0.07 0.46 0.4 0.58 0.68 0.53 0.78 0.52

TTM FisherS 0.4 0.53 0.01 0.35 0.16 0.49 0.46 0.48 0.58 0.5

TTM SingularS 0.53 0.82 0 0.51 0.16 0.74 0.69 0.50 0.82 0.55
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Table 7.4: The results of different types of selection of BERT modules for compres-
sion in the Double-train pipeline. All compressed models has approximately 91 mln
parameters.

Compression Selection AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

SVD No select 0.76 0.88 0.52 0.83 0.85 0.9 0.74 0.66 0.9 0.51

SVD FisherS 0.77 0.88 0.46 0.83 0.87 0.9 0.89 0.66 0.9 0.52

SVD SingularS 0.78 0.88 0.53 0.83 0.87 0.9 0.88 0.67 0.92 0.51

FWSVD No select 0.67 0.88 0.51 0.83 0.86 0.89 0.32 0.62 0.62 0.53

FWSVD FisherS 0.77 0.88 0.46 0.83 0.86 0.9 0.89 0.65 0.9 0.52

FWSVD SingularS 0.78 0.89 0.53 0.83 0.87 0.9 0.89 0.67 0.91 0.52

TTM No select 0.67 0.87 0.1 0.83 0.84 0.87 0.46 0.62 0.9 0.56

TTM FisherS 0.76 0.88 0.43 0.83 0.87 0.9 0.89 0.63 0.9 0.48

TTM SingularS 0.76 0.88 0.42 0.83 0.87 0.89 0.88 0.65 0.9 0.52

Table 7.5: The results of different types of compression of BERT for experiment with
task-oriented fine-tuning and further compression (Single-train). The best results
at each model size are in bold, best overall results are underlined.

Method C.Rate AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

Full 100 % 0.79 0.88 0.57 0.84 0.9 0.91 0.87 0.67 0.92 0.54

DistilBERT 61 % 0.76 0.87 0.51 0.82 0.87 0.89 0.88 0.59 0.91 0.48

FP16 eval. 100%†
0.78 0.88 0.55 0.83 0.88 0.90 0.88 0.67 0.91 0.48

Block Pruning (75%) 61% 0.72 0.85 0.24 0.83 0.83 0.86 0.87 0.52 0.88 0.56

SVD 0.37 0.24 0.00 0.36 0.20 0.50 0.47 0.48 0.52 0.51

FWSVD

49 %

0.38 0.25 0.00 0.33 0.39 0.50 0.40 0.49 0.51 0.56

TTM 0.44 0.58 0.02 0.37 0.25 0.56 0.43 0.50 0.72 0.51

FWTTM 0.44 0.59 0.02 0.37 0.27 0.54 0.42 0.50 0.71 0.51

SVD 0.45 0.63 0.01 0.36 0.22 0.51 0.54 0.54 0.78 0.48

FWSVD

63 %

0.55 0.54 0.07 0.52 0.55 0.62 0.70 0.58 0.79 0.55

TTM 0.44 0.65 0.01 0.40 0.16 0.54 0.52 0.48 0.74 0.48

FWTTM 0.47 0.71 0.01 0.44 0.17 0.64 0.53 0.48 0.72 0.56

SVD 0.70 0.81 0.26 0.82 0.69 0.88 0.87 0.53 0.90 0.53

FWSVD

95 %

0.78 0.88 0.55 0.84 0.87 0.90 0.88 0.64 0.92 0.55

TTM 0.76 0.87 0.52 0.79 0.86 0.87 0.86 0.65 0.91 0.48

FWTTM 0.77 0.87 0.53 0.81 0.86 0.88 0.87 0.65 0.91 0.54

7.5 Experiments with NLU tasks

In this section, we perform an evaluation of encoder-based Transformers using BERT

model [Devlin et al., 2019] as the base model. Precisely, we use bert-base-uncased

checkpoint from the HuggingFace [Wolf et al., 2019] model hub.

