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Abstract

Over the past two decades, the number of hydraulic fracturing jobs has increased
significantly, resulting in a vast amount of data available for the development of pre-
dictive models. Analysis of post-fracturing production has shown that some stages
in multi-stage fractured completions can produce unevenly due to a combination of
geomechanics and fracturing design factors. Therefore, there is a need to optimise
the fracturing design. The solution proposed in this thesis is a data-driven fracturing
optimisation model. The workflow is divided into two logical parts: the first part
involves the creation of a digital database of field data from over 6000 multi-stage
hydraulic fracturing jobs in 23 oil fields in Western Siberia, Russia. This database,
with its large number of data points, is a rare and representative sample compared
to other datasets in the literature, which typically have only tens or hundreds of
points.

The database is composed of approx. 6000 data points, each represented by a
vector of 92 input variables relating to the reservoir, well, and fracture design param-
eters. The production data is characterized by 16 parameters, including cumulative
oil production. The focus of the study is on collecting data from various sources,
preprocessing the data, and developing a database architecture. Machine learning
techniques are used to solve the problem of production forecasting. Missing values
are filled through collaborative filtering. The production forecasting is solved using
the combination of Ridge Regression and CatBoost algorithms, with a predictive
ability of 64% as measured by the coefficient of determination (𝑅2).

The second part of the study addresses the inverse problem of selecting optimal
fracture design parameters to maximize production, along with a recommendation
system to guide production stimulation engineers in making informed decisions. The
study began with 387 parameters characterizing each well, including construction,
reservoir properties, fracture design, and production. After analysis, the model was
trained using 35 key parameters as input features. The model reveals the physically
explainable dependencies between the target (cumulative fluid production) and de-
sign parameters such as the number of stages, proppant mass, average and final
proppant concentrations, and fluid rate. To assist field engineers in analyzing pre-
vious fracturing treatments on similar wells, we developed methods using Euclidean
and cosine distance to search for similar wells. These methods were also used in a
workflow to determine the optimization parameters boundaries for a pilot well dur-
ing the field testing of the methodology. An inverse problem of selecting the optimal
fracture design parameters to maximize production was formulated as an optimiza-
tion problem and solved using four different optimization methods: surrogate-based
optimization, sequential least squares programming, particle swarm optimization,
and differential evolution. A recommendation system was created to guide produc-
tion stimulation engineers in making informed decisions about the optimized fracture
design, incorporating all the methods mentioned above.

3



Publications

1. A. Morozov, D. Popkov, V. Duplyakov, E. Mutalova, A. Osiptsov, A. Vain-

shtein, E. Burnaev, E. Shel, and G. Paderin. Data-driven model for hydraulic

fracturing design optimization: focus on building digital database and pro-

duction forecast. Journal of Petroleum Science and Engineering, 194:107504,

2020a. ISSN 0920-4105. doi:https://doi.org/10.1016/j.petrol.2020.107504

2. V. Duplyakov, A. Morozov, D. Popkov, E. Shel, A. Vainshtein, E. Burnaev,

A. Osiptsov, and G. Paderin. Data-driven model for hydraulic fracturing de-

sign optimization. part ii: Inverse problem. Journal of Petroleum Science and

Engineering, 208:109303, 2022. ISSN 0920-4105. doi:https://doi.org/10.1016/

j.petrol.2021.109303

3. V. Duplyakov, A. Morozov, D. Popkov, A. Vainshtein, A. Osiptsov, E. Bur-

naev, E. Shel, G. Paderin, P. Kabanova, I. Fayzullin, R. Uchuev, A. Mukhame-

tov, A. Prutsakov, I. Vikhman, and M. Staritsyn. Practical aspects of hydraulic

fracturing design optimization using machine learning on field data: Digital

database, algorithms and planning the field tests. 09 2020. doi:10.2118/203890-

MS

4. (In progress) V. Duplyakov, A. Morozov, D. Popkov, K. Pavlenko, A. Vain-

shtein, V. Kotezhekov, S. Kaygorodov, B. Belozerov, V. Vanovskiy, A. Os-

iptsov, and E. Burnaev. Data fusion of well logs, build-up test interpretations

and seismic data for reservoir permeability field estimation. Computers and

Geotechnics, 2023

Conference proceedings

1. A. Morozov, D. Popkov, V. Duplyakov, A. Osiptsov, A. Vainshtein, E. Bur-

naev, E. Shel, and G. Paderin. Machine learning on field data for hydraulic

fracturing design optimization: Digital database and production forecast model.

pages 1–5, 01 2020b. doi:10.3997/2214-4609.202032068

4

https://doi.org/https://doi.org/10.1016/j.petrol.2020.107504
https://doi.org/https://doi.org/10.1016/ j.petrol.2021.109303
https://doi.org/https://doi.org/10.1016/ j.petrol.2021.109303
https://doi.org/10.2118/203890-MS
https://doi.org/10.2118/203890-MS
https://doi.org/10.3997/2214-4609.202032068


2. V. Duplyakov, A. Morozov, D. Popkov, A. Vainshtein, A. Osiptsov, E. Bur-

naev, E. Shel, G. Paderin, P. Kabanova, I. Fayzullin, R. Uchuev, A. Mukhame-

tov, A. Prutsakov, I. Vikhman, and M. Staritsyn. Practical aspects of hydraulic

fracturing design optimization using machine learning on field data: Digital

database, algorithms and planning the field tests. page 24, SPE Symposium:

Hydraulic Fracturing in Russia. Experience and Prospects. Moscow, Russia,

2020

3. V. Duplyakov, V. Vanovskii, D. Popkov, A. Morozov, A. Vainstein, A. Os-

iptsov, S. Kaygorodov, V. Kotezhekov, B. Belozerov, and E. Burnaev. Building

a permeability map of an oil reservoir by combining data from logging, well

testing and seismic surveys. Intelligent data analysis in oil and gas industry.

Novosibirsk, Russia, 2022

Patents

1. G. Paderin, E. Shel, A. Osiptsov, E. Burnaev, A. Vainstein, V. Duplyakov,

A. Morozov, and D. Popkov. A way to select the optimal fracturing design

based on intelligent analysis of field data to increase hydrocarbon production,

№2775034, Russian Federation, 2022

2. (In progress) G. Paderin, E. Shel, A. Osiptsov, E. Burnaev, A. Vainstein,

V. Duplyakov, A. Morozov, and D. Popkov. Computer module "well analog

selection in terms of hydraulic fracturing", Russian Federation, 2023a

3. (In progress) G. Paderin, E. Shel, A. Osiptsov, E. Burnaev, A. Vainstein,

V. Duplyakov, A. Morozov, and D. Popkov. Computer module "production

prediction after hydraulic fracturing based on geology and hydraulic fracture

parameters", Russian Federation, 2023b

4. (In progress) G. Paderin, E. Shel, A. Osiptsov, E. Burnaev, A. Vainstein,

V. Duplyakov, A. Morozov, and D. Popkov. Computer module "fracturing

design optimization based on well production prediction", Russian Federation,

2023c

5



Acknowledgments

I am grateful to the management of LLC “Gazpromneft-STC” for organizational and

financial support of this work. To M.M. Khasanov, A.A. Pustovskikh, I.G. Fayzullin

and A.S. Margarit for organizational support. To E.V. Shel and G.V. Paderin for

scientific guidance. The help from P.K. Kabanova and A.R. Mukhametov in data

gathering is greatefully appreciated.

I would like to express my deepest gratitude to my supervisor, professor Andrey

Osiptsov, whose guidance, support, and encouragement were invaluable throughout

my doctoral journey. To Albert Vainstein, whose mentorship have left an indelible

mark on my work. Their insightful direction has shaped me into a diligent and

result-oriented individual, instilling within me a profound understanding of the im-

portance of achieving tangible outcomes. With heartfelt gratitude, I acknowledge

their invaluable contributions, which have not only enhanced my research but also

nurtured my personal growth. To my co-supervisor professor Evgeny Burnaev - his

expertise greatly enriched my research.

I am also immensely grateful to the members of my thesis committee: Alexander

Bernstein, Alexander Shapeev, Clément Fortin, Dmitry Garagash and Egor Dontsov,

for their thoughtful feedback, constructive criticism, and rigorous evaluation of my

work.

I would like to thank my colleagues Dmitriy and Anton for their camaraderie,

support, and intellectual stimulation. Our discussions and debates challenged me

to think more critically and creatively about my research, and I am grateful for the

friendship that developed as a result.

I want to express my appreciation to my incredible parents and grandparents.

From the very beginning, they instilled in me values of resilience, compassion, and

determination, which have propelled me forward all the times.

I am forever grateful to my wife Polina, whose unwavering love and support have

been a beacon of light during the most challenging moments of these times. In the

face of adversity, she has been my rock, providing boundless encouragement and

standing by my side.

6



To my aunt Olga, my mother-in-law and to all my friends: Alexander, Andreys,

Enrico, Evgenii, Gabriel, Giulia, Ilya, Ivan, Kelya, Kristina, Liza, Pavel, Sergey,

Seva, Susha, whose presence in my life (and countless games in Dota) have been a

source of immense joy, comfort, and encouragement.

7



Table of Contents

1 Introduction 13
1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Shale fracturing . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.2 Fracturing design and its optimization . . . . . . . . . . . . . 16
1.1.3 ML for frac design optimization . . . . . . . . . . . . . . . . . 17
1.1.4 Metrics of success for a fracturing job . . . . . . . . . . . . . . 20
1.1.5 ML methods used for HF optimization . . . . . . . . . . . . . 21
1.1.6 Optimization of HF parameters . . . . . . . . . . . . . . . . . 29

1.2 Objectives, novelty and significance of the work. . . . . . . . . . . . . 30

2 Data 33
2.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Handling outliers . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.2 Filling missing values . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Methodology 40
3.1 Forward problem. Predicting production after hydraulic fracturing . . 41

3.1.1 Target variable . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.3 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.4 Feature analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Inverse problem. Choosing the optimal design . . . . . . . . . . . . . 46
3.2.1 Selection of optimization intervals . . . . . . . . . . . . . . . . 47
3.2.2 Surrogate-based optimization (SBO) . . . . . . . . . . . . . . 52

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Validation and results 54
4.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Forward problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Filling missing values and clustering . . . . . . . . . . . . . . 55
4.2.2 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 Feature analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.4 Field test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Design optimization results . . . . . . . . . . . . . . . . . . . 64

8



5 Conclusions and Discussions 67
5.1 Data gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Forward problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Optimization interval limits . . . . . . . . . . . . . . . . . . . 71
5.3.2 Testing optimization algorithms . . . . . . . . . . . . . . . . . 72
5.3.3 Optimal target selection . . . . . . . . . . . . . . . . . . . . . 72
5.3.4 Retrospective analysis . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 76

Appendix 84

9



List of Figures

1-1 Dependence of prediction error on data set size and model complexity 23
1-2 A schematic diagram of the neuro-genetic approach . . . . . . . . . . 29

2-1 Distribution of the initial data . . . . . . . . . . . . . . . . . . . . . . 35
2-2 Distribution of the target function values . . . . . . . . . . . . . . . . 35
2-3 Distribution of wells by the field code number . . . . . . . . . . . . . 36
2-4 Distribution of missing values . . . . . . . . . . . . . . . . . . . . . . 39

3-1 General workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3-2 Cluster procedure: steps 1 – 5, 9 . . . . . . . . . . . . . . . . . . . . . 48
3-3 Cluster procedure: steps 6 – 8 . . . . . . . . . . . . . . . . . . . . . . 48
3-4 t-SNE scatter plot for cluster visualization . . . . . . . . . . . . . . . 50

4-1 Wells clustering by DBSCAN algorithm, represented as t-SNE visu-
alization plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4-2 Comparing two models for predicting production: CatBoost (green)
vs more smooth Stacked (Ridge+CatBoost) dependences . . . . . . . 58

4-3 Regression plot for the best model on test set . . . . . . . . . . . . . 58
4-4 Statistical feature importance: Sobol sensitivity scores for the entire

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4-5 SHAP feature importance for refracturing operations . . . . . . . . . 60
4-6 Shap feature importance for primary fracturing operations on new wells 61
4-7 Model sensitivity analysis: tornado chart of the OVAT analysis . . . . 62
4-8 Recursive feature elimination: model’s score vs. number of input

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4-9 Real vs Predicted production on the real design . . . . . . . . . . . . 63

A-1 Forward model algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 87
A-2 Algorithms’ performance on a test set (untuned): dropping NaNs

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A-3 Algorithms’ performance on a test set (untuned): filling by well pad . 89
A-4 Algorithms’ performance on a test set (untuned): matrix imputation

(collaborative filtering) . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A-5 Algorithms’ performance on a test set (untuned): filling by mean

values, calculated in each corresponding cluster . . . . . . . . . . . . 91
A-6 Example of offset wells selection . . . . . . . . . . . . . . . . . . . . . 91

10



A-7 Average optimized production for all wells by different optimization
algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A-8 Average recommended fluid rate for the wells . . . . . . . . . . . . . . 92
A-9 Average recommended mean proppant concentration for the wells . . 92
A-10 Average recommended proppant masses (per stage) for the wells . . . 93
A-11 Average recommended final proppant concentration for the wells . . . 93
A-12 Average recommended pad share for the wells . . . . . . . . . . . . . 93
A-13 Average recommended calculated epsilon . . . . . . . . . . . . . . . . 94
A-14 Production increase with optimal parameters set . . . . . . . . . . . . 94
A-15 Optimized production comparison between methods . . . . . . . . . . 94

11



List of Tables

1.1 Success metrics of HF job . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Statistics of the database . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Metrics of the prediction models on the hold-out (30%) test set . . . 58

A.1 Features used to describe a well . . . . . . . . . . . . . . . . . . . . . 86

12



Chapter 1

Introduction

The importance of hydraulic fracturing design optimization in the petroleum in-

dustry cannot be overstated. As the demand for hydrocarbon resources continues

to rise, maximizing the efficiency and productivity of hydraulic fracturing opera-

tions has become a critical endeavor. The design of effective fracture stimulation

treatments is a complex task that requires a thorough understanding of reservoir

characteristics, fluid dynamics, and operational parameters.

