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Non-local Structure Tensor Functionals
for Image Regularization
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Abstract—We present a non-local regularization framework
that we apply to inverse imaging problems. As opposed to existing
non-local regularization methods that rely on the graph gradient
as the regularization operator, we introduce a family of non-local
energy functionals that involves the standard image gradient. Our
motivation for designing these functionals is to exploit at the
same time two important properties inherent in natural images,
namely the local structural image regularity and the non-local
image self-similarity. To this end, our regularizers employ as
their regularization operator a novel non-local version of the
structure tensor. This operator performs a non-local weighted
average of the image gradients computed at every image location
and, thus, is able to provide a robust measure of image variation.
Further, we show a connection of the proposed regularizers to
the Total Variation semi-norm and prove convexity. The convexity
property allows us to employ powerful tools from convex opti-
mization in order to design an efficient minimization algorithm.
Our algorithm is based on a splitting variable strategy which
leads to an augmented Lagrangian formulation. To solve the
corresponding optimization problem we employ the alternating-
direction methods of multipliers. Finally, we present extensive
experiments on several inverse imaging problems, where we
compare our regularizers with other competing local and non-
local regularization approaches. Our results are shown to be
systematically superior, both quantitatively and visually.

Index Terms—Image reconstruction, non-local regularization,
structure tensor, total variation, convex optimization.

I. INTRODUCTION

INVERSE problems typically arise in several image pro-
cessing and computer vision applications, including image

restoration, image inpainting, image segmentation, optical flow
estimation, stereo and 3D reconstruction, etc. In these cases,
the task is to estimate underlying features of interest from
partial or indirect measurements. In practice, the majority of
inverse imaging problems are ill-posed [1]. This implies that in
order to obtain a physically or statistically meaningful solution,
some type of prior information about the underlying image
must be taken into account.

Among the available strategies that one can follow to deal
with inverse problems, the variational approach is one of the
most widely used. Under this framework, image recovery is
cast as the minimization of an energy functional whose mini-
mizer corresponds to the desired solution. Here, of significant
importance is the proper selection of the regularizer, which is
responsible to favor certain reconstructions. This has triggered
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an increasing research interest in the design of regularization
functionals that can accurately model important properties of
natural images.

One of the most successful regularization criteria that have
been proposed in the literature is the Total variation (TV) semi-
norm [2]. TV exploits the local structural regularity property,
that is natural images are typically smooth everywhere except
to edges, and employs the image gradient to penalize the
image variation with an L1-type of penalty. This leads to
reconstructions that feature sharp and well-preserved image
edges. Inevitably, TV has also some limitations. The main
one is that in certain cases it can over-smooth homogeneous
regions and create staircase artifacts [3]. To address this issue
several modifications/extensions of TV have been proposed.
These involve either first-order functionals whose goal is to
provide an improved measure of image variation [4]–[7], or
higher-order functionals that favor piecewise-smooth instead
of piecewise-constant solutions (see [3], [8], [9] and references
therein).

The above functionals are considered as local or semi-
local, since they involve a regularization operator that acts
on a restricted region of the image domain. Recently, a new
regularization paradigm has been introduced in [10]–[12],
where non-local operators are used instead for defining energy
functionals. These operators are non-local in the sense that
they allow interactions between image points that can possibly
be located far apart. The motivation behind this approach is
that natural images exhibit a non-local self-similarity property.
This means that images often consist of localized patterns
that repeat themselves at distant locations in the image do-
main. Therefore, non-local regularizers can effectively model
long-range dependencies and lead to improved reconstruction
results.

A. Contributions

In this work we combine ideas both from the local and
non-local regularization settings and introduce a novel non-
local family of regularizers. Our regularizers differ from the
existing non-local ones in the sense that they involve a non-
local operator which depends on the image gradient rather
than the graph gradient. The motivation is that this way we
can exploit at the same time both the local structural image
regularity and the non-local image self-similarity properties.
In detail, our key contributions are the following:

1. We extend our previous work [7] and design penalties
that employ a non-local version of the structure tensor
as the regularization operator. This operator performs
a non-local weighted average of the image gradients
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computed at every image point and, thus, provides a
more robust measure of image variation.

2. We prove that our regularization criteria are convex and
show a connection with the total variation semi-norm.

3. We introduce the concept of the non-local gradient as
the non-local extension of the discrete image gradient.
We use this operator to re-express our discrete energy
functionals in a form that facilitates its efficient mini-
mization.

4. We develop an efficient optimization algorithm that is
based on an augmented Lagrangian formulation of the
problem.

5. We provide extensive comparisons of our method with
alternative regularizers on several inverse imaging prob-
lems.

II. REGULARIZATION OF INVERSE PROBLEMS

A. Image-Formation Model and Variational Recovery

We will be concerned with the recovery of signals whose
measurements are described by a linear observation model of
the form:

v (x) = Au (x) + n (x) . (1)

Here, u (x) =
[
u1 (x) u2 (x) . . . uC (x)

]
: Rd 7→ RC repre-

sents the generic underlying vector-valued image consisting of
C channels, v are the measurements, A is a linear operator that
corresponds to the impulse response of the imaging device,
and n is a term that accounts for all possible errors during the
acquisition. Hereafter, we will assume n to be an independent
and identically distributed (i.i.d) Gaussian term.

Despite the linear nature of the forward model in (1),
the recovery of u from v is non-trivial. This is due to the
measurement noise and the operator A, which typically is
either ill-conditioned or singular. Therefore, a unique and
stable solution does not exist. One way to tackle this problem
is to cast the estimation of u as the minimization of an
objective function of the form:

E (u) = 1
2 ‖v −Au‖

2
2 + τψ (u) . (2)

This cost function consists of the quadratic data fidelity
term, which measures the proximity of the estimate to the
measurements, and the regularizer ψ (u), which encodes the
regularity assumptions about the underlying image. The role
of the latter is to narrow down the set of plausible solutions
by favoring those that exhibit the expected properties. The
regularization parameter τ ≥ 0 balances the influence of both
terms to the solution.

B. Regularization Functionals Revisited

From the discussion above, it is apparent that the regularizer
plays a crucial role in image reconstruction. Most of the
regularization approaches that have been introduced so far in
the literature can be assigned to two main categories, namely
the synthesis-based and the analysis-based regularization. In
the synthesis-based framework the reconstruction takes place
in a sparsifying-base, such as the wavelet domain, where a

penalty is imposed on the coefficients of the image in this
base [13]. Then the final image is obtained by mapping the
reconstructed coefficients back to the image domain through
an inverse transform. On the other hand, the analysis-based
framework involves regularizers that are directly applied on
the image one wishes to reconstruct. Such regularizers have
been shown to lead to better recovery results (see for example
[14]) and, thus, are mostly preferred.

The analysis-based regularizers can be expressed in the
following generic form:

R (u) =

∫

Ω

Φ (Lu (x)) dx, (3)

where Ω ⊆ Rd, L is the regularization operator (scalar or
multi-component) acting on the image, and Φ (·) is the poten-
tial function. Typical choices for L are differential operators
such as the Laplacian (scalar operator), the gradient (vectorial
operator), the Hessian (matrix-valued operator) or wavelet-
like operators (wavelets, curvelets, ridgelets, etc.), while the
potential function usually involves a norm distance.

C. Total Variation

A very popular regularizer of the form (3) is the Total
Variation (TV) semi-norm [2], which for a smooth grayscale
image u (C = 1) corresponds to the L1 norm of the gradient
magnitude and it is formally defined as

TV =

∫

Ω

‖∇u (x)‖2 dx. (4)

For the past two decades, TV has been extensively applied
to several imaging and computer vision problems. One of the
main reasons for its success is its ability to allow sharp features
(discontinuities) in the solutions. This stems from the L1-
type behavior of TV that does not over-penalize high intensity
variations. For image reconstruction this means that the result
will have well-preserved and sharp edges and, thus, it will be
visually appealing. Since TV only applies to scalar images, it
has been further extended in several ways to cover the case of
vector-valued images [15]–[17]. The main requirement for its
vectorial variants is that their definition should coincide with
the scalar one in (4) when C = 1.

D. Semi-Local Regularization Functionals

While TV has been proven a very powerful regularizer, in
several cases its applicability can be limited due to the fact that
by design it promotes piecewise-constant solutions. Further-
more, the gradient magnitude, which is employed to penalize
the image variation at every point in the image domain, is
completely localized and thus it is not very informative of the
geometric image structures.

To deal with these limitations of TV, in our prior work
we have introduced a family of regularization functionals that
involve more general descriptors of image variation which take
into account information that is available in a local neighbor-
hood of every point in the image domain [7]. Therefore, the
resulting functionals exhibit a semi-local behavior and, thus,
can provide a more robust measure of image variation. This is
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accomplished by employing in their formulation the structure
tensor operator [18].

