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A Microgrid is either: 
• A fragment of a power system
• A small power system
That can:
• Operate as a standalone system, or
• Operate in parallel with a large utility system
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What is the role of a ‘Microgrid’?

• Enhance Reliability?
• Facilitate incorporation of 

renewable generation?
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Important issues related to microgrids:
Local Generation:
• Renewables: Solar and Wind

Difficult to Control and Dispatch
• Cogeneration: Combined Heat and Power

Dispatch and Control have other worries
• Conventional generation gives a little bit of a break
• Some generation is provided through inverters

Even if controllable, has no inertia
And may current limit

Loads
• Some loads may be responsive to system needs
• Some loads are constant power 
• Some loads are constant impedance
• Induction Motor loads may be large and have special 

dynamics
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Enhanced Reliability:
• Something goes wrong 
• Not always as bad as this
• Examples: 

Aggressive trees
Vehicle accidents
Weather

May require islanding
Control must:
• Detect the problem
• Determine if ‘ride through’ is 

possible, and if not:
• Shut down connection at PCC
• Balance load with local 

generation
• Existence of local storage can 

help with this
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Studies of Microgrids at MIT: an Emulator with Physical Machines and Electronics

Main Bus

Diesel Generator Emulator
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Control and measurement use LabView: This is a Screen Shot



10/28/2015 MIT_RLE_Microgrids

Fault Sequences Under Study
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IEEE Fault-Ride Recommendation
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Consider an induction motor, torque 
and current vs. speed
If current limited, torque is reduced 
over part of the speed range



10/28/2015 MIT_RLE_Microgrids

Pre-fault

Torque-speed curve

Intersection of the 

mechanical and 

electrical torques 

gives the operation 

point
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During fault

At the moment of the fault, two phenomena occur:

1. Braking mode – IM dissipates its trapped flux

2. Slow down due to mechanical torque

Mechanical 

torque 

increase

Fault 

occurs
Braking 

mode

Slow 

down
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Detail of Simulation during a fault

Dynamics

Electrical 
dynamics

Mechanical 
dynamics

Tm depends on the mechanical load
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Detail of simulation of Induction Motor Fault Behavior

From Braking Mode

From Normal Load
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Post-fault

After the fault, the IM has electromagnetic torque returns
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Braking Mode Analysis

Method gives a good estimation of real speed decay

Simulation Results

Estimation of speed decrement due to braking

Decreased CCT estimation 
by 10s of milliseconds.
Actual numbers depend on 
machine parameters
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Proposed Control Method

Take Advantage of the inverter

Can Adjust Frequency and Voltage 

Challenge the paradigm that a system has to recover to nominal conditions

Instead, recover to “advantageous” conditions:
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Effect of Frequency Reduction 
Current Limited Conditions
Difference in Clearing Time
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Simulation of a Cleared Fault Recovery
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Or with a fairly rapid return to normal frequency



Experimental Results

Microgrid Experimental set-up

Source IM DC/DCDC +
-

System 
impedance

R



Dynamics after the fault

Generator mode

Fault occurs at t = 0

Light load

Heavier load



Experimental Results

To validate the torque-speed curve, we did a load change experiment

Real 
operation 
pointsMechanical load 

disconnected

Machine starting
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Fault tests without recovery

Test 2

Test 1

Constant 
Resistance 
Load
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Fault tests with recovery

IM stalled at 
this point

When clearing was 
before CCT, then IM 
recovered

IM stalled

IM stoped

Fault occurs at t = 0
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Fault tests with recovery
During recovery, large 
currents are observed, 
and voltage is low

Current peak during 
generator mode
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Inverter as source

Critical speed
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Inverter as source fmin

t

Frequency 
set-point

Δt1
Δt2

Typical 
control

fmin = 50 Hz fmin = 40 Hz

fmin = 58 Hz
Small Δt1 and Δt2

IM 
disconnected



Experimental Results

t

Frequency 
set-point

Δt1
Δt2

fmin = 55 Hz fmin = 57 Hzfmin = 59 Hz

Typical 
control
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Conclusions

• Induction Motor (IM) are a significant fraction of loads in power systems 

and microgrids

• IM can stall leading to voltage collapse or load shedding

• Direct methods can be applied to calculate the CCT from machine 

parameters and initial conditions – no need of time-domain simulations

• A control strategy was proposed to increase the CCT and improve 

recovery

• Experimental results validate the above points


