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Abstract—Poisson inverse problems arise in many modern
imaging applications, including biomedical and astronomical
ones. The main challenge is to obtain an estimate of the un-
derlying image from a set of measurements degraded by a linear
operator and further corrupted by Poisson noise. In this work, we
propose an efficient framework for Poisson image reconstruction,
under a regularization approach which depends on matrix-valued
regularization operators. In particular, the employed regularizers
involve the Hessian as the regularization operator and Schatten
matrix norms as the potential functions. For the solution of
the problem, we propose two optimization algorithms which are
specifically tailored to the Poisson nature of the noise. These
algorithms are based on an augmented-Lagrangian formulation
of the problem and correspond to two variants of the alternating
direction method of multipliers. Further, we derive a link that
relates the proximal map of an ℓp norm with the proximal map
of a Schatten matrix norm of order p. This link plays a key role
in the development of one of the proposed algorithms. Finally,
we provide experimental results on natural and biological images
for the task of Poisson image deblurring and demonstrate the
practical relevance and effectiveness of the proposed framework.

Index Terms—Poisson noise, Hessian operator, Schatten norms,
eigenvalue optimization, ADMM, image reconstruction.

I. INTRODUCTION

IN this work, we focus on the recovery of an image from a

set of measurements that are degraded by a linear operator

and further corrupted by Poisson noise. Poisson (or shot)

noise [1] is due to fluctuations in the number of detected

photons and is an inherent limitation of the detection process

occurring in many imaging devices such as CCD cameras. In

this context, the measurements at every location of the sensor

can be considered as the realization of an indirect Poisson

random variable, in the sense that its mean and variance

is indirectly related, through a linear transformation, to the

underlying intensity of the image. Such inverse problems,

which in the literature are also known as Poisson inverse prob-

lems [2], [3], arise in several imaging applications, including

medical [4], biological [5], and astronomical [6] ones.

For most cases of practical interest, Poisson inverse prob-

lems are ill-posed; the linear operator relating the under-

lying intensities to the Poisson measurements is either ill-

conditioned or singular. Thus, additional knowledge is required

to obtain a meaningful image reconstruction. This knowledge

is expressed in the variational framework by a penalty function

that constrains the number of plausible solutions. Then, the

This work was supported (in part) by the Hasler Foundation and the Indo-
Swiss Joint Research Program.

The authors are with the Biomedical Imaging Group (BIG), École polytech-
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reconstruction task is cast as the optimization of an objec-

tive function consisting of two terms: the data fidelity that

quantifies the proximity between the reconstructed image and

the measurements, and the regularizer that incorporates our

assumptions about the underlying image. From a statistical

point of view, the image reconstruction corresponds to esti-

mating the underlying intensity from a single realization of

the Poisson random variables.

A. Overview of Current Methods

Well-established reconstruction methods have been shown

to provide satisfactory results in the context of linear inverse

problems with Gaussian independent identically distributed

(i.i.d.) noise. Unfortunately, they cannot be applied in our case

because Poisson inverse problems face a noise that is signal-

dependent. Despite this difficulty, the prevalence of photon-

imaging applications has generated an increasing interest dur-

ing the past few years and has triggered the development of

several algorithms that were designed to handle the Poisson

nature of the noise. Most of these methods can be interpreted

as optimization techniques of an objective function. For in-

stance, the classical Richardson-Lucy (RL) algorithm [7], [8]

corresponds to a maximum-likelihood (ML) estimate. Another

approach which is widely followed is to obtain the solution

as a penalized ML estimate. In [9], the authors proposed an

algorithm consisting of two steps. In the first step, a variance-

stabilizing transform (such as Anscombe [10]) is applied to

the measurements to reform the data so that the noise becomes

approximately Gaussian with constant variance. Then, in the

second step, the solution is obtained as the minimizer of an

objective function that consists of a nonlinear data-fidelity term

and a regularizer acting on the transform-domain coefficients

of the underlying image. This kind of regularization is known

in the literature as frame-synthesis (FS) since the regularizer

is not a direct function of the image. Methods that seek the

solution by penalizing coefficients that arise from multiscale

nonlinear transformations of the underlying image have been

proposed in [2], [11] and in references therein. For the

simplest Poisson inverse problem (denoising) and despite the

nonlinearity of the employed transform, it has been shown

in [11] that the resulting estimate is optimal, in the minimum

mean-squared error (MMSE) sense, both in the coefficient

and the image domain. Finally, there also exist algorithms

that obtain penalized ML solutions where the regularizers are

directly applied on the underlying image, i.e., frame-analysis

(FA) regularization framework. This includes the modified RL

algorithm with total-variation (TV) regularization [12] and the

methods proposed in [13], [14], [15], which use TV as well

but adopt different optimization strategies.
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B. Contributions

In this work, we consider methods specifically tailored to

Poisson-distributed data and we employ a class of second-

order derivative-based regularizers that act directly on the

underlying image. Our proposed algorithms are based on

an augmented-Lagrangian framework and follow the same

principles as other existing algorithms in the literature [13],

[14]. However, while the latter have been designed to work

with regularizers involving scalar and vector-valued operators,

ours are designed to handle matrix-valued linear operators.

This generalization is important since it introduces additional

difficulties which cannot be handled in a trivial way. Neverthe-

less, we are able to address these problems and we introduce

two novel algorithms that can be considered extensions of

existing techniques to the case of matrix-valued regularization

operators.

The key contributions of this work are as follows:

1) We employ a family of non-quadratic regularization

functionals that involves matrix-valued operators [16]

for dealing with Poisson inverse problems. These func-

tionals are based on the Schatten norms [17] of the

Hessian operator, evaluated at every pixel of the image,

and are shown to be appropriate candidates for modeling

a wide class of natural images.

2) We propose two alternative minimization approaches

that can provide a solution to the optimization problem

under any Schatten-norm-based penalty function. These

two algorithms are based on an augmented-Lagrangian

formulation and arise as two different variants of the

alternating-direction method of multipliers (ADMM).

3) We derive a result that relates the proximal map evalua-

tion of a Schatten matrix norm of order p to the proximal

map evaluation of an ℓp norm. This link plays a key role

in the development of one of the proposed algorithms

but can potentially have a wider range of applicability.

The rest of this paper is organized as follows: In Section II,

we provide a formal description of Poisson inverse problems,

we discuss regularization strategies, and we introduce the fam-

ily of non-quadratic second-order functionals that we employ

for reconstructing images. In Section III, we briefly review

the ADMM framework and we describe our two proposed

optimization algorithms. Then, in Section IV, we perform

experiments on natural and biomedical images to assess the

performance of our techniques for the task of Poisson image

deblurring. We conclude our work in Section V.

II. REGULARIZATION OF POISSON INVERSE PROBLEMS

A. Problem Formulation

Our approach for reconstructing the underlying image from

the measurements is based on the observation model

y = T (Kx) , (1)

where K ∈ RM×N is a matrix that models the spatial response

of the imaging device, T is an operation that describes the

nature of the measurement noise and how it affects the image

acquisition, and y ∈ RM+ , x ∈ RN+ are the vectorized

versions of the observed image and the image to be estimated,

respectively. The set R+ denotes the set of real non negative

numbers. We further expand (1) by noting that the unobserved

intensities x of the underlying image are related to other

intensities λ (which are also unobserved) through the linear

relation λ = Kx. For the elements of λ to be interpreted as

photon intensities, we further need to assume that λ ∈ RM+ .

This hypothesis is consistent with the idea that K represents

a linear degradation effect, e.g., blurring.

Under the basic photon-imaging model, the measurement

noise implied by T in (1) is signal-dependent. In particular,

the observed image y can be considered as a vector containing

the samples of a random sequence Y = (Y1, . . . , YM ). The M
random variables Ym are conditionally independent upon λ,

and each one follows a Poisson distribution with rate parameter

λm, so that Ym ∼ Pois (Ym|λm). The likelihood of x can then

be expressed as

p (Y = y|x) =
M∏

m=1

e−λmλm
ym

ym!
=

M∏

m=1

e−[Kx]
m [Kx]

ym
m

ym!
, (2)

where [·]m indicates the mth element of the vector argument.

