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Structure Tensor Total Variation
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Abstract. We introduce a novel generic energy functional that we employ to solve inverse imaging problems
within a variational framework. The proposed regularization family, termed as Structure tensor Total
Variation (STV), penalizes the eigenvalues of the structure tensor and is suitable for both grayscale
and vector-valued images. It generalizes several existing variational penalties, including the Total
Variation (TV) semi-norm and vectorial extensions of it. Meanwhile, thanks to the structure tensor’s
ability of capturing first-order information around a local neighborhood, the STV functionals can
provide more robust measures of image variation. Further, we prove that the STV regularizers
are convex while they also satisfy several invariance properties w.r.t image transformations. These
properties qualify them as ideal candidates for imaging applications. In addition, for the discrete
version of the STV functionals we derive an equivalent definition that is based on the patch-based
Jacobian operator, a novel linear operator which extends the Jacobian matrix. This alternative
definition allow us to derive a dual problem formulation. The duality of the problem paves the
way for employing robust tools from convex optimization and enables us to design an efficient
and parallelizable optimization algorithm. Finally, we present extensive experiments on various
inverse imaging problems, where we compare our regularizers with other competing regularization
approaches. Our results are shown to be systematically superior, both quantitatively and visually.

Key words. Structure tensor, patch-based Jacobian, image reconstruction, convex optimization, total variation,
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1. Introduction. Inverse problems are ubiquitous in science and engineering and they
have been an important topic of interest for many years. Nowadays, with the advent of mod-
ern imaging techniques, inverse problems appear increasingly in a host of imaging applications
ranging from microscopy and medical imaging to remote sensing and astronomical imaging [6].
They also appear in a plethora of computer vision applications, including motion estimation,
image registration, stereo and dense 3D reconstruction [40]. These problems pertain to esti-
mating unknown features of interest from partial or indirect measurements of image attributes.
In practice, inverse imaging problems are typically ill-posed. This is to say that the equations
relating the object of interest to the measurements are not enough by themselves to uniquely
characterize the solution; a model of known properties of the underlying image is necessary,
so that the recovered information to be physically and/or statistically meaningful.

*S. Lefkimmiatis is with the Department of Mathematics, University of California, Los Angeles. He was
supported by the Swiss National Science Foundation (SNF) under grant P300P2_151325.

fA. Roussos is with the Department of Computing, Imperial College London. He was supported by the
European Research Council Starting Grant 204871-HUMANIS.

ip, Maragos is with the School of ECE, National Technical University of Athens. He was supported in part
by the grant COGNIMUSE under the ARISTEIA Action co-funded by the European Social Fund and Greek
National Resources.

$M. Unser is with the School of Engineering, Swiss Federal Institute of Technology, Lausanne. He was
supported in part by the European Research Council under grant ERC-2010-AdG 267439-FUN-SP.

98, Lefkimmiatis and A. Roussos have a joint first authorship.

1

X—X



2 Structure Tensor Total Variation

A common strategy for dealing with ill-posed inverse problems is the variational approach.
The main element of this framework is the regularization functional, whose role is to favor so-
lutions that exhibit desirable properties. The proper selection of a regularizer is of paramount
importance since it significantly influences the reconstruction quality. During the past years,
this has triggered an increasing research interest on the design of regularizers able to encode
important properties of natural images.

One of the most popular regularizers for imaging applications is the Total Variation (TV)
semi-norm [45]. TV is a convex functional which allows the use of powerful optimization
techniques. Usually it is intended for grayscale images but it has also been extended to apply
to vector-valued images, see for instance [7,28,46,53,56]. The main reason for its success is its
ability to reconstruct images with sharp, well-preserved edges. However, it has the drawbacks
of oversmoothing homogenous regions and creating staircase artifacts [16].

To overcome the limitations of TV, several regularization functionals have been proposed
in the literature. Among them there are extensions that adapt the penalization of image vari-
ation, by locally varying the regularization weight [20,27,30] or by incorporating an anisotrop-
icity that is steered by the local structures of the image [5,47,51]. However, these methods
extract the local information either from the input image in a preprocessing step or as an
additional unknown function of the optimization problem, not directly depending on the
underlying image. On the contrary, the so-called Anisotropic Total Variation (ATV) [31,36]
adapts the penalization of image variation by introducing a “diffusion” tensor that depends on
the structure tensor of the unknown image itself. Nevertheless, in this case the adaptivity on
image structures is heuristically designed, similarly to the design of the Coherence-Enhancing
Diffusion [55]. Another related regularizer is the Beltrami functional [50] of vector-valued
images, which corresponds to the area of the generalized graph of the image embedded in a
high dimensional space, using the induced metric. This framework has been recently gener-
alized and unified with the Mumford-Shah functional [49], while in [44] an extension of the
Beltrami framework that uses image patches has been introduced. A different regulariza-
tion approach that also aims to eliminate the staircase effect of TV, involves functionals that
can encode higher-order information. These regularizers promote piecewise-linear instead of
piecewise-constant reconstructions and are either combined with TV as in [13,39] or used
in a standalone fashion as the Total Generalized Variation (TGV) [10,48] and the Hessian
Schatten-norm regularizers [35]. Finally, there also exist non-local variational techniques that
exploit the non-local self-similarity property of natural images. This is possible by employing
functionals that allow non-local interactions between image points [22,26]. Among the most
efficient regularizers of this category is the non-local TV functional (NLTV) [26].

1.1. Contributions. In this work, we propose a family of convex regularizers that penalize
the image variation at every point of the domain by taking into account the information
in a local neighborhood. This is accomplished by adopting a penalty that depends on the
eigenvalues of the structure tensor of the underlying image. In detail, our key contributions
are:

1. The introduction of a family of energy functionals that generalize TV and vectorial
extensions of it: Our regularizers preserve all the favorable properties of TV, such as
convexity and invariance w.r.t image transformations. Moreover, they provide a more



robust and richer measure of image variation by exploiting additional information from
the neighborhood of every point. We use these functionals in a variational framework
to obtain regularized solutions of ill-posed inverse imaging problems.

2. The proof that our regularization criteria, which involve the eigenvalues of the non-
linear structure tensor operator, are convex and invariant to image transformations.

3. The concept of the patch-based Jacobian as a novel neighborhood-aware extension
of the discrete Jacobian operator. We employ this operator to obtain an equivalent
definition for the discrete version of our proposed energy functionals. This further
allows us to derive a dual problem formulation.

4. The development of a practical first-order algorithm for evaluating the proximal map of
the introduced regularizers. Our optimization algorithm copes with the non-smoothness
of the energy functionals and leads to efficient numerical solutions.

5. An extensive quantitative experimental evaluation of our method on several inverse
problems for different degradation conditions. The comparisons are performed on a
large dataset of both graylevel and color images, where we compare the proposed
method with TV and vectorial extensions of it, as well as with the state-of-the-art
Total Generalized Variation [10]. The results show that in all the studied problems,
our method systematically outperforms all other evaluated techniques.

We note that in the conference papers [34,44], which contain preliminary parts of this
work, we established a connection between the minimization of a class of structure tensor-
based regularizers, which also includes a relaxation of the proposed family of regularizers,
and a novel generic type of nonlinear anisotropic diffusion. This type of diffusion is driven
by a diffusion tensor that depends on the solution itself and is spatially regularized (in the
sense that it involves convolutions with a kernel, as e.g. in [53,55]). This connection, in
conjunction with the efficient optimization strategy that we present here, implies that we can
employ powerful convex optimization techniques for implementing this type of anisotropic
diffusion schemes. We intend to present in depth the relations of the proposed regularizers
and anisotropic diffusion in a separate article.

An important extension of the present work with respect to the conference paper in [34] is
that we introduce a continuous-domain formulation of the problem, which is guided by funda-
mental invariance properties (translation and rotation invariance, 1-homogeneity), and further
provide a proof of convexity. These new results are presented in Theorem 2.1. Additionally,
we establish a bound for the Lipschitz constant of the dual objective function that arises in the
evaluation of the proximal operator of our functionals (Proposition 4.2). This allows us to use
a fixed step-size in our gradient-based optimization algorithm. Further, we provide extended
comparisons on several inverse imaging problems, including two new applications, namely,
image reconstruction from sparse Fourier measurements and image magnification. Finally, for
the deblurring problem that we study, we consider an improved forward model than the one
we used in [34]. This formulation avoids the need of making any specific assumption about
the image boundaries and holds the regularizer responsible to reconstruct the image in a way
that best explains the observation.

This paper is organized as follows: in Section 2, we introduce the proposed family of reg-
ularizers and motivate their use. In Section 3, we focus on the discrete domain and introduce
the patch-based Jacobian operator. In Section 4, we design our optimization algorithm, while
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in Section 5 we assess the reconstruction performance of our approach with extensive experi-
ments on several linear inverse imaging problems. Conclusions are drawn in Section 6, while
all the mathematical proofs are provided in Appendix A.

2. Regularization for Inverse Problems.

2.1. Problem Formulation and Variational Recovery. The relationship between the im-
age of interest and the measurements is given by the physical forward model that provides
the basis of the acquisition process. For many imaging applications, the acquisition is well
described by a linear process, which can be mathematically formulated as:

(2.1) v(x) ~N (Au (x)) .

In this case, u () = [u1 (x) ... up (x)] : R? — RM represents the generic vector-valued image
with M channels that we wish to reconstruct and A is a linear operator that provides a
mapping from the space of underlying images to the space of measurements. The symbol N/
represents the measurement noise which accounts for all possible types of errors during the
acquisition, including stochastic noise.

