MODERN ORGANIC CHEMISTRY: HOW IT WORKS

MIKHAIL S. NECHAEV, PH. D., D. SC.

MSU, TIPS RAS

October 20, 2015, Skoltech, Moscow

What is modern organic chemistry

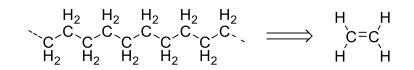
Research in our group

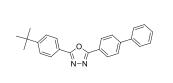
Applied research

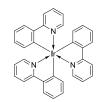
Concluding remarks

Modern organic chemistry

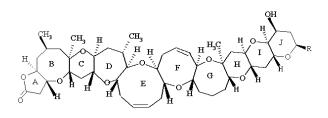
Life is organic ...


Evolution of technology, biomimetic approach


- Utilization of organic materials
- Approaches based on biological principles
- Artificial life


Levels of complexity

Polymers

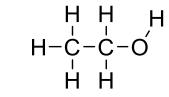

Organic electronics

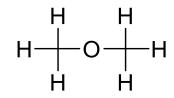
Drugs

If you want to make something new... most probably, it will be organic!

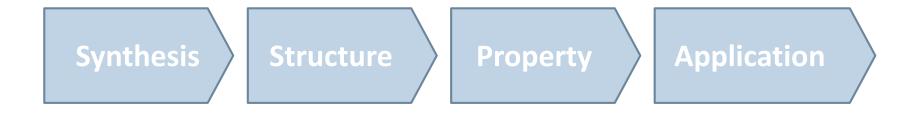
Organic chemistry – chemistry of carbon containing compounds...

Alexander Mikhailovich Butlerov (1859):


«chemical nature of complex body is determined by nature of elemental parts, their quantity and chemical structure».



1828 – 1886


Structure of the molecule defines its properties.

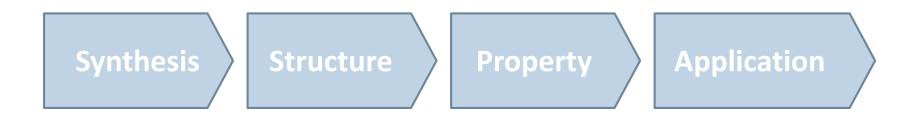
 C_2H_6O

Research process in organic chemistry in 19th and 20th centuries

Chemists synthesized, studied and utilized MOLECULES

Nobody needs molecules!.. ... but, everybody need molecular properties!

Drugs



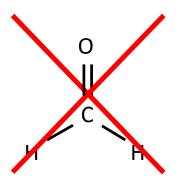
Interested

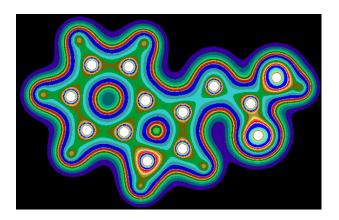
- Action
- Safety
- Price

NOT interested

- Chemical structure
- Formulation
- Polymorphism

Organic chemistry – a science about how to make substances

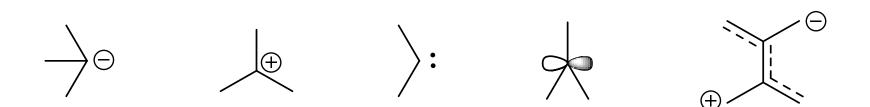

or materials with the needed properties based on carbon and


other elements compounds.

Property \rightarrow structure

Design and modeling of molecules

Quantum chemistry is a modern language



More advanced language enables us to describe and understand more complex problems

Structure \rightarrow Synthesis

Experimental studies of reactive species

actio (lat.) – movement, action

Synthesis \rightarrow Application

Catalysts

Drugs

Organic electronics

Energetic materials

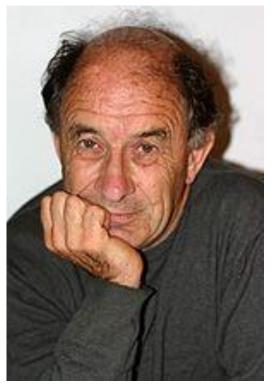
Research in our group

Expertiese

- Molecular modeling
- Organic synthesis
- Organometallic synthesis
- Homogeneous catalysis
- Physical methods

Interdisciplinary approach to solve problems

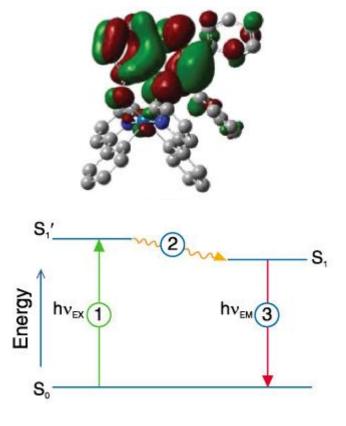
From science to industry


Academic collaborations

Contract research ~ 80 % funding of our group

Vladimir Arnold

Vladimir Igorevich Arnold 1937 – 2010 There is no "fundamental or applied" science. There is science and its applications.