One way to recover x from the measurements y is by

minimizing the negative log-likelihood

fL (x) =

M∑

m=1

([Kx]m − ym log [Kx]m) + ιC (x) + const., (3)

where ιC is the indicator function of the convex set C = RN+

that represents non-negativity constraints on the solution. The

convention is that ιC (x) takes values 0 for x ∈ C and ∞
otherwise. In order for (3) to be consistent with (2), we also

use the convention that 0 log (0) = 0. The minimizer of (3)

is equivalent to the ML estimate. One way to obtain it is

by using RL, which is an iterative multiplicative gradient

type technique [7], [8]. Unfortunately, the ill-posed nature

of the problem implies that the operator K for the cases of

practical interest is either ill-conditioned or singular, and the

corresponding ML estimator has a large variance that may

lead to a not informative solution. For this reason, the RL

algorithm should be terminated early in practice, after just a

few iterations. Otherwise, the noise gets amplified and results

in an image estimate dominated by noise.

To alleviate this amplification of the noise, one can follow

the alternative approach of minimizing a penalized version of

the negative log-likelihood. This can be formulated by

f (x) = fL (x) + φ (x) , (4)

where the role of the term φ (x) is to narrow down the set of

plausible solutions by favoring those that satisfy properties

related to the assumed regularity of the underlying image.

The minimizer of (4) corresponds to a maximum a posteriori

(MAP) estimate, with φ (x) being interpreted as the negative

logarithm of the prior distribution of the underlying image x.

The minimization of (4) can also arise if, instead of a Bayesian

approach, we treat the problem in a variational framework.

Indeed, we can interpret (4) as an energy functional consisting

of two terms: the data fidelity f (x) and the regularizer φ (x).
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Then, the estimate of the underlying image corresponds to the

minimizer of this energy functional.

B. Regularization Strategy

Many regularization techniques have been proposed for

solving ill-posed inverse problems. Among the most popular

ones is the TV semi-norm [18] which produces good estimates

for a variety of imaging applications. The main reason for

its wide acceptance in the imaging community is that TV

manages to provide reconstructions with well-preserved and

sharp edges. However, its downside is that it introduces strong

block artifacts, commonly known in the literature as the

staircase effect. In this work, to avoid this undesirable effect,

we employ instead the family of non-quadratic regularizers

that we recently proposed in [16]. Our regularizers are based

on the Schatten norms of the Hessian matrix computed at

every pixel of the image. They can be considered as second-

order extensions of TV, in the sense that they satisfy the same

invariance properties while involving second-order derivatives

instead of first-order ones. Their main feature is that they

favor piecewise-smooth solutions, as opposed to TV which

favors piecewise-constant solutions. Therefore, for a wide

range of images, including those that are commonly met

in biomedical applications, second-order regularization can

potentially provide reconstructions which better approximate

the intensity variations of the underlying image and at the

same time avoid the introduction of severe artifacts [16], [19].

C. Notations and Definitions

In the sequel capital slanted bold-faced letters will be

used to refer to multidimensional arrays, while capital bold-

faced letters will be reserved for matrices. The set of unitary

matrices is denoted as Un =
{
X ∈ Cn×n : X−1 = XH

}
,

where C is the set of complex numbers and (·)H
is the Hermitian transpose. Further, the set of positive

semidefinite diagonal matrices is denoted as Dn1×n2 =
{
X ∈ R

n1×n2
+ : X (i, j) = 0 ∀ i 6= j

}
.

Definition 1 (Schatten norms). Let X ∈ C
n1×n2 be a matrix

with the singular-value decomposition (SVD) X = UΣVH ,

where U ∈ Un1 and V ∈ Un2 consist of the singular vectors

of X, and Σ ∈ Dn1×n2 consists of the singular values of X.

The Schatten norm of order p (Sp norm) of X is defined as

‖X‖Sp
=





min(n1,n2)∑

k=1

σpk





1
p

, (5)

where p ≥ 1 and σk is the kth singular value of X.

Definition 1 implies that the Sp norm of a matrix X

corresponds to the ℓp norm of its singular-values vector

σ ∈ R
min(n1,n2)
+ . This further means that all Schatten norms

are unitarily invariant, which is a highly desirable property

that we are going to exploit next. Moreover, we note that the

family of Sp norms includes three of the most popular matrix

norms, namely, the nuclear/trace norm (p = 1), the Frobenius

norm (p = 2), and the spectral/operator norm (p =∞).

D. Discrete Hessian Operator and Its Adjoint

Hereafter, we use H to refer to the discrete version of the

Hessian operator. To simplify our analysis, we assume that the

image intensities on an Nx×Ny grid are rasterized in a vector

x of dimension N = Nx ·Ny so that the pixel at coordinates

(i , j) maps to the nth entry of x with n = jNx+(i+1). In this

case, the discrete Hessian operator is a mapping H : RN 7→ K,

where K = RN×2×2. For x ∈ RN , Hx is given as

[Hx]n =

[

[∆r1r1x]n [∆r1r2x]n
[∆r1r2x]n [∆r2r2x]n

]

, (6)

where n = 1 , . . . , N and ∆r1r1 , ∆r2r2 , and ∆r1r2 denote

the finite-difference operators that compute the discrete ap-

proximations of the second-order partial derivatives along the

two dimensions of the image. In Section IV, where we report

reconstruction results employing the Hessian, we use a forward

finite-difference approximation scheme. Then the second-order

derivative operators ∆rirj , are defined as in [16].

We equip the space K with the inner product 〈· , ·〉K and

norm ‖·‖K. To define them, let X,Y ∈ K, with Xn,Yn ∈
R2×2 ∀ n = 1, . . . , N . Then, we have

〈X , Y 〉K =

N∑

n=1

tr
(
Y T
n Xn

)
(7)

and

‖X‖K =
√

〈X , X〉K =

√
√
√
√

N∑

n=1

‖Xn‖2F , (8)

where tr (·) is the trace of the input matrix, (·)T denotes the

transpose operation, and ‖·‖F is the Frobenius matrix norm.

For the Euclidean space RN , we denote its inner product and

norm by 〈· , ·〉2 and ‖·‖2, respectively.

The adjoint of H is the discrete operator H
∗ : K 7→ RN

such that

〈Y , Hx〉K = 〈H∗Y , x〉2 . (9)

Note that this definition of the adjoint operator is a general-

ization of the Hermitian transpose. Based on the relation of

the inner products in (9), for any Y ∈ K it holds that [16]

[H∗Y ]n =
[

∆∗
r1r1Y

(1,1)
]

n
+
[

∆∗
r1r2

(

Y (1,2) + Y (2,1)
)]

n

+
[

∆∗
r2r2Y

(2,2)
]

n
, (10)

where ∆∗
r1r1 , ∆∗

r1r2 , ∆∗
r2r2 are the adjoint finite-difference

operators and Y (i,j) represents an N -size column-vector that

consists of the (i, j) entries of the matrices Yn,with n =
1, . . . , N .

E. Hessian Schatten-Norm Regularization

Next, we proceed with the definition of the regularization

family that we employ to solve Poisson inverse problems. The

discrete Hessian Schatten-norm regularizers are defined as [16]

HSp (x) = ‖Hx‖1,p =
N∑

n=1

‖[Hx]n‖Sp
, ∀p ≥ 1 . (11)
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Based on their definition, we observe that a close relation

exists between them and the sparsity-promoting group norms,

commonly met in the context of compressive sensing (see [20],

for instance). However, a significant difference is that in (11)

the mixed norm is a vector-matrix norm rather than a vector-

vector norm. Therefore, the sparsity is enforced on the sin-

gular values of the Hessian matrix rather than directly on its

elements.