The recovery of u from the measurements v in (2.1) belongs to the category of linear
inverse problems. For most cases of practical interest, the operator A is either ill-conditioned
or singular. This kind of ill-posedness [54] is dealt within a variational framework, where the
reconstruction of u is cast as a minimization problem of an objective function of the form:

(2.2) E(u)=p(Au)+ 19 (u).

Such a cost function consists of : (a) the data fidelity term ¢ (Aw), which measures how
well a candidate solution explains the observed data, and (b) the regularizer 1 (u) which
encodes any available prior information about the underlying image. The exact form of the
data fidelity term depends on the assumed noise model perturbing the measurements. From a
Bayesian point of view, the overall reconstruction approach corresponds to either a penalized
maximum likelihood or a maximum a posteriori (MAP) estimation problem [24].

2.2. Total Variation Regularization. As stated earlier, TV [45] applies to grayscale im-
ages u (M=1) and for smooth images is defined as:

(2.3) TV(u) = /R 1V, da.

Apart from the summation over the domain, another key ingredient of TV is the gradient
magnitude [|[Vu||, of the underlying image. Their combination leads to a L; weighting that
does not over-penalize high variations of u. Therefore, the reconstructed images feature sharp
edges, which are visually appealing. Due to this favorable property, TV has been extended
to vector-valued images u. A popular extension that retains TV’s properties and at the same
time introduces a coupling between the different channels of u is the Vectorial Total Variation
(VTV) [7,46]. VTV has a similar definition with Eq. (2.3), where the gradient magnitude is

replaced by its straight-forward vectorial extension: ||Vul|l,={3 ¥, HVuZHg}%



A known drawback of TV is that it favors piecewise-constant solutions and, thus, it can
create strong staircase artifacts in smooth regions of the image. Furthermore, a basic short-
coming of both TV and VTV is that the gradient magnitude, employed to penalize the image
variation at every point @, is too simple as an image descriptor; it relies only on & without
taking into account the available information from its neighborhood. In fact, most of the
existing extensions of TV [28,31,53,56] as well as related regularizers [50] share the same
drawback: they integrate a penalty of image variation that is completely localized.

To overcome these limitations, next we adopt more sophisticated descriptors of image
variations that take into account information from the neighborhood of every point. Conse-
quently, the resulting regularizers are able to provide a richer and more robust measure of
image regularity.

2.3. Directional Derivatives and the Structure Tensor. Our goal is to develop neighborhood-
aware measures of vectorial image variations that will be incorporated in a novel variational
framework. To do so, we first revisit the theory ' behind the structure tensor [33,55]. Here-
after, we assume that the vector-valued image u belongs to the Sobolev space W 1?2 (]R2, RM )
Let m be an arbitrary 2D direction (||n|,=1). The vectorial directional derivative of the
vector-valued image w in the direction n and at any specific image point x is given by [19]:

ou

(2.4) o

() = (Ju(z))n,
where Ju is the Jacobian matriz of u defined as:
(2.5) Ju(@) = [Vu(z) ... Vuy(@)]" .

The magnitude of the directional derivative [|0u/0n||, yields a measure of the amount of
change of the image w at the direction n for any point x. This measure is computed by
concentrating completely at the point @. In order to be more robust and capture also the
behavior of the image u in the neighborhood of x, we consider instead the weighted root mean
square (RMS) of ||0u/0n||,, which we call (local) directional variation :

(2.6) RMS g {[[9u/onl,} = /K *[|ou/dn]3 = \/nT (S,u)n.

In the above equation * denotes the convolution operation, K (x) is a non-negative, rotationally
symmetric convolution kernel, K(xz)=K(|x|), that performs the weighted averaging (e.g., a
2D Gaussian) and Sk is the so-called structure tensor [25] of the image u at point « defined
as:

(2.7) Sku(z) = K * [Ju' Ju] (z).

Note that in the above definition, similarly to [53], we do not consider any pre-smoothing of
the image before computing its Jacobian. The reason is that the single convolution with K

'nstead of the usual focus on the eigenvalues of the structure tensor [33,55], our study focuses on their
square roots.
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Figure 1. Structure Tensor of an image at sample points x1,x2,x23. The structure tensor is visualized as an

ellipse and its unit eigenvectors 8% ,0™ and rooted eigevalues VAT , VAT are also depicted. For any arbitrary
direction n, which is characterized by its angle w with the eigenvector @, there is a corresponding point P(w)
on the ellipse. The distance of this point from the ellipse center yields the directional variation V(w).

seems sufficient for the needs of image regularization while it also avoids the introduction of
additional complexity in the computations.

Let AT=AT(Sgu(zx)), A\~=\"(Sku(zx)) be the eigenvalues of Skxu(x), ordered so that
AT>A", and 8T, 8~ be the corresponding unit eigenvectors. Also, let w € (—m, 7] denote the
angle between the direction vector n and the eigenvector *. Using the eigendecomposition
of Sk (u), the directional variation (2.6) can be expressed as a function of the angle w:

(2.8) V(w) £ RMSk {[|0u/n|,} = VAt cos?w + A~ sin®w.
Now, let us consider the ellipse given by the parametric equation:
(2.9) P(w) = coswVATOT +sinwvA=07 ,w € [0, 27).

The major and minor radius of this ellipse is v A+ and v A~ respectively, whereas the direction
of major and minor axis is given by @7 and @, respectively. Therefore, this type of ellipse
offers a way to visualize the structure tensor Sku as shown in Fig. 1. More importantly,
we observe that V(w) = ||P(w)l||,. This implies that the directional variation V(w) can be
interpreted as the distance of any point P(w) from the center of the ellipse.

From Eq. (2.8), we observe that the maximum of the directional variation V(w) is v A+
and is achieved for w=0,7, whereas the minimum of V(w) is VA~ and is achieved for w=m +
/2. In conclusion, the structure tensor measures the geometry of image structures in the
neighborhood of each point: Its eigenvectors 8" and 8~ describe the orientation of maximum
and minimum vectorial variation of u and the square roots of its eigenvalues, v A+ and v A~
describe measures of these variations.

The eigenvalues of the structure tensor offer a rich and discriminative description of the
local geometry of the image. When both A™ and A\~ are relatively small (e.g. point x; in
Fig. 1) there are small vectorial variations around the current point, indicating that the
region is homogeneous. When A7 is large and A\~ is small (e.g. point @2 in Fig. 1) there are
strong variations, but only on a dominant direction. Therefore, the current point is located



close to an image edge. When both AT and A\~ are large (e.g. point @3 in Fig. 1) there are
high variations on all directions, which implies that the current point is close to an image
corner.

2.4. The Structure tensor Total Variation Functional. To design regularizers that inte-
grate a scalar penalty of the local image variation at every image point, we need to consider
measures that provide a synopsis of the function V' (w). Such measures, which are also com-
puted from the eigenvalues of the structure tensor, are the following:

Case 1: RMS value of V(w): ((271)* 2 V2(w)d > = VAT + X7 /V/2, as it can be easily
verified using Eq. (2.8).
Case 2: Maximum value of V(w): the maximum of V(w) w.r.t. w is vV A+.
Case 3: Mid-range of V(w): This is defined as the average of minimum and maximum values
of V(w), therefore it is given by (VA +vA-)/2.

If for every image point  we define the 2D vector:

A(Sku(x <\/)\+ Sru( )),\/)\_(SKu(a:))>

we observe that the above measures of image variation correspond (up to appropriate scale
factors) to the following norms of v/A: H\/_H2 (Case 1) H\/_H (Case 2) H\/_H1 (Case 3).

This connection further motivates us to consider the more general case of {,-norm H\/— Hp
(p>1) as a measure of image variation. These norms measure the image variation more
coherently and robustly than the gradient magnitude used in TV, as they take into account
the variations in its neighborhood. At the same time, they incorporate richer information,
since they depend both on the maximum and minimum of the directional variation. In this
way, their response is in general better adapted to the image geometry.

The fact that the £, norms of v/ are able to measure the local image variation suggests
generalizing the Total Variation (2.3) via replacing ||Vul|, by H\/XHP This leads us to define

the following novel class of regularizers, with u € W12 (]R2, RM ) and p>1:

(2.10) STV, (u) =

(VA |

We call the resulting family of regularizers Structure tensor Total Variation (STV), due to
its dependence on the structure tensor of the image and to the fact that it generalizes TV.
Next, we provide a result about the properties that the proposed family of regularizers
satisfies. Specifically, the following theorem, whose proof is given in Appendix A.2, verifies
that all the favorable properties of TV are indeed preserved by STV.
Theorem 2.1.The Structure tensor Total Variation functional, STV, (u), is translation-
and rotation-invariant, 1-homogeneous, and convex.

Connections to TV-based functionals. Several existing variational methods emerge as special
cases of the proposed regularizers when K () is chosen to be the Dirac delta (x) (degenerated
case where no convolution takes place at the computation of the structure tensor). Specifically,
if we consider grayscale images (M=1) and K (x)=0(x), then all the regularizers of the type
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(2.10) are equivalent to TV. The reason is that in this case, )\+:||Vu\|§ and A\~ is always
0, therefore H\/XHp:HVuH2 for any p>1. Furthermore, if we consider vector-valued images
(M>1) and K(x)=0(x), then the choice of p=2 corresponds to the Vectorial Total Variation,
while the choice of p=co corresponds to the regularizer of [28], which the authors call Natural
Vectorial TV (TV ). Finally, by choosing K (x)=9(x) and p=1 we obtain a novel vectorial
extension of TV that we initially introduced in [34]. This regularizer penalizes the nuclear
norm of the Jacobian. We denote this regularizer as STV;(loc), since it corresponds to a
completely localized version of STVy, where the corresponding structure tensor is formed
by only combining the information from the different image channels without any spatial
smoothing.