The structure tensor of an image u evaluated at a spatial
location x, denoted as Sku (x) ∈ Sd+, is a d × d symmetric
positive semi-definite (PSD) matrix. It summarizes the domi-
nant directions of the gradient in a neighborhood centered at
the point x and it is defined as

Sku (x) = kσ ∗
(
∇u (x)∇u (x)

T
)
, (5)

where kσ is a Gaussian convolution kernel of standard devia-
tion σ. When dealing with vector-valued images the definition
of the structure tensor can be extended by replacing the
gradient in (5) with the Jacobian operator

Ju (x) =
[
∇u1 (x)∇u2 (x) . . .∇uC (x)

]
, (6)

which is the gradient’s extension for vector-valued functions.
The importance of the structure tensor lies in its eigenvalues

which provide a rich and discriminative description of the local
geometry of the image by summarizing the distribution of the
image gradients in the neighborhood specified by the support
of the kernel kσ . Let us consider a 2D image and let λ1 (x)
and λ2 (x) represent the largest and smallest eigenvalues of
the structure tensor at a spatial point x, respectively. When
both eigenvalues are relatively small there are small intensity
variations in the neighborhood around x, indicating that the
region is homogeneous. When λ1 (x) is large and λ2 (x)
is small there are strong variations but only on a dominant
orientation. Therefore, the point x is located close to an image
edge. When both eigenvalues are large there are high variations
on both directions specified by the corresponding eigenvectors
and, thus, the point x is close to an image corner.

Based on the above, it appears that the eigenvalues of
the structure tensor are more informative of the geometric
structure of the image than the gradient magnitude which
is computed completely locally. This observation has led to
the introduction of the Structure tensor Total Variation (STV)
functionals [7] which are defined as:

STVp (u) =

∫

Ω

(
d∑

i=1

λ
p/2
i (x)

)1/p

dx, (7)

where λi (x) is the ith eigenvalue of the structure tensor
evaluated at the point x and p ≥ 1.

E. Non-local Regularization Functionals

Non-local regularization functionals have been recently in-
troduced as a means of modeling complex image structures.
These regularizers exploit the non-local self-similarity prop-
erty which is inherent in natural images. The interest for
designing such functionals was initiated by the introduction
of the non-local means (NLM) filter, which has been used for
the task of image denoising [19], [20].

The NLM filter is a patch-based extension of the bilateral
filter [21] and it is defined as

NLM (u) (x) =
1

Z (x)

∫

Ω

e
− dα(u(x),u(y))

β2 u (y) dy, (8)

where

dα (u (x) ,u (y)) =

∫

Ω

Gα (t) |u (x+ t)− u (y + t)|2 dt,

(9)

Gα is a Gaussian kernel of standard deviation α, β acts as a fil-
tering parameter, and Z (x) =

∫
Ω
e−dα(u(x),u(y))/β2

dy is the
normalization factor. According to the definition of NLM, the
filtered version of u at the spatial coordinates x corresponds
to a weighted average of the values of all the image points
whose Gaussian neighborhood (image patch) is similar to the
neighborhood of x. The weights are determined according to
the degree of similarity between two image patches, which is
given by the distance metric defined in Eq. (9). This filtering
strategy differs significantly from standard filtering approaches
that involve convolutions and it exploits the simple but very
effective idea that two points centered in similar patches are
very likely to have the same intensity values. Since the search
for similar points is not restricted in a local region of the image
domain, the averaging in Eq. (8) can involve points that are
located far from each other. This leads to a non-local filtering
which has been shown to be very effective in eliminating noise.

Due to its success, NLM gathered great attention and it
was first interpreted in [22] as a non-convex regularizer based
on non-local functionals. These functionals are non-local in
the sense that the involved operators allow a point to interact
with any other point in the image domain. Then, in [23]
NL-means was expressed as a non-local quadratic functional.
Later, Gilboa and Osher following ideas from graph theory and
specifically the gradient and divergence on graphs, which were
first introduced in [11] in a discrete setting, they developed
in [10] a non-local regularization framework defined in the
continuous domain, while a discrete analog was considered
in [12]. This framework made possible the extension of the
non-local quadratic regularizers to non-smooth functionals.

The best representative of the existing non-local functionals
is the non-local total variation (NLTV) [10]. NLTV is a convex
regularizer that involves the non-local graph gradient operator.
This operator is defined as

∇wu (x) = (u (y)− u (x))
√
w (x,y), ∀y ∈ Ω, (10)

where w (x,y) : Ω × Ω 7→ R+ is a non-negative weighting
function that assigns weights between a pair of spatial points
(x,y) by taking into account their relative distance as well as
the similarity of their corresponding values u (x), u (y).

Based on the non-local graph gradient, NLTV can be
expressed in the generic form of (3) as

NLTV (u) =

∫

Ω

‖∇wu (x)‖2 dx

=

∫

Ω

√∫

Ω

(u (y)− u (x))
2
w (x,y) dydx. (11)

From its definition it is clear that NLTV exhibits a non-local
behavior, since it permits all the points in the image domain
Ω to interact with each other. Moreover, the weights w (x,y)
are chosen to be large for pairs of points whose neighborhoods
are similar and smaller for the rest of the pairs. The non-local
interactions and the L1-type penalty allow NLTV to model



4 TO APPEAR IN THE IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING

more efficiently complex geometric image structures than the
local regularization functionals, such as TV. Therefore, its
use can lead to improved image reconstructions. Discrete-
domain extensions of NLTV for vector-valued images have
been studied in [24], [25].

F. Proposed Non-Local Structure Tensor Total Variation

The non-local functionals that have been introduced so far in
the literature are based on the notion of the non-local gradient
which is defined on graphs. Therefore, under this approach an
image is treated as a generic graph and, thus, its underlying
structure is not fully exploited. In this work, we follow an
alternative approach with our goal being to introduce non-local
regularization functionals that employ the standard gradient
operator and, thus, can be directly related to the classical Total
Variation and provide a measure of non-local image variation.
The motivation for designing such non-local functionals is that
by combining ideas from local and non-local regularization
strategies we can model at the same time two important image
properties, namely the local structural regularity and the non-
local self similarity.

The underlying idea of our approach is to define a non-local
differential operator and use it as the regularization operator in
a functional of the form (3). To do so, our starting point is the
structure tensor operator which is defined in Eq. (5). As we
mentioned earlier, the power of the structure tensor lies in its
ability to encode richer information about the image variation
than the gradient operator. This is because its computation
involves a local neighborhood of a spatial point, as opposed to
the gradient which is computed pointwise. Having in mind the
non-local principle, a simple but useful observation is that the
information encoded by the structure tensor could be further
enriched by extending its scope to the entire image domain.

This idea can be formally presented as follows: Let us
consider a 2D vector-valued image u and let r be an arbitrary
2D direction (‖r‖2 = 1). The vectorial directional derivative
of u in the direction r is computed as ∂ru (x) = (Ju (x))

T
r

and its magnitude, ‖∂ru (x)‖2, yields a measure of intensity
change in the location x of the image u at the direction r. For
a more robust estimation of the intensity change at a specific
direction one can instead use the following measure of local
directional variation [7]

Vr (u (x)) =

√(
kσ ∗ ‖∂ru‖22

)
(x) =

√
rTSku (x) r, (12)

which involves the structure tensor. This measure is more
informative, since it captures the behavior of u in a local
neighborhood of x specified by the support of the convolution
kernel kσ . This measure of directional variation can be further
improved by modifying it so that its range becomes non-local.
Specifically, the reasoning here is that if two image patches
are similar, then the gradients at the centers of these patches
are also expected to be similar. Subsequently, the averaging
of similar gradients can lead to a more robust and accurate
estimation of image variations. Based on this observation, we
consider a non-local directional variation, which is computed
as the weighted average of the magnitude of the directional

variation over points centered in similar neighborhoods. We
define this non-local directional variation as

VNL (u (x)) =

(∫

Ω

w (x,y) ‖∂ru (y)‖22 dy

)1/2

=

√
rT

(∫

Ω

w (x,y) Ju (y) (Ju (y))
T

dy

)
r,

(13)

where w (x,y) is a non-negative weighting function that
assigns appropriate weights between pairs of points (x,y).
These weights, as opposed to the local directional variation,
are computed not only based on the relative distance of the
two points but also based on the photometric distance of their
neighborhoods (similarity of their intensity values). A potential
candidate for this weighting function is the one used in the
NLM filter and reads as

w (x,y) = e
−dα(u(x),u(y))

β2 , (14)

where dα is the “patch distance” defined in (9).
Motivated by the non-local measure of image variation, we

introduce a non-local counterpart of the structure tensor which
we define as:

Swu (x) =

∫

Ω

w (x,y) Ju (y) (Ju (y))
T

dy. (15)

The non-local (NL) structure tensor Sw, similarly to Sk, when
evaluated at a point x corresponds to a symmetric PSD matrix
of dimensions d × d where its (i, j) entry, 1 ≤ i, j ≤ d, is
computed as

S (i,j)
w u (x) =

∫

Ω

w (x,y)

C∑

c=1

∂xiuc (y) ∂xjuc (y) dy, (16)

with ∂xium denoting the partial derivative of the mth channel
of the vector-valued image u w.r.t the i-th dimension. To show
the potential benefits of using such a non-local operator, in
Fig. 1 we present the information captured by the standard
structure tensor and its non-local counterpart when they are
applied on a grayscale image. From this figure we observe
that the edge content of the image is better encoded in the
eigenvalues of the NL structure tensor. Indeed the image edges
in Fig. 1(c) are sharper and better resolved than in Fig. 1(b).

