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Abstract

This thesis explores and introduces significant advancements in the field of power
system state estimation, aiming to enhance the reliability and efficiency of modern
power grids. The power system serves as the backbone of our interconnected world,
ensuring the continuous and secure supply of electricity. However, the increasing
complexity and vulnerability of this infrastructure pose significant challenges. This
research addresses these challenges through a multifaceted approach.

First, a novel algorithm for the detection and classification of single/multi-bus
sudden load change and single/multi-state false data injection attack has been devel-
oped. This algorithm leverages an anomaly detection index and utilizes supervised
machine learning techniques for accurate classification. The proposed method is a
topology-resilient classification solution, mitigating the adverse effects of topology
changes by focusing on features associated solely with buses. Also, the proposed
method accelerates the training speed of machine learning algorithms by applying
an optimal feature selection method, "maximum relevance - minimum redundancy",
leading to more efficient state estimation processes.

Additionally, the study evaluates various distributed state estimation methods
using a modified convergence criterion and IEEE standard test systems. This eval-
uation results in the selection of the most effective method based on metrics such
as data transfer requirements, computation time, solution accuracy, and conver-
gence rates. Furthermore, an optimal power system partitioning method has been
introduced to reduce communication overhead in distributed state estimation, signif-
icantly decreasing the number of iterations required to attain a reasonable solution.

The research also explores the integration of blockchain technology to enhance
the security of data transfers within the distributed power system state estima-
tion framework, ensuring the integrity of critical information. Moreover, the study
considers the challenges posed by asynchronous and delayed data transfer within
distributed state estimation, contributing to the development of robust algorithms
capable of handling real-world communication constraints.

Collectively, this thesis presents a comprehensive and innovative approach to
power system state estimation, offering practical solutions to enhance the reliability
and efficiency of power grid operations, ultimately contributing to the resilience and
sustainability of modern power systems.
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Chapter 1

Introduction

1.1 Challenges of power system state estimation

The power system is a complex and critical infrastructure that ensures the reliable

and efficient delivery of electricity to consumers. Power system state estimation

plays a pivotal role in monitoring and controlling this infrastructure. However,

the power system has never been without challenges. Power systems are becoming

increasingly large and interconnected, making accurate state estimation a daunting

task. Factors such as the integration of renewable energy sources, the aging of

infrastructure, and the potential for cyberattacks further complicate the estimation

process. These challenges necessitate the development of advanced techniques and

methodologies to enhance the accuracy and robustness of state estimation, ensuring

the reliability of the power grid.

1.2 Research objectives and scope

There have been attempts to present solutions for false data injection attack (FDIA)

identification in the power system [4]. However, analyzing the effect of typical system

events, such as sudden load change (SLC) on the performance of these identification

algorithms has not been [5]. Taking into account the application of data-driven

algorithms in the power system, in this research an effort has been made to propose

a methodology to detect and classify FDIA and SLC, which leads to the following
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Chapter 1. Introduction 1.2. Research objectives and scope

hypothesis:

The proposed anomaly detection and classification algorithm which is

based on combining model-based and data-driven methods are capable

of detecting and classifying FDIA and SLC events.

The transmission system faces topology changes (i.e. changes in the network

configuration). This will require updating the data-driven model with the new

configuration. This process can be time-consuming and inefficient depending on

the size of the system which has not been discussed in the literature. To eliminate

the adverse effect of topology change, features related to the branches are excluded

and only features associated with the buses are applied for the proposed algorithm

training. This implies the following hypothesis:

The topology-resilient classification solution effectively mitigates the

adverse effects of topology changes, leading to improved robustness in

the classification of FDIA and SLC.

Expansion of the power system, communication bottleneck, increase in data

size, and security/reliability results in concerns from a centralized state estimation

perspective. One of the solutions that can be utilized to mitigate these obstacles is

the application of distributed state estimation [3,6–9]. Considering the application of

blockchain in the power system [10], it is expected that it improves the distributed

scheme from the security perspective. However, it is important to consider that

such a distributed solution is iterative. Nevertheless, there was no study analyzing

the effects of convergence criterion, partitioning of the system, and delayed (or

asynchronous) data transfer on the required number of iterations, and accuracy of

the applied method. The mentioned findings give rise to the following hypotheses:

The modified convergence criterion for distributed state estimation

methods significantly improves the convergence rates while maintaining

the overall performance in an acceptable range compared to traditional

convergence criteria.

The optimal partitioning method for distributed state estimation re-

duces communication overhead, data transfer requirements, and compu-

tational time.
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Chapter 1. Introduction 1.3. Research overview and contributions

The application of blockchain technology for data transfer security

effectively safeguards sensitive information and ensures the integrity of

data exchanged in the distributed power system state estimation envi-

ronment.

This research aims to address the power system state estimation challenges

through innovative approaches and methodologies. The primary objectives are to

improve the accuracy of state estimation, enhance the resilience of the power system

against disturbances, and enable the integration of new technologies. The scope of

this study involves the development and testing of state-of-the-art algorithms, and

the evaluation of these algorithms utilizing the conventional power system models

available in the literature. By achieving these objectives, this research endeavors to

contribute to the advancement of power system state estimation techniques.

1.3 Research overview and contributions

This research represents a significant contribution to the field of power system state

estimation by addressing several key challenges and introducing innovative solutions.

The accomplishments of this study are summarized as follows:

Development of Anomaly Detection and Classification Algorithm: A

novel algorithm has been developed for the detection and classification of single/multi-

bus SLC and single/multi-state FDIA. This algorithm leverages an anomaly detec-

tion index for detection and employs supervised machine learning (ML) techniques

for the classification of these anomalies.

Topology-Resilient Classification Solution: This research proposes a so-

lution for the classification of FDIA and SLC events that effectively mitigates the

adverse effects of topology changes. By focusing on features associated solely with

buses, such as nodal measurements, normalized measurement innovations, estimated

and predicted values of measurements, and system states, this solution ensures ro-

bust classification.

Evaluation of Distributed SE Methods: The application of a modified con-

vergence criterion to recent and well-known distributed state estimation methods,

17



Chapter 1. Introduction 1.4. Thesis outline

using IEEE standard test systems, has been thoroughly examined. This evalua-

tion encompasses various performance metrics, including data transfer requirements,

computation time, solution accuracy compared to centralized methods, and conver-

gence rates, ultimately leading to the selection of the most effective method.

Optimal Power System Partitioning: An optimal partitioning method has

been introduced to reduce communication overhead and data transfer requirements

in distributed SE. This optimization significantly decreases the number of iterations

needed to achieve a reasonable solution.

Enhanced Data Transfer Security: The research explores the application of

blockchain technology to enhance the security of data transfers within distributed

power system SE. This novel approach safeguards sensitive information and ensures

the integrity of data exchanged in the distributed environment.

Consideration of Asynchronous and Delayed Data Transfer: The study

acknowledges the challenges induced by asynchronous and delayed data transfers

within the context of distributed SE. By addressing these issues, the research con-

tributes to the development of robust DSE algorithms capable of handling real-world

communication constraints.

These accomplishments collectively represent a substantial advancement in the

field of power system state estimation, offering practical solutions to address critical

challenges and improve the reliability and efficiency of power grid operations.

1.4 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 provides a literature

review, presenting an in-depth analysis of existing state estimation techniques and

their limitations. Chapter 3 delves into the power system components modeling and

details of the measurement data. Chapter 4 discusses various SE algorithms and

methodologies employed in this research. Chapter 5 discusses the results and their

implications, while chapter 6 focuses on showcasing the practical application of the

proposed methods. Finally, Chapter 7 summarizes the key findings of this study

and offers recommendations for future research directions.
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Chapter 1. Introduction 1.5. Summary

1.5 Summary

In this chapter, an overview of the challenges in the power system state estima-

tion was presented. Moreover, research objectives together with a brief background

about the main problems of power system state estimation was stated. Then the

research gaps were pointed out and the hypotheses were formulated. Finally, the

contributions of the research work were highlighted.
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Chapter 2

Literature review

This chapter provides a comprehensive review of the power system state estimation

techniques. In this chapter, different state estimation algorithms, methodologies,

and approaches are discussed. Amongst these literature the research gaps and the

areas that can be improved are pointed out.

2.1 Power system state estimation

Power transmission systems contain large numbers of substations. These substa-

tions are connected to one another via transmission line and transformers. More-

over, various measurement devices and protection equipment are utilized within the

transmission systems, for the purpose of control and protection of these systems [11].

These systems are categorized as a dynamic system, taking into account that the

demand and the generation have intermittent nature and are affected by numerous

factors. As an example for these factors, increase in utilization of the distributed en-

ergy sources and the non-stop escalating level of energy demand, can be stated [12].

The dynamic behaviour of the system, causes different challenges from operational

prospective. It is clearly obvious that operating this bulk and dynamic system is

not trivial, and it is essential to monitor the state of the system in real-time.

State estimation (SE) is the core component of the energy management system

(EMS) for power grids and it plays an essential role in justifying and regulating

system operator decisions like load forecasting, contingency analysis, optimal power
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flow, etc. The idea of applying SE in the power systems was initiated by Fred

Schweppe [13]. SE provides the most likely values of the voltage magnitudes and

phase angles for all buses in the power system. The accuracy of these values is

essential for achieving optimal and secure operation of the system [7]. It is to be

noted that advanced SE can improve monitoring and controlling the power grid in

case of a contingency. Especially for the smart grids in which bidirectional transfer

of electrical energy and system/consumer data increases the complexity [10, 14].

Such a system can be divided into two integrated parts, i.e., physical equipment of a

traditional power system (Physical part) and telecommunication equipment (Cyber

part). Combining these two parts will lead to a cyber-physical power system (CPPS)

[15]. Figure 2-1 demonstrates the connection between physical, communication and

energy management systems.
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Figure 2-1: State estimator’s role in the power system

As it is shown in the Fig. 2-1, typically include the following functions:

• Dynamic and static data: The first stage in the process of SE is receiving

data from the network. These data can be dynamic, like measurement values
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that can change with time. Or they can be static, like parameters of the

transmission line.

• Observability analysis : Determines if the available number of measurements

are sufficient to obtain the SE solution.

• Topology processing : Configures the system physical layout, taking into ac-

count the status of the switching devices such as circuit breakers.

• Measurement pre-filtering : Contains a set of elementary inspections to remove

the measurement values that are obviously wrong (e.g., power flow values

beyond the limits, voltage magnitudes with negative value, etc.)

• State estimator : Calculates the optimal network’s state based on the obtained

network parameters, measurement data, and network topology.

• Bad data processing : Detects existence of non-Gaussian errors within the mea-

surements, based on the SE statistical properties.

Although SE is highly comparable to the conventional load flow, it considers

the unpredictable errors that might originate due to unexpected system changes,

meters or communication system, inaccuracy in equipment calibration, planned ma-

nipulation from a malicious attacker, etc. [10, 13]. Additionally, conventional load

flow analysis does not consider redundancy and imprecision of the system’s mea-

surement data, whereas SE considers the mentioned features [13].

Considering a brief background of the evolution of the SE method and its ap-

plication in power system, it is worth noting that as soon as Schweppe pointed

out the application of SE in power system, it attracted industrial communities’ at-

tention [16]. Growth of the power system due to increase in the level of needed

electricity consumption and propagation of the communication technology, bring in

several problems assigned with power system operation, especially centralized SE

such as:

• Expansion of power system continent-wise

• Policy and privacy
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• Dimension of the grid

• Communication bottleneck

• Data size

• Security/Reliability

Expansion of the power grid over continents makes an interconnected system

such that these continents can be affected by contingencies in other ones [9]. Al-

though, in some regional expansion cases, e.g., the case with regional transmission

organizations (RTOs) in Europe, operators are using high-voltage direct current

(HVDC) technology for power transfer which is also another research area for con-

sidering hybrid HVDC/AC SE so that they can meet the characteristics of the new

network regarding Supervisory Control and Data Acquisition (SCADA) system [17].

Vulnerability and inflexibility of centralized SE make it unsuitable for a multi-area

(or multi RTO) estimator from policy and privacy point of view [9]. The grid’s high

dimension is another challenge that affects the computational difficulty [18,19]. Hav-

ing only one central control unit, extensive network parameters and measurement

unit’s information, which needs to be transferred to this unit, may result in com-

munication bottlenecks [6,20]. Another problem that has attracted the researcher’s

attention, especially in smart grids, is that the size and the speed of receiving data

(so called big data) from measurement units might be infeasible to be stored and

processed [10,21]. Moreover, in most of the literature, it is assumed that the central

node is secure, though it can be the most vulnerable, insecure, and unreliable point

in a network and prone to a single point of failure [10,22].

2.2 Power system anomalies

Being a cyber-physical system, the power system is vulnerable to various types of

anomalies, such as cyberattacks. Adversaries can exploit vulnerabilities in the SE

system to inject false data, which can lead to inaccurate state estimates. This can

have a number of negative consequences, such as:
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• Cascading power outages

• Economic losses

• Safety hazards

Three main security features for the data in a smart grid are Confidentiality,

integrity and availability, which they refer to occasions when the data are accessible

only to authorized users, the data are trustworthy in any operational circumstances,

and the data are promptly and reliably available, respectively [23].

Cyberattacks, such as the denial of service (DoS) or false data injection (FDIA),

aim to deteriorate such properties. Noting the case when a central control unit gets

compromised, all data can either get lost or controlled by the attackers [24], and

one of the potential solutions could be a distributed control scheme. However, the

distributed grid can also be subjected to a cyber-attack, i.e., attack to measure-

ment units, to control centers, to communication line between control centers and

measurement units, to communication line between control centers (i.e., between

areas).

Power system SE can be subjected to different types of anomalies that might

spoil the accuracy of the estimated states. Inter alia, these can be anomalies like

bad data (BD), sudden change in bus injections or false data injection attack (FDIA).

BD is caused by unexpected errors in sensors or communication medium. Besides,

network model parameters might contain BD. Sudden change in bus injections can

be either sudden load change (SLC) or sudden generation change (SGC), depending

on whether consumer or generator is connected to the bus. Severe SLC is usually

caused by serious variations in industry load or by disconnection/reconnection of

a large portion of the load. Although SLC was under the scope of many research

work in the past, SGC emerges as a new challenge since penetration of uncertain

renewable energy sources is increasing incessantly [25,26]. Both SLC and SGC will

further lead to the sudden change in the system operating point, i.e., it will cause a

large and rapid change in most state variables. FDIA is a type of perfect interacting

BD [27]. FDIA is amongst the most hazardous cyberattacks which targets data

integrity. It has attracted industry and research community’s attention recently [28–
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31]. Regardless of the anomaly type, it is essential to detect the anomaly presence

as soon as it occurs, as well as to classify (discriminate between) different types

of anomalies and identify their origin in order to enable proper countermeasures

against each of them in the correction phase (see Fig. 5-1).

Techniques for detection and classification of anomalies depend on which SE

method is implemented. Assuming that normalized measurements’ residuals follow

a standard Gaussian distribution, their sum of squares are expected to follow a 𝜒2

distribution [11, 14]. This resulted in 𝜒2-test to be widely used as BD detection

method in conventional weighted least square (WLS) power system static state es-

timation (SSE). Besides, largest normalized residual (LNR) test has shown good

detecting capabilities but also the ability to identify measurement(s) corrupted with

bad data [11]. LNR test found its role in bad data detection stage for hybrid Voltage

Source Converter - HVDC/AC transmission systems, where it has been improved

by integrating the Gaussian mixture model algorithm [32]. LNR method is also

used to cope with bad data in multi-energy applications [33]. Other approaches

suitable for WLS framework are recently studied to mitigate the impact of outliers,

like Hampel’s redescending and the Schweppe–Huber generalized M-estimators [34].

Unlike WLS, forecasting-aided state estimation (FASE) based on Kalman filtering

utilizes process model yielding state forecasting. FASE combines state predictions

with observed measurements which facilitates BD detection and classification. To

detect BD in phasor measurement units (PMUs) a robust unscented Kalman fil-

ter (UKF) is presented by processing the predicted state vector and the received

measurements simultaneously [35]. A fault tolerant second-order extended Kalman

filter (EKF) based on discrete-time nonlinear Luenberger-type observer has been

presented in [36] to mitigate the adverse effects of BD.

Considering WLS SSE employs only current snapshot of measurements, 𝜒2-test

conducted over measurement residuals will not recognize the presence of the SLC.

On the other hand, due to existence of the process model, SLC will affect FASE

performance. This might be used to enable SLC detection. In [25, 26], normalized

measurement innovations are tested against predefined threshold to detect anomaly

presence, while skewness of distributions and 𝜒2-test of goodness of fit of normal-
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ized innovations are proposed to discriminate between BD and SLC. In [37], same

detection technique has been used whilst the logical check routine is applied for clas-

sification purpose. In [38], an UKF based on minimum error entropy is presented

to avoid abnormalities such as SLC. A maximum-correntropy-based EKF estimator

is presented in [39] for discrimination between BD and SLC, incorporating both su-

pervisory control and data acquisition (SCADA) and PMU measurements. In [40],

an UKF with generalized correntropy loss is introduced to suppresses the effect of

outliers by utilizing inverse of the exponential function of innovations for update of

measurements noise covariance matrix.

2.3 Machine learning in power system

As discussed above, determining an analytical approach for detection and classi-

fication of the discussed three anomalies is a difficult task. Nowadays, similar to

other research areas, application of machine learning (ML) algorithms in power sys-

tems is increasing as well. First reason is their low mathematical dependency on

system models; instead, ML algorithms extract knowledge directly from the data.

Next reason is self-learning capability of these algorithms, enabling the algorithms

to learn from experience and update their knowledge to give better results [41].

Additionally, proper accuracy and effectiveness makes ML based methods a suit-

able choice for detection and classification of anomalies [42]. Apart from supervised

ML methods commonly utilized in the literature, such as logistic regression, k-near

neighborhood, random forest and/or extreme gradient boosting, combination of ar-

tificial neural networks and ML, so called deep learning, is also broadly applied in

the area of power systems. In [43], a deep neural network architecture that inte-

grates a universal BD detection technique using a binary hypothesis testing scheme

has been presented. A matrix completion approach is proposed for SE of distri-

bution networks in [44], aiming to minimize the weighted sum of the measurement

residuals to suppress the effects of BD. Bayesian BD detection method within a

deep learning based SE scheme is used in [45]. An ensemble correlation based de-

tector with adaptive statistics, presented in [46], compares squared Mahalanobis
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distance of new measurement samples with an adaptive threshold in order to de-

tect and classify FDIA. Authors in [47] have introduced two ML based algorithms

for FDIA detection: if the measurements are labeled (i.e. normal and tampered

measurements are specified), detection is performed using support vector machine

algorithm; in the case of unlabeled measurements, detection is done utilizing sta-

tistical characteristics of historical measurements. A deep learning based method

utilizing a feed-forward artificial neural network has been implemented for FDIA

detection in [48]. In [43–48], detection and classification of SLC and multi-state

FDIA, as well as analyzing the effects of network topology change on detection and

classification of FDIA and SLC, have not been discussed. In another words, the

algorithms in the mentioned literature are not trained to deal with such anomalies.

2.4 Power system distributed state estimation

One way to overcome centralized SE issues would be implementing the distributed

state estimation. In distributed SE, the power system will be divided into several

smaller areas or sub-systems, and the SE process will take place concurrently in each

area. A low amount of information exchange at borders of the areas is required so

that each area reaches convergence, i.e., the distributed network reaches a similar

solution as the centralized one. The amount of information that must be exchanged

depends on the method applied. In [49], a detailed comparison of the recent dis-

tributed SE methods regarding indices such as convergence rate and information

exchange has been made, which clearly confirms that each method varies from one

another considering information transfer between areas.