7.5.1 Experimental settings

We perform experiments on the General Language Understanding Evaluation (GLUE)

benchmark [Wang et al., 2019] using the evaluation script and metrics provided by
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Table 7.6: The results of different types of compression of BERT for experiments
with task-oriented fine-tuning, compression, and further fine-tuning (Double-train).

Method C.Rate AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

Full (109 mln.) 100 % 0.79 0.88 0.57 0.84 0.90 0.91 0.87 0.67 0.92 0.54

DistilBERT 61% 0.76 0.87 0.51 0.82 0.87 0.89 0.88 0.59 0.91 0.48

FP16 eval. 100%†
0.78 0.88 0.55 0.83 0.88 0.90 0.88 0.67 0.91 0.48

Block Pruning (75%) 61% 0.72 0.85 0.24 0.83 0.83 0.86 0.87 0.52 0.88 0.56

SVD 0.68 0.83 0.00 0.79 0.79 0.85 0.87 0.59 0.87 0.49

FWSVD

49%

0.68 0.82 0.04 0.79 0.79 0.85 0.87 0.56 0.86 0.54

TTM 0.69 0.83 0.15 0.78 0.81 0.84 0.87 0.60 0.86 0.43

FWTTM 0.69 0.83 0.15 0.78 0.81 0.84 0.87 0.60 0.86 0.49

SVD 0.75 0.86 0.43 0.83 0.84 0.89 0.88 0.64 0.90 0.50

FWSVD

63%

0.77 0.87 0.47 0.83 0.85 0.89 0.88 0.65 0.90 0.56

TTM 0.70 0.85 0.10 0.81 0.81 0.86 0.88 0.61 0.88 0.49

FWTTM 0.70 0.85 0.08 0.81 0.82 0.86 0.87 0.61 0.88 0.53

SVD 0.78 0.89 0.56 0.84 0.88 0.91 0.89 0.68 0.91 0.44

FWSVD

95%

0.79 0.89 0.56 0.84 0.88 0.90 0.89 0.69 0.91 0.51

TTM 0.77 0.88 0.52 0.83 0.83 0.89 0.88 0.68 0.90 0.51

FWTTM 0.78 0.88 0.52 0.83 0.87 0.90 0.88 0.68 0.90 0.54

Figure 7-1: Trade-off between accuracy and compression rate for GLUE tasks:
Single-train and Double-train average over all tasks.

HuggingFace library [Wolf et al., 2019].1 Additionally, we run our experiments with

five different random seeds and report the average performance across runs to ensure

the robustness of our results.

Results Evaluation results of the BERT model on the GLUE benchmark using

different compression methods are reported in Tables 7.5 and 7.6 respectively for

Single-, and Double-train setups. The results with standard deviations are in Ap-

pendix Chapter A. Foremost, one may observe that the overall absolute scores for the
1https://github.com/huggingface/transformers/tree/main/examples/pytorch/

text-classificationHuggingFace GLUE script
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Single-train setup are much lower than for the Double-train which is also accounted

in the prior research. Certainly, modifying the low-rank-based compression structure

of the layers necessitates additional fine-tuning to restore the model’s performance

to a reasonably acceptable level. Please note that in this paper, we consistently

present both setups since Single-train can be utilized for numerous large models

that exceed the memory capacity of the available GPU. Typically, for fine-tuning,

it is necessary to double the size of the model to store gradients.

Secondly, we observe that TTM decomposition outperforms SVD at low ranks

i.e. in the area of high compression (49% of original model parameters), while SVD

performs better at higher ranks. This difference is large for Single-train and for

Double-train it is not so pronounced.

Thirdly, we observe that, incorporating Fisher information improves SVD con-

sistently and slightly improves TTM at high ranks while not degrading its perfor-

mance at other ranks (compression levels). TTM performs poorly on some tasks,

such as CoLA, and better on other tasks, such as STSB (see Figure 7-1). Low-rank

compression methods, especially FWSVD, outperform fine-tuned baseline models of

approximately the same size at medium compression rates.