This doctoral thesis delves into the realm of hydraulic fracturing design optimiza-

tion and presents a comprehensive pipeline. The objective is to reduce the workflow

burden on petroleum engineers and enable them to make well-informed decisions

based on proven results from previous projects.

The primary motivation behind this work stems from the desire to address the

challenges faced by engineers in optimizing hydraulic fracturing designs. Tradition-

ally, engineers have relied on trial and error approaches, simplistic analytical or

time-consuming numerical models to determine optimal fracture parameters. These

methods often consume substantial time and resources, with no guarantee of achiev-

ing the desired outcomes.

The approach presented in this study leverages the wealth of available data

and experiences from previously completed projects to identify the most effective

design parameters for a given technological environment. By capitalizing on this

knowledge base, engineers can drastically reduce the time and effort required for

design optimization, leading to significant cost savings and increased operational
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efficiency.

Furthermore, the integration of machine learning models that expedite the esti-

mation of cumulative fluid production after hydraulic fracturing adds another layer

of importance to this work. Accurate production forecasting is crucial for effective

reservoir management and decision-making. By incorporating advanced machine

learning techniques, engineers can achieve faster and more accurate predictions of

production, enabling them to optimize production strategies and enhance the overall

performance of hydraulic fracturing operations.

The outcomes of this research have far-reaching implications for the petroleum

industry. Ultimately, this work contributes to the advancement of sustainable hy-

drocarbon extraction, ensuring the efficient utilization of resources and driving the

industry towards a more environmentally responsible and economically viable future.

The goals of the literature review are to provide a comprehensive overview of ex-

isting research and methodologies, evaluate their strengths and limitations, identify

gaps in the current knowledge, understand the state-of-the-art and emerging trends,

examine challenges and propose potential solutions, identify key factors influencing

optimization outcomes, synthesize findings to develop a theoretical framework, and

establish a foundation for further research. Through a critical analysis of the litera-

ture, this review aims to present a cohesive understanding of the current knowledge

in hydraulic fracturing optimization and inform subsequent research endeavors in

the field.

1.1 Literature review

Hydraulic fracturing (HF) is a widely-used method for stimulating oil and gas pro-

duction from wells located in hydrocarbon-rich formations Economides et al. [1989].

The process involves pumping fluid containing proppant particles at high pressures

through the tubing and into the reservoir formation, creating fractures. The frac-

tures are then filled with tightly packed proppant particles, which provide highly

conductive channels for hydrocarbons to flow from the reservoir to the well and

reach the surface. The technology of HF has been in commercial use since 1947

14



in the United States (US), and since then has advanced in complexity, with wells

now being drilled directionally with horizontal segments and multi-stage fractured

completion.

The evolution of hydraulic fracturing technology has been shaped by advance-

ments in chemistry and material science, such as the creation of fracturing fluids with

controlled rheology, proppants, fibers, and chemical diverters, as well as mechani-

cal engineering innovations like ball-activated sliding sleeves for precise stimulation

of specific zones. Despite being a cost-effective method, HF still has room for im-

provement in terms of ultimate production as studies have shown that up to 30% of

fractures in a multi-stage completion are not productive He et al. [2017], Al-Shamma

et al. [2014]. Research such as the analysis in Miller et al. [2011] of distributed pro-

duction logs from various stages in a near-horizontal well found that almost one

third of perforation clusters do not contribute to production due to various factors

such as reservoir heterogeneity and geomechanics, as well as flaws in the fracturing

design. Improving the design of HF jobs can be done through either continuum

mechanics modeling using commercial simulators with optimization algorithms, or

through data analytics techniques applied to an actual field database. The latter

approach has been taken in this study.

1.1.1 Shale fracturing

The growth of hydraulic fracturing (HF) in shale oil and gas has been driven by

advancements in directional drilling and multi-stage fracturing. This has led to an

increase in the world oil market supply and has turned the United States into a

major supplier. The shale gas technology revolution has generated a vast amount of

digital field data from multi-stage fracking operations in US shale formations. This

data has become a valuable resource for data science research aimed at optimizing

HF design Mohaghegh et al. [2017].

The modeling of shale reservoirs is a complex issue, with the flow mechanism

not yet fully understood and accurately simulated throughout the industry. Ma-

chine learning-based pattern recognition technology can be utilized to improve full-

scale simulation, providing better prediction results for shale formations such as
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the Bakken shale. This is demonstrated in the study by Mohaghegh et al. [2011].

Another example is the full-scale simulation of the Marcellus shale, where data-

driven analytics was employed instead of traditional hydrodynamic models is the

work of Esmaili and Mohaghegh [2016].

The interaction between natural and artificial fractures during the fracturing pro-

cess has been studied, with the use of artificial neural networks (ANN), as shown in

references such as Keshavarzi et al. [2013], Burnaev and Prikhod’ko [2013], Belyaev

and Burnaev [2013], Burnaev and Erofeev [2016], Guo et al. [2014]. These stud-

ies aim to predict the behavior of artificial fractures when they encounter natural

fractures. A new method for controlling the gas well reservoir model in fractured

reservoirs is proposed in Guo et al. [2014] through a three-level index system of

reservoir properties evaluation, based on fuzzy logic theory and multilevel gray cor-

relation.

The authors of Schuetter et al. [2015] developed a method to differentiate high-

performing wells from underperforming ones using a Wolfcamp well dataset. They

used Decision Tree analysis to distinguish the top 25 wells from the bottom 25

and also selected the most significant parameters that define a successful hydraulic

fracturing operation.

1.1.2 Fracturing design and its optimization

In the oilfield services industry, hydraulic fracturing job evaluation and parametric

analysis are typically performed using numerical simulators based on coupled solid-

fluid mechanics models. There are many HF simulators that are based on models like

KGD, PKN, P3D, and Planar3D, that are used to simulate the hydraulic fracture

propagation process in shale formations. The more sophisticated models for shale

fracturing have been presented in studies of Detournay [2016], Osiptsov [2017]. Once

a robust forward model of the process is developed, an optimization problem can be

formulated with a specified objective function, as outlined in Queipo et al. [2002].

One specific example of stimulation in carbonate reservoirs is acid fracturing, which

has been studied in Zoveidavianpoor et al. [2012] in an Iranian field with 20 fractured

wells.

16



A typical approach to optimization in HF design involves the use of a surrogate

model output for the objective function and integrates a hydraulic fracture simulator

for predicting the fracture geometry and a production model to estimate the flow

rate. The computational model calculates the objective function, which can be any

chosen metric for optimizing the HF design. There have been various studies that

demonstrate the implementation of this optimization strategy, such as Queipo et al.

[2002] and Rahman et al. [2001]. The latter involves a multi-objective optimization

workflow that couples the fracture geometry module, the hydrocarbon production

module, and an investment-return cash flow module.

1.1.3 ML for frac design optimization

There has been a growing body of research focusing on the application of big data

analytics to the optimization of hydraulic fracturing processes. This surge in research

can be attributed to the heightened interest in multistage fracturing techniques

employed in shale formations.

The emergence of big data analytics offers significant potential to improve the

understanding and optimization of HF operations. By leveraging large volumes

of diverse data, including geological, reservoir, production, and operational data,

researchers aim to uncover valuable insights and patterns that can inform more

effective HF design and decision-making.

A general workflow of the data science approach to HF for horizontal wells impli-

cate techniques that cluster similar critical time-series into Frac-Classes of frac data

(surface treatment pressure, slurry pumping rates, proppant loading, volume of prop-

pant pumped). Correlation of the average Frac-Classes with 30-day peak production

is used on the second step to distinguish geographically distinct areas Anderson*

et al. [2016].

Statistically representative synthetic data set is used occasionally in the frac-

ture model to build data-driven fracture models. The performance of the data-

driven models is validated by comparing the results to a numerical model, including

size, number, location, phasing angle of perforations, fluid and proppant type, rock

strength, porosity, and permeability on the fracture design optimization using vari-
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ous fracture models. Data-driven predictive models (surrogate models, see Belyaev

et al. [2016], Burnaev [2019]) are generated by using ANN and Support Vector

Machine (SVM) algorithms Temizel et al. [2015]. Another approach to construct-

ing metamodels on transient data (time series) is Dynamic Mode Decomposition

(DMD), which is being explored, e.g., in Chashchin et al [2020].

Affecting geomechanics parameters are Young’s modulus and Poisson’s ratio ob-

tained from lab tests on core samples, that is far away from covering full log het-

erogeneity with missing values, hence the authors used Fuzzy Logic, Functional

Networks and ANNs Abdulraheem et al. [2009].

A detailed literature review on the subject of fracturing design optimization was

provided by Gao and You [2017], where the authors emphasized the necessity of

bringing into the full scale shale gas systems a common integrating approach. The

data-driven analytics was proposed as a trend in the HF design optimization. Au-

thors induced game-theoretic modeling and optimization methodologies to address

the multiple stakeholders.

The impact of proppant pumping schedule during the job has been investigated

in Poulsen et al. [1986] by coupling fractured well simulator results and economical

evaluations.

There are several approaches when different target parameters are considered as

criteria to optimize. For a wide range of reasons, the proppant fraction is quite an

important criteria to investigate. In Saldungaray et al. [2012] the authors made a

significant step forward gaining 4 major case studies based on shale low-permeable

reservoirs across the US and suggesting strategy to evaluate the realistic conductivity

and impact on stimulation economics of proppant selection.

Field data, largely accumulated over the past decades, are being digitized and

structured within oil companies. The market landscape in the era of declining oil

prices after 2014 has stimulated shale operators to look closer at the capabilities of

data science to optimize the fracturing technology Betz et al. [2015]. The issue of

working with short-term data and need to find a way to turn that into long-term

well performance was emphasized. Proppant loading was shown to be one of the

most important variables for productivity. Increasing industry interest to artificial
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intelligence and to application of ML algorithms is justified by the coincidence of

several points: processing power growth and amount of data available for analysis.

Thousands of completions are digitalized (e.g., see Awoleke et al. [2011]), giving

the grounds for the use of a wide range of big data analytics methods. One of the

most recent studies Wang and Chen [2019b] investigated the relationships between

the stimulation parameters and first-year oil production for a database of horizontal

multistage fractured wells drilled in unconventional Montney formation in Canada.

Four commonly used supervised learning approaches including Random Forest (RF),

AdaBoost, SVM, and ANN Hastie et al. [2009] were evaluated to demonstrate that

the RF performs the best in terms of prediction accuracy.

The state of affairs is a bit different in other parts of the world, where, though

the wells are massively fractured, the data is not readily available and is not of that

high quality as in the North America, which poses a known problem of “small data”

analysis, where neural networks do not work, and different approaches are called

for.

