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A Microgrid is either:

A fragment of a power system
A small power system

That can:

Operate as a standalone system, or
Operate in parallel with a large utility system
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What is the role of a ‘Microgrid’?

AT MIT

* Enhance Reliability?
e Facilitate incorporation of
renewable generation?
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ﬁ% Important issues related to microgrids:

Local Generation:
* Renewables: Solar and Wind
Difficult to Control and Dispatch
* Cogeneration: Combined Heat and Power
Dispatch and Control have other worries
* Conventional generation gives a little bit of a break
 Some generation is provided through inverters
Even if controllable, has no inertia
And may current limit

Loads

* Some loads may be responsive to system needs

* Some loads are constant power

* Some loads are constant impedance

* Induction Motor loads may be large and have special
dynamics
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%% Enhanced Reliability:

* Something goes wrong
* Not always as bad as this
* Examples:
Aggressive trees
Vehicle accidents
Weather
May require islanding
Control must:
* Detect the problem
* Determine if ‘ride through’ is
possible, and if not:
e Shut down connection at PCC
e Balance load with local
generation
* Existence of local storage can
help with this
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Control and measurement use LabView: This is a Screen Shot
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Fault Sequences Under Study
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|IEEE Fault-Ride Recommendation
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200

Consider an induction motor, torque
and current vs. speed

If current limited, torque is reduced
over part of the speed range

Current Limit = 80% of Locked Rotor
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During fault

At the moment of the fault, two phenomena occur:
Braking mode — IM dissipates its trapped flux

1.
2.
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Detail of Simulation during a fault

Dynamics
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Detail of simulation of Induction Motor Fault Behavior r]-e
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Post-fault AT

After the fault, the IM has electromagnetic torque returns
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Braking Mode Analysis

Method gives a good estimation of real speed decay
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Proposed Control Method
Take Advantage of the inverter
Can Adjust Frequency and Voltage

Challenge the paradigm that a system has to recover to nominal conditions
Instead, recover to “advantageous” conditions:
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Simulation of a Cleared Fault Recovery

Fault Response Comparison
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Or with a fairly rapid return to normal frequency

Fault Response Comparison
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Experimental Results

To validate the torque-speed curve, we did a load change experiment
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Fault tests with recovery

IM stalled at
this point
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Experimental Results

Fault tests with recovery
During recovery, large
Current peak during currents are observed,
generator mode and voltage is low
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Experimental Results Frequency
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Conclusions

* Induction Motor (IM) are a significant fraction of loads in power systems
and microgrids

* |M can stall leading to voltage collapse or load shedding

» Direct methods can be applied to calculate the CCT from machine
parameters and initial conditions — no need of time-domain simulations

« A control strategy was proposed to increase the CCT and improve
recovery

« Experimental results validate the above points
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