Finally, one can observe that for Double-train FWSVD (63%) compares compa-

rably or better to Distillation and Pruning baselines while could be combined with

F16 quantization in principle.

Figure 7-2: Comparison of compression methods for GLUE, Detox, XSUM with
Double-train setup.
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Figure 7-3: Results for GLUE benchmark for bert-base-uncased model, with task-
oriented fine-tuning and further compression (Single-train).
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Table 7.7: The results of different types of BART compression for detoxification
experiments in Single-train and Double-train pipelines. The best results at each
model size are in bold, best overall results are underlined. Italic results represent
senseless model outputs.

Pipeline Single-train Double-train

Method C. Rate STA SIM FL J STA SIM FL J

bart-base 100 % - - - - 0.89 0.60 0.82 0.44

FP16 eval. 100%†
- - - - 0.89 0.60 0.82 0.44

Block Pruning (95%) 63% - - - - 0.92 0.34 0.30 0.12
Block Pruning (65%) 74% - - - - 0.82 0.60 0.73 0.36

SVD 0.97 0.18 0.10 0.01 0.75 0.59 0.65 0.28

FWSVD

60%

0.32 0.46 0.58 0.07 0.78 0.59 0.68 0.30

TTM 0.97 0.19 0.16 0.03 0.74 0.58 0.64 0.27

FWTTM 0.99 0.18 0.19 0.03 0.74 0.58 0.65 0.27

SVD 0.85 0.21 0.14 0.03 0.82 0.60 0.77 0.38

FWSVD

74%

0.32 0.46 0.58 0.07 0.87 0.61 0.80 0.42

TTM 0.99 0.17 0.06 0.01 0.82 0.61 0.75 0.37

FWTTM 0.99 0.18 0.16 0.03 0.84 0.60 0.75 0.38

SVD 0.85 0.42 0.72 0.25 0.86 0.61 0.81 0.43

FWSVD

90%

0.70 0.64 0.82 0.35 0.87 0.61 0.81 0.43

TTM 0.49 0.60 0.71 0.18 0.86 0.61 0.80 0.41

FWTTM 0.82 0.46 0.59 0.22 0.86 0.61 0.80 0.41

7.6 Experiments with sequence-to-sequence models

We test different layer compression methods on the encoder-decoder model BART

[Lewis et al., 2020] on two sequence-to-sequence tasks. Namely, we test different

compression methods on text summarization tasks and a subtask of textual style

transfer - text detoxification. In our experiments, we use bart-base checkpoint

from the HuggingFace [Wolf et al., 2019] model hub.

7.6.1 Text Summarization

In our text summarization experiments, we use the XSUM dataset [Narayan et al.,

2018], which contains news articles and their corresponding single-sentence sum-

maries. We aim to train BART to generate accurate and concise summaries of the

input articles.

We evaluate the performance of models using the ROUGE metrics [Lin, 2004]:

we use ROUGE-1 and ROUGE-2 to measure the overlap between the generated
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Table 7.8: The results of different types of compression of BART for experiments on
XSUM dataset with task-oriented fine-tuning and further compression (Single-train
and Double-train). The best results at each model size are in bold, best overall
results are underlined.