In Russia, there are a few attempts of using ML algorithms to process data of

HF, e.g., the paper Alimkhanov et al. [2014] presents the results of developing a

database of 300 wells, where fracturing was performed. Operational parameters of

the treatments were not taken into account in this paper. Classification models were

developed to distinguish between efficient/inefficient treatments. Job success criteria

were suggested in order to evaluate the impact of geological parameters on the

efficiency via classification. Regression models were proposed for predicting post-frac

flow rate and water cut. A portfolio of standard algorithms was used such as decision

tree, random forest, boosting, ANNs, linear regression and SVM. Limitations of

linear regression model applied for water cut prediction were discussed. Recent

study Makhotin et al. [2019] used gradient boosting to solve the regression problem

for predicting the production rate after the simulation treatment on a data set of

270 wells. Mathematical model construction task was formulated in detail, though

data sources and the details of data gathering and preprocessing were not discussed.
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1.1.4 Metrics of success for a fracturing job

The ultimate optimization of a stimulation treatment is only possible if the outcome

is measured. Below, various approaches to quantify the success of an HF job are

presented:

• Cumulative oil production of 6 and 18 months is used by Wang et al. [2016]

as a target parameter, and is predicted by a model with 18 input parameters,

characterizing Bakken formation in North America.

• Predictive models for the 12 months cumulative oil production are built by

Schuetter et al. [2018] using multiple input parameters characterizing well

location, architecture, and completions.

• Feed-forward neural network was used by Awoleke et al. [2011] to predict

average production for wells drilled in Denton and Parker Counties, Texas, of

the Barnett shale based on average monthly production. The mean value was

evaluated using the cumulative gas produced normalized by the production

time.

• In Balen et al. [1988a], a procedure was presented to optimize the fracture

treatment parameters such as fracture length, volume of proppant and fluids,

pump rates, etc. Cost sensitivity study upon well and fracture parameters vs

NPV as a maximization criteria is used. Longer fractures does not necessarily

increase NPV, a maximum discounted well revenue is observed by Hareland

et al. [1993].

• Statistically representative set of synthetic data served as an input for an ML

algorithm in Temizel et al. [2015]. The study analyzed the impact of each

input parameter to the simulation results like cumulative gas production for

contingent resources like shale gas simulation model.

• ∆𝑄 = (𝑄2 −𝑄1) was an uplift metric to seek the re-fracture candidate for 50

wells oilfield dataset using ANN to predict after the job oil production rate 𝑄2

based on 𝑄1 oil production rate before the job Yanfang and Salehi [2014].
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Metrics Source
Cumulative oil production 6/18 month
just after the job Wang et al. [2016]

12 months cumulative oil production Schuetter et al. [2018]
Average monthly oil production after the job Awoleke et al. [2011]
NPV Balen et al. [1988a]
Comparison to modelling Temizel et al. [2015]
Delta of averaged Q oil Yanfang and Salehi [2014]
Pikes in liquid production for 1, 3
and 12 months Pankaj et al. [2018]

Break even point (job cost equal to
total revenue after the job) Alimkhanov et al. [2014]

Table 1.1: Success metrics of HF job

• 𝑄 pikes approach is presented by implementing B1, B2 and B3 statistical

moving average for one, three and twelve-month best production results con-

sequently in Pankaj et al. [2018]. The simulation is done over 2000 dimension

dataset to reap the benefit from proxy modeling treatment.

• Net present value is one of the metrics used to evaluate the success of a HF

job Balen et al. [1988b]. Economical bias for HF is detailed by Balen et al.

[1988a]. The proposed sequential approach of integrating upstream uncer-

tainties to NPV creates an important tool in the identification of the crucial

parameters affecting a particular job.

In Table 1.1 the list of the most common metrics for evaluation of HF job effi-

ciency is presented.

1.1.5 ML methods used for HF optimization

ML is a broad subfield of artificial intelligence aimed to enable machines to extract

patterns from data based on mathematical statistics, numerical methods, optimiza-

tion, probability theory, discrete analysis, geometry, etc. ML tasks are the following:

classification, regression, dimensionality reduction, clustering, ranking and others.

Also, ML is subdivided into supervised/unsupervised and reinforcement learning.

Supervised ML problem can be formulated as constructing a target function

𝑓 : 𝑋 → 𝑌 approximating 𝑓 given a learning sample 𝑆𝑚 = {(𝑥𝑚, 𝑦𝑚)}, where
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𝑥𝑚 ∈ 𝑋, 𝑦𝑚 ∈ 𝑌 with 𝑦𝑖 = 𝑓(𝑥𝑖).

To avoid overfitting (discussed in the next section), it is also very important to

select an ML model properly. This choice largely depends on the size, quality and

nature of the data, but often without a real experiment it is very difficult to answer

which of the algorithms will be really effective.

The lack of data becomes one of the most common problems when dealing with

field data. Some ML models can manage it (decision trees), some are very sensitive

to sparse data (ANNs). A number of the most popular algorithms such as linear

models or ANNs do not cope with the lack of data, SVMs have a large list of

parameters that need to be set, and trees are prone to overfitting.

The choice of the model and the choice of the initial sample can highly affect the

final results and the correct interpretation.

There are articles with results on application of ML to HF data that describe

models with high predictive accuracy. However, the authors use small samples

with rather homogeneous data and complex models prone to overfitting. Therefore,

more research is needed to evaluate prediction accuracy and stability separately for

different fields and well types.

1.1.5.1 Overfitting

Today, there is an increasing trend in the number of papers on the application of

ML in the field of HF data processing. However, many of them could lead a reader

to question the validity of the results, which could be erroneous due to overfitting.

Overfitting is a negative phenomenon that occurs when the learning algorithm

generates a model that provides predictions mimicking a training dataset too ac-

curately, but have very inaccurate predictions on the test data Hastie et al. [2009].

In other words, overfitting is the use of models or procedures that violate the so-

called Occam Razor Hawkins [2004]: the models include more terms and variables

than necessary, or use more complex approaches than necessary. Figure 1-1 shows

how the pattern of training for test and training datasets changes dramatically if

overfitting takes place.

There are several reasons for this phenomenon Hawkins [2004], Baumes et al.
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Figure 1-1: Dependence of prediction error on data set size and model complexity

[2006]:

• Traditional overfitting: learning a complex model on a small amount of data

without validation. This is a fairly common problem, especially for industries

that not always have access to big datasets, such as medicine, due to the

difficulties with data collection.

• Parameter tweak overfitting: usage of a learning algorithm with too many

hyperparameters. Selection of the parameters based on the performance on

the test set.

• Bad statistics: misuse statistics to overstate confidence. Often some known-

false assumptions about some system are made and then excessive confidence

of results is derived. E.g. we use Gaussian assumption when estimating con-

fidence.

• Incomplete prediction: use an incorrectly chosen target variable or its incorrect

representation. E.g. there is a data leak and inputs already contain target

variable.

• Human-loop overfitting: a human is still a part of the learning process, he

or she selects hyperparameters, creates a database from measurements, so we
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should take into account overfitting by the entire human/computer interaction.

For example, in the article Alimkhanov et al. [2014] only 289 wells, each described

by 178 features, were considered for the analysis. This number of points is too small

compared to the number of input features, so a sufficiently complex predictive model

simply “remembers” the entire dataset, but it is unlikely that the model is robust

enough and can provide reliable predictions. This is also confirmed by a very large

scatter of results: the coefficient of determination varies from 0.2 to 0.6.

In this context you can find many articles, which used small data: e.g. in Mo-

haghegh et al. [2002] — 150 wells, or in Esmaili and Mohaghegh [2016] — 135 wells,

etc. Also, each of the mentioned articles uses a very limited choice of input features,

which exclude some important stages of the HF. For example, article Lolon et al.

[2016] uses the following parameters to predict the quality of the HF performed:

stage spacing, cementing, number of stages, average proppant pumped, mass of liq-

uid pumped, maximum treatment rate, water cut, gross layer thickness, oil gravity,

Lower Bakken Shale TOC, Upper Bakken Shale TOC, total vertical depth. Such set

of parameters does not take into account many nuances, such as the geomechanical

parameters of the formation or the completion parameters of the well.

Quite good results were shown by the authors of the article Schuetter et al.

[2015]; they also investigated various models. But as noted in the article from 476

wells, only 171 have no NaN values.

In addition to the problems described above, overfitting may be caused by using

too complex models: in many articles they use one of the most popular ML methods,

the artificial neural network (ANN). But it is known that a neural network is a highly

non-linear model that very poorly copes with the lack of data and is extremely prone

to overfitting. Lack of data is a fairly frequent case when it comes to a real field

data, which makes the use of ANNs unreliable.

The authors of the article use the SVM algorithm Xiaofeng et al. [2016]; the main

disadvantage of SVM is that it has several key hyperparameters that need to be set

correctly to achieve the best classification results for each given problem. The same

hyperparameters can be ideal for one task and not fit at all for another. Therefore,

when working with SVM a lot of experiments should be made, and the calculation
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takes a fairly large amount of time. Moreover, a human-loop overfitting can occur.

The above algorithms work very poorly with missing values, and so additional

tricks are needed, which often leads to data leak or to various types of overfitting.

Among other things these models are not easily interpretable.

In conclusion, to reduce overfitting and construct a robust predictive model, the

necessary condition is to develop a big and reliable training dataset that contains

all required input features.

1.1.5.2 Dimensionality reduction

When a dataset has large number of features (high dimensionality), it can lead to a

long ML algorithm computation time as well as difficulties in finding a good solution

due to excessive noise in data. In addition, for higher dimensionality we need more

examples in the data set to construct a reliable and accurate predictive model. In

addition, this problem greatly increases the likelihood that two input points are too

far away, which, like in case of outliers, leads to overfitting. Therefore, in order

to decrease input dimensionality and at the same time to keep the completeness of

information with its decreasing, we can use dimensionality reduction and manifold

learning methods, see Ma and Fu [2011], Kuleshov et al. [2018]. Lastly, this trick

helps us visualizing multidimensional data. In our work, we used T-distributed

Stochastic Neighbor Embedding (t-SNE) algorithm van der Maaten and Hinton

[2008] for visualization after dimensionality reduction and missing values imputation.

1.1.5.3 Clustering

Clustering methods Hastie et al. [2009] are used to identify groups of similar objects

in multivariate datasets. In other words, our task is to select groups of objects as

close as possible to each other, which, by virtue of the similarity hypothesis, will

form our clusters. The clustering belongs to the class of unsupervised learning tasks

and can be used to find structures in data. Since our database includes 23 different

oilfields, horizontal and vertical wells, as well as different types of fracture design,

it would be naive to assume that data is homogeneous and can be described by a

single predictive model.
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Thus, by dividing dataset in clusters we can obtain more homogenuous subsam-

ples, so that ML algorithms can easily construct more accurate models on subsam-

ples Grihon et al. [2013]. In addition, clustering can be used for detecting outliers

Aggarwal and Sathe [2017], Smolyakov et al. [2019] in a multidimensional space.

We utilise this for further analysis. In our case, we used t-SNE to visualize a

low-dimensional structure of the data set to extract clusters and identify outlying

measurements.

1.1.5.4 Regression

After selecting a specific sample of data, it is necessary to solve the regression

problem, i.e., to restore a continuous target value 𝑦 from the original input vector

of features 𝑥 Forrester et al. [2008], Belyaev et al. [2016]. The dependence of the

mean value 𝜇 = 𝑓(𝑥) of 𝑦 on 𝑥 is called the regression of 𝑦 on 𝑥.

In the reviewed articles other authors considered different approaches how to

define a target variable. In particular, they considered cumulative production for

3, 6 and 12 months. However, we noted a strong correlation between values of

cumulative production for 3, 6 and 12 months. Thus, as a target variable we consider

only values of cumulative production for 3 months.

After building a regression model we assess its accuracy on a separate test sample.

As a prediction accuracy measure we use the coefficient of determination and mean

absolute percentage error (MAPE).

1.1.5.5 Ensemble of models

The ensemble of models Hastie et al. [2009], Burnaev and Prikhod’ko [2013] uses

several models in order to obtain better prediction efficiency than could be obtained

from each trained model individually.

Ensembles, due to their high flexibility, are very prone to overfitting, but in

practice, some assembly techniques, such as bagging, tend to reduce overfitting.

The ensemble method is a more powerful tool compared to stand-alone forecasting

models, since it minimizes the influence of randomness, averaging the errors of each

basic model and reduces the variance.
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1.1.5.6 Feature analysis

The use of tree-based models makes it easy to identify features that are of zero

importance, because they are not used when calculating prediction. Thus, it is

possible to gradually discard unnecessary features, until the calculation time and

the quality of the prediction becomes acceptable, while the database does not lose

its information content too much.

There is the Boruta method Kursa and Rudnicki [2010] which is a test of the

built-in solutions for finding important parameters. The essence of the algorithm is

that features are deleted that have a Z-measure less than the maximum Z-measure

among the added features at each iteration. Also, the Sobol method Sobol [2001a]

is widely used for feature importance. The method is based on the representation

of the function of many parameters as the sum of functions of a smaller number of

variables with special properties.