Since the Hessian of x at each pixel is a 2 × 2 symmetric

matrix, the SVD in the definition of the Schatten norm reduces

to the spectral decomposition and the singular values corre-

spond to the absolute eigenvalues, which can be computed an-

alytically. This makes the computation of the Hessian Schatten

norms very efficient but also provides us the means to interpret

them. If we consider the intensity map of the (continuous)

image as a 3-D differentiable surface, then the two eigenvalues

of the Hessian at coordinates (i , j) correspond to the principal

curvatures at that point. These can be used to measure how

this surface bends by different amounts in different directions

at that point. Therefore, the proposed potential functions can

be interpreted as scalar measurements of the curvature at a

local surface patch. Note that the S2 norm (Frobenius norm)

of the Hessian is a scalar curvature index, commonly used

in differential geometry, which quantifies lack of flatness of

the surface at a specific point. Since our regularizers combine

these scalar curvature measurements over the whole image

domain, we can infer that they provide a measure of the total

curvature of the image intensity map. Consequently, as we

already mentioned above, our regularizers promote piecewise-

smooth reconstruction solutions.

III. POISSON IMAGE RESTORATION

A. Penalized ML Formulation

Based on the forward model (1) for the Poisson measure-

ments and under Hessian Schatten-norm regularization (11), a

penalized ML estimate x̂ of the underlying image is obtained

as the minimizer

x̂ = argmin
x∈RN

(

f (x) =

M∑

m=1

([Kx]m − ym log [Kx]m)

+ τ ‖Hx‖1,p + ιC (x)
)

, (12)

where τ ≥ 0 is the regularization parameter which balances

the influence of the data fidelity and the penalty term.

Next, we design different methods that efficiently deal with

Problem (12). The proposed methods rely on the ADMM

optimization framework and will be derived as solvers of

special instances of the generic optimization task

x̂ = argmin
x∈RN

(
K∑

k=1

fk (Akx)

)

, (13)

where Ak is a linear operator that performs the mapping Ak :
R
N 7→ Xk. We further assume that each function fk : Xk 7→

R in (13) is closed, proper, and convex. Our motivation for

first studying (13) instead of directly dealing with (12) is that

this provides a clearer insight and better justifies the splitting

strategies that we pursue in Sections III-C and III-D.

B. Generic ADMM Optimization Framework

In this section, we review the ADMM optimization strategy

that can be utilized to solve the generic problem (13). The

form of (13) is difficult to work with, due to the coupling that

exists among the functions fk. To decouple them, we introduce

the auxiliary variables zk = Akx ∈ Xk and express (13) in

the equivalent constrained form

min
x∈R

N

z=Ax∈X

f (z) =
K∑

k=1

fk (zk) , (14)

where z = Ax denotes the mapping of x to the multilinear

space X = X1 × . . .× XK . In this case z and A are formed

as concatenated versions of all the auxiliary variables zk and

the linear operators Ak, respectively:

z =







z1

...

zK






=







A1x

...

AKx






= Ax . (15)

Since (14) corresponds to a constrained minimization prob-

lem, we solve it by forming the augmented Lagrangian and

employing the ADMM algorithm (for comprehensive and

detailed reviews of this optimization strategy, see [21], [22]).

Note that (14) is a special instance of the functions that can

be minimized using ADMM. In particular, ADMM solves

problems of the general form

min
Ax+Bz=c

g (x) + f (z) , (16)

where x ∈ RN , z ∈ RM , A ∈ RL×N , B ∈ RL×M , and

c ∈ RL. Now, since in our case A corresponds to a set of linear

operators we can always express the mapping z = Ax ∈ X
as a matrix-vector multiplication with z being properly re-

ordered as a vector and A as a matrix. Then, by choosing B

in (16) to be a negative block-identity matrix, c a zero vector,

and g (x) = 0, we end up with the exact form of Problem

(14). In the sequel we shall retain the operator-based notation

since it is better suited to our needs.

The augmented Lagrangian for Problem (14) is

Lα (x, z,η) = f (z) + 〈η , Ax− z〉X +
α

2
‖Ax− z‖2X , (17)

where η ∈ X corresponds to the concatenation of the K dual

variables (Lagrange multipliers) ηk ∈ Xk, α > 0 is a penalty

parameter, and 〈· , ·〉X and ‖·‖X denote the inner product and

the norm of the linear space X , respectively. The ADMM

iterations that solve (14) are given by

zt+1 = argmin
z∈X

f (z) +
α

2

∥
∥z−

(
Axt + st

)∥
∥
2

X
(18a)

xt+1 = argmin
x∈Rn

∥
∥Ax−

(
zt+1 − st

)∥
∥
2

X
(18b)

st+1 = st +Axt+1 − zt+1 (18c)

where s = η/α is the scaled version of the dual variable.

Usually in the literature, the z- and x-update steps appear in

reverse order. In this work, however, we choose to perform

the z-update first so as to simplify the initialization process of

our algorithms. Nevertheless, changing the order of the update
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steps does not affect the convergence of the resulting ADMM

algorithm [22]. Furthermore, we observe that the argument in

the z-update of the ADMM is decoupled in K independent

components. Indeed, it holds that

f (z) +
α

2

∥
∥z−

(
Axt + st

)∥
∥
2

X

=

K∑

k=1

fk (zk) +
α

2

∥
∥zk −

(
Akx

t + stk
)∥
∥
2

Xk
,(19)

and we can thus compute each zt+1
k in (18a) independently as

zt+1
k = proxfk/α

(
utk
)
, ∀ k = 1, . . . ,K, (20)

where utk = Akx
t + stk ∈ Xk. There,

proxf (y) = argmin
x∈X

1

2
‖x− y‖2X + f (x) (21)

is the Moreau proximity operator (or proximal map [23]) of

a function f (x) with domf = X , evaluated at y. If f is

a closed, proper, convex function, then the solution (21) is

unique. The x-update of ADMM corresponds to solving a

quadratic minimization problem. In this case, if at least one

of the operators Ak has an empty non-trivial nullspace1, then

the solution is unique and given by

xt+1 = (A∗A)−1
A∗
(
zt+1 − st

)

=

(
K∑

k=1

A∗
kAk

)−1 K∑

k=1

A∗
k

(
zt+1
k − stk

)
, (22)

where A∗
k is the adjoint operator of Ak that provides the

mapping A∗
k : Xk 7→ RN . Similarly to the z-update, the s-

update in (18c) is performed in a decoupled manner as

st+1
k = stk +Akx

t+1 − zt+1
k , ∀ k = 1, . . . ,K, (23)

with sk ∈ Xk.

The minimization approach we considered above is quite

general and apparently depends on the splitting strategy (

i.e., the choice of A). This permits us to consider several

possibilities for the form of A. They will result in different

variants of the ADMM algorithm. We pursue this option in

Sections III-C and III-D where we design two novel algorithms

that can find a numerical solution to Problem (12).

C. Splitting of the Data Fidelity Term

One way to decouple the objective function f (x) is to

formulate the unconstrained minimization problem (12) as

min
x∈R

N

zk=Akx∈Xk,k=1,2

f1 (z1) + f2 (z2) (24)

where A1 = K, A2 = I, and

f1 (z1) =

M∑

m=1

([z1]m − ym log [z1]m)

f2 (z2) = τ ‖Hz2‖1,p + ιC (z2) .

(25)

1A typical example of a linear operator with an empty non-trivial nullspace
is the identity operator.

What remains now is to specify the form of the ADMM update

steps described in (18).

To perform the z-update of (18a) we need to compute the

proximal maps of the functions defined in (25). The proximal

map proxf1/α (u
t
1), with ut1 = Kxt + st1, is separable and is

computed component-wise. The solution for each component

of the auxiliary variable z1 is obtained by solving a minimiza-

tion problem of the form

argmin
z∈R+

1

2
(z − u)2 + 1

α
(z − y log (z)) . (26)

Since the function under minimization is smooth, the solution

corresponds to the positive root of a second-order polynomial.

Based on this fact, it is simple to show that

zt+1
1 =

1

2



ut1 −
1

α
+

√
(

ut1 −
1

α

)2

+
4y

α



 , (27)

where all the operations are performed component-wise.