Pipeline Single-train Double-train

Metric ROUGE ROUGE

Method C. Rate 1 2 L 1 2 L

bart-base 100% 42.4 19.6 34.5 42.4 19.6 34.5

FP16 eval. 100% 32.8 11.0 25.5 32.8 11.0 25.5

Block Pruning (95%) 63% - - - 23.4 5.7 18.8

Block Pruning (65%) 74% - - - 34.6 12.2 27.9

SVD 6.2 0.5 5.4 35.2 13.1 27.9

FWSVD

60%

11.1 0.3 8.5 35.5 13.3 28.1

TTM 3.6 0.1 3.1 35.8 13.3 28.2

FWTTM 7.4 0.4 6.3 36.0 13.8 28.5

SVD 6.4 0.4 5.4 39.8 17.1 32.2

FWSVD

74%

18.5 3.2 14.5 40.6 17.8 32.9

TTM 5.6 0.2 4.7 38.3 15.9 33.6

FWTTM 5.2 0.3 5.5 39.0 16.2 32.1

SVD 32.8 11.0 25.5 41.8 18.9 33.9

FWSVD

90%

38.9 19.1 31.2 41.9 19.1 34.1

TTM 26.4 6.8 19.8 41.2 18.6 33.6

FWTTM 23.2 5.1 16.3 38.1 19.5 33.2

and reference summaries at the unigram and bigram levels. We also use ROUGE-L

to measure the longest common subsequence between the generated and reference

summaries.

Results The results for summarization are presented in Table 7.8. In the Single-

train setup, FWSVD outperforms other methods across different compression levels

by all metrics. However, in the Double-train pipeline, FWTTM emerges as the

top performer at low ranks, while TTM excels only in the Rouge-2 metric at high

ranks. In terms of the remaining metrics, SVD demonstrates superior performance.

Notably, the tensor and matrix compression techniques employed in the Double-train

setup exhibit improved results as compared to the baselines.
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7.6.2 Text Detoxification

Text detoxification aims to rewrite a sentence in a rude form into a neutrally for-

mulated sentence while preserving its meaning.

We use the parallel dataset ParaDetox [Logacheva et al., 2022] in our experi-

ments. This dataset contains pairs of sentences in rude and neutral forms, which

allows us to train text detoxification models in a way similar to neural machine

translation. The scale of the dataset also makes training faster and more conve-

nient. We follow the evaluation pipeline presented by Logacheva et al. [2022] and

measure the performance of our models using three metrics: STA (style transfer ac-

curacy), SIM (similarity), and FL (fluency of the generated text). STA measures

how well the model transfers the style of the input sentence from rude to neutral.

SIM measures how similar the meaning of the generated sentence is to the input

sentence. FL measures how fluent and natural the generated sentence is.

Results We depict the results of our experiments with compression in Table 7.7

and provide the extended version of the table with variations included in Table A.3.

Text generation also preserves the trend shown in language comprehension. How-

ever, unlike GLUE, in the task of detoxification, all the compressed models in the

Single-train pipeline are hallucinating and generating senseless tokens at low and

medium ranks. We depict these results with italic.

Overall, the TTM and SVD approaches show the best results at low ranks in all

tasks. At medium and high ranks, FWSVD breaks ahead. FWSVD demonstrates

the most significant benefits at medium ranks, while the impact becomes nearly

imperceptible at higher compression levels. Therefore, it is essential to highlight

that the Fisher information acquired for the language modeling task also contributes

to improvements in metrics that are not directly related to LM (such as STA and

FL); moreover, they are obtained by the auxiliary neural network model.

130



7.7 Conclusion

In the proposed work, we explore the Transformer compression techniques that in-

volve low-rank and tensor decomposition of its most heavy part – fully-connected

layer (featuring 50-60% of parameters depending on the model). We test perfor-

mance of compressed BERT and BART models on natural language understanding

and generation tasks and compare the suggested compression with other popular

approaches, such as pruning, distillation, and quantization. Furthermore, we for the

first time implement and adapt the method proposed by Hsu et al. [2022] to TTM

decomposition by incorporating Fisher information, which measures the importance

of individual layer parameters concerning the training objectives.

Our experiments, summarized in concise form in Figure 7-2, show that incorpo-

rating Fisher information (FW* models) consistently improves the quality of com-

pression method, in the case of SVD and depending on the setup improves or do

not degrade quality of TTM. At a medium compression level, baseline approaches

based on training-aware distillation, pruning, and quantization, demonstrate infer-

ror or comparable performance to the respective in each group decomposition-based

methods.
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Chapter 8

Conclusion

In our research, we used tensor representations to compress modules in neural net-

work linguistic models and met three statements that appeared in the Thesis Ob-

jectives. Firstly, we showed the efficacy of Canonical Polyadic Decomposition in

compressing the embedding layer of a Knowledge Base model while accounting for

data characteristics. This approach yielded favourable results in the explicit embed-

ding evaluation and downstream tasks, simplifying the training process and reducing

memory consumption.