3. Discrete Structure Tensor Total Variation. In practice, for all inverse problems of
interest we need to deal with discrete data. Therefore, from now on we solely focus on the
discrete problem formulation of (2.1) and its manipulation. In this case, A will denote the
system matrix that models the spatial response of the imaging device, while v and u will denote
the vectorized versions of the observed image and the image to be estimated, respectively.

3.1. Notations and Definitions. Hereafter, lower-case bold-faced letters are used for vec-
tors while upper-case bold-faced letters are reserved for matrices and multidimensional arrays.
The set of unitary matrices is denoted as UV = {X e CV*N . x-1 = xH }, where C is the

set of complex numbers and ()H is the Hermitian transpose. Further, the set of positive
semidefinite diagonal matrices is denoted as DV *N2 = {X € RTXM : X (1,7)=0Vi# j}.

We assume that the discretized vector-valued image w = (uq,...,uy) is defined on a
rectangular grid with unary steps and contains N pixels. Each channel m of w (m=1,.., M)
is rasterized in the vector u,, € R and by combining all the image channels, we have
that w € RV™. We use the index n=1,.., N to refer to a specific pixel of the grid and
we denote by x, its coordinates. Further, the convolution kernel K is also discretized and
truncated in order to have compact support P={—Lg, .., LK}Q, where Ly is a non-negative
integer much smaller than the dimensions of the discrete image. We denote by [Sku], the
discrete structure tensor of u evaluated at pixel n, which is defined by adopting a discrete
gradient in (2.5) and discrete convolution in (2.7). To properly handle values outside the image
boundaries in the definition of this convolution, we assume a type of image extension beyond
the boundaries such as mirroring, periodic extension, or zero padding. In our implementation
we have used the mirroring boundary extension but the framework that we describe next can
easily accommodate all the boundary extensions. Now, we can formally define the discrete
STV as follows:

(3.1) STV, (u) = fj |(VAE Va7

P

where p > 1 and A}, A\, denote the two non-negative eigenvalues of the discrete structure
tensor [Skul, at pixel n.

Finally, the following definition will be of help in the sequel:

Definition 3.1 (Schatten norms).Let X € CM*N2 be q matriz with the singular-value de-
composition (SVD) X = USVH  where U € UM and V' € UN2 consist of the singular vectors



of X, and X € DM*N2 consists of the singular values of X. The Schatten norm of order p
(Sp norm) of X is defined as

min(Ny,N2)

(32) Ixls, = (X az)%,

n=1

where p > 1, and o, is the n-th singular value of X, which corresponds to the (n,n) entry of
3. In words, the Schatten matrix-norm of order p corresponds to the £, norm of the vector
that contains the singular values of the matrix. Three of the most popular matrix norms of
this family are the S; (Nuclear), Sy (Frobenius), and Sy, (Spectral) norms, corresponding to
the ¢1, ¢5, and £, norms of the matrix singular values, respectively.

3.2. Patch-Based Jacobian Operator. As described earlier, the proposed regularizers
depend on the eigenvalues of the structure tensor. Their current form is challenging to work
with, mainly because of the non-linearity of the operator and the presence of the convolution
kernel K. These two features pose significant difficulties in the efficient minimization of our
functionals.

To overcome these difficulties, in this section we introduce an alternative formulation of
the proposed regularizers. This equivalent formulation depends on a novel generalization of
the Jacobian of an image based on local weighted patches. This new operator, which we call
patch-based Jacobian, contains weighted shifted versions of the Jacobian of u, whose weights
are determined by the smoothing kernel K. As we will show next, the alternative definition of
STV provides more intuition and paves the way for employing tools from convex optimization,
which in their turn facilitate the development of an efficient optimization strategy.

We define the patch-based Jacobian of an image w as the linear mapping Jg : RNM s X
where X £ RVX(EM)X2 and [ = (2Lk + 1)2. This definition implies that if we apply the
patch-based Jacobian on the n-th pixel of w, then the result is a matrix of size (LM x 2),
which we denote by [Jxwu],. This matrix is constructed by 1) evaluating the discrete versions
of the M x 2 Jacobian matrices of w for all the pixels {@,, — s : s € P} in the P-neighborhood
of the pixel x,,, 2) weighting these matrices with the window function w [s] = \/K [s] and 3)
stacking all of them vertically to form the final matrix. Formally, the patch-based Jacobian
can be defined as:

(3.3) icul, = (Vaala.- .. WuM]n)T,
where
(3.4) Vumln = ([Tsy0 0 V), s [Ts; w0 Vum), )

V is the discrete gradient, ()T is the transpose operator, o denotes the composition of op-
erators, the shift vectors s; (I =1,...,L) are the elements of the lattice P, and T, is a
weighted translation operator. The latter takes into account the mirror boundary conditions
and is defined as

(3.5) [T, w0 V], = w(s)] Vu, [z, — 5].



10 Structure Tensor Total Variation

Next, we equip the space X', which is the target space of Jx, with the inner product (-, ) x
and norm ||| 4. To define them, let X,Y € X, with X,,,Y; € RUM*2yp = 1.2 ... N.
Then, we have:

N
(3.6) (X, YY)y = Ztrace (YnTXn)

n=1

and

N 2
(3.7) [ X2 = V(X X)x = (Z HXanw> ;

n=1

where trace (-) is the trace operator of a matrix and ||-|| » is the Frobenius (S2) norm. For the
Euclidean space R¥M we use the standard inner product (-, -)2 and norm |||,

Since the patch-based Jacobian is a bounded linear operator, we can further define its
adjoint, which performs a reverse mapping from the space X to R¥* . Indeed, the adjoint of
the patch-based Jacobian is the discrete linear operator Jz : X RNM such that

(3.8) (Y, Jgu)x = (JY | u)o

should hold for every Y € &X. The following proposition expresses J in a more suitable form
that facilitates its numerical computation. The proof is provided in Appendix A.3.
Proposition 3.2. The adjoint operator Jy- of the patch-based Jacobian is given by:
L
(3.9) JiY], =" [—div (TS*W o Y<<m*1>L+l7=>>} ,
n
=1

where k= (m —1)N +n with1 <n < N and 1 <m < M, div is the discrete divergence 2,
T* )

5w 18 the adjoint of the weighted translation operator, and Yn(i’: is a two-element vector

extracted from the i-th row of the n-th matriz component, Y, € RUEM*2Z ofy

3.3. Equivalent Formulation of the Discrete STV. Having introduced the discrete patch-
based Jacobian, we can now employ it to express the discrete structure tensor in a novel way.
This is done in the next proposition.

Proposition 3.3. The discrete structure tensor of u evaluated at the pixel location n can be
written in terms of the patch-based Jacobian as:

(3.10) (Sxcul, = [Txul? [Tl

The proof of Proposition 3.3 can be derived by a direct computation of the r.h.s of (3.10) and,

thus, is omitted. However, it is worth mentioning that by exploiting the special structure of
the patch-based Jacobian we manage to reproduce the convolution operation that takes place
in the formulation of the structure tensor.

2The exact formula for the discrete divergence depends on the discretization scheme one uses for the gradient.
In our implementation we consider the discretization that uses forward differences, as in [12]. In this case, the
adjoint operator is the discrete divergence that is defined using backward differences (see [12] for details).
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Now, from (3.10) we have that the 2 x 2 matrix [Sxu], can be decomposed with the help
of the LM x 2 matrix [Jxwu], . Therefore, the singular values of [Jxu], are equal to /A

and /A, . This connection highlights that by using the S, matrix norms given in (3.2), we
can equivalently write the discrete version of the proposed regularizers (3.1) as:

N
(3.11) STV, (u) = Y I[Txcul, s, -

with p > 1. This equivalent formulation of STV, (u) in (3.11) provides more intuition about
the fact that the proposed regularizers are effective generalizations of TV. In particular, [Jxu],
encodes the vectorial variation of the image w in the vicinity of the pixel n. Therefore, the
Schatten norms of this matrix provide different measures of the local variation of w, by taking
into account its neighborhood in a weighted manner. In addition, a significant advantage that
we gain from the above result, is that the expression (3.1), which involves the eigenvalues
of the nonlinear structure tensor, has been transformed to the expression (3.11). The latter
expression is much easier to handle in an optimization setting while it also allows us to derive
the following result:

Proposition 3.4.The discrete STV, (u) reqularizer defined in (3.1) is convex w.r.t u Vp > 1.

The validity of the above proposition stems from the fact that the discrete STV can be
formed as the composition of a mixed vector/matrix norm (¢1-S,) and the linear operator
Ji. Therefore, our discrete regularizers retain the important property of convexity that we
established with Theorem 2.1 for their continuous counterparts.

4. Discrete STV Minimization.

4.1. Proximal Map of STV,, . Having introduced the discrete version of the STV func-
tionals, the next step is to develop a scheme for their efficient minimization. In this section,
we focus on the evaluation of the proximal map associated with them. The proximal map or
else the Moreau prozimity operator of a function ¢ is denoted as prox,, () : RY » RY and is
formally defined as [17]

1
(4.1) proxy, (z) = arg min 5 lu — 25+ (u) .