The distributed SE algorithms can be classified into two categories, having a

global control center, i.e., hierarchical distributed SE [50–52] or fully distributed

[6,8,49]. Both of them are successful in reaching to an acceptable solution compared

to centralized algorithms. Alternating direction method of multipliers (ADMM) [53]

that are in the category of distributed optimization [9], have been very popular re-

cently. In [54], a fully decentralized adaptive SE scheme has been presented for

the power system via applying the network gossiping method. The method enables
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collaboration between areas to solve the global problem; however, there is still a

significant performance error in comparison to centralized SE. Authors in [55] pre-

sented a distributed SE for wide area monitoring system, which does not need local

observability of all areas. In [56], a new multi-area SE method is discussed that

utilizes a central coordinator; however, there is no need to exchange topology in-

formation between areas or from areas to the central coordinator. The proposed

approach in [57] is a new hierarchical multi-area power system SE, which shares the

sensitivity function of local estimators instead of boundary measurements or state

estimates. As stated by the authors in [57], the approach reduces the information

exchange, as well as increases convergence speed. In [22], the authors have provided

an ADMM based distributed SE. Also, in [3] and [6], a distributed SE process using

matrix splitting method for DC and AC SE, respectively. For more details, we refer

to [7] that presents a brief review of multi-area SE.

It is to be noted that mostly in the literature, the transmission system has been

a matter of concern, which we have followed the same approach. To solve AC SE via

centralized method or some of the distribution methods, such as matrix splitting or

ADMM, would need linearization of the problem using Newton’s method. However,

by applying the decomposition method [9] and the available solvers, there would be

no further need for linearization of the problem.

2.5 Blockchain

Blockchain (BC) is a peer-to-peer distributed ledger technology that stores data on

multiple servers globally. In 2008, Satoshi Nakamoto’s whitepaper on Bitcoin [58]

pioneered the use of BC technology in financial application [59]. BC technology was

primarily used in the financial domain, so as to provide trustfulness and a secure

environment without central authority where digital assets like cryptocurrency can

be prevented from double-spending attacks [60, 61]. Since then, the technology’s

potential has moved beyond financial domains to different sectors like supply chain

management, healthcare, etc. [62–66].

BC is a distributed ledger of chronologically generated blocks containing cryp-
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tography linked blocks to the previous block forming a chain. Any modification to

the previous existing block will be reflected on every subsequent block, making it

secure and immutable to modification. If an attacker changes data on any of the

previous blocks, the following block’s data will also change, and the ledger can be

compared with another copy to track the point at which the data was manipulated

and later rectified. In cryptocurrency, it is computationally hard to take control over

the BC network because the attacker will require 51% of the network’s computing

power, i.e., it will be difficult for an attacker to fork from a past block and mine

blocks faster, surpassing current (honest chain) block height. This will create dou-

ble spending, which computationally hard [67]. BC-based applications can provide

security, trust, economic, and auditability [68].

Since Bitcoin, many alternative cryptocurrencies (altcoins) have emerged. Ethereum

[69] is the most popular cryptocurrency after Bitcoin, which provides an open-source

platform to develop BC-based decentralized applications (DApps). DApps are appli-

cation programs that runs on decentralized BC applications using Ethereum Virtual

Machine (EVM). For example, smart contracts can specify the functionality and

condition, under which circumstances payment can occur between two individuals.

These conditions are programmed and deployed on the BC, and individuals can

abide by these conditions and transact in a secure environment without intermedi-

aries. EVM is one big computer that is made of small individual computers located

globally. These computers are nodes connected, having a copy of the Ethereum BC.

The transactions are broadcasted to the network via a node which is replicated across

the network. For feasibility demonstration of BC for secure data transmission, we

have developed a prototype on the Ethereum platform using truffle framework [70]

which can be deployed on local machines. We have created a smart contract, speci-

fied conditions and deployed it on a BC network running on local devices.

Aside from financial applications of BC, it has been developed in other fields. For

example, in [71], the authors propose a BC based method to preserve security of the

spectrum sharing between aerial (unmanned aerial vehicle as a component of next

generation cellular network) and terrestrial communication systems. Application of

BC in the smart grid mainly has been investigated in the area of power markets, i.e.,
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the issues related to the secure energy transactions [12]. In [72], a proof of concept

(PoC) for decentralized energy trade using BC has been proposed, to enable peer

to peer energy transactions. In [73] a BC based platform for solar energy trade

amongst prosumers has been implemented in laboratory scale. However, a few

works have been applied BC in power system for security purposes, [74, 75]. These

studies consider storing system wide measurement data in each measurement, which

seems inefficient due to low memory of measurement units and time delay caused

by encryption/decryption of the data.

2.6 Summary

A comprehensive literature review of the power system state estimation concept

and its techniques (i.e., centralized and distributed) was provided in this chapter.

Furthermore, various types of anomalies that may occur in the power system was

discussed. Additionally, recent applications of contemporary methods in power sys-

tems, namely machine learning and blockchain were investigated. Table 2.1 presents

an overview of the literature together with their challenges.

Table 2.1: Summary of the literature overview

Category Common challenge Citations

Power system state es-

timation

Centralization: Centralized SE is prone

to single point of failure and communica-

tion bottlenecks. Data size: Handling large

amount of data from sensors and measure-

ment units can be challenging. Security:

Centralized SE can be vulnerable to cyber-

attacks.

[9–11,

22,76]
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Power system anoma-

lies

Detection and classification: Accurately

detecting and classifying different types of

anomalies, such as bad data, sudden change

in bus injections, and false data injection at-

tacks, despite its importance can be difficult.

[11, 48,

77,78]

Machine learning in

power system

Data availability and quality: The avail-

ability and quality of data for training ma-

chine learning models can be limited or in-

accurate. Model complexity: Designing

complex machine learning models that can

handle the complex nature of power systems

is challenging. Interpretability: Explain-

ing the decisions made by complex machine

learning models can be difficult.

[4, 14,

40, 43,

44]

Power system dis-

tributed state estima-

tion

Convergence speed and accuracy: Dis-

tributed SE algorithms need to converge

quickly and accurately to provide reliable

state estimates. Information exchange:

The amount of information exchanged be-

tween areas in distributed SE needs to be

carefully controlled to optimize communica-

tion and computational resources.

[6, 22,

49, 55,

79]
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Blockchain

Scalability: The scalability of blockchain

technology needs to be improved to han-

dle the large amount of data and transac-

tions in the power system. Performance:

The performance of blockchain-based appli-

cations needs to be optimized to ensure real-

time operation and response times. Secu-

rity: Blockchain technology needs to be fur-

ther hardened against cyberattacks and vul-

nerabilities.

[65, 74,

75,80]
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Chapter 3

Power system modeling and

measurement data

Power system state estimation refers to the procedure of obtaining the voltage pha-

sors of all buses in the system using a set of redundant measurements. The re-

dundancy in the measurement units will avoid vulnerability to error in measure-

ment units and in telecommunication system. Apart from conventional power and

voltage measurements, the measurement set may include current or synchronized

voltage phasor measurements as well. A certain amount of time skew between mea-

surements is commonly tolerated. Because it is practically impossible to obtain the

measurements from different parts of the network simultaneously.

Another requirement for the implementation of state estimation is that the net-

work topology and parameters must be perfectly known. This chapter discusses the

component model that represents the entire network.

3.1 Modeling of the network components

3.1.1 Transmission line

A two port 𝜋-model is utilized to characterize the positive sequence of the trans-

mission line. It is assumed that the power system is operating in steady state mode

and under balanced condition. This requires that all transmission lines are fully
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transposed, all bus loads and branch power flows will be three phase and balanced,

and all other series or shunt devices will be symmetrical in the three phases. The

equivalent circuit presented in Fig. 3-1 which demonstrates a transmission line with

a positive sequence series impedance of 𝑅 + 𝑗𝑋 and total line charging susceptance

of 𝑗2𝐵.

R jX

k

jB jB

m

Figure 3-1: Two port 𝜋-model equivalent circuit of a transmission line

3.1.2 Shunt capacitors or reactors

To control the voltage or reactive power in the network, shunt capacitors or reactors

might be installed. The type of the shunt element can be determined by the sign

of the susceptance value. For a shunt capacitor the value will negative and for a

reactor the value will be positive.

3.1.3 Loads and Generators

Power injections, such as loads and generators, are modeled as complex power in-

jections, which do not affect the network model. However, constant impedance type

loads are included as shunt admittances at the corresponding buses.

3.2 Network modeling

The component models described above can be used to create a model of the entire

power system. This is done by writing a set of equations for each node in the system,
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using Kirchhoff’s current law. These equations can be written in the following form:

𝐼 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑖1

𝑖2
...

𝑖𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑌11 𝑌12 . . . 𝑌1𝑁

𝑌21 𝑌22 . . . 𝑌2𝑛

...
...

...
...

𝑌𝑁1 𝑌𝑁2 . . . 𝑌𝑁𝑁

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑣1

𝑣2
...

𝑣𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝑌 .𝑉 (3.1)

where

𝐼 is the net current injection phasors vector

𝑉 is the bus voltage phasors vector

𝑌𝑘𝑚 is the (𝑘,𝑚)th element of the 𝑌 matrix

𝑁 is the number of bus

𝑖𝑘 is the current injection phasor in bus 𝑘

𝑣𝑘 is the voltage at bus 𝑘

3.3 Measurement data

Supervisory control and data acquisition (SCADA) systems and phasor measure-

ment units (PMUs) are two types of measurement systems that are commonly used

for state estimation in power systems. SCADA systems collect data from various

sensors and devices in a power system, such as voltage and current sensors, circuit

breakers, and switchgear. The data collected by SCADA systems is typically used

to monitor the state of the power system and to control and operate the system.

SCADA systems can also be used to collect data for state estimation.

PMUs are specialized devices that measure the phasor of voltage and current at

a specific location in a power system. Phasors are complex numbers that represent

the magnitude and phase angle of a sinusoidal signal. PMUs are very accurate and

can measure phasors at a high sampling rate. This makes PMUs ideal for state

estimation applications.
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SCADA and PMU measurements can be used together to improve the accuracy

and reliability of state estimation. SCADA measurements are typically more widely

available than PMU measurements, but PMU measurements are more accurate and

can provide more information about the state of the power system.

Table 3.1 summarizes the key differences between SCADA and PMU measure-

ments:

Table 3.1: summarization of the SCADA and PMU measurements

Characteristic SCADA PMU
Accuracy Less accurate More accurate
Sampling rate Lower sampling rate Higher sampling rate
Availability More widely available Less widely available
Cost Lower cost Higher cost

In general, SCADA measurements can provide a wide range of data about the

state of the power system, while PMU measurements can provide more accurate and

detailed information about the state of the power system at specific locations. In this

study, only SCADA measurements have been considered. These measurements are

composed of active and reactive power flows, active and reactive power injections,

and voltage magnitudes.

While using SCADA measurements for state estimation, it is important to con-

sider the following sources of error.

Measurement noise is any error in a measurement that is not due to the true

value of the quantity being measured. Measurement noise can be caused by a variety

of factors, including:

• Sensor errors: Sensors are not perfect and can introduce errors into measure-

ments. Sensor errors can be caused by a variety of factors, such as manufac-

turing defects, environmental factors, and aging.

• Communication errors: Measurements are often transmitted from sensors to

the state estimator over communication channels. Communication errors can

introduce errors into measurements. Communication errors can be caused by

a variety of factors, such as noise on the communication channel, interference,

and cyberattacks.
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• Environmental factors: Environmental factors, such as temperature, humidity,

and vibration, can also introduce errors into measurements.

• Human errors: Human errors can also introduce errors into measurements.

Human errors can occur during the installation, calibration, and operation of

sensors.

Measurement noise can have a significant impact on the accuracy of state esti-

mation. By understanding the different factors that can cause measurement noise,

it is possible to take steps to mitigate its impact on state estimation.

Here are some specific things that can be done to reduce the impact of measure-

ment noise on state estimation:

• Use high-quality sensors and communication equipment.

• Calibrate sensors regularly.

• Use a state estimation model that is as accurate as possible.

• Use an error modeling technique that is appropriate for the application.

• Detect and correct bad data as quickly as possible.

In addition to the above measures, it is also important to be aware of the specific

sources of measurement noise in the power system being monitored. For example,

if the power system is subject to a lot of lightning strikes, then it is important to

use sensors that are resistant to lightning strikes.

By taking these steps, it is possible to reduce the impact of measurement noise

on state estimation and improve the accuracy of state estimates.

3.4 Studied networks

In this study, two IEEE standard networks have been utilized. The IEEE 14-bus

system and the IEEE 118-bus system which are presented in Fig. 3-2 and Fig. 3-3,

respectively. The IEEE 14-bus system is a small power system that is often used for
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Figure 3-2: Single line diagram of IEEE 14 bus system [1]

educational and research purposes. The IEEE 118-bus system is a larger and more

complex power system that is more representative of real-world power systems [1,2].

Both the IEEE 14-bus system and the IEEE 118-bus system are commonly used

for state estimation studies. The IEEE 14-bus system is a good choice for simple

state estimation studies, while the IEEE 118-bus system is a good choice for more

complex state estimation studies. Table 3.2 summarizes the key features of the IEEE

14-bus system and the IEEE 118-bus system:

Table 3.2: IEEE 14 and IEEE 118 bus system comparison

Characteristic IEEE 14-bus system IEEE 118-bus system
Number of buses 14 118
Number of generators 5 19
Number of loads 11 91
Number of lines 20 177
Complexity Simple Complex

3.5 Weighted Least Squares

The SSE results from a further simplification in which the state transition infor-

mation is completely disregarded and only the nonlinear measurement function is
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Figure 3-3: Single line diagram of IEEE 118 bus system [2]

kept [4]. As a result, SSE has no recollection of the states from the previous time

steps and, unlike FASE, it lacks the capacity to track the system state transition [81].

Thus, SSE implies that the state vector is estimated using the most recent set of

available measurements.

Based on the concept of maximum likelihood, and assuming the measurement

errors are independent and follow Gaussian distribution [11, 14], SSE problem can

be written in the following format:

𝑚𝑖𝑛 [𝑧𝑡 − ℎ(𝑥𝑡)]
𝑇𝑅−1

𝑡 [𝑧𝑡 − ℎ(𝑥𝑡)] (3.2)

subject to 𝑧𝑡 = ℎ(𝑥𝑡) + 𝑟𝑡

where 𝑧𝑡 is the vector of measurements at time step 𝑡; ℎ is the nonlinear function

relating measurements to the state vector 𝑥𝑡; 𝑅𝑡 indicates measurement noise co-

variance matrix which is a diagonal matrix and its elements are composed of each

measurement’s standard deviation (𝜎), 𝑅𝑡 = 𝑑𝑖𝑎𝑔{𝜎2
1,𝑡, 𝜎

2
1,𝑡, . . . , 𝜎

2
𝑚,𝑡} The optimiza-

tion problem (3.2) is known as weighted least squares (WLS) estimation and can be
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solved using Gauss-Newton iterative process [14]:

𝑥𝑘+1
𝑡 = 𝑥𝑘

𝑡 + [[𝐻𝑘
𝑡 ]𝑇𝑅−1

𝑡 𝐻𝑘
𝑡 ]−1[𝐻𝑘

𝑡 ]𝑇𝑅−1
𝑡 [𝑧𝑡 − ℎ(𝑥𝑘

𝑡 )] (3.3)

where 𝑘 is iteration counter and 𝐻𝑘 represents Jacobian of ℎ evaluated at 𝑥𝑘. After

convergence, vector of measurement residuals 𝑟 and its covariance matrix Ω can be

calculated as:

𝑟𝑡 = 𝑧𝑡 − ℎ(�̂�𝑡) (3.4)

Ω𝑡 = 𝑅𝑡 − �̂�𝑡

[︁
�̂�𝑇

𝑡 𝑅
−1
𝑡 �̂�𝑡

]︁−1

�̂�𝑇
𝑡 (3.5)

where �̂� represents Jacobian of ℎ evaluated at �̂�. More detailed explanation re-

garding WLS is provided in chapter 4.

3.6 Bad data

If the normalized measurement residuals follow Standard Gaussian (Normal) distri-

bution, their sum of squares will have a 𝜒2 distribution. Statistical properties of

the normalized measurement residuals have been considered in Appendix A. Com-

bination of 𝜒2-test and LNR test is widely used within the WLS SSE framework

for bad data detection (BDD) and identification of BD’s origin. Steps are given as

follows [14]:

• Calculate the following objective function after solving the SE problem (time

index 𝑡 is omitted to simplify the notation) [82]:

𝐽𝐵𝐷𝐷(�̂�) =
𝑚∑︁
𝑖=1

[𝑧𝑖 − ℎ𝑖(�̂�)]2

Ω𝑖𝑖

=
𝑚∑︁
𝑖=1

𝑟2𝑖
Ω𝑖𝑖

(3.6)

where 𝑧𝑖 is 𝑖-th measurement, ℎ𝑖 is 𝑖-th equation from set ℎ of measurement

equations, and Ω𝑖𝑖 is 𝑖-th diagonal element of Ω.

• From 𝜒2 distribution table pick up the suspicion threshold corresponding to

probability 𝑝 and (𝑚− 𝑛) degrees of freedom [11].

40



Chapter 3. Power system modeling and measurement data 3.7. Sudden load/generation change

• If 𝐽𝐵𝐷𝐷(�̂�) ≥ 𝜒2
(𝑚−𝑛),𝜌 holds, BD exists with confidence probability level 𝜌 and

(𝑚− 𝑛) degrees of freedom; otherwise, there is no BD.

• If BD is detected, calculate normalized residual for each measurement, 𝑟𝑁𝑜𝑟𝑚
𝑖 ,

as:

𝑟𝑁𝑜𝑟𝑚
𝑖 =

|𝑧𝑖 − ℎ𝑖(�̂�)|√
Ω𝑖𝑖

=
|𝑟𝑖|√
Ω𝑖𝑖

(3.7)

• If 𝑟𝑁𝑜𝑟𝑚
𝑖 is the largest normalized residual and 𝑟𝑁𝑜𝑟𝑚

𝑖 > 𝜏 , where 𝜏 is a thresh-

old, then 𝑖-th measurement will be suspected as BD. For normalized residuals

following Standard Gaussian distribution, threshold 𝜏 can be selected as 𝜏 = 3.

Statistical properties of normalized residuals are further discussed in Appendix

A.

3.7 Sudden load/generation change

One of the events that might change the power system state abruptly is SLC or

SGC. This might happen due to failure of different power system components, such

as circuit breakers or generation units. Considering constant increase in penetration

from renewable energy sources into the power system, their intermittent nature

might be another reason for sudden state change. It is to be noted that 𝜒2-test

carried out over measurements’ residuals obtained via WLS SSE is unable to detect

SLC/SGC. On the other hand, application of FASE can be helpful for detection of

these events due to advantages that state transition model brings. For the sake of

brevity, in this research we have focused on SLC and modeled it as a load shedding

at different buses but we point out that similar considerations can be applied to the

case of SGC as well. More details about SLC modeling is provided in Section 5.1.7.

3.8 False data injection attack

With the evolvent of the power systems and application of various communication

mediums, the possibility for cyber-attacks has increased. Considering the power

system as cyber-physical system, its data must satisfy three main principles of in-
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formation security, so called availability, integrity and confidentiality. Two well-

known attacks in the power system are FDIA and denial of service (DoS), which

threaten integrity and availability of the data, respectively [23]. Although the tar-

geted medium for both types of attack is the communication medium, FDIA can

lead to critical issues to the secure and economic operations in the power system if

it evades being detected by conventional BDD. FDIA can mislead the system op-

erator that the system operates in a normal and secure state, while in reality it is

not. Also, the operator may be persuaded to take expensive and unnecessary ac-

tions like load shedding or rescheduling generation units. Conventional BDD, such

as 𝜒2-test, utilizes measurement residuals, while stealthy FDIA endeavors to keep

residuals unchanged. This might lead to conventional BDD failure against stealthy

FDIA.

