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Abstract—We introduce a novel family of invariant, convex,
and non-quadratic functionals that we employ to derive regu
larized solutions of ill-posed linear inverse imaging proleems.
The proposed regularizers involve the Schatten norms of the
Hessian matrix, computed at every pixel of the image. They
can be viewed as second-order extensions of the popular tbta
variation (TV) semi-norm since they satisfy the same invaance
properties. Meanwhile, by taking advantage of second-orde
derivatives, they avoid the staircase effect, a common aftct
of TV-based reconstructions, and perform well for a wide
range of applications. To solve the corresponding optimiz#on
problems, we propose an algorithm that is based on a primal-
dual formulation. A fundamental ingredient of this algorit hm is
the projection of matrices onto Schatten norm balls of arbitary
radius. This operation is performed efficiently based on a diect
link we provide between vector projections ontol, norm balls
and matrix projections onto Schatten norm balls. Finally, we
demonstrate the effectiveness of the proposed methods thrgh
experimental results on several inverse imaging problems ith
real and simulated data.

Index Terms—Image reconstruction, Hessian operator, Schat-
ten norms, matrix projections, eigenvalue optimization.
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I. INTRODUCTION

reason is that TV favors vanishing first-order derivatividsaus,

it tends to result in piecewise-constant solutions evennwhe
the underlying images are not necessarily piecewise cotsta
This tendency is responsible for oversharpening the csintra
along image contours and can be a serious drawback in many
applications.

A common workaround to prevent the oversharpening of
regions with smooth intensity transitions is to replace TV
by functionals that involve higher-order differential ope
tors, because higher-order derivatives can potentiakyore
a wider class of images. Often, moving from piecewise-
constant to piecewise-linear reconstructions offers esfaat
tory improvement in the fitting of smooth intensity changes,
so that most of the published functionals involve second-
order differentials. Such regularizers have been consijer
mostly for image denoising, either combined with TV [8]-
[12] or in a standalone way [13]-[17]. These recent advances
motivate us to investigate a class of regularizers that wi&pe
on matrix norms of the Hessian. These regularizers enjoy
most of the favorable properties of TV; namely, convexity,
contrast, rotation, translation, and scale invariance tu@a

INEAR inverse problems arise in a host of imaging app|multiplicative_ qonst_ant), while they ayoid the staircaskea
cations, ranging from microscopy and medical imagingy not penalizing first-order polynomials.

to remote sensing and astronomical imaging [1]. The task isThe key contributions of this work are as follows:

to reconstruct the underlying image from a series of degtade 1) The identification of a novel family of invariant functien
measurements. These problems are often formulated within a = 3|5 that involve Schatten norms of the Hessian matrix,

variational framework, where image reconstruction cands c
as the minimization of an energy functional subject to some

penalty. The role of the penalty is significant, since it ire@®
certain constraints on the solution and considerably affée
quality of the reconstruction.

The importance of choosing an appropriate penalty has

initiated the development of regularization functionatstt

can effectively model certain properties of natural images

A popular regularization criterion is the total-variati¢nV)

computed at every pixel of the image. These are used
in a variational framework to derive regularized solu-
tions of ill-posed linear inverse imaging problems. Our
functionals capture curvature information related to the
image intensity and lead to reconstructions that avoid
the staircase effect.

2) A general first-order algorithm for solving the resulting
constrained optimization problems under any choice of
Schatten norm. The proposed algorithm relies on our

semi-norm [2] which has been successfully applied to sévera
imaging problems such as image denoising, restoration [3],
[4], inpainting [5], zooming [6], and MRI reconstruction][7

TV owes its success to its ability to preserve the edges 0f3)

the underlying image well. Its downside, however, is that it
introduces blocking artifacts (a.k.ataircase effe¢t[8]. The
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derivation of a primal-dual formulation and copes with
the non-smooth nature and the high dimensionality of
the problem.

A direct link between matrix projections onto Schatten
norm balls and vector projections onig norm balls.
This link enables us to design an efficient method for
performing matrix projections. Although it is a funda-
mental component of our optimization algorithm, our
result is not specific to the Hessian and can potentially
have a wider applicability.

The rest of the paper is organized as follows: In Section I,
we discuss regularization functionals that are commongdus
in imaging problems. Then, by focusing on invariance princi
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ples we derive our novel family of non-quadratic secondeord® (V f (r)) = ¢ |V f (r)|”, wherev € R and ¢ is an arbitrary
functionals. In Section Ill, we present the discrete foratiolh constant.

of th? problem aqd we describe the proposed optlmlzat|0nAs a direct consequence of Theorem 1, we see that the
algorithm. In Section IV, we assess the performance of oluor

. . . X . llowing gradient-based regularizers are the only chate
approach for several linear inverse imaging problems with e 22 L ) . . .
. . . .~ . _regularization satisfying the required invariance prdipsr
periments on standard test images and real biomedical Bnage® . T . .
noring the multiplicative constamtof the potential function,

We conclude our work in Section V. Proofs of mathematica - o
. . . which can be absorbed by the regularization parameter, e ge
statements are given in Appendices.

Il. DERIVATIVE-BASED REGULARIZATION R(f):/QWf ()" dr. @

The most commonly-used regularizers can be expressedsgsce we are also interested in convex regularization fanet
als, we shall focus on cases where> 1 in (2). A popular
R = /Q(I)(Df (r)) dr, @ instance of convex functionals arises if we chooese= 1,
which corresponds to the TV functional. This regularizer

where f is an image,Q C R?, D is the regularization . o >
: . . enjoys an additional property, that of contrast covariance
operator (scalar or multi-component) acting on the image,

and ® (-) is a potential function. Typical choices f@ are

differential operators such as the Laplacian (scalar apgra B. Hessian Schatten-Norm Regularization

or the gradient (vectorial operator), while the potentisdtion  Aq aready mentioned, the use of TV, which is the best rep-
® usually involves a norm distance. For many years, tgqeniative of the gradient-based regularization farsilfters
prefe_rred choice for the potentllal function hgs been tha,m from certain drawbacks. Therefore, for the reasons spdcifie
Euclldeaq norm, beqapse of its mathematlcal trgctab|ht§t 3in the introduction, we are interested in differential agiers
computational simplicity. However, it is now widely dOC'of higher-order and in particular of the second orderNn

umented that non-quadratic potential functions can lead dnensions. the complete spectrum of second-order disat
improved results; they can be designed to be less sensitj i

/ _ W& mbodied in the Hessian operator,
to outliers and therefore provide better edge reconstmct

typical example is TV, which for smooth images corresponds Jrir (£) frym, (T)

to the L; norm of the magnitude of the gradient. Hf(r) = P (1) oo () | (3)
Our present goal is to introduce new regularization func- e e

tionals of the form of (1) which amounts to specifying somgnere frur, (¥) = 3 -82 _f(r). Indeed, with the aid of the

suitable linear operatoD, and potential functionb. To do  4oqsian V\;e can cor’rﬁpajte any second-order derivativé(of

so, certain requirements should be fulfilled. In partic;ulaés ngsf (r) = ul#Hf(r)vs, whereus = (cosd, sinf)

following the example of TV, we restrict ourselves to regula 5 g vy = (cos ¢, sin ¢) are unit-norm vectors specifying the

lzation operators th_at commute with translation and_ Sgalmdirections of differentiation and)T is the transpose operation.
gnd potgntlal fgnctlons th".ﬂ preserve these prop_ezrt|§$ewh| Having specified the regularization operair, the next
introducing additional rotation invariance. Our motiwatifor step is to investigate which class of potential functiohs

enforcing these invariances is that, similarly to what ss¢ase | 4< 1o translation-, rotation-, and scale-invariantosde

in many physical systems, one should opt for reconstructigpder regularizers. Next, we provide Theorem 2 which com-

?Igor:cthms;hat Iefaflhto sollgqonts Wh'(f[h ari\notdszt_ecteclj dbg\etely characterizes the form cb, under these prerequi-
ransformations of the coordinate system. An additional Ugq ~gafore presenting this result, we first give the gen-

sirable requwem_ent IS tht the regulanzers shpulq be ®OMNVaral definition of a Schatten matrix norm [18] that will
to ensure that if a minimum exists, then this is a globa|