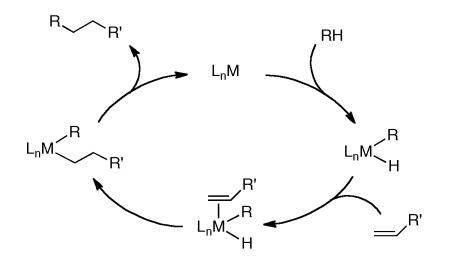

Science gives us a key for understanding of the nature and instruments to solve vital problems.

Molecular modeling

State of the art QM techniques enable studies of complex structures with high precision

Electronic structure

Spectral properties


Molecular modeling

Thermochemistry

Reaction energetics Stability of structures

Catalysis

Reaction mechanism Inverse problem

Carbon group elements chemistry

C Si Ge Sn Pb

Dmitry Ivanovich Mendeleev (1871):

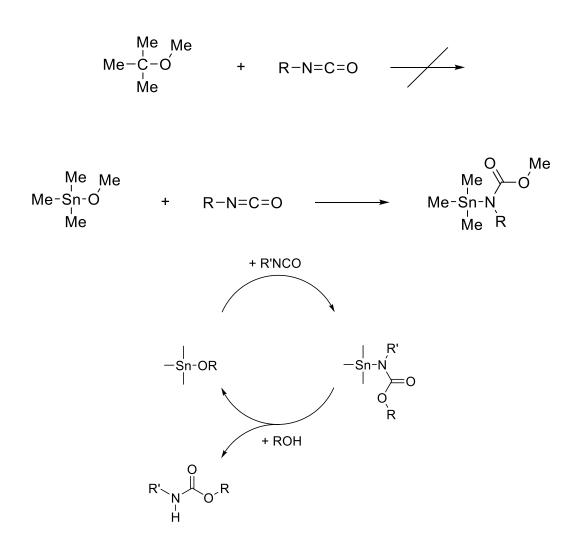
Reiben	Grappo I. — R*0	Gruppo II. R0	Gruppo III. R'0'	Gruppe IV. RH* RO*	Gropps V. RH ⁱ R ¹⁰⁵		Grappe VI. RH ^a RO ³	Gruppo VII. RH R*07	Gruppo VIII. RO4	
1	II=1									
2	Li=7	Be=9,4	B==11	C=12	N==	14	0=16	F=19		
8	Na=28	Mg=24	Al=21,3	Si=28		P=31	8=32	Cl== 35,5		
4	K=39	Ca=40	-==44	Ti=48	V≔	51	Cr= 52	Mn=55	Fo=56, Co=59, Ni=59, Cu=63.	
5	(Ca=63)	Zn=65	-= 68	-=72		As=75	So=78	Br== 80		
6	Rb == 85	Sr=87	?Yt=88	Zr== 90	Nb=	94	Mo=96	-=100	Ru=104, Rh=104, Pd=106, Ag=108.	
7	(Ag=108)	Cd=112	In == 13	Sn==118		Sb=122	Te=125	J=127		
8	Cs=183	Ba=187	?Di=138	?Co=140	-		-	-		
9	(-)		+	-		-	-	-		
10	-	-	?Er=178	?La==180	Tr=	= 182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.	
11	(Au=199)	fig=200	T1== 204	Pb== 207		Bi=208	· · · -	-	12	
12	-	-	-	TL=231	-		U==240	-		

Prediction of Germanium

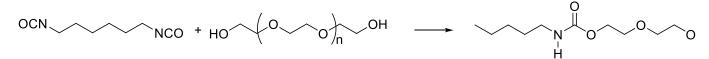
Was known:Si(C_2H_5)_4-Sn(C_2H_5)_4Predicted:Eka-Si(C_2H_5)_4d = 0.96 g/mlT_b = 160°CC. Winkler (1887):Ge(C_2H_5)_4d = 0.99 g/mlT_b = 163.5°C