Then, we reduce the size of the Transformer models by replacing the linear layer

with a Tensor Train Matrix structure. To achieve this, we adapted the TTM object

for the neural network to optimize signal propagation through the TTM core. The

resulting TTM container required fewer parameters and memory while maintaining

the same efficiency level during training and fine-tuning. Consequently, this ap-

proach reduces time and memory requirements, making it more energy-efficient and

suitable for low-power hardware.

With these structural components in place, we address two key questions, which

finally aimed at two types of experiments. Firstly, we investigated the expressive

power of TTM compression compared to low-rank methods. To do so, we conducted

experiments on the GPT-2 decoder transformer, training it from scratch and eval-

uating its performance on Language Modelling, Natural Language Understanding,

and Text summarization tasks. Finally, our findings revealed that 1) the training

environment heavily influences the performance of the final model, and 2) under
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identical training conditions, a model with TTM layers consistently outperforms

other methods, such as SVD.

Secondly, we explored the impact of compressing pre-trained models on their

quality for specific tasks. We conducted experiments on a question-answering task

within a particular comparative case. We research the different approaches to a

Question-Answering task and focus on retrieval-based techniques. Next, we eval-

uate several retrieval-based groups of methods - statistics, tree structures, and

transformer-based on a comparative dataset. As a transformer method need large

transformer models to employ, we provide compression of FC layers in them. We

obtain that TTM decomposition and SVD give similar compression results inside

comparative QA task and are highly dependent on the choice of the "proper" layer

for compression. We also provide the algorithm for finding such types of layers.

We also conducted experiments with compression and further fine-tuning on the

BERT architecture for the tasks of the Natural Language Understanding bench-

mark GLUE. We met the third point from the Objectives by injecting information

about the Language Modelling loss in the compression algorithm - SVD or TTM

decomposition - and show that it induces performance.

Under described experiment conditions, TTM decomposition outperforms SVD

at lower ranks and loses at higher ranks. According to the third point in Objectives,

we define layers inside the model that are more and less compressible. This property

is not constant and varies from one Transformer architecture to another, it can

even change during fine-tuning of a specific model. We can identify these layers by

analysing the spectrum of SVD inside the TTM-SVD algorithm.

The results of two types of experiments — training from scratch in the Chapter 5

and compression in Chapters 7, 6 — support the ideas from the Chapter 4: TTM

representation of a FC layer in Transformers is effective only if we train it from

scratch. In this case, we get a compressed representation of a layer matrix that is

structured for TTM, and TTM approaches outperform SVD on downstream tasks.

In the case of compression of yet pre-trained FC layer weights, which do not have

a Kronecker structure, TTM decomposition isn’t engaged to outperform low-rank

methods.
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Discussing the potential practical application of the proposed research, we make

the following observations.

The first part of the work focuses on the practical implementation of diverse con-

cepts, including developing an algorithm for knowledge base embeddings. These con-

cepts hold significant potential in tackling the language grounding problem, wherein

a model acquires a comprehensive representation of a specific fact or phenomenon

by considering inputs such as images, textual descriptions, and relevant information

from knowledge graphs.

The TTM-based layers are invariant across different transformer models. This

characteristic opens up the possibility, if desired (and with access to weights), to

optimize even massive models like Chat GPT 1 and Giga Chat 2. As the size of large

language models is expected to continue growing in thein the nearest future, driven

by an increase in the number of transformer modules and the size of the processed

text, there arises a need for a more condensed parameterized layer representation.

Such a representation would offer valuable benefits in these evolving scenarios.