To evaluate the proximal map proxf2/α (u
t
2), with ut2 =

xt + st2, we employ the iterative algorithm we recently intro-

duced in [16]. This method finds a numerical solution to the

minimization problem

argmin
x∈Rn

1

2
‖x− y‖22 + τ ‖Hx‖1,p + ιD (x) ∀p ≥ 1 , (28)

where D is a convex set (in our case D ≡ C) and ιD represents

additional constraints on the solution. As in the case of the

numerical methods developed for computing the proximal map

of other functionals, such as TV, our algorithm for the Hessian

Schatten-norm regularizers is only meant to run for a finite

number of iterations. Therefore, the practical result will be an

approximation of the solution. However, this is not going to

jeopardize the convergence of the overall algorithm, thanks to

a theorem provided by Eckstein and Bertsekas [24]. According

to this theorem, even an inexact optimization of the internal

ADMM sub-problems is sufficient to guarantee convergence,

under the requirement that the approximation error of the sub-

problems is absolute-summable. To that end, similar to the

strategy adopted for the TV case in [13], we initialize the

internal variables of the algorithm we designed in [16] with

those obtained in the previous ADMM iteration.

The x-update of the algorithm depends on the solution of the

quadratic minimization problem that corresponds to solving

the following system of linear equations:

xt+1 =
(
KTK+ I

)−1 (
KT

(
zt+1
1 − st1

)
+
(
zt+1
2 − st2

))
. (29)

In practice, due to its large size, the
(
KTK+ I

)−1
oper-

ator cannot be computed. However, if we assume periodic

boundary conditions for the image, then a blurring operation

corresponds to circular convolution and the operator KTK+I

is diagonalized by the fast Fourier transform (FFT) [25]. In

this case, the x-update (29) is computed very efficiently in

a single step without having to resort to an iterative method.

The same holds if we assume Neumann (mirror) boundary

conditions, where the operator is now diagonalizable by the

discrete cosine transform (DCT) [25]. Moreover, we note that

the matrix inversion can also be computed very efficiently
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Algorithm 1 : Hessian Schatten-norm Poisson Image Recon-
struction by Augmented Lagrangian (HSPIRAL1).

Input: y, K, τ > 0, α > 0, p ≥ 1, PD.

Initialization: x0 = y, s01 = 0, s02 = 0.

Output: x̂ (optimal solution of (12)).

while stopping criterion is not satisfied do

ut
1 ← Kxt + st1;

ut
2 ← xt + st2;

zt+1
1 ← 1

2

(

ut
1 − 1

α +

√
(
ut
1 − 1

α

)2
+ 4y

α

)

;

zt+1
2 ← argmin

z2∈Rn

1
2

∥
∥z2 − ut

2

∥
∥2

2
+ τ

α ‖Hz2‖1,p + ιD (z2);

vt ← KT
(
zt+1
1 − st1

)
+
(
zt+1
2 − st2

)
;

xt+1 ←
(
KTK+ I

)−1
vt;

st+1
1 ← st1 +Kxt+1 − zt+1

1 ;

st+1
2 ← st2 + xt+1 − zt+1

2 ;

t← t+ 1;

end

return xt;

for a number of other types of linear degradation operators

(see [26]). Finally, for the case of inverse problems where the

degradation operator K does not exhibit any special structure,

we can find the solution of (29) employing the conjugate-

gradient (CG) method [27]. An approach that we have found

to work well in practice and does not introduce a significant

computational overhead is to employ CG with a “warm-start”

strategy. This strategy amounts to choosing the starting point

of CG to be the solution of the quadratic sub-problem of the

previous ADMM iteration. We have observed that by following

this simple strategy and by just running a few CG iterations we

can efficiently minimize the overall objective function without

compromising the convergence of our algorithm (results are

not reported here). In fact, we manage to obtain almost exactly

the same solution and at the same rate of convergence with

the solution one gets by computing the x-update in closed-

form. Similar findings to ours have also been recently reported

in [28], where the authors employ an ADMM strategy for

differential phase contrast X-ray tomogram reconstruction.

Whenever this is possible, the number of CG iterations can

be further reduced by employing a preconditioned conjugate

gradient algorithm.

A summary of the overall proposed numerical algorithm,

which we will refer to as HSPIRAL1 (Hessian Schatten-norm

Poisson Image Reconstruction by Augmented Lagrangian), is

provided in Algorithm 1.

D. Splitting of the Data Fidelity and Penalty Terms

Another way to decouple the objective function f (x) is to

formulate the unconstrained minimization problem (12) as

min
x∈R

N

zk=Akx∈Xk,k=1,...,3

f1 (z1) + f2 (z2) + f3 (z3) (30)

where A1 = K, A2 = H, A3 = I, and

f1 (z1) =

M∑

m=1

([z1]m − ym log [z1]m)

f2 (z2) = τ ‖z2‖1,p
f3 (z3) = ιC (z3) .

(31)

The operator A1 and the function f1 in (31) are the same

as those in our previous splitting approach. Therefore, the

proximal map proxf1/α (u
t
1), with ut1 = Kxt + st1, is given

by (27). Moreover, since f3 is an indicator function, its

proximal map corresponds to the projection onto the convex

set C. This projection can be computed as

proxf3/α
(
ut3
)
= max

(
ut3 ,0

)
, (32)

where ut3 = xt + st3, 0 is a zero vector of the same size

as ut3, and the maximum operation in (32) is computed in

a component-wise fashion. Lastly, to complete with the z-

updates we also need to compute the proximal map related to

the function f2. To do so, we first note that A2 corresponds to

the Hessian operator. Thus, it holds that z2 ∈ K. In addition,

we can also show that proxf2/α (u
t
2) is separable, with ut2 =

Hxt + st2 ∈ K. Indeed, for a variable Y ∈ K we have that

proxf2/α (Y ) = argmin
X∈K

1

2
‖X − Y ‖2K +

τ

α
‖X‖1,p

= argmin
Xn∈R2×2

N∑

n=1

1

2
‖Xn − Yn‖2F +

τ

α
‖Xn‖Sp

.

(33)

From (33), we easily verify that the minimization can be

performed independently for each matrix component Yn of Y .

Therefore, the computation of the proximal map of f2 boils

down to computing the proximal maps of n functions defined

as the Sp norms of a 2× 2 matrix multiplied by a constant:

proxτ‖·‖
Sp

(Y) = argmin
X∈R2×2

1

2
‖X−Y‖2F + τ ‖X‖Sp

. (34)

This operation can be performed efficiently based on the

Proposition 1 which provides a direct link between the proxi-

mal map of an ℓp vector-norm and the proximal map of an Sp
matrix-norm. This result is new, to the best of our knowledge.

Proposition 1. Let Y ∈ Cn1×n2 be a matrix with the SVD

decomposition Y = UΣVH , where U ∈ Un1 , V ∈ Un2 , and

Σ ∈ Dn1×n2 . If ψp (·) = τ ‖·‖Sp
and φp (·) = τ ‖·‖p, then

the proximal map

X̂ = proxψp
(Y) (35)

is equal to

X̂ = Udiag
(

proxφp
(σ)
)

VH , (36)

where diag (·) is the operator that transforms a vector to a

diagonal matrix and σ denotes the vector with the singular

values of Y.
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Proof: Since all Schatten norms are unitarily invariant,

the proximal map (35) can be equivalently written as

X̂ = proxψp
(Y) = argmin

X

1

2
‖X−Y‖2F + τ ‖X‖Sp

= argmin
X

1

2

∥
∥UHXV −UHYV

∥
∥
2

F
+ τ

∥
∥UHXV

∥
∥
Sp
.