Periodicity

С Si Ge Sn Pb

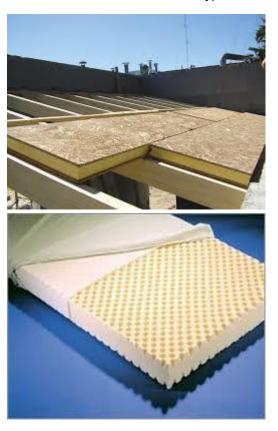

Increase in atomic number

Increase in atom volume, bond length

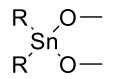

Decrease in bond energy E-E, E-C

Increase in polarizability

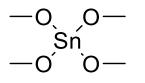
Chemical properties

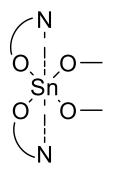


Polyurethanes

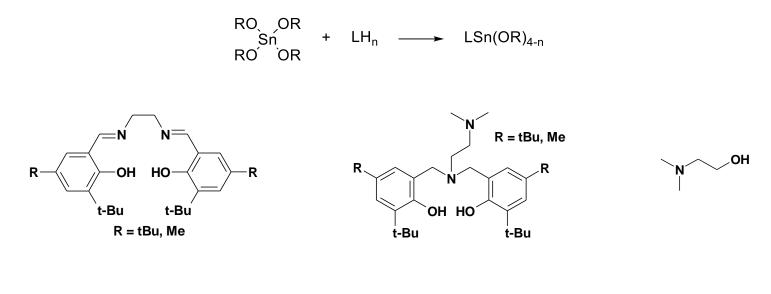


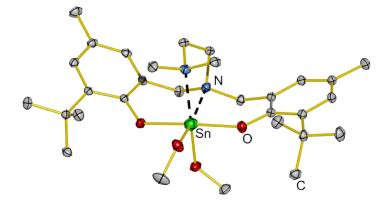
полиуретан

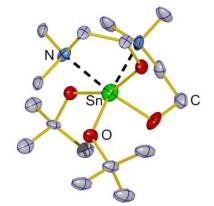



Non-toxic catalysts, design

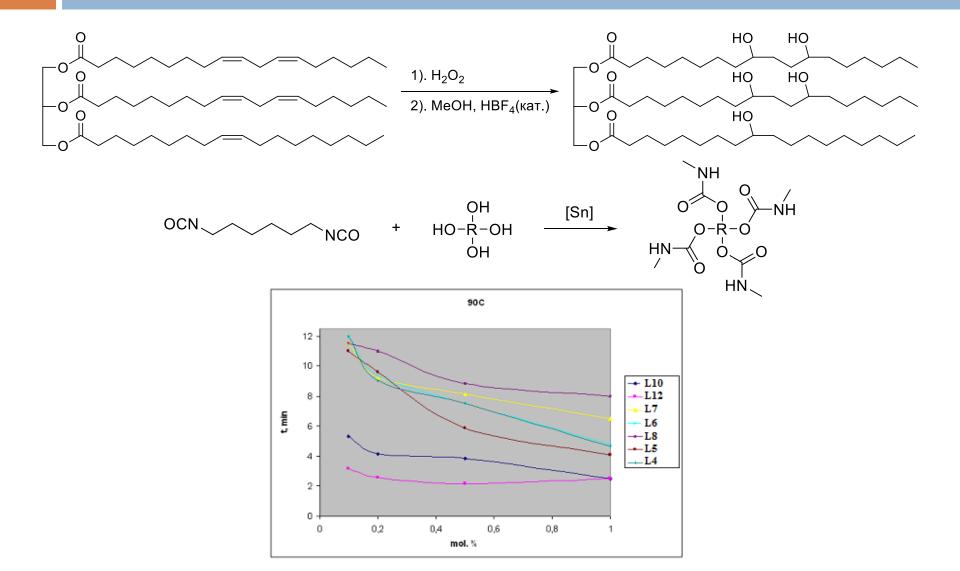
High activity, toxic




No Sn-C bond - no toxicity Active Low stability



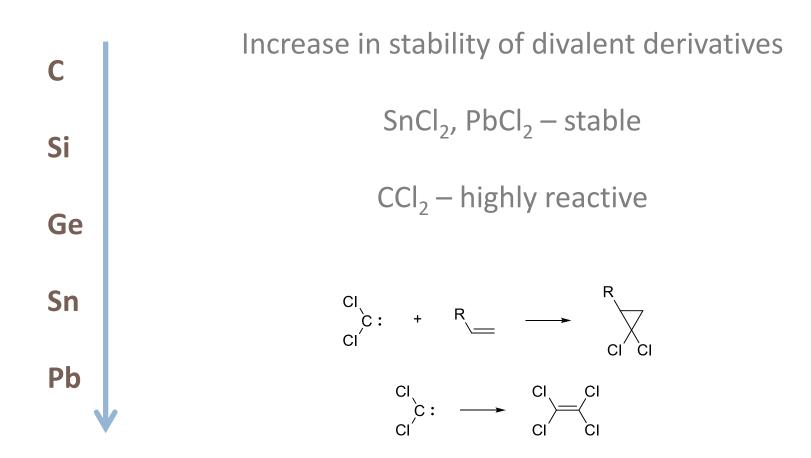
Not toxic Stable


Non-toxic catalysts, synthesis

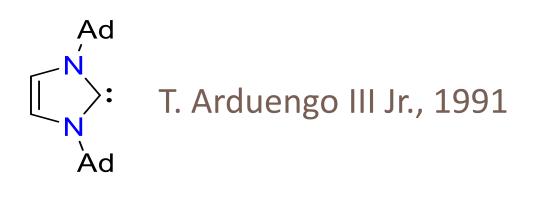
Non-toxic catalysts, application

Organometallic chemistry – chemistry of ligands

Not too much available metals!

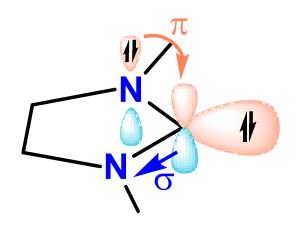

1 Н Водород 1,00794			Г	0603HA4	Chind				7								2 Не Гелий 4,0026
3 Ці Литий 6,941	4 Ве Бериллий 9,0122				обознач	ение атома за название за пыкая атомна	пемента	43 Тс Теонеция [97]				5 B 50p 10,81	6 С Углерод 12,011	7 N A307 14,0067	8 О Киспород 15,9994	9 F Фтор 18,998	10 Ne Неон 20,179
11 Na Натрий 22,9898	12 Мд Магний 24,305		(Ha	(наиболее устойчивый изотоп напитан в скобжах)							13 АЈ Алюминий 26,9815	14 Si Кремний 28,086	15 Р Фосфор 30,9738	16 S Cepa 32,06	17 CI Xnop 35,453	18 Аг Аргон 39,948	
19 К Калий 39,098	20 Са Кальций 40,06	21 Sc Скандий 44,956	22 Ті Титан 47,90	23 V Ванадий 50,941	24 Сг Хром 51,996	25 Мп Марганец 54,9380	26 Fe Железо 55,847	27 Со Кобальт 58,9332	28 Ni Никель 58,70	29 Си Медь 63,546	30 Zn Цинк 65,38	31 Ga Галлий 69,72	32 Ge Германий 72.59	33 Аз Мышьяк 74,9216	34 Se Селен 78,96	35 Вг 5ром 79,904	36 Кг Криптон 83,80