1https://openai.com/blog/chatgpt
2https://developers.sber.ru/portal/products/gigachat
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Appendix A

Additional results for

Transformer-based Encoders

compression using TTM

decomposition

Table A.1: The results of different types of compression of BERT for experiment with
task-oriented fine-tuning and further compression (Single-train). The best results
at each model size are in bold, best overall results are underlined.

Method Size AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

bert-base 100% 0.79 0.88 0.57 0.84 0.9 0.91 0.87 0.67 0.92 0.54

DistilBERT 61% 0.76 0.87 0.51 0.82 0.87 0.89 0.88 0.59 0.91 0.48
bert-base FP-16 100%† 0.78 0.88 0.55 0.83 0.88 0.90 0.88 0.67 0.91 0.48

SVD 0.37 ± 0.01 0.24 ± 0.12 0.00 ± 0.00 0.36 ± 0.01 0.20 ± 0.09 0.50 ± 0.02 0.47 ± 0.10 0.48 ± 0.01 0.52 ± 0.02 0.51 ± 0.07
FWSVD

49%
0.38 ± 0.03 0.25 ± 0.15 0.10 ± 0.01 0.33 ± 0.01 0.39 ± 0.33 0.50 ± 0.01 0.40 ± 0.11 0.49 ± 0.03 0.51 ± 0.01 0.56 ± 0.00

TTM 0.44 ± 0.02 0.58 ± 0.06 0.02 ± 0.03 0.37 ± 0.01 0.25 ± 0.22 0.56 ± 0.01 0.43 ± 0.17 0.50 ± 0.03 0.72 ± 0.02 0.51 ± 0.07
FWTTM 0.44 ± 0.02 0.59 ± 0.06 0.02 ± 0.03 0.37 ± 0.01 0.27 ± 0.24 0.54 ± 0.01 0.42 ± 0.18 0.50 ± 0.03 0.71 ± 0.02 0.51 ± 0.07

SVD 0.45 ± 0.02 0.63 ± 0.07 0.01 ± 0.02 0.36 ± 0.01 0.22 ± 0.11 0.51 ± 0.03 0.54 ± 0.06 0.54 ± 0.06 0.78 ± 0.03 0.48 ± 0.07
FWSVD

63%
0.55 ± 0.03 0.54 ± 0.10 0.07 ± 0.03 0.52 ± 0.02 0.55 ± 0.20 0.62 ± 0.02 0.70 ± 0.07 0.58 ± 0.05 0.79 ± 0.05 0.55 ± 0.02

TTM 0.44 ± 0.02 0.65 ± 0.03 0.01 ± 0.02 0.40 ± 0.02 0.16 ± 0.00 0.54 ± 0.06 0.52 ± 0.14 0.48 ± 0.00 0.74 ± 0.03 0.48 ± 0.08
FWTTM 0.47 ± 0.02 0.71 ± 0.02 0.01 ± 0.04 0.44 ± 0.01 0.17 ± 0.01 0.64 ± 0.06 0.53 ± 0.11 0.48 ± 0.03 0.72 ± 0.04 0.56 ± 0.00

SVD 0.70 ± 0.02 0.81 ± 0.02 0.26 ± 0.14 0.82 ± 0.00 0.69 ± 0.22 0.88 ± 0.00 0.87 ± 0.01 0.53 ± 0.06 0.90 ± 0.01 0.53 ± 0.08
FWSVD

95%
0.78 ± 0.01 0.88 ± 0.00 0.55 ± 0.02 0.84 ± 0.00 0.87 ± 0.01 0.90 ± 0.00 0.88 ± 0.01 0.64 ± 0.01 0.92 ± 0.01 0.55 ± 0.04