Having introduced the NL structure tensor, we can now em-
ploy it to define our novel family of regularization functionals.
Since most of the important information is encoded in the
eigenvalues of the NL structure tensor, our non-local energy
functionals will be expressed in the generic form

RNL (u) =

∫

Ω

Φ (ε1 (x) , . . . , εd (x)) dx, (17)

where εi, i = 1, . . . , d are the d eigenvalues of the NL
structure tensor and Φ (·) is a potential function. In this work
we restrict our attention to potential functions that correspond
to `p norms of the square rooted eigenvalues of the NL
structure tensor and can provide a synopsis of the non-local
image variation. This leads us to define the family of non-local
structure tensor total variation (NLSTV) functionals for p ≥ 1
as
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(a) (b) (c)

Fig. 1. Image edge information captured by the `1-norm of the square rooted eigenvalues of (b) the structure tensor and (c) the proposed NL structure tensor
when applied on image (a).

NLSTVp (u) =

∫

Ω

(
d∑

i=1

ε
p/2
i (x)

)1/p

dx. (18)

Next, we prove the following result.

Theorem 1. The NLSTV regularizers for a fixed weighting
function w (·, ·) are 1-homogeneous and convex functionals of
u for all p ≥ 1.

Proof: Our proof follows closely the proof of [7][The-
orem A.3]. Let us introduce the compact linear operator
Tx = T (u,y;x) =

√
w (x,y)

[
∇u1 (y) , . . . ,∇uC (y)

]
∈

H = L2

(
Ω,Rd×C

)
for arbitrary x,y ∈ Ω and a fixed

weighting function w (·, ·). The adjoint of Tx is the unique
operator T ∗x : H 7→ Ω that satisfies

〈f , Txu〉H = 〈T ∗xf , u〉. (19)

Now, we can specify the Gram matrix G = T ∗xTx of size
d× d, which characterizes the spectrum of Tx, as

Gi,j =〈
√
w (x,y)∂xiu (y) ,

√
w (x,y)∂xju (y)〉H

=

∫

Ω

w (x,y)

C∑

c=1

∂xiu
c (y) ∂xju

c (y) dy

=S (i,j)
w u (x) . (20)

From (20) it occurs that the singular values of Tx are related
to the eigenvalues of Swu (x). Indeed, it holds that the i-
th singular value of the finite rank operator Tx, denoted as
σi (Tx), 1 ≤ i ≤ d, can be computed as σi (Tx) =

√
εi (x).

Consequently, we have that
(

d∑

i=1

ε
p/2
i (x)

)1/p

=

(
d∑

i=1

σpi (Tx)

)1/p

= ‖σ (Tx)‖p .

(21)

The NLSTV functionals can now be equivalently written as

NLSTVp (u) =

∫

Ω

‖σ (Tx)‖p dx. (22)

From this reformulation of NLSTV it is straight-forward to
show the 1-homogeneity property. Next, to show the convexity
of NLSTV we use that for two compact operators Tx,Λx and
for any 1 ≤ p, q ≤ ∞ with 1/p+ 1/q = 1 it holds that [7]

‖σ (Tx)‖p = sup
‖σ(Λx)‖q≤1

trace (Λ∗xTx) . (23)

Therefore, for t ∈ [0, 1] we can show that:

‖σ (tT1,x + (1− t)T2,x)‖p
≤ t sup
‖σ(Λ1,x)‖q≤1

trace
(
Λ∗1,xT1,x

)
+ (1− t) sup

‖σ(Λ2,x)‖q≤1

trace
(
Λ∗2,xT2,x

)

= t ‖σ (T1,x)‖p + (1− t) ‖σ (T2,x)‖p . (24)

Since the operator Tx is linear in u, it turns out that ‖σ (Tx)‖p
is a convex functional of u. This further implies that the
NLSTV functional in (22) is also a convex functional of u.

Finally, we can also show that our non-local functionals
are directly related to the TV semi-norm. Specifically, if we
consider a grayscale image u, then by choosing the weighting
function so that it is completely localized, i.e,

w (x,y) =

{
0, if x 6= y

1, if x = y,
(25)

we get
∥∥∥
√
ε (x)

∥∥∥
p

= ‖∇u (x)‖2 for any p ≥ 1. It is then clear

that in this degenerate case our regularizer in (18) reduces
to the classical TV. In this sense, our regularizers can be
considered as a non-local extension of TV.

III. DISCRETE NON-LOCAL STRUCTURE TENSOR TOTAL
VARIATION

Typically, for most of the inverse imaging problems of in-
terest we have to deal with discrete measurements. Therefore,
in the rest of this paper we focus on the discrete problem
formulation of (1) and its treatment. In this case v and u are
discretized versions of the measurements and the underlying
image, respectively, while the discrete analog of the operator
A is the system matrix A that behaves as the impulse response
of the imaging device.

A. Discrete Non-local Gradient

In this section we introduce a novel discrete non-local
gradient operator. We will use this operator later to re-express
the discrete version of our NLSTV functionals in an alternative
form that will allow us to employ robust tools from convex
optimization so that we can design an efficient minimization
strategy. It is important to note that our non-local operator
differs significantly from the non-local gradient that has been
introduced in [10], [11]. The main difference is that in our case
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the non-local gradient operator is not based on the concept
of derivatives on graphs but instead it involves the discrete
counterpart of the standard gradient operator.

We assume that the discretized d-dimensional vector-valued
image u =

(
u1, . . . ,uC

)
is defined on a rectangular grid with

unary steps and consists of N = N1 ·N2 · . . . ·Nd pixels. Each
channel c of u (c=1, .., C) is rasterized in a vector uc ∈ RN
and all the image channels are stacked together to form the
single vector u ∈ RNC . We use the notation ucn to refer to
the value of the n-th pixel of the grid for the c-th channel of
u and we use un to refer to the tuple

(
u1
n, . . . ,u

C
n

)
.

Now, let us define the discrete non-local gradient of a
grayscale image uc as the linear mapping Dw : RN 7→ X ,
RN×d×N . The non-local gradient Dw, when applied on the
n-th pixel of uc, corresponds to a matrix of the form1:

Dwu
c
n =

[√
wn,1∇uc1 . . .

√
wn,N ∇ucN

]
∈ Rd×N , (26)

where ∇ucn is the discrete gradient of uc evaluated at pixel
n and wn,k is the discrete weight that has been assigned to
the pair of pixels (n, k). Based on the above definition, the
non-local gradient evaluated at pixel n is constructed by :
(1) evaluating the discrete gradient of the image at all pixel
locations in the image domain, (2) weighting these gradients
with the square root of the weights wn,k with 1 ≤ k ≤ N , and
(3) stacking all these two-dimensional vectors horizontally to
form the final matrix. To handle the image boundaries we as-
sume symmetric boundary conditions and employ the discrete
gradient as defined in [26]. Note however, that our framework
is general enough to accommodate for different discretizations
of the gradient operator with alternative assumptions on the
image boundaries.

Since the non-local gradient operator is linear, we can
further define its adjoint operator, which provides a reverse
linear mapping from the space X to RN . To do so, we first
need to equip the space X , which is the target space of Dw,
with the inner product 〈· , ·〉X and the norm ‖·‖X . To define
them, let X , P ∈ X with Xn,Pn ∈ Rd×N ∀n = 1, 2, . . . , N .
Then, we have:

〈X , P 〉X =

N∑

n=1

trace
(
PT
n Xn

)
(27)

and

‖X‖X = 〈X , X〉1/2X =

(
N∑

n=1

‖Xn‖2F

) 1
2

, (28)

where trace (·) is the trace operator of a matrix and ‖·‖F is
the Frobenius matrix norm. For the Euclidean space RN we
use the standard inner product and norm which we denote as
〈· , ·〉2 and ‖·‖2, respectively.

The definition of the adjoint operator D∗w : X 7→ RN is
provided through the following relation of the inner products

〈Dwu
c , P 〉X = 〈uc , D∗wP 〉2. (29)

1In practice, as we describe in Section III-B we use a sparse version of
the weighting function wn,k and therefore the number of “active” neighbors
for each pixel of the image will be equal to K which is significantly smaller
than N . Consequently, the target space of the non-local gradient will be X ,
RN×d×K and Dwuc

n ∈ Rd×K .