If ¢ is a proper, closed, convex function, then a minimizer of (4.1) exists and the solution is
unique. For certain choices of the function v the solution of (4.1) can be expressed in closed-
form. However, in several other cases the solution cannot be obtained explicitly, but instead
an iterative approach must be followed. This is also the case for our proposed regularizers.

In our case, ¢ (u) = 7STV,, (u)+c and the evaluation of the proximal map associated with
the STV regularizers corresponds to finding a numerical solution to the following problem, for
any p > 1:

1
(4.2) arg min 5 |u —z||5 + 7STV, (u) + i (u) .
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In the above formulation, C is a convex set that represents additional constraints on the
solution, such as non-negativity or box constraints, and (¢ is its indicator function: ¢¢ ()
takes the value 0 for u € C and oo otherwise. The unconstrained minimization case simply
corresponds to choosing C = RY. Note that from a signal processing standpoint the solution
of (4.2) can also be interpreted as a denoising problem under i.i.d Gaussian noise, where the
STV functionals are used to regularize the solution.

The reason for focusing on the solution of (4.2) is that the proximal map of the STV penal-
ties can serve as the building block for several optimization algorithms, including the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA) [4], the Alternating Direction Method
of Multipliers (ADMM) [1,8,23], the Split-Bregman algorithm [29], and the primal-dual algo-
rithms introduced in [14,41]. In their turn, these methods are commonly employed to solve a
variety of inverse problems in imaging with different data fidelity terms. Therefore, by being
able to accurately and efficiently obtain the solution of (4.2), one can also deal with more
general inverse problems than merely Gaussian denoising.

Next, we propose a first-order method for solving the problem under study. To proceed,

we write our regularizers in the compact form STV, (u) = ||Jxu|, ,. Here, [|-[|; , corresponds
to the mixed ¢1-5, norm, which for an argument X = [X;f, . ,X}\;]T € X is defined as

N
(4.3) 1X1, =D 1 Xalls, -

n=1

At this point special attention must be paid to the non-smoothness of the regularizers. The
fact that the proposed STV functionals are not differentiable everywhere implies that the
minimizer of (4.2) cannot be obtained simply by employing a gradient-based scheme. To
circumvent this difficulty, we follow an alternative strategy which involves the derivation of a
dual formulation for our problem. To do so, we make use of Lemma 4.1 that follows.

Lemma 4.1 ( [35]). Let p > 1, and let q be the conjugate exponent of p, i.e., 1—1) +L=1.
Then, the mized vector-matriz norm |||, , is dual to the mized vector-matriz norm \|-1|17p.

Using Lemma 4.1 and the fact that the dual of the dual norm is the original norm [43],
we equivalently write (4.3) as:

4.4 =
( ) HX”I,p g?%7q<ﬂa X>X7

where B 4, denotes the {o-S; unit-norm ball, defined as
(4.5) Boog={Q€X [R5, <L,Vn=1,...,N}.

From the definition of the convex set B 4, it turns out that the orthogonal projection of £2
can be performed by projecting separately each submatrix €2, on a S; unit-norm ball (Bs, ).
This property will be used later for designing our first-order minimization method.

Now, combining (3.8) and (4.4) we re-write (4.2) as

1 2
4.6 i = arg min  [|lu — T2, u)s.
(4.6) U argércun 5 lu — z||5 +Tﬂrenl?o}.f,q< kS, u)o
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This formulation naturally leads us to the minimax problem:

(4.7) min _max L (u,Q),
ueC QEBoo 4

where £ (u, Q) = 1 [[u — 2|5 + 7(J5Q, u)o.
Since L is strictly convex w.r.t w and concave w.r.t €2, we have the guarantee that a
saddle-value of L is attained [43] and, thus, the order of the minimum and the maximum in

(4.7) does not affect the solution. This means that there exists a common saddle-point <'11, Q)

when the minimum and the maximum are interchanged, i.e.,

(4.8) min max L (u,Q) =L ('&, Q) = max minZl (u,) .
ueC QEBoo 4 QEBoo.q ueC
According to the above, it is now possible to define two optimization problems, the primal
and the dual one. This can be accomplished by identifying the primal and dual objective
functions, respectively. In particular, the Lh.s of (4.8) corresponds to the minimization of the
primal objective function

1

(4.9) p(u)= max L(u,Q)=u- z|53+ 7 | Tkully, .
0,49

which matches the problem of interest in (4.2), and the r.h.s corresponds to the maximization

of the dual objective function

. 1 2, 1 2 2
(4.10) 4(9) = min £ (u, Q) = ¢ oo — T (w)[3 + 5 (I3~ [w]3).
ueC 2 2
where w = z — 7J; € and Il¢ is the orthogonal projection operator on the convex set C. In
addition, if we consider the r.h.s of (4.8), then we can find the minimizer @ of the primal
objective from the maximizer {2 of the dual objective, through the following closed-form
relation

(4.11) o =T (z - ﬂ;ﬁ) .

The advantage of this last formulation is that the solution to our problem boils down to
computing the maximizer of d(§2). As opposed to p(u), this objective function is smooth
and has a well-defined gradient. Thus, we can exploit gradient information to derive the
solution. This would not have been an option if we had considered the original formulation
of the problem in (4.2). Next, we provide the details of our approach.

4.2. Solving the Dual Problem. From the r.h.s of (4.8) and from (4.10) it follows that
2 can be derived as the solution of the constrained optimization problem

A 1 2 1 2 2
(4.12) € =argmax _ [|w — o (w)[3 + 5 (11213 — [[wl?)
QEBoy 2 2
0,49

Since (4.12) does not admit a closed-form solution (Jx does not have an inverse operator) we
have to resort to a numerical iterative scheme. In this work, we choose to pursue a first-order
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projected gradient approach. To this end, the essential tools that we need is the computation
of the gradient and the orthogonal projection on the convex set B 4, defined in (4.5).

First, we proceed by deriving the gradient. To do so, we use that the gradient of a function
h(u) = ||u—Tio (uw)|3 is well defined and is equal to VA (u) = 2 (u — I (u)) [3, Lemma
4.1]. Based on this, we obtain

(4.13) Vd(Q) =7l (z — 7J ).

Having the gradient of the dual objective at hand, we also need an efficient way to perform
the projection. We accomplish this by projecting independently each of the N components

Q,, of Q on the set Bs, = {X e REMx2 . HXHSq < 1}.

Now, let X € RV>*N2 with an SVD decomposition X = UEXVT and & = diag (01,...,0n)
with N = min (N1, N3). According to [35, Proposition 1], the projection of X onto the unit-
norm S, ball is computed as:

(4.14) I, (X)=UZ, V7,

where 3, = diag (o,) and o, are the projected singular values of 3 onto the ¢, unit-norm
ball B, = {0' eRY: o, < 1} . We note that the projection in (4.14) requires knowledge of
the singular vectors and singular values of X. In our case Ny = 2 < Nj, and we compute the
projection in an efficient way as described next. First, we observe that the matrix X7 X is
Ny x Ny symmetric with an eigenvalue decomposition VE2VT. Therefore, for Ny = 2 both V'
and X can be computed in closed form. Moreover, if 37 is the pseudo-inverse matrix of 3,

defined as: X1 = diag (Jfl, . ,0,;1, 0,... ,0) , with o} the smallest nonzero singular value,
then U = XV'X ™. Using this result we write (4.14) as:

4.15 IIs (X)=Xvte v7,
q q

which actually avoids the computation of U.

Thanks to (4.15) the projection of X reduces to the projection of the singular values.
In our case, where Ny = 2, for ¢ = 1,2, 00 these projections can be computed analytically.
Indeed, for ¢ = 1 the projection corresponds to the soft-thresholding operation S, (o) =
max (o — 7,0) [21], where the max operator is applied component-wise and +y is given by

0 ,if0'1§1—0'2,
(416) v = %‘2_1 Jfl—o9 <01 <14 09,

o1 —1 ,if o1 > 14 09,

with the singular values sorted in a decreasing order, i.e, o1 > g2. For ¢ = 2 the projection of
X is computed at a reduced computational cost, since it does not require the knowledge of the
singular values and vectors. In particular, we have Ils, (X) = X /max(1, | X || ). Finally, for
q = oo the projection is performed by setting to one the singular values that exceed this value
and leaving the rest untouched. For other values of ¢, we can employ the ¢, norm projection
algorithm described in [52], but at an increased computational cost. This projection method
is based on an iterative proximity algorithm for ¢, norms [37].
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Algorithm 1 : Proximal algorithm for the STV functionals.
Input: z, 7> 0, p > 1, Il¢.

Initialization: W1 = Qy=0€ X, t; = 1.

while stopping criterion is not satisfied do

Q- Ta.., (W + g Tklle (2 = 7T W) );
\Ianrl — Qn + (%) (Qn - anl);
n<n+1;

end
return Il¢ (z — 7J5Q,-1);

4.3. Numerical Algorithm. With all the necessary tools at our disposal, we can now in-
voke a gradient-based scheme for deriving the solution of the dual problem. In this work,
we employ Nesterov’s iterative method [38] for smooth functions. This scheme exhibits con-
vergence rates of one order higher than the standard gradient-ascent method. To ensure
convergence of the algorithm, we further need to choose an appropriate step-size. Since our
dual objective is smooth with Lipschitz continuous gradient, we use a constant step-size equal
to the inverse of the Lipschitz constant of Vd (£2). We derive an upper bound of this quantity
in the following proposition. The proof can be found in Appendix A .4.