In addition, testing and verifying feature importance can be done with the one-

variable-at-a-time (OVAT) method Daniel [1973]. It is a method of creating ex-

periments involving testing of parameters one at a time instead of multiple factors

simultaneously. It is primarily used when data is noisy and it is not obvious which

features affect a target.

1.1.5.7 Hyperparameter search

Hyperparameter optimization is the problem of choosing a set of optimal hyperpa-

rameters for a learning algorithm. Whether the algorithm is suitable for the data

directly depends on hyperparameters, which directly influence overfitting or under-

fitting. Each model requires different assumptions, weights or training speeds for

different types of data under the conditions of a given loss function.

The most common method for optimizing hyperparameters is a grid search, which

simply does a full search on a manually specified subset of the hyperparameter space

of the training algorithm. But before using the grid search, a random search can be

used to estimate the boundaries of a region where parameters are selected. Moreover,

according to the Vapnik-Chervonenkis theory, the more flexible a model is, the worse
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its generalizing ability. Therefore, it is very important to select the model complexity

conforming to the given data set, otherwise prediction will be unreliable. To check

the generalization ability we can use a cross-validation procedure.

1.1.5.8 Uncertainty Quantification

Uncertainty comes from errors made by an ML algorithm and from noise in a data

set. Hence, predicting an output only is not sufficient to be certain with results.

Therefore we should also quantify uncertainty of the prediction. This can be done

by using prediction intervals providing probabilistic upper and lower bounds on an

estimate of the output variable.

The prediction interval depends on some combination of the estimated variance

of the model and the variance of the output variable caused by noise. The variance

of the model is due to variance of model parameters estimates, resulted from noise

in the original data set. By building confidence intervals for the parameters and

propagating them through the model we can estimate the variance of the model.

In practice to build prediction interval for a general nonlinear model we can use

the bootstrap resampling method, although it is rather computationally demanding

Hastie et al. [2009].

It is important to note the difference between prediction and confidence interval:

the former quantifies the uncertainty on a single observation, estimated from the

population, and the latter quantifies the uncertainty on an estimated population

variable, such as a mean or a standard deviation. Also, it is necessary to quantify

uncertainty on ML model performance which we can do by estimating the corre-

sponding confidence intervals.

Besides prediction or confidence intervals another important type of uncertainty

quantification is related to forward uncertainty propagation when we estimate how

the variability of input variables of the model influence the output variability to

select the most important input parameters Sobol [2001a], Burnaev et al. [2017].
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1.1.6 Optimization of HF parameters

There are published studies on optimization of HF parameters based on some rela-

tively moderate data sets with hundreds of wells, e.g., see a study on 570 wells in

Clinton sand Mohaghegh S [1996]. The first stage is a neural network which takes

as input fracturing completions data and production history and predicts post-frac

deliverability. The model serves as a screening tool for excluding wells, which cannot

be considerably enhanced after a frac job. The second stage is based on a neural

network, where the branch of the network, responsible for the fracture design pa-

rameters, is connected to the optimization algorithm to obtain the optimized frac

design for each well and the expected post frac deliverability (see Fig. 1-2).

Figure 1-2: A schematic diagram of the neuro-genetic approach

The work E. T. Woldemariam, H. G. Lemu [2019] also utilizes a neuro-genetic

algorithm in the optimization pipeline instead of a computationally complex implicit

numerical hydrodynamic model. In particular, the article presents a case study

of neuro-genetic optimization using the example of a cross-flow microturbine. In

another paper Wang and Chen [2019a] an ML regression analysis on more than

3500 wells was performed, the authors optimized the design by visual analysis with

taking a pair of the most important parameters and selecting a region of the most

optimal design.

Speaking about other industries, the article Shi et al. [2019] uses neural networks

and a hybrid multisubgradient descent method with adaptive learning rate to solve

multicriteria optimization of multiple tasks (generation of too large droplets and too
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low droplet speed) in the field of bioprinting. The proposed method can improve

both printing accuracy and stability, and is useful for realizing precise cell arrays

and complex biological functions.

Another application of machine learning and optimization is the design optimiza-

tion of thin multilayer solar cells to maximize external quantum efficiency Kaya and

Hajimirza [2019]. The authors utilize the concept of transfer learning which implies

the use of experience gained in solving one problem to solve another, similar prob-

lem. The reason why the transfer learning is applied to the problem is because the

problem involves the change of design specifications. Therefore, the transfer learning

model acts as a function of surrogate optimization, which refits the surrogate more

efficiently. In particular, the procedure improved the results by 2-3 times using only

half of the training samples compared to the usual model.

1.2 Objectives, novelty and significance of the work.

HF technology is a complex process, which involves accurate planning and design

using multi-discipline mathematical models based on coupled solid Detournay [2016]

and fluid Osiptsov [2017] mechanics. At the same time, the comparison of flow

rate prediction from reservoir simulators using fracture geometry predicted by HF

simulators vs. real field data suggests there is still significant uncertainty in the

models.

In contrast to the traditional approach to making the design of fracturing technol-

ogy based on parametric studies with an HF simulator, it is proposed to investigate

the problem of design optimization using ML algorithms on field data from HF jobs,

including reservoir, well, frac design, and production data. Training database would

be real field data collected on fracturing jobs in Western Siberia, Russia.

The entire database from real fracturing jobs can be conventionally split into the

input data and the output data. The input data consists of the parameters of the

reservoir and the well (permeability, porosity, hydrocarbon properties, etc.) and the

frac job design parameters (pumping rate, proppant mass and concentraion, etc.).

The output is a production parameter.
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The usefulness of hybrid modeling is widely reported in the literature Helmy et al.

[2010]. Numerous efforts have been made by researches to implement data science

to lab cost reduction issues. PVT correlations correction for crude oil systems were

comparatively studied between ANN and SVM algorithms El-Sebakhy et al. [2007].

Finally, the problem at hand is formulated as follows: one may suppose that

a typical hydraulically-fractured well does not reach its full potential, because the

fracturing design is not optimal. Hence, a scientific question can be posed within the

big data analysis discipline: what is the set of fracturing design parameters, which for

a given set of the reservoir characterization-well parameters yields maximum post-

fracturing production? In order to answer this question it is proposed to develop

a ML algorithm, which would allow one to determine the optimal set of HF design

parameters based on the analysis of the available field data.

The recommendations should be made on

• oil production forecast based on well information;

• the optimum frac design;

• data acquisition systems, which are required to improve the quality of data

analytics methods.

The following hypotheses and research questions will be checked in the frame of

the current research:

1. Are there systematic problems with HF design?

2. What is the objective function for optimization of HF design? What are

various metrics of success?

3. How to validate the input database?

4. What database is full (sufficient)? (Optimum ratio of number of data points

vs. number of features for the database?)

5. What are the essential parameters one can get from the field data to construct

a predictive model and optimize the HF design?
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6. Is there a reliable ML-based methodology for finding the optimum set of pa-

rameters to design a successful HF job?

As a result, a complete HF design optimization pipeline should be developed.

This pipeline should include the collection of all necessary data, its prepro-

cessing, and the prediction of the target value for further optimization.

It is expected that the time to implement such a pipeline should be reasonably

short. It should outperform existing methods that involve time-consuming

hydrodynamic modeling.
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Chapter 2

Data

Following the report by McKinsey&Company from 2016 the majority of companies

get real profit from annually collected data and analytics Henke et al. [2016]. How-

ever, the main problem companies usually face while getting profit from data lies

inside the organizational part of the work.

Most of the researches skip the phase of data mining, considering the ready-made

dataset as a starting point for ML. Nevertheless, we can get misleading conclusions

from false ML predictions due to learning on the low-quality dataset. As follows

from results of Gaurav et al. [2017] the most important thing when doing the ML

study is not only a representative sample of the wells, but also a complete set of

parameters that can fully describe the fracture process with the required accuracy.

As can be seen from Section 1.1.5.1, where we describe various types of overfit-

ting, the most important one is related to a poor quality of the training dataset. In

addition, if in case of a non-representative training dataset we use a subsample of

it to train the model, corresponding results will be very unstable and will hide the

actual state of affairs.

It is known that data preprocessing actually takes up to 74% of the entire time

in every data-based project Press [2016]. Having a good, high-quality and validated

database is the main key to obtain the interpretable solution using ML. The database

must include all the parameters that are important from the point of view of the

physics of the process, be accurate in its representation and verified by subject

domain experts in order to avoid the influence of errors in database maintenance.
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Unfortunately, in field conditions each block of information about different stages

of the HF is recorded in a separate database; as a result of this work there is no

integrated database containing information about sufficient number of wells that

would include all factors for decision making. So, a right way for data preprocessing

should be used in order to make a given data set more useful, work – more efficient

and results – more reliable.

2.1 Data description

All necessary information is collected from the following sources (Fig. 2-1):

• Frac-list — a document with a general description of the process and the main

stages of proppant pumping;

• Monthly production report (MPR) — a table with a production history data

collected monthly after the conducted fracturing;

• Operating practices — geological and operational data collected monthly;

• Geomechanics data — stress contrasts, Poisson’s ratio, strain modules for each

of the formations;

• PVT — physical properties of the fluids for each of the formation;

• Layers intersection data;

• Well logs interpretation data.

Frac-list was selected as the primary source due to the volume of crucial stage-

by-stage data and the existence of all ID keys such as field, well, layer and date of

HF. It is worth mentioning that frac-list is full of manually filled entries. Moreover,

the fact that operations where pumping was interrupted (STOP, or a screen-out)

are not necessarily tagged, makes the problem more complex.

Each source from the above list was processed individually, depending on the

specifics before merging them together. Particularly, monthly data have been con-

solidated in 3-, 6- and 12-months slices. Fig. 2-2 shows the distribution of cumulative

fluid production for 12 months.
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Figure 2-1: Distribution of the initial data

Figure 2-2: Distribution of the target function values

Some illustrative numbers of the initial database are presented in Table 2.1 and

Figure 2-3. Each oilfield is coded with a number (we avoid specific oilfield names

for confidentiality reasons, in agreement with the operator). It is worth mentioning

that the word ’operation’ (in legend and tables) refers to the entire stimulation

treatment, which may be a single stage fracturing on a vertical well or a multistage

fracturing on a near-horizontal well. Then, a multi-stage treatment (operation) is

divided into different stages. Each stage is characterized by the set of fracturing

design parameters.
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Parameter Numerical value
Observation period 2013 – 2019
Number of oil fields 22

Number of wells 5425
– vertical & directional 4111

– horizontal 1314
Number of fracturing operations 6687

– single-stage treatment 3177
– multi-stage treatment 3510

– refracturing operations (out of total) 1460
Number of STOPs (e.g. screenout) 797
Initial number of input parameters 296
Final 𝑥 vector of input parameters 92

– formation 36
– well 12

– frac design 44
Number of production parameters 16

Table 2.1: Statistics of the database

Figure 2-3: Distribution of wells by the field code number

2.2 Preprocessing

2.2.1 Handling outliers

Outliers, i.e. objects that are very different from the most of observations in the data

set, often introduce additional noise to an ML algorithm Aggarwal and Sathe [2017].

Outliers can be classified into three types: data errors (measurement inaccuracies,
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rounding, incorrect records), which occur especially often in case of field data; the

presence of noise in objects descriptions; suspiciously “good” or “bad” wells in terms

of production; the presence of objects from other populations, e.g., corresponding

to significantly different field geologies.

To effectively detect such observations several techniques were used. First of

all, statistical methods to analyse data distribution along different dimensions and

detected outliers by estimating the kurtosis measure and other statistics.

The second approach is clustering. Clustering has been carried out using the

Density-based spatial clustering of applications with noise (DBSCAN) algorithm

Ester et al. [1996], because it does not require an a priori number of clusters to be

specified in advance, and is able to find clusters of arbitrary shape, even completely

surrounded, but not connected. Even more importantly, DBSCAN is quite robust

to outliers. As a result, outliers are concentrated in small blobs of observations.

Another method that eliminated more than a hundred questionable values was

an anomaly detection method called Isolation Forest Liu et al. [2008], which is a

variation of a random forest. The idea of the algorithm is that outliers fall into the

leaves in the early stages of a tree branching and can be isolated from the main data

sample.

2.2.2 Filling missing values

It is very often that certain features of some objects of the field data sets are absent

or corrupted. Moreover, many of ML algorithms like SVM regression or ANNs

require all feature values to be known. Considering the structure of the data sources,

we could expect that the frac-list has contributed to the majority of such cases of

data incompleteness, since this document contains most of the useful data yet it is

typically filled in manually, hence it is highly dependent on the quality of the filling

process (Fig. 2-1 & Fig. 2-4).