Assuming the adversarial has perfect knowledge of the system (topology and

parameters) and receives the same data as the system operator, it can be capable of

manipulating the measurements in a way that BDD will be bypassed. The attack

vector 𝑎 is of the same size as the measurement vector but with non-zero elements

(𝑎𝑖) corresponding only to measurements under the attack. So, under the attack,

the 𝑖-th measurement will have the following model:

𝑧𝑎𝑖 =

⎧⎪⎨⎪⎩𝑧𝑖 + 𝑎𝑖 if 𝑖-th measurement is attacked

𝑧𝑖 otherwise
(3.8)

From practical point of view, (3.8) indicates that the adversarial needs to have

access to measurements and the ability to manipulate their values to the values

determined by the attack vector.

Without losing generality, let us assume that the adversarial has obtained the

same measurements 𝑧 and state estimates �̂� as the system operator. The FDIA

can bypass the BDD if 𝑎𝑖 = ℎ𝑖(𝑥
𝑎)− ℎ𝑖(�̂�), where 𝑥𝑎 = �̂� + 𝑐 and 𝑐 represents the

change adversarial would like to make to the system states. Vector 𝑐 has non-zero

elements corresponding to state variables that are intended to be changed by the

adversarial, while all other elements are equal to 0. Under perfect FDIA described
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above, vector of measurement residuals will be [83]:

𝑟𝑎 = 𝑧𝑎 − ℎ(𝑥𝑎)

= 𝑧 + 𝑎− ℎ(𝑥𝑎)

= 𝑧 + 𝑎− ℎ(𝑥𝑎) + ℎ(�̂�)− ℎ(�̂�)

= 𝑧 − ℎ(�̂�) + 𝑎− [ℎ(𝑥𝑎)− ℎ(�̂�)]

= 𝑧 − ℎ(�̂�) = 𝑟

(3.9)

The above equation proves the feasibility of stealthy attack in case the adversarial

has enough information regarding the network measurements and parameters to

build attack vector 𝑎 in a way that 𝑎 = ℎ(�̂� + 𝑐) − ℎ(�̂�). It is worth noting that

in this research the conventional BDD is assumed to be 𝜒2 method, as explained

above. More details of modeling FDIA is presented in Section 5.1.7.

3.9 Summary

In this chapter, the mathematical modeling of the state estimation problem together

with the model of network component were presented. Moreover, schematics of the

IEEE test systems and the concept of sudden load/generation change and false data

injection attacks were discussed.
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Chapter 4

State estimation algorithms

In this research work, three different types of state estimation (SE) techniques, i.e.,

centralized, distributed, and quasi-steady are studied. Centralized SE is the most

common type of SE. In centralized SE, all of the measurements are collected and pro-

cessed by a central computer. Centralized SE is simple to implement and provides

the most accurate state estimates. However, centralized SE can be computationally

expensive for large power systems. Distributed SE is a newer type of SE that is

designed to address the computational challenges of centralized SE. In distributed

SE, the measurements are processed by multiple computers that are distributed

throughout the power system. This can significantly reduce the computational bur-

den of SE for large power systems. Forecasting-aided SE is a type of SE that uses

forecasting techniques to improve the accuracy of state estimates. Forecasting-aided

SE can be used to predict the future state of the power system based on past mea-

surements. This can be useful for detecting and identifying potential problems in

the power system before they occur.

This chapter will discuss the advantages and disadvantages of each type of SE,

as well as the different algorithms that can be used to implement each type of SE.

4.1 Centralized

Centralized state estimation is the most common type of state estimation used in

power systems. In centralized SE, all of the measurements from various sensors
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throughout the power system are collected and processed by a central computer

(i.e. central data center), as shown in Fig. 4-1.

Figure 4-1: Scheme of a centralized state estimator

The central computer uses the measurements to solve a set of nonlinear equations

that describe the electrical relationships between the buses in the system. The

solution of these equations provides an estimate of the state of the power system,

which is typically defined as the set of voltage and current phasors at all buses in

the system.

Centralized SE has a number of advantages, including:

• Simplicity: Centralized SE is relatively simple to implement.

• Accuracy: Centralized SE provides the most accurate state estimates.

However, centralized SE also has some disadvantages, including:

• Computational cost: Centralized SE can be computationally expensive for

large power systems.

• Communication requirements: Centralized SE requires a reliable communi-

cation infrastructure to transmit the measurements from the sensors to the

central computer.

• Vulnerability to cyberattacks: Centralized SE is vulnerable to cyberattacks.

An attacker could compromise the central computer to inject false data, which
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could lead to inaccurate state estimates and disruptions to power system op-

eration.

Despite its disadvantages, centralized SE is the most widely used type of SE in

power systems today. This is because centralized SE provides the most accurate state

estimates and is relatively simple to implement. One of the well-known methods of

centralized SE is the maximum likelihood method discussed below.

4.1.1 Maximum likelihood method

Maximum likelihood estimation (MLE) is a method of estimating the parameters

of a statistical model by finding the values of the parameters that maximize the

likelihood of the observed data. In other words, MLE finds the set of parameters

that makes the data most likely to have occurred. This is done by calculating the

likelihood function, which is the probability of the observed data given the model

parameters. The parameters are then varied to find the values that maximize the

likelihood function

The goal of state estimation is to figure out the most likely state of the system

based on what we can measure. One way to do this is by using MLE.

Measurement errors are often assumed to be distributed normally, which means

that they follow a bell-shaped curve. The two main parameters of a normal distri-

bution are the mean (𝜇) and the variance (𝜎2).

The normal probability density function (pdf) for a random variable 𝑧, with

mean (i.e., expected value of 𝑧) 𝜇, and standard deviation 𝜎 is defined as [11]:

𝑓(𝑧) =
1√
2𝜋𝜎

𝑒−
1
2
{ 𝑧−𝜇

𝜎
}2 (4.1)

There are commonly accepted statistical assumptions about measurement errors,

which are not always valid:

• Errors are distributed according to a normal distribution.

• The expected value of errors is zero.

• Errors are independent.
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The third assumption, which is based on considering errors independence, implies

that the joint pdf of a set of 𝑚 measurements can be obtained by simply taking

the product of individual pdfs corresponding to each measurement. The resulting

product function 𝑓𝑚(𝑧) given by:

𝑓𝑚(𝑧) = 𝑓(𝑧1)𝑓(𝑧2)...𝑓(𝑧𝑚) (4.2)

that is called the Likelihood Function for the set of m measurements.

For the sake of simplicity, logarithm of likelihood function will be used. So, we

have:

𝐿 =
𝑚∑︁
𝑖=1

log 𝑓(𝑧𝑖) = −
𝑚∑︁
𝑖=1

log 𝜎𝑖 −
𝑚

2
log 2𝜋 − 1

2

𝑚∑︁
𝑖=1

(
𝑧𝑖 − 𝜇𝑖

𝜎𝑖

)2 (4.3)

This is an optimization problem, which can be formulated as:

𝑚𝑎𝑥 𝐿 ≡ 𝑚𝑎𝑥{−1

2

𝑚∑︁
𝑖=1

(
𝑧𝑖 − 𝜇𝑖

𝜎𝑖

)2} ≡ 𝑚𝑖𝑛
𝑚∑︁
𝑖=1

(
𝑧𝑖 − 𝜇𝑖

𝜎𝑖

)2 (4.4)

let’s define 𝑊𝑖𝑖 = 𝜎−2
𝑖 (𝜎2

𝑖 is covariance of measurement unit 𝑖 and 𝑊 is inverse

covariance matrix).

𝑚𝑖𝑛
𝑚∑︁
𝑖=1

(
𝑧𝑖 − 𝜇𝑖

𝜎𝑖

)2

s.t. 𝑧𝑖 = ℎ𝑖(𝑥) + 𝑟𝑖 , 𝑖 = 1, ...,𝑚

(4.5)

so that, 𝑟𝑖 is call residual of measurements. And if we rewrite the above equation

in matrix format we will have:

𝑚𝑖𝑛 𝐽(𝑥)

𝐽(𝑥) = [𝑧 − ℎ(𝑥)]𝑇𝑊 [𝑧 − ℎ(𝑥)]

(4.6)

In order to solve this optimization problem, the solution must pursue first order

optimality condition, which:
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𝜕𝐽

𝜕𝑥
= 0 → [−𝜕ℎ

𝜕𝑥
]𝑇𝑊 [𝑧 − ℎ(𝑥)] = 0

𝐻(𝑥) =
𝜕ℎ

𝜕𝑥
is Jacobian matrix of ℎ(𝑥)

(4.7)

From now on, we will have two types of view to the problem. One is DC SE, in

which the ℎ(𝑥) is a linear function (that means measurements have linear relation

with state variables) and we can do the matrix calculation directly. The other one is

AC SE, in which ℎ(𝑥) is nonlinear and one must use methods such as Gauss-Newton

to solve the problem. Initially, AC SE will be discussed and afterward, DC SE which

is a simpler version of AC SE will be presented.

4.1.2 AC state estimation

Considering 𝑔(𝑥) =
𝜕𝐽

𝜕𝑥
and expanding 𝑔(𝑥) around the state vector 𝑥𝑘 into its

Taylor series while neglecting higher order terms, results in an iterative solution to

the problem known as Gauss-Newton method:

𝑔(𝑥) = 𝑔(𝑥𝑘) + 𝐺(𝑥𝑘)(𝑥− 𝑥𝑘) + ... = 0 (4.8)

𝑥𝑘+1 = 𝑥𝑘 − [𝐺(𝑥𝑘)]−1𝑔(𝑥𝑘) (4.9)

𝐺(𝑥𝑘) =
𝜕𝑔(𝑥𝑘)

𝜕𝑥
= 𝐻𝑇 (𝑥𝑘)𝑊𝐻(𝑥𝑘) (4.10)

𝑔(𝑥𝑘) = −𝐻𝑇 (𝑥𝑘)𝑊 (𝑧 − ℎ(𝑥𝑘) (4.11)

where 𝑘 is the iteration index, 𝑥𝑘 is the solution vector at iteration 𝑘, and 𝐺(𝑥) is

called the gain matrix.

The Weighted Least Squares (WLS) method is a widely used method for power

system state estimation. It is a statistical method that minimizes the weighted

sum of the squared residuals of the measurement equations. The residuals are the

differences between the measured values and the estimated values. The weights are
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used to give more importance to certain measurements than others.

Here are the steps to perform the WLS method for power system state estimation:

• Initialize the state vector to an initial guess (flat start).

• Calculate the gain matrix, Jacobian matrix, and measurement vector.

• Calculate the weighted sum of the squared residuals.

• Update the state vector.

• Repeat steps until the state vector converges.

Measurements in power system state estimation can be of different types, but

the most common are line power flows, bus power injections, and bus voltage mag-

nitudes. These measurements can be expressed in terms of the state variables using

either rectangular or polar coordinates.

When using polar coordinates for a system with 𝑁 buses, the state vector will

have 2𝑁 − 1 elements; 𝑁 bus voltage magnitudes, and 𝑁 − 1 phase angles, where

the phase angle of one reference bus is set to an arbitrary value, such as 0. If bus 1

is chosen as the reference, the state vector 𝑥 will have the following form:

𝑥𝑇 = [𝜃2 𝜃3 . . . 𝜃𝑁 𝑉1 𝑉2 . . . 𝑉𝑁 ] (4.12)

Assuming the general two-port 𝜋 model for network branches, real and reactive

power injection (𝑃𝑖 and 𝑄𝑖) at bus 𝑖 are:

𝑃𝑖 = 𝑉𝑖

𝑁∑︁
𝑗=1

𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖𝑗) + 𝐵𝑖𝑗 sin(𝜃𝑖𝑗)) (4.13)

𝑄𝑖 = 𝑉𝑖

𝑁∑︁
𝑗=1

𝑉𝑗(𝐺𝑖𝑗 sin(𝜃𝑖𝑗)−𝐵𝑖𝑗 cos(𝜃𝑖𝑗)) (4.14)

Real and reactive power flow from bus 𝑖 to bus 𝑗:

𝑃𝑖𝑗 = 𝑉 2
𝑖 (𝑔𝑠𝑖 + 𝑔𝑖𝑗)− 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 cos(𝜃𝑖𝑗) + 𝑏𝑖𝑗 sin(𝜃𝑖𝑗)) (4.15)
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𝑄𝑖𝑗 = −𝑉 2
𝑖 (𝑏𝑠𝑖 + 𝑏𝑖𝑗)− 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 sin(𝜃𝑖𝑗)− 𝑏𝑖𝑗 cos(𝜃𝑖𝑗)) (4.16)

where 𝑉𝑖 and 𝜃𝑖 is the voltage magnitude and phase angle at bus 𝑖; 𝜃𝑖𝑗 = 𝜃𝑖− 𝜃𝑗;

𝐺𝑖𝑗 + 𝑗𝐵𝑖𝑗 is the 𝑖𝑗th element of the complex bus admittance matrix; 𝑔𝑖𝑗 + 𝑗𝑏𝑖𝑗 is the

admittance of the series branch connecting buses 𝑖 and 𝑗; 𝑔𝑠𝑖 +𝑗𝑏𝑠𝑖 is the admittance

of the shunt branch connected at bus 𝑖;

The structure of the Jacobian matrix, H, will be as follows:

𝐻 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑃𝑖

𝜕𝜃
𝜕𝑃𝑖

𝜕𝑉

𝜕𝑃𝑖𝑗

𝜕𝜃

𝜕𝑃𝑖𝑗

𝜕𝑉

𝜕𝑄𝑖

𝜕𝜃
𝜕𝑄𝑖

𝜕𝑉

𝜕𝑄𝑖𝑗

𝜕𝜃

𝜕𝑄𝑖𝑗

𝜕𝑉

𝜕𝑉𝑖

𝜕𝜃
𝜕𝑉𝑖

𝜕𝑉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.17)

The expressions for real and reactive power injections can be obtained via the

following equations:

𝜕𝑃𝑖

𝜕𝜃𝑖
=

𝑁∑︁
𝑗=1

𝑉𝑖𝑉𝑗(−𝐺𝑖𝑗 sin(𝜃𝑖𝑗) + 𝐵𝑖𝑗 cos(𝜃𝑖𝑗))− 𝑉 2
𝑖 𝐵𝑖𝑖 (4.18)

𝜕𝑃𝑖

𝜕𝜃𝑗
= 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin(𝜃𝑖𝑗)−𝐵𝑖𝑗 cos(𝜃𝑖𝑗) (4.19)

𝜕𝑃𝑖

𝜕𝑉𝑖

=
𝑁∑︁
𝑗=1

𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖𝑗) + 𝐵𝑖𝑗 sin(𝜃𝑖𝑗)) + 𝑉𝑖𝐺𝑖𝑖 (4.20)

𝜕𝑃𝑖

𝜕𝑉𝑗

= 𝑉𝑖(𝐺𝑖𝑗 cos(𝜃𝑖𝑗) + 𝐵𝑖𝑗 sin(𝜃𝑖𝑗) (4.21)

𝜕𝑄𝑖

𝜕𝜃𝑖
=

𝑁∑︁
𝑗=1

𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(𝜃𝑖𝑗) + 𝐵𝑖𝑗 sin(𝜃𝑖𝑗))− 𝑉 2
𝑖 𝐺𝑖𝑖 (4.22)

𝜕𝑄𝑖

𝜕𝜃𝑗
= 𝑉𝑖𝑉𝑗(−𝐺𝑖𝑗 cos(𝜃𝑖𝑗)−𝐵𝑖𝑗 sin(𝜃𝑖𝑗) (4.23)
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𝜕𝑄𝑖

𝜕𝑉𝑖

=
𝑁∑︁
𝑗=1

𝑉𝑗(𝐺𝑖𝑗 sin(𝜃𝑖𝑗)−𝐵𝑖𝑗 cos(𝜃𝑖𝑗))− 𝑉𝑖𝐵𝑖𝑖 (4.24)

𝜕𝑄𝑖

𝜕𝑉𝑗

= 𝑉𝑖(𝐺𝑖𝑗 sin(𝜃𝑖𝑗)−𝐵𝑖𝑗 cos(𝜃𝑖𝑗) (4.25)

And, the elements for power flow can be calculated utilizing the following equa-

tions:

𝜕𝑃𝑖𝑗

𝜕𝜃𝑖
= 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 sin(𝜃𝑖𝑗)− 𝑏𝑖𝑗 cos(𝜃𝑖𝑗)) (4.26)

𝜕𝑃𝑖𝑗

𝜕𝜃𝑗
= −𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 sin(𝜃𝑖𝑗)− 𝑏𝑖𝑗 cos(𝜃𝑖𝑗) (4.27)

𝜕𝑃𝑖𝑗

𝜕𝑉𝑖

= −𝑉𝑗(𝑔𝑖𝑗 cos(𝜃𝑖𝑗) + 𝑏𝑖𝑗 sin(𝜃𝑖𝑗)) + 𝑉𝑖(𝑔𝑖𝑗 + 𝑔𝑠𝑖) (4.28)

𝜕𝑃𝑖𝑗

𝜕𝑉𝑗

= −𝑉𝑖(𝑔𝑖𝑗 cos(𝜃𝑖𝑗) + 𝑏𝑖𝑗 sin(𝜃𝑖𝑗) (4.29)

𝜕𝑄𝑖𝑗

𝜕𝜃𝑖
= −𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 cos(𝜃𝑖𝑗) + 𝑏𝑖𝑗 sin(𝜃𝑖𝑗)) (4.30)

𝜕𝑄𝑖𝑗

𝜕𝜃𝑗
= 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 cos(𝜃𝑖𝑗) + 𝑏𝑖𝑗 sin(𝜃𝑖𝑗) (4.31)

𝜕𝑄𝑖𝑗

𝜕𝑉𝑖

= −𝑉𝑗(𝑔𝑖𝑗 sin(𝜃𝑖𝑗)− 𝑏𝑖𝑗 cos(𝜃𝑖𝑗))− 2𝑉𝑖(𝑏𝑖𝑗 + 𝑏𝑠𝑖) (4.32)

𝜕𝑄𝑖𝑗

𝜕𝑉𝑗

= −𝑉𝑖(𝑔𝑖𝑗 sin(𝜃𝑖𝑗)− 𝑏𝑖𝑗 cos(𝜃𝑖𝑗) (4.33)

Finally, the elements related to voltage magnitude measurement can be stated

as follows:
𝜕𝑉𝑖

𝜕𝑉𝑖

= 1,
𝜕𝑉𝑖

𝜕𝑉𝑗

= 0,
𝜕𝑉𝑖

𝜕𝜃𝑖
= 0,

𝜕𝑉𝑖

𝜕𝜃𝑗
= 0 (4.34)

51



Chapter 4. State estimation algorithms 4.1. Centralized

4.1.3 DC state estimation

DC state estimation is a simplified method of state estimation that assumes that

the power system is operating in a steady state and that all AC quantities can be

approximated by their DC equivalents. This allows for the use of linear equations

to model the power system, which makes the state estimation problem much easier

to solve.

The DC approximation of real power flow is obtained by assuming that the

voltage magnitudes at all buses are equal to 1.0 per unit and that all shunt elements

and branch resistances are negligible. Under these assumptions, the real power flow

from bus 𝑘 to 𝑚 can be approximated by the first-order Taylor expansion around 𝜃

= 0, as shown in the following equation:

𝑃𝑖𝑗 =
𝜃𝑖 − 𝜃𝑗
𝑥𝑖𝑗

+ 𝑒 (4.35)

where 𝑥𝑖𝑗 is the reactance of the branch 𝑖 − 𝑗; 𝜃𝑖 is the phase angle of the 𝑖th bus

voltage; and 𝑒 is the measurement error. Similarly, the power injection measurement

at bus 𝑖 can be stated as the sum of power flows end to (or initiated from) bus 𝑖.