(37)

Let us now consider the matrix Z = UHXV that is associated

with the solution of (37). If we substitute Z in (37), then we

end up with the regularized problem

Ẑ = argmin
Z

1

2
‖Z−Σ‖2F + τ ‖Z‖Sp

︸ ︷︷ ︸

h(Z;Σ)

. (38)

Next, we show that the optimal solution of (38) should be a

positive semidefinite diagonal matrix. Indeed, we have

h
(

Ẑ;Σ
)

=
1

2
‖Ẑ‖2F +

1

2
‖Σ‖2F − Re

(

tr
(

ẐHΣ
))

+ τ‖Ẑ‖Sp

≥ 1

2
‖Σ̂‖2F +

1

2
‖Σ‖2F − tr

(

Σ̂TΣ
)

+ τ‖Σ̂‖Sp

=
1

2
‖Σ̂−Σ‖2F + τ‖Σ̂‖Sp

= h
(

Σ̂;Σ
)

, (39)

where Σ̂ is a diagonal matrix with the singular values of Ẑ.

We note that the inequality in (39) follows from

Re
(
tr
(
AHB

))
≤ 〈σA , σB〉2 , (40)

where A,B ∈ C
n1×n2 and σA,σB are the vectors with

the singular values of A and B, respectively. The inequality

in (40) stems from von Neumann’s trace theorem [29]. Further,

the equality ‖Ẑ‖Sp
= ‖Σ̂‖Sp

, ∀p ≥ 1, is a direct consequence

of the Schatten-norm definition.

Now, we argue that, since Ẑ is the minimizer of the function

h, h
(

Ẑ;Σ
)

should be the smallest of all values. However,

in (39) we obtained a lower bound on this value, which

immediately implies that h
(

Ẑ;Σ
)

= h
(

Σ̂;Σ
)

and therefore

Ẑ = Σ̂. This means that Ẑ is a positive semidefinite diagonal

matrix. We then express the solution of (38) as Ẑ = diag (ẑ),
where ẑ is given by

ẑ = proxφp
(σ) = argmin

z∈Rmin(n1,n2)

1

2
‖z− σ‖22 + τ ‖z‖p , (41)

and σ is the vector formed by the diagonal entries of Σ. Using

this result and the relation between the optimal solutions of

(37) and (38), we are finally led to (36).

Based on Proposition 1, we design an algorithm to evaluate

the proximal map of an Sp norm. The algorithm consists

of three steps: (a) decompose Y in its singular vectors

and singular values by means of the SVD; (b) evaluate the

proximal map of the ℓp norm at σ (a vector with the singular

values of Y); and (c) obtain the final result via singular-value

reconstruction (SVR) using the result obtained at step (b).

As it turns out, this algorithm depends on our ability to

evaluate the proximal map of the ℓp norm. Fortunately, this

dependency does not introduces any difficulties thanks to

the efficient proximity algorithm for ℓp norms that has been

recently proposed in [30]. Moreover, in Section III-E we report

three cases of Sp norms, for p = 1, 2,∞, where their proximal

map can be evaluated in closed form.

The x-update for the current splitting approach is obtained

by solving a system of linear equations of the form

xt+1 =
(
KTK+H

∗
H+ I

)−1 (
KT

(
zt+1
1 − st1

)

+H
∗
(
zt+1
2 − st2

)
+
(
zt+1
3 − st3

) )
, (42)

with H
∗
H = ∆∗

r1r1∆r1r1 + 2∆∗
r1r2∆r1r2 + ∆∗

r2r2∆r2r2 .

Similarly to the x-update of the HSPIRAL1 algorithm that

we proposed in Section III-C, we can either employ the CG

method or assume periodic or mirror boundary conditions

for the image to find the solution of (42). Likewise, the

adequate choice for the extension of the image leads to an

efficient computation without the need of an iterative method.

A summary of the overall proposed numerical algorithm which

we will refer to as HSPIRAL2, is provided in Algorithm 2.

A last comment on HSPIRAL1 and HSPIRAL2 is that

they can be viewed as extensions of the PIDAL-TV [13]

and PIDSplit+ [14] algorithms. These numerical methods

perform image reconstruction under Poisson noise subject to

TV regularization, while our proposed algorithms perform

Poisson image reconstruction subject to Hessian Schatten-

norm regularization. Therefore, while PIDAL-TV and PID-

Split+ can handle linear vector-valued regularization operators,

HSPIRAL1 and HSPIRAL2 are extensions to linear matrix-

valued operators. Also note that the splitting approach we

use in HSPIRAL1 is novel and differs from the one in [13],

reducing the number of auxiliary functions from three to two.

Finally, we would like to emphasize that our proposed methods

are not limited to the use of the Hessian operator but are

general enough to accommodate other (real or complex) linear

matrix-valued regularization operators.

E. Closed Form of Sp-norm Proximal Maps for p = 1, 2,∞.

From Proposition 1, we have that the proximal map of the

S1 norm is linked to the proximal map of the ℓ1 norm. The

latter is computed by applying the soft-thresholding operator

Sγ (σ) = max (σ − γ, 0) [31], where the max is applied

component-wise and γ is a threshold. Therefore, we have

proxτ‖·‖
S1

(Y) = Udiag (Sτ (σ))V
H , (43)

where σ denotes the vector with the singular values of Y. Note

that this result corresponds to the singular-value thresholding

(SVT) method [32], [33], first developed in the field of low-

rank matrix reconstruction. The derivation of the SVT method

in [32], [33] is quite technical. It relies on the characterization

of the subgradient of the nuclear norm [34]. By contrast, our

result comes out naturally as an immediate consequence of

Proposition 1. To obtain the proximal map of the S2 norm, we

use Proposition 1 and the proximal map of the ℓ2 norm [21,

Section 4.2]. Then, it is simple to show that

proxτ‖·‖
S2

(Y) =







O , if ‖Y‖S2
≤ τ

(
‖Y‖

S2
−τ

‖Y‖
S2

)

Y , if ‖Y‖S2
> τ ,

(44)

where O is a zero matrix of the same size as Y. This situation

is advantageous since it allows us to avoid both the SVD
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Algorithm 2 : Hessian Schatten-norm Poisson Image Recon-
struction by Augmented Lagrangian (HSPIRAL2).

Input: y, K, τ > 0, α > 0, p ≥ 1.

Initialization: x0 = y, s01 = 0, s02 = 0, s03 = 0.

Output: x̂ (optimal solution of (12)).

while stopping criterion is not satisfied do

ut
1 ← Kxt + st1;

ut
2 ←Hxt + st2;

ut
3 ← xt + st3;

zt+1
1 ← 1

2

(

ut
1 − 1

α +

√
(
ut
1 − 1

α

)2
+ 4y

α

)

;

zt+1
2 ← argmin

z2∈K

1
2

∥
∥z2 − ut

2

∥
∥2

K
+ τ

α ‖z2‖1,p;

zt+1
3 ← max

(
ut
3,0
)
;

vt ← KT
(
zt+1
1 − st1

)
+H

∗
(
zt+1
2 − st2

)
+
(
zt+1
3 − st3

)
;

xt+1 ←
(
KTK+H

∗
H+ I

)−1
vt;

st+1
1 ← st1 +Kxt+1 − zt+1

1 ;

st+1
2 ← st2 +Hxt+1 − zt+1

2 ;

st+1
3 ← st3 + xt+1 − zt+1

3 ;

t← t+ 1;

end

return xt;

and the SVR steps. Consequently, this drastically reduces the

complexity for the computation of the proximity operator.

Finally, for the S∞ norm, the result depends on the proximal

map of the ℓ∞ norm

proxτ‖·‖
∞

(σ) = min (σ, τγ · 1) , (45)

where 1 is a vector of ones and the min operation is com-

puted component-wise. In general, the threshold γ cannot be

obtained in closed form, so we have to recourse to one of

the methods available in the literature [35], [36], [37], [38] to

find it. However, in our case, for σ ∈ R2
+, we can compute it

analytically

γ =







0 , if σ1 ≤ 1− σ2 ,
σ1+σ2−1

2 , if 1− σ2 < σ1 ≤ 1 + σ2 ,

σ1 − 1 , if σ1 > 1 + σ2 ,

(46)

where σ1, σ2 are the largest and smallest elements of σ,

respectively. Now, we express the S∞ proximal map as

proxτ‖·‖
S∞

(Y) = Udiag (min (σ, τγ · 1))VH . (47)

IV. EXPERIMENTAL RESULTS

Our goal in this section is to assess experimentally the

quality of reconstruction obtained by using penalty terms

from the Hessian Schatten-norm family. Additionally, we want

to illustrate the effectiveness of the proposed optimization

strategies for the problem of Poisson image restoration. Our

results are compared against the ones obtained by using three

alternative regularizers; namely, TV and the fully redundant

Haar and Daubechies (with four vanishing moments, DB4)

wavelet transform. In the wavelet case, we focus on FA

regularization to deblur images since it has been reported in

the literature (c.f [13], [39]) that FS usually leads to inferior

results. In particular, the regularizers we employ correspond

to the ℓ1 norm of the wavelet coefficients. If we denote the

wavelet frame-analysis operator by Φ, then the regularizer

of choice is ‖SΦx‖1, where S is a masking operator which

zeroes out the scaling coefficients so that they do not influence

the value of the penalty function. This is common practice

in wavelet-based techniques since the wavelet coefficients are

sparse while the scaling coefficients, which are related to the

low-frequency content of the image, are not.