Proposition 4.2. Let L (d) denote the Lipschitz constant of the dual objective function d
defined in (4.10). Then,

(4.17) L(d) <8V272%.

To conclude, in Algorithm 1 we provide a detailed description of all the steps involved in
the proposed algorithm for computing the proximal associated with the STV functionals.

4.4. Solution of General Inverse Problems. So far, we have focussed on computing the
proximal map of the STV functionals that solves a simple denoising problem.This basic tool,
however, can also be deployed for solving more general inverse problems as we discuss next
for the case of a quadratic data term. In this case, the solution is derived as

(4.18) i = argmin = |jv — Au|2 + 7STV, (u), ¥p > 1.
ueC 2

We note that it is possible, by using appropriate optimization tools, one to also deal with

non-quadratic data terms. The description of such techniques, however, exceeds the scope of

this paper.

An efficient way to cope with the presence of the operator A in (4.18) is to employ the
MFISTA [3] algorithm, which exhibits state-of-the-art convergence rates. The basic idea
behind MFISTA is to obtain the minimizer in (4.18) via the successive minimization of a
sequence of surrogate functions that upper bound the initial objective function and are easier
to minimize. In this context, the solution of (4.18) boils down to iteratively computing the
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Figure 2. Thumbnails of the color versions of the 30 images used in the experiments. These images are of
size of 481x 321 pixel and are a subset of the Berkeley BSDS500 image dataset.

proximal of STV (4.2) for different inputs, which are formed as a combination of solutions
from the past iterations of the algorithm. Our main reason for preferring MFISTA over other
alternative approaches is that it converges fast to the solution while it does not require any
parameter tuning.

5. Applications and Experiments.

5.1. Experimental Setting. To validate the effectiveness of the proposed STV regular-
izers we compare them with other related methods on several inverse imaging problems. In
particular, we consider the problems of image restoration (denoising and deblurring), image
magnification, and image reconstruction from a limited number of Fourier measurements. For
the first three problems we present results on both grayscale and color versions of the images
shown in Fig. 2. For the last problem, our experiments are conducted on the brain phan-
tom images shown in Fig. 9. In all cases, the image intensities are normalized so that they
lie in the range [0, 1]. Based on this prior information, the image reconstruction obtained
by any of the penalty functions under comparison, is constrained to lie in the convex set
C={ueRV:0<wu,<1,V¥n=1...,N}.

For all the problems under study, we compare our grayscale results against the ones
obtained by using TV and the Total Generalized Variation (TGV) [10]. In our comparisons
we consider the second-order extension of TGV, TGV?, which is the most commonly used in
practice and is defined as
(5.1) TGV?2 (u) = min IVu — |y, + v .

vERN X2
Here, the operator € denotes the symmetrized gradient, Ev = 0.5 (Vv + Vo). For the weight
o of TGV? that balances the first and second order terms, we use the value o = 2. According
to the authors of TGV, this value is suitable for most applications and does not need to
be tuned. For the color image reconstruction problems, we compare our results against two
vectorial extensions of TV, namely VTV [7,11,46] and TV ; [28], and the vectorial extension
of TGV? [9].

As far as the proposed family of STV regularizers is concerned, we report the results we
obtained by employing the STV of p=1, 2, respectively. For the convolution kernel K, used in
the definition of the structure tensor, we choose it to be a Gaussian with standard deviation
o = 0.5 pixels, truncated in a 3 x 3 pixel window. From our experience this choice provides a
good balance between reconstruction quality and computational complexity and it is suitable
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Figure 3. Image denoising comparisons among different regularizers for four noise levels. The performance
is measured in terms of the average SNR improvement (in dBs) w.r.t the noisy input, over all 30 images of
Fig. 2.

(a) Input (PSNR=16.77)

() Input (PSNR=14.63) () TV, (7=2.8810°} PSNR=27.99) (h) VTV (7=2.5310"} PSNR=28.36) (i) TGV? (7=2.49.10"% PSNR=28.34) (j) STV} (r=1.77-10°} PSNR=28.53)

Figure 4. Image denoising examples: close-ups of inputs and optimum results. Top row: grayscale denoising
of an input with noise level o, = 0.15. The ground truth corresponds to the grayscale version of the image in
row 1, column 4 of Fig. 2. Bottom row: color denoising of an input with noise level o, = 0.2. The ground
truth corresponds to the image in row 3, column 7 of Fig. 2. For each result, the individualized regularization
parameter T and corresponding optimum PSNR are reported. .

for a wide range of applications. Furthermore, especially for the case of applying STV on
color images, we also consider the kernel K to be a discrete Dirac delta. This results to the
localized version of STV; denoted as STV (loc).

For the objective function minimization we employ the MFISTA framework [3] for all
methods but TGV. For TGV, we have experimentally observed that this approach does not
work well. Therefore, we employ instead the method proposed by its authors in [9].Finally,
for the sake of consistency among comparisons, all the reported results for each regularizer
and each degradation condition are derived using the regularization parameter 7 that leads
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Figure 5. Image deblurring comparisons among different regularizers for three PSFs and four noise levels.
The performance is measured in terms of the average PSNR improvement (in dBs) w.r.t the degraded input,
over all 80 images of Fig. 2. The bars on the top row refer to grayscale results while on the bottom row to color
results.

to the best reconstruction performance in terms of Peak Signal to Noise Ratio (PSNR).

5.2. Image Restoration. For the image denoising problem we consider additive i.i.d
Gaussian noise and four different noise levels that correspond to a standard deviation of
ow ={0.1,0.15,0.2,0.25}, respectively. Regarding the stopping criterion for the optimization
algorithm of all methods but TGV, this is set to either reaching a relative normed difference
of 107° between two successive estimates, or a maximum of 100 iterations for solving the dual
problem, as described in Algorithm 1. For TGV? where we employ the algorithm of [9] we
use a maximum of 200 iterations.

In Fig. 3 we report the average performance over all tested images of all the methods
under comparison. The performance of the regularizers is measured in terms of the average
PSNR improvement (ISNR) w.r.t the noisy input. From these results we observe that, in the
grayscale experiments, TV is the worst performing method for all the noise levels. TGV yields
an improvement over TV, which reflects the fact that it favors piecewise linear rather than
piecewise constant solutions and, thus, it avoids the staircasing artifacts of TV. Both versions
of our regularizers, STV, and STV, systematically outperform TV and TGV?2. This can be
attributed to the increased robustness that the neighborhood information offers. Our best
performing method is STV which involves the nuclear norm of the patch-based Jacobian. In
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the color denoising results of Fig. 3, we see that TV ; results to the worst overall performance.
This can be explained by the fact that this method penalizes only the maximum singular value
of the Jacobian, and thus, it completely ignores the information provided by the minimum
singular value. VTV yields better measures than TV ;, since it explores additional information
about the image variations by imposing an fo penalty on the singular values of the Jacobian.
Therefore, VIV transfers the characteristics of TV to the vectorial case more effectively than
TV;. Similarly to the improvement of TGV? over TV in the grayscale case, TGV? yields an
improvement over VI'V in the color experiments. Again, both of the tested versions of the
proposed regularizers, STV; and STV (loc), result to the best error measures for all noise
levels. In this case, the completely localized version STVy(loc) performs better than STV,
especially in the case of relatively low noise levels. A possible explanation for this outcome
is that, in the case of denoising, the coupling of the information from the different channels
is more important than the additional spatial information obtained from the neighborhood of
each pixel.

For a visual assessment of the reconstruction performance, in Fig. 4 we provide represen-
tative examples of grayscale and color denoising. In the grayscale example, we observe that
TV’s result suffers from strong block artifacts. TGV? manages to reduce these artifacts but
cannot completely avoid them while it also excessively blurs some edges. STVs and STV,
succeed in removing the noise and at the same time reconstructing the image in a visually
more appealing way than TV and TGV2. Comparing all methods we see that STV, yields
the most effective reconstruction of image structures; compare e.g. the reconstructions of the
numbers in the athlete’s budge, the edges and interior of the athlete’s left hand. In the color
example, we observe that TV ; creates spurious 1D segments perpendicular to the dominant
edges of the image. Staircaising artifacts are also present in the VTV reconstruction. TGV?
yields a smoother result, but some of the reconstructed structures are blurred; see e.g. the
edges of the bench back. Finally, STV, leads to the best result by avoiding most of the ar-
tifacts of the other methods. It sufficiently removes the noise and in parallel preserves the
sharpness and shape of image edges in the most effective way.