Based on least square method, which is explained in the previous section, and

considering DC load flow (where ℎ(𝑥) is a linear function of state variables (ℎ(𝑥) =

𝐻𝑥), all voltage magnitudes are one per-unit and only vector of voltage phase angles,

𝜃, is the variable. For DC state estimation the relation between measurement and

the state variables is linear which means the 𝐻 matrix is not related to the state

variables, but only to the network parameters. Solving (4.7) taking into account

the linearized 𝐻 matrix will give out 𝜃 (the main equation would have a form like

𝐴𝜃 = 𝑦 and finally 𝜃 = 𝐴−1𝑦):

(𝐻𝑇𝑊𝐻)𝜃 = 𝐻𝑇𝑊𝑧 (4.36)

𝜃𝑇 = [𝜃2 𝜃3 . . . 𝜃𝑁 ]
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4.2 Distributed state estimation

Distributed state estimation is a process of estimating the state of a system us-

ing measurements from multiple sensors or agents that are distributed throughout

the system. Distributed SE is a powerful tool for estimating the state of complex

systems, such as power systems, sensor networks, and multi-robot systems.

Distributed SE offers several advantages over traditional centralized state esti-

mation methods. First, distributed SE is more scalable to large systems. Second,

distributed SE is more robust to sensor failures and communication outages. Third,

distributed SE can be used to estimate the state of systems in real time. Fig. 4-2

demonstrates a general scheme of distributed SE.

Figure 4-2: A general scheme of distributed state estimation

It is to be noted that to have a solution for (4.36), (𝐻𝑇𝑊𝐻)−1 should be invert-

ible. In other words, if the set of measurements are sufficient and well distributed,

the network would be observable, which requires matrix 𝐻 to be full rank (that has

been considered in our simulation) and that would lead to non-singularity of the

(𝐻𝑇𝑊𝐻)−1 matrix. In order to calculate (4.36) we need to access all data in the

system by a single (or centralized) control unit. As mentioned before, issues like

communication bottleneck, data privacy and cybersecurity, are the main reasons

which leads power system to utilize decentralized approaches.

53



Chapter 4. State estimation algorithms 4.2. Distributed state estimation

4.2.1 Matrix splitting

In order to obtain SE problem’s solution in a distributed manner, one can use matrix

splitting method and after doing a certain number of iterations the answer converges

to the centralized solution [3]. The main equation of matrix splitting for a problem

of 𝐴𝑥 = 𝑦 is:

𝑥𝑡+1 = 𝑀−1𝑁𝑥𝑡 + 𝑀−1𝑦 (4.37)

that 𝐴 is written as the sum of an invertible (or diagonal) matrix 𝑀 , and a matrix

𝑁 ; so that 𝑀 = 𝐷 + 𝐸 ′
𝑖𝑖 and 𝑁 = 𝐸 − 𝐸 ′

𝑖𝑖. Note that, 𝐷 contains diagonal arrays

and 𝐸 contains off-diagonal arrays of matrix 𝐴. And 𝐸 ′
𝑖𝑖 is a diagonal matrix which

is defined as follows:

𝐸 ′
𝑖𝑖 = 𝛼

𝑛∑︁
𝑗=1

|𝐸𝑖𝑗| (4.38)

that we have assumed 𝛼 = 1 for simplicity. It is to be noted that, (4.37) converges

if the spectral radius of 𝑀−1𝑁 matrix be less than 1 (𝜌(𝑀−1𝑁) < 1). Using (4.37)

iteratively, leads to convergence to the system 𝐴𝑥 = 𝑦 final solution, i.e. 𝑥*.

4.2.2 Gossip based

Here another approach to solve (4.36) in a distributed manner is presented, which

is discussed in [84] that the authors have considered measurement units in an asyn-

chronous manner (i.e. gossip communication protocol).

Considering the DC approximation, the SE problem in the least squares setting

can be formulated by (4.36). Based on what has been stated in (4.36), this problem

has a closed-form solution. Let’s assume, 𝐿 = 𝐻𝑇𝑊𝐻 and 𝑢 = 𝐻𝑇𝑊𝑧. One way

to compute this solution 𝑥* is through the gradient based iterative algorithm given

by:

𝑥(𝑘 + 1) = (𝐼 − 𝜏𝐿)𝑥(𝑘) + 𝜏𝑢 (4.39)

And the parameter 𝜏 is selected from the interval (0 , 2||𝐿||−1); such a 𝜏 guarantees

the matrix 𝐼 − 𝜏𝐿 to be Schur stable (i.e. the iterative method converges). At each

iteration, a set of two neighboring areas, randomly (based on uniform probability

distribution) will be selected to update the common variables.
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4.2.3 Decomposition method

In this part the method provided in [9] is discussed. This method applies explicitly

power flow and power injection equations to solve multi-area DC SE problem:

𝑚𝑖𝑛 𝐻𝑘(𝑥𝑘) +
∑︁
𝑙∈Ω𝑘

𝐻𝑘𝑙(𝑥𝑘, �̃�𝑙)

𝐻𝑘(𝑥𝑘) =
∑︁
𝑖∈Ω𝑃

𝑘

𝜔𝑃
𝑘,𝑖(𝑃

𝑚
𝑘,𝑖 − 𝑃𝑘,𝑖)

2 +
∑︁

(𝑖,𝑗)∈Ω𝑃𝐹
𝑘

𝜔𝑃𝐹
𝑘,𝑖𝑗(𝑃

𝑚
𝑘,𝑖𝑗 − 𝑃𝑘,𝑖𝑗)

2

𝐻𝑘𝑙(𝑥𝑘, �̃�𝑙) =
∑︁
𝑖∈Ω𝑃

𝑘𝑙

𝜔𝑃
𝑘𝑙,𝑖(𝑃

𝑚
𝑘𝑙,𝑖 − 𝑃𝑘𝑙,𝑖)

2 +
∑︁

(𝑖,𝑗)∈Ω𝑃𝐹
𝑘𝑙

𝜔𝑃𝐹
𝑘𝑙,𝑖𝑗(𝑃

𝑚
𝑘𝑙,𝑖𝑗 − 𝑃𝑘𝑙,𝑖𝑗)

2 (4.40)

+
∑︁
𝑖∈Ω𝑘𝑙

𝜔𝑥
𝑙,𝑖(�̃�𝑙,𝑖 − 𝑥𝑙,𝑖)

2

where 𝐻𝑘𝑙 is weighted measurement error function for area k involving state

variables of area k and l, 𝐻𝑘 is weighted measurement error function for area k

involving only state variables of area k, and Ω𝑘 is the set containing indices for all

neighboring areas of area k, 𝜔 is weighting factor, 𝑃
(𝑚)
(.),𝑖 is active power injection

measurement at bus 𝑖, 𝑃 (𝑚)
(.),𝑖𝑗 is active power flow measurement in between bus 𝑖 and

𝑗; 𝑃(.),𝑖 and 𝑃(.),𝑖𝑗 are the physical equation related to power injection and power

flow, respectively.

In order to solve (4.40), MATLAB solver (Sequential quadratic programming

(SQP)) via MATLAB R2018b has been applied.

4.2.4 ADMM

In [85] a new method has been developed for solving distributed SE, which is based

on ADMM [86]. As claimed by the authors, ADMM increases existing SE solvers

performance and convergence of the method to its centralized counterpart is guar-

anteed even if we don’t have local observability. ADMM can also be considered in

the same category as decomposition methods, but due to multiple applications of

this method recently, we have decided to consider it separately.
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In general, the distributed SE problem can be formulated as:

min𝑥𝑘

𝐾∑︁
𝑘=1

𝐻𝑘(𝑥𝑘)

x𝑘[𝑙] = 𝑥𝑙[𝑘],∀𝑙 ∈ 𝑁𝑘, ∀𝑘 ∈ 𝐾

(4.41)

where 𝑁𝑘 is the set of areas sharing states with area k and 𝑥𝑘,𝑙 is auxiliary

variable introduced per pair of interacting areas k, l.

The constraint forces neighboring areas to consent on their shared variables.

Augmented Lagrangian function is as follows:

𝐿({𝑥𝑘}, {𝑥𝑘𝑙}; {𝑣𝑘𝑙})

:=
𝐾∑︁
𝑘=1

[𝐻𝑘(𝑥𝑘) +
∑︁
𝑙∈𝑁𝑘

(𝑣𝑇𝑘,𝑙(𝑥𝑘[𝑙] − 𝑥𝑘𝑙) +
𝑐

2
||𝑥𝑘[𝑙] − 𝑥𝑘𝑙||22)] (4.42)

where 𝑣𝑘,𝑙 is Lagrangian multiplier and 𝑐 > 0.

{x𝑡+1
𝑘 } := arg min 𝐿({𝑥𝑘}, {𝑥𝑡

𝑘𝑙}; {𝑣𝑡𝑘𝑙})

{x𝑡+1
𝑘𝑙 } := arg min 𝐿({𝑥𝑡+1

𝑘 }, {𝑥𝑘𝑙}; {𝑣𝑡𝑘𝑙})

𝑣𝑡+1
𝑘,𝑙 := 𝑣𝑡𝑘,𝑙 + 𝑐(𝑥𝑡+1

𝑘[𝑙] − 𝑥𝑡+1
𝑘𝑙 ), ∀𝑘

(4.43)

4.3 Forecasting aided state estimation

Taking into account the slow enough changes in the system operating point (ex-

clusively due to slow and smooth load/renewable generation changes) [81], state

transition model can be described by linear stochastic equation [26,87]:

𝑥𝑡 = 𝐴𝑡−1𝑥𝑡−1 + 𝑔𝑡−1 + 𝜔𝑡−1 (4.44)

where 𝑥 is the state vector composed of 𝑛 = 2𝑁 − 1 elements (bus voltages and

phase angles at all buses except phase angle at the slack bus), 𝑡 is sampling time,

𝐴 is state transition matrix, 𝑔 is trend vector, 𝜔 is process noise assumed to have

Gaussian distribution with zero mean and covariance matrix 𝑄, and 𝑁 is total

number of buses. The widely used approach for updating matrix 𝐴 and vector 𝑔 is
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Holt’s exponential smoothing regression [37].

Set of 𝑚 measurements considered in this paper is composed of active and re-

active power flows, active and reactive power injections, and voltage magnitudes.

Relation between these measurements and the states at time 𝑡 can be expressed as

follows:

𝑧𝑡 = ℎ(𝑥𝑡) + 𝑒𝑡 (4.45)

where 𝑧 is measurement vector, ℎ is set of nonlinear equations, and 𝑒 represents

vector of measurement noise assumed to be Gaussian distributed with zero mean

and covariance matrix 𝑅.

4.3.1 Extended Kalman filter based Forecasting Aided State

Estimation

FASE is a special application of dynamic state estimation concept in which the

dynamics of the states are negligible. FASE utilizes both state transition and mea-

surement model represented in (4.44) and (4.45), respectively. Kalman filtering has

commonly been used as the optimal solution for many data tracking and forecasting

tasks [88]. The Kalman filter is an estimator that uses previous state and current

snapshot of measurements to estimate the current state.

Considering the power system, the measurement function is nonlinear in nature.

If model is nonlinear, an extension of classical Kalman filter, so called EKF, can

be utilized through the linearization of the nonlinear model via Taylor series [89].

There are also other extensions of Kalman filter built to deal with nonlinearity of the

system, such as UKF [26], Particle Filter [90], iterated EKF [91], Ensamble Kalman

filter [92], Second order Kalman filter [93], Cubature Kalman filter [94], to name a

few. However, for the sake of simplicity and less computation burden, a first order

EKF based estimator has been utilized in this study.

4.3.2 Prediction equations

Consider �̂�𝑡−1 and 𝑃𝑡−1 are estimated state vector and estimated states’ error co-

variance matrix at time step 𝑡 − 1, respectively. Assuming that �̂�𝑡−1 and 𝑃𝑡−1 are
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known, the system state vector can be predicted using following equations [87]:

�̃�𝑡 = 𝐴𝑡−1�̂�𝑡−1 + 𝑔𝑡−1 (4.46)

𝑃𝑡 = 𝐴𝑡−1𝑃𝑡−1𝐴
𝑇
𝑡−1 + Q𝑡−1 (4.47)

where �̃�𝑡 is predicted state vector and 𝑃𝑡 indicates the state prediction error

covariance matrix at time step 𝑡.

4.3.3 Filtering equations

After predicting the system state using (4.46) and (4.47), and receiving a new set

of measurements 𝑧𝑡 at time instant 𝑡, estimated state �̂�𝑡 and its covariance matrix

𝑃𝑡 can be obtained as [87]:

𝜈𝑡 = 𝑧𝑡 − ℎ(�̃�𝑡) (4.48)

𝑀𝑡 = 𝐻𝑡𝑃𝑡𝐻
𝑇
𝑡 + 𝑅𝑡 (4.49)

𝐾𝑡 = 𝑃𝑡𝐻
𝑇
𝑡 𝑀

−1
𝑡 (4.50)

�̂�𝑡 = �̃�𝑡 + 𝐾𝑡𝜈𝑡 (4.51)

𝑃𝑡 = 𝑃𝑡 −𝐾𝑡𝑀𝑡𝐾
𝑇
𝑡 (4.52)

where 𝐻 represents Jacobian of ℎ evaluated at �̃�; 𝜈, 𝑀 and 𝐾 indicate inno-

vation vector, innovation covariance matrix and Kalman gain, respectively.
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4.4 Summary

This chapter provided mathematical formulation of three different state estimation

(SE) techniques: centralized, distributed, and forecasting-aided. Centralized SE was

the most common technique. Distributed SE addresses the challenges of centralized

SE by distributing the computational load across multiple computers. Forecasting-

aided SE improved the accuracy of SE by predicting future system states. This

chapter discussed the advantages and disadvantages of each technique, as well as

the different algorithms that could be used to implement each one.
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Chapter 5

Implementation and simulation

In this chapter, we delve into the outcomes of extensive research and simulations,

shedding light on the significance of our contributions. Our investigations encompass

two key areas: the detection and identification of anomalies in power system SE and

the pursuit of optimal area partitioning strategies within the context of distributed

SE, considering a modified convergence criterion.

In this chapter, we present the results of our research, which includes the devel-

opment and implementation of a novel algorithm for anomaly detection and classifi-

cation. Leveraging the power of machine learning, this algorithm offers the potential

to improve the way we detect and identify critical events in the power system, ulti-

mately enhancing its reliability and resilience.

In parallel, we explore the distributed SE, where the challenges of data commu-

nication, computation, and convergence are prevalent. Our investigations center on

the concept of optimal area partitioning, a strategy that has the potential to signifi-

cantly reduce communication overhead and expedite the convergence of distributed

SE methods. We consider the implications of applying a modified convergence cri-

terion to evaluate the performance of these methods as well.

5.1 Detection, classification, and identification

State estimation (SE) is the core component of the energy management system

(EMS) for power grids. SE provides the most likely values of the voltage magni-
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tudes and phase angles for all buses in the power system. The accuracy of these

values is essential for achieving optimal and secure operation of the system [7].

Fig. 5-1 demonstrates the connection between physical, communication and energy

management systems, emphasizing the role of anomaly detection, classification and

identification units within the state estimator.
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Figure 5-1: State estimator’s role in the power system and position of anomaly detection,
classification and identification unit within the State estimator

This section describes the workflow of the proposed method to detect, classify,

and identify anomalies. As it is shown in Fig. 5-2, the workflow combines analytical

and ML approaches which are explained in the following subsections in detail. Input

data, i.e. observed SCADA measurements and statuses of switching devices, is

being delivered to the EMS and after that SE is performed using WLS and EKF.

Measurement residuals obtained at WLS output are used to carry out 𝜒2-test in

order to check for BD. If some measurements are corrupted with BD, 𝜒2-test will

rise a flag indicating BD presence. If SLC or FDIA occurs, 𝜒2-test will not detect

anomaly presence and the process will continue to FASE-WLS based stage. In the

FASE-WLS based stage, the estimated states that are obtained by WLS and EKF

are utilized to form an anomaly detection index (5.1). In case the index value is
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equal or higher than the specific threshold, anomaly is detected; otherwise, system

is considered to be in the normal operation mode. Although the index is capable to

detect presence of those anomalies for which 𝜒2-test stays blind, it is still not capable

of classifying the anomaly type due to similar impacts which SLC and FDIA have on

WLS and EKF estimates. To classify detected anomaly as SLC or FDIA, workflow

leverages the ML based stage. After classification of the anomaly, the next step in

the ML based stage is to identify at which bus(es) SLC has happened, or which

state(s) has been affected by FDIA.

Figure 5-2: Flowchart demonstration of the proposed algorithm for anomaly detection and
classification
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5.1.1 FASE-WLS based approach

In this research work, in order to detect SLC or FDIA presence, an anomaly detection

index (ADI) that combines WLS and EKF estimates is employed [5]:

𝐴𝐷𝐼𝑖 =
|�̂�𝑊𝐿𝑆

𝑖 − �̂�𝐸𝐾𝐹
𝑖 |√︀

𝑃𝑖𝑖

𝑖 = 1, 2, ..., 𝑛 (5.1)

where �̂�𝑊𝐿𝑆
𝑖 is i -th state variable estimated by WLS; �̂�𝐸𝐾𝐹

𝑖 is i -th state variable

estimated by EKF; 𝑃𝑖𝑖 is the i -th diagonal element of EKF estimated states’ error

covariance matrix, 𝑃 . If max
𝑖
{𝐴𝐷𝐼𝑖} ≥ 𝛾, SLC or FDIA presence is detected.

Here, 𝛾 represents detection threshold that has to be selected to clearly discriminate

between normal operation and anomalies like SLC and FDIA. BD is less relevant

for the threshold setting because, when it occurs, it is expected to be detected

by 𝜒2-test. In this thesis, EKF has been selected as a Kalman filter extension

for nonlinear systems. However, the anomaly detection index (5.1) can be equally

utilized for anomaly detection if any other type of Kalman filter has been used.

5.1.2 Supervised machine learning algorithms

As previously mentioned SLC and FDIA would have similar impact on WLS and

EKF estimates. This fact makes it impossible to classify whether the anomaly is

SLC or FDIA using ADI or similar analytical methods. That makes ML algorithms

an appropriate choice for SLC and FDIA classification. Because ML algorithms

have low dependency on the system model. To classify SLC or FDIA, as well as

to determine the buses (or states) that have been affected by SLC (or FDIA), the

following supervised ML algorithms were employed and compared:

• Logistic Regression (LR),

• K-Near Neighborhood (KNN),

• Random Forest (RF),

• Extreme Gradient Boosting (XGB).
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Classification is a ML supervised concept which categorizes a set of data into

classes. Classification algorithms determine the class of new samples based on past

samples during training. Depending on the number of classes, the problem can be

considered as a binary or multi-class classification. In our case, the classification of

FDIA or SLC is a binary classification task, while determination of the state or bus

that has been affected by anomaly, represents a multi-class classification problem.

Proposed supervised algorithms work with labeled data. The number of labeled

samples used in this thesis depends on the task which we consider. Each collected

sample is represented by 𝑥 and 𝑦 coordinates {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, ...𝑚𝑡𝑜𝑡𝑎𝑙}, where 𝑥 and

𝑦 describes input and output of the models, respectively; 𝑚𝑡𝑜𝑡𝑎𝑙 is total number of

samples. Each input is a 𝑛𝑥-dimensional feature vector 𝑥𝑖 ∈ 𝑅𝑛𝑥 . However, each

output is a class labeled that represent FDIA or SLC [𝑦𝑖 ∈ {0, 1}], or states/buses

of considered IEEE 14-bus system.

To train and validate models, data set samples were splitted in training {(𝑥𝑖, 𝑦𝑖), 𝑖 =

1, ...𝑚𝑡𝑟𝑎𝑖𝑛} and testing {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, ...𝑚𝑡𝑒𝑠𝑡} subsets; 𝑚𝑡𝑟𝑎𝑖𝑛 and 𝑚𝑡𝑒𝑠𝑡 are training

and testing number of samples, respectively. Splitting was conducted in a stratified

fashion, containing approximately the same percentage of samples of each labeled

class. 80% of data samples were used for training and 20% data samples were tested.