After carrying out some linear algebra calculations we can
express D∗w in a more suitable form that facilitates its nu-
merical computation. This form is provided in the following
proposition.

Proposition 1. The adjoint operator D∗w of the discrete non-
local gradient evaluated on the n-th matrix entry, Pn ∈ Rd×N ,
of the multidimensional matrix P ∈ X is given by:

D∗wPn = −div

(
N∑

k=1

√
wk,nPk (:, n)

)
, (30)

where div is the discrete divergence operator, defined in ac-
cordance to the discretization scheme of the gradient operator,
and Pk (:, n) ∈ Rd refers to the n-th column of the k-th matrix
entry of P .

Having defined the non-local gradient and its adjoint op-
erator, we can further introduce the discrete non-local Jaco-
bian which applies on vector-valued images. The non-local
Jacobian, Jw : RNC 7→ RN×d×(NC), is a matrix-valued
operator which, similarly to the standard Jacobian operator,
when evaluated on the n-th pixel of a vector-valued image u
corresponds to a matrix of the form:

Jwun =
[
Dwu

1
n . . . Dwu

C
n

]
∈ Rd×(NC). (31)

By employing the adjoint of the non-local gradient, we can
easily obtain the adjoint of the non-local Jacobian as

J∗wYn =
[
D∗wY

1
n . . . D∗wY

C
n

]T ∈ RC , (32)

where Yn =
[
Y 1
n . . .Y

C
n

]
∈ Rd×(NC).

B. Non-local Weights Computation

In the definitions of the non-local operators that we provided
above, a weight wn,k is assigned to every pair of pixels (n, k).
In practice, mainly due to computational considerations, we
use a sparse version of the discrete weighting function which
is computed as follows: (1) For each pixel n in the image
domain we extract a patch P (un) of size τ × τ centered
around this pixel. (2) We compute the distance of this patch
from all the patches whose centers lie inside a specified search
window of size r × r. To do so, we use (dα)n,k which is the
discrete version of (9) and it is defined as

(dα)n,k =

τ/2∑

j=−τ/2
(gα)j |un+j − uk+j |2 , (33)

with gα denoting a discrete weighting function of size τ × τ
that defines the image neighborhood. Note that k is restricted
to be at most r/2 pixels far from pixel n. (3) Out of all the
computed distances we keep the K smallest ones while the
rest are set to infinity. Then, we compute the corresponding
weights as wn,k = e−(dα)n,k/β

2

. We note that our strategy for
computing the non-local weights is similar to the one used in
NLTV [10].

An efficient computation of the patch distance (dα)n,k was
proposed in [27] and uses a similar idea with the integral
image [28]. However, this method is only applicable when a
uniform kernel gα is used. Here, we consider an alternative
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fast implementation which is applicable to the more general
case of a symmetric kernel, (gα)j = (gα)−j . This is based on
the observation that given the symmetric nature of gα we can
re-write (33) as

(dα)n,k =

τ/2∑

j=−τ/2
(gα)j |un−j − un+l−j |2 , (34)

where −r/2 ≤ l ≤ r/2 is the relative distance of the pixel
k from the pixel n. Clearly, (34) corresponds to a discrete
convolution of gα with zln = |un − un+l|2. Therefore, it is
now possible to compute with a single convolution the patch
distances of all the pixel pairs (n, k) that have a relative
distance of l pixels. We note that a similar observation was
made in [29] in order to speed-up the computation time of the
NLM method.

C. Discrete NL-STV

Let us indicate that a pixel k is linked to a pixel n with
a non-zero weight wk,n by using the notation k ∈ Nn where
Nn = {k : wn,k > 0}. Next, we define a “sparse” version of
the discrete non-local structure tensor as

Swun =
∑

k∈Nn
wn,kJuk (Juk)

T (35)

where J is the discrete Jacobian operator. Based on the
discrete NL structure tensor we can now formally define the
discrete NLSTV regularizers as

NLSTVp (u) =

N∑

n=1

(
d∑

i=1

ε
p/2
n,i

)1/p

, (36)

where εn,i denotes the i-th eigenvalue of the discrete non-local
structure tensor Sw applied on u and evaluated at the pixel
location n.

The current form of the proposed regularizers is difficult
to work with, mainly because it involves the eigenvalues of
a non-linear operator. Consequently, it is not clear how one
could proceed with the minimization of such penalties in an
inverse problem setting. To deal with this difficulty we derive
an alternative definition of the proposed functionals that will
prove very useful. This new definition arises by using the
following result, whose proof is straight-forward and thus is
omitted.

Proposition 2. The discrete non-local structure tensor oper-
ator applied on u and evaluated at a pixel location n can be
expressed in terms of the non-local Jacobian as:

Swun = Jwun (Jwun)
T
. (37)

Consequently, the eigenvalues of the NL structure tensor,
εn,i for i = 1 . . . , d and n = 1, . . . , N , can be computed
from the singular values of the NL Jacobian, σn,i, as

εn,i = σ2
n,i. (38)

Proposition 2 directly implies that the discrete NLSTV
functionals can be equivalently expressed in terms of the

singular values of the non-local Jacobian. Indeed, from (36)
and (38) we have

NLSTVp (u) =

N∑

n=1

(
d∑

i=1

σpn,i

)1/p

=

N∑

n=1

‖Jwun‖Sp , (39)

where the r.h.s of (39) arises by using the definition of the
Schatten norm of order p [30]. The Schatten matrix norms
are directly related to the `p vector norms. In particular, for a
generic complex matrix X ∈ Cn1×n2 the Sp norm of X can
be expressed as the `p norm of the vector σ (X), whose entries
are the singular values of X , i.e, ‖X‖Sp = ‖σ (X)‖p. Also
note that the class of Schatten norms includes as its members
the nuclear norm (p = 1), the Frobenius norm (p = 2), and
the spectral/operator norm (p =∞).

This alternative formulation of the proposed functionals is
much easier to handle in an optimization framework. The
reason is that the non-linear NL structure tensor has been
substituted by the linear operator Jw (Dw for the case of scalar
images). Moreover, the expression in (39) better highlights
the fact that the proposed regularizers are convex w.r.t u
∀ p ≥ 1. Indeed, it is straight-forward for one to show that
these regularizers are convex, since they can be expressed as
a composition of a norm,

∑
n ‖·‖Sp , and a linear operator, Jw.

Based on (39) and Lemma 4.1 in [9] we further derive the
following dual definition

NLSTVp (u) = max
Ω∈B∞,q

〈u , J∗wΩ〉2, (40)

where Ω = [Ω1 . . .ΩN ] ∈ X and B∞,q ={
Ω ∈ X : ‖Ωn‖Sq ≤ 1

}
. This expression is extremely useful

in case one needs to re-write the minimization of an objective
function that includes NLSTV in a min-max formulation.
Such reformulation of the minimization problem is necessary
when a primal-dual approach, as those proposed in [31], [32],
is employed to obtain the solution.

IV. NUMERICAL OPTIMIZATION

Based on the discrete version of the forward model in (1)
and under the assumption that the noise perturbing the mea-
surements is Gaussian, a solution of the regularized inverse
problem is derived as

u? = arg min
u

1

2
‖v −Au‖22 + τ ‖Jwu‖1,p + ιC (u) , (41)

for any p ≥ 1. In Eq. (41) ιC is the indicator function of
a convex set C, while ‖·‖1,p is a shorthand notation for the
mixed vector-matrix norm

∑
n ‖·‖Sp . The indicator function

ιC takes the value 0 if u ∈ C and ∞ otherwise, and its role
is to enforce the solution to lie in C. The reason for including
ιC in the overall objective function is that in many cases the
need for such a constraint arises naturally. For example in
many imaging applications it is common to require that the
intensities of the reconstructed images should either be non-
negative (non-negativity constraint) or lie in a specific range
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(box constraint). If one seeks for the unconstrained solution
of (41), this can be obtained by simply setting C = RNC .

The form of the problem in (41) is difficult to work with
mainly for two reasons. The first one is that the objective
function we want to minimize is non-smooth. This precludes
the use of a gradient-based scheme. Given the non-smoothness
of the objective function, the second reason is the coupling
that exists among the different terms. This coupling makes the
minimization task even more challenging. To circumvent these
difficulties a common strategy that we will also follow here,
is to decouple the different terms of the objective function by
introducing a set of auxiliary variables. This will allow us to
find the solution by solving a sequence of simpler problems.