. . . 9% used in the sequel, and introduce some of the adopted
one. Furthermore, convexity permits the design of eﬁ'c'e%tation We denote the set of unitary matricesl&s —

minimization techniques. {XeCm:X ! =X}, whereC is the set of complex
) o numbers and~)H is the Hermitian transpose. We also denote

A. Gradient Norm Regularization the set of positive semidefinite diagonal matrice®as*"> =

We would like our regularization operator to be translatiofiX € R’**"2 : X (i, j) = 0 Vi # j }, whereR is the set of
and scale invariant. Therefore, a reasonable choiceldor real non-negative numbers.
is some form of derivative operator. Based on this, we first e n .
characterize the complete class of gradient-based réggiar D_ef'”'“on _1 (Schatten norms)Let)_(_e Chaxre be a mag'x
satisfying all the required invariances. This is acconmgis with the singular-value decompos_mon (SVIX_) = UXV7,
by Theorem 1 which specifies the valid form for the potenti?ﬂ'hereU € U™ and V' € U™ consist of the singular vectors

functions®. The proof of this theorem is given in Appendix A.Of X, andX € D™ ™2 consists of the singullar va!ues o
The Schatten norm of order (S, norm) of X is defined as
Theorem 1. Let R (f) be of the form(1), whereD is the

gradient operator andf is continuously differentiableR ( f) min(n1,n2)

is a translation-, rotation-, and scale-invariant funatial, if 1X]ls = E b
. . . . P

and only if the potential functio® : R? — R is of the form: k=1

=

|
qQ
ol
s

(4)
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wherep > 1, and o (X) is the k-th singular value ofX, in our previous work in [19], where we followed another path
which corresponds to thé:, k) entry of 3. for extending TV based on rotational averages of directiona
derivatives. To the best of our knowledge, the Hessian $ahat

Definition 1 implies that theé_‘p norm of a matrix X norms forp # 2,00 have not been considered before in the
corresponds to the, norm of its singular-values vector .
context of inverse problems.

o(X) € Rfji“("l’"z). This further means that all Schatten
norms are unitarily invariant. Moreover, we note that the [1l. VARIATIONAL |IMAGE RECONSTRUCTION

family of S, norms includes three of the most popular matrix £rom now on, we focus on the discrete formulation of image

norms, i.e., the nuclear/trace norm= 1), the Frobenius norm yq.qnstruction. Hereafter, to avoid any confusion betwtaen
(p = 2) and the spectral/operator norm ¢ oc). continuous and the discrete domains we will use bold-faced

Theorem 2. LetR (f) be of the forn(L), whereD is the Hes- Symbols to refer to the discrete manipulation of the problem
sian operator andf is twice continuously differentiabl& ( f) . .
is a translation-, rotation-, and scale-invariant funatial, if A. Discrete Problem Formulation

and only if the potential functio® : R2*2 — R is of the form: ~ Our approach for reconstructing the underlying image from
O (Hf (1) = B (As(x) /1S @)g ) IIHSf (@)% , where the measurements is based on the linear observation model

v € R and ®, is a zero-degree homogeneous function of the y=Ax+w, (7)

Hessian eigenvaluesy (r). whereA € RM*N is a matrix that models the spatial response

The proof of Theorem 2 is given in Appendix A. Now,of the imaging device, whilyy € RM andx € RY are the
according to it, the admissible second-order regularjzeith  vectorized versions of the observed image and the image to be
respect to the invariance properties of the coordinateesyst estimated, respectively. Apart from the effect of the ofmra
are those depending on the Schatten norms of the HessianA licting on the underlying image, another perturbation is the
we setd, = 1, we obtain the following regularization family measurement noise, which is intrinsic in the detection @sec

This degradation factor is represented in our observatioteh

R(f)= / |Hf(r)||s dr,Vp>1andv e R. (5) by w that we, here on, will assume to be i.i.d Gaussian noise
Q ! with variancecs?,.
To further ensure convexity we need to impose that 1. Fi- The recovery ok from the measuremenjs belongs to the

nally, for our regularizers to also enjoy the contrast-c@rece category of linear inverse problems. Usually, for the casfes
property (similar to TV), we focus on the case where- 1. practical interest, it isll-posed [20]: the operatorA is either
Consequently, we define our proposed family of non-quadratii-conditioned or singular. This is dealt with in the var@nal

second-order regularization functionals as framework by forming an objective function
1 2
R (f) :/ I#7f (r)lls, dr,¥p > 1. (6) p(x) =3 lly - Axl, +7¢ (x) @)
Q P

whose role is to quantify the quality of a given estimate.

The introduced functionals, depending on the Hessian, legfe first term, also known adata fidelity corresponds to
to piecewise-linear reconstructions. These reconstmustcan the negative Gaussian log-likelihood and measures how well
better approximate the intensity variations observed lma& 5 candidate estimate explains the observed data. The second
images than the piecewise-constant reconstructions gedvi term (egularizatio) encodes our beliefs about certain char-
by TV. Thus, they are able to avoid the staircase effegfeteristics of the underlying image. Its role is to narrowdo
Moreover, since the Hessian gfat coordinates is a2 X 2 the set of plausible solutions by penalizing those that do no
Symmetric matriX, the SVD in the Schatten norm deflnltlogansfy the assumed properties_ The paramet_em providesa
reduces to the spectral decomposition and the singulaesalgpajance between the contribution of the two terms. The image
correspond to the absolute eigenvalues, which can be ca@construction problem is then cast as the minimizatior8df (

puted analytically. Now, if we consider the intensity magl# and leads to a penalized least-squares solution.
image as a 3-D differentiable surface, then the two eigemegl

of the Hessian at coordinatascorrespond to the principal B. Discrete Hessian Operator and Basic Notations

curvatures. They can be used to measure how this surface this work we focus on the class of Hessian Schatten-norm
bends by different amounts in different directions at th@hp  regularizers presented in (6). In the sequel, weHsto refer
Therefore, the proposed potential functions, which depepslthe discrete version of the Hessian operator. To simplifiy
upon those, can be interpreted as scalar measurements ofyiQysis, we assume that the image intensities o, & N,
curvature at a local surface patch. For example,3h@orm  grig are rasterized in a vector of size N = N, - N, so
(Frobenius norm) of the Hessian is a scalar curvature indgat the pixel at coordinate@ , j) maps to thenth entry of

commonly used in differential geometry, which quantifieXla x with n = jN, + (i + 1). In this case, the discrete Hessian
of flatness of the surface at a specific point. Therefore, Wperator is a mapping{ : RY — X, whereX = RV*2x2,

can safely state that the proposed regularizers incomorghr x ¢ RV, Hx is given as
curvature information about the image intensity.

Finally, we note that the regularizers obtained for two Hx], = [Arirx],  [ArrX], 7
choices ofp = 2, oo, coincide with functionals we considered " ArrX],  [Aryr,X],

9)
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our algorithm is based on a majorization-minimization (MM)

1,...,N,and A, ,,, A, and A, ., denote the forward approach (cf. [22]-[24] for instance). Under this framekyor
finite-difference operators [21] that approximate the seeo instead of directly minimizing (8), we find the solution vizet
order partial derivatives along the two dimensions of the insuccessive minimization of a sequence of surrogate fumetio
age. If we assume Neumann boundary conditions and use tih@ upper bound the initial objective function [25]. Our
standard representation of the image rather than the veetbr motivation for taking this path is that each of the surrogate

one, these operators are defined as

Tig2,j — 2Tiq1,j + Tij, 1 <1< Ny —2,
[Ahmx]i,] = .
TN,—1,j — TNy,js 1> N, —1,
(10a)
Tijq2 — 2T 541 + iy, 1< <Ny —2,
[ATzrzx]i,j = .
Ti N, —~1 = Ti,N,» j= Ny —1,
(10b)
Tit1,5+1 — Tit+l,j — Tij+1 T Ti 4,
[AryrX], = 1<i<N,—1landl<j<N,—I,

0, otherwise
(10c)

We equip the spac&” with the inner product-, -), and
norm |-|| . To define them, leX,Y € &, with X,,,Y,, €
R2%2Y n =1,...,N. Then we have

N
(X, Y)p=> tr(YX,) (11)
n=1
and
”X”X = <X7 X>X ) (12)

wheretr (+) is the trace operator. For the Euclidean spacée

functions is simpler to minimize, and we can rely on a gratlien
scheme that efficiently copes with the large dimensionality
the problem.