The controllable hyperparameters are tuned using sequential optimization with gra-

dient boosting [95] as a surrogate probability model of the objective function.

LR

It is a statistical linear classifier using a logistic function to frame a binary output

model [96]. The cost function 𝐽(𝜃) that is a function of model parameters 𝜃 is given

by:

𝐽(𝜃) =
1

𝑚

𝑚∑︁
𝑖=1

𝑙(ℎ𝐿𝑅(𝑥𝑖), 𝑦𝑖) + 𝜆
𝑛𝑥∑︁
𝑗=1

𝜃2
𝑗 (5.2)

𝑙(ℎ𝐿𝑅(𝑥𝑖), 𝑦𝑖) =

⎧⎪⎨⎪⎩−𝑙𝑜𝑔(ℎ𝐿𝑅(𝑥𝑖)) 𝑦𝑖 = 1

−𝑙𝑜𝑔(1− ℎ𝐿𝑅(𝑥𝑖)) 𝑦𝑖 ̸= 0

(5.3)
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where 𝜆 is a regularization strength hyperparameter and ℎ𝐿𝑅 represents a hypothesis

function. 𝜆
∑︀𝑛𝑥

𝑗=1 𝜃
2
𝑗 represents regularization term in order to avoid overfitting and

penalise large values of the model parameters.

One-vs-rest method is used to train ℎ𝑐
𝐿𝑅 in the multi-class case. For an unseen

input 𝑥𝑡, ℎ𝑐
𝐿𝑅(𝑥𝑡) determines the probability 𝑝(·) for each class label 𝑐 using the

sigmoid function as follows:

ℎ𝑐
𝐿𝑅(𝑥𝑡) = 𝑝(𝑦 = 𝑐|𝑥𝑡,𝜃) =

1

1 + 𝑒𝜃𝑇𝑥𝑡
(5.4)

The final predicted outcome is find as:

max
𝑐

ℎ𝑐
𝐿𝑅(𝑥𝑡) (5.5)

KNN

It is an instance-based learning algorithm in which the labeled training data of

different classes are simply stored and used to make new predictions [97]. Learning

is based on the 𝑘-nearest neighbors of each unseen samples, assuming that the most

of nearby samples belong to a predetermined class. Accordingly, the unseen sample

will also be attributed to this class. In order to find the 𝑘-nearest neighbors, the

standard Euclidean metric was proposed as a measure of the distance. It is defined

as the 2-norm of the vector between 𝑥𝑡 and training points in an 𝑛𝑥-dimensional

space, which can be written as follows:

𝑑𝑖(𝑥𝑡,𝑥𝑖) =
⃦⃦
𝑥𝑇
𝑡 − 𝑥𝑇

𝑖

⃦⃦
2

=

⎯⎸⎸⎷ 𝑛𝑥∑︁
𝑗=1

(𝑥𝑡,𝑗 − 𝑥𝑖,𝑗)2 (5.6)

𝑑𝑖(𝑥𝑡,𝑥𝑖) ≥ 0, 𝑖 = 1, ...𝑚𝑡𝑟𝑎𝑖𝑛

RF

It is an non-linear ensemble classifier based on multiple decision trees, using a ran-

domly selected subset of training samples and variables [98]. RF is designed using

the bootstrap aggregating, also known as the bagging technique based on the combi-
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nation of weak decision tree algorithms in parallel that will improve the effectiveness

of the prediction [99].

The RF architecture represents a collection of 𝑡𝑅𝐹 randomized classification trees

with tree-structured classifier ℎ𝑅𝐹 . The predicted value for the given 𝑥𝑡 and 𝑗-th

tree in the forest is expressed:

ℎ𝑅𝐹 (𝑥𝑡,𝜂𝑗), 𝑗 = 1, ..., 𝑡𝑅𝐹 (5.7)

where 𝜂𝑗 are the independent identically distributed random vectors.

ℎ𝑅𝐹 trees are created in parallel, independent of one another, using the boot-

strapped data sets for growing the trees. Random subset of variables at each step

of tree growth is used to split the node. The quality of the splitting is measured by

applying the gini impurity criterion G:

𝒢 =
𝑐∑︁

𝑖=1

𝑝(𝑖) · (1− 𝑝(𝑖)) (5.8)

where 𝑝(𝑖) is the probability of choosing the data point with class 𝑖 at a given node.

The final RF prediction 𝑦 is the majority vote over collection of trees:

𝑦 = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {ℎ𝑗
𝑅𝐹 (·)}𝑡𝑅𝐹

𝑗=1 (5.9)

XGB

It is designed using boosting technique and attempts to build a robust model from

the number of weak tree classifiers in series [100]. XGB is a specific implementation

of the Gradient Boosting method [101], which uses more accurate approximations

by employing second-order gradients and advanced regularization.

For a given number of 𝑡𝑋𝐺𝐵 sequentially connected decision tree models ℎ𝑋𝐺𝐵,

the final XGB prediction of 𝑥𝑡 is computed as:

𝑦 =

𝑡𝑋𝐺𝐵∑︁
𝑗=1

ℎ𝑗
𝑋𝐺𝐵(𝑥𝑡) (5.10)

where ℎ𝑗
𝑋𝐺𝐵(𝑥𝑡) = 𝑤𝑗

𝑞(𝑥𝑡). 𝑤𝑗
𝑞 is the score of the corresponding leaf 𝑞 in the 𝑗-th
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tree.

To optimize the functions used in the model, XGB minimizes the following reg-

ularized loss function ℒ:

ℒ(𝑦, 𝑦) =

𝑚𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝑦𝑖) +

𝑡𝑋𝐺𝐵∑︁
𝑗=1

Ω(ℎ𝑗
𝑋𝐺𝐵) (5.11)

where 𝑙(·) is a logistic loss function given with (5.3). The second term Ω of the loss

function is the regularization term which penalizes the complexity of the model:

Ω(ℎ𝑋𝐺𝐵) = 𝛾𝑇 +
1

2
𝜆

𝑇∑︁
𝑞=1

𝑤2
𝑞 (5.12)

where 𝛾 is the pseudo-regularization hyperparameter and 𝑇 is the number of leaves

in the tree. It is to be noted that the hyperparameters are tuned using sequential

optimization.

Since XGB ensemble model includes functions as parameters and cannot be

optimized using conventional optimization methods, the training of the model is

executed in manner of 𝑡 steps:

ℒ(𝑡) =

𝑚𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝑦
𝑡−1
𝑖 + ℎ𝑡

𝑋𝐺𝐵(𝑥𝑖)) + Ω(ℎ𝑡
𝑋𝐺𝐵) (5.13)

where ℎ𝑡
𝑋𝐺𝐵 is greedily added to improve model.

5.1.3 Evaluation metric

To evaluate the accuracy of the FDIA or SLC classification, and identification of

states or buses that have been affected by these anomalies, the (macro) F1-score

metric is used [102,103]. F1-score is a harmonic mean of the precision 𝑃𝑟 and recall

𝑅𝑒. For a particular predicted output vector 𝑦 and ground-truth 𝑦, the percentage

of F1-score is computed as follows:

𝐹1 = 2 · 𝑃𝑟 ·𝑅𝑒

𝑃𝑟 + 𝑅𝑒
× 100 (5.14)
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The precision represents the number of True Positives (TP) over TP plus the num-

ber of False Positives (FP):

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(5.15)

The recall is the TP over the TP plus the number of False Negatives (FN):

𝑅𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5.16)

As an example for a binary classification task, TP is the number of correctly identi-

fied FDIAs. FP is the number of SLCs identified as FDIAs, and FN is the number

of FDIAs identified as SLCs. The similar logic is applicable for SLC, multi-bus SLC

and multi-state FDIA.

The macro F1-score is calculated as the arithmetic mean over the F1-scores of

each class:

𝑚𝑎𝑐𝑟𝑜 𝐹1 =
1

𝑐

𝑐∑︁
𝑖=1

𝐹1𝑖. (5.17)

5.1.4 Maximum Relevance – Minimum Redundancy

Increase in the size of the system will lead to increase in the number of features which

will consequently increase optimization complexity of the ML algorithm. Maximum

Relevance Minimum Redundancy (MRMR) is a feature selection algorithm for find-

ing the minimal-optimal subset of features [104, 105]. Minimal-optimal methods

select a small set of features that have the maximum possible predictive power by

eliminating irrelevant features. Accordingly, the model optimization complexity is

reduced.

The purpose of this method is to reduce the number of input features that linearly

increases with the system size:

𝑛𝑥 = 𝛼𝑁 − 𝛽 (5.18)

where 𝛼 = 16 that is sum of features for each bus and 𝛽 = 10 is sum of features

related to slack bus. Accordingly, by employing MRMR we are able to select just a

few main features to achieve the high enough level of accuracy. However, the number
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of optimal features is specific to each test system and can not be generalized.

MRMR works iteratively. At each iteration 𝑖, it identifies the best feature 𝑓𝑏

that has maximum relevance with respect to the target variable and minimum re-

dundancy with respect to the features that have been selected at previous iterations.

Since nonlinear dependency exists between input and target variables, to compute

maximum relevance of the feature 𝑓𝑏, we use mutual information method [106]. In

contrast, for computing minimum redundancy of the feature 𝑓𝑏, we employ Spear-

man’s rank based correlation [107] because of handling non-normality data.

The score for each feature 𝑓𝑏 at each iteration 𝑖 is computed as follows [105]:

𝑠𝑐𝑜𝑟𝑒𝑖(𝑓𝑏) =
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑓𝑏|𝑡𝑎𝑟𝑔𝑒𝑡)

𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦(𝑓𝑏|𝑓𝑏𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑢𝑛𝑡𝑖𝑙 𝑖−1)
(5.19)

where the best feature 𝑓𝑏 at iteration 𝑖 is the one having the highest score.

In this thesis, MRMR has been applied to select a few main features that will

result in reducing the optimization complexity during training of the ML algorithms.

As a parameter of optimization complexity, training time has been considered. The

reduced training times are also presented in the next section for the utilized super-

vised ML algorithms.

5.1.5 Solution for topology changes

As mentioned before, the transmission system faces topology changes (i.e. change

in the network configuration). This will require ML algorithm to be retrained.

Retraining ML algorithm can be time consuming and inefficient depending on the

size of the system. To eliminate the need for retraining the ML algorithm after the

change in network topology, features related to the branches are excluded and only

features associated with the buses are applied for ML algorithm training. These

features are the ones associated only with the buses such as: a) nodal measurements

and normalized measurement innovations of voltage magnitude and active/reactive

power injection; b) estimates and predictions of voltage magnitude, phase angle and

active/reactive power injection. This solution is only applicable for networks for

which the number of buses does not change with topology changes. Therefore, it
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can be applied on meshed networks but not on radial networks. Five topologies

are used to train and afterwards examine the accuracy of anomaly classification

and identification of its origin. These five topologies include original topology of

the IEEE 14 bus system. Fig. 5-3 presents the original topology of the IEEE 14

bus system [1]. Four new topologies obtained by disconnecting an existing branch

from the original topology and making new connection. These new topologies are

specified in Table 5.1.
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Figure 5-3: Single line diagram of IEEE 14 bus system [1]

Table 5.1: Connection and disconnection of branches for topology changes

Topology Disconnected branch Connected branch
number From bus – To bus From bus – To bus

1 5 – 6 1 – 6
2 6 – 13 6 – 14
3 4 – 9 4 – 10
4 2 – 4 3 – 5

The obtained data considering these togologies are utilized for training and test-

ing of the ML algorithms and the results are presented in the next section.
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5.1.6 Complexity and scalability of ML algorithms

In this thesis, XGB and RF algorithms are trained offline. The relation between the

number of features and the number of system buses is given by (5.18). The training

time complexity of both algorithms depends linearly on the number of features, 𝑛𝑥,

the number of samples, 𝑚𝑡𝑜𝑡𝑎𝑙, and the number of trees, 𝑛𝑡. According to [100]

and [108], the training time complexity can be expressed as:

𝑂(𝑛𝑡𝑚𝑡𝑜𝑡𝑎𝑙𝑛𝑥𝑙𝑜𝑔(𝑛𝑥)) (5.20)

During the real-time prediction, the time complexity of RF varies. In the worst

case, it is 𝑂(𝑛𝑡𝑛𝑥) [108]; however, in general, it is 𝑂(𝑛𝑡𝑛𝑑), where 𝑛𝑑 is the maximum

depth of the trees. This complexity arises from traversing each tree and reaching the

corresponding leaf nodes. On the other hand, XGB has a prediction time complexity

of 𝑂(𝑛𝑡𝑛𝑑), as the maximum depth of the trees is typically limited [108]. So, in

the context of real-time prediction, the prediction time of both algorithms depends

on 𝑛𝑑 and 𝑛𝑡, which are specified by hyperparameter optimization. Besides the

results of hyperparameter optimization, the computational resources also impact

the prediction time of the algorithms. In our case, with Intel Corei7-5500U CPU @

2.40GHz and 8GB of RAM, the time for real-time prediction was in milliseconds for

the IEEE 14 bus test system.

However, it is important to note that the accuracy of the algorithms depends

on how well the most relevant features are selected. Including irrelevant features

can compromise the algorithm’s accuracy and may require additional samples for

training. Additionally, increasing the number of samples further increases the time

complexity of decision tree-based algorithms during the training stage.

5.1.7 Simulation results

In this section, various possible scenarios of single/multi-bus SLC and single/multi-

bus FDIA occurrence are considered for analysing the accuracy of the proposed

methodology.

The consecutive optimal power flows were run to get the true values of states
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and measurements over the time interval with 100 time samples. A noise having

Gaussian distribution with zero mean and 0.001 standard deviation is added to true

measurements to get the observed measurements. The higher value of standard

deviation of measurement noise, might affect the detection algorithm precision. In

our case, the effect of change in standard deviation, up to 5 times of its initial

value, is negligible. To model a BD, corresponding measurement is corrupted with

a random error which does not fall under the predefined Gaussian distribution. For

modeling SLC, specified amount of the load is curtailed at the desired time instant

during the execution of the consecutive optimal power flow. In the case of FDIA, the

observed measurements are modified according to the attack vector. SE is carried

out under normal and abnormal operation, and afterwards the proposed algorithm

for anomaly detection, classification and identification of its origin is executed.

The overall data set contains numerous SLC and FDIA scenarios. For SLC,

following scenarios have been considered:

• Single-bus SLC is simulated for different buses.

• For each bus, single-bus SLC is simulated numerous times; every next time,

different portion of the load has been curtailed from the corresponding bus.

• Multi-bus SLC is simulated for different combinations of buses.

• For each combination of buses, multi-bus SLC is simulated numerous times;

every next time, different portions of loads at corresponding buses are cur-

tailed.

• All the above mentioned events are simulated considering different topologies.

For FDIA, following scenarios have been considered:

• Single-state FDIA is simulated for different state variables in the system.

• For each state variable under the attack, single-state FDIA is simulated nu-

merous times; every next time, the corresponding element in the attack vector

has a different value.
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• Multi-state FDIA is simulated for different combinations of state variables.

• For each combination of state variables under the attack, multi-state FDIA

is simulated numerous times; every next time, corresponding elements in the

attack vector have different values.

• Again, all the above mentioned events are simulated considering different

topologies.

The number of the state variables that can be affected by the FDIA depends

on how many measurements can be accessed by the adversarial. Although it is

feasible for the adversarial to access all the measurements, it is more realistic that

it can access and manipulate the measurements within a local area [109]. In this

thesis, it has been assumed that the adversarial is capable of manipulating state

variables associated with the maximum 4 buses simultaneously. Moreover, FDIA

can target both voltage magnitude and phase angle (both in single or multi-state

attack scenarios), while in the reported literature researchers mostly have focused

on FDIA on voltage magnitudes.

As mentioned in previous sections and shown in Fig. 5-2, the second stage of the

classification process is based on ML algorithm. ML algorithm is trained offline and

then executed in real-time. Supervised ML algorithms’ performance are compared

and the results are presented. Presented results are given for the case of SLC and

FDIA classification and identification of their origin. In case BD occurs, 𝜒2-test will

detect the anomaly and recognize it as BD, while LNR will be sufficient to identify

the measurements corrupted with the BD. The confidence probability level is set to

be 𝜌 = 99% in this thesis.

ML algorithms are developed in Python using scikit-learn and scikit-optimize

libraries [4]. Fig. 5-6 to Fig. 5-12 illustrate the performance of the supervised ML

algorithms for anomaly classification and identification of its origin. Each figure

demonstrates macro F1-score and training time without utilizing MRMR method

(specified as "WO MRMR" in the figures). Additionally, the results for the case

considering the features selected by MRMR method are presented for each ML

algorithm (specified as "MRMR" in the figures). Total number of features is 214
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and the number of features selected by MRMR method is given for each case study.

5.1.8 Detection of SLC and FDI

An example of anomaly detection by the proposed algorithm is illustrated here. Fig.

5-4 illustrates detection indices value when the system is under normal operation,

while Fig. 5-5 demonstrates the case when BD and single bus/state SLC/FDIA

happen in the system.

In Fig. 5-4, load at every bus is assumed to linearly decrease during the simu-

lation period from 100% to 95% of its nominal value, making slow changes in the

system state. When system is under normal operation, value of the index should

be below the specified thresholds. In order to increase (or decrease) the sensitivity

for anomaly detection, the threshold can be lowered (or raised). However, if the

threshold is set too low, this may increase the number of false alarms. On the other

hand, if the threshold is set too high, anomaly presence might not be detected. To

properly select the threshold for ADI, 𝛾, it is necessary to run simulations under

normal and abnormal operation conditions for each particular test system. In the

case of IEEE 14 bus system, extensive simulations have shown that 𝛾 = 6 can clearly

distinguish between normal operation and anomalies like SLC and FDIA.

Fig. 5-5 shows the ADI and 𝜒2-test values when the system is affected by

anomaly. BD, SLC and FDIA are happening at bus 14 but at different time in-

stants (not simultaneously). 𝐵𝐷1 is related to BD when power injection measure-

ment value at bus 14 contains 5% error at 𝑡 = 5, and 𝐵𝐷2 at 𝑡 = 10 refers to the

situation when this error has been removed. 𝑆𝐿𝐶1 represents 20% load shedding

at bus 14 which happens at 𝑡 = 26. 𝑆𝐿𝐶2 corresponds to the situation when the

load at bus 14 is restored at 𝑡 = 46. FDIA tends to increase the voltage magnitude

at bus 14 for 0.05 p.u. starting from 𝑡 = 71 and persist till the end of simulation.

ADI also might be applicable for higher error values of BD, but 𝜒2-test is resilient

enough for this anomaly. It is obvious that ADI is highly capable of detecting SLC

and FDIA anomalies, while they bypass the conventional BDD. Yet, this method is

not able to classify the occurred anomaly as SLC or FDIA. This is the main concern

within this research and application of ML algorithm is proposed to address it.
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Figure 5-4: Detection index value when the system is under normal operation: (a) 𝜒2-test (b)
ADI

5.1.9 Classification and identification of single bus/state SLC/F-

DIA

In this case study, the performance of the ML algorithms for classification of single

bus SLC and single state FDIA are presented. After classification of the anomaly,

the ML algorithms are utilized to identify the origin of the SLC or FDIA. As stated

before, these anomalies are happening at different time samples (not simultane-

ously).

As indicated in the Fig. 5-6, if all features are utilized, the classification accuracy

of each method is higher than 98%, which can be considered as acceptable. Due to

the fact that some of the features might be redundant (superfluous) or less relevant

for training of the ML algorithms, MRMR has been applied to select the most

relevant features. In the case of single bus/state SLC/FDIA classification using all

topologies to gather training and testing data, the number of features selected by

MRMR is 70. This has helped to reduce the training time of the ML algorithms.
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Figure 5-5: Detection index value when the system is affected by anomaly: (a) 𝜒2-test (b) ADI

Although the accuracy of LR and KNN methods slightly decreases, in the case of

RF and XGB methods the accuracy remains the same.