37 Rb Рубидий 85.4678	38 Sr Стронций 87.62	39 Y Иттрий 88,906	40 Zr Цирконий 91.22	41 Nb Ниобий 92,906	42 Мо Молибден 95.94	43 Тс Технеций [97]	44 Ru Рутений 101.07	45 Rh Родий 102.905	46 Рd Палладий 106.4	47 Ag Cepe6p0 107,868	48 Сс Кадмий 112.40	49 In Индий 114.82	50 Sn 0noso 118.69	51 Sb Сурьма 121.75	52 Te Tennyp 127,75	53 Йод 126.9045	54 Хе Ксенон 131.30
55 Св Цезий 132.905	56 Ва Барий 137.34	57-71 Лантаномды	72 Hf Гафний 178,49	73 Та Тантал 180.948	74 W Вольфрам 183.85	75 Re Рений 186,207	76 Осмий 190.2	77 Ir Иридий 192.22	78 Рt Платина 195.09	79 Au 30лото 196.9665	80 Нд Ртуть 200,59	81 П Таллий 204.37	82 Рb Свинец 207.2	83 Ві Висмут 208.98	84 Ро Полоний [209]	85 At Actat [210]	86 Rn Радон 12221
87 Fr Франций [223]	88 Ra Радий [226]	89-103 Актиноиды	104 Db Курчатовий [261]	105 Ns Нильсборий [262]	106 Rf Резерфорай [263]	107	108	109									
ЛАНТАНОИДЫ (редкоземельные элементы)		57 La Лантан 138,9055	58 Се Церий	59 Рг Празеодим 140.9077	60 Nd Неодим 144,24	61 Рт Прометий [145]	62 Sm Самарий 150,36	63 Ец Европий 151.96	64 Gd Гадолиний 157,25	65 Tb Tep6wii 158,9254	66 Dy Диспрезий 162,50	67 Но Гольмий 164,9308	68 Ег Эрбий 167,26	69 Тт Тулий 168.9342	70 Уb Иттербий 173.04	71 Lu Лютеций 174.97	
АКТИНОИДЫ (радиоактивные редкоземельные элементы)		89 AC ARTHHMA [227]	90 Th Торий 232,0381	91 Ра Протактиний 231,0359	92 U Уран 238,029	93 Np Нептуний 237.0482	94 Ри Плутоний [244]	95 Агп Америций [243]	96 Cm	97 Вк Берклий [247]	98 Cf Kanadopesii (251)	99 Es	100 Fm	101 Ма Менделевий [256]	102 No	103 Цг Поуренсий [256]	