TTM 0.76 ± 0.01 0.87 ± 0.00 0.52 ± 0.02 0.79 ± 0.00 0.86 ± 0.01 0.87 ± 0.01 0.86 ± 0.00 0.65 ± 0.01 0.91 ± 0.01 0.48 ± 0.01
FWTTM 0.77 ± 0.01 0.87 ± 0.00 0.53 ± 0.02 0.81 ± 0.00 0.86 ± 0.01 0.88 ± 0.00 0.87 ± 0.00 0.65 ± 0.01 0.91 ± 0.01 0.54 ± 0.01
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Method Size AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

bert-base 100% 0.79 0.88 0.57 0.84 0.90 0.91 0.87 0.67 0.92 0.54

DistilBERT 61% 0.76 0.87 0.51 0.82 0.87 0.89 0.88 0.59 0.91 0.48
bert-base FP-16 100%† 0.78 0.88 0.55 0.83 0.88 0.90 0.88 0.67 0.91 0.48
B.P. (75%) 61% 0.72 0.85 0.24 0.83 0.83 0.86 0.87 0.52 0.88 0.56

SVD 0.68 ± 0.01 0.83 ± 0.00 0.00 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.85 ± 0.00 0.87 ± 0.00 0.59 ± 0.01 0.87 ± 0.00 0.49 ± 0.08
FWSVD

49%
0.68 ± 0.01 0.82 ± 0.01 0.04 ± 0.05 0.79 ± 0.00 0.79 ± 0.00 0.85 ± 0.01 0.87 ± 0.00 0.56 ± 0.03 0.86 ± 0.00 0.54 ± 0.06

TTM 0.69 ± 0.01 0.83 ± 0.00 0.15 ± 0.01 0.78 ± 0.00 0.81 ± 0.01 0.84 ± 0.00 0.87 ± 0.00 0.60 ± 0.01 0.86 ± 0.01 0.43 ± 0.08
FWTTM 0.69 ± 0.01 0.83 ± 0.00 0.15 ± 0.04 0.78 ± 0.00 0.81 ± 0.01 0.84 ± 0.00 0.87 ± 0.00 0.60 ± 0.01 0.86 ± 0.01 0.49 ± 0.00

SVD 0.75 ± 0.02 0.86 ± 0.00 0.43 ± 0.02 0.83 ± 0.00 0.84 ± 0.01 0.89 ± 0.00 0.88 ± 0.01 0.64 ± 0.02 0.90 ± 0.01 0.50 ± 0.10
FWSVD

63%
0.77 ± 0.00 0.87 ± 0.00 0.47 ± 0.02 0.83 ± 0.00 0.85 ± 0.01 0.89 ± 0.01 0.88 ± 0.01 0.65 ± 0.01 0.90 ± 0.01 0.56 ± 0.01

TTM 0.70 ± 0.01 0.85 ± 0.00 0.10 ± 0.10 0.81 ± 0.00 0.81 ± 0.01 0.86 ± 0.00 0.88 ± 0.01 0.61 ± 0.01 0.88 ± 0.00 0.49 ± 0.09
FWTTM 0.70 ± 0.02 0.85 ± 0.00 0.08 ± 0.08 0.81 ± 0.00 0.82 ± 0.00 0.86 ± 0.00 0.87 ± 0.01 0.61 ± 0.01 0.88 ± 0.00 0.53 ± 0.07

SVD 0.78 ± 0.01 0.89 ± 0.00 0.56 ± 0.02 0.84 ± 0.00 0.88 ± 0.02 0.91 ± 0.00 0.89 ± 0.01 0.68 ± 0.01 0.91 ± 0.01 0.44 ± 0.08
FWSVD

95%
0.79 ± 0.04 0.89 ± 0.00 0.56 ± 0.03 0.84 ± 0.00 0.88 ± 0.01 0.90 ± 0.00 0.89 ± 0.01 0.69 ± 0.01 0.91 ± 0.01 0.51 ± 0.08

TTM 0.77 ± 0.05 0.88 ± 0.00 0.52 ± 0.03 0.83 ± 0.00 0.83 ± 0.06 0.89 ± 0.00 0.88 ± 0.00 0.68 ± 0.02 0.90 ± 0.00 0.51 ± 0.07
FWTTM 0.78 ± 0.03 0.88 ± 0.00 0.52 ± 0.02 0.83 ± 0.00 0.87 ± 0.01 0.90 ± 0.00 0.88 ± 0.00 0.68 ± 0.02 0.90 ± 0.00 0.54 ± 0.06

Table A.2: The results of different types of compression of BERT for experiments
with task-oriented fine-tuning, compression, and further fine-tuning (Double-train).
The best results at each model size are in bold, best overall results are underlined.