The results given in Fig. 5-6 correspond to the case when both training and

testing data set contains the data obtained under 5 different topologies. This means

that ML algorithms are tested using the same network topologies for which they

have been trained. To check how ML algorithms perform against untrained network

topologies, 3 out of 5 topologies have been used in the training phase of the ML

algorithms, while in the testing phase ML algorithms are tested using the data

corresponding to the other 2 topologies. The results are shown in Fig. 5-7.

It is clear that all examined ML algorithms show an acceptable accuracy if they

encounter the data corresponding to the topologies which have not been used in

their training phase. This means that SLC and FDIA classification can be achieved

without retraining the ML algorithm once network topology changes. This is because

the proposed methodology excludes the features associated with the branches and

utilizes only the features associated with the buses. If MRMR is used to optimize
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Figure 5-6: Single bus/state SLC/FDIA classification using all topologies to gather training and
testing data
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Figure 5-7: Single bus/state SLC/FDIA classification using untrained topologies to gather testing
data

the number of features, it will turn out that 80 features would be sufficient. Based on

the classification accuracy the algorithms can be sorted in the following descending

order: XGB, RF, KNN and LR.

After classification of the anomaly, the bus associated with load experiencing a

sudden change, or state variable targeted by FDIA have to be identified. The results

for identification of SLC and FDIA origin are presented in Fig. 5-8 and Fig. 5-9,

respectively.

Based on the demonstrated results, it is clear that ML algorithms are successful

in identifying the bus (or the state variable) which is affected by SLC (or FDIA).

Furthermore, MRMR algorithm provides the optimal number of features for iden-

tification of anomaly’s origin, which in the case of single bus SLC and single state

FDIA is 40 and 15, respectively. As in the case of classification, RF and XGB also
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Figure 5-8: Identification of single bus SLC
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Figure 5-9: Identification of single state FDIA

provide the best identification accuracy, while using MRMR decreases the training

time for these two algorithms significantly.
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Figure 5-10: Multi-bus/state SLC/FDIA classification using all topologies to gather training and
testing data
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5.1.10 Classification and identification of multi bus/state SLC/F-

DIA

In this case, classification of multi-bus SLC (i.e., SLC is happening at different

buses simultaneously) and multi-state FDIA (i.e., multiple states have been targeted

by FDIA) is analyzed, as well as identification of the origin of these two kinds of

anomalies. The results for classification of multi-bus SLC and multi-state FDIA

are presented in Fig. 5-10. The results for identification of the buses associated

with loads experiencing a sudden change and the results for state variables targeted

by FDIA are demonstrated in Fig. 5-11 and Fig. 5-12, respectively. The number

of features selected by MRMR algorithm for classification of anomaly is 30. The

number of selected features for identification of multi-bus SLC is 150, while this

number is 70 for identification of multi-state FDIA.
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Figure 5-11: Identification of multi-bus SLC
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Figure 5-12: Identification of multi-state FDIA
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Based on the results presented in Fig. 5-10, it can be concluded that the ML algo-

rithms have a satisfying accuracy for classification of multi-bus SLC and multi-state

FDIA. As before, MRMR algorithm helps to reduce the training time. Considering

only those features selected by MRMR, RF provides the best classification accuracy

followed by XGB, KNN and LR.

The accuracy of the ML algorithms is highly related to the amount of data

available for their training. Based on the results, it can be seen that the amount

of data is quite sufficient for classification of multi-bus/state SLC/FDIA. However,

for accurate identification of the anomaly’s origin, an increased amount of data is

required due to the fact that the number of possible combinations of their origin

(both for multi-bus SLC and multi-state FDIA) is very huge.

5.2 Optimal partitioning

5.2.1 Convergence criterion

One of the trivial ways to stop an algorithm is to set specific number of iterations

and hand out the solution when the iterations finish. Obviously, this way can not

give a satisfactory result to most problems, specially SE which plays a vital role in

power system management. In addition, the problem is not centralized anymore,

which hands out the fact that we need to develop and implement a simple yet

effective distributed method to deal with it. The following algorithm shows the

general approach to optimal partitioned distributed SE with proposed convergence

criterion.

5.2.2 Power system partitioning

It is possible to represent the entire power system using an undirected weighted graph

and the connectivity between vertices (buses) of this graph (the power system) can
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Algorithm 1 distributed SE with convergence criterion

- Optimal partitioning of the system

- Initialization of the distributed SE parameters

- Define area number (AN), state number (SN), each area’s measurements and
needed data

- Specify convergence criterion parameter (𝜖)

- Do the first iteration and then transmit the needed data between each area

while ||𝑥𝑡 − 𝑥𝑡−1
𝑖,𝑘 || > 𝜖 do

Doing local computation

for 𝑘 = 1 to AN do

for 𝑖 = 1 to SN do

if ||𝑥𝑡
𝑖,𝑘 − 𝑥𝑡−1

𝑖,𝑘 || < 𝜖 then

𝑥𝑖,𝑘’s in the next steps will be equal to 𝑥𝑡−1
𝑖,𝑘

No need to transfer this data anymore

else

keep on sending the needed data

end if

end for

end for

end while

be represented by the following connection matrix (𝐶𝐿):

𝐶𝐿 =

⎡⎢⎢⎢⎣
𝑐1,1 . . . 𝑐1,𝑀
... . . . ...

𝑐𝑀,1 . . . 𝑐𝑀,𝑀

⎤⎥⎥⎥⎦ (5.21)

𝑠.𝑡.

𝑐𝑖,𝑗 = 𝑐𝑗,𝑖, {𝑖, 𝑗} = 1, 2, ...,𝑀

𝑐𝑖,𝑖 = 0

where 𝑀 is number of buses and the availability of a physical connection between

nodes 𝑖 and 𝑗. So, if there is a connection between nodes 𝑖 and 𝑗, the value of 𝑐𝑖,𝑗
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will be assigned ”1”, else it would be ”0”.

We need to define a weight matrix (𝑊𝐿) with value (𝑤𝑖,𝑗) for each element cor-

responding to connection matrix that introduced in (5.21) such as:

𝑊𝐿 =

⎧⎪⎨⎪⎩𝑤𝑖,𝑗, if 𝑐𝑖,𝑗 = 1 and 𝑖 ̸= 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5.22)

{𝑖, 𝑗} = 1, 2, ...,𝑀

Based on what has been mentioned in (5.21) and (5.22) the total cost (𝑇𝐶𝐿) for

cutting the connection between buses 𝑖 and 𝑗, can be obtained using 𝑇𝐶𝐿(𝑖, 𝑗) =

𝑐𝑖,𝑗𝑤𝑖,𝑗. Finally, if we want to divide a power system with 𝑀 bus to 𝐾 areas, we

can formulate the objective function (𝐽𝑘) for each area (or partition) of the system

as follows:

𝑚𝑖𝑛 𝐽𝑘 = 𝑚𝑖𝑛
𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1
𝑗 /∈𝜑𝑘

𝑇𝐶𝐿(𝑖, 𝑗) (5.23)

𝑠.𝑡.

𝑛(𝜑𝑘) > 𝑏𝑙𝑖𝑚

𝐾 ≥ 2

where 𝑘 indicates number of area (𝑘 = 1, 2, . . . , 𝐾); 𝑖 and 𝑗 indicate the bus number

𝑖, 𝑗 = 1, 2, . . . ,𝑀 ; 𝜑𝑘 is the set of buses in area 𝑘; 𝑛(𝜑𝑘) and 𝑏𝑙𝑖𝑚 are the number of

elements in 𝜑𝑘 and minimum number of bus we expect to be in each area, respec-

tively. 𝑏𝑙𝑖𝑚 has been set to the minimum number of buses per area presented by

conventional partitioning method available in the literature. It is to be noted that

the specified constraints in (5.23) make sure that the number of buses in each area

are more than a pre-specified threshold. Additionally, considering 𝐾 ≥ 2, avoids

having only one area which is same as centralized SE.
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5.2.3 Simulation results

In this section, the proposed method’s results on a test case, i.e. IEEE 14 bus

system, are presented. The system has been divided into four areas. Fig. 5-13

shows the topology of the studied test case.
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: Bus bar : Power line : Area

Figure 5-13: Topology of the IEEE 14 bus system

As mentioned in the previous sections, static DC distributed SE has been con-

sidered in this study, where the state variables would be only phase angles at each

bus. It is to be noted that the measurements are consist of active power flows

and injections. The noise covariance for all measurement units has been considered

10−4, and the initial value for state variables are “0”. Moreover, bus number “1” has

been selected as the slack bus. The simulation has been implemented via MATLAB

𝑅2018𝑏 on a computer with Intel(R) Core i5 processor and 8 GB of RAM.

Table 5.2 provides the detailed numerical results of distributed SE for IEEE 14

bus system. It is to be noted that system data and area specification for IEEE 14

bus system is adapted from [110]. The DC centralized state estimation objective

value for IEEE 14 bus system is 10.0524.

Also, Table 5.3 presents numerical results for IEEE 118 bus system. For the

sake of brevity, the distributed scheme of IEEE 118 bus system is not provided here

but it should be mentioned that, the topology of distributed IEEE 118 bus system

is adopted from [111]. The objective value for IEEE 118 bus system is 102.7758.
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The main reason for considering IEEE 118 bus system is to check scalability of

the problem. Additionally, in contrast to the IEEE 14 bus system, in bulk power

systems, like IEEE 118 bus, the effects of considering convergence criterion are more

visible.

Table 5.2: Numerical results of IEEE 14 Bus system

Methods Iter 𝜖1 𝜖2 CB OT OV

Matrix splitting WOCC 1042 1.26e-3 1.31e-4 8.4546 529.45 10.0565
WCC 927 4.6e-3 4.16e-4 8.6483 472.15 10.1307

Gossip based WOCC 2217 2.59e-3 3.15e-4 0.56 1109.06 10.0689
WCC 1870 1.27e-2 1.22e-3 0.87308 935.873 10.5662

Decomposition WOCC 45 1.89e-3 3.97e-4 2.89 25.39 10.526
WCC 42 2.23e-3 5.57e-4 2.77 23.77 10.542

ADMM WOCC 245 2.39e-2 2.43e-3 0.42828 122.93 12.036
WCC 213 2.3e-2 2.37e-3 0.38293 106.88 11.8174

Table 5.3: Numerical results of IEEE 118 Bus system

Methods Iter 𝜖1 𝜖2 CB OT OV

Matrix splitting WOCC 65301 2.95 6.3e-2 7319.3546 39969.85 396.283
WCC 39744 7.19 7.6e-2 3910.7458 23782.75 2194.4171

Gossip based WOCC 58811 17.0111 0.30187 98.523 29504.02 12130.307
WCC 37163 17.8056 0.33289 100.0473 18681.55 42593.4768

Decomposition WOCC 182 2.34e-2 3.51e-3 104.326 195.326 105.287
WCC 174 3.93e-2 4.86e-3 99.33 186.33 105.374

ADMM WOCC 1621 1.11 1.6e-2 5.8758 816.37 142.5793
WCC 998 1.01 1.4e-2 3.9752 502.98 137.014

Results provided in Table 5.2 and 5.3 are separated into two different categories.

First one is without modified convergence criterion (WOCC), which considers the

centralized objective value and compares it with a threshold value, and the second on

is with modified convergence criterion (WCC). Also, the number of iterations (Iter)

of different methods, error values compared to centralized solution, computational

burden (CB), overall elapsed time (OT) and finally the objective function value

(OV) are described for both categories here. Convergence limit 𝜖 was set to 10−6 for

all cases. Two different scales were applied for measuring the error of each method’s

solution compared to the answer obtained using the centralized method. 𝜖1 is the

sum of absolute values of difference between centralized and distributed solution (i.e.∑︀
|𝑥𝑐𝑒𝑛𝑡−𝑥𝑑𝑖𝑠𝑡|), and 𝜖2 is 𝑚𝑎𝑥(|𝑥𝑐𝑒𝑛𝑡−𝑥𝑑𝑖𝑠𝑡|). Computation burden means the time
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that has been spent by computer to solve the problem in a distributed manner. As

stated in [112], time delay for data transmission in power system can be considered

between 0.1 to 0.5 second. So, data transmission delay 𝑡𝑑𝑒𝑙𝑎𝑦 = 0.5 as the worst

case, and the overall time can be calculated using the following equation:

𝑂𝑇 = (𝑡𝑑𝑒𝑙𝑎𝑦 × 𝐼𝑡𝑒𝑟) + 𝐶𝐵 (5.24)

It is to be noted that the time presented here is not per area. One might divide

the obtained time to area number (e.g. 4 areas for IEEE 14 and 5 areas for IEEE

118) to calculate the results per area. However this would be wrong, due to non-

linear behavior of the solver when the number of variables decreases. Finally, the

OV for optimal state variables, which was obtained applying different methods, was

evaluated using (3.2).

In order to select the best algorithm amongst the ones which have been presented,

features such as scalability, data needed to be transmitted and closer objective value

to the centralized solution. Taking into account the mentioned details, the decom-

position methods serves the best for the purpose of distributed SE.

After specifying the distributed SE algorithm that has the closest results to

centralized SE, the proposed optimal system partitioning has been applied on test

systems. For IEEE 14 bus system we have, 𝑀 = 14; 𝑏𝑙𝑖𝑚 = 3; 𝑤𝑖,𝑗 = 0.01 ∀ 𝑖, 𝑗 [111];

And for IEEE 118 bus system we have 𝑀 = 118; 𝑏𝑙𝑖𝑚 = 11; 𝑤𝑖,𝑗 = 0.01 ∀ 𝑖, 𝑗; And

MATLAB solver (Sequential quadratic programming (SQP)) has been applied for

solving (5.23).

In order to check the security of the system, in Fig. 5-14 and 5-15 a sensitivity

analysis on the measurements has been done. For the sake of brevity, the analysis

has been done only for IEEE 14 bus system. The value of the measurement unit,

has been increase by 10% each separately and the results of all areas have been

collected in the one figure. The aim is to identify objective value with bad data and

compare it with the chi-square value (chi-square probability distribution function is

conventionally used for bad data detection in power system [14]).

The following figures show the results for two case. Fig. 5-14 is related to the
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partitioning which is normally used in the literature (e.g. [113]) and the system

configuration is as follows: Area 1 = {6 11 12 13}, Area 2 = {14 9 10}, Area 3 =

{1 2 5}, Area 4 = {3 4 7 8}. The number of bad data detection is 7 in this case.
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Figure 5-14: Objective value of areas by increasing each measurement value 10%
(each at a time) for partitioning case 1

Fig. 5-15 is related to the proposed partitioning, the case when the system

configuration is as follows: Area 1 = {6 12 13}, Area 2 = {14 11 10}, Area 3 = {1

2 5 3 4}, Area 4 = {9 7 8}. The number of bad data detection, similar to case 1, is

7 as well.

It is to be noted that, there might be a case, that two areas are going to have

residuals more than the chi-square threshold (which means there is a bad data), at

the same time. In this case it will be counted as one. Additionally, some of the

measurements have zero value, so there is no change in their value, in whole 4 areas.

It is clear that the overall security of the system has not changes in both cases has

not changed.

Finally, Table 5.4 compares the numerical results for case 1 and 2. Second case,
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Figure 5-15: Objective value of areas by increasing each measurement value 10%
(each at a time) for partitioning case 2

Table 5.4: Numerical results for comparing case 1 and case 2

Iteration
∑︀

𝐽𝑘 distributed SE Error (%) CB
IEEE 14 Objective
case 1 42 0.18 10.56 4.85 % 2.77
case 2 38 0.14 10.23 1.76 % 2.1

IEEE 118
case 1 174 0.38 105.374 2.59 % 99.33
case 2 173 0.36 105.315 2.47 % 86.74

which is related to system optimal partitioning has led to less iteration number

that consequently results in less data communication and faster implementation.

Then the sum of partitioning objective value for all areas (
∑︀

𝐽𝑘) is presented. The

individual partitioning objective has been evaluated for each area using (5.23), to

compare between partitioning scheme available in the literature and the proposed

one. The obtained
∑︀

𝐽𝑘 result for case 2 it better than case 1. At the same time,

due to decreased number of auxiliary variables due optimal partitioning, case 2 has
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lower objective value compared to case 1, which is closer to the centralized solution.

Then the error percentage that shows the relative error of distributed SE objective

compared to centralized SE objective value are presented. Finally, the CB for both

cases of the test systems are presented.

5.3 Summary

In this chapter, the results of implementing the proposed methods within the sim-

ulation environment were demonstrated. We presented the development and imple-

mentation of a novel algorithm for anomaly detection and classification, harnessing

the power of machine learning to improve anomaly detection and classification in

power systems, thereby enhancing reliability and resilience.

Regarding distributed SE, we explored the concept of optimal area partitioning,

seeking to reduce communication overhead and expedite convergence. We also ex-

amined the implications of applying a modified convergence criterion for evaluating

the performance of distributed SE methods.
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Chapter 6

Impact and Applications

In this chapter, we unveil not only the transformative applications of our proposed

methods and tools but also the profound impact they may have on the broader

research community. This may motivate researchers to explore, adapt, and build

upon our work. As we navigate through the concrete applications of our research,

we invite readers to advance the available proposed model. The material available

in this chapter focuses on two topics. First is anomaly detection, classification, and

identification. And, the second is the application of blockchain in distributed power

system state estimation.

6.1 ADCIT

Power system state estimation (SE) plays an important role in energy management

systems. Its task is to provide accurate estimates of voltage magnitudes and phase

angles for all nodes in the system [14]. SE can be subjected to many types of

anomalies, among which bad data (BD), sudden load changes (SLC) and false data

injection attacks (FDIA) are common. In order to take proper counter measures by

the system operator, anomalies must be reliably detected, classified and identified [4].

To this end, the Anomaly Detection, Classification and Identification Tool (ADCIT)

is developed. Detection of anomalies takes place in the first ADCIT stage through

application of the Matlab source code. In the second ADCIT stage, classification of

anomalies and identification of anomalies’ origin is done in Python.
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Figure 6-1: General scheme of ADCIT algorithm

Detection of BD is usually done by 𝜒2-test [11]. However, it is difficult to detect

either SLC or FDIA by applying 𝜒2-test within weighted least squares (WLS) esti-

mator. The ADCIT combines estimated states of WLS and extended Kalman filter

(EKF) to set up an anomaly detection index (ADI) capable of detecting both SLC

and FDIA; however, ADI cannot discriminate between SLC and FDIA. To classify

(or, discriminate) SLC and FDIA correctly, various supervised machine learning

(ML) algorithms have been implemented. Moreover, the case when load is abruptly

changed at multiple nodes simultaneously (named "multi-bus SLC"), or FDIA is

targeting multiple states at the same time (named “multi-state FDIA”) are for the

first time considered and ADCIT is capable to correctly discriminate between multi-

bus SLC and multi-state FDIA. Furthermore, the features utilized for training the

ML algorithm(s) are associated only with the network nodes. This increases the

robustness of the algorithms by eliminating the need to retrain the ML algorithm

in case of network topology changes. Inside the ADCIT, different ML algorithms

are available and they are user-defined. Finally, different types of anomalies can be

successfully analysed by the ADCIT.

6.1.1 ADCIT algorithm

The ADCIT algorithm has been implemented in Matlab and Python. Fig. 6-1

demonstrates the general scheme of the ADCIT algorithm. The details regarding

each code are presented below.
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6.1.2 Matlab: Data preparation and detection

To provide the labelled data for the training of the ML algorithms power system

simulations are conducted within Matlab environment. Firstly, raw measurements

are generated using the procedure described below. Next, raw measurements are

processed by two types of state estimators, namely WLS and EKF, to get the es-

timated (and, in case of EKF, predicted) electrical quantities. IEEE 14 bus test

system [1] has been selected as the benchmark.