A. Algorithmic Performance

We examine the convergence performance of the two pro-

posed algorithms, HSPIRAL1 and HSPIRAL2. To do so, we

consider the restoration of a degraded version of the Face

image shown in Fig. 1 using the HS2 regularizer (11). The

original image is scaled to a maximum intensity of M = 25
and its quality is degraded by Gaussian blurring of standard

deviation σb = 4 and subsequent “addition” of Poisson noise.

Since the two algorithms under study involve the solution of

different sub-problems, their computational complexity is not

the same. In particular, a main difference is that the proximal

map (28) of HSPIRAL1 cannot be obtained in closed-form and

needs to be computed iteratively. To estimate this proximal

map we use just 5 inner iterations, which from our experience

does not seem to compromise the convergence of the overall

algorithm. Then, we run the two methods for the same

amount of time. In both cases, we use the observed degraded

image as the initial solution and set the penalty parameter

as α = 60τ/M . In Fig. 3(a) we present for both algorithms

the evolution of the objective cost function f (x) in (12). We

present in Fig. 3(b) the evolution of the normed residual error

‖z−Ax‖X . This residual error indicates how efficiently the

equality constraints, which involve the auxiliary variables that

are used in the splitting process, are enforced. The two plots

of Fig. 3 allow us to conclude that HSPIRAL1 converges

faster than HSPIRAL2 for the Face image. However, since

the penalty parameter α in general influences significantly the

speed of convergence of every ADMM-based algorithm, this

result is not conclusive about the relative efficiency of the two

algorithms. Still, combined with the theoretical guarantee of

convergence for HSPIRAL2, this result can serve as an indi-

cation that HSPIRAL1 behaves well despite the approximate

evaluation of the proximal map (28).

B. Restoration Settings

For the comparisons among the different regularization

schemes we use two distinct set of images. The first set is

composed of eight grayscale natural images, that is the images

shown in Fig. 1 plus the standard Lena image2. Four of them

2Due to a reviewer’s request we removed the Lena image from Fig. 1
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Fig. 1. Set of natural test images. From left to right: Boat, Face, Hill, House, Kids, Peppers, and Wall.

Fig. 2. Set of biological test images. From left to right: Chick chorioallantoic membrane (CAM), CAM2, Fluorescent cell, Leukocyte (White blood cell),
and Thrombus (blood clot).

are well-known standard test images of size 512× 512 pixel

(except the Peppers image which is of size 256 × 256), with

the additional images3 being of size 255 × 255. Given that

our main interest leans toward biomedical imaging, we also

conduct experiments on a second set composed of the five

biological images shown in Fig. 2. Four of these images

are part of the biomedical image database [40], they were

converted to grayscale and resized. The largest resulting image

has a dimension of 314× 402 pixel. The last member of this

set is of size 512× 512.

The performance of every regularizer under comparison is

assessed for various blurring kernels and different noise levels.

In particular, we employ three point-spead functions (PSFs)

to produce blurred versions of the natural images. We use

a Gaussian PSF of standard deviation σb = 4, a moving-

average (uniform) PSF, and a motion-blur kernel. The first two

PSFs have a support of 9 × 9 pixel while the third one has

a support of 19 × 19 pixel. To simulate various SNR values

of Poisson noise we scale the images to have a maximum

intensity of (5, 25, 100, 255). Since Poisson noise is signal-

dependent with local SNR =
√
λk , where λk denotes the

underlying image intensity at position k, the relative amount

of noise increases as the maximum intensity of the image de-

creases. The mean intensity for each maximum intensity level,

for all natural images, varies in the ranges of [1.20 , 2.54],
[5.98 , 12.72] [23.92 , 50.97], [61 , 129.71] covering a wide

gamut of noise levels. For the set of biological images we

use two PSFs that can better approximate the spatial response

of a microscope, namely, a Gaussian PSF of standard deviation

σb = 4 and support size 7×7 and an airy disk PSF of support

31×31. The latter was obtained using our software4 according

to the Richards-Wolf PSF model [41]. For this image set,

the Poisson noise levels are generated with the images scaled

to a maximum intensity of (10, 50, 250, 500). In this case,

the mean intensity for each maximum intensity level varies

in the ranges of [1.76 , 4.73], [8.82 , 23.66], [44.08 , 118.31],
[88.17 , 236.61].

Regarding the minimization of the objective functions, for

3These images along with the motion-blur kernel used in the exper-
iments can be obtained from http://www.wisdom.weizmann.ac.il/∼levina/
papers/LevinEtalCVPR09Data.rar

4Software is available at http://bigwww.epfl.ch/algorithms/psfgenerator
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Fig. 3. Comparisons of the speed of convergence among HSPIRAL1 and
HSPIRAL2. Evolution of (a) the objective cost function f (x) of (12) and (b)
the normed residual error ‖z−Ax‖

X
.

the Hessian Schatten-norm regularizers we report the results

obtained using HSPIRAL1. For the TV seminorm and the

two wavelet-based penalties we use a similar optimization

strategy with the difference being that, instead of the proximal

map (28), we evaluate the proximal maps that are related to

properly modified versions of f2 in (25). This evaluation is per-

formed by the algorithm proposed in [42] which is an extended

version of Chambolle’s dual algorithm [43] for constrained

optimization. The adopted minimization approach for these

three regularizers can be considered as a modification of the

PIDAL-TV algorithm [13] that reduces the required number

of auxiliary splitting variables. The rationale for our choice, is

that the comparison among the different regularizers is more

meaningful that way, since the quality of the restoration does

not depend on the choice of the minimization strategy but

rather on the choice of the regularizer. After all, PIDAL-TV

is ranked among the most efficient optimization techniques for

Poisson inverse problems under TV regularization.

To ensure convergence of the methods, the stopping crite-

rion is always triggered by a relative normed difference of

10−5 between two successive estimates, or by a maximum

of 400 iterations. Further, we use 5 inner iterations for

computing the proximal maps of all the different versions of

f2 in (25). Finally, the quality of the reconstructed images

is assessed in terms of PSNR measured in dB and defined

as 10 log10
(
M2/MSE

)
, where M denotes the maximum

intensity of the underlying image and MSE stands for the mean

squared error between the restored and the noiseless image.
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TABLE I
PSNR COMPARISONS (POOLED OVER 10 TRIALS) ON POISSON IMAGE RESTORATION FOR THREE BLURRING KERNELS AND FOUR NOISE LEVELS.