To obtain the surrogate functions, we upper bound the
data term of our objective function using the following ma-
jorizer [22], [26]

g% =5 ly - AxlE+dex) . (9)
where d (x,xg) = 3 (x— x0)" [l — ATA] (x—x0) is a
function that measures the distance betwseand x,. To
come up with a valid majorizer we need to ensure that
d(x,%x0) > 0, Vx, with equality if and only ifx = xq. This
prerequisite is true ikl — AT A is positive definite, which
implies thato > [|ATA||. The upper-bounded version of the
overall objective (8) can be written as

plxx) = Ix -zl + 7o (x)+e.  (16)
wherec is a constant and = xo +a~'A” (y — Axp). Then,

the next step is to iteratively minimize (16) wxt settingx,

to the previous iteration’s solution. As we see, in (16) ¢her
is no coupling betweer and the operatoA anymore, which
turns the minimization task into a much simpler one. In fact,
the minimizer of (16) can also be interpreted as the solution
of a denoising problem witlk being the noisy measurements.

D. Proximal Map Evaluation and Matrix Projections

we use the standard definition of the inner product and of the

norm. We denote them by, -), and||-||,, respectively.
The adjoint of# is the discrete operatok* : X ~ RY
such that

(Y, Hx), = (H'Y , x), . (13)

The MM formulation of our problem relies on the solution
of a simpler problem of the form

1
&:argmini Hx—z||§+7'w (%) + e (%), 17)

x€ER™
where.¢ is the indicator function of a convex sétthat repre-

This definition of the adjoint operator is a generalizatidn Qents additional constraints on the solution, such asipiogit
the Hermitian transpose for matrices. Based on the relaiony 1oy constraints. The convention is thai(x) takes the value
the inner products in (13), we show in Appendix B that fof for « ¢ ¢ and 0o otherwise. If (x) = 79 (x) + t¢ (x) is

anyY € X, it holds that

7171 T2T2

+an, (YOO + YD)

A S R e e

(14)

n

where Y is the (i,4) entry of the2 x 2 matrix Y,, and
A AR LAY

r1ir1? r1iT2’ T2T2

conditions.

C. Majorization-Minimization Algorithm

are the adjoint operators that correspon
to backward difference operators with Neumann boundaﬂp

a proper, closed, convex function, then the solution of (&7)
unigue and corresponds to the value of Mereau proximity
operator[27], defined as

1
prox, (z) = argmin = ||x — z||5 + 9 (x) .
xeRN 2

(18)

Jhe proximal map ofd (x) cannot always be obtained in
sed-form, and this is also the case for the regularizers
under study. For this reason, we next present a primal-dual
approach that results in a novel numerical algorithm, which
can efficiently compute the solution.

A fundamental ingredient of our proposed algorithm is the

Next, we present a general method to compute the mimirthogonal projection of matrices ont§, norm balls. This
mizer of the functional in (8), under any Hessian-baggd projection can be performed efficiently based on the folfmyvi
norm regularizer. Since these regularizers are non-smogihoposition, which provides a direct link between vector
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projections ontd, norm balls and matrix projections on Using Lemma 1 and noting that the dual of the dual norm
norm balls. This result is new, to the best of our knowledges the original norm [31], we write (20) in the equivalentrior
and its proof is provided in Appendix B. A relevant resultttha
can be considered as a converse statement of Proposition 1 ca
be found in [28, Theorem A.2].

1, = QX (Q, %), , (21)

where B, , denotes the€,-S, unit-norm ball, defined as
Proposition 1 (Schatten Norm Projectionshet’Y € C"t*"2 T
with SVD decompositiolyY = UXV#, whereU ¢ U™, Boo.q = {Q = [9?,95,,9%} c&:

n n1 XN 1 1
V € U™ and X € D™ "2, The orthogonal proljectllon oy Il <1¥n=1,.. .,N}. (22)
onto the sef3s, = {X e Crmxmz 1 [Xg, < p} is given by a

This alternative definition of the mixeé -S, norm allow us
Pss, (Y) = Udiag (P, (o (Y))) V7, to express it in terms of an inner product that involves thal du

where diag-) is the operator that maps a vector to a diagonaf!'a?”""ble_Q and the unit-norm balB ,. Moreover, fr_om_(22)
matrix andPg, is the orthogonal projection onto thig norm Itis st.ralghtfprward to See t.hat the orthogonal prOJecm
ball B. — {V  gUin(nn2) | vl < } of radius Boo,q IS optalned by projecting separately each subma;ix
q + SVl = P P onto a unit-normsS, ball (Bs,).
Based on Proposition 1, we design an algorithm for the Using (21) we re-write (19) as
orthogonal projection of a matri¥ onto the convex sefs, .
Our algorithm consists of three steps: (a) decompgsa its
singular vectors and singular values by means of the SVD; . . ) .
(b) project its singular values onto the correspondipgorm This formulation naturally leads us to the following minixma

. 1 2
X = argmin 5 ||x—z||2+anélg;( (Q, Hx), . (23)

xeC ,q

ball B,; and (c) obtain the projected matrix via singular valugrObIem
reconstruction (SVR) using the projected singular valuss a min _max £ (x,9) , (24)
the original singular vectors. X€C 2€Boo g

We next describe all of the steps leading to the proposeghere
algorithm that solves the problem 1 )
1 L(x,Q) = 3 Ix —z||3+7(H"'Q, x), . (25)
argmin — Hx—z||§—|—7'||’Hx||lp Vp>1. (19 . . . . i

xec 2 ’ Since the functiorC (x, ) is strictly convex inx and concave
With ||7'1X|\1,p we denote the discrete version of our proposéH 2, we have the guarantee that a saddle-value is attained

regularization family (6), wher: ||, ) stands for the mixed- [31], and, thus, the order of the minimum and the maximum
. ' T o 7T in (24) does not affect the solution. This means that there
S, norm, which for an argumenk = [\Ill U, \IJN} €

: . exists a saddle-pointx,€2) that leads to a common value
X is defined as . . . .
when the minimum and the maximum are interchanged, i.e.,

N
= \Iln ’\V/p Z 1 . 20 1 = <. € = i .
1,p Z [ ||sp (20) min QIenK?:j,q L(x,Q)=L (x, Q) nrélzsaiq min L(x,Q) .(26)

]

n=1

The discrete form of our regularizers highlights their tiela Based on this observation, we can now define the primal and
to the sparsity-promoting group norms, which are commontiual problems by identifying the primal and dual objective
met in the context of compressive sensing (see [29], féinctions, respectively. The l.h.s of (26) correspondshe t
instance). However, a significant difference is that in cagec minimization of the primal objective function (x), and the
the mixed norm is a vector-matrix norm rather than a vectoih.s to the maximization of the dual objective functioff2),
vector norm. Therefore, while the machinery we are using 1 )
shares some similarities with the one employed in the group(X) = hax L(x,Q) =[x~z +7l1Hx],, , @7)
vector-norm case, there are important differences, with th =
mos_t pronounced being the projec_tion.step. . . 5 () = min £ (x, Q)

Since the operator of our choice is the Hessian, which xeC
produces2 x 2 symmetric matrices at every coordinate of 1 2 1 2 1 2
x, ¥, € S* in (20), whereS? = {X € R?*?: XT = X}. 2 1P (v) = vllz + 2 b 2 Ivllz (28)
However, for reasons of completeness, in the following l@nmwhere P; is the orthogonal projection onto the convex et
where we derive the dual of thg-S, norm, we consider the andv = z — 7#*Q. Therefore, (26) indicates that we can

more general cas®,, € C"*"2. The proof of Lemma 1 is obtain the minimizerx of ¢ (x) from the maximizerQ of
provided in Appendix B and follows a similar line of thoughts (©2) through the relation

with the one presented in [30, Lemma 1]. The latter is about .
the dual norm of a mixed,-/, vector norm. x="Pc (Z - T'H*Q) : (29)

Lemma 1. Letp > 1, and letq be the conjugate exponent ofThis last relation is important, since in contrast to therai
p, i€, s+ 4 = 1. Then, the mixed norif|| , is dual to the problem (19), which is not continuously differentiablegth
mixed norm([-[|, . dual one involves the smooth functieriQ?). We can therefore
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solve it by exploiting its gradient. Indeed, using the pmype F. Closed Form ofS,-Norm Projections forg = 1, 2, co.