As a result there is a number of methods that allow one to fill in the missing or

Not a Number values (NaNs). However, it should also be noted that most approaches

can be overly artificial and may not improve the final quality.

We test several approaches to fill in missing values within the framework of the
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regression problem under consideration:

• dropping objects containing more NaNs within an object (j-th row of a matrix

representing the data set) than a certain threshold (65%). For example, if a

well has 33 missing feature values out of 50, then we drop it. Among other

imputation methods described below, this would keep the database as original

as possible;

• filling NaNs of i-th parameter by the average for the wells in a well cluster,

that are grouped by geography. The reason for selecting this method of filling

in is that the wells of the same cluster have similar frac designs and geology

properties of the reservoir layer;

• filling missing values by applying imputation via collaborative filtering (CF)

Adomavicius and Tuzhilin [2005]. CF is often used by recommender systems,

which makes prediction of absent values with the use of mathematical methods.

According to our research, the best results were shown by non-negative matrix

factorization (NNMF) and truncated singular value decomposition (TSVD).

Worth noting, NNMF cannot handle negative values, such as skin-factor.

• applying unsupervised learning to define similarity clusters and filling NaNs

of i-th parameter by the mean of the cluster. In other words, the average of

the feature is taken not from the entire database, but from the cluster, which

allows us to estimate the missing value more accurately.

2.3 Summary

The chapter focuses on describing the data used in the study and the preprocess-

ing steps undertaken. The data description provides an overview of the data set,

while the preprocessing section discusses handling outliers and filling missing val-

ues. Throughout this process, several problems were encountered, including data

integration, heterogeneity, and consistency. Data integration posed challenges due

to the need to combine information from multiple sources, each with its own struc-

ture and format. The heterogeneity of the data, characterized by variations in data
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Figure 2-4: Distribution of missing values

types, units, and scales, required careful standardization, verification and normal-

ization. Ensuring data consistency across different sources proved to be a significant

issue, as inconsistencies in naming conventions, coding schemes, and data quality

were addressed during the preprocessing stage. Despite these challenges, the chap-

ter highlights the steps taken to address the encountered problems and prepare the

data for further analysis and use.
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Chapter 3

Methodology

The methodology chapter provides an extensive overview of the methods and algo-

rithms employed in the study. In this section, we will delve into the intricacies of

the research approach, highlighting the tools and techniques utilized to address the

problem of hydraulic fracturing optimization. The objective is to provide a clear

understanding of the analytical framework that underpins the study.

This chapter discusses the various methods and algorithms employed to tackle the

challenges associated with HF optimization. The focus lies in harnessing the power

of big data analytics to extract valuable insights from vast and diverse datasets. The

application of advanced data processing, machine learning, and statistical modeling

techniques is explored to uncover hidden patterns, establish predictive models, and

guide the decision-making process in HF design.

The specific algorithms and techniques employed in the study are examined. This

includes the application of clustering techniques and Euclidean distance calculation

to identify similar wells and establish interval limits for design parameters.

By presenting a comprehensive account of the methods and algorithms utilized

in this research, a solid foundation is established for the subsequent analyses and

findings presented in this study.

Figure 3-1 visually illustrates general workflow of this work and also emphasizes

several challenges and describes methods that emerged in the course of the study.
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Figure 3-1: General workflow

3.1 Forward problem. Predicting production after

hydraulic fracturing

The first goal of the work is to predict production after hydraulic fracturing. After

that we can use the resulting model in further optimization process. The model

should include all necessary parameters we can get from a well, characterization of its

geological environment and HF design parameters. The vector of these parameters

should be sufficient to predict the target production variable.

3.1.1 Target variable

Selection of the right target variable is crucial for the success of the entire opti-

mization workflow. Based on the available data and discussion of current fracture

design development strategies by reservoir stimulation engineers, it was concluded

that fracturing operations in the field are optimized based on the metric of maxi-
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mizing reservoir contact: the larger the fracture, the better. Hence, bigger fractures

yield larger cumulative volume of recovered total fluid (both oil and reservoir water),

and there is a strong correlation. It is also important to consider that the oversized

fractures may break through into upper or lower strata, causing additional water

production.

A model aimed at predicting the cumulative volume of total fluid produced

was trained on existing data with slightly higher accuracy (as there is a direct

correlation between the input parameters characterizing the fracture design and the

total cumulative fluid) compared to a model aimed at cumulative oil only, where

the prediction accuracy was lower as the oil production is less correlated with the

design parameters governing the fracture dimensions. The present realization of the

model does not take into account the presence of water-bearing layers, so the model

better predicts the total volume of produced fluid. During testing, we deal with

the particular oilfield where there are no bottom waters nearby target formation, so

there is no risk of a breakthrough into the aquifer.

At the same time, generalization of the present workflow to oilfields with the

presence of aqueous layers will require modifications: some features characterizing

the presence of upper/lower water bearing formations should be included to be able

to predict the production of oil and water separately, and also the target variable

should be composed of two components: maximum total fluid and maximum pure

oil (or minimum water cut, which is equivalent).

The 3-month cumulative fluid production data was used to utilize as much wells

as possible, including the most recently fractured wells, where the production history

is short.

The later fracturing was carried out, the less production history we know. So, the

shorter the considered period - the more HF experience is expressed in the dataset.

Therefore, 3-month (or precisely 90 days) production data slices were chosen as

representative sets.

An interpolation of the monthly data was used in order to come up with 90-

day production period. This approach is suitable, for instance, if a well worked for

20 days in the first month after fracturing treatment and 30 days in the following
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months, the desired value is in 80-110 days or 3-4 months range and can be found

through the interpolation.

Last but not least, the target variable should be chosen with respect to the further

business metric for the entire project. This metric should be money related. The

main goal of the project might be to increase the revenue for a particular well while

keeping the cost of HF treatment as low as possible. In this case, the cumulative

fluid production could be easily converted to the cost of oil produced, minus the

operating costs. Then, using the workflow presented, the design of the HF can be

optimized to meet all the necessary business requirements.

3.1.2 Feature selection

To construct the models and increase interpretability of the problem feature im-

portance analysis was used. It can be done with or without the involvement of an

approximation model.

One of the methods is a statistical sensitivity analysis via Sobol indices Sobol

[2001b]. It decomposes the variance of the target variable into parts attributed to

input features. This method does not involve a constructed approximation model.

On the contrary, SHAP method Lundberg, Scott M., and Su-In Lee [2017] is

based on an approximation model, utilizes the concept of Shapley values Shapley

[1953] and measures features importances in terms of predictive power of each fea-

ture. It shows the true importance of the features more accurately Song et al. [2016].

The SHAP values can be calculated for tree-based models (which were used).

Another way of analyzing parameters is the feature elimination procedure which

implies a reduction of feature space which in its turn may improve the performance

of the approximation model. Feature elimination can be achieved by applying a pair-

wise correlation of parameters via the Spearman correlation and by the Recursive

Feature Elimination (RFE) method which involves the use of the approximation

model. Speaking of the former, the reason of choosing the Spearman correlation

instead of the Pearson correlation is because most of the features correlations are

non-linear. So, by estimating correlations between features we can remove perfectly

correlated features and features with zero variance. Regarding the second method,
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RFE is a procedure for backward selection of features which works as follows. First,

a model is built on an the entire set of input features, and features’ importance is

calculated. Then, the least important features are removed. After that, the model

is rebuilt on the reduced set of features and we repeat the process.

Eventually, the following procedure for feature elimination was used:

1. Select 3-month slices; (6- and 12-months production & geological and technical

data are removed due to the lack of data from the latest treatments);

2. Remove parameters which are not relevant for the considered target variable,

or for which more than 80% of the observations are missing;

3. Estimate Spearman correlations to identify perfectly correlated features; re-

move features with almost zero variance;

4. Apply RFE to select features, which are the most important for the target

prediction.

As the result, initial set of features has been reduced from 387 to 35 features.

3.1.3 Regression

Several ML models have been chosen to predict cumulative fluid production over 3

months.

Several ML regression algorithms were used, including: SVM, KNN, ANN, Deci-

sion Trees, and various types of ensembles based on decision trees such as Random

Forest, ExtraTrees, CatBoost, LGBM and XGBoost.

Each model was trained on a subsample with cross validation on 5 folds. Then,

models were tested on a separate (hold-out) sample. All these sets were shuffled

and had similar target value distributions. Most of the ML models are decision tree-

based and, hence, have important advantages: they are fast, able to work with any

number of objects and features (including categorical ones), can process data sets

with Not a Number values (NaNs) and have a small number of hyperparameters.

Each experiment is conducted two times on four data sets constructed using

different imputation techniques:
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• on the entire dataset containing information about 5425 wells. Here, we used

hyperparameters of the regression algorithms set to their default values first.

Then, after figuring out the best imputation technique, we proceed to the next

experimental setup described below;

• on wells from one field only; again, we used default hyperparameters of the

regression algorithms.

The reason to use two experimental setups is to check if more homogeneous

dataset enhances predictive performance of the model.

Then, we take the best performing methods based on the 𝑅2 on test set of each

experiment, tune their hyperparameters via the grid search, and combine them into

an ensemble to further improve the results. If the result of the ensemble of models

is worse than the single best regressor, then we are taking the results of the best

regressor.

In the stacked approach, multiple models are combined to leverage their strengths

and compensate for their weaknesses. By using an ensemble of models, each with

its own strengths and characteristics, a more comprehensive and accurate represen-

tation of the real-world behavior of the process can be achieved.

The stacked approach allows for the incorporation of different algorithms or

techniques that complement each other. For example, the inclusion of a linear

regression model can capture linear dependencies that may be overlooked by the

gradient boosting trees algorithm. By combining these models, the ensemble can

better capture the complexities and nuances of the process, resulting in improved

predictive performance.

The stacked approach provides a more robust and flexible framework for model-

ing the process, allowing for a better understanding of its behavior and more accurate

predictions. By leveraging the strengths of multiple models, the limitations of any

single algorithm can be overcome, leading to a more reliable and comprehensive

solution.
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3.1.4 Feature analysis

Feature importance analysis is performed for an ensemble of the best algorithms.

OVAT analysis is carried out to see how the target varies with the variation of the

design parameters. In addition, if the feature rankings of both methods are more or

less similar, then we may proceed to parameter reduction. With the available feature

importance values, we iterate over a range to remove less important parameters and

then calculate the 𝑅2 score. This procedure is important for the design optimization,

because it reduces the dimensionality of the problem while keeping the best score.

3.2 Inverse problem. Choosing the optimal design

An inverse problem can be formulated as optimizing a high dimensional black box

(BB) with respect to inputs constrained by boundaries. In this case BB is a func-

tion with unknown expression or internal structure that, given a list of inputs,

returns corresponding outputs. The high dimensionality of the input presents an

exponential difficulty for problem modeling and optimization (so-called “curse-of-

dimensionality”) Bellman and Dreyfus [2015]. To optimize a high-dimensional com-

putationally expensive black box (HEB) function, it is required to iteratively eval-

uate an objective function, which can be costly and so becomes unacceptable. In

our case, the HEB function is represented by the constructed ML regression. To

optimize HEB, the following optimization methods were used: surrogate-based opti-

mization (Sec. 3.2.2), sequential least squares programming Fu et al. [2019], particle

swarm optimization Bonyadi and Michalewicz [2017] and differential evolution Storn

and Price [1997] algorithms. The advantages of these methods are that they make

no assumptions about the problem being optimized and can perform searches in

very large spaces of candidate solutions.

For presented methodology, the goal is to maximize the cumulative fluid produc-

tion by finding a set of optimal design parameters constrained by boundaries (see

Sec. 3.2.1.1) for the specified parameters of the pilot well environment.
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3.2.1 Selection of optimization intervals

After constructing the model, the inverse problem is formulated as finding a set of

optimal fracturing design parameters to maximize the target. Since the model is

multi-dimensional, a valid selection of the design parameter values is only possible if

they change within the relevant intervals during the optimization procedure. These

intervals are caused by various constraints, arising in the field.

The additional restrictions on design parameter values can be divided into ge-

ological and technological constraints. Geological constraints include those related

to the geological structure of the formation. For example, proximity of gas or wa-

ter bearing formations leads to the necessity to limit fracture height growth, which

automatically leads to limitation of the maximum volume of injected proppant and

requires change of the perforation strategy. Geological constraints can also be re-

lated to waterflooding cases. For example, when an injection well, operating at

bottomhole pressures higher than the formation breakdown pressure, is located rel-

atively close to the production well and is in the direction of fracture propagation,

it is necessary to limit the maximum fracture half-length on the production well.