Image / Peak
Gaussian blur: 9× 9 Motion blur: 19× 19 Uniform blur: 9× 9

Haar DB4 TV HS∞ HS2 HS1 Haar DB4 TV HS∞ HS2 HS1 Haar DB4 TV HS∞ HS2 HS1

B
o
a
t

5 22.30 21.83 22.44 22.42 22.45 22.46 22.32 21.80 22.41 22.42 22.45 22.45 22.18 21.73 22.33 22.32 22.35 22.35

25 23.43 23.38 23.62 23.69 23.73 23.74 23.70 23.36 23.79 23.77 23.82 23.83 23.30 23.17 23.48 23.48 23.52 23.53

100 24.32 24.36 24.55 24.64 24.68 24.69 24.99 24.40 25.03 24.98 25.05 25.09 24.28 24.11 24.47 24.49 24.55 24.58

255 24.94 24.91 25.18 25.23 25.29 25.32 26.04 25.22 26.05 25.98 26.09 26.16 25.06 24.80 25.25 25.27 25.35 25.39

F
a
ce

5 20.63 21.40 21.38 21.84 21.93 21.96 19.94 20.72 20.30 21.05 21.11 21.12 20.38 21.18 21.08 21.58 21.66 21.69

25 22.26 23.21 23.17 23.72 23.81 23.82 21.77 22.52 22.14 22.91 22.96 22.97 21.90 22.87 22.75 23.36 23.44 23.47

100 23.44 24.59 24.54 25.14 25.25 25.27 23.48 24.29 23.81 24.61 24.67 24.70 23.13 24.11 23.99 24.62 24.72 24.75

255 24.17 25.43 25.32 25.95 26.07 26.09 24.85 25.93 25.13 26.10 26.20 26.24 23.98 25.00 24.79 25.44 25.55 25.59

H
il

l

5 23.28 22.61 23.54 23.62 23.66 23.67 23.18 22.48 23.42 23.57 23.60 23.61 23.19 22.52 23.43 23.53 23.57 23.57

25 24.59 24.25 24.84 24.91 24.95 24.95 24.61 24.06 24.76 24.89 24.92 24.93 24.44 24.10 24.68 24.75 24.78 24.78

100 25.44 25.16 25.69 25.78 25.81 25.81 25.75 24.98 25.83 25.89 25.94 25.96 25.38 24.94 25.59 25.61 25.65 25.66

255 26.00 25.67 26.23 26.30 26.34 26.35 26.61 25.64 26.63 26.70 26.79 26.83 26.03 25.48 26.20 26.23 26.28 26.31

H
o
u

se

5 20.15 20.33 20.43 20.59 20.61 20.60 19.97 20.17 20.15 20.41 20.42 20.41 19.96 20.11 20.23 20.39 20.41 20.40

25 21.44 21.77 21.78 22.04 22.08 22.07 21.50 21.44 21.59 21.88 21.91 21.91 21.24 21.45 21.55 21.77 21.81 21.81

100 22.48 22.80 22.82 23.13 23.18 23.18 23.13 22.97 23.14 23.58 23.65 23.68 22.56 22.59 22.80 23.03 23.09 23.10

255 23.21 23.49 23.51 23.86 23.92 23.92 24.58 24.60 24.57 25.18 25.29 25.32 23.48 23.47 23.68 23.97 24.05 24.06

K
id

s

5 21.37 21.57 22.01 22.01 22.06 22.05 21.09 21.30 21.54 21.78 21.82 21.81 21.14 21.35 21.74 21.73 21.78 21.77

25 23.10 23.29 23.83 23.83 23.89 23.88 23.13 22.97 23.58 23.64 23.69 23.71 22.84 22.97 23.53 23.54 23.60 23.60

100 24.36 24.56 25.11 25.24 25.31 25.32 24.93 24.35 25.21 25.21 25.31 25.36 24.25 24.22 24.87 24.92 25.00 25.01

255 25.18 25.35 25.93 26.09 26.18 26.19 26.20 25.65 26.34 26.54 26.67 26.74 25.24 25.09 25.79 25.84 25.95 25.99

L
en

a

5 23.83 23.23 24.38 24.24 24.32 24.36 24.06 23.31 24.56 24.44 24.53 24.59 23.63 23.10 24.18 24.09 24.16 24.20

25 25.36 25.36 25.99 25.91 25.99 26.02 25.83 25.53 26.35 26.24 26.33 2.38 25.11 25.13 25.75 25.68 25.75 25.79

100 26.42 26.64 27.12 27.14 27.21 27.24 27.24 26.85 27.66 27.62 27.72 27.78 26.23 26.31 26.86 26.86 26.94 26.98

255 27.07 27.32 27.76 27.85 27.92 27.96 28.24 27.67 28.57 28.57 28.70 28.78 27.01 27.02 27.60 27.64 27.73 27.77

P
ep

p
er

s

5 20.48 20.41 20.70 20.90 20.94 20.95 20.63 20.42 20.76 21.04 21.08 21.08 20.31 20.26 20.52 20.71 20.75 20.76

25 21.66 21.70 21.94 22.29 22.33 22.34 22.12 21.75 22.28 22.80 22.88 22.92 21.50 21.50 21.76 22.20 22.26 22.28

100 22.50 22.52 22.87 23.35 23.41 23.44 23.47 22.69 24.10 24.52 24.63 24.71 22.48 22.31 22.95 23.46 23.55 23.61

255 23.07 22.97 23.63 24.18 24.26 24.32 24.75 23.58 25.62 25.80 25.97 26.08 23.28 22.89 24.12 24.41 24.54 24.62

W
a
ll

5 19.52 20.00 20.09 20.25 20.31 20.31 19.44 19.88 19.75 20.14 20.20 20.21 19.24 19.69 19.75 19.90 19.95 19.94

25 21.18 22.01 21.98 22.25 22.34 22.34 21.39 21.91 21.72 22.23 22.31 22.34 20.72 21.36 21.40 21.62 21.69 21.70

100 22.49 23.48 23.46 23.79 23.88 23.89 23.32 23.70 23.60 24.11 24.22 24.26 22.17 22.95 22.85 23.21 23.32 23.34

255 23.40 24.38 24.44 24.76 24.87 24.88 24.97 25.20 25.19 25.64 25.77 25.82 23.32 24.09 23.99 24.37 24.50 24.54

C. Poisson Deblurring of Natural Images

In Table I, we provide comparative Poisson image restora-

tion results for the set of natural images and for many combi-

nations of blurring and noise levels. Regarding the Hessian

Schatten-norm regularizers, we report the results obtained

employing Schatten norms or order one, two, and infinity.

They correspond to the nuclear, Frobenius, and spectral matrix

norms, respectively. The PSNR scores are pooled over 10

independent realizations of Poisson noise. For the sake of

consistency, the reported results for each regularizer under

comparison, including TV, Haar, and DB4, are derived using

the individualized regularization parameter τ that gives the

best PSNR performance while, similar to [13], the penalty

parameter in the ADMM updates is chosen as α = 60τ/M .

According to the authors in [13], this heuristic choice of

the ADMM penalty parameter appears to lead to satisfactory

results for wavelet and TV regularization. Moreover, choosing

a value which is an order above or below this choice does

not change significantly the convergence behavior of the

algorithm.

From Table I, we observe that the Hessian-based regular-

ization framework almost always results in the best restoration

performance and leads to improved quantitative results com-

pared to TV and to wavelet-based regularization. The HS1
regularizer achieves slightly better pooled scores than HS2.

The HS∞ regularizer, while not performing as well as the

other two members of the family, in most of the cases still

performs better than the other alternative approaches. The TV

regularizer consistently outperforms the Haar frame operator,

which sometimes falls behind more than 1 dB compared to

the best achieved PSNR result. However, for certain images

the DB4 wavelet regularization outperforms TV.

Beyond quantitative comparisons, the improved perfor-

mance of the Hessian-based regularization framework can

also be visually appreciated by inspecting the representative

Poisson image restoration examples provided in Figs. 4–6.