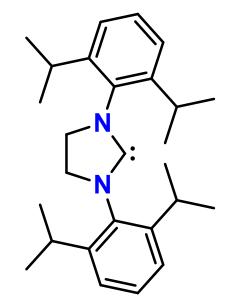
Ti, V, Cr, Fe, Co, Ni, Cu, Ln

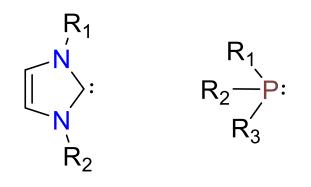

Pd, Pt, Au

Rh, Ir

Divalent compounds

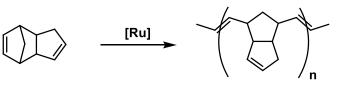



Stable carbenes

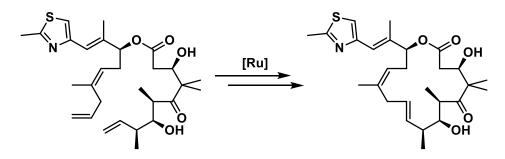

Electronic

Properties of stable carbenes

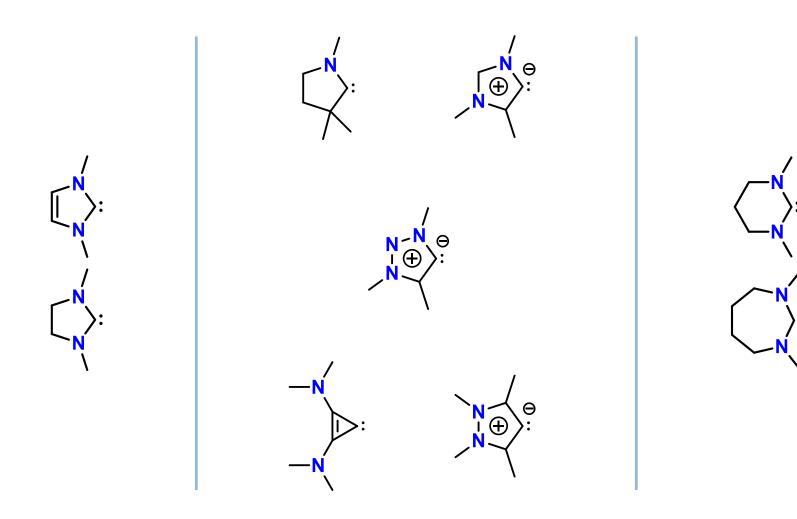
- Stronger donors
- More stable complexes
- Synthetic accessibility
- Easily functionalized
- Lower toxicity