For the image deblurring problem the performance of the methods under comparison is
assessed for various blurring kernels and different noise levels. In particular, in our set-up we
employ three point spread functions (PSFs) to generate blurred versions of the test images. We
use a Gaussian PSF of standard deviation o, = 4 and support of 13 x 13 pixel, a 9 x 9 uniform
(moving-average) PSF, and a real motion blurring kernel * which has a support of 19 x 19 pixel.
Additional distortion on the measurements is introduced by adding i.i.d Gaussian noise of four
different noise levels, corresponding to a standard deviation of oy, = {0.025,0.05,0.075,0.1}.
Further, to test the deblurring performance of all the studied methods under more realistic
conditions, we do not assume the common circulant convolution model, but instead we adopt
the approach followed in [42]. Specifically, in the forward model in (2.1) the degradation
operator is expressed as A = M H, where H is a circulant convolution operator and M is a
mask that keeps only the valid part of the convolution and truncates the circular wraparound
at the boundaries of the measurements. The motivation here is that this observation model
allows us to avoid making any assumptions about the image boundaries. Instead, we hold the

3The blurring kernel was obtained from http: //www.wisdom.weizmann.ac.il/~1levina/papers/LevinEtalCVPRO9Data. rar
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(b) TV (7=4.3210% PsNR=27.85) (c) TGV? (7=4.5910"3 PSNR=27.53) (d) STV (7=3.6210"3 PSNR=28.19)

(a) Input (PSNR=22.53) (e) STV; (7=2.8010"3 PSNR=28.52)

(2) TV (1=4.291073 PSNR=28.94) (h) VTV (7=3.37-10"3 PSNR=29.25) (i) TGV? (7=3.00-10"3 PSNR=28.92) (j) STV, (7=2.07-10"3 PSNR=29.44)

(f) Input (PSNR=24.77)

Figure 6. Image deblurring examples: close-ups of inputs and optimum results. Top row: grayscale
deblurring of an input with motion blurring and noise level o, = 0.025. The ground truth corresponds to the
grayscale version of the image in row 8, column 4 of Fig. 2. Bottom row: color deblurring of an input with
uniform blurring and noise level g, = 0.025. The ground truth corresponds to the image in row 3, column 6
of Fig. 2. For each result, the individualized regularization parameter T and corresponding optimum PSNR are
reported.
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(a) Input (PSNR=26.25) (b) TV (7=4.4210% PSNR=28.17) (c) TGV? (7=1.351073 PSNR=28.17) (d) STV (7=4.9910% PSNR=28.41) (e) STV, (7=4.21.10" PSNR=28.44)

() TV, (7=8.2010"% PSNR=26.09) (h) VTV (7=8.2010% pPsNR=26.13) (i) TGV? (7=1.94103 PSNR=25.86) (j) STV, (r=6.07-10"4 PSNR=26.30)

(f) Input (PSNR=23.97)

Figure 7. Image magnification examples: close-ups of inputs and optimum results. Inputs are enlarged by
stmple zero order hold (ZOH). Top row: grayscale magnification of an input with a zoom factor d = 5. The
ground truth corresponds to the grayscale version of the image in row 1, column 1 of Fig. 2. Bottom row:
color magnification of an input with a zoom factor d = 5. The ground truth corresponds to the image in row 1,
column 8 of Fig. 2. For each result, the individualized reqularization parameter T and corresponding optimum
PSNR are reported.

deblurring algorithm responsible for reconstructing the image in a way that bests explains the
data. As far as the details of the optimization task are concerned, the stopping criterion is set
to the same relative normed difference as previously or a maximum of 100 MFISTA iterations
with 10 internal iterations for the proximal evaluation. For TGV?, since the algorithm of [9]
exhibits a slower convergence than MFISTA, we use a maximum of 2000 iterations.
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Figure 8. Image magnification comparisons among different regularizers for two zoom factors. The perfor-
mance is measured in terms of the average SNR improvement (in dBs) w.r.t the input, over all 30 images of
Fig. 2.

Similarly to the image denoising case, in Fig. 5 we report the average performance of
all the tested methods. Once more we verify that for grayscale image deblurring the STV
regularizers lead to the best results for all considered degradation conditions. When we
consider color images, this is still valid with the STV regularizer achieving systematically
the best ISNR scores. It also worths mentioning that in this case, unlikely to color image
denoising, STV (loc) does not perform better than its patch-based counterpart. This can be
attributed to the fact that image deblurring is a more ill-conditioned problem and, thus, the
use of a smoothing kernel plays a more important role in the reconstruction. Beyond the
ISNR comparisons, the effectiveness of the proposed methods can also be visually appreciated
by inspecting the representative deblurring examples provided in Fig. 6.

5.3. Image Magnification. Image magnification is an inverse problem that is closely re-
lated to image deblurring. In particular, the system matrix is expressed as A = SG, where S
is a masking operator performing the subsampling, while G is an anti-aliasing smoothing op-
erator applied to the underlying image, prior to subsampling. In our experiments, we consider
square subsamplings of the type d X d, where d is the zoom factor and we use two different
values for the zoom factor, d = 3 and d = 5 pixels. Also, we consider the anti-aliasing operator
to be a Gaussian kernel with a standard deviation 0.35d, defined relatively to the zoom factor.
Further, we introduce Gaussian noise in the measurements of a standard deviation o,, = 0.01.
In Fig. 8 we provide measurements of the overall performance of all the methods, both for
grayscale and color images, while in Fig. 7 we present two magnification examples where we
juxtapose the results obtained by using different regularization approaches. Similarly to the
other two inverse problems we considered so far, once more we verify that STV; not only
improves the SNR but also leads to reconstructions of enhanced visual quality.

5.4. Reconstruction from Sparse Fourier Measurements. In this section we consider
the problem of image reconstruction from a limited number of Fourier measurements. In this
setting, the forward operator of (2.1) corresponds to A = M F', where F' denotes the Fourier
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Figure 9. Sparse Fourier image reconstruction setup. (a)-(c) Slices of a 3D brain phantom, (d) Poisson
disk with 20% sampling density (white pizel values indicate sample locations), (e) Radial sampling mask with
32 lines.

transform and M is a masking operator that retains only a subset of the available Fourier
coefficients. The adopted forward model is closely related to the one of magnetic resonance
imaging (MRI) acquisition, where the k-space of the image is under-sampled.

The reported experiments are conducted on the images shown in Fig. 9. These are ex-
tracted slices from a 3D brain phantom that was obtained from the BrainWeb database
(http://www.bic.mni.mcgill.ca/brainweb/). To create the measured data we use two dif-
ferent Fourier sampling patterns, namely, a radial mask with 32, 48, and 64 radial lines and
a Poisson disk that retains 20%, 30%, and 40% of the Fourier coefficients. As an additional
degradation factor we consider the presence of complex Gaussian noise in the Fourier domain of
four different levels. These correspond to a signal-to-noise-ratio (SNR) of {10, 20, 30, 00} dBs,
respectively. Note that the last SNR value indicates the absence of noise in the measurements.
In this case, for all regularizers under comparison, we do not fine tune the regularization pa-
rameter but instead we set it to 7 = 1075. The value of 7 is chosen to be small so as to
ensure that the reconstructed image in the sampled locations will retain the same frequency
content with that of the measurements. Since the very small value of 7 can affect the con-
vergence speed of the minimization process, we adopt a simple “continuation” strategy that
significantly speeds-up the convergence. The idea is that we start with a large value for 7
and then during the iterations of the minimization algorithm we gradually decrease it until
we reach the target value. We note that for this problem instead of 100 we run 200 MFISTA
iterations. The rest of the optimization set-up remains the same.

In Table 1 we report the reconstruction results we obtained using TV, TGV?, and our
proposed STV, regularizer. The quality of the reconstructions is measured in terms of increase
in SNR w.r.t the reconstructed image obtained by projecting the Fourier measurements back
to the image domain. From these results we clearly observe that our proposed regularizer
consistently outperforms TV and TGV? for all sampling strategies and noise levels. Further,
we note that in the cases where the noise level is relatively low and the Fourier measurements
are not very sparse, then the difference in SNR improvement is substantial. Indeed, in several
occasions the SNR difference between STV, and the other two competing regularizers reaches
more than 3 dBs. In Fig. 10 we show a representative reconstruction example for a radial
sampling with 32 lines and a SNR of 10 dBs. From this example, we can verify the superiority
of our reconstruction over the ones of TV and TGV? both quantitatively and visually. Our
STV regularizer manages to better preserve the image edges than TV and at the same time
avoid intensity smearing artifacts such as those appearing in the case of TGV? regularization.
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Figure 10. Reconstruction of the brain image (Fig. 9b) from Fourier data sampled with 32 radial lines and
10 dBs SNR. (a) Back-projected image (PSNR=23.80), (b) TV reconstruction (t = 3.84-1072, PSNR=25.88),
(c) TGV? reconstruction (r = 4.01 - 1072, PSNR=26.36), and (d) STVi reconstruction (r = 2.62 - 1072,
PSNR= 26.90).

5.5. Implementation details and computational runtimes. All methods were imple-
mented in unoptimized Matlab code that only makes use of the CPU *. Using the average
runtime of TV as baseline, the relative average runtimes of the rest of tested methods in the
conducted grayscale experiments were as follows: 0.96 for TGV?, 3.42 for STV, and 3.54 for
STV;. Regarding the color experiments and using the average runtime of VI'V as baseline,
the relative average runtimes of the tested methods were: 1.11 for TV, 1.14 for TGV?, 1.09
for STV, (loc) and 4.66 for STV;. Note that all runtimes were computed on a computer
equipped with Intel Xeon Processor E5-1620 (Quad Core, 3.60GHz Turbo, 10MB).

We observe that TV, VTV, TGV?2, TV and the proposed STV, (loc) regularizers demon-
strate a similar runtime performance. The proposed STV, and STV, functionals are around
3.5-4 times slower in the current implementation, which is due to the presence of a convolution
kernel. We believe that this additional computational effort is definitely worth spending in
several applications, given the significant improvement in the reconstructions that we observed
in the reported experiments. Furthermore, it is worth mentioning that the runtimes of the
proposed algorithm could be significantly improved by exploiting the fact that it is highly
parallelizable and admits fast GPU implementations.