Technological limitations include those related to the technical capabilities of the

equipment and chemicals used. For instance, the maximum fracturing pressure (first

of all, it is connected with the capabilities of the wellhead equipment and pumping

units) can lead to the restriction on the maximum fracture width. Those limitations

at a first approximation could be obtained by offset (similar) well search methods.

In the field, a fracturing job is pumped with variable proppant concentration,

so another limitation we add is a parameter characterising the rate of increase in

the proppant concentration in the fracturing fluid from initial (𝑐𝑠𝑡𝑎𝑟𝑡) to final (𝑐𝑓𝑖𝑛)

concentration [𝑘𝑔/𝑚3] with respect to increase to average 𝑐𝑎𝑣𝑔. The parameter is

denoted as 𝜖 and is defined as:

𝜖 =
𝑐𝑓𝑖𝑛 − 𝑐𝑠𝑡𝑎𝑟𝑡
𝑐𝑎𝑣𝑔 − 𝑐𝑠𝑡𝑎𝑟𝑡

− 1. (3.1)

Boundaries for this parameter are the same for all pilot wells: from 0.5 to 1.5. This

is not a parameter that needs to be optimized, so these bounds are introduced as a
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constraint for optimization algorithms.

3.2.1.1 Clustering for offset wells selection

To find optimization intervals for fracturing design parameters we define a pilot

cluster as a set of wells which are similar to the pilot one (the same field, layer, face

and direction). We estimate design parameters limits as 5𝑡ℎ and 95𝑡ℎ percentiles of

the values of the parameters for wells, belonging to the constructed cluster. Thus,

the results of the optimization would be more robust, as we do not use extrapolated

model’s predictions, which could be a problem for tree-based ML algorithms.

Another approach to obtain optimization boundaries for the specified pilot well

is to utilize unsupervised ML methods like clustering and dimensionality reduction.

The procedure is as follows (See also figs. 3-2, 3-3):

Figure 3-2: Cluster procedure: steps 1 – 5, 9

Figure 3-3: Cluster procedure: steps 6 – 8

1. Remove all features from the database except the environment parameters:

PVT, geomechanics, well log interpretation, well id;
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2. Filter the obtained subset by the number of stages, layer id and face of the

pilot well. This step is needed in order to collect wells technically similar to

the pilot well;

3. Apply a clustering algorithm to the environment parameters of the filtered

data subset. Hyperparameters of the clustering method are optimized via a

gradient-free optimization algorithm by maximizing the mean silhouette coef-

ficient, calculated for a particular cluster as follows:

𝑆𝑖 =
𝑏𝑖 − 𝑎𝑖

𝑚𝑎𝑥(𝑎𝑖, 𝑏𝑖)
, (3.2)

where 𝑎𝑖 is a mean intra-cluster distance, 𝑏𝑖 is a mean nearest-cluster distance;

4. Find a cluster to which the pilot well belongs to. Assert this cluster as a pilot

well cluster;

5. Using id-s of the objects from the pilot cluster, add the design parameters

values to the objects’ descriptions;

6. Analyze the pilot cluster statistics: minimum, maximum and mean values of

the design parameters. The minimum values and the maximum values serve as

the optimization boundaries while the mean values of the design parameters

are used as an initialization for the optimization problem.

7. Perform a visual analysis via the t-distributed stochastic neighbor embedding

(t-SNE) algorithm based on the environment parameters. t-SNE can only be

applied to data without missing values. Hence, the missing values are imputed

by the matrix factorization algorithm Morozov et al. [2020a]. After that we

obtain the t-SNE embedding for the selected subset of data. Here t-SNE

embedding is a mapping of the multidimensional input features to the two-

dimensional 𝑥 and 𝑦 coordinates for each observation of the data subset. These

two-dimensional coordinates can be used for visualization of the considered

data subset.

8. After that, using the considered subset of the data and the obtained t-SNE
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coordinates build an ML regression model to predict t-SNE 𝑥 and 𝑦 coordinates

for any new object. The corresponding ML model takes as input environment

parameters and returns as output t-SNE coordinates 𝑥 and 𝑦. The reason

of predicting the t-SNE coordinates is because any change in the data like

appending a new pilot well to the data set will require running the t-SNE

algorithm from scratch;

9. Predict the t-SNE coordinates 𝑥 and 𝑦 for the pilot well using the constructed

regression model. This allows to visualize the position of a new well with

respect to the selected data subset;

10. Create a t-SNE scatter plot from the 𝑥 and 𝑦 t-SNE coordinates. Label the

corresponding clusters of each object by some colors and label the pilot well

by a star symbol. This procedure visually verifies how the data is clustered

and how the pilot well is located with respect to the remaining data set.

The example of this method implementation is shown in Fig. 3-4.

Figure 3-4: t-SNE scatter plot for cluster visualization
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3.2.1.2 Missing pilot parameters imputation

In practice some of the parameters values of a well can be missing. Imputation

is needed for wells parameters values because gradient-free optimization algorithms

are based on constructing regression models and so they cannot work with missing

values. For better results, it is important to impute these values not just by fill-

ing them with corresponding mean values, but to do it in a smarter way. Several

strategies are proposed:

• a matrix factorization method, described in Sec. 2.2.2;

• impute missing values by averaging parameters values of the top-N similar

wells. The method to find similar wells is described in Sec. 3.2.1.3;

• use the mean pilot cluster parameters values as described in step 6 of the

algorithm in the previous subsection.

3.2.1.3 Offset wells selection by Euclidean distance

Offset wells are the wells, similar to the pilot one in terms of their geological sur-

roundings. One may look for these wells both in terms of their geological and geo-

graphical (closest wells within certain radius from the pilot one) similarities. These

analogue wells search is very useful for a petroleum engineer as it allows to analyse

fracturing operations, conducted previously, their design parameters values, check

whether an operation was successful or not, etc. We can also extract additional

features from the neighbouring wells, which increase predictive power of the mod-

els Erofeev et al. [2021]. For example, in this work average fluid production divided

by distance from the pilot well was tested as a feature. Wells within 1 km from the

pilot one were considered.

As a similarity metric we can use the Euclidean distance between the pilot well

and the other wells. To calculate it, we firstly need to normalize values in the

database. Here, linear min-max normalization seems to be a valid choice, where

min and max values are the 1𝑠𝑡 percentile and the 99𝑡ℎ percentile respectively. The

usage of percentiles is due to possible outliers in the initial data set.
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Certain input features exhibit a low variance, while others do not. In order to ac-

count for this, the similarity metric calculation incorporates weights that correspond

to each feature’s standard deviation values over the subset.

Then, the Euclidean distance between two vectors of parameters, characterizing

wells, is calculated as

𝑑(𝑝, 𝑞) =
√︀
𝑤1(𝑝1 − 𝑞1)2 + · · ·+ 𝑤𝑛(𝑝𝑛 − 𝑞𝑛)2, (3.3)

where 𝑝𝑖 and 𝑞𝑖 are the 𝑖-th parameter’s values of the corresponding wells and 𝑤𝑖 is

its standard deviation. The distances are calculated between the pilot well and all

other wells, belonging to the same cluster (within the same field, layer and face).

The results of such similar wells search are considered robust and sustainable by

field geologists. One can see an example of a result of such search in Fig. A-6.

It is worth noting, that some features require special consideration. For example,

if we use the well’s azimuth, we need to consider, that 0 and 180 degrees would be

the same.

In this work a combination of the clustering method for selecting offset wells

along with the Euclidean similarity search was used. The clustering is used for

obtaining the set of similar wells, then we reduce the size of this set, leaving only

top-N wells by the Euclidean distance. This method allows us to look for optimal

values of the design parameters in a certain vicinity where the prediction model

works well. Also, in some cases the top-N similar wells can be used for imputing

missing parameters for the pilot well.

3.2.2 Surrogate-based optimization (SBO)

Surrogate models (approximation models) Belyaev et al. [2016] can be used with

multi-dimensional input design spaces. As we know, the more parameters the sur-

rogate model takes as input the more computational resources (training time) it is

required to construct the model.

A particular example of Surrogate-based Optimization (SBO) or sequential model-

based global optimization is Bayesian optimization. The algorithm utilizes a proba-
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bilistic surrogate function which approximates the expensive objective function and

an acquisition function which, in its turn, allows to select a new candidate input

design point within the domain. At the beginning, a surrogate function is built

on a small number of samples from the original objective function, which provides

a target value. Then, the algorithm maximizes the acquisition function and the

surrogate is updated with a new input point and its actual output value. After

repeating the process, an optimum can be achieved by taking the information about

the samples from the past iterations. A typical choice of the surrogate is Gaussian

processes and random forest, while typical acquisition functions are the Expected

Improvement (EI) and the Probability of Improvement (PI).

The SBO algorithm implemented in the industrial software was used. The SBO

methodology is based on Gaussian processes modeling technique Burnaev et al.

[2016], Zaytsev and Burnaev [2017], Burnaev and Zaytsev [2015]. The particular

numerical realization roots in the scientific works published in Burnaev and Panov

[2015].

3.3 Summary

The methodologies discussed in this chapter serve as a foundation for the subsequent

analyses and findings presented in this study. By integrating predictive modeling

techniques, feature analysis, and optimization methods, a comprehensive under-

standing of hydraulic fracturing processes could be developed. These approaches

could enable informed decision-making regarding HF design, ultimately leading to

improved production outcomes and increased efficiency in reservoir development.

Overall, the methodologies presented in this chapter establish a robust framework

for addressing the challenges of HF optimization and provide a pathway for the

subsequent chapters, where a deeper analysis will be conducted, and the results and

implications of the study will be discussed.
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Chapter 4

Validation and results

Throughout this chapter, a detailed analysis of the experimental results is presented,

highlighting the key findings and their significance in the context of HF optimiza-

tion. By examining the validation and experimental outcomes, we aim to validate

the effectiveness of presented methodologies and contribute to the existing body of

knowledge in the field.

The chapter provides empirical evidence and a comprehensive understanding of

the implications and effectiveness of the approaches utilized in this research. The

outcomes of this analysis lay the groundwork for the subsequent discussions and

conclusions presented in the next chapter.

4.1 Introductory remarks

During the research, the model was trained on wells from the field of interest only,

thereby reducing the database from 6687 to 3308 fracturing operations.

Additionally, the database is divided into two parts: primary and repeat stimu-

lations. During testing, only primary stimulations (on new wells) were used.

Field tests have been carried out on 21 wells, which were not included in the

training dataset. 9 wells were horizontal, 7 — vertical multilateral, operating on

several layers simultaneously, the rest 5 wells were regular vertical ones. We were

testing the accuracy of our prediction models, as well as HF design optimization

overall pipeline. This pipeline includes:
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1. obtaining design parameters optimization boundaries by similar wells search

with euclidian distance;

2. imputing missing parameters with mean corresponding parameters values, cal-

culated using top-10 similar wells, obtained within the pilot cluster via the

Euclidean distance search;

3. performing the design optimization, using the predictive model and optimiza-

tion algorithms.

Models accuracy checks were performed firstly on a hold-out set (separated from

the training data set) and secondly, on the wells from field tests.

4.2 Forward problem

4.2.1 Filling missing values and clustering

By applying the first method of missing data imputation, rows with more than 42

NaNs have been dropped. Then, the rest of the NaNs for other objects in the data

set are filled with their mean values.

Fig. 4-1 shows how the entire database is clustered with DBSCAN algorithm.

Since the algorithm itself cannot handle missing values, we recover them using the

collaborative filtering. Then we assign cluster labels for each well to the original

data set. To visualize clusters, t-SNE is applied to transform data space into 2D

and build a scatter plot. As seen from the figure, there are 3 groups in total with

the biggest cluster marked as “2”

Once the database is created, four imputation methods of filling NaNs are eval-

uated in terms of their performance. After applying these imputation methods to

the database, the results of the best tuned ML algorithms for regression problem

are as follows (𝑅2):

• Matrix factorization: 𝑅2 = 0.64;

• Dropping the entire row, if NaN’s count more than 65% in that row: 𝑅2 = 0.56;
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• Filling with mean values of the well pad: 𝑅2 = 0.47;

• Filling with mean values of the cluster: 𝑅2 = 0.49.

Comparison between different ML algorithms with these filling methods can be seen

in Figs. A-2, A-3, A-4 and A-5. Matrix factorization appeared to be the most

effective method, so it was applied to the entire dataset. Handling negative values

(skin-factor) has been done via introducing a binary parameter, which shows whether

the skin is negative or not.

Figure 4-1: Wells clustering by DBSCAN algorithm, represented as t-SNE visual-
ization plot

To conclude, filling missing values is useful for further work with predicting

models. The best imputation technique is matrix factorization.