In particular, we use the auxiliary variables z1 = Jwu ∈ X
and z2 = u ∈ RNC and we reformulate the problem in (41)
in the constrained form

arg min
u,z1,z2
Ku=z

1

2
‖v −Au‖22

︸ ︷︷ ︸
f(u)

+ τ ‖z1‖1,p︸ ︷︷ ︸
g1(z1)

+ ιC (z2)︸ ︷︷ ︸
g2(z2)

. (42)

The augmented Lagrangian [33] associated to (42) is given
by

Lµ (u, z,η) = f (u) + g (z) + 〈η , Ku− z〉Y
+
µ

2
‖Ku− z‖2Y , (43)

where Y , X × RN is a multilinear space, η = (η1,η2) ∈
Y are the Lagrange multipliers, z = (z1, z2) ∈ Y , g (z) =
g1 (z1) + g2 (z2), K = (Jw, I) is a concatenated version of
the non-local Jacobian Jw and the identity operator I , and
µ ≥ 0 is a penalty parameter. Note that L0 corresponds to the
standard Lagrangian of problem (42) while Lµ corresponds to
the Lagrangian of the problem

arg min
u,z1,z2
Ku=z

f (u) + g (z) + ‖Ku− z‖2Y . (44)

In any case, the two problems (42) and (44) are clearly
equivalent, since for any feasible solution of (44) the additional
quadratic term in (44) evaluates to zero.

To solve the problem in (42) we use the augmented
Lagrangian and employ the alternating-direction method of
multipliers (ADMM) [34]–[36]. This is an iterative method
that attacks the constrained optimization by replacing it by
a series of unconstrained problems. To this end, one ADMM
iteration involves the minimization of Lµ w.r.t z while keeping
u fixed, the minimization of Lµ w.r.t u while keeping z fixed,
and an update of the Lagrange multipliers η. Formally, we can
describe the steps involved in every ADMM iteration as:

zt+1 = arg min
z∈Y

g (z) +
µ

2

∥∥z −
(
Kut + st

)∥∥2

Y (45a)

ut+1 = arg min
u∈RNC

f (u) +
µ

2

∥∥Ku−
(
zt+1 − st

)∥∥2

Y (45b)

st = st +Kut+1 − zt+1, (45c)

where s = η/µ corresponds to a scaled version of the original
Lagrange multipliers and in each one of the subproblems
we have ignored constant terms that are irrelevant to the
optimization task.

Next, we focus on the solution of the individual subprob-
lems. First, based on the definition of g (z), we note that the
z-update of ADMM (45a) can be decoupled in the following
two independent problems

zt+1
1 = arg min

z1∈X

1

2

∥∥z1 −
(
Jwu

t + st1
)∥∥2

X +
τ

µ
‖z1‖1,p

zt+1
2 = arg min

z2∈RNC

1

2

∥∥z2 −
(
ut + st2

)∥∥2

2
+ ιC (z2) . (46)

The first problem corresponds to the evaluation of the proximal
map of the function g1 (z1) scaled by µ. Indeed, the proximal
map of a function f with domf = X , evaluated at z is defined
as [37]

proxf (z) = arg min
u∈X

1

2
‖u− z‖2X + f (u) . (47)

Therefore, it holds that

zt+1
1 = prox τ

µ‖·‖1,p
(
Jwu

t + st1
)
. (48)

Due to the separability of ‖·‖1,p and of the quadratic term
‖·‖2X , the above problem can be further decomposed in N
independent subproblems of the form:
(
zt+1

1

)
n

= prox τ
µ‖·‖Sp

(Ωn)

= arg min
(z1)n

1

2
‖(z1)n −Ωn‖2F +

τ

µ
‖(z1)n‖Sp ,

(49)

where Ω = Jwu
t + st1 ∈ X and Ωn ∈ Rd×KC denotes the

n-th matrix entry of Ω (K is the number of neighbors for a
pixel n with non-zero weights wn,k).

To compute the solution in (49) we use the fol-
lowing result, where Un =

{
X ∈ Cn×n : X−1 = XH

}

denotes the set of unitary matrices and Dn1×n2 ={
X ∈ Rn1×n2

+ : X(i,j) = 0 ∀ i 6= j
}

denotes the set of PSD
diagonal matrices.

Proposition 3 ( [38]). Let Y ∈ Cn1×n2 be a generic complex
matrix with an SVD decomposition Y = UΣV H, where U ∈
Un1 , V ∈ Un2 , and Σ ∈ Dn1×n2 . The proximal map

X? = proxτ‖·‖Sp (Y ) (50)

can be obtained as

X? = Udiag
(

proxτ‖·‖p (σ)
)
V H , (51)

where diag (·) is the operator that transforms a vector to a
diagonal matrix and σ denotes the vector whose entries are
the singular values of Y .

In words, Proposition 3 states that the proximal map of
an Sp matrix-norm can be computed by (1) decomposing
the matrix Y in its singular values and singular vectors, (2)
evaluating the proximal map of the `p norm at the vector σ
consisting of the singular values of Y and, (3) deriving the
final result by a singular value reconstruction that involves the
singular vectors of Y and as singular values the result of step
2.
Efficient evaluation of the proximal map: Clearly the
solution of (49) depends on our ability to evaluate the proximal
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map of an `p norm weighted by a constant τ . To do so for an
arbitrary p ≥ 1, we rely on the iterative proximal algorithm
introduced in [39]. Furthermore, for the most interesting
cases p = 1, 2 we can derive the solution in closed-form.
Specifically, for p = 1 the proximal map corresponds to
the soft-thresholding function S1

τ (σ) = max (σ − τ, 0) [40]
where the max is computed component-wise. For p = 2 the
proximal map corresponds to another shrinkage function of
the form S2

τ (σ) = max ((‖σ‖2 − τ) / ‖σ‖2 , 0) ·σ [35], [37].
Notably in this case, we can obtain the proximal map of the
Frobenius norm (S2 norm) without having to resort to an SVD
decomposition of the input matrix. Specifically, we have

proxτ‖·‖F (Y ) = max

(‖Y ‖F − τ
‖Y ‖F

, 0

)
· Y . (52)

Another consideration regarding the evaluation of the prox-
imal map of (49) is the efficient computation of the singular
values and vectors of the matrices Ωn = UnΣnV

T
n ∈ Rd×KC

with n = 1, 2, . . . , N . Since even for images of moderate sizes
the value of N can be of the order 105, we need an efficient
way to perform these SVDs. Here, we are interested in 2D
images (d = 2) and we can follow an efficient strategy as
described next. First, we observe that the matrix ΩnΩ

T
n is

2×2 symmetric with an eigenvalue decomposition UnΣ2
nU

T
n .

Therefore, both Un and Σn are obtained in closed-form.
Now, let Σ+

n be the pseudo-inverse of Σn. Then, based on
Proposition 3 we can compute the proximal maps as

prox τ
µ‖·‖Sp

(Ωn) =
(
UnΣ

?
nΣ

+
nU

T
n

)
Ωn (53)

where Σ?
n = diag

(
proxτ‖·‖p (σn)

)
and σn is the vector

formed by the diagonal elements of Σn.

The second minimization problem in (46) corresponds to
the projection of ut+st2 on the convex set C. For the imaging
applications that we study later, we consider the convex set
C ,

{
u ∈ RN : 0 ≤ un ≤ γ, ∀n = 1, . . . , N

}
. In this case

the projection is simple to compute and is given by ΠC (u) =
min (max (0,u) , γ) where the min and max operations are
computed component-wise.

The problem in (45b) is quadratic and thus the u-update is
obtained as the solution of the set of linear equations

But+1 =
1

µ
ATv + J∗w

(
zt+1

1 − st1
)

+ zt+1
2 − st2, (54)

whereB =
(

1
µA

TA+ J∗wJw + I
)

. In practice, the inversion
of B is prohibitive due to its large size. Therefore, given
that B is a symmetric positive definite matrix, we employ
instead the conjugate gradient (CG) method [41]. We have
experimentally observed that for several inverse imaging prob-
lems it suffices to run as few as two CG iterations in every
ADMM iteration. This choice does not seem to compromise
the convergence of the overall algorithm if we follow a “warm-
start” strategy where in each ADMM iteration we initialize CG
with the solution of u obtained in the previous iteration.

Algorithm 1 : Image Reconstruction Algorithm.
Input: v, A, τ > 0, µ > 0, p ≥ 1.

Initialization: u0 = v, s01 = 0, s02 = 0, t = 0.

while stopping criterion is not satisfied do

zt+1
1 ← prox τ

µ
‖·‖

1,p

(
Jwu

t + st1
)
;

zt+1
2 ← ΠC

(
ut + st2

)
;

B ←
(

1
µA

TA+ J∗
wJw + I

)
;

ωt+1
1 ← zt+1

1 − st1;

ωt+1
2 ← zt+1

2 − st2;

ut+1 ← B−1
(

1
µA

Tv + J∗
wω

t+1
1 + ωt+1

2

)
;

st+1
1 ← st1 + Jwu

t+1 − zt+1
1 ;

st+1
2 ← st2 + ut+1 − zt+1

2 ;

t← t+ 1;

end

return ut;

Fig. 2. Thumbnails of the color versions of the 12 images used in the
experiments (the numbering order is from left to right and top to bottom).
These images are of size of 481×321 pixel and are a subset of the Berkeley
BSDS500 image dataset.