Table A.3: The results of different types of compression for the bart-base model
for experiments with detoxification with task-oriented fine-tuning, compression, and
further fine-tuning (Single-train and Double-train). The best results at each model
size are in bold, best overall results are underlined. Italic results represent senseless
model outputs.

Pipeline Single-train Double-train

Method C. Rate STA SIM FL J STA SIM FL J

bart-base 100 % - - - - 0.89 0.60 0.82 0.44

FP16 eval.† 100 % - - - - 0.89 0.60 0.82 0.44

B.P. (95%) 63% - - - - 0.92 0.34 0.30 0.12

B.P. (65%) 74% - - - - 0.82 0.60 0.73 0.36

SVD 0.97 ± 0.04 0.18 ± 0.01 0.10 ± 0.05 0.01 ± 0.02 0.75 ± 0.01 0.59 ± 0.01 0.65 ± 0.01 0.28 ± 0.01

FWSVD

60%

0.32 ± 0.01 0.46 ± 0.01 0.58 ± 0.01 0.07 ± 0.01 0.78 ± 0.02 0.59 ± 0.01 0.68 ± 0.00 0.30 ± 0.01

TTM 0.97 ± 0.04 0.19 ± 0.02 0.16 ± 0.04 0.03 ± 0.01 0.74 ± 0.02 0.58 ± 0.01 0.64 ± 0.02 0.27 ± 0.01

FWTTM 0.99 ± 0.15 0.18 ± 0.01 0.19 ± 0.05 0.03 ± 0.02 0.74 ± 0.02 0.58 ± 0.00 0.65 ± 0.00 0.27 ± 0.01

SVD 0.85 ± 0.06 0.21 ± 0.01 0.14 ± 0.05 0.03 ± 0.01 0.82 ± 0.01 0.60 ± 0.01 0.77 ± 0.01 0.38 ± 0.01

FWSVD

74%

0.32 ± 0.01 0.46 ± 0.01 0.58 ± 0.01 0.07 ± 0.01 0.87 ± 0.00 0.61 ± 0.01 0.80 ± 0.01 0.42 ± 0.01

TTM 0.99 ± 0.02 0.17 ± 0.01 0.06 ± 0.07 0.01 ± 0.01 0.82 ± 0.01 0.61 ± 0.01 0.75 ± 0.01 0.37 ± 0.01

FWTTM 0.99 ± 0.03 0.18 ± 0.01 0.16 ± 0.05 0.03 ± 0.01 0.84 ± 0.01 0.60 ± 0.01 0.75 ± 0.01 0.38 ± 0.01

SVD 0.85 ± 0.01 0.42 ± 0.01 0.72 ± 0.01 0.25 ± 0.01 0.86 ± 0.00 0.61 ± 0.00 0.81 ± 0.00 0.43 ± 0.00

FWSVD

90%

0.70 ± 0.10 0.64 ± 0.01 0.82 ± 0.00 0.35 ± 0.01 0.87 ± 0.01 0.61 ± 0.00 0.81 ± 0.00 0.43 ± 0.00

TTM 0.49 ± 0.17 0.60 ± 0.01 0.71 ± 0.00 0.18 ± 0.01 0.86 ± 0.01 0.61 ± 0.00 0.80 ± 0.01 0.41 ± 0.01

FWTTM 0.82 ± 0.06 0.46 ± 0.01 0.59 ± 0.01 0.22 ± 0.01 0.86 ± 0.01 0.61 ± 0.00 0.80 ± 0.01 0.41 ± 0.00

157