. . 2 .
that the gradient of a functioh (x) = [|x — Pc (x)||; is well  From proposition 1, we know that the matrix projection onto
defined and is equal t¥h (x) = 2 (x — Pc (x)) [4, Lemma  he B unit-norm ball is associated with the projection of the
4.1], we compute the gradient of(£2) as singular values of the matrix onto th8, ball. The latter is
Vs(Q) =7HPc (z —TH Q). (30) computed by normalizing the elements of the corresponding

_ _ ) vector by their Euclidean norm. Therefore, we have that
Therefore, the solution of our primal problem (19) is obgain

in two steps: (a) we find the maximizer of the dual objective B Hg?—”F A Q]| > 1
function (28) as described next, and (b) we obtain the smiuti Pis, (Stn) = Q if [ Q] <1 %9
through (29). " ’ =

This situation is advantageous since it allows us to avoiti bo
E. Maximization of the Dual Objective the SVD and the SVR steps. Consequently, this drastically re

uces the complexity of computing the projection. To coreput

At th|s_p0|nt, a main issue we need to deal with, is th#ue projection ontd3s__, we use that the projection onto the
the Hessian operatck does not have an empty null spacg, >

X : unit-norm ball corresponds to setting the elements that
and, thus, a stable inverse does not exist. Consequently, W& :
. o "+ 7" have an absolute value greater than one to one, and adding
cannot opt for a closed-form solution for the maximizer

of s(€2). This means that we have to resort to a numericgiale their original sign. Therefore, we readily get

iterative scheme. In this work, we employ Nesterov’s iteeat Pss.. (£2,) = Udiag(min (o (£2,),1)) v, (34)
method [32] for smooth functions. This is a gradient-based ; ]

scheme that exhibits convergence rates of one order highdlere 1 is a vector with all elements set to one and the
than the standard gradient-ascent method. To ensure eony@ift OPerator is applied component-wise. Note that, this result
gence of the algorithm, we need to choose an approprié'?ted'reC“y related to the smgu!ar vaIue_ thresholdlng ($vT
step-size. Since our dual objective is smooth with Lipgchiff€thod [34], [35] developed in the field of matrix rank
continuous gradient, we can use a constant step-size, tHflimization. The derivation of SVT in [34], [35] is techaiC
avoid a line search at every iteration. An appropriate sfeg- It relies on the characterization of the subgradient of the
is equal to the inverse of the Lipschitz constant<o$ (€2). nuclear norm [36]. By contrast, in our case the result conugs o

We derive an upper bound of this Lipschitz constant in tH&turally as an immediate consequence of Proposition 1 and
following proposition, whose proof is given in Appendix B. of the duality between the spectral and nuclear matrix norms
Finally, the projection of a matrix onto th&s, unit-norm ball

Proposition 2. Let L (s) denote the Lipschitz constant ofis related to the projection of its singular values onto e

Vs (2) of the dual objective function defined {@8). Then, ynit-norm ball. The latter is computed by the soft-threslig

it holds that operatorS,, (o (£2,,)) = max (o (2,,) — 7,0) [37], where the
L(s) < 6472. (31) max operator is applied component-wise. Therefore, based on

Proposition 1, we have that
From (26) and (28) it is clear that the maximizer of our

dual objective can be derived by solving the constrained Pss, () = Udiag(S, (o (22,))) V. (35)

maximization problem This last projection cannot in general be computed in closed

(32) form. The reason is that the threshojdis not known in
advance and needs to be estimated. This can be accomplised

with v = z — ~H*Q. A necessary step towards this directioySing one of the existing methods available in the litera-

is to compute the projection onto the sBt, ,, defined in ;urreeo[? Ifgo]v;[ﬁg-r]ﬁeizzgunnaallittely’(g c);uer &?Szhéh?hzlggxfzgﬁste
(22). This operation is accomplished by projecting indepen analvtically. as Yo (82n + ' '
dently each of theN componentsQ2, of Q onto the set v y Y

. 1 9 1 2
Q =argmax ; [Pc (v) = vl — 3 vl
QEBoo g

Bs, = iX cs?: ||X|\Sq < 1}. This projection is performed 0 Jf o1 () <1—02(2),
efficienty_followi_ng the thre_e _steps of the algorithm_ we, _ m(ﬂn)+gz(ﬂn)fl Jf 1= 0 () < 01 (D) <1+ 02 (),
proposed in Section 111-D, which is based on our Proposition .

Steps (a) and (c) are fairly easy to implement. Specifically, o1 (£2,) —1 JAf o1 (2n) > 14+ 02 (),
since the matrices of interest ele& 2 symmetric, we compute (36)

the SVD and the SVR steps in closed-form. Then, the MQghere the singular values are sorted in a decreasing oreler, i
cumbersome part of our algorithm is tiig norm projection o1 () > o2 ().

of the singular values, which for general values qoftloes

not exist in closed form. Fortunately, this operation idl sti _ )

feasible thanks to the recently developgdnorm projection G- Numerical Algorithm

algorithm [30]. This projection method is based on an ef- Equipped with all the necessary ingredients, we conclude
ficient proximity algorithm for¢, norms [33]. Moreover, in with a summarized description of the complete optimization
Section IlI-F we report three cases §f norms,q = 1,2,00, algorithm. Our method consists of two components that-inter
where the projection can be evaluated in closed-form. act. The first component is responsible for the majorization
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Algorithm 1 : Image reconstruction algorithm under Hessian- Algorithm 2 : denoi se(z, 7, p, Pc) — denoising algorithm
based/;-S, norm regularization. under Hessian-based-S,, norm regularization.
Input: y, A, 7>0,p>1,a>|ATA], Pe. Input: z, 7 >0, p>1, Pc.
Initialization: u; = xq, t; = 1, ¢1 = ¢ (Xo). Initialization: ¥, = Qy=0€ X, t; = 1.
while stopping criterion is not satisfiedo Output: x — optimal solution of (19).
s, < denoi se (un +a'AT (y — Au,), Z.p, 7’c); while stopping criterion is not satisfiedo
bt % Q, « Pp, (¥ + s=HPe (z— TH™T,));
Cnt1 = @ (Sn); tny1 @;
if ¢,y1 > ¢, then W1+ Qp + (i&::) (Q — Qp1);
Cn+1 = Cn; n<+<n—+1;
Xpt1 < Xn; end
Upp) — X, + t% (Sn — Xp); return Pe(z — 7H Qp_1);
else
problems. In particular, we consider the problems of image
Xp+1 Sn,

deblurring, sparse reconstruction from random samplesgém
Ui ¢ Sp + (iﬁj) (80— Xn); interpolation and image zooming. For the image deblurring
problem we compare our results against those obtained by

end using three alternative methods; namely, TV regulariratio
nentl regularization with the fully redundant Haar wavelet tfans,
end and the image deblurring version of the BM3D patch-based
retum x,: method [42]. In Haar’s case, we use the frame analysis frame-

work since it has been reported in the literature (c.f [4BHtt
he frame synthesis framework usually leads to inferiounltss

of the objective function, as we described in Sec. lil- or the rest of the inverse problems we provide comparisons
while the second one undertakes the minimization of the P P P

resulting upper-bounded version. Then, the algorithmede against TV and quadratic derivative-based regularizers.
by iteratively minimizing the majorizer that is formed bds® o Restoration Setting

the solution of the previous iteration. Since the convecgen . _ _
of this scheme can be slow in practice, to speed it up weFOr the image deblurring experiments, we use a set of 8

employ the FISTA algorithm [24]. This method exhibits S{ategraysc_?le |I|_”na_gétsr\]Nh|ch hav;:') bleen normalized so that their
of-the-art convergence rates by combining two consecutifiensities lie in the range qo, 1].