Finally, the update of the scaled Lagrange multipliers
in (45c) is decoupled and it is computed as

st+1
1 = st1 + Jwu

t+1 − zt+1
1 ,

st+1
2 = st2 + ut+1 − zt+1

2 . (55)

A summary of our overall minimization approach is provided
in Algorithm 1.

V. APPLICATIONS AND EXPERIMENTS

To assess the potentials of the proposed non-local function-
als, we compare their reconstruction performance with that of
other related methods on several inverse imaging applications.
In particular, we consider the problems of image denoising,
image deblurring, and image reconstruction from undersam-
pled Fourier measurements. For all the problems under study
we report results on both grayscale and color versions of the
images shown in Fig. 2, where their intensities have been
normalized to lie in the range [0, 1]. The comparisons are
performed among the first-order functionals TV [2], STV1 [7],
NLTV [10], and our proposed NLSTV1. For the color case,
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since TV is applicable only to grayscale images we use instead
for our comparisons the vectorial total variation (VTV) that
was proposed in [16]. The same applies to NLTV where for
the color case we use a vectorial version that has been studied
in [24], [25]. Furthermore, for the problem of image denoising
we also include the results obtained by the NLM filter [20].

The reconstruction performance of the regularization meth-
ods under comparison highly depends on the choice of the
regularization parameter τ . This also holds true for the NLM
filter where the parameter β in (8) needs to be tuned. In order
our comparisons to be consistent, we have experimentally fine-
tuned these parameters and here we report only the results
that led to the best peak signal-to-noise ratio (PSNR). For
STV1 we also had to choose the convolution kernel that is
used for the computation of the structure tensor in (5). This
was set to be a Gaussian of standard deviation σ = 0.5 and
support of 3 × 3 pixel. For the non-local techniques we had
to further specify the size of the neighborhood that is used
for the computation of the non-local weights w (·, ·). He have
considered a uniform neighborhood (patch) of size 5× 5 and
7×7 and a search window of size 11×11. For NLTV and NLM
we experimentally observed that the 5× 5 patch led to better
results on average than the 7 × 7 patch, while for NLSTV1

the 7 × 7 patch turned out to be the best choice. Finally, for
NLTV and NLSTV1 we considered a sparse version of the
weight function, where only K neighbors are linked to each
pixel of the image with a non-zero weight. In order to be able
to compare directly the performance of STV1 with our non-
local extension NLSTV1, we set K = 9. For NLTV we set
K = 14 (the 4 closest neighbors plus the best 10 non-local
neighbors) as suggested in [42].

For the minimization of the objective functions that are
related to the regularizers we are comparing, we employ an
optimization strategy similar to the one described in Algorithm
1. Our rationale for using a common optimization framework
for all the studied regularizers is that this way we can make
sure that the convergence behavior is comparable in all cases.
Consequently, the image reconstruction quality depends on the
choice of the regularizer rather than on the efficiency of the
employed minimization scheme.

A. Image denoising

Image denoising is the simplest form of inverse imaging
problem where the system matrix A reduces to the identity
operator I . In our scenario we consider i.i.d Gaussian noise
at three different noise levels (low, medium, and high) that
correspond to a standard deviation of σn = 0.05, 0.075, 0.1,
respectively. Regarding the stopping criterion of the mini-
mization algorithms, this is set to either reaching a relative
normed difference of 5 · 10−5 between two successive image
estimates, or a maximum of 150 iterations. In addition, for the
non-local methods we need to compute the non-local weights.
These weights according to the definitions we provided earlier
depend on the underlying image. Here, however, we compute
them from a smoothed version of the noisy image by a
Gaussian filter. We have experimentally observed that the
weights obtained in this way lead to better denoising results
than the ones computed directly from the noisy image itself.

In Table I we report the grayscale and color denoising
results for all test images and noise levels. The performance
of all the methods is measured in terms of the PSNR im-
provement (ISNR) w.r.t the noisy image. By inspecting the
grayscale results we observe that TV is the least performing
method for all noise levels. NLM filtering leads to better
results than TV by exploiting the non-local self-similarity
property. However it performs worse than the semi-local STV1

regularizer. Additionally, NLTV which is inspired by NLM
performs better than all these methods. Finally, NLSTV1

consistently outperforms all the tested methods and shows
an improvement over its semi-local version of about 0.3 dBs
on average. Similar observations are drawn from the color
denoising results. However, in this case STV1 outperforms
NLTV but not NLSTV1.

Besides the quantitative comparisons, to allow for a visual
assessment of the reconstruction performance, we provide in
Fig. 3 representative grayscale and color image denoising
results. From these results we observe that our non-local func-
tional achieves a satisfactory denoising performance without
introducing staircase artifacts, which are present in TV and
NLTV reconstructions, or excessively smoothing important
image structures, such as in the case of NLM. Moreover,
due to its non-local nature NLSTV1 proves more efficient
in removing the noise than its semi-local counterpart, STV1.

B. Image deblurring

In the image deblurring setting we consider a circulant
system matrix A that models the point spread function (PSF)
of the imaging device. We test all the methods for two
blurring kernels, a Gaussian of support 9 × 9 pixel with a
standard deviation σd = 6 and a motion kernel of support
19 × 19 pixel 2. As an additional degradation we consider
three different levels of Gaussian noise which correspond to a
blurred SNR (BSNR) of the input image of 20, 25, and 30 dBs,
respectively. The BSNR is defined as BSNR = var (Au) /σ2

n,
where var (Au) is the variance of the blurred input and σn
is the standard deviation of the noise.

For this problem a typical strategy for computing the non-
local weights is to minimize the objective function w.r.t to the
underlying image and the weighting function [42]. This way
the weights are updated in every iteration of the algorithm. In
this case, however, we need to solve a non-convex problem
and, thus, we lack any guarantees about reaching the global
minimum. Here, we follow a different approach which leads to
a convex optimization problem. Specifically, we estimate the
non-local weights from a smooth version of the image that
has been previously deblurred by a Wiener filter. Then, we
use these fixed weights to minimize the objective function.
Finally, the stopping criteria of the minimization algorithm
remain the same with the ones used in the denoising problem.

In Table II we report the grayscale and color deblurring
results for all test images, blurring kernels, and noise levels.
Once again the performance of the methods under comparison
is measured in terms of ISNR w.r.t to the blurred and noisy
image. The conclusions that we can draw from these results

2This psf was obtained from http://www.wisdom.weizmann.ac.il/∼levina/
papers/LevinEtalCVPR09Data.rar
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TABLE I
ISNR COMPARISONS ON GRAYSCALE/COLOR IMAGE DENOISING

Method TV/VTV STV1 NLM (5×5) NLTV (5×5) NLSTV1 (7×7)

σ (std.) 0.05 0.075 0.1 0.05 0.075 0.1 0.05 0.075 0.1 0.05 0.075 0.1 0.05 0.075 0.1

Img.1 5.82/6.50 7.28/7.98 8.42/8.98 6.25/6.73 7.70/8.20 8.82/9.33 5.79/6.02 7.35/7.64 8.58/8.95 6.30/6.77 7.86/8.21 9.08/9.30 6.59/7.06 8.08/8.60 9.23/9.81

Img.2 9.21/9.95 10.85/11.64 12.06/11.72 9.87/10.40 11.42/12.00 12.57/13.18 10.01/10.29 11.61/12.03 12.74/13.28 10.04/10.48 11.62/12.03 12.72/13.04 10.19/10.60 11.76/12.25 12.89/13.44

Img.3 5.22/5.86 6.41/7.08 7.34/7.96 5.90/6.34 7.07/7.54 7.99/8.46 5.08/5.09 6.66/6.75 7.89/8.06 5.93/6.05 7.18/7.12 8.13/7.93 6.17/6.59 7.30/7.81 8.17/8.77

Img.4 8.10/8.89 9.51/10.35 10.57/10.80 8.57/9.15 9.98/10.61 11.04/11.69 8.20/8.61 9.83/10.30 11.06/11.56 8.58/8.85 10.11/10.22 11.23/11.22 8.84/9.42 10.23/10.94 11.28/12.10

Img.5 6.01/6.65 7.13/7.93 8.01/8.72 7.00/7.41 8.10/8.64 8.92/9.55 6.79/6.84 8.18/8.42 9.20/9.57 7.06/7.09 8.28/8.24 9.18/8.97 7.41/7.67 8.53/8.98 9.34/9.94

Img.6 5.40/6.09 6.75/7.48 7.83/8.51 5.85/6.34 7.21/7.73 8.28/8.81 5.69/5.89 7.14/7.44 8.21/8.61 6.01/6.55 7.47/7.97 8.60/9.02 6.30/6.80 7.71/8.28 8.79/9.42