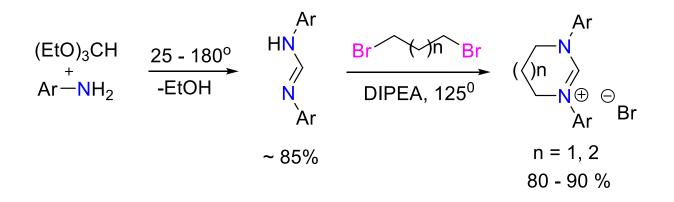

Applications of stable carbenes

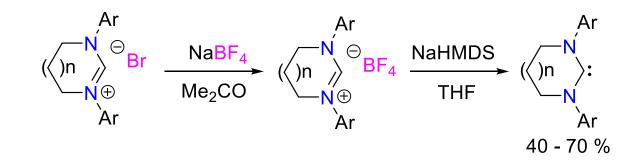
Grubbs II


Polymerizations

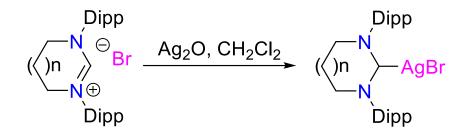
car palstics

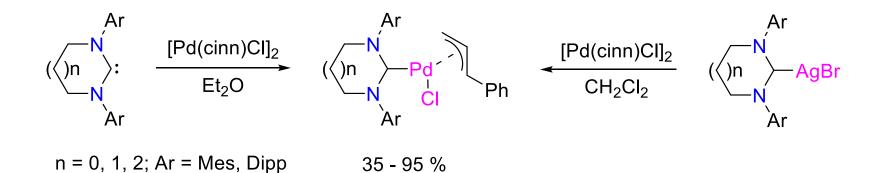


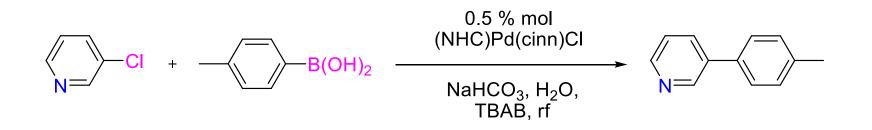

Synthesis of new drugs Hoffman-La Roche, C₁₆ cycle



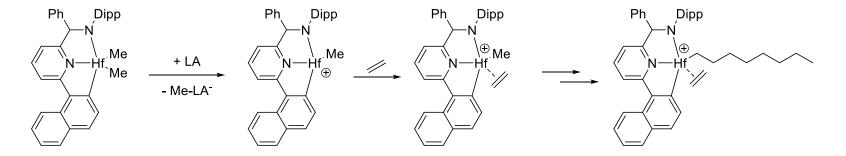
New types of stable carbenes

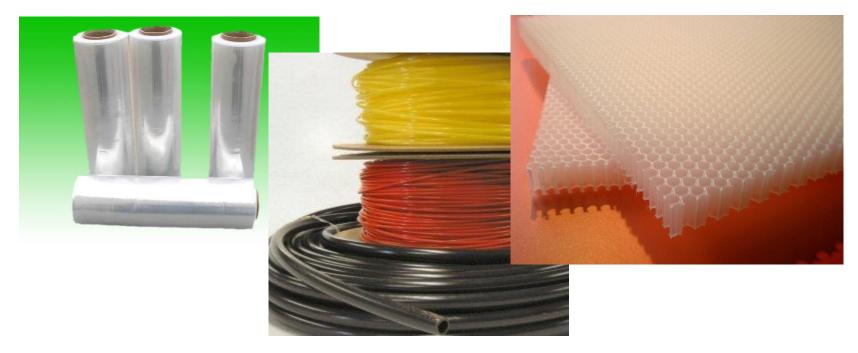


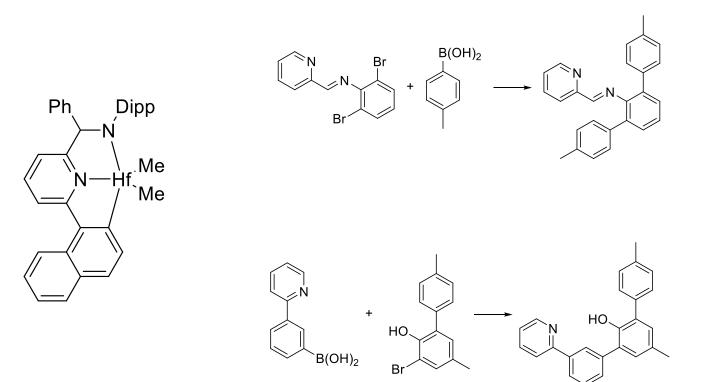

Synthesis of carbenes



Carbene complexes




Suzuki-Miyaura reaction


- Pure water, no organic solvents
- In air, no oxidation of ligands
- Low loading of metal (0.5 mol%)
- High reaction rate (30 60 min)
- No side products