MATPOWER, an open-source Matlab extension for solving steady-state power

system optimization problems, has been utilized to execute consecutive optimal

power flows (OPFs) over the time [114]. Considering that the load at each con-

sumption node is given, the OPF provides nodal voltage magnitudes, active/re-

active power flows in branches and active/reactive power injections at generator

nodes. These values are used as the true values of measurements. A noise term,

having Gaussian distribution with zero mean and 0.01 standard deviation, is added

to the true measurements to get the raw measurements.

To simulate a BD case, corresponding raw measurements are corrupted with a

random error which does not fall under the predefined Gaussian distribution. For

simulating a SLC, a pre-specified amount of load is curtailed at the desired time

instant during the execution of the consecutive OPFs. In the case of FDIA, the raw

measurements are modified according to the attack vector. To simulate multi-bus

SLC or multi-state FDIA, the user can change the setting of parameters SLC_bus

or FDIA_state from a scalar value to a vector. This change has to be made in the

main m-file. For instance, SLC_bus = [5 10 12] means that the SLC is happening

at the nodes 5, 10 and 12 simultaneously.

WLS and EKF based state estimations are carried out under normal operating

conditions (i.e., quasi steady state) and abnormal operating conditions (BD, SLC

or FDIA). Apart from the estimated states, other outputs, such as predicted states,

normalized residuals and normalized innovations, are obtained. To detect BD, mea-

surement residuals obtained via WLS state estimation are used to carry out 𝜒2-test.

In case there is no BD, the algorithm will check for SLC or FDIA using ADI [115].

In case ADI value is equal or higher than a specific threshold, anomaly is detected;
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otherwise, system is considered to be in the normal operation mode.

It is to be noted that the moment when an anomaly occurs and vanishes can be

specified within the code. Additionally, it is also possible to change the test system

or network topology; however, it requires further modification of the parameter

settings in MATPOWER source file and several m-files.

6.1.3 Python: Classification and identification

Python environment is used for input data pre-processing and application of the ML

algorithms for anomaly classification and identification. For the sake of comparison,

four supervised ML algorithms, namely Random Forest (RF), Extreme Gradient

Boosting (XGB), Logistic Regression (LR) and K-Near Neighbours (KNN) are ap-

plied [115].

As mentioned before, to eliminate the need to retrain the ML algorithms when

the network topology changes, the features associated with the power lines are ex-

cluded and only the features associated with the nodes are utilized. The features

associated with the nodes are: a) Nodal measurements and normalized measure-

ment innovations of voltage magnitudes and active/reactive power injections; b)

Estimates and predictions of voltage magnitudes, phase angles and active/reactive

power injections.

Maximum relevance – minimum redundancy (MRMR) algorithm has been ap-

plied for the feature selection [105]. The parallelization function has been included

in the MRMR script to utilize multiple cores of the CPU and run tasks in parallel.

Accordingly, the most relevant features can be found fast and without additional

computational complexity.

For executing the ML algorithms, standard models from the scikit-learn library

have been applied [116]. All models are trained by tuning appropriate hyperpa-

rameters. Hyperparameters are tuned using sequential optimization with gradient

boosting as a surrogate probability model of the objective function [95]; the scikit-

optimize library is used for this purpose.
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6.1.4 Illustrative example

An example of the results obtained by ADCIT is demonstrated in Fig. 6-2.
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Figure 6-2: Detection tests in the presence of FDIA: (a) 𝜒2-test (b) Largest ADI test

If 𝐽𝐵𝐷𝐷 ≥ 𝜒2
(𝑚−𝑛),𝑝 holds, then there is a high probability of the existence of a

BD. Here, 𝐽𝐵𝐷𝐷 stands for 𝜒2-test’s objective function; 𝜒2
(𝑚−𝑛),𝑝 corresponds to a

value from the 𝜒2 distribution table with the probability 𝑝 and (𝑚 − 𝑛) degrees of

freedom; 𝑚 and 𝑛 is the number of observed measurements and number of estimated

states, respectively.

If 𝑚𝑎𝑥{𝐴𝐷𝐼𝑖} ≥ 𝛾, SLC or FDIA presence is detected. Here, 𝑚𝑎𝑥{𝐴𝐷𝐼𝑖} stands

for maximum ADI value, and 𝛾 represents the detection threshold that has to be

selected to clearly discriminate between normal operation and anomalies [115].

Fig. 6-2 shows detection indices when the system is affected by FDIA. FDIA

tends to increase the voltage magnitude at bus 14 for 0.1 p.u., starting from 𝑡 = 350

and persists until the end of the simulation.

It is obvious that the largest ADI test is highly capable of detecting anomaly
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presence, while anomaly bypass the 𝜒2-test. Yet, this test is not able to classify the

occurred anomaly according to its type. Therefore, ML algorithms have been utilized

for the classification of the anomalies. Table 6.1 summarizes the performances of

the ML algorithms in terms of calcification accuracy and training time, for the

classification of SLC and FDIA, i.e., to discriminate between SLC and FDIA. [115].

Due to the fact that some of the features might be redundant or less relevant for the

training of the ML algorithms, MRMR has been applied to select the most relevant

features. In this example, the number of features selected by MRMR is 70 compared

to the number of features without MRMR (WO MRMR) which is 214. This has

helped to reduce the training time of the ML algorithms. Although the accuracy of

LR and KNN algorithm slightly decreases, in the case of RF and XGB algorithm

the accuracy remains the same.

Table 6.1: Single bus/state SLC/FDIA classification

ML Classification accuracy Training Accuracy using Training time
algorithm WO MRMR (%) time (s) MRMR (%) using MRMR (s)
LR 98.55 577.14 87.94 136.29
KNN 99.74 42.26 97.53 38.35
RF 100 946.76 100 561.29
XGB 100 858.98 100 324.35

6.1.5 Software impacts

Accurate anomaly detection, classification, and identification are of great importance

for power system state estimation. The impacts of the ADCIT are twofold. Firstly, it

can be applied as an educational tool. It provides an opportunity for the researchers

to observe the adverse effects of the anomalies on the state estimates, and to analyze

how the ADCIT enables anomaly detection, classification, and identification in order

to avoid these effects [117]. In another word, the researchers can modify/extend the

ADCIT to implement their own ideas. This means that the ADCIT can be used as

a platform for the future research work.

Yet another impact of the tool is its capability for industrial implementation.

Without the requirement of any additional hardware installation, the ADCIT can
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be integrated within the energy management systems in power system control rooms

[14]. The ADCIT enables a better situational awareness in the presence of the

anomalies, which are typical in case of system emergencies [4, 15]. Besides, the

specification of the anomaly type (i.e., anomaly classification) by the ADCIT will

assist the system operator for proper decision making.

Creating a graphical user interface, considering other types of anomalies such as

network parameter errors, and designing suitable countermeasures against anoma-

lies, can be considered as future directions for the development of ADCIT.

6.2 Application of blockchain

BC is a digital ledger of transactions distributed across the network of computer

systems, with atomic changes to the database. The integrity and tamper-resistance

of the transaction logs are assured because of the cryptographic hash linked among

the blocks. BC is usually assumed to be decentralized architecture maintained by

individual parties. Each node of the network owns a copy of the BC. Each BC block

contains transactions, and every time a new transaction occurs on the BC, it is

broadcasted to all nodes and added to a block along with other transactions waiting

to get committed in a block. This technology has developed over the last decade

and can be categorised as private, public or consortium BC, each further divided by

permissioned or permissionless. As shown in Fig. 6-3, every new block 𝑁 generated

at time 𝑇 contains information from the previous 𝑁 − 1 block generated at time 𝑇 ′,

where 𝑇 > 𝑇 ′.

6.2.1 Consensus algorithm for decentralized ledger

BC is a peer-to-peer network of nodes that functions individually without any cen-

tral authority. Each node of the network can function individually, i.e., update

ledger (creating and adding a block to the BC) and broadcast new block to the

other nodes of the network using the gossip protocol [54]. The nodes verify the

broadcasted block’s validity, and have to either accept or reject the proposed block,

thus reaching a consensus. In distributed ledger technology, there exists a funda-

95



Chapter 6. Impact and Applications 6.2. Application of blockchain

Block Header
Previous Block Header

Nonce 
Timestamp

Data (Merkle Tree)

Tx_1 Tx_2 Tx_3 Tx_4

H(Tx_1) H(Tx_2) H(Tx_3) H(Tx_4)

H(H(Tx_1),H(Tx_2)) H(H(Tx_3),H(Tx_4))

Block Header
Previous Block Header

Nonce 
Timestamp

Data (Merkle Tree)

Block Header
Previous Block Header

Nonce 
Timestamp

Data (Merkle Tree)

Genesis Block. Block: 0, Time: 0 Block: N - 1, Time: T' Block: N - 1, Time: T

Figure 6-3: Data organization in blockchain

mental problem of reaching consensus. Majority of the BC projects use any of the

three most common consensus algorithms, i.e., proof of work (PoW), proof of stake

(PoS), and Byzantine fault tolerant. Similar to Bitcoin, Ethereum uses a PoW

consensus algorithm. In December 2020, Ethereum 2.0 was launched, which uses

PoS consensus. In PoW BCs, block creators (which are called miners) are rewarded

with mining rewards along with transaction fees included in the block. This mining

reward is the incentives for using computation power and electricity in finding the

correct nonce within the target range.

Miners have to perform computation by running a hash of block’s content and

incrementing a nonce until it produces a value less than the target. Nonce is an

integer that starts from 1 and increments until it produces a hash of block’s content

less than specific target value [58]. Generating a hash on an arbitrary size input is a

one-way function that produces a fixed output length [118], i.e., given input, we can

generate an output of fixed-length, but not vice versa. The hash function used is

cryptographically secure and with brute force there exists a potential solution with

complexity of 𝑂(2𝑛) for 𝐻(𝑚) = 𝐻(𝑚′), where 𝐻 is a SHA function [119] on an

input 𝑚 and 𝑚′ and 𝑚 ̸= 𝑚′. This means that for a fixed output length on 𝑛, for

example, 𝑛 = 256 in the case of SHA256, the probability of success is 𝑘/2𝑛, where

𝑘 is a number of queries [120].

96



Chapter 6. Impact and Applications 6.2. Application of blockchain

6.2.2 Ethereum Architecture

A computer (node) can be a full node or light node [121] running an instance of the

Ethereum BC. A full node stores the entire BC data and can serve any request. It

verifies all blocks and states and can propose a new block to append on the ongoing

chain. Light node stores only the header of the chain and can verify the validity of

the state roots’ data in a block header. To interact with the DApp, clients should

interact with the BC by running a full node by itself and using ethereum clients, like

Geth, OpenEthereum, etc., to interact with the network. Ethereum BC has grown

and consumes a significant storage amount and can be difficult to run a full node.

Therefore, via a third-party platform like Infura, Alchemy, etc., [122, 123] provides

application programming interface (API) to interact with ethereum BC feasible.

Ethereum comprises two main components:

• Database: All activities on the network are recorded on the BC in the form of

a transaction. Sending cryptocurrency from one address to another is recorded

in a transaction with valid signatures and broadcasted to the network where

other nodes commit to a block after verification. PoW consensus algorithms

make sure that all the nodes in the network have the same BC data as all the

valid transaction data. The data are stored in the form of a Merkle Patricia

Tree. There are two types of addresses in Ethereum, Externally Owned Ac-

count (EOA), controlled by private keys and Contract Address, controlled by

contract code. When a smart contract code is compiled and deployed from

EOA, a contract address is created, and bytecode is stored in it.

• Code: The smart contract is stored on the BC in a contract address in the

form of code, known as byte code. The codes in contract addresses execute

contract when a transaction is sent from EOA to contract addresses.

For each transaction on the Ethereum BC, there is a fee known as Gas for

executing transactions. Once a transaction is added to the block, the transaction

fee goes to the miner as a reward for using computational resources. Gas is a unit

to measure computation difficulty in Ethereum Virtual Machine (EVM). Gas is

charged only when data are modified on the BC, i.e., reading and accessing data are
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not chargeable. Once the sender signs a transaction and broadcasts it, the Ethereum

protocol debts gas fees in a fraction of ethers from the Ethereum account, lack of

required gas amount will not allow the transaction to be execute. If there are no

fees, attackers can flood the node’s memory pool with bogus transactions, causing

distributed DoS attacks. Gas is not fixed for the transaction but it is variable and

depends on the computational difficulty of a smart contract. The sender of the

transaction pays gas, and the miner who mines a block receives gas. Miner receives

all the transaction gas that he includes in the block along with the block generation

reward. Miners set the price of gas based on the computational power of the network

required to process transactions and smart contract.

Since ether is not stable in value but sees daily change, therefore gas is a relative

price converted to ethers based on the load on the network. In a congested network,

the gas price will increase for each unit of gas. So there is a gas price, i.e., how

many units of ether are transactor willing to pay for one gas unit. Each opcode in

Ethereum has a cost. The total cost of the contract is the summation of all the

opcodes [124].

The EVM is a virtual stack embedded within each full Ethereum node that allows

anyone to execute arbitrary bytecodes and plays a crucial role in the consensus engine

of the Ethereum system. It allows anyone to execute arbitrary code in a trustless

environment in which the outcome of execution can be guaranteed and is entirely

deterministic. When you install and start the Geth, parity or any other client, the

EVM is started, and it starts syncing, validating and executing transactions. The

EVM is Turing complete, i.e., capable of performing any algorithm.

6.2.3 Data Verification

Before broadcasting the data that contains the formation of the transaction to other

nodes in the network, the data should be signed using the private key. A signature

is required to prove that the sender of the data are genuine and not an imposter

who signed the message without the private key. BC uses asymmetric cryptography

based on public key infrastructure. Like a physical signature, digital signatures are

used to authenticate electronically a document’s contents like pdf, emails, etc. [125].
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In the BC network, each node has its pair of public and private keys, and the

public key is shared with all the other nodes. Owning a private key is equivalent

to owning or controlling a node associated with its public key and accessing the

activities restricted to it.
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Figure 6-5: Data verification using private and public key

To sign a message (or data), a function is calculated using the private key of the

document’s sender. The recipient’s using the public key of the sender, can verify if

the document is correct and not tampered.

6.2.4 Asynchronous data transfer

The combination of renewable energy sources and information and communication

technology (ICT) changes the power system’s nature from a physical system to a

CPPS [15]. Therefore, the physical part consists of a power grid, and the cyber part

comprises a control and computation layer. The physical layer consists of physical

99



Chapter 6. Impact and Applications 6.2. Application of blockchain

elements such as generators, transmission lines, transformers, etc. On the other

hand, the cyber layer is responsible for computation, analysis and assessment of the

power grid, and includes elements such as sensors, communication medium, control

system, etc. [15]. A CPPS encounters different types of cyberattacks, such as DoS

and FDI. However, latency attack has the potential to be considered as a new type

of attack in the area of the power system, while it is already well-known for wireless

network community [126]. The power system undergoes a time delay of several

milliseconds, while increasing this latency or time delay maliciously may lead to the

power system instability [126]. Although the application of distributed methods and

implementation of a BC based communication network may dissolve the issue, still

there would be a chance that the latency happens for the system. To study such

a case, we have considered a delay in data transfer between areas in a randomized

manner. In other words, at some iterations, an area randomly (based on uniform

probability distribution) will be selected so as not to update its state variables. The

comparison of the distributed SE results with and without delay is presented in

section IV.

6.2.5 Problem formulation

Suppose that we have divided the power system into 𝑁 areas, having 𝑧𝑁 measure-

ments composed of power injection, power flow and voltage magnitude. Considering

𝑥𝑘 as the state variables related to area 𝑘 and �̃�𝑙 as the auxiliary variables estimated

by area 𝑘 related to its neighboring area 𝑙, one can rewrite (4.6) into the following

equation:

min
𝑥𝑘

𝑓𝑘(𝑥𝑘) +
∑︁
𝑙∈Λ𝑘

𝑓𝑘𝑙(𝑥𝑘, �̃�𝑙), (6.1)

where Λ𝑘 indicates the set of all neighboring areas of 𝑘𝑡ℎ area. It is clear that (6.1)

is composed of two statements. The first statement is related to the measurements

that the physical equation for calculating them only requires the state variables
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inside the area and can be written as follows:

𝑓𝑘(𝑥𝑘)=
∑︀

𝑖∈Λ𝑣
𝑘
𝑊 𝑣

𝑘,𝑖(𝑣
𝑚
𝑘,𝑖−𝑣𝑘,𝑖)

2

+
∑︀

𝑖∈Λ𝑃
𝑘

𝑊𝑃
𝑘,𝑖(𝑃

𝑚
𝑘,𝑖−𝑃𝑘,𝑖(.))

2+
∑︀

𝑖∈Λ
𝑄
𝑘

𝑊𝑄
𝑘,𝑖(𝑄

𝑚
𝑘,𝑖−𝑄𝑘,𝑖(.))

2 (6.2)

+
∑︀

(𝑖,𝑗)∈Λ𝑃𝐹
𝑘

𝑊𝑃𝐹
𝑘,𝑖𝑗(𝑃

𝑚
𝑘,𝑖𝑗−𝑃𝑘,𝑖𝑗(.))

2+
∑︀

(𝑖,𝑗)∈Λ
𝑄𝐹
𝑘

𝑊
𝑄𝐹
𝑘,𝑖𝑗

(𝑄𝑚
𝑘,𝑖𝑗−𝑄𝑘,𝑖𝑗(.))

2,

where 𝑖 and 𝑗 are arbitrary buses; Λ𝑣
𝑘, Λ𝑃

𝑘 , Λ𝑄
𝑘 , Λ𝑃𝐹

𝑘 and Λ𝑄𝐹
𝑘 indicate the set of

voltage, active power injection, reactive power injection, active power flow and reac-

tive power flow measurements in area 𝑘, respectively; 𝑊 (.)
(.) weighting factor for the

measurements; 𝑃𝑚
(.), 𝑄

𝑚
(.) and 𝑣𝑚(.) are the active power injection or power flow, reac-

tive power injection or power flow and voltage observed measurements, respectively;

While 𝑃(.), 𝑄(.) and 𝑣(.) are the physical equations of these measurements. These

physical equations governing the power system are provided in appendix.

The second statement of (6.1), is related to the measurements in 𝑘 that need

to receive state values regarding the buses in connection with the neighboring area

𝑙. It is to be noted that, for calculation of the physical equations regarding these

measurements, we use the auxiliary variables:

𝑓𝑘𝑙(𝑥𝑘,�̃�𝑙)=
∑︀

𝑖∈Λ𝑃
𝑘𝑙

𝑊𝑃
𝑘𝑙,𝑖(𝑃

𝑚
𝑘𝑙,𝑖−𝑃𝑘𝑙,𝑖(.))

2

+
∑︀

𝑖∈Λ
𝑄
𝑘𝑙

𝑊𝑄
𝑘𝑙,𝑖(𝑄

𝑚
𝑘𝑙,𝑖−𝑄𝑘𝑙,𝑖(.))

2+
∑︀

(𝑖,𝑗)∈Λ𝑃𝐹
𝑘𝑙

𝑊𝑃𝐹
𝑘𝑙,𝑖𝑗(𝑃

𝑚
𝑘𝑙,𝑖𝑗−𝑃𝑘𝑙,𝑖𝑗(.))

2

+
∑︀

(𝑖,𝑗)∈Λ
𝑄𝐹
𝑘𝑙

𝑊𝑄𝐹
𝑘𝑙,𝑖𝑗(𝑄

𝑚
𝑘𝑙,𝑖𝑗−𝑄𝑘𝑙,𝑖𝑗(.))