iterates, in an optimum way. A description of our image Thedpferformanceb?f t_he rl?etholds ugd;;fcomtpanfsor:és as-
reconstruction approach that is based on the monotonmmerﬁ essed for various biurring kerneis and difierent noiseley

of FISTA (MFISTA) [4] is given in Algorithm 1. The sub- " Particular, in our experiments we employ thyesint spread
routinedenoi se corresponds to the second component thg{nctlons(PSFs) to produce blurred versions of the images. We

finds the solution of (19). This minimizer is related to thé‘a\s/zr:gg?lﬁ;?rnm; SgFO;itdazdn?(r)?i:r?\gﬁﬁ@kne:rr?élaTrf?g\f/ilrnsgt]tw

proanlal map prO)T(H’H'Hl,p _bUt we can also mterpre.t & -as aPSFs have a support 6fx 9 pixel while the third one has a

denoising step under Hessian-baged, norm regularization. gnnort 0f19 x 19 pixel. As an additional degradation factor

The computation of theenoi se sub-routine is described in\ye consider Gaussian noise of three noise levels correggpnd

Algorithm 2 and is based on the primal-dual formulation thgf 5 piurred signal-to-noise-ratio (BSNR) 615,20, 25} dB

we proposed in Secs. IIl-D and IlI-E. _ respectively. The BSNR is defined as BSNRvar(Ax) /o2,
Finally, regarding the computational complexity of thgynere vaAx) is the variance of the blurred image ang

algorithm, it is only mildly higher than that of TV's. The g the standard deviation of the noise.

extra computational cost is due to (a) the use of a tensorRegarding the restoration task, for the methods that imvolv

(Hessian) instead of a vectorial (gradient) operator and (e minimization of an objective function this is performed

the projections onto th8s, balls instead of th&; ball. Our \hqer the constraint that the restored intensities musinlie

projections are somewhat more expensive because of the SYR convex set = {x ¢ R¥|z, € [0,1]¥n=1,...,N}.

and SVR steps. However, these steps are computed in cloggdaccomplish that, we use the corresponding projection

form. It is also worth mentioning that the proposed alganith o e ration P, which for a vectorx amounts to setting the

is highly parallelizable, since all the involved operaso@re gjements that are less than zero and greater to one, to zero

performed independently for each pixel of the image. and one, respectively. For the Hessian-based functionals w

use the minimization method proposed in Section I, while f

IV. EXPERIMENTAL RESULTS

T | he effecti f d |aoizati IThree of these images along with the motion-blur kernel usethe
0 evaluate the efrectiveness of our proposed regu aD'mat'experiments were obtained from http://www.wisdom.weiamac.il/~ levina/

framework, we report results for several linear inversegim@ papers/LevinEtalCVPR0O9Data.rar.
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TV- and Haar-based ones we employ the algorithm of [4]. The
latter belongs to the same category of minimization alparg

as ours with a comparable convergence behavior. The ré&iona
for this choice is that, the quality of the restoration withtn
depend on the choice of the minimization strategy but rather
on the choice of the regularizer. In all cases, the stopping
criterion is set to either reaching a relative normed déffere

of 10~° between two successive estimates, or a maximum of
100 MFISTA iterations. We also use 10 inner iterations fer th
solution of the corresponding denoising problem. Morepver
instead of using the true PSF that produces the blurred ispjage
we use a slightly perturbed version by adding Gaussian noise
of standard deviatioh0—3. The motivation is to test the perfor-
mance of the algorithms under more realistic conditiomg;esi

in practice the employed PSF normally contains some error
and thus deviates from the true one. Finally, in all the regabr
experiments the quality of the reconstruction is evaluated
terms of an increase in the SNR (ISNR), measured in dB.
The ISNR is defined as ISNR- 10log;, (MSEj,/MSEyy),
where MSE, and MSE,; are the mean-squared errors betweefig. 1. Restoration of the Face image degraded by Gaussiaringl and

i ; ssian noise corresponding to a BSNR level of 15 dB. (ayddegl image
the degraded and the original image, and the restored and( R = 21.76 dB), (b) TV result (PSNR = 25.36 dB), (¢) BM3Duies

original image, respectively. (PSNR = 26.51 dB), and (d}{.S: result (PSNR = 26.21 dB)

B. Image Restoration on Standard Test Images alternative approach.

In Table | we provide comparative restoration results for Beyond the ISNR comparisons, the effectiveness of the pro-
all the test images and all the combinations of degradatifRSed method can also be visually appreciated by inspecting
conditions (PSF and noise level). To distinguish between tf€ representative Face, Kids and House deblurring example

different Hessian-based regularizers, we refer to thesiggs ©f Figures 1 - 3. From these examples we can verify our initial
with & denoting the order of the Schatten norm. We repoffaims, that TV regularization leads to image reconstoms!i
the results obtained by using Schatten norms of order offa@t suffer from the presence of heavy block artifacts. &hes
two and infinity, which correspond to the well-known nucleaf'tifacts become more evident in regions where the image
Frobenius and spectral matrix norms, respectively. Fosske S characterized by smooth intensity transitions, and dwey
of consistency among comparisons, the reported results fgFPoNsible for shuffling details of the image and broadgnin
each regularizer, including Haar and TV, are derived usi§ fin€ structures. See for example the TV solution in Fig. 1,
the individualized (w.r.t. degradation conditions) regidation Where the image has cartoon-like appearance. Similar oigck
parameter, that gives the best ISNR performance. The resuf@§f€cts, which are even more pronounced, appear on the
of the BM3D algorithm are also optimized by providing thalaar-based reconstructions. Op thg ot.her_ _hand, even irs case
true standard deviation of the Gaussian noise. where the presence of the noise is significant, the Hessian-
On average, for all the tested images and degradation cBAS€d regularizers manage to avoid introducing pronounced
ditions, the BM3D algorithm produces the best PSNR scord¥fifacts and thus, they lead to reconstructions that areemo
However, despite its non-adaptive nature, our reguldozat faithful r_epresentanons qf the original content of the gma
scheme manages to provide comparable results. Regarq(i:rﬁﬁnpa”ng our resuI.tS with those of BM3D, we note that even
comparisons among the regularization techniques, theidfess " cases_whgre the final PSNR. favors the latter rgconstnruc'uo
based framework leads to improved quantitative results-co'c @s in Fig. 1, our restored images have certain advantage
pared to those of Haar and TV. The best SNR improvement, 6" €xa@mple, by a careful inspection of Figs. 1 and 2, one
average, is achieved for theS, regularizer, while comparable €@n clearly observe the presence of ripple-like artifastte
results are also obtained for tHéS, regularizer. While the BM3D solutions which do not appear in the Hessian-based
HS.. regularizer outperforms Haar and TV most of the timd€constructions.
the improvement is less pronounced than that of the other two ) ) .
regularizers. We can thus conclude, that as the order of fhe Deblurring of Biomedical Images
Schatten norm moves closer to 1, the reconstruction result©ur interest in image restoration is mostly motivated by
improve. This can be attributed to the fact that, in the emtre the problem of microscopy image deblurring. In widefield
case of order infinity, the corresponding regularizer tekés microscopy, the acquired images are degraded by out-afsfoc
account only the maximum absolute eigenvalue and thus fdilsir due to the poor localization of the microscope’s PSF.
to include additional information possibly provided by th&his severely reduces our ability to clearly distinguishefin
second eigenvalue. Overall, the improvement in perforrmangpecimen structures. Since a widefield microscope can be
over Haar and TV can be quite substantial (more than hfodeled in intensity as a linear space-invariant systenh, [44
dB), which justifies Hessian-based regularization as aleialihe adopted forward model in (7) is still valid and we can,
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TABLE |
ISNR COMPARISONS ON IMAGE RESTORATION FOR THREE BLURRING KERNELAND THREE NOISE LEVELS