6. Conclusions. In this work we have introduced a novel family of convex energy func-
tionals that extend and generalize the total variation semi-norm and vectorial extensions of
it. The key feature of our functionals is that they incorporate information from the vicinity of
every point in the image domain by penalizing the eigenvalues of the structure tensor at this
point. Therefore, they provide a richer and more robust measure of image variation which
translates to improved reconstruction performance. This consistent behavior has been verified
by extensive comparisons we performed against competing methods on several inverse imaging
problems.

Since our regularizers can be used instead of TV or its vectorial extensions in any energy
functional, we believe that there is a broad spectrum of imaging applications where they can
be proven very useful. Another interesting research direction is related to the open theoretical
issue regarding the continuous version of the STV regularizers. In this article, we have defined

4The source code for STV regularization will be made publicly available from the authors’ websites.
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Table 1
ISNR Comparisons on sparse Fourier image reconstruction for several sampling patterns and noise condi-
tions.

Sampling| Poisson disk —20% | Poisson disk —30% | Poisson disk — 40% Radial — 32 lines Radial — 48 lines Radial — 64 lines
SNR [10dB 20dB 30dB codB|10dB 20dB 30dB oodB|10dB 20dB 30dB oodB [|10dB 20dB 30dB oodB|10dB 20dB 30dB oodB |10dB 20dB 30dB oodB
—=| TV [2.14 1.92 2.65 2.86|3.27 2.89 3.97 4.62|4.44 3.90 5.79 7.43 ||3.00 4.15 5.42 5.72|3.30 3.99 6.27 7.23 (3.95 3.34 591 7.97
E TGV? |2.74 2.35 2.95 3.22|3.76 3.20 4.23 4.83|4.79 4.16 5.83 7.03||3.48 4.68 5.89 6.25|3.71 4.47 6.77 7.74 |4.36 3.82 6.51 8.34
2| sTv, [2.99 2.68 3.29 3.73|4.14 3.74 4.74 5.67|5.34 4.84 6.65 8.82|4.10 5.43 6.90 7.50|4.48 5.55 8.21 10.04/5.15 5.01 8.27 11.88
« TV 222 1.84 2.51 2.67|3.33 2.66 3.77 4.284.28 3.29 5.23 6.43 ||2.58 3.48 5.02 4.99(3.07 3.25 5.22 6.16 [3.83 2.66 5.03 6.94
E TGV? |2.74 2.30 2.90 3.10(3.67 2.92 3.95 4.49|4.55 3.47 5.05 6.13 ||3.06 3.86 4.98 5.32(3.42 3.71 5.76 6.60 [4.20 3.10 5.56 7.39
@l sTv; [2.99 2.52 3.23 3.53|4.07 3.35 4.40 5.31|5.05 4.08 5.76 7.66 ||3.60 4.62 6.12 6.64|4.18 4.71 7.19 9.06 [4.97 4.29 7.35 10.88
| TV [2.48 2.46 3.48 3.91|3.75 3.63 5.38 6.59[4.90 4.47 6.83 9.65 ||3.45 5.01 6.66 7.20|3.67 3.91 6.51 8.11 [4.47 3.49 6.20 9.00
E TGV? |3.29 3.16 3.92 4.31|4.41 3.94 5.37 6.39|5.40 4.58 6.59 8.55(|3.98 5.49 7.12 7.66|4.20 4.41 7.01 8.49|4.92 3.85 6.72 9.34
| sTv; |3.43 3.38 4.26 4.92|4.71 4.55 6.18 7.87|5.88 5.44 7.74 11.34||4.56 6.38 8.31 9.45|4.86 5.49 8.56 11.60|5.65 5.19 8.61 13.84

STV by assuming that the underlying image lies in the Sobolev space W12 (]RZ,]RM ) Since
TV, which can be viewed as a special case of STV, is defined for images that belong to the
bounded variation (BV) space [15], an open theoretical question is whether STV can also be
defined for functions of BV space or a space containing BV.

Acknowledgment. The authors would like to thank the anonymous reviewers and the
associate editor for their useful comments and suggestions.

Appendix A. Mathematical Proofs .

A.1. Compact Operators. In this section we review basic definitions and results from
the theory of compact operators. The concept of a compact operator will be essential for the
proof of Theorem 2.1.

Definition A.1 (Compact Operators).An operator A : Hi — Ho where Hi and Ho are two
separable Hilbert spaces is compact if and only if it can be specified as

o0
(A1) froAf =" ontn(in, fu,

n=1
for any f € Hi. In Eq. A.1 Uy, 0z,--- and uj,ug,--- are orthonormal elements (functions)
of H1 and Ha, respectively, and 01,02, -+ is a sequence of positive numbers with limit zero,

called the singular values of the operator. The same property applies to the adjoint operator
A* : Hy — Hy with the role of u, and U, being interchanged.

While all finite-dimensional linear operators (i.e., matrices) are compact, the property is
more restrictive in infinite dimensions. However, the property is robust in the sense that it
is conserved through subsequent linear transformation; i.e., if A : H; — Hs is compact, then
BA is compact as well for any bounded operator B : Hy — H; (not necessarily compact).

In order to stay closer to the standard (finite-dimensional) matrix-vector notation, we shall
not distinguish between the operator A and its kernel, which is an element of the Hilbert space
Ho ® H1, and simply write

(A.2) A= "0n(A)up ® iin,
n=1
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with the understanding that wu, € Hs is in the “column” space of the operator, while @, is in
the “row” space H; and is acting as a linear functional (inner product) on the input.

Proposition A.2 (Holder's inequality for the trace of operators). Let A, B : H1 — Ha be two
compact operators. Then, for any 1 < p,q < +oo with % + % =1,

(A3) trace(AB")| < [lo(A)],, lo(B)l, ,

where o(A) and o(B) are the vectors formed from the singular values of A and B.
Proof. By direct calculation, we can express the trace(AB™*) in terms of the singular values

of A and B as

(A.4) trace(AB*) = Z Z 0n(A)0m (B) (Uns Vi) (Uns Om) 4y s

m=1n=1

where u,,v, € Ha (resp., U, 0, € H;) are the left-sided (resp., right-sided) eigenfunctions
associated with the singular decomposition of A and B, respectively.
Using Cauchy-Schwarz’s inequality, we first show that

~ 12 /o 1/2
Z’ unavm Ho un7vm>7-t1‘ < (Z’ un7vm>7{2‘ > (Z ‘(ﬁn77~)m>7{1‘2>
n=1 n=1

n=1

(A.5) < NJomllas [Omlla, =1,

where the latter norm estimate follows from Bessel’s inequality based on the property that
{un} and {@,} are orthonormal sets of Hy and H;, respectively. There is also the dual
counterpart of (A.5) where the summation is performed over m rather than n. Next, starting
from the explicit trace formula (A.4), we apply the weighted Holder inequality [18] for double
sums, which gives

|trace(AB*)| < Z 0n(A)0m(B) |[(tin, U )y (s Om ), |

M

n=1m=1
0o

0o 0 1/p
< (Z Z JE(A) |<umvm>7{2 (ﬂn,f}m>%1|> (

n=1 m=1 n=1

IN

1/p 1/q
(ZJ’” ||unH7-Lz||un||H1> (ZJ" IIUmHmvaHHl> ;

where the availability of (A.5) is essential for reducing the double sum to a single one. W

A.2. Proof of Theorem 2.1. While in (2.10) we define the STV functional for a 2D image,
next we provide a proof of Theorem 2.1 for the more general case where u is defined on R%.
To show the translation and rotation invariance property of the STV functional, we consider

1/q
o (B) [{tn, i)y (Un, Om)#, I>

o) oo 1/p o) 1/q
Zap Z ’ un,'l)m>’}-[2 <un7vm>'H1‘> (Z Uq Z ‘ unavm>H2 <unavm>’H1‘>
m=1
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the transformation of the image coordinates T' () = Rx + «, where R is a rotation matrix
and « represents a translation. Applying the chain rule to the Jacobian matrix, we get

(A.6) J{uoT} (x) =Ju (T (x)) R,

where o indicates the composition operation. Now, if we denote S = Sk {u o T'} (&) we have

S—RT<

[ K () 20" (T (e~ ) Fa(T (@ - ) dy ) R

= RT ( » K (y) Jul (T () — Ry) Ju(T () — Ry) dy) R
vZRy pr </]Rd K (R'y) Ju” (T () —y') Ju(T (z) —y) dy'> R

= RT </]Rd K (y)Ju" (T (z) —y) Ju (T (z) - v) dy') R
(A7) = RSk {u} (T (x)) R.

We note that in order to derive the above result we have considered the convolution kernel K
to be isotropic, i.e., K (x) = K (|z|). From (A.7) and since the eigenvalues of the structure
tensor in the r.h.s are not affected by the presence of the rotation matrix R and its inverse
RT | we have that A*(x) = A*(T (z)). Using this result and having in mind that in order to
evaluate the STV, functional in (2.10) we need to integrate over the whole image domain, it
is now clear that the energy will be preserved despite the transformation of the coordinate
system. In other words, it holds that STV, (uoT) = STV, (u).

Next, in order to prove the convexity and 1-homogeneity properties, let us first introduce
the d x d matrix G (u) defined as:

(A.8) Grc(u)= [ K(y)Ju' (y)Ju(y)dy,
which corresponds to evaluating the structure tensor (2.7) at the origin of w. This matrix
is well-defined over the functions that belong to the Sobolev space W12 (}Rd, RM ) Next, we
show the following result.