Img.7 4.12/4.76 5.43/6.13 6.51/7.24 4.39/4.85 5.72/6.22 6.80/7.32 3.99/4.23 5.44/5.72 6.56/6.91 4.42/4.82 5.88/6.26 7.03/7.35 4.67/5.09 6.05/6.57 7.15/7.75

Img.8 4.81/5.47 6.28/6.96 7.47/8.11 5.24/5.71 6.69/7.17 7.85/8.33 4.73/4.95 6.38/6.67 7.68/8.03 5.17/5.57 6.71/6.99 7.92/8.12 5.44/5.82 6.88/7.31 8.02/8.53

Img.9 3.32/3.92 4.65/5.31 5.73/6.42 3.66/4.12 5.02/5.50 6.10/6.60 3.10/3.35 4.69/5.03 5.98/6.36 3.56/3.91 5.02/5.37 6.18/6.49 3.80/4.14 5.18/5.59 6.26/6.75

Img.10 5.74/6.46 7.22/7.96 8.45/9.10 6.16/6.69 7.61/8.15 8.80/9.33 5.69/5.96 7.19/7.56 8.45/8.87 6.05/6.60 7.61/8.08 8.87/9.25 6.45/6.93 7.89/8.40 9.05/9.61

Img.11 3.83/4.51 5.07/5.80 6.11/6.86 4.19/4.70 5.45/5.98 6.48/7.02 3.83/4.10 5.15/5.50 6.27/6.68 4.16/4.67 5.46/5.95 6.53/6.95 4.47/4.99 5.73/6.33 6.73/7.41

Img.12 5.06/5.72 6.15/6.90 7.02/7.81 5.62/6.12 6.72/7.28 7.58/8.17 5.82/5.98 7.05/7.34 7.96/8.37 6.00/6.47 7.22/7.67 8.14/8.54 6.13/6.57 7.25/7.80 8.09/8.75

Avg. 5.55/6.23 6.89/7.63 7.96/8.52 6.06/6.55 7.39/7.92 8.44/8.98 5.73/5.94 7.22/7.53 8.38/8.77 6.11/6.49 7.53/7.84 8.63/8.85 6.37/6.81 7.72/8.24 8.75/9.36

(a) Input (PSNR=22.50) (b) TV (PSNR=29.25) (c) NLM (PSNR=29.64) (d) NLTV (PSNR=29.97) (e) NLSTV1 (PSNR=30.22)

(a) Input (PSNR=20.00) (b) NLM (PSNR=28.06) (c) STV1 (PSNR=28.46) (d) NLTV (PSNR=27.94) (e) NLSTV1 (PSNR=28.77)

Fig. 3. Image denoising examples. Close-ups of noisy inputs and their corresponding denoised versions. Top row: grayscale denoising of input image with
noise level σn = 0.075. Bottom row: color denoising of input image with noise level σn = 0.1.

are on par with those in the image denoising case. Indeed, TV
is the least performing regularizer, NLTV and STV1 perform
comparably, while NLSTV1 consistently outperforms all the
other regularizers both on the grayscale and color images.
Representative deblurring examples are shown in Fig. 4.

C. Image reconstruction from sparse Fourier samples

In this section we examine the problem of image recon-
struction from a limited number of Fourier measurements.
In this case the system matrix is expressed as A = MF ,
where F represents the Fourier transform while M is a
masking operator that retains only a subset of the Fourier
coefficients and discards the rest. For our comparisons we
consider a mask consisting of 32 radial lines. This corresponds
to retaining about 7% of the Fourier coefficients. The Fourier
measurements are further corrupted by complex Gaussian
noise at three different levels. These correspond to a SNR of
the fully sampled image in the Fourier domain of 10, 20, and
30 dBs. The adopted forward model is closely related to the
one encountered in magnetic resonance imaging (MRI). The
main difference is that in our case the underlying image is real-
valued rather than complex-valued. Similarly to the deblurring
problem, we use fixed weights for the non-local regularizers.

These weights are computed from the back-projected image
ub = FHMTv. Finally, regarding the stopping criterion of the
minimization algorithm, the number of maximum iterations is
set to 200.

In Table III we provide the ISNR scores of all the meth-
ods under comparison on both grayscale and color images.
Similarly to the previous two inverse problems, we observe
that on average our NLSTV1 regularizer leads to the best
reconstruction performance. On the contrary, NLTV shows a
different behavior and does not perform as well as it did in the
denoising and deblurring tasks. In fact, the results indicate that
it is the worst performing method. This might be due to the
computation of the non-local weights from the back-projected
images whose quality are rather poor compared to the ground-
truth data. If this is the case, then NLSTV1 is less sensitive
in the choice of the non-local weights since it seems not to be
affected as much as NLTV.

VI. CONCLUSIONS

In this work we combined ideas from local and non-local
regularization strategies and proposed a novel family of non-
local functionals to regularize inverse imaging problems. Our
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TABLE II
ISNR COMPARISONS ON GRAYSCALE/COLOR DEBLURRING

Gaussian PSF
Method TV/VTV STV1 NLTV (5×5) NLSTV1 (7×7)

BSNR 20 dB 25 dB 30 dB 20 dB 25 dB 30 dB 20 dB 25 dB 30 dB 20 dB 25 dB 30 dB

Img.1 4.19/4.81 5.28/5.84 6.49/6.97 4.55/4.99 5.67/6.04 6.88/7.20 4.63/4.98 5.70/6.00 6.88/7.11 4.75/5.34 5.91/6.43 7.13/7.52

Img.2 5.00/5.78 5.67/6.31 6.69/7.21 5.29/5.81 6.01/6.39 7.04/7.32 5.52/6.15 6.21/6.67 7.16/7.54 5.74/6.41 6.47/6.96 7.46/7.81

Img.3 4.41/5.19 5.58/6.33 6.89/7.56 5.12/5.54 6.27/6.68 7.52/7.92 5.09/5.08 6.19/6.16 7.45/7.44 5.19/5.64 6.35/6.81 7.65/8.12

Img.4 4.65/4.81 5.75/5.82 6.83/6.86 5.02/5.00 6.07/6.00 7.06/6.97 4.90/4.81 6.12/6.00 7.28/7.17 5.17/5.26 6.26/6.32 7.28/7.31

Img.5 4.07/4.65 5.19/5.60 6.54/6.84 4.78/5.09 5.95/6.09 7.35/7.40 4.78/4.79 5.96/5.80 7.44/7.15 4.94/5.14 6.16/6.19 7.65/7.58

Img.6 3.14/3.60 4.00/4.37 5.07/5.37 3.41/3.72 4.35/4.56 5.43/5.61 3.41/3.61 4.38/4.46 5.52/5.60 3.56/3.93 4.53/4.81 5.66/5.89

Img.7 2.58/2.92 3.08/3.40 3.81/4.13 2.74/2.99 3.28/3.50 4.02/4.24 2.75/2.89 3.31/3.44 4.10/4.26 2.81/3.09 3.38/3.67 4.18/4.44

Img.8 3.62/4.10 4.39/4.84 5.33/5.74 3.93/4.21 4.68/4.95 5.59/5.85 3.92/4.05 4.67/4.80 5.59/5.76 4.02/4.33 4.81/5.14 5.75/6.05

Img.9 3.72/4.01 4.70/4.92 5.73/5.89 3.96/4.10 4.98/5.07 5.98/6.03 4.20/4.18 5.13/5.11 6.12/6.09 4.18/4.26 5.22/5.25 6.23/6.22

Img.10 3.16/3.64 3.49/3.90 4.17/4.56 3.42/3.77 3.73/4.01 4.42/4.67 3.50/3.78 3.77/3.93 4.40/4.53 3.52/3.90 3.82/4.14 4.51/4.79

Img.11 3.00/3.33 3.90/4.19 4.92/5.14 3.27/3.46 4.20/4.35 5.16/5.28 3.18/3.26 4.10/4.18 5.14/5.25 3.34/3.51 4.28/4.44 5.29/5.44

Img.12 3.08/3.62 4.11/4.60 5.32/5.74 3.48/3.88 4.60/4.94 5.82/6.10 3.63/3.96 4.79/5.07 6.12/6.38 3.68/4.11 4.84/5.21 6.13/6.42

Avg. 3.72/4.21 4.60/5.01 5.65/6.00 4.08/4.38 4.98/5.21 6.02/6.22 4.13/4.29 5.03/5.13 6.10/6.19 4.24/4.58 5.17/5.45 6.24/6.47

Motion PSF
Method TV/VTV STV1 NLTV (5×5) NLSTV1 (7×7)

BSNR 20 dB 25 dB 30 dB 20 dB 25 dB 30 dB 20 dB 25 dB 30 dB 20 dB 25 dB 30 dB

Img.1 6.11/6.74 7.93/8.43 10.18/10.55 6.54/6.95 8.36/8.66 10.61/10.81 6.59/7.04 8.40/8.74 10.59/10.89 6.93/7.45 8.76/9.18 10.98/11.31