Image Boat Face Fluor. Cells Hill House Kids Lena Peppers

BSNR | 15dB 20dB 25dB | 15dB 20dB 25dB |15dB 20dB 25dB | 15dB 20dB 25dB | 15dB 20dB 25dB |15dB 20dB 25dB | 15dB 20dB 25dB |15dB 20dB 25dB
Haar | 2.34 2.77 3.71 |2.37 2.80 3.88|236 241 3.19 (261 248 295|256 3.23 427320 3.50 445|284 267 3.20|230 3.43 5.10
TV | 259 295 3.81|3.60 396 478|284 2.84 348|285 2.65 3.07|291 349 445|415 425 493|352 3.25 3.64|3.24 431 5.69
HS~ | 2.63 3.03 3.88|4.32 471 5.62|3.61 3.62 432|295 274 322|328 392 492|433 461 542|3.60 342 391|3.52 435 5.59
HSy | 2.71 3.12 4.00|4.43 484 580|3.66 3.69 440|299 2.80 329333 399 5.00 441 470 5.51|3.67 3.51 4.01|3.63 452 5.78
HS1 | 275 3.18 4.07|445 4.88 584|3.65 3.70 4.41|3.00 2.82 3.32|3.33 397 499|442 470 5.53|3.71 3.55 4.06|3.71 4.67 5.93
BM3D | 2.88 3.37 4.32|4.75 5.14 6.08|3.70 3.75 4.39|3.04 3.00 3.51|3.51 4.07 492|451 4.66 527|378 3.70 4.24|3.79 4.76 591
Haar | 3.04 3.69 4.73 284 3.55 476|290 322 4.14|3.13 3.19 389|335 423 549|385 440 551|321 332 403|347 489 637
TV |3.20 3.80 4.77|3.71 430 541|326 3.50 4.30|3.27 3.30 3.93|3.57 435 550|448 495 587|379 3.78 4.36|4.32 5.84 7.26
HSoo | 3.22 3.84 481|438 495 6.16|3.92 420 504|332 339 4.06|3.87 478 6.00|4.62 513 6.15|3.85 3.890 452|439 575 7.03
HS2 | 3.32 395 496|448 5.08 6.35|3.98 427 512|338 346 4.15|3.94 487 6.10|4.74 525 6.27 |3.95 4.00 4.62|4.55 591 7.20
HS1 | 3.36 4.02 505|451 5.13 641|3.99 428 513|340 3.50 4.18|3.95 4.88 6.09|4.77 529 6.30 |4.00 4.04 4.68 |4.66 6.03 7.32
BM3D | 3.48 4.19 5.26 | 497 580 6.81|397 429 506|353 3.68 4.35|4.05 491 597|470 503 591|4.06 4.18 4.89|4.76 570 6.78
Haar | 3.89 5.11 692|433 575 7.74 370 4.60 6.30|3.55 4.10 546 |4.19 582 799|491 595 7.77|3.97 442 583|452 650 8.74
TV |3.88 502 6.78|4.61 599 7.93|3.86 468 632|356 4.05 539|420 576 7.86|5.10 6.07 7.77 | 422 4.58 5.92|5.28 7.39 9.01
HSw | 3.80 5.09 694|580 7.32 926|452 550 7.23|3.69 422 551|475 650 8.65|535 657 852|434 488 629|519 7.09 8.68
HS2 | 3.94 526 7.12|592 748 944|462 5.63 7.36|3.79 434 5.63 486 6.64 8.80 (547 6.72 8.69 | 4.48 5.03 6.45|538 731 892
HS1 |4.03 535 7.19|596 7.53 949 |4.64 566 7.37|3.84 439 564|486 6.65 8.78|5.50 6.75 8.67 |4.56 5.11 6.51|5.52 7.48 9.09
BM3D | 446 5.81 7.51|6.75 8.04 9.62|4.79 578 7.31|4.05 4.60 5.75|5.09 6.63 843|5.70 6.66 827|5.09 582 7.14|6.14 7.46 9.00

Gaussian blur

Uniform blur

Motion blur

(© (d) (©) (d)
Fig. 2. Restoration of the Kids image degraded by motionriigrand Fig. 3. Restoration of the House image degraded by unifoumriby and
Gaussian noise corresponding to a BSNR level of 20 dB. (ayddlegl image Gaussian noise corresponding to a BSNR level of 25 dB. (ayddlegl image
(PSNR = 21.84 dB), (b) Haar result (PSNR = 27.79 dB), (c) BM&3ult (PSNR =20.43 dB), (b) Haar result (PSNR = 25.92 dB), (c) TWie@SNR
(PSNR = 28.50 dB), and (d}{{S result (PSNR = 28.59 dB) = 25.93 dB), and (d}S> result (PSNR = 26.53 dB)

thus, employ the proposed framework for the restoration of The reported results refer to the restoration of the second
the underlying biomedical images. type of image-stacks, with the first ones serving as visual
To evaluate the practical relevance of our approach, W%ferences to evaluate the quality of the recgnstructiche T
provide deblurring experiments on two real images of flugize Of the image-stacks for the first specimen shown in
rescence specimens. For each sample we acquired two imdg@s: 4(2) and 4(b) ar@52 x 512 x 96 while the size of
stacks using a confocal microscope. This type of microscofté image stacks for the second sample shown in Figs. 5(a)
can reject out-of-focus light using a small aperture in fro@nd 5(b) ar&12 x 512 x 16. From each of the image-stacks
of the detector and can thus avoid the blurring effect, but W€ obtained a single image to work with, by computing the
the expense of more measurement noise. When the aper@#@/age intensity with respect to the z-axis. We did the same
is opened, the intensity of the incoming light is increased aobtain a _2D PSF out_of a sta_mdard dlffractlon-llmlted_3D PSF
the SNR is improved, but this time the measurements inclu¢del using the nominal optical parameters of the microscop
interference from adjacent out-of-focus objects. In thisecthe (numerical aperture, wavelength, optical zoom) [44].
final result is blurred and it is equivalent to an image acepiir  In Figs. 4(c) and 4(d) we present the restored images using
by a “cheaper” widefield microscope. For more details on thie/ and HS, regularization, while in Figs. 5(c) and 5(d) we
image acquisition we refer to [45]. provide the restored images using TV a@id&- regularization.
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TABLE Il
PSNRCOMPARISONS ON SPARSE IMAGE RECONSTRUCTION FROM
RANDOM SAMPLES FOR4 RATIOS OF OBSERVED PIXELS

(B&%Srvoc Grad. Lap. TV HSo HS2 HS:

2% (21.29 20.83 18.52 21.5£1.56 21.55
5% [22.96 22.87 21.22 23.27 23.323.33
8% |23.92 24.03 22.43 24.27 24.324.37
10% | 24.51 24.67 23.00 24.92 25.0P5.06
2% |22.53 22.39 19.68 22.97 23.0P3.01
5% |24.27 24.33 22.13 24.70 24.784.77
8% |25.34 25.49 23.69 25.75 25.795.80
10% [25.90 26.07 24.52 26.29 26.326.35
2% |22.33 22.79 18.89 23.23 23.323.38
5% |24.60 25.42 22.42 25.56 25.7P5.82
8% |25.98 26.96 24.37 26.96 27.127.24
10% | 26.63 27.64 25.28 27.62 27.747.90
2% |18.58 18.50 15.68 19.20 19.279.32
5% |20.73 20.93 18.31 21.53 21.621.71
8% |[21.71 22.21 19.97 22.49 22.6P2.66
10% [22.41 22.90 20.92 23.18 23.323.39

Boat

Hill

Lena

© (d)

Fig. 4. Restoration results on a real fluorescent-cell imafgsize 352 x
512. Close-up of (a) widefield image, (b) reference confocalgeac) TV
reconstruction, (d}<S; reconstruction. The details of this figure are better
seen in the electronic version of this paper by zooming onstiteen.

Peppers

be considered as compressive sensing if we assume that the
image is sparse in the spatial domain.