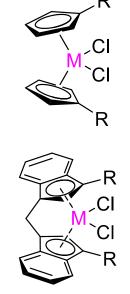
Polyolefines

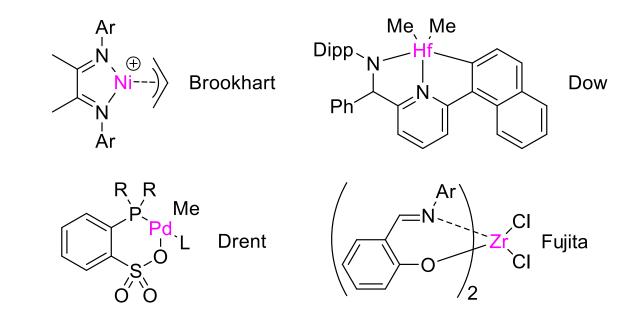
New catalysts

Applied research

- Catalysts for PO synthesis
- Catalysts for rubber synthesis
- Biodegradable polymers
- Organic electronics materials

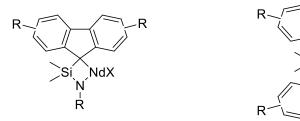
Catalysts for PO synthesis

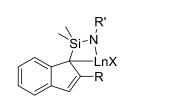

39

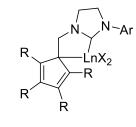

10+ years experience in PE/PP catalysts

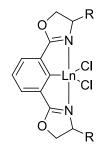
New generations of catalysts

Metallocenes

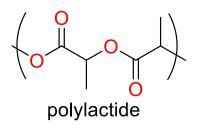

Post-metallocenes




Catalysts for rubber synthesis


Ethylene-butadiene rubber (EBR)

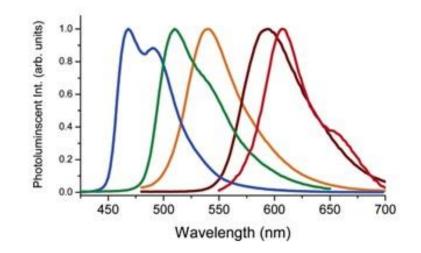
High-cis PB and PI rubber



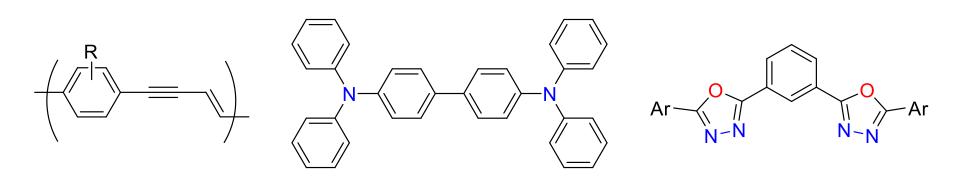
NdX

Biodegradable polymers

New types of catalysts: Sn, Al


Highly active and selective: Ti, Zr, Hf-postmetallocenes

Organic electronics materials

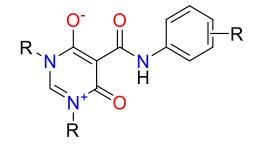

42

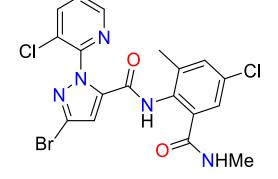
New Ir OLED emitters

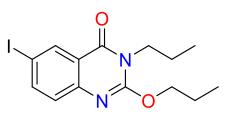
NHC-Ir cyclometallated complexes as promissing OLED emitters

New conducting polymers & semiconductors

Agrochemistry


Green chemical technologies


Optimization and scale-up


Pesticides

Insecticides

Fungicides

Concluding remarks

- Organics are all around
- There is no need for molecules, but there is a need in molecular properties
- Property Structure Synthesis Application
- Organometallic chemistry in a chemistry of ligands
- There is no "fundamental or applied" science! There is science and its applications.

Mikhail S. Nechaev, Ph. D., D. Sc.

Department of Chemistry, MSU

mob.:+7 (903) 250 60 80e-mail:m.s.nechaev@org.chem.msu.ru