2+
∑︀

𝑖∈Λ𝑘𝑙

𝑊 𝑣
𝑘,𝑖(𝑣𝑙,𝑖−𝑣𝑙,𝑖)

2 (6.3)

+
∑︀

𝑖∈Λ𝑘𝑙

𝑊 𝜃
𝑘,𝑖(𝜃𝑙,𝑖−𝜃𝑙,𝑖)

2,

where 𝜃(.) and 𝑣(.) are the auxiliary variables. It is worth noting that the last two

statements in (6.3) are utilized to provide a consensus for this minimization function.

6.2.6 Proposed Blockchain Solution

Building distributed SE’s data transmission architecture based on BC provides a

security feature of the technology to transfer data among system areas. BC inte-
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gration can ensure honesty in the system as the transaction’s sender can only sign

each transaction.

A PoC is developed on the Ethereum test network and deployed using Truffle

framework and Ganache. Ethereum provides tools to build smart contracts and de-

centralized applications without any downtime or any third-party interference. Truf-

fle Suite is a BCs development environment, testing framework, and asset pipeline

using the EVM. Ganache [127] is a personal BC for Ethereum and Corda based dis-

tributed application development. Utilizing Ganache and Truffle, the entire DApp

can be developed in a safe and deterministic environment. The code repository

containing open source prototype is available in [128].

The EVM has separate storage areas:

• All contracts have state variables, and the state variables are stored on the

BC, i.e., the data are recorded into the BC itself. When the contract executes

some code, it can access all the previously stored data in its storage area.

• Memory holds temporary values and only exists in the calling function and

has less gas price because the stored memory gets erased between calls. Gas

price increases with the size of memory scaling quadratically. Though, com-

paratively cheaper than storage.

• The stack holds small local variables, and here the computations happen. This

data can only hold a limited amount of values up to 1024 small local variables.

• Logs store data in an indexed structure with mapping, and with filters, specific

data can be accessed. Logs are inaccessible to contract but are mainly used

for events that occur on the BC.

6.2.7 System Overview

The proposed BC solution focuses on establishing a secure architecture of transfer-

ring arbitrary data for every iteration among the DSE areas based on the established

connections on the BC. Fig. 6-6 shows the main participating entities of the system:
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• distributed SE areas : The control center at each area is responsible for receiving

data and then, calculate SE and after that send data to another area.

• Auditor : Provides public key infrastructure [129] to all distributed SE areas

and is responsible for maintaining smart contracts on the BC and can establish

or demolish connection between two areas. In other words, only the auditor

can establish communication between two or more than two areas by sending

a transaction to the smart contract address that sets communication to true

between areas on the smart contract. Auditor is like a supervising body of the

infrastructure of the distributed SE network. Although, it is responsible for

deploying contracts on the blockchain, the distributed SE areas can communi-

cate, i.e., transfer date, with each other via smart contract without interference

from the auditor. If any issues arise on the BC, the auditor can resolve this

issue with the BC. The distributed SE data transactions are independent, and

the auditor is not involved.

6.2.8 System Design

On the BC, two contracts are deployed. First, to establish/demolish connection

between the areas. Second, to transfer data per iteration between the areas within

the established connection. The following section describes the details.

Establishing/Demolishing Connection

The auditor manages the connections between areas through algorithm 2. The smart

contract emit event upon each connection change to inform all the areas.

Data Transfer

Algorithm 3 smart contracts listens to all the transaction call of the first deployed

smart contract and as per update the state of the connections of this smart contract.

This algorithm takes four parameters i.e., sender, receiver, iteration and payload.

Each area in our case study has a different data payload size (i.e., state variables

which needs to be transferred). With each iteration, data are passed as arrays of
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float integers as string type because it is impossible to pass a negative number in

a smart contract. With each transaction of the iteration, the transaction event is

emitted and notified to the receiving area, who can process the data off-chain as

peruse.

Algorithm 2 Establish/Demolish area Connection
Input: address_deployer, address_from, address_to

Initialization: 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑓𝑟𝑜𝑚, 𝑡𝑜)← 𝑏𝑜𝑜𝑙
1: if (𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 ̸= 𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑟) then
2: from ← address from
3: to ← address to
4: if (𝑓𝑟𝑜𝑚 ̸= 𝑡𝑜) then
5: if (𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑓𝑟𝑜𝑚, 𝑡𝑜) ̸= 𝑇𝑟𝑢𝑒) then
6: Set connection(from,to) ← True
7: else
8: Revert and show error "Connection exist"
9: end if

10: else
11: Revert and show error "No Self Connection"
12: end if
13: else
14: Revert and show error "Only Owner Access"
15: end if=0

Algorithm 3 Data Transfer
Import: ‘Establishing Demolishing Connections’
Input: address_sender, address_to, interation_number, data_String
1: if (𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 ̸= 𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑠𝑒𝑛𝑑𝑒𝑟) then
2: if (𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑓𝑟𝑜𝑚, 𝑡𝑜) = 𝑇𝑟𝑢𝑒) then
3: Call function to transact these values on blockchain
4: Notify transaction in the network
5: Apply the transferred data in the current iteration for state estimation
6: else
7: Revert and show error "No Connection"
8: end if
9: else

10: Revert and show error "Only msg.senders"
11: end if=0
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6.2.9 Security

This architecture provides security because each transaction requires a transaction

signature. The connection can only be established by the smart contract owner as

there is a specific check-in of the smart contract that requires signature verification.

Signature is created using the private key, and address generation also requires

a private key. Therefore, losing the private key, especially by the auditor, i.e.,

controller of the architecture, can compromise the whole system.

6.2.10 Simulation results and discussion

In this section, the test case (i.e., IEEE 14 bus system [1]) results are presente

utilizing the proposed method. The system has been divided into four areas and

Fig. 6-6 shows the topology of the studied test case.
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Figure 6-6: Distributed topology of the IEEE 14 bus system [3] integrated with
blockchain

In this research, AC SE has been considered, where the state variables would be

voltage magnitudes and phase angles at each bus. The number of state variables
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and measurements are 27 and 41, respectively. The weighting factor for all mea-

surement units has been considered equal to 104. In order to solve (6.1), MATLAB

(version R2018b) solver (Sequential quadratic programming) has been applied and

for initiation of the optimization process the initial value for state variables have

been set to flat start, i.e., voltage magnitude of “1” and phase angle value of “0”.

Moreover, the bus number one has been selected as the slack bus with phase angle

zero. To evaluate the prototype’s performance, the smart contract was deployed

on a local BC server and interacted with the python application. The experiments

were performed on a computer with memory 16 GB 2400 MHz DDR4, Intel Core i9

running @2,3GHz.

As mentioned before, we have considered two different cases. The data transfer

between areas are simultaneously in the first case and with latency (time delay) in

the second case. The graphical and numerical results of both cases are presented.
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Figure 6-7: IEEE 14 bus system voltage magnitude for centralized (Cent-SE) and
distributed state estimation interacting with blockchain (case 1 and case 2)

Fig. 6-7 and Fig. 6-8 represent the comparison of centralized and distributed

estimated voltage magnitude and voltage phase angle for IEEE 14 bus test system

interacting with BC. The distributed method has succeeded to reach the centralized

values in both cases.
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Figure 6-8: IEEE 14 bus system voltage phase angle for centralized (Cent-SE) and
distributed state estimation interacting with blockchain (case 1 and case 2)

Fig. 6-9 shows the distributed method objective value during the IEEE 14 bus

system’s optimization procedure. As proposed in [49], we have considered the state

variables convergence rate as convergence criterion. It means that the difference

between obtained state variables of two successive iterations are measured at each

area and if the value is below the specified threshold (it has been set to 10−6 [49]),

the optimization stops. It is clear that in case 2, where there is a delay in data

transmission, the number of optimization iteration increases.

The numerical results of the comparison between centralized SE and distributed

SE are presented in table 6.2. The iteration number and objective value of both

centralized and distributed are presented. The objective value for centralized SE is

obtained using (3.2) and applying Newton’s method. However, for distributed SE,

after solving the optimization problem stated in (6.1) for all areas, we gathered the

state variables and placed these state variables into (3.2). The objective values are

obtained by substituting the distributed SE state variables into (3.2).

As shown in the table, the factual error between these values is approximately

1 percent. The necessity of considering objective value is due to the fact that one

of the methods to specify measurement anomalies, so-called bad data, is to compare
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Figure 6-9: Distributed method objective value during iteration for case 1 and case
2
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Table 6.2: Numerical results of comparing centralized and distributed method for
case 1 and case 2; centralized SE (CSE); distributed SE (DSE)

Iteration Objective Objective
CSE DSE CSE DSE error

case 1 6 73 11.5568 11.6801 1.0559 %
case 2 6 112 11.5568 11.6804 1.0582 %
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Figure 6-11: Gas consumption to transfer 1024 bytes per payload size in Bytes

objective value with the chi-square value [14]. So, considering measurement residuals

distributed method matches the centralized to a great extent as well.

Fig. 6-10 shows the result of the experiment to check the gas consumption,

amount of gas used to execute a transaction, with respect to the transaction payload

size in bytes of different values in a transaction, i.e., in a hexadecimal value and used

to check how it will influence the processing time. Different value precision results in

different payload sizes. We executed 128 transactions of payload size one and bytes

of size 𝑘 from 1 to 128. In EVM, a one-word is a maximum of 32 bytes. Zero bytes

pad each payload up to the closest factor of 32 bytes and processed as a sequence of

32 bytes words. Most of the operation consumption goes to cryptographic signature

checks by the nodes. Gas consumption varies with different byte sizes, and we can

see a significant shift for each consecutive 32 bytes, but within each set, the gas fees

increased linearly with an increment of a byte.

Fig. 6-11 indicates the optimization of the transfer procedure where several

transactions can be concatenated as one string, i.e., bulk data transfer. This would

result in less number of transaction to transfer the same amount data without spend-

ing extra gas for each execution. For the experiment, we measured the gas consump-

tion to transfer 1024 bytes per 2𝑘−1 bytes where 𝑘 ∈ {1, . . . , 8}, with increase on

payload size, the gas consumption reduces for computation at nodes.
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6.3 Summary

This chapter was devoted to the practical applications of our proposed methods and

tools, showcasing their transformative potential and the broader impact they could

have on the research community. We presented not only the concrete applications of

our work but also the opportunities for researchers to explore, adapt, and build upon

our findings. We invited readers to contribute to the advancement of our proposed

model and its applications.

The chapter focused on two key topics: anomaly detection, classification, and

identification, and the application of blockchain in distributed power system state

estimation. We demonstrated how our methods could enhance anomaly detection

and identification capabilities in power systems, contributing to their reliability and

resilience. Additionally, we explored the potential of blockchain technology to ad-

dress data security and integrity challenges in distributed SE, paving the way for

more robust and secure power system operations.
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"If you optimize everything, you will

always be unhappy."

Donald Knuth

Chapter 7

Conclusion

In the pursuit of advancing the topic of power system state estimation, this thesis

has embarked on a comprehensive exploration of the intricate challenges inherent in

contemporary power grids. The findings that were presented in this research work,

have the potential for improving the reliability and resiliency of the power system

operation. The outcome of the thesis can be concluded in two categories, i.e., power

system anomalies and distributed state estimation.

Power system anomalies

Initially, a novel solution was presented to detect and classify anomalies such as

BD, SLC, and FDIA, as well as to identify their origin. Anomalies that bypass the

𝜒2-test are successfully detected using an anomaly detection index. After that, a

ML algorithm is applied to classify anomalies and identify their origin. Based on

the obtained results, the proposed algorithm is capable of accurate detection and

classification of the anomalies.

It has been demonstrated that utilizing the features associated only with the

buses eliminates the need for retraining the ML algorithm once the network topol-

ogy changes. Furthermore, the application of an optimal feature selection method

alleviates the optimization complexity of the ML algorithm. Besides saving time

and computational resources, these aspects make the system operator capable of

fast response in case an anomaly occurs.
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Distributed state estimation

A modified convergence criterion has been presented for distributed SE applica-

tions considering features such as iteration number, convergence rate, and needed

data to be transmitted between areas. After that, an optimal partitioning method

that maintains the security of the system while decreasing the number of auxiliary

variables of the distributed SE problem was introduced.

Based on the obtained results, the application of the modified convergence cri-

terion will decrease the number of iterations to a high extent. Additionally, the

proposed partitioning method is effective in case of decreasing the number of aux-

iliary variables of the distributed SE problem and consequently helps to reach an

optimal point closer to centralized state estimation.

Additionally, in the context of distributed computation, blockchain technology

has attracted research and industrial communities’ attention due to its diverse and

novel characteristics. Needless to say, the future power grids, so-called smart grids,

can benefit from these features in different industrial divisions. In this regard, we

tried to point out blockchain application in smart grids’ main sector, i.e., the state

estimator.

In this work, we have proposed a combination of distributed state estimation

and a blockchain designed communication platform for secure data transmission

and increasing the system’s reliability. Application of the smart contract concept

would lead to improving the security of the overall system. Moreover, the robustness

of the method against the data transmission latency has been analysed.

Future research direction

Detection and classification of different types of anomalies in case of their simulta-

neous occurrence along with identification of their origin and designing the suitable

countermeasures against them, can be considered as future research directions in

the area of power system anomalies.

As mentioned before, we introduced a scheme for the combination of state estima-

tion with blockchain in a distributed transmission system. Therefore, implementing

such a combination for the distribution system, in which the applications of renew-

112



Chapter 7. Conclusion

able energy sources are increasing exponentially, can be a future direction. Another

research direction for the future can be introducing multi-signature that will make

this architecture more secure. Additionally, economical analysis for blockchain’s

implementation in the power system would be of interest to research and the indus-

trial community and can be considered as another future direction, in the area of

distributed state estimation.
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Appendix A

Additional material

I. Statistical properties of normalized measurement

residuals

In the proposed methodology, 𝜒2-test is performed over the measurement residuals

obtained by WLS estimator in order to detect bad data presence. This is feasible if

normalized measurement residuals follow Standard Gaussian distribution.

WLS estimator utilizes measurement model only. Instead of (4.45), consider the

linear measurement model first (time index t is omitted to simplify the notation):

𝑧 = 𝐻𝑥+ 𝑒 (A.1)

In this case, estimated state can be obtained directly as:

̂︀𝑥 =
[︀
𝐻𝑇𝑅−1𝐻

]︀−1
𝐻𝑇𝑅−1𝑧 (A.2)
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Now, measurement residuals can be expressed as follows:

𝑟 = 𝑧 −𝐻̂︀𝑥
= 𝑧 −𝐻

[︀
𝐻𝑇𝑅−1𝐻

]︀−1
𝐻𝑇𝑅−1𝑧

=
[︁
𝐼 −𝐻

[︀
𝐻𝑇𝑅−1𝐻

]︀−1
𝐻𝑇𝑅−1

]︁
𝑧

=
[︁
𝐼 −𝐻

[︀
𝐻𝑇𝑅−1𝐻

]︀−1
𝐻𝑇𝑅−1

]︁
[𝐻𝑥 + 𝑒]

= 𝐻𝑥 + 𝑒−𝐻
[︀
𝐻𝑇𝑅−1𝐻

]︀−1 [︀
𝐻𝑇𝑅−1𝐻

]︀
𝑥−

𝐻
[︀
𝐻𝑇𝑅−1𝐻

]︀−1
𝐻𝑇𝑅−1𝑒

= 𝐻𝑥 + 𝑒−𝐻𝑥−𝐻
[︀
𝐻𝑇𝑅−1𝐻

]︀−1
𝐻𝑇𝑅−1𝑒

= 𝑒−𝐻
[︀
𝐻𝑇𝑅−1𝐻

]︀−1
𝐻𝑇𝑅−1𝑒

=
[︁
𝐼 −𝐻

[︀
𝐻𝑇𝑅−1𝐻

]︀−1
𝐻𝑇𝑅−1

]︁
𝑒

= 𝑆𝑒

(A.3)

where 𝑆 = 𝐼 −𝐻
[︀
𝐻𝑇𝑅−1𝐻

]︀−1
𝐻𝑇𝑅−1 is residual sensitivity matrix. Thus, the

relationship between measurement residuals 𝑟 and measurement noise 𝑒 is linear

and determined by the residual sensitivity matrix 𝑆. Measurement noise 𝑒 is ran-

dom variable assumed to be Gaussian distributed with zero mean (𝐸[𝑒] = 0) and

covariance matrix 𝑅 (𝐸[𝑒𝑒𝑇 ] = 𝑅). When a Gaussian random variable undergoes

a linear transformation, the result will be new random variable that is also Gaus-

sian distributed; proof for this can be found in [130]. Considering the relationship

between measurement residuals and measurement noise is linear, and the probabil-

ity distribution of measurement noise is Gaussian, measurement residuals will also

follow Gaussian distribution with mean and covariance matrix obtained as:

𝐸[𝑟] = 𝐸 [𝑆𝑒] = 𝑆𝐸[𝑒] = 0 (A.4)
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𝐸
[︀
𝑟𝑟𝑇

]︀
= 𝐸

[︁
𝑆𝑒 [𝑆𝑒]𝑇

]︁
= 𝐸

[︀
𝑆𝑒𝑒𝑇𝑆𝑇

]︀
= 𝑆𝐸

[︀
𝑒𝑒𝑇

]︀
𝑆𝑇

= 𝑆𝑅𝑆𝑇

= 𝑆𝑅

= 𝑅−𝐻
[︀
𝐻𝑇𝑅−1𝐻

]︀−1
𝐻𝑇

= Ω

(A.5)

If measurement residuals are normalized with square root of the corresponding diag-

onal entries of residual covariance matrix Ω, the normalized measurement residuals

defined by (3.7) will have Standard Gaussian distribution (mean is zero vector and

covariance matrix is identity matrix).

Since measurement model (4.45) is nonlinear, the relationship between measure-

ment residuals and measurement noise is also nonlinear. Thus, the true probability

distribution of normalized measurement residuals is hard to find analytically. How-

ever, model (4.45) can be linearized yielding [11]:

∆𝑧 = 𝐻∆𝑥 + 𝑒 (A.6)

where 𝐻 = 𝜕ℎ(𝑥)
𝜕𝑥

is calculated at the point of linearization. In this case, estimate

of the linearized state will be:

∆̂︀𝑥 =
[︀
𝐻𝑇𝑅−1𝐻

]︀−1
𝐻𝑇𝑅−1∆𝑧 (A.7)

and estimated value of ∆𝑧 is:

∆̂︀𝑧 = 𝐻∆̂︀𝑥 (A.8)

Now, measurement residuals can be expressed as:

𝑟 = ∆𝑧 −∆̂︀𝑧 (A.9)
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Combining (A.6) - (A.8) into (A.9) lead to the same conclusion as before:

𝑟 =
[︁
𝐼 −𝐻

[︀
𝐻𝑇𝑅−1𝐻

]︀−1
𝐻𝑇𝑅−1

]︁
𝑒 = 𝑆𝑒 (A.10)

In this case, since original measurement function ℎ(𝑥) is approximated via Tay-

lor series with higher order terms neglected, WLS approximates the true probability

distribution of normalized measurement residuals with Gaussian distribution. The

accuracy of this approximation depends on the level of nonlinearity in (4.45) and

the level of measurement noise. Less nonlinearity and more accurate measurements

will lead to more accurate approximation. Considering that the measurement set

is composed of telemetered SCADA measurements with low noise levels, it can be

expected that the approximation is accurate enough. The approximate probabil-

ity distribution of normalized measurement residuals will not be exactly Standard

Gaussian, but closely. To demonstrate this, samples of normalized measurement

residuals are collected at four different time instants during simulation of normal

operating conditions. In Fig. A.1, for each instant, the approximate probability

density function of normalized measurement residuals is plotted against the proba-

bility density function of the Standard Gaussian distribution. As can be seen, the

approximate distribution of the data is very close to Standard Gaussian distribution.
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Figure A.1: Approximate probability density function of normalized measurement residuals (blue
histogram) against Standard Gaussian probability density function (red curve) for four time

instants during the normal operation.
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