The reported experiments are conducted on the gray-level
images: Boat, Hill, Lena and Peppers. The masked images
are then reconstructed using our regularizers as befor® plu
TV and two quadratic regularizers based on the gradient
and the Laplacian operators, respectively. In this settireg
do not consider any presence of noise and thus, for all the
regularizers under comparison, we use the same regularizat
parameterr = 10~*. The value ofr is chosen to be small to
ensure that the results will be consistent, in the sense that
the reconstruction methods will not alter the unmasked|pixe
values. However, due to the small value of the regularinatio
parameter, we have observed that the convergence of the
o5 Restorati " - el i e sl minimization task for all the regularizers can be slow and
i~ C‘Iose_euspo(r)? '(‘;r)‘ \L?dsgﬁzkf?ng";? (b;’?é?:éenrlecior:mmfg%ﬁdc) Sy thus more than 100 iterations are required. To cope with
reconstruction, (d{S> reconstruction. The details of this figure are bettethis problem, for the non-quadratic regularizers, we apply
seen in the electronic version of this paper by zooming orstireen. simple continuation scheme that significantly speeds up the

convergence: We start with a large value foland then we
From these two examples, if we compare the obtained resigradually decrease it to reach the chosen value. We observe
with the confocal acquisitions, we can verify that the Hasssi experimentally that following this strategy and using 200
based solutions are quite successful in revealing the pyimMFISTA iterations (we still solve the corresponding deimugs
features of the specimens without introducing severeaattf problems using 10 iterations) we can solve the problem to
as opposed to TV which oversmooths certain features ahigh accuracy. Regarding the two quadratic regularizees, w
wipes out important details of the image structure. Theegfo minimize their objective functions using the conjugatedigat
we conclude that our regularizers can do a better job, espeethod [46] with a maximum of 2000 iterations.
cially when one has to deal with images that consist mostly In Table Il we report the reconstruction results we obtained
of ridges and filament-like structures, as is often the casefpr all the employed regularization techniques. The quatit

© ()

biomedical imaging. the reconstructions is measured in terms of PSNR. As we can
_ observe from this table, TV does not perform well in this
D. Sparse Image Reconstruction problem and its reconstructions fall far behind, even from t

In sparse image reconstruction the observed imggis two quadratic regularization techniques. On the other hand
degraded by a masking operator which randomly sets pixair Hessian-based regularizers behave much better andl in al
values to zero. This operator corresponds to a diagonabmatases they lead to estimates that outperform the other gh&tho
A whose diagonal entries are randomly set to zero or one. We in the image restoration case, t#&S; regularizer leads
refer to this problem as sparse because in our experimentstaehe best reconstructions while tR&S, regularizer follows
consider masking operators that retain o2%, 5%, 8% and rather closely. In Fig. 6 we present a representative exampl
10% of the initial pixel values. Note that this problem carof the reconstruction of the Peppers image fr2fh observed
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TABLE Il
PSNRCOMPARISONS ON IMAGE INTERPOLATION AND IMAGE ZOOMING
FOR A4X DOWNSAMPLING FACTOR

Images|Grad. Lap. TV HSo HS2 HS:
Boat |24.03 24.19 21.90 24.43 24.484.45
Hill |25.48 25.62 23.31 25.825.84 25.83
Lena |26.57 27.74 23.95 27.79 27.897.92
Pepper$21.95 22.13 19.48 22.55 22.632.68
Boat |25.95 25.89 26.00 26.01 26.086.12
Hill |27.32 27.27 27.22 27.31 27.327.35
Lena |29.25 29.26 29.50 29.40 29.529.61
Peppers24.10 24.13 24.32 24.69 24.784.77

Interpolation

Zooming

and produces the worst scores. However, its performance
gets significantly better in the image zooming case where
an antialising filtering is applied. This is an indicatiorath
TV cannot perform at a satisfactory level when the operator
acting on the image does not involve a mixing effect. On the
; o other hand, the performance of the proposed regularizers is
© (d) more robust to the nature of the degradation operator, ayd th
Fig. 6. Sparse reconstruction of the Peppers image figobserved pixels. lead to the best reconstructions. To have a visual perfocenan
) Nkt o) S o ueale e 159 assessment, we present in Figs. 7 and 8 interpolation and
zooming results on the Lena and Boat image, respectively.

pixels. From this example it is clear that TV cannot producE€se results confirm our previous conclusions about the
an acceptable result but instead leads to a piecewise consBgrformance of TV and demonstrate the superiority of the
solution that does not reveal any features of the image. ©n fiiessian-based regularizers over the other regularizers.

other hand, both the quadratic and the proposed regularizer

provide meaningful reconstructions with the latter acimgwa V. CONCLUSION

better performance. In this paper we introduced a new family of convex non-
. . guadratic regularizers that can potentially lead to imprbv
E. Image Interpolation and Image Zooming results in inverse imaging problems. These regularizersrin

Image interpolation and image zooming fall into the samgorate second-order information of the image and depend on
class of linear inverse problems. As in the sparse image Schatten norms of the Hessian. We further designed an ef-
reconstruction case, the degradation is due to a maskifigent and highly parrallelizable projected gradient aition
operator that zeros out some of the image pixel valuggr minimizing the corresponding objective functions. Wsoa
However, in these two cases the masking operator correspopgbsented a new result that relates vector projections gnto
to subsampling and is highly structured, as opposed to thgrm balls and matrix projections onto Schatten norm balls.
random masking operator. The difference between the twhis enabled us to design a matrix-projection method, which
considered forward models is that image interpolationve® s a fundamental ingredient of our optimization algorithm.
only the subsampling operator and therefore results in ob-The performance and practical relevance of the proposed
served images that suffer from aliasing, while image zo@mifegularization scheme was assessed for several linearseve
involves additionally an antialiasing operator that isl&pto  jmaging problems, through comparisons on simulated arid rea
the underlying image before the subsampling takes place.dgperiments with various competing methods. The results we
the last case, the matrix can be expressed # = SF where optained are promising and competitive both in terms of SNR
F corresponds to the filtering operation a8ido subsampling. improvement and visual quality.

Once more, we do not consider any presence of noise and we

thus use the same regularization parameter and minimizatio APPENDIX A

strategy as above. The experiments we present are condu tec&)

on the same four images as in Section IV-D, using the same roof of Theorem 1

regularizers for a downsampling factor of 4. Finally, retjag By taking the domainf2 to be a disk, the rotation invariance
the antialiasing filter we use a Gaussian kernel of sugpeft  0f R (f) implies that

and standard deviatio, = 1.4. .

In Table Il we report the obtained results and we evaluate R(f (Re)) =R (f) (37
the quality of the estimates in terms of PSNR. RegardinghereR, is a rotation matrix. In particular, (37) must hold for
the interpolation problem we observe that TV, similarly tall functions, including those of the fornf:(r) = ar; + fro,
the sparse image reconstruction case, does not perform wéth r € R? and o, 3 € R. Their gradient is constant and
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@ b © (d) ©

Fig. 7. Image interpolation. Close-up of (a) High-resantimage, (b) low-resolution image, (c) Laplacian-baseddgatic result (PSNR=27.74 dB), (d) TV
result (PSNR=23.95 dB), and (&}S; result (PSNR=27.92 dB)

(@ (b) (©) (d) (e
Fig. 8. Image zooming. Close-up of (a) High-resolution imatp) low-resolution image, (c) gradient-based quadnasult (PSNR = 25.95 dB), (d) TV
result (PSNR = 26.00 dB), and (&}S> result (PSNR = 26.08 dB)

equal toVf (r) = [3] = x. Now, using f as defined above, which is homogeneous of degree 0. This implies thato) =

we write the I.h.s of (37) as ¢, with ¢ an arbitrary constant. Therefore, the potential func-
tions @ satisfying (42) are necessarily of the ford:(-) =
R(f (Ror) = [ ©(V{f (Ro) (x)) s
Q The inverse statement of the theorem can be verified by
:/@(R?Vf (Ror)) dr:/<I’(R£X) dr  substitution, using the property
Q Q
_ / B (|| - ug) dr, (38) V{f(a)} ) =aV{f}(ar), V. (44)
Q
where ug = [sin(¢) sin (¢ + %)]T and ¢ = 6 + B. Proof of Theorem 2
sgn(a) arccos f’ _ |. Setting¢’ = % in (38) and com- By taking the domainf2 to be a disk, the rotation invariance
Vorth of R(f), as defined in (37), must hold for all functions,

bining the result with Property (37), we immediately gemha}ncluding those of the formy (r) — %T% " §r§ - yryr, with

® (x) = (]x]),vx € R%. (39) r e R?anda, 3,7 € R. Their Hessian is constant and equal
toHf(r) =[5 3] = A. Now, usingf as defined above, we
write the I.h.s of (37) as

R(f (Rg)) = /Q B (M {] (Ro")} (r)) i

The scaling invariance oR can be restated as
Ra (f (@) = a"R (f)
/ & (V{f (a)} (1)) dr = a* / $(Vi(r)d  (40)
Q/a Q