4.2.2 Regression

The results are shown in the table 4.1 and on the regression plot 4-3.

Comparison of various regression algorithm performance can also be seen on

Figs. A-2, A-3, A-4 and A-5. It is worth noting that:
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• The family of decision-tree based algorithms show better accuracy than other

approaches. CatBoost algorithm (based on gradient boosted decision trees)

outperforms all other methods;

• Some of the ML algorithms like SVM or ANN resulted in negative 𝑅2, which

is interpreted as poor prediction accuracy. The possible explanation is that

some methods are preferred when there are homogeneous/hierarchical features

like images, text, or audio, which is not our case;

• The best imputation technique is collaborative filtering;

• Based on the log scale regression plot, a relatively large amount of errors comes

from the points with too low or too high oil production rates. The possible

solution of the problem is to perform regression for different clusters;

However, during testing, we found that using only the CatBoost algorithm did

not yield feasible results. When examining the relationship between the target vari-

able (fluid production) and the proppant mass feature, for example, we observed

non-monotonic dependencies with peaks in the CatBoost model. This is not desir-

able, as increasing proppant should lead to increased production due to longer frac-

tures. This phenomenon can be attributed to the limitations of gradient boosting

models, which may not always capture obvious dependencies due to the complexity

of an algorithm.

To address this issue, the following pipeline was implemented: first, the Ridge

regression model (a form of linear regression with L2 regularization) was trained on

a smaller subset of features to capture any linear dependencies that are critical to

building a robust model for hydraulic fracturing processes. Next, we subtracted the

linear regression predictions from the actual target variable values and attempted

to predict the residuals using CatBoost on all available features.

As a result, despite the slight decrease in predictive power (Tab. 4.1), it shows

more physically meaningful predictions from the resulting ensemble of the models,

as depicted in the accompanying figure 4-2.
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Table 4.1: Metrics of the prediction models on the hold-out (30%) test set

Metric CatBoost Stacked
RMSE 1670 1713
MAE 1131 1165
R2 0.64 0.62
MAPE 36.22% 37.78%
wMAPE 29.07% 29.95%

Figure 4-2: Comparing two models for predicting production: CatBoost (green) vs
more smooth Stacked (Ridge+CatBoost) dependences

Figure 4-3: Regression plot for the best model on test set

4.2.3 Feature analysis

The most important features, calculated via Sobol indeces can be seen in Fig. 4-4.
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Figure 4-4: Statistical feature importance: Sobol sensitivity scores for the entire
database.

In this context, the crucial features are associated with the hydraulic fracturing

(HF) design. Alongside the design factors, two significant features are the net oil

pay and formation pressure, which characterize the reservoir characteristics.

Then, feature importance analysis using Shapley method was introduced. At

first, the concept of Shapley values has been used to visually point out the difference

between the two models for primary stimulation vs refracturing. (Figs. 4-5, 4-6). (In

case of categorical features one-hot encoding was used. The corresponding features

are prefixed with “cat.”.) Particularly, for refracturing operations the key feature

having major impact on the target is the level of production before the refracturing

treatment (which was not captured in previous analysis), which is absent in case

of primary operations. Having data on production prior to refracturing makes the

production forecast problem easier to solve, compared to the case of production

forecast after primary fracturing operations. This has also been noted in other

studies Erofeev et al. [2021].

From the analysis conducted, it can be deduced that certain proppant properties,

specifically density and size, do not play a significant role in predicting fluid pro-

duction. Conversely, the crucial features for prediction are linked to, for example, a

pad (fluid used to initiate hydraulic fracturing that does not contain proppant).

Figure 4-7 shows a Tornado chart of the OVAT analysis for design features. These

features are essential to further optmization pipeline. The most relevant features
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Figure 4-5: SHAP feature importance for refracturing operations

are indicated as bars, and the red dashed line is a target where all parameters are

taken at their mean values over the data set. To interpret the graph, consider the

top feature, pad share (which is the ratio of the pad volume to the overall volume

of injected fluid). The dark blue means the difference between the target with the

“average parameter value” and the target with the pad share parameter decreased

by 50%, while the rest of the parameters are kept at their average values.

The feature importance analysis within the Catboost model is carried out for

the entire feature list, while the OVAT analysis is conducted for the design features

only. The reason for performing the OVAT on the design features only is due to

the problem objective, where our goal is to vary design parameters to maximize the

target. Moreover, the design features deviate from their means, which is oftentimes

not true for different types of wells. In other words, the limitation of OVAT is that

we have to deviate the i-th parameter from its average, while some wells have the
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Figure 4-6: Shap feature importance for primary fracturing operations on new wells

value of the i-th feature far from the mean. Hence, the OVAT is more applicable for

the design optimization problem and is not consistent with the feature importance

analysis. An example of inconsistency is the number of HF stages, where its ranking

within the feature importance (Fig 4-6) is the 1st while its ranking on the tornado

chart (Fig 4-7) is the 4th among other design parameters. To summarize, OVAT is

not representative for verifying feature importance, while it is suitable for getting

target value sensitivity to the variation of a single parameter on a particular HF

operation (with all other features fixed at their mean values).

4.2.3.1 Parameter selection

The relationship between the model’s predictive capability and the number of pa-

rameters considered is analyzed using the feature importance analysis discussed

earlier (refer to Fig 4-8 for reference). The findings indicate that reducing the
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Figure 4-7: Model sensitivity analysis: tornado chart of the OVAT analysis

dimensionality of the problem from 50 to 35 parameters improves the tractability

of the design optimization task without compromising the 𝑅2-score. Interestingly,

not all design features depicted on the OVAT tornado chart rank among the top 10

important features. Nevertheless, the design parameters will still be included in the

input data as they are subject to optimization, which remains the primary objective

of the second part of this study.

Figure 4-8: Recursive feature elimination: model’s score vs. number of input pa-
rameters
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4.2.4 Field test

The production prediction errors for all 21 tested wells are shown in Fig. 4-9. Here

we see a relatively low percentage error for horizontal wells, which can be explained

by the higher production rates of such wells. What is important here is the high error

for multilateral wells, which is most likely caused by data distortion for this type of

wells. Currently, the data point for a multilateral well is represented as a multistage

fracture treatment with the number of stages equal to the number of laterals with

fractures. The disadvantages of this method are obvious when hydraulic fracturing

is performed at different points in time. In addition, different reservoir parameters

must be considered for each operational production formation.

Figure 4-9: Real vs Predicted production on the real design

Generally, the accuracy of the prediction model (𝑀𝐴𝑃𝐸 = 37.28%, 𝑤𝑀𝐴𝑃𝐸 =

27.46%) in field tests is close to the hold-out set accuracy check (𝑀𝐴𝑃𝐸 = 37.78%,

𝑤𝑀𝐴𝑃𝐸 = 29.95%). The distribution of well types (vertical, horizontal) for field

tests is close to that presented in the hold-out set.

4.3 Inverse problem

Overall, four approaches to the problem of design optimization were formulated:

1. SBO : Surrogate-Based Optimization (Sec. 3.2.2),
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2. SLSQ : Sequential Least Squares Programming,

3. PSO : Particle Swamp Optimization,

4. DE : Differential Evolution.

These methods were compared with each other in terms of maximum produced

fluid and physically-grounded recommendations for the design parameters for 3 well

types: horizontal, vertical and vertical multilateral.

During the testing, we encountered a problem regarding missing parameter values

for some wells. Some optimization algorithms, which rely on constructing regression

models, are unable to handle missing values. Therefore, imputation techniques

are necessary to address this issue and improve the accuracy of the optimization

process. Simply filling missing values with the corresponding mean values may not

yield optimal results. Instead, several strategies to impute missing values in a more

intelligent manner were proposed.

One such strategy is matrix factorization, as discussed in Section 2.2.2. This

approach has demonstrated greater success in terms of enhancing the predictive

power of the model. Consequently, we employed this method to train the production

prediction model, allowing for more accurate and reliable predictions.

Another method involves imputing missing values by averaging the parameter

values of the top-N similar wells, as described in Section 3.2.1.3. This method was

used during the design optimization stage, as it is particularly advantageous for

petroleum engineers, because it provides a physically explainable approach to the

task.

4.3.1 Design optimization results

Comparison of the efficiency of optimization algorithms in Figure A-7 shows the

average cumulative fluid production across all pilot wells. A larger value means

higher efficiency of an algorithm. Figure A-15 shows the extended results of the

optimization for each well individually.

The results of the optimization for design parameters are shown in Figures A-8-

A-13. Here the optimum values are indicated in percentages within the optimization

64



limits for each parameter. 0% is a lower and 100% is an upper bound for each well,

obtained by the offset wells search. Color bars represent the average value of the

analyzed parameter for all wells in each of the three groups.

All the methods were operating under similar conditions: boundaries, constraints,

maximum allowable number of function evaluations (200). Under these conditions,

SBO proved to be the most efficient algorithm in terms of maximizing the objective

function (Figures A-7 and A-15). It is also possible to draw conclusions about gen-

eral optimization trends. First of all, the most of the approaches for all well types

maximized the target by increasing the proppant mass and reducing the average

proppant concentration. It makes sense to increase the amount of pumping fluid

and proppant to get maximum production while we have neither WOC nor GOC.

We can clearly see the recommendation trends difference between horizontal and

both types of vertical wells even though vertical multilateral wells are represented

in our database as multistage fracturing operations (like horizontal wells). Pad

share here is the most interesting parameter, which does not follow any particular

trend. The final proppant concentration is lower for horizontal wells, which can be

explained by the high probability of ineffective treatments with high concentration

values in these types of wells, as such fluids are difficult to pump through well

sections with high wellbore curvature. The value of the fluid flow rate varies widely

and is probably not important for the purpose of maximizing production. This can

be proved by the low feature importance of this parameter, and may also be due

to the fact that the values of this parameter are chosen properly in most of HF

treatments presented in the database.

Once we have the results of the optimization, we can carry out a kind of ret-

rospective analysis to find out how we can change usual HF designs to improve its

results: if the value is below 50% – the optimum value is less than usual one used

during HF treatments and vice versa.

We tested the SBO method to find the optimal set of design parameters for each

well from the pilot tests. In addition, we limited the proppant mass to a value from

the actual fracture design (the actual values of the design parameters have been

chosen by the contractor). Then the fluid production was calculated for the optimal
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parameters and for the actual ones. Optimal parameters showed a higher production

rate, theoretically increased by 38%. (Fig. A-14).
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Chapter 5

Conclusions and Discussions

5.1 Data gathering

The resulting database compiled during this study encompasses over 5,000 oil wells

located in Western Siberia. These wells, which were drilled between 2013 and 2019,

include a diverse range of vertical, directional, and horizontal configurations and

have undergone fracturing and refracturing treatments. This is a remarkably repre-

sentative dataset, compared to the majority of open literature on the subject. The

overall 𝑥-vector characterizing a well (data point) contains 92 parameters, including

36 parameters describing formation properties, 12 for the wellbore, and 44 for the

fracturing design. The input vector is reduced to 35 parameters for model training

after recursive feature importance analysis and elimination.

During the research, various challenges were identified that arise when construct-

ing a digital field database that integrates three major components originating from

distinct sources: reservoir geology, HF design, well construction and production

data.

The challenges include:

• Data integration: Bringing together data from reservoir geology, HF design,

and production requires overcoming compatibility issues, differing formats,

and varying levels of data quality. Integrating these diverse datasets into a

cohesive and unified database poses a significant technical challenge.
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• Data heterogeneity: The data obtained come from fundamentally different

sources, each with its own unique characteristics and structures. Dealing with

the heterogeneity of these datasets, including differences in data types, for-

mats, and scales, requires careful consideration and robust data transformation

techniques.

• Data consistency: Ensuring the consistency and accuracy of the integrated

data is crucial. Inconsistencies, errors, and missing information can adversely

affect the reliability of analyses, interpretations and predictions based on the

database. Implementing data validation and quality control procedures be-

comes essential to maintain data integrity.

• Data volume and scalability: The amount of data generated from reservoir

geology, HF design, and production can be substantial and continue to grow

over time. Managing and storing large volumes of data, as well as ensuring

scalability of the database infrastructure, is a critical aspect to consider by oil

and gas production companies.

Addressing these challenges requires a comprehensive approach that includes

robust data integration techniques, effective data management strategies, and the

utilization of appropriate technologies for data storage, processing, and analysis. Ad-

ditionally, collaboration and coordination between different stakeholders, including

geologists, engineers, and data scientists, are crucial for successful implementation

of a digital field database within the IT perimeter of a company.