Even in cases where the PSNR improvement over the compet-

ing regularizers is not substantial, the HSp penalty functions
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TABLE II
PSNR COMPARISONS (POOLED OVER 10 TRIALS) ON POISSON IMAGE RESTORATION FOR TWO BLURRING KERNELS AND FOUR NOISE LEVELS

Image CAM CAM2 Fluor. Cells Leukocyte Thrombus

Peak 10 50 250 500 10 50 250 500 10 50 250 500 10 50 250 500 10 50 250 500

G
au

ss
ia

n
b
lu

r:
7
×
7 Haar 18.14 19.11 20.04 20.49 19.98 21.28 22.44 22.98 26.66 28.34 29.83 30.50 20.71 22.06 23.33 23.91 20.25 21.50 22.70 23.28

DB4 18.39 19.49 20.43 20.85 20.42 21.89 23.10 23.62 27.28 29.23 30.86 31.50 21.10 22.75 24.15 24.72 20.68 22.09 23.30 23.87

TV 18.39 19.40 20.33 20.77 20.39 21.73 22.87 23.36 27.05 28.80 30.28 30.89 21.06 22.56 23.90 24.50 20.20 21.92 23.07 23.61

HS∞ 18.53 19.61 20.58 21.01 20.67 22.12 23.35 23.88 27.64 29.56 31.15 31.77 21.21 22.81 24.21 24.81 20.86 22.26 23.52 24.09

HS2 18.56 19.65 20.63 21.07 20.71 22.16 23.40 23.94 27.70 29.61 31.21 31.84 21.27 22.89 24.31 24.92 20.89 22.31 23.58 24.16

HS1 18.57 19.66 20.64 21.08 20.72 22.16 23.39 23.93 27.70 29.62 31.21 31.84 21.29 22.91 24.33 24.95 20.90 22.30 23.57 24.15

A
ir

y
-d

is
k

b
lu

r:
3
1
×
3
1 Haar 18.21 19.37 20.37 20.75 20.02 21.55 22.88 23.38 26.60 28.45 30.04 30.54 20.74 22.39 23.92 24.48 20.29 21.82 23.17 23.67

DB4 18.36 19.73 20.91 21.33 20.37 22.13 23.69 24.26 27.08 29.29 31.23 31.97 21.04 23.03 24.84 25.52 20.63 22.36 23.98 24.58

TV 18.45 19.69 20.75 21.14 20.41 22.03 23.39 23.91 26.97 28.92 30.57 31.21 21.07 22.92 24.63 25.26 20.64 22.27 23.67 24.22

HS∞ 18.55 19.87 21.01 21.43 20.67 22.40 23.93 24.49 27.48 29.63 31.51 32.25 21.18 23.12 24.90 25.56 20.85 22.58 24.16 24.78

HS2 18.59 19.92 21.06 21.48 20.72 22.44 23.98 24.55 27.53 29.68 31.57 32.32 21.24 23.21 25.00 25.66 20.89 22.63 24.22 24.84

HS1 18.60 19.92 21.07 21.47 20.72 22.44 23.96 24.52 27.54 29.69 31.57 32.31 21.26 23.23 25.01 25.67 20.90 22.62 24.21 24.82

(a) (b)

(c) (d)

Fig. 4. Restoration of the Face image, scaled to a maximum intensity of
M = 25 and degraded by Gaussian blurring and Poisson noise. (a) Degraded
image (PSNR = 17.01 dB), (b) DB4 result (PSNR = 23.30 dB), (c) TV result
(PSNR = 23.10 dB), and (d) HS1 result (PSNR = 23.90 dB).

result in image estimates with finer feature reconstructions and

avoid the presence of strong artifacts. On the other hand, as

it is verified from Figs. 4–6, block artifacts are introduced

by the Haar and TV regularizers, while ringing-artifacts are

introduced by the DB4 regularizer. These are becoming even

more pronounced when the level of Poisson noise is increased.

Regarding the computational cost, we report the execution

time of all methods under comparison for the restoration of

the Face image under Gaussian blur and at a peak intensity

25. For each regularization method we used the regularization

parameter that led to the best PSNR performance. The sim-

ulations were performed on a laptop with a 2.5 GHz Intel

Core i7 Processor and 8 GB memory, using a MATLAB

(a) (b)

(c) (d)

Fig. 5. Restoration of the House image, scaled to a maximum intensity of
M = 100 and degraded by motion blurring and Poisson noise. (a) Degraded
image (PSNR = 19.92 dB), (b) Haar result (PSNR = 23.14 dB), (c) TV result
(PSNR = 23.13 dB), and (d) HS2 result (PSNR = 23.71 dB).

implementation of the algorithms. The reconstruction of the

image using the HSp regularizers for p = 1, 2,∞, took 29.2,

19.8, and 29.3 seconds, respectively. The TV reconstruction

was obtained in 20.71 seconds, while the Haar and DB4

reconstructions in 57.7 and 76.7 seconds, respectively. Note

that while each of the HSPIRAL1 iterations is more expensive

than TV’s, the termination criteria are satisfied earlier, which

explains why in the HS2 case the running time is smaller.

D. Poisson Deblurring of Biological Images

A potential and quite promising application of the photon-

imaging observation model is biomicroscopy. There, the most
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(a) (b)

(c) (d)

Fig. 6. Restoration of the Wall image, scaled to a maximum intensity of
M = 255 and degraded by uniform blurring and Poisson noise. (a) Degraded
image (PSNR = 19.59 dB), (b) DB4 result (PSNR = 23.92 dB), (c) TV result
(PSNR = 23.93 dB), and (d) HS∞ result (PSNR = 24.26 dB).

(a) (b)

(c) (d)

Fig. 7. Restoration of the CAM2 image, scaled to a maximum intensity of
M = 50 and degraded by airy-disk blurring and Poisson noise. Close up of
(a) Degraded image (PSNR = 18.29 dB), (b) DB4 result (PSNR = 22.13 dB),
(c) TV result (PSNR = 22.03 dB), and (d) HS1 result (PSNR = 22.44 dB).

dominant noise source is the shot noise, which obeys a Poisson

law. An extra degradation factor is the out-of-focus blur due

to the poor localization of the PSF of the microscope. Since

the use of the proposed regularization framework seems to

have a practical relevance in this field, we provide in Table II

comparative restoration results for the set of biological images

shown in Fig. 2. As with natural images we report the results

(a) (b)

(c) (d)

Fig. 8. Restoration of the Thrombus image, scaled to a maximum intensity
of M = 250 and degraded by Gaussian blurring and Poisson noise. Close up
of (a) Degraded image (PSNR = 20.88 dB), (b) Haar result (PSNR = 22.70
dB), (c) TV result (PSNR = 23.07 dB), and (d) HS2 result (PSNR = 23.55
dB).

obtained with the same HSp regularizers and we compare

their performance with wavelet-based and TV regularization.

Likewise, we observe once more that the Hessian-based regu-

larizers, combined with the proposed minimization approach,

consistently outperform the alternative regularization schemes.

Moreover, since the biological images of Fig. 2 consist of

smooth intensity transitions and filament-like features, the

HSp regularizers are well-tuned to these image properties and

result in satisfactory reconstructions. Representative restora-

tion examples of biological images are illustrated in Figs. 7

and 8. There, we observe that the Haar and TV penalties have

the effect of shuffling the details of the images and broadening

their fine structures, while the wavelet regularization with

higher vanishing moments (DB4) introduces ringing artifacts.

On the other hand, the Hessian-based regularizers show a

better reconstruction behavior and restore the image features

more accurately.

V. CONCLUSIONS

We proposed an efficient framework for Poisson image

reconstruction subject to regularization which depends upon

potential functions acting on the eigenvalues of the Hessian.

Our motivation for employing this class of penalty terms stems

from the fact that they have recently been shown to perform

well for linear inverse problems with Gaussian noise. We

observe that their performance remains consistent in the case

of Poisson noise. We designed two algorithms that optimize

the corresponding objective functions. They are based on an

augmented Lagrangian formulation and arise as two different

ADMM variants. The second variant depends heavily on a
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result we derive in this paper. This result relates the evaluation

of the proximal map of a Schatten matrix-norm of order p with

the evaluation of the proximal map of the ℓp norm. The scope

of this link, while being fundamental to the development of

our second proposed algorithm, is general and potentially has

a wider applicability that extends beyond this paper.

The practical relevance of the proposed regularization

framework, as well as the effectiveness of our novel min-

imization approach, was verified through comparisons with

alternative methods, including total variation, for the problem

of Poisson image deblurring of natural and biological images.

The results we obtained are promising and competitive. They

provide an indication that this framework can be considered

as a viable alternative to other existing schemes.
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