_ T
for somea > 0, and an exponeni € R. This property must - /ch (Ry 7S (Ror) Ry) dr
hold for all functions, including those of the fornf:(r) = .
ary, with r € R? anda € R. The magnitude of their gradient = /Qq> (Ro AR9) dr. (45)

is constant and equal tVf (r)| = |a|. Now, using f as

defined above and the result of (39), we write (40) as According to the spectral decomposition theorefn,being

symmetric has an eigenvalue decomposition. This implias th

/ ® (a|al)dr = a#/ ® (|af) dr. (41) there exists a rotatioti’ such thatRj, ARy = A, where A
Q/a Q is a diagonal matrix consisting of the eigenvalues\ofThese
Therefore, we directly have that are denoted a3, wherek = 1,2. Based on this observation

& (ala]) = a*® (|ja]), Yo € R, (42) and combining it with Property (37), we immediately get that

— 2
with v = 1+ 2. Now, we define the function ©(A) =2 (M, A2) VA €5, (46)
_ %(la])

Bo(a) = o Va €R (43) which implies that® should be a function of the Hessian
«

eigenvalues.
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The scaling invariance oR can be restated as comparing the r.h.s of (52) to the r.h.s expansion of (53),
it is straightforward to verify that the adjoint of the diste
Ra (f (@) = "R (f) o ¢ !

Hessian operator is indeed computed according to (14).
[ 20t ea = [omsme @)
Q/a Q

B. Proof of Proposition 1

for somea > 0, and an exponent < R. This property By definition, the orthogonal projection of a matfix onto
must hold for all functions, including those of the formipe setBs, is given by

f(r) = 9r}+2r3, with r € R? anda, 3 € R. Their Hessian ! ,

is constant and equal tf (r) = [§ 2]. Now, usingf as Pps, (Y) = argmin || X - Y% . (54)
defined above and the result of (46), we write (47) as IXls, <p

5 o Since all Schatten norms are unitarily invariant, we equiva
// ) (a a,a B) dr = a“/ O (o, 5)dr. (48) lently have
Q/a Q

Therefore, we have that Pss, (Y) = argmin |[UTXV — UHYV||i7 . (55)
[UHXV]s, <p
® (a2a,a2B) = "2 (a, B), Yo, BER. (49) %
] ] Let us now consider the matri = U¥ XV that is associated
Now, we define the function with the solution of (54). If we substitut& in (55), then we
Bo(x) = ” (|xu) Vx € R?, (50) end up with the following constrained minimization problem
Xllp Pps, () = argmin [|Z — EH% , (56)

. Z <
wherep > 1 andv = ££2. &, is homogeneous of degree 0 1215, <r

and thus® (x) = &, (x/ ||X||p . Therefore, the potential which corresponds to the projection of the diagonal maix

functions ® that satisfy (49), are necessarily of the formonto the seSs . Now, if Pg, (%) = Z, we have
¢ (x) = Qo (x/[x[, ||x||;. Finally, since x represents
the vector of the eigenvalues of the Hessian, dfsnorm
corresponds to th&, norm of the Hessian itself.

The inverse statement of the theorem can be verified by
substitution, using the property

H . — 2H VT 51) Where the inequality stems from von Neumann's trace theo-
(@)} ) = a"# ([} (ar), V] 1) rem [47], andX is a diagonal matrix with the singular values
of Z. In addition, it holds that

A. Adjoint of the Disrcete Hessian Operator o = HZ‘ s <p. (58)
q q

To find the adjoint of the discrete Hessian operator, V\i:e . . . . o
. . . uations (57) and (58) immediately imply that the projacti
exploit the relation of the inner products of the spafes quz equal(s t())Z - (Z) ?.e. a positi\)//e seridefinite giagonal

and A in (13). Using (11), we can equivalently write (13) asmatrix. We can then perform this operation by projecting the

a3 - o] 1315 2 s (273)

~ 112 . . 2
>8]+ 1=l - 20 (578) = [£ -2,
(5

APPENDIXB

b))

N . N i} vector, formed by the main diagonal &, onto the convex
Z tr ([Hx]n Yn) = Z o [H7Y],, . (52) setB,, and then by transforming the projected vector back to
n=1 n=1 a diagonal matrix. Using this fact and the relations between
We then expand the |.h.s of (52), to obtain the optimal solution of (54) and (56), we finally express the
N N projection of the matrixY” onto Bs, as
T o (1,1) (1,1)
;tr (7ex; Y) = nz::l (D YD+ Prs, (Y) = Udiag(Ps, (o (Y))) V. (59)

(1,2) (1,2) (2,1) (2,2) v(2,2)
(Hx],, (Yn +Y, )+[Hx]n Yo ) C. Proof of Lemma 1

First, we present a matrix inequality that involves the

N
_E : (1,1) (1,2) (2,1) T
- ([Aﬁ X, Yo 4 [Arx], (Yn +Y, ) Schatten norms and it will be subsequently used for the proof

n=t of the lemma. LefX, Y € C™*"2, Then, the inner product
+ [AryrX], Yﬁf’z)) of these two matrices satisfies the following inequality
N H
S ([ ] + [an (xem e yn)] O Ve =R (Y1) < (0 X))
— v n e n < lle X))l lo (), = IXlls, I¥]ls, -
(60)

+ [A:mwm] ) . (53)
" The first inequality is due to von Neumann’s trace theorem

Note thatY(*7) corresponds to the vector that is composed7], while the second one due to Holder's inequality. The

of the (i,j) entries of all'Y,, € R?*2 matrices. Now, by last equality holds true from the definition of Schatten n&rm
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By definition, the dual norm of (20) is given by [31]: D. Proof of Proposition 2
19, = max (Q,®), (61) For any pair of variable$2 , ¥ ¢ X we have

e, <1 Vs () — Vs (®)[| = [|[7H V() =V (®))]|

whereX, instead ofRY *2%2 that is used throughout the paper,
) Pap <MV () -V (®)],

here is assumed to be the more general linear space

CNxmixn2 \We consider the inequality < 7IH] " (@ - 2l
N N <A A2 -2,
(Q, ®)y = Re(tr (T/2)) <D 1ulls, 1¥alls, , = |HP IR - ¥|,, (68
n=1 n=1

(62) whereV (2) = Pc(z—mH*Q). Note that, the first and

which immediatelly follows from inequality (60). Now, by-in third inequalities follow from the relation between the msy;

. B defined in the spaceg” and RY, and the induced operator
troducing the vectors) = (HQlHSq 19225, ""7HQNH&;) norm, i.e. |Hx|, < ||#] ||x/,, while the second one
andv¢ = ([[¥1]s, . ¥2lls,,- - ||\I’NHSP), and applying holds because the projection operafr onto the convex set
once again Holder’s inequality, we get C C RV, is firmly nonexpansive [48, Proposition 4.8]. This

N means that

Z 19215, [¥nlls, = (w, )y < [[w]l 1%l [Pe (%) = Pe (¥)ll, < Ix =y, Vx,y e RY. (69)

n=1

=, I1®l,, - (63) To compute an upper bound f#||, we exploit that| #H||* =
! "’ |H || [49] (a general property of bounded linear operators),

From the definition of the dual norm (61) and the inequa
ities (62) and (63) we conclude thaf2||, < || ,. To
prove that(|||, = |||, . we next show that for each ||H " Hx||, = (AT Ay + 287 Ay + A Aryry) X,
Q we can find a¥ satisfying || ¥||, , = 1, and for which < 2 2 2

(@, ¥), =2, To that end, let: be any index in the - (”A””H F 2 A7 4 | Arar| ) ”X|?7'0)
Set{argmaxl<n<N (€25 } and Q;, = U,X, VY be the
singular valueidécomposigion &,. Then, we setb, — O Now, using the definitions of the second-order differential

aind we get

for all n except forn — k for which we have operators in (10), it is easy to show that each|df,, ., ||,
o |A; |l and [|A,,.,|| is smaller than or equal to 4. This
U, = UyEV), (64) immediately implies that|#{| < 8 and, hence, an upper
where bound of the Lipschitz constant &Fs () will be L (s) <
~ 2|H)* < 6472
(22}7]))‘1 1 T || H — T
@) - N " J
En = ”Qng—l ' (65) ACKNOWLEDGMENT
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