Img.2 6.62/7.34 8.02/8.60 9.94/10.42 7.12/7.57 8.62/8.94 10.66/10.86 7.19/7.73 8.76/9.14 10.78/11.04 7.56/8.02 9.04/9.37 11.00/11.21

Img.3 6.12/6.93 8.24/9.05 10.77/11.55 6.83/7.36 9.03/9.56 11.60/12.12 6.83/6.98 9.03/9.16 11.58/11.79 7.03/7.70 9.30/9.97 11.91/12.53

Img.4 7.89/7.79 10.41/10.10 13.19/12.71 8.40/8.05 10.93/10.41 13.69/13.02 8.13/8.03 10.84/10.39 13.60/12.98 8.76/8.57 11.29/10.92 14.00/13.50

Img.5 6.10/6.38 8.34/8.29 10.99/10.68 6.93/6.90 9.30/8.93 12.06/11.45 7.05/6.84 9.46/8.87 12.14/11.35 7.36/7.28 9.83/9.39 12.60/11.90

Img.6 5.14/5.47 6.85/7.03 9.10/9.11 5.56/5.69 7.33/7.30 9.60/9.43 5.61/5.78 7.44/7.54 9.70/9.78 5.88/6.10 7.73/7.83 10.03/10.03

Img.7 4.78/5.33 6.58/7.10 8.93/9.39 5.09/5.44 6.89/7.21 9.22/9.50 5.17/5.46 7.00/7.31 9.26/9.58 5.35/5.81 7.20/7.65 9.51/9.91

Img.8 5.68/6.32 7.37/7.97 9.47/10.02 6.06/6.50 7.79/8.20 9.92/10.29 5.89/6.16 7.59/7.89 9.71/10.03 6.19/6.61 7.95/8.33 10.10/10.43

Img.9 6.15/6.42 8.35/8.55 10.95/11.06 6.50/6.58 8.71/8.74 11.31/11.29 6.53/6.69 8.68/8.78 11.19/11.20 6.79/6.84 8.98/8.98 11.53/11.45

Img.10 4.81/5.38 6.03/6.53 7.92/8.35 5.18/5.55 6.47/6.75 8.40/8.61 5.13/5.32 6.32/6.51 8.18/8.39 5.32/5.68 6.62/6.91 8.56/8.79

Img.11 5.67/6.01 7.99/8.20 10.71/10.82 6.03/6.16 8.36/8.39 11.07/11.03 5.82/6.04 8.17/8.32 10.89/10.97 6.22/6.40 8.58/8.71 11.30/11.37

Img.12 5.47/6.02 7.72/8.19 10.51/10.83 6.08/6.40 8.40/8.63 11.17/11.31 6.38/6.96 8.89/9.35 11.64/12.01 6.59/7.00 9.03/9.37 11.84/12.08

Avg. 5.88/6.34 7.82/8.17 10.22/10.46 6.36/6.60 8.35/8.48 10.78/10.81 6.36/6.59 8.38/8.50 10.77/10.83 6.67/6.96 8.69/8.88 11.11/11.21

(a) Input (PSNR=20.17) (b) TV (PSNR=25.64) (c) STV1 (PSNR=26.25) (d) NLTV (PSNR=26.55) (e) NLSTV1 (PSNR=26.77)

(a) Input (PSNR=21.68) (b) VTV (PSNR=27.51) (c) STV1 (PSNR=27.72) (d) NLTV (PSNR=27.67) (e) NLSTV1 (PSNR=28.10)

Fig. 4. Image deblurring examples. Close-ups of blurred and noisy inputs and their corresponding deblurred versions. Top row: grayscale deblurring of input
image degraded by motion blur and noise level of BSNR=20 dBs. Bottom row : color deblurring of input image degraded by Gaussian blur and noise level
of BSNR=25 dBs.

non-local regularizers differ from the existing ones in the sense
that they employ a non-local version of the structure tensor
as the regularization operator. Therefore, they depend on the
standard image gradient rather than the graph gradient. This
way we are able to exploit both the local structural regularity
and the non-local self-similarity properties of natural images.
Further, we proposed an efficient minimization algorithm that

is based on a variable splitting strategy. Finally, we assessed
the reconstruction performance of our regularizers on several
inverse imaging problems. Our reconstruction results were
shown to compare favorably to the ones obtained by other
competing local and non-local regularization methods.
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TABLE III
ISNR COMPARISONS ON GRAYSCALE/COLOR SPARSE FOURIER RECONSTRUCTION

Method TV/VTV STV1 NLTV (5×5) NLSTV1 (7×7)

PSNR 10 dB 20 dB 30 dB 10 dB 20 dB 30 dB 10 dB 20 dB 30 dB 10 dB 20 dB 30 dB

Img.1 2.39/2.79 2.98/3.35 3.78/3.98 2.53/2.86 3.29/3.56 4.16/4.31 2.32/2.77 2.88/3.52 3.55/4.24 2.60/2.93 3.48/3.87 4.39/4.66

Img.2 3.58/4.47 3.85/4.67 5.09/5.81 3.86/4.56 4.09/4.74 5.43/5.99 3.48/4.34 3.36/4.36 4.27/5.28 4.02/4.73 4.37/5.11 5.75/6.35

Img.3 1.82/2.19 2.58/2.91 3.07/3.32 2.14/2.39 2.92/3.15 3.42/3.61 1.68/2.18 2.43/2.99 2.83/3.44 2.14/2.34 3.09/3.44 3.61/3.98

Img.4 2.58/3.26 4.01/4.41 4.76/4.91 2.88/3.42 4.29/4.62 5.03/5.18 2.24/3.20 3.19/4.21 3.66/4.67 3.06/3.84 4.53/5.20 5.19/5.81

Img.5 2.67/3.37 3.69/4.45 4.23/5.07 3.08/3.70 4.21/4.89 4.88/5.64 2.60/3.35 3.70/4.68 4.29/5.42 3.10/3.64 4.39/5.01 5.12/5.79

Img.6 1.68/2.14 2.07/2.46 2.43/2.78 1.82/2.22 2.27/2.62 2.68/3.02 1.61/2.07 1.92/2.39 2.24/2.78 1.87/2.30 2.32/2.76 2.75/3.21

Img.7 1.48/1.82 1.95/2.21 2.34/2.46 1.64/1.89 2.16/2.34 2.59/2.66 1.33/1.65 1.86/2.09 2.29/2.44 1.63/1.94 2.20/2.40 2.63/2.72

Img.8 2.10/2.40 2.69/2.86 3.00/3.08 2.30/2.52 2.92/3.03 3.26/3.30 2.02/2.22 2.51/2.74 2.78/3.00 2.35/2.62 2.99/3.13 3.32/3.40

Img.9 1.56/1.72 1.91/1.92 2.04/2.02 1.69/1.78 2.06/2.03 2.22/2.16 1.46/1.60 1.80/1.85 1.96/1.99 1.75/1.84 2.10/2.01 2.26/2.10

Img.10 2.67/3.16 2.87/3.41 3.67/4.04 2.87/3.25 3.10/3.51 3.92/4.21 2.66/2.98 2.84/3.30 3.59/4.04 2.83/3.28 3.14/3.57 3.99/4.27

Img.11 1.05/1.34 1.53/1.69 1.80/1.85 1.21/1.43 1.74/1.83 2.02/2.05 0.90/1.19 1.37/1.60 1.64/1.82 1.16/1.47 1.73/1.87 2.01/2.09

Img.12 1.02/1.48 1.45/1.88 1.76/2.14 1.23/1.61 1.76/2.11 2.10/2.44 1.04/1.56 1.55/2.13 1.85/2.45 1.28/1.68 1.87/2.28 2.25/2.64

Avg. 2.05/2.51 2.63/3.02 3.16/3.46 2.27/2.64 2.90/3.20 3.48/3.71 1.94/2.43 2.45/2.99 2.91/3.46 2.32/2.72 3.02/3.39 3.61/3.92

(a) Input (PSNR=26.34) (b) TV (PSNR=31.43) (c) STV1 (PSNR=31.78) (d) NLTV (PSNR=30.61) (e) NLSTV1 (PSNR=32.09)

(a) Input (PSNR=24.48) (b) VTV (PSNR=28.89) (c) STV1 (PSNR=29.10) (d) NLTV (PSNR=28.69) (e) NLSTV1 (PSNR=29.68)

Fig. 5. Examples of image reconstruction from sparse Fourier measurements. Close-ups of compressed and noisy inputs and their corresponding reconstructed
versions. Top row: grayscale input (back-projected) image sampled with a radial mask of 32 lines and at noise level of SNR=30 dBs. Bottom row: color input
(back-projected) image sampled with a radial mask of 32 lines and at a noise level of SNR=20 dBs.
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