5.2 Forward problem

The forward problem of predicting the production rate based on fracturing design pa-

rameters is solved using the widely used ML algorithms. Cross-comparison revealed

that decision tree based models outperformed the others due to high heterogeneity

of the input parameters. As the result of solving the forward problem, the accuracy

of predicting cumulative oil production is 𝑅2=0.64 achieved by the stacked Ridge

Regression + CatBoost algorithm. The stacked approach was chosen as a solution
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because the single gradient boosting trees algorithm was found to be insufficient in

capturing the real-world behavior of the process.

Regarding relative feature importance within the model, the top ten important

parameters are:

• number of stages in a multistage treatment;

• volume of injected fluid;

• proppant mass per meter of perforated interval;

• perforation true vertical depth;

• perforation zenith angle;

• reservoir net pay;

• geological facies;

• reservoir layer;

• perforated interval;

• formation permeability.

From the OVAT analysis, it follows that the following possible patterns in the

average multi-stage HF treatment can be identified (with all parameters at its mean

values):

• Mean value of the pad share is optimal for an average treatment. Deviations

from this value have negative effect on production;

• Increasing the fluid rate increases production and vice versa;

• Mean final proppant concentration possibly was selected below optimum, com-

paring to the optimum value, which is less than average. In addition, average

proppant concentration is probably systematically selected below optimum

value, too (by frac design engineers planning the treatment);
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• Building conclusions on the results of both OVAT and feature importance

analysis, we come to the conjecture that the volume of injected fluid is one of

the most important features.

Cleaning the data and handling the missing data on real field data set appeared

to be one of the most important tasks due to huge amount of errors and missing

records in the original raw data. Missing values imputation via collaborative filter-

ing technique (NNMF) allowed to improve predictability of a model. The higher

predictive capability of the model proved to be based on a data base of wells with

re-fracturing (where production before treatment is known).

The following important points need to be emphasized:

• ML model completely depends on input data (data completeness, data quality,

and preprocessing);

• Collection of field data is the most important step for the ML project aimed

at an optimization of a stimulation treatment. A database, which has been

properly validated, filled and verified with subject matter experts, allows one to

build high-quality predictive models and make well-informed decisions, based

on all the advantages of modern ML techniques;

• Data pre-processing and use of complex tuned ML models allow to achieve

higher accuracy. However, the results of the study on small train sets versus full

data set show that this accuracy does not always indicate the model capability

to generalize the obtained results. High accuracy reported in the literature on

relatively small data is typically the consequence of overfitting. Presented

results were validated on a proper hold-out set, which was not used in training

of the model;

• The test accuracy of the model highly depends on the number of samples and

on the complexity of the ML algorithm. If either of these two does not fit

together, it would lead to overfitting or underfitting. In this study the best

available ML practices are selected and tuned.
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Thus, an accurately formed, verified and validated field database on stimulation

treatments may lead to the results that are not "ideal" (in terms of the predictive

power), because of its inherent heterogeneities. The database in the study comprises

various well types, including horizontal, vertical, and multilateral configurations,

each of which differs significantly in their predictability of production outcomes. The

limitations observed in the database primarily stemmed from an underrepresentation

of multilateral wells. Prediction error is dominated by poor prediction of this type of

the wells. In the data set they are represented as a multistaged treatment, similarly

to the horizontal wells.

Faced with this segregation, we experimented with a training pipeline that uti-

lized only a subset of the database (e.g., exclusively vertical or horizontal wells).

This approach, however, resulted in reduced prediction capability. A more success-

ful method involved representing each fracturing operation within the same data

space and training the model on the entire dataset accordingly.

Speaking about the forward problem in determining the cumulative production,

several approaches available in ML nowadays were used, including clustering, model

ensembles and tuning, feature importance, and uncertainty quantification.

5.3 Inverse problem

5.3.1 Optimization interval limits

To optimize the hydraulic fracturing (HF) design, a method for searching similar

wells has been developed. This method employs a clustering technique and uti-

lizes the Euclidean distance as a metric of similarity. The results obtained from

this method assist engineers in reviewing previously conducted treatments, enabling

them to estimate interval limits for the design parameters to be optimized.

The lower and upper limits are determined based on the 5𝑡ℎ and 95𝑡ℎ percentiles,

respectively, of the cluster parameter values. To refine the set of wells, it is possible

to reduce its size by selecting only the top-N wells based on the Euclidean distance.

By doing so, engineers can focus on exploring optimal values of the design parameters
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within a specific vicinity where the prediction model performs well.

Furthermore, the top-N similar wells can also be utilized for imputing missing

parameters in the pilot well. This approach leverages the information from the

most similar wells to fill in any gaps or missing values, enhancing the accuracy and

completeness of the data for the pilot well.

A number of optimization techniques were tested during the pilot testing: differ-

ential evolution, sequential least squares programming, particle swarm optimization

and surrogate-based optimization.

5.3.2 Testing optimization algorithms

The SBO approach on average maximized the 3-month fluid production better than

other methods. General optimization trend of 21 pilot wells is to increase the amount

of fracturing fluid and proppant mass. Trends for final, average proppant concentra-

tion and fluid rate are different for each type of well (horizontal, vertical and vertical

multilateral). The calculated production from the fracturing with the optimal set

of design parameters, compared to the treatments with an actual HF design, gives

a theoretical target improvement of 38%.

5.3.3 Optimal target selection

The primary objective of hydraulic fracturing design optimization is to maximize

hydrocarbon recovery by enhancing reservoir connectivity and productivity. How-

ever, this optimization neglects an important component — economic considerations.

Without integrating economics, the optimization process tends to favor larger and

more numerous fracturing operations, assuming that more significant efforts lead to

higher oil recovery. This approach disregards the economic constraints that inher-

ently affect hydraulic fracturing operations.

In the approach presented in this study, the focus initially centered on testing

the model’s capability to maximize cumulative fluid production. This choice served

as a rigorous test case to assess the model’s physicality, ensuring it could capture

all relevant dependencies in the hydraulic fracturing process. The decision to omit
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economics at this stage stemmed from the recognition that, while maximizing fluid

production is an essential technical goal, the primary objective in real-world hy-

draulic fracturing operations is the economics.

Economics therefore introduces a dynamic interplay between technical and finan-

cial targets. When optimizing hydraulic fracturing designs, economic factors often

lead to trade-offs. For instance, while increasing the number of fracturing stages

may boost production, it also escalates operational costs. In the context of this

study, the introduction of economic criteria, for instance, NPV and ROI, into the

optimization process is expected to result in a reduction in the number of fractur-

ing stages, proppant mass, and fluid volume being targeted for optimization. This

balance between technical and economic factors requires careful consideration.

5.3.4 Retrospective analysis

After testing optimization algorithms, a retrospective analysis was conducted to

determine how one can modify typical hydraulic fracturing (HF) design to enhance

its outcome. By comparing the optimized value with the usual value used in HF

treatments, we can assess whether the optimum value is below or above 50

If the optimized value is below 50%, it suggests that the optimal HF design

requires a lower value compared to the conventional practice. This finding implies

that by implementing the optimized design, we can potentially improve the results

of HF treatments.

Conversely, if the optimized value is above 50%, it indicates that the optimal HF

design requires a higher value than the usual approach. In this case, modifying the

HF design according to the optimized parameters may lead to improved outcomes.

Indeed, conducting a retrospective analysis in hydraulic fracturing design opti-

mization is crucial as it allows us to evaluate the performance of regular or standard

designs when compared to the optimized ones. By comparing the outcomes of the

optimization process with the results achieved using conventional designs, we can

assess whether the regular designs were well-optimized or not.

By assessing the performance of regular designs in light of the optimization

results, we gain valuable insights into the strengths and weaknesses of different design
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approaches. This information can guide future decision-making processes, allowing

for continuous improvement in HF design practices and optimization techniques.

5.4 Future research

In future work, several extensions to the presented workflow could be considered to

enhance its capabilities:

• Expand the list of features: Including the distance to upper and lower water-

bearing layers as additional features would enable separate predictions for the

production of pure oil and water. This extension would involve extending the

target variables to maximum total fluid and maximum pure oil production (or

minimum water cut);

• Implement an economics model: Introducing an economics model would en-

able the workflow to operate under metrics such as production quantity (Q)

divided by capital expenditure (CAPEX). By considering the economic aspect,

decision-making regarding the HF design can be guided by a more compre-

hensive understanding of the costs and benefits associated with different HF

design choices;

• Account for the influence of injection wells: Considering the impact of injec-

tion wells on production rates is crucial. Different injection rates from the

neighbouring wells can significantly affect the overall performance of a well

after the hydraulic fracturing;

• Extend the target to multi-criteria optimization: To address a broader range

of objectives, the target could be extended to include multiple criteria. In

addition to maximizing production, minimizing the total proppant load can

be included as an additional objective.

Furthermore, combining synthetic data from fracture design simulations, such as

those conducted using commercial simulators, can be highly beneficial. By integrat-

ing primary fracture design and reservoir properties data with simulated fracture
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propagation data, essential parameters such as fracture length, width, and height,

which directly impact production, can be obtained. This integration of synthetic

data could enhance the predictive power of the models and improve their ability to

capture real-world behavior.
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Appendix

Formation parameters

Layer Porosity average per perfo-

ration

Median clay content per

perforation

Net pay Porosity average per layer Median clay content per

layer

Facies type Porosity median per perfo-

ration

Oil saturation average per

perforation

Formation thickness Porosity median per layer Oil saturation average per

layer

Formation pressure Permeability average per

perforation

Oil saturation median per

perforation

Bubble point pressure Permeability average per

layer

Oil saturation median per

layer

Oil formation volume factor Permeability median per

perforation

NTG per perforation

Permeability from well flow

test

Permeability median per

layer

NTG per layer

Oil viscosity kh median per perforation Stratification factor per

perforation

Water viscosity kh median per layer Stratification factor per

layer

Oil density Average clay content per

perforation

Formation temperature
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Formation pressure Average clay content per

layer

Well intersection data

Well structure

Perforation depth (MD) Inclination angle Tubing diameter

Perforation depth (TVD) Well’s drift direction Perforation density

Perforation interval Skin before/after HF Perforation type

Drainage radius Dimensionless productivity

index (Jd)

Inclination angle from well-

logs

HF design parameters

Number of HF stages Fracture permeability Proppant per gross height

Multifrac stage Closure gradient Shut-in pressure

Polymer type ISIP for displacement Breaker #1 amount

Polymer concentration ISIP on DFIT Breaker #2 amount

Crosslinker type ISIP on main work Breaker #3 amount

Crosslinker concentration Delta ISIP Pad volume

Polymer concentration for

pad

Effective pressure on DFIT Fracture length

Fluid type for main work Effective pressure on main

work

Fracture height

Breaker type #1 Fluid efficiency Fracture width

Breaker type #2 Proppant concentration Mass of proppant type #1

Breaker type #3 Pressure loss on friction Mass of proppant type #2

Average pressure on main

work

Pressure loss in BH area Mass of proppant type #3

Dimensionless fracture con-

ductivity

Proppant per oil-saturated

height

Mass of proppant type #4

Fracture conductivity Proppant per effective

height

Mass of proppant type #5

Mass of all proppant Fluid volume

Production data
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Bottom-hole pressure Watercut before HF Cumulative oil produc-

tion (target)

Productivity index Suspended solids concen-

tration

Cumulative fluid produc-

tion

Dimensionless productivity

index (Jd)

Fluid rate after HF Cumulative gas production

Fluid rate Oil rate after HF Watercut average during

production

Gas rate before Watercut after HF Operational hours during

production

Fluid rate before HF

Table A.1: Features used to describe a well

*features averages and medians per layer and perforation sourced from well log

interpretation data

**these are all parameters in the data base before feature selection
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Figure A-1: Forward model algorithm
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Figure A-2: Algorithms’ performance on a test set (untuned): dropping NaNs
method
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Figure A-3: Algorithms’ performance on a test set (untuned): filling by well pad
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Figure A-4: Algorithms’ performance on a test set (untuned): matrix imputation
(collaborative filtering)
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Figure A-5: Algorithms’ performance on a test set (untuned): filling by mean values,
calculated in each corresponding cluster

Figure A-6: Example of offset wells selection

91



Figure A-7: Average optimized production for all wells by different optimization
algorithms

Figure A-8: Average recommended fluid rate for the wells

Figure A-9: Average recommended mean proppant concentration for the wells
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Figure A-10: Average recommended proppant masses (per stage) for the wells

Figure A-11: Average recommended final proppant concentration for the wells

Figure A-12: Average recommended pad share for the wells
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Figure A-13: Average recommended calculated epsilon

Figure A-14: Production increase with optimal parameters set

Figure A-15: Optimized production comparison between methods
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