Theorem A.3.Let A, denote the n-th eigenvalue of the matric Gg (u). Then p(u) =

e\ 1/p
<ZZ:1 )\:2;) is a 1-homogenous and convex function of w in the sense that
(A9) plau) = la| p(u)
(A.10) p(tur + (1 —t)us) < tp(ur) + (1 —t)p(u2)

for alla € R, t € [0,1] and u,uy,us € W2 (Rd,RM).
Proof. To prove convexity of p (u), let us first introduce the “co x d” dimensional matrix
defined as A = A (u,y) = [f1 (y) ... f4 (y)] for arbitrary y € R? , where

o) =|k@uy, (@),....k@uy (y) |, 1<n<d
——
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is a vector function f,, € H = Lo (Rd,RM), uyr V1 < m < M denotes the derivative of the
m-th component of u w.r.t the n-th dimension, and k(y) = /K (y). Note that the last
assignment is valid since the convolution kernel K is assumed to be nonnegative-valued. Since
the functions f, = f.(y) belong to the Hilbert space H, the matrix A defines a linear map:
R? — H. The Hilbert space H is associated with the inner product

M
<fna gn>?—[ = mZ:1 /]Rd fn,m(y)gn,m(y)dy-

The adjoint of A is the unique operator A* : % — R¢ that satisfies
(A.11) (f, Av)y = (A" f, v)

for every v € R? and every f € H. Having introduced the adjoint operator of A, we are in
position of specifying the Gram matrix of size d x d

(fi, fion - (fi, fan
ATA = A
(fa, fOn - (fa, fa)u
M 9 M
Z_l Jra K2 () (uft (y))" dy Z:l Jra K2 (y) uit (y) ul, (y) dy
- M 9 M 9
m; Jra B (9) ull!, (y) ut (y) dy mzzl Jra B () (v, (y))" dy
M 9 M
Jra K () mZzl (ul (y) dy ... [ K (y) mZzl uilt (y) uf, (y) dy
- M M 9
Jra K (y) m; uy (y) uy (y) dy Joa K (y) mzzl (u ()" dy
(A.12) = GK (u) .

From Eq. (A.12) it turns out that the d x d Gram matrix, which provides a means to compute
the spectrum of A, is equal to the Gk (u) matrix defined in (A.8). This relation further
implies that the vector consisting of the singular values of the infinite dimensional but finite
rank matrix (or compact operator) A, which we will denote as o (A), is directly related to
the eigenvalues of Gk (u). Indeed, we have:

(A.13) o (A) = VA(A"A) = /A (Gk (W),

where A (A*A) is the vector with the eigenvalues of the matrix A* A. Thus, we conclude that
the n-th singular value of A can be derived as o, = /A, with 1 < n < d. This means that
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we can equivalently write the function p (u) as

d 1/p
(A.14) p(u) = (Z Uﬁ) = [lo (A)ll, -
n=1

Next, we shall show that for two compact operators A, B : Hi; — Hy and for any 1 <
p,q < +oo with £+ 1 =1, it holds

(A.15) lo(A)ll, = sup trace (ABY).
llo(B)llg, =1

We start by invoking Holder’s inequality for the trace of operators, whose proof is provided
in Proposition A.2. According to this inequality we have that:

(A.16) |trace(AB")| < |lo(A)]|,, llo(B)ll,, -
This, in turn, implies that

(A.17) sup  trace (AB”) < [la (A)]|, -
lo(B)ll,,=1

Now, the critical point is to show that for every operator A we can always select another
operator B with [o (B)l|, =1 such that trace (AB*) = [|o (A)]|,,. To show this, we choose

(A.18) B = i on(B)uy, ® Uy,
n=1
with
oh ' (A)
A.19 on(B) =
(419 B = @

Indeed, since B has the same eigenvectors as A, we have that

[e.e]

Zl on(A)
A.20 race(AB*) = 2 ——— = |lo(A )
(A.20) trace(AB") HU(A)HZ,_l le(A)ll,,

Moreover, by noting that p = q(p — 1), we easily verify that

. > oY (a)
(A.21) lo B, => ol (B)=""— =1
= o (A2

This shows that the supremum in (A.17) achieves the equality, which proves (A.15).
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Thanks to the dual definition in (A.15), we can now show that

o (tA1+ (1 —t)A2)[l,, = sup trace((tA; + (1 —1)Az) B")
lo(B)ll,,=1
< sup trace(tA1B})+ sup trace((l1 —t)A2Bj3)
lo(B1)ll,,=1 lo(B2)ll,,=1
<t sup trace(A1B7)+(1—t) sup trace(A2B))
llo(B1)llg, =1 llo(B2)llg, =1
(A.22) = tllo (A, + (1 =) [lo (A2)],,-

Next, we recall that the kernel of A is linear in u, since it only involves derivatives which
are linear operations and a multiplication with a constant kernel. This together with (A.22)
proves that the function p (u) is a convex function of wu.

Finally, the 1-homogeneity of p (u) is easily verified by using the definition of p, given in
Eq. (A.14). m

Using the results of the above theorem, the convexity and 1-homogeneity properties of the
STV, functional can now be easily verified by first noting that we can write it as

(A.23) STV, (u) = /]Rd p(uo Py)de,

where P, (y) =  —y and p (u) is defined in Theorem A.3. If we apply the chain rule to the
Jacobian matrix we get

(A.24) J{uo Pr}(y) = —Ju (P (y))-

Now, for the matrix Gk (u o Py), which is the main component of the function p (u o Py), we
have

Gic(woPo) = [ K (u)Vu" (P () Vu (Pa ) dy
y'=Fa(y) /Rd K (a3 _ y/) vul (y/) Vu (y/) dy'
(4.25) = [ Ko ) V7 ) V) dy = G, ().

where Ky (y) = K (x —y) = K (y — ). The above result implies that p (uo Py) = pz (u),
where pg (u) is defined similarly to p (u), with the only difference being that its input eigen-
values correspond to those of the matrix G, (u) instead of G (u). Therefore, it holds
that

(A.26) STV, (u) = /]Rd pz (u) de.

Since the kernel K, which is used in pg (u), is just a shifted version of the initial convolution
kernel K and does not depend on u, the convexity and homogeneity results of p (u) are also
inherited by pg (u) for all x € R%. Therefore, since the STV, functional corresponds to the
integral of convex and 1-homogeneous functionals of u, it is also a convex and 1-homogeneous
function of u.
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A.3. Proof of Proposition 3.2. To find the adjoint of the discrete patch-based Jacobian,
we exploit the relation of the inner products of the spaces R¥™ and X in (3.8). Using the
definition of the inner product in X (3.6), we can equivalently write (3.8) as

N
(A.27) Ztrace <[JKu]Z: Yn> = [wml, [JY]

n=1 n=1m=1

where k = (N — 1) m + n. Then, we expand the Lh.s of (A.27), to obtain

Z [Tslyw 0 Dhum]n Yn(r’l) + [Tslyw 0 Dvum]n Y7£T72)

n,m,l
_ an; (], <[D;§ Ty o Y(r,l)] n+ [ Dot o YW)} n)
(4.28) = ;n [en], (; [—div (75, 0 Y DE419)] n)

where r = (m — 1) L+1 and Dy, D, are the horizontal and vertical components of the discrete
gradient, respectively. Also note that Ynz’j ) with 1 <n<N,1<i:<LM,and 1< j <2,
corresponds to a single element of Y € X', while Yn(z’:) is a vector extracted from the i-th row
of the n-th matrix component, Y, € REM*2 of Y. Now, by comparing the r.h.s of (A.27)
to the r.h.s expansion of (A.28), we can verify that the adjoint of the patch-based Jacobian
is indeed computed by the formula provided in Proposition 3.2.

A.4. Proof of Proposition 4.2. For any pair of variables 2, ¥ € X and

1 1
d(Q) = 7w —Tlc (w) 5+ 5 (llzl3 — lwll2) .
2 2

we can show that

IVd(§2) = Vd(¥)[ly = 7Tk (h(2) = h (¥))[
< T[Tk A () =R (®)]l, < 7 |Jk | [Tk (2 = ¥)];
(A.29) <7 | Jxel* |2 = @

where h(Q2) = Il¢ (2 — 7J5 ). This result follows from the relation between the norms
defined in the spaces X and RV and the induced operator norm, i.e., [|[Jxuly < || Jx| lul,,
and the fact that the projection operator onto a convex set C C RV is firmly nonexpansive [2,
Proposition 4.8]. The latter translates to ||Il¢ (u) — Il¢ (v)], < [[u — v, Vu,v € RY.

Now, in order to find an upper bound of the operator norm of the patch-based Jacobian
we use that ||Jy||* = ||J5Jk| [32] (general property of bounded linear operators) and denote
D= —divo) (T} ,©Tsw) o V. Then, we get

(A.30) 175 Ixully = [|Dully < [V T |l
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where T 2 Zlel (T3 0 Tsw). From [3] we have that [V][* < 8 and we can further show

that ||T]|* < v/2, if we assume a unit-normalized kernel K and a shift operation with reflexive
boundaries. These immediately imply that an upper bound of the Lipschitz constant of Vd (€2)
will be L (d) < 72 || Jx||> < 8V2 72

M.

